

Lecture Notes in Computer Science 4653
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roland Wagner Norman Revell
Günther Pernul (Eds.)

Database and Expert
Systems Applications

18th International Conference, DEXA 2007
Regensburg, Germany, September 3-7, 2007
Proceedings

13

Volume Editors

Roland Wagner
University of Linz
Institute of FAW
Altenbergerstrasse 69
4040 Linz, Austria
E-mail: rrwagner@faw.uni-linz.ac.at

Norman Revell †
Middlesex University
United Kingdom

Günther Pernul
University of Regensburg
Universitätsstrasse 31
D-93053 Regensburg, Germany
E-mail: guenther.pernul@wiwi.uni-regensburg.de

Library of Congress Control Number: 2007933508

CR Subject Classification (1998): H.2, H.4, H.3, H.5, I.2, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-74467-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74467-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12112913 06/3180 5 4 3 2 1 0

We would like to dedicate this volume of DEXA proceedings to our dear friend

Norman Revell

(14.5.47 – 7.2.07)

We miss you.

The DEXA Society

Preface

The annual international conference on Database and Expert Systems Applications
(DEXA) is now well established as a reference scientific event. The reader will find in
this volume a collection of scientific papers that represent the state of the art of re-
search in the domain of data, information and knowledge management, intelligent
systems, and their applications.

The 18th instance of the series of DEXA conferences was held at the University of
Regensburg, Germany, September 3–7, 2007.

Several collocated conferences and workshops covered specialized and comple-
mentary topics to the main conference topic. Six conferences—the Eighth Interna-
tional Conference on Data Warehousing and Knowledge Discovery (DaWaK), the
Seventh International Conference on Electronic Commerce and Web Technologies
(EC-Web), the Fifth International Conference on Electronic Government (EGOV),
the 3rd International Conference on Trust, Privacy, and Security in Digital Business
(TrustBus), the 3rd International Conference on Industrial Applications of Holonic
and Multi-Agent Systems (HoloMAS), and the 1st International Conference on Net-
work-Based Information Systems (NBiS)—and 19 workshops were collocated with
DEXA.

The conference is a unique international event with a balanced depth and breadth of
topics. Its much appreciated conviviality fosters unmatched opportunities to meet,
share the latest scientific results and discuss the latest technological advances in the
area of information technologies with young scientists and engineers as well as senior
world-renown experts.

This volume contains the papers selected for presentation at the conference. Each
submitted paper was reviewed by three or four reviewers, members of the Program
Committee or external reviewers appointed by members of the Program Committee.
Based on the reviews, the Program Committee accepted 86 of the 267 originally sub-
mitted papers.

The excellence brought to you in these proceedings would not have been possible
without the efforts of numerous individuals and the support of several organizations.

First and foremost, we thank the authors for their hard work and for the quality of
their submissions.

We also thank Josef Küng, A Min Tjoa, Gerald Quirchmayr, Gabriela Wagner, the
members of the Program Committee, the reviewers, and the many others who assisted
in the DEXA organization for their contribution to the success and high standard of
DEXA 2007 and of these proceedings.

Finally we thank the DEXA Association, the Austrian Computer Society, the Re-
search Institute for Applied Knowledge Processing (FAW), and the University of
Regensburg, especially Günther Pernul and his team, for making DEXA 2007 happen.

June 2007 Roland Wagner

Organization

External Reviewers

Yu Cao
Weihai Yu
Wei Ni
Bo Chen
Sebastian Obermeier
Rita Steinmetz
Brigitte Mathiak
Luciano Caroprese
Andrea Tagarelli
Massimo Mazzeo
Yiping Ke
James Cheng
Stardas Pakalnis
Stephan Vornholt
Ingolf Geist
Nasreddine Aoumeur
Eike Schallehn
Somchai Chatvichienchai
Amgoud Leila
Yu Suzuki
Ludwig Fuchs
Rolf Schillinger
Christian Schläger
Nele Dexters
Roel Vercammen
Jan Hidders
Marco A. Casanova
Alfio Ferrara
Stefano Montanelli
Michele Melchiori
Sander Evers
Domenico Famularo
Pasquale Legato
Andrea Pugliese
Francesco Scarcello
Antonio Sala
Lipyeow Lim
Jinsoo Lee

Wooseong Kwak
Suyun Chen
Antonio Cisternino
Laura Semini
Stefano Chessa
Gregory Leighton
Eddy Dragut
Ozgul Unal
Simon Msanjila
Cristóbal Costa
Jennifer Pérez
José Hilario Canós
Umberto Straccia
Fabrizio Falchi
Carlo Meghini
Andrzej Bassara
Konstanty Haniewicz
Michael Rys
Philip Groth
Timo Glaesser
Bastian Quilitz
Satoshi Oyama
Shun Hattori
Adam Jatowt
Satoshi Nakamura
Shinsuke Nakajima
Taro Tezuka
Wee Hyong Tok
Derry Wijaya
Le Dzung
Jarogniew Rykowski
Sergiusz Strykowski
Miroslaw Stawniak
Grant Weddell
Jarek Gryz
Qihong Shao
Ziyang Liu
Michel Kinsy

 Organization

X

Program Committee

General Chair

Günther Pernul, University of Regensburg, Germany

Conference Program Chairpersons

Roland R. Wagner, FAW, University of Linz, Austria
Norman Revell, Middlesex University, UK †

Workshop Chairpersons

A Min Tjoa, Technical University of Vienna, Austria
Roland R. Wagner, FAW, University of Linz, Austria

Publication Chairperson

Vladimir Marik, Czech Technical University, Czech Republic

Program Committee

Witold Abramowicz, The Poznan University of Economics, Poland
Hamideh Afsarmanesh, University of Amsterdam, The Netherlands
Fuat Akal, ETH Zürich, Switzerland
Toshiyuki Amagasa, University of Tsukuba, Japan
Bernd Amann, LIP6 - UPMC, France
Vasco Amaral, New University of Lisbon, Portugal
Stanislaw Ambroszkiewicz, Polish Academy of Sciences, Poland
Ira Assent, Aachen University, Germany
Ramazan S. Aygun, University of Alabama in Huntsville, USA
Torben Bach Pedersen, Aalborg University, Denmark
Denilson Barbosa, University of Calgary, Canada
Leonard Barolli, Fukuoka Institute of Technology (FIT), Japan
Kurt Bauknecht, Universität Zürich, Switzerland
Peter Baumann, University of Bremen, Germany
Bishwaranjan Bhattacharjee, IBM Thomas J. Watson Research Center, USA
Sourav S Bhowmick, Nanyang Technological University, Singapore
Stephen Blott, Dublin City University, Ireland
Peter Boncz, Centrum voor Wiskunde en Informatica, The Netherlands
Angela Bonifati, ICAR-CNR, Italy
Stefan Böttcher, University of Paderborn, Germany
Zizette Boufaida, Mentouri University Constantine, Algeria

 Organization

XI

Kjell Bratbergsengen, Norwegian University of Science and Technology, Norway
Stephane Bressan, National University of Singapore, Singapore
Martin Breunig, University of Osnabrück, Germany
Ahmet Bulut, University of California Santa Barbara, USA
Ioana Burcea, University of Toronto, Camada
Luis M. Camarinha-Matos, Universidade Nova de Lisboa and Uninova, Portugal
Antonio Cammelli, ITTIG-CNR, Italy
K. Selcuk Candan, Arizona State University, USA
Silvana Castano, Università degli Studi di Milano, Italy
Barbara Catania, Università di Genova, Italy
Wojciech Cellary, University of Economics at Poznan, Poland
Elizabeth Chang, Curtin University, Australia
Sudarshan S. Chawathe, University of Maryland, USA
Yi Chen, Arizona State University, USA
Rosine Cicchetti, IUT, University of Marseille, France
Cindy Chen, University of Massachusetts Lowel, USA
Henning Christiansen, Roskilde University, Denmark
Chris Clifton, Purdue University, USA
Frans Coenen, The University of Liverpool, UK
Bin Cui, Peking University, China
Tran Khanh Dang, Ho Chi Minh City University of Technology, Vietnam
John Debenham, University of Technology, Sydney, Australia
Elisabetta Di Nitto, Politecnico di Milano, Italy
Gillian Dobbie, University of Auckland, New Zealand
Dirk Draheim, Software Competence Center Hagenberg, Austria
Silke Eckstein, Technical University of Braunschweig, Germany
Johann Eder, University of Vienna, Austria
Suzanne M. Embury, The University of Manchester, UK
Tomoya Enokido, Rissho University, Japan
Leonidas Fegaras, The University of Texas at Arlington, USA
Ling Feng, University of Twente, The Netherlands
Alvaro A.A. Fernandes, University of Manchester, UK
Eduardo Fernandez, Florida Atlantic University, USA
Simon Field, Office for National Statistics, UK
Mariagrazia Fugini, Politecnico di Milano, Italy
Antonio L. Furtado, Pontificia Universidade Catolica do R.J., Brazil
Manolo Garcia-Solaco, IS Consultant, USA
Mary Garvey, University of Wolverhampton, UK
Alexander Gelbukh, Centro de Investigacion en Computacion (CIC),
Instituto Politecnico Nacional (IPN), Mexico
Giorgio Ghelli, University of Pisa, Italy
Jan Goossenaerts, Eindhoven University of Technology, The Netherlands
William Grosky, University of Michigan, USA
Le Gruenwald, University of Oklahoma, USA
Francesco Guerra, Università degli Studi Di Modena e Reggio Emilia, Italy
Hele-Mai Haav, Tallinn University of Technology, Estonia
Abdelkader Hameurlain, University of Toulouse, France

 Organization

XII

Beda Christoph Hammerschmidt, Oracle Corporation, USA
Wook-Shin Han, Kyungpook National University, Korea
Kenji Hatano, Doshisha University, Japan
Igor T. Hawryszkiewycz, University of Technology, Sydney, Australia
Alexander Hinneburg, University of Halle, Gemany
Wynne Hsu, National University of Singapore, Singapore
Ela Hunt, ETH Zürich, Switzerland
Mohamed Ibrahim, University of Greenwich, UK
Mirjana Ivanovic, University of Novi Sad, Serbia
Mizuho Iwaihara, Kyoto University, Japan
Dimitris Karagiannis, University of Vienna, Austria
Randi Karlsen, University of Tromsö, Norway
Rudolf Keller, Zühlke Engineering AG, Switzerland
Anastasios Kementsietsidis, University of Edinburgh, UK
Myoung Ho Kim, KAIST, Korea
Stephen Kimani, University of Rome "La Sapienza", Italy
Gary J. Koehler, University of Florida, USA
Christian König, Microsoft Research, USA
Hanna Kozankiewicz, Polish Academy of Sciences, Poland
Michal Krátký, VSB-Technical University of Ostrava, Czech Republic
John Krogstie, SINTEF, Norway
Petr Kroha, Technische Universität Chemnitz-Zwickau, Germany
Josef Küng, University of Linz, Austria
Sergey Kuznetcov, Russian Academy of Sciences, Russia
Lotfi Lakhal, University of Marseille, France
Christian Lang, IBM T.J. Watson Research Center, USA
Paul Larson, Microsoft Corporation, USA
Young-Koo Lee, Kyung Hee University, Korea
Mong Li Lee, National University of Singapore, Singapore
Dongwon Lee, Pennsylvania State University, USA
Ulf Leser, Humboldt University of Berlin, Germany
Changqing Li, Duke University, USA
Xuemin Lin, University of New South Wales, Sydney, Australia
Tok Wang Ling, National University of Singapore, Singapore
Volker Linnemann, University of Lübeck, Germany
Mengchi Liu, Wuhan University, China
Jørgen Løland, Norwegian University of Science and Technology, Norway
Peri Loucopoulos, The University of Manchester, UK
Andras Lukacs, Hungarian Academy of Sciences, Hungary
Qiong Luo, The Hong Kong University of Science and Technology, Hong Kong
Sanjai Kumar Madria, University of Missouri-Rolla, USA
Stefan Manegold, Centrum voor Wiskunde en Informatica, The Netherlands
Vladimir Marik, Czech Technical University, Czech Republic
Simone Marinai, University of Florence, Italy
Holger Märtens, Univ. of Applied Sciences Braunschweig/Wolfenbüttel, Germany
Elio Masciari, University of Southern California, Italy
Heinrich C. Mayr, University of Klagenfurt, Austria

 Organization

XIII

Subhasish Mazumdar, New Mexico Tech, USA
Dennis McLeod, University of Southern California, USA
Xiaofeng Meng, Renmin University, China
Elisabeth Metais, CNAM, France
Klaus Meyer-Wegener, University of Erlangen and Nuremberg, Germany
Philippe Michiels, Univesity of Antwerpen, Belgium
Dezso Miklos, Hungarian Academy of Sciences, Hungary
Yang-Sae Moon, Kangwon National University, Korea
Reagan Moore, San Diego Supercomputer Center, USA
Tadeusz Morzy, Poznan University of Technology, Poland
Günter Müller, Universität Freiburg, Germany
Wolfgang Nejdl, University of Hannover, Germany
Wilfred Ng, University of Science and Technology, Hong Kong
Daniela Nicklas, University of Stuttgart, Germany
Matthias Nicola, IBM Silicon Valley Laboratory, USA
Silvia Nittel, University of Maine, USA
Gultekin Ozsoyoglu, University Case Western Research, USA
Oscar Pastor, Universidad Politecnica de Valencia, Spain
Verónica Peralta, Universidad de la Republica, Uruguay
Dimitris Plexousakis, FORTH and Univeristy of Crete, Greece
Jaroslav Pokorny, Charles University in Prague, Czech Republic
Philippe Pucheral, INRIA, Université de Versailles, France
Magdalena Punceva, CERN, Switzerland
Gerald Quirchmayr, University of Vienna, Austria and University of South Australia,

Australia
Fausto Rabitti, ISTI, CNR Pisa, Italy
Wenny Rahayu, La Trobe University, Australia
Rajugan Rajagopalapillai, DEBII, Curtin University of Technology, Australia
Isidro Ramos, Technical University of Valencia, Spain
Ralf Rantzau, IBM Silicon Valley Laboratory, USA
P. Krishna Reddy, International Institute of Information Technology, India
Colette Rolland, University Paris I, Sorbonne, France
Gunter Saake, University of Magdeburg, Germany
Domenico Sacca, University of Calabria, Italy
Simonas Saltenis, Aalborg University, Denmark
Marýa Luýsa Sapino, Università degli Studi di Torino, Italy
Kai-Uwe Sattler, Technical University of Ilmenau, Germany
Marinette Savonnet, Université de Bourgogne, France
Ralf Schenkel, Max Planck Institute, Germany
Stefanie Scherzinger, Saarland University, Germany
Ingo Schmitt, University of Magdeburg, Germany
Harald Schöning, Software AG, Germany
Holger Schwarz, University of Stuttgart, Germany
Erich Schweighofer, University of Vienna, Austria
Sergej Sizov, University of Koblenz, Germany
Darunee Smavatkul, Chiangmai University, Thailand
Giovanni Soda, University of Florence, Italy

 Organization

XIV

Dmitri Soshnikov, Moscow Aviation Technical University, Microsoft Russia, Russia
Srinath Srinivasa, IIIT-B, India
Bala Srinivasan, Monash University, Australia
Uma Srinivasan, University of Western Sydney, Australia
Zbigniew Struzik, The University of Tokyo, Japan
Julius Stuller, Academy of Sciences of the Czech Republic, Czech Republic
Makoto Takizawa, Tokyo Denki University, Japan
Katsumi Tanaka, Kyoto University, Japan
Yufei Tao, City University of Hong Kong, Hong Kong
E. Nesime Tatbul, Brown University, USA
Wei-Guang Teng, National Cheng Kung University, Taiwan
Stephanie Teufel, University of Fribourg, Switzerland
Jukka Teuhola, University of Turku, Finland
Bernhard Thalheim, University of Kiel, Germany
J.M. Thevenin, University of Toulouse, France
Helmut Thoma, University of Basel, Switzerland
A Min Tjoa, Technical University of Vienna, Austria
Frank Tompa, University of Waterloo, Canada
Roland Traunmüller, University of Linz, Austria
Peter Triantafillou, University of Patras, Greece
Maurice van Keulen, University of Twente, The Netherlands
Genoveva Vargas-Solar, LSR-IMAG, France
Yannis Vassiliou, National Technical University of Athens, Greece
Krishnamurthy Vidyasankar, Memorial Univ. of Newfoundland, Canada
Stratis Viglas, University of Edinburgh, UK
Jesus Vilares Ferro, University of Coruna, Spain
Peter Vojtas, Charles University in Prague, Czech Republic
Matthias Wagner, DoCoMo Communications Laboratories Europe GmbH, Germany
John Wilson, University of Strathclyde, UK
Marek Wojciechowski, Poznan University of Technology, Poland
Viacheslav Wolfengagen, Institute for Contemporary Education, Russia
Ming-Chuan Wu, Microsoft Corporation, USA
Vilas Wuwongse, Asian Institute of Technology, Thailand
Liang Huai Yang, National University of Singapore, Singapore
Clement Yu, University of Illinios at Chicago, USA
Hailing Yu, Oracle, USA
Yidong Yuan, University of New South Wales, Sydney, Australia
Maciej Zakrzewicz, Poznan University of Technology, Poland
Gian Piero Zarri, University Paris IV, Sorbonne, France
Arkady Zaslavsky, Monash University, Australia
Baihua Zheng, Singapore Management University, Singapore
Yifeng Zheng, University of Pennsylvania, USA
Aoying Zhou, Fudan University, China
Yongluan Zhou, National University of Singapore, Singapore
Qiang Zhu, The University of Michigan, USA
Ester Zumpano, University of Calabria, Italy
Sergej Sizov, University of Koblenz, Germany

Table of Contents

XML and Databases I

On the Efficient Processing Regular Path Expressions of an Enormous
Volume of XML Data . 1

Michal Krátký, Radim Bača, and Václav Snášel

Improving XML Instances Comparison with Preprocessing
Algorithms . 13

Rodrigo Gonçalves and Ronaldo dos Santos Mello

Storing Multidimensional XML Documents in Relational Databases 23
N. Fousteris, M. Gergatsoulis, and Y. Stavrakas

Expert Systems and Semantics

On Constructing Semantic Decision Tables . 34
Yan Tang and Robert Meersman

Artificial Immune Recognition System Based Classifier Ensemble on
the Different Feature Subsets for Detecting the Cardiac Disorders from
SPECT Images . 45

Kemal Polat, Ramazan Şekerci, and Salih Güneş

A Multisource Context-Dependent Semantic Distance Between
Concepts . 54

Ahmad El Sayed, Hakim Hacid, and Djamel Zighed

Self-healing Information Systems (Invited Talk) . 64
Barbara Pernici

XML and Databases II

A Faceted Taxonomy of Semantic Integrity Constraints for the XML
Data Model . 65

Khaue Rezende Rodrigues and Ronaldo dos Santos Mello

Beyond Lazy XML Parsing . 75
Fernando Farfán, Vagelis Hristidis, and Raju Rangaswami

Efficient Processing of XML Twig Pattern: A Novel One-Phase Holistic
Solution . 87

Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Qiang Zhu, and
Dunren Che

XVI Table of Contents

Database and Information Systems Architecture and
Performance I

Indexing Set-Valued Attributes with a Multi-level Extendible Hashing
Scheme . 98

Sven Helmer, Robin Aly, Thomas Neumann, and Guido Moerkotte

Adaptive Tuple Differential Coding . 109
Jean-Paul Deveaux, Andrew Rau-Chaplin, and Norbert Zeh

Space-Efficient Structures for Detecting Port Scans 120
Ali Şaman Tosun

XML and Databases III

A Dynamic Labeling Scheme Using Vectors . 130
Liang Xu, Zhifeng Bao, and Tok Wang Ling

A New Approach to Replication of XML Data . 141
Flávio R.C. Sousa, Heraldo J.A. Carneiro Filho, and
Javam C. Machado

An Efficient Encoding and Labeling Scheme for Dynamic XML Data . . . 151
Xu Juan, Li Zhanhuai, Wang Yanlong, and Yao Rugui

Database and Information Systems Architecture and
Performance II

Distributed Semantic Caching in Grid Middleware 162
Laurent d’Orazio, Fabrice Jouanot, Yves Denneulin, Cyril Labbé,
Claudia Roncancio, and Olivier Valentin

Multiversion Concurrency Control for Multidimensional Index
Structures . 172

Walter Binder, Samuel Spycher, Ion Constantinescu, and
Boi Faltings

Using an Object Reference Approach to Distributed Updates 182
Dalen Kambur, Mark Roantree, and John Murphy

Applications of Database Systems and Information
Systems I

Towards a Novel Desktop Search Technique . 192
Sujeet Pradhan

Table of Contents XVII

An Original Usage-Based Metrics for Building a Unified View of
Corporate Documents . 202

Guillaume Cabanac, Max Chevalier, Claude Chrisment, and
Christine Julien

Exploring Knowledge Management with a Social Semantic Desktop
Architecture: The Case of Professional Business Services Firms 213

Niki Papailiou, Dimitris Apostolou, and Gregoris Mentzas

Classifying and Ranking: The First Step Towards Mining Inside
Vertical Search Engines . 223

Hang Guo, Jun Zhang, and Lizhu Zhou

Query Processing and Optimisation I

Progressive High-Dimensional Similarity Join . 233
Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee

Decomposing DAGs into Disjoint Chains . 243
Yangjun Chen

Evaluating Top-k Skyline Queries over Relational Databases 254
Carmen Brando, Marlene Goncalves, and Vanessa González

A P2P Technique for Continuous k-Nearest-Neighbor Query in Road
Networks . 264

Fuyu Liu, Kien A. Hua, and Tai T. Do

Information Life Cycle, Information Value and Data Management
(Invited Talk) . 277

Rudolf Bayer

XML and Databases IV

Vague Queries on Peer-to-Peer XML Databases . 287
Bettina Fazzinga, Sergio Flesca, and Andrea Pugliese

Proximity Search of XML Data Using Ontology and XPath Edit
Similarity . 298

Toshiyuki Amagasa, Lianzi Wen, and Hiroyuki Kitagawa

Cooperative Data Management for XML Data . 308
Katja Hose and Kai-Uwe Sattler

Query Processing and Optimisation II

C-ARIES: A Multi-threaded Version of the ARIES Recovery
Algorithm . 319

Jayson Speer and Markus Kirchberg

XVIII Table of Contents

Optimizing Ranked Retrieval . 329
Thomas Neumann

Similarity Search over Incomplete Symbolic Sequences 339
Jie Gu and Xiaoming Jin

Applications of Database Systems and Information
Systems II

Random Multiclass Classification: Generalizing Random Forests to
Random MNL and Random NB . 349

Anita Prinzie and Dirk Van den Poel

Related Terms Clustering for Enhancing the Comprehensibility of Web
Search Results . 359

Michiko Yasukawa and Hidetoshi Yokoo

Event Specification and Processing for Advanced Applications:
Generalization and Formalization . 369

Raman Adaikkalavan and Sharma Chakravarthy

An Evaluation of a Cluster-Based Architecture for Peer-to-Peer
Information Retrieval . 380

Iraklis A. Klampanos and Joemon M. Jose

Query Processing and Optimisation III

A Conceptual Framework for Automatic Text-Based Indexing and
Retrieval in Digital Video Collections . 392

Mohammed Belkhatir and Mbarek Charhad

Dimensionality Reduction in High-Dimensional Space for Multimedia
Information Retrieval . 404

Seungdo Jeong, Sang-Wook Kim, and Byung-Uk Choi

Integrating a Stream Processing Engine and Databases for Persistent
Streaming Data Management . 414

Yousuke Watanabe, Shinichi Yamada, Hiroyuki Kitagawa, and
Toshiyuki Amagasa

Applications of Database Systems and Information
Systems III

Data Management for Mobile Ajax Web 2.0 Applications 424
Stefan Böttcher and Rita Steinmetz

Data Management in RFID Applications . 434
Dan Lin, Hicham G. Elmongui, Elisa Bertino, and Beng Chin Ooi

Table of Contents XIX

When Mobile Objects’ Energy Is Not So Tight: A New Perspective on
Scalability Issues of Continuous Spatial Query Systems 445

Tai T. Do, Fuyu Liu, and Kien A. Hua

Sequence Alignment as a Database Technology Challenge 459
Hans Philippi

Query Processing and Optimisation IV

Fuzzy Dominance Skyline Queries . 469
Marlene Goncalves and Leonid Tineo

Pruning Search Space of Physical Database Design 479
Ladjel Bellatreche, Kamel Boukhalfa, and Mukesh Mohania

A Two-Phased Visual Query Interface for Relational Databases 489
Sami El-Mahgary and Eljas Soisalon-Soininen

Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not
Optimal . 499

Chong Sun, Yan Sheng Lu, Chong Zhou, and Jun Liu

Data and Information Modelling I

A Logic Framework to Support Database Refactoring 509
Shi-Kuo Chang, Vincenzo Deufemia, Giuseppe Polese, and
Mario Vacca

An Iterative Process for Adaptive Meta- and Instance Modeling 519
Melanie Himsl, Daniel Jabornig, Werner Leithner, Peter Regner,
Thomas Wiesinger, Josef Küng, and Dirk Draheim

Compiling Declarative Specifications of Parsing Algorithms 529
Carlos Gómez-Rodŕıguez, Jesús Vilares, and Miguel A. Alonso

XML Query Processing and Optimisation I

Efficient Fragmentation of Large XML Documents 539
Angela Bonifati and Alfredo Cuzzocrea

Locating and Ranking XML Documents Based on Content and
Structure Synopses . 551

Weimin He, Leonidas Fegaras, and David Levine

MQTree Based Query Rewriting over Multiple XML Views 562
Jun Gao, Tengjiao Wang, and Dongqing Yang

XX Table of Contents

Data and Information Modelling II

Convex Cube: Towards a Unified Structure for Multidimensional
Databases . 572

Alain Casali, Sébastien Nedjar, Rosine Cicchetti, and Lotfi Lakhal

Dependency Management for the Preservation of Digital Information . . . 582
Yannis Tzitzikas

Constraints Checking in UML Class Diagrams: SQL vs OCL 593
D. Berrabah and F. Boufarès

XML Query Processing and Optimisation II

XML-to-SQL Query Mapping in the Presence of Multi-valued Schema
Mappings and Recursive XML Schemas . 603

Mustafa Atay, Artem Chebotko, Shiyong Lu, and Farshad Fotouhi

Efficient Evaluation of Nearest Common Ancestor in XML Twig
Queries Using Tree-Unaware RDBMS . 617

Klarinda G. Widjanarko, Erwin Leonardi, and Sourav S. Bhowmick

Data Mining I

Exclusive and Complete Clustering of Streams . 629
Vasudha Bhatnagar and Sharanjit Kaur

Clustering Quality Evaluation Based on Fuzzy FCA 639
Minyar Sassi, Amel Grissa Touzi, and Habib Ounelli

Comparing Clustering Algorithms and Their Influence on the Evolution
of Labeled Clusters . 650

Rene Schult

Journey to the Centre of the Star: Various Ways of Finding Star
Centers in Star Clustering . 660

Derry Tanti Wijaya and Stéphane Bressan

Semantic Web and Ontologies I

Improving Semantic Query Answering . 671
Norbert Kottmann and Thomas Studer

A Method for Determining Ontology-Based Semantic Relevance 680
Tuukka Ruotsalo and Eero Hyvönen

Semantic Grouping of Social Networks in P2P Database Settings 689
Verena Kantere, Dimitrios Tsoumakos, and Timos Sellis

Table of Contents XXI

Benchmarking RDF Production Tools . 700
Martin Svihla and Ivan Jelinek

Semantic Web and Ontologies II

Creating Learning Objects and Learning Sequence on the Basis of
Semantic Networks . 710

Przemys�law Korytkowski and Katarzyna Sikora

SQORE-Based Ontology Retrieval System . 720
Rachanee Ungrangsi, Chutiporn Anutariya, and Vilas Wuwongse

Crawling the Web with OntoDir . 730
Antonio Picariello and Antonio M. Rinaldi

Data Mining II

Extracting Sequential Nuggets of Knowledge . 740
Froidevaux Christine, Lisacek Frédérique, and Rance Bastien

Identifying Rare Classes with Sparse Training Data 751
Mingwu Zhang, Wei Jiang, Chris Clifton, and Sunil Prabhakar

Clustering-Based K-Anonymisation Algorithms . 761
Grigorios Loukides and Jianhua Shao

Investigation of Semantic Similarity as a Tool for Comparative
Genomics . 772

Danielle Welter, W. Alexander Gray, and Peter Kille

WWW and Databases

On Estimating the Scale of National Deep Web . 780
Denis Shestakov and Tapio Salakoski

Mining the Web for Appearance Description . 790
Shun Hattori, Taro Tezuka, and Katsumi Tanaka

Rerank-by-Example: Efficient Browsing of Web Search Results 801
Takehiro Yamamoto, Satoshi Nakamura, and Katsumi Tanaka

Computing Geographical Serving Area Based on Search Logs and
Website Categorization . 811

Qi Zhang, Xing Xie, Lee Wang, Lihua Yue, and Wei-Ying Ma

XXII Table of Contents

Temporal and Spatial Databases

A General Framework to Implement Topological Relations on
Composite Regions . 823

Magali Duboisset, François Pinet, Myoung-Ah Kang, and
Michel Schneider

Active Adjustment: An Approach for Improving the Performance of
the TPR*-Tree . 834

Sang-Wook Kim, Min-Hee Jang, and Sungchae Lim

Data and Information Semantics

Performance Oriented Schema Matching . 844
Khalid Saleem, Zohra Bellahsene, and Ela Hunt

Preference-Based Integration of Relational Databases into a Description
Logic . 854

Olivier Curé and Florent Jochaud

A Context-Based Approach for the Discovery of Complex Matches
Between Database Sources . 864

Youssef Bououlid Idrissi and Julie Vachon

Closing Session: Knowledge and Design

Ontology Modularization for Knowledge Selection: Experiments and
Evaluations . 874

Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and
Marta Sabou

The Role of Knowledge in Design Problems (Invited Talk) 884
Zdenek Zdrahal

e-Infrastructures (Invited Talk) . 895
Wolfgang Gentzsch

Author Index . 905

On the Efficient Processing Regular Path

Expressions of an Enormous Volume of XML
Data�

Michal Krátký, Radim Bača, and Václav Snášel

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic
{michal.kratky,radim.baca,vaclav.snasel}@vsb.cz

Abstract. XML (Extensible Mark-up Language) has recently been em-
braced as a new approach to data modeling. Nowadays, more and more
information is formatted as semi-structured data, i.e. articles in a digital
library, documents on the web and so on. Implementation of an effi-
cient system enabling storage and querying of XML documents requires
development of new techniques. The indexing of an XML document is
enabled by providing an efficient evaluation of a user query. XML query
languages, like XPath or XQuery, apply a form of path expressions for
composing more general queries. The evaluation process of regular path
expressions is not efficient enough using the current approaches to in-
dexing XML data. Most approaches index single elements and the query
statement is processed by joining individual expressions. In this article we
will introduce an approach which makes it possible to efficiently process
a query defined by regular path expressions. This approach indexes all
root-to-leaf paths and stores them in multi-dimensional data structures,
allowing the indexing and efficient querying of an enormous volume of
XML data.

Keywords: indexing XML data, regular path expression, multi-
dimensional data structures.

1 Introduction

The mark-up language, XML (Extensible Mark-up Language) [21], has recently
been embraced as a new approach to data modeling. A well-formed XML docu-
ment or a set of documents is an XML database and the scheme is its database
schema.

An XML document is usually modelled as a graph of the nodes which cor-
respond to XML elements and attributes. The graph is usually a tree (without
IDREF or IDREFS attributes). A number of special query languages like XPath [23]
and XQuery [22] have been developed to obtain specified data from an XML
database. Most XML query languages are based on the XPath language. The

� Work is partially supported by Grant of GACR No. 201/03/0912.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Krátký, R. Bača, and V. Snášel

language applies regular path expressions (RPEs) for composing paths in the
XML tree. This path is a sequence of steps describing how to get a set of result
nodes from a set of input nodes (a set of context nodes). The language allows us
to generate common used queries like //books/book[author=’John Smith’],
//book//author or /books/book[title=’The XML Book’]/author.

In recent years, many approaches to indexing XML data have been developed.
One way to index XML data is to summarize all nodes with the same labelled
path (e.g. DataGuide [17] or APEX [5]). We call this one the summary index.
DataGuide is an early work which indexes only paths starting in the root node. It
only supports total matching simple path queries which do not contain wildcards
and descendant axes. APEX utilizes a data-mining algorithm retrieving refined
paths. APEX is able to proceed unprepared queries more efficiently. However,
branching and content-based queries require additional processing.

A simple way to index an XML document is to store each node as a tuple with
a document order value [21]. We call these approaches element-based approaches.
The proposed element-based approaches, XPA [7], XISS [15], Zhang et al. [25],
can easily solve ancestor-descendant and parent-child relationships between two
sets of nodes. For improved query support, XPA can utilize the multi-dimensional
data structures and Dietz labeling scheme, so it can find all nodes in relation
with one node using a single range query. Works proposed by Zhang et al. and
XISS apply the inverted list for retrieving sets of ancestors and descendants
according to a node name and resolve their relationship (make a structural join).
Also, other approaches [1,10] improve the structural join since performance of
query processing in element-based approaches relies on the effectiveness of the
structural join. An algorithm proposed in [1] introduces in-memory stack and
improves the structural join in that each node in joined sets is handled only
once. Their algorithm has better results outside RDBMS, as well. XR-tree [10]
is a special data structure which can even skip the nodes having no matches in an
ancestor-descendant relationship. The structural join is an extensive operation
because the size of the intermediate result sets can be much larger then the size
of the result set in the end. The advantage of element-based approaches is that
they can process branching queries, partial matching queries and content-based
queries without altering the algorithm’s performance.

Other approaches try to decrease the number of structural joins; this is also
the goal of path-based approaches, e.g. Blas [3], [9], XRel [16], ViST [24]. Blas
indexes suffix paths of XML documents and allows us to retrieve results for a
simple path query without time-consuming joins. The XML query is split into
paths with a 1 or > 1 length, and results for each path are joined together as in
element-based approaches. A disadvantage of the Blas method is that it indexes
only paths beginning with descendant-or-self axis (abbreviated by //) and
containing a child axis in every location step of the path. The approach described
in [9] works like the Blas method. This is a combination of the element-based
and path-based methods, where path indexing is used for data set preprocessing
before structural joins are applied. The best results are obtained when processing
simple path queries. The ViST method converts an XML file into a sequence of

On the Efficient Processing Regular Path Expressions 3

pairs, where each pair contains a path in the XML tree. Therefore, the ViST
method is sometimes referred to as a sequence-based approach. Although no
join is necessary the result may contain false hits, resulting in the need for
additional processing of the result set. XRel is work which applies labelled paths
for decreasing the number of structural joins. In [4] authors propose a path-based
approach as well, however, each path of all subtrees is stored.

Recently, a lot of works have been introduced for improving the efficiency
of XML-to-relational mapping [6,14]. They use an XML-shredding [20] system
which decomposes XML data into relations and processes queries in RDBMS. Re-
lational approaches translate XML queries into SQL queries which usually apply
self-joins (edge XML-shredding) or even compare unindexed values in a relation.
When an XML schema is available, XML-shredding based on inlining [18] may
be used for improved performance of SQL queries. However, time-consuming
structural joins are still applied and the number of relations grows rapidly with
the number of different XML schemas. More complex content-based or branch-
ing queries cannot be easily handled without joining many tables together and
this issue limits them when processing large collections.

The main characteristics of our multi-dimensional approach to indexing XML
data (MDX), are as follows: We introduce a new, easy to understand, model of
XML data. The index for XML data is described based on this model. Paths in
an XML tree are represented as tuples and multi-dimensional data structures are
utilized for the best performance without an application of structural join. The
novel formalization of the MDX approach is depicted in Section 2. In Section 3,
we introduce the approach for efficient processing of RPEs for an enormous
volume of XML data based on the formalization. Algorithms are based only
on the range queries which retrieve result nodes in the index. In Section 4, we
compare our approach with other approaches. The last Section summarises the
paper contribution and depicts a future work.

2 Multi-dimensional Approach to Indexing XML Data

MDX was first mentioned in [11]. Now, we are depicting a formalization to be
a foundation for a novel approach to processing RPE. Due to the formalization
purpose, the approach is broken into three layers: model, indexing scheme and
implementation scheme. Each of them is depicted.

2.1 A Model

An XML document X may be modelled as a tree X.T ree, having nodes cor-
responding to elements, attributes, and string values (an element content and
attribute value). An attribute is modelled as a child of the related element. A
string value is a node (string node) as well and its parent is a special node to
be tagged by a PCDATA tag or a CDATA tag. The node is added especially when
indexing XML documents with mixed content. Consequently, an XML document
X may be modelled as a set of paths from the root node to all leaf nodes (see
[19]). In Figure 2, we see the X.T ree of XML document X in Figure 1.

4 M. Krátký, R. Bača, and V. Snášel

<!DOCTYPE books [
<!ELEMENT books(book)>
<!ELEMENT book(title,author)>
<!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title(#PCDATA)>
<!ELEMENT author(#PCDATA)>

]>

<?xml version="1.0" ?>
<books>
<book id="003-04312">

<title>The XML Book</title>
<author>John Smyth</author>

</book>
<book id="045-00012">

<title>The XQuery Book</title>
<author>Frank Nash</author>

</book>
</books>

Fig. 1. (a) DTD of documents containing information about books and authors. (b)
Well-formed XML document valid w.r.t DTD.

Fig. 2. Example of an XML tree X.T ree of XML document X in Figure 1

Let n be a node in X.T ree. The node is an object with various attributes.
In Table 1, all defined attributes are shown. The unique number n.Order is
obtained by incrementing the counter according to the document order. The
unique number may be generated by another numbering scheme. From an update
and insert operations point of view, if we increment the counter by a number > 1,
we create gaps for future insert and update operations.

Definition 1 (path p in X.T ree)
The path p is a sequence n0, n1, . . . , n|p|−1, n|p| where |p| is the length of the path
p. Let P(X.T ree) be a set of all paths in X.T ree. Let us note that n0 is the root
node and only n|p| can be the string node.

We can extend the node attribute to the path attribute. Path attributes are
shown in Table 2. An important abstraction in our path-based approach is a
differentiation of the path (the sequence p.Order) and path type (or labelled
path, the sequence p.Tag).

On the Efficient Processing Regular Path Expressions 5

Table 1. Attributes of a node n in X.T ree

Node attribute Description
n.Tag Tag of a node, or the string value if the n is the string node, we

insert it especially for content-based queries

n.Order The unique number of a node defined by a numbering scheme, if the
n is the string node, n.Order = n.IdTag

n.IdTag The unique number of n.Tag

Table 2. Attributes of a path p in X.T ree

Path attribute Description
p.Tag n0.T ag, n1.T ag, . . . , n|p|−1.T ag,n|p|.T ag

p.Order n0.Order, n1.Order, . . . , n|p|−1.Order, n|p|.Order

p.IdTag n0.IdTag,n1.IdTag, . . . , n|p|−1.IdTag

p.pId The unique number of the path

p.lpId The unique number of the p.IdTag (labelled path)

Example 1 (P(X.T ree) of the XML document X in Figure 1)
In Figure 2, the X.T ree of the XML document in Figure 1 is shown. The tree
includes nodes n0, . . . , n20. Each of them is labelled by its attribute values, e.g.
n0.T ag =’book’, n0.Order = 0 and n0.IdTag = 0. Let us consider the path p
to the element content ’John Smyth’. The path is the sequence: n0, n1, n5, n11,
n17. Each path is labelled by its attribute values. Attribute values of the path
are as follows:
p.Tag = ’books’,’book’,’author’,’PCDATA’,’John Smyth’
p.Order = 0, 1, 6, 7, 9 p.IdTag = 0, 1, 8, 6 p.pId = 2 p.lpId = 2
The number of p.Order and p.IdTag is 6 and 3, respectively, in this document.

2.2 An Indexing Scheme

It is necessary to support this model with a data structure. In this approach,
we generate multi-dimensional tuples and we need to query each attribute value
of the tuple. Consequently, we need to index each attribute of the tuple. Multi-
dimensional data structures (see the next Section) match the requirements. Now
the process of converting a path to multi-dimensional points is described.

Let X.Height be the height of X.T ree. Multi-dimensional points p̄.Order and
p̄.IdTag are defined for each p ∈ P(X.T ree). Naturally, one unique p̄.Order is
generated for each path, but every path has one p̄.IdTag, which is also used by
many other paths. These points contain extra information: p.lpId is added in the
first coordinate of p̄.Order, docId (the unique number of XML collection) and
attrFlag ∈ {true, false} are added in the first two coordinates of p̄.IdTag; true
indicates the path belonging to an attribute, false indicates the path belonging
to an element. Let us note that the p̄.IdTag includes p.lpId, however, the value
is not indexed.

6 M. Krátký, R. Bača, and V. Snášel

Spaces are defined as follows: ΩOrder = ΩIdTag = D1 ×D2 × . . .×Dd, where
dimension d = X.Height + 2, Di = 0, 1, . . . , 2τ − 2 is a domain, τ is the bit
length of the domain. p̄.Order ∈ ΩOrder, p̄.IdTag ∈ ΩIdTag. Let us distinguish
some important items of the domain: min(Di) and max(Di) are assigned for a
definition of range queries. The value bD = 2τ − 1 is assigned as a blank value.
Due to the fact that the dimension of all indexed points must be the same, points
p̄.Order and p̄.IdTag are filled in by bD in coordinates |p|+ 2, . . . , d.

Example 2 (Multi-dimensional points p̄.Order and p̄.IdTag)
Let us take the path with p.pId = 2 in Example 1. Multi-dimensional points
follow: p̄.Order = (2, 0, 1, 6, 7, 9) p̄.IdTag = (0, false, 0, 1, 8, 6)

2.3 An Implementation Scheme

We have defined three indexes: Index.Order, Index.IdTag and Index.T erm
including vectors p̄.Order, p̄.IdTag, and couples 〈n.IdTag, n.Tag〉, respectively.
Due to the fact that each path must be indexed for its efficient retrieval, it
is suitable to apply multi-dimensional data structures for indexing all tuples
p̄.Order and p̄.IdTag. The attribute Size of indices contains the number of
stored objects.

We apply paged and balanced multi-dimensional data structures like (B)UB-
tree [2] and R-tree [8]. Vectors of different dimensionalities are indexed by a
multi-dimensional forest [12]. The range queries processed in MDX are called
narrow range queries. In [13], we proposed a novel multi-dimensional data struc-
ture for efficient query processing.

3 Efficient Processing of Regular Path Expressions

3.1 A Model

An RPE query Q may be modelled as a tree Q.T ree, whose nodes correspond to
element and attribute names, and string values (an element content and attribute
value). Let us note that the attribute is marked by the prefix @ in a query. It
is obvious the tree contains two types of edges. These edges mean / and //
axes, respectively. We can define attributes nQ.T ag and nQ.IdTag of a node
nQ ∈ Q.T ree, as well.

Consequently, the Q.T ree is modelled as a set of paths as well as the XML tree.
The path pQ in Q.T ree is a sequence nQ

0 a0, n
Q
1 a1 . . . a|pQ|−1, n

Q
|pQ|−1, a|pQ|, n

Q
|pQ|

where |pQ| is the length of the path pQ, ai ∈ {/, //}. Let PQ(Q.T ree) be a set of
all paths in the Q.T ree. Let us note that only nQ

|pQ|.T ag can correspond to the

string value and nQ
0 and nQ

|pQ| can be ε, since the path can be started or finished
by an axis. Obviously, we can define attributes of pQ: pQ.T ag, pQ.IdTag and
pQ.Axes.

On the Efficient Processing Regular Path Expressions 7

3.2 Processing a Simple Path Query

The query evaluation is implemented in two steps. In the first step, we are search-
ing for p̄.IdTag in Index.IdTag. In the second, we are searching for r̄.Order in
Index.Order such r.lpId = p.lpId.

p.IdTag is searched by a sequence of range queries in Index.IdTag. Naturally,
if the query contains no // axes then the query is the point query and the number
of queries is exactly 1. Otherwise, we must filter the output of the algorithm.
The number of unique p.IdTag in real XML collections is rather low, e.g. 462
in XMark1 or 110 in Protein Sequence DB2, although such collections contain
millions of paths. Consequently, the complexity of searching p.IdTag is not a
fundamental problem. In Listing 1.1, an algorithm for searching in Index.Order
is shown.

Listing 1.1. Searching a set of p.Order for a set of p.IdTag

// sets of p.IdTag, p.lpId and string values
Input: Tuples IdTag []; int lpid [], stringId []; Index.Order; pQ;

Tuple QBl[lpid.length()], QBh[lpid.length()]; // two query boxes
int min, max;
// go through all query boxes
for (int i = 0 ; i < lpid . length() ; i++) {

for (int j = 0 ; j < d ; j++) { // go through coordinates
if (j == 0)

{ min = max = lpid[i]; } // set the id of labelled path
else if (j == IdTag[i]. length ())

{ min = max = stringId[i]; } // set the id of the string
else if (j < IdTag[i]. length ()) // set the whole domain

{ min = min(D); max = max(D); }
else

{ min = max = bD;} // path is shorter − clear values
// set query box values
QBl[i].setValue(j, min); QBh[i].setValue(j, max);

}}
// process a sequence of range queries
return Index.Order.RangeQuery(QBl, QBh, lpid.length());

Example 3 (The evaluation plan of the query //book[author= "John Smyth"])

1. In Index.T erm find IdTag of terms ’book’ (IdTag = 1), author (IdTag =
8), ’PCDATA’ (IdTag = 6) and ’John Smyth’ (IdTag = 9).

2. In Index.IdTag find p.lpId of the p.Tag = books, book, author, PCDATA
(p.lpId = 2) by a sequence of range queries: (0, false, 1, 8, 6), (0, false, ∗, 1, 8,
6). The number of range queries of the sequence is 2 due to the fact the
maximal length of a path is 4 and the last range query matches p̄.T ag for such

1 http://monetdb.cwi.nl/xml/
2 http://www.cs.washington.edu/research/xmldatasets/

8 M. Krátký, R. Bača, and V. Snášel

path. We have applied the abbreviation ∗: (0, false, ∗, 1, 8, 6) which means
the range query is (0, false, min(D), 1, 8, 6):(0, false, max(D), 1, 8, 6).

3. In Index.Order find p̄.Order by the range query to be defined by two points
(2, min(D),min(D), min(D), min(D), 9)and (2, max(D), max(D), max(D),
max(D), 9). The result is p̄.Order = (2, 0, 1, 6, 7, 9), therefore, the result ele-
ment n is as follows: n.Tag = ’book’, n.IdTag = 1, n.Order = 1.

The complexity of the complex range query is
∑m

i=1 O(ri × log(Index.Order.
Size)) as well. ri is proportional to the result size NRS of the whole XML query.
As long as the structural join approaches are considered, we have to retrieve
NNi elements in the step i.

∑NL

i=1 NNi >> NRS , where NL is the number of
location steps. This issue, along with the results of our experiments, prove the
path-based approach is more efficient than element based approaches. Now, other
path-based approaches are considered.

Blas [3] indexes only paths beginning with // axis and containing the child
axis in every location step of the path. Others paths are omitted. In [9], authors
process value predicates by a kind of join, therefore the evaluation of a query
containing string values is less efficient than in the case of MDX. Labeled path
searching can also be found in other works like [16,6]. They store labelled paths
as a string in some RDBMS and utilize regular path expressions for searching
paths corresponding to the XPath query. Labeled paths are only applied for the
reduction of a number of structural joins.

3.3 Processing a Branch Query

A Q branch query is processed as follows:

1. Get a set PQ(Q).
2. For each pQ find sets of p.IdTag and p.Order.
3. Process a path join – the join of results (sets of p.Order) for two branches.
4. The result of the last path join is the result of the query.

It is important to understand the difference between the structural and path
join. The structural join is processed in each location step, the path join is
only processed for two branches. Consequently, for a simple path query, a lot of
structural joins are processed, however no path join is processed.

4 Experimental Results

First, we compare element-based approaches (XPA and XISS) with our path-
based approach. We show the element-based approaches are less efficient than
MDX. XPA and MDX are based on multi-dimensional data structures (R-tree [8]
and Signature R-tree [13], respectively). Although compared approaches are very
different we can compare the same parameters (e.g. disk access cost – DAC). In
our experiments3 we test the XMark collection4. The collection contains one file,

3 The experiments were performed on an Intel Pentium �4 2.4Ghz, 1GB DDR400,
using Windows XP.

4 http://monetdb.cwi.nl/xml/

On the Efficient Processing Regular Path Expressions 9

111 MB in size. It includes 2,082,854 elements. In Table 3, tested queries are put
forward. The size of indices is approximately 150 MB in all cases.

Table 3. XPath queries evaluated in our experiments

QueryXPath query Result Size
Q1 /site/people/person[@id=’person0’]/name 1
Q2 //open_auction//description 12,000
Q3 /site/closed_auctions/closed_auction/

annotation/description/parlist/listitem/
parlist/listitem/text/ emph/keyword/

180

Q4 /site/regions/africa/item[location = ’United States’] 398
Q5 /site//closed auction//description/

parlist/listitem/parlist/listitem//emph/ keyword/
180

Q6 /site/regions/africa/item[@id = ’item1’] 1

Let us define parameters for the purpose of quality measurement:

NN - Number of nodes in the result set after evaluation of one location step
NU - Number of nodes which leads to at least one node in the next step
δeff - δeff = Result Size /

∑NL

i=1 NNi , the efficiency rate for a query, where NL

is the number of location steps

The value δeff argues the inefficiency of element-based approaches. Results
of an evaluation of query Q5 for XPA follows.

NN NU Time [s] DAC
55,383 36,003 28.27 283,324 δeff = 0.0033

During query processing, 55,383 nodes are handled but the result contains
only 180 elements; that is δeff = 0.0033. In MDX, no insignificant nodes are
held, therefore, δeff = 1. In Table 4, and Figure 3, we can see a comparison
of time and DAC for MDX, XPA and XISS. The time and DAC is much lower
in our approach than in the case of XPA and XISS. The average time of query

Table 4. Comparison of XISS, XPA and MDX approaches

Query Method NN δeff Time [s] DAC [MB]

XISS 29,072.5 0.073 24.6 602.35
Avg. XPA 29,072.5 0.073 12.5 251.5

MDX – 1 0.7 4.06

10 M. Krátký, R. Bača, and V. Snášel

Q1 Q2 Q3 Q4 Q5 Q6 Avg.

MDX
XPA
XISS

T
im

e
[s

]

0
10

20
30

40

Q1 Q2 Q3 Q4 Q5 Q6 Avg.

MDX
XPA
XISS

D
A

C
 [M

B
]

0

200

400

600

800

1000

1200

(a) (b)

Fig. 3. The evaluation of queries (a) Time (b) DAC

processing is 17.9× faster than XPA and 35.1× faster than in the case of XISS.
The advantage of the approach without structural joins is obvious.

We have compared our approach with other existing approaches. Query
//people/person/profile[/age=18]/education has been evaluated for the
XMark collection with a factor of 0.5, 64 MB in size. The number of accessed
elements is 13,000 for the path-based approach [9]. Due to the fact that the
result size is 2,336, the same number of elements was accessed in our approach.
The approach is path-based as well, however, value predicates are processed by
a kind of join. Therefore, the evaluation of a query containing string values is
less efficient than in the case of MDX.

Since our approach applies persistent multi-dimensional data structures, we
can index an enormous volume of XML data. We have generated an XMark
collection with a factor of 10, 1.1 GB in size. The evaluation time is 1 s, DAC is
7.3 MB for the Q3 query. An index for the well-known MonetDB/XQuery5 and
eXist6 engines was not successfully created for this XML document. MS SQL
Server 20057 indexed the document, however the query evaluation time is 83 s.
Obviously, the server applies an element-based approach.

5 Conclusion

In this paper, the formalization of the MDX method and efficient implementation
of RPEs are described. The implementation is based on the formalization. An
XML document is represented as multi-dimensional points and these points are
indexed by multi-dimensional data structures. The structural join is omitted in
the approach and the result proves the accuracy of the concept when compared
with both element and path-based approaches. In our future work, we would like
to develop an efficient algorithm for the path join to be enforced in the case of
branch queries.
5 http://monetdb.cwi.nl/
6 http://exist-db.org/
7 http://www.microsoft.com/sql/

On the Efficient Processing Regular Path Expressions 11

References

1. Al-Khalifa, S., Jagadish, H.V., Koudas, N.: Structural Joins: A Primitive for Ef-
ficient XML Query Pattern Matching. In: Proceedings of ICDE 2002, The IEEE
International Conference on Data Engineering, San Jose, IEEE Computer Society
Press, Los Alamitos (2002)

2. Bayer, R.: The Universal B-Tree for multidimensional indexing: General Con-
cepts. In: Masuda, T., Tsukamoto, M., Masunaga, Y. (eds.) WWCA 1997. LNCS,
vol. 1274, Springer, Heidelberg (1997)

3. Chen, Y., Davidson, S.B., Zheng, Y.: Blas: an efficient xpath processing system. In:
Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data, Paris, France, pp. 47–58. ACM Press, New York (2004)

4. Chen, Z., Korn, G., Koudas, F., Shanmugasundaram, N., Srivastava, J.: Index
Structures for Matching XML Twigs Using Relational Query Processors. In: Pro-
ceedings of ICDE 2005, The IEEE International Conference on Data Engineering,
Tokyo, Japan, pp. 1273–1273. IEEE Computer Society Press, Los Alamitos (2005)

5. Chung, C.-W., Min, J.-K., Shim, K.: Apex: an adaptive path index for xml data. In:
Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, Madison, pp. 121–132. ACM Press, New York (2002)

6. Georgiadis, H., Vassalos, V.: Improving the Efficiency of XPath Execution on Re-
lational Systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hat-
zopoulos, M., Boehm, K., Kemper, A., Grust, T., Boehm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, p. 570. Springer, Heidelberg (2006)

7. Grust, T.: Accelerating XPath Location Steps. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison, ACM Press,
New York (2002)

8. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, Boston, pp. 47–57. ACM Press, New York (1984)

9. Li, W.H.H., Lee, M.L.: A path-based labeling scheme for efficient structural join.
In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R.
(eds.) XSym 2005. LNCS, vol. 3671, pp. 34–48. Springer, Heidelberg (2005)

10. Jiang, H., Lu, H., Wang, W., Ooi, B.: XR-Tree: Indexing XML Data for Efficient
Structural Join. In: Proceedings of ICDE 2003, The IEEE International Conference
on Data Engineering, India, IEEE Computer Society Press, Los Alamitos (2003)

11. Krátký, M., Pokorný, J., Snášel, V.: Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.)
EDBT 2004. LNCS, vol. 2992, Springer, Heidelberg (2004)

12. Krátký, M., Skopal, T., Snášel, V.: Multidimensional Term Indexing for Efficient
Processing of Complex Queries. Kybernetika, Journal 40(3), 381–396 (2004)

13. Krátký, M., Snášel, V., Zezula, P., Pokorný, J.: Efficient Processing of Narrow
Range Queries in the R-Tree. In: Proceedings of International Database Engineer-
ing & Applications Symposium, IDEAS 2006, IEEE Computer Society Press, Los
Alamitos (2006)

14. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: Efficient XML-to-SQL Query
Translation: Where to Add the Intelligence?. In: Proceedings of the 30th Interna-
tional Conference on Very Large Data Bases, VLDB 2004 (2004)

15. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.
In: Proceedings of 27th International Conference on Very Large Data Bases, VLDB
2001 (2001)

12 M. Krátký, R. Bača, and V. Snášel

16. Shimura, T., Yoshikawa, M., Amagasa, T., Uemura, S.: Xrel: a path-based approach
to storage and retrieval of xml documents using relational databases. ACM Trans.
Inter. Tech. 1(1), 110–141 (2001)

17. Widom, J., Goldman, R.: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. In: Proceedings of International Conference on
Very Large Data Bases, VLDB 1997, pp. 436–445 (1997)

18. Shanmugasundaram, J., et al.: A general technique for querying XML documents
using a relational database system. SIGMOD Rec. 30, 20–26 (2001)

19. Shasha, D.: Algorithmics and Applications of Tree and Graph Searching, tutorial.
In: Proceedings of ACM Symposium on Principles of Database Systems, PODS
2002, ACM Press, New York (2002)

20. Tatarinov, I., et al.: Storing and querying ordered XML using a relational database
system. In: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, pp. 204–215. ACM Press, New York (2002)

21. W3 Consortium. Extensible Markup Language (XML) 1.0, W3C Recommendation,
February 10, (1998), http://www.w3.org/TR/REC-xml

22. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft
(November 12, 2003), http://www.w3.org/TR/xquery/

23. W3 Consortium. XML Path Language (XPath) Version 2.0, W3C Working Draft
(November 15, 2002), http://www.w3.org/TR/xpath20/

24. Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: a dynamic index method for querying
XML data by tree structures. In: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, San Diego, pp. 110–121. ACM Press,
New York (2003)

25. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting con-
tainment queries in relational database management systems. In: Proceedings of
the 2001 ACM SIGMOD International Conference on Management of Data, Santa
Barbara, pp. 425–436. ACM Press, New York, USA (2001)

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath20/

Improving XML Instances Comparison with

Preprocessing Algorithms�

Rodrigo Gonçalves and Ronaldo dos Santos Mello

Universidade Federal de Santa Catarina
Florianópolis, Santa Catarina, 88045-360, Brazil

{rodrigog,ronaldo}@inf.ufsc.br
http://www.inf.ufsc.br/~{rodrigog,ronaldo}/

Abstract. Data instances integration, specially on the web, involves
analyzing and matching data from two or more sources, including XML
sources. XML sources, in particular, introduce new challenges to the
integration process, given their dynamic and irregular structure. In this
context, one of the hardest steps is to find out which XML instances
are similar. This paper presents a group of algorithms to prepare XML
instances for comparison. We analyse the benefit of these algorithms over
existing XML comparison approaches.

1 Introduction

For most areas of knowledge, there is more than one source of information about
it. With the Web, these sources became even more numerous, given the fact that
the Web provides a place to store and publish them with reasonable low cost,
when compared to previous ways, like books, reports or centralized databases[1].

However, each source usually defines its own way to represent data. This raises
the need for data integration approaches to provide global access over distributed
repositories[2], integrating their data.

A typical data integration system accomplishes two main tasks: data compari-
son and data matching. The comparison step faces, besides the syntatic problem
regarding the publishing of the data, a semantic problem, i.e., which data, among
the sources, are the same[2,3].

This problem becomes harder when XML data sources are considered. XML,
as a markup language for semistructured data representation[4], makes possi-
ble the definition of self-describing data instances[5]. With XML, each author
in a data source may specify their own way of representing data, giving more
importance to specific aspects of the data.

To solve this problem, many approaches have been proposed to compare XML
instances and determine a similarity score[1,5,6,7], which can be used to deduce
if the instances should be integrated. Despite of reducing the complexity of

� This work is partially supported by the DIGITEX Project of CNPq Foundation.
CTInfo Process Nr.: 550.845/2005-4.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 13–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 R. Gonçalves and R. dos Santos Mello

determining equivalent XML data, these approaches face some problems related
to differences in the structure of the XML instances being compared.

Because of these drawbacks, we propose preprocessing algorithms that ex-
ecute changes in the structure of XML instances. These algorithms have the
objective of reducing the structural differences between XML instances, aiding
the further analysis executed by a comparison process in recognizing instances
to be integrated.

This paper is organized as follows. Section 2 gives an overview of the ap-
proaches related to XML instances comparison, which aims at defining a simi-
larity score. To deal with their limitations, we present five preprocessing algo-
rithms in Section 3, as well as the best sequence to execute them. Some tests
are presented in Section 4, showing the increase of quality in the comparison
process through the application of these algorithms. Section 5 is dedicated to
the conclusion.

2 Approaches for XML Data Similarity Definition

The research about similarity between semistructured data is based on the re-
search about similarity between structured data. Initial efforts have established
metrics to compute the similarity between data organized in tree structures[8,9].
These researches evolved to what we call today tree edit distance[10,11,12].

The need to compare XML documents has been motivating the research for
adaptations of the similarity metrics for structured trees in order to be applied to
semistructured data[13,14,15]. Some related work are presented in the following.

2.1 Related Work

The work of Carvalho et al. [1] identifies similar objects in a vectorial space. Four
methods to establish and compare the objects are introduced. They take into
consideration how the properties of the objects are represented (by a single or
multiple vectors) and which properties are considered (all or a subset of them).
They apply such method to XML instances comparison.

In the work of Jagadish et al. [7], the tree edit distance between trees repre-
senting XML instances is used as a metric to estimate the similarity. It considers
some aspects of XML structures, like repeated and optional elements, and also
restricts the sequence of allowed operations, reducing the cost to obtain the edit
distance score.

Buttler [16] uses the concept of shingles to compare the structure of XML
documents. Shingles [17] are parts of documents that can be extracted based
on specific rules and used to compare the documents through set operations
(intersection, union, etc.). It adopts the paths of elements as the shingles used
to compare the documents.

In the approach proposed by Weis et al. [5], it is treated the problem of
detecting duplicate objects in an XML document. The objective is to eliminate
duplicated data in the XML document. Their solution applies an iterative top-
down analysis of the elements hierarchy in the XML document, identifying and

Improving XML Instances Comparison with Preprocessing Algorithms 15

eliminating duplicates objects (complex elements) on each level. The similarity
between the objects is calculated and the similar objects are clusterized. Each
cluster originates a single object which replaces all the other objects of the cluster
in the XML document.

2.2 Limitations of the Approaches

Several problems limitate the performance of the related work. Regarding the
tags used in XML instances, they can be written in upper, lower and mixedcase.
They also can be composed by two or more words (separated by a character or
not separated at all). Similar words can also be used for the same concept, like
synonyms in a same language or in different languages.

We also have problems related to the way XML instances are structured. A
concept may be represented as a simple or as a complex element. Another issue
regarding XML representation is when two complex elements do not share the
same structure. In this case, we have to decide what to do about the data with
heterogeneous structures. A last problem with the structure of XML instances
is when their hierarchies of elements are inverted. It happens when an element
ex is an ancestor of another element ey in one instance, and in other instance ex

is a descendant of ey. This is a reasonably complex issue and may cause a great
negative impact on the similarity scores.

3 Preprocessing Algorithms

This section presents the set of proposed preprocessing algorithms to be pre-
viously applied to XML instances in order to improve the comparison quality
of existing similarity metrics. For each algorithm, we give its definition and an
example of its application.

3.1 Lexical Preparation

As lexical preparation we understand small changes in the way the names of
elements (tags) are written. It aims at solving irrelevant differences in their
writing. This algorithm iterates over each tag in the document to execute lexical
modifications, in the following order:

1. Inserting the “ ” character before uppercase letters if the previous letter is
in lowercase. This is justified by the fact that usually uppercase letters are
used to distinguish words in tags with composite words;

2. If there are “-” or other characters used as word separators, they are replaced
with “ ”. With this, we uniformize word separation with “ ”;

3. All uppercase letters are changed to lowercase letter.

Table 1 exemplifies the application of this algorithm.

16 R. Gonçalves and R. dos Santos Mello

Table 1. Lexical Preparation Examples

Original tag Transformed tag

dateOfBirth, date-of-birth date of birth
NAME, maritalStatus name, marital status

3.2 Terms Uniformization

The intention here is to solve the problem of multiple terms used to represent
a single concept in the structures of the XML instances. The basic idea is to
use a common term for similar concepts in the XML documents, through the
identification of tags for the same concept with the aid of semantic dictionaries
(thesauri and terminological databases) and string similarity metrics[18].

The algorithm works as follows: the tags found in the documents are organized
in clusters, where all the tags in a cluster either have a high string similarity or
share the same meaning. For each cluster, a tag is elected to replace the other
tags from the cluster in the documents. Table 2 exemplifies its execution.

Table 2. Terms Uniformization Examples

Original tags Unified tag

vehicle, vehice, cars, car , automobile, vehicle automobile

title, caption title

The algorithm does not deal with the issue of choosing the best tag to repre-
sent the concept. A random tag is chosen among the set of equivalent tags. But
the algorithm can be easily adapted to choose a tag based on an specific set of
rules. For example, a word contained in the thesaurus or in a specific language,
when dealing with documents’ structures in different languages.

3.3 Hierarchy Reestructuring

It is possible that two XML instances differ in the way they structure hierarchies
of elements. Table 3 exemplifies such a case.

Due to it, most similarity metrics may fail to detect equivalences, because the
structural differences misguide the comparison. The proposed algorithm per-
forms structural transformations on the trees of the XML documents in order
to solve this problem.

First, we have to verify if such a problem occurs. For each document, we
list once the tags it contains and, for each tag, we identify the elements that
appear before and after it in the document’s hierarchy. Then, we compare these
before/after sets between the common tags for the two documents searching for
conflicts. A conflict occurs when a before-element of a tag in a document appears
as an after-element of the same tag in the other document.

Improving XML Instances Comparison with Preprocessing Algorithms 17

Table 3. XML Documents with Heterogeneous Hierarchical Structures

Document 1 Document 2

<collection>
<author>

<name>Paul Jason</name>
<book>

<name>Similarity guide</name>
<edition>1st</edition>

</book>
<country>England</country>

</author>
</collection>

<collection>
<book>

<name>Similarity guide</name>
<edition>1st</edition>
<author>

<name>Paul Jason</name>
<country>England</country>

</author>
</book>

</collection>

If we identify conflicts, we execute the second stage of the algorithm, which
basically moves one of the conflicting elements to a position in the hierarchy so
that the conflict does not ocurr anymore. In the current version of the algorithm,
the document elected to have its structure modified is randomly chosen. For the
given example, we could move the author element of Document 2 to be the
direct ancestor of the book element.

3.4 Complex to Simple Element Transformation

The same information in different XML instances may be represented in a struc-
tured, semistructured or atomic (simple) way. In this case, comparing two ele-
ments where one of them is a simple element and the other is a complex element
(structured or semistructured) may compromise the similarity analysis. Table 4
illustrates such heterogeneity.

Table 4. XML Documents with Simple/Complex Elements Conflict

Document 1 Document 2

<author>
<name>

<firstName>Paul</firstName>
<lastName>Simon</lastName>

</name>
<book>

<name>Similarity Search</name>
<press>J.J. Press</press>

</book>
</author>

<author>
<name>Paul Simon</name>
<book>Similarity Search -

J.J. Press</book>
</author>

The algorithm that deals with this problem basically identifies, for each class
(tag) of element, if it appears as a simple or complex element. After that, for
the complex version of those elements which appear as simple and complex, it
extracts the data values from the complex structure and replaces them with a
simple version, containing only the extracted values. In the given example, we
would transform author element of Document 1 to an author element similar to

18 R. Gonçalves and R. dos Santos Mello

the one in Document 2. With this, we increase the chances of a similarity metric
to find out an equivalence between the elements, since the structural differences
do not exist anymore.

3.5 Complex Elements Compatibilization

Complex elements to be compared may not share the same structure, as shown
in Table 5. In this case, approaches based on structural similarity may fail to
find out similar instances. To solve this problem, we suggest three possible non-
exclusive actions:

1. To elect uncommon subelements and put their contents into a subelement
structured as a list;

2. To match uncommon subelements by comparing their contents;
3. To remove subelements which are not common between the elements. This

is the approach used in this work.

Table 5. XML documents with uncommon elements issue

Document 1 Document 2

<author>
<name>

<firstName>Paul</firstName>
<lastName>Simon</lastName>

</name>
<book>

<name>Similarity Search</name>
</book>

</author>

<author>
<name>

<firstName>Paul</firstName>
<middleName>J.</middleName>
<lastName>Simon</lastName>

<name>
<book>

<edition>1st</edition>
<name>Similarity Search</name>

</book>
</author>

The proposed algorithm identifies, for each complex element in the instances,
their direct child elements. In a second step, those child elements which have not
been found in both instances are removed. This leaves the complex elements with
a compatible structure, which can be better compared. In the example of Table
5, we would let author instance of Document 2 equal to the author instance of
Document 1.

3.6 Algorithms Execution

The purpose of each preprocessing algorithm is to improve the application of
similarity metrics for XML instances. However, we obtain real advantages when
we execute them together in such a way that each algorithm helps the following
to achieve higher quality results. With this objective in mind, we execute the
algorithms in the same order they were presented in the previous sections.

The first two algorithms (lexical preparation and terms uniformization) guar-
antee better results to the following other ones by optimizing the names of the

Improving XML Instances Comparison with Preprocessing Algorithms 19

tags. The support of semantic dictionaries is very important at this point, be-
cause they allow the validation of terms (synonyms or even false positive terms)
for string similarity metrics, and help to determine the most compatible term in
a set of equivelent terms.

In the sequence, we apply hierarchy reestructuring, due to the fact that the
remaining algorithms will fail if there are very heterogeneous hierarchies in the
XML documents. Finally, we execute the complex to simple conversion and com-
plex compatibilization algorithms. We follow such order here because the first one
can accelerate the last one, by avoiding it to compare some complex elements
which will be further turned into simple elements.

4 Algorithms Validation

In this section we present some experiments for evaluating the efficiency of the
preprocessing algorithms on pair-wise instances comparison. For string compar-
ison, we use the implementation of the Levenstein metric in the SecondString1

library. For tree-related manipulation, we use the JDSL2 library. A custom Por-
tuguese to English Thesaurus was also used.

In order to evaluate how much the performance of the similarity metrics im-
proves when comparing XML instances, we test our algorithms on XML in-
stances that were further used as input to the metrics of Weis[5], Jagadish[7]
and Carvalho[1]. We chose these metrics based on the fact they represent re-
cent work on XML comparison and also illustrate three types of XML compar-
ison: content-based (Weis), structure-based (Jagadish) and both structure- and
content-based (Carvalho).

Precision and recall were used as measures for evaluating the algorithms qual-
ity, since they are standards in the Information Retrieval area[1].

We select 141 XML instances from the DBLP3 database. The instances rep-
resent published articles at VLDB 2005 conference.

4.1 Scenarios

Four scenarios were defined to the experiments. For each scenario, one or more
of the issues identified in this work were tested, considering instances coming
from two different sources. The first one (Scenario1) supposes instances written
in different languages: Portuguese and English. In Scenario2, we have instances
that organize their data in different hierarchies. In Scenario3, we have instances
with a very different set of attributes. Finally, in Scenario4 we define some
similar properties that are structured in one instance and textual in the other
one.

1 http://secondstring.sourceforge.net/
2 http://www.cs.brown.edu/cgc/jdsl/
3 http://www.informatik.uni-trier.de/~ley/db/

20 R. Gonçalves and R. dos Santos Mello

For each scenario, 282 instances were generated, based on the mentioned data
from VLDB articles, supposing that each set of 141 instances comes from two
different sources.

4.2 Experiments

The experiments were performed in three stages: in the first stage, no preprocess-
ing was considered; in the second stage, only tag-naming algorithms were used
(the first two algorithms); and in the third stage, all algorithms were applied,
according to the order described in Section 3.6.

Table 6. Quantitative results on the selected sample from two XML sources

Scenario Metric None Tag-naming All
Recall Precision Recall Precision Recall Precision

Scenario1 Carvalho 0% 0% 100% 100% 100% 100%
Weis 0% 0% 100% 100% 100% 100%

Jagadish4 6 0 0

Scenario2 Carvalho 0% 0% 0% 0% 100% 100%
Weis 0% 0% 0% 0% 100% 100%

Jagadish 3 3 0

Scenario3 Carvalho 100% 100% 100% 100% 100% 100%
Weis 30% 100% 100% 100% 100% 100%

Jagadish 2 2 0

Scenario4 Carvalho 100% 0% 5 100% 100% 100% 100%
Weis 100% 100% 100% 100% 100% 100%

Jagadish 3 3 0

Table 6 summarizes the results of the experiments. It illustrates how our
preprocessing was able to improve mainly the recall of the selected similarity
metrics in the given scenarios. As shown in Table 6, the execution of the Tag-
naming algorithms already produces very good results in some cases, which
denotes that they can be applied separetely.

It is also important to note that our algorithms were able to improve the
recall without loss of precision. We consider these results very positive because
in the context of data similarity determination for integration purposes we are
interested in high recall, i.e., we want to retrieve the most number of true correct
matchings between data. We assume for these tests a fully automated similarity
analysis, where the minimum precision allowed was 100%.

The tag-naming algorithms by themselves improved the recall, specially for
the metric of Carvalho, since it uses the tags as the basis for the comparison
process. Weis metric got better results for some cases, since one of the requisites
4 For Jagadish work, we show the edit distance values, since we consider only

structured-related information.
5 The precision was around 0,3%. Thus, we assume a 0% precision.

Improving XML Instances Comparison with Preprocessing Algorithms 21

for two instances to be compared in their method is that the name of the elements
representing the instances match.

When all algorithms are applied, all of the three metrics improved consider-
ably the recall, with all algorithms improving considerably the recall for mosts
cases compared to the situation which no preprocessing algorithms are executed.

5 Conclusion

In this paper we introduce some relevant work on comparison of XML instances
for similarity matching purposes. We have described some major problems they
face due to the dynamic and irregular nature of most XML instances, and we
propose a set of preprocessing algorithms to be applied on pairs of XML doc-
uments in order to deal with these problems and improve the result quality of
these work.

The first version of these algorithms were developed with a focus on XML
instances and does not consider any schema analysis. Although we have many
XML data with associated schemas, there are still many XML data sources where
there is no an XML schema or the schema is incomplete or innacurate.

We have shown, through experiments based on related work, how the pro-
posed algorithms increase the recall and precision of XML instances pair-wise
comparison in these work. Finally, in order to maximize their application, we
have elected a better sequence of execution for the algorithms.

As future work, we suggest to add the support of domain ontologies. These
may help in the terms uniformization algorithm for detecting tags meaning the
same concept and also support the hierarchy reestructuring algorithm. We also
believe our algorithms can be used in the context of record-linkage[19] when no
specialist is available to guide the process.

Due to the lack of paper space, we have not detailed the steps and the com-
plexity of the algorithms. We intend to analyze them to find out lower cost
approaches. For the hierarchy reestructuring algorithm, for example, we may
decide which is the best transformation to be done in order to obtain a lower
cost and/or a more suitable structure for further comparison.

Executing more than one algorithm at the same time is another topic of
research. By applying them together, we may be able to reduce significantly
the running time. Once we have decided on lower cost approaches to apply the
algorithms, the running time will also be a topic of analysis. We didn’t evaluate
such aspect in this article due to the lack of space and the proof of concept
implementation used.

The use of a caching system or a catalog to optimize comparison of instances
whose structures are similar to previous compared ones is another topic of future
research. This system could store either the structure of transformed instances
or the rules applied to modify them. However, we must carefully analyse if we
will really achieve performance improvements with such additional management
of a cache/catalog.

22 R. Gonçalves and R. dos Santos Mello

References

1. Carvalho, J.C.P., da Silva, A.S.: Finding similar identities among objects from mul-
tiple web sources. In: Chiang, R.H.L., Laender, A.H.F., Lim, E.-P. (eds.) WIDM,
pp. 90–93. ACM Press, New York (2003)

2. Wiederhold, G.: Intelligent integration of information. In: Buneman, P., Jajodia, S.
(eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’93, SIGMOD Record (ACM Special Interest Group
on Management of Data), Washington, May 26–28, 1993, vol. 22(2), pp. 434–437.
ACM Press, New York (1993)

3. Manolescu, I., Florescu, D., Kossmann, D.K.: Answering XML queries over het-
erogeneous data sources. In: Proceedings of the 27th International Conference on
Very Large Data Bases(VLDB ’01), Orlando, pp. 241–250. Morgan Kaufmann, San
Francisco (2001)

4. Consortium, W.W.W.: Extensible markup language (XML) 1.0, W3C rec-
ommendation. 2nd edn. (2000), Available at http://www.w3.org/TR/2000/
WD-xml-2e-20000814

5. Weis, M., Naumann, F.: Detecting duplicate objects in XML documents. In: Nau-
mann, F., Scannapieco, M. (eds.) IQIS, pp. 10–19. ACM Press, New York (2004)

6. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of
XML structural similarity. IEEE Trans. Knowl. Data Eng. 17(2), 160–175 (2005)

7. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents.
In: WebDB, pp. 61–66 (2002)

8. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
9. Lu, S.-Y.: A tree-to-tree distance and its application to cluster analysis. IEEE

Trans. Pattern Anal. Mach. Intell. 1(2), 219–224 (1979)
10. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance between

trees. J. Algorithms 11(4), 581–621 (1990)
11. Wang, J.T.-L., Zhang, K., Jeong, K., Shasha, D.: A system for approximate tree

matching. IEEE Trans. Knowl. Data Eng. 6(4), 559–571 (1994)
12. Shasha, D., Zhang, K.: Approximate tree pattern matching. In: Pattern Matching

Algorithms, pp. 341–371. Oxford University Press, Oxford (1997)
13. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous

query system for Internet databases. SIGMOD Record (ACM Special Interest
Group on Management of Data) 29(2), 379–390 (2000)

14. Wang, Y., DeWitt, D.J., yi Cai, J.: X-diff: An effective change detection algorithm
for XML documents. In: ICDE, pp. 519–530 (2003)

15. Marian, A., Abiteboul, S., Cobéna, G., Mignet, L.: Change-centric management of
versions in an XML warehouse. In: Proceedings of the 27th International Confer-
ence on Very Large Data Bases(VLDB ’01), Orlando, pp. 581–590. Morgan Kauf-
mann, San Francisco (2001)

16. Buttler, D.: A short survey of document structure similarity algorithms. In: Inter-
national Conference on Internet Computing, pp. 3–9 (2004)

17. Broder, A.: On the resemblance and containment of documents. In: SEQS: Se-
quences ’91 (1998)

18. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1), 31–88 (2001)

19. Winkler, W.: The state of record linkage and current research problems (1999),
http://citeseer.ist.psu.edu/article/winkler99state.html

http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://citeseer.ist.psu.edu/article/winkler99state.html

Storing Multidimensional XML Documents in

Relational Databases�

N. Fousteris, M.Gergatsoulis, and Y. Stavrakas

Department of Archive and Library Sciences, Ionian University,
Palea Anaktora, Plateia Eleftherias, 49100 Corfu, Greece

{nfouster,manolis}@ionio.gr, ys@dblab.ntua.gr

Abstract. The problem of storing and querying XML data using re-
lational databases has been considered a lot and many techniques have
been developed. MXML is an extension of XML suitable for represent-
ing data that assume different facets, having different value and structure
under different contexts, which are determined by assigning values to a
number of dimensions. In this paper, we explore techniques for storing
MXML documents in relational databases, based on techniques previ-
ously proposed for conventional XML documents. Essential characteris-
tics of the proposed techniques are the capabilities a) to reconstruct the
original MXML document from its relational representation and b) to
express MXML context-aware queries in SQL.

1 Introduction

The problem of storing XML data in relational databases has been intensively
investigated [4,10,11,13] during the past 10 years. The objective is to use an
RDBMS in order to store and query XML data. First, a relational schema is
chosen for storing the XML data, and then XML queries, produced by applica-
tions, are translated to SQL for evaluation. After the execution of SQL queries,
the results are translated back to XML and returned to the application.

Multidimensional XML (MXML) is an extension of XML which allows context
specifiers to qualify element and attribute values, and specify the contexts under
which the document components have meaning. MXML is therefore suitable for
representing data that assume different facets, having different value or structure,
under different contexts. Contexts are specified by giving values to one or more
user defined dimensions. In MXML, dimensions may be applied to elements
and attributes (their values depend on the dimensions). An alternative solution
would be to create a different XML document for every possible combination,
but such an approach involves excessive duplication of information.

In this paper, we present two approaches for storing MXML in relational
databases, based on XML storage approaches. We use MXML-graphs, which
� This research was partially co-funded by the European Social Fund (75%) and Na-

tional Resources (25%) - Operational Program for Educational and Vocational Train-
ing (EPEAEK II) and particularly by the Research Program “PYTHAGORAS II”.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 23–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 N. Fousteris, M.Gergatsoulis, and Y. Stavrakas

are graphs using appropriate types of nodes and edges, to represent MXML
documents. In the first (naive) approach, a single relational table is used to store
all information about the nodes and edges of the MXML-graph. Although simple,
this approach presents some drawbacks, like the large number of expensive self-
joins when evaluating queries. In the second approach we use several tables, each
of them storing a different type of nodes of the MXML-graph. In this way the
size of the tables involved in joins is reduced and consequently the efficiency of
query evaluation is enhanced. Both approaches use additional tables to represent
context in a way that it can be used and manipulated by SQL queries.

2 Preliminaries

2.1 Mutidimensional XML

In MXML, data assume different facets, having different value or structure,
under different contexts according to a number of dimensions which may be
applied to elements and attributes [7,8]. The notion of “world” is fundamen-
tal in MXML. A world represents an environment under which data obtain a
meaning. A world is determined by assigning to every dimension a single value,
taken from the domain of the dimension. In MXML we use syntactic constructs
called context specifiers that specify sets of worlds by imposing constraints on
the values that dimensions can take. The elements/attributes that have different
facets under different contexts are called multidimensional elements/attributes).
Each multidimensional element/attribute contains one or more facets, called con-
text elements/attributes), accompanied with the corresponding context specifier
which denotes the set of worlds under which this facet is the holding facet of
the element/attribute. The syntax of MXML is shown in Example 1, where a
MXML document containing information about a book is presented.

Example 1. The MXML document shown below represents a book in a book
store. Two dimensions are used namely edition whose domain is {greek,
english}, and customer type whose domain is {student, library}.
<book isbn=[edition=english]"0-13-110362-8"[/]

[edition=greek]"0-13-110370-9"[/]>
<title>The C programming language</title>
<authors>

<author>Brian W. Kernighan</author>
<author>Dennis M. Ritchie</author>

</authors>
<@publisher>

[edition = english] <publisher>Prentice Hall</publisher>[/]
[edition = greek] <publisher>Klidarithmos</publisher>[/]

</@publisher>
<@translator>

[edition = greek] <translator>Thomas Moraitis</translator>[/]
</@translator>
<@price>

Storing Multidimensional XML Documents in Relational Databases 25

[edition=english]<price>15</price>[/]
[edition=greek,customer_type=student]<price>9</price>[/]
[edition=greek,customer_type=library]<price>12</price>[/]

</@price>
<@cover>

[edition=english]<cover><material>leather</material></cover>[/]
[edition=greek]

<cover>
<material>paper</material >
<@picture>

[customer_type=student]<picture>student.bmp</picture>[/]
[customer_type=library]<picture>library.bmp</picture>[/]

</@picture>
</cover>

[/]
</@cover>

</book>

Notice that multidimensional elements (see for example the element price)
are the elements whose name is preceded by the symbol @ while the corresponding
context elements have the same element name but without the symbol @.

A MXML document can be considered as a compact representation of a set
of (conventional) XML documents, each of them holding under a specific world.
In Subsection 3.3 we will present a process called reduction which extracts XML
documents from a MXML document.

2.2 Storing XML Data in Relational Databases

Many researchers have investigated how an RDBMS can be used to store and
query XML data. Work has also been directed towards the storage of temporal
extensions of XML [15,1,2]. The techniques proposed for XML storage can be
divided in two categories, depending on the presence or absence of a schema:

1. Schema-Based XML Storage techniques : the objective here is to find a rela-
tional schema for storing an XML document, guided by the structure of a
schema for that document [9,13,5,14,10,3,11].

2. Schema-Oblivious XML Storage techniques: the objective is to find a rela-
tional schema for storing XML documents independent of the presence or
absence of a schema [13,5,14,16,10,6,4].

The approaches that we propose in this paper do not take schema information
into account, and therefore belong to the Schema-Oblivious category.

3 Properties of MXML Documents

3.1 A Graphical Model for MXML

In this section we present a graphical model for MXML called MXML-graph. The
proposed model is node-based and each node is characterized by a unique “id”.

26 N. Fousteris, M.Gergatsoulis, and Y. Stavrakas

In MXML-graph, except from a special node called root node, there are the
following node types: multidimensional element nodes, context element nodes,
multidimensional attribute nodes, context attribute nodes, and value nodes. The
context element nodes, context attribute nodes, and value nodes correspond to
the element nodes, attribute nodes and value nodes in a conventional XML
graph. Each multidimensional/context element node is labelled with the corre-
sponding element name, while each multidimensional/context attribute node is
labelled with the corresponding attribute name. As in conventional XML, value
nodes are leaf nodes and carry the corresponding value. The facets (context ele-
ment/attribute nodes) of a multidimensional node are connected to that node by
edges labelled with context specifiers denoting the conditions under which each
facet holds. These edges are called element / attribute context edges respectively.
Context elements/attributes are connected to their child elements/attribute or
value nodes by edges called element/attribute/value edges respectively. Finally,
the context attributes of type IDREF(S) are connected to the element nodes
that they point to by edges called attribute reference edges.

“The C

programming

language”

“Brian W.K.”

“Dennis M.R.”

author

“Pr.Hall”

“klidaritmos”

publisher
publisher

“Th. Moraitis”

translator

[ed=gr]

“15"

“12”

price

“9”

price

cover

“leather”
“paper”

“student.bmp”

“library.bmp”

picture

picture

“0-13-11

0370-9”

“0-13-11

0362-8”

translator

book

material
material

title

E

A

V

E

A A

V

E

V

E

E

E

V

V

title

E

E

E E

E
E

V

V

E

E

V

E

E
E

E

V

E

material

E

V

E

E

E

V

V

E

material

E

E

E

E

isbn

[ed=gr][ed=en]

publisher

isbn isbn

authors

author

picture

[c_type=lib]

[c_type=stud]

cover

cover

[ed=gr][ed=en]

V V

V

price

[ed=en]

[ed=gr,

c_type=lib]

[ed=gr,

c_type=stud]

[ed=en] [ed=gr]

price
[]

[]

[]

[]

[]
[]

authors

author

author

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

E multidimensional element node

E

element/attribute context edge

element/attribute/value edge

V value node

A

multidimensional attribute nodeA

Symbol Table

root node

context attribute node

context element node

attribute reference edge

Fig. 1. Graphical representation of MXML (MXML tree)

Example 2. In Fig. 1, we see the representation of the MXML document of Ex-
ample 1 as a MXML-graph. Note that some additional multidimensional nodes
(e.g. nodes 7 and 10) have been added to ensure that the types of the edges alter-
nate consistently in every path of the graph. This does not affect the information
contained in the document, but facilitates the navigation in the graph and the

Storing Multidimensional XML Documents in Relational Databases 27

formulation of queries. For saving space, in Fig. 1 we use obvious abbreviations
for dimension names and values that appear in the MXML document.

3.2 Properties of Contexts

Context specifiers qualifying element/attribute context edges give the explicit
contexts of the nodes to which these edges lead. The explicit context of all the
other nodes of the MXML-graph is considered to be the universal context [],
denoting the set of all possible worlds. The explicit context can be considered
as the true context only within the boundaries of a single multidimensional ele-
ment/attribute. When elements and attributes are combined to form a MXML
document, the explicit context of each element/attribute does not alone de-
termine the worlds under which that element/attribute holds, since when an
element/attribute e2 is part of another element e1, then e2 have substance only
under the worlds that e1 has substance. This can be conceived as if the context
under which e1 holds is inherited to e2. The context propagated in that way is
combined with (constraint by) the explicit context of a node to give the inherited
context for that node. Formally, the inherited context ic(q) of a node q is defined
as ic(q) = ic(p) ∩c ec(q), where ic(p) is the inherited context of its parent node
p. ∩c is an operator called context intersection defined in [12] which combines
two context specifiers and computes a new context specifier which represents
the intersection of the worlds specified by the original context specifiers. The
evaluation of the inherited context starts from the root of the MXML-graph. By
definition, the inherited context of the root of the graph is the universal context
[]. Note that contexts are not inherited through attribute reference edges.

As in conventional XML, the leaf nodes of MXML-graphs must be value nodes.
The inherited context coverage of a node further constraints its inherited context,
so as to contain only the worlds under which the node has access to some value
node. This property is important for navigation and querying, but also for the
reduction process presented in the next section. The inherited context coverage
icc(n) of a node n is defined as follows: if n is a leaf node then icc(n) = ic(n);
otherwise icc(n) = icc(n1) ∪c icc(n2) ∪c ... ∪c icc(nk), where n1, . . . , nk are the
child element nodes of n. ∪c is an operator called context union defined in [12]
which combines two context specifiers and computes a new one which represents
the union of the worlds specified by the original context specifiers. The inherited
context coverage gives the true context of a node in a MXML-graph.

3.3 Reduction of MXML to XML

Reduction is a process that given a world w, and a MXML document (MXML-
graph) G, we can obtain a conventional XML document (XML-Graph) G′ which
is the facet of G under w. Reduction is based on the idea that we should eliminate
all subtrees of G for which the world w does not belong to the worlds specified
by the inherited context coverage of their roots. Then, we eliminate each element
context edge (resp. attribute context edge) (p, C, q) of the graph G1 obtained
from G in this way, as follows: Let (s, p) be the element edge (resp. attribute

28 N. Fousteris, M.Gergatsoulis, and Y. Stavrakas

edge) leading to the node p. Then a) add a new element edge (resp. attribute
edge) (s, q), and b) remove the edges (p, C, q) and (s, p) and the node p.

The XML document (XML-graph) G′ obtained in this way is the holding facet
of the MXML document G under the world w.

4 Storing MXML in Relational Databases

In this section we present two approaches for storing MXML documents using
relational databases.

4.1 Naive Approach

The first approach, called naive approach, uses a single table (Node Table), to
store all information contained in a MXML document. Node Table contains all
the information which is necessary to reconstruct the MXML document(graph).
Each row of the table represents a MXML node. The attributes of Node Table
are: node id stores the id of the node, parent id stores the id of the parent node,
ordinal stores a number denoting the order of the node among its siblings, tag
stores the label (tag) of the node or NULL (denoted by “-”) if it is a value node,
value stores the value of the node if it is a value node or NULL otherwise, type
stores a code denoting the node type (CE for context element, CA for context
attribute, ME for multidimensional element, MA for multidimensional attribute,
and VN for value node), and explicit context stores the explicit context of the
node (as a string). Noted that the explicit context is kept here for completeness,
and does not serve any retrieval purposes. In the following we will see how the
correspondence of nodes to the worlds under which they hold is encoded.

Example 3. Fig. 2 shows how the MXML Graph of Fig. 1 is stored in the Node
Table. Some of the nodes have been omitted, denoted by (...), for brevity.

Node Table

node id parent id ordinal tag value type explicit context

1 0 1 book - CE -
2 1 1 isbn - MA -
3 2 1 isbn - CA [ed=en]
4 3 1 - 0-13-110362-8 VN -
5 2 2 isbn - CA [ed=gr]
6 5 1 - 0-13-110370-9 VN -
7 1 2 title - ME -
8 7 1 title - CE []
9 8 1 - The C progr. lang. VN -

....
43 42 1 picture - CE [c type=stud]
....

Fig. 2. Storing the MXML-graph of Fig. 1 in a Node Table

Storing Multidimensional XML Documents in Relational Databases 29

We now explain how context is stored in such a way so as to facilitate the formu-
lation of context-aware queries. We introduce three additional tables, as shown in
Fig. 3. The Possible Worlds Table which assigns a unique ID (attribute word id)
to each possible combination of dimension values. Each dimension in the MXML
document has a corresponding attribute in this table. The Explicit Context Ta-
ble keeps the correspondence of each node with the worlds represented by its
explicit context. Finally, the Inherited Coverage Table keeps the correspondence
of each node with the worlds represented by its inherited context coverage.

Example 4. Fig. 3, depicts (parts of) the Possible Worlds Table, the Explicit
Context Table, and the Inherited Coverage Table obtained by encoding the
context information appearing in the MXML-graph of Fig. 1. For example,

Possible Worlds Table

world id edition customer type

1 gr stud
2 gr lib
3 en stud
4 en lib

Explicit Context Table

node id world id

1 1
1 2
1 3
1 4

....
5 1
5 2
6 1
6 2
6 3
6 4

....

Inherited Coverage Table

node id world id

1 1
1 2
1 3
1 4

....
5 1
5 2
6 1
6 2

....

Fig. 3. Mapping MXML nodes to worlds

the inherited context coverage of the node with node id=6 includes the worlds
{ (edition, greek), (customer type, student)} and {(edition, greek),
(customer type, library)}. This is encoded in the Inherited Coverage Table
as two rows with node id=6 and the world ids 1 and 2. In the Explicit Context
Table the same node corresponds to all possible worlds (ids 1, 2, 3 and 4).

Representing in this way the context information of MXML-graphs facilitates the
construction of SQL queries referring to context. Moreover, it makes possible
the translation of queries expressed in a language called MXPath, which is a
multidimensional extension of XPath, into equivalent SQL queries. Encoding
both the explicit context and the inherited context coverage as above allows
us to construct queries which use both the explicit context and the inherited
context coverage of nodes. As an example consider the following query given in
natural language: Find the ISBN of the greek edition of the book with
title ‘‘The C Programming Language’’. This query is encoded in SQL as:

select N4.value
from Node as N1, Node as N2, Node as N3,..., Node as N7

30 N. Fousteris, M.Gergatsoulis, and Y. Stavrakas

where N7.type="VN" and N7.value="The C Programming language" and
N7.parent_id=N6.id and

N6.type="CE" and N6.tag="title" and N6.parent_id=N5.id and
N5.type="ME" and N5.tag="title" and N5.parent_id=N1.id and
N1.type="CE" and N1.tag="book" and N1.id=N2.parent_id and
N2.type="MA" and N2.tag="isbn" and N2.id=N3.parent_id and
N3.type="CA" and N3.tag="isbn" and N3.id=N4.parent_id and
N4.type="VN" and N4.id in (select IC1.node_id
from Inherited_Coverage as IC1, Inherited_Coverage as IC2
where IC1.world_id=1 and IC2.world_id=2 and IC1.node_id=IC2.node_id)

The “where” clause implements the navigation on the tree of Fig. 1, while the
nested query implements the constraints related to context, in order to finally
return node 6 but not node 4. Note that to make the query more readable we have
named the table variables after corresponding node ids, and we have included
in the query some conditions, which are redundant as they are deduced from
the properties of the MXML graph. Observe that, the “greek edition” context
contains both the worlds with ids 1 and 2 according to the Possible Worlds table,
which has not been used in the SQL query for brevity. Finally, notice the large
number of self-joins which is proportional to the depth of the navigation path.

4.2 Limitations of the Naive Approach

The naive approach is straightforward, but it has some drawbacks mainly be-
cause of the use of a single table. As the different types of nodes are stored in
the table, many NULL values appear in the fields explicit context, tag, and
value. Those NULL values could be avoided if we used different tables for dif-
ferent node types. Moreover, as we showed in Subsection 4.1, queries on MXML
documents involve a large number of self-joins of the Node Table, which is an-
ticipated to be a very long table since it contains the whole tree. Splitting the
Node Table would reduce the size of the tables involved in joins, and enhance
the overall performance of queries. Finally, notice that the context representation
scheme we introduced leads to a number of joins in the nested query. Probably
a better scheme could be introduced that reduces the number of joins.

4.3 A Better Approach

In the Type Approach presented here, MXML nodes are divided into groups ac-
cording to their type. Each group is stored in a separate table named after the
type of the nodes. In particular ME Table stores multidimensional element nodes,
CE Table stores context element nodes, MA Table stores multidimensional at-
tribute nodes, CA Table stores context attribute nodes, and Value Table stores
value nodes. The schema of these tables is shown in Fig. 4. Each row in these tables
represents a MXML node. The attributes in the tables have the same meaning as
the respective attributes of the Node Table. Using this approach we tackle some
of the problems identified in the previous section. Namely, we eliminate NULL

Storing Multidimensional XML Documents in Relational Databases 31

ME Table

node id parent id ordinal tag

7 1 2 title
10 1 3 authors
....

CE Table

node id parent id ordinal tag explicit context

1 0 1 book -
8 7 1 title []

....
19 18 1 publisher [ed=en]
21 18 2 publisher [ed=gr]
....

MA Table

node id parent id ordinal tag

2 1 1 isbn

CA Table

node d parent id ordinal tag explicit context

3 2 1 isbn [ed=en]
5 2 2 isbn [ed=gr]

Value Table

node id parent id value

4 3 0-13-110362-8
6 5 0-13-110362-9
9 8 The C programming language

....

Fig. 4. The Type tables

edition

id value

0 *
1 en
2 gr

customer type

id value

0 *
1 stud
2 lib

Inherited Coverage Table

node id world id

1 0.0
2 0.0
3 1.0
4 1.0
5 2.0
6 2.0

....

Explicit Context Table

node id world id

1 0.0
2 0.0
3 1.0

....
31 2.2
....
43 0.1
....

Fig. 5. Dimension Tables

values and irrelevant attributes, while at the same time we reduce the size of the
tables involved in joins when navigating the MXML-Graph.

To represent context, we propose a scheme that reduces the size of tables and
the number of joins in context-driven queries. First, we use one table for each di-
mension (in our example edition and customer type) to assign an id (id col-
umn) to each possible value (value column). Additionally, id “0” represents all
possible values of the dimension (for id = 0 we use the value “*”). Then, we as-
sume a fixed order of the dimension names, which will eventually be taken into
account in the formulation of queries. Finally, in the Inherited Coverage and Ex-
plicit Context tables we use world ids of the form “a1.a2 . . . an”, where a1, a2, . . .,
an are ids of dimension values (Fig. 5). For example, the inherited context cover-
age of the node with id 6 in Fig. 1 is encoded as “2.0” in Fig. 5.

32 N. Fousteris, M.Gergatsoulis, and Y. Stavrakas

5 Discussion and Motivation for Future Work

Two techniques to store MXML documents in relational databases are presented
in this paper. The first one is straightforward and uses a single table to store
MXML. The second divides MXML information according to node types in the
MXML-graph and, although it is more complex than the first one, it performs
better during querying. We are currently working on an extension of XPath for
MXML and its translation to SQL. Our plans for future work include the investi-
gation of techniques to update MXML data stored in relational databases.

References

1. Amagasa, T., Yoshikawa, M., Uemura, S.: A Data Model for Temporal XML Doc-
uments. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873,
pp. 334–344. Springer, Heidelberg (2000)

2. Amagasa, T., Yoshikawa, M., Uemura, S.: Realizing Temporal XML Repositories
using Temporal Relational Databases. In: Proc. of the 3rd Int. Symp. on Coopera-
tive Database Systems and Applications, Beijing, pp. 63–68 (2001)

3. Bohannon, P., Freire, J., Roy, P., Siméon, J.: From XML Schema to Relations: A
Cost-Based Approach to XML Storage. In: Proc. of ICDE 2002 (2002)

4. Deutsch, A., Fernandez, M.F., Suciu, D.: Storing Semistructured Data with
STORED. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 431–
442. ACM Press, New York (1999)

5. Du, F., Amer-Yahia, S., Freire, J.: ShreX: Managing XML Documents in Relational
Databases. In: Proc. of VLDB’ 04, pp. 1297–1300. Morgan Kaufmann, San Francisco
(2004)

6. Florescu, D., Kossmann, D.: Storing and Querying XML Data using an RDBMS.
Bulletin of the IEEE Comp. Soc. Tech. Com. on Data Eng. 22(3), 27–34 (1999)

7. Gergatsoulis, M., Stavrakas, Y., Karteris, D.: Incorporating Dimensions in XML
and DTD. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA
2001. LNCS, vol. 2113, pp. 646–656. Springer, Heidelberg (2001)

8. Gergatsoulis, M., Stavrakas, Y., Karteris, D., Mouzaki, A., Sterpis, D.: A Web-based
System for Handling Multidimensional Information through MXML. In: Caplinskas,
A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151, pp. 352–365. Springer, Heidelberg
(2001)

9. Ramanath, M., Freire, J., Haritsa, J.R., Roy, P.: Searching for Efficient XML-to-
Relational Mappings. In: Proc. of XSym 2003, pp. 19–36. Springer, Heidelberg
(2003)

10. Shanmugasundaram, J., Shekita, E.J., Kiernan, J., Krishnamurthy, R., Viglas, S.,
Naughton, J.F., Tatarinov, I.: A General Technique for Querying XML Documents
using a Relational Database System. SIGMOD Record 30(3), 20–26 (2001)

11. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.:
Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In: Proc. of VLDB’99, pp. 302–314. Morgan Kaufmann, San Francisco (1999)

12. Stavrakas, Y., Gergatsoulis, M.: Multidimensional Semistructured Data: Represent-
ing Context-Dependent Information on the Web. In: Pidduck, A.B., Mylopoulos, J.,
Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 183–199. Springer,
Heidelberg (2002)

Storing Multidimensional XML Documents in Relational Databases 33

13. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and querying ordered XML using a relational database system. In: Proc.
of the 2002 ACM SIGMOD Int. Conf. on Management of Data, pp. 204–215. ACM
Press, New York (2002)

14. Tian, F., DeWitt, D.J., Chen, J., Zhang, C.: The Design and Performance Evalua-
tion of Alternative XML Storage Strategies. SIGMOD Record 31(1), 5–10 (2002)

15. Wang, F., Zhou, X., Zaniolo, C.: Using XML to Build Efficient Transaction-Time
Temporal Database Systems on Relational Databases. In: Proc. of ICDE 2006
(2006)

16. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based approach
to storage and retrieval of XML documents using relational databases. ACM Trans-
actions on Internet Technology 1(1), 110–141 (2001)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 34–44,2007.
© Springer-Verlag Berlin Heidelberg 2007

On Constructing Semantic Decision Tables

Yan Tang and Robert Meersman

VUB STAR Lab,
Department of Computer Science,

Vrije Universiteit Brussels
Pleinlaan 2, B-1050 BRUSSEL 5, Belgium

{Yan.Tang,Robert.Meersman}@vub.ac.be

Abstract. Decision tables are a widely used knowledge management tool in the
decision making process. Ambiguity and conceptual reasoning difficulties arise
while designing large decision tables in a collaborative environment. We
introduce the notion of Semantic Decision Table (SDT), which enhances a
decision table with explicit decision semantics by annotating it properly with a
domain ontology. In this paper, we focus on the SDT construction process.
First, we map decision items to the ontology by building a rooted tree of
decision binary facts and visualize it in a scalable manner. Formal ontological
roles are used during this mapping process. Then, we commit the decision rules
to the mapping results with a high level pseudo-natural language to ground their
semantic. We illustrate with an SDT example from the domain of human
resource management.

Keywords: semantics, decision table, ontologies, DOGMA.

1 Introduction

As one aspect of knowledge management, decision support systems are often used to
supplement, complement or amplify the knowledge resource and/or knowledge
processing capabilities of a user (or users) engaged in making decisions. Decision
tables are widely used in many decision support domains, such as business decision
supporting systems, software engineering or system analysis (or evaluation).

Decision tables are a simple yet important powerful tool to provide reasoning in a
compact form. However, traditional decision tables diverge widely in their
representation and decision semantics are often hidden. Thus, to draw a large decision
table with a considerable number of conditions in general is a rather time consuming
and difficult task. The situation gets naturally worse when many decision makers are
involved in collaborative decision making circumstances. In this paper, we introduce
Semantic Decision Tables (SDT), which are annotated properly with a domain
ontology, to ground decision semantics explicitly.

We focus on the SDT construction problem in this paper. The paper is organized as
follows: in Section 2, we introduce the background and motivation of SDT. We
present the notion of SDT in Section 3. An SDT construction method is described in

 On Constructing Semantic Decision Tables 35

Section 4. We present related work and open a discussion in Section 5. We
summarize and illustrate our future work in Section 6.

2 Background and Motivation

We first look at a decision table example of hiring and training a driver in the problem
domain of human resource management. Table 1 is a traditional decision table
designed by following de facto international standard [3].

Table 1. A decision table example of hiring and training a driver1

 1 2 3 4 5 6
Condition
Previous relevant occupation Bus

driver
Taxi
driver

Railway
driver

Bus
driver

Taxi
driver

Taxi
driver

Driving experience 2 years 7 years 5 years 3 years 1 year 5 years
License type C C Special C B B
Nbr. Of accidents 0 5 0 1 2 2
Skill of survival Unknown High Unknown Medium High High
Speak required language(s) Yes No Yes Yes Yes No
Already hired No Yes No No Yes No
Action
To hire *
To hire and to train *
To train *
To fire *
To reject * *

A decision condition is a combination of a condition stub and a condition
entry. For example, a condition stub “Previous relevant occupation” together with
a condition entry “Bus driver” constructs a condition as “his previous relevant
occupation is bus driver” in Table 1. A decision action contains an action stub
and an action entry. For example, an action stub “To hire” and an action entry “*”
construct an action as “the action is to hire” in Table 1.

Traditional decision tables diverge widely in their representation. For example,
the condition “his previous relevant occupation is bus driver” in Table 1 can have
another representation as a condition stub “previous relevant occupation is bus
driver” and a condition entry “yes”. Similarly, the action “the action is to hire” in
Table 1 might have another representation as an action stub “take an action”
together with an action entry “to hire”.

We observe that there is a problem of ambiguity during the phase of building a
large decision table especially in the cooperative decision making process. If we
don’t know the background of Table 1, the lexical representation of ‘driving’ is
ambiguous. For instance, driving can refer to the concepts of “drive a vehicle”,
“drive a golf ball” or “drive into a discourse direction when talking in a meeting”.
This problem gets naturally worse when multiple languages are involved.

1 We acquired the data from the PoCeHRMOM project – an ongoing project about ontology

based human resource management. http://www.starlab.vub.ac.be/website/PoCehrMOM

36 Y. Tang and R. Meersman

Moreover, we observe that decision semantics are hidden in a traditional decision
table. For instance, the condition “previous relevant occupation is bus driver” and the
condition “license type is C” are related because a bus driver must at least have a
license with type C. Thus, conceptual reasoning difficulties arise when we need to
check conceptual consistency of a decision table with a considerable number of
conditions and actions.

We try to tackle the mentioned problems by bringing the notion of Semantic
Decision Table in the next section.

3 Semantic Decision Table

Ontology was first introduced by T. Gruber as an explicit specification of a
conceptualization [7]. N. Guarino later achieved the explicit specification by defining
an ontology as a logical theory accounting for the intended meaning of a formal
vocabulary, which indirectly reflects the commitment (and the underlying
conceptualization) by approximating these intended models [8].

In the DOGMA (Developing Ontology-Grounded Methods and Applications, [13])
framework, one constructs (or converts) ontologies into two layers: the lexon base
layer that contains a vocabulary of simple binary facts called lexons, and the
ontological commitment layer that formally defines the axiomatized rules and
constraints through which applications may make use of these lexons.

A lexon is a quintuple < γ, t1, r1, r2, t2 > where t1 and t2 are terms that represent two
concepts in some language. r1 and r2 are roles referring to the relationships between t1
and t2. γ is a context identifier to disambiguate t1 and t2 and to make r1 and r2
meaningful. A lexon represents a binary fact that reflects the relations between two
concepts within a context. E.g. the lexon <γ 2 , driver, has, is issued to, drivers
license> means: a driver has drivers license(s); and a driver’s license is issued to a
driver.

A particular application view of reality, such as the use by the application of the
(meta-) lexons in the ontology base, is described by an ontological commitment. The
ontological commitment, which corresponds to an explicit instance of an intentional
logical theory interpretation of applications, contains a set of rules in a given syntax.
This describing process is also called ‘to commit ontologically’. The commitments
need to be expressed in a commitment language that can be interpreted. We explicate
a commitment by using the notion of semantic path that are restricted by relational
database constraints.

The semantic path provides the construction direction of a lexon. For instance, if
we want to apply the constraint “one driver has at most one driver’s license” to the
lexon <γ, driver, has, is issued to, drivers license>, we use the uniqueness constraint
UNIQ3 on the path p1 = [γ, driver, has, is issued by, drivers license]. The following
commitment statement indicates this constraint:

p1 = [γ, driver, has, is issued by, drivers license]: UNIQ (p1). (1)

2 As the discussion of context identifier is out of the scope of this paper, we use γ to indicate

the context identifier of a lexon.
3 To formulate each ontological semantic constraint, which is far too trivial, is not the paper

focus. The details aspects can be found in our past work.

 On Constructing Semantic Decision Tables 37

An SDT initially introduced in [19] is integrated into the DOGMA framework.
On one hand, it keeps the traditional tabular view of decision table. On the other
hand it enriches a decision table with semantically grounded decision rules.

Let us first look at the decision table definition based on [3]:

Definition 1. A decision table is a triple <C,A,R>, where C is the set of
conditions, A the set of actions, and R the set of rules. Each condition ci, ci∈C is
defined as <ni,vi> where ni∈N is a condition stub label, and vi∈V is a condition
entry value. Each rule rj ⊂ R is defined as a function rj: V

N → A.

Definition 1 describes the kernel elements of a decision table – condition (e.g.
‘License type’ – ‘C’ in Table 1), action (e.g. ‘to hire’ – ‘*’ in Table 1) and
decision rules (e.g. the second column in Table 1). SDT is formalized as:

Definition 2. An SDT is < Γ,Cl,Al,Rl>. γ∈Γ is a context identifier pointing to the
original decision table and its settings. Cl is the set of condition lexons and Al is
the set of action lexons. Both Cl and Al are defined inside the same context
identifier γ. Rl, which is generated through a formal ontological commitment, is a
rule set that includes commitment axioms rc∈Rc and semantic-grounded decision
rules ra∈Ra; {Ra ∪ Rc} ⊆ Rl.

An SDT follows the layered structure of DOGMA framework: the lexon base
layer that contains decision and action lexons, the ontological commitment layer
that carries semantically grounded decision rules.

4 The Construction Method

In order to construct an SDT, we need to build its lexon base and the commitment
layer based on Definition 2. Our construction method thus incorporates two main
steps – establishing lexon base layer and collaborating lexons with semantically
grounded decision rules.

4.1 Establish Decision Lexons

During the process of establishing decision lexons, we try to build the
connections between decision items in a decision table and concepts in a domain
ontology. An item can be mapped directly to a concept if the ontology already
contains the conceptual definition of this item. In the PoCeHRMOM project, we
observe that this kind of direct mapping is rather rare in most cases. Therefore,
we need a viable mapping method.

Nowadays, there are several available annotation methods as listed in [17].
Current annotation method research investigates both manual and automated
annotation algorithms. The automated annotation algorithms yield certain degree
of precision. In [17], authors assert that “the fully automatic creation of semantic
annotations is an unsolved problem” caused by the problem of annotation
acquisition bottle neck. This recalls the problem we mentioned earlier in the

38 Y. Tang and R. Meersman

paper: not all the concept definitions can be found in the domain ontology.
Therefore, we shall investigate a semi-automatic mapping method4 that involves
domain experts.

There are two main approaches to annotating unstructured information (from
decision tables and the tacit knowledge of decision makers) with structured
concepts (from domain ontologies). One approach is to map the keywords of an
item to the concepts in domain ontologies. Keyword-based mapping techniques are
quite common in the literatures of information retrieval [1]. However, simple
keyword-based mapping techniques don’t really solve the problem of meaning
ambiguities.

Another approach is triggered by the idea of concept mapping by its extended
meaning/sense, with which the authors try to tackle disambiguation problems in the
linguistic domain [16]. Similarly, an idea of concept mapping with its extension is
evoked in the domain of knowledge management. It is initially proposed to improve
human’s knowledge-building and understanding by mapping the concepts amongst
machines and human (experts and end users) [14]. On one hand, this kind of
concept mapping facilitates representational standardization without increasing the
burden on users. But on the other hand, it lacks formal syntax and the semantic of
the concepts and their relationships. As Eskridge et al. discussed in [4], some
formal relationships, such as the “is-a” or “child-of” relationship, need to be
identified.

Fortunately, we have ontologies to define such formal relationships. For
instance, the ontological subsumption relation defines the formal semantics of the
“is-a” relationship. As an ontology describes the semantics of concepts precisely in
a domain, it can thus solve the problem of meaning ambiguities.

Based on the discussion above, we try to achieve the “concept mapping by its
extended meaning” in ontology engineering by designing a three-step method:

• Step 1 - Finding conceptually relevant lexons in a domain ontology
(automatically), where formal concepts and their relations are defined;

• Step 2 - Building connections that reflect the links between those lexons
with different contexts in order to find the candidates of concept
extension (semi-automatically);

• Step 3 - Mapping unstructured concepts to the candidates of concept
extension in the domain ontology (manually).

With regards to the question of finding relevant lexons of a concept in the
existing ontology, we first look at the relations between linguistics and ontologies.
A formal ontology is to describe meta-level categories used to model the world in
order to refer to the entities or real objects in the world [8]. According to Guarino,
ontologies collect metaphysical descriptions of concepts. For example, a cook in
English or a chef in French refers to the same concept – a worker in a restaurant – in
the context of restaurant staff. In this sense, we argue that ontology is language
independent.

4 Most of the current annotation methods are either focused on the linguistic indexing and

authoring, or on the meta-data modeling. We try to solve the mapping problem based on its
fundamental characteristics.

 On Constructing Semantic Decision Tables 39

However, there is a strong dependence between linguistics and concepts in ontologies.
In [15], Qmair asserts that there are strong relations and dependences between concepts
and their linguistic terms. Changing linguistic terms may affect the intended meaning of
their concepts. The linguistic terms should not be completely excluded or ignored by the
conceptualization of ontologies [9]. In addition, lexons in the lexon bases are lexical
representation of concepts [13]. Therefore, it is important to use linguistics to express
meanings of concepts in ontologies.

Hence, we argue that there is a distinction between the linguistic level and the
ontology level; and the mapping from linguistics to concepts bridges these two levels.
Step 1 is taken at the linguistic level. Step 2 and Step 3 are taken at the semantic level.

On Step 1, we adopt a Natural Language Process to find linguistic roots of user
specified decision terms and find lexons that contain the root (or a synonym5 of the
root). A root is a basic lexical unit of a word. It contains the content semantics of a
word and cannot be reduced to smaller units [12]. We take the item “driving
experience” in Table 1 as an example. The term “driving experience” contains two
linguistic roots: “drive” and “experience”. We thus get selected lexons from the
ontologies, such as <γ, drivers license, subclass of, super class of, license>, <γ,
driveway, is a, is, roadway>, <γ, driver, is a, is, person> for “drive”.

On step 2, we build a rooted-tree for each resulting lexon. The tree is populated as
it has ontological relations with other lexons within its context (i.e. Fig. 1). We use
ORM [10] to visualize lexons and their constraints, for ORM has excellent conceptual
modeling facilities.

Fig. 1. Based on the lexon <γ, driver, is a, is, person>, a “driver”-rooted tree example within
the context of “occupation” is built. In practice, it can be populated with more generations.

After constructing such a lexon tree, we map the decision items to a specific lexon
(or lexons) with formal ontology roles to achieve the goal of constructing formal
semantics for each mapping (Step 3). We assume that all the relevant concepts are
already stored in the domain ontology. We use the formal ontology roles to build this
mapping by using the formal ontology roles.

As discussed in [8], mereology (the theory of the part-whole relation) and topology
(intended as the theory of the connection relation) are mainly used to describe formal
ontology roles in general. Other formal ontology roles can be found in the literatures.
We group the formal ontological roles into five categories for the annotation:

• “is-a” taxonomical roles (e.g. “subtype of” relationship);
• “part-of” merelogical roles;

5 We use the part-of-speech tagging techniques [12] and SynSet from WordNet [5] to find

synonyms of the root.

person
is a / is

driver has / is of

has / is of

person

person

person

has is of

40 Y. Tang and R. Meersman

• “instance-of” roles;
• “property-of” roles;
• “equivalent” roles.

For example, we can apply the “is-a” taxonomical roles to describe a subtype
relation between “drivers license” and “license”. The “part-of” ontological roles can
be applied to define a link between “person” and “leg”. We use the roles in the
“property-of” category to represent the “has” relation between “license holder” and
“drivers license”. The ontological “instance-of” roles can be used to depict the
relation between “TOYOTA” and “brand”. Concerning to the “equivalent”
ontological roles, we take the relation between “car” and “auto” as an example.

Accordingly, we build the “is-a” subsumption roles (is-a/is) between the item
“driving experience” in Table 1 and the lexon term node “professional experience”
defined in the domain ontology. The “on property” relationship (has/is of) in the
ontology role category of “property-of” is constructed between “driving experience”
and “driver”. Table 1 illustrates the mapping results of Table 1.

Table 2. Mapping result of Table 1 (trimmed)

Decision Term Role Co-role Lexon Term Ontological relation
6

previous relevant
occupation

is a is occupation Subtype (subtype-of)

previous relevant
occupation

has is of occupation type onProperty (property-of)

driving experience is of Has driver onProperty (property-of)
driving experience is a is professional experience Subtype (subtype-of)
driving experience has is of value onProperty (property-of)
license type is of Has drivers license onProperty (property-of)
number of accidents is of Has accident onProperty (property-of)
… … … … …
to train isA Is action Instance (instance-of)
to fire isA Is action Instance (instance-of)
to reject isA is action Instance (instance-of)

When the mapping is built, the results are stored in the domain ontology. Then, we
use various means, such as ORM, Conceptual Graph and Description Logic formulas,
to capture more refined meanings of the concepts in the ontologies. This topic is
beyond the paper focus, we refer to our past researches for the issue of how to use
ORM to model an ontology. Researches on how to establish semantic calculus to
ensure the semantic equivalence will be studied in the future.

4.2 Construct Semantically Grounded Decision Rules

High level pseudo-natural languages are often used to elaborate basic knowledge units
in the domain of knowledge engineering. As described in [11], rules in a high level
pseudo-natural language are elegant, expressive, straightforward and flexible means

6 The corresponding formal ontological role categories are indicated between parentheses.

 On Constructing Semantic Decision Tables 41

of expressing knowledge. For example, we can illustrate a decision rule “a bus driver
must at least have a license with type C” for Table 1 as7:

 {<γ, bus driver, has, is of, drivers license>
 AND <γ, drivers license, has, is of, license type>}
 VALUE_RANGE (license type) = {C, D, E}.

The lexon <γ, bus driver, has, is of, drivers license> predefined in the domain
ontology and the lexon <γ, drivers license, has, is of, license type > in Table 1 are
connected with AND, which indicates the conjunction relationship between these two
lexons. The value range of “license type” is declared by the statement:
VALUE_RANGE (license type) = {C, D, E}, which means that “a license type can
only be C, D or E”. We thus transform the decision rule “a bus driver must at least
have a license with type C” into “a bus driver has a drivers license AND the drivers
license has a license type; the license type should be in the VALUE RANGE of C, D
OR E”.

This rule is further designed as a statement with the formal DOGMA commitment
language (Section 3) as:

(P2= [γ, bus driver, has, is of, drivers license],
P3= [γ, drivers license, has, is of, license type])
: P2 ∧ P3, (license type)∈{C,D,E}.

(1)

By now, we have introduced a concrete construction method. A tool has been
developed to assist this constructing method (Fig. 2).

Fig. 2. A screenshot of the SDT construction tool

7 Letters in capital cases and mathematical notations are reserved as the keywords in our high

level pseudo-natural language.

42 Y. Tang and R. Meersman

The decision item “driving experience” is mapped to the concept “driver” in the
ontology (Fig. 2). The formal ontological role – onProperty - is used for the mapping.
We visualize the “driving experience”-rooted ORM tree and provide semantically
grounded decision rules in the Commitment Information textbox. The result is stored
in an XML file for sharing. We integrate the SDT construction tool into the DOGMA
Studio Workbench V1.0 developed at the VUB STAR Lab.

After constructing an SDT, we store its lexons and commitments in Prolog to
reason it as we did in [19]. If we slightly modify Table 1 by adding an extra decision
column that contains the information as “a candidate was a bus driver and he has a
driver’s license of type B”. This extra column violates the decision rule “a bus driver
must at least have a license with type C”. When we check the conceptual consistency
of the columns of this table with the tool in [19], we get a warning message.

5 Related Work

As one of the very useful and important decision objects of the decision supporting
systems, decision tables have already been studied during many years. Many
researchers already tried to combine semantics with decision tables in several
application domains.

Goedertier et al. [6] rather focus on the rules and the semantics of the case data and
activity flows in business process models, which we shall place at the application
layer, i.e. as part of the use of an ontology; they do not discuss the decision table's
content (conditions and decisions) and the semantics of the content. We made the
semantic analysis on both the decision table itself and its content. And we expect that
some of their ideas can be adopted in the future to derive a richer annotation model
for our semantic decision tables.

Shiffman et al. in [18] present decision tables as a technique to reduce the
complexity of using a medical knowledgebase. They demonstrate how (medical
domain) semantics may be exploited ad hoc to simplify these decision tables, thereby
indeed turning these tables also, in our terminology, into specific applications
committed to such ontologies. In our paper we are instead interested rather in the
general knowledge engineering and Knowledge Management principles underlying
this process.

Colomb [2] mainly treats decision table related ontologies as "task ontologies” in a
domain. They are applied in a medical application context, but his results are general,
albeit that the notion of DT used in [2] is restricted compared to the decision table
standards CSA Z243.1-1970. The main idea of decision objects in Colomb's paper
indeed is that adoption of the correct paradigm aids expert system developers in
reducing the size of the problem space. His task ontology on the other hand could be
made part of (medical) decision support ontologies in our approach, i.e. SDT +
medical domain knowledge + task descriptions.

6 Conclusion and Future Work

We introduced the Semantic Decision Table (SDT) to express the semantics of
traditional decision tables during the decision making processes in order to tackle the
problem of ambiguity and provide the conceptual reasoning facility (Section 2). An

 On Constructing Semantic Decision Tables 43

SDT, which is annotated properly with domain ontologies, transforms a traditional
decision table into semantically grounded decision rules. In this paper, we focus on
the SDT construction method. A tool has been developed to assist the SDT
construction and to store SDT in XML format.

We consider SDT as an instrument that supports collaborative decision making
systems. We will focus more on the conceptual consistency and validity issues of the
SDT. Moreover, typical situations of where SDT are suitable in this kind of decision
making will be explored in the future.

Acknowledgments. It’s the authors’ pleasure to thank Dr. Mustafa Jarrar and Jan
Demey for reviewing and discussing the paper. We shall thank all the STAR members
for their comments on the paper. This research is partly supported by the IWT
PoCeHRMOM project IWT-TETRA-50115.

References

[1] Baeza-Yates, R., Ribeiro-Neto, B.: Modern information Retrieval. Addison-Wesley,
London (1999)

[2] Colomb, R.M.: Representation of propositional expert systems as partial functions.
Artificial Intelligence 109, 1–2 (1999)

[3] CSA, Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)
[4] Eskridge, T., Hayes, P., Hoffman, R.: Formalizing the Informal: a Confluence of Concept

Mapping and the Semantic Web. In: Proc. of the Second International Conference on
Concept Mapping, San Jod, Costa Rica (2006)

[5] Fellbaum, C. (ed.): Wordnet, an Electronic Lexical Database. MIT Press, Cambridge
(1998)

[6] Goedertier, S., Vanthienen, J.: Rule-based Business Process Modeling and Execution. In:
Proceedings of the IEEE EDOC Workshop on Vocabularies Ontologies and Rules for
The Enterprise (VORTE 2005). CTIT Workshop Proceeding Series, Enschede (2005)
ISSN 0929-0672

[7] Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Int. Journal of Human-Computer Studies 43, 907–928 (1995)

[8] Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS’98,
98th edn., pp. 3–15. IOS press, Amsterdam (1998)

[9] Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources in formal
ontology engineering. In: Proceeding of the 15th International World Wide Web
Conference, WWW2006, Edinburgh, Scotland, ACM Press, New York (2006)

[10] Halpin, T.A.: Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design. Morgan Kaufman Publishers, San Francisco (2001)

[11] Hopgood, A.: Intelligent Systems for Engineers and Scientists, 2nd edn. CRC press LLC,
Boca Raton (2000)

[12] Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural
Language Processing. In: Computational Linguistics and Speech Recognition, Prentice-
Hall, Englewood Cliffs (2003)

[13] Meersman, R.: Ontologies and Databases: More Than a Fleeting Resemblance. In: OES
SEO 2001 RomeWorkshop, Luiss Pub. (2001)

[14] Novak, J., Gowin, D.: Learning How to Learn. Cambridge University Press, New York
(1984)

44 Y. Tang and R. Meersman

[15] Qmair, Y.: Foundations of Arabic philosophy. Dar El-Machreq. Beirut (1991) ISBN 2-
7214-8024-3

[16] Pustejovsky, J.: The Generative Lexicon. Journal of Computational Linguistics, pp. 409–
441 (1991)

[17] Reeve, L., Han, H.: Survey of Semantic Annotation Platforms. In: Proc. Of the 20th
Annual ACM Symposium on Applied Computing, Web Technologies and Application
Track, pp. 1634–1638. ACM Press, New York (2005)

[18] Shiffman, R.N., Greenes, R.A.: Rule set reduction using augmented decision table and
semantic subsumption techniques: application to cholesterol guidelines. In: Proceedings
of Annual Symp. Computer and Application Medical Care, pp. 339–343 (1992)

[19] Tang, Y., Meersman, R.: Towards Building Semantic Decision Table with Domain
Ontologies. In: Man-chung, C. Liu, J.N.K., Cheung, R., Zhou, J. (eds.) Proceedings of
International Conference of information Technology and Management (ICITM2007),
ISM Press (January 2007) ISBN 988-97311-5-0

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 45–53, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Artificial Immune Recognition System Based Classifier
Ensemble on the Different Feature Subsets for Detecting

the Cardiac Disorders from SPECT Images

Kemal Polat1, Ramazan Şekerci2, and Salih Güneş1

1 Selcuk University, Dept. of Electrical & Electronics Engineering,

42075, Konya, Turkey
{kpolat,sgunes}@selcuk.edu.tr
2 Lange Camp 16, 47139 Duisburg, Germany

rsekerci@hotmail.de

Abstract. Combining outputs of multiple classifiers is one of most important
techniques for improving classification accuracy. In this paper, we present a
new classifier ensemble based on artificial immune recognition system (AIRS)
classifier and independent component analysis (ICA) for detecting the cardiac
disorders from SPECT images. Firstly, the dimension of SPECT (Single Photon
Emission Computed Tomography) images dataset, which has 22 binary fea-
tures, was reduced to 3, 4, and 5 features using FastICA algorithm. Three dif-
ferent feature subsets were obtained in this way. Secondly, the obtained feature
subsets were classified by AIRS classifier and then stored the outputs obtained
from AIRS classifier into the result matrix. The exact result that denote whether
subject has cardiac disorder or not was obtained by averaging the outputs ob-
tained from AIRS classifier into the result matrix. While only AIRS classifier
obtained 84.96% classification accuracy with 50-50% train-test split for diag-
nosing the cardiac disorder from SPECT images, classifier ensemble based on
AIRS and ICA fusion obtained 97.74% classification accuracy on the same
conditions. The accuracy of AIRS classifier utilizing the reduced feature subsets
was higher than those exploiting all the original features. These results show
that the proposed ensemble method is very promising in diagnosis of the car-
diac disorder from SPECT images.

1 Introduction

In this paper, AIRS classification algorithm and new feature subsets obtained from
ICA algorithm are combined to improve the classification accuracy of SPECT images
dataset. The aim of this process is both to improve the classification accuracy of car-
diac disorders from SPECT images dataset and to introduce a new classifier ensemble
in pattern recognition field.

Aggregating outputs of multiple classifiers into a committee decision is one of the
most important techniques for improving classification accuracy. A variety of
schemes have been proposed for aggregating outputs of multiple classifiers. The
mostly used approaches include the majority vote, averaging, weighted averaging, the

46 K. Polat, R. Şekerci, and S. Güneş

Bayesian approach, the fuzzy integral, the Dempster–Shafer theory, the Borda count,
aggregation through order statistics, probabilistic aggregation, the fuzzy templates,
and aggregation by a neural network [1], [2]. In this work, we have used the averag-
ing method for aggregating outputs of AIRS classifiers.

Modern medicine generates huge amounts of image data that can be analyzed and
processed only with the use of specialized computer software. Since imaging tech-
niques like SPECT, PET, and MRI can generate gigabytes of data per day. There are
many advantages of computerized analysis of data over human analysis: lower price,
shorter time, automatic recording of analysis results, consistency, relatively inexpen-
sive re-use of previous solutions [3].

In literature, various studies have been considered related with diagnosing the car-
diac disorders from SPECT images dataset. Ümit et al. obtained 88.24% and 93.58%
classification accuracies with RBF and GRNN algorithms [4]. While Lukasz et al.
achieved 84% classification accuracy using CLIP3 machine learning algorithm [3],
Kurgan et al. reached to 86.1% and 90.4% classification accuracy by way of CLIP4
and CLIP4 ensemble machine learning algorithms [5].

In this study, the proposed method consists of two parts. Firstly, the dimension of
SPECT images dataset, which has 22 binary features, was reduced to 3, 4, and 5 fea-
tures using FastICA algorithm. In this way, three different feature subsets were ob-
tained. Secondly, the obtained feature subsets were classified by AIRS classifier and
then the outputs obtained from AIRS classifier were stored into the result matrix. The
exact result that denote whether subject has cardiac disorder or not was obtained
using averaging the outputs obtained from AIRS classifier into the result matrix.
Whereas only AIRS classifier obtained 84.96% classification accuracy with 50-50%
train-test split for diagnosing the cardiac disorder from SPECT images, classifier
ensemble based on AIRS and ICA fusion obtained 97.74% classification accuracy on
the same conditions.

2 SPECT Images Dataset

2.1 Acquiring of SPECT Images

SPECT imaging is used as a diagnostic tool for myocardial perfusion. The patient is
injected with radioactive tracer (in our case Tl-201). Then two studies are performed,
one 10-15 min. after injection during maximal stress – called stress study (stress im-
age), and one 2-5 hours after injection – called rest study (rest image) have been per-
formed. The studies are collected as two sets of three-dimensional images. All the
images represent LV muscle perfusion that is proportional to distribution of radioac-
tive counts within the myocardium. Cardiologists compare stress and rest studies in
order to detect abnormalities in the LV perfusion [3].

There are other visualization methods used for cardiac SPECT images. One is
bull’s-eye method that is based on projection of 3D image of LV into 2D plane by
radial projection into spherical coordinates, or into combination of spherical and
cylindrical coordinates. Another family of methods is connected with 3D surface
rendering of the LV; they use gated blood-pool SPECT images in order to visualize
motion of the heart muscle. There are also studies that concern dynamic cardiac

 Artificial Immune Recognition System Based Classifier Ensemble 47

scenes interpretation. Cardiac motion analysis in general enables to identify patholo-
gies related to myocardial anomalies or coronary arteries circulation deficiencies.
Similar to the technique described in this paper, they use 2D LV contour images to
perform quantitative and qualitative evaluation of the heart functions [3]. The SPECT
images dataset is taken from UCI (University of California institute) machine learning
database [6].

2.2 Diagnosis of Cardiac Disorders

In diagnosis of cardiac disorder, while the first stage is the diagnosing regionally for
lest ventricle muscles, the second stage is to conduct the final diagnose helping from
all the regional diagnosis relating the left ventricle. First of all, SPECT Image was
processed by image processing algorithms in the performing of these stages. Then,
some rules were made up to recognize the healthy and disorder images by cardiolo-
gists [3, 4].

The seven classes (Normal, Reversible, Partially Reversible, Artifact, Fixed,
Equivocal and Reverse Redistribution) are recognized for regional diagnosis and then
eight classes (Normal, Ischemia, Infarct, Infarct and Ischemia, Artifact, Equivocal,
Reverse Redistribution, and the LV Dysfunction) are determined for fully diagnosis.
The dataset describes diagnosing of cardiac Single Proton Emission Computed To-
mography (SPECT) images. Each of the patients is classified into two categories:
normal and abnormal. The database of 267 SPECT image sets (patients) was proc-
essed to extract features that summarize the original SPECT images. As a result, 44
continuous feature patterns were created for each patient. The pattern was further
processed to obtain 22 binary feature patterns [3, 4, 5]. There are 55 normal (0) and
212 abnormal (1) subjects in SPECT image dataset [6].

3 The Proposed Method

3.1 Overview

The proposed classifier ensemble consists of two parts: dimensionality reduction part
using ICA and classification part using AIRS classifier. The block scheme of pro-
posed method is shown in Figure 1.

3.2 FastICA Algorithm: Dimensionality Reduction Process

In the FastICA algorithm, to be described below, the initial step is whitening or spher-
ing. By a linear transformation, the measurements xi(k) and xj(k) for all i, j are made
uncorrelated and unit-variance [7]. The whitening facilitates the separation of the
underlying independent signals [8]. In [9], it has been shown that a well-chosen com-
pression, during this stage, may be necessary in order to reduce the overlearning
(overfitting), typical of ICA methods. The result of a poor compression choice is the
productions of solutions practically zero almost everywhere, except at the point of a
single spike or bump. In the studies reported in this paper, the number of important
sources (both in the artifact detection and the averaged evoked response experiments)

48 K. Polat, R. Şekerci, and S. Güneş

Fig. 1. The block scheme of proposed method

is assumed to be smaller than the total amount of sensors used, justifying such signal
compression. The whitening may be accomplished by PCA projection:

)()(kVxkv = with IkvkEv T =})()({ . The whitening matrix V is given by;
TU2/1−Λ where],...,[1 mdiag λλ=Λ is a diagonal matrix with the eigenvalues of

the data covariance matrix })()({ TkvkEv , and U is a matrix with the corresponding

eigenvectors as its columns. The transformed vectors are called white or sphere, be-
cause all directions have equal unit variance. In terms of v(k), the model(1) becomes;

)()(kVAskv = (1)

and we can show that matrix W=VA is orthogonal. Therefore, the solution is now
sought in the form:

(2)

Uncorrelation and independence are equivalent concepts in the case of Gaussian dis-
tributed signals. PCA is therefore sufficient for finding independent components.
However, Standard PCA is not suited for dealing with non-Gaussian data, where inde-
pendence is a more restrictive requirement than uncorrelation. Several authors have
shown [9, 10], that higher-order statistics are required to deal with the independence
criterion. According to the Central Limit Theorem (CLT), the sum of independent
random variables, with identical distribution functions approaches the normal distribu-
tion as m tends to infinity. We may thus replace the problem of finding the independ-
ent source signals by a suitable search for linear combinations of the mixtures that
maximize a certain measure of non-Gaussianity. In FastICA, as in many other ICA
algorithms, we use the fourth-order cumulant also called the kurtosis. For the th source

signal, the kurtosis is defined as {.}.}]{[3}{)(224 EsEsEskurt iii −= denotes the

mathematical expectation value of the bracketed quantity. The kurtosis is negative for

Input Data

Input Data

Input Data

FastICA

FastICA

FastICA

 AIRS

 AIRS

 AIRS

 3 features

4 features

 5 features

∑

Averaging

Output

 Artificial Immune Recognition System Based Classifier Ensemble 49

source signals whose amplitude has sub-Gaussian probability densities (distributions
flatter than Gaussian), positive for super-Gaussian (sharper than Gaussian), and zero
for Gaussian densities. Maximizing the norm of the kurtosis leads to the identification

of non- Gaussian sources. Consider a linear combination vwy T= of a white random

vector, with 1=w . Then 1}{ 2 =yE and 3}{)(4 −= yEykurt whose gradient

with respect to w is })({4 3vwvE T . The FastICA is a fixed point algorithm which,

maximizing the absolute value of the kurtosis, finds one of the columns of the separat-
ing matrix W (noted w) and so identifies one independent source at a time. The corre-
sponding independent source signal can then be found using (3). Each th iteration of
this algorithm is defined as;

1
3

1
*

1 3})({ −− −= l
T

l wvwvEw (3)

** / lll www = (4)

In order to estimate more than one solution and up to a maximum of, the algorithm
may be run repeatedly. It is, nevertheless, necessary to” remove the information con-
tained in the solutions already found, to estimate a different independent component
each time.

3.3 Artificial Immune Recognition System: Classification Process

AIRS is a resource limited supervised learning algorithm inspired from immune
metaphors. In this algorithm, the used immune mechanisms are resource competition,
clonal selection, affinity maturation and memory cell formation. The feature vectors
presented for training and test are named as Antigens while the system units are called
as B cells. Similar B cells are represented with Artificial Recognition Balls (ARBs)
and these ARBs compete with each other for a fixed resource number. This provides
ARBs, which have higher affinities to the training Antigen to improve. The memory
cells formed after the whole training Antigens were presented are used to classify test
Antigens. The algorithm is composed of four main stages, which are initialization,
memory cell identification and ARB generation, competition for resources and devel-
opment of a candidate memory cell, and memory cell introduction. We give the de-
tails of our algorithm below.

1. Initialization: Create a set of cells called the memory pool (M) and the ARB
pool (P) from randomly selected training data.
2. Antigenic Presentation: for each antigenic pattern do:

(a) Clonal Expansion: For each element of M, determine its affinity to the
antigenic pattern, which resides in the same class. Select the highest affin-
ity memory cell (mc) and clone mc in proportion to its antigenic affinity to
add to the set of ARBs (P).
(b) Affinity Maturation: Mutate each ARB descendant of the highest affin-
ity mc. Place each mutated ARB into P.

50 K. Polat, R. Şekerci, and S. Güneş

(c) Metadynamics of ARBs: Process each ARB using the resource alloca-
tion mechanism. This process will result in some ARB death, and ulti-
mately controls the population. Calculate the average stimulation for each
ARB, and check for termination condition.
(d) Clonal Expansion and Affinity Maturation: Clone and mutate the ran-
domly selected subset of the ARBs left in P based on their stimulation level.
(e) Cycle: While the average stimulation value of each ARB class group is
less than a given stimulation threshold go to step 2.c.
(f) Metadynamics of Memory Cells: Select the highest affinity ARB of the
same class as the antigen from the last antigenic interaction. If the affinity
of this ARB with the antigenic pattern is better than that of the previously
identified best memory cell mc then add the candidate (mc-candidate) to
memory set M. If the affinity of mc and mc-candidate are below the affin-
ity threshold, remove mc from M.

3. Classify: Classify data items using the memory set M. Classification is per-
formed in a k-Nearest Neighbor fashion with a vote being made among the k clos-
est memory cells to the given data item being classified.

These steps are repeated for each training antigen. After training, test data are pre-
sented only to memory cells. k-NN algorithm is used to determine the classes in test
phase. For more detailed information about AIRS, the reader is referred to [11], [12].

4 The Empirical Results

In this section, we used the performance evaluation methods including classification
accuracy, sensitivity and specifity analysis, and ROC curves to evaluate the proposed
method.

4.1 Results and Discussion

In this paper, we described a new classifier ensemble based on combining ICA and
AIRS classifier for diagnosing the cardiac disorders from SPECT images dataset. The
proposed classifier ensemble consists of two parts. In the first stage, the dimension of
SPECT images dataset that has 22 binary features was reduced to 3, 4, and 5 features
using FastICA algorithm and three different feature subsets were obtained. Secondly,
the obtained feature subsets were classified by AIRS classifier and then the outputs
obtained from AIRS classifier were stored into the result matrix. The exact result that
denote whether subject has cardiac disorder or not was obtained by averaging the
outputs obtained from AIRS classifier into the result matrix. While only AIRS classi-
fier obtained 84.96% classification accuracy with 50-50% train-test split for diagnosing
the cardiac disorder from SPECT images, classifier ensemble based on AIRS and ICA
fusion obtained 97.74% classification accuracy on the same conditions.

The obtained classification accuracies, number of features, and sensitivity and speci-
fity values of AIRS classifier, combining ICA (3 features) and AIRS, combining ICA
(4 features) and AIRS, combining ICA (5 features) and AIRS, and proposed method
based on averaging of outputs obtained from AIRS classifier are shown in Table 1.

 Artificial Immune Recognition System Based Classifier Ensemble 51

In classification task, we also used ROC curves to compare used methods. ROC
curves for AIRS classifier, combining ICA (3 features) and AIRS, combining ICA (4
features) and AIRS, combining ICA (5 features) and AIRS, and proposed method
based on averaging of outputs obtained from AIRS classifier for SPECT images data-
set are shown in Figure 2. The bigger area means that we have better classifier than
the other one, which has smaller area. This curve figure has shown that ROC curve of
proposed method is bigger than those of AIRS and the other methods.

We compared our results with previously reported methods. Table 2 gives the
classification accuracies of AIRS classifier, combining ICA (3 features) and AIRS,
combining ICA (4 features) and AIRS, combining ICA (5 features) and AIRS,

Table 1. The obtained classification accuracies, sensitivity and specifity values for AIRS, and
combining ICA and AIRS, and proposed method with 50-50% train-test split

Method Used Number of
Features

Classification
Accuracy (%)

Sensitivity
(%)

Specificity
(%)

AIRS 22 84.96 88.39 66.67
ICA + AIRS 3 95.49 96.29 92.00
ICA + AIRS 4 96.99 99.03 89.65
ICA + AIRS 5 89.47 95.09 70.96
Averaging of
outputs obtained
from AIRS
classifier

- 97.74 99.04 92.85

Table 2. Proposed method’s classification accuracy for diagnosing the cardiac disorders
from SPECT images dataset with classification accuracies obtained by other methods in
literature

Author Method Classification
Accuracy (%)

Lukasz et al. (2001)
[3]

CLIP3 84.00

Kurgan et al. (2002)
[5]

CLIP4 86.10

Kurgan et al. (2002)
[5]

CLIP4
Ensemble

90.40

Ümit et al. (2004) [4] RBF 88.24
Ümit et al. (2004) [4] GRNN 93.58
Our Study (2007) AIRS 84.96
Our Study (2007) ICA + AIRS 95.49
Our Study (2007) ICA + AIRS 96.99
Our Study (2007) ICA + AIRS 89.47
Our Study (2007) Averaging of

outputs
obtained from
AIRS
classifier

97.74

52 K. Polat, R. Şekerci, and S. Güneş

proposed method based on averaging of outputs obtained from AIRS classifier, and
previous methods for diagnosing the cardiac disorders from SPECT images dataset.

The accuracy of AIRS classifier utilizing the reduced feature subsets was higher
than those exploiting all the original features. These results show that the proposed
ensemble method is very promising in diagnosis of the cardiac disorder from SPECT
images. As can be seen from Table 2, the proposed method obtained the highest clas-
sification accuracy among earlier methods and other methods used in this study.

Fig. 2. The ROC curves of AIRS classifier, combining ICA (3 features) and AIRS, combining
ICA (4 features) and AIRS, combining ICA (5 features) and AIRS, and proposed method based
on averaging of outputs obtained from AIRS classifier with 50-50% train-test split for SPECT
images dataset

5 Conclusions and Future Work

In pattern recognition applications, multiple classifier systems including medical
decision support systems, classification, clustering, and image recognition are used. In
this paper, a new classifier fusion based on combining artificial immune recognition
system and independent component analysis for detecting the cardiac disorders from
SPECT image dataset, which is a common disease among public. The results strongly
suggest that the proposed classifier ensemble approach can aid in the diagnosis of
cardiac disorders. It is hoped that more interesting results will follow on further ex-
ploration of data.

 Artificial Immune Recognition System Based Classifier Ensemble 53

Acknowledgments. This study has been supported by Scientific Research Project of
Selcuk University.

References

1. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combina-
tion of neural classifiers: A comparative study. Pattern Recognition Lett. 20, 429–444
(1999)

2. Bacauskiene, M., Verikas, A.: Selecting salient features for classification based on neural
network committees. Pattern Recognition Letters 25(16), 1879–1891 (2004)

3. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Doodenday, L.S.: Knowledge dis-
covery approach to automated cardiac SPECT diagnosis. Artifical Intelligence in Medicine
149–169 (2001)

4. Bakırcı, Ü., Yıldırım, T.: Diagnosis of Cardiac Problems From SPECT Images by Feed-
forward Networks, SİU 2004. In: IEEE 12. Sinyal İşleme ve İletişim Uygulamaları Kurul-
tayı, pp. 103–105. Kuşadası (2004)

5. Kurgan, L., Cios, K.J.: Ensemble of Classifiers to Improve Accuracy of the CLIP4 Ma-
chine Learning Algorithm. In: Accepted for the SPIE’s International Symposium on Sen-
sor Fusion: Architectures, Algorithms, and Applications VI (2002)

6. UCI Machine Learning Repository, last arrived (February 2007), http://
www.ics.uci.edu/~mlearn/MLRepository.html

7. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis.
Neural Computation 9, 1483–1492 (1997)

8. Karhunen, J., Oja, E., Wang, L., Vigário, R., Joutsensalo, J.: A class of neural networks for
independent component analysis. IEEE Trans. Neural Networks 8(3), 486–504 (1997)

9. Hyvärinen, A., Särelä, J., Vigário, R.: Spikes and bumps: Artefacts generated by independ-
ent component analysis with insufficient sample size. In: presented at the Int. Workshop on
Independent Component Analysis and Blind Separation of Signals (ICA’99), Aussois,
France (1999)

10. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and
blind deconvolution. Neural Computation 7, 1129–1159 (1995)

11. Watkins, A.B.: Exploiting Immunological Metaphors in the Development of Serial, Paral-
lel, and Distributed Learning Algorithms. PhD dissertation, University of Kent, Canterbury
(March 2005)

12. Polat, K., Güneş, S., Tosun, S.: Diagnosis of heart disease using artificial immune recogni-
tion system and fuzzy weighted pre-processing. Pattern Recognition 39(11), 2186–2193
(2006)

A Multisource Context-Dependent Semantic

Distance Between Concepts

Ahmad El Sayed, Hakim Hacid, and Djamel Zighed

University of Lyon 2
ERIC Laboratory- 5, avenue Pierre Mendès-France

69676 Bron cedex - France
{asayed, hhacid, dzighed}@eric.univ-lyon2.fr

Abstract. A major lack in the existing semantic similarity methods is
that no one takes into account the context or the considered domain.
However, two concepts similar in one context may appear completely
unrelated in another context. In this paper, our first-level approach is
context-dependent. We present a new method that computes semantic
similarity in taxonomies by considering the context pattern of the text
corpus. In addition, since taxonomies and corpora are interesting re-
sources and each one has its strengths and weaknesses, we propose to
combine similarity methods in our second-level multi-source approach.
The performed experiments showed that our approach outperforms all
the existing approaches.

1 Introduction

Comparing two objects relevantly is still one of the biggest challenges and it now
concerns a wide variety of areas in computer science, artificial intelligence and
cognitive science. The end-goal is that our computational models achieve a cer-
tain degree of ”intelligence” that makes them comparable to human’s intentions
over objects. That’s obviously a hard task especially that two objects sharing any
attribute(s) in common may be related by some abstract ’human-made’ relation.

Beyond managing synonymy and polysemy, many applications need to mea-
sure the degree of semantic similarity between two words/concepts1; let’s men-
tion: Information retrieval, question answering, automatic text summarization
and translation, etc. A major lack in existing semantic similarity methods is
that no one takes into account the context or the considered domain. However,
two concepts similar in one context may appear completely unrelated in another
context. A simple example for that: While blood and heart seem to be very
similar in a general context, they represent two widely separated concepts in a
domain-specific context like medicine.

1 In the following, ’words’ is used when dealing with text corpora and ’concepts’ is
used when dealing with taxonomies where each concept contains a list of words
holding certain sense.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 54–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Multisource Context-Dependent Semantic Distance Between Concepts 55

Thus, our first-level approach is context-dependent. We present a new method
that computes semantic similarity in taxonomies by considering the context pat-
tern of the text corpus. In fact, taxonomies and corpora are interesting resources
to exploit. We believe that each one has its strength and weakness, but using
them both simultaneously can provide semantic similarities with multiple views
on words from different angles. We propose to combine both methods in our
second-level multisource approach to improve the expected performances.

The rest of this paper is organized as follows: Section 2 introduces quickly
some semantic similarity measures. Our contribution dealing with a context-
dependent similarity measure is described in Section 3. Section 4 presents the
experiments made to evaluate and validate the proposed approach. We conclude
and give some future works in Section 5.

2 Semantic Similarity in Text

2.1 Knowledge-Based Measures

In this work, we focus on taxonomies since we don’t need a higher level of com-
plexity. A number of successful projects in computational linguistic have led to
the development of some widely used taxonomies like Wordnet[13] (generic tax-
onomy) and Mesh2 (for the medical domain). Many taxonomy-based measures
for semantic similarity have made their appearance; they can be grouped into
edge-based measures and node-based measures.

– Edge-based Measures. First, calculating similarities simply relied on
counting the number of edges separating two nodes by an ’is-a’ relation
[15]. Since specific concepts may appear more similar than abstract ones,
the depth was taken into account by calculating either the maximum depth
in the taxonomy [10] or the depth of the most specific concept subsuming
the two compared concepts [19]. Hirst [8] considers that two concepts are
semantically similar if they are connected by a path that is not too long and
that does not change direction too often.

– Node-based Measures. This approach came to overcome the unreliability
of edge distances and based its similarities on the information associated with
each node. This information can be either a node description (Feature based
measures) or a numerical value augmented from a text corpus (Information
content measures).

Feature based measures. In this category, we can cite the measure of Tversky
[18] which assumes that the more common characteristics two objects have and
the less non common characteristics they have, the more similar the objects are:

sim(c1, c2) =
|C1
⋂

C2|
|C1
⋂

C2|+ k |C1/C2|+ (k − 1) |C2/C1| (1)

2 http://www.nlm.nih.gov/mesh/

56 A. El Sayed, H. Hacid, and D. Zighed

Information Content measures. The Information content (IC) approach
was first proposed by Resnik[16]. It considers that the similarity between two
concepts is ”the extent to which they share information in common”. Therefore,
an IC value, based on a concept frequency in a text corpus, is assigned to each
node in the taxonomy. IC represents the amount of information that a concept
holds. After assigning IC values for each concept, Resnik defines the similarity
between two concepts as the IC value of their Most Informative Subsumer (MIS).

Jiang[9] proposed next a model derived from the edge-based notion by adding
the information content as a decision factor. Jiang assigns a link strength (LS)
for each ”is-a” link in the taxonomy which is simply the difference between the
IC values of two nodes. Jiang has reached a success rate of 84.4% which led
it to outperform all the other taxonomy-based measures. A similar measure to
Jiang was proposed by Lin[11] which doesn’t only consider the IC of the most
informative subsumer but the IC of the compared concepts too.

2.2 Corpus-Based Measures

Semantic similarity measures can also be derived by applying statistical analysis
on large corpora and by using Natural language Processing (NLP) techniques.
The advantage is that corpus driven measures are self-independent; they don’t
need any external knowledge resources, which can overcome the coverage prob-
lem in taxonomies. Three main directions have been pursued in this category of
approaches:

– Co-occurrence-Based Similarity. This approach study the words co-
occurrence or closeness in texts with the assumption that frequent words
pairs reveal the existence of some dependence between these words. The first
measure was introduced to computational linguistics by Church [4] as the
Mutual Information (MI). Among the works we can quote here are those of
Turney [17] who showed that Pointwise Mutual Information (PMI) computed
on a very large corpus (the web) and using a medium-sized co-occurrence
window can be efficiently used to find synonyms. Turney applied the PMI
method to TOEFL synonym match problem and obtained an impressive suc-
cess rate of 72.5% which exceeds by 8% the average foreign student making
the test.

– Context-based Similarity. This approach is based on the intuition that
similar words will tend to occur in similar contexts [3]. Vector-space model
is used here as a semantic measuring device. Hindle’s approach [7] considers
lexical relationship between a verb and the head nouns of its subject and ob-
ject. Nouns are then grouped according to the extent to which they appear
in similar environments. Dagan [5] propose the L1 norm measure to over-
come the zero-frequency problems of bigrams. Turney [17] also proposed an
extension of PMI which is an application of PMI on multiple words contexts.

– Latent Semantic Analysis (LSA). LSA introduced by [6] came to over-
come the high-dimensionality problem of the standard vector space model

A Multisource Context-Dependent Semantic Distance Between Concepts 57

especially for the context-based methods. First text is represented as a ma-
trix rows stand for words and columns stands for contexts and each cell con-
tains some specified weight (frequency for instance). Next, Singular Value
Decomposition (SVD) is applied to the matrix in order to analyze the sta-
tistical relationships among words in a collection of text. In SVD, a rect-
angular matrix is decomposed into the product of three other matrices and
then recomposed to a single compressed bidimensional matrix. Finally, LSA
similarity is computed in a lower dimensional space, in which second-order
relations among terms and texts are exploited. The similarity of two words is
measured by the cosine of the angle between their corresponding compressed
row vectors.

3 A Context-Dependent Similarity Measure

Context definition varies from one research area to another. Considering context
is motivated by the fact that it can bring additional information to the reason-
ing process. Similarity judgments are made with respect to representations of
entities, not with respect to entities themselves [12]. Thus, having a changeable
representation, one can make any two items similar according to some criteria.
To prevent this, a context may be used in order to focus the similarity assess-
ment on certain features of the representation excluding irrelevant information.
Barsalou[2] presents a nice example supporting the context-dependency and ex-
plaining the instability of similarity judgments.

In text, comparing two concepts doesn’t make any sense if we ignore the actual
context. Let’s take the example of heart and blood. In a general context, these
two concepts can be judged to be very similar. However, if we put ourselves in a
medical context, heart and blood define two largely separated concepts. They will
be even more distant if the context is more specifically related to cardiology. Our
context-dependent approach suggest to adapt semantic similarities to the target
corpus since it’s the entity representing the context or the domain of interest in
most text-based applications. This method is inspired by the information content
theory [16] and by the Jiang[9] measure described above.

3.1 Problems with Information Content Measures

As we stated before, IC measures are mainly based on the concept frequency
in a text corpus. According to the measure’s purpose, we can show two main
limitations for that approach:

– On concept informativeness. We believe that it’s inaccurate to consider in-
frequent concepts as more informative than frequent ones. We argue that
concept frequency is not a good decisive factor for concept informativeness.
We follow Nuno’s point of view [1] assuming that the taxonomic structure in
WordNet is organized in an enough meaningful way to measure IC. We can
simply say that the more hypernyms a concept has the more information

58 A. El Sayed, H. Hacid, and D. Zighed

it expresses. Nuno have shown that at least similar results can be obtained
without using a text corpus.

– On context-dependency. If the motivation behind measuring the IC from a
text corpus is to consider the actual context, we argue that the probability
of encountering a concept in a corpus is not a sufficiently adaptive measure
to determine whether it’s representative for a given context. Thus, IC cannot
meaningfully reflect the target context.

3.2 A New Context-Dependency Based Measure

Our approach tends to compute semantic similarities by taking into account the
target context from a given text corpus. In order to represent the context, we
assign weights for taxonomy’s concepts according to their Context-Dependency
CD to a corpus C. The goal is to obtain a weighted taxonomy, where ’heavier’
subtrees are more context representative than ’lighter’ subtrees. This will allow
us to calculate semantic similarities by considering the actual context. Therefore,
lower similarity values will be obtained in ’heavy’ subtrees than ’light’ subtrees.
Thus, in our heart/blood example, we tend to give a high similarity for the
concept couple in a general context, and a low similarity in a specific context
like medicine.

As we said earlier, it’s clear that a concept’s frequency alone is not enough to
determine its context-dependency. A concept very frequent in some few docu-
ments and absent in many others cannot be considered to be ”well” representa-
tive for the corpus. Thus, the number of documents where the concept occurs is
another important factor that must be considered. In addition to that, it’s most
likely that a concept c1 -with a heterogeneous distribution among documents -
is more discriminative than a concept c2 with a monotone repartition which can
reveal less power of discrimination over the target domain (Experimentations
made assess our thesis).

Consequently, we introduce our CD measure which is an adapted version
of the standard tf − idf . Given a concept c , CD(c) is a function of its total
frequency freq(c), the number of documents containing it d(c), and the variance
of its frequency distribution var(c) over a corpus C :

CD(c) =
log(1 + freq(c))

log(N)
∗ log(1 + d(c))

log(D)
∗ (1 + log(1 + var(c))) (2)

Where N denotes the total number of concepts in C and D is the total number
of documents in C. The log likelihood seems adaptive to such purpose since it
helps to reduce the big margins between values. This formula ensures that if a
concept frequency is 0, its CD will equals 0 too. It ensures also that if c have an
instance in C, its CD will never be 0 even if var(c) = 0.

Note that the CD of a concept c is the sum of its individual CD value with
the CD of all its subconcepts in the taxonomy. The weights propagation from
the bottom to the top of the hierarchy is a natural way to ensure that a parent
even with a low individual CD will be considered as highly context-dependent
if its children are well represented in the corpus(see Figure 1).

A Multisource Context-Dependent Semantic Distance Between Concepts 59

Fig. 1. A taxonomy extract showing
CD values assigned in the context cont1

Fig. 2. A taxonomy extract showing
CD values assigned in the context cont2

To compare two concepts using the CD values, we assign a Link Strength
(LS) to each ’is-a’ link in the taxonomy. Assume that c1 subsumes c2, the LS
between c1 and c2 is then calculated as follows:

LS(c1, c2) = CD(c1)− CD(c2)

Then the semantic distance3 is calculated by summing the log likelihood of
LS along the shortest path separating the two concepts in the taxonomy.

Dist(c1, c2) =
∑

c∈SPath(c1,c2)

log(1 + LS(c, parent(c)))

Where SPath denotes the shortest path between c1 and c2.
Let us illustrate the method with an example. Consider the taxonomy extract

shown in figure 1. The related context ctx1 taken from a corpus C1 is represented
by the subtree where CD values are greater than 0. In ctx1, we notice that the
corpus is likely general (talking about persons, professionals, carnivores,etc.).
The obtained semantic distance between Cat and Dog in ctx1 is 2,2 while it’s
4,5 in ctx2 illustrated in figure 2 where it seems to be more specialized in the
animal domain. This states that Cat and Dog are closer in ctx1 than in ctx2
which respect human intuitions given the two different contexts.

3.3 A Corpus-Based Combination Measure

The promising rates attained by the corpus-based word similarities techniques
and especially for the co-occurence-based ones has pushed us to combine them
with our context-dependent measure in order to reach the best possible rates.
However, two similar words can appear in the same document, paragraph, sen-
tence, or a fixed-size window. It’s true that smaller window size can help identi-
fying relations that hold over short ranges with good precisions, larger window
3 Our measure deals with distance which is the inverse of similarity.

60 A. El Sayed, H. Hacid, and D. Zighed

size, yet too coarse-grained, allows to detect large-scale relations that could not
been detected with smaller windows.

Consequently, we’ve choose to combine both techniques in order to view re-
lations at different-scales. At the low scale, we use the PMI measure described
above with a window size of 10 words (Table 1 Cooc). At the large scale, we
calculate the Euclidian distance between words vectors where each word is rep-
resented by its tf.idf values over the documents (Table 1 Vecto).

4 Evaluation and Results

4.1 The Benchmark

In this study, Wordnet is used along with a corpus of 30,000 web pages in order
to evaluate the proposed approach. The web pages are crawled from a set of
news web sites (reuters.com, cnn.com, nytimes.com...).

The most intuitive way to evaluate a semantic similarity/distance is to com-
pare machine ratings and human ratings on a same data set. A very common set
of 30 word pairs is given by Miller and Charles [14]. M&C asked 38 undergrad-
uate students to rate each pair on a scale from 0 (no similarity) to 4 (perfect
synonymy). The average rating of each pair represents a good estimate on how
similar the two words are. The correlation between individual ratings of human
replication was 0.90 which led many researchers to take 0.90 as the upper bound
ratio. For our evaluations, we’ve chosen the M&C subset of 28 words pairs which
is the most commonly used subset for that purpose. Note that since our measure
calculates distance, the M&C distance will be: dist = 4− sim where 4 represent
the maximum degree of similarity.

4.2 Results

When comparing our distance results with the M&C human ratings, the context-
dependency CD method gave a correlation of 0.83 which seems to be a very
promising rate (See Table 1).In view of further improvements, we evaluated
multiple combination strategies.

First, at the taxonomy level, we combine our CD measure with the feature-
based measure (Feat) proposed by Tversky (equation 1:

– T1: Dist = CD.Feat ⇒ Correlation = 0.83
– T2: Dist = Feat.

√
CD ⇒ Correlation = 0.867

Second, at the corpus level, we combine the vectorial (Vecto) with the PMI
measure (Cooc):

– C1: Dist = V ecto.Cooc ⇒ Correlation = 0.649
– C2: Dist = α.vecto + β.coocc(α = 0.3, β = 0.7) ⇒ Correlation = 0.564

Finally, at the overall level, we combine the taxonomy-based measures with
the corpus-based measures:

A Multisource Context-Dependent Semantic Distance Between Concepts 61

– A1: Dist = T 1.Cooc ⇒ Correlation = 0.810
– A2: Dist = T 2.Cooc ⇒ Correlation = 0.833
– A3: Dist = (1 + log(1 + CD)).(1 + log(1 + Cooc)) ⇒ Correlation = 0.884
– A4: Dist = (1 + log(1 + T 1)).(1 + log(1 + Cooc)) ⇒ Correlation = 0.890

Our method shows an interesting result whether on an individual level (CD) or
on a combination level (T1-A4). We can notice that by using multiple resources
(taxonomy and corpus) we could reached a correlation rate of 0.89 (Table 1 -
A4) which is not too far from human correlations of 0.905. The obtained rate
led our approach to outperform the existing approaches for semantic similarity
(see Table 2).

Table 1. Similarity Results from the different strategies and their correlation to M&C
Means

Word Pair M&C CD Feat Vecto Cooc T1 T2 C1 C2 A1 A2 A3 A4
car-automobile 0,08 1 0,52 2,801 0,332 0,52 0,52 0,93 1,073 0,173 0,173 2,178 1,826

gem-jewel 0,16 1 0,768 2,762 0,398 0,768 0,768 1,099 1,107 0,306 0,306 2,26 2,096

journey-voyage 0,16 3,783 0,847 2,765 0,439 3,203 1,647 1,214 1,137 1,407 0,723 3,499 3,323

boy-lad 0,24 1,635 0,81 2,77 0,389 1,325 1,036 1,078 1,103 0,515 0,403 2,616 2,449

coast-shore 0,3 1,426 0,862 2,762 0,416 1,229 1,03 1,149 1,12 0,512 0,429 2,543 2,429

magician-wizard 0,5 1 0,768 2,779 0,571 0,768 0,768 1,587 1,233 0,438 0,438 2,458 2,279

midday-noon 0,58 1 0,554 2,748 0,559 0,554 0,554 1,536 1,216 0,309 0,309 2,445 2,08

furnace-stove 0,89 14,182 0,886 2,79 0,355 14,182 3,766 0,99 1,086 5,028 1,335 4,849 4,849

food-fruit 0,92 8,489 1 2,793 0,324 8,489 2,914 0,905 1,065 2,751 0,944 4,163 4,163

bird-cock 0,95 3,606 0,858 2,79 0,513 3,094 1,629 1,431 1,196 1,587 0,836 3,574 3,407

bird-crane 1,03 4,286 0,86 2,79 0,499 3,687 1,781 1,392 1,186 1,839 0,889 3,744 3,575

tool-implement 1,05 2,01 0,85 2,768 0,392 1,708 1,205 1,085 1,105 0,67 0,472 2,797 2,657

brother-monk 1,18 1,473 0,905 2,765 0,506 1,333 1,098 1,399 1,184 0,674 0,555 2,685 2,603

crane-implement 2,32 8,982 1 2,754 1 8,982 2,997 2,754 1,526 8,982 2,997 5,589 5,589

lad-brother 2,34 12,745 0,842 2,762 0,398 12,643 3,262 1,099 1,107 5,028 1,297 4,833 4,823

journey-car 2,84 25,653 1 2,804 0,41 25,653 5,065 1,15 1,128 10,508 2,075 5,753 5,753

monk-oracle 2,9 13,64 1 2,776 0,49 13,64 3,693 1,36 1,176 6,683 1,81 5,153 5,153

food-rooster 3,11 13,53 1 2,798 0,597 13,53 3,678 1,67 1,257 8,077 2,196 5,397 5,397

coast-hill 3,13 7,24 1 2,762 0,422 7,24 2,691 1,166 1,124 3,054 1,135 4,203 4,203

forest-graveyard 3,16 21,004 0,902 2,77 1 18,939 4,133 2,77 1,531 18,939 4,133 6,927 6,76

shore-woodland 3,37 15,095 0,903 2,762 0,464 13,635 3,509 1,282 1,153 6,328 1,629 5,219 5,088

monk-slave 3,45 11,302 1 2,773 1 11,302 3,362 2,773 1,532 11,302 3,362 5,942 5,942

coast-forest 3,58 14,736 0,898 2,765 0,408 13,235 3,448 1,128 1,115 5,404 1,408 5,042 4,907

lad-wizard 3,58 11,853 1 2,765 1 11,853 3,443 2,765 1,53 11,853 3,443 6,017 6,017

chord-smile 3,87 15,701 1 2,762 1 15,701 3,963 2,762 1,529 15,701 3,963 6,46 6,46

glass-magician 3,89 17,276 1 2,784 1 17,276 4,156 2,784 1,535 17,276 4,156 6,613 6,613

noon-string 3,92 16,53 1 2,759 0,573 16,53 4,066 1,581 1,229 9,47 2,329 5,614 5,614

rooster-voyage 3,92 24,853 1 2,762 1 24,853 4,985 2,762 1,529 24,853 4,985 7,2 7,2

Correlation 0,905 0.830 0.619 0.256 0.649 0.830 0,867 0.649 0.564 0.81 0.833 0.884 0.890

Our method shows an interesting result whether on an individual or on a
combination scale. A part of its interesting correlation coefficient of 0.83, our CD
method has the advantage to be context-dependent, which means that our results
vary from one context to another. We argue that our measure could perform
better if we ”place” human subjects in our corpus context. In other terms, our
actual semantic distance values reflect a specific context that doesn’t necessarily
match with the context of the human subjects during the R&C experiments.

62 A. El Sayed, H. Hacid, and D. Zighed

Table 2. Comparison between the principal measures and our two-level measure

Similarity method Type Correlation with M&C
Human replication Human 0,901

Rada Edge-based 0,59

Hirst and St-Onge Edge-based 0,744

Leacock and Chodorow Edge-based 0,816

Resnik Information Content 0,774

Jiang Information Content 0,848

Lin Information Content 0,821

CD Context-Dependent 0,830

our multisource measure Hybrid 0,890

5 Conclusion and Future Work

We have shown the importance of considering the context when calculating
semantic similarities between words/concepts. We’ve proposed a Context-
Dependent method that takes the taxonomy as a principal knowledge resource,
and a text corpus as a similarity adaptation resource for the target context.
We’ve proposed also to combine it with other taxonomy-based and corpus-based
methods. The results obtained from the experiments show the effectiveness of
our approach which led it to outperform the other approaches. A much better
way to evaluate the method and compare it with others is to perform context-
driven human ratings, where human subjects will be asked to rank a same set
of words pairs in different contexts. The machine correlation computed next ac-
cording to each context will be able to show more significantly the added-value
of our approach.

References

1. And, N.S.: An intrinsic information content metric for semantic similarity in word-
net

2. Barsalou, L.: Intraconcept similarity and its application for interconcept similarity.
Cambridge University Press, Cambridge (1989)

3. Christopher, H.S.: MANNING. Foundations of statistical natural language pro-
cessing (1999)

4. Church, K.W., Hanks, P.: Word association norms, mutual information, and lex-
icography. In: Proceedings of the 27th. Annual Meeting of the Association for
Computational Linguistics, Vancouver, pp. 76–83. Association for Computational
Linguistics (1989)

5. Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence
probabilities. Machine Learning 34(1-3), 43–69 (1999)

6. Furnas, G.W., Deerwester, S.C., Dumais, S.T., Landauer, T.K., Harshman, R.A.,
Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value de-
composition model of latent semantic structure. In: Chiaramella, Y. (ed.) SIGIR,
pp. 465–480. ACM Press, New York (1988)

A Multisource Context-Dependent Semantic Distance Between Concepts 63

7. Hindle, D.: Noun classification from predicate-argument structures. In: Meeting of
the Association for Computational Linguistics, pp. 268–275 (1990)

8. Hirst, G., St-Onge, D.: Lexical chains as representation of context for the detection
and correction malapropisms (1997)

9. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy (1997)

10. Leacock, C., Chodorow, M., Miller, G.A.: Using corpus statistics and wordnet
relations for sense identification. Computational Linguistics 24(1), 147–165 (1998)

11. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th Interna-
tional Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco
(1998)

12. Medin, D.: Psychological essentialism. Cambridge University Press, Cambridge
(1989)

13. Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

14. Miller, G.A., Charles, W.: Contextual correlated of semantic similarity. Language
and Cognitive Processes 6, 1–28 (1991)

15. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of
a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernet-
ics 19(1), 17–30 (1989)

16. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambiguity in natural language. J. Artif. Intell. Res.
(JAIR) 11, 95–130 (1999)

17. Turney, P.D.: Mining the Web for synonyms: PMI–IR versus LSA on TOEFL. In:
Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 491.
Springer, Heidelberg (2001)

18. Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)
19. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd. Annual Meeting

of the Association for Computational Linguistics, New Mexico State University, Las
Cruces, New Mexico, pp. 133–138 (1994)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, p. 64, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Self-healing Information Systems

Barbara Pernici

Department of Electronics and Information, Politecnico di Milano
I-20133 Milano, Italy

barbara.pernici@polimi.it

Abstract. Information systems in highly dynamic collaborative environments
are based on the composition of services and processes from different
organizations and systems. In most cases, such an environment is not under the
control of a single organization and therefore requires a particular attention to
its management to ensure correct functionalities. Different types of faults can
occur in the system, both at the functional level and in terms of reduced quality
of service. Such faults may cause failures in one or more participating
processes, which are hindering the correct completion of business processes
towards their required goals. In the presentation, the management of
cooperating processes will be discusses, following the approach being proposed
within the WS-DIAMOND European project: management of failures is driven
by the diagnosis of causes that are leading to the failures, and repair actions are
performed on processes and services coordinating repair actions on services.
Such an approach allows an autonomic behavior of information systems,
reducing the need of design efforts to anticipate possible combinations of
predicted exceptions. Business process management is based on the SH-BPEL
(Self-healing Business Process Language) approach proposed at Politecnico di
Milano to manage and repair business processes in a flexible service-oriented
framework.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 65–74, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Faceted Taxonomy of Semantic Integrity Constraints
for the XML Data Model*

Khaue Rezende Rodrigues and Ronaldo dos Santos Mello

Universidade Federal de Santa Catarina,
Departamento de Informática e Estatística, Caixa Postal 476,

Florianópolis, SC, Brazil 88040-900
{khaue,ronaldo}@inf.ufsc.br

Abstract. Some work in the literature deal with Semantic Integrity Constraints
(SIC) for XML and propose taxonomies of SIC for the XML data model.
However, these taxonomies are incomplete and do not mention a basis for the
classification. We propose a faceted taxonomy of SIC for XML data model that
tries to fulfill these limitations. Our proposal is based on previous related
taxonomies for the relational and XML data models, providing a classification
that can give support to expressiveness analysis of SIC specification languages
for XML data, as well as XML database management systems integrity control.
We demonstrate, through examples, that our taxonomy is more comprehensive
than other related taxonomies available in the literature.

Keywords: XML, data integrity, integrity constraint taxonomy.

1 Introduction

XML is a W3C recommendation widely used for semistructured data representation
and interchange [1]. Such increasing manipulation of XML data has originated large
XML repositories. Because of this, some information systems like Semantic Data
Integration Systems (SDIS) (several related work are presented in [19]) and Database
Management System (DBMS) [7, 20, 27, 28] are directing their efforts to deal with
the XML format. However, XML data management has some open issues or issues
under work, like integrity maintenance [12]. In fact, integrity specification is a
required feature of a data model [24]. Its support is relevant to several actual research
areas, like XML DBMS data consistency and query processing in XML-based SDIS.

On the other hand, integrity maintenance has been widely researched in the context
of structured data models, like relational and object-oriented models. For Relational
Database Management Systems (RDBMS), for example, we have a theory and
standards for integrity constraint specification and control, available even in the
classical and early database literature [8, 10, 21, 22, 24, 29]. Although XML data be
more complex than structured data, mainly because schemas for XML are very

* This work is partially supported by the DIGITEX Project of CNPq Foundation. CTInfo

Process Nr.: 550.845/2005-4.

66 K. Rezende Rodrigues and R. dos Santos Mello

irregular, in fact, XML and relational data models have many similar points, like data
type binding and cardinality constraints for relationships. Hence, the main advantage
of a relational-based approach for XML data integrity constraint management is the
use of a consolidated theoretical foundation. Work like [11, 12, 17, 18, 25, 28] has
demonstrated this research tendency through comparatives between these data models
and/or adaptations of relational constraint management to XML data.

For integrity maintenance, we mean the guarantee of consistency states and state
transitions for data sets. In order to provide such maintenance, we need to specify
rules, or rather, Integrity Constraints (IC) [21, 24]. We may distinguish two not
mutually exclusive forms of IC: syntactic and semantic IC. The syntactic IC regards
to the consistency guarantee about the structural specification, and semantic IC
regards to the real intention of data. Given its major importance, we focus, in this
paper, on the treatment of Semantic IC (SIC) for XML data.

XML Schema [2] may be considered the main (W3C) recommendation for
syntactic and even semantic specification of XML data. However, its support for SIC
specification is limited [4, 11, 13, 15, 18]. Other important W3C initiatives are RDF
(Resource Description Framework) [3] and OWL (Ontology Web Language) [3]
schema languages, as well as SWRL (Semantic Web Rule Language) [5] rule
language. Meanwhile, these proposals focus on knowledge representation and not SIC
for XML instances, being therefore, out of the scope of this paper.

Several open issues or issues under work may be distinguished in the context of
SIC for XML: (i) a standard language for SIC specification (there are many proposals
[6, 9, 13, 15, 18], but there is no an agreement); (ii) a suitable taxonomy of SIC for
XML, that can give support to the expression power evaluation of SIC specification
languages [11, 13, 15, 17, 18]; (iii) decidability and satisfiability problems [11, 14];
and (iv) the use of SIC for query translation and decomposition [25]. This paper focus
on item (ii), motivated by the fact that the proposals in the literature are not suitable as
a basis for an expressivity evaluation of SIC definition languages for the XML data
model or XML DBMS integrity control (IC) modules because they are very
heterogeneous, do not present a foundation to justify their categories, or are
incomplete. Some of them analyze SIC over few points of view or properties, and
classify them on hierarchical categories (enumerated classification [23]).

Therefore, we propose a well-founded, flexible and comprehensive SIC taxonomy
for the XML data model that intends to overcome such limitations. We consider it
flexible because it is specified as a less restricted and extensible classification form,
named faceted classification [23]. It is also comprehensive because it is generic
enough to deal with SIC components (described in Section 3) and categories
presented by related work. Furthermore, we argue that it is well-founded because we
base the taxonomy facets and categories in SIC components [21] and existing
taxonomies for the relational [8, 10, 22, 24, 29] and XML data models [4, 11, 13, 14,
15, 17, 18, 26].

This paper is organized as follows. Section two briefly discusses related work in
the context of the relational and XML data models. Section three describes the
proposed SIC taxonomy for XML data model, and compares it against related work.
Finally, section four is dedicated to the conclusion.

 A Faceted Taxonomy of Semantic Integrity Constraints for the XML Data Model 67

2 Related Work

Database classical and early literature presents some proposals of SIC taxonomies for
the relational model [8, 10, 22, 29]. In Santos et. al. [29], it is presented a taxonomy
based on the following aspects: (i) origin, (ii) substance (state transition, intention,
etc); (iii) form of specification; and (iv) application mode. In Date [8], we have a
taxonomy that classifies SIC as follows: (i) domain; (ii) attribute; (iii) tuple; (iv)
database; (v) state transition; (vi) key; (vii) referential integrity; and (viii) check point
(the moment that the IC is verified). In Codd [24], this last category is called integrity
points. In Silberschatz et. al. [22], we have the following classification: (i) domain;
(ii) key; (iii) relationship forms; and (iv) referential integrity. In Elmasri and Navathe
[10], the taxonomy is: (i) domain; (ii) key; (iii) entity; and (iv) referential integrity1.

With regard to XML data model, some work present comparatives among SIC
specification languages, but they analyze ICs through specific and heterogeneous
points of view [13, 15, 16, 18]. Despite of the great number of related initiatives, few
work in the literature provide a taxonomy of SIC for XML data. Some of them
present a so-called complete taxonomy [13, 15, 17, 18] while others present a limited
set of categories in order to delimitate the scope of their work [4, 11, 14, 31, 26].

The work of Buneman et. al. [4] focuses on key constraints, distinguishing two
categories: (i) key – derived from classical data models; and (ii) relative key –
composed by a key and a path expression (regular and XPath expressions). Benedikt
et. al. [26] proposes the following categories: (i) type; (ii) key; and (iii) inclusion –
based on foreign key constraints. In Pavlova et. al. [17], we have: (i) integrity
(semantic consistency of data) – composed by categories like type, path and complex
constraints; and (ii) data validity – where is introduced a group called temporal
validity constraints. Its last category represents a relevant contribution because of the
consideration of temporal aspects in SIC.

In Arenas et. al. [14], the main categories are the following: (i) absolute and
relative IC, distinguishing constraints that require a complete analysis of the XML
document, or only a part of it; and (ii) unary and multi-attribute IC, that categorizes
them according to the number of involved attributes. The main contribution of this
work is to classify IC according to the amount of data that is needed to verify the
constraint. (we call it constraint range).

In Fan and Siméon [11], the main category is called XML basic constraints, with a
focus on constraints related to relationship and unicity, like key, foreign key and
others. A positive point is that they base their categories on structured data models.
However, this proposal is incomplete because it is argued that only a subset of the
SIC universe is considered.

The taxonomy of Jacinto et. al. [15] organizes the SIC in a small group of specific
categories and does not take into consideration aspects like constraint range and the
SIC syntactic structure (we call it constraint form). In fact, a negative point is that a
subset of constraints is grouped in a non-specific category called other constraints.
Therefore, it suffers from the same drawback of the previous work with respect to
comprehensiveness, and does not present a theoretical basis for its categories.

Hu and Tao taxonomy [13] introduces some contributions, considering constraint
form (a category called form of the constraint), as well as the kind of imposed

1 More details about these taxonomies are available in the respective references.

68 K. Rezende Rodrigues and R. dos Santos Mello

limitation (distinguished in dynamic and static constraints). Even so, it does not deal
with constraint range and also does not mention a foundation for its categories.

The proposal of Lazzaretti and Mello [18] is based on the relational model and also
in Date [8]. However, it does not consider constraint range and constraint form.
Analogous to other work [13, 15, 17], its taxonomy is incomplete, being not suitable
for the comparison of expressiveness of SIC specification languages.

3 The Proposed Taxonomy

Our taxonomy of SIC for XML data (Figure 1) aims at being comprehensive and
flexible, fulfilling the limitations of related work (as stated in section 1). The
taxonomy distinguishes several facets of a SIC. The concept of facet, as a component
of a faceted classification2 [23], allows classifying a SIC in different points of view,
with the purpose of providing a basis for expressiveness evaluation. The proposed
facets are based on constraint components and concepts for the relational data model
[21, 24] also discussed in Santos [29]. Hence, the proposed categories that compose
each facet are based on taxonomies and concepts for the relational data model [8, 10,
22, 29] and contributions of related work [4, 11, 13, 14, 15, 17, 18, 26].

1 Constraint value: Considers restrictions to XML data values.
o State. Restricts the value of one or more simple elements and attributes;

Dynamic. Imposes different limitations for similar XML instances;
Static. Imposes the same limitation for similar XML instances.

o State transition. Restricts the value transitions of one or more simple elements and attributes.
Dynamic. Imposes different state transition limitations for similar XML instances;
Static. Imposes the same state transition limitations for similar XML instances;.

2 Constraint range: Considers the amount of nodes in an XML document or an XML repository that
are involved in the SIC specification or being constrained by it.
o Data item. Considers the content of an unique attribute or simple element;
o Tuple. Considers the content of a set of attributes and/or simple elements from a complex element;
o Element. Considers the content of a set of attributes and/or sub-elements of a same complex element;
o Repository. Considers the content of a set of attributes and/or simple elements of distinct complex elements.

3 Constraint form: Considers the used notation for defining the SIC.
o Based on boolean expressions. Evaluates a predicate and return true or false.

Simple. Considers only one element/attribute;
Composed. Considers two or more elements/attributes.

o Based on conditional rules. Considers embedded boolean expressions, being able or not to perform actions on
the XML instances in order to guarantee data integrity.

Simple. Considers only one conditional expression;
Composed. Considers two or more nested conditional expression.

4 Constraint check point
o Immediate. Verifies the constraint in the moment that the operation on XML instances occurs;
o Delayed. Verifies the constraint in some moment after the operation on XML instances occurs.

5 Constraint action: Considers the kind of action performed by the SIC when a violation occurs.
o Informative. Presents an error message and rollbacks the operation;
o Active Executes other operations on XML instances to maintain data integrity.

Fig. 1. Proposed taxonomy of SIC for the XML data model

According to Santos [21], a constraint is composed by five components: (i)
constraining (data objects used in the constraint specification); (ii) constrained (data
objects that are constrained); (iii) restrictive condition (a logic expression to be

2 The faceted classification was proposed by Ranghanathan [23] and argues that the information

may be considered over several aspects or properties called facets.

 A Faceted Taxonomy of Semantic Integrity Constraints for the XML Data Model 69

validated that connects constrained and constraining data objects); (iv) check point
(the moment that the constraint should be checked); and (v) violation actions (the
actions to be performed after the violation of a constraint in order to maintain data
integrity). On matching these components, we may define that data integrity
maintenance related to a constraint is performed through the validation, in a specific
check point, of constrained objects with regard to restrictive conditions that comprise
constraining objects, performing violation actions in case of failure.

A faceted classification coupled to constraint components is a good choice for SIC
because it allows to distinguish IC with relation to the main properties that a system
that deals with SIC have to consider. We organize our SIC taxonomy according to the
following facets: (i) constraint value, meaning the kind of limitation that the SIC is
able to impose on data values – based on the constrained component; (ii) constraint
range, meaning the amount of data in the constraint specification – based on the
constraining and constrained components; (iii) constraint form, meaning the
constraint specification syntax – based on the restrictive condition component; (iv)
constraint check point – based on the check point component, and the integrity points
concept [24]; and (v) constraint action – based on the violation actions component.

The next sections analyze the relevance of each facet and its categories, in order to
raise the contribution of our taxonomy, as well as the limitations of related work. The
XML instance in Figure 2 is used as basis for the examples ahead.

<professor firstName=”John” middleName=”Albert” lastName=”Data” >
 <salary>5000.00</salary>
 <graduated>
 <university>SCFU</university>
 <degree>PhD</degree>
 </graduated>
</professor>

Fig. 2. Example of an XML instance

3.1 Constraint Value

This facet is related to the constraint component named constrained. It is useful to
distinguish SIC that impose restrictions over a data state (state category) from more
complex SIC that impose limitations over valid state transitions of data (state
transition category). We also distinguish between static constraints, that always
impose the same restriction on a same data class, and dynamic constraints, that can
apply different restrictions. These categories are relevant to evaluate how expressive
is a SIC specification language. XML Schema for example, does not represent
dynamic constraints, while XCML (XML Constraint Markup Language) [13] does
(Table 1). Thus, XCML is more expressive than XML Schema with respect to this
facet. In your turn, XML DBMS Tamino [7] is able to define only state constraints,
while XML DBMS eXist [20] and Timber [28] does not have even such support.
Thus, these systems are expressiveless with respect to this facet.

We define the state category based on the domain category presented in proposals
for the relational model [8, 10, 18, 22], as well as related work [11, 15]. The state
transition category is mainly derived from taxonomies for the relational data model
[8, 18, 29], being also discussed in the context of XML by Lazzaretti and Mello [18].

70 K. Rezende Rodrigues and R. dos Santos Mello

In order to compare this facet with related work, consider the following SIC
example: “the salary of a professor cannot be reduced, and must be higher than
50.00 if the professor is graduated”. This SIC depends on a comparison of old and
new values of an element (salary) as well as the existence of the graduated element to
define valid states for salary. This SIC cannot be classified in the taxonomies of Fan
and Siméon [11] and Jacinto et. al. [15] because they do not define categories for
dealing with state transition and dynamic constraints. In Hu and Tao [13], this SIC
may be classified as dynamic constraint in relation to the kind of imposed limitation,
but this category does not deal with state transitions. In Lazzaretti and Mello [18], we
have a category for state transition, but not one for dynamic SIC. In our taxonomy, we
classify this SIC as Dynamic State Transition, capturing its whole intention.

3.2 Constraint Range

This facet is based on the constraint components named constraining and constrained.
It is responsible to distinguish the elements or attributes that compose a constraint
(acting either as constrained or constraining), and its relationship levels (distance
between nodes on an XML hierarchical structure, also named range level in this
paper). This facet is important to an expressiveness evaluation because it helps to
define the kinds of relationship among XML elements or attributes that a SIC
specification language must be able to represent. For the same reason, it is also
important for an XML DBMS when it is necessary to navigate through hierarchical
paths in order to check a constraint. In fact, a SIC specification language can
represent different range levels for each kind of constraint present in other facets.

The constraint range facet considers the different hierarchical levels that can be
checked by a SIC for XML data. Because of this, categories of relational data model
[8, 10] like tuple, database [8] and entity [10], as well as XML related work [11, 14,
15, 18] were taking as basis.

Consider the following SIC: “the name of a professor cannot exceed 30 characters
and must be composed by a degree, firstName, middleName, and lastName”. The
work of Fan and Siméon [11] and Hu and Tao [13] do not have categories similar to
this facet. In Jacinto et. al. [15], it is possible to classify this SIC in the category called
dependencies between two document nodes, but this category considers only the
relationship between two elements, and not the range of the overall XML document.
In the same way, the work of [14, 18] deal with a small set of categories, being not
detailed. In Arenas, the SIC can be classified as a generic multi-attribute SIC. In
Lazzaretti and Mello [18], the example can be classified as a database SIC, but it only
distinguishes if elements or attributes are in the same hierarchic level or not.

In our taxonomy, it is possible to classify the example in the Element category,
because it involves attributes and one sub-element in a same complex element. It is
more detailed than related work, presenting four range levels for a XML SIC.

3.3 Constraint Form

This facet is based on the constraint component named restrictive condition and some
related work that consider such aspect [4, 11, 13]. The main contribution of this facet
is to classify the kind of used notation for SIC specification. Hu and Tao [13] raises

 A Faceted Taxonomy of Semantic Integrity Constraints for the XML Data Model 71

the importance of this facet for SIC specification languages, claiming that a rule-
based SIC allows more natural and concise specifications of many types of IC than IC
based on boolean expressions. This is specially important to the design of an SIC
language and, as a consequence, of an XML DBMS IC control because it represent
how the SIC will be expressed by the users, and if it is possible to specify it in a
boolean form or a conditional form.

Although some related work deal with similar aspects [4, 11], only Hu and Tao
[13] consider this facet, and we base it on this work. However, it does not deal with
other facets considered by our proposal. A discussion about different kinds of
notations and their expressiveness is out of the scope of this paper. Hu and Tao [13]
present similar analysis. As a matter of general exemplification, we give the following
SIC: ““the salary of a professor must be 5000.00 if the professor has the PhD
degree”.” This SIC can be classified in our taxonomy as Based on Conditional Rules
– Simple because it could be defined as a trigger that updates a professor salary to
5000.00 when its degree becomes PhD.

3.4 Constraint Check Point

This facet is based on the similar constraint component presented in Santos [21] and
Codd [24]. This facet aims at distinguishing the moment that the restrictive condition
that composes the SIC should be verified. Considering the proposal of Date [8] for the
relational model, we define two categories for this facet: immediate and delayed.

A delayed SIC could be a constraint that, in the scope of a transaction, must be
verified only at the commit time. Such aspect is enforced by Codd [24]. It argues that
some kinds of IC should allow that data should pass by inconsistent states until reach
a new consistent state. This aspect is relevant, for example, in the evaluation of XML
DBMS transaction controls, if we desire that a SIC over data could be checked in
some moment after its update by the transaction. Tamino and eXists XML DBMS, for
example, supports only immediate SIC, being not flexible for such a control.

One example in this context is the following: “given that 80% of the professors
must have a PhD degree, if an update of professor elements is executed, the SIC that
guarantees such restriction must be verified only after all professor instances be
updated”. In our taxonomy, this is an example of delayed SIC because the constraint
should not be verified immediately after/before the update of each professor element,
but only when the operation ends. No related taxonomy considers such facet.

3.5 Constraint Action

This facet is based on the constraint component named violation actions, as well as
work about validation mechanisms for XML specification languages [9, 13, 15, 18].
This facet considers the kind of action that should be taken when an integrity
violation occurs.

Consider the following example: “a professor with Master degree cannot have a
salary lower than 2000.00”. Supposing that a professor receives the Master value in
its degree element, and its salary element not is incremented to 2000.00, we may
apply one of the two alternatives: (i) an update operation is executed to increase the
element salary (active constraint); or (ii) a message error is generated and a rollback

72 K. Rezende Rodrigues and R. dos Santos Mello

operation is performed, (informative constraint). The execution of these alternatives
depends on the XML DBMS transaction and IC control capabilities, as well as the
capabilities of the SIC specification language, raising the importance of this facet.
The XML DBMS Tamino and eXist, for example, implements only informative
constraints. With respect to related work, no one of the proposed taxonomies defines
this facet and distinguishes this constraint component. Thus, the main contribution of
this facet is to consider the actions that a SIC may hold on XML data in the context of
an XML DBMS IC control, for example.

3.6 Taxonomy Application

In order to exemplify the application of our taxonomy in the evaluation of existing
SIC definition languages and XML DBMS, Table 1 presents a comparative of the
usage of our facets by them.

Table 1. SIC specification languages for XML and XML DBMS vs. taxonomy facets

Constraint Value Constraint Form
SIC definition languages

and XML DBMS State State
Transaction

Constraint
Range* Boolean

Expression
Conditional

Rules

Constraint
Action

Constraint
Check Point

1. XML Schema [2] Static No Element Simple No Informative Immediate

2. Schematron [9] Static No Repository Composed Simple Informative Immediate

3. XCSL [15] Dynamic No Repository Composed Simple Informative Immediate

4. XCML [13] Dynamic No Repository Composed Composed Informative Immediate

5. XDC [18] Dynamic Dynamic Repository Composed Composed Active Immediate
6. eXists XML DBMS [20] No No No No No No No
7. Tamino XML DBMS
[7]

Static No Element Simple No Informative Immediate

8. Timber XML DBMS
[28]

No No No No No No No

*If defined, it denotes the most comprehensive supported category in the facet.

It is important to note that the consideration of all facets is limited or
heterogeneous. For example, few SIC languages are able to specify state transactions
and/or composed conditional rules, which are important features of a SIC control. We
also observe that the attendance of the Constraint Action and Check Point facets are
not satisfactory, with most cases restricted to informative actions and immediate
check points.

Furthermore, we observe that XDC and Tamino are much robust languages and
XML DBMS with respect to SIC treatment, respectively. Most of the XML DBMS, in
particular, suffer from the absence of a SIC control mechanism.

4 Conclusion

This paper proposes a SIC taxonomy for XML data that classifies SIC based on the
constraint components in a faceted form. The motivation for such work is the lack of
a SIC taxonomy that could give better support to an expressiveness evaluation of: (i)
SIC specification languages in the context of XML data model; and (ii) XML DBMS

 A Faceted Taxonomy of Semantic Integrity Constraints for the XML Data Model 73

modules that deal with SIC. As presented in Section 2, related taxonomies are
heterogeneous, do not deal with the main aspects of SIC, or do not present a basis do
justify their categories.

In fact, the facets of our taxonomy are generic enough to be useful for other data
models. However, we consider its specific application to XML data model. For
example, the Constraint Range facet is suitable to the hierarchical structure of XML
data, being not applicable to the relational model. As pointed out before, our main
intention is to contribute to the research on integrity maintenance issue for XML data.

We argue again that the contribution of this paper is the definition of a well-
founded, flexible and comprehensive taxonomy that analyze a SIC with respect to the
definition of constraint components focused on the relational model [21]. It is flexible
because a taxonomy in a faceted form can be easily extended [23]. It is
comprehensive because the set of proposed facets deals with all constraint
components, making it generic enough. Furthermore, as demonstrated through
examples in Section 3, it is more comprehensive than other proposals because it
considers constraint components that they do not consider. Despite of that, we take
care to define the only necessary categories (based on the related work [4, 11, 13, 14,
15, 17, 18, 26]) to reach the desired contributions in this subject (items (i) and (ii)
described above). Thus, we claim that our taxonomy is more indicated for
expressivity evaluation. In fact, a faceted taxonomy based on constraint components
is a good choice because it denotes all the components that should be considered for
any system that intends to deal with SIC, like a XML DBMS. Even with some
adaptations in all taxonomy categories to become it more comprehensive, we called it
well-founded because we base it on the IC literature for the relational data model [8,
10, 18, 21, 22, 24, 29] and on the contributions of related work [4, 11, 13, 14, 15, 17,
18, 26]. Finally, our taxonomy is also a contribution to the problem of lack of
foundation for XML data SIC.

Future work include studies for proof of completeness of the taxonomy, and a
comparative analysis of XML DBMS for evaluating their expressivity and robustness
with respect to SIC specification languages and IC control. We also intend to apply
our taxonomy in an integration process called BInXS [19]. In this context, the
taxonomy will be useful as a guide for specifying SIC categories that could be
extracted from heterogeneous XML sources in order to improve the semantic aspects
of the data to be integrated. At the DIGITEX project, such taxonomy will be useful in
the discovery of implicit SIC for XML instances to be matched.

References

1. XML (Extensible Markup Language) (June 2007), Available at: http://www.w3.org/xml
2. XML Schema (June 2007), Available at: http://www.w3.org/xml/schema
3. Semantic Web (June 2007), Available at: http://www.w3.org/2001/sw
4. Buneman, P., et al.: Keys for XML. In: WWW 2001, Hong Kong, China, pp. 201–210

(2001)
5. SWRL (June 2007), Available at: http://www.w3.org/submission/swrl
6. Clark, J., Murata, M.: RELAX NG Specification. Technical report. In: Organization for the

Advancement of Structured Information Standards (OASIS) (2001)
7. Schöning, H.: Tamino - A DBMS designed for XML. In: ICDE 2001, pp. 149–154 (2001)

74 K. Rezende Rodrigues and R. dos Santos Mello

8. Date, C.J.: An Introduction to Database Systems, 8th edn. Addison-Wesley, London
(2003)

9. Dodds, L.: Schematron: Validating XML Using XSLT. In: XSLT UK Conference,
England (2001)

10. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 4th edn. Addison-Wesley,
London (2003)

11. Fan, W., Siméon, J.: Integrity Constraints for XML. Journal of Computer and System
Sciences 66(1), 254–291 (2003)

12. Fan, W.: XML Constraints: Specification, Analysis, and Applications. In: International
Workshop on Database and Expert Systems Applications, pp. 805–809 (2005)

13. Hu, J., Tao, L.: An Extensible Constraint Markup Language: Specification, Modeling, and
Processing. In: XML Conference and Exhibition, U.S.A (2004)

14. Arenas, M., et al.: On Verifying Consistency of XML Specifications. In: ACM PODS,
U.S.A, pp. 259–270 (2002)

15. Jacinto, M.H., et al.: XCSL: Constraint Specification Language. In: Latin American
Conference on Informatics (2002)

16. Lee, D., Chu, W.W.: Comparative Analysis of Six XML Schema Languages. ACM
SIGMOD Record 29, 76–87 (2000)

17. Pavlova, E., et al.: Constraints for Semistructured Data. In: Russian Conference on Digital
Libraries, Russian (2000)

18. Lazzaretti, A.T., Mello, R.S.: A Domain Integrity Constraint Control for XML Documents.
In: Brazilian Symposium on Databases, Brazil, pp. 115–129 (2005)

19. Mello, R.S., Heuser, C.A.: BInXS: A Process for Integration of XML Schemata. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 151–166.
Springer, Heidelberg (2005)

20. Meier, W.: eXist: An Open Source Native XML Database. In: Chaudhri, A.B., Jeckle, M.,
Rahm, E., Unland, R. (eds.) Web, Web-Services, and Database Systems. LNCS, vol. 2593,
pp. 169–183. Springer, Heidelberg (2003)

21. Santos, C.S.: Caracterização Sistemática de Restrições de Integridade em Bancos de
Dados. PhD Thesis, Informatics Department-PUC, Brazil, Rio de Janeiro (1980)

22. Silberschatz, A., et al.: Database System Concepts, 5th edn. McGraw-Hill, New York
(2005)

23. Ranganathan, S.R.: The Colon Classification. In: Artandi, S. The Rutgers Series on
Systems for the Intellectual Organization of Information, vol. IV. Graduate School of
Library Science, Rutgers University, New Brunswick, NJ (1965)

24. Codd, E.F.: Data Models in Database Management. In: ACM SIGMOD 1980, U.S.A, pp.
112–114. ACM Press, New York (1980)

25. Deutsch, A., Tannen, V.: Reformulation of XML Queries and Constraints. In: Calvanese,
D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 225–241.
Springer, Heidelberg (2002)

26. Benedikt, M., et al.: Capturing Both Types and Constraints in Data Integration. In: ACM
SIGMOD 2003, U.S.A, pp. 277–288. ACM Press, New York (2003)

27. Bourret, R.: XML consulting, writing and research (XML and Databases). Available at:
Jun (2007), http://www.rpbourret.com

28. Jagadish, H.V., et al.: TIMBER: A Native XML Database. VLDB Journal 11(4), 274–291
(2002)

29. Santos, C.S., et al.: Towards Constructive Axiomatic Specifications. In: ACM SIGMOD
1980. pp. 183–185 (1980)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 75–86, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Beyond Lazy XML Parsing*

Fernando Farfán, Vagelis Hristidis, and Raju Rangaswami

School of Computer and Information Sciences
Florida International University

{ffarfan,vagelis,raju}@cis.fiu.edu

Abstract. XML has become the standard format for data representation and
exchange in domains ranging from Web to desktop applications. However,
wide adoption of XML is hindered by inefficient document-parsing methods.
Recent work on lazy parsing is a major step towards alleviating this problem.
However, lazy parsers must still read the entire XML document in order to
extract the overall document structure, due to the lack of internal navigation
pointers inside XML documents. Further, these parsers must load and parse the
entire virtual document tree into memory during XML query processing. These
overheads significantly degrade the performance of navigation operations. We
have developed a framework for efficient XML parsing based on the idea of
placing internal physical pointers within the document, which allows skipping
large portions of the document during parsing. The internal pointers are
generated in a way that optimizes parsing for common navigation patterns. A
double-Lazy Parser (2LP) is then used to parse the document that exploits the
internal pointers. To create the internal pointers, we use constructs supported by
the current W3C XML standard. We study our pointer generation and parsing
algorithms both theoretically and experimentally, and show that they perform
considerably better than existing approaches.

Keywords: XML, Document Object Model, Double Lazy Parsing, Deferred
Expansion, XPath.

1 Introduction

XML has become the de facto standard format for data representation and exchange
in domains ranging from the Web to desktop applications. Examples of XML-based
document types include Geographic Information Systems Markup Language (GML)
[8], Medical Markup Language (MML) [17], HL7 [10], and Open Document Format
(ODF) [21]. This widespread use of XML requires efficient parsing techniques. The
importance of efficient XML parsing methods was underscored by Nicola and John
[19], showing that the parsing stage is processor and memory consuming, needing
main memory as much as ten times the size of the original document.

There are two de facto XML parsing APIs, DOM [2] and SAX [22]. SAX reads the
whole document and generates a sequence of events according to the nesting of the

* This project was supported in part by the National Science Foundation Grant IIS-0534530 and

by the Department of Energy Grant ER25739.

76 F. Farfán, V. Hristidis, and R. Rangaswami

elements, and hence it is not possible to skip reading parts of the document as this
would change the semantics of the API. On the other hand, DOM allows users to
explicitly navigate in the XML document using methods like getFirstChild()
and getNextSibling(). DOM is the most popular interface to traverse XML
documents because of its ease of use. Unfortunately, its implementation is inefficient
since entire subtrees cannot be skipped when a method like getNextSibling() is
invoked. This also leads to frequent “Out of Memory” exceptions. In contrast to SAX,
parsing a document using DOM could potentially avoid reading the whole document
as the sequence of navigation methods may only request to access a small subset of
the document. In this work we focus on parsing using a DOM-like interface.

Lazy XML parsing has been proposed (e.g., [25, 20]) to improve the performance
of the parsing process by avoiding the loading of unnecessary elements. This
approach substitutes the traditional eager evaluation with a lazy evaluation as used by
functional programming languages [1]. The architecture shown in Figure 1., based on
the terminology of [20], consists of two stages. First, a pre-parsing stage extracts a
virtual document tree, which stores only node types, hierarchical structure
information, and references to the textual representation of each node. After this
structure is obtained, a progressive parsing engine refines this virtual tree on demand,
expanding the original virtual nodes into complete nodes with values, attributes, etc.
as they are needed.

Clearly, the lazy parsing technique
is a significant improvement.
However, it still suffers from the high
initial cost of pre-parsing (Figure 1)
where the whole document must
be read before the lazy/progressive
parsing starts. The pre-parsing stage
is inevitable due to the lack of
internal physical pointers (or
something equivalent) within the

XML document. Further, the entire virtual document tree must be loaded and processed
in main memory during the progressive-parsing stage, i.e. during query processing.

Overview of Approach: We call our XML parsing approach double-Lazy Parsing
(2LP) because both stages in Figure 1 are lazy, in contrast to previous works where
only the second stage is lazy. The first stage is performed offline, when the document
is partitioned into a set of smaller XML files, then interlinked using XInclude [26]
pointers. The optimal partition size is computed by considering the random versus
sequential access characteristics of a hard disk.

The second stage parses a partitioned document, reading a minimal set of partitions
to perform the sequence of navigation commands. 2LP loads (pre-parses using the
terminology of Figure 1) the partitions in a lazy manner (only when absolutely
necessary). In the case of DOM, we maintain an overall DOM tree D(T) which is
initially the DOM tree of the root partition P0 of the XML tree T. Then D(T) is
augmented with the DOM trees D(Pi) of the loaded partitions Pi.

Our approach dramatically reduces the cost of the pre-parsing stage by only pre-
parsing a typically small subset of the partitions. Furthermore, our approach leads to

Fig. 1. Lazy XML Parser Architecture

 Beyond Lazy XML Parsing 77

significantly faster progressive-parsing times than traditional lazy parsing, as we show
experimentally, due to the fact that whole subtrees are skipped.

To complement lazy partition loading, our approach also performs lazy unloading
of inactive partitions (described in Section 2) if the total amount of main memory
used by the DOM tree exceeds a threshold. Hence, in addition to a fast pre-parsing
stage, our method also allows DOM-based parsing with limited memory resources.
Note that previous lazy parsing techniques can also in principle achieve this to a
smaller degree; the virtual document tree must still be stored in memory at all time.
However, this optimization is not used in the current implementation of the Xerces
DOM parser.

Fig. 2. Sample XML Document and Corresponding Tree

A drawback of the 2LP approach is that the XML document is split into a set of
smaller XML documents/files. Unfortunately, the XML standard does not support an
alternative physical pointer construct (XPointer [29] is logical and not physical) due to
the complication this would incur during cross-platform document exchange. We argue
and demonstrate in the rest of this paper that the performance gains in XML document
navigation far outweigh the drawbacks of document splitting. Further, if physical
pointers are introduced for XML in the future, our work can be immediately applied.

This paper makes the following contributions: (1) We develop a framework to allow
efficient XML parsing, which improves both the pre-parsing and progressive parsing
time as well as the memory requirements of both parsing phases. (2) We present
algorithms to perform partitioning and double-Lazy XML Parsing (2LP) for DOM-like
navigation. Note that 2LP-enabled documents are backward compatible i.e., they can
be parsed by current XML parsers. (3) We show how the theoretically optimal partition
size can be computed assuming knowledge of the navigation patterns on complete
XML trees and the hard disk characteristics. (4) We study our partitioning and parsing
algorithms both theoretically and experimentally. Experiments on various XML
navigation patterns, including XPath, confirm our theoretical results and show
consistent and often dramatic improvement in the parsing times.

The rest of the paper is organized as follows: We describe our double-Lazy parsing
techniques in Section 2. Section 3 presents techniques for partitioning the original
document into smaller subtrees. Our experiments are discussed in Section 4. We
present related work in Section 5. Finally, Section 6 discusses our conclusions and
future work.

78 F. Farfán, V. Hristidis, and R. Rangaswami

2 2LP on Partitioned XML Documents

Let T be the original XML document, and P0, … Pn be the partitions to which T was
split during the partitioning stage (elaborated in Section 3). P0 is the root partition,
since it contains the root element of T. Figure 3(a) shows an example of a partitioned
XML tree. All the partitions are connected by XInclude elements, containing the URI
to the partition file. The XInclude elements are represented in the figure by b′, f′, j′.
Note that by creating a partition (e.g., P2), the key result is that we facilitate skipping
the subtree rooted at this partition. That is, by creating partition P2 we can access
directly node a from node f′ to node n.

The XML representation of two of the partitions in Figure 3(a) is shown in Figure
3(b). Partition P0 contains the document root and is then the root partition. The
subtree rooted at the first Book element was partitioned and the Book element has
been replaced by the XInclude pointer to the XML document of Partition P1. This
additional element added to the tree upon partitioning will hold the reference to the
root of the partition’s subtree. We explain this in detail in Section 3.

(a) Tree Partitions (b) Sample Document Partitions

partition0.xml
<Catalog>
 <xi:include href="partition1.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
 <xi:include href="partition2.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
 <Book title="XML Queries" year="2002">
 <xi:include href="partition4.xml"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
 </Book>
</Catalog>

partition1.xml
<Book title="XML Databases" year="2002">
 <Chapter title="XML Introduction">
 <Section title="SGML" />
 </Chapter>
 <Chapter title="XML Introduction" />
</Book>

Fig. 3. Partitioned XML Tree and Document Partitions

Figure 4 describes the process of loading (pre-parsing) a partition. After loading a
partition, progressive parsing occurs as needed. The loadPartition() method
replaces, in the working DOM tree, the XInclude pointer element e with the DOM
tree of the partition that e points to.

To ensure the double-lazy processing of the partitions, we need to decide when it is
absolutely necessary for a partition to be loaded. Intuitively, a partition must be
loaded when a navigation method (e.g., getFirstChild()) cannot be executed
without doing so, that is, the return value of the method cannot be computed
otherwise.

 Beyond Lazy XML Parsing 79

Fig. 4. Load Partition Algorithm

Note that if limited memory is
available, we unload inactive partitions
as needed. A partition is inactive if none
of its nodes appear on the path from
the root of the XML document to the
currently accessed XML node. Traditional

replacement techniques can be used to decide which inactive partition to unload like
LRU.

We now discuss the 2LP versions of the key DOM methods that may trigger
the loading of a partition: getFirstChild(), getNodeName() and
getTextContent(). Note that the getNextSibling() method cannot trigger a

partition loading, because even if the
sibling node is an XInclude pointer, we
do not have to load the partition before
the user asks for the details of the
returned node.

Figure 5 presents the logic to decide
the loading of a partition for the
getFirstChild() method. The original

method only returns the firstChild member of the current object (“this”). In our
modification, the loading is performed if the current node is an XInclude element,
and it will replace the current object with the root element of the loaded partition.
Thus, instead of returning directly the first child of the XInclude node, we return the
first child of the root element of the partition.

Example 2.1. Consider the partitioned XML document depicted in Figure 3 (a). Let’s
consider the root-to-leaf navigation pattern a→f→j→k. We start by parsing and
traversing the root partition P0. The first node-step, a, is satisfied in P0, but to satisfy
the second node-step, f, we need to follow the XInclude pointer to partition P2. After
pre-parsing P2, we progressively parse it to reach f. We need to satisfy the last two
node-steps by following the pointer to partition P3, pre-parsing it to then
progressively parse the desired nodes. In this example, we omitted the traversal of
partitions P1 and P4.

Example 2.2. Consider again the XML document in Figure 3 (a). Now consider the
XPath query /Catalog/Book[@title=”Storage Principles”]/Chapter. The acute reader
can verify that this query requires loading all the partitions, even when we lazily
process the document.

Note that in Example 2.2 we had to load partition P1 just to read an attribute of its root
element. To save such unnecessary partition loadings we extend the attributes of the
XInclude element to contain additional information about the root element of the
partition. This may save the loading of a partition when only information about its
root node is required. Thus, the partition will be loaded only if the information needed
by the navigation is not included in the pointer element. The data duplication to
implement this idea is minimal, as shown in Section 4, since internal XML nodes are
typically small.

Fig. 5. 2LP version of getFirstChild()

80 F. Farfán, V. Hristidis, and R. Rangaswami

Table 1. Inclusion Levels

Inclusion Level Data to Include Attribute Name
NONE None N/A
TAG Tag (Default) xiPartitionTag
TAG_ATR Tag + Attributes xiPartitionAtr
TAG_ATR_TX Tag + Attributes + Text xiPartitionTxt

Table 1 summarizes the
different inclusion levels
regarding the data from the
partition’s root element to
duplicate in the corresponding
XInclude element. The names
of the attributes used to store
this data in the XInclude

element are also displayed. For the TAG_ATR level, we use a single attribute whose
value has the form field1=value1&field2=value2& ...

Example 2.2. (continued) If we extend the XInclude elements depicted in Figure 3(b)
according to Inclusion level TAG_ATR and execute the same XPath query, we will
find the necessary information about the tag names and attribute values in the
XInclude pointer elements. Thus, partitions P1 and P4 will not be loaded, since the
attribute values added to the XInclude pointer can help us discriminate which
“Chapter” elements satisfy the attribute condition without loading the partition.

The detailed code for the getNodeName() and getTextContent() methods, which
varies according to the inclusion level, is available in [5] due to lack of space.

3 Partitioning the XML File

Our main goal when partitioning XML documents is to minimize the 2LP parsing
time needed for navigating on the document. Other works (i. e. Natix [13, 14, 18])
have addressed the problem of partitioning the XML documents for storage purposes.
Our goal here is to minimize the partitions accessed for a given request.

The key criterion to partition the original document is the number of blocks that
each partition will span across the hard disk drive (i.e., the partition size). This size
criterion is independent of the particular tree-structure (or schema if one exists) and
the query patterns, and is shown to lead to efficient partitioning schemes (Section 4).
The rationale behind this is that disk I/O performance is dictated by the average size
of I/O requests when accesses are random [3]. The size criterion also allows
performing a theoretical study of the optimal partition size. In the future, we plan to
experiment with more complex partitioning criteria, like using different sizes for deep
and shallow partitions to adapt the partition techniques to the underlying XML
schema or to other physical characteristics of the document.

It must be noted that if information about the semantics and usage of the XML
document is available, it can be used to further optimize the partitioning of the
document. For instance, to partition a Mars document [16] we may consider the page
boundaries as candidate partitioning points.

Partitioning Algorithm: The key idea of the algorithm is a bottom-up traversal of the
XML tree, where nodes are added to a partition until the size threshold (in number of
blocks) is reached. We show how the partition size is calculated in Section 4. Since
we are using XInclude to simulate the physical pointers, we need to comply with the
XInclude definition and hence provide partitions that are themselves well-formed
XML documents. Thus, our partitions need to have exactly one root element and

 Beyond Lazy XML Parsing 81

include a single subtree. This constraint leads to having a few very large partitions
since every XML document typically has very few nodes with very high fan-out (e.g.,
open_auctions node in XMark [4]). Still, as shown in Section 4, this does not degrade
the parsing performance as these partitions usually need to be fully navigated by
XPath queries.

The partitioning algorithm, which is detailed in [5], recursively traverses T in a
bottom-up fashion, calculates each subtree’s size, and if this size exceeds the
partitioning threshold, moves the entire subtree to a new XML document and a new
XInclude pointer replaces its root node in the original XML file. Also, depending on
the inclusion level flag, specific information of the partition’s root node will be added
to the newly created XInclude element. Fig. 3 shows the resulting partitioned XML
tree for the XML tree of Fig. 1(b) with a threshold of ten blocks per partition. Node b′
is the XInclude element which points to the partition rooted at node b. The same holds
for nodes f′, j′, o′.

Partition Size: To obtain an appropriate value for the partition size, we conduct the
following analysis for the root-to-leaf navigation pattern. The details of the cost
model and the derivations are available in [5]. Note that performing a similar analysis
for general XPath patterns is infeasible due to the complexity and variety of the
navigation patterns and axes. In particular, we calculate the average access time to
navigate from the root to each of the leaves of the XML document. In Section 4 we
show that using the theoretically obtained partition sizes leads to good results for
general XPath queries as well. When the XML document is not partitioned (and hence
2LP is not applicable), the average cost of a root-to-leaf traversal is given by the
following equation:

transfrand
noPart

leafroot tNtCost ⋅= +−
(1)

where N is the number of blocks in T, trand is the random access time needed to reach
the root of the tree and ttransf is the time required to transfer one block of data for the
specific disk drive. Note that the whole tree must be read (pre-parsed in Figure 1) to
create the intermediate structure used to later progressively parse the document. No
cost is assigned to the progressively parsing since the document has been already
loaded in memory during pre-parsing. An equivalent cost model has been derived for
the case where the tree has been segmented into equally sized partitions:

)txt(
xln

Nln
Cost transfrand

Part
leafroot ⋅+=−

(2)

where x is the number of nodes in a partition.
Taking the first derivative with respect to x of the right hand side and equating it to

zero provides the optimal partition size.

4 Experiments

In this section, we evaluate our XML Partitioning and 2LP schemas. First, we
evaluate the theoretical model on the partition size proposed in Section 3. Second, we
measure the performance of our techniques with two navigation patterns, root-to-leaf

82 F. Farfán, V. Hristidis, and R. Rangaswami

patterns and XPath queries. The experiments were run on a 2.0GHz Pentium IV
workstation with 512MB of memory running Linux. The workstation has a 20GB
Maxtor D740X disk.

Evaluation of the Theoretical Model: We generated XML files of various sizes
using the XMark generator [24]. We applied the partitioning algorithm to these
documents, with several partition sizes (in blocks) to compare our theoretical model
described in Section 3 against experimental results performing the same type of root-
to-leaf navigation patterns detailed in [5]. Note that throughout the experiments the
2LP parser is used for partitioned documents and the Xerces for un-partitioned.

Fig. 6 shows the average time to
traverse all the root-to-leaf paths for
an XML document with XMark
factor 0.5 (50MB), running on a
Maxtor D740X hard drive as detailed
in [5]. The theoretical curves are
based on the model presented in
Section 3. Notice that the scale is
logarithmic and the patterns of the
graphs are similar, with a slight
deviation in the experimental graph.
The gap between the theoretical and
experimental graphs is caused

because the theoretical model does not take into account the processing overhead and
memory requests needed for navigating these paths, but only the I/O time involved.
From the graph, we can infer the optimal size of the partition to be 2680 disk blocks,
which is approximately one Megabyte. In [5] we show that the theoretical partition
size is very close to the experimental one for various document sizes.

Performance Evaluation: We now present the evaluation of our approach using two
types of navigation patterns, root-to-leaf traversals (also used in [6]) and XPath queries.
The results for XPath carry to XQuery as well, since XQuery queries are typically
evaluated by combining the results of the involved XPath queries. We adopt the
“standard” XPath evaluation strategy described in [7]. As explained in Section 2, the
comparisons assume that the XML document has not been already parsed before a query
or navigation pattern, that is, we measure both the pre-parsing and progressive parsing
times of Figure 1. We measure three time components in the total execution time:

Pre-Parsing: The Xerces parser uses its deferred expansion node feature by initially
creating only a simple data structure that represents the document’s branching and
layout. This phase requires scanning the whole document to retrieve this structure.
For un-partitioned documents, it means that the first time we load the file, the whole
document has to be traversed and processed; for partitioned documents, every time we
process a new partition, it is pre-parsed to create the logical structure in memory.

Progressive Parsing: As the navigation advances, this initial layout built in the pre-
parsing phase is refined, and all the information about the nodes is added to the
skeleton. This phase is performed only on the visited nodes and will have the same
behavior in both un-partitioned and partitioned documents.

Fig. 6. Average Traversal Time for Partition
Sizes

 Beyond Lazy XML Parsing 83

Inclusion: This phase is introduced by the 2LP components, and captures the time
required to include and import the new partition into the working document. This
component does not apply to un-partitioned documents.

Root-to-leaf traversal cost: Figure
7 shows the average access cost in
milliseconds for the root-to-leaf
access patterns, comparing the
performance for different XMark
factors. To compute the average
time, we sampled 10% of the leaves
of each document, adding each tenth
leaf into the sample, and performed
root-to-leaf traversals for each
sampled leaf. A traversal in this case
results in a sequence of parent-to-

first-child and sibling-to-next-sibling operations in order to reach the desired leaf.
These experiments were performed with the theoretical optimal partition size and the
NONE inclusion level (the inclusion level does not impact the simple root-to-leaf
traversals).

Note that in addition to the pre-parsing time, 2LP offers a significant improvement
of the progressive parsing time as well. This is due to the fact the partitions are
equivalent to physical pointers like node to sibling, which are not available in a
traditional virtual document tree. These pointers avoid the loading and progressive
parsing of unnecessary subtrees.

XPath query cost: Our
second experiment executes a
set of XPath queries over the
XML data. We selected the
performance queries from
XPathMark[4]; these queries
exploit several execution
constructs of the XPath syntax
and several navigation axes to
illustrate the behavior of our
algorithms under a large range
of circumstances. The
complete list of queries can be
found in [5]. We have

included the performance queries from XPathMark [4], that is, the ones that test the
execution time and not specific XPath functional aspects. We added more queries to
have a larger input set in order to obtain more reliable results.

For this set of experiments, we used several XML document sizes corresponding to
various XMark factors. Once again, we use the theoretical partition size for
partitioning the XML documents. We used the default inclusion level (TAG) for these
experiments.

Figure 8 shows the average performance of such queries for three datasets with
XMark factors 0.500, 0.750 and 1.000. We see how for un-partitioned files, the

Fig. 7. Root-To-Leaf Access Cost

Fig. 8. Average XPath Query Performance

84 F. Farfán, V. Hristidis, and R. Rangaswami

pre-parsing time is always similar, since the whole document has to be processed to
load the initial layout. For partitioned files, only the required partitions are processed,
leading to significant reduction in the pre-parsing phase in most of the cases. We can
observe that the partitioned documents perform consistently better than the un-
partitioned ones. We have some cases in which the performance of the partitioned
documents is almost equal to the performance of the original files. These cases, such
as Q3, Q9, Q14 and Q15, need to traverse most sections of the tree, requiring the
inclusion of most partitions.

In the cases of Q9, Q14 and Q17, we load the partition rooted at open_auctions,
which has a size of 15MB (due to the fact that each partition must be a well-formed
XML document, as explained in Section 3). Pre-parsing and progressively parsing this
large partition penalizes these queries and they almost match the execution time of the
un-partitioned version. However, in a typical scenario, such large partitions must be
completely accessed, except for the rare case when a navigation pattern specifies a
child at a particular position (e.g., 1000-th child).

The inclusion time component varies correspondingly to the size of the partitions
that have to be included into the working document. We see then that the inclusion
component for Q3, Q9, Q14 and Q15 is large, but again this is caused by the large
size of the open_auctions partition required to satisfy all these four queries. For
these same queries we found large segments of time consumed by the Inclusion
operation. The reason is that we rely on the Document.importNode()
method provided by DOM which traverses the whole imported XML tree and updates
the owner document for every single node. Even when the tree is already in memory,
this operation is CPU intensive, delaying the process of including the new partition.

Inclusion levels: We experimented with different inclusion levels, obtaining
practically no space overhead, and observing that the TAG_ATR level is generally the
best choice. We show these results in detail in [5].

5 Related Work

Noga et al. [20] introduce the idea of Lazy Parsing as presented in Section 1. The
virtual document tree can potentially be stored on disk to avoid the pre-parsing stage;
however, the entire virtual document tree has to still be read from disk. If a similar
technique would be used with 2LP, only the needed portion of the virtual document
tree will have to be read to answer the request. Schott and Noga apply these Lazy
Parsing ideas to the XSL transformations [23]. Kenji and Hiroyuki [12] have also
proposed a lazy XML parsing technique applied to XSLT stylesheets, constructing a
pruned XML tree by statically identifying the nodes that will be referred during the
transformation process.

There has been progress in developing XML pull parsers [27] for both SAX and
DOM interfaces. Also, [28] presents a new API built just one level on top of the XML
tokenizer, claiming to be the simplest and the most efficient engine for processing
XML.

Van Lunteren et al. [15] propose a programmable state machine technique that
provides high performance in combination with low storage requirements and fast

 Beyond Lazy XML Parsing 85

incremental updates. A related technique has been proposed by Green et al. [9] to
lazily convert an XPath query into a Deterministic Finite Automata (DFA), after
which they submit the XML document to the DFA in order to solve the query. They
propose a lazy construction opposed to an eager creation, since constructing the DFA
with the latter technique can lead to an exponential growth in the size of the DFA.
Kiselyov [11] presents techniques to use functional programming to construct better
XML Parsers.

6 Conclusions

Lazy XML parsing is a significant improvement to the performance of XML parsing
but to achieve higher levels of performance there is a need to further optimize the pre-
parsing phase during which the whole document is read, as well as the progressive
parsing phase during which a query is processed. In this paper, we address this
problem by enabling laziness in the pre-parsing phase and allowing skipping the
processing of entire (unwanted) subtrees of the document during the progressive
parsing phase. To do so, we have proposed a mechanism to add physical pointers in
an XML document by partitioning the original document and linking the partitions
with XInclude pointers. We have also proposed 2LP, an efficient parsing algorithm
for such documents, that implements pre-parsing laziness. These techniques
significantly improve the performance of the XML parsing process and can play a
significant role in accelerating the wide adoption of XML.

References

1. Abramsky, S.: The Lazy Lambda Calculus. In: Turner, D. (ed.) Research Topics in
Functional Programming, AddisonWesley, London (1990)

2. Document Object Model (DOM) (2006), http://www.w3.org/DOM/
3. Dimitrijevic, Z., Rangaswami, R.: Quality of Service Support for Real-time Storage

Systems. In: IPSI (2003)
4. Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated Data. In:

XSym (2005)
5. Farfán, F., Hristidis, V., Rangaswami, R.: Beyond Lazy XML Parsing Extended Version

(2007), http://www.cs.fiu.edu/SSS/beyondLazyExt.pdf
6. Gil, J., Itai, A.: How to pack trees. Journal of Algorithms 32(2), 108–132 (1999)
7. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Queries. In:

VLDB (2002)
8. Geography Markup Language (2006), http://opengis.net/gml/
9. Green, T.J., Miklau, G., Onizuka, M., Suciu, D.: Processing XML streams with

deterministic automata. In: ICDT (2003)
10. Health Level Seven XML (2006), http://www.hl7.org/special/Committees/xml/xml.htm
11. Kiselyov, O.: A Better XML Parser Through Functional Programming. In: Krishnamurthi,

S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 209–224. Springer,
Heidelberg (2002)

12. Kenji, M., Hiroyuki, S.: Static Optimization of XSLT Stylesheets: Template Instantiation
Optimization and Lazy XML Parsing. In: DocEng (2005)

86 F. Farfán, V. Hristidis, and R. Rangaswami

13. Kanne, C.C., Moerkoette, G.: Efficient storage of XML data. In: ICDE 1998 (1999)
14. Kanne, C.C., Moerkoette, G.: A Linear-Time Algorithm for Optimal Tree Sibling

Partitioning and its Application to XML Data Stores. In: VLDB (2006)
15. van Lunteren, J., Engbersen, T., Bostian, J., Carey, B., Larsson, C.: XML Accelerator

Engine. In: First International Workshop on High Performance XML Processing (2004)
16. Mars Reference: Version 0.7. Adobe Systems Inc., http://download.macromedoa.com/

pub/labs/mars/mars_reference.pdf
17. Medical Markup Language (2006), http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=

Retrieve& db=PubMed&list_uids=10984873&dopt=Abstract
18. Natix (2006), http://www.dataexmachina.de/
19. Nicola, M., John, J.: XML Parsing: a Threat to Database Performance. In: CIKM (2003)
20. Noga, M., Schott, S., Löwe, W.: Lazy XML Processing. In: ACM DocEng, ACM Press,

New York (2002)
21. OpenDocument Specification v1.0 (2006), http://www.oasis-open.org/committees/download.php/

12572/OpenDocument-v1.0-os.pdf
22. Simple API for XML (SAX) (2006), http://www.saxproject.org/
23. Schott, S., Noga, M.: Lazy XSL Transformations. In: ACM DocEng, ACM Press, New

York (2003)
24. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A

Benchmark for XML Data Management. In: VLDB (2002)
25. Apache Xerces2 Java Parser: Apache XML Project (2006), http://xml.apache.org/xerces-j/
26. XML Inclusion (2006), http://www.w3.org/TR/xinclude/
27. XML Pull Parsing (2006), http://www.xmlpull.org/index.shtml
28. XML Pull Parser (2006), http://www.extreme.indiana.edu/xgws/xsoap/xpp/
29. XML Pointer Language Version 1.0 (2006), http://www.w3.org/TR/WD-xptr

Efficient Processing of XML Twig Pattern: A

Novel One-Phase Holistic Solution

Zhewei Jiang1, Cheng Luo1, Wen-Chi Hou1, Qiang Zhu2, and Dunren Che1

1 Computer Science Department, Southern Illinois University Carbondale,
Carbondale, IL 62901, U.S.A.

{zjiang,cluo,hou,dche}@cs.siu.edu
2 Department of Computer and Info. Science, University of Michigan Dearborn,

MI, 48128, U.S.A.
qzhu@umich.edu

Abstract. Modern twig query evaluation algorithms usually first gen-
erate individual path matches and then stitch them together (through
a “merge” operation) to form twig matches. In this paper, we propose
a one-phase holistic twig evaluation algorithm based on the TwigStack
algorithm. The proposed method applies a novel stack structure to pre-
serve the holisticity of the twig matches. Without generating interme-
diate path matches, our method avoids the storage of individual path
matches and the path merge process. Experimental results confirm the
advantages of our approach.

1 Introduction

XML has become a widely accepted standard for data exchange and integra-
tion over the Internet. The ability to process XML queries efficiently plays an
important role in the deployment of the XML technology in the future.

The XML twig queries retrieve document elements through a joint evaluation
of multiple path expressions [8]. Modern XML twig query processing approaches
[1,9,2,6,4], including the Twigstack [2] and other approaches based on it, typically
first decompose a twig query into a set of binary patterns or single paths and then
search for matches for these individual patterns/paths. Finally, these matches
are stitched together to form the answers to the twig query. The overheads
incurred in the two-phase approach could be large since the cost to output and
then input the individual matches and finally merge them to form twig matches
can be substantial, especially when the number of matching paths is large.

To address this problem, we propose a one-phase holistic twig evaluation algo-
rithm that outputs twig matches in their entireties without a later merge process.
Instead of outputting individual path matches as soon as they are formed, our
method holds the path matches until entire twig matches are formed. The new
algorithm yields no intermediate results (to be output and then input), and re-
quires no additional merge phase. Experimental results show that our algorithm
compares favorable to Twigstack [2] and Twig2Stack [11].

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 87–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 Z. Jiang et al.

The rest of the paper is organized as follows. Section 2 gives a brief survey
of twig processing. Section 3 details our one-phase holistic twig evaluation algo-
rithm. Section 4 presents the experimental results. Section 5 concludes.

2 Backgrounds

Many twig query evaluation algorithms [1,2,5,9] have been proposed in the lit-
erature. Bruno et al. [2] designed the notable and efficient algorithm TwigStack.
The algorithm pushes only nodes that are sure to contribute to the final results
onto stacks for ancestor-descendent queries. Like most other algorithms, it is
a two-phase algorithm, a path matches generation phase followed by a merge
phase. Aiming to eliminate the two-phase overhead, Twig2Stack [11], a bottom-
up evaluation algorithm, was proposed. Unfortunately, it may push nodes that
do not contribute to the final results onto stacks, resulting in some extra work.
It utilizes PathStack [2] to reduce runtime memory usage, however, at the price
of increased stack manipulation complexity. TJFast [7] employs an innovative
encoding scheme, called the extended Dewey code. Although this code can repre-
sent the relationships of nodes on a path elegantly, tremendous storage overhead
is incurred, especially for longer paths. There are also some other algorithms [6,4]
that attempt to improve the performance of Twigstack for parent-child queries
for which Twigstack is suboptimal.

3 A One-Phase Holistic Twig Join Algorithm

In this section, we present a one-phase twig query evaluation algorithm, called
the HolisticTwigStack, based on the TwigStack. The new algorithm preserves
all the strengths of the TwigStack and yet has no the aforementioned two-phase
overhead. In the following, we illustrate the shortcomings of the TwigStack and
Twig2STack by an example.

Example. Consider the data tree (a) and twig query (b) in Fig1.

Fig. 1. Example of Holistic Twig Join Algorithm

Efficient Processing of XML Twig Pattern 89

TwigStack generates 12 path matches in the first phase: a1/b1, a1//b2, a1//b3,
a1//b4, a2/b2, a2//b3, a2//b4 for A//B and a1/c1, a1//c2, a1//c3, a2/c2, a2/c3 for
A//C. Several nodes, such as a1 and a2, appear multiple times in the matches,
resulting in a large intermediate result (larger than the entire data tree itself).
A 2-way merge is then needed to merge path matches into twig matches.

Twig2Stack is a one-phase algorithm. Although it does not have the two-phase
overhead of TwigStack, it lacks the important advantage of TwigStack, i.e., not
pushing any node that does not contribute to the twig matches onto a stack.
In the example, Twig2Stack pushes non-contributing nodes a3, b5, and b6, onto
stacks. It also creates additional stacks, such as the one connecting c2 and c3, to
speed up later query processing, at the cost of increased space complexity.

3.1 Notations

Like most twig query processing approaches [1,2,5,9], we adopt the region code
scheme. Each node in the XML document tree is assigned a unique 3-ary tuple:
(leftPos, rightPos, LevelNo), which represents the left, right positions, and
level number of the node, respectively. As in all the stack-based algorithms,
there is a stream Tq associated with each pattern node q of the twig query. The
elements in each stream are sorted by their leftPos.

We define the Top Branch Node as the branch node in the twig pattern at
the highest level. The Top Branch Node and the nodes above it in the twig pat-
tern are called Upper Nodes. Lower Nodes refer to nodes that are below the
Top Branch Node in the twig pattern. For example, the Top Branch Node in
Fig 1(b) is A. The document nodes that have the same type of Top Branch Node,
Upper Node and Lower Nodes are referred as Top Branch Element, Upper El
-ement and Lower Element, respectively. We also define ClosestPatternAnces-
tor(e) as the closest ancestor of the element e in the document tree according to
the query pattern. For example, in Fig 1(a),ClosestPatternAncestor(b2)=Closest-
PatternAncestor(b3)= ClosestPatternAncestor(b4)=a2. We also define a pattern
sibling element of e as an element in the document tree that (i) has the same node
type as e; (ii) shares the same closest pattern ancestor with e, and (iii) does not
have the ancestor-descendent relationship with e. In our example, b3 is a pattern
sibling element of b4.

3.2 Stack Structure

The overheads incurred in the TwigStack algorithm are caused by the“hasty”
output of the individual path matches generated when a leaf element is en-
countered, which splits the twig matches. We also observe that individual path
matches are to be merged together based on the common branch nodes to form
the twig matches. In order to keep the holisticity of the twigs, we opt to delay
the output of individual path matches and their merging by holding them in lists
of stacks until all elements under the same Top Branch Element are processed.
To hold multiple matching paths, we associate each Upper Node with a single
stack and Lower Node with lists of stacks, as compared with one stack for each
query node in the TwigStack.

90 Z. Jiang et al.

Like other stack-based algorithms, an element is pushed onto a stack whose
top element is an ancestor of the incoming element. In addition, we require that
the incoming element must have the same closest pattern ancestor as the top
element. For an element that does not satisfy the above conditions, it will be
stored in a new stack. Elements that have the same closest pattern ancestor
will be linked together for convenient access. Fig 2 shows the stack structure of
our algorithm, named HolisticTwigStack, of the given example in Fig 1. In the
structure, we have represented the closest pattern ancestor relationships by solid
arrows, e.g., a1 to SB1. The stacks of the same node type that share the same
closest pattern ancestor are linked by dotted arrows. Take SB2 and SB3 as an
example. They are linked together by using a dotted arrow pointing from b3 to
its sibling element b4. Only 9 nodes are stored in HolisticTwigStack, which is
less than Twig2Stack and TwigStack.

Fig. 2. Data Structure of HolisticTwigStack

It is observed that the commonly referenced ancestor-descendent relationships
between query nodes, such as A//B and A//C, can be easily inferred from the
closest pattern ancestor relationships by assuming that the ancestor elements of
a stack “inherit” the relationships (i.e., the solid arrows) of their descendants
(in the same stack). For example, a1 could inherit the solid links of a3, that is,
a1 implicitly also has links to SB2 and SC2 and thus the ancestor-descendent
relationships (i.e., A//B, A//C) that a2 has with other query nodes. The twig
matches for the elements in the root stack can be constructed easily by traversing
the links following the query pattern.

3.3 Algorithm

Our algorithm, named HolisticTwigStack, is presented in Algorithm 1. The al-
gorithm computes the answer to a query twig pattern Q in one phase.

Elements are checked for satisfaction of structural relationships in the same
way as is done in TwigStack by recursively calling the function getNext(), which
is defined in TwigStack [2]. We attempt to withhold the elements sharing the
same Top Branch Element in memory until the element with the disjoint range
arrives. The reason lies in the fact that the arrival of the disjoint element actu-
ally eliminate the possibility of the subtree rooted at this Top Branch Element
to participate any further match. Like in the TwigStack, an incoming element
e is pushed onto a stack (line 18) only if it is surely to contribute to a twig match

Efficient Processing of XML Twig Pattern 91

(line 5); otherwise, we simply advance to next element (line 20). Before pushing
e onto a stack, we further check if it falls beyond the range covered by the top
element in the stack of Top Branch Node, namely, STBN (line 6). Note that the
top element covers only a subrange of other lower elements’ ranges in the same
stack, so the elements in STBN are visited top-down until STBN is empty or the
current top element can cover the incoming element e . If e is disjoint with the
current top element of the STBN and all the paths under it have already been
formed, twig matches sharing the same Top Branch Element are output(line 8).
Furthermore, the top element of STBN is popped out and its ancestor element in
STBN (if there is any) inherit its relationship with its descendent elements in twig
pattern(line 14). Otherwise, all the elements in the stacks are cleaned out (line
12). The same process also need to be conducted over the stacks of Upper Node
in order to clear all the nodes that are unnecessary for future matches(line 17).
After having reached the end of streams (end(Q)), we output the remaining twig
matches related to root elements left in S root (line 22-30).

The basic idea of procedure MoveElementToStack() is given below. More de-
tails can be found in [10]. If the incoming element e is an Upper Element, we
simply push it onto the corresponding stack. If e is a Lower Element, a more
complicated process is involved. Assume the type of e is q and the stacks for the
Lower Node q have been numbered in their order of creation as Sq1 , Sq2 , . . . , Sqn .
For each incoming element of type q , we check if it is a descendent of the top
element of the last stack Sqn and if it has the same closest pattern ancestor as
the top element of the stack. (The correctness of only checking the last stack will
be given in the next subsection.) If so, we push the element onto the last stack
Sqn ; otherwise, we push the element onto a new stack Sqn+1 . In the latter case,
we shall check if it has the same closest pattern ancestor as any top element
of a stack on an existing list. If so, we append Sqn+1 to the end of that list;
Otherwise, we directly link Sqn+1 to its closest pattern ancestor.

ShowTwigSolution() is called to output twig matches rooted at the current
root element. The twig matches can be formed by following the solid and dot-
ted links between stacks and the ancestor-descendent relationships between the
elements in the same stacks. Interested readers are referred to [10] for details of
the algorithm.

3.4 Analysis of Algorithm

In this section, we show the correctness of the HolisticTwigStack algorithm. Due
to the space limitation, readers are referred to [10] for details and proofs.

First, we introduce some terms and properties of TwigStack. subtreeNodes(q)
include node q itself and all its descendants in the query pattern Q. An element
has a minimal descendent extension if there is a solution for the sub-query rooted
at q, composed entirely of the head elements for subtreeNodes(q). Here, the head
element of q, denoted as hq, is defined as the first element in Tq that participates
in a solution for the sub-query rooted at q [2].

92 Z. Jiang et al.

TwigStack ensures that the element eq = next(Tq) is pushed onto the stack
if and only if (i) element next(Tq) has a descendent element eqi in each of the
stream Tqi , for qi=children(q), and (ii) each of the element eqi recursively satisfies
the first property [2].

Algorithm 1: HolisticTwigStack (Q)

begin1

while not end(Q) do2

q=getNext(Q);3

e=the current first element in the stream of q;4

if (q is of root type) or (at least one element in Sparent(q) covers e) then5

while (!Empty(STBN) and e is disjoint with STBN ’s top element) do6

if (no leaf stack is empty) then7

ShowTwigSolution(Sroot, Sroot.size-1);8

end9

TopElem=s.pop();10

if Empty(STBN) then11

Clean all child stacks of s;12

else13

Update the links between stacks;14

end15

end16

Remove all the elements in each SUpper Node that are disjoint with e17

and update the links appropriately;
MoveElementToStack(q, e);18

end19

AdvanceList(q);20

end21

while not empty(Sroot) do22

ShowTwigSolution(Sroot, Sroot.size-1);23

Sroot.Pop();24

if not Empty(Sroot) then25

Update the links between stacks;26

else27

Clean all child stacks;28

end29

end30

end31

Lemma 1. Let e1, e2, . . . , em be the sequence of elements pushed onto the stacks
during the execution of the algorithm. Then, e1.left < e2.left < . . . < em.left.

Lemma 2. The elements popped out of stack of Upper Node at line 10, 17 24
and elements deleted at line 12 and line 28 from the stack lists of Lower Node
participate no further matches. So, the deletions are safe.

Efficient Processing of XML Twig Pattern 93

Earlier in the MoveElementToStack() procedure, when an element is to be
pushed onto an appropriate stack, instead of examining all the stacks on the list
we only check if it is a descendent of the top element of the last stack (of its
type) and if it has the same closest pattern ancestor as the top element. This
optimization is based on the following lemma.

Lemma 3: For each incoming Lower Element, either it can only be a descen-
dent of the top element of the last stack (of its type), or it is not a descendent
of any top element of the stacks (of its type).

Lemma 4: MoveElementToStack(q) correctly places the elements onto stacks
and links elements to their closest pattern ancestors.

Thus the elements in the stacks can be reached in any case as long as it
participates the final match, which is guaranteed by the property of getNext().
The relevant proof can be found in [2].

Theorem 1: Given a twig query pattern Q and an XML document tree D,
Algorithm HolisticTwigStack correctly returns all answers to Q on D.

Theorem 2: Given a query twig pattern Q, comprising of n nodes and
only ancestor-descendent edges, over an XML document D, Algorithm
HolisticTwigStack has the worst-case I/O and CPU time complexities linear
in the sum of sizes of the n input lists and the output list. Furthermore, the
worst-case space complexity of HolisticTwigStack is the sum of the sizes of the
n input lists.

Let us make simple comparisons with TwigStack. Our algorithm may take
a little more CPU time in stack manipulation, but TwigStack would require
extra time and space to store and merge the individual path matches. It is im-
portant to note that our stacks store twig matches rooted at elements that
are currently in the stack of Top Branch Node, while TwigStack stores all
the twig matches, in the form of individual path matches. Furthermore, nodes
shared by multiple paths would have to be stored repeatedly in individual
paths. Therefore, our algorithm in general uses much less space than TwigStack.
For example, we are given a twig pattern where the root A has k children:
A//C1[//C2]. . . [//Ck] and the document tree has n A nodes matching the given
pattern. Each node Ai (1≤i≤n) has ni1 C1 children, ni2 C2 children,. . . ,nik

Ck children. Thus the total number of matches is
∑n

i=1

∏k
j=1 nij . Both meth-

ods need the same time O(
∑n

i=1

∏k
j=1 nij) to form all the combinations. But

our method requires only O(Maxi,1≤i≤n(
∑k

j=1 nij) + 1) space while TwigStack

needs O(
∑n

i=1

∑k
j=1(nij + 1)) = O(

∑n
i=1

∑k
j=1 nij + nk) to store the interme-

diate results. The space consumption of TwigStack can be further exacerbated
when the twig pattern is deeper or more common nodes are shared by leaf nodes.
In worst case, the intermediate result size of TwigStack is O(K×P)=O(J), where
K is the sum of the lengths of the input lists for all leaf nodes, and P is the length
of the longest root-to-leaf path in the twig pattern.

94 Z. Jiang et al.

4 Experimental Results

In this section, we evaluate the performance of the HolisticTwigStack algo-
rithm against TwigStack and Twig2Stack using both synthetic and real datasets.
Twig2Stack was shown to have better perfromance than TJFast [7] in [11], and
thus the latter is ommitted here.

4.1 Experimental Set-Up

The synthetic datasets consist of XMark, TreeBank, and other datasets gener-
ated by the random generator in [2]. The depths of the randomly generated trees
vary from 5 to 10, fan-outs from 2 to 10, and the number of labels is set at 7.
DBLP is the real dataset used in the experiments.

We use three types of twig queries in the experiments: Q1 represents a set
of shallow but wide queries (dept=2, width= 4 to 5, in the patterns); Q2 a set
of deep but narrow queries (dept= 3 to 5, width=2) and Q3 balanced queries
(dept= 2 to 3 and width= 2 to 3).

We store the intermediate results of TwigStack in memory. This provision,
eliminates the expensive output/input cost of the TwigStack, however, at the
price of memory consumption.

4.2 Experimental Results

TwigStack’s time is broken into two parts to reflect the cost of the two-phase
algorithm with the lower and upper parts of the bars in the figures corresponding
to the first and second phases, respectivley. Fig3 (a) and (b) show the perfor-
mance on the random datasets. As observed, HolisticTwigStack is the fastest.
TwigStack is slow for two reasons: (i) the recursive execution of ShowSolution-
WithBlocking is time-consuming; and (ii) the scan and merge of the intermediate
results in the second phase requires an extra amount of time. The entire execu-
tion times of TwigStack are 18%, 7% and 34% longer than ours for the three
types of queries, respectively. Twig2Stack turns out to be the slowest. It requires
nodes to be pushed/popped onto/out of stacks twice before forming the final re-
sults, incurring higher cost in stack manipulation. It takes 2.2, 1.9 and 1.3 times
longer than HolisticTwigStack for the three types of queries, respectively. Fig3
(b) shows the space utilization. TwigStack uses, on average, 7,328, 5,208 and
9,192 bytes for Q1, Q2 and Q3, respectively, while ours uses only 1,068, 1,464
and 984 bytes for the same queries. This is because TwigStack stores all path
matches in memory (due to our provision to reduce time consuming disk I/O),
while ours stores only twig matches that are rooted at elements currently in the
root stack, a subset of theirs, in memory. As for the Twig2Stack, although it
does not store intermediate results, it may push nodes that do not contribute to
the final results onto stacks, referred to as non-optimality. Recall that TwigStack
and our method (based on the TwigStack), guarantees such optimality. It uses
more space, from 9% to 209%, than our method, though better than TwigStack.

Figures 3(c) and(d) show the results of XMark. TwigStack consumes 8% to
18% more time than ours, as shown in (c) and 4 to 5,186 times more space than

Efficient Processing of XML Twig Pattern 95

ours, as shown in (d). Please note in some cases, the space of HolisticTwigStack
and Twig2Stack is too small to be shown. Usually, the larger the number of
matches, the larger the space usage ratio. Our method is also much faster than
Twig2Stack; it consumes only 15%, 96% and 59% of Twig2Stack’s time. However,
the space utilizations are almost same. This is due to the uniform and balanced
tree structure of XMark and the relatively uniform distribution of query matches.

Similar results are observed on TreeBank, which are shown in (e) and (f).

Fig. 3. Experimental Results

The results of DBLP are shown in (g) and (h). Although TwigStack is only
slightly slower than ours, its intermediate result sizes are too large (around 100,000

96 Z. Jiang et al.

times larger than the other two methods) to show in the chart. Twig2Stack uses
much more time, 3.1, 4.4, and 1.4 times more, than our method, due to its complex
stack manipulation and overhead for processing ”non-productive” nodes in the
stacks (i.e., the non-optimality). Note that Twig2Stack uses much more space than
ours in this experiments than in the XMark and TreeBank as there are more “non-
productive” being pushed onto stacks.

In summary, our algorithm generally runs faster and requires less memory
than TwigStack and Twig2Stack. The larger the query result sizes, the better
our algorithm, compared with TwigStack. The more complex the tree structures,
the better our algorithm, compared with Twig2Stack.

5 Conclusion

In this paper, we propose an efficient one-phase holistic twig pattern match-
ing algorithm based on the TwigStack. We lower the expensive time and space
overhead incurred in the two-phase algorithms by devising a novel stack struc-
ture to hold matching paths until entire twig matches that share the same
Top Branch Element are formed. Experimental results have confirmed that our
method is significantly more efficient in all cases tested.

References

1. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.:
Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In: Pro-
ceedings of IEEE ICDE Conference, pp. 141–152. IEEE Computer Society Press,
Los Alamitos (2002)

2. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: SIGMOD Conference, pp. 310–321 (2002)

3. Chen, S., Li, H., Tatemura, J., Hsiung, W., Agrawal, D., Candan, K.: Twig2Stack:
Bottom-up Processing of Generalized-Tree-Pattern Queries over XML Documents.
In: SIGMOD Conference, pp. 283–294 (2006)

4. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching
Using Structural Indexing Techniques. In: ACM SIGMOD international conference,
pp. 455–466 (2005)

5. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic Twig Joins on Indexe XML Docu-
ments. In: Proceedings of the 29th VLDB conference, pp. 310–321 (2003)

6. Lu, J., Chen, T., Ling, T.W.: Efficient Processing of XML Twig Patterns with
Parent Child Edges: A Look-ahead Approach. In: Proceedings of CIKM, pp. 533–
542 (2004)

7. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From Region Encoding To Extended
Dewey: On Efficient Processing of XML Twig Pattern. In: VLDB, pp. 193–204
(2005)

8. Polyzotis, N., Garofalakis, M., Ioannidis, Y.: Selectivity Estimation for XML Twigs.
In: ICDE, pp. 264–275 (2004)

Efficient Processing of XML Twig Pattern 97

9. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: SIGMOD, pp.
425–436 (2001)

10. Jiang, Z., Luo, C., Hou, W., Zhu, Q., Wang, C.-F.: An Efficient One-Phase Holistic
Twig Join Algorithm for XML Data (2005), http://www.cs.siu.edu/∼zjiang

11. Chen, S., Li, H., Tatemura, J., Hsiung, W., Agrawal, D., Candan, K.: Twig2Stack:
Bottom-up Processing of Generalized-Tree-Pattern Queryies over XML Docu-
ments. In: VLDB, pp. 283–294 (2006)

http://www.cs.siu.edu/~zjiang

Indexing Set-Valued Attributes with a

Multi-level Extendible Hashing Scheme

Sven Helmer1, Robin Aly2, Thomas Neumann3, and Guido Moerkotte4

1 University of London, United Kingdom
2 University of Twente, The Netherlands

3 Max-Planck-Institut für Informatik, Germany
4 University of Mannheim, Germany

Abstract. We present an access method for set-valued attributes that
is based on a multi-level extendible hashing scheme. This scheme avoids
exponential directory growth for skewed data and thus generates a much
smaller number of subqueries for query sets (so far fast-growing directories
have prohibited hash-based index structures for set-valued retrieval). We
demonstrate the advantages of our scheme over regular extendible hashing
both analytically and experimentally. We also implemented a prototype
and briefly summarize the results of our experimental evaluation.

1 Introduction

Efficiently retrieving data items with set-valued attributes is an important task
in modern applications. These queries were irrelevant in the relational context
since attribute values had to be atomic. However, newer data models like the
object-oriented (or object-relational) models support set-valued attributes, and
many interesting queries require a set comparison. An example would be to find
persons who match a job offering. In this case the query set required-skills is a
subset of the persons’ set-valued attribute skills . Note that we assume to work on
a large number of objects, but with limited set cardinality. We believe that this is
the most common case found in practice. This belief is backed by our observations
on real applications for object-oriented or object-relational databases (as found,
for example, in product and production models [6] and molecular databases [21]).

One way to support the efficient evaluation of queries is by employing in-
dex structures. Hash-based data structures are among the most efficient access
methods known, allowing retrieval in nearly constant time. Nevertheless, when
applying hash-based techniques to set-valued retrieval on secondary storage we
have to meet two main challenges. As it is too expensive to completely reorganize
hash tables on secondary storage, dynamic hashing schemes, like linear hashing
[15] and extensible hashing [4], are used. However, dynamic hashing schemes
exhibit exponentially growing directory sizes on skewed data. (Even if the em-
ployed hash function works reasonably well, it cannot offset the effect of multiple
copies of certain sets.) Moreover, evaluating set-valued queries on hash tables is
difficult: in order to access all subsets/supersets of a query set, we have to gener-
ate all possible subsets/supersets of the query set and probe the hash table with

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 98–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Indexing Set-Valued Attributes 99

them. Obviously, in the average case this will have an exponential running time.
However, many of the generated sets are redundant, as the respective entries in
the directory of the hash table point to the same (shared) buckets or are empty.

We propose a dynamic multi-leveled hashing scheme to remedy this situation.
As we have shown in [10], this hashing scheme can handle skewed data much
better than existing schemes. Here we focus on adapting this index structure to
retrieving data items with set-valued attributes efficiently. We demonstrate that
hash-based schemes are a viable approach to indexing set-valued attributes.

The remainder of this work is organized as follows. The following section de-
scribes related work and the context of our work. We give a brief introduction to
superimposed coding and show how to apply signatures to set-valued retrieval in
Section 3. Section 4 contains a short description of our (regular) multi-level hash-
ing scheme, while Section 5 describes how this scheme is adapted to set-valued
retrieval. In Section 6 we summarize the results of our experimental evaluation.
Section 7 concludes the paper.

2 Related Work

Work on the evaluation of queries with set-valued predicates is few and far
between. Several indexes dealing with special problems in the object-oriented
[2] and the object-relational data models [18] have been invented, e.g. nested
indexes [1], path indexes [1], multi indexes [16], access support relations [13],
and join index hierarchies [22]. These index structures focus on evaluating path
expressions efficiently.

One of the dominant techniques for indexing set-valued attributes is super-
imposed coding, where sets are represented by bit vector signatures. Existing
techniques for organizing signatures include: sequential files [12], hierarchical or-
ganization (signature trees [3], Russian Doll Trees [7]), and partitioning (S-tree
split [19], hierarchical bitmap index [17]).

At first glance, methods from text retrieval appear to be similar to set re-
trieval. However, text retrieval methods (like [23]) focus on partial-match re-
trieval, that is, retrieving supersets of the query set. Set retrieval also supports
subset and exact queries, which are relevant and common for example in molec-
ular databases (e.g. searching for characteristic parts of a large molecule).

3 Preliminaries

3.1 Querying Set-Valued Attributes

Let us assume that our database consists of a finite set O of data items oi

(1 ≤ i ≤ n) having a finite set-valued attribute A with a domain D. Let oi.A ⊆ D
denote the value of the attribute A for some data item oi. A query predicate
P consists of a set-valued attribute A, a finite query set Q ⊆ D, and a set
comparison operator θ ∈ {=,⊆,⊇}. A query of the form {oi ∈ O|Q = oi.A} is
called an equality query, a query of the form {oi ∈ O|Q ⊆ oi.A} is called a subset

100 S. Helmer et al.

query, and a query of the form {oi ∈ O|Q ⊇ oi.A} is called a superset query.
Note that containment queries of the form {oi ∈ O|x ∈ oi.A} with x ∈ D are
equivalent to subset queries with Q = {x}.

3.2 Signature-Based Retrieval

Superimposed coding is a method for encoding sets as bit vectors. It uses a coding
function to map each set element to a bit field of length b (b is the signature
length) such that exactly k < b bits are set. The code for a set (also known as
the set’s signature; abbreviated as sig) is the bitwise or of the codes for the set
elements [5,14].

The following properties of signatures are essential (let s and t be two arbitrary
sets):

s θ t =⇒ sig(s) θ sig(t) for θ ∈ {=,⊆,⊇} (1)

where sig(s) ⊆ sig(t) :=sig(s)&˜sig(t)=0 and sig(s) ⊇ sig(t) :=sig(t)&˜sig(s) = 0
(& denotes bitwise and and ˜ denotes bitwise complement).

As set comparisons are very expensive, using signatures as filters is helpful.
Before comparing the query set Q with the set-valued attribute oi.A of a data
item oi, we compare their signatures sig(Q) and sig(oi.A). If sig(Q) θ sig(oi.A)
holds, then we call oi a drop. If additionally Q θ oi.A holds, then oi is a right
drop; otherwise it is a false drop. We have to eliminate the false drops in a
separate step. However, the number of sets we need to compare in this step is
drastically reduced as only drops need to be checked.

There are three reasons for using signatures to encode sets. First, they are of
fixed length and hence very convenient for index structures. Second, set com-
parison operators on signatures can be implemented by efficient bit operations.
Third, signatures tend to be more space efficient than explicit set representation.

4 Multi-level Hashing

As in other dynamic hashing schemes (e.g. [4,15]), our multi-level hashing index
(MLH index) is divided into two parts, a directory and buckets. In the buckets we
store the full hash keys of and pointers to the indexed data items. We determine
the bucket into which a data item is inserted by looking at a prefix hg of g bits
of a hash key h. Let us take a look at a non-hierarchical hashing scheme first.
It has a directory with 2g entries, where g is called the global depth of the hash
table. The prefix hg identifies one of these entries and we follow the link in this
entry to access the corresponding bucket.

On the other hand, in our MLH index things are done differently. We also
check the prefix of a hash key to find the right bucket, but the length of the
prefix that we check may vary depending on the level in the directory where we
finally find the correct bucket (our hashing scheme is not necessarily balanced).

Indexing Set-Valued Attributes 101

4.1 General Description

Due to space constraints, we can only give a brief description; for details see [9,10].
We employ a multi-level extendible hash tree in which hash tables share pages
according to a buddy scheme. In this buddy scheme, z-buddies are hash tables
that reside on the same page and whose stored hash keys share a prefix of z bits.
Consequently, all buddy hash tables in our tree have the same global depth z.

Let us illustrate our index with an example. We assume that a page can hold
2n entries of a hash table directory. Furthermore, we assume that the top level
hash table directory (also called the root) is already filled, contains 2n different
entries at the moment, and that another overflow occurs (w.l.o.g. in the first
bucket). In this case, we allocate a new hash table of global depth 1 (beneath
the root) to distinguish the elements in the former bucket according to their
(n + 1)st bit. However, we do this not only for the overflowing bucket, but also
for all 1-buddies of this bucket. The hash tables for the buddies are created in
anticipation of further splits. All of these hash tables can be allocated on a single
page, resulting in the structure shown in Figure 1.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 0 0 0 0 0 0 01 1 1 1 1 1 1

Fig. 1. Overflow in our multi-level hash tree

In a naive hierarchical hash
tree, we would have allocated
just one hash table with depth
n for the overflowed bucket. If
other buckets overflow, we al-
locate new recursive hash ta-
bles for them as well. The main
problem with naive hash trees
is waste of memory: almost
all entries in these newly al-
located hash tables share the
same buckets, i.e. we do not
need a directory with depth n
yet. At first glance our scheme
does not seem that much differ-
ent, as we also allocate a whole page. However, due to the data skew we expect
splits near buckets that have already split. Even when the anticipated splits do
not occur, we can eliminate unnecessary directory pages.

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Fig. 2. Overflow on the second level

If another overflow oc-
curs in one of the hash ta-
bles on level 2, causing it
to grow, we increase the
global depth of all hash
tables on this page by 1,
doubling their directory
sizes. We now need two
pages to store these ta-
bles, so we split the orig-
inal page and copy the

102 S. Helmer et al.

lookup(hashkey, value) {
currentLevel = 0;

while(true) {
pos = relevant part of hashkey

(for current level);
determine offset;

pos = pos + offset;

nodeId = slot[pos];

if(nodeId is a null-pointer) {
return false;

}
if(node is bucket) {

search in bucket;
return answer;

}

currentLevel++;
}

}

(a) Pseudocode for lookups

lookup(hashkey, buddies, curdepth, localwidth) {
for all nodes n in buddies {

subhash = hashkey[b-curdepth...b-depth-width];
for all sub-/supersets s of subhash {

pos = buddyoffset(n) + s;
nodeId = slot[pos];

if(nodeId is not a null pointer) {
if(node is an unmarked bucket) {

scan(node);

add content to answer;
mark(node);

}
else {

add nodeId and localwidth to children;

}
}

}
}

for all c in children {
lookup(hashkey, c.nodeId,

curdepth+localwidth, c.localwidth);

}
}

(c) Pseudocode for looking up sub-/supersets

insert(hashkey, value) {
currentLevel = 0;

while(true) {
pos = relevant part of hashkey

(for current level);
determine offset;

pos = pos + offset;

nodeId = slot[pos];

if(nodeId is a null-pointer) {
allocate new bucket;

insert pointer to bucket into hash table;
insert data item;

return;
}
if(node is bucket) {

if(node is not full) {
insert data item;

return;
}
if(local depth of bucket <

global depth of table) {
split bucket;

adjust hash table;
insert(hashkey, value);

return;
}
if(global depth < bits per level) {

split inner node;
adjust buddies;

insert(hashkey, value);
return;

}

insert new level;
insert(hashkey, value);

return;
}

currentLevel++;
}

}

(b) Pseudocode for inser-
tions

Fig. 3. Pseudo-code for multi-level hashing

content that does not fit to a new page. Then we adjust the pointers in the
parent directory. The left half of the pointers referencing the original page still
point to this page, the right half to the new page (see Figure 2).

The space utilization of our index can be improved by eliminating pages with
unnecessary hash tables. The page on the right-hand side of the second level in
Figure 2 is superfluous, as the entries in the directories of all hash tables point
to a single bucket, i.e. all buckets have local depth 0. In this case, the page is
discarded and all buckets are connected directly to the hash table on the next
higher level.

Indexing Set-Valued Attributes 103

Due to our buddy scheme, we have a very regular structure that can be
exploited. Indeed, we can compute the global depths of all hash tables (except
the root) by looking at the pointers in the corresponding parent table. Finding
2n−i identical pointers there means that the referenced page contains 2n−i i-
buddies of global depth i. Consequently, we can utilize the whole page for storing
pointers, as no additional information has to be kept.

4.2 Lookups

Lookups are easily implemented (for the pseudocode see Figure 3(a)). We have
to traverse inner nodes until we reach a bucket. On each level we determine
the currently relevant part of the hash key. This gives us the correct slot in
the current hash table. As more than one hash table can reside on a page, we
may have to add an offset to access the right hash table. Due to the regular
structure, this offset can be easily calculated. We just shift the last n− i bits of
the relevant pointer in the parent table by the size of a hash table on the shared
page. If n − i = 0, we do not need an offset, as only one hash table resides on
this page. If we reach a bucket, we search for the data item. If the bucket does
not exist (no data item is present there at the moment), we hit a NULL-pointer
and can abort the search.

4.3 Insertions

After finding the bucket where the new data item has to be inserted (using the
lookup procedure), we have to distinguish several cases for inserting the new item
(for the pseudocode see 3(b)). We concentrate on the most difficult case, where an
overflow of the bucket occurs and the global depth of the hash table on the current
level increases. The other cases can be handled in a straightforward manner.

If the hash table has already reached its maximal global depth (i.e. it resides
alone on a page), we add a new level with 2n−1 hash tables of global depth 1 to
the existing index structure (comparable to Figure 1). If we have not reached the
maximal global depth yet (i.e. the hash table shares a page with its buddies), the
global depth of all hash tables on this page is increased by 1. The hash tables on
the first half of the page remain there. The hash tables on the second half of the
page are moved to a newly allocated page. Then the pointers in the parent hash
table are modified to reflect the changes. We optimize the space utilization at
this point if we discover that the buckets of all hash tables in one of the former
halves have a local depth of one (or are not present yet). In this case (compare
the node in the lower right corner of Figure 2) we do not need this node yet and
connect the buckets directly to the parent hash table.

5 Adapting ML-Hashing to Set-Valued Queries

Using a (non-hierarchical) hashing scheme in a naive way to evaluate a set-
valued query is quite straightforward. All the hashing keys employed in our

104 S. Helmer et al.

scheme are made up of signatures encoding sets. When processing a query we first
determine the signature of the query set via superimposed coding. Depending
on the type of the query (subset or superset query) we generate all supersets
or all subsets of the query signature’s prefix hg and initiate subqueries with all
of these generated sets. When we reach a bucket, we compare the full query
signature to all signatures stored there to decide whether to access a data item
or not. For our multi-level hashing scheme we generate the relevant supersets

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Fig. 4. Accessing a non-hierarchical hash table

and subsets of the query signa-
ture on demand on each level
of the data structure. If we
encounter buckets on our way
down we also compare the full
query signature to the signa-
tures stored in each bucket. Fig-
ure 3(c) shows this algorithm in
pseudocode (parameters for the
lookup function are the hashkey, a set consisting of the root node, current depth
0, and the local width of the root table). For insertions the same code as in
Figure 3(b) is used.

5.1 Example

00 01 10 11

00 01 10 11

0 1 0 1

Fig. 5. Accessing a multi-level hash ta-
ble

The following example demonstrates the
difference between non-hierarchical hash-
ing schemes and our multi-level approach.
Let A be a non-hierarchical hash table
with a global depth of four. We wish to
obtain the supersets of our query set Q
with signature sig(Q) = 001011101110.
The relevant prefix of sig(Q) is 0010, and
for A we must now generate all eight su-
perset prefixes, namely 0010, 0011, 0110,
1010, 0111, 1011, 1110, and 1111. Thus,
for a non-hierarchical hash table, we must
start eight subqueries to access three of
the seven buckets (see also Figure 4).

For our multi-level hashing approach,
on the other hand, we begin by generating
only the top level supersets 00, 01, 10, and 11 and then the superset 1 for the
hash table on the left-hand side of the second level, followed by the supersets
10 and 11 for the hash table on the right-hand side of the second level (see also
Figure 5). Thus, we need to generate only seven rather than eight supersets; at
first glance, this may not seem like huge savings, but the next section will show
that the savings grow when the tables are larger.

Indexing Set-Valued Attributes 105

5.2 Comparison of ML-Hashing with Regular Extendible Hashing

If skewed data is inserted into a hash table, the directory of a non-hierarchical
hashing scheme grows exponentially. This is bad news for the naive method of
generating all subset or supersets, as on average we have to generate

2�
g
2 � + 2�

g
2 	

2
(2)

signatures (including the original prefix of sig(Q)).1 For large values of g this is
clearly infeasible. The worst thing is that most of these signatures are generated
needlessly. Hash tables containing skewed data look a lot like the one depicted
in Figure 4. In this example sixteen entries share seven buckets, which means
that most of the subqueries will access the same buckets over and over again.

How do we cope with this situation? First of all, our MLH index can handle
skewed data much better than other dynamic hashing schemes resulting in a
much smaller directory. Summarizing the results from [9,10], in which we have
substantiated our claim experimentally, we can say that the main idea is to
unbalance the hierarchical directory of our hash table on purpose. We did this
because obviously we are unable to change the fact that skewed data has been
inserted into our hash table, meaning that we have many data items on our hands
whose hash keys share long prefixes. In order to distinguish these data items we
need a hash table with a large depth. However, we want to make sure that
other data items are not “punished” for this. Second, when generating subsets
and supersets of query signatures while evaluating set-valued queries, we do not
generate them en bloc for the whole prefix. Instead, we generate the appropriate
subsets and supersets for each level separately. On each level we have hash tables
with a maximum depth of n, so we have to generate 2� n

2 �+2� n
2 �

2 signatures on
average. We have to do this for each level we look at. Let us assume that the
largest prefix we distinguish in our MLH index is g. Then we generate

2�
n
2 � + 2�

n
2 	

2
· g

n
�+

2�
g mod n

2 � + 2�
g mod n

2 	

2
(3)

signatures in the average case.2

Formula (3) does not yet consider that we can have hash tables with different
depths on the same level in our directory. If the left page on the second level in
Figure 2 were to split again, this would result in two pages containing two hash
tables with depth three each. The other page on the second level is unaffected
by this, still keeping its four hash tables with depth two. So in the worst case
we have to generate signatures for each depth up to n on each level (except the
first; if g < n use Formula (2)):

1 Here we assume that on average half of the bits in a signature are set to 0 and half
are set to 1. This is the case if the parameters b and k (the size of a signature and
the number of set bits per hash value) have been optimized correctly.

2 If we traverse all levels of the directory.

106 S. Helmer et al.

2�
n
2 � + 2�

n
2 	

2
+

(
n∑

i=1

2�
i
2 � + 2�

i
2 	

2

)

· g − n

n
�+

g mod n∑

i=1

2�
i
2 � + 2�

i
2 	

2
(4)

For a closed-form formula of (4) see our technical report [8]. Figure 6 com-
pares the number of generated signatures for our hierarchical directory versus a
non-hierarchical directory. As can be clearly seen, the curves for the hierarchi-
cal directories break away at some point from the exponentially growing curve
for non-hierarchical directories. This happens when the top-level directory page
reaches n, the maximum depth of the hierarchical hash tables.

In summary we can say that our MLH index is suited better for set-valued
retrieval than other hash-based indexes, because it does not need exponential
running time for generating the subqueries and it is able to cope better with
data skew.

6 Summary of Experimental Evaluation

Due to space constraints, we can only give a summary of the experimental eval-
uation here. For a detailed description see [8].

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 10 20 30 40 50 60

no
 o

f g
en

er
at

ed
 b

it
st

rin
gs

global depth

Average number of generated bit strings

non-hierarchical
n = 30
n = 20
n = 10

n = 5

Fig. 6. Reducing the number of generated sets

MLH clearly shows the
best behavior among all
the index structures we
compared it to: a se-
quential signature scan
[12], an extensible sig-
nature hashing scheme
[11], and two S-tree ap-
proaches [20] (one with a
linear splitting and one
with a quadratic split-
ting algorithm). It is best
both in terms of the
number of page accesses
and total running time
when evaluating subset
queries. While for uni-
formly or mildly skewed
data, ESH achieves a performance comparable with that of MLH, the draw-
backs of ESH become apparent when the data is heavily skewed: in that case,
ESH suffers due to directory growth and the exponential cost of generating sub-
queries. The scanning methods (SIGSCAN and SETSCAN) which have mainly
been added as a reference are not able to compete with MLH either. The big
surprise is the hierarchical S-tree index structure. In contrast to the results pre-
sented in [20] we show that the tree-based access methods are not suitable for
indexing set-valued attributes, because they do not scale - the prevalence of all-1

Indexing Set-Valued Attributes 107

nodes nullifies the inner nodes’ filtering capacity. The superiority of hash-based
schemes for equality queries does not come as a big surprise, since point queries
are the strong point of hash table approaches. We have demonstrated that even
in terms of index size, MLH copes extremely well with skewed data: unlike ESH
the directory does not grow exponentially. Instead, the growth is linear, much
as for lightly skewed or uniformly distributed data.

7 Conclusion

We presented the first secondary-storage, hash-based access method for indexing
set-valued attributes that is able to outperform other index structures for set re-
trieval. Until now the fast directory growth of hash-based schemes has prevented
their use for evaluating queries with subset and superset queries, as the number
of subqueries that had to be submitted was exponential in the size of the direc-
tory. Our approach generates a number of subqueries linear in the global depth
of the hash table. We demonstrated the competitiveness of our index structure
analytically (and experimentally).

Although superimposed coding and dynamic hashing schemes have attracted
some attention when they first appeared, they were not able to make their way
into industrial strength database systems. One of the main reasons was their
susceptibility to skewed data, which robust, data-driven index structures like B+-
trees were able to handle much better. Our multi-level hashing scheme represents
an interesting compromise between data-driven and space-driven data structure
and could renew the interest in hash-based, superimposed coding schemes.

References

1. Bertino, E., Kim, W.: Indexing techniques for queries on nested objects. IEEE
Trans. on Knowledge and Data Engineering 1(2), 196–214 (1989)

2. Cattell, R. (ed.): The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
San Francisco (1997)

3. Deppisch, U.: S-tree: A dynamic balanced signature index for office retrieval. In:
Proc. of the 1986 ACM Conf. on Research and Development in Information Re-
trieval, Pisa (1986)

4. Fagin, R., Nievergelt, J., Pippenger, N., Strong, H.R.: Extendible hashing – a fast
access method for dynamic files. ACM Transactions on Database Systems 4(3),
315–344 (1979)

5. Faloutsos, C., Christodoulakis, S.: Signature files: An access method for documents
and its analytical performance evaluation. ACM Transactions on Office Informa-
tions Systems 2(4), 267–288 (1984)

6. Grobel, T., Kilger, C., Rude, S.: Object-oriented modelling of production orga-
nization. In: Tagungsband der 22. GI-Jahrestagung, Karlsruhe, September 1992,
Springer, Heidelberg (1992)

7. Hellerstein, J.M., Pfeffer, A.: The RD-tree: An index structure for sets. Technical
Report 1252, University of Wisconsin at Madison (1994)

108 S. Helmer et al.

8. Helmer, S., Aly, R., Neumann, T., Moerkotte, G.: Indexing Set-Valued At-
tributes with a Multi-Level Extendible Hashing Scheme. Technical Report BBKCS-
07-01, Birkbeck, University of London, http://www.dcs.bbk.ac.uk/research/
techreps/2007/

9. Helmer, S., Neumann, T., Moerkotte, G.: A robust scheme for multilevel
extendible hashing. Technical Report 19/01, Universität Mannheim (2001),
http://pi3.informatik.uni-mannheim.de

10. Helmer, S., Neumann, T., Moerkotte, G.: A robust scheme for multilevel extendible
hashing. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 220–227.
Springer, Heidelberg (2003)

11. Helmer, S., Moerkotte, G.: A performance study of four index structures for set-
valued attributes of low cardinality. VLDB Journal 12(3), 244–261 (2003)

12. Ishikawa, Y., Kitagawa, H., Ohbo, N.: Evaluation of signature files as set access
facilities in OODBs. In: Proc. of the 1993 ACM SIGMOD, Washington, pp. 247–
256. ACM Press, New York (1993)

13. Kemper, A., Moerkotte, G.: Access support relations: An indexing method for
object bases. Information Systems 17(2), 117–146 (1992)

14. Knuth, D.E.: The Art of Computer Programming. In: Sorting and Searching, Ad-
dison Wesley, Reading, Massachusetts (1973)

15. Larson, P.A.: Linear hashing with partial expansions. In: Proc. of the 6th VLDB
Conference, Montreal, pp. 224–232 (1980)

16. Maier, D., Stein, J.: Indexing in an object-oriented database. In: Proc. of the IEEE
Workshop on Object-Oriented DBMSs, Asilomar, California (September 1986)

17. Morzy, M., Morzy, T., Nanopoulos, A., Manolopoulos, Y.: Hierarchical bitmap
index: An efficient and scalable indexing technique for set-valued attributes. In:
Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003.
LNCS, vol. 2798, pp. 236–252. Springer, Heidelberg (2003)

18. Stonebraker, M., Moore, D.: Object-Relational DBMSs: The Next Great Wave.
Morgan Kaufmann, San Francisco (1996)

19. Tousidou, E., Bozanis, P., Manolopoulos, Y.: Signature-based structures for objects
with set-valued attributes. Information Systems 27(2), 93–121 (2002)

20. Tousidou, E., Nanopoulos, A., Manolopoulos, Y.: Improved methods for signature-
tree construction. The Computer Journal 43(4), 301–314 (2000)

21. Will, M., Fachinger, W., Richert, J.R.: Fully automated structure elucidation - a
spectroscopist’s dream comes true. J. Chem. Inf. Comput. Sci. 36, 221–227 (1996)

22. Xie, Z., Han, J.: Join index hierarchies for supporting efficient navigation in object-
oriented databases. In: Proc. Int. Conf. on Very Large Data Bases (VLDB), pp.
522–533 (1994)

23. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files
for text indexing. Technical Report CITRI/TR-95-5, Collaborative Information
Technology Research Institute (CITRI), Victoria, Australia (1995)

http://www.dcs.bbk.ac.uk/research/techreps/2007/
http://www.dcs.bbk.ac.uk/research/techreps/2007/
http://pi3.informatik.uni-mannheim.de

Adaptive Tuple Differential Coding

Jean-Paul Deveaux, Andrew Rau-Chaplin, and Norbert Zeh

Faculty of Computer Science, Dalhousie University, Halifax NS Canada
jpdeveaux@starcatcher.ca, arc@cs.dal.ca, nzeh@cs.dal.ca

Abstract. It is desirable to employ compression techniques in Rela-
tional OLAP systems to reduce disk space requirements and increase
disk I/O throughput. Tuple Differential Coding (TDC) techniques have
been introduced to compress views on a tuple level by storing only the
differences between consecutive ordered tuples. These techniques work
well for highly regular data in which the differences between tuples are
fairly constant but are less effective on real data containing either skew or
outliers. In this paper we introduce Adaptive Tuple Differential Coding
(ATDC), which employs optimization techniques to analyze blocks of tu-
ples to detect large tuple differences, with the purpose of isolating them
to minimize their negative effect on the compression of neighbouring tu-
ples. Our experiments show that this new algorithm provides an increase
in compression ratio of 15–30% over TDC on typical real datasets.

1 Introduction

Many types of information systems, particularly Relational On-Line Analytical
Processing (ROLAP) systems, must store ordered multi-dimensional views on
disk. Data compression is often critical to their success due to the massive size
of the views involved. A properly implemented compression algorithm can save
disk space and reduce the overall amount of time required to answer queries, as
long as the overhead required to compress and decompress the data is less than
the reduction in disk I/O time resulting from the compression.

In order to use compression in a live database environment, compression and
decompression has to be fast, and the basic database functionality (insert, query,
update in place) has to be retained. This rules out standard general-purpose
compression techniques, as they are too computationally expensive and their
strength lies in compressing large files rather than, say, individual disk blocks.

Tuple Differential Coding (TDC) techniques initially introduced by Ng and
Ravishankar [6] work by storing differences between consecutive tuples and pro-
vide view compression that is often superior to traditional compression tech-
niques both in terms of compression ratio achieved and compression and decom-
pression time required. However, while TDC methods perform well on databases
where the gaps between successive tuples are reasonably small and constant,
they often deteriorate on real data containing either skew or outliers. For an
overview of compression techniques as applied to information systems, see [3,5].

Given a sequence of n tuples T = [t1, . . . , tn] to be encoded, TDC breaks it
into subsequences, each of which is stored in a separate block. The subsequence

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 109–119, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

110 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

encoded tuple differences

lh
h

tu
pl

e
di

ff
. b

it
le

ng
th

lk

encoded tuple differences

tu
pl

e
di

ff
. b

it
le

ng
th k

lili–1 bo
un

da
ry

 tu
pl

e

encoded tuple differences

tu
pl

e
di

ff
. b

it
le

ng
th

(a) TDC: Similar
differences

(b) TDC: Dissimilar
differences

(c) ATDC: Effect of a
boundary tuple

Fig. 1. Encoded tuple difference values where the shaded area represents wasted space

T [a, b] = [ta, . . . , tb] stored in a given block is encoded as follows: For a tuple
tj , let φ(tj) be its “standard” encoding discussed in Section 2.1, let Δ(tj) =
φ(tj) − φ(tj−1), let lj = �log2(Δ(tj) + 1)�, and let l∗ be the number of bits
required to encode any tuple using encoding φ. Then the sequence T [a, b] is stored
as the sequence [φ(ta), Δ(ta+1), . . . , Δ(tb)], plus a constant amount of meta-data
discussed later. The φ(tj) value is stored as a length-l∗ bit string. Each of the
Δ(tj) values is stored using la+1,b = maxa+1≤j≤b lj bits. This saves (b− a)(l∗ −
la+1,b) bits of space compared to storing values φ(ta), . . . , φ(tb) explicitly. The
number of tuples stored in a block varies and depends on the number of bits
needed to encode the tuples. In particular, tuples are added to blocks one by
one. If so far, tuples ta, . . . , tj have been added to the current block, the next
tuple tj+1 is added to the same block if l∗ + (j + 1− a)la+1,j+1 is no more than
the number of bits that fit in a block; otherwise, tj+1 starts a new block.

Since the number of bits used to store the difference values in each block is
determined by the largest difference value in the block, TDC performs best when
the differences Δ(tj) in a block are small and do not vary much; more precisely,
when the la+1,b value for the sequence T [a + 1, b] is by only a small constant
factor α > 1 greater than the average number of bits required to encode these
difference values: la+1,b ≤ α ·

∑b
j=a+1 lj/(b− a).

This is illustrated in Figure 1(a). In this figure, the largest difference Δ(th)
occurs in position h, forcing us to encode all differences in T [a + 1, b] using
la+1,b = lh bits. The shaded area represents the number of bits wasted by storing
the differences as fixed-length bitstrings compared to encoding each value Δ(tj)
in lj bits. However, since most encoded tuple difference values in this block
require close to lh bits to be encoded, padding them to length lh does not waste
much space in this case. Figure 1(b), on the other hand, shows a scenario where
a single difference value (at position k) forces us to use significantly more than
∑b

j=a+1 lj bits to encode the difference values in the block. As a result, the
wasted bits represented by the grey area now account for a major portion of the
space used to store the difference values in the block.

This phenomenon should not be unexpected in a dataset made up of real (as
opposed to synthetic) data. Real data will contain clusters and other patterns
not always found in synthetic datasets. Large tuple differences are representative
of “gaps” in real data and should at least be tolerated, if not anticipated.

Adaptive Tuple Differential Coding 111

In this paper we introduce Adaptive Tuple Differential Coding (ATDC), which
employs greedy optimization techniques to analyze blocks of tuples to detect
large tuple differences, with the purpose of isolating them to minimize their neg-
ative effect on the compression of neighbouring tuples. Our experiments show
that ATDC provides an increase in compression ratio of 15–30% over standard
TDC on typical real datasets, depending on the distribution of the data in the
domain space. Additionally, the ATDC algorithm proves to be very robust in
situations where there are large gaps due to data skew or outliers. Our experi-
ments show that a good implementation of the ATDC algorithm does not incur
any performance penalty compared to reading and writing uncompressed data
and compared to a variant of TDC called XTDC [5]. Given the increasing gap
between processor speeds and disk access rates, we believe that the savings in
I/O-time obtained using the ATDC algorithm will outweigh the investment in
compression and decompression time in the near future, thus making ATDC a
simple and effective tool for increasing the performance of modern information
systems that store relational tables on disk.

Section 2 discusses the ATDC algorithm. Section 3 discusses our experimental
results. Concluding remarks are given in Section 4.

2 The ATDC Algorithm

As we have already done for the TDC algorithm in the introduction, we discuss
the ATDC algorithm in the context of storing a sequence T = t1, . . . , tn of tuples
in a sequence of blocks so that each block can be decoded in isolation.

Structurally, ATDC follows the basic framework of the TDC method. The
tuples in the given sequence T = [t1, . . . , tn] are converted into integers φ(ti)
using an encoding function φ. Then the sequence T is divided into subsequences
T1, . . . , Tk, where Ti = [tai , . . . , tbi], 1 = a1 < . . . < ak ≤ bk = n, and bi =
ai+1 − 1, for 1 ≤ i < k. We call the sequences T1, . . . , Tk chunks. The first
tuple tai in each chunk Ti is stored explicitly using its encoding φ(tai), while
all subsequent tuples tj in Ti are represented by their difference values Δ(tj).
We call tai the boundary tuple of Ti. Each chunk Ti is stored as the sequence
[ni, l̄i, φ(ai), Δ(tai+1), . . . , Δ(tbi)], where ni = bi− ai + 1 is the number of tuples
in Ti and l̄i = lai+1,bi ; φ(ai) is stored as a length-l∗ bit string and each Δ(tj) is
stored as a length-l̄i bit string.

The key difference between TDC and ATDC is the definition of chunks and
their association with physical disk blocks. TDC declares a tuple tj to be the
boundary tuple of a new chunk Ti whenever adding tj to Ti−1 would increase
the number of bits required to encode Ti−1 beyond the capacity of a disk block.
Each disk block then stores one chunk.

ATDC on the other hand chooses boundary tuples to be those tuples tj whose
difference values Δ(tj) are significantly higher than those of the tuples in their
vicinity, as these are exactly the tuples that negatively affect the compression
ratio of TDC. (We describe the exact choice of these tuples in Section 2.2.) The
space savings resulting from this strategy are visualized in Figure 1(c), which

112 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

shows the same sequence as Figure 1(b), but encoded using ATDC. By storing
tuple tk as a boundary tuple, we can store the tuples preceding and succeeding
tk in significantly fewer bits than using TDC. The penalty we pay is that we
need to store φ(tk) explicitly, as well as values ni and l̄i for the chunk Ti starting
with boundary tuple tk. Let cboundary be the number of bits required to store the
values ni, l̄i, and φ(tk). It is worthwhile to make tk a boundary tuple if the space
savings for storing the difference values before and after tk exceed cboundary− lk.

As a result of choosing boundary tuples as described above, chunks may vary
greatly in size, and we may end up storing more than one chunk in each disk
block. The boundary tuples in all chunks in a disk block are encoded using the
same number of bits, as are the tuple differences in each chunk. The number of
bits used to encode tuple differences in different chunks, however, may differ.

More precisely, in order to fill disk blocks completely and in order to avoid
loading the whole data set to be encoded into memory, we apply the following
strategy to pack the data into blocks: Assuming that the blocks we have filled
so far store tuples t1, . . . , ta−1, we load the next m = b− a + 1 tuples ta, . . . , tb
into memory, encode these tuples using one of the encoding functions discussed
in Section 2.1 and apply one of the boundary tuple selection algorithms from
Section 2.2 to this sequence. We then iterate over the sequence of tuples and
pack them into the current physical block until it is full. For each tuple tj , if it
is marked as a boundary tuple, we add the meta-information of its chunk and
φ(tj) to the physical block. For any other tuple tj , we encode Δ(tj) using l̄i bits,
where Ti is the chunk containing tj .

We choose the number m of tuples to be packed into a disk block so that we
expect that their encoding requires at least the number of bits that can fit into
a block. Thus, we may end up storing only a subsequence [ta, . . . , tb′], b′ ≤ b, of
tuples in the current block. Tuples tb′+1, . . . , tb are reconsidered when filling the
next block. On the rare occasion when encoding tuples ta, . . . , tb uses less than a
block-full of space, we double the number of tuples we consider and restart the
whole packing procedure for the current block.

The following two subsections discuss the two main factors affecting com-
pression ratio and compression/decompression time: the choice of the encoding
function φ and the selection of boundary tuples.

2.1 Encoding Tuples

We consider two encoding functions: a mixed-radix (MR) and a bit-shift (BS)
encoding. Using the MR-encoding, a tuple t = (a1, . . . , ad) is encoded as

φ(a1, . . . , ad) =
d∑

i=1

⎛

⎝ai

d∏

j=i+1

card(j)

⎞

⎠ ,

where card(j) denotes the cardinality of dimension j (ie, the values in this di-
mension are integers between 0 and card(j) − 1). Using the BS-encoding, each
value aj is encoded using �log2 card(j)� bits, and the value of φ(a1, . . . , ad) is
the concatenation of these bit strings.

Adaptive Tuple Differential Coding 113

The advantage of the MR-encoding is that it uses the minimum number of
bits necessary to encode all possible tuple values in the given view. It is computa-
tionally expensive to decode, however, as computing φ−1(e) incurs one division
per dimension. An encoding using the BS-encoding can be expected to waste
half a bit per dimension on average, but its inverse is extremely fast to compute
using simple bit-shift operations. We investigate the impact of this trade-off on
compression ratio and compression/decompression time in our experiments.

2.2 Selection of Boundary Tuples

The key step in the ATDC algorithm is the selection of boundary tuples. We de-
scribe this process as if we were to apply it to the whole sequence T = [t1, . . . , tn].
Recall, however, that we apply it only to subsequences [ta, . . . , tb] expected to
be long enough to fill a disk block in encoded form.

We define the set of boundary tuples incrementally, starting with t1 as the
only initial boundary tuple. Given the current sequence of boundary tuples, we
inspect subsequences T [a, b] that currently do not contain any boundary tuples,
choose a candidate tuple tj , a ≤ j ≤ b, in each such sequence and decide whether
making tj a boundary tuple reduces the amount of space necessary to encode
T [a, b]; if so, we add tj to the set of boundary tuples.

We present two algorithms that choose subsequences T [a, b] and the candidate
boundary tuples tj in these subsequences differently. Both algorithms satisfy the
condition that encoding T [a, b] takes (b − a + 1) · lj bits if tj is not chosen as a
boundary tuple, and (j− a) · la,j−1 + cboundary + (b− j) · lj+1,b bits if tj is chosen
as a boundary tuple. Thus, choosing tj as a boundary tuple reduces the amount
of space required to store the sequence T [a, b] if and only if (j − a) · la,j−1 +
cboundary + (b − j) · lj+1,b < lj · (b − a + 1). In this case, we say that tuple tj
satisfies the boundary tuple condition with respect to sequence T [a, b].

Top-down boundary tuple selection. The tuples that are most likely to decrease
the cost of storing subsequences of T when chosen as boundary tuples are those
whose tuple differences are large relative to the tuple differences of their neigh-
bours. Our first algorithm, called the top-down boundary tuple selection algo-
rithm or Top-Down, is based on this observation and can be described recur-
sively: Initially, let t1 be the only boundary tuple and invoke Top-Down on the
sequence T [2, n]. Given a sequence T [a, b], let i be the index such that a ≤ i ≤ b
and li = maxa≤j≤b lj. If tuple ti satisfies the boundary tuple condition w.r.t. se-
quence T [a, b], we add ti to the set of boundary tuples and recurse on sequences
T [a, i− 1] and T [i + 1, b]. Otherwise, we choose no boundary tuples in T [a, b].

When implemented naively, this algorithm takes O(n2) time. Next we describe
a faster method to implement the Top-Down algorithm, which runs in O(n)
time. The key is to store the entire tuple sequence in a Cartesian tree [8]. This
is a binary tree in which each node has a key and a priority. The tree is a binary
search tree w.r.t. the keys, that is, for every node, the keys in its left subtree are
less than the key of the node itself, which in turn is less than the keys in the
right subtree; and it is heap-ordered w.r.t. the priorities, that is, no node has a

114 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

20 18 12 11 15 6 6 35 16 22 27 15 6 19 10

20

18

12

11

15

6

6

35

16

22

27

15

6

19

10

Fig. 2. Example of a Cartesian tree. The values in the boxes denote tuple differences.

greater priority than its parent. In the context of boundary tuple selection, the
key of a tuple tj is its position j in the tuple sequence; its priority is the number
of bits lj required to store Δ(tj) (see Figure 2).

A Cartesian tree for a sequence of elements sorted by their keys can be built
in linear time [1]. Every node v in the tree can be seen as representing the
subsequence Tv consisting of all tuples stored at descendant nodes of v. The
construction algorithm is easily augmented to compute the size of Tv for every
node v and store this size with v. Once the tree is given, implementing procedure
Top-Down in O(n) time is straightforward. In particular, testing whether a
node v satisfies the boundary tuple condition translates into the condition |Tv| ·
lv > |Tx| · lx + cboundary + |Ty| · ly, where x and y are the children of v in T .

Bottom-up boundary tuple selection. The problem with the top-down approach
is that it is short-sighted in nature: by deciding that a tuple tj is an unsuitable
choice for a boundary tuple, we do not consider any further tuples in its subtree.
It may be, however, that tj by itself is not a good boundary tuple, while choosing
tj together with additional tuples in its subtree leads to significant compression.

Our second tuple selection algorithm, the bottom-up boundary tuple selection
algorithm or Bottom-Up, shown in Algorithm 1, tries to address this weakness.
In order to choose the boundary tuples in a subsequence Tv represented by a node
v, it first considers v’s left and right subtrees in isolation and chooses boundary
tuples for the subsequences represented by these trees. It then considers the
subsequence T [a, b] of Tv, where a − 1 and b + 1 are the indices of the last
boundary tuple chosen in the left subtree and the first boundary tuple chosen in
the right subtree, respectively. If v satisfies the boundary tuple condition w.r.t.
sequence T [a, b], it is added to the sequence of boundary tuples.

In procedure Bottom-Up, not choosing a node v as a boundary tuple does
not prevent us from choosing boundary tuples in v’s subtree, as was the case in
Top-Down. The down-side of Bottom-Up is that it always traverses the whole
tree, while Top-Down can be expected to stop recursing after visiting only a
small portion of the tree. Our experiments investigate the resulting trade-off
between compression time and compression ratio.

Adaptive Tuple Differential Coding 115

Algorithm 1. Bottom-Up(v): Returns a triple (B, lp, ls), where B is a list of
boundary tuple indexes in Tv, lp is the number of bits required to encode each
tuple difference up to the first boundary tuple in B, and ls is the number of bits
required to encode each tuple difference after the last boundary tuple in B

1 if v has a left child
2 then (L, lp,l, ls,l) ← Bottom-Up(left(v))
3 else (L, lp,l, ls,l) ← (∅, 0, 0)
4 if v has a right child
5 then (R, lp,r, ls,r) ← Bottom-Up(right(v))
6 else (R, lp,r, ls,r) ← (∅, 0, 0)
7 if L = ∅
8 then a ← index of the leftmost tuple in Tv

9 else a ← (last entry in L) + 1
10 if R = ∅
11 then b ← index of the rightmost tuple in Tv

12 else b ← (first entry in R) − 1
13 if v satisfies the boundary tuple condition w.r.t. sequence T [a, b]

� This is easily checked using indices a, b, values ls,l and lp,r, and lv = priority(v).
14 then return the triple (B, lp,l, ls,r), where B is the concatenation of L, a new list

node storing the index of v, and R.
15 else if L = ∅
16 then lp ← lv
17 else lp ← lp,l

18 if R = ∅
19 then ls ← lv
20 else ls ← ls,r

21 return the triple (B, lp, ls), where B is the concatenation of L and R.

3 Experimental Analysis

We evaluated the performance of the ATDC algorithm on a collection of different
types of datasets, both in terms of the compression ratios achieved and the
time required for compression and decompression. Both the Bottom-Up and
Top-Down boundary tuple selection algorithms were included in the tests, as
were the bit-shifting and mixed-radix encoding techniques. The results of these
tests were compared with tests run using an implementation of the XTDC variant
of TDC proposed in [5], as well as a Bit Compression algorithm [6].

We conducted all our experiments on an Intel P4 2.8GHz processor with
512KB L2 cache and 1GB Dual-channel DDR333 RAM on a motherboard using
the Intel 875P chipset and equipped with a 3ware 7506-8 parallel ATA RAID
controller and 3 Maxtor MaxLine Plus II 250GB drives (ATA/133) in RAID
Level 5 configuration. The operating system was Debian Linux 2.6.8.

The compression achieved by the Bit Compression algorithm served as the
baseline against which the compression ratios of the XTDC and ATDC algo-
rithms were compared. Also, as with the tests conducted in [5], we considered
only the attribute dimensions in the compression ratios: since the measure di-
mensions could have been of some non-categorical datatype, it could not be
safely assumed that they could be compressed using the same technique that
was applied to the attribute dimensions; so we decided to store them explicitly.

The timing tests we performed on the datasets consisted of measuring the
round-trip compression time (RTT). The RTT consists of compression time

116 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

and decompression time. The compression time represents the amount of time
required to compress the tuples from their normalized form into a set of bound-
ary tuples and tuple difference values and write them to disk. The decompression
time refers to the amount of time required to read every boundary tuple and
tuple difference value from the disk and convert them back to normalized tuple
form. The results of these timing tests include the read and write times for the
raw datasets that consisted of 32-bit integers, to show that even with virtually
unlimited storage space, there are still speed advantages to using compression.

The uniform and skewed synthetic datasets used in our tests were created
using the OLAP data generator described in [2]. Real data was extracted from
the HYDRO1K database developed by the U.S. Geological Survey [7].

3.1 ATDC vs. GZIP Compression

Our first experiment compares the performance of ATDC to that of GZIP, a
popular compression tool based on the Lempel-Ziv compression scheme.

Table 1 represents a comparison between GZIP compression and ATDC com-
pression on a selection of the datasets used in this project. It should be noted
that the compression ratios shown in this table are relative to the size of the
original database file and not to the Bit-compressed version of the file as in
the other experiments documented in this paper. The reason is that the GZIP
algorithm did not achieve any compression whatsoever on the Bit-compressed
version of the database, due to the fact that packing tuples tends to eliminate
the long common sequences in the input that make GZIP effective.

As we can see, ATDC achieves compression ratios that are roughly twice as
high as those achieved by GZIP on the same dataset. Not only are the ATDC
compression results much better, the ATDC compression algorithm compresses
data in approximately 1/4th the time required by GZIP.

3.2 ATDC vs. TDC Compression

Our final set of experiments compares the performance of ATDC with that of
the XTDC algorithm. We consider the standard bit compression [6] to be the
baseline against which we compare our compression ratios. To demonstrate that
compression in general can lead to significant overall performance improvements,
we also include round-trip time measurements for reading and writing the raw
tuple sequence without even bit compressing it.

Table 1. GZIP compression vs ATDC compression

Database GZIP Size GZIP Ratio ATDC Size ATDC Ratio

Uniform Synthetic 123,749,391 5.818:1 57,230,264 12.581:1
Skewed Synthetic (1.0) 59,534,163 9.406:1 22,217,928 25.205:1
HYDRO1K-Africa 131,143,020 8.232:1 75,554,360 14.228:1
HYDRO1K-North America 96,134,225 8.271:1 62,448,276 12.732:1

Adaptive Tuple Differential Coding 117

Unpack Read Time Unpack Process Time Pack Write Time Pack Process Time Compression Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
R, Bottom

-Up ATDC

BS, Bottom
-Up ATDC

M
R, Top-Down ATDC

BS, Top-Down ATDC

M
R, XTDC

BS, XTDC

Bit
Raw

 1

 1.5

 2

 2.5

 3

 3.5

R
ou

nd
-T

rip
 T

im
e

(s
ec

on
ds

)

C
om

pr
es

si
on

 R
at

io

 0

 5

 10

 15

 20

 25

 30

Hilbert, Bottom
-Up ATDC

M
R, Bottom

-Up ATDC

BS, Bottom
-Up ATDC

Hilbert, Top-Down ATDC

M
R, Top-Down ATDC

BS, Top-Down ATDC

Hilbert, XTDC

M
R, XTDC

BS, XTDC

Bit
Raw

 2

 4

 6

 8

 10

 12

 14

R
ou

nd
-T

rip
 T

im
e

(s
ec

on
ds

)

C
om

pr
es

si
on

 R
at

io

(a) (b)

Fig. 3. Average round-trip times and compression ratios: (a) HYDRO1K Africa
dataset, n = 29, 987, 509 tuples. (b) Synthetic data, n = 20, 000, 000 tuples. Zipf skew
z = 1.5.

We tested these methods on a range of datasets. Due to lack of space, we
report results on only two data sets here: the Africa data set from the HYDRO1K
database [7] (Figure 3(a)) and a synthetic data set skewed with Zipf factor 1.5
(Figure 3(b)). The behaviour of the algorithms on other datasets is similar.

For the Africa dataset, we observe that all compression methods significantly
decrease the round-trip time compared to the raw dataset. All our adaptive
methods produce significantly higher compression ratios than the XTDC al-
gorithm, with the bottom-up approach outperforming the top-down approach
and the mixed-radix encoding leading to better compression ratios than the bit-
shift approach. This aligns well with our expectations about the performance
of these algorithms. Also in line with our expectations, the higher compression
ratio in both cases is bought at the expense of increased round-trip times. In
the case of the bottom-up algorithm, the time is lost during the compression
phase; the mixed-radix encoding requires more time to decode. Note, however,
that even using the bottom-up algorithm in combination with bit-shift encod-
ing, the round-trip time is only slightly higher than using bit compression and
XTDC. For the top-down algorithm and bit-shift encoding, the round-trip time
is slightly lower than using bit compression and XTDC. In general, in terms of
compression ratio bottom-up ATDC is superior; however, top-down ATDC may
be preferred in applications where the round-trip compression time is critical.

For our skewed data set, the round-trip time improvement over the raw tuple
sequence is less pronounced than on the Africa data set; the mixed-radix meth-
ods even lead to significantly higher round-trip times, due to high decompression
cost. Consistent with the behaviour on the Africa dataset, the bit-shift compres-
sion methods produce round-trip times that are competitive with bit compression

118 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

and XTDC but, due to the skew, now lead to significantly improved compression
ratios. It is interesting to note that, on this data set, there seems to be little
gain in compression ratio when using mixed-radix instead of bit-shift encoding.
Since the mixed-radix encoding leads to a significantly increased decompression
cost, it therefore cannot be considered useful for compressing this type of data.

Figure 3(b) also includes the compression ratios and compression times when
applying our ATDC variants to a tuple sequence based on a Hilbert space en-
coding, which has been shown to be effective in improving query time in parallel
OLAP query processing [4]. Although we used an efficient Hilbert implementa-
tion that was largely based on simple bit-shifts, the increased processing cost had
a detrimental effect on round-trip times, increasing it even beyond that incurred
by the mixed-radix methods. It is interesting to note, however, that the compres-
sion ratio does not deteriorate; on the contrary, the Hilbert encoded sequences
lead to the highest observed compression ratios for each of the XTDC, top-down
ATDC, and bottom-up ATDC algorithms. Thus, our compression method can be
applied effectively in combination with Hilbert encodings in applications where
the cost required for computing the Hilbert encoding is justified. In particular,
our ATDC method is potentially a useful tool for reducing the amount of data
exchanged between processors in parallel processing of OLAP queries.

4 Conclusion

We have demonstrated that the use of the ATDC algorithm has the poten-
tial of providing improved compression over existing algorithms on tuple-based
statistical datasets. The algorithm was shown to be effective and robust on
synthetically-generated datasets, both uniform and skewed, as well as on real-
world datasets. In particular ATDC using a bit-shift encoding achieves both
high compression ratios and low round-trip compression times. Furthermore, it
must be emphasized that, as the gap between processor and I/O speeds grows,
optimizing compression methods like ATDC, which may be encapsulated in the
storage layer, will become increasingly appealing.

References

1. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms 57,
75–94 (2005)

2. cgmLab: OLAP data generator (2000), http://cgmlab.cs.dal.ca/downloadarea/
3. Chen, Z., Seshadri, P.: An algebraic compression framework for query results. In:

ICDE, pp. 177–188 (2000)
4. Dehne, F., Eavis, T., Rau-Chaplin, A.: Parallel multi-dimensional ROLAP indexing.

In: Proc. Int’l Symposium on Cluster Computing and the Grid, 2003, pp. 86–93
(2003)

http://cgmlab.cs.dal.ca/downloadarea/

Adaptive Tuple Differential Coding 119

5. Liang, B.: Compressing data cube in parallel OLAP systems. Master’s thesis, Car-
leton University (2004)

6. Ng, W.K., Ravishankar, C.V.: Block-oriented compression techniques for large sta-
tistical databases. Knowledge and Data Engineering 9(2), 314–328 (1997)

7. US Geological Survey. HYDRO1k elevation derivative database (2003),
http://edcdaac.usgs.gov/gtopo30/hydro/index.asp

8. Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23,
229–239 (1980)

http://edcdaac.usgs.gov/gtopo30/hydro/index.asp

Space-Efficient Structures for Detecting Port

Scans

Ali Şaman Tosun�

Department of Computer Science
University of Texas at San Antonio

tosun@cs.utsa.edu

Abstract. Port scans aim to detect the services running on a computer
to find vulnerabilities of a computer. Although detecting port scans us-
ing a database system is possible, it requires too much space and com-
putational overhead and is not feasible under high load. In this paper,
we propose space-efficient structures to detect parameterized versions of
port scans. We investigate both exact and approximate structures for the
problems. Proposed schemes are lightweight, require low space overhead,
low computational overhead and can handle high load.

1 Introduction

Port scanning is the process of connecting to TCP and UDP ports on the tar-
get system to determine what services are running or are in a listening state.
Identifying listening ports is critical to determining the services running, and
consequently the vulnerabilities present. Many protocols and applications have
reserved port numbers. For example, http protocol uses port 80, Microsoft SQL
Server uses port 1433 and MySQL uses port 3306. Each machine has 216 ports
and by scanning through all the ports and testing whether any applications
are running on these ports reveals a lot about the system. Many port scan-
ning utilities are available. Utilities for Unix/Linux include strobe, netcat and
nmap. Utilities for windows include SuperScan, WinScan and ipEye. Given
the number of tools available for port scanning, detecting port scans is im-
portant. A connection between two machines can be identified using 5-tuple
(IPsrc, Portsrc, IPdest, Portdest, T ime) where IPsrc is the IP address of the ma-
chine initiating the connection, Portsrc is the port number used for the con-
nection by the initiating machine. IPdest is the IP address of the destination
machine, Portdest is the port number for the destination machine and T ime is
the timestamp of the connection. This 5-tuple can be used to detect portscans.

We address the following problems to detect portscans in this paper. We repre-
sent the problems with parameters that can be set by the system administrators.

– PORT-ALERT: alert when there are connection attempts to ≥ τ ports of a
machine

� Partially supported by Center for Infrastructure Assurance and Security at UTSA.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 120–129, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Space-Efficient Structures for Detecting Port Scans 121

– PORT-NODE-ALERT: alert when there are connection attempts to ≥ τ
ports of a machine from ≤ κ nodes.

– PORT-NODE-TIME-ALERT: alert when there are connection attempts to
≥ τ ports of a machine from ≤ κ nodes in ≤ θ time.

PORT-ALERT problem only counts if at least τ ports were used in connection
attempts. It does not distinguish the number of machines used in connection
attempts. PORT-NODE-ALERT problem also counts the number of distinct
machines used in connection attempts. Although distributed port scans are pos-
sible, too many connection attempts from fewer nodes indicate a port scan.
PORT-NODE-ALERT problem does not include the time dimension. Connec-
tion attempts in a short period indicate a port scan. So, we include the time
threshold θ in problem PORT-NODE-TIME-ALERT.

Port scans can be detected by inserting all the relevant information into a
database and by querying the database. However, this requires too much space
and computational overhead and is not feasible under high load. Using the 5-
tuples (IPsrc, Portsrc, IPdest, Portdest, T ime) approach for connections requires
continuous updates to the database, continuous queries and more than 10 bytes
storage per tuple.

Port scan detection can be implemented at the entry point of the network and
needs to handle all the connections to all the machines on the network. To have
a practical system the following properties are desirable.

– Low space requirement: Since too many connections are handled, space re-
quirement per connection should be low. Attacker can send lots of data filling
the data structures. So, data structures with constant space requirement or
sublinear space requirement such as O(log n) or O(log log n) are desirable.

– Low computational overhead: The data structure needs to be updated real-
time. To handle all the connections computational overhead per connection
should be low.

2 Related Work

In this section, we discuss related work on bitmap indexes, bloom filters, space-
efficient data structures and port detection.

Bitmap indexes were introduced in [20]. Several bitmap encoding schemes
have been developed, such as equality [20], range [8], interval [9], and workload
and attribute distribution oriented [15]. Numerous performance evaluations and
improvements have been performed over bitmaps [8,23,25,27]. While the fast
bitwise operations afforded by bitmaps are perhaps their biggest advantage, a
limitation of bitmaps is the index size.

Bloom Filters are used in many applications in databases and networking
including query processing [17,18,19], IP traceback [21,22], per-flow measure-
ments [10,16], web caching [12,13] and loop detection [24]. A survey of Bloom Fil-
ter (BF) applications is described in [7]. A BF computes k distinct independent

122 A.Ş. Tosun

Fig. 1. A Bloom Filter

uniform hash functions. Each hash function returns an m-bit result and this
result is used as an index into a 2m sized bit array. The array is initially set to
zeros and bits are set as data items are inserted. Insertion of a data object is
accomplished by computing the k hash function results and setting the corre-
sponding bits to 1 in the BF. Retrieval can be performed by computing the k
digests on the data in question and checking the indicated bit positions. If any
of them is zero, the data item is not a member of the data set (since member
data items would set the bits). If all the checked bits are set, the data item is
stored in the data set with high probability. It is possible to have all the bits set
by some other insertions. This is called a false positive, i.e., BF returns a result
indicating the data item is in the filter but actually it is not a member of the
data set. On the other hand, BFs do not cause false negatives. It is not possible
to return a result that reports a member item as a non-member, i.e., member
data items are always in the filter. Operation of a BF is given in Figure 1.

Exact solution to find the number of distinct elements in n items require
Ω(n) space. Approximate data structures that estimate the number of distinct
elements are proposed to reduce the space complexity. Counting sketches [14] and
extensions [1,5] estimates the count in one pass using small amount of storage.
FM sketches [14] use O(log n) space to approximate the count. Using linear hash
functions sketch size can be reduced to O(log log n)[11].

3 System Model

Each machine on the Internet has a 32 bit IP address typically represented as
A.B.C.D. Each letter corresponds to decimal representation of 8 bits. For ex-
ample, 129.115.28.66 is the IP address of a machine in CS department. Each
machine has 216 ports. A connection between two machines includes port num-
bers as well. For example, a connection from machine IP1 and port number

Space-Efficient Structures for Detecting Port Scans 123

p1 to machine IP2 and port number p2. Each process that requires commu-
nication has a port number that it can use for communication. Port numbers
are used to demultiplex the packets received by the machine. To make routing
easier IP addresses are assigned in blocks. For example, 256 IP addresses repre-
sented by 129.115.28.* are assigned to CS department. A block of IP addresses
is called a subnet and represented as A.B.C.D/X . X denotes the number of bits
common to all the machines in the subnet. Above block can be represented as
129.115.28.0/24. In this paper, we develop a common data structure to store all
the information for a subnet. We use the notation n to denote the number of
machines in the subnet. For the subnet 129.115.28.0/24, the value of n is 256.

Fig. 2. Bitmap Approach for PORT-ALERT

4 Proposed Schemes

In this section, we discuss how to detect each time of alert using both exact and
approximate techniques.

4.1 PORT-ALERT

PORT-ALERT Problem can be represented using a bitmap. Let n denotes the
number of machines in the subnet. A n× 216 bitmap can be used to store con-
nection attempts to the machines in the subnet. Block diagram of the approach
is given in figure 2. When a connection attempt to machine A on port p is re-
ceived, the corresponding entry in the bitmap is set to indicate this operation.
In addition to the bitmap we use an array of counters to store how many ports
are used. When a counter reaches the threshold τ , an alert is raised. Bitmap
approach is exact since it stores all the connection attempts to ports.

Bitmap approach requires n216 bits for the bitmap and 16n bits for the coun-
ters. Since there are 216 ports, 16 bits are needed for each counter. For a 256
node subnet space requirement is about 2 megabytes which is manageable. Dur-
ing normal operation on the network, most of the bits will be 0. To reduce the
space requirement bitmap compression schemes can be used. Several compres-
sion techniques have been developed in order to reduce bitmap size and at the

124 A.Ş. Tosun

Algorithm 1. PORT-ALERT Insertion Algorithm for connection to (IP,p)
1: index = GetIndex(IP)
2: if bitmap(index, p) == 0 then
3: bitmap(index, p) ← 1
4: portcount[index] ← portcount[index] + 1
5: if portcount[index] ≥ τ then
6: ALERT
7: end if
8: end if

same time maintain the advantage of fast operations [2,3,23,26]. However, since
access to the bitmap is a bit at a time, the only practical approach here is to
use bloom filter based bitmap compression [4].

Bloom
Filter

Fig. 3. Scheme for PORT-NODE-ALERT

4.2 PORT-NODE-ALERT

Our approach to PORT-NODE-ALERT problem is based on the scheme for
PORT-ALERT problem. In addition, we maintain counters to count the number
of distinct nodes the connection attempts come from. Exact solution to find the
number of distinct elements in m items require Ω(m) space. So, we use a Bloom
filter to approximate the count. The Bloom filter is used to determine whether
the pair of source and destination IP addresses (IP1, IP2) was seen earlier or
not. If the pair is an unseen pair, then the corresponding count is incremented.
Bloom filter allows us to use a single data structure for the entire subnet instead
of using separate data structures for each machine on the subnet. This simplifies
the overall design. The algorithm is given in algorithm 2.

Bloom filters can have false positives, i.e., filter returns a result indicating
the data item is in the filter but actually it is not. False positive rate can be
controlled by the number of hash functions and the size of the filter. We next
investigate how large the bloom filter should be to accommodate a given number
of users with low false positive rate. We use the parameter s for the number of
connection attempts, k for the number hashes and m for the size of the filter.

Space-Efficient Structures for Detecting Port Scans 125

Algorithm 2. PORT-NODE-ALERT Insertion Algorithm for connection from
IP1 to (IP2, p)
1: index = GetIndex(IP2)
2: if bitmap(index, p) == 0 then
3: bitmap(index, p) ← 1
4: portcount[index] ← portcount[index] + 1
5: end if
6: if BloomFilter(IP1||IP2) = false then
7: BloomInsert(IP1||IP2)
8: nodecount[index] ← nodecount[index] + 1
9: end if

10: if portcount[index] ≥ τ and nodecount[index] ≤ κ then
11: ALERT
12: end if

Ideally we want a data structure whose size depends on the number of entries
s.Assume that we use a bloom filter whose size m is αs where alpha is an integer
denoting how much space is allocated as a multiple of s. The false positive rate
of the bloom filter can be expressed as

(1− (1 − 1
αs

)ks)k ≈ (1− e−
ks
αs)k = (1− e−

k
α)k (1)

False positives result in counter values to be below what they should be. Since
the connection attempt appears to be in the filter, it is never added and counter
is not incremented.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

F
al

se
 P

os
iti

ve
 R

at
e

Alpha

Alpha vs False Positive Rate

k=1
k=2
k=3
k=4
k=5

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18 20

F
al

se
 P

os
iti

ve
 R

at
e

Number of Hash Functions

Number of Hash Functions vs False Positive Rate

alpha=4
alpha=8

alpha=16
alpha=32

Fig. 4. False Positive Rate of Bloom Filter

4.3 PORT-NODE-TIME-ALERT

Our approach to PORT-NODE-TIME-ALERT problem is based on the scheme
for PORT-NODE-ALERT problem. Since solving the query exactly requires to

126 A.Ş. Tosun

Fig. 5. Scheme for PORT-NODE-TIME-ALERT

much space, we use an approximate mechanism. We divide the time into intervals
of size Δ and use the scheme described in PORT-NODE-ALERT to store the
data for each interval. A new data structure is maintained for each interval of
size Δ. Given a time threshold θ, the query uses the last R(θ

Δ) intervals to
answer the query where R() denotes the round function. Given a time interval
θ, the difference between θ and estimated time R(θ

Δ)Δ is < Δ
2 . As the interval

size Δ increases, the difference between θ and estimated time increases while
the space requirement decreases. For older intervals only the counters need to
be maintained. The bitmap and the bloom filter can be deallocated when the
interval is over. Block diagram of the scheme is given in figure 5. For each old
interval, n counters to maintain port information and node information is needed.
Number of intervals that needs to be stored is based on the time threshold θ and
is given by R(θ

Δ). To support a large range of θ values, large number of intervals
needs to be stored. Let Cp denote the size of a counter to store the number of
ports and let Cn denotes the size of a counter to store the number of distinct
machines the connection attempts come from. For each interval n(Cp+Cn) space
is needed to store the counters. For example, for a subnet with 256 machines and
2 byte counters space requirement per interval is 1 Kbyte which is quite small.
So, interval size can be kept small (and smaller sized counters can be used).

A special set of counters to estimate the values of portcount and nodecount
for a time interval of θ are maintained. These counters maintain the sum of
counts for the last R(θ

Δ) intervals. Let portcounti[j] be the count of the number
of ports for machine j in interval i and let c be the current interval. The special
counter Sumportcount has the following value

Sumportcount[j] =
c∑

k=c−R(θ
Δ)+1

portcountk[j], 0 ≤ j ≤ n (2)

When an interval is over, the counters are updated to reflect the new set of
intervals in use. This can be done by removing the count for the interval that
falls outside the window. The new interval has counts of 0 and need not be added
to the sum. This can be formally stated as

Space-Efficient Structures for Detecting Port Scans 127

Sumportcount[j] = Sumportcount[j]− portcountc−R(θ
Δ)+1[j], 0 ≤ j ≤ n (3)

A special counter Sumnodecount is maintained to estimate the value of node-
count for a time interval of θ. The process to maintain the counters is similar to
Sumportcount. We leave the details due to space restrictions.

For each new connection attempt, the counters portcount and nodecount for
the current interval and the special counters Sumportcount and Sumportcount
are updated if necessary.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

D
iff

er
en

ce

Interval Size

Interval Size vs Difference

theta=50
theta=100
theta=150

Fig. 6. Time Difference using Fixed-sized Intervals

Using fixed-sized intervals have some shortcomings. First, it is possible to
bound the difference between θ and approximated value, however it is not possi-
ble to bound the number of connection attempts missed. The time difference for
several values of θ is given in figure 6. Second, the false positive rate of bloom
filter depends on the number of connection attempts in that interval. Since we
don’t have a bound on the number of connection attempts it is not possible
to provide performance guarantees. Using variable-sized intervals solves these
problems. A new interval is created when a threshold number of connections are
received. Using this approach space complexity depends on the number of con-
nections received. Using variable-sized intervals sumportcount can be updated
as follows

Sumportcount[j] =
∑

Ik∩[t−θ,t] �=∅
portcountk[j], 0 ≤ j ≤ n (4)

Maintenance of the variable sumportcount is similar to the fixed-sized interval
case. Counters are updated whenever new item is added and when an interval
Ik falls out of the interval [t− θ, t], the counts for the interval Ik are subtracted
from sumportcount.

Counters maintained can also be used for visualization. For example, a surface
plot showing portcount for a subset of the data is given in figure 7. A portscan
that lasts a couple of intervals can be seen in the figure.

128 A.Ş. Tosun

 0
 5

 10
 15

 20 0
 5

 10
 15

 20
 25

 30
 0

 500
 1000
 1500
 2000
 2500
 3000

portcount

Machine Id
Interval No

Fig. 7. Visualization of portcount

5 Conclusion

Although detecting port scans using a database system is possible, it requires
too much space and computational overhead. In this paper, we propose space-
efficient structures to detect parameterized versions of port scans. Parameters
including number of ports scanned, number of source IP addresses involved in the
scan and the time interval for the scan can be set by the system administrator.
Proposed schemes are lightweight, require low space overhead, low computational
overhead and can handle high load.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences 58(1), 137–147
(1999)

2. Amer-Yahia, S., Johnson, T.: Optimizing queries on compressed bitmaps. In: The
VLDB Journal, pp. 329–338 (2000)

3. Antoshenkov, G.: Byte-aligned bitmap compression. In: Data Compression Con-
ference, Oracle Corp, Nashua, NH (1995)

4. Apaydin, T., Canahuate, G., Ferhatosmanoglu, H., Tosun, A.Ş.: Approximate en-
coding for direct access and query processing over compressed streams. In: 32nd

International Conference on Very Large Data Bases, pp. 457–846 (2006)
5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting

distinct elements in a data stream. In: RANDOM (2002)
6. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Communi-

cations of the ACM 13(7), 422–426 (1970)
7. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Sur-

vey. In: Proceedings of the 40th Annual Allerton Conference on Communication,
Control, and Computing, pp. 636–646 (2002)

8. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: Proceedings
of the 1998 ACM SIGMOD international conference on Management of data, pp.
355–366. ACM Press, New York (1998)

Space-Efficient Structures for Detecting Port Scans 129

9. Chan, C.Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selection
queries. SIGMOD Rec. 28(2), 215–226 (1999)

10. Feng, W.c., Kandlur, D.D., Saha, D., Shin, K.G.: Stochastic Fair Blue: A Queue
Management Algorithm for Enforcing Fairness. In: Proc. of INFOCOM, vol. 3, p.
1520–1529 (April 2001)

11. Durand, M., Flajolet, P.: Loglog counting of large cardinalities. In: Di Battista, G.,
Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, Springer, Heidelberg (2003)

12. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary Cache: A Scalable Wide-
Area Web Cache Sharing Protocol. In: IEEE/ACM Transactions on Networking,
Canada, ACM Press, New York (2000)

13. Fan, L., Cao, P., Almeida, J., Broder, A.: Web cache sharing. Collaborating Web
caches use bloom filter to represent local set of cached files to reduce the netwrok
traffic. In: IEEE/ACM Transactions on Networking, ACM Press, New York (2000)

14. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for database applica-
tions. Journal of Computer and System Sciences 31(2) (1985)

15. Koudas, N.: Space efficient bitmap indexing. In: Proceedings of the ninth interna-
tional conference on Information and knowledge management, pp. 194–201. ACM
Press, New York (2000)

16. Kumar, A., Xu, J.J., Wang, J., Li, L.: Algorithms: Space-code bloom filter for
efficient traffic flow measurement. In: Proceedings of the 2003 ACM SIGCOMM
conference on Internet measurement, October 2003, ACM Press, New York (2003)

17. Mishra, P., Eich, M.H.: Join processing in relational databases. In: ACM Comput-
ing Surveys (CSUR), March 1992, ACM Press, New York (1992)

18. Mullin, J.K.: Estimating the size of joins in distributed databases where communi-
cation cost must be maintained low. In: IEEE Transactions on Software Engineer-
ing, IEEE Computer Society Press, Los Alamitos (1990)

19. Mullin, J.K.: Optimal semijoins for distributed database systems. IEEE Transac-
tions on Software Engineering 16, 558–560 (1990)

20. O’Neil, P.E., Quass, D.: Improved query performance with variant indexes. In:
Proceedings of the 1997 ACM SIGMOD international conference on Management
of data, pp. 38–49. ACM Press, New York (1997)

21. Snoeren, A.C.: Hash-based IP traceback. In: ACM SIGCOMM Computer Commu-
nication Review, ACM Press, New York (2001)

22. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F.,
Schwartz, B., Kent, S.T., Strayer, W.T.: IP Traceback to record packet digests
traffic forwarded by the routers. IEEE/ACM Transactions on Networking (TON)
(December 2002)

23. Stockinger, K.: Bitmap indices for speeding up high-dimensional data analysis. In:
Proceedings of the 13th International Conference on Database and Expert Systems
Applications, pp. 881–890. Springer, Heidelberg (2002)

24. Whitaker, A., Wetherall, D.: Detecting loops in small networks. In: 5th IEEE Con-
ference on Open Architectures and Network Programming (OPENARCH) (June
2002)

25. Wu, K., Otoo, E.J., Shoshani, A.: A performance comparison of bitmap indexes.
In: Proc. Conf. on 10th International Conference on Information and Knowledge
Management, pp. 559–561. ACM Press, New York (2001)

26. Wu, K., Otoo, E.J., Shoshani, A.: Compressing bitmap indexes for faster search
operations. In: SSDBM, Edinburgh, Scotland, pp. 99–108 (July 2002)

27. Wu, M.C.: Query optimization for selections using bitmaps. In: Proceedings of
the 1999 ACM SIGMOD international conference on Management of data, pp.
227–238. ACM Press, New York (1999)

A Dynamic Labeling Scheme Using Vectors

Liang Xu, Zhifeng Bao, and Tok Wang Ling

School of Computing, National University of Singapore
{xuliang,baozhife,lingtw}@comp.nus.edu.sg

Abstract. The labeling problem of dynamic XML documents has re-
ceived increasing research attention. When XML documents are subject
to insertions and deletions of nodes, it is important to design a labeling
scheme that efficiently facilitates updates as well as processing of XML
queries. This paper proposes a novel encoding scheme, vector encod-
ing which is orthogonal to existing labeling schemes and can completely
avoid re-labeling. Extensive experiments show that our vector encod-
ing outperforms existing labeling schemes on both label updates and
query processing especially in the case of skewed updates. Besides, it has
the nice property of being conceptually easy to understand through its
graphical representation.

1 Introduction

XML[6] has become a standard to represent and exchange data on the web, and
there is a lot of interest in query processing over XML data. The techniques
used to facilitate XML queries can be classified into two categories: structural
index approach[10] and labeling approach[12,4,11]. We focus on labeling ap-
proach which requires smaller storage space, yet efficiently determines ancestor-
descendant(A-D) and parent-child(P-C) relationships between any two nodes in
the XML documents.

Although most existing labeling schemes work well on querying static XML
documents, their performances degrade significantly for dynamic XML docu-
ments as updating requires re-labeling[12,4,11] or label size increases very fast
for skewed insertions although re-labeling can be avoided[8]. When XML docu-
ments are dynamic, it is of great interest to design a labeling scheme that can
avoid re-labeling while having controllable size for skewed insertions.

The main contributions of this paper are summarized as follows:

– We propose a novel compact labeling scheme: vector encoding which can be
applied to different labeling schemes and is easy to understand.

– Vector encoding completely avoids re-labeling for updates in XML doc.
– We conduct experiments to show that vector encoding performs better than

existing schemes, especially in the case of skewed insertions.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 130–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Dynamic Labeling Scheme Using Vectors 131

2 Related Work

Current labeling schemes include containment scheme[12], prefix scheme[4] and
prime scheme[11]. Due to space constraint we only focus on containment scheme
and QED encoding which are most relevant to this paper.

Based on containment labeling scheme[12], every node is assigned three
values: “start”, “end” and “level”. For any two nodes u and v, u is an ancestor
of v iff u.start < v.start and v.end < u.end. Node u is the parent of node
v iff u is an ancestor of v and v.level − u.level = 1. Although containment
scheme is efficient for determining A-D and P-C relationships, the insertion of a
node n will lead to re-labeling of all the ancestor nodes of n and all the nodes
after n in document order. To solve the re-labeling problem, [5] uses Float-point
values for the start and end of the intervals. However, in practice, Float-point
is represented physically with a fixed number of bits. As a result, at most 18
nodes can be inserted at a fixed place when consecutive integer values are used
for initial labeling.

[8] proposes a novel encoding method: QED encoding that completely avoids
re-labeling. Four numbers “0”, “1”, “2” and “3” are used for encoding and each
number is stored with two bits, i.e. “00”, “01”, “10” and “11”. The number “0”
is reserved as the separator. An important feature of QED is that it is based on
lexicographical order, i.e. “0” ≺ “1” ≺ “2” ≺ “3”. This encoding scheme allows a
QED code to be inserted between any two existing QED codes while preserving
lexicographical order. For example, “113” can be inserted between “112” and
“12” whereas “1122” can be inserted between “112” and “113”. QED encoding
method is orthogonal to existing labeling schemes. However, the label size of
QED increases very fast in the event of skewed insertion. Especially in the case
that new codes are inserted after a fixed code, the size of the new code increases
by 2 bits per insertion.

3 Preliminaries

For the complete proofs of the theorems in this section, please refer to [9] which
is an extended version of this paper. We ignore most of the proofs due to space
constraint.

A vector is an object with magnitude and direction. A two dimensional vector
consists of binary tuples and is represented as (x, y). In this paper, to make
design simple and avoid precision problem, we only consider vector whose x and
y components are positive integers. Figure 1(a) gives a graphical interpretation
of a vector V that lies in the first quadrant of the X-Y plane.

Let A=(x1, y1) and B=(x2, y2) be two vector. Addition of A and B and Mul-
tiplication of a scalar r and a vector A are defined as:

A + B = (x1 + x2, y1 + y2) (1)
r · A = (r ∗ x1, r ∗ y1) (2)

Figure 1(b) shows the graphical representation of vectors A, B, A+B, 2·A+B
and A+2·B.

132 L. Xu, Z. Bao, and T.W. Ling

V=(x, y)

θθ

First Quadrant

X

Y

A=(a1,a2)

Y 2 A+B

A+2 B

B=(b1,b2)

X

A+B

(a) a vector in the first quadrant (b) vector addition

Fig. 1. Graphical representation of vector and vector addition

Definition 1. (Gradient) The Gradient of a vector V=(x, y) (denoted by
G(v)) is defined as y/x.

In Figure 1(a), vector V makes an angle Θ with the X axis. The Gradient of V
is y/x, or equivalently, tan(Θ).

Theorem 1. Given two vectors A=(x1, y1) and B=(x2, y2) in the first quadrant
of the x-y plane, G(A) > G(B) iff y1x2 > x1y2.

Example 1. G((19,5))=5/19; G((19,5))>G((16,3)) since 5× 16 > 19× 3.

It is important to note that although Gradient is defined in terms of division,
the comparison of the Gradients of two vectors can be done via multiplication.

Theorem 2. Let A, B, C be three vectors in the first quadrant of the x-y plane
such that C=A+B and G(A) > G(B), then G(A) > G(C) > G(B).

Proof. assume that A=(x1, y1) and B=(x2, y2), then C=(x1 + x2, y1 + y2).
Since G(A) > G(B), we have from Theorem 1, y1x2 > x1y2. Therefore,

G(C) =
y1 + y2

x1 + x2
=

y1x2 + y2x2

(x1 + x2)x2
>

x1y2 + y2x2

(x1 + x2)x2
=

y2

x2
= G(B) (3)

Similarly, we can prove that G(A) > G(C). Therefore, G(A) > G(C) > G(B).

Example 2. The sum of vectors (19,5) and (16,3) is (35,8), G((19,5))>G((35,8))
since 35× 5 > 19× 8; G((35,8))>G((16,3)) since 16× 8 > 35× 3.

Theorem 3. Let A, B be two vectors in the first quadrant of the x-y plane such
that G(A) > G(B), we can find infinite number of vectors whose Gradients are
between G(A) and G(B).

4 Vector Encoding

In this section, we introduce our vector encoding scheme which completely avoids
re-labeling upon insertion. Table 1 shows different encoding schemes for numbers
from 1 to 18. Details of how QED encoding is performed are in [8]. For vector

A Dynamic Labeling Scheme Using Vectors 133

encoding, we first assign vector (1,0) to the start position in the range and (0,1)
to the end position. Then we work recursively by assigning the middle position of
the current range a vector that equals to the sum of two vectors that correspond
to the start and end position in each iteration. The formal encoding algorithm
is presented in Algorithm 1.

Theorem 4. Let I and J be two decimal numbers and VI and VJ be their corre-
sponding vector codes generated by Algorithm 1, we have: I<J iff G(VI)<G(VJ).

Example 3. Given that the range of integers is from 1 to 18, we assign vector
(1,0) (of Gradient 0) to the start position in the range which is 1; and (0,1) (of
Gradient +∞) to the end position in the range which is 18, i.e. v(1)=(1,0) and
v(18)=(0,1). Next we apply Algorithm 1 to recursively encode the remaining
positions.

Iteration 1 The middle position in the range [1, 18] can be found by: middle =
�(1+18)/2�=10. Hence v(middle)=v(10)=v(1) + v(18)=(1,0) + (0,1)=(1,1).

Iteration 2 Now that the range [1,18] is divided into two ranges:[1, 10] and
[10, 18]. The middle position of [1, 10] is �(1 + 10)/2� = 6; and the middle
position of [10, 18] is �(10 + 18)/2� = 14. Therefore v(6)=(1,0)+(1,1)=(2,1)
and v(14)=(1,1)+(0,1)=(1,2). This process continues until all the positions
are encoded, we omit the remaining iterations here.

Definition 2. (vector order) The order of vector encodings is based on the
numerical ordering of the Gradients of the vectors.

Table 1 also gives the Gradients of the vectors for each row (we define 1/0 to be
+∞). It can be seen that the numerical order of the Gradients indeed follow the
order of the decimal numbers. It is worth noting that the Gradients shown in
Table 1 are for illustration purpose only. From theorem 1, we can compare the
Gradients of two vectors using multiplication instead of division, our method
does not involve the calculation of Gradients and therefore does not suffer from
the float-point precision problem in [5].

Table 1. Comparison of different encoding schemes

Decimal
number

QED vector Gradient (ac-
curate to 0.01)

Decimal
number

QED vector Gradient (ac-
curate to 0.01)

1 112 (1,0) 0 10 223 (1,1) 1
2 12 (5,1) 0.2 11 23 (3,4) 1.33
3 122 (4,1) 0.25 12 232 (2,3) 1.5
4 13 (3,1) 0.33 13 3 (3,5) 1.67
5 132 (2,5) 0.4 14 312 (1,2) 2
6 2 (2,1) 0.5 15 32 (2,5) 2.5
7 212 (5,3) 0.6 16 322 (1,3) 3
8 22 (3,2) 0.67 17 33 (1,4) 4
9 222 (4,3) 0.75 18 332 (0,1) +∞

134 L. Xu, Z. Bao, and T.W. Ling

Algorithm 1. VectorEncoding Algorithm 2. LabelTheLeafNodeToBeIn-
serted

input: n is a positive integer input: n is the leaf node to be inserted
output: return the vector codes in vcode output: return V Containment label of n
for numbers from 1 to n //v1, v2 are two bounding vectors
//vcode is an array of n vectors //l is the level of n
1: vcode[0] = (1, 0) 1: if n has preceding sibling(s) v1=cps.endV
2: vcode[n − 1] = (0, 1) //cps is the closest preceding sibling of n
3: RecEncoding(vcode, 0, n − 1) 2: else v1=p.startV //p is the parent of n
4: return vcode 3: if n has following sibling(s) v2=cfs.startV
Procedure RecEncoding(vcode, start, end) //cfs is the closest following sibling of n
1: m = �(start + end)/2� 4: else v2=p.endV
2: if m == end return 5: return FindNewLabel(v1,v2,l)
3: mV = vcode[start] + vcode[end] Procedure FindNewLabel(v1,v2,l)
4: vcode[m] = mV 1: if GS(v1) > GS(v2)
5: RecEncoding(vcode, start,m) return (v1+v2,v1+2·v2,l)
6: RecEncoding(vcode, m, end) 2: else return (2·v1+v2,v1+v2,l)

4.1 Encoding Delimiters

When labels are stored for future reuse, we need to encode delimiters. 0 is re-
served as delimiter in QED whereas vector codes use UTF8[7] encoding to pro-
cess delimiters. In UTF8, a variable number of bytes are used to encode different
integer values. A vector V is stored sequentially as V.x, V.y where V.x and V.y
are encoded using UTF8 encoding.

4.2 Application of Vector Encoding Scheme

Our vector encoding scheme is orthogonal to specific labeling schemes. It can be
applied to existing labeling schemes while keeping the original labeling order.
In this paper we apply vector encoding scheme to containment scheme and the
resulting labeling scheme is called VContainment scheme.

15,16,313,14,37,8,35,6,3

12,17,2

10,11,2

4,9,2

2,3,2

1,18,1

(2,5) (1,3) 3(3,5) (1,2) 3(5,3) (3,2) 3(5,2) (2,1) 3

(2,3) (1,4) 2

(1,1) (3,4) 2

(3,1) (4,3) 2

(5,1) (4,1) 2

(1,0) (0,1) 1

(a) containment labels (b) VContainment labels

Fig. 2. Applying vector encoding scheme to containment scheme

Example 4. Figure 2 shows an example of applying vector encoding to contain-
ment scheme. The start and end value of the original containment labels are re-
placed by their corresponding vector codes (see Table 1 for details). The resulting
VContainment labels are of format (startV, endV, level) where startV , endV are

A Dynamic Labeling Scheme Using Vectors 135

two vectors. It is easy to verify that the property of containment scheme holds.
For example, Node((2,3),(1,4),2) is the parent of node((3,5),(1,2),3) as G(2,3) <
G(3,5) < G(1,2) < G(1,4) and 2+1=3.

5 Support Updating

For dynamic XML documents, especially the ones that require frequent updates,
it is important to make the update cost as low as possible. One of the most
important features of vector encoding scheme is that it can completely avoid
re-labeling when updates take place. This section provides elaboration on how
vector encoding handles updates efficiently. We start by showing how updates
can be performed in VContainment scheme without re-labeling, then analyze
how updates can be optimized in a general context.

5.1 Updating in VContainment Scheme

With VContainment scheme, the deletion of a leaf node or an internal node
has no side effect. However, handling insertions may require some consideration.
First we introduce a definition which we use to measure the size of a vector.

Definition 3. (Granularity Sum) The Granularity Sum of a vector V = (x,
y) (denoted by GS(v)) is defined as x+y.

To find a vector between two vectors in vector order, we want its GranularitySum
to be as small as possible so that the resulting label size is small.

Inserting Leaf Node. Assume all VContainment labels are of format (startV ,
endV , level). n is the node to be inserted and p is the parent of n. cps is
its closest preceding sibling(if exists). cfs is its closest following sibling(if
exists). If n is a leaf node, to maintain the correctness of VContainment
scheme, the following inequalities should hold.

1. G(p.startV) < G(n.startV) < G(n.endV) < G(p.endV)
2. G(cps.endV) < G(n.startV) 3. G(n.endV) < G(cfs.startV)

Note the second inequality is only applicable if n has preceding sibling(s),
and the third inequality is applicable if n has following sibling(s). In any
case, the startV and endV of n will be bounded by two vectors, we call
these two vectors bounding vectors. The new label of n can be found by
basically finding a pair of vectors between the two bounding vectors. Details
on how the label of n is found are presented in Algorithm 2.

Inserting Non-leaf Node. The case that n is a non-leaf node is similar to the
previous case except that another inequality needs to be enforced. Assume
fc is the first child of n and lc is the last child of n.

4. G(n.startV) < G(fc.startV) < G(lc.endV) < G(n.endV)
We ignore the details of insertion of non-leaf node here.

136 L. Xu, Z. Bao, and T.W. Ling

The core operation of Algorithm 2 is to find two vectors between v1 and v2
in terms of vector order. In Algorithm 2, the two vectors are either v1 + v2 and
v1 + 2 · v2 or 2 · v1 + v2 and v1 + v2. Based on Theorem 2, we can prove in both
cases the two vectors are between v1 and v2 in vector order. Figure 1(b) shows
the graphical representation of the vectors. It can be observed that if we keep
inserting before or after a fixed node, the resulting label increases constantly by
the Granularity Sum of that node. Although this method is simple and efficient,
the resulting vector may not yield the minimum Granularity Sum. Analysis on
the optimization of insertion will be presented in the next subsection. There
is no re-labeling involved in the insertion, VContainment scheme can support
efficient updates without re-labeling any existing labels.

(1,0) (0,1) 1

(5,1) (4,1) 2

(3,1) (4,3) 2

(1,1) (3,4) 2

(2,3) (1,4) 2

(5,2) (2,1) 3 (5,3) (3,2) 3 (3,5) (1,2) 3 (2,5) (1,3) 3

A

B C

X

Y

V3

V4

V2

V1

(a) (b)

Fig. 3. Insertion in VContainment scheme

Example 5. In Figure 3(a), when inserting node A having both left sibling and
right sibling, its startV and endV are bounded by endV of its closest left
sibling and startV of its closest right sibling, i.e. (4,3) and (1,1). Moreover,
GS(1,1)=2<7=GS(4,3). Therefore, the startV of A is v1 + v2 = (5, 4) whereas
endV is v1+2 ·v2 = (6, 5). When inserting node B which has only left sibling, its
startV and endV are bounded by the endV of its closest left sibling the endV
of its parent, i.e. (1,4) and (0,1). Therefore, the startV of B is v1 + v2 = (1, 5)
whereas endV is v1+2·v2 = (1, 6). Similarly, when we continue to insert C as the
last child of the root, its startV is v1+v2 = (1, 7) and endV is v1+2·v2 = (1, 8).

5.2 Analysis on Insertion

When vector encoding scheme is applied to different labeling schemes including
containment scheme, the core operation of insertion is to find the vector between
two consecutive vectors in vector order. The choice is not unique, actually there
are infinitely many vectors possible(Theorem 3); however, to slow down the in-
crease rate of labels, we would want to find the vector that has the smallest
Granularity Sum possible. Although we can always use the sum of the two con-
secutive vectors, the resulting vector may not yield the minimum Granularity
Sum. Theoretically speaking, the vector that has the smallest Granularity Sum
can always be found through enumeration, but this can make insertion very ex-
pensive to perform. However, we have found that based on the relative positions

A Dynamic Labeling Scheme Using Vectors 137

of the two consecutive vectors, it may be possible to optimize insertion without
incurring much additional computational cost. Assume the consecutive vectors
are A = (x1, y1), B = (x2, y2), the vector to be inserted is C = (x, y), insertion
may be optimized for the following cases.

Case 1. x1 = x2 or y1 = y2. For example, let A and B be V1 and V3 in Figure
3(b) respectively. Since x1 = x2, we can choose x = x1 and y to be an integer
between y1 and y2 when y1 > y2 + 1. When y1 = y2 + 1, we can choose C to
be the sum of A and B. The case when y1 = y2 is similar.

Case 2. (x1 < x2 and y1 > y2) or (x1 > x2 and y1 < y2). For example , let
A and B be V1 and V2 in Figure 3 (b) respectively. We can choose C to be
V3=(x1, y2) or V4=(x2, y1) since both V3 and V4 are between V1 and V2
in vector order. V3 may be preferred since it has smaller Granularity Sum.

6 Experiments and Evaluation

We have implemented the VContainment scheme in JAVA and used SAX from
Sun Microsystems as the XML parser. We compare our labeling scheme with
QED-containment scheme as they both completely avoid re-labeling. The up-
dating cost of previous labeling schemes[12,4,11] are much higher than QED as
re-labeling is very expensive to perform[8].

XMark[3], Shakespeare’s play[1], Treebank and DBLP[2] data sets have been
used to compare the performance of the labeling schemes. Our experiments are
performed

6.1 Label Generation

To compare the label generation, we choose one of the documents from Shake-
speare’s play and enlarge it by 10 times. XMark document is generated using
scaling factor 0.005. The time needed to generate labels mostly depends on the
size the XML documents and the number of nodes in the XML documents. From
the results in Table 2, as the size of the data set gets larger, the generation time
of QED and vector labels increase accordingly. However, generating vector labels
is much faster than QED as its generation mostly consists of simple calculations.

Table 2. Comparison of label generation

Data Set File No. of QED vector QED vector
Size(MB) Nodes(K) Time(Sec) Time(Sec) Size(MB) Size(MB)

XMark 0.55 8.5 0.142 0.018 0.05 0.06
Shakespeare’s play 2.16 49 0.86 0.26 0.31 0.39

Treebank 82 2437.7 33.8 9.1 19.2 27.0
DBLP 127 3332.1 50.9 14.6 26.9 37.8

138 L. Xu, Z. Bao, and T.W. Ling

6.2 Uniform and Skewed Insertions

All the four data set have been used to test the performance of the two labeling
schemes upon two kinds of insertions: uniform insertion and skewed insertion,
and showed similar trends. Here we present the results for XMark data set.

For uniform insertions, firstly we insert one node between every two consecu-
tive nodes. Then we gradually increase the insertions by one at a time up to six.
The results are shown in Figure 4(a) and (b). The vector labels are represented
using bit strings that correspond to the UTF8 representation of the labels to ac-
commodate dynamic increase in size. But the overhead of UTF8 encoding makes
the size of vector labels approximately 20 percent larger than that of QED (in-
cluding initial labels). The insertion time of QED however is about 50 percent
more than that of vector labels.

For skewed insertions, we keep inserting mail element after the last mail ele-
ment whose parent is mailbox. The results (Figure 4(c) and (d)) illustrate more
significant advantage of vector labels. The insertion time of QED is almost four
times of that of vector labels while the size of QED labels increases much faster
than vector labels upon insertions. Since for skewed insertions, the length of
the new QED label increases by 1 or 2 bits per insertion, while the size of the
new vector label remains unchanged unless its value exceeds the current range
in which case the label size increases by 1 byte. However, such increases occur
infrequently and the size of vector labels increases rather slowly upon skewed
insertions comparing with QED labels.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 8517 17034 25551 34068 42585 51102

In
se

rt
io

n
T

im
e(

m
s)

Number of Insertions

QED
Vector

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 8517 17034 25551 34068 42585 51102

La
b

el
 S

iz
e(

K
B

)

Number of Insertions

QED
Vector (UTF8)

(a) Uniform Insertion Time (b) Label Size after Uniform Insertion

 0

 50

 100

 150

 0 500 1000 1500 2000

In
se

rt
io

n
T

im
e(

m
s)

Number of Insertions (Skewed)

QED
Vector

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000

L
ab

el
 S

iz
e(

K
B

)

Number of Insertions (Skewed)

QED
Vector (UTF8)

(c) Skewed Insertion Time (d) Label Size after Skewed Insertion

Fig. 4. Comparison of Uniform and Skewed Insertion for XMark data set

A Dynamic Labeling Scheme Using Vectors 139

6.3 Query Time

We compare the query time using all the four data sets. Here we only present
the results for XMark data set due to space constraint, the other data sets show
similar results. The set of queries we used are shown in Figure 5(a). Figure 5(b),
(c) and (d) show the comparison of query time on the original data and the data
after uniform and skewed insertion. Notice that the time used for determining
A-D and P-C relationships only constitute a fraction of the whole query time. In
all these cases, query time of vector labels is faster than that of QED labels. The
difference is most significant for the case of skewed insertion as when the length
of QED label gets larger, lexicographical order is more expensive to compare.
The comparison we show here is independent of the algorithm that is used to
evaluate the queries. Basically all the algorithms involves determination of A-D
and P-C relationships which is more efficient to compute using vector labels.

Query ID Query

Q1 /site//mailbox//mail

Q2 //item//mail

Q3 //item/mailbox/mail

Q4 //item/mailbox/mail/text

Q5 //item[./mailbox]//mail

Q6 //item[./mailbox]//mail/text 0

 100

 200

 300

 400

 500

 600

 700

Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Vector

QED

(a) Test query set (b) Query time on original data

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Vector

QED

 0

 100

 200

 300

 400

 500

 600

 700

Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Vector

QED

(c) Query time after uniform insertion (d) Query time after skewed insertion

Fig. 5. Comparison of query response time for XMark data set

7 Conclusion

In this paper, we have proposed a novel encoding scheme: vector encoding which
is easy to understand and can be applied to various existing labeling schemes to
completely avoid re-labeling. We have shown how it can be applied to contain-
ment scheme, and how insertions can be optimized. Finally it is experimentally
proved that vector encoding outperforms existing schemes on updates and query
processing especially in the case of skewed insertion.

We have focused on handling insertion in this paper. Currently we are extend-
ing our work to optimize both deletion and insertion. How to control the label
size in a dynamic XML document where deletion and insertion frequently occur
will be an interesting topic to explore.

140 L. Xu, Z. Bao, and T.W. Ling

References

1. NIAGARA Experimental Data. http://www.cs.wisc.edu/niagara/data.html
2. University of Washington XML Repository. http://www.cs.washington.edu/

research/xmldatasets/
3. XMark - An XML Benchmark Project.

http://monetdb.cwi.nl/xml/downloads.html
4. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling

scheme for ancestor queries. SIAM J. Comput. (2006)
5. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for

XML Documents. In: ICDE (2003)
6. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible

markup language (XML) 1.0, 4th edn., W3C recommendation (2006)
7. Yergeau, F.: UTF8: A Transformation Format of ISO 10646. Request for Comments

(RFC) 2279 (January 2003)
8. Li, C., Ling, T.W.: QED: a novel quaternary encoding to completely avoid re-

labeling in XML updates. In: CIKM (2005)
9. Liang, X., Zhifeng, B., Wang, T.L.: A Dynamic Labeling Scheme using Vectors

(Extended), http://www.comp.nus.edu.sg/∼xuliang/dlsv2007.pdf
10. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A database

management system for semistructured data. In: SIGMOD Record (1997)
11. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic

Ordered XML Trees. In: ICDE (2004)
12. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On Supporting

Containment Queries in Relational Database Management Systems. In: SIGMOD
(2001)

http://www.cs.wisc.edu/niagara/data.html
http://www.cs.washington.edu/ research/xmldatasets/
http://www.cs.washington.edu/ research/xmldatasets/
http://monetdb.cwi.nl/xml/downloads.html
http://www.comp.nus.edu.sg/~xuliang/dlsv2007.pdf

A New Approach to Replication of XML Data

Flávio R.C. Sousa, Heraldo J.A. Carneiro Filho, and Javam C. Machado

GRoup of computer networks, software Engineering and systems (GREat),
Federal University of Ceara, Fortaleza, Brazil

{flavio,heraldo}@great.ufc.br,javam@ufc.br
http://www.great.ufc.br

Abstract. XML has become a widely used standard for data exchange
in several application domains. In order to manage data in this format,
Native XML Databases (NXDBs) are being proposed and implemented.
Even though, currently there are a number of available NXDBs, few
of them provide replication mechanisms. This paper presents RepliX, a
mechanism for replication of XML data based on group communication.
With the purpose of validating RepliX, experiments were conducted to
measure its performance.

Keywords: Native XML Databases, Replication, Group Communica-
tion.

1 Introduction

XML (Extensible Markup Language) [15] has become a widely used standard
for data representation and exchange in several application domains. The grow-
ing usage of XML creates a need to manage data in this format. Native XML
Databases (NXDBs) [5] are being proposed and implemented to target this de-
mand. NXDBs store XML documents according to a graph logical structure,
in which the nodes represent elements and attributes and the edges define the
element/sub-element and element/attribute relationships. These systems imple-
ment many characteristics that are common to traditional databases, such as
storage, indexing, query processing, transactions and replication.

The management of XML data is complex. This is due, mainly, to the following
characteristics (i) data model - XML documents are represented by a graph-based
data model, which increases the complexity of its structure (ii) heterogeneity - a
XML document may have a sub-element completely absent or repeated several
times. The flexibility in representing XML data makes it difficult to typify, store,
and process such documents.

Regarding query processing, the XML model does not have a formal algebra
yet. The W3C has developed formal semantics to the XPath and XQuery lan-
guages. This semantics allows for the identification of ambiguities in the language
and aids the formal verification process. However, it is complex, making it dif-
ficult to perform decomposing operations. The current protocols of concurrency
control to XML data still have limitations, and the majority of existing solutions

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 141–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.great.ufc.br

142 F.R.C. Sousa, H.J.A. Carneiro Filho, and J.C. Machado

block the whole document, offering low concurrency level and performance. Re-
garding the fragmentation or partitioning of XML data, the existing works try
to adapt techniques of traditional systems as a solution to this problem.

Data replication techniques have been used to improve availability, perfor-
mance, and scalability in relational and object-oriented database management
systems [7]. The flexibility of the XML model, though, introduces some dis-
tinct challenges, thus new replication techniques ought to be developed. Current
approaches to replication of XML data try to adapt existing concepts to the
XML model [13] [16] [4]. However, few NXDBs provide replication mechanisms,
and there is no work explicitly evaluating the performance and scalability as-
pects of such mechanisms. Among the several types of replication protocols, the
group communication abstraction (GC) is an efficient technology to implement
these protocols, since it provides reliability guarantees that simplify the appli-
cation of fault-tolerance techniques [3]. Group communication primitives have
been efficiently used to develop replication protocols, in both synchronous and
asynchronous approaches [14].

This work describes RepliX [11], a replication mechanism for XML data. The
solution we describe utilizes synchronous and asynchronous protocols, group
communication primitives, and contemplates the characteristics of XML data.
RepliX makes it possible to reduce response time in query processing and improve
the performance of NXDBs. This paper is organized as follows. In section 2,
RepliX is presented and its algorithms are discussed. Several performance tests
of RepliX are presented in section 3. Section 4 summarizes related work, and
section 5 presents our conclusions.

2 RepliX

RepliX is a mechanism for replication of XML data that takes into account the
main limitations of XML data management, such as fragmentation and concur-
rency control. We extended the PDBREP [1] protocol in order to consider the
characteristics of the XML model. For that, we modified PDBREP’s synchro-
nization method among update replicas, based on the protocol proposed by [14],
to minimize conflicts during updates to XML data and to ensure that accessed
data is always up-to-date. RepliX uses one-copy serializability [2] as its model
of correctness.

The RepliX architecture can be observed in Figure 1. RepliXDriver is the
component that provides access to the mechanism. This driver is a simple inter-
face to execute transactions, encapsulating most of RepliX’s functionalities and
providing an abstraction layer for the developer over the whole architecture.
RepliXCoordinator is composed by three sub-components: the scheduler, which
is responsible for identifying what kind of transaction has arrived, the router,
which decides where each transaction is going to be executed, and the load bal-
ancer, which balances the load across the active sites. RepliXNode is the com-
ponent attached to each database. This component accesses the local database

A New Approach to Replication of XML Data 143

Fig. 1. RepliX Architecture

and executes the requested transactions, returning the results to RepliXDriver,
which then returns them to the application.

2.1 Specifications

The system is composed by N sites, divided into two groups: a read group, which
executes read-only transactions, and an update group, which executes update
transactions. Transactions that contain only read operations are considered to
be read transactions. If the transaction contains at least one update operation
(insertion, update or deletion), it is classified as an update transaction. The set
of N sites is not fixed, since the number of active sites changes as sites are being
removed or added.

The strategy of partitioning the sites into groups is an important aspect of
RepliX. We used this approach aiming to improve system performance and de-
crease the number of conflicts during update operations, since the concurrency
control for XML data still has significant limitations. With this strategy, only a
part of the active sites has to be modified for each update transaction.

When it receives a transaction, RepliXCoordinator, shown in Algorithm 1,
analyzes its operations in order to forward it to the appropriate group. This
analysis is performed checking the contents of each operation. RepliXCoordina-
tor manages the sites of each of the two groups and uses a round-robin algorithm
to choose which of them will execute the transaction, in order to distribute the
load among the sites.

If a transaction is forwarded to an update group, one of its sites will receive it.
This site is called primary and it is responsible for checking conflicts with other
transactions that might be executing locally. It sends a multicast to the other
sites in this group, called secondaries of the primary that sent the multicast.
The transactions executed in the update group receive a unique identifier, which
allows for its identification by RepliX.

Algorithm 2 shows the tasks that are executed by the primary. If the begin
message is received, the transaction is initiated in the local database, its opera-

144 F.R.C. Sousa, H.J.A. Carneiro Filho, and J.C. Machado

Algorithm 1. - Coordinator algorithm

1: procedure process transactions
2: loop
3: transaction ← coordinator.receive transaction();
4: if transaction contains update operation then
5: site ← coordinator.get site(coordinator.write site id);
6: coordinator.write site id ← coordinator.write site id + 1;
7: remote transaction ← site.begin(transaction);
8: return remote transaction;
9: else

10: site ← coordinator.get site(coordinator.read site id);
11: coordinator.read site id ← coordinator.read site id + 1;
12: remote transaction ← site.begin(transaction);
13: return remote transaction;
14: end if
15: end loop

16: end procedure

tions are executed within the initiated transaction and the results are returned
to the client. When the client requests the transaction to commit, the update
operations (write set) of the transaction are sent to the other sites in the update
group (secondary sites) using the total order primitive of the group communi-
cation system. The primary site waits for confirmations of the certification tests
executed in each secondary. Then, another multicast is sent to the secondary
sites so that they can commit the transaction in the local databases. Following
that, the primary site commits the transaction locally and sends the transaction
write set to the sites in the read group. Later, the read sites will apply these
modifications to their local databases.

Algorithm 2. - Primary site algorithm
1: procedure process transactions
2: loop
3: msg ← primary site.receive message();
4: if msn.type = begin then
5: site primary.begin;
6: results ← primary site.execute(msg.operations);
7: else if msg.type = commit then
8: primary site.multicast(update group, msg, write set);
9: primary site.wait for certification confirmation();

10: if conflict in certification = true then
11: primary site.multicast(update group, msg, abort);
12: else
13: primary site.multicast(update group, msg, commit);
14: end if
15: primary site.commit();
16: primary site.multicast(read group, msg, write set)
17: end if
18: end loop

19: end procedure

Algorithm 3 describes the behavior of the secondary sites. When a message
sent by the primary is received, the secondary sites execute a certification test to

A New Approach to Replication of XML Data 145

check if the updates conflict with any active transaction and, if not, a confirma-
tion message is sent to the primary site. If the received message is a commit, a
transaction is initiated in the local database and its write set operations received
previously are executed and committed.

Algorithm 3. - Secondary site algorithm
1: procedure receive transactions
2: loop
3: msg ← secondary site.receive message();
4: if msg.type = write set then
5: result ← secondary site.certification test(msg.operations);
6: return result;
7: else if msg.type = commit then
8: secondary site.begin();
9: secondary site.execute(msg.operations.write set);

10: secondary site.commit();
11: else if msg.type = abort then
12: secondary site.commit(msg.operations);
13: end if
14: end loop

15: end procedure

The certification test used in secondary sites is shown in Algorithm 4. This
test checks for conflicts between transactions by comparing its read sets and
write sets. After the certification test, the transaction is confirmed, aborting any
executing local transactions (in the secondary site) that are in conflict with the
transaction sent by the primary.

Algorithm 4. - Certification test algorithm
1: procedure certification test(operations)
2: for all transaction in secondary site do
3: if (operations.read set = transaction.operations.write set) or
4: (operations.write set = transaction.operations.read set) or
5: (operations.write set = transaction.operations.write set) then
6: return false;
7: end if
8: end for

9: end procedure

The modifications of the update group are serialized and sent to the read
group through a multicast with a FIFO ordering property. These modifications
are added to local queues and executed later on, preserving the original order
of execution in the update group. The read group executes two types of trans-
actions: propagation and refresh transactions. Propagation transactions are ex-
ecuted in order to commit pending updates during a site’s idle time, that is,
when there are no read operations or refresh transactions being executed. Re-
fresh transactions are executed to process the transactions in the local queue of
the read site.

146 F.R.C. Sousa, H.J.A. Carneiro Filho, and J.C. Machado

The read site receives messages from clients or from the update group. When it
receives begin messages, originated from clients, the queue is inspected, checking
if there are pending modifications received from the update group that should
be executed. The data is locked to allow for a refresh transaction to execute
the pending updates. When the execution ends, the data of the site is unlocked.
Then, a transaction is initiated in the local database, its operations are executed
within the initiated transaction, and the results are returned to the client.

If the message is an update, originated from one of the sites of the update
group, the received write set is placed at the end of the queue at the read site so
that it will be executed later on through a refresh or propagation transaction.
When the site is idle, meaning it is not executing any transactions, the queue is
inspected for pending updates. The data is locked and a propagation transaction
containing the modifications in the queue is executed. The data is locked to
prevent the execution of new transactions before the end of the propagation
transaction, thus preventing these new transactions from reading out-of-date
data. At the end of the execution, the site is unlocked and it is free to execute any
waiting transactions. From the users’ standpoint, though, RepliX is synchronous,
since they always access up-to-date data.

Algorithm 5. - Read site algorithm
1: procedure process transactions
2: loop
3: msg ← read site.receive message();
4: if msg.type = begin then
5: if queue.is empty() = false then
6: read site.lock(msg.data item);
7: read site.execute refresh transaction(queue);
8: read site.unlock(msg.data item);
9: end if

10: read site.begin()
11: results ← read site.execute(msg.operations);
12: return results;
13: else if msg.type = update then
14: queue.add(msg.operations.write set)
15: end if
16: while read site.is busy() = true do
17: if queue.is empty() = false then
18: read site.lock(msg.data item);
19: read site.execute propagation transaction(queue);
20: read site.unlock(msg.data item);
21: end if
22: end while
23: end loop

24: end procedure

2.2 Evaluation

RepliX was mainly developed in Java, with minor parts of the source code written
in C++. RepliXDriver consists of a Java library that can be used by applications
to access the replicated system through RepliX’s interface. RepliXCoordinator
is implemented as a stand-alone service, also in Java. RepliXDriver and RepliX-
Coordinator communicate using Java’s RMI. Each RepliXNode is also a service

A New Approach to Replication of XML Data 147

written in Java that, through a database-independent abstraction layer, uses the
database-specific driver to access the underlying NXDB. Our NXDB of choice
was Sedna, an open-source NXDB written in C++ by the ISPRAS [6]. The
communication between RepliXCoordinator and each RepliXNode uses RMI,
but the nodes communicate amongst them using the Spread group communica-
tion system [12]. Some of the information needed by RepliXNode’s algorithms
were not accessible through Sedna’s standard Java library. In order to make such
data available to RepliXNode, we made small modifications in C++ to parts of
the Sedna source code and extended Sedna’s Java library to retrieve this data
seamlessly. In order to generate the databases, we used the XMark benchmark
for XML data [10] and added the update operations proposed by [11].

To evaluate RepliX, we assumed a set of sites S={S1...SN}. Each site Si has
a database and contains a complete copy of the data, performing transaction
management locally. The database uses the two-phase locking protocol to assure
concurrency control. We also considered a set of clients C={C1...CM}, which
generate the transactions. In order to process a transaction t, a client C connects
to RepliX and submits a transaction t, which RepliX forwards to the site Si.

The environment used in the experiments consisted of a cluster of PCs con-
nected through an Ethernet Hub. Each PC has a 3.0 GHz processor, 1 GB of
RAM, 100 Mbit/s full-duplex network interface, and runs the Windows XP op-
erating system. The database consists of a 10 MB XML document and each
transaction is composed of 10 operations. We compared the standard Sedna
database against RepliX on top of Sedna. RepliX was composed of 11 sites and
3 of them were part of the update group.

The response time and throughput were measured considering different num-
bers of clients, each client submitting 100 transactions, 80% of those being read
transactions. Figure 2 shows the average response time. The left chart increases
as more clients are added and the stand-alone Sedna presents an inferior result
compared to RepliX’s. The reason for this behavior is that Sedna is overloaded
quickly. Meanwhile, RepliX distributes the update and read transactions among
the several replicas. In addition, the efficient message exchange service provided
by the Spread system was key to improve the response time.

Fig. 2. Response Time and Throughput

148 F.R.C. Sousa, H.J.A. Carneiro Filho, and J.C. Machado

Figure 2 shows the throughput. In the chart, we can observe that the through-
put decreases as the number of clients is increased. The stand-alone Sedna
presents low throughput values and they remain almost constant throughout
the experiments. This happens because Sedna, as most centralized systems, has
a limit on the amount of transactions it can process and manage. RepliX, on the
other hand, is able to improve the throughput rate by distributing the transac-
tions among the active sites. When the number of clients reaches 30, the through-
put decreases considerably because every replica starts to get overloaded. With
40 and 50 clients, the throughput decreases less significantly. Generally, RepliX
presented better throughput rates than the standard Sedna, given the number
of clients evaluated.

The proportion of update transactions is an important parameter, and can sig-
nificantly affect performance. Figure 3 presents a chart with the results of this
experiment. The response time of the standard Sedna grows rapidly with the
addition of more update transactions. For RepliX, the response time increases
gradually until 40% of updates. One of the reasons for it is that the transactions
are distributed among the update and read groups, improving processing effi-
ciency. From 50% of updates on, the response time increases a great deal. This
is due to the fact that more messages are being sent from the update group to
the read group. During the execution of this experiment, we observed a small
amount (less than 2%) of aborts in the update group, due to the certification
test.

Fig. 3. Update Proportion and Scalability

Figure 3 shows the results of the scalability test. The addition of more sites
improved RepliX’s performance. With 3 sites, RepliX presented a considerable
response time, but with 7 sites the improvement was notable. From 9 sites on,
the response time tends to remain constant. RepliX’s synchronization strategy,
which updates initially the sites from the update group, does not have to update
every single replica every time a database is updated, thus improving scalability.

A New Approach to Replication of XML Data 149

3 Related Work

The eXist database system [4] provides a replication mechanism based on the
JGroups system [8] to synchronize the replicas. eXist uses a primary copy pro-
tocol, propagating modifications in a synchronous fashion. When an update op-
eration is sent to a site in the replicated group, this site sends an update to
the primary copy and the secondary copies are locked. When the primary copy
executes the update, it is propagated to the secondary copies, which later on are
unlocked to process new requests.

The X-Hive database system [16] also presents a mechanism based on the
primary copy protocol, but executes updates asynchronously. Updates are stored
in a log and sent later on to the secondary copies. Since the modifications are
executed asynchronously, it is possible that the applications accessing secondary
copies might read out-of-date data. The Tamino database system [13] offers two
replication approaches: a primary copy protocol and a Two-Phase Commit (2PC)
protocol. When Tamino is configured to work with the former, replication works
similarly to the X-Hive database system. With the latter execution proceeds
much like in traditional databases.

Although eXist uses group communication primitives, these primitives are
used only to provide a reliable message exchange service. X-Hive and Tamino
apply traditional techniques to provide replication. However, these techniques
are not appropriate for replication of XML data. The primary copy protocol
used in the related work is not fault-tolerant, nor does it improve scalability [9].
The 2PC protocol used by Tamino shows low performance and a high number of
conflicts [7] because it involves every replica in each update process. None of the
related work presents results that attest the efficiency of the mechanisms and
solutions proposed. Besides, the majority of them offer little portability, since
they are implemented at the kernel of the database.

4 Conclusion

This work presented RepliX, a replication mechanism for XML data that com-
bines synchronous and asynchronous protocols with group communication prim-
itives that allow for efficient replication of such data. Particularly, RepliX consid-
ers characteristics of XML data, providing efficient ways to replicate data in this
format, improving NXDBs’ performance. RepliX was evaluated considering dif-
ferent aspects of replication. Analyzing the results of the experiments conducted,
we observed a significant improvement in both performance and availability of
the Sedna database system by using RepliX, even in scenarios with a large pro-
portion of update transactions.

As future work, we intend to conduct a comparative study between RepliX
and other replication protocols such as 2PC. Another important aspect is the de-
velopment of query decomposing strategies that will allow RepliX to work with
partial replication. We are planning to evaluate RepliX in different environments,
such as WANs, with the intent of determining the performance variation intro-

150 F.R.C. Sousa, H.J.A. Carneiro Filho, and J.C. Machado

duced by network latency. Finally, we intend to further investigate the number
of aborts that ocurr in the update group.

Acknowledgments. The authors would like to acknowledge the contribution
of the Institute for System Programming - Russian Academy of Sciences in the
development of this work.

References

1. Akal, F., Türker, C., Schek, H-J., Breitbart, Y., Grabs, T., Veen, L.: Fine-grained
replication and scheduling with freshness and correctness guarantees. In: VLDB
’05: Proceedings of the 31st international conference on Very large data bases, pp.
565–576 (2005)

2. Bernstein, P., Newcomer, E.: Principles of transaction processing: for the systems
professional. Morgan Kaufmann Publishers, San Francisco (1997)

3. Birman, K.: Reliable Distributed Systems: Technologies, Web Services, and Appli-
cations. Hardcover (2005)

4. eXist. http://exist.sf.net
5. Fiebig, T., Helmer, S., Kanne, C-C., Moerkotte, G., Neumann, J., Schiele, R., West-

mann, T.: Anatomy of a native XML base management system. VLDB J. 11(4),
292–314 (2002)

6. Fomichev, A., Grinev, M., Kuznetsov, S., Sedna: A Native XML DBMS. In: Wie-
dermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006.
LNCS, vol. 3831, pp. 272–281. Springer, Heidelberg (2006)

7. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solu-
tion. In: SIGMOD ’96: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 173–182 (1996)

8. JGroups Toolkit. http://www.jgroups.org
9. Özsu, T., Valduriez, P.: Principles of distributed database systems, 2nd edn.

Prentice-Hall, Englewood Cliffs (1999)
10. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark

A benchmark for XML data management. In: Proceedings of 28th International
Conference on Very Large Data Bases (VLDB 2002), pp. 974–985 (2002)

11. Sousa, F.R.C.: RepliX: A Mechanism for Replication of XML Data. Master’s thesis,
Federal University of Ceara, Fortaleza, Brazil (2007)

12. Spread Toolkit. http://www.spread.org
13. Tamino XML Server. http://www.softwareag.com/tamino
14. Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency

control based on snapshot isolation. In: ICDE ’05: Proceedings of the 21st Inter-
national Conference on Data Engineering, pp. 422–433 (2005)

15. Extensible Markup Language. http://www.w3c.org/xml
16. X-Hive: native XML database. http://www.x-hive.com

http://exist.sf.net
http://www.jgroups.org
http://www.spread.org
http://www.softwareag.com/tamino
http://www.w3c.org/xml
http://www.x-hive.com

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 151–161, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Encoding and Labeling Scheme for Dynamic
XML Data

Xu Juan, Li Zhanhuai, Wang Yanlong, and Yao Rugui

School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an
710072, China

xuj@mail.nwpu.edu.cn, lizhh@nwpu.edu.cn,
wangyl@mail.nwpu.edu.cn, yaory@hotmail.com

Abstract. It is important to process the updates when nodes are inserted into or
deleted from the XML tree. However, all the existing labeling schemes have
high update cost. In this paper, we innovatively introduce a concept of
Forbidden Code Segment (FCS), and then propose a novel and efficient
encoding approach, called Extended Lexicographical Order encoding based on
Forbidden Code Segment (FCS-ELO Encoding), whose codes are more
compact than CDBS and QED codes. The most important characteristic is that
our FCS-ELO labeling scheme can gracefully handle arbitrary update patterns
and completely avoid re-labeling in XML updates, which is not at the sacrifice
of query performance. We deliver the detailed theoretic analyses and
experiments to show that, the proposed labeling scheme is superior to all the
existing dynamic labeling schemes to process updates in terms of the
incremental label size and the time for updating.

Keywords: Forbidden Code Segment (FCS), Lexicographical Order, labeling
scheme, re-labeling, updates.

1 Introduction

XML [1] is widely used as a standard of information exchange and representation on
the web. Much research has been undertaken on providing flexible indexing and
query mechanisms on XML. The labeling schemes [2, 3, 4] are widely used in XML
query processing, which can efficiently determine the ancestor-descendant and
parent-child relationships between any two elements with small storage space.

If the XML is static, the current labeling schemes can efficiently process different
queries. However, if the XML is frequently updated, large amounts of nodes need re-
labeling, which is costly and becomes a performance bottleneck. Therefore, in this
paper, we focus on how to efficiently update the XML documents and dramatically
decrease the update cost without sacrifice of query performance. Our contributions in
this paper can be summarized as follows:

 We propose a novel FCS-ELO encoding, which supports that FCS-ELO codes
can be inserted between any two consecutive FCS-ELO codes with the orders
kept and without re-encoding the existing codes.

152 J. Xu et al.

 FCS-ELO labeling scheme can completely avoid re-labeling in XML updates.
 We perform comprehensive experiments to demonstrate the merits of FCS-

ELO.

The rest of the paper proceeds as follows. We first review the related works in
Section 2. In Section 3, we propose a novel FCS-ELO encoding, and analyze its mean
label size and application scopes. Section 4 presents comprehensive experiments to
illustrate the performance. Finally we conclude in Section 5.

2 Related Works

In this section, we present several dynamic labeling schemes, which can partially
or completely solve the problem of re-labeling in XML updates.

Amagasa et al [5] give a Float-point Number Containment Labeling Scheme in
which every node is assigned three values: “start, end, level”, and the “start”s and
“end”s of the intervals are float-point values. For any two nodes u and v, u is an
ancestor of v iff u.start < v.start and v.end < u.end. Node u is a parent of node v iff
u is an ancestor of v and v.level - u.level = 1. For float-point number is
represented in a computer with a fixed number of bits, this scheme cannot
completely avoid re-labeling in XML updates [5, 8]. Furthermore, the comparison
of float-point values will decrease the query performance [4, 8].

OrdPath [9] is an extended DeweyID [8] labeling scheme. OrdPath only uses
the odd numbers at the initial labeling. When the XML is updated, it uses the
even number between two odd numbers to concatenate another odd number.
OrdPath can partially avoid re-labeling in XML updates because of the overflow
problem [10]. Meanwhile, its query performance is worse than that of DeweyID
since OrdPath needs more time to decide the prefix levels based on the even and
odd numbers [11].

Changqing Li [11] proposes a novel compact dynamic binary string (CDBS)
encoding. CDBS codes can be inserted between any two consecutive CDBS codes
with the orders kept and without re-encoding the existing codes. The CDBS
encoding is so compact that the size of CDBS is as small as the binary number
encoding of consecutive integers. However, the CDBS cannot completely solve
the re-labeling in frequent updates because of the overflow problem.

QED [10] uses four quaternary numbers “0”, “1”, “2” and “3”, and each
quaternary number is stored with 2 bits. Only “1”, “2” and “3” appear in the QED
code itself; “0” is used as the separator to separate different codes. Till now, the
QED labeling scheme can really avoid re-labeling in XML updates. However, it is
not the most compact, i.e. its size is 4/3 times larger than that of V-CDBS[11],
and its update cost is larger than that of V-CDBS. When skewed frequent
updating, its label size increment is 2 times over V-CDBS.

Motivation. CDBS can efficient process dynamic XML data, but it cannot
completely avoid re-labeling; QED can avoid re-labeling, but its label size is
large, and update and query performance is not as good as CDBS. With the
consideration of the advantages of CDBS and QED, in this paper, we propose a
novel FCS-ELO encoding. The FCS-ELO has two excellent benefits: 1) our FCS-

 An Efficient Encoding and Labeling Scheme for Dynamic XML Data 153

ELO is very compact,whose size is smaller than those of CDBS and QED; 2)
FCS-ELO codes can be inserted between any two consecutive FCS-ELO codes
without any re-labeling.

3 An Extended Lexicographical Order Encoding Based on
Forbidden Code Segment

In this section, we first introduce the definitions. And then we propose a novel
encoding approach. Finally we analyze the label size and its application scopes.

3.1 Encoding Algorithm

First of all, we introduce some correlative conceptions.

Definition 3.1 (Lexicographical Order Code, LO Code) Lexicographical order
code is a binary string ()RbbbC 21= , where R is the code size; 1=Rb and

{ }1,0∈ib , 11 −≤≤ Ri .

Definition 3.2 (Lexicographical order = and ≺ , LO) Given two LO codes

()11
2

1
11 TbbbC = and ()22

2
2
12 RbbbC = ,

(1) 1C is considered to be lexicographically equal to 2C iff they are exactly the same,

that is, TRibbCC ii =≤≤=⇔= 1,21
21 ;

(2) 1C is considered to be lexicographically smaller than 2C (21 CC ≺) iff

(a) the lexicographical comparison of 1C and 2C is bit by bit from left to right. If

the current bit of 1C is 0 and the current bit of 2C is 1, then 21 CC ≺ and stop the

comparison, this case can be represented by kibbbb kkii <≤=== 1,1,0, 2121

),min(RT≤ ; or

(b) 1C is a prefix of 2C , that is, RTibb ii <≤≤= 1,21 .

Definition 3.3 (Code Segment, CS) Given a LO code ()RbbbC 21= , a code

segment is a segment of several consecutive bits, which can be represented by
()kii bbbCS 1+= , Rki ≤≤≤1 .

Definition 3.4 (Forbidden Code Segment, FCS) Support that the code
()RUU bbbbbC 121 −= , a forbidden code segment with parameter U is a code

segment ()KU eeeFCS 21= , which is impossible to appear within the code segment

()RU bb .

Just like what is described in Definition 3.1, all LO codes are ended with “1”. In
order to decrease the code size and easily detect FCS, we select ()111=UFCS .

Here, the number of consecutive “1” is K. Next we introduce FCS-ELO code.

154 J. Xu et al.

Definition 3.5 (Extended Lexicographical Order Code Based on Forbidden Code
Segment, FCS-ELO Code) Given that the flag field ()QfffF 21= and the

forbidden code segment ()111=UFCS with K consecutive “1”, where U=2Q-1, an

FCS-ELO code C
~

 can be constructed as

(a) if the size of LO code ()RbbbC 21= is smaller than U, C
~

 is simply the

concatenation of F and C , that is, ()RQ bbbfffCFC 2121
~ =⊕= , and ⊕

represents the concatenation operator, F records the size of C, which is equal to R;

(b) if the size of LO code ()RUUU bbbbbbC 1121 +−= is equal to or larger than

U, C
~

 is the concatenation of F ,C, the first (K-1) bits of FCSU and a “0”, that is,

()10110)1(111
~

112121 RUUUQ bbbbbbfffKCFC +−=⊕−⊕⊕= ,

where F is set to be U=2Q-1; FCSU should never appear in the code segment
()RUU bbb 1+ and the number of consecutive “1” between bR and the last “0” is

K-1.

In Definition 3.5, we should give 2 comments: 1) the number of consecutive “1”
between Rb and the last “0” is K-1 because of fully utilizing the ended “1” (bR) in C;

2) we attach a “0” at the end for the sake of efficiently separating the “1” in the FCS
from the “1” in the head of next code.

With respect to FCS-ELO codes, its code size can be defined as follows.

Definition 3.6 (Code Size of FCS-ELO Code) The code size for a given FCS-ELO

code ()RQ bbbfffC 2121
~ = (the case (a) in Definition 3.5) or

(RUUUQ bbbbbbfffC 112121
~

+−=)021 Keee (the case (b) in Definition 3.5)

is the size of its corresponding LO code ()RbbbC 21= , which is equal to R .

Without special comments, C is the corresponding LO code of the FCS-ELO code

C
~

 in this paper.

Theorem 3.1. Given an FCS-ELO code C
~

, where the size of the flag field is Q and

()111=UFCS with K “1”s, we can always obtain the code size of C
~

.

Due to space limitations, we omit the proofs of all the theorems and corollaries.
The following Theorem 3.2 guarantees the existence of an FCS-ELO code between
the given two FCS-ELO codes.

Theorem 3.2. Given two FCS-ELO codes SC
~

 and LC
~

, FCS and the record size, we

can always find an FCS-ELO code MC
~

 which satisfies LMS CCC ≺≺ .

And the algorithm to obtain inserted FCS-ELO code is easily concluded in Fig. 1.

 An Efficient Encoding and Labeling Scheme for Dynamic XML Data 155

Algorithm 1: ObtainInsertedCode(SC
~

, LC
~

)

Input: SC
~

 and LC
~

 are both FCS-ELO codes satisfying LS CC ≺ , where

()111=UFCS with K “1”s and the size of the flag field is Q; the

corresponding LO codes of SC
~

 and LC
~

 are ()S
T

SS bbb 21 and ()L
R

LL bbb 21

Output: FCS-ELO code MC
~

 satisfying LMS CCC ≺≺

Description:

1: T=size(SC
~

)

2: R=size(LC
~

) // Get the code sizes of SC
~

 and LC
~

3: if RT < then

4: if 122 −<+ QR then //Case (1)

5: () ()012
~

1212
L
R

LL
M bbbRC −⊕+=

 // ()2x represents the binary version of x

6: else if 122 −≥+ QR then //Case (2)

7: () () 0)1(1110112
~

1212 ⊕−⊕⊕−= − KbbbC L
R

LLQ
M

 //)1(111 −K represents the (k-1) “1”s in FCS
8: end if
9: else if RT ≥ then

10: if 121 −<+ QT then //Case (3)

11: () ()11
~

212
S
T

SS
M bbbTC ⊕+=

12: else 122 −≥+ QT then

13: if 122 −+−≥ KT Q then

14: if SC is not ended with K-1 “1”s then //Case (4)

15: () () 0)1(111112
~

212 ⊕−⊕⊕−= KbbbC S
T

SSQ
M

16: else if SC is ended with K-1 “1”s then //Case (5)

17: () () 0)1(1110112
~

212 ⊕−⊕⊕−= KbbbC S
T

SSQ
M

18: end if

19: else if 122 −+−< KT Q then //Case (6)

20: () () 0)1(111112
~

212 ⊕−⊕⊕−= KbbbC S
T

SSQ
M

21: end if
22: end if
23:end if

24:return MC
~

Fig. 1. Algorithm to obtain the inserted FCS-ELO code

We can easily conclude 2 corollaries from Theorem 3.2.

Corollary 3.1. MC
~

 returned by Algorithm 1 is an FCS-ELO code.

Corollary 3.2. Given any two FCS-ELO codes SC
~

 and LC
~

, LS CC ≺ , we can always

find P FCS-ELO codes MPMM CCC
~

,,
~

,
~

21 , satisfying 21 MMS CCC ≺≺

LMP CC ≺≺≺ .

156 J. Xu et al.

Theorem 3.2, Corollary 3.1 and Corollary 3.2 guarantee that we can insert nodes
without re-labeling in XML updates when FCS-ELO codes are used to label nodes in
XML tree. This is the first important property of our FCS-ELO codes.

Till now, we can formerly conclude the encoding algorithm listed as Fig. 2.

Algorithm 2: Encoding(N)

Input: A positive integer N
Output: The FCS-ELO codes for numbers 1 to N
Description:
1:suppose there is one more number 0 before the first number, and
one more number (N+1) after the last number
2:SubEncoding(codeArr, 1, N) // codeArr is an array with size (N+2)
3:discard the 0th and (N+1)th elements of codeArr
Procedure SubEncoding(codeArr, PS, PL)
/* SubEncoding is a recursive procedure; codeArr is an array, PS
and PL are the small and large position respectively */
1: PM=round((PS+PL)/2)
2: if PS+1<PL then
3: codeArr[PM] = ObtainInsertedCode(codeArr[PS],codeArr[PL])
4: SubEncoding(codeArr, PS, PM)
5: SubEncoding(codeArr, PM, PL)
6: end if

Fig. 2. Encoding algorithm

3.2 Code Size Analysis

CDBS. To encode N numbers, the mean size of the V-CDBS codes is [11]

()() NNNNNNN)1(loglog)1(log)1(log 2222 ++++−+ (1)

QED. The mean size of the N QED codes is [10]

() NNNNN ++++)1(log2)1(log2 33 (2)

FCS-ELO. Considering FCS-ELO codes with the specified FCS “111” and the record
field size Q, when the encoding number N is smaller than 2Q-1, the mean size of the
FCS-ELO codes is similar to the V-CDBS codes, and can be formulated by (3).

() NNQNNNN +++−+)1(log)1(log 22 (3)

However, when 12 −=≥ QUN , the mean size in this case can not be deduced
easily. Suppose that the number of FCS-ELO codes with code size n bits is a(n). For
difficultly deducing the close expression for a(n), we just give the recursive equation.

1

2

2)()(

2,2)(2)2()(

−

−−

=

×=

+≥++−= ∑
U

Un

Ui

nbna

Unibnbnb
 (4)

The initial condition is a(U)=2U-1 and a(U+1)= 223 −⋅ U . Considering maximum
code size n, 2 bits “11” in FCS3, 1 bit separator “0”, the record field size Q, and the
codes with size smaller than U, the mean size of FCS-ELO codes is formulated by

 An Efficient Encoding and Labeling Scheme for Dynamic XML Data 157

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×++++ ∑∑∑∑

=

−

=

−

=

−

=

−
n

Ui

U

i

i
n

Ui

U

i

i iaiaQiQi)(2)()3(2)(
1

1

1
1

1

1 (5)

The mean code sizes for different encoding approaches are plotted in Fig. 3,

where the line marked with “FCS-ELO(1)” corresponds to the case of 12 −< QN

and the line marked with “FCS-ELO(2)” to the case of 12 −≥ QN . From Fig. 3,
we can make 2 comments: 1) the mean size of FCS-ELO codes is not larger than
that of V-CDBS codes, and smaller than that of QED codes, which means our
FCS-ELO codes are more compact; 2) considering the lines marked with “FCS-
ELO (1)” and “FCS-ELO (2)”, we can find out that the selection of Q satisfying

12 −< QN mostly brings out much smaller mean code size. Therefore, in the
initial encoding, Q should be selected to be the minimum integer satisfying

12 −< QN .From the analysis, we can conclude that FCS-ELO codes are rather
compact, which is the second important property.

(1,18,1)

(10,13,2)

(11,12,3)

(14,17,2)

(15,16,2)

a

(8,9,2)

(5,6,3)(3,4,3)

(2,7,2)
b

c

Fig. 3. Average code size for different
encoding approaches

Fig. 4. Update

3.3 Application Scopes of FCS-ELO Codes

Our FCS-ELO can be applied to other labeling schemes [6, 8] that need to
maintain the orders in updates. When we replace the “start”s and “end”s of the
containment scheme [7] with FCS-ELO codes, an FCS-ELO containment labeling
scheme is formed, called FCS-ELO-Containment. We can insert arbitrary number
of nodes in any position without re-labeling, when FCS-ELO-Containment is
used.

In FCS-ELO encoding, we use FCS as the separator to identify the different
codes. Therefore, FCS-ELO will never encounter the overflow problem, and the
FCS-ELO labeling scheme can completely avoid re-labeling in updates. Example
3.1 illustrates that our FCS-ELO labeling scheme can completely avoid re-
labeling with the orders kept in XML updates. We use decimal numbers in Fig. 4
denoting the “start”s and “end”s for simplicity, but in practice, these numbers are
stored using our FCS-ELO codes.

158 J. Xu et al.

Example 3.1. To insert a node “a” in Fig. 4, we should insert 2 numbers between
the “end” of node c “6” and the “end” of the node b “7”. If we use the traditional
labeling scheme, we cannot insert any numbers between “6” and “7”, and we must
re-label all the nodes in the tree. However, our FCS-ELO codes for “6” and “7”
are “101:01001” and “100:0101”. Based on the Algorithm 1, we can construct 2
inserted codes “110:010011” and “111:0100111110” as the “start” and “end” of
node “a”. Obviously, the corresponding LO codes satisfy
“01001” ≺ “010011” ≺ “0100111” ≺ “0101”. We need not re-label any existing
nodes, but we can keep the containment scheme working correctly. It is similar
for the insertion in the other positions.

4 Performance Study

CDBS has best performance in query and update processing and most compact
label size among dynamic labeling schemes [11]; and QED can completely avoid
re-labeling [10], so the experimental results are compared with CDBS and QED.
All the schemes are implemented in Visual C++ 6.0 and the experiments are
carried out on a 2.8 GHz Pentium 4 processor with 2 GB RAM running Windows
XP Professional.

Table 1. Test datasets

Datasets Topics # of files Max/ Total of nodes
D1 Movie 490 125/26044
D2 Department 19 2840/48542
D3 Actors 482 1110/56995
D4 Play 4 179690/392996
D5 Shakespeare’s play 37 6636/179689
D6 NASA 2436 6022/533193

Table 1 shows the test datasets D1~D6, which are all real-world XML data
from [14]. In addition, with respect to the preserve space for further insertion, we
select ceil(log2(log2(2H+1))+1) and ceil(log2(log2(2H+1))) bits to record the
real size of V-CDBS and FCS-ELO; H is maximum total node number for each
file in the dataset.

4.1 Performance Study on Static XML

In this section, we evaluate the performance on static XML, including label size,
encoding time and query response time.

4.1.1 Label Size
Fig. 5 shows the mean label sizes of different labeling schemes on datasets
D1~D6. For FCS-ELO-Containment, it has smaller mean label size than QED-
Containment [10] and CDBS-Containment [11], which means that our FCS-ELO-
Containment is the most compact among the given 3 labeling schemes.

 An Efficient Encoding and Labeling Scheme for Dynamic XML Data 159

0

5

10

15

20

25

M
ea

n
L

ab
el

 S
iz

e

D1 D2 D3 D4 D5 D6

Datasets

CDBS

QED

FCS-ELO

Fig. 5. Mean label sizes of
different labeling schemes

0

100

200

300

400

500

600

700

800

E
nc

od
in

g
T

im
e

(m
s)

D1 D2 D3 D4 D5 D6

Datasets

CDBS

Q ED
FCS-ELO

Fig. 6. Encoding time of
different labeling schemes

0

10

20

30

40

50

60

R
es

po
ns

e
T

im
e

(s
)

Q1 Q2 Q3 Q4 Q5 Q6

Queries

CDBS

QED

FCS-ELO

Fig. 7. Response time of
queries Q1~Q6

4.1.2 Encoding Time
Fig. 6 shows the encoding times of different labeling schemes on datasets D1~D6.
The encoding time of FCS-ELO-Containment is as longer as that of CDBS-
Containment, however, only 1/15~1/10 of the encoding time of QED-
Containment. Our scheme needs much fewer encoding time over QED mainly
because QED-Containment encodes longer binary string and has very time-
consuming division operation by “3”. Therefore, our FCS-ELO-Containment is
rather efficient in terms of encoding time.

4.1.3 Query Response Time
As described in [8], we scale up D5 10 times to test the queries. Table 2 shows
the ordered and un-ordered queries (Q1~Q6) [11] and the number of nodes
retrieved. Fig. 7 shows the response time of queries Q1~Q6. We can see our FCS-
ELO-Containment quickly responds to the queries, whose response time is
approximately similar to those of QED-Containment and CDBS-Containment. We
can draw a conclusion that the superior properties of our scheme are not at the
sacrifice of query performance.

Table 2. Test queries on the scaled dataset D5

Queries # of nodes retrieved
Q1 /play/act[4] 370
Q2 /play//personae[.title]/pgroup[.//grpdescr]/persona 2690
Q3 /play/personae/persona[12]/proceding-silling::* 4240
Q4 //act[2]/following:speaker 184060
Q5 //act/scene/speech 309330
Q6 /play/*//line 1078330

4.2 Performance Study on Frequent Updates

Next, we discuss the performance of 2 kinds of frequent updates. Section 4.2.1
evaluates the update cost of frequent insertions randomly at different places,
called Uniformly Frequent Update. Section 4.2.2 studies the update performance

160 J. Xu et al.

of frequent insertions always at a fixed place, called Skewed Frequent Update,
which is the worst case. We select one XML file Hamlet in D5 to test the update
performance.

4.2.1 Uniformly Frequent Update
The Hamlet file has totally 6636 nodes. We insert 6635 nodes between every two
consecutive nodes of the 6636 nodes. Based on the new file after insertion, we
insert another 13270 nodes. And we repeat this kind of insertion 6 times.

Fig. 8 and 9 show the incremental label size and update time after each
insertion series. When uniformly frequent update is encountered, CDBS-
Containment, QED-Containment and FCS-ELO-Containment need to modify 1, 2
and a little more than 1 bits of the neighbor label to get the label of the inserted
node respectively. Therefore, our FCS-ELO-Containment has cheaper update cost
than QED-Containment, but has the same update cost as CDBS-Containment.

0

20

40

60

80

100

120

140

In
cr

em
en

ta
l B

it
s

(1
00

,0
00

 b
it

s)

1 2 3 4 5 6

Isertion Series

CDBS

QED

FCS-ELO

Fig. 8. Incremental bits
for insertion series

0

5

10

15

20

25

30

35

U
pd

at
e

T
im

e
(m

s)

1 2 3 4 5 6

Insertion Series

CDBS

Q ED

FCS-ELO

Fig. 9. Update time
for each insertion

series

0

2

4

6

8

10

12

In
cr

em
en

ta
l L

ab
el

 S
iz

e
(1

0,
00

0
bi

ts
)

50 100 150 200

Number of Inserted Nodes

CDBS

QED

FCS-ELO

50.5 108.6104.877.2

Fig. 10. Incremental
label size for skewed

frequent update

0

5

10

15

20

25

30

U
p

d
at

e
T

im
e

(m
s)

50 100 150 200

Number of Inserted Nodes

CDBS

QED

FCS-ELO

141 263260198

Fig. 11. Update time for
skewed frequent update

4.2.2 Skewed Frequent Update
In order to test the performance of skewed frequent update, we randomly select a
place in the Hamlet file, at which we consecutively insert 200 nodes. The
simulated total incremental label size and update time are showed in Fig. 10 and
11, and we can see that FSC-ELO-Containment has the best performance while
CDBS-Containment has the worst performance both in the terms of label size and
update time. FCS-ELO-Containment and QED-Containment will never re-label
for the XML updates. However, CDBS-Containment will certainly encounter re-
labeling when the fixed bits number cannot represent the real codes’ size in
frequent insertions. In addition, our FCS-ELO-Containment has cheaper update
cost than QED-Containment.

5 Conclusion

In this paper, we have proposed a novel and efficient FCS-ELO encoding, which
can be broadly applied to different labeling schemes to completely avoid re-
labeling in XML updates with cheaper update cost. All the theoretic analyses and
experimental results demonstrate that our FCS-ELO labeling scheme has more
compact labels and much cheaper update cost over all existing dynamic labeling
schemes.

 An Efficient Encoding and Labeling Scheme for Dynamic XML Data 161

Acknowledgement. This paper is supported by National Science Foundation of China
No. 60573096.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup
Language (XML) 1.0, 3rd edn., W3C recommendation (2000)

2. Abiteboul, S., Kaplan, H., Milo, T.: Compact Labeling Schemes for Ancestor Queries. In:
Proc. of SODA, pp. 547–556 (2001)

3. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient Management of Transitive
Relationships in Large Data and Knowledge Bases. In: Proc. of SIGMOD, pp. 253–262
(1989)

4. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic Ordered
XML Trees. In: Proc. of ICDE, pp. 66–78 (2004)

5. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for XML
Documents. In: Proc. of ICDE, pp. 705–707 (2003)

6. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In:
Proc. of VLDB, pp. 361–370 (2001)

7. Zhang, C., Naughton, J., DeWitt, D., et al.: On Supporting Containment Queries in
Relational Database Management Systems. In: Proc. of ACM SIGMOD, pp. 425–436.
ACM Press, New York (2001)

8. Tatarinov, S., Viglas, K.S., Beyer, J.: Shanmugasundaram, et al: Storing and Querying
Ordered XML Using A Relational Database System. In: Proc. of SIGMOD, pp. 204–215
(2002)

9. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., et al.: ORDPATHs: Insert-Friendly XML Node
Labels. In: Proc. of SIGMOD, pp. 903–908 (2004)

10. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid Re-labeling
in XML Updates. In: Proc. of CIKM, pp. 501–508 (2005)

11. Li, C., Ling, T.W., Hu, M.: Efficient Processing of Updates in Dynamic XML Data. In:
Proc. of ICDE, pp. 13–22 (2006)

12. NIAGARA Experimental Data. Available at: http://www.cs.wisc.edu/niagara/data

Distributed Semantic Caching in Grid

Middleware

Laurent d’Orazio, Fabrice Jouanot, Yves Denneulin, Cyril Labbé,
Claudia Roncancio, and Olivier Valentin

Laboratoire d’Informatique de Grenoble, France,
firstname.lastname@imag.fr

Abstract. This paper proposes a flexible caching solution to improve
query evaluation in grids. It reduces both, data transfer and query com-
putation, by adopting a distributed semantic caching approach. Our pro-
posal introduces multi-scale cache cooperation including single site coop-
eration between object caches and distributed context aware cooperation
between several query caches. Different cache miss resolution protocols
are introduced for query evaluation and experimented in a grid data
management for bioinformatics applications.

1 Introduction

Efficient data sharing technology is mandatory for large scale distributed systems
especially for applications handling large data sets. A natural way to improve
performances in this context is the use of caching solutions. Such solutions are
particularly relevant in data grid management. Typical grid architectures consist
of sites interconnected through high bandwidth networks, providing new caching
perspectives. This article presents a distributed and semantic caching approach,
as well as different cooperations of caches to supply a scalable system, applied
in a grid middleware.

Generally resolving a cache miss consists in retrieving documents via servers.
However these servers might become a bottleneck, due to computation or/and
data transfer. That is why using other caches (called siblings) to resolve a cache
miss, contacting servers in the last resort, can help reducing both load on servers
and the amount of data transferred. Such a technique, referred as distributed
caching, is well known in file systems [7] and in the Internet [5].

Semantic caching [13], [8] allows to exploit resources in the cache and knowl-
edge contained in the queries themselves. As a consequence, it enables effective
reasoning, delegating part of the computation process to the cache, reducing
both data transfer and the load on servers. When a query is posed at a cache, it
is split into two disjoint pieces: (1) a probe query, which retrieves the portion of
the result available in the local cache, and (2) a remainder query, which retrieves
any missing tuples in the answer from the server. If the remainder query exists
then it is sent to the server for processing.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 162–171, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distributed Semantic Caching in Grid Middleware 163

In our caching solution, we aim to separate cache management from the res-
olution process and data transfer from the query evaluation. This two-level sep-
aration of concerns is the base of our contribution: a novel approach called dis-
tributed semantic cache and using locality-based resolution. The consequence of
locality-based resolution is to limit the cooperation to a group of caches according
to relevant neighbourhood strategy. We also propose to use dual cache [10] as it
separates query from objects to optimize the query evaluation process. By com-
bining both the approaches, we obtain a flexible system that aims at improving
both data transfer and query processing in query evaluation. Our solution has
been experimented in a grid data management middleware with bioinformatics
applications.

This paper is organized as follows. Section 2 presents our proposition whereas
section 3 presents a performance analysis in a middleware for data management
on grids. Related work is described in section 4. Section 5 concludes this paper
and gives research perspectives.

2 Distributed Semantic Caching

Scalability can be achieved using distributed and semantic caching. Locality-
based resolution and dual cache are promising solutions for distributed and se-
mantic caching respectively in grid environments. Distributed semantic caching
combines both approaches, providing an architecture flexible enough to configure
it according to application requirements and environment constraints. In partic-
ular, distributed semantic caching proposes several resolution strategies. In the
following, section 2.1 presents locality-based resolution, section 2.2 introduces
dual cache and section 2.3 discusses resolution potentiality.

2.1 Locality-Based Resolution

To make a system highly scalable, cache miss resolution has to be carefully
considered. In fact, servers may become bottlenecks, making it relevant to use
other caches during cache miss resolutions. However, not all caches are useful
and it is important to determine the set of caches to contact. One way to do
that is to regroup caches according to a given locality.

Locality may be based on different characteristics. In query evaluation mid-
dleware, we will consider geographic and semantic locality. Geographic locality
like proximity [16] or neighbourhood [12] attempts to limit the resolution process
according to distance. As a consequence, data transfers will be limited in a small
area, avoiding congestion in the external network. Semantic locality, similar to
group of interest [18] or virtual community [3] makes caches having common in-
terests cooperate. In fact, the probability of having a cache hit increases with
the ratio of interest sharing. Thus it may be relevant to contact a cache far away,
since it is likely to save evaluation process.

Choosing a good locality depends on the application context. Traditional se-
mantic caches are formed of regions, representing the objects answering a given

164 L. d’Orazio et al.

query. Regions aim at reducing computation cost as well as communication for
data retrieval. However, they do not distinguish both aspects, making difficult
to choose an adequate locality. Dual cache is a solution to this problem.

2.2 Dual Cache

Dual cache is designed to improve query evaluation over data sources distributed
across a grid. It corresponds to a semantic cache solution integrating light
weight query management capabilities, captured in a Query Manager. The Query
Manager provides tools to analyse query (equivalence, inclusion, etc.) and eval-
uating queries on entries in the cache [13], [8]. Dual caches are intended to be
deployed on user, proxy or in special cases on server sites. They rely on the
resources of these machines to improve query evaluation.

Dual cache attempts to maximize advantages of semantic caching which are
the reduction of both data transfers and query computation. It clearly distin-
guishes these two goals by managing a couple composed of a query cache and
an object cache as illustrated in figure 1. The query cache manages query re-
sults. Entries are identified by a query signature. The entry itself is the queryanswer
stored as the set of identifiers of the relevant objects, answer(Qi)=SetOf{ObjIdk}.
Objects themselves are in the related object cache, not in the query cache. When a
new query is evaluated, answer retrieval implies loading the corresponding objects.
So, a new query cache entry leads to object cache updates. Dual cache uses partially
pre-calculated queries which are close to the concept of a view in database manage-
ment systems. Each entry Qi of the query cache plays the role of a pre-calculated
query and SetOf{ObjIdk} is its answer. As objects themselves are stored in an ob-
ject cache which has no obligation to synchronize its content with the query cache,
pre-calculated query or views may be fully or partially materialized

When a user query Qj is submitted to the dual cache, it may result in hits or
misses in the query and the object caches. There is a query hit, if a Qi of the query
cache can be used to answer Qj. Otherwise there is a query miss. In this case, Qj
is sent to the appropriate servers in the standard way or using the current resolu-
tion protocol (see section 2.3). If there is a query hit, object misses may or may not
occur depending on the current state of the object cache. Since query and object
caches can initiate a resolution, servers must provide access by query and identi-
fiers. The object cache and query cache can use their own resolution protocol and
several protocols can be adopted through the grids to enhance the global caching
performance.

2.3 Locality-Based Resolution in Dual Cache

Several resolution strategies can be used with a dual cache. A query is processed by
a dual cache according to the algorithm presented in figure 3. Cache miss can be re-
solved using or not cooperation between query caches according to a locality-based
resolution lbr1. During the process, the object cache can be contacted according
to the algorithm presented in figure 4. Like query caches, object caches can commu-
nicate with each other to resolve their miss, according to a locality-based resolution

Distributed Semantic Caching in Grid Middleware 165

Fig. 1. Dual cache Fig. 2. Cache miss resolution protocols
in dual cache

lbr2 that may differ from lbr1. Note that locality-based resolution is optional for
both caches. As a consequence, (n + 1)2 caching strategies can be proposed, with
n the number of locality-based resolutions.

idObjList ← QueryCache.lookup(query)
if idList �= null then {query hit}

objList ← ObjCache.load(idObjList)
else {query miss}

if servers resolution then {no locality-based resolu-
tion 1}

(idObjList,objList) ← servers.load(query)
else {locality-based resolution 1}

idObjList ← siblings.lookup(query)
if idObjList �= null then {query hit on siblings}

objList ← ObjCache.load(idObjList)
else {query miss on siblings}

(idObjList,objList) ← servers.load(query)
end if

end if
QueryCache.add(query,idObjList)

end if
return objList

Fig. 3. Query processing by dual cache

for each id in idObjList do
obj ← ObjCache.lookup(id)
if obj �= null then {id hit}

objList.add(obj)
else {id miss}

missIdObjList.add(id)
end if

end for
if missIdObjList is not empty then

if servers resolution then {no locality-based resolu-
tion 2}

missObjList ← servers.load(missIdObjList)
else {locality-based resolution 2}

missObjList ← siblings.lookup(missIdObjList)
if missObjList = null then {object miss on sib-
lings}

missObjList ← servers.load(missIdObjList)
end if
ObjCache.add(missObjList)

end if
end if
return objList

Fig. 4. Objects retrieval from object cache

In this paper, we will focus on geographic locality-based resolution for object
caches and semantic locality-based resolution for query caches, resulting in four
different strategies for a dual cache: basic, geographic, semantic and semantic geo-
graphic. Figure 2 gives an illustration of these strategies.

Basic resolution: When a dual cache uses a basic resolution, no cooperation is
used. In other words, both query and object caches directly contact servers when
a cache miss occurs. Such a policy is useful when servers are efficient.

166 L. d’Orazio et al.

Geographic resolution: If retrieving objects from servers is expensive, geographic
resolution can be used, making object caches in a same location (site 2 in our ex-
ample) cooperate, avoiding external data transfers.

Semantic resolution: If the bottleneck is on query processing, semantic resolu-
tion, making query caches cooperate, is relevant. Since such cooperation is strongly
related on the semantics, it may concern query caches on different sites (site 1 and
site 2 in our example).

Semantic geographic resolution: When the bottleneck is on object retrieval and
query evaluations, using semantic geographic resolution is useful. Such a policy is
a merger of semantic and geographic resolutions.

3 Performance Analysis

This section reports our experiences using distributed semantic caching in Gedeon
[19], a middleware for data management in grids. Our main purpose is to show the
impact of the different strategies proposed in section 2.3: basic, geographic, seman-
tic and semantic geographic. In Gedeon, caches are read-only and modifications on
servers are rare. Thus, consistency issues will not be addressed. In addition, due
to the server querying capabilities, the instantiated Query Manager only considers
query containment using query signature [6] and evaluations are reduced to selec-
tion and conjunction operators.

3.1 Testbed Configuration

Experimental data set and query server. Experiments have been done using
Swiss-Prot1, a biological database of protein sequences. It consists of a large ASCII
file (750Mb) composed of about 210,000 sequence entries, each uniquely identified.
Gedeon middleware provides a direct access to an entry through its identifier. It
also provides query evaluation capabilities. Queries are composed of conjunctions
and disjunctions of selection terms of the form Attribute name op value. In the
particular case of Swiss-Prot, op is often the contain operator and value is often
a string. Evaluations result in a set of entries matching the query.

A Java and Fractal2 version of ACS [9] has been used to instantiate dual cache
and the different protocols proposed in section 2.3. In our experiments, the size of
the object cache is 325Mb, corresponding to 50% of Swiss-prot. The query cache
uses a size of 10 Mb, which is enough to store all the generated queries. All caches
use the LRU replacement strategy.

Workload generation. Classical workloads used in benchmarks, like TPC3, or
Polygraph4 for instance, do not consider semantically related queries, whereas we
consider it as an important behavior for semantic caching. We use Rx, a synthetic
1 http://expasy.org/sprot/
2 http://fractal.objectweb.org/
3 http://www.tpc.org/
4 http://polygraph.ircache.net/

Distributed Semantic Caching in Grid Middleware 167

semantic workload [15]. Queries correspond to progressive refinements. The first
query is general and the following ones are more and more precise and thus reduce
the set of matching elements. In a Rx workload, x is the ratio of subsumed queries.
For example, with R50, half of the queries will be issued by constraining former
queries. In presented experiments, workload is composed of queries corresponding
to a single selection term, or to conjunctions of between two to four selection terms.
In order to simulate a context with semantic locality we choose for our experiments
a R40 workload.

In addition to the semantic locality, we introduce the notion of community. Com-
munity is used to group users having the same interests. The requests from the
members of a community tend to focus on a particular subset of records. In the
particular case of Swiss-prot, we have created groups of interest according to the
tree of life. Each record belongs to one of four different groups : Eukaryota, Archaea,
Viruses and Bacteria. Thus, for each of these groups, we defined a community of
users supposed to be specifically interested in this group. In our experiments, 60%
of the queries issued by any users concerns the records shared by its community.
The last 40% requests are uniformly distributed among the other records.

Performance metrics. One of the most important metrics to study is the mean
response time which is strongly related to the hit ratio. But the server’s load and
the amount of data transferred from servers to clients are also important metrics to
be taken into account. As a matter of fact using a cache saves servers and network
resources. As a consequence selected performance metrics involve: mean response
time, hit ratio and the amount of data transfered.

3.2 Experiments in a Grid

The proposed solution has been deployed and evaluated on the French grid platform
Grid50005. Clusters at three different sites (Rennes, Nancy and Sophia-Antipolis)
have been used. Nodes in these clusters are respectively: Sun Fire V20z 2x AMD
Opteron 248 2.2GHz, 2GB memory and SCSI disk; HP ProLiant DL145G22x AMD
Opteron 246 2.0GHz, 2GB memory and SATA disk; Sun Fire X4100 2x dual core
AMD Opteron 275 2.2GHz, 4GB memory and SAS disk. For all clusters, the in-
ternal network is 1Gbit/s switched ethernet, whereas the inter-cluster network is
a 10Gbit/s wide area network. The database has been partitioned in three equally
sized files, managed by one node on each cluster. When a query is submitted, it
is forwarded to the three clusters for a parallel evaluation. Results are then aggre-
gated on the cache to build the final answer. Clients generate fifty queries according
to the R40 workload and each of them uses a local cache.

Geographic resolution: Figure 5 presents the impact of geographic resolution on
performance indices. Figure 5(a) presents the amount of data transfered per query
from servers to clients and figure 5(b) the ratio of queries evaluated on servers ac-
cording to the number of clients/caches. Experiments have been done starting from

5 http://www.grid5000.fr/

168 L. d’Orazio et al.

(a) Data transfer (b) Server load

Fig. 5. Cache cooperation based on geographic locality

(a) Data transfer (b) Server load

Fig. 6. Cache cooperation based on semantic locality

one to five clients, deployed on separate nodes at Sophia-Antipolis. It can be seen
that increasing the number of caches in the cluster, enables to reduce the external
bandwidth consumption. However, when more than three caches are used, the vol-
ume of data stay stable, since the available resources are enough to store all relevant
data. Thus adding more caches in the cooperation is useless. The number of caches
is related to their size. For example, the same results will be obtained with a greater
number of smaller caches. It is also important to note that geographic resolution has
no impact on the ratio of queries evaluated on servers.

Semantic resolution: Figure 6 presents the study of the same performance met-
rics for semantic resolution. In this experiment, clients belong to one of the four
available communities presented in 3.1. Each client uses a dual cache and cache co-
operation is based on semantic locality. Each measure corresponds to an addition
of one client in each community, uniformly distributed on the three clusters (grow-
ing up to seven nodes at Sophia-Antipolis and Rennes, six at Nancy). Figure 6(b)
shows that when the number of caches increase, the ratio of query evaluated on
servers decrease. Unlike with geographic resolution for objects, adding other query
caches seem to be relevant. In fact, the number of possible queries is far beyond

Distributed Semantic Caching in Grid Middleware 169

the number of objects, thus several query caches are necessary to store all of them.
Note that the volume of data transfered (figure 6(a)) is not affected by semantic
resolution.

Response time Evaluation on servers Transfered data

Basic 44,1 s 35 % 9.0 Gb

Geographic 43,7 s 35 % 8.8 Gb

Semantic 28,4 s 17 % 7.9 Gb

Semantic geographic 23,4 s 17 % 5.1 Gb

Fig. 7. Specific performance metrics in a grid context

Mixing semantic and geographic resolutions in a grid context: Table 7 presents the
results of the different resolution protocols proposed in 2.3with twenty clients using
a local cache. Globally, using cooperation enables to reduce mean response time.
Semantic resolution reduces the number of evaluations on servers, as well as the
amount of data transfered, since data sources are used via identifiersaccess avoiding
to retrieve already stored objects. Geographic resolution alone enables a small re-
duction of the bandwidth consumption. In fact, most of the resolutions are done us-
ing query access. However, when it is used with semantic resolution, performances
are greatly increased.

4 Related Work

This paper tackles different domains related to caching. In this section we present
some of the main works related to each domain: grid, semantic and cooperative
caching.

Some cache solutions for grid data management follow a mediation like ap-
proach. ICM [1] focuses on the problem of network latency. It proposes to store
data in distributed databases replicated across the grid. User SQL queries are sub-
mitted to the cache, that decomposes them into sub-queries for local and remote
domains, and composes afterwards the final results. [4] offers semantic cache func-
tionalities by using hierarchical cache architecture. A kind of global cache feder-
ates grid node caches by using a global catalogue. A metadata catalogue helps to
localize data in data sources. Even if both solutions aim at optimizing data trans-
fer in grids, none of them has focused on the impact of minimizing computation.

Many proposals exist in semantic caching literature. They can be decomposed in
two main categories, solutions separating query and objects [13] or not [8] [6]. Dual
cache belongs to the first category. However it differs from traditional
approaches by using two different caches enabling on the one hand to relaxe consis-
tency between queries and objects and on the another hand to use different

170 L. d’Orazio et al.

resolution protocols for each cache. In addition to these main approaches, other
solutions can be found. [11] caches parts of queries that can be reused for further
evaluations. This solution considers semantic aspects but does not manage
probe and remainder queries. [17] proposes a cache of views in a centralized system.
Caching views is quite interesting, but as object caching is not considered such a so-
lution may be of limited use in a distributed environment. On the same principles,
[14] proposed caching views if they cannot be obtained using already materialized
ones.

Resolution protocols have been intensively studied in web caching. In this con-
text many protocols have been proposed. They can be decomposed in three main
categories [2] : flooding, hash-based and directory based. In this paper, a flooding
resolution has been used. This choice is orthogonal to locality-based resolution and
can be changed according to the context.

5 Conclusion

This paper presents a distributed semantic caching solution. Using the separation
of concerns principle, such a solution clearly distinguishes cache management from
cache miss resolution process, and computation from data transfer. It results in
a mixing of locality-based resolution and dual cache leading to new opportunities.
Fine configuration of the global cache strategy can be done to maximize both data
transfer using cooperation between object caches and query evaluation using co-
operation between query caches. Experiments have shown the relevance of such
a solution in a grid context using a data management middleware. Our proposal
saves computation time since it maximizes computation sharing between caches
and reducing amount of data transfer by limiting external communication with a
cooperation of object caches in a small area.

Future work remains. First we plan to study various application contexts for our
solution, in particular warehouse oriented systems, where consistency issues can be
relaxed. Such issues remain to be considered in our proposal. Our perspectives also
include the study of cache solutions using different kind of querying capabilities
(filtering, grouping, ordering, etc.). In addition, we want to investigate the impact
of replacement strategies, specifically cooperative ones. For example, to avoid en-
tries to be evicted, they can be placed in other caches. Finally, we are interested
in proposing a self-adaptive and autonomous cache, in order to provide effective
solutions in a dynamic environment.

Acknowledgement

Thanks to N. Jayaprakash for rem the French Ministry of Research and Institut
National Polytechnique de Grenoble for financial support. Experiments presented
in this paper were carried out using the Grid’5000 experimental testbed, an initia-
tive from the French Ministry of Research through the ACI GRID incentive action,
INRIA, CNRS and RENATER and other contributing partners.

Distributed Semantic Caching in Grid Middleware 171

References

1. Ahmed, M.U., Zaheer, R.A., Qadir, M.A.: Intelligent cache management for datagrid.
In: Proc. of the Australian WS on Grid computing and e-research, pp. 5–12 (2005)

2. Barish, G., Obraczka, K.: World wide web caching: Trends and techniques. Commu-
nications Magazine, IEEE 38(5), 178–184 (2000)

3. Brunie, L., Pierson, J.-M., Coquil, D.: Semantic collaborative web caching. In: Proc.
of the 3rd Int. Conf. on Web Information Systems Engineering, pp. 30–42 (2002)

4. Cardenas, Y., Pierson, J.-M., Brunie, L.: Uniform Distributed Cache Service for Grid
Computing. In: Proceedings of the International Workshop on Database and Expert
Systems Applications, pp. 351–355 (2005)

5. Chankhunthod, A., Danzig, P.B., Neerdaels, C., Schwartz, M.F., Worrell, K.J.: A hi-
erarchical internet object cache. In: USENIX Annual Technical Conf., pp. 153–164
(1996)

6. Chidlovskii, B., Borghoff, U.M.: Signature file methods for semantic query caching.
In: Proc. of the 2nd European Conf. on Research and Advanced Technology for Digital
Libraries, pp. 479–498 (1998)

7. Dahlin, M., Wang, R.Y., Anderson, T.E., Patterson, D.A.: Cooperative caching: Us-
ing remote client memory to improve file system performance. In: Proc. 1st Sympo-
sium on Operating Systems Design and Implementation, pp. 267–280 (1994)

8. Dar, S., Franklin, M.J., Jonsson, B.T., Srivastava, D., Tan, M.: Semantic data caching
and replacement. In: Proc. of the 22nd Int. Conf. on VLDB, pp. 330–341 (1996)

9. d’Orazio, L., Jouanot, F., Labbé, C., Roncancio, C.: Building adaptable cache ser-
vices. In: Proc. of the 3rd Int. WS on Middleware for Grid Computing, pp. 1–6 (2005)

10. d’Orazio, L., Valentin, O., Jouanot, F., Denneulin, Y., Labbé, C., Roncancio, C.:
Services de cache et intergiciel pour grilles de données. In: 22ème journées Bases de
Données Avancées (2006)

11. Finkelstein, S.: Common expression analysis in db applications. In: Proc. of the ACM
SIGMOD Int. Conf. on Management of data, pp. 235–245. ACM Press, New York
(1982)

12. Gadde, S., Chase, J., Rabinovich, M.: A taste of crispy squid. In: Proc. of the WS on
Internet Server Performance (1998)

13. Keller, A.M., Basu, J.: A predicate-based caching scheme for client-server db archi-
tectures. The VLDB Journal 5(1), 35–47 (1996)

14. Lee, K.C.K., Leong, H.V., Si, A.: Semantic query caching in a mobile environment.
SIGMOBILE Mob. Comput. Commun. Rev. 3(2), 28–36 (1999)

15. Luo, Q., Naughton, J.F., Krishnamurthy, R., Cao, P., Li, Y.: Active query caching for
db web servers. In: 3rd Intl. WS on The WWW and DB, pp. 92–104 (2001)

16. Rabinovich, M., Chase, J., Gadde, S.: Not all hits are created equal: cooperative proxy
caching over a wide-area network. Comput. Netw. ISDN Syst. 30(22-23), 2253–2259
(1998)

17. Roussopoulos, N.: An incremental access method for viewcache: concept, algorithms,
and cost analysis. ACM Transactions on DB Systems 16(3), 535–563 (1991)

18. Tay, T.T., Feng, Y., Wijeysundera, M.N.: A distributed internet caching system. In:
Local Computer Networks, pp. 624–633 (2000)

19. Valentin, O., Jouanot, F., d’Orazio, L., Denneulin, Y., Roncancio, C., Labbé, C.,
Blanchet, C., Sens, P., Bonnard, C.: Gedeon, un intergiciel pour grille de données.
In: Conf. Française en Système d’Exploitation (2006)

Multiversion Concurrency Control for
Multidimensional Index Structures

Walter Binder1, Samuel Spycher2, Ion Constantinescu2, and Boi Faltings2

1 University of Lugano, CH–6900 Lugano, Switzerland
walter.binder@unisi.ch

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), CH–1015 Lausanne, Switzerland
{samuel.spycher,ion.constantinescu,boi.faltings}@epfl.ch

Abstract. Prevailing concurrency control mechanisms for multidimensional in-
dex structures, such as the Generalized Search Tree (GiST), are based on locking
techniques. These approaches may cause significant overhead in settings where
the indexed data is rarely updated and read access is highly concurrent. In this pa-
per we present the Multiversion-GiST (MVGiST), which extends the GiST with
Multiversion Concurrency Control. Beyond enabling lock-free read access, our
approach provides readers a consistent view of the whole index structure, which
is achieved through the creation of lightweight, read-only versions of the GiST
that share unchanging nodes amongst themselves. Our evaluation confirms that
for low update rates, the MVGiST significantly improves scalability w.r.t. the
number of concurrent accesses when compared to a traditional, locking-based
concurrency control mechanism.

1 Introduction

Concurrency control and manipulation of data with transactional semantics have been
key issues of information systems. During the last decade complex solutions have been
proposed, some generic, others more efficient and usually tailored to specific use-cases.

Based on their usage pattern we can identify two different major kinds of information
systems: On the one hand databases, where essentially the frequency with which data
in the system is changed is comparable to the number of data reads. And on the other
hand systems such as On Line Analytical Processing (OLAP) tools [1], directories and
content repositories, where fast access to multiple views of multidimensional data is
more important than the rate at which data can change. These latter kind of systems
usually trade space requirements for speed, and often have an extremely high read to
write ratio.

On modern databases, the most successful concurrency control techniques to date
make a similar space-speed trade-off through the use of Multiversion Concurrency Con-
trol (MVCC) [2]. This technique brings databases closer to OLAP-like systems by al-
lowing read-only transactions to execute without any need for synchronization with
read/write transactions.

In this paper we evaluate a MVCC strategy through which transactional semantics
can be efficiently supported within multidimensional, tree-based data indexes. Our sys-
tem is built on two well known concepts:

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 172–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multiversion Concurrency Control for Multidimensional Index Structures 173

Firstly, we propose an algorithm based on Multiversion Concurrency Control for
concurrent access to the index structure. MVCC is a technique that manages access
to shared data by replicating and versioning it where needed. By replicating data upon
modification, read accesses are isolated from updates to the index. Therefore, reads have
a consistent and unchanging view of the data and do not interfere with update processes
through locking of individual nodes, such as in other concurrency control schemes. Our
implementation of MVCC provides for a fixed snapshot of the index across multiple
read operations. The reader is essentially free to request a new snapshot at any time if
available, or retain the same snapshot for as many read operations as he wishes up to a
specified timeout constraint.

Secondly, the index structure we chose to implement our MVCC design on is the
Generalized Search Tree (GiST) [3]. The GiST is a balanced tree which contains algo-
rithms for navigating as well as modifying the tree structure. The tree stores keys and
record references in its leaf nodes, and the inner nodes contain predicates and references
to their child nodes. These predicates evaluate true for any key in their child nodes. This
hierarchy of predicates is essentially what is common to all tree-based index structures.
The GiST itself is, however, not a fully implemented search tree, but a generic structure
that provides a ‘template’ index structure for most of the tree-based access methods,
which the user defines by extending the GiST.

The Multiversion-GiST (MVGiST) is our implementation of a concurrent index
structure based on MVCC and the GiST. The MVGiST combines the flexibility and
query power of the GiST with the high reader concurrency and multi-read consistency
offered by MVCC. This paper provides an evaluation of the MVGiST, which demon-
strates its efficiency compared to a locking-based technique. Its advantages render it
interesting for applications based on multidimensional index structures that have a high
read/write ratio and that depend on consistency across multiple queries. An example
use-case, where we recently applied the MVGiST, is a directory indexing web service
advertisements in a way that enables efficient, automated service composition [4].

The rest of this paper is structured as follows: Section 2 summarizes the features
of the GiST. Section 3 presents the MVGiST, introducing the design principles and
describing its structure. In Section 4 we evaluate performance and scalability of the
MVGiST, comparing it with the locking-based concurrency control scheme for the
GiST presented in reference [5]. Finally, Section 5 discusses related work and Section 6
concludes this paper.

2 Generalized Search Tree (GiST)

In the following we give an overview of the GiST; details can be found in reference [3].
A search tree is a balanced tree with (usually) high fanout. The internal nodes are

used as index, and the leaf nodes contain the actual data. Every internal node has a series
of keys and pointers to its child nodes. A query on the tree must supply a predicate q.
Starting from the root node a query checks for consistency of q with the keys associated
with the child nodes, and moves to a child node if its key is consistent with q. It traverses
the tree in this manner until it reaches the leaf nodes containing the data that match
the query. In classical trees, predicates are constrained to specific types, such as range

174 W. Binder et al.

predicates, where keys delineate a range [cmin, cmax], and a predicate is of the form
cmin ≤ i ≤ cmax. But essentially a search key may be any arbitrary predicate that holds
for each datum below the key.

A search tree is therefore a hierarchy of categorizations, in which each categorization
holds for the data stored under it in the hierarchy. By exposing the key methods and the
tree re-balancing methods to the user, arbitrary search trees may be constructed, which
is exactly what is accomplished with the GiST. In a single piece of code, it unifies the
common functionality of search trees; the user of the GiST only needs to provide the
necessary extensions for the type of tree that is desired.

The GiST has a variable fanout between kM and M , where M is the maximum
number of child nodes and 2/M ≤ k ≤ 1/2, except for the root node, which may have
fanout between 2 and M . Inner nodes contain (p, ptr) pairs, where p is a predicate that
functions as a search key, and ptr references another node. Leaf nodes contain the same
pairs, but here ptr identifies some tuple of user data.

3 Multiversion-GiST (MVGiST)

Proposed solutions to concurrency control in multidimensional index struc-
tures [5,6,7,8] synchronize individual operations on the tree. However, there are ap-
plication domains, such as e.g. web service directories [4], where long-lasting read
sessions may be required. In this paper, we use the expression ‘read session’ to denote
a series of read operations issued from one client on an unchanging version of the tree.

3.1 Multiversion Concurrency Control

MVCC is a database technique that adds versioning to shared data, i.e., every write on
a data item x creates a new version of x. Since writes do not overwrite each other, this
gives greater flexibility to the database system in its ordering of conflicting operations.
However, executions containing writes and subsequent reads on the same data are not
generally serializable, because writes may only become visible to readers after a certain
delay.

MVCC has existed for many years, and there are several algorithms that exploit
multiversions, which all work on the same basis. To our knowledge there has been no
prior implementation of MVCC for the GiST. Reference [2] gives an in-depth view of
MVCC for database systems.

3.2 Assumptions

The following assumptions underly the design of the MVGiST:

1. Read accesses are much more frequent than updates.
2. High concurrency for read accesses (high number of concurrent read sessions).
3. Read sessions must offer a consistent view of the tree data; they have to be isolated

from concurrent updates to data and index structure.
4. Read accesses shall not be delayed.

Multiversion Concurrency Control for Multidimensional Index Structures 175

5. Updates may become visible with a significant delay, but feedback concerning the
update (success/failure) shall be returned immediately.

6. The duration of a read session can be limited (timeout).

3.3 MVGiST Structure

The restrictions for the MVGiST with respect to concurrent access leads us to a design
in which the readers access a tree which is separate from the write tree. A periodic
full replication of the write tree would however be far too costly both for memory
and performance considerations. Therefore, at read tree creation, only the nodes that
have been modified since the last tree replication are actually copied to the new read
tree. Every write tree node contains a reference to its corresponding read node twin.
The following is a generic outline of the algorithm for read tree management: After

Write Tree Read Tree 3 Read Tree 2 Read Tree 1Step

- Write tree created

- Read tree 1 created
- Read twin references created
 in write tree

- Node added to write tree
- Read twin references
 nullified in write tree

- Node updated in write tree
- Read twin references
 nullified in write tree

- New read tree nodes created
 where references in write tree
 nullified
- Read twin references
 updated in write tree

- New read tree nodes created
 where references in write tree
 nullified
- Read twin references
 updated in write tree

a

b c

e f g

a

b c

e f g

c

e f g

e f gd

a’

b’

e gd

e f’ gd

c

a”

b’ c’

a

b c

e f g

a’

b’

d

a

b c

e f g

a’

b’

d

a”

c’

f’

b’

a

b c

e f g

Fig. 1. The MVGiST read tree creation process

176 W. Binder et al.

instantiation of the MVGiST, the write tree is populated with existing data. Then a
createReadTree procedure is called. This procedure recurses down the tree, instan-
tiates1 a read node for every write node whose read twin reference is null (all nodes,
when createReadTree is first called), and places an additional reference to it in the
array of child nodes of the new read node’s parent read node, thus creating a complete
read tree. The new read tree root is now assigned to the current read tree root refer-
ence. All write nodes now have references to their corresponding read twins. The read
tree remains constant for read access, while the write tree continues to be modified. All
modified nodes in the write tree have their read twin references nullified. All references
to read twins on the paths from the root to the modified nodes are nullified as well.

After a certain number of write tree modifications, the createReadTree proce-
dure is called again, and only the nodes whose read twin references are null are dupli-
cated. These new read nodes contain in their child node array references to other new
read nodes as well as references to existing read nodes from the first read tree for the
regions of the tree that have not been modified since the last createReadTree call.
The new read root now becomes the current read root reference, and incoming readers
receive the new read root to access the read tree. As soon as all readers have left a spe-
cific version of the read tree (either through timeout or on completion), the read nodes
that are not referenced by other read tree versions will now gradually be removed.

Fig. 1 visualizes the process of read tree node creation. Bear in mind that this diagram
is only schematic, and does not mean that a new read tree is created after every write
node update.

An important point is that the MVGiST is far more lightweight than other concur-
rency control schemes as to the size of the tree nodes themselves, especially with respect
to the read tree nodes. These nodes only contain the absolute minimum which is neces-
sary for downward tree navigation. The write nodes have only one variable more than
the non-concurrent GiST implementation: the reference to the read node twin. Other
concurrency control schemes often maintain multiple lists and locks on a per-node ba-
sis in addition to the standard GiST node elements.

3.4 Supported Operations and Synchronisation Issues

There are three general operations that need to be distinguished for the MVGiST:

– Read session: one or more read queries, possible timeout.
– Write operation: batch of inserts and deletes to be completed on the write tree.
– Read tree creation: creates a new read tree, does not split write batches.

Note that for the read trees to mirror consistent states across the data tuples, certain
sets of writes applied to the write tree must not be interrupted by a read tree creation.
This is the case if there is some form of semantic dependency between the tuples to be
written. A minimum such dependency could be update atomicity, i.e., an update con-
sisting of a separate delete and insert operation must not be separated by the read tree
creation process. A replication that splits such a set of updates would produce incon-
sistent read trees w.r.t. the data tuple semantics. We therefore define write operations as

1 Instantiation of read nodes involves deep-copying of predicates.

Multiversion Concurrency Control for Multidimensional Index Structures 177

batches of insert and delete calls, and a replication must be constrained only to begin
after an entire batch has committed. Updates on the write tree and read tree creations
are currently serialized, since tree modification is anticipated to be far less frequent than
read access.

3.5 Read Tree Creation Strategies

Below we consider the freshness and memory consumption of MVGiST read trees.
From these considerations, we derive two simple read tree creation strategies.

An important issue is the freshness of the most recent read tree (differences between
write tree and read tree). The parameters involved are the frequency of tree modification
by writers and the frequency of read tree creation. The freshness of a read tree R is
indirectly proportional to the number of changes in the write tree since the creation
of R.

Memory consumption is proportional to the number of read trees in existence plus
the write tree itself. The maximum duration of a read session t (which can be enforced
by a timeout) and the time between subsequent read tree creations c control how many
read trees can be active at the same time; the number of active read trees is 1 + � t

c�.
If we consider the size of the MVGiST constant (i.e., all updates consist of a delete
and an insert operation), an approximate measure for the memory used by the MVGiST
is Swrite + Sread + � t

c� ∗ Sread ∗ δupdate, where Swrite is the size of the write tree,
Sread is the size of the initial read tree, and δupdate is the average percentage of updated
nodes between successive read tree creations. In order to minimize memory consump-
tion, c and t may be chosen such that t ≤ c, in which case only two read trees have to
be kept in memory.

The MVGiST provides two built-in read tree creation strategies, freshness-triggered
and timing-triggered (the user of the MVGiST may also implement different strategies).
For both strategies, there is a dedicated thread Tupdate that is responsible of processing
updates and of periodically creating a new version of the read tree. Tupdate gets batches
of update requests from a synchronized queue Q.

In the case of freshness-triggered read tree creation, Tupdate keeps track of the num-
ber of updates since the last read tree creation. If this number exceeds a given thresh-
old, Tupdate creates a new read tree before obtaining the next batch of update requests
from Q.

In the case of timing-triggered read tree creation, Tupdate guarantees a given mini-
mum time span c between consecutive read tree creations. The actual time span between
read tree creations is c + ε (ε ≥ 0), and Tupdate aims at minimizing ε (if there is a batch
of updates in progress, ε > 0). Tupdate checks whether a new read tree is to be created
before and after processing each batch of updates.

4 Evaluation

In this Section we evaluate performance and scalability of the MVGiST. All experi-
ments operate on an initial tree with fanout of 4–8, which stores 10 000 keys. For the
purposes of our evaluation, the choice of keys was unimportant, since no implemen-
tation differences of these exist between the competing access structures (we used an

178 W. Binder et al.

R-tree implementation for our benchmark). Read operations search for keys which are
known to be stored in the tree (i.e., all read operations are guaranteed to succeed). Up-
dates consist of one delete and one insert operation, and in order to keep the tree size
constant, deletion is guaranteed to succeed and insertion stores a new unique key in
the tree. We analyze the throughput achieved by the MVGiST, measured as the number
of read resp. update operations per second, for different workloads and different lev-
els of concurrency (1–100 concurrent clients). A workload is a mix of read and update
operations (0–100% updates).

In order to assess the strengths and drawbacks of the MVGiST, we compare the
MVGiST with a traditional, locking-based concurrency control scheme for the GiST as
presented by Kornacker et al. [5]. Because to the best of our knowledge, there is no im-
plementation of this concurrency control mechanism implemented in Java (implemen-
tation language of the MVGiST), we developed our own Java reference implementation,
henceforth named KCGiST (Kornacker’s Concurrent GiST). The scheme presented by
Kornacker et al. represents a concurrent access system complete with logging and re-
covery facilities. To reduce unfairness in the comparison, we restricted ourselves exclu-
sively to the concurrency and consistency aspects of this scheme. A description of the
KCGiST is given in Section 5. Please note that the KCGiST supports transactions and
ensures repeatable read isolation [9], whereas the MVGiST provides a constant read-
only view of the whole index tree. But since we found no concurrency control mech-
anisms for the GiST with functionality similar to the MVGiST, and because several
other such mechanisms also employ Kornacker’s system as a benchmarking reference,
this was the obvious choice.

The benchmark to measure the throughput was set up to create identical workload for
the two competing concurrency control schemes. Each client executes a randomly gen-
erated workload (a mix of read and update operations) with a given percentage of update
operations. The workload is represented as a list which is processed sequentially by the
client. Each client executes as a separate thread. In the case of the KCGiST, all read and
update operations issued by the client threads directly access the same tree. A dedicated
thread Tcleanup takes care of cleaning up the logically erased entries in the tree. In the
case of the MVGiST, only read operations are performed directly by the client threads,
which obtain the most recent version of the read tree upon each read request. Update
requests are attached to a common, synchronized queue, which is handled by the ded-
icated, high-priority thread Tupdate. Our benchmark uses the freshness-triggered read
tree creation strategy explained in Section 3.5. Tupdate creates a new read tree whenever
it has processed 1 000 update requests.

The parameters of our measurements are the percentage of updates in the work-
load (0–100%) and the level of concurrency (1–100 client threads). For each setting,
we execute the KCGiST resp. MVGiST benchmark 15 times and take the median of
the measured throughput values. After each run, we force garbage collection. As plat-
form we used a machine with 4 CPUs (2 dual-core Xeon 3GHz) and 4GB of RAM,
running a 64-bit Windows XP installation. We employed the Sun JDK 1.5.0 with its
64-bit Hotspot Server Virtual Machine. We disabled background processes as much as
possible in order to ensure consistent system conditions.

Multiversion Concurrency Control for Multidimensional Index Structures 179

1
20

40
60

80
100

0
20

40
60

80
100

1000

2000

3000

4000

5000

6000

7000

8000

Threads

(a) KCGiST

% Updates

T
h

ro
u

g
h

p
u

t

1
20

40
60

80
100

0
20

40
60

80
100

1000

2000

3000

4000

5000

6000

7000

8000

Threads

(b) MVGiST

% Updates

T
h

ro
u

g
h

p
u

t

Fig. 2. Throughput of KCGiST (left) and MVGIST (right), depending on the level of concur-
rency (1–100 client threads) and the percentage of updates in the workload (0–100%). Number
of leaf nodes: 10 000; fanout: 4–8; median of 15 runs. MVGiST read tree creation after each 1 000
updates.

Fig. 2 shows 3D surface plots of the measured throughput, depending on the level of
concurrency (number of client threads) and the percentage of updates in the workload.
For a lower percentage of updates, the MVGiST achieves about 2,5 times the throughput
of the KCGiST. However, the throughput of the MVGiST significantly degrades with
an increasing percentage of updates, whereas the throughput of the KCGiST remains
rather stable independently of the workload. The KCGiST throughput does not suffer
from a high update percentage, because node reorganisation is not frequent, as the tree
is kept at a constant size. In contrast, for the MVGiST, the overhead due to read tree
creation increases with a higher update percentage. In addition, updates are serialized,
because only a single thread (Tupdate) can access the write tree.

For a lower percentage of updates, both concurrency control schemes scale well with
the number of client threads. Fig. 3 depicts two slice planes of Fig. 2 for a workload with
0% resp. 20% updates. In the case of 0% updates, an increasing number of threads does
not deteriorate throughput. However, a higher percentage of updates impacts scalability
for both concurrency control mechanisms.

If there are only very few client threads (1–3), the throughput drops significantly, be-
cause some CPUs of our multiprocessor machine are idle. Interestingly, in a setting with
very few client threads, the throughput of the MVGiST increases with the percentage of
updates in the workload, reaching a peak at about 50% updates, before dropping again
(see Fig. 2). The reason for this behavior is that the MVGiST uses a dedicated thread
Tupdate to process update requests. On a multiprocessor, Tupdate may execute (access-
ing the write tree) in parallel with client threads processing read requests (accessing a
read tree).

180 W. Binder et al.

1 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
(a) 0% Updates

Threads

T
h

ro
u

g
h

p
u

t

1 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000
(b) 20% Updates

Threads

KCGiST
MVGiST

KCGiST
MVGiST

Fig. 3. Two slice planes of Fig. 2: Throughput depending on the level of concurrency (1–100
client threads) for a workload with 0% updates (left) resp. 20% updates (right)

5 Related Work

Reference [5] introduced the initial, locking-based concurrency control mechanism for
the GiST. We call this scheme KCGiST. The KCGiST achieves basic concurrent pro-
tection by adding node-locks and two other components to the tree: node sequence
numbers and rightlinks from every node to its split off right twin. This allows every
operation traversing the tree to detect nodesplits when switching from one node to the
next, and ensures concurrent access protection (S-Mode for readers, X-mode for writ-
ers) when an operation is within a node. The KCGiST implements repeatable read iso-
lation [9]. This level of transactional isolation implies that if a search operation is run
twice within the same transaction, it must return exactly the same result. The KCGiST
achieves this by relying on a hybrid mechanism of two-phase locking of data records
and avoidance of phantom insertions through predicate locking.

In reference [6] a node-locking based approach to concurrency on multidimensional
index structures is optimized followingly: Simultaneous node-locking is avoided when
updating bounding predicates by directly modifying the indexes while operations tra-
verse down the tree. This scheme is then extended to reduce the blocking overhead
during node-splits through local copying of the nodes, processing of the node-split, and
then copying back the resulting changes.

An alternative concurrency control mechanism for the GiST is discussed in refer-
ence [7], which uses granular locking instead of predicate locking. In granular locking,
the predicate space is divided into a set of lockable resource granules. Transactions ac-
quire locks on granules instead of on predicates. The locking protocol guarantees that
if two transactions request conflicting locks on predicates p and q such that p ∧ q is sat-

Multiversion Concurrency Control for Multidimensional Index Structures 181

isfiable, then the two transactions will request conflicting locks on at least one granule
in common.

In [8] the authors describe an enhanced concurrency control algorithm that reduces
blocking time during split operations. They avoid lock coupling during bounding-
predicate updates with a partial lock coupling technique, and have developed an update
method which allows readers to access nodes where updates are being performed.

6 Conclusion

In this paper we promoted and evaluated the MVGiST, an index structure that is capa-
ble of dealing with large amounts of multidimensional data and that can be extended to
nearly all types of tree-based access methods. The fact that the MVGiST supports con-
sistency of data across queries makes it attractive for applications where some form of
consistency beyond transactional isolation is required. Having tested the performance
of the MVGiST under various load conditions, we think we have succeeded in devel-
oping an efficient concurrent access scheme for the GiST, especially for application do-
mains with a high read/write ratio. Within these environments, for which the MVGiST
was developed, the following conclusions can be made: the MVGiST can outperform
a locking-based reference scheme by a factor of about 2,5. Due to the non-blocking
nature of its read access, it scales very well with an increasing number of concurrent
read accesses.

References

1. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. SIGMOD
Rec. 26(1), 65–74 (1997)

2. Bernstein, P.A., Goodman, N.: Multiversion concurrency control – theory and algorithms.
TODS 8(4), 465–483 (1983)

3. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database systems.
In: Dayal, U., Gray, P.M.D., Nishio, S. (eds.) Proc. 21st Int. Conf. Very Large Data Bases,
VLDB, pp. 562–573. Morgan Kaufmann, San Francisco (1995)

4. Binder, W., Spycher, S., Constantinescu, I., Faltings, B.: An evaluation of multiversion con-
currency control for web service directories. In: 2007 IEEE International Conference on Web
Services (ICWS-2007), Salt Lake City (2007)

5. Kornacker, M., Mohan, C., Hellerstein, J.M.: Concurrency and recovery in generalized search
trees. In: Peckman, J.M. (ed.) Proceedings, ACM SIGMOD International Conference on Man-
agement of Data: SIGMOD 1997. May 13–15, 1997, Tucson, Arizona, pp. 13–15. USA (1997)

6. Kanth, K., Serena, D., Singh, A.: Improved concurrency control techniques for multi-
dimensional index structures. In: IPPS ’98: Proceedings of the 12th. International Parallel
Processing Symposium, pp. 580–586. IEEE Computer Society, Washington (1998)

7. Chakrabarti, K., Mehrotra, S.: Efficient concurrency control in multidimensional access meth-
ods. In: SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, pp. 25–36. ACM Press, New York (1999)

8. Song, S.I., Kim, Y.H., Yoo, J.S.: An enhanced concurrency control scheme for multidimen-
sional index structures. IEEE Transactions on Knowledge and Data Engineering 16(1), 97–111
(2004)

9. American National Standards Institute: ANSI X3.135-1992: Information Systems – Database
Language – SQL (1992)

Using an Object Reference Approach to
Distributed Updates

Dalen Kambur, Mark Roantree, and John Murphy

Interoperable Systems Group, School of Computing, Dublin City University,
Glasnevin, Dublin, Ireland

Abstract. With the Object-Reference (ORef) approach, the traditional
object-oriented model is extended with references to act as a canonical
model. Our ORef model facilitates the storage of localised behaviour and
provides a precise definition for updating objects across distributed infor-
mation systems. Both these characteristics are realised using an Object
Pool connectivity mechanism that connects local and global object pairs.

1 Introduction

The context of our research is the EGTV project [1] which examines issues re-
lated to replacing specialised and mutually incompatible multimedia stores with
inexpensive, general-purpose object databases that store the multimedia ma-
terial as persistent objects. The formats of these objects and their operations
directly depend on the database and are thus, heterogeneous. These hetero-
geneities must be resolved to provide universal access to the multimedia objects.
We adopt the federated database approach [2] which employs a canonical model
as the common interface to the participating databases. Federated client ap-
plications access canonical objects which are translations of original objects.
Conversely, updates to the canonical objects must be propagated back to the
original, underlying objects. Both translation of objects and propagation of up-
dates must be provided as part of the federated services, and be invisible to client
applications. In the domain of multimedia federations, a particular challenge is
to provide behaviour as an integral part of the canonical model to resolve the
heterogeneous behaviour of component databases. We examined a number of
candidate object models, identified their deficiencies and based on these findings
we designed our Object-Reference (ORef) model [3] as the canonical model.

The problem tackled in this work is the efficient translation of objects that
also supports propagating updates and invoking behaviour. In the described
multimedia federation database environment the resolution of this problem is
crucial to connect client applications and servers. This provides the motivation
for our research. The contribution of this paper is the mechanism of Object Pool
Pairs (OPP) that provides such connectivity.

Our discussion is structured as follows: in §2 we discuss related research; in §3
we introduce the ORef modelling concepts; in §4 we describe the details of OPP
connectivity; in §5 we examine implementation considerations; and finally in §6
we conclude this paper and assess the contribution of this work.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 182–191, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using an Object Reference Approach to Distributed Updates 183

2 Related Research

The LOQIS [4] project demonstrated the benefits of introducing references into
native object-oriented database models which include the capability to define
behaviour and provide a precise definition of the query results. These benefits
are crucial for multimedia federated systems which, however, were not addressed.

In the IRO-DB project [5], relational and ODMG [6] databases are integrated
using the ODMG model. Firstly, the local database schema is translated into a
canonical External Schema with no semantic enrichment nor defining behaviour.
Secondly, the External Schema is integrated into the Interoperable Layer using
a CORBA-based Communication Layer [7] and restructured using the OQL [6].
Behaviour is defined in the Interoperable Layer using accessor operations that
were generated for each property. Such approach results in performance penalty
compared to the direct access to properties provided in the ORef model.

The MOOD project [8] uses the C++ object model as the native database
model and extends the SQL query language with constructs for invoking be-
haviour. The behaviour is defined using C++ and compiled into a dynamically
loadable library using a standard compiler. This approach permits the reuse of
already existing behaviour definitions and for this reason it is also used in the
ORef Architecture. However, the MOOD project was primarily concerned with
providing the technical basis for storing behaviour rather then the issues of the
underlying object model which are crucial with database federations.

In the COCOON project [9], federated heterogeneous database schemas are
expressed using the COCOON model. Properties of base objects are fully encap-
sulated and updates are only possible using methods. A view object reuses the
properties of the corresponding base object thus an object-preserving semantics
is deployed. This project demonstrated that the object-preserving semantics is
the key to the updatability of properties, hence we follow this approach. On the
negative side, this project focused on COCOON databases only and unlike our
approach which uses more standard object databases (O-R and ODMG).

The MultiView [10] project integrated GemStone databases using an object-
slicing technique that provided multiple inheritance. This technique separated
an object’s properties into multiple implementation objects. Object-slicing was
transparent to client applications and behaviour as properties were access using
accessor operations that identified the correct implementation object. Virtual
objects were created to represent the query result allowing the properties of
source objects to be combined into new virtual objects. Object-slicing provides
an identification of properties and is in our research adapted to be used with
standard object-oriented programming languages.

3 ORef Modelling Concepts and Architecture

In this section, we give a concise description of an ORef Model introducing
the concepts required for understanding the functionality of OPPs with a more
complete description in [3]. Then, we position the ORef model in the ORef
Architecture to provide the context for discussion on OPP functionality.

184 D. Kambur, M. Roantree, and J. Murphy

3.1 The ORef Model

The basic concepts of the ORef Model include: objects, types, references, rela-
tionships and behaviour. The ORef model is an object-oriented model featuring
types that specify the behaviour and the structure for all objects of the type.
Similar to object identifiers in traditional object models, an ORef object is as-
signed with an orefOID that uniquely identifies the object. We use the single
concept of a reference to point to an object. This is the sole concept present in
the model with such a capability and and is achieved by embedding the orefOID
to the referenced object within the reference.

A type may be simple, collection or user-defined. Objects of simple types have
a simple value. Objects of collection types may contain other objects using the
reference mechanism. Finally, objects of user-defined types are complex, and are
composed of multiple objects each of which takes the role of a property of the
complex object. Property objects are independent of complex objects and may
be properties of multiple objects. This independence forms the basis of the ORef
query language semantics (QLS) which specifies that the result of a query is a
set of complex objects that reuse the properties of source objects. Furthermore,
this provides the basis for object updates.

An ORef relationship is an association between two user-defined types. For
every relationship, each participating type contains a collection property which
points to the related objects on the other side of the relationship. Updates to
one side of the relationship are propagated to the related objects [3].

The behaviour of a type consists of multiple operations that are applied
against a target object which itself may have multiple objects as parameters.
Mutable operations allow target object or properties to be modified. Immutable
operations do not allow updates to objects.

3.2 The ORef Architecture

The basis of the ORef Architecture is the traditional federated database ar-
chitecture introduced in [2] in which heterogeneous component databases are
integrated using a canonical data model. This model is also used by federated
applications to access federated data. The ORef Architecture is concerned with
integration of component object databases for multimedia federations using the
ORef model. Component databases are based on either object-oriented ODMG
or object-relational SQL:1999 [11] standard. Only the state of objects is inte-
grated, and not their behaviour because: (1) the behaviour of ODMG databases
is part of client applications from which it cannot be decoupled; and (2) the be-
haviour of SQL:1999 databases is black-box as there is no standard mechanism
to determine objects that are accessed and modified by the behaviour. Once
integrated into the federation, these databases may subsequently be provided
with behaviour. Existing ORef federations may themselves participate in a new
ORef federation. In this case, in addition to the object state, the behaviour may
also be integrated as the modified objects are recorded (discussed later in 4.3).
In [12] we analysed updates to objects based upon behaviour declaration.

Using an Object Reference Approach to Distributed Updates 185

In the ORef Architecture, both client applications and federated services that
include a query processor and stored operations require an object context which
is a container for all ORef objects. A local object pool (LOP) provides ORef
objects by implementing three functions: (1) materialising ORef objects upon
request, (2) propagating updates, and finally, (3) disposing ORef objects no longer
used. Each LOP is a service of the ORef Architecture and it connects to a source
object pool (SOP) that provides source objects which are manipulated using the
listed functions. A SOP may either be a database, or an ORef federation and in
the latter case, the SOP is known as the Remote Object Pool (ROP). The LOP
and the SOP are tightly bound in an object pool pair (OPP) and the internal
operation is described in the next section.

4 Object Pool Pairs Connectivity

The core functions of an object pool pair (OPP) are to materialise objects, to
propagate updates to objects, and to dispose of objects. Orthogonal to these
core functions, the issues of concurrent access and transactions in the ORef Ar-
chitecture are discussed in [13]. These core functions are transparently invoked
through ORef references. A reference may be a local, neighbour or remote ref-
erence. A local reference points to an object already materialised in the object
context by storing the object’s orefOID. Both neighbour and remote references
point to objects outside of the object context. Such objects must be materialised
first and then references are transformed into corresponding local references. A
neighbour reference points to an object in the source object pool (SOP) which
is directly connected to the object context. This reference contains the object’s
original source identifier sourceOID and the identifier of the OPP. The OPP
identifier must be utilised as the original sourceOID is not sufficiently unique
for object identification. A remote reference points to an object that cannot be
reached through any directly connected SOP. This remote reference contains a
chain of OPP identifiers that specify the sequence in which OPPs should be
accessed to locate the source object, and its respective sourceOID. The OPP
chain is organised as follows: (1) the first listed OPP is directly connected to the
object context; (2) the second and following listed OPP are each connected to
the OPP listed immediately prior; and finally, the SOP of the last listed OPP
contains the target object identified using the original sourceOID.

A client application initiates updates where objects may be modified in the
client application’s object context or any other directly or indirectly connected
object pool. When the client application modifies an object’s properties, the ob-
ject is modified within the client application’s object context. However, when
the client application invokes an operation, the object may either be updated
in the SOP or a connected object pool depending on whether the operation up-
dates the properties or invokes other operations. Thus, when a client application
updates an object, its properties at the LOP and SOP side of one object pool
pair will have different values. Propagating updates to synchronise this object
may be delayed as long as objects are subsequently accessed and modified in the

186 D. Kambur, M. Roantree, and J. Murphy

same object pool. This particular feature supports an efficient mechanism for
preservation of the consistency of objects across OPPs (detailed in §4.3).

In the remainder of this section we first introduce object pool processing
principles and then continue with an explanation of the theoretical background
behind object materialisation and update propagation. Object disposal is invoked
when all references to an object are removed and updates to the object are
propagated. Further details on object disposal relate more to the implementation
rather than theoretical aspects and are thus, omitted.

Fig. 1. Connected Object Pool Pairs

The scenario used in the examples in this section is illustrated in figure 1
in which a client application displays the names of stored TV programmes and
their genres. The OPP “A” is created to provide the client application with an
object context connecting to the ORef Server (the top two layers). In order to
access original source objects, this requires the ORef Server’s object context
provided by the chain OPP “B” (bottom two layers). Programmes and genres
are modelled using classes Programme and Genre respectively. A relationship
that connects a Programme to a Genre is named classifiedAs. Its traversal is
named storedPrograms and connects a Genre to multiple Programme objects.
Furthermore, a broken arrow (across the context line) illustrates the link each
object preserves to its source object. In the diagram, the OPP identifiers are
omitted from references for the sake of simplicity. The orefOID object identifiers
are shown in parentheses as for example (901) where the sourceOID source object
identifiers are shown using angle brackets as for example 〈111〉.

4.1 Processing Principles

An object pool is initially empty and is populated with materialised objects
when their properties or behaviour are accessed. An object may be materialised

Using an Object Reference Approach to Distributed Updates 187

but also updated in multiple object pools. The following requirements must be
satisfied to preserve the consistency of objects across different object pools: (1)
each object is materialised only once in a single object pool; and (2) properties
of a single object have the same values when accessed in any object pool.

To satisfy both requirements, an object pool maintains both a register of
materialised objects and a set of modified objects for each directly connected
OPP. This register is optimised for fast retrieval of orefOIDs using sourceOIDs
as keys, where the orefOID of modified objects are stored with the set. The
OPP functions update both the register (of materialised objects) and the set (of
modified objects) as discussed in the remainder of this section.

4.2 Materialisation

Only objects pointed by neighbour and remote references may be materialised
as local object references are already materialised.

A neighbour reference. A neighbour reference consists of an OPP identifier and a
sourceOID which references the original object on the SOP side. To materialise
the object, the OPP’s register is searched using the sourceOID, and if an object is
found, the materialisation is completed by transforming the neighbour reference
into a local reference constructed using the located orefOID.

If the object is not found, it is located using its sourceOID in the SOP and
read into a new materialised object. The register is extended to include this
object to prevent multiple materialisations. Values of the object’s properties are
copied from the SOP with the exception of properties that contain references.
These properties must be adjusted to include the original source OPP identifier.
This inclusion of source OPP identifiers involves the following conversions: (1) a
local reference from the SOP into a neighbour reference in the object context; (2)
a neighbour reference in the SOP into a remote reference in the object context;
and finally, (3) a remote reference in the SOP into a remote reference in the
object context that includes the source OPP.

In the OPP “B” in figure 1, when a database operation accesses the names of
Programmes that correspond to the SF Genre using the relationship storedProg-
rams, it accesses objects pointed to by a local reference (801) and a neighbour
reference 〈112〉. While the object pointed by the local reference (801) can be
readily accessed as it was materialised before, the object pointed to by the neigh-
bour reference 〈112〉must be materialised first, and then the neighbour reference
transformed into a local reference.

A remote reference. A remote reference consists of the original sourceOID of
an object and a chain of the OPP identifiers. A remote reference is materialised
in multiple steps, each corresponding to one of the OPPs listed in the chain,
starting from the last OPP listed. In each step, a neighbour reference that cor-
responds to the OPP is constructed, materialised and then used in subsequent
steps. Firstly, the neighbour reference is constructed in the last OPP listed using
its identifier and the original sourceOID. The object pointed to by this reference

188 D. Kambur, M. Roantree, and J. Murphy

is materialised, and the neighbour reference transformed into a local reference
containing the orefOID of the object. As demonstrated previously, materialising
a neighbour reference ensures that the object is materialised only once. Secondly,
this orefOID is used along with the identifier of the penultimate OPP to con-
struct and materialise a neighbour reference, again ensuring that the object has
been materialised only once. The same process is continued until the first OPP
in the chain and this results in materialising the object, and transforming the
original remote reference into a local reference that points to the materialised
object. We have shown that the object is materialised only once in each OPP of
the chain and therefore, we satisfy the first consistency requirement.

In the OPP “A” from figure 1, a client application obtained the SF Genre
object (902) in order to retrieve the names of the SF programmes using the
relationship storedPrograms. The Star Trek programme (901) was first mate-
rialised in the ORef Server’s object context as object (801) from object 〈111〉.
Then, this newly materialised object (801) is used to materialise object (901).
The materialisation of the Star Gate programme 〈112〉 will take the same steps.

4.3 Update Propagation

An OPP may be Synchronised, Local Current or Remote Current as indicated
in the state transition diagram in figure 2 and described in the remainder of this
section. The Remote Current state is only possible when the LOP connects to an
ORef federation and not when the LOP connects to a database as no database
operations may be invoked, hence no changes may occur.

Synchronised

Local
Current

Remote
Current

 an object read or
modified in the LOP
an object read or mo-
 dified in the ROP

properties accessed or an operation
invoked in the LOP / propagate to the LOP

an object modified in the LOP

an object modified in the ROP

invoke a remote operation / propagate
to the ROP

an object read
in the LOP
or the ROP

Fig. 2. An OPP State Transition Diagram

An OPP is initially in the Synchronised state and subsequent requests to
materialise objects preserve this state. Reading properties or invoking immutable
operations does not change the state of the OPP.

A Synchronised OPP changes the state to Local Current when an object is
modified in the LOP by updating object’s properties. Further changes and access
to properties in the LOP preserve the Local Current state.

To synchronise an OPP that is in the Local Current state, local modifications
are applied to the SOP. In this process, from the LOP’s set of modified objects
the sourceOIDs of modified objects and current values of their properties are ex-
tracted. Then, sourceOIDs are used to identify the original objects at the SOP

Using an Object Reference Approach to Distributed Updates 189

side and their properties are updated to the current values which are simply
copied. The collection and relationship properties are an exception as these con-
tain references to objects in the LOP, hence they must be adjusted to point to
corresponding objects in the SOP. To adjust a local reference, the sourceOID of
the original object is used to materialise a local reference in the SOP. Neighbour
and remote references are adjusted to remove the OPP identifier added in the
process of materialisation as explained in §4.2. This converts a neighbour refer-
ence into a local SOP reference, and a remote reference into a remote SOP or a
neighbour SOP reference.

An OPP changes the state to Remote Current when a mutable operation
defined in the ROP is invoked. As the ROP connects to other object sources
using OPPs each of which records modified objects in a set, the union of these
sets is the set of objects that are modified in the ROP. Further invocations of
mutable ROP operations preserve the Remote Current state.

An OPP in the Remote Current state is Synchronised by applying the source
object modifications to the LOP. The set of modified source objects is transferred
to the LOP which then re-reads all listed objects that are already materialised
in the LOP using the materialisation process described in §4.2.

4.4 Optimisation and Efficiency

Client applications, database operations and the query processor in the ORef
Architecture operate on ORef objects that are materialised in an object context
provided using object pool pairs. These ORef objects are translations of source
objects and they provide the capability to define behaviour and views. Our
overall strategy in the OPP implementation is aimed at minimising overheads
associated with maintenance processing of objects. Each object is materialised
only once, on request, and only the reference that requested materialisation is
transformed into a local reference. Other references pointing to the same object
remain intact until they are used to access the object. Then, the register of
materialised objects is consulted to retrieve orefOID for the requested object,
if available. This approach eliminates the overhead associated with updating
all references that point to the same object, as they may never be used. For
example, when a persistent class is materialised, many of the relationships are
not used, hence they do not need to be resolved to local references. This approach
supports prefetching object pages which is a traditional database technique of
reading a page of co-located objects instead of a single object in order to reduce
network associated overheads and improve performance. The co-located objects
are placed in the register of materialised objects so that they can be retrieved in
subsequent materialisation requests. With regard to object updates, all copies of
objects present in different object pools must be consistent, but only when they
are accessed. The OPP mechanism accumulates the changes on one side which
are then propagated prior to the objects on the other side of the OPP being
accessed. This mechanism transfers only modified objects. However, it removes
the need for constant re-synchronisation after each update and thus, eliminates
the associated network and processing overhead.

190 D. Kambur, M. Roantree, and J. Murphy

5 Implementation

Our prototype is based upon Versant ODMG database, the omniORB CORBA
engine and the Microsoft Visual C++ compiler and is functionally complete
where the performance comparison is planned for our future research. The com-
mon features of the ORef model and standard object-oriented programming
languages simplify our implementation. Specifically, programing language ob-
jects are identified using memory addresses. The attributes of these objects also
have their own addresses which closely resembles orefOID semantics and allows
one-to-one mapping to an orefOID.

References are implemented using C++ templates that embed automatic
materialisation, source-updating, reference-counting and object disposal mech-
anisms. ORef types are mapped into C++ classes that were manually written
for simple types, and generated for user-defined types using the Definition
Processor. This is a low-level component of the ORef Architecture that also
generates libraries and maintains metadata. The ORef properties are mapped
to attributes, and operations to C++ methods. Classes also include internal
ORef methods that transfer object state using the CORBA Bridge which is a
communication component based on CORBA [14].

Both local (LOP) and remote (ROP) object pools are implemented as C++
classes. The LOP class provides the LOP functions and the client part of the
CORBA Bridge including the low-level CORBA-based transfer. All these func-
tions are implemented as methods and are transparently invoked from the class
interfaces provided for ORef types. The ROP class extends the LOP class with
the server part of the CORBA Bridge providing remote access and includes low-
level functions for transferring objects, native database access protocols, and
support for ORef operations. Operation definitions are compiled into dynamic
libraries and loaded on request. The dynamic libraries also contain internal meth-
ods that materialise, pack and transport the state of objects, and that are used
by the CORBA Bridge or native database access protocols.

6 Conclusions

This paper described the novel approach of Object Pool Pairs (OPP) for integra-
tion and updating heterogeneous object databases using the ORef Architecture
and the ORef model. Our approach uses the direct addressability of both objects
and properties introduced by the ORef model using references. References have
a key role in providing stored operations for objects using a standard program-
ming language and also provide a clear definition of object updatability. The
OPP connectivity mechanism was designed to support both features while min-
imising the network transfer by delaying propagation using a batch mechanism.

Future research may include a partial object materialisation where only the
accessed properties of an object are materialised. This approach may improve
the performance when a client application uses only a subset of the properties
and particularly when this subset does not include the multimedia content.

Using an Object Reference Approach to Distributed Updates 191

The ORef Architecture uses CORBA as the base communication protocol to
provide a platform independent object transport. In many applications CORBA is
replaced by Web Service oriented solutions which communicate using using XML
documents. This however, requires objects to be transferred using a character-
based XML encoding for binary data and involves a significant overhead. This is
an interesting problem and will be addressed in our future research.

References

1. Smeaton, A.F., Roantree, M.: Research in Information Management at Dublin City
University. SIGMOD Record 31(4), 121–126 (2002)

2. Sheth, A., Larson, J.: Federated database systems for managing distributed, het-
erogeneous and autonomous databases. ACM Computing Surveys 22(3), 183–226
(1990)

3. Kambur, D., Bećarević, D., Roantree, M.: An Object Model Interface for Support-
ing Method Storage. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka,
U. (eds.) ADBIS 2003. LNCS, vol. 2798, Springer, Heidelberg (2003)

4. Subieta, K., Beeri, C., Matthes, F., Schmidt, J.: A Stack-Based Approach to Query
Languages. In: Proceedings of the Second International East/West Workshop, pp.
159–180. Springer, Heidelberg (1994)

5. Busse, R., Fankhauser, P., Neuhold, E.J.: Federated schemata in ODMG. In:
East/West Database Workshop, pp. 356–379. Springer, Heidelberg (1994)

6. Catell, R., Barry, D.: The Object Data Standard: ODMG 3.0. Morgan Kaufmann
Publishers, San Francisco (1999)

7. Ramfos, A., Busse, R., Platis, N., Fankhauser, P.: CORBA based data integration
framework. In: Proceedings of the Third International Conference on Integrated
Design and Process Technology, IDPT. pp. 176–183 (1998)

8. Dogac, A., Dengi, C., Kilic, E., Ozhan, G., Ozcan, F., Nural, S., Evrendilek, C.,
Halici, U., Arpinar, B., Koksal, P., Kesim, N., Mancuhan, S.: A multidatabase
system implementation on CORBA. In: 6th Int Workshop on Research Issues in
Data Engineering: Nontraditional Database Systems, pp. 2–11 (1996)

9. Scholl, M., Laasch, C., Rich, C., Schek, H., Tresch, M.: The COCOON object
model. Technical Report 211, Dept of Computer Science, ETH Zurich (1994)

10. Rundensteiner, E.A.: MultiView: A Methodology for Supporting Multiple Views in
Object-Oriented Databases. In: Proceedings of the 18th International Conference
on Very Large DataBases (VLDB’92), Vancouver, British Columbia, pp. 187–198.
Morgan Kaufmann Publishers, San Francisco (1992)

11. Gulutzan, P., Pelzer, T.: SQL-99 Complete, Really. R&D Books (1999)
12. Kambur, D., Roantree, M.: Storage of Complex Business Rules in Object

Databases. In: 5th International Conference on Enterprise Information Systems
(ICEIS 2003), pp. 294–299 (2003)

13. Bećarević, D.: An Object Query Language for Multimedia Federations. PhD thesis,
School of Computing, Dublin City University (2004)

14. Henning, M., Vinoski, S.: Advanced CORBA Programming with C++. Addison-
Wesley, London (1999)

Towards a Novel Desktop Search Technique

Sujeet Pradhan

Kurashiki University of Science and the Arts
Nishinoura 2640, Tsurajima

Kurashiki City, 712–8505 Japan
sujeet@cs.kusa.ac.jp

Abstract. The most serious challenges Personal Information Management Sys-
tems face today are the results of having to deal with a large number of heteroge-
neous types of data from diverse data sources, but having no means of managing
and searching them in a convenient, unified fashion. We argue that simplicity and
flexibility are essential attributes for the next-generation search tools to respond to
these challenges. This paper lays out specific issues to realizing such a tool in the
context of desktop search and ties them to existing search techniques employed
by Database Management Systems and Information Retrieval — the two lead-
ing disciplines in search technology. We propose a novel technique for desktop
search and show how our combined database and information retrieval approach
to searching heterogeneous desktop data is going to benefit a large community of
users.

1 Introduction

Most Personal Information Management Systems (PIMS) today face a daunting task of
dealing with large collections of data from diverse sources. These data are not limited
to plain, unstructured text files or structured data that can be easily fit into a conven-
tional Database Management Systems (DBMS). For example, a personal desktop may
typically contain an extremely heterogeneous collection of data including text, pictures,
music, emails, XML, LATEX and Microsoft Office documents scattered across a hierar-
chy of folders. What we lack today is a means of managing and searching them in a
convenient, unified fashion.

Recently, this issue has gained considerable attention both from industry as well as
research community. While several popular vendors such as Microsoft[15], Apple[2]
and Google[7] have been offering keyword-based desktop search tools, their search
range is limited to the file system managed by an underlying Operating System (OS).
They seriously lack capability of retrieving a particular segment of a document’s con-
tents[5]. For example, if we wish to search for a particular section in the contents of a
LATEX file, these tools will return the name of this file (with the full contents), instead
of only that desired section. However naive in their approach, keyword-based desktop
search tools are nevertheless an important first step toward searching a mixed collection
of data.

In the database research community, there has been a lot of emphasis on the need of
new principles for managing a heterogeneous collection of data[9]. Recently in [5], a

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 192–20 , 2007.
© Springer-Verlag Berlin Heidelberg 2007

1

graph data model and a new XPath-like query language has been proposed for managing
and accessing one’s personal data scattered across various data sources such as desktop
PC, email servers and so on. However, similar to several other database languages such
as SQL and XQuery, the proposed query language is very complex. Moreover, it inherits
one of the serious drawbacks of XPath or XPath-like query languages, that is, users are
expected to have knowledge of the underlying structure of the data that they are going
to query. This inconvenience is discouraging to a large section of naive (desktop) users
who are already overwhelmed by a huge volume of data having no fixed schema or
structure.

We argue that, similar to challenges in several other new applications[3], rather
than perceiving them as mere database issues, the challenges in desktop search must
be understood in a wider perspective, if these challenges are to be met effectively for
the benefit of a wider audience. This paper takes an integrated ‘database/information
retrieval’ (DB/IR) approach to searching a desktop dataspace which is a heterogeneous
collection of data in a personal desktop. We identify not only general, but also several
specific requirements and challenges in this approach. A particularly important issue
that we highlight is how to achieve DB-like performance gains in this integrated DB/IR
query platform.

Section 2 describes a set of major requirements and challenges for an integrated
DB/IR approach to searching a desktop dataspace. Section 3 describes our unified data
model capable of representing a collection of heterogenous data units and their contents.
In Section 4, we describe our novel query processing technique to meet several issues
that we are going to describe in Section 2. Related work is described in Section 5.
Finally in Section 6, we draw conclusions and outline directions for future work.

2 Challenges and Issues

Here, we elaborate on two major challenges that need to be met by the next generation
desktop search tools. Note that our objective is not to replace the functionalities that
currently available tools offer. Rather, our goal is to extend these functionalities in order
to achieve more effective search against a collection of heterogeneous data in a desktop.

2.1 Data Model Issue

Current desktop search tools rely heavily on the file system managed by the underlying
Operating System. These tools fail to exploit the structural information mostly found
in structured and semi-structured documents such as LATEX, XML and XHTML files
or even in Microsoft Office files (e.g. Word Documents and Powerpoint slides). As a
result, users are unable to retrieve a particular portion or portions of a file. We believe
that the partial retrieval of the contents of a file is already an essential requirement as the
size of the files that we handle keep getting larger and larger in terms of their contents.
Current Desktop Search Tools employ conventional Information Retrieval techniques
and thus retrieve whole files as search results. For example in Fig. 1, any attempt made

 Towards a Novel Desktop Search Technique 193

Travel Picture

Music

Tasks

Research

References

Thesis

Images

1. Introduction
Desktop search...
... ...

2. Data Model
representation

based on tree ...
... ...
... ...
... ...

6. Conclusion

... ...

Section to be retrieved

Retrieval of a section of a file’s contents

she was looking for. Our first challenge is how to support such partial retrieval of a file
in the context of keyword-based desktop search. The major issue then is to define a data
model for uniform representation of a conventional file system and contents of files so
that search can be carried out seamlessly across these heterogeneous collections of data.

2.2 Query Processing Issue

Unlike SQL or XQuery-based database queries, keyword-based search is known to be
imprecise in nature. In other words, given a set of keywords, the exact definition of an-
swers to this search has to be defined depending upon the nature of target data and the
application in consideration. In the context of desktop search, this impreciseness nature
of keyword search becomes even more prominent. For example, consider a query rep-
resented by the keywords “Nepal” and “JAL” against a dataspace in Fig. 2. Currently
available desktop search tools will fail to provide any answers since the query keywords
are split across multiple data units (two separate emails), whereas users would be happy
to obtain the segment hTravel, 078, 092i (two emails containing the query keywords
and the folder containing these two emails) as a single appropriate answer to this query.

Our second challenge is to how to process such search requests in order to compute
appropriate answers. The main issue here would be how to do it efficiently.

to retrieve the section of a file would result in retrieving the whole file instead. Users
will then have to perform secondary search inside the file to locate exactly what he or

194 S. Pradhan

Table 2.

Fig. 1.

Table 2.

Travel Nepal

Music

Tasks

EMail

Travel

056

078

092111

Friends

FROM: shreyas@piano.com
TO: sujeet@guitar.org
SUBJECT: Tickets Inquiry: : : : : :: : : : : :Nepal : : : : : :: : : : : : : : : : : :
FROM: shreyas@piano.com
TO: sujeet@guitar.org
SUBJECT: Tickets Booked: : : : : :
JAL: : : : : : : : : : : :: : : : : : : : : : : :

Query keywords scattered across multiple data units

3 Unified Data Model

In this section, we explain our data model for unified representation of heterogeneous
data in a desktop. As we stated above, the search functionality of a desktop search tool
should not be limited to files and folders only. This functionality should be extended be-
yond and should be able to handle partial retrieval of the files’ contents. Our objective
is to achieve this extension using a unified data model and a unified query processing
technique. That is, users would be able to perform seamless search over a large col-
lection of heterogeneous desktop data regardless of size, type and/or structure of the
underlying data. Note that in our case, an answer to a query may not necessarily be a
single data unit; it may be composed of several related heterogeneous data units such
as a section of a text file and an image file.

In order to achieve unified representation of several heterogeneous data units, an ap-
propriate data structure is essential. File systems have been using hierarchical data struc-
ture right from the beginning since they naturally represent files and folders scattered
across a desktop. In fact, several other structural information about various desktop
dataspace can be represented by a similar hierarchical structure. For example, structured/semi-
structured text files such as LATEX, XML and XHTML have contents having natural
hierarchical structure. Moreover, users generally organize Emails, HTML files in a hi-
erarchy of appropriate folders. We can even represent the contents of a Powerpoint file
by this structure. Therefore, we believe the simplest way to represent the most desktop
data is to extend the hierarchical data model employed by current Operating Systems
and accommodate these additional logical structural information among several data

 Towards a Novel Desktop Search Technique 195

Fig. 2.

units. From here onward, we write dataspace to refer to all the retrievable data units
managed in an integrated fashion; that is 1) files and files and folders managed by con-
ventional files systems and 2) data units contained inside files.

It should be noted that logical modeling of a file’s contents based on their structural
information has also an important significance from a database point of view. Generally
users organize their desktop data by keeping related files/folders under the same folder.
Therefore, the current file system represents not only physical but also, to some extent,
logical representation of the data. Up until now, this task needs to be done manually
and could be very labor intensive. If we are to extend desktop search further to the con-
tents of a file, naturally, manual organization of data will be even more cumbersome.
The objective of our data model is also to offer database-like support for heterogeneous
data management so that some kind of logical data independence can be achieved. For
example, a LATEX file may have several physical representations. Several sections of its
contents can either be stored either in a single file or can be stored across multiple files
(one file for each section). However, its logical representation is unique independent of
its physical representation. Therefore, from the database management point of view, it
is rather easier to focus on the logical representation of data. Logical data independence
has played an important role in the success of Relational Database Management Sys-
tems[14]. As one can expect that the volume of data to be handled in a desktop will
continue to grow, this kind of database support for desktop data management will be
inevitable in the near future[5].

3.1 Basic Definitions

Desktop Dataspace: Formally, the Desktop Dataspace (or simply a dataspace) is de-
fined to be a rooted ordered tree D = (N; E) with a set of nodes N and a set of edgesE � N� N. There exists a distinguished root node from which the rest of the nodes can
be reached by traversing the edges in E. Each node except the root has a unique parent
node.

Each node n of the dataspace tree represents a data unit of the dataspace. This data
unit is the smallest unit that is expected to be retrieved as a search result. Therefore, a
node may represent not only a file or a folder, it may also represent a section of a LATEX
file or a slide of a Powerpoint file. Each node is associated with a set of attribute/value
pairs for storing meta-data about the data unit. For example, a node representing a
LATEX file may have a set of attributes such as f< type = tex >;< reated date =2006� 2� 12 >; :::; < file size = 20kb >g. Similarly, a node representing an
XML element may have a set of attributes such as f< type = xmlElem >; :::; <element length = 75 >g. Moreover, there is a function keywords(n) that returns
the representative keywords of the corresponding data unit in n.

The tree is ordered and there is a pre-defined ordering among the sibling nodes.
Although this ordering may have little significance in a conventional file system, here,
it is essential in order to preserve the topology of the contents of a file (for example a
LATEX file). Therefore, the nodes are arranged in such a way that the depth-first pre-order
traversal of the tree would preserve the topologies of contents of each and every file.
We write nodes(D) for all the nodes N.

196 S. Pradhan

Research

References

Thesis

Images

1. Introduction
Desktop search...
... ...

2. Data Model
representation

based on tree ...
... ...
... ...
... ...

6. Conclusion

... ...

�
�

Get rid of this boundaryn0n1n2 n3n4 n5 : : : n21n22
Nodes representing the parts of a file contents

A partial dataspace and its natural representation by our data model

Dataspace Fragment: Formally, a Dataspace Fragment (or simply a fragment) is de-
fined to be f � D where D is a Desktop Dataspace as defined above, nodes(f) �nodes(D) and the subgraph induced by nodes(f) in D is also a rooted tree.

In this paper, a fragment is denoted by a subset of nodes in a dataspace tree – the
tree induced by which is also a rooted ordered tree. A fragment may consist of only a
single node (the smallest data unit).

Figure 3 shows how the conventional files and folders, and contents of files in
a desktop dataspace can be represented by our unified data model. The set of nodeshn1; n3; n4; n5i represents a fragment of this dataspace with n1 being the root. Here-
after, unless stated otherwise, the first node of a fragment represents the root of the tree
induced by it. For clarity, we refer to a single-node fragment simply as a node.

4 Query Processing

Note that query processing techniques used in conventional Information Retrieval are
not applicable to meet our requirements. For a typical query described in Section 2.2,
they either return no results or several isolated answers without considering any logical
relationships between those units. In this paper, we adopt a database-like query process-
ing technique for effectively generating the answers to those kinds of queries described
in Section 2.2.

 Towards a Novel Desktop Search Technique 197

Fig. .3

Core operations of T�ALZBRA

Operations Definitions
Selection Supposing F be a set of fragments of a given dataspace, and P be a pred-

icate which maps a dataspace fragment into true or false, a selection
from F by the predicate P, denoted by �P, is defined as a subset F0 ofF such that F0 includes all and only fragments satisfying P. Formally,�P(F) = ff j f 2 F; P(f) = trueg.

Fragment
Join

Let f1; f2; f be fragments of the dataspace tree D. Then, fragment join
between f1 and f2 denoted by f1 1 f2 is f iff

1. f1 � f,
2. f2 � f and
3. 6 9f0 such that f0 � f ^ f1 � f0 ^ f2 � f0

Pairwise
Fragment
Join

Let F1 and F2 be two sets of fragments in a dataspace tree D, pairwise
fragment join of F1 and F2, denoted by F1 1 F2, is defined as a set of
fragments yielded by taking fragment join of every combination of an
element in F1 and an element in F2 in a pairwise manner. Formally,F1 1 F2 = ff1 1 f2 j f1 2 F1; f2 2 F2g:

Powerset
Fragment
Join

Let F1 and F2 be two sets of fragments in a dataspace tree D, powerset
fragment join between F1 and F2, denoted by F1 1� F2, is defined as
a set of fragments produced by applying fragment join operation to an
arbitrary number (but not 0) of elements in F1 and F2. Formally,F1 1� F2 = f1 (F01 [F02) j F01 � F1; F02 � F2; F01 6= �; F02 6= �g
where 1 (ff1; f2; : : : ; fng) = f1 1 : : : 1 fn.

Recently we proposed an algebra for processing keyword queries against a set
of schemaless XML documents[13]. We term this algebra as T�ALZBRA in this paper.
T�ALZBRA consists of a set of algebraic operations and several logical optimization tech-
niques. The core operations of T�ALZBRA will be the foundation for processing a typical
keyword-based desktop search query. However, the optimization techniques described
in [13] are not enough for our purpose and will be discussed further below. The formal
definitions (slightly modified for our purpose in this paper) of these operations are given
in Table 1. Readers are requested to refer to our previous work [13] for an elaboration
of their algebraic properties and other details.

Query: A query is denoted by QPf(k1)C1; (k2)C2; :::; (km)Cmg where kj is called a
query term and Cj is a corresponding query keyword predicate for all j = 1; 2; : : : ;m
and P is a selection predicate.

We write k 2 keywords(n) to denote query term k appears in the keywords associ-
ated with the node n.

198 S. Pradhan

Table 1.

Query Answer: Given a query QPf(k1)C1; (k2)C2; :::; (km)Cmg , answer A to this query
is a set of document fragments defined to beff j(8(k)C)2 Q)9 n2f :n is a leaf node of f^k 2 keywords(n) ^ C(n) = true ^ P(f) = trueg.

Therefore, Qsize<4f(Nepal)type=email; (JAL)type=emailg represents a query asking for
fragments meeting the following conditions. The fragment should consist of at least one
node associated with each query term Nepal and JAL, and the attribute types of these
nodes should be email. Moreover, the size (that is number of nodes consisting of an
answer fragment) should be smaller than 4.

Intuitively, an answer to a query is a dataspace fragment consisting of several structurally-
related logical data units. Each keyword in the query must appear in at least one data
unit that constitutes the fragment. These data units must also satisfy the query keyword
predicates. In addition, the fragment must satisfy the selection predicate(s) specified in
the query. Query keyword predicates such as the one type = email are relatively easy
to process. Therefore, for the sake of clarity, we exclude them from further discussion
in this paper.

A query represented by fk1, k2g and a selection predicate P against a dataspace D
can be evaluated by the following formula.QPfk1; k2g = �P(F1 1� F2)
where F1 = �keyword=k1 (F), F2 = �;keyword=k2 (F) and F = nodes(D).

The basic idea here is, by applying powerset fragment join operation, we gener-
ate every possible dataspace fragment that can be considered an appropriate candidate
answer to the query. However, this is the most inefficient way of processing a query.
The question then is how to do it efficiently. In the next section, we describe DB-like
technique for performance gain.

4.1 Query Optimization

One of the main principles for algebraic manipulation in conventional database systems
is to perform selection as early as possible[14]. Our goal here is to apply the same prin-
ciple to our query mechanism so that we can eliminate as many unnecessary fragments
as possible at an early stage of query processing without affecting the end result. How-
ever, in order to achieve this goal, we must ensure that selection can indeed be pushed
down in the query evaluation tree; that is even if we perform selection ahead of join, we
are still guaranteed to obtain the same desired result.

We describe a class of filters, having certain property that enables selection oper-
ation to be pushed down in the query tree. We call the filters that fall in this class as
optimal filters.

4.2 Optimal Filter

Before we describe an optimal filter, we first describe a filter having anti-monotonic
property that we proposed in [13]. Given a fragment f, a filter P is anti-monotonic iff8f0 � f : P(f) = true) P(f0) = true

 Towards a Novel Desktop Search Technique 199

Thus, if a fragment f satisfies a filter predicate P, then all sub-fragments of f also satis-
fies P. Therefore, a filter predicate such as size(f) � 4 is an anti-monotonic filter. Both
conjunction and disjunction of anti-monotonic filters have also anti-monotonic property.
That is, if P1 and P2 are two distinct anti-monotonic filters, then P1 ^ P2 and P1 _ P2
are also anti-monotonic filters. Construction of more complex anti-monotonic filters is
possible and therefore we can expect a significant performance gain by developing prac-
tically useful filters having anti-monotonic property. However, such filters are limited
in desktop search applications. That is why, we extend this notion of anti-monotonic
filters to accommodate a larger number of practically useful filters that would enable
query optimization.

We describe a class of filters called optimal filters having the following property.
Given two distinct fragments f1 f2, a filter P is optimal iffP(f1 1 f2) = true) P(f)1 = true ^ P(f)2 = true

Note that the anti-monotonic filters described in [13] are essentially optimal filters too.
However, not all optimal filters have an anti-monotonic property.

5 Related Work

There has been growing concern over the necessity of new principles for managing
a heterogeneous collection of data in the database community[9]. In this context, [5]
addresses the issues in managing and searching a personal dataspace consisting of het-
erogeneous collections of data form various data sources. Table 2 shows the comparison
of our approach with the one described in [5]. The approach proposed in [5] is purely
database-based ignoring a large community of naive users. Our query expressiveness
may be less powerful than the one described in [5], but nonetheless, more flexible and
will be more useful to a wider audience. The importance of DB/IR integrated approach
for next generation applications have been emphasized in [3]. It also fully justifies the
approach considered in this paper.

Much of the work regarding DB/IR approach to searching are relevant to our work.
Systems to support keyword queries in relational databases are described in [1][10][12].
Similarly, keyword-based queries against XML data have been studied in [8][11][6][4][13].

6 Conclusions

Desktop search tools are essential for retrieving the desired data units from a huge col-
lection of heterogeneous data in one’s desktop. In this paper, we focused on two major
challenges, which currently available desktop search tools have failed to address, in a
typical keyword-based search system. The first challenge is the partial retrieval of a file
contents and second challenge is to computation of appropriate answers in case query
keywords are splits across multiple data units. In order to meet these challenges, we
proposed a unified data model supported by a novel search technique. We believe that
our integrated DB-IR approach which preserves the simplicity of conventional IR tech-
nique while taking advantages of database-style query processing will certainly benefit
a large community of naive desktop users. Experimental evaluation of the proposed
technique is our immediate future work.

200 S. Pradhan

Comparison of our approach with iMeMex approach

iMeMex Our Approach
Type of data that can be
handled

Heterogeneous Heterogeneous

Approach Pure Database Integrated DB-IR
Data Model Unified Graph Model Unified Rooted Ordered Tree
Query Processing XPath-based Query Language Database-like Query Process-

ing based on T�ALZBRA

Merits Precise Query Semantics Easy Query Interface/Flexible
Demerits Complex Query Syntax (not

suitable for general users)
Imprecise Query Semantics

References

 Towards a Novel Desktop Search Technique 201

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based search over
relational databases. In: ICDE, pp. 5–16 (2002)

2. Apple Mac OS X Spotlight. http://www.apple.com/macosx/features/spotlight/
3. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR technologies: What is

the sound of one hand clapping? In: CIDR, pp. 1–12 (2005)
4. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic search engine for XML.

In: Proc. of 29th VLDB, pp. 45–56 (2003)
5. Dittrich, J.-P., Vaz Salles, M.A.: iDM: a unified and versatile data model for personal datas-

pace management. In: VLDB, pp. 367–378 (2006)
6. Florescu, D., Kossman, D., Manolescu, I.: Integrating keyword search into XML query pro-

cessing. In: International World Wide Web Conference, pp. 119–135 (2000)
7. Google Desktop, http://desktop.google.com/
8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRank: ranked keyword search over

XML documents. In: SIGMOD, pp. 16–27. ACM, New York (2003)
9. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS, pp. 1–9

(2006)
10. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases. In:

VLDB, pp. 670–681 (2002)
11. Li, Y., Yu, C., Jagadish, H.V.: Schema-free XQuery. In: Proc. of 30th VLDB, pp. 72–83

(2004)
12. Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational databases.

In: SIGMOD Conference, pp. 563–574 (2006)
13. Pradhan, S.: An algebraic query model for effective and efficient retrieval of XML fragments.

In: VLDB, pp. 295–306 (2006)
14. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II. Computer Sci-

ence Press (1989)
15. Windows Desktop Search. http://www.microsoft.com/windows/desktopsearch

Table 2.

Table 2.

Table 2.

An Original Usage-Based Metrics for Building a

Unified View of Corporate Documents

Guillaume Cabanac1, Max Chevalier1,2,
Claude Chrisment1, and Christine Julien1

1 IRIT-SIG, UMR 5505, Toulouse 3 University, France
2 LGC, ÉA 2043, Toulouse 3 University, France

{cabanac,chevalier,chrisment,julien}@irit.fr

Abstract. Nowadays, organizational members manage the huge amount
of digital documents that they exploit at work. To do that, they organize
documents into individual hierarchies. Actually, these documents are re-
ally parts of a company’s capital as they reflect past experiences, present
competences and impending expertise. Unfortunately, even if corporate
documents represent high value-added material, they still mostly remain
unknown from the organization as a whole. That is the reason why this
paper proposes to build a unified view of corporate documents. Our ap-
proach is complementary to current content-based ones because it relies
on an original metrics related to documents usage within an organization.

1 Introduction

In modern organizations such as companies, institutions, R&D laboratories, etc.
people constantly need to search for documents in order to accomplish their
tasks. This individual activity generates amounts of documents that may in-
terest many other members that have similar needs. However, these nuggets of
information are too often unknown to others because they mostly remain into
each worker’s personal document space. Nevertheless it would be worth gather-
ing and exposing documents in a collective way in order to support communities
of practice that tend to improve members’ efficiency.

To do that, research works have proposed to visualize organization-wide docu-
ments by measuring inter-document similarity. These approaches commonly use
lexical or even semantic metrics that only consider document contents. In fact,
this really neglects how people use and organize documents. However, we think
that we can benefit from it: observing how people use and classify documents may
provide us with a clue to how much they are related regarding people’s practices.
Therefore, the proposed unified view is based on the way individuals organize
corporate documents into their own hierarchies. This view relies on a usage-
based similarity computed through a unique data structure called multitree. The
aforementioned hierarchies consist of people’s bookmarks, file systems, etc. The
unified view enables people to discover new relations between documents that
would have been undiscovered with approaches only based on document con-
tents. Lastly it provides query and navigation features that enable users to find
interesting corporate documents that may be of interest for their tasks.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 202–212, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Original Usage-Based Metrics for Building a Unified View 203

This paper is organized as follows: section 2 describes our research context,
that is building a unified document view from individually organized ones. With
respect to this context, we also describe and point weaknesses of lexical and se-
mantic metrics that are commonly used for computing inter-document similarity.
Section 3 formally describes the usage-based inter-document metrics employed
for building the unified view. Lastly, we discuss strengths and weaknesses of our
approach before giving some insights into future research works in section 4.

2 Context and Motivations

This section introduces our research context: organizational work mediated by
digital documents. We focus on how they are retrieved, organized into hier-
archies and actually poorly shared. Therefore, we describe ways for building a
unified document view by extracting documents from every organizational mem-
bers’ Personal Information Spaces (PIS) [1]. A such unified representation would
enable each member to view and access related documents existing within the or-
ganization. However, we underline strong weaknesses of current approaches that
only consider document contents. We argue that they do not capitalize enough
on individual efforts: document organization resulting from their use in daily
people’s tasks. This motivates our outlined approach: exploiting a usage-based
rather than content-based metrics to build the unified view.

2.1 Organizational Context

At work, people make extensive use of information sources—including the Web—
from which they retrieve documents that are relevant to accomplish their tasks.
Indeed, information along with these documents is a raw material for modern
organizations that earn money by analyzing, combining, enriching, etc. infor-
mation and its digital media—documents—for making a profit. Following this
exploitation of documents, people need to structure their PIS into individual
document hierarchies [1] for various purposes. In fact, this is mostly done for
finding documents later, for building a legacy and for sharing them [2]. Despite
these expected objectives, we underline in the following section that documents
are not fully exploited at the corporate level as a whole. That is the reason why
we consider them as a quiescent capital.

2.2 Corporate Documents: A Quiescent Capital

People’s individual activities generate amounts of documents that may be of
great interest to other organizational members. However, such documents are
very often kept in personal information spaces without really being shared. One
argument from social psychology may be that information is perceived as power,
so sharing documents would imply loosing power. People can also hesitate to
share because they do not know if they will get something interesting in return.
These arguments are difficult to take into account so we rather explore other

204 G. Cabanac et al.

trails. Other arguments explaining why information is not very shared have been
pointed out by a recent field study of organizational work mediated by digital
documents [3]. First, information is scattered in multiple locations all over most
organizations. In fact, available information is unknown from people because
there is no single access point to it. Second, organizational members are not
professional searchers. They often have learned to search for information on-the-
job, by themselves. Thus, without an adapted training, most people do not know
where to look, how to search efficiently, etc. Third, people are inundated with
too much information, mostly coming from email messages. They spend a lot of
time extracting interesting information from huge amounts of noisy documents.
In our opinion, a predominant reason is that sharing takes time and implies a
significant cognitive overload. We investigate this latter argument, considering
three main ways that workers use to manually spread documents. i) By email-
ing colleagues, which implies thinking about which contacts may benefit from
the aforementioned documents. Choosing recipients is an highly cognitive task
whereas it does not allow to spread documents outside one’s circle of contacts.
This approach is merely chosen for small group collaboration [4]. ii) By sending
documents to a mailing list, whose members have subscribed for. They are often
topic specific, concerning some profession for example [5]. As regards the sender,
evaluating documents relevancy with respect to a mailing list can be tricky as
he does not know every of its members’ needs. Therefore, some people may self-
censor whereas others may send unrelated material, overwhelming subscribers’
mailboxes. iii) By publishing documents on organizational intranets. For this
approach, the effort is transposed from the sender to each organizational mem-
ber who has to actively search for these documents. As modern intranets can
consist of millions of Web pages—5.5 millions for the IBM intranet—employees
spend a large percentage of their time searching for information [6]. Automatic
document delivery via recommender systems [7] can also be cited along with its
drawbacks. Such systems exploit users’ profiles and combine demographic, cogni-
tive, collaborative, etc. strategies to diffuse documents. Their drawbacks mainly
concern profile updating latency (when a user’s interests evolve). Moreover, the
way documents are organized regarding workers’ tasks is not exploited.

Manual as well as automatic document sharing strategies are both expen-
sive in time and cognitive load. That is why more human-centered strategies
have been proposed in the Knowledge Management field, e.g. communities of
practice aim to connect people so that they can share nuggets of information,
exchange experience and solve problems in their area of experience [5]. All things
considered, efficiently giving access to relevant documents is a difficult task to
achieve, either manually or automatically. Indeed, people often loose precious
time searching for or recreating already organization-wide scale encountered in-
formation [3]. As a solution we propose to gather documents in a unified view
based on an original input: the way workers use documents. The interest of
such a view is twofold: it improves organizational documents access through a
user-friendly interaction meanwhile it presents a global vision of them. This view
reflects the way documents are related to activities rather than to their contents.

An Original Usage-Based Metrics for Building a Unified View 205

2.3 How to Unify Corporate Documents?

Previous sections suggest that modern organizations can benefit from a unified
view of corporate documents. We can at least explore two directions. i) Provid-
ing a shared space where people collaboratively manage a unique hierarchy of
documents. ii) Exploiting people’s individual hierarchies in order to automat-
ically gather them in a unified view. We do not support the first alternative
because [8] has noticed that people want to keep individual documents under
control. Moreover, they prefer to organize hierarchically rather than to rely on a
system that would not provide a global view of documents, e.g. a search engine.
In addition, when sharing a common hierarchy nobody is free to organize doc-
uments the way he wants. This forces people to adhere to a “single thought.”
Lastly, each member would have to keep documents that he is not interested in.
On the contrary, the second alternative enables people to only keep documents
they really are interested in. Moreover, they can organize them the way they
feel it the more efficient. That is why we discuss how to unify multiple individ-
ual document hierarchies into a unified view. In addition, visualizing corporate
documents can be achieved following two ways. On the one hand, we consider
Hierarchical Agglomerative Clustering (HAC) and Self-Organizing Maps (SOM)
Data Mining approaches, which are content-based. On the other hand, we men-
tion the social tagging visualization called “tag cloud,” which can be considered
as an early attempt to build a usage-based unified view.

Data Mining Approaches. In order to build a unified document view, one
must be able to evaluate how documents are related to each other, i.e. how much
they are similar. This can be achieved by a traditional Information Retrieval
process [9] via the cosine measure associated with the Vector Space Model, for
instance. Many Data Mining algorithms exploit such techniques to provide visual
representations of a set of documents. For example, [10] describe algorithms for
automatically organizing documents per contents based on the HAC algorithm.
Another example may be the SOM algorithm [11].

Social Tagging Approach. A current trend called social bookmarking consists
in sharing document pointers associated with user-contributed tags [12]. In order
to obtain a unified view of documents thanks to these tags, a specific visualization
called a tag cloud [13] has been proposed.

Weaknesses of Current Approaches. Content-based comparison of docu-
ments suffers many weaknesses that are related to synonymy, homonymy, stylis-
tic devices such as metaphors . . . This is a reason why advanced approaches such
as the Latent Semantic Indexing algorithm [14] have been used. Even if partially
solving lexical metrics weaknesses, such approaches cannot identify documents
that are often used together, according to a specific activity. The tag cloud vi-
sualization also suffers from content-based issues as individuals can use different
tags that actually represent a single concept. All things considered, current ap-
proaches never consider an actual human contribution resulting from a highly
cognitive effort: documents organization. In order to take into account this as-

206 G. Cabanac et al.

pect in a unified document view, we define in section 3 a specific inter-document
usage-based metrics based on workers’ individual hierarchies.

3 An Original Usage-Based Unified Document View

In this section, we describe an approach for building a usage-based unified view of
corporate documents. We thus detail how to benefit from individuals’ cognitive
efforts reflected by their organized documents. Then, we formalize an inter-
document usage-based metrics that is computed from individual hierarchies of
documents. Lastly, we present how the unified view is implemented, along with
concrete applications regarding information visualization and retrieval tasks.

As people find and exploit interesting documents regarding their tasks, they
store them for various purposes. To do that, their favorite organization is a
folder hierarchy [1] because it really reflects how documents are related regard-
ing people’s tasks. When inserting a document, the act of deciding which folder
is best representative or even creating a new one from scratch is a highly cog-
nitive task [15]. In spite of involved cognitive efforts, hierarchical organization
is appreciated because it allows individuals not only to keep documents under
control [8] but also to represent them as a whole. Moreover, when lexical-based
metrics is static because based on contents only, usage-based metrics is dynamic
as it relies on evolving hierarchies. To sum up, hierarchical document organiza-
tion conveys a high value that is mostly unexploited by the current approaches
presented above. That is why we describe in the following sections how to build
a usage-based unified view of documents from multiple hierarchies.

3.1 Modeling Documents Usage: the Multitree Data Structure

In order to identify patterns of document usage, we need to represent multiple
users’ document hierarchies (excluding folders that users specify as “miscella-
neous”) into a unique data structure. Following previous research works [16], we
model these hierarchies using a multitree that groups together users’ documents
along with their paths, see figure 1.

Fig. 1. A multitree consisting of two users’ hierarchies

An Original Usage-Based Metrics for Building a Unified View 207

Definition 1. A multitree M= 〈D, F, U, RD, RF , RU 〉 is a sextuplet where D =
{d1, . . . , dn} is a set of documents, F = {f1, . . . , fm} is a set of folders and
U = {u1, . . . , ul} is a set of users. Moreover, we define the following relations:

– RD is a binary relation on D × F that is called document membership.
(di, fj) ∈ RD means that the di document is a direct child of the fj folder.

– RF is a binary relation defined on F × F that is called folder membership.
(fi, fj) ∈ RF means that the fi folder is a direct child of the fj folder.

– RU is a binary relation defined on U × F that is called root membership.
(ui, fj) ∈ RU means that the ui user owns the fj root of his hierarchy.

Furthermore, we define R+
F : F → F as the function (1) that returns the p direct

“parent” folder that contains a given f folder. If f is one of the roots of the
multitree then R+

F (f) = λ where λ figures the null value.

R+
F (f) = p | ∃(f, p) ∈ RF (1)

Definition 2. Let G be the graph associated with the multitree M. A vertex
of G is either a node (representing a folder) or a leaf (representing a document)
while RD ∪RF are edges of G. A path from a root r to d is a sequence denoted
/r/f1/f2/ . . . /fk/d such that f1RF r, f2RF f1, . . . , dRDfk. The direct descendant
folder f1 ∈ F of the r root is called a branch, it is formally defined by the
b : F → F function (2).

b(f) =

⎧
⎪⎨

⎪⎩

λ if R+
F (f) = λ

f if b(R+
F (f)) = λ

b(R+
F (f)) else

(2)

Thanks to the multitree data structure, we compute an inter-document usage-
based similarity. We detail how this is achieved in the following section.

3.2 Computing an Inter-Document Usage-Based Similarity

In this section, we detail an inter-document usage-based similarity which con-
siders users’ patterns of organization reflected by their document hierarchies
(definition 4). This depends on inter-folder similarity (definition 3).

Definition 3. Following research works on URL similarity [17], we provide the
σF : F 3 → [0, 1] function (3) that evaluates the usage-based similarity of two
folders. Concretely, the depth and number of common ancestors of two given
folders are the two main criteria observed for evaluating their similarity.

σF (b, f1, f2) = 1− s(f1, m(f1, f2)) + s(f2, m(f1, f2))
s(f1, b) + s(f2, b) + 2

(3)

The s : F 2 → N+ function1 (4) returns the number of “steps,” i.e. edges in the
path from f1 to f2, that are assumed to be in the same b branch. To do that, we
1 The � operator is the symmetric set difference, corresponding to the exclusive OR

(XOR) in Boolean logic: A � B = (A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A).

208 G. Cabanac et al.

define the a : F → F function (5) that computes the set of ancestors of a given
(included) f folder. Moreover, the m : F 2 → F function (6) returns the “least
common ancestor” of two folders f1 and f2, i.e. the folder that is an ancestor
of both f1 and f2 and that has the greatest depth. This uses the d : F → N+

function that gives the depth of a folder.

s(f1, f2) = |a(f1)� a(f2)| (4)

a(f) =

{
∅ if f = λ

{f} ∪ a(R+
F (f)) else

(5)

m(f1, f2) = f | ∀(f, f ′) ∈ (a(f1) ∩ a(f2))2 (f �= f ′) ∧ (d(f) > d(f ′)) (6)

Our final aim is to evaluate inter-document usage-based similarity. Remember-
ing that documents of the multitree come from at least one user’s hierarchy,
we identify common patterns in document organization. For example, if people
always classify a group of documents in a same folder or in a similar way, this
means that people find them similar, for any reason related to their usage [8].
Thus, we have to observe repeated patterns of document organization: the more
people organize the same collection of documents in the same manner, the more
these documents are considered as usage-based similar.

Definition 4. The σD : D2 → [0, e] symmetric function (7) computes a usage-
based similarity of two documents, provided that they are reachable from at
least one branch in the multitree. Since their insertion in a same branch is
the consequence of human cognitive effort, the system deduces that they have
something in common according to their owner’s need. In (7) the R+

D : D×F → F
function (8) returns the f folder that contains a given d document, provided that
f is in the b branch.

σD(d1, d2) =
e

u
|U|

|B|
∑

b∈B

σF (b, R+
D(d1, b), R+

D(d2, b)) (7)

R+
D(d, b) = f | (∃(d, f) ∈ RD) ∧ (b ∈ a(f)) (8)

Moreover, B = b(d1) ∩ b(d2) is a set of branches that both d1 and d2 have in
common. Finally, u is the number of users that have a branch both containing
d1 and d2. The e

u
|U| expression models the fact that the more people classify two

given documents in the same branch, the more these documents are usage-based
similar. The second part of (7) takes into account the average distance of folders
containing the two documents.

3.3 Applying the Usage-Based Metrics: A Documents Unified View

As a first application we construct a unified view, i.e. a map of corporate docu-
ments thanks to the usage-based metrics proposed in the previous section. This

An Original Usage-Based Metrics for Building a Unified View 209

is an original and complementary approach as opposed to classical content-based
ones. The proposed unified view is a 2D similarity graph (figure 2 (a)) where ver-
tices are documents that are interconnected by edges of variable length reflecting
inter-document usage-based similarity (definition 4). To do that, we first com-
pute a n× n document-document matrix whose values are similarities. Second,
we fit the obtained matrix in a spring-embedder model [18] in order to position
vertices with respect to the computed usage-based similarities.

(a) (b)

Fig. 2. Usage-based (a) vs content-based (b) similarity graphs from documents repre-
sented in the figure 1

Figure 2 compares the graph obtained by a usage-based (a) vs a classical con-
tent -based (b) similarity. It represents the documents from the two hierarchies
of figure 1. On the one hand, one may distinguish on the usage-based view two
separate document clusters, each one gathering usage-related documents. These
clusters do not appear on the content -based unified view since those documents
do not share any common term. This is likely to happen with large organizational
documents. On the other hand, one may notice that the most usage-related doc-
uments d4 and d5 are not so close regarding content -based metrics. Moreover,
d1 and d10 seem to be similar regarding their contents whereas they are not
used in the same way: they belong to distinct clusters in the usage-based view.
To sum up, the proposed usage-based unified view enables people to discover
yet unidentified document relations, i.e. by using content-based metrics only.
In order to help a user to understand why documents are usage-based similar
in the unified view we label each vertex thanks to their most representative
folder paths extracted from the branches of the multitree. Moreover, each edge
connecting two given documents is labeled by common paths that are found in
connected vertices. Associating this feature with manually adjustable zoom and
clustering levels, one can dynamically drill-down the organizational documents
unified view.

Implementation. In order to experiment our approach, algorithms described
by definitions 3 and 4 have been implemented in the Java language. As for

210 G. Cabanac et al.

computing the usage-based similarity graph from the aforementioned computed
matrix, we used the Graphviz2 implementation. Concerning experimental data,
we have gathered document hierarchies created by individuals through their com-
mon activities. In fact, we have asked 14 colleagues for their hierarchies of book-
marks. The corpus that we have constituted contains 4,079 documents (resp. 486
folders) with an average of 291 documents (resp. 34 folders) by user. A resulting
graph can be seen on http://www.irit.fr/∼Guillaume.Cabanac/UBgraph/. This
process takes an average of 5 seconds, which makes it possible to provide users
with up-to-date visualization.

Discussion. Summing up works presented in this paper, usage-based metrics
and its implementation have the following strengths. i) They enable systems to
compute inter-document similarity without having to be aware of their contents
at all. This is a strong point since Web contents are very volatile: numerous
bookmarks quickly become broken links as Web sites evolve. Moreover, usage-
based similarities are more dynamic than content-based ones because they are
computed thanks to evolving document hierarchies rather than fixed document
contents. ii) Usage-based metrics exploit document organization, resulting from
human-contributed cognitive efforts. To our knowledge, metrics related to or-
ganization of documents have not been defined nor studied this way before.
iii) Usage-based metrics allow to represent documents on a cartography, i.e. a
2D map. Such a map can be used for both modalities of information retrieval:
querying and navigating. iv) It enables users to find multilingual documents.
Indeed, if documents written in different languages are stored in a same hi-
erarchy branch, usage-based metrics identify them as similar. So, users of the
retrieval feature may benefit from multilingual results returned for a monolin-
gual query. For example, a query in English may return English documents along
with French ones if they are similar enough in the sense of definition 4.

4 Conclusion and Future Works

Modern technologies of the Information Society we live in make it possible to
access increasingly growing amounts of digital documents. People are used to
organize and to classify encountered interesting documents into personal infor-
mation spaces according to their needs and daily tasks.

In this paper, we argue that corporate organization-wide documents can be
considered as a quiescent capital. Indeed, we show that people spend time and
efforts searching for relevant information, that mostly remain unknown to other
members with similar needs. Moreover, most information searched for is very
often already present within the organization. That is why we propose to build a
unified view in order to facilitate the access to corporate documents. This view
may promote work-based communities, i.e. communities of practice that aim
to increase organizational members’ efficiency. First, we underline that current
approaches (content-based) are not sufficient enough for reflecting the real use

2 Graphviz is an open source graph visualization software, cf. http://graphviz.org.

http://www.irit.fr/~Guillaume.Cabanac/UBgraph/
http://graphviz.org

An Original Usage-Based Metrics for Building a Unified View 211

of documents. Second, we introduce and formally describe an inter-document
usage-based metrics which is used to build the unified view. Lastly, we discuss
its implementation. In the proposed approach, representing a large amount of
documents in a unified view would be impossible without clustering them first.
As a perspective, we plan to explore alternative visual representations that would
better handle large corpora. A second perspective aims to merge usage-based and
content-based views. Indeed, we consider that coupling these two approaches may
provide users with additional clues, helping them to understand the immaterial
capital of their organization. Our current prototype not only provides a “proof
of concept” but also an experimental framework. Thus, we plan to experiment
and improve the proposed unified view along with the proposed usage-based
metrics. A first step already involves the participation of corporate members of
our laboratory. This will allow us to evaluate the acceptability of this unified
view. Moreover, by the observation of knowledge workers’ daily tasks, we will be
able to quantify productivity gains. Finally, we foresee that experience reports
will help us to improve the accuracy of our approach as a whole.

References

1. Abrams, D., Baecker, R., Chignell, M.: Information Archiving with Bookmarks:
Personal Web Space Construction and Organization. In: CHI ’98: Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 41–48. ACM
Press/A-W Publishing Co., New York (1998)

2. Kaye, J.J., Vertesi, J., Avery, S., Dafoe, A., David, S., Onaga, L., Rosero, I., Pinch,
T.: To Have and to Hold: Exploring the Personal Archive. In: CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in computing systems, pp. 275–284.
ACM Press, New York (2006)

3. Feldman, S.: The high cost of not finding information. KM World magazine 13(3)
(2004)

4. Noël, S., Robert, J.M.: Empirical Study on Collaborative Writing: What Do Co-
authors Do, Use, and Like? Comput. Supported Coop. Work 13(1), 63–89 (2004)

5. Millen, D.R., Fontaine, M.A.: Improving Individual and Organizational Perfor-
mance through Communities of Practice. In: GROUP ’03: Proceedings of the 2003
international ACM SIGGROUP conference on Supporting group work, pp. 205–
211. ACM Press, New York (2003)

6. Dmitriev, P.A., Eiron, N., Fontoura, M., Shekita, E.: Using Annotations in Enter-
prise Search. In: WWW ’06: Proceedings of the 15th international conference on
World Wide Web, pp. 811–817. ACM Press, New York (2006)

7. Montaner, M., López, B., de la Rosa, J.L.: A Taxonomy of Recommender Agents
on the Internet. Artif. Intell. Rev. 19(4), 285–330 (2003)

8. Jones, W., Phuwanartnurak, A.J., Gill, R., Bruce, H.: Don’t Take My Folders
Away!: Organizing Personal Information to Get Things Done. In: CHI ’05: CHI ’05
extended abstracts on Human factors in computing systems, pp. 1505–1508. ACM
Press, New York (2005)

9. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Commun. ACM 18(11), 613–620 (1975)

10. Godoy, D., Amandi, A.: Modeling user interests by conceptual clustering. Inf.
Syst. 31(4), 247–265 (2006)

212 G. Cabanac et al.

11. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Secaucus, NJ (2001)
12. Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A

General Review. D-Lib Magazine 11(4) (2005)
13. Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, Tagging Paper, Taxonomy,

Flickr, Academic Article, To Read. In: HYPERTEXT ’06: Proceedings of the 17th

conference on Hypertext and hypermedia, pp. 31–40. ACM Press, New York (2006)
14. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:

Indexing by Latent Semantic Analysis. JASIS 41(6), 391–407 (1990)
15. Rucker, J., Polanco, M.J.: Siteseer: personalized navigation for the web. Commun.

ACM 40(3), 73–76 (1997)
16. Chevalier, M., Chrisment, C., Julien, C.: Helping People Searching the Web: To-

wards an Adaptive and a Social System. In: ICWI 2004: Proceedings of the 3rd

International Conference WWW/Internet, IADIS, pp. 405–412 (2004)
17. Jaczynski, M., Trousse, B.: WWW Assisted Browsing by Reusing Past Navigations

of a Group of Users. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS
(LNAI), vol. 1488, pp. 160–171. Springer, Heidelberg (1998)

18. Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium 42, 149–160
(1984)

Exploring Knowledge Management with a Social
Semantic Desktop Architecture

Abstract. The motivation of this paper is to research the individual and the
team levels of knowledge management, in order to unveil prominent knowledge
needs, interactions and processes, and to develop a software architecture which
tackles these issues. We derive user requirements, using ethnographic methods,
based on user studies obtained at TMI, an international management
consultancy. We build the IKOS software architecture which follows the p2p
model and relies on the use of Social Semantic Desktop for seamless
management of personal information and information shared within groups.
Finally, we examine the way our approach matches the requirements that we
derived.

Keywords: Knowledge Management; Semantic Web; Semantic Desktop.

1 Introduction

The discipline of knowledge management addresses four levels of knowledge
management: individual, team, organizational and inter-organizational [14]. However,
the main focus of research as well as of commercial projects up to now has been the
organizational level, which has been analysed from several points of view, mainly the
strategic, process, technology and organisational ones [5], [15]. In parallel, various
attempts have been made to delve into the personal and team levels.

At the personal level, the phrase “personal information management” was first
used in the 1980s [11] in the midst of popular excitement over the potential of the
personal computer to greatly enhance the human ability to process and manage
information. Today, personal information management is meant to support activities
such as acquisition, organization, maintenance and retrieval of information captured,
used and applied by individuals [22].

At the team level, research focused on knowledge networking, building on the
assertion that useful knowledge does not only exist in individuals, but is continuously
produced and revised in social processes [10]. Individual knowledge workers
participate in a variety of knowledge networks, which in turn constitute a specific

Niki Papailiou1, Dimitris Apostolou2, Dimitris Panagiotou1, and Gregoris Mentzas1

1Information Management Unit, Institute of Communication and Computer Systems, National
Technical University of Athens, 9 Iroon Politechniou street, 15780 Athens, Greece

{nikipa, dpana, gmentzas}@mail.ntua.gr
2Department of Informatics, University of Piraeus, Karaoli & Dimitriou 80, 18534 Piraeus,

Greece
dapost@unipi.gr

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 213–222, 2007.
© Springer-Verlag Berlin Heidelberg 2007

type of social networks. The term “social network” is often used to refer to “a specific
set of linkages among a defined set of actors, with the additional property that the
characteristics of these linkages as a whole may be used to interpret the social
behavior of the actors involved” [21]. Consequently, the term “network” designates a
social relationship between actors. Knowledge network are social networks, which are
assembled in order to create, revise and transfer knowledge, for the purpose of
creating value [21].

Hence, a typical knowledge worker is both handling personal information
management tasks on daily basis and also participating in a variety of knowledge
networks in the context of his/her work.

A large number of tools has recently emerged supporting personal (e.g. [20], [18],
[4]) as well as social information and knowledge management (e.g. community tools,
wikis, social tagging). A knowledge worker is typically using a variety of such tools,
often switching between different tools when moving from one assignment to another.
This has created the need for novel means to enable users to seamlessly manage both
their personal information, tasks, contacts, etc. and the information and knowledge
shared between them and their knowledge networks. Semantic technologies play an
important role in the development of such tools [3], [12].

Our motivation in this paper is to research the individual and the team levels of
knowledge management, in order to unveil prominent knowledge needs, interactions
and processes, and to develop a software architecture which tackles these issues. We
focus on a recent research direction related to the emergence of the Social Semantic
Desktop [7], [19]. The Social Semantic Desktop (see
http://www.semanticdesktop.org/) aims to provide a comprehensive semantics-based
software framework for extending the personal desktop into a collaboration
environment that supports both personal information management and the sharing and
exchange across social relations.

In this paper we present IKOS, a software architecture which is based on the Social
Semantic Desktop framework. Our architecture aims to support the integration of
personal and collaborative information and knowledge management in the context of
knowledge intensive firms; specifically we examine the case of professional business
service firms (e.g. consulting, legal, advertising). After studying the daily work of
employees within a typical consulting firm, we develop in Section 3 the IKOS
architecture. IKOS uses and extends a number of components developed within the
Nepomuk project. Nepomuk is an EC-funded Integrated Project developing a set of
Social Semantic Desktop services (see http://nepomuk.semanticdesktop.org). In
Section 4 we present how the user requirements extracted from the use cases are
fulfilled by the proposed architecture. The final section presents our conclusions and
areas for further work.

2 User Studies

In order to extract user requirements for knowledge workers working in
professional business service firms, we analyzed use cases obtained at TMI (see
http://www.tmiworld.com/), an international management consultancy. TMI is
operating through a network of local partners in 40 countries. It is organized

214 N. Papailiou et al.

according to a licensor-licensee model. The TMI licensor organization is responsible
for the development of TMI strategy and its dissemination to local partners, whereas
licensees need to incorporate strategic issues to the local level. This business
cooperation framework adopts a strong partnership approach and strengthens the
collaboration between different partners.

In order to develop user requirements, we conducted user research at TMI using
ethnographic methods such as contextual observations and interviews. We shadowed
people as they did their work and then we interviewed them. We asked the informants
about the processes and procedures they used to get their work done and how they
collaborated with others. From our study we extracted conclusions about typical
processes and we created personas [2], [9]. Although personas are fictitious, they are
based on the knowledge of real users and therefore identify users’ behaviour patterns,
motivation, expectations, goals, skills, attitudes and environment. Using these typical
processes and personas we developed two use cases representing the knowledge
creation and sharing work processes within TMI. The first use case depicts customer-
specific product sales processes (i.e. training programs or consulting processes), while
the second describes the development of a management-supported knowledge
network within TMI. Tables 1 and 2 give a brief overview of the use cases.

Table 1. Use Case 1: Development of customized products

Personas Use case steps
• Nasim is the manager

responsible for booking
sales meetings with
prospective clients.

• Alistair is the sales
manager – he prepares
sales meetings and he plans
follow-up meetings

• Karen is the product
developer and the trainer –
she creates the new
customer specific products,
performs the course and
writes a report

• Josephine is the project
assistant – she prepares the
material for the courses
and books training
locations for big courses

1. Book clients: Nasim searches for companies that could
be interested in TMI’s offering. He makes a list with
these companies, he prepares a call sheet and he gives
calls in order to book meetings with prospective clients

2. Prepare a presentation: Alistair prepares a sales
presentation. He searches for similar past TMI
projects, related emails and knowledgeable TMI
managers and trainers.

3. Prepare the sales meeting: Alistair prepares the sales
meeting, i.e. he designs a solution and writes a
proposal. He reviews the existing TMI offerings
(proposals and products), examines customer related
information and searches for TMI experts.

4. Develop the customized product: Karen finds out all
standard products developed by TMI (i.e. not client
specific solutions), examines them and chooses the
most suitable. Karen defines the structure and duration
of the customised product and develops the new
customised product.

5. Prepare the course material: Josephine collects all
information connected to the project, examines the
related emails, books the material needed for the
course and sends it directly to the training location.

6. Course implementation: Karen performs the course.

 Exploring Knowledge Management with a Social Semantic Desktop Architecture 215

Table 2. Use case 2: Development of a knowledge network

Personas Use case steps
• John is a senior manager

and community sponsor -
he establishes the mission
of the community, its
expected outcomes, and
insures its exposure in the
organization. He also helps
to secure needed resources.

• Alistair, the sales manager,
is the community leader –
he is a Subject Matter
Expert.

• Nasim, the manager
responsible to book
meetings, is the community
facilitator - responsible for
clarifying communications,
drawing out the reticent,
ensuring that dissenting
points of view are heard
and understood, posing
questions to further
discussion and keeping
discussions on topic.

• Karen and Emma, product
developers, are core team
members – they embody
deep knowledge of their
practice or domain,
participate actively in the
community, learn and
share their learning.

1. Decide to create a knowledge network: John
recognizes the need for development of common
consulting practices within TMI and decides to create a
new knowledge network consisting of TMI workers
from various offices worldwide. He defines together
with Alistair and Nasim the specific goals, activities
and value of the group to the company.

2. Find members: Alistair provides overall guidance and
leadership and identifies the strategic fit of the group.
Nasim finds TMI employees who are suitable to get
core team members of the network. Karen and Emma
are meet as peers seeking unity, mutual understanding
and common context. Often, Nasim connects core team
members and he organizes sub-communities according
to the interest/expertise of the network members.

3. Share knowledge: Nasim helps by searching, retrieving
and transferring information to requests for the group
knowledge and content. Team members work with one
other and collaborative activities take place.

4. Produce results: John and Alistair work with core team
members to set group boundaries, mission, norms, and
values and make policy changes as needed. Nasim and
the core team members organize TMI’s knowledge in
order to identify knowledge gaps.

5. Deliver results to the company: Core team members
prepare deliverables and transfer their results to the
company. Alistair diagnoses and maintains network
health and Nasim measures and evaluates the
network’s contributions to the company.

6. The knowledge network expires: After the
accomplishment of the community goal, the network
expires.

3 The IKOS Architecture

IKOS constitutes a combination of a personal information management system and
a group support system. Figure 1 illustrates the architecture of IKOS, which follows
the peer-to-peer model and relies on the use of Social Semantic Desktop services to
support the requirements of knowledge workers for seamless management of personal
information and information shared within ad-hoc groups.

IKOS’ client application comprises Search and Workspaces, the two graphical
interfaces the users can use to interact with IKOS. Through the Search interface users
can retrieve content that matches exactly the query keywords as well as semantically
similar content both from their personal desktops and from the public space of other
users’ desktops. Users are also able to navigate through available content by
exploiting relationships between different content items.

216 N. Papailiou et al.

Fig. 1. The IKOS Architecture

Workspaces give users the opportunity to create spaces supporting the
accomplishment of their tasks. Workspaces can support either the personal work of
each user or the collaborative work of groups. In the case that more than one person
are involved in the workspace, a list of the participants and information about them
are provided by the system. In each workspace, related resources (email messages,
office files, pdfs, web bookmarks) from the public space of the desktop peers can be
stored. Moreover, users involved in a workspace have the possibility to discuss in chat
rooms. Workspaces also include task management support for the users (assigning
tasks, deadlines, etc.). Finally, workspaces provide team and personal calendar
support.

IKOS’ business logic is provided by the following Social Semantic Desktop
components that make their functionalities available as services. The User Context
Service component supports the observation of and reasoning about a user’s current
work context. It elicits knowledge about the current goals of the user that is useful for
tuning content structuring, annotation and retrieval. The Task Management
component provides functionalities such as personal task modelling, personal work
scheduling, personal work trigger and control, task delegation, task model
preservation, task model abstraction, task model reuse and task model retrieval. The
Community Management component allows community identification and analysis by
exploiting p2p network data and transactions. It provides functionalities such as
community detection and labelling, community structure analysis and detection of
trends and threads. The Ranker component utilises ranking algorithms based on
shared metadata and generic user ranking information that are used to enhance the
retrieval of shared resources. The Metadata Exchange Recommender provides a
mechanism for metadata exchange between users. It uses data gathered from the

 Exploring Knowledge Management with a Social Semantic Desktop Architecture 217

Metadata-related components

Community
Management

Task
Management

Metadata Exchange
Recommender

User Context
Service

Data Wrapper

Data-related components

Search Workspace

PIM Ontology &
Metadata AlignmentRanker

Distributed Index

Client Application

Social Semantic Desktop X

Operating System

File System Network

RDF-Store Local Index

Utilities

Distributed Index

Client Application

Social Semantic Desktop Y

Operating System

Distributed Index

Client Application

Social Semantic Desktop Y

Operating System

P2P

community to discover relationships between items in the knowledge base, in order to
interact and find relevant material in the community of users. The Personal
Information Management Ontology (PIMO) & Metadata Alignment component hosts
the personal ontologies and implements metadata alignment methods and. The RDF-
Store component is used to store all crawled content and associated metadata in RDF.
The Local Index component allows full-text and semantics-based search in the
personal desktop. The Distributed Index component extends search across the public
spaces of other users’ desktops. The Data Wrapper component extracts and queries
full-text content and metadata from various information systems (file systems, web
sites, mail boxes, etc.) and file formats (documents, images, etc.).

4 Matching Requirements with IKOS

In this section we examine how the user requirements extracted from the use cases
are fulfilled by IKOS. First we outline a typical usage scenario. Then, we explain how
the system functionalities fulfil the extracted user requirements.

In a typical usage scenario Karen (see also Figure 2) can select among existing
information resources (emails, files, folders, bookmarks, images., etc.) from her local
desktop for addition to IKOS. The crawler component extracts full-text index from
the selected resources while the PIMO component explicitly extracts or implicitly
infers metadata for the selected resources, according to the current Karen’s context.
For example, existing file folders and email folders can be automatically associated
with PIMO concepts. These resources are represented in the RDF syntax, identified
by their URIs and integrated automatically into the local repository. For manual
annotation of resources with metadata, the interface should filter to show suggested
metadata by analyzing the resource text. Moreover, metadata are modelled in an
ontology that represents Karen’s conceptualization of her domain. This allows a more
fine-grained of desktop resource classification than the one provided by most
operating systems that only allow one file to exist in exactly one folder.

At any point, Karen can intervene and append her PIMO structures by adding
deleting, or renaming concepts and relations between the concepts and by annotating
any concept using free text and also data properties. PIMO concepts can be used for
tagging resources. The PIMO is also used to generate a graphical knowledge map the
user can use to browse through it. A key aspect in our framework is the ability to
import existing ontologies, such as corporate ontologies, by copying them. These
ontologies can then be used as templates for users to build their PIMOs upon.

Of course the most important aspect for Karen is to be able get answers to specific
queries. Queries can be entered by clicking in the graphical knowledge map or
manually as text. The crawler’s inference engine tries to answer the query by routing
it to both the local index and the distributed index. When the distribute index is
accessed, alignment between local and distributed metadata should be performed in
order to be able to retrieve content that is modelled according to different but similar
ontological structures. A corporate ontology of the domain has a key role in the
metadata alignment process by acting as a public identifier that can be used to identify
the concepts that two different PIMOs include. We assume that the two PIMOs
developed by two users that share similar working contexts and that are probably
based on the same corporate ontology are overlapping enough in order to be aligned.

218 N. Papailiou et al.

Fig. 2. Typical Usage Scenario of IKOS

In the following we examine how the IKOS architecture matches the user
requirements described in Section 2.

Need for easy search: Knowledge workers in TMI often need to search and
retrieve information in order to accomplish their tasks. Therefore, users need easy
information search. When Alistair prepares the presentation for the sales meeting
(Use Case 1 / Step 2) or writes a proposal (Use Case 1 / Step 3), he searches for
relevant information. Also, Karen (Use Case 1 / Step 4), Josephine (Use Case 1 / Step
5) and Nasim (Use Case 2 / Step 2) search for information. IKOS currently provides
full-text and semantics-based search while in the future it will also provide
community detection support for locating experts in certain sectors, domains, fields of
interest or related projects.

Ability to query for content residing not only in corporate systems but also in
colleagues’ computers: Often, knowledge workers in TMI search for information that
another employee within TMI has retrieved in the past. The repeat of the queries
means time cost for the employees and therefore its avoidance is required. Karen
searches for customer related information to create the customised product (Use Case
1 / Step 4), while Alistair has retrieved the same information for the sales meeting
(Use Case 1 / Step 2). IKOS gives the possibility of peer-2-peer sharing of desktop
files. It allows searching across the public spaces of peers and downloading retrieved
content.

Avoidance of separate queries to find different types of items: When knowledge
workers create a new document, they search separately about different types of items,
e.g. documents, emails and experts. However, separate queries are costly for
employees. When Alistair prepares the presentation for the sales meeting, he must
search separately about relevant TMI products, emails, customer related information
and TMI experts (Use Case 1 / Step 2). The same happens to Alistair (Use Case 1 /
Step 3) and Karen (Use Case 1 / Step 4). IKOS provides means to associate

 Exploring Knowledge Management with a Social Semantic Desktop Architecture 219

Karen’s
desktop
Karen’s
desktop

Alistair’s
desktop
Alistair’s
desktop

Karen’s PIMO

corporate ontologies
local

repository
local

repository

metadata
annotation

search
interface

PIMO
editor

metadata alignment

Alistair’s PIMO

local
repository

local
repository

thematically items, such as email messages, office files, pdfs, web bookmarks,
calendar item and events, in order to build a network of interrelated information
resources, and it supports seamless searching across thematically connected
information resources.

Need to use parts from different documents: In order to create a new document,
knowledge workers in TMI need to use different parts from various information
resources. Alistair (Use Case 1 / Step 3) and Karen (Use Case 1 / Step 4) use parts
from different TMI products to prepare their documents/presentations. Within IKOS,
we plan to develop a component that will permit annotating parts of documents of
popular applications formats. Furthermore, these annotations will be used to provide
recommendations to users, given the subject and scope of the new document they are
working on (e.g. which fragments or related documents to use).

Need for task management support: TMI knowledge workers require task
management support, since they have to perform standard tasks in order to
accomplish the customer specific product sales processes. In order to write a proposal
for the sales meeting, Alistair has to follow standard steps, i.e. review TMI’s offering,
search and examine customer related information and consult other TMI experts (Use
Case 1 / Step 3). The same happens by Nasim (Use Case 1 / Step 1), Alistair (Use
Case 1 / Step 2), Karen (Use Case 1 / Step 4) and Josephine (Use Case 1 / Step 5).
The task management component of the Social Semantic Desktop will provide
personal task management functionalities such as task monitoring, task logging, and
task resources and relations storage. Moreover, it will provide support for
collaborative tasks with functionalities such as task delegation and task pattern
management that will allow re-use of prominent task patterns.

Need for tools supporting community management: For each knowledge network,
TMI managers have to analyse network activity, control network progress and
evaluate members’ contribution. Alistair and Nasim have to define group activities
(Use Case 2 / Step 1). Costas and Alistair have to set group boundaries, mission,
norms and values and to make policy changes as needed (Use Case 2 / Step 4). Later,
Alistair has to diagnoses and maintains network health, and Nasim has to measure and
evaluate core team members’ contribution (Use Case 2 / Step 5). IKOS will in the
future support community identification. For example, given a user in the community
and a particular keyword, it will locate users with similar interests. Moreover, given a
community of users, it will identify emerging trends such as tags or resources
becoming popular within the community.

Need for a knowledge repository supporting the knowledge network: Knowledge
network members require a repository to store resources that are relevant to their
network. Existing resources must be located (Use Case 2 / Step 3), organised (Use
Case 2 / Step 4) and examined (Use Case 2 / Step 5). Members can store relevant
resources within a dedicated workspace created to support the group. Hence, the
workspace can be used as knowledge repository for the knowledge network. Further,
knowledge network members can search and retrieve network resources (office
documents, pdfs, emails, web links, calendar events).

Need for tools supporting communication among knowledge network members:
Knowledge network members have to communicate and collaborate with each other.
Core network members have to meet as peers (Use Case 2 / Step 2) and to participate
in collaborative activities (Use Case 2 / Step 3). IKOS provides team and personal

220 N. Papailiou et al.

calendar support and it helps members to organize their activities related to the group
and be reminded about group events and deadlines. Future extensions include the
integration of synchronous communication tools such as chat tools and development
of an asynchronous communication tool that communication channels used by
network members (e.g. email, blogging).

5 Conclusions and Future Work
Knowledge workers need tools that seamlessly organize and manage both personal
as well as collective information and knowledge. In this paper we presented early
work on IKOS, a software architecture based on the Social Semantic Desktop
framework. IKOS aims to provide a solution that integrates personal and social
knowledge management support using semantic technologies.

Although we have not yet conducted a formal evaluation of IKOS, user feedback
from testing a prototype has been positive and confirms that IKOS is in-line with our
primary goal to seamlessly support personal and social knowledge-intensive processes
of knowledge workers. Users perceived improvements in integration of content
creation and processing within their everyday working habits as well as in reuse of
desktop resources and mental models in a community context and vice-versa. In turn,
these improvements facilitate wider and easier involvement of knowledge workers in
project teams, easier reach to colleagues and experts for advice and information, and
persistency of knowledge shared.

Our future work includes: (a) development of a Wiki-based collaborative
environment to make information creation and sharing within workspaces more
flexible; (b) workspace enhancement with synchronous and asynchronous
communication support, (c) integration of the Nepomuk Ontological Network Miner
component for semi-automatic metadata annotation and term disambiguation; (d)
integration of community detection and analysis support tools, (e) development of an
annotating component that will allow adding metadata to parts of documents, (f)
integration of the Nepomuk task management component, Finally, we plan a
thorough usability testing and impact analysis of IKOS within TMI.

Acknowledgments. This work has been partially funded by the European Commision
Information Society Technologies programme (NEPOMUK FP6-027705).

References

 Exploring Knowledge Management with a Social Semantic Desktop Architecture 221

1. Applehans, W., Globe, A., Laugero, G.: Managing Knowledge: A Practical Web-
Based Approach. Addison-Wesley, Reading (1999)

2. Calabria, T.: An introduction to personas and how to create them (Retrieved
February 2, 2006) from Step Two Designs PTY LTD (2004), Web site:
http:www.steptwo.com.au/papers/kmc_personas/index.html

3. Caldwell, F., Linden, A.: PKN and Social Networks Change Knowledge
Managemen, (Retrieved March 10, 2006) from Gartner (2004), Web site:
www.gartner.com

4. Cheyer, A., Park, J., Giuli, R.: Integrate. Relate. Infer. Share. In: Gil, Y., Motta,
E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, Springer,
Heidelberg (2005)

222 N. Papailiou et al.

5. Davenport, Prusak: Working Knowledge, Harvard Business School Press,
Boston, Massachusetts (1998)

6. Dawson, R.: Developing Knowledge-Based Client Relationships, The Future of
Professional Services, Butterworth-Heinemann (2000)

7. Decker, S., Frank M.: The Social Semantic Desktop, Technical Report,
September 10, 2006 (2004)

8. Ehrig, M., Tempich, C., Broekstra, J., van Harmelen, F., Sabou, M., Siebes, R.,
Staab, S., Stuckenschmidt, H.: SWAP - ontology-based knowledge management
with peer-to-peer technology. In: Sure, Y., Schnurr, H.P. (eds.) Proceedings of
the 1st National ”Workshop Ontologie-basiertes Wissensmanagement
(WOW2003) (2003)

9. Goodwin, K.: Perfecting your personas, (Retrieved April 16, 2007) from cooper
(2007) Web site: http:www.cooper.com/insights/journal_of_design/articles/
perfecting_your_ personas_1.html

10. Heller-Schuh, B., Kasztler, A.: Analyzing Knowledge Networks in Organizations.
In: Proceedings of I-KNOW 2005, Graz, Austria, June 29-July 1, 2005 (2005)

11. Lansdale, M.: The psychology of personal information management. Applied
Ergonomics 19(1), 55–66 (1988)

12. Linden, A.: Semantic Web Drives Data Management, Automation and Know-
ledge Discovery, (Retrieved March 14, 2006) (2005) from: www.gartner. com

13. Maier, R., Haedrich, T.: Centralized Versus Peer-to-Peer Knowledge Manage-
ment Systems. Knowledge and Process Management Systems 13(1), 61–77
(2006)

14. Mentzas, G., Apostolou, D., Abecker, A., Young, R.: Knowledge Asset Manage-
ment. Springer, Heidelberg (2002)

15. Nonaka, Takeuchi.: The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation. Oxford Univ. Press, Oxford
(1995)

16. OVUM.: Knowledge Management: Building the Collaborative Enterprise (1999)
17. Parameswaran, M., Susarla, A., Whinston, A.B.: P2P Networking: An

Information-Sharing Alternative. IEEE Computer Society Press, Los Alamitos
(2001)

18. Quan, D., Huynh, D., Karger, D.: Haystack: A Platform for Authoring End User
Semantic Web Applications. In: International Semantic Web Conference,
Springer, Heidelberg (2003)

19. Sauermann, L., Bernardi, A., Dengel, A.: Overview and Outlook on the Semantic
Desktop. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, Springer, Heidelberg (2005)

20. Sauermann, L.S., Schwarz.: Introducing the Gnowsis Semantic Desktop. In:
Sauermann, L.S (ed.) Proceedings of the International Semantic Web Conference,
Springer, Heidelberg (2004)

21. Seufert, A., von Grogh, G., Bach, A.: Towards knowledge networking. Journal of
Knowledge Management 3(3), 180–190 (1999)

22. Teevan, J., Jones, W., Bederson, B.B.: Personal Information Management.
Communications of the ACM, 40–43 (2006)

23. Tsui, E.: Technologies for Personal and Peer-to-Peer Knowledge Management
(last accessed 1 June 2007), www.csc.com/abo utus/lef/mds67_off/ uploads/P2P_
KM.pdf

Classifying and Ranking: The First Step

Towards Mining Inside Vertical Search Engines

Hang Guo1, Jun Zhang2, and Lizhu Zhou1

1 Computer Science & Technology Department
100084, Tsinghua University, Beijing, China

guohang@mails.tsinghua.edu.cn, dcszlz@mail.tsinghua.edu.cn
2 IBM China Software Develop Lab

100084, Beijing, China
zhjun@cn.ibm.com

Abstract. Vertical Search Engines (VSEs), which usually work on spe-
cific domains, are designed to answer complex queries of professional
users. VSEs usually have large repositories of structured instances. Tra-
ditional instance ranking methods do not consider the categories that
instances belong to. However, users of different interests usually care
only the ranking list in their own communities. In this paper we design
a ranking algorithm –ZRank, to rank the classified instances according
to their importances in specific categories. To test our idea, we develop
a scientific paper search engine–CPaper. By employing instance classi-
fying and ranking algorithms, we discover some helpful facts to users of
different interests.

1 Introduction

With the booming of Internet resources, Internet is becoming the most impor-
tant source of information. The most popular way to retrieve information is to
use search engines, such as Google, Yahoo, etc. However, most of them support
only simple keywords queries. If queries are too complicated, the search engines
become less helpful. For example, a user may want to know “where to buy a
book about database lower than 10$ in New York”. Traditional search engines
do not support such a complex query because their data are not structured.
Vertical Search Engines (VSEs), which usually work on specific domains, are de-
signed to solve the problem. Their data are structured instances (objects) such
as products, papers, persons, organizations, and so on. Many technologies (i.e.,
instance identification [14], automatic generated wrappers [11], manual wrappers
rules [1], etc.) have made it possible to extract structured instances from web
pages. Typical vertical search engines include CiteSeer1, LawCrawler2, Google
Book3, Libra [12], etc.. Users can retrieve instances by structured query lan-
guages or well-designed interfaces.
1 http://citeseer.ist.psu.edu/
2 http://web.findlaw.com
3 http://books.google.com/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 223–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 H. Guo, J. Zhang, and L. Zhou

As in relational databases, we can discover helpful facts in the vertical search
engines by employing data mining techniques. Previous work [12] has discov-
ered meaningful facts in vertical search engines by analyzing the links between
instances. There are many mining algorithms to process the instances. In this
paper we mainly discuss instance ranking techniques.

The most popular web page ranking algorithms are PageRank [2] and HITS
[7], which are developed by Google and IBM respectively. Similar to web pages,
structured instances are also linked to each other. The idea of PageRank and
HITS are followed by ObjectRank [2], XRank [8] and PopRank [12]. ObjectRank
uses heuristic authority transfer rates to rank objects according to given key-
words. XRank proposes an unified link analysis framework called “link fusion”
to consider both the inter- and intra- type link structure among multi-type inter-
related objects. PopRank tries to learn the transfer rate according to the partial
ranking given by the domain experts. However, in many vertical search engines
such as the blog search engine, news search engine and product search engine,
it is quite hard, if possible, to get partial ranking lists from experts.

An important problem of the current instance ranking techniques is that they
do not consider the category of instances. Practically users of different interests
usually care only the ranking list in their own communities. Important instances
in one topic could be meaningless in another. For instances, both IEEE Trans
Software Engineering and IEEE Trans Database are top journals on computer
science. For those software engineering researchers, the former are more impor-
tant. However, database researchers prefer the latter. The problem goes worse
when there are many categories in the VSE, such as the news search engine. An
important news for some users may be meaningless for others. Therefore we need
an adaptive ranking algorithm to satisfied the needs of different users. In this
paper we propose an instance ranking algorithm named ZRank to rank instances
by their importances in specific categories. ZRank has following features:

– The ranks of instances are decided by their link structure. Similar to PageR-
ank, if a instance is linked by many important instances, its rank is high.

– Instances of different concepts (classes) have different transfer rates. The
transfer rates are heuristic priors.

– The ranks of instances vary with categories. In a given category c, if instance
i is associated with c, i’s neighbors will receive more “authority” from i in
each iteration. That means i’s neighbors are probably important instances
in c.

We have developed a vertical search engine demo, called CPaper, to test our
ideas. CPaper is a scientific paper search engine on computer science. Users can
retrieve three types of instances: papers, authors and conference(journals). All
the instances are automatically categorized before being ranked.

By employing the instance classifying and ranking algorithms, we have dis-
covered helpful facts with CPaper. For instance, users can find how the interests
of a conference i.e., VLDB or a researcher move in the last 20 years. CPaper
also shows the most important papers and journals in each topic. These features
make our systems more helpful than traditional VSEs like CiteSeer.

Classifying and Ranking 225

The remainder of the paper is organized as follows. Section 2 introduces the
framework of CPaper. Our classification method is presented in Section 3. Sec-
tion 4 introduces ZRank. Section 5 presents the classifying and ranking results
in CPaper. Finally the paper is concluded in Section 6.

2 CPaper

Fig. 1 illustrates the framework of CPaper. Most instances are extracted from
pages of DBLP4. Concept Schema in Fig 1 refers to the concepts and their
relations in the given domain. It is used in the Instance Collection and Instances
Ranking components. Fig 2 shows the schema used in CPaper. Each instance is
directly linked to others when they are extracted. For example, pages in DBLP
list researchers and their publications. We collect these pages, generate instances
and link them according to their relations. Each instance act as a node in a huge
graph. We use Berkeley Database System5 to store the graph. Users access the
search engine repository through well-designed interfaces. In CPaper users can
choose to submit complicated queries other than a set of keywords. Details of
the extracting process are introduced in [4].

The dashed lines are the instance mining components. They can help users get
interesting facts. These facts include the research topics of a researcher, the ranks
of papers, researchers, and journals. The task of the Instances Classification
component is to automatically classify all the instances stored in repository.

Fig. 1. CPaper Framework

4 http://www.informatik.uni-trier.de/ ley/db/
5 http://www.oracle.com/database/berkeley-db.html

226 H. Guo, J. Zhang, and L. Zhou

Paper

Conference\
Journal

Researcher

Year

Page

Title

Abstract

Name

Holder

Name

author

pub_by

pub

Email

refer

referred_
by

write

Fig. 2. Concept Schema in CPaper

Then the Instance Ranking component rank the instances according to their
classification results. Users can rank instances by categories.

3 Instances Classification

The classification process is shown in Fig 3. It is not possible to classify the
instances altogether. In CPaper, we classify the paper instances first. Researchers
are classified according to the papers they have written. Similarly, journals are
classified according to the papers they have published.

Classify
Papers

Find the
Unlabeled
Neighbors

Extend the
Label

All
Labeled?

Y

N

Fig. 3. Classification Process

Substantial efforts have been made in the literature for plain text classifica-
tion [13]. Some of the well-established automatic document categorization tech-
niques are NaiveBayes [10], SVM [6], and so on. Some vertical search engines, like
CiteSeer, have employed automatic classifying techniques. Traditional text clas-
sification models can be used in paper classification. However, many instances
have short title (headline) area. The importances of these titles have been well ex-
ploited in IR [5,9]. Therefore title words should play more important roles than
other words in classification. In our previous work [3], we have improved the
performance of the classifiers by putting higher weight on the important words.
Before classifying, we multiply the weight of title words by a prior parameter
θ. We set higher θ in papers because their titles are long and well-written. For

Classifying and Ranking 227

informal documents like newsgroup articles, θ is relatively lower. Normally it is
set to 1.5. We choose MNB [10] classifier to classify papers.

When papers are classified, we start to classify other instances. The classifi-
cation predication of an author is the average of the predications of his papers.
And so are the journals. For example, suppose we have two categories C1 and C2,
Tom has published two papers, namely paper P1 and paper P2. p(C1|P1) = 0.1,
p(C2|P1) = 0.9. p(C1|P2) = 0.8, p(C2|P2) = 0.2. Then Tom is classified into C2.
And p(C1|Tom) = 0.45, p(C2|Tom) = 0.55.

4 Instances Ranking

4.1 PageRank

Our instance ranking method follows the idea of PageRank, which is used by
Google. The idea is: if a page is important, it is linked by other important pages.
Suppose Rk+1 is the rank matrix after k + 1 iteration, there is 6:

Rk+1 = d ∗ T ×Rk (1)

where T denotes the transfer matrix of web pages, which means how much
“authority” in a page is “transferred” to other pages in each iteration. If the out
links of page i is denoted as out(i), there is:

T [i, j] =
{

0 : 0 there is no hyperlink from page i to page j;
1/out(i) : 0 otherwise

d is the damping factor. It is usually set to 0.85.
Similar to webpages, the instances of different concepts are linked. Important

instances must be refered to other important instances. We take the CPaper as
an example. According to Fig. 2, there is:

– Good papers usually refer to good papers.
– Good journals usually publish good papers.
– Good papers are usually written by good authors.

Based on this observation, we can explore the use of PageRank on instances.

4.2 ZRank

Our instance ranking algorithm is called ZRank. The difference between ZRank
and PageRank lies in the transfer matrix, denoted as T̃c(I ∗ I). Here I is the
number of instances in the domain and c indicates a category. T̃c(I ∗ I) has
following features:

6 We use a simplified version of PageRank since the users’ activities are not considered
in this paper.

228 H. Guo, J. Zhang, and L. Zhou

– In the traditional PageRank algorithm, all pages are of the same class. But
in vertical search engines, instances are of different concepts. The relations
between different concepts are usually weighted. For example, paper A is not
written by well-know authors but it is referred by good papers. Paper B is
written by a famous author but it is only referred by ordinary papers. In our
system A is ranked higher than B. In other words T̃ [i, j] is affected by the
relations between concepts.

– As mentioned in Section 1, ZRank considers the label of instances. If a
paper is highly associated with a category, the ranks of its authors should be
increased in the category. Therefore it should “transfer” more “authority”
to its authors than other papers. On the contrary, a paper not related to
this category “transfers” very little “authority” to its authors, even if it is
an important paper. The transfer matrixes in different categories should be
different. As a result, an important instance in a category may be nothing
in another.

Following this idea, our transfer matrix in category c is calculated as:

T̃c = L • (M × Ṫ ×MT) •Bc (2)

here • is a matrix operation that M1 •M2[i, j] = M1[i, j] ∗M2[i, j].
L(I ∗ I) is the linkage matrix of instances. If the out links of instance i is

denoted as out(i), there is,

L[i, j] =
{

0 : there is no links from instance i to instance j;
1/out(i) : otherwise

Suppose C is the number of concepts in this domain, M(I ∗ C) is the mem-
bership matrix that,

M [i, j] =
{

1 : instance i is the instance of concept j
0 : otherwise

Ṫ (C ∗ C) is the transfer matrix of concepts. Ṫ is a decided by experts in this
domain. We take CPaper as an example. ṪCPaper is shown in Fig. 4.

Bc(I ∗ I) shows the relationship between instances and category c.

Bc[i, j] =

⎧
⎨

⎩

3 : p(c|i) > 0.3
10 ∗ p(c|i)) : 0.3 ≥ p(c|i) ≥ 0.1

1 : otherwise

Here p(c|i) is the classification predication calculated by the Instance Classifica-
tion component. It represents the possibility that instance i is associated with
category c. The ranking algorithm is shown in Fig 5. When |Rk+1−Rk| < ε, the
ranking algorithm is finished. Here ε is the threshold. In CPaper the algorithm
finishes in at most 20 iterations for each category. In ZRank, the dumping factor
d is set to 0.45.

Classifying and Ranking 229

Paper

Author
Conference/

Journal

Paper

0.20.2

0.3

0.3

Refer 0.7

Referred_by 0

Fig. 4. ṪCPaper

Input: Ṫ , L, M, ε, Bc,d
Output: Rank Matrix Rc

(a) Initialization
1 R0 = {1, 1, . . . , 1}
2 T̃c = L • (M × Ṫ × M̄) • Bc

(b) Iteration
3 do
4 Rk+1 = d ∗ T̃ × Rk

5 while (|Rk+1 − Rk| > ε and k < 20)

Fig. 5. Pseudo Codes for ZRank

5 Application

The classifying and ranking algorithm are used in CPaper. There are 338,190
papers, 201,843 researchers and 2,885 conferences/journals in CPaper. They are
classified into 14 categories and 98 subcategories. We take CPaper as an example
to show the impact of the classifying and ranking algorithms.

5.1 Impact of Classifying

Traditional classifiers can hardly classify instances like conferences and authors.
Our system presents such instances as mixtures of different topics.

Analyse on A Well-known Conference. Fig 6 shows what kind of papers
are accepted by VLDB in 1999. The information is important for researchers
who want to submit papers to that conference.

230 H. Guo, J. Zhang, and L. Zhou

Analyse on A Researcher. Fig 7 shows Jiawei Han’s7 interests on DW.

Fig. 6. Papers Published in VLDB 1999

Fig. 7. Papers on Data Warehousing Published by Jiawei Han

Table 1. Top-10 Papers on Database

Paper Title

1 A Relational Model of Data for Large Shared Data Banks.
2 System R : Relational Approach to Database Management.
3 The Notions of Consistency and Predicate Locks in a Database System.
4 The Entity-Relationship Model - Toward a Unified View of Data.
5 SEQUEL : A Structured English Query Language.
6 Access Path Selection in a Relational Database Management System.
7 Database Abstractions : Aggregation and Generalization.
8 The Functional Data Model and the Data Language DAPLEX.
9 Implementation of Integrity Constraints and Views by Query Modification.
10 On the Semantics of the Relational Data Model.

7 http://www.cs.uiuc.edu/ hanj

Classifying and Ranking 231

5.2 Impact of Ranking

Table 1 shows the top papers on database. Table 2 shows the ranking list of
journals in software engineering and database. The ranks of most journals are
different in the two list. IEEE TRANS SOFTWARE ENG is the top journal in
software engineering while ACM TRANS DATABASE SYST is the top journal
in database.

Table 2. Top-10 Journals on Database and Software Engineering

Software Engineering* Database

1 IEEE TRANS SOFTWARE ENG ACM TRANS DATABASE SYST
2 AUTOMATED SE COMMUN ACM
3 J ACM IEEE TRANS KNOWL DATA ENG
4 ACM COMPUT SURV IEEE TRANS SOFTWARE ENG
5 COMMUN ACM SIGMOD RECORD
6 J SOFTWARE ENG KNOWL ENG J ACM
7 INF SYST INF SYST
8 IEEE TRANS KNOWL DATA ENG ACM COMPUT SURV
9 SIGMOD RECORD IEEE DATA ENG BULL
10 IEEE DATA ENG BULL INF PROCESS LETT

* VLDB and J. VLDB are not distinguished in CPaper, therefore we do not take J.
VLDB into consideration.

6 Conclusion

Vertical Search Engines become a hot topic recently. Traditional instance rank-
ing algorithms does not consider the categories of instances. To overcome this
problem we propose ZRank, a structured instance ranking algorithm, to rank the
classified instances. We develop a paper search engine–CPaper to test the algo-
rithm. By employing instance classifying and ranking algorithms, we discovered
some helpful facts to users of different communities.

Besides classifying and ranking, we are trying to employ more mining algo-
rithms like association rule mining and social network mining on VSEs.

Acknowledgement

this work is supported by National Nature Science Foundation of China under
Grant No.60520130299.

References

1. Arocena, G.O., Mendelzon, A.O.: Weboql: Restructuring documents, databases,
and webs. In: Proc of ICDE (1998)

2. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-based key-
word search in databases. In: Proc. of VLDB (2004)

232 H. Guo, J. Zhang, and L. Zhou

3. Guo, H., Zhou, L.: Segmented document classification: Problem and solution. In:
Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 41–48.
Springer, Heidelberg (2006)

4. Guo, Q., et al.: A highly adaptable web extractor based on graph data model. In:
Proc. of 6th Asia Pacific Web Conference (April 2004)

5. Jin, R., Hauptmann, A.G., Zhai, C.X.: Title language model for information re-
trieval. In: Proc. of SIGIR (2002)

6. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Proc. of 10th European Conference on Machine Learn-
ing, Chemnitz (1998)

7. kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the
ACM (1999)

8. Botev, C., Guo, L., Shao, F., Shanmugasundaram, J.: Xrank: Ranked keyword
search over xml documents. In: Proc. of SIGMOD (2003)

9. Lam-Adesina, A.M., Jones, G.J.F.: Applying summarization techniques for term
selection in relevance feedback. In: Proc. of 24th SIGIR (2001)

10. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text
classification. In: Proc. of AAAI workshop on Learning for Text Categorization,
pp. 41–48. American Association for AI (July 1998)

11. Meng, X., Hu, D., Li, C.: Sg-wrap: A schema-guided wrapper generator. In: Proc
of ICDE (2002)

12. Nie, Z., Zhang, Y., Wen, J., Ma, W.: Object-level ranking: bringing order to web
objects. In: Proc. of WWW, pp. 567–574. ACM Press, New York (2005)

13. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34 (2002)

14. Tejada, S., Knoblock, C., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: Proc of KDD (2002)

Progressive High-Dimensional Similarity Join

Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee

School of Computing
National University of Singapore

{tokwh,steph,leeml}@comp.nus.edu.sg

Abstract. The Rate-Based Progressive Join (RPJ) is a non-blocking
relational equijoin algorithm. It is an equijoin that can deliver results
progressively. In this paper, we first present a naive extension, called
neRPJ, to the progressive computation of the similarity join of high-
dimensional data. We argue that this naive extension is not suitable.
We therefore propose an adequate solution in the form of a Result-Rate
Progressive Join (RRPJ) for high-dimensional distance similarity joins.
Using both synthetic and real-life datasets, we empirically show that
RRPJ is effective and efficient, and outperforms the naive extension.

1 Introduction

Conventional distance similarity join algorithms batch process datasets that re-
side on local storage. The algorithms are blocking. They are unsuitable for pro-
gressively computing the similarity join of streams of high-dimensional data as
they cannot produce results progressively, i.e. as soon as data is available.

Key issues in the design of a progressive algorithm are the management of
main memory and the flushing policy. Indeed while main memory is limited,
data is potentially incoming in very large quantities. One must make sure to
keep in memory data most likely to participate in the production of results. An
effective and efficient solution for relational equijoins, the Rate-based Progressive
Join (RPJ), was proposed in [1]. We proposed a more efficient algorithm in [2].
Our algorithm is a Result Rate-based Progressive relational equijoin (RRPJ). It
uses statistics on production of results to determine the partitions to be flushed
to disk whenever memory is full. One of the advantages of using a result rate-
based method is that it is independent of the model of data. In [3], we showed
that the principle could be applied to the processing of spatial joins. In this
paper, we consider high-dimensional distance similarity joins. We propose an
effective and efficient algorithm for the progressive computation of the distance
similarity join of streaming high-dimensional data, using limited main memory.

The main contributions of the paper are:

– a novel progressive high-dimensional similarity join algorithm. The algorithm
uses a result-rate-based flushing strategy. It is an extension of our work on
progressive relational equijoin [2] for relational data.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 233–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 W.H. Tok, S. Bressan, and M.-L. Lee

– an extensive performance analysis. We compare our proposed algorithm with
a naive extension of RPJ [1](that we call neRPJ). We make use of both
synthetic and real-life datasets.

The rest of the paper is organized as follows: In section 2, we discuss re-
lated work. In section 3, we present the framework for progressive similarity join
on high dimensional data, and propose two flushing strategies. We conduct an
extensive performance analysis in section 4. We conclude in section 5.

2 Related Work

We present conventional distance similarity join algorithms for high-dimensional
data in subsection 2.1. We present generic progressive join algorithms and simi-
larity join algorithms and discuss their limitations in subsection 2.2.

2.1 Non-progressive Distance Similarity Joins for High-Dimensional
Data

Many efficient distance similarity joins [4,5,6,7,8] have been proposed for high-
dimensional data. To facilitate efficient join processing, similarity join algorithms
often relies on spatial indices. R-trees (and variants) [9], X-tree [10] or the ε-kdb
tree [4] are commonly used. The Multidimensional Spatial Join (MSJ) [5,11] sorts
the data based on their Hilbert values, and uses a multi-way merge to obtain the
result. The Epsilon Grid Order (EGO) [7] orders the data objects based on the
position of the grid-cells. The main limitation of conventional distance similarity
join algorithms is that they are designed mainly for datasets that reside locally.
Hence, they are not able to deliver results progressively.

2.2 Progressive Joins and Progressive Similarity Joins

Most progressive joins are relational equijoin of the XJoin [12] family. There is
currently no known efficient algorithm of the XJoin family for the progressive
computation of similarity joins of high-dimensional data. One of the most re-
cent proposal is the Rate-based progressive Join (RPJ) presented in [1]. It is a
hash-based relational equijoin for data streams. The authors recognize the need
for an effective flushing strategy for the data that resides in main memory. They
propose a probabilistic model of the data distribution of the data streams. Parti-
tions residing in main memory are flushed based on the model. In [2], we discuss
several limitations of RPJ. We also observe that the result output statistics can
be used directly and propose the Result Rate-based Progressive Join (RRPJ)
for relational data.

The authors of [1] remark that extending RPJ to the processing of other joins
than relational equijoins, and in particular similarity joins of high-dimensional
data is a challenge. Indeed, the probability model for other than relational data
is complex and hard to determine analytically.

Progressive High-Dimensional Similarity Join 235

In [13], a generic sort-merge framework for handling progressive joins, called
the Progressive Merge Join (PMJ) was proposed. Though PMJ can be applied for
various model of data, it is not able to deliver initial results quickly. In [14], the
Hash-Merge Join (HMJ) was proposed. HMJ relies on in-memory hash partitions
and a probe-insert paradigm similar to XJoin in order to deliver initial results
quickly. Similar to PMJ, HMJ uses a sort-merge paradigm for joining disk-based
data.

Since the Result Rate-based Progressive Join (RRPJ) that we have proposed
for relational data relies on output statistics, it can be effectively extended and
adapted to other than relational data. We propose such an extension in this
paper for distance similarity join for high-dimensional data (which is symmetric
in nature).

3 Progressive Similarity Join on High-Dimensional Data

In this section, we discuss how we can design progressive similarity join algo-
rithms for high-dimensional data. Our goal is to deliver initial results quickly
and subsequent results with a high throughput (i.e. progressively). We present
the problem definition in subsection 3.1. We present a framework for progressive
similarity join in Section 3.2. In subsection 3.3, we propose two methods for
determining the high-dimensional data to be flushed to disk whenever memory
is full, namely: a naive extension of RPJ (neRPJ) and the novel Result-Rate
Based Progressive Join (RRPJ).

3.1 Problem Definition

We consider two d-dimensional bounded data streams R and S. We refer to data
from R and S as Ri and Sj respectively (0 ≤ i ≤ |R|, 0 ≤ j ≤ |S|), where |R|
and |S| are the total number of data objects in R and S respectively. Each data
point consists of d values. Given a data point Ri, the values are (ri1, ri2, . . . ,
rid), where rix denotes the x-th value (1 ≤ x ≤ d). Similarly, for a data point
Sj , the values are (sj1, sj2, . . . , sjd).

The results of a similarity join between R and S, SimJoin(R,S), consists
of all object pairs (Ri, Sj), where Dd(Ri, Sj) ≤ ε, Here, we consider with-
out loss of generality Dd to be the Euclidean distance, where Dd(Ri, Sj) =

(
d∑

x=1

∣
∣(rix − sjx)2

∣
∣)

1
2 . ε is a user-defined threshold, which determines the maxi-

mum dis-similarity between Ri and Sj . Notice that the similarity join is sym-
metrical.

Main memory is limited. Whenever it is full, some of the in-memory data
needs to be flushed to disk. Our objective is to identify the data less likely to
produce results and to sacrifice them in order to maximize throughput. We first
look for a partitioning of main memory that helps in the production of results
as well as in the flushing. An effective partitioning of in-memory tuples, allows
limiting the search to matching partitions when an incoming tuple is inserted into

236 W.H. Tok, S. Bressan, and M.-L. Lee

a given partition. It also allows flushing entire partitions rather than individual
tuples. In the case of high-dimensional similarity joins, a meaningful partition is
a d-dimensional grid. Partitions are cells of the grid.

3.2 Grid-Based Similarity Join

We use the probe-and-insert approach as described in [15] and [2].

Probing (Algorithm 1). Whenever a new tuple, td, arrives (from one of the
data streams), it is used to probe the in-memory tuples from the other data
stream. In order to efficiently identify the tuples to be probed, a d-dimensional
grid is used to partition the data space. The scanning for potential result tuples
is restricted to the cell in which td falls into and to its neighboring grid cells
(those within ε distance of the border of the grid cell).

In Algorithm 1, Line 1 finds the grid cell in which td falls into; whereas Line
2 identifies the cells that are within the ε-distance of the grid cell, g. Once the
cells are identified, Line 3-6 then checks whether each tuple, t, in the grid can
be joined by checking the Euclidean distance between td and t.

We keep track of the number of results produced by each grid cell using a
counter, numResults (Line 8). Once the probing of the grid cell c is completed,
we update the statistics for the grid cell (Line 9).

Algorithm 1: Probing
Data : td - Newly Arrived d-dimension tuple used to probe the other grid

Result : R, Results of the Similarity Join

begin

1 g = findGridCell(td) ;
2 n = findGridCellInNeighbourhood(g,ε) ;
3 for (GridCell c in (g ∪ n)) do

4 numResults = 0 ;
5 for (Tuple t in c) do

6 if (Dd(td, t) ≤ ε) then

7 R = R ∪ (td,t) ;
8 numResults++ ;

9 Update statistics for c ;

10 Return R;

end

Insertion and Flushing (Algorithm 2). We then identify the grid cell in
which the new tuple should be inserted (Line 1). If there is space, td is inserted
into its own grid. If memory is full, we invoke FlushDataToDisk() which flushes
data to disk to make space for newly arrived tuples. We then insert td into the
grid cell g (Line 4).

Progressive High-Dimensional Similarity Join 237

Algorithm 2: Insertion and Flushing
Data : td - Newly Arrived d-Dimension tuple to be inserted

begin

1 g = findGridCell(td) ;
2 if (memory is full()) then

3 FlushDataToDisk();

4 Insert td into g ;

end

For each ith cell of the grid (with 1 ≤ i ≤ n, where n is the total number of
grid cells), we maintain a count. The cells to be flushed are determined based
on this value. The two flushing strategies that we propose differ in the way the
value is computed (described in Section 3.3) and the partitions to be flushed are
selected. Partitions are flushed until NumFlush (user-defined) tuples have been
flushed.

3.3 Flushing Strategies

Naive Extension to RPJ (neRPJ). We present a simple extension to RPJ,
called Naive Extension to RPJ (neRPJ) for high-dimensional data. The neRPJ
algorithms maintains the neRPJ value, that is the number of data in a cell
divided by the total number of data. The opposite cell (that is the matching cell
in the other streams partition) to the grid cell with the smallest neRPJ value
is flushed.

In the relational case, the mapping of a cell in one stream to the opposite
stream is 1-to-1. When we probe for result tuples, we probe only a single cell
from the opposite data stream. However, when dealing with high-dimensional
data, besides probing the corresponding cell from the opposite data stream, we
need to probe the neighboring cells (those within ε distance) as well. When
neRPJ flushes an opposite cell; it might have inadvertently flushed a cell that
could produce results at a later time.

Result Rate-based Flushing (RRPJ). The Thi value is an estimate of the
productivity of the i-th cell (with 1 ≤ i ≤ n, where n is the total number of cells
used to store the data). In the equation below, Ri is the total number of results
produced by the i-th cell and Ni is the total number of tuples in the i-th cell.

Thi = Ri
Ni

(1)

The RRPJ algorithm maintains the Thi value (Equation 1). In RRPJ, the
grid cells with the smallest values are flushed.

238 W.H. Tok, S. Bressan, and M.-L. Lee

4 Performance Analysis

We implemented all the algorithms in C++, and conduct the experiments on a
Pentium 4 2.4 Ghz PC (1GB RAM). Unless otherwise stated, the parameters
presented in Table 1 are used for the experiments. Similar to [2], we refer to
the proposed result rate-based method for high-dimensional data as the Result-
Rated Based Progressive Join (RRPJ). In addition, we also included a Random
method as a baseline. Whenever memory is full, the Random method randomly
selects a grid cell to be flushed to disk.

Table 1. Experiment Parameters and Values

Parameter Values

Disk Page Size 4096 bytes

Number of cells Per Dimension 4

Memory Size, M 1000 pages

Number of points per disk page 85

Number of MBRs flushed to disk 10% of M

Dataset Size (for 2 streams) 500K data points

Similarity Distance Join Threshold, ε 0.1, 0.2, 0.3

In this section, we compare the performance of the algorithms (RRPJ, neRPJ
and Random). We measure the number of result tuples generated (y-axis) vs
percentage of data that have arrived (x-axis). In all experiments, we assume
that there are two finite d-dimensional datasets. Each dataset is characterized
by the data distribution and the order of arrival of the data. In Section 4.1, we
use a uniform and skewed datasets. For the skewed dataset, we also consider
various correlations between the data distributions - Harmony and Reverse [1].
In addition, we compare the performance of the algorithms in two extreme cases.
In the first case (Section 4.2), we use a ‘checkered’ dataset. In the second case
(Section 4.3), we consider the case where the data in some of the grid cells are
non-uniformly distributed. In Section 4.4, we validate the effectiveness of the
proposed algorithm for real-life data using the COREL [16] dataset.

4.1 Uniform and Skewed Dataset

The goal of these experiments is to compare the performance of the algorithms
using uniform and skewed datasets. In addition, we also vary the order of arrival
of the data. When the data from the datasets are uniformly distributed, each
tuple is equally probable to contribute to a result. Hence, all flushing strategies
are equally efficient and as good as random. This is illustrated in figure 1.

In the next experiment, we consider skewed dataset. We simulate clustered
data by dividing the space into a d-dimensional grid, and by varying the cardinal-
ity of the grid cells based on a Zipfian distribution. We set the skewed factor for
the Zipfian distribution, σ to be 1.0. Thus, some grid cells have more data than

Progressive High-Dimensional Similarity Join 239

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) 3D, ε = 0.1 (b) 5D , ε = 0.1 (c) 7D , ε = 0.1

Fig. 1. Varying Dimension: Uniform Dataset

others. In addition, we also investigated the impact of the correlation between
the two data streams on the datasets (we use two schemes used in [1] called
HARMONY and REVERSE). In the HARMONY scheme, corresponding clus-
ters on each stream have the same density of data. In the REVERSE dataset,
corresponding clusters have reverse densities (according to the grid numbering).
In addition, we use a third scheme in which data is reverse and arrive in a random
order.

RRPJ outperforms the other methods in all cases. It is more the case with a
REVERSE randomized dataset (figure 4a-c) than with a REVERSE figure (3a-
c), than again with a HARMONY dataset (figure 2a-c). In other words, RRPJ is
capable of adapting to the irregularities of the datasets distribution and arrival.

4.2 Checkered Data

We now consider the extreme case in which data is generated by alternating the
cells in which the data falls into on each stream. In one dataset, only the even
cells contain data; and in the other dataset, only the odd cells contain data.
Thus, the data in the two data streams are somehow ‘disjoint’. We refer to the
dataset as the checkered dataset.

From figure 5, we can see that RRPJ outperforms neRPJ. This is because
whenever memory is full, neRPJ first determines the cells with the lowest neRPJ
values and flushes the cells in the other data stream. However, this might not
be the optimal decision, since the cell that is flushed could be a cell that could
contribute to a large number of results. Recall that in a high-dimensional sim-
ilarity join, we do not just scan the corresponding cell, but also its immediate
neighborhood. Since RRPJ determines the results for each cell, and flushes cells
with the lowest Thi values (and not the cell from the other data stream), it is
able to differentiate between cells that contribute to large number of results from
cells that do not.

4.3 Non-uniform Data Within Cells

The worst-case scenario for RPJ is when the local uniformity assumption for
cells does not hold. We construct such a data set by having cells where the
majority of the data in one cell do not entirely ‘join’ with the data in the other

240 W.H. Tok, S. Bressan, and M.-L. Lee

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) 3D, ε = 0.1 (b) 5D , ε = 0.1 (c) 7D , ε = 0.1

Fig. 2. Varying Dimension: Skewed Dataset - Harmony

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) 3D, ε = 0.1 (b) 5D , ε = 0.1 (c) 7D , ε = 0.1

Fig. 3. Varying Dimension: Skewed Dataset - Reverse

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60 70 80 90 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) 3D, ε = 0.1 (b) 5D , ε = 0.1 (c) 7D , ε = 0.1

Fig. 4. Varying Dimension: Skewed Dataset - Reverse (Randomize arrival)

cell. We refer to this as non-uniformity within cells. We restrict the range of
values for some of the dimensions, which we refer to as non-uniform dimensions.
For each non-uniform dimension, we limit the random values generated to be
in the range [0,0.5] for one dataset, and [0.6,1.0] for the corresponding data
set. Given a d-dimensional dataset, we set d/2 of the dimensions to be non-
uniform dimensions, and the remaining to be uniform dimensions. The results
are presented in figure 6, where we observed that RRPJ performs much better
than neRPJ. This is because neRPJ relies on a local uniformity assumption for
the data within cells, which does not entirely hold in this worst-case scenario. In
contrast, RRPJ do not suffer from this problem because it tracks the statistics
on the result output of cells. In figure 6(c), we make use of ε = 0.3 in order
to produce readable figure, but verified that the result for various ε values are
consistent.

Progressive High-Dimensional Similarity Join 241

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) 3D, ε = 0.2 (b) 5D , ε = 0.2 (c) 7D , ε = 0.2

Fig. 5. Varying Dimension: Checkered Dataset

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) 3D, ε = 0.1 (b) 5D , ε = 0.1 (c) 7D , ε = 0.3

Fig. 6. Varying Dimension: Non-Uniform Data Within Cells

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 20 40 60 80 100

R

es
ul

ts

% Data Arrived

RRPJ
neRPJ

Random

(a) ε = 0.05 (b) ε = 0.1 (c) ε = 0.2

Fig. 7. Varying ε: COREL Dataset, 9D

4.4 Real-Life Datasets

Finally, we validate the effectiveness of the proposed RRPJ algorithm for real-life
datasets. In this experiment, we use the Corel (Color Moment) dataset [16]. The
Corel dataset consists of 9 dimensional features for 68,040 images. We created
two data streams by randomizing the order of the data for both datasets. We
then perform a self-join on the data. From figure 7, we can observe that RRPJ
outperforms neRPJ and Random in all cases for varying ε. This further reinforces
the advantages from using a result-rate based approach.

5 Conclusion

In this paper, we have proposed a novel progressive high-dimensional similarity
join algorithm. The algorithm uses a result-rate based flushing strategy. It is an

242 W.H. Tok, S. Bressan, and M.-L. Lee

extension of our previous work on progressive relational equijoin [2] to the case
of high-dimensional data. We have conducted an extensive performance analysis,
comparing our proposed algorithm with a naive extension of RPJ [1] (a state-
of-the-art progressive relational join), called neRPJ, to high-dimensional data .
Using both synthetic and real-life datasets, we have shown that our proposed
method, RRPJ, outperforms neRPJ by a large margin and is therefore both
effective and efficient. In contrast to conventional similarity join algorithms,
RRPJ can deliver results progressively and maintain a high result throughput.
We are currently exploring the application of the RRPJ flushing strategy to the
design of join algorithms for progressive query processing of multiple XML data
streams.

References

1. Tao, Y., Yiu, M.L., Papadias, D., Hadjieleftheriou, M., Mamoulis, N.: RPJ: Pro-
ducing fast join results on streams through rate-based optimization. In: SIGMOD,
pp. 371–382 (2005)

2. Tok, W.H., Bressan, S., Lee, M.-L.: RRPJ: Result-rate based progressive relational
join. In: DASFAA, pp. 43–54 (2007)

3. Tok, W.H., Bressan, S., Lee, M.-L.: Progressive spatial joins. In: SSDBM, pp. 353–
358 (2006)

4. Shim, K., Srikant, R., Agrawal, R.: High-dimensional similarity joins. In: ICDE,
pp. 301–311 (1997)

5. Koudas, N., Sevcik, K.C.: High dimensional similarity joins: Algorithms and perfor-
mance evaluation. IEEE Transactions on Knowledge and Data Engineering 12(1),
3–18 (2000)

6. Böhm, C., Braunmüller, B., Breunig, M.M., Kriegel, H.-P.: High performance clus-
tering based on the similarity join. In: CIKM, pp. 298–305 (2000)

7. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon grid order: An algo-
rithm for the similarity join on massive high-dimensional data. In: SIGMOD, pp.
379–388 (2001)

8. Kalashnikov, D.V., Prabhakar, S.: Fast similarity join for multi-dimensional data.
Inf. Syst. 32(1), 160–177 (2007)

9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD, pp. 47–57 (1984)

10. Berchtold, S., Keim, D.A., Kriegel, H.-P.: The x-tree: An index structure for high-
dimensional data. In: VLDB, pp. 28–39 (1996)

11. Koudas, N., Sevcik, K.C.: High dimensional similarity joins: Algorithms and per-
formance evaluation. In: ICDE, pp. 466–475 (1998)

12. Urhan, T., Franklin, M.J.: XJoin: Getting fast answers from slow and bursty net-
works. Technical Report CS-TR-3994, University of Maryland (1999)

13. Dittrich, J.-P., Seeger, B., Taylor, D.S., Widmayer, P.: Progressive merge join: A
generic and non-blocking sort-based join algorithm. In: VLDB, pp. 299–310 (2002)

14. Mokbel, M.F., Lu, M., Aref, W.G.: Hash-merge join: A non-blocking join algorithm
for producing fast and early join results. In: ICDE, pp. 251–263 (2004)

15. Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-
memory environment. In: PDIS, pp. 68–77 (1991)

16. Corel image features dataset (1999), http://kdd.ics.uci.edu/

http://kdd.ics.uci.edu/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 243–253, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Decomposing DAGs into Disjoint Chains

Yangjun Chen

Department of Applied Computer Science
University of Winnipeg

Winnipeg, Manitoba, Canada R3B 2E9
y.chen@uwinnipeg.ca

Abstract. In this paper, we propose an efficient algorithm to decompose a di-
rected acyclic graph (DAG) into chains, which has a lot of applications in com-
puter science and engineering. Especially, it can be used to store transitive clo-
sures of directed graphs in an economical way. For a DAG G with n nodes, our
algorithm needs O(n2 + bn b) time to find a minimized set of disjoint chains,
where b is G’s width, defined to be the largest node subset U of G such that for
every pair of nodes u, v ∈U, there does not exist a path from u to v or from v to
u. Accordingly, the transitive closure of G can be stored in O(bn) space, and the
reachability can be checked in O(logb) time. The method can also be extended
to handle cyclic directed graphs.

1 Introduction

Let G be a DAG. A chain cover of G is a set S of disjoint chains such that it covers all
the nodes of G, and for any two nodes a and b on a chain p∈ S, if a is above b then
there is a path from a to b in G. In this paper, we discuss an efficient algorithm to find
a minimized S for G.

As an application of this problem, consider the transitive closure compression.
Let G(V, E) be a directed graph (digraph for short). Digraph G* = (V, E*) is the re-
flexive, transitive closure of G if (v, u) ∈ E* iff there is a path from v to u in G. (See
Fig. 1(a) and (b) for illustration.) Obviously, if a transitive closure (TC for short) is
physically stored, the checking of the ancestor-descendant relationship (whether a
node is reachable from another node through a path) can be done in a constant time.
However, the materialization of a whole transitive closure is very space-consuming.
Therefore, it is desired to find a way to compress a transitive closure, but without sac-
rificing too much the query time.

The idea of using disjoint chains to compress a transitive closure was first sug-
gested by Jagadish [6], who proposed an O(n3) algorithm to decompose a DAG into a
minimized set of disjoint chains by reducing the problem to a network flow problem.

Once G is decomposed, its transitive closure can be represented as follow.

(1) Number each chain and number each node on a chain.
(2) The jth node on the ith chain will be assigned a pair (i, j) as its index.

244 Y. Chen

In addition, each node v on the ith chain will be associated with a pair sequence
of length k - 1: (1, j1) …(i – 1, ji-1) (i + 1, ji+1) … (k, jk) such that for any index (x, y)
(x ≠ i) if y ≤ jx it is a descendant of v, where k is the number of the disjoint chains. Of
course, any node below v on the ith chain is a descendant of v. In this way, the space
overhead is decreased to O(kn) (see Fig. 1(c) for illustration).

More importantly, it is very convenient to handle such a data structure in relational
databases. We need only to establish a relational schema of the following form:

Node(Node_id, label, label_sequence, ...),

where label and label_sequence are utilized to accommodate the label pair and the la-
bel pair sequence associated with the nodes of G, respectively. Then, to retrieve the
descendants of node v, we issue two queries as below.

Q1: SELECT label Q2: SELECT *
 FROM Node FROM Node
 WHERE Node_id = v WHERE φ(label, label_sequence, y).

Let the label pair obtained by evaluating the first query Q1 be y. Then, by evaluating
the function φ(label, label_sequence, y) in the second query Q2, we will get all those
nodes, whose labels are subsumed by y or whose label sequences contain a label sub-
sumed by y. A label pair (x, y) is said to be subsumed by another pair (x’, y’) if x = x’
and y ≤ y’.

Since each label sequence is sorted according to the first element of each pair in
the sequence, we need only O(log2k) time to check whether a node u is a descendant
of v.

As demonstrated in [13], k is equal to b, the width of G, defined to be the largest
node subset U of G such that for every pair of nodes u, v ∈ U, there does not exist a
path from u to v or from v to u.

(2, 1)
(1, 2)(3, 3)

(2, 2)
(1, 2)(3, 3)

(2, 3)
(1, 2)(3, _)

(2, 4)
(_, _)(_, _)

(1, 1)
(2, 2)(3, 3)

•

•

•

•

• •

a

b

c

d

•

•

•

g

h

i

• f

e

•

•

•

• •

a

b

c

d

•

•

•

g

h

i

• f

e

•

•

•

•

a

b

c

d

•

•

•

g

h

i

•f

e
(1, 2)
(2, _)(3, _)

(3, 1)
(1, 2)(2, _)

(3, 2)
(1, _)(2, 4)

(3, 3)
(_, _)(_, _) (a) (b) (c)

Fig. 1. DAG, transitive closure and graph encoding

Finally, we note that this technique can also be employed for cyclic graphs since
we can collapse each strongly connected component (SCC) to a single node while
maintaining all the reachability information (see 3.3 of [6]).

There are some other efforts to compress transitive closures. The method discussed
in [4] is based on the so-called tree encoding. This method requires O(βe) time to
generate a compressed transitive closure, where β is the number of the leaf nodes of a
spanning tree covering all the nodes of G. β is generally much larger than b. The time

 Decomposing DAGs into Disjoint Chains 245

and space complexities of this method are bounded by O(βn) and O(logβ), respec-
tively. In [12], a quite different method is proposed, using the so-called PQ-Encoding,
by which each node is associated with an interval and a bit-vector that is of the length
equal to the number of slices. A slice is just a subset of the nodes and the size of a
slice is bounded by a constant. So the number of the slices must be on O(n). There-
fore, this method needs O(n2) space in the worst case, not suitable for a database envi-
ronment.

In this paper, we propose a new algorithm for decomposing DAGs into a mini-

mized set of disjoint chains. Its time complexity is bounded by O(n2 + bn b), which
enables us to generate a compressed transitive closure efficiently.

The remainder of the paper is organized as follows. In Section 2, we give some ba-
sic concepts and techniques related to our algorithm. Section 3 is devoted to the de-
scription of our algorithm to decompose a DAG into chains. In Section 4, we prove
the correctness of the algorithm and analyze its computational complexities. Finally, a
short conclusion is set forth in Section 5.

2 Graph Stratification and Bipartite Graphs

Our method for finding a minimized set of chains is based on a DAG stratification
strategy and an algorithm for finding a maximum matching in a bipartite graph.
Therefore, the relevant concepts and techniques should be first reviewed and dis-
cussed.

2.1 Stratification of DAGs

Let G(V, E) be a DAG. We decompose V into subsets V1, V2,..., Vh such that V = V1

∪ V2 ∪ ... ∪ Vh and each node in Vi has its children appearing only in Vi-1, ..., V1 (i = 2,
..., h), where h is the height of G, i.e., the length of the longest path in G. For each
node v in Vi, we say, its level is i, denoted l(v) = i. We also use Cj(v) (j < i) to repre-
sent a set of links with each pointing to one of v’s children, which appears in Vj.
Therefore, for each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., k) such that the set of its
children equals)(

1
vCi ∪ ... ∪)(vC

ki
.

Such a DAG decomposition can be done in O(e) time, by using the following algo-
rithm, in which we use G1/G2 to stand for a graph obtained by deleting the edges of G2
from G1; and G1 ∪ G2 for a graph obtained by adding the edges of G1 and G2 together.
In addition, (v, u) represents an edge from v to u; and d(v) represents v’s outdegree.

Algorithm. graph-stratification(G)
begin
1. V1 := all the nodes with no outgoing edges;
2. for i = 1 to h - 1 do
3. {W := all the nodes that have at least one child in Vi;
4. for each node v in W do
5. {let v1, ..., vk be v’s children appearing in Vi;
6. Ci(v) := {v1, ..., vk};
7. if d(v) > k then remove v from W;};
8. G := G/{(v, v1), ..., (v, vk)};

246 Y. Chen

9. d(v) := d(v) - k;
10. Vi+1 := W;
11. }
end

In the above algorithm, we first determine V1, which contains all those nodes hav-
ing no outgoing edges (see line 1). In the subsequent computation, we determine V2,
..., Vh. In order to determine Vi (i > 1), we will first find all those nodes that have at
least one child in Vi-1 (see line 3), which are stored in a temporary variable W. For
each node v in W, we will then check whether it also has some children not appearing
in Vi-1, which can be done in a constant time as demonstrated below. During the proc-
ess, the graph G is reduced step by step, and so does d(v) for each v (see lines 8 and
9). First, we notice that after the jth iteration of the out-most for-loop, V1 , ..., Vj+1 are
determined. Denote Gj(V, Ej) the changed graph after the jth iteration of the out-most
for-loop. Then, any node v in Gj, except those in V1 ∪ ... ∪ Vj+1, does not have chil-
dren appearing in V1 ∪ ... ∪ Vj. Denote dj(v) the outdegree of v in Gj. Thus, in order to
check whether v in Gi-1 has some children not appearing in Vi, we need only to check
whether di-1(v) is strictly larger than k, the number of the child nodes of v appearing in
Vi (see line 7).

During the process, each edge is accessed only once. So the time complexity of the
algorithm in bounded by O(e).

As an example, consider the graph shown in Fig. 1(a) once again. Applying the
above algorithm to this graph, we will generate a stratification of the nodes as shown
in Fig. 2.

•
•
•
• •

a

b

c

d

•
•
•

•
g

h

i

f

e

C3(a) = {c}

V3:

V2:

V1:

V4:

C1(b) = {i}, C2(b) = {c}

C1(c) = {d, e}

C3(f) = {b}

C3(g) = {d}, C2(g) = {h},

C1(h) = {e, i}

Fig. 2. Illustration for DAG stratification

In Fig. 2, the nodes of the DAG shown in Fig. 1(a) are divided into four levels:
V1 = {d, e, i}, V2 = {c, h}, V3 = {b, g}, and V4 = {a, f}. Associated with each node at
each level is a set of links pointing to its children at different levels below.

2.2 Concepts of Bipartite Graphs

Now we restate two concepts from the graph theory, which will be used in the subse-
quent discussion.

Definition 1. (bipartite graph [2]) An undirected graph G(V, E) is bipartite if the node
set V can be partitioned into two sets T and S in such a way that no two nodes from
the same set are adjacent. We also denote such a graph as G(T, S; E).
For any node v ∈ G, neighbour(v) represents a set containing all the nodes connected
to v.

•

 Decomposing DAGs into Disjoint Chains 247

Definition 2. (matching) Let G(V, E) be a bipartite graph. A subset of edges E’ ⊆ E is
called a matching if no two edges have a common end node. A matching with the
largest possible number of edges is called a maximum matching, denoted as MG.

Let M be a matching of a bipartite graph G(T, S; E). A node v is said to be covered
by M, if some edge of M is incident with v. We will also call an uncovered node free.
A path or cycle is alternating, relative to M, if its edges are alternately in E/M and M.
A path is an augmenting path if it is an alternating path with free origin and terminus.
In addition, we will use freeM(T) and freeM(S) to represent all the free nodes in T and
S, respectively.

Much research on finding a maximum matching in a bipartite graph has be conducted.

The best algorithm for this task is due to Hopcroft and Karp [5] and runs in O(e⋅ n)
time, where n = |V| and e = |E|. The algorithm proposed by Alt, Blum, Melhorn and

Paul [1] needs O(n1.5)/(log ne) time. In the case of large e, the latter is better than

the former.

3 Algorithm Description

The main idea of our algorithm is to construct a series of bipartite graphs for G(V, E)
and then find a maximum matching for each bipartite graph by using Hopcroft-Karp’s
algorithm. All these matchings make up a set of disjoint chains and the size of this set
is minimal.

During the process, some new nodes, called virtual nodes, may be introduced into
Vi (i = 2, ..., h; V = V1 ∪ V2 ∪ ... Vh), to facilitate the computation. However, such vir-
tual nodes will be eventually resolved to obtain the final result.

In the following, we first show how a virtual node is constructed. Then, the algo-
rithm will be described.

We start our discussion with the following specification:

Mi - the found maximum matching of G(Vi+1, Vi; Ci), where Ci = Ci(v1) ∪ ... Ci(vk) and
vl ∈ Vi+1 (l = 1, ..., k).

Mi’ - the found maximum matching of G(Vi+1, Vi’; Ci’), where Vi’ = Vi ∪ {all the vir-
tual nodes added into Vi} ∪ {all the free nodes in Ci-1(v) ∪ ... C1(v) for v ∈ Vi+1}.
Ci’ = Ci ∪ {all the new edges incident to the virtual nodes in Vi’} ∪ {all the
edges incident to the free nodes in Ci-1(v) ∪ ... C1(v) for v ∈ Vi+1}.

In addition, for a graph G, we will use V(G) to represent all its nodes and E(G) all its
edges.

Definition 3. (virtual nodes) Let G(V, E) be a DAG, divided into V1, ..., Vh (i.e., V =
V1 ∪ ... ∪ Vh). The virtual nodes added into Vi (i = 1, ..., h - 1) are the new nodes con-
structed as below.

1. If i = 1, no virtual nodes are created for V1. V1’ := V1; C1’ := C1; M1’ := M1.
2. If i > 1, let Mi-1’ be a maximum matching of G(Vi, Vi-1’; Ci-1’). Let v be a free node

in)'(1'1 −− iM Vfree
i

. Let u1, ..., uk be the covered nodes appearing in Vi-1’ such that each

248 Y. Chen

ug (g = 1, ..., k) shares a covered parent node wg (i.e., (wg, ug) ∈ Mi-1’) with v. Let
vg1, ...,

ggjv be all the parents of ug in Vi. Construct a virtual node v’ (to be added

into Vi), labeled with v[(w1, u1, {v11, ..., 11 jv }), ..., (wk, uk, {vk1, ..., kkjv })]. Let o1, ...,

ol be the nodes in Vi+1, which have at least one child node appearing in {v11, ...,

11 jv } ∪ ... ∪ { vk1, ..., kkjv }. Establish the edges (o1, v’), ..., (ol, v’). Establish a vir-

tual edge from v’ to v (so v is not considered as a free node any more). Denote Vi’ =
Vi ∪ {all the virtual nodes added into Vi} ∪ {all the free nodes in Ci-1(v) ∪ ... C1(v)
for v ∈ Vi+1}. Denote Ci’ = Ci ∪ {all the new edges} ∪ {all the edges incident to
the free nodes in Ci-1(v) ∪ ... C1(v) for v ∈ Vi+1}.

The following example helps for illustration.

Example 1. Let’s have a look at the graph shown in Fig. 1(a) once again. The bipar-
tite graph made up of V2 and V1, G(V2, V1; C1), is shown in Fig. 3(a) and a possible
maximum matching M1 of it is shown in Fig. 3(b).

e’ = e[(c, d, {c}), (h, i, {h})]
•

(a)

•

•c •

•

h

id •e

(b)

•

•c •

•

h

id •e

(c)

•

•b •

•

g

hc

(d)

•
•b •

•

g

hc •e’

V2:

V1: V2’:

V3:

Fig. 3. Bipartite graphs and maximum matchings

Relative to M1, we have a free node e.
For this free node, we will construct a virtual node e’, labeled with e[(c, d, {c}), (h,

i, {h})], as shown in Fig. 3(a). In addition, two edges (b, e’) and (g, e’) are established
according to Definition 3.’

The graph shown in Fig. 3(c) is the second bipartite graph, G(V3, V2’; C2’). Assume
that the maximum matching M2’ found for this bipartite graph is a graph shown Fig.
3(d).

(a) (b) (c)

h’ = h[(g, e’, {b, g})]

•

•

f

•b

•a

h’

•

•

f

•b

•a •

•

•

• •

a

b

c

d

•

•

•

g

e’

e

• f

i

•

•

h’

h

V3’:

V4:

Fig. 4. Illustration for virtual node construction

Relative to M2’, h is a free node, for which a virtual node h’ = h[(g, e’, {b, g] will
be constructed as illustrated in Fig. 4(a). This shows the third bipartite graph, G(V4,
V3’; C3’), which has a unique bipartite graph M3’ shown in Fig. 4(b).

 Decomposing DAGs into Disjoint Chains 249

Now we consider M1 ∪ M2’ ∪ M3’. This is a set of three chains as illustrated in
Fig. 4(c). In order to get the final result, all the virtual nodes appearing in those chains
have to be resolved.

Therefore, we will have a two-phase process. In the first phase, we generate virtual
nodes and chains. In the second phase, we resolve all the virtual nodes.

Algorithm. chain-generation(G’s stratification) (*phase 1*)
input: G’s stratification.
output: a set of chains
begin
1. find M1 of G(V2, V1; C1); M1’ := M1; V1’ := V1; C1’ := C1; i := 2;
2. for i = 2 to h - 1 do
3. { construct virtual nodes for Vi according to Mi-1’;
4. let U be the set of the virtual nodes added into Vi;
5. let W be the newly generated edges incident to the virtual nodes in Vi;
6. Vi’ := Vi ∪ U; Ci’ := Ci ∪ W;
7. find a maximum matching Mi’ of G(Vi+1, Vi’; Ci’);
8. }
end

The algorithm works in two steps: an initial step (line 1) and an iteration step (lines
2 - 8). In the initial step, we determine a M1 of G(V2, V1; C1). In the iteration step, we
repeatedly generate virtual nodes for Vi and then find a Mi’ of G(Vi+1, Vi’; Ci’). The re-
sult is M1 ∪ M2’ ∪ ... ∪ Mh-1’.

After the chains for a DAG are generated, we will resolve all the virtual nodes in-
volved in those chains. To do this, we search each chain top-down. Whenever we
meet a virtual node v’ along an edge (u, v’), we do the following:

1. Let v[(w1, u1, {v11, ..., 11 jv }), ..., (wk, uk, {vk1, ..., kkjv })] be the label of v’.

2. If there exists an i such that u is an ancestor of some node in {vi1, ..., iijv }, do the

following operations:

 (i) Replace (wi, ui) with (wi, v).
 (ii) Remove (u, v’) and v’.
 (iii) Add (u, ui).

See the following example for a better understanding.

Example 2. Searching the chains shown in Fig. 4(c), we will first meet h’, whose la-
bel is h[(g, e’, {b, g})]. Since b is a descendant of a, we will (i) replace (g, e’) with (g,
h), (ii) remove (a, h’) and h’, and (iii) add (a, e’) (see Fig. 5(a) for illustration).

Next we will meet e’, whose label is e[(c, d, {c}), (h, i, {h})]. Since c is a descendant
of a, we will (i) replace (c, d) with (c, e), (ii) remove (a, e’) and e’, and (iii) add (a, d).
The result is shown in Fig. 5(b).

250 Y. Chen

(a)

•

•

•

• •

a

b

c

d

•

•

•

g

e’

e

• f

i

•h

(b)

•

•

•

• •

a

b

c

d

•

•

g

e

• f

i

•h

Fig. 5. Illustration for virtual node resolution

By this example, we should pay attention to the following properties:

(1) When we resolve h’ = h[(g, e’, {b, g})], we will check whether b or g is a descen-
dant of a. For this purpose, we need only to check a’s child nodes since (a, h’) is
an edge on the chain.

(2) After h’ is resolved, e’ = e[(c, d, {c}), (h, i, {h})] becomes connected to a and will
be resolved next. Similarly, we will check whether c or d is a descendant of a. But
we only need to check whether they are b’s child nodes instead of searching G
from a again. It is because e’ appears in h[(g, e’, {b, g})] (showing that e’ is a vir-
tual child node of b) and b is the only child node of a.

In this way, we search the graph G only once for resolving the virtual nodes along a
chain.

The following is the formal description of this process.

Algorithm. virtual-resolution(C) (*Phase 2*)
input: C - a chain set obtained by executing the algorithm chain-generation.
output: a set of chains containing no virtual nodes
begin
1. C’ := Φ;
2. while C not empty do
3. {choose a chain l from C such that the first virtual node on l appears at the highest level

(the tie is resolved arbitrarily);
4. let l’ be the chain containing no virtual node after resolving virtual nodes along l;
5. C’ := C’ ∪ {l’}; C := C/{l’};
6. }
end

4 Correctness and Computational Complexities

In this section, we prove the correctness of the algorithm and analyze its computa-
tional complexities.

Proposition 1. The size of the chains generated by Algorithm chain-generation() is
minimum.

Proof. Let S = {l1, ..., lg} be the set of the chains generated by chain-generation(). For
any chain li and any two nodes v and u on li, if v is above u, there must be a path from v
to u. By the virtual node resolution, this property is not changed. Let S’ = {l1’, ..., lg’}

 Decomposing DAGs into Disjoint Chains 251

be the chain set after the virtual node resolution. Then, for any v’ and u’ on li’, if v’ is
above u’, we have a path from v’ to u’.

Now we show that g is minimum.

First, we notice that the number of the chains produced by the algorithm chain-
generation is equal to

Nh = |V1| + |)(21
VfreeM | + |)(3'2

VfreeM | + ... + |)(')1(hM Vfree
h−

|.

We will prove by induction on h that Nh is minimum.
Initial step. When h = 1, 2, the proof is trivial.
Induction step. Assume that for any DAG of height k, Nk is minimum. Now we con-
sider the case when h = k + 1:

Nk+1 = |V1| + |)(21
VfreeM | + |)(3'2

VfreeM | + ... + |)(1' +kM Vfree
k

|.

If |)(11
VfreeM | = 0, no virtual node will be added into V2. Therefore, V2 = V2’. In this

case,

Nk+1 = |V2| + |)(32
VfreeM | + |)(4'3

VfreeM | + ... + |)(1' +kM Vfree
k

|.

In terms of the induction hypothesis, it is minimum.
If |)(11

VfreeM | > 0, some virtual nodes are added into V2 and the corresponding

edges are added into C2. Removing V1, we get the stratification of another graph G’
(with all the leaf nodes being in V2’), which is of height k and has the same minimal
decomposition as G. For G’, the number of the chains produced by the algorithm
chain-generation is equal to

Nk’ = |V2’| + |)(3'2
VfreeM | + |)(4'3

VfreeM | + ... + |)(1' +kM Vfree
k

|.

Let V2’ = W1, V3 = W2, ..., Vk+1 = Wk. We have

Nk’ = |W1| + |)(21
WfreeL | + |)(3'2

WfreeL | + ... + |)(')1(kL Wfree
k −

|,

where L1 = M2’ and Li’ = M(i+1)’ (i = 2, …, k - 1).
In terms of the induction hypothesis, Nk’ is minimum. So Nk+1 = Nk’ is minimum.

This completes the proof.

According to [6], the number of the chains in a minimized set is equal to b.

In the following, we analyze the computational complexities of the algorithm.

Lemma 1. The time complexity of the algorithm chain-generation is bounded by

O(n2 + bn b).

Proof. The cost for generating a virtual node v’ for node v can be divided into two
parts: cost1 and cost2. cost1 is the time spent on establishing new edges, which is
bounded by O(n2) since for each actual node at most h virtual nodes will be con-
structed and the number of the new edges incident with all these virtual nodes is
bounded by O(n).
cost2 is the time for the edge inheritance from node v. It is bounded by a constant.

The time for finding a maximum matching of G(Vi+1, Vi’; Ci) is bounded by

252 Y. Chen

O(|'||| 1 ii VV ++ ⋅ |Ci’|). (see [5])

Therefore, the total cost of this process is

O(n2) + O(∑
−

=
+ +

1

1
1 |'|||

h

i
ii VV ⋅|Ci’|) ≤ O(n2 + (∑

−

=

1

1

h

i
bb ⋅ |Vi) = O(n2+ bn b).

Lemma 2. The time complexity of the algorithm virtual-resolution is bounded by
O(n2).

Proof. During the process, the virtual nodes will be resolved level by level. At each
level, only O(|Ci’|) edges will be visited. Therefore, the total number of the visited
edges is bounded by

O(∑
−

=

1

1

h

i

|Ci’|)) = O(n2).

From Lemma 1 and Lemma 2, we have the following proposition.

Proposition 2. The time complexity for the whole process to decompose a DAG into

a minimized set of chains is bounded by O(n2 + bn b).

The space complexity of the process is bounded by O(e + bn) since during the execu-
tion of the algorithm chain-generation at most bn new edges are added.

5 Conclusion

In this paper, a new algorithm for finding a chain decomposition of a DAG is pro-
posed, which is useful for compressing transitive closures. The algorithm needs

O(n2+ bn b) time and O(e + bn) space, where n and e are the number of the nodes
and the edges of the DAG, respectively; and b is the DAG’s width. The main idea of
the algorithm is a DAG stratification that generates a series of bipartite graphs. Then,
by using Hopcropt-Karp’s algorithm for finding a maximum matching for each bipar-
tite graph, a set of disjoint chains with virtual nodes involved can be produced in an
efficient way. Finally, by resolving the virtual nodes in the chains, we will get the fi-
nal result.

References

[1] Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality matching
in a bipartite graph in time O(n1.5)/(log ne) Information Processing Letters, 37
(1991), 237-240

[2] Asratian, A.S., Denley, T., Haggkvist, R.: Bipartite Graphs and their Applications, Cam-
bridge University (1998)

[3] Banerjee, J., Kim, W., Kim, S., Garza, J.F.: Clustering a DAG for CAD Databases. IEEE
Trans. on Knowledge and Data Engineering 14(11), 1684–1699 (1988)

[4] Chen, Y., Cooke, D.: On the Transitive Closure Representation and Adjustable Compres-
sion. In: SAC’06, April 23-27, Dijon, France, pp. 450–455 (2006)

 Decomposing DAGs into Disjoint Chains 253

[5] Hopcroft, J.E., Karp, R.M.: An n2.5 algorithm for maximum matching in bipartite graphs.
SIAM J. Comput. 2, 225–231 (1973)

[6] Jagadish, H.V.: A Compression Technique to Materialize Transitive Closure. ACM
Trans. Database Systems 15(4), 558–598 (1990)

[7] Keller, T., Graefe, G., Maier, D.: Efficient Assembly of Complex Objects. In: Proc. ACM
SIGMOD conf. Denver, Colo., pp. 148–157 (1991)

[8] Kuno, H.A., Rundensteiner, E.A.: Incremental Maintenance of Materialized Object-
Oriented Views in MultiView: Strategies and Performance Evaluation. IEEE Transac-
tions on Knowledge and Data Engineering 10(5), 768–792 (1998)

[9] Teuhola, J.: Path Signatures: A Way to Speed up Recursion in Relational Databases.
IEEE Trans. on Knowledge and Data Engineering 8(3), 446–454 (1996)

[10] Wang, H., Meng, X.: On the Sequencing of Tree Structures for XML Indexing. In: Proc.
Conf. Data Engineering, Tokyo, Japan, pp. 372–385 (April 2005)

[11] Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Containment
Queries in Relational Database Management Systems. In: Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, California (2001)

[12] Zibin, Y., Gil, J.: Efficient Subtyping Tests with PQ-Encoding. In: Proc. of the 2001
ACM SIGPLAN conf. on Object-Oriented Programming Systems, Languages and Appli-
cation, Florida, pp. 96–107 (October 14-18, 2001)

[13] Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–
166 (1950)

Evaluating Top-k Skyline Queries over

Relational Databases

Carmen Brando, Marlene Goncalves, and Vanessa González

Universidad Simón Boĺıvar, Departamento de Computación y TI, Apartado 89000
Caracas 1080-A, Venezuela

{carmen,mgoncalves,vgonzalez}@ldc.usb.ve

Abstract. Two main languages have been defined to allow users to ex-
press their preference criteria: Top-k and Skyline. Top-k ranks the top k
tuples in terms of a user-defined score function while Skyline identifies
non-dominated tuples, i.e. such tuples that does not exists a better one in
all user criteria. A third language, Top-k Skyline, integrates them. One
of the drawbacks of relational engines is that they do not understand
the notion of preferences. However, some solutions for Skyline and Top-k
queries have been integrated into relational engines. The solutions im-
plemented outside the core query engine have lost the advantages of true
integration with other basic database query types. To the best of our
knowledge, none of the existing engines supports Top-k Skyline queries.
In this work, we propose two evaluation algorithms for Top-k Skyline
which were implemented in PostgreSQL, and we report initial experi-
mental results that show their properties.

1 Introduction

Currently, many applications, such as decision support or customer information
systems, may take advantage of preference queries in order to find best answers.
Thus, in the case of a decision support system, a possible query could be to
determine the best customers who have made many purchases and have little
or no complaints. In this example, two user criteria have been defined: many
purchases and few complaints. In a SQL query, these criteria may be specified
using an ORDER BY clause where the number of purchases is sorted ascendingly,
and the number of complaints is sorted descendingly. Additionally, the relational
engine must sort the answers and the user must discard all irrelevant data.
Thus, the number of answers to be analyzed by the user might be enormous and
declarative query languages like SQL might not be the most suitable ones to
evaluate user preferences.

Hence, SQL was extended to consider user criteria and for this purpose, two
preference languages were defined: Top-k and Skyline. The first, produces the top
k tuples based on a user-defined score function that induces a total order. The
second, identifies non-dominated tuples based on a multicriteria function defined
by the user. A tuple dominates another one if it is as good or better than the
other in all criteria and better in at least one criterion. The multicriteria function,

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 254–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evaluating Top-k Skyline Queries 255

that seeks to maximize or minimize criteria, induces a partially ordered set and,
in consequence, there are several optimal answers.

Top-k and Skyline are two different ways to solve a preference query. On one
hand, Top-k requires that a score or weight function be defined and this might
not be natural for all users. On the other hand, Skyline retrieves tuples where all
criteria are equally important and a score function cannot be defined. However,
the number of Skyline answers may be smaller than required by the user, who
needs at least k. Given that Skyline does not discriminate its answers in the
same way as Top-k does and that Top-k does not allow to solve queries where a
score function can not be defined a priori, Top-k Skyline was defined as a unified
language to integrate them. Top-k Skyline allows to get exactly the top k from
a partially ordered set stratified into subsets of non-dominated tuples. The idea
is to partition the set into subsets (strata) consisting of non-dominated tuples
and to produce the Top-k of these partitions.

Many solutions have been given for Skyline and Top-k, being the best those
that integrate them into a relational engine because these avoid performance
degradation. Performance improvement is due to the query evaluation being done
inside the database system, instead of retrieving tuple by tuple in a midleware
application and then, computing the Skyline or Top-k. Regarding that these
solutions have demonstrated to be successful, we propose to integrate Top-k
Skyline queries into a relational engine. To the best of our knowledge, none of
the existing engines supports Top-k Skyline queries. In this work, we propose two
evaluation algorithms for Top-k Skyline which were implemented in PostgreSQL,
and we report initial experimental results that show their properties.

Finally, this paper comprises five sections. In Section 2, we introduce a moti-
vating example. In Section 3, we briefly describe Skyline and Top-k as Related
Work. In Section 4, we present the definition for Top-k Skyline. In section 5,
we describe our solutions for Top-k Skyline queries. In Section 6, we report our
initial experimental results. And, finally, in Section 7, the concluding remarks
and future work are pointed out.

2 Motivating Example

Lets consider that a government program runs a scholarship contest. For this
purpose the applicants must submit their resumes, providing information on
their academic and professional performance and also an application form with
data concerning their annual income. The summarized information is organized
in the relational table:

Candidate(name, degree, GPA, publications, income),

where degree refers to the last academic degree achieved, GPA to the corre-
sponding GPA in a scale from 1 to 5, publication represents the number of scien-
tific publications writen, and income relates to the annual income in euros (�).
Table 1 shows some tuples for this relation.

The resulting candidates with best academic merits must include the ones with
the highest degree, the greater number of publications and the best GPA. Each

256 C. Brando, M. Goncalves, and V. González

Table 1. Candidate relation

name degree GPA publications income
Sue Smith MsC 3.6 3 25,000
Hansel Bauer PhD 4.0 8 30,000
Jamal Jones MsC 4.2 2 25,000
Kim Tsu PhD 4.3 3 27,500
Maŕıa Mart́ınez BEng 4.5 1 33,000

of these criteria are equally important, making score functions inappropriate for
this selection. All the applicants that satisfy these criteria should make finalists.
Thus, a candidate can only be chosen to win a scholarship if and only if there is
no other candidate with higher degree, number of publications and GPA. Thus,
the finalists are Hansel Bauer, Kim Tsu and Maŕıa Mart́ınez. Sue Smith and
Jamal Jones, are disregarded given they have lower degrees, GPAs and number
of publications than any other.

Additionally, the government program might have to choose a limited number
of winners, say k = 2. Under these new circumstances, it is necessary to define
a new criterion to discriminate between the finalists in order to only yield k.
Therefore, the awarded students will be the ones that better qualify given a
score function defined by the panel of judges, e.g. a score function defined on
their income to aid the candidates with the lowest ones. From the finalists, the
judges select the new scholarship winners: Hansel Bauer and Kim Tsu, because
Maŕıa Mart́ınez has higher income than the other two.

We have now intuitively evaluated a preference query. On one side, Skyline
determined the finalists without restricting the result to exactly k tuples. On the
other hand, Top-k returned the k winners from the finalists with the lowest in-
come. If we were only to apply the score function to the candidates, without the
previous Skyline, results could differ, because Top-k might favor some candidates
that could be dominated by others and these are considered false results under
Skyline criteria. Note that if we apply only Skyline the results could be incom-
plete when the number of Skyline answers is lower than k. Neither Skyline nor
Top-k can solve this kind of problem, it is then necessary a solution such as Top-
k Skyline for the problem of selecting student scholarship winners. With Top-k
Skyline, the answers are guaranteed to be sound and complete for this case.

3 Related Work

Several algorithms have been proposed in order to identify the Skyline in re-
lational database systems: Divide and Conquer extension, Block-Nested-Loops
(BNL), Sort-Filter-Skyline (SFS) and LESS (Linear Elimination Sort for Sky-
line). All of them [9] scan the entire table and compute the Skyline. Also, progres-
sive Skyline algorithms are introduced in [19], [14], [18], meanwhile algorithms
for distributed systems are presented in [2], [3], [15], [12].

Evaluating Top-k Skyline Queries 257

On the other hand, Top-k solutions try to avoid probing a user-defined score
function on all of the tuples and to stop as early as possible. One of the first
approaches was done by Carey and Kossman [5], [6], they proposed a new SQL
operator called STOP AFTER k that indicates how many objects are required.
Then, some algorithms were defined that focus on the problem of minimizing
the number of probes [8], [17], [1], [4], [7], [16], [13].

Recently, solutions for the combination of Skyline and Top-k have been defined
[3], [10], [15]. In general, these solutions calculate the first stratum or Skyline
with some sort of post-processing. None of these solutions identify the k best
answers considering situations like the one described in the previous section.

4 Top-k Skyline

Given a set T = {t1, . . . , tn} of database tuples, where each tuple ti is char-
acterized by p attributes (A1, . . . , Ap); r score functions s1, . . . , sr defined over
some of those attributes, where si : O → [0, 1]; a combined score function f
defined over combinations of the score functions s1, . . . , sr that induces a total
order of the tuples in T; and a multicriteria function m defined also over some
of the score functions s1, . . . , sr, which induces a partial order of the tuples in
T. We define Strata according to multicriteria function m through the recursion
presented in Definition 1. For simplicity, we suppose that the scores related to
the multicriteria function are maximized.

Definition 1a (Base Case: First Stratum R1 or Skyline)

R1 =

{
ti ∈ T/¬∃tj ∈ T : (s1(ti) ≤ s1(tj) ∧ · · · ∧ sr(ti) ≤ sr(tj)

∧∃q ∈ {1, ..., r} : sq(ti) < sq(tj))

}

Definition 1b (Inductive Case: Stratum Ri)

Ri =

⎧
⎨

⎩

tl ∈ T/tl /∈ Ri−1∧ ¬∃tu ∈ (T − ∪i−1
j=1Rj) :

(s1(tl) ≤ s1(tu) ∧ · · · ∧ sr(tl) ≤ sr(tu)
∧∃q ∈ {1, ..., r} : sq(tl) < sq(tu))

⎫
⎬

⎭

These two definitions establish that the tuples comprising each stratum will
only be dominated by others in strata prior to their own. An efficient solution
to the Top-k Skyline problem should avoid building all strata. In fact, it should
only create the necessary ones. A Stratum Ri of R =< R1, . . . , Rn > is nec-
essary if and only if exist strata R1, . . . , Ri, . . . , Rv, where v ≤ n and v is the
minimum number of strata that satisfy | ∪v

i=1 Ri| ≥ k. On the other hand, it
should only include the tuples from the last necessary stratum with the highest
score values until there are k tuples in the answer. The answer for a relational
Top-k Skyline query includes all the tuples in the strata R1, . . . , Rv−1 (Previous
Necessary Strata), plus those in Rv (Last Necessary Stratum) with the highest
scores in f required to complete k tuples. Thus, we define Previous Necessary
Strata and Last Necessary Stratum in Definition 2.

258 C. Brando, M. Goncalves, and V. González

Definition 2.1 (Previous Necessary Strata Rps)

Rps = {∪v−1
i=1 Ri/| ∪v

i=1 Ri| ≥ k > | ∪v−1
i=1 Ri|}

Definition 2.2 (Last Necessary Stratum Rlt)

Rlt = {Rv/| ∪v
i=1 Ri| ≥ k > | ∪v−1

i=1 Ri|}

Finally, the conditions to be satisfied by the answers of a relational Top-k
Skyline query are given in Definition 3.

Definition 3 (Relational Top-k Skyline TKS)

TKS =
{

ti ∈ T/ti ∈ Rps ∨ (ti ∈ Rlt∧ ¬∃k−|Rps|tj ∈ Rlt : (f(tj) > f(ti)))
}

5 Our Proposed Solutions for Top-k Skyline

Two kinds of Skyline algorithms have been proposed in relational databases. The
first kind scans the entire input and the second does not necessarily scans all
the tuples, because it is index-based. In this work, we do not regard index-based
algorithms, primarily considering that efficient access to data does not affect
performance of a Skyline query as much as the multicriteria function evaluations
do; secondly, although the Skyline can be precomputed through indexes, the
Skyline of a set of attributes can not be calculated from the skylines of subsets
of attributes, and viceversa; thirdly, the preceding option may be invalid when a
new tuple is inserted into the database such that it dominates some tuples from
the index and, in consequence, the entire index must be recalculated; finally,
Skyline might be calculated from a set of materialized tuples -instead of base
tables- and the index can only be applied to base tables.

Block-Nested-Loops (BNL), Sort-Filter-Skyline (SFS) and LESS (Linear
Elimination Sort for Skyline) are three relevant algorithms for Skyline computa-
tion in relational databases because of their performance [9]. The BNL algorithm
scans the entire table while it maintains a window of non-dominated tuples,
which could be replaced by any other tuple that is seen later on. In Algorithm
1, we present a BNL extension for Top-k Skyline queries in a relational setting.
The Extended Block-Nested-Loops (EBNL) algorithm receives a relation R, a
multicriteria function m and a combined score function f as input and produces
the Top-k Skyline tuples in terms of m and f . The iteration corresponding to
steps 5 through 30, calculates the necessary strata. Meanwhile, the one from 7
to 27 corresponds to BNL, with the difference that here, dominated tuples are
not discarded, instead, they are stored into a temporary file R1, so they can be
used to determine the next stratum, if necessary. If the first stratum contains
k tuples (condition verified on step 5) the algorithm stops, else the input set is
replaced with the temporary file R1 (step 29) and hence, the necessary strata are
built one at a time, without partitioning all the data, until there are k or more
Top-k Skyline tuples. In steps 7 through 27, BNL algorithm is executed without

Evaluating Top-k Skyline Queries 259

discarding dominated tuples. When a tuple p is read from the input set (steps
9-21), p is compared against all the tuples in the window (steps 10-19) and: if p
is dominated by any tuple in the window, then p is inserted into a temporal file
R1; else, if p dominates any tuples in the window, these dominated tuples are
removed from the window and inserted into a temporary file R1, and p is inserted
into the window; and if p is non-dominated, then it is inserted into the window.
If, in any of the mentioned situations where p must enter the window, there is
not enough room in it, p is inserted into another temporary file R2 in order to be
processed in the next iteration of the algorithm. Finally, if the temporary file R2

is not empty, the input set is replaced with it to resume computing the current
stratum (steps 22-24).

Algorithm 1. Extended Block-Nested-Loops Algorithm
1: INPUT: R: relation; m: multicriteria function; f : combined score function.
2: OUTPUT: Top-k Skyline tuples.
3: Initialize i ← 1; count ← 0;
4: Create a window w of incomparable tuples in main memory;
5: while count < k and exist tuples in R do
6: Initialize Pi ← ∅; continue ← true
7: while (continue) do
8: Get the first tuple t from R;
9: while exist tuples in R do

10: if some tuple t1 from w dominates t then
11: t is inserted into the temporal table R1;
12: else if t dominates some tuples from w then
13: insert t into w;
14: delete dominated tuples from w and insert them into R1;
15: else if no tuple t1 from w dominates t and there is enough room in w then
16: t is inserted into the window w;
17: else if no t1 from w dominates t and there is not enough room in w then
18: t is inserted into a temporal table R2;
19: end if
20: Get the next tuple t from R;
21: end while
22: if exist tuples in R2 then
23: R ← R2;
24: else
25: continue ← false;
26: end if
27: end while
28: Evaluate f for all tuples in w; copy tuples from w to Pi;
29: count ← count + size(Pi); i ← i + 1; R ← R1;
30: end while
31: return Top-k Skyline tuples;

Similarly, we extended SFS for Top-k Skyline computing in relational database
contexts. SFS could be regarded as a BNL variant, since it only requires a previ-

260 C. Brando, M. Goncalves, and V. González

ous sorting step based on a topological order compatible with the Skyline criteria
and does not need window tuple replacement like BNL does (steps 12-14 of Al-
gorithm 1), because of the mentioned initial topological sort; for further details
see [9]. Steps 10 through 19 of Algorithm 1 are replaced by steps 1 through 7 of
Algorithm 2. Additionally, the first statement that SFS must execute is a sorting
on the input, based on the topological order compatible with the multicriteria
function.

Algorithm 2. A portion of Extended Sort-Filter-Skyline Algorithm
1: if some tuple t1 from w dominates t then
2: t is inserted into the temporal table R1;
3: else if no tuple t1 from w dominates t and there is enough room in w then
4: t is inserted into the window w;
5: else if no t1 from w dominates t and there is not enough room in w then
6: t is inserted into a temporal table R2;
7: end if

Finally, Algorithm LESS initially sorts tuples as SFS does, but presents two
improvements over it: in the first ordering phase, it uses an elimination-filter
window to discard dominated tuples quickly and it combines the last phase of
the sort algorithm with the Skyline filter phase of SFS to eliminate remaining
dominated tuples. For our Top-k Skyline problem, LESS is not easily extensible
for the stratification of data because the Skyline order would only be profited
by the first stratum, while the tuples that are inserted into a temporary file to
be used in the determination of the following strata become randomly ordered,
and multiple sorting phases would be necessary to discard the dominated tuples
of each stratum.

6 Experimental Study

Our experimental study was performed on PostgreSQL 8.1.4. We have ex-
tended PostgreSQL to include a logical operator for Top-K Skyline. This operator
has two physical implementations, namely EBNL and ESFS, and is evaluated
after all the relational operators, i.e. scan, join, sort, etc. This is due to the
semantics of Top-k Skyline queries. Since our PostgreSQL extension does not
optimize these queries, only minor changes to the parser, rewriter and optimizer
were necessary in order to integrate this new operator.

This study consisted of experiments running over a relational table with 25,000
tuples. The table contains an identifier and six real number columns that rep-
resent the scores. Values of numeric columns vary from 0 to 1. The attribute
values were generated following a uniform data distribution.

The algorithms were executed on a Sun Fire V240 with 2 UltraSPARC IIIi
processors of 1503MHz, 2 GB of memory and an Ultra160 SCSI disk of 146 GB,
running SunOS 5.10.

Evaluating Top-k Skyline Queries 261

Ten queries were generated randomly, characterized by the following proper-
ties: (a) there is only one table in the FROM clause; (b) the attributes in the
multicriteria function and combined score function are chosen randomly from
the attributes of the table using a uniform distribution; (c) the optimization
type for each attribute of the multicriteria function is selected randomly consid-
ering MIN and MAX directives; (d) the number of attributes of the multicriteria
function is two, four and six; and (e) k corresponds to 3% of the data size.

In this experimental study, the number of multicriteria function evaluations
and the time taken by each algorithm were measured. Figure 1 reports the
average of multicriteria function evaluations (x10−6) and average time (in x10−4

miliseconds) used by each algorithm. Average time is the average of ten queries
ran against the table with data generated according to a uniform distribution.

We have observed that EBNL requires more multicriteria function evaluations
than ESFS. This could be attributed to the benefits gained through sorting as
a first step in ESFS. Besides, EBNL is more efficient on smaller Skylines and
the strata of the experimental queries were not small. Also, EBNL behavior
deteriorates as the dimensions grow, because strata size increases. On the other
hand, ESFS remains stable and it is not affected by strata size.

Finally, EBNL requires more time than ESFS does. This is because of the num-
ber of multicriteria function evaluations. Additionaly, ESFS time is not affected
by the sorting phase because it reduces the number of multicriteria function
evaluations.

Fig. 1. Uniform data

Similarly, we ran experiments over a database that contains real web data.
We created a table with information from Zagat Survey Guides [20]. This study
consisted of experiments running over a relational table with, approximately,
16,876 tuples. The table contained an identifier and five real number columns
that represent the scores. Values of numeric columns vary from 0 to 30. Any
given column may have duplicate values.

Five queries were generated randomly, characterized by the following proper-
ties: (a) there is only one table in the FROM clause; (b) the attributes in the
multicriteria function and combined score function are chosen randomly from the
attributes of the table using a uniform distribution; (c) the optimization type
for each attribute of the multicriteria function is selected randomly considering

262 C. Brando, M. Goncalves, and V. González

MIN and MAX directives; (d) the number of attributes of the multicriteria func-
tion is four; (e) k corresponds to 1%, 3% and 5% of the data size.

For this study, the number of multicriteria function evaluations (x10−6) and
the time (x10−3 miliseconds) taken by each algorithm were measured. Figure 2
reports the results of the experiments for the real data. Similarly to uniform data,
the number of multicriteria function evaluations is a little lower and requires less
time for the ESFS algorithm.

Fig. 2. Real data

7 Conclusions and Future Work

Top-k Skyline queries determine exactly the Top-k considering a score function
from a partially ordered set stratified into subsets of non-dominated tuples in
terms of a multicriteria function. Existing algorithms cannot solve Top-k Skyline
problems. On one hand, Skyline algorithms do not restrict the result to exactly
k tuples. On the other hand, Top-k algorithms might return results that would
be false under Skyline criteria. Therefore, we have extended two algorithms for
evaluating Top-k Skyline queries in relational databases. Both algorithms were
integrated into PostgreSQL in the quest for better performance. Both algorithms
are complete and build less strata than a naive solution. Initial experimental
results show that ESFS performs less multicriteria function evaluations and re-
quires less evaluation time than EBNL.

PostgreSQL does not optimize Top-k Skyline queries, so it does not benefit
from full integration with the relational engine and fails to take advantage of
the interesting orders that could be present in the data. In the future, we plan
to extend PostgreSQL optimizer so that it considers Top-k Skyline queries when
calculating costs and planning the execution.

Also, EBNL and ESFS could be more efficient if they would not require one
table scan per stratum, this should be discussed in the future. Finally, an asymp-
totic complexity analysis should be performed to compare the proposed algo-
rithms with the straightforward implementation of Top-k skyline.

Acknowledgments

This work was supported by FONACIT under Project G-2005000278.

Evaluating Top-k Skyline Queries 263

References

1. Balke, W-T., Güntzer, U., Kiebling, W.: Towards Efficient Multi-Feature Queries
in Heterogeneous Environments. In: Proceedings of the IEEE International Con-
ference on Information Technology: Coding and Computing (ITCC), pp. 622–628
(April 2001)

2. Balke, W-T., Güntzer, U., Zheng, J.: Efficient Distributed Skylining for Web
Information Systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 256–273. Springer, Heidelberg (2004)

3. Balke, W-T., Güntzer, U.: Multi-Objective Query Processing for Database Sys-
tems. In: Proceedings of the International Conference on Very Large Databases
(VLDB), pp. 936–947 (September 2004)

4. Bruno, N., Gravano, L., Marian, A.: Evaluating Top-k Queries over Web-Accessible
Databases. In: Proceedings of International Conference on Data Engineering
(ICDE), vol. 29(4), pp. 319–362 (2002)

5. Carey, M., Kossman, D.: On saying Enough Already! in SQL. In: Proceedings of
the ACM SIGMOD Conference on Management of Data, pp. 219–230 (May 1997)

6. Carey, M., Kossman, D.: Reducing the Braking Distance of a SQL Query Engine.
In: Proceedings of VLDB, pp. 158–169 (August 1998)

7. Chang, K., Hwang, S-W.: Optimizing Access Cost for Top-k Queries over Web
Sources: A Unified Cost-Based Approach. Technical Report UIUCDS-R-2003-2324,
University of Illinois at Urbana-Champaign (March 2003)

8. Fagin, R.: Combining Fuzzy Information from Multiple Systems. Journal of Com-
puter and System Sciences (JCSS) 58(1), 216–226 (1996)

9. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data
Sets. In: Proceedings of VLDB, pp. 229–240 (2005)

10. Goncalves, M., Vidal, M.E.: Preferred Skyline: A Hybrid Approach Between SQLf
and Skyline. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005.
LNCS, vol. 3588, pp. 375–384. Springer, Heidelberg (2005)

11. Goncalves, M., Vidal, M.E.: Top-k Skyline: A Unified Approach. In: Proceedings
of OTM (On the Move) 2005 PhD Symposium, pp. 790–799 (2005)

12. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline Queries Against Mobile
Lightweight Devices in MANETs. In: Proceedings of ICDE, pp. 66–77 (2006)

13. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting Top-k Join Queries in Re-
lational Databases. In: Proceedings of VLDB, pp. 754–765 (2003)

14. Kossman, D., Ransak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm
for Skyline Queries. In: Proceedings of VLDB, pp. 275–286 (2002)

15. Lo, E., Yip, K., Lin, K-I., Cheung, D.: Progressive Skylining over Web-Accessible
Databases. Journal of Data and Knowledge Engineering 57(2), 122–147 (2006)

16. Natsev, A., Chang, Y-CH., Smith, J.R., Li, CH.-S., Vitter, J.S.: Supporting In-
cremental Join Queries on Ranked Inputs. In: Proceedings of VLDB, pp. 281–290
(2001)

17. Nepal, S., Ramakrishnan, M.V.: Query Processing Issues in Image (Multimedia)
Databases. In: Proceedings of ICDE, pp. 22–29 (1999)

18. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM Transactions Database Systems 30(1), 41–82 (2005)

19. Tan, K-L., Eng, P-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In:
Proceedings of VLDB, pp. 301–310 (2001)

20. Zagat Survey Guides: available at http://www.zagat.com

http://www.zagat.com

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 264–276, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A P2P Technique for Continuous k-Nearest-Neighbor
Query in Road Networks

Fuyu Liu, Kien A. Hua, and Tai T. Do

School of EECS, University of Central Florida, Orlando, FL, USA
{fliu,kienhua,tdo}@cs.ucf.edu

Abstract. Due to the high frequency in location updates and the expensive cost
of continuous query processing, server computation capacity and wireless
communication bandwidth are the two limiting factors for large-scale
deployment of moving object database systems. Many techniques have been
proposed to address the server bottleneck including one using distributed
servers. To address both of the scalability factors, P2P computing has been
considered. These schemes enable moving objects to participate as a peer in
query processing to substantially reduce the demand on server computation, and
wireless communications associated with location updates. Most of these
techniques, however, assume an open-space environment. In this paper, we
investigate a P2P computing technique for continuous kNN queries in a
network environment. Since network distance is different from Euclidean
distance, techniques designed specifically for an open space cannot be easily
adapted for our environment. We present the details of the proposed technique,
and discuss our simulation study. The performance results indicate that this
technique can significantly reduce server workload and wireless communication
costs.

1 Introduction

With the advances in wireless communication technology and advanced positioning
systems, a variety of location based services become available to the public. Among
them, one important service is to continuously provide k-nearest-neighbor (kNN)
search for a moving object. Early research effort has focused on moving query over
static points of interest. Recently, interest has been shifted to monitoring moving
queries over moving objects, e.g., “Give me the five nearest BMW cars while I am
driving on Colonial Drive.” This new type of query, demanding constant updates
from moving objects to keep the query results accurate, raises a great challenge.

A simple mobile query processing system consists of a centralized server and a
large number of moving objects. There are two scalability issues for such systems:
(1) query processing cost, and (2) location update cost. Addressing the first issue has
been the focus of the majority of the existing work [2, 4, 5, 6, 7, 12, 13, 16, 17].
These researches focus on query processing techniques and do not worry about the
communication cost associated with location updates. To address the second issue,
namely update cost, using distributed servers has been proposed [14] to leverage the

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 265

aggregate bandwidth of the servers. Another interesting idea for reducing location
updates is to use safe regions [8, 15] or thresholds [19], where an object moving
within a safe region or a threshold does not need to update its location. To address
both issues, i.e., expensive query processing cost and intensive location updates,
Peer-to-peer (P2P) techniques were investigated in [1, 3, 9, 20]. In these schemes,
each moving object participates in query processing as a peer by monitoring nearby
queries and updating their result if the object’s new location affects the query results.
The benefits of this strategy are twofold. First, server computation is no longer a
bottleneck (i.e., first scalability issue); and second, moving objects need to update
their location much less frequently (i.e., second scalability issue).

Most P2P solutions [1, 3, 20] assume an open space environment, where the
distance between two objects is the straight line distance between them. In real-life
scenarios, many moving objects (e.g., cars) are restricted to move on a network (e.g.,
road network). Since the distance between two objects in a network is defined as the
shortest network distance between them, techniques developed specifically for an
open space environment cannot be easily extended to a road network. A more recent
P2P technique has been proposed in [9] for dynamic range queries over a network.

In this paper, we focus on kNN queries over road networks. Unlike range queries,
there are no fixed ranges for kNN queries and as objects move around, the ranges
constantly change. Therefore, new definitions and new techniques must be developed
to address the challenge. We solve the problem by proposing an efficient P2P
solution. In our approach, each moving object monitors queries in the neighboring
road segments, and will update a query result maintained on a server if the object
becomes one of the kNN or is no longer one of the kNN of the affected query. Besides
saving server computation costs, this scheme reduces communications as much less
messages are communicated between objects and server compared with a centralized
solution.

The contributions of this paper are summarized as follows:

 We introduce a novel way to define the range for kNN queries in road
networks.

 We propose a P2P solution to process kNN queries over road networks which
has less server computation cost and communication cost.

 We provide simulation study to show the benefits of using the proposed P2P
solution.

The remainder of this paper is organized as follows. Related work is discussed in
Section 2. Section 3 covers formal definitions and background information. The
proposed solution is introduced in Section 4. In Section 5, we present the simulation
study. Finally, Section 6 concludes the paper.

2 Related Work

Mouratidis et al. [12] studied the kNN monitoring query problem in road networks,
where query and data objects all move around. However, their techniques only
focused on reducing server workload without worrying about the communication cost
and the update cost. As we pointed out in the introduction section, these costs will

266 F. Liu, K.A. Hua, and T.T. Do

undermine the scalability of the system. Recently, Wu et al. [20] proposed a
distributed solution to answer moving kNN queries; nevertheless, the proposed
solution is only applicable to open space environments.

To the best of our knowledge, the work most related to ours is the research
presented by Jensen et al. in [11], in which an algorithm was given for continuous
kNN queries. This algorithm takes a client-server approach with the server keeps the
location information of all the clients. For a given new query, the server performs a
kNN search to identify a Nearest Neighbor Candidate set (NNC set) and a distance
limit. This information is sent to the query object, which subsequently needs to
repeatedly estimate distances between the clients in the NNC set and the query object
to maintain the query result. When the number of clients in the NNC set with a
distance to the query object greater than the distance limit exceeds a predefined
certain threshold, the query object needs to contact the server to refresh the NNC set.
A drawback of this approach is the potentially low accuracy in the kNN
approximation because the criterion employed to refresh the NNC set does not
consider the clients outside the NNC set, which could become the query’s kNNs even
when the criterion is still satisfied.

In summary, although there have been a tremendous amount of work in kNN query
processing, there is no existing P2P solution for such queries in a road network
environment, which allows all objects to participate in query processing in order to
reduce both server computation and communication costs.

3 Preliminaries

In this section, we first define the underlying spatial network, and then give
definitions for moving objects, kNN queries and monitoring regions.

Definition 1. (Network) A network is modeled as an undirected graph G = (N, E),
where N is a set of nodes, and E is a set of edges. An edge is expressed as <ni, nj>,
where ni and nj represent the start node and the end node. To avoid ambiguity, we use
a numbering system such that i is always less than j. The distance between two nodes
ni and nj is denoted by d(ni, nj), which is the shortest network distance from ni to nj.

Please note that for simplicity, a road network is modeled as an undirected graph
where edges are considered to be bidirectional, but our techniques can be easily
extended to networks with unidirectional edges. Also, in this paper, road segment and
edge are used interchangeably whenever there is no confusion.

Definition 2. (Edge Distance) Based on the types of nodes connecting two edges
together, we classify the distance between two edges into the following four types: SS,
SE, ES, and EE. We call the resultant distance associated with a specific type as Edge
Distance. For example, the distance type is SS if both nodes are start (S) nodes; the
distance type is SE if one node is start (S) node while another is end (E) node.
Formally, given ei = <nis, nie> and ej = <njs, nje>, dxy(ei, ej) = d(nix, njy), where x, y ∈
{S, E}. To make the definition complete, we add an extra distance type called SAME
(SM) to cover the case when the two edges are identical. Formally, if i = j, dSM(ei, ej)
= 0, otherwise, dSM(ei, ej) = ∞. As a result, the shortest distance between any two
edges ei and ej can be expressed as: d(ei, ej) = mintype ∈ {SM, SS, SE, ES, EE}{ dtype(ei, ej)}.

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 267

Definition 3. (Moving Object) A moving object is represented by a moving point in
the road network. At any one time, an object o can be described as <e, pos, direction,
speed, reportTime >, where e is the edge that o is moving on and pos is the distance
from o to the start node of e. The value of direction is set to 1 if o is moving from the
start node of e to the end node of e; otherwise, it is set to -1. reportTime records the
time when the pos is reported.

Distance between any two objects oi and oj, denoted as d(oi, oj), is the shortest
network distance from oi to oj. It can be calculated as below.

Property 1. Assume the positions of objects oi and oj are denoted as <ei, posi> and
<ej, posj>, where ei = <nis, nie>, ej= <njs, nje>, and the lengths of ei and ej are ei.length
and ej.length, respectively. The distance between oi and oj can be calculated as the
minimum of the following five items:

d(oi, oj) = min{dSM(ei, ej) + | posi - posj|, dSS(ei, ej)+ posi + posj , dSE(ei, ej)+ posi +
ej.length - posj , dES(ei, ej)+ ei.length - posi + posj , dEE(ei, ej)+ ei.length - posi +
ej.length - posj }

Property 2. For a moving object, with pos, direction, speed, and reportTime all
known, and provided that the moving object still moves on the same edge, the new
position of the moving object at current time currentTime can be calculated as
(currentTime – reportTime) × speed × direction + pos.

Definition 4. (k-Nearest-Neighbor Query) A kNN query q can be denoted as <o,
k>, where o is the object issuing the query (or the focus of the issued query), and k is
the number of nearest neighbors interested in. Denote the set of all other moving
objects (i.e. excluding o) as O, a kNN query q returns a subset O’ ⊆ O of k objects,
such that for any object oi in O’ and any object oj in (O – O’), d(oi, o) ≤ d(oj, o).

For a given kNN query <o, k>, we call the object o as the query object, all objects
in the set (O – O’) as the data objects. Among all objects in the query results O’, we
name the object that has the largest distance to o as the kNN object, and all other
objects in the set O’ as the (k-i)NN objects, with i = 1, …, k-1.

Definition 5. (Range of kNN Query) Given a kNN query q = <o, k>, with object o
moving on edge eo . Assume the kNN object for this query is object oNN , which is
moving on edge eNN , then the range of the kNN query is defined as eo.length if eo and
eNN are identical, otherwise, the range is defined as eo.length + eNN.length + d(eo, eNN).
Please note that the range is the allowed maximum distance between the query object
and the kNN object given that both objects move on their own edges.

As shown in the following Definition 6, this range concept is utilized to prune out
objects that certainly can not become query result.

Definition 6. (Monitoring Region) A monitoring region of a kNN query is a set
of edges that can be reached by the query’s range while the query object and the
query’s kNN object both move within their own current edges. Formally, for a query
q = <o, k> where o moves on edge e, if the query’s range is q.range, then its
monitoring region r = {ei | ei ∈ E, d(e, ei) < q.range }. If an edge is included in

268 F. Liu, K.A. Hua, and T.T. Do

a query’s monitoring region, we say that this edge intersects with the query’s
monitoring region.

The monitoring region can be computed with a depth-first search by expanding
from the start and the end node of edge e. The detailed algorithm is omitted. The
interested reader is referred to [9]. The output of the algorithm, denoted by mrOutput,
has the following format: mrOutput = {<ei, type, distance> | ei ∈ E, type ∈ {SM, SS,
SE, ES, EE}, distance = dtype(ei , e)< q.range }. For an object moving on edge ei’ in
that monitoring region, it stores locally a subset of the above mrOutput as {<ei, type,
distance>|<ei, type, distance> ∈ mrOutput, ei = ei’ }, to facilitate computing its
distance to the query object. As a result, moving objects do not need to store the
whole road network and perform the computation-intensive shortest-path algorithm.
This is considered as one nice feature of our proposed technique.

To illustrate the above definitions, we give an example below. A partial road
network is drawn in Figure 1, where nodes are denoted as n1, n2, etc. Each edge’s
length is indicated by the number close to that edge. Notations like n1n2, n1n3, are used
to represent edges. Assume that there is one object A (represented by a star) moving
on edge n1n4, and we are interested in its 2-NNs, which have been determined to be B
and C (represented by triangles). Based on Definition 4, A is the query object, B is the
(k-i)NN object, C is the kNN object, and all other objects (represented by circles) are
data objects. Since C is moving on edge n2n3, and the shortest distance between edge
n1n4 and n2n3 is 1 (through edge n3n4), based on Definition 5, the range of this query is
computed as the sum of the lengths of edge n1n4 and edge n2n3, then added by 1,
which gives (3 + 2 + 1) = 6. The monitoring region is then computed by expanding
from both nodes (n1 and n4) of edge n1n4. The results are shown in the figure by the
thick edges. All objects moving in the monitoring region will monitor this query.

Fig. 1. Example of Monitoring Region Fig. 2. Example of Message Processing

To deal with long road segments, such as highways, we set a maximum for the
allowed segment length. Any segment that is longer than this maximum will be
divided into multiple shorter pieces. We add a virtual node at each position where the
original segment is divided, and the resultant shorter segments become virtual edges.
In our system, we do not differentiate virtual node (edge) from real node (edge).

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 269

4 Proposed Solution

4.1 Assumptions and System Overview

We have the following two assumptions: (1) every moving object is equipped with
some positioning devices. (2) every moving object has some computing power for
data processing.

The proposed system adopts a server-client architecture. On the server side, all
information about query objects, kNN objects, (k-i)NN objects, and queries are stored.
The server determines the monitoring region for each query and sends the query to
objects moving in that monitoring region. The moving objects save the received
information in their local storage space. Periodically, based on the saved information,
a moving object needs to calculate its distance to the query object, and compares that
distance with the distance from the kNN object to the query object. For a data object,
if it moves closer to the query object than the kNN object, it sends a message to the
server to trigger an update. Similarly, for a (k-i)NN object, if it moves further away
from the query object than the kNN object, it also notifies the server.

4.2 Server Data Structure

A number of excellent disk-based storage structures have been proposed for road
networks [10, 18]. Any of these techniques can be easily adapted for our network
database to achieve good access locality and therefore low I/O cost.

There are mainly three tables used: (1) a query-object-table to store query objects
in the form of <oid, eid, pos, direction, speed, reportTime>, (2) a query-table to store
monitoring queries in the form of <qid, oid, k, kNN object, (k-i)NN objects,
mrOutput>, where the mrOutput is the output from the algorithm for monitoring
region calculation, as mentioned in Section 3, and (3) a segment-query-table, where
for each edge, the qids of all queries whose monitoring regions intersect with that
edge are stored. An entry in this table has the form of <eid, {qid}>. To facilitate the
initialization step (to be discussed in Section 4.4), we also keep track of how many
objects currently moving on each edge.

4.3 Moving Object Data Structure

A moving object stores all queries whose monitoring regions intersect with the edge
where it is moving. We use a table for that need. For a moving object moving on edge
e, Each entry in the table has the following format: <qid, oid, eLength, {<e, type,
dist>}, nn_oid, nn_eLength, {<e’, nn_type, nn_dist>}>, where qid is the query id, oid
is the corresponding query object’s id, eLength is the length of the edge that the query
object is on, and {<e, type, dist>} stores a subset of mrOutput (the attribute inside the
query-table on the server), where each tuple specifies the edge distance type and the
actual edge distance from the moving object’s segment to the query object’s segment.
With eLength and the set {<e, type, dist>}, the moving object can calculate its
distance to the query object. Similarly, nn_oid denotes the kNN object’s object id,
nn_eLength is the length of the edge where the kNN object is on, and {<e’, nn_type,
nn_dist>} stores a set of tuples which help to calculate the distance from the kNN

270 F. Liu, K.A. Hua, and T.T. Do

object to the query object. Please note that e’ is the edge where the kNN object is
moving on. In order to estimate the locations of the query object and the kNN object at
different time units other than at the saved reportTime, we also store the information
about the query object and the corresponding kNN object on moving objects.

4.4 Initialization

For every new moving object that enters the system, it needs to report its location,
heading, and speed to the server. The server determines and sends the moving object a
set of queries that should be monitored. If the new moving object is a query object,
the server calculates the first set of k nearest neighbors in the following four steps:

(1) Since the server knows how many objects are moving on each edge, by
comparing with the requested number k, the server can decide the set of edges to send
a probe message. The probe message has the format of <qid, oid, pos, eLength, {<e,
type, dist>}>, where pos is the position of the query object on its edge, and other
parameters have the same meanings as those discussed in Section 4.3.

(2) After the probe message is received by all moving objects moving on the
identified edges, based on Property 1, moving objects can calculate their distances to
the query object and send the distances back to the server.

(3) The server compares all the returned distances and picks the k smallest ones.
The moving objects with the k smallest distances are the initial k nearest neighbors.
Among the k identified objects, the one with the largest distance is the kNN object.

(4) With the kNN object known, the server calculates the query’s range using
Definition 5, computes the query’s monitoring region with Definition 6, and sends a
message, which contains the information of the query object and the kNN object, to all
objects in the monitoring region.

4.5 Message Processing

For a given query, there are four different types of objects, namely, query object, data
object, kNN object, and (k-i)NN object. Please note that since the system as many
kNN queries, for a moving object, it can assume multiple roles. Below we list
different types of messages sent out from moving objects, and discuss how the server
responds to these messages.

4.5.1 Switch Segment Message
Every moving object needs to monitor its own location on the segment it is moving
on. If its position on that segment is less than zero or greater than the segment’s
length, it knows that it has moved to a new segment. At this time, the moving object
reports to the server and requests for the new segment’s length and a new set of
queries. For each query, the server sends the query object and the kNN object’s
information with the relevant edge distances, and the lengths of the edges where the
query object and the kNN object are moving on, respectively. With the received
information, later on, the moving object can estimate the position of the query object
and the kNN object. Using saved edge distances, the moving object can calculate its
distance to the query object and the distance from the kNN object to the query object.

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 271

However, if the moving object itself is also a query object (or a kNN object) for
some query, the monitoring region for that query needs to be updated. The server
performs the following three tasks: (1). update the query-object-table (or the query-
table) with the object’s new location. (2). compute a new monitoring region for the
query and update the query-table. (3). send out messages to notify moving objects in
the old monitoring region to stop monitoring the query, and notify moving objects in
the new monitoring region to add this query for monitoring. If the moving object is a
(k-i)NN object for some query, although there is no need for monitoring region re-
computation, the server needs to update the query-table accordingly.

4.5.2 Enter Query Message
For a data object, it periodically checks its distance to the monitored query object,
and compares with the distance from the kNN object to the query object. If it is getting
closer to the query object than the kNN object is, a message is sent to the server to
indicate that it is currently part of the query result.

The server first estimates the current positions of the saved kNN object and (k-i)NN
objects to decide which object should be replaced by the new-coming object. Then the
server updates the query-object-table. If the replaced object is the kNN object, the
server also calculates a new monitoring region based on the new kNN object, and
notifies all affected objects.

4.5.3 Exit Query Message
For a (k-i)NN object, since it could move further away from the query object and
become the kNN object, it needs to periodically monitor its distance to the query
object and compare with that of the kNN object. Once the distance is larger than the
distance from the kNN object to the query object, the (k-i)NN object needs to report to
the server.

After the server receives this type of message, it replaces the current kNN object
with the one sending out the message, re-calculates the monitoring region, and
notifies all affected objects.

4.5.4 Other Messages
Other than the three types of messages described above, there are some other
scenarios when a moving object needs to contact server. When a query object (or a
kNN object) changes its speed, it sends the update to the server, and the server updates
the query-object-table (or the query-table) and forwards the update to relevant
moving objects. Similarly, when a (k-i)NN object changes its speed, it also notifies the
server, and the server just updates the query-table (i.e. No need to send the update to
moving objects).

4.5.5 Optimization
For the sake of clarity, we have assumed that the server can receive only one message
per time unit. In reality, the server bandwidth is more plentiful and many messages
should be able to arrive at the server per time unit. To reduce server computation and
communication cost, for all the messages received during a given time unit requiring
monitoring region re-computation (such as “Exit Query Message” and “Enter Query
Message”), immediately after the message is received, the server only updates the

272 F. Liu, K.A. Hua, and T.T. Do

query result to keep the result accurate. And the server waits until the end of that time
unit to re-compute the monitoring region and sends out message to notify moving
objects to update their monitoring queries.

4.6 An Example

In this section, we use the same example as the one used in Section 3 to show how a
data object keeps monitoring its distance to the query object and the distance from the
kNN object to the query object.

For example, at time t, as shown in Fig. 1, the query object A is at position 2.5 on
edge n1n4, the kNN object C is at position 1 on edge n2n3, and a data object G is at
position 1.5 on edge n1n7. Since G is inside the query’s monitoring region, it has A
and C’s information saved locally. Besides, it stores the edge distance {<n1n7, SS, 0>}
and the length of edge n1n4, to determine the distance from itself to A. To calculate the
distance from C to A, it also has the edge distances {<n2n3, SS, 2>, <n2n3, SE, 3>,
<n2n3, ES, 4>, <n2n3, EE, 1>} and the length of edge n2n3 saved.

At time (t+1), as shown in Fig. 2, data object G moves to position 1 on edge n1n7.
It estimates the new position of A on edge n1n4 using Property 2 and gets 1.5.
Similarly, it estimates the new position of C on edge n2n3 as 1.1. Then with Property
1, it computes its distance to A as 2.5 (calculated as: 1 + 1.5 + 0), while the distance
from C to A is 3.4 (through the edge distance <n2n3, EE, 1>, calculated as: (2 - 1.1) +
1.5 + 1). Since its distance to the query object is less than the distance from the kNN
object to the query object, it sends an enter query message to the server. The server
replaces C with G as the new kNN object, determines the new query range, and re-
computes the monitoring region. In this example, the new query range is 5 (sum of the
lengths of edge n1n4 and edge n1n7), and the new monitoring region is drawn as thick
edges in Figure 2. As we can see, data object E on edge n10n11 is no longer in the
monitoring region.

5 Performance Study

We implemented a simulator to measure the performance of our proposed technique.
For a system designed to process monitoring queries, the server could easily become a
bottleneck. Whether or not a system can reduce server computation and communication
cost is very critical, as a result, we choose the following performance metrics.

 Server workload. This cost is measured as the total number of edges accessed in
order to answer queries. This is a good measure because server workload consists of
I/O time and CPU time, while I/O time is more dominant.

 Communication cost. We measure this cost by counting the messages sent out
from both the server and the client to reflect the bandwidth consumption.

For server workload, we compare our technique with one popular centralized
solution: query index [8], which was originally designed for an open space
environment. To make the comparison fair, the query index scheme is adapted for a
road network environment. In the adapted scheme, queries are indexed by a segment-
query table (similar to the table used in our technique), where for each segment, all

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 273

queries whose query object can reach that segment within the distance from the query
object to the kNN object are saved. Every time when a moving object sends its
updated location to the server, based on the segment where the moving object is on,
the server retrieves all queries for that segment from the segment-query table. Then
the server computes the distances from the moving object to query objects to
determine if the moving object belongs to any query result. Also, every time when a
query object’s location is updated or its kNN object’s location is updated, the server
updates that segment-query table.

We also compare communication cost to a centralized approach, which we name it
as Query Blind Optimal (QBO) method. In the QBO method, moving objects only
need to contact the server when they switch segments or change speeds. When an
object moves to a new segment, the server sends back the new segment’s length to
help the object to determine when it moves out of that segment. At each time unit, the
server estimates all moving objects’ locations and answers all kNN queries. This
method is optimal on communication cost if we assume that moving objects do not
have any knowledge about queries, which is why we call it Query Blind Optimal
method. Besides this QBO method, we also have a naïve method which serves as a
basis for comparison. In this naïve method, all moving objects report to the server
when their locations change, as a result, there is no need for the server to send
messages back to the clients.

5.1 Simulation Setup

Our simulation is based on a terrain of 50 × 50 square miles. We generate a synthetic
road network by first placing nodes randomly on the terrain, and then connect nodes
together randomly to form edges. There are 2000 nodes and 4000 edges in our setup,
with the longest edge as 3 miles. Moving objects are placed randomly on edges with
initial speeds and directions. Among all the moving objects, some are specified as
query objects with a pre-defined number (k) of interested nearest neighbors. The
speeds are in the range of [0.1, 1] mile/min, following a Zipf distribution with a
deviation of 0.7. When an object moves close to a road intersection, it moves to a
randomly picked segment. At each time unit, there are a certain percentage of objects
changing their speeds. The threshold for changing speed is set as 0.1 mile/min. The
time step parameter for the simulation is one minute. We run simulation for 10 times
and compute the average as the final output. Each simulation lasts for 200 time units.
The simulation was run on a Pentium 4 2.6GHz desktop pc with 2GB memory.

In the experiments, we vary different parameters, as listed in Table 1, to study the
scalability of the proposed system. If not otherwise specified, the experiment takes the
default values.

Table 1. Simulation Parameters

Parameter Name Value Range Default Value
Number of Moving Objects [50000, 100000] 100000
Number of Queries [10, 1000] 200
Number of Nearest Neighbors (k) [1, 20] 5
Percentage of Objects Changing Speed per Time Unit [2, 50] 10

274 F. Liu, K.A. Hua, and T.T. Do

5.2 Simulation Results

Figure 3 shows the impact of number of queries on server workload and
communication cost. Please note that in Fig 3.a, the vertical axis is in logarithmic
scale. The plot shows that both the proposed technique and the Query Index method
incur more server workload with the increases in the number of concurrent queries. A
comparison indicates that the proposed approach is about 50 times better than the
Query Index method. This huge savings can be attributed to the computations carried
out on moving objects, which greatly reduce server workload.

1000

10000

100000

1000000

10000000

10 50 100 200 500 1000
of Queries

o
f
S

eg
m

en
ts

 /
 T

im
e

U
n
it

Proposed Query Index

0

20000

40000

60000

80000

100000

120000

10 50 100 200 500 1000
of Queries

o
f
M

es
sa

g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

 (a) (b)

Fig. 3. Effect of number of queries on (a) server workload and (b) communication cost

In Fig 3.b, we compare the communication cost of the proposed technique with
those of a Naïve approach and the QBO method. We observe that the curve of the
naïve method is flat and it displays the highest communication costs. This is expected
since every object updates its location at every time step. The curve of the QBO
method is also flat because the communication cost is primarily introduced by objects
when they move to new segments or change their speeds; and the occurrences of such
activities are independent of the number of concurrent queries. The communication
cost of the proposed technique increases as the number of queries increases. This can
be explained as follows. Since the P2P strategy needs to update the query results
maintained on the remote server, the objects have more query updates to perform with
the increases in the number of concurrent queries resulting in a higher communication
cost. Nevertheless, the proposed technique performs very well (i.e., comparable to
the QBO) for numbers of queries as high as 200. Its performance worsens when the
numbers of concurrent queries is greater than 200. Under this circumstance, we note
that distributed servers can be used to accommodate the increase in the
communication costs. In such an environment, our P2P technique would require a
smaller number of distributed servers since it is able to reduce server workload and
the demand on server bandwidth.

In Figure 4, we vary the other three parameters to study their effects on
communication cost. In Fig 4.a, the number of moving objects is varied from 50000 to
100000. As we can see, for all the three studied methods, the number of messages
increases as the number of moving objects increases. Fig 4.b studies the effect of
increasing the percentage of objects changing speed per time unit from 2% to 50%.
The result shows that for the naïve method, the curve is a flat line as in Fig 3.b. Both
our technique and the QBO technique incur more communication cost when there are
more objects changing speeds at every time step. Compared to the QBO technique,

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 275

0

20000

40000

60000

80000

100000

120000

50000 60000 70000 80000 90000 100000

of Moving Objects

o
f

M
es

sa
g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

0

20000

40000

60000

80000

100000

120000

2 5 10 20 33 50

Percentage of Objects Changing Speed

o
f
M

es
sa

g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

0

20000

40000

60000

80000

100000

120000

1 2 5 10 15 20

of Interested Nearest Neighbors

o
f
M

es
sa

g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

 (a) (b) (c)

Fig. 4. Effect of (a) number of moving objects, (b) percentage of objects changing speed per
time unit, (c) number of interested nearest neighbors, on communication cost

our technique has a much less steeper curve because among all objects that change
speeds, only query objects, kNN objects, and (k-i)NN objects, which combined
account for a small fraction of the total number of objects, need to contact the server,
however, in the QBO technique, all objects changing speeds have to report to the
server. We also try to vary the number of interested nearest neighbors (k) and the
result is shown in Fig 4.c. From the plot, we observe that both the naïve method and
the QBO technique are not affected by the number of requested nearest neighbors. For
our technique, more messages are needed if there are more nearest neighbors to be
found. This is expected since a bigger k will make more objects into (k-i)NN objects,
and quite probably, larger monitoring regions are demanded. Consequently, higher
communication cost is necessary.

6 Conclusions

In this paper, we introduced a P2P technique for continuous kNN queries in a network
environment. To the best of our knowledge, this is the first P2P solution that fully
leverages the computation power of all peers to address the kNN problem. This
scheme utilizes mobile computing power to reduce server workload and the number
of location updates necessary. We presented the detailed design and gave simulation
results to show the performance advantages of the proposed technique. When
compared to an adapted Query Index method, our approach incurs about 50 times less
server load. In terms of communication cost, the proposed technique performs
comparable to a Query Blind Optimal scheme when there are as many as 200
concurrent queries. As the number of concurrent queries increases, the moving
objects need to communicate more frequently to update the query results maintained
on the server.

References

1. Cai, Y., Hua, K.A., Cao, G.: Processing Range- Monitoring Queries on Heterogeneous
Mobile Objects. In: MDM (2004)

2. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual Partitioning: An Efficient
Method for Continuous Nearest Neighbor Monitoring. In: SIGMOD (2005)

276 F. Liu, K.A. Hua, and T.T. Do

3. Gedik, B., Liu, L.: MobiEyes: Distributed Processing of Continuously Moving Queries on
Moving Objects in a Mobile System. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, Springer, Heidelberg (2004)

4. Hu, H., Lee, D.L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis,
Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A.,
Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, Springer, Heidelberg (2006)

5. Kolahdouzan, M.R., Shahabi, C.: Voronoi-Based K Nearest Neighbor Search for Spatial
Network Databases. In: VLDB, pp. 840–851 (2004)

6. Hu, H., Lee, D.L., Lee, V.C.S.: Distance Indexing on Road Networks. In: VLDB (2006)
7. Xiong, X., Mokbel, M., Aref, W.: SINA: Scalable Incremental Processing of Continuous

Queries in Spatio-temporal Databases. In: SIGMOD (2004)
8. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing

and velocity constrained indexing: Scalable techniques for continuous queries on moving
objects. IEEE Trans. on Computers 51(10) (2002)

9. Liu, F., Do, T.T., Hua, K.A.: Dynamic Range Query in Spatial Network Environments. In:
Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, Springer,
Heidelberg (2006)

10. Shekhar, S., Liu, D.R.: CCAM: A Connectivity-Clustered Access Method for Networks
and Network Computations. IEEE TKDE 9(1) (1997)

11. Jensen, C.S., Kolar, J., Pedersen, T.B., Timko, I.: Nearest Neighbor Queries in Road
Networks. In: Proc. ACMGIS, pp. 1–8 (2003)

12. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous Nearest Neighbor
Monitoring in Road Networks. In: VLDB, pp. 43–54 (2006)

13. Cho, H., Chung, C.: An Efficient and Scalable Approach to CNN Queries in a Road
Network. In VLDB, pp. 865–876 (2005)

14. Wang, H., Zimmermann, R., Ku, W.S.: Distributed Continuous Range Query Processing
on Moving Objects. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS,
vol. 4080, pp. 655–665. Springer, Heidelberg (2006)

15. Hu, H., Xu, J., Lee, D.L.: A Generic Framework for Monitoring Continuous Spatial
Queries over Moving Objects. In: SIGMOD (2005)

16. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects.
In: IEEE ICDE, IEEE Computer Society Press, Los Alamitos (2005)

17. Xiong, X., Mokbel, M., Aref, W.: SEA-CNN:Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-temporal Databases. In: IEEE ICDE, IEEE Computer
Society Press, Los Alamitos (2005)

18. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network
Databases. In: VLDB (2003)

19. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A Threshold-Based Algorithm for
Continuous Monitoring of k Nearest Neighbors. IEEE TKDE 17(11), 1451–1464 (2005)

20. Wu, W., Guo, W., Tan, K.L.: Distributed Processing of Moving K-Nearest-Neighbor
Query on Moving Objects. In: IEEE ICDE, IEEE Computer Society Press, Los Alamitos
(2007)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 277–286, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Information Life Cycle, Information Value and Data
Management

Rudolf Bayer

Institut für Informatik
Technische Universität München

Boltzmannstrasse 3
D-85748 Garching

Abstract. Data volumes grow extremely fast. Storage capacity and cost can
easily cope with that growth, but data access is critical. However, most
information has a surprisingly short life cycle. This has a deep impact on data
management systems and leads to a new storage architecture consisting of the
two subsystems FileCache and FileStore with many advantageous properties
w.r. to reliability, availability and cost. A multidimensional database of
metadata is used to organize the data. This architecture is also suitable for
complete multimedia biographies.

Keywords: Information Life Cycle Management (ILM), Information Value,
Data Management, FileCache, FileStore, UB-Tree, Hierarchical Storage
Management (HSM).

1 Preface

The topic of his paper has been largely ignored by academic computer science, but it
is very important for commercial end even private IT. Part of this paper is speculative,
based on only a few measurements, personal observations and plausible hypotheses.
On this basis a new architecture for Information Life Cycle (ILM) and Hierarchical
Storage Management (HSM) is proposed.

2 Some Basic Facts on Data and Storage

The tremendous growth of data volumes and the life cycle of information have a
fundamental impact on data management. In industry data volumes are growing
rapidly, a factor of 1.7 per year is widely assumed. Fileservers of 10 TB serving 1.000
users are common, with personal shares of well below 10 GB. In private
environments data volumes might be growing even much faster due to significant
shifts in document types: automatic recording of voluminous digital photos, videos
and sound tracks is even more common in the private sector than in industry. The
project MyLifeBits [1] assumes a growth of 1 GB/month/person, which is well below
my own private observations and estimates.

278 R. Bayer

Is the subjective value of information growing at the same rate as our data
volumes?

Data are stored primarily on hard disks, whose price per GB has fallen dramatically
over several years and is presently at 0.5 €€ /GB or 500 €€ /TB. Jim Gray [2] estimates
that in a few years the price will be 500 €€ /PB.

The bottom line is that capacity and prices of storage are moving faster than we can
capture, and that storage is essentially free. This raises an interesting question about
reclamation of storage: To reclaim 1 GB of storage on your HD you have to inspect
and to manually delete at least 1000 files, pictures or emails, a tremendous waste of
time and mental effort, and then you have recovered a storage capacity costing just 50
cents. This is obviously a bad idea and the reason that hardly anybody does it
privately. However, in industry the capacity of personal shares on fileservers is often
limited, e.g. to less than 5 GB, and forces employees to clean up their drives/shares
periodically, a very poor management decision.

Storage of data is one aspect, a second aspect is access to data. The ratio of access
time - i.e. to scan the complete content of a HD - to capacity has been worsening
steadily over many years. At a raw disk speed of 50 MB/s the effective transfer rate as
seen by an application today is more like 5 MB/s. If data access is brute force
scanning, like for grepping or backing up files, it takes less than one second for 1 MB,
3 minutes for one GB, 2 days for 1 TB and 5.5 years for a PB. Therefore access time
is critical and often longer than the available time windows, e.g. for backup of large
fileservers over the weekend, and even parallelism can bring only limited relief.

Simply storing data is obviously of no use, if the data cannot be accessed in
reasonable time. Therefore, storage is not the issue, what we really need is something
quite different from simple storage: we need memory. For this paper I simply define
memory as the combination of storage and access:

Memory = Storage + Access

As we have just seen, storage is available almost for free. Therefore we concentrate
on access. There are only a few possibilities to achieve good access:

• The state of the art is to organize data in the hierarchical file directory of the
operating system and to memorize where you put your data: This seems to be
an impossible task for large data collections. It is identical to the problem,
which has frustrated librarians for centuries, they never know, into which
category and shelf they should put a book, since by definition interesting
books elude a unique, narrow, linear classification. Organizing books or
datafiles is an inherently multidimensional problem, which cannot be solved
by forcing them into the linear organization principles of book shelves or file
directories. Since it is so hard to remember where exactly you put your data,
you probably try to clean up and reorganize your file directories in order to
avoid chaos and lengthy search. This requires considerable discipline and
time. Most people give up again after a short “good try”.

• The next possibility of access is to use a full text index like typical search
engines. However, fulltext search has the disadvantage of yielding result sets
whose cardinality is unpredictable and difficult to control. It depends on the

 Information Life Cycle, Information Value and Data Management 279

search terms that are used in the query. To be on the safe side, people use
simple search terms and accept the order in which the search engines present
the results. This simply means that the sorting of the results, e.g. by the page
rank algorithm of Google, determines in the end what the world is reading,
certainly not an ideal situation.

• Another alternative is to consider your data objects as a large data warehouse
and to use a database of metadata in order to find and access your data. Since
the classification problem is inherently multidimensional, this approach
seems natural.

3 Usage of Data

There is little discussion in academia of how data are actually used by people. An
interesting question is what the bandwidth of a white collar person is. My
measurements of the archive system of the Leibniz Computer Centre in Munich
indicate, that on average scientists touch at most 10 files per day with a volume of less
than 10 MB. Similar measurements in a large corporation indicate, that data have a
very short life cycle of only a few days from creation through modification to the last
access. Some measurements are shown for several directories on fileservers in the
following table:

• User directories
o 71% 2 days
o 84 % 3 days
o 58 % 4 days
o 50 % 1 day

• Project directories
o 91 % 7 days
o 100% 1 day
o 91 % 1 day

• Group directories
o 76 % 1 day
o 39 % 1 month
o 84 % 1 day
o 85 % 1 month

I caution that these are isolated measurements, but they are similar to some other
measurements and might well be typical. My hypothesis is that data have indeed a
very short life cycle, comparable to a daily newspaper. But nevertheless they are often
stored for many years on premium storage and backed up anew every weekend as
complete disk images, although most of these data are unchanged since the previous
backup.

This short life cycle coincides with the observation, that the value of information is
not independent of time, but often decays rapidly. Let me give some examples:

• If you are late to catch a train, the only interesting information of highest
value to you personally is the track from which the train leaves. As soon as

280 R. Bayer

you are sitting in the right train, this information is of no further interest and
its value drops to zero instantly.

• As soon as an order of goods has been shipped, the date at which the order
was received is usually of little interest and therefore value, whereas the
shipping date is now valuable in order to estimate the projected delivery
date.

• During the presentation for this paper, the corresponding powerpoint
document is of highest value to me, after the presentation the value drops
dramatically.

It is surprising that these quite obvious observations have not influenced the way
our computer systems organize and manage data.

4 The FileCache and FileStore Architecture

In this chapter I propose a storage architecture, called FileCache and FileStore, which
takes into account the hypothesis, that data have a short life cycle and that the value of
most information decays rapidly. The following picture shows the typical architecture
of fileservers today: Many clients, e.g. 1.000, are supported by a large central
fileserver, which itself is regularly backed up via the Backup-System B, e.g. every
night or every weekend, to guard against the loss of data. There are many backup
systems B on the market, details of B are of no further interest in this paper. Old, stale
data are often stored on such fileservers for a long time and backed up again and
again, even if nothing has changed.

A

B

N
File-Server F with
Block-Interface

LAN

1

2

3

4 5

1 2 3

1

2

3

4

 SAN

Backup-System B

File-Server stores all files

The little squares in the File-Server S indicate a block oriented interface, where the
blocks of a certain file have the same colour and are usually, but not always, scattered
over the fragmented disk. To retrieve a file requires many random accesses to the
disk.

 Information Life Cycle, Information Value and Data Management 281

The new architecture arises from the simple idea to split the fileserver into two
largely independent subsystems, the FileCache and the FileStore. This is quite similar
to the split between the classical mainstore and various processor caches. Notice some
significant differences between the FileCache and the FileStore: The FileCache is
much smaller than the FileStore and the FileStore is not fragmented, since the files are
allocated sequentially.

A

B

N

LAN SAN

Backup-System B
12

3

4

5

1

2

3

4

1 2 3 1 2 3 4 5

1 2 3 4

LAN or

SAN

Shared FileCache C
= Performance Disk

FileStore S = Capacity Disk

Like in multiprocessor systems an arbitrary number of FileCaches can be served by
a central FileStore as in the following picture. In addition, some clients might have
their own local caches, yielding the typical multilevel cache as we know it from
multiprocessor systems.

The interaction protocol between FileCaches and FileStore is very similar to
conventional caches:

• All files are principally stored on the FileStore, which may also maintain an
arbitrary number of versions of data.

• All active files are in the FileCache and are copied to the FileStore when
they change, using a write through policy. This policy can use various
strategies, like observing file changes in real time or scanning the file
directories in regular, short intervals. Such intervals might be from a few
seconds to an hour depending on the nature of the application.

• Files are purged from the FileCache according to flexible rules, e.g. after a
certain time since the last access or if the FileCache has been filled beyond a
certain threshold. Purging of files from the FileCache is fast and cheap, since
they have already been copied to the FileStore. Thus purging simply means
deleting from the FileCache and adjusting the entry in the meta-database.

282 R. Bayer

A

B

N

LAN
SAN

Backup-System B

1 2 3 1

2 3 4 5

1 2 3 4

File-Store S

Clients with or without private
File-Caches

File-
Cache

File-
Cache

File-
Cache

SAN or
LAN

Performance disk is no longer a
critical ressource!

This architecture has many advantageous properties compared to classical file
servers:

• Mirroring of all important data in the FileCache and in the FileStore: by
definition, active data reside in the FileCache and are copied to the FileStore
as soon as they change

• True FileCache: The backup of the fileserver is replaced by the write
through technique of classical cache-management algorithms

• Backup: The classical backup via archive systems is only needed for the
FileStore, it runs as a background service to provide continuous backup. Due
to compression and sequential placement of files on the FileStore the backup
should be faster by at least a factor of 10 for a full backup. With incremental
backup the time critical backup windows disappear completely, since the
usual workload happens on the FileCaches and the FileStore itself has a very
low workload

• Failure Modes: FileCache and FileStore have independent failure modes
• Recovery of FileCache: If the FileCache fails it is reloaded from the

FileStore on demand in analogy to reloading the processor cache after a
process switch. This amounts to instant, nearly lossless recovery of data after
a failure of a FileCache.

• Recovery of FileStore: If the FileStore fails, the files in the FileCache are
not affected. Only minimal impact on normal processing is noticeable,
namely only if an old file is needed which is no longer in the FileCache and
happens to reside on a failed volume of the FileStore. This should be a very
rare event. Recovery of the FileStore for the failed volume runs as a
background service, while mirroring of the FileCaches continues as normal,
just to other functioning volumes of the FileStore

 Information Life Cycle, Information Value and Data Management 283

• Storage Capacity: Probably less than 10% of the total data volume is
needed as capacity for FileCaches. With compression only about 50% of the
total data volume is needed as capacity on the FileStore

• Storage Classes: High performance fibrechannel-disks should be used only
for large central FileCaches, cheap SATA-disk for the FileStore and local
caches

• Cost: The total cost of such an architecture should be much lower than for
conventional file-servers

• Availability of data is obviously extremely high, comparable to a PLATIN
system with complete real time mirroring technique

• No lost work: The loss of data and work is limited by the write through
interval of the FileCaches, which should be at most a few minutes

The extremely short life cycle of data hypothesized before suggests that very small
FileCaches of 10 % of the stored data volumes should suffice. Cache management
algorithms like LRU replacement can probably be taken from main memory caching
and adapted easily to file caching. An interesting modification of conventional
algorithms might be replacement strategies depending on the type of files which is
related to the length of life cycles, e.g. ZIP and PDF files seem to have particularly
short life cycles and could be replaced after a very short time.

5 FileCache Architecture for Databases

The following approach might make the FileCache architecture suitable for databases:
The key idea is to distinguish between life and stale data in a database. Therefore, we
simply split a relation R into two disjoint tables R1 and R2. R1 shall contain live data
and R2 stale data, therefore R = R1 + R2. A separating predicate, e.g.

ρ = (create_date > last_archive_date)

distinguishes between the tuples in R1 or R2 resp.

R1 := ρ (R)
R2 := not ρ (R)

R is defined as the relational view R1 + R2
An archiving transaction runs as a cron job to move tuples from R1 to R2.
The classification of data into live and stale data can easily be generalized to an

arbitrary number of stages. Just consider the standard order and delivery example.
Here the order table could be split into:

R1 = orders received,
R2 = orders in production,
R3 = orders shipped,
R4 = orders under warranty,
R5 = orders in archive
View R = R1 + R2 + R3 + R4 + R5

284 R. Bayer

A concrete example using just two tables would need the following declarations:

declare table R1 (order_received datetime, …)
declare table R2 (order_received datetime, …)
create view R as
 select * from R1 union select * from R2
declare table Archive_Date (last_move datetime, …)
declare @move_date datetime

The following transaction moves stale data older than three weeks from R1 to R2:

begin tran
select @move_date = DATEADD (DAY, -21, GETDATE())
insert into R2
 select * from R1 where order_received < @move_date
delete from R1 where order_received < @move_date
delete Archive_Date
insert into Archive_Date values (@move_date)

commit tran

The user and application programmer only sees relation R and should not be
bothered with this complex internal splitup of R. He might formulate a query like

query q(R) = select * from R where γ (R)

Since the internal splitup of R is known to the query optimizer via the system tables, it
can rewrite this query as:

if (γ and ρ) (R) = empty then γ (R2)
 else if (γ and not ρ) (R) = empty then γ (R1)
 else γ (R)

6 Integration with Information Lifecycle Management

In industry the placement of files, emails, etc in hierarchical storage systems, in
particular in long term archiving systems, is usually controlled via complex rules
dictated by legal requirements like the Oxley-Sabanes act in the US. These rules can
be used by the database for the metadata - which is part of the FileStore subsystem –
to decide whether to delete data or to move them to an archive instead. In addition
this database could easily retain the metadata also for the archived data and guarantee
fast search and retrieval even of archived data.

This raises the question which metadata should be collected and stored in the meta-
database. The collection of metadata must be fully automatic to be effective. Even
semantic annotations to the metadata must be fully automatic and must not be done by
people, the latter would be by far too unreliable. In addition a fulltext index could be
maintained as an option. It seems that at least the following metadata can and should
be collected automatically:

 Information Life Cycle, Information Value and Data Management 285

• Domain and user
• Author
• Legal owner
• Directory path
• Filename
• Version number
• File extension
• Time of creation
• Time of last update
• Time of last access
• GPS position where the file was created, this is interesting for pictures and

videos
• URI of original file
• Signature
• etc.

Now it is clear that our data collection has outgrown ordinary file directories and is
in reality a multidimensional data warehouse of data objects. To organize the
metadata for such a data warehouse multidimensional indexes like UB-trees [3], [6]
are required and very efficient.

7 The Quest for Eternity and Perfect Personal Memories

Man seems to have an innate quest for eternity and spends considerable effort in time
and money to record and preserve his achievements and experiences as long as
possible. In the past only rulers and the very rich could afford to create monuments in
order to be remembered long after their days on earth. Egyptian pharaos and Roman
emperors forced a significant part of their people to create glorious monuments [4],
the very rich like the Medici spent large sums to preserve their memory in splendid
works of art [5].

Today, everybody can preserve as much of her life as she wants in a multimedia
biography of arbitrary detail [1]. The project MyLifeBits arrives at estimates for the
datavolumes and the number of objects that are assembled over a lifetime: 1 TB of
data and about 1 million data objects. The cost of 1 TB of cheap disk storage is 500 €€
today (2007), i.e. as much as a digital camera which most people can and do afford.
The recording equipment – digital camcorders, cameras, notebooks - is available and
widespread. To put a million objects into a file directory does not seem feasible, but
search engines and databases for metadata solve the problem. The metadata for a
complete personal memory are the same as mentioned in the previous chapter and can
be recorded automatically. The database to store, organize and index these metadata
to solve the access part of the memory problem is at most 1 GB and fits easily on a
memory stick.

This means that we have the affordable technology today to record personal
multimedia memories of arbitrary detail and quality. Will people do it? Will they
spend a significant part of their lives to watch the other parts on multimedia devices?

286 R. Bayer

The previous examples in this chapter and the way people use digital media today
suggest that many will.

Even if people do not actively record their lives, others do it already today. The
moment you use your mobile phone your position is recorded by your mobile phone
provider with sufficient accuracy to reconstruct your complete lifetrack on this earth.
Presently these data are stored only for a limited time because of privacy acts, but we
all experienced how quickly laws are changed under exceptional circumstances by the
government on behalf of law enforcement and with the justification of increased
security in the fight against terrorism. The sheer amount of data is no longer
prohibitive, recording 60 positions per day, i.e. one position every 10 minutes you are
awake during your whole life just requires 50-100 MB of data and fits on your
memory stick in addition to your meta-database mentioned above.

What is the impact of such perspectives on our personal life? The ability to forget
certain details of the past might be essential for our survival and for our interactions
as social human beings. With a complete and perfect personal memory we no longer
forget, and nobody knows what the consequences will be.

We computer scientists have already created the technology to record and organize
complete personal life memories. We will probably have little control on how this
technology will be used in the future. During a recent discussion with colleagues there
was unanimous agreement, that this technology will be used by many. The least we
can and must do is to think about and to discuss the consequences, and to caution
those who are starting to use it.

References

1. Bell, G.: http://research.microsoft.com/barc/mediapresence/MyLifeBits.aspx
2. Gray, J.: http://www.research.microsoft.com/~Gray/talks/Gray%20IIST%20 Personal%20

Petabyte%20Enterprise%20Exabyte.ppt
3. Bayer, R.: The universal B-Tree for multidimensional Indexing: General Concepts. In:

World-Wide Computing and Its Applications’97 (WWCA’97), Tsukuba, Japan (March
10-11, 1997)

4. Trajan’s Column: http://cheiron.humanities.mcmaster.ca/~trajan/
5. Gozzoli, B.: Procession of the Magi, http://www.wga.hu/frames-e.html?/html/g/gozzoli/

3magi/ index.html
6. Markl, V., Ramsak, F., Pieringer, R., Fenk, R., Elhardt, K., Bayer, R.: The TransBase

HyperCube RDBMS: Multidimensional Indexing of Relational Tables. In: Proc. of 17th
ICDE, Heidelberg, Germany (2001), http://wwwbayer.in.tum.de/cgi-webcon/webcon/
lehrstuhldb/details/Veroeffentlichungen/num/4/1

Vague Queries on Peer-to-Peer XML Databases

Bettina Fazzinga, Sergio Flesca, and Andrea Pugliese

DEIS, University of Calabria
Via P. Bucci, 87036 Rende (CS) Italy

{bfazzinga, flesca, apugliese}@deis.unical.it

Abstract. We propose a system, named VXPeer, for querying peer-to-peer XML
databases. VXPeer ensures high autonomy to participating peers as it does not
rely on a global schema or semantic mappings between local schemas. The basic
intuition is that of “vaguely” evaluating queries, i.e., computing partial answers
that satisfy new queries obtained by transformation of the original ones, then
combining these answers, possibly on the basis of limited knowledge about the
local schemas used by peers (e.g., key constraints). A specific query language,
named VXPeerQL, allows the user to declare constraints on the query transforma-
tions applicable. The system retrieves partial answers, using an intelligent routing
strategy, then attempts at combining those referring to the same real-world object.

1 Introduction

Peer-to-Peer systems (P2P) are massively distributed systems aimed at sharing large
amounts of resources. In the P2P paradigm, no apriori distinction exists between clients
and servers: on the basis of its particular needs, each node in a P2P network can act as
a client or server for other nodes. Several kinds of P2P infrastructures have been pro-
posed in the recent past. In unstructured P2P systems, no restriction is imposed on the
resources shared by peers and on their placement in the network topology [11]. In hy-
brid P2P systems, some distinguished peers (super-peers) act as resource information
indices, that maintain meta-information about the resources made available by the dif-
ferent peers, and are possibly organized in P2P networks themselves [6,17,18]. Finally,
structured systems support efficient addressing and lookup capabilities by strictly con-
straining both the distribution of resources and the network topology [21,23].

As regards data management in P2P networks, classical systems used simple
(name, file) pairs as their logical data model, and keyword-based querying schemes.
Recently, the need of supporting more complex models, such as relational and
semistructured, has become a major issue. In particular, XML data management in P2P
networks has received significant attention [15]. Many recent proposals exploit seman-
tic schema mapping techniques (possibly obtained through some form of automation) to
obtain proper views over XML data coming from different sources. These approaches
are very powerful in expressing complex XML queries on P2P databases. However, they
suffer from some shortcomings. First, human effort is often needed in order to define
the mappings, which limits the flexibility of the network. Moreover, as semantic cor-
respondences are typically combined transitively among different peers, data provided
by a peer can be correctly interpreted only if the peer is reachable through a “chain” of

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 287–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

288 B. Fazzinga, S. Flesca, and A. Pugliese

semantic correspondences during query evaluation; therefore, the typical volatility of
peers becomes a critical aspect. Finally, since every peer expresses queries on its own
local schema, it can only retrieve information mentioned in that schema.

In this paper we propose a hybrid P2P system, named VXPeer, that is oriented at
XML data retrieval. The system guarantees high peer autonomy and enables the re-
trieval of meaningful information over the network using XPath-based queries. In our
approach, peers are allowed to store and/or export data employing different schemas
and terms, without the need to define semantic mappings with respect to their neigh-
bors. Moreover, in each different peer, a same object can be represented with respect
to different properties, by means of what we call partial data. Our system attempts at
retrieving the objects that satisfy a given query, even if their description is spread across
many peers. In addition, the system intelligently narrows the search of peers that are
able to contribute to query results, by exploiting compact synopses of their XML data.

As a motivating example, consider the scenario described in Fig. 1. Three differ-
ent peers store data about the same book, but each peer employs a different schema
and focuses on different properties of the book (Figs. 1(a), 1(b), and 1(c)). In this
scenario, a user interested in finding information about books written by the author
“Silberschatz” and having a price lower than 70, may issue an XPath query q of the
form //book[author=’Silberschatz’][price<70]. Fig. 1(d) shows a tree pat-
tern query [16] corresponding to q, where the dashed box denotes the output node. None
of the XML fragments shown in Figs. 1(a), 1(b), and 1(c) is an exact answer to q; there-
fore, the evaluation of q over the three fragments yields no result. However, the peers
contain enough information to correctly characterize the book of interest and therefore
answer q.

Fig. 1. Motivating example

Vague Queries on Peer-to-Peer XML Databases 289

2 Vague Queries on P2P XML Databases

In this section we define a query language, named VXPeerQL, whose flexibility enables
users to find the information they are interested in, even when such information is dis-
seminated in different peers of the network. The language is essentially a specialization
of XPath. For the sake of conciseness, we do not consider attributes in the definition of
the language.

As observed in Section 1, different peers may provide information about the same
object, and in general each peer may describe a subset of the object’s characteristics. In
the example of Fig. 1, indeed, every peer provides an XML element containing informa-
tion about a same book, but none of these elements satisfies query q. However, the book
is an answer to q, as it has been written by “Silberschatz” and its price is 45. Thus, an
XML P2P system should return an object describing the book as an answer to query q.

A basic query evaluation strategy on P2P XML databases would be that of collecting
all available XML elements, merging those associated with the same object, and finally
check whether the merged elements satisfy a given query. Obviously, it is preferable
to retrieve only those elements which satisfy some of the conditions expressed by the
query, thus avoiding the transmission of useless data. This can be done by obtaining
transformed versions of the query where some of the conditions are relaxed, in order to
match elements which are candidate to be answers to the query (partial answers). We
call this process vague query evaluation.

For instance, in the scenario of Fig. 1, we can transform q into three queries
q1, q2, and q3, to be evaluated over the three peers. In particular, q1 is obtained by
relaxing the parent-child relationship between the book and author elements to an
ancestor-descendant one, and removing the subtree rooted at the price element. q2

is obtained by renaming the root element from book to volume, and removing the
subtree rooted at the author element. Finally, q3 is obtained by removing the subtree
rooted at the price element and adding a ∗-labeled descendant to the author
element. Hence, the answer to q can be computed by first issuing q1, q2, and q3 on
P1, P2, and P3, respectively, then merging the retrieved elements to provide the set
{e1, e2, e3} as the final answer to q.

VXPeerQL is based on XPath, and in addition it supports several basic transforma-
tions applicable to XPath expressions. Specifically, the basic transformations applicable
to an XPath step of the form axis::l[f] are the following:

– node renaming: l is replaced with a different label l′;
– node deletion: the step is replaced with descendant-or-self::∗[f];
– edge relaxation: the step is replaced with descendant::l[f].

Moreover, transformations are applicable to XPath predicates, which appear in the
leaf nodes of the corresponding tree pattern query. Let f be an XPath comparison predi-
cate of the form text() op ’text’, where op is a comparison operator; the language
supports the following transformations:

– ∗-node insertion: f is replaced by descendant::∗[f];
– relaxation of equality predicate: if the comparison operator used in f is =, f is

replaced with contains(text(),’text’);
– predicate deletion: f is deleted.

290 B. Fazzinga, S. Flesca, and A. Pugliese

The application of a basic transformation to an XPath expression yields a trans-
formed version of the original expression and implies a transformation cost. The cost
implied by the application of a node renaming is weighted with a value representing the
semantic dissimilarity between the specified label and the labels found in the data. The
dissimilarity value between labels is computed by a semantic distance function pro-
vided by an external ontology. Given an XPath expression t and a transformed version
t′ of t, the cost associated with t′ is the sum of the transformation costs of the basic
transformations applied to t for obtaining t′. In order to avoid answers that are too dif-
ferent from those requested by the original expression, only answers satisfying relaxed
expressions whose overall transformation cost is under a user-specified cost threshold
are considered.

VXPeerQL provides two additional ways of characterizing the answers to be col-
lected. First, prohibited transformations can be specified. Second, some transformations
can be marked and the maximum number (maxm) of marked transformations applica-
ble can be specified. In the remainder, we will focus on the three basic query types:

– exact queries, where no transformation is allowed;
– count-based queries, where some transformations are marked and maxm is speci-

fied;
– cost-based queries, where no transformation is marked.

As an example of VXPeerQL query, consider the one shown in Fig. 2. Here, all
basic transformations are allowed except the relaxation of the child axis between nodes
book and price. Moreover, the deletions of nodes price and author are marked.
Hence, in this case, specifying maxm = 1 would mean that query answers obtained by
removing both author and price nodes must not be considered part of the result.

Fig. 2. VXPeerQL query

The relaxation of tree pattern queries has been proposed in [2,22], where the cost as-
sociated with the transformations indicates the “semantic” distance between the trans-
formed query and the original one. We adopt a similar approach to query relaxation. In
addition, as we aim at combining partial results coming from different peers, we dis-
tinguish two levels at which to apply relaxation: during the retrieval of partial answer
(local relaxation) and when building final answers (global relaxation). Every query is
thus evaluated with respect to local and global cost thresholds and number of allowed
transformations. Local values are in general assumed to be higher than global ones,
as query evaluation should be less restrictive when gathering candidate elements than
when computing final answers: deeper modifications should be allowed to the original
query, but when partial answers are merged, the resulting elements should better satisfy
the original query.

Vague Queries on Peer-to-Peer XML Databases 291

3 The VXPeer System

Our proposed system implements the simple architecture shown in Fig. 3. In particular,
the left-hand side of the figure depicts the modules implemented by peers, and its right-
hand side depicts the modules implemented by super-peers. Each peer is connected to
a single super-peer.

Querying API /

User interface

Local

query engine

Global

query engine

Query engine

Local

XML

repository

P2P network

sublayer

Peer

Network

Synopsis

builder

Super-peer

Data

Synopsis

repository P2P network

sublayer

Routing

module

Fig. 3. VXPeer architecture

Besides the underlying database management subsystem, the architecture of peers
comprises four main modules: the P2P network sublayer, the Synopsis builder, the
Querying API/User interface, and the Query engine. The P2P network sublayer man-
ages the interactions with the underlying network. The synopsis builder computes con-
cise representation of the stored XML data (whose structure will be detailed in the
following), and sends them to the super-peer of reference, through the P2P network
sublayer. The querying API/user interface module manages the interactions with users.
It provides an API for submitting queries in their textual form and collecting results. A
user interface allows the user to (i) specify queries in both graphical and textual form;
(ii) obtain a graphical representation of the results as they are received (as it will be
clearer in the following, the systems aims at firstly contacting the peers that are likely
to provide results); (iii) decide, on the basis of his/her degree of satisfaction, when to
stop the process. The query engine implements the query evaluation algorithm and the
logic for combining partial answers coming from different sources. These functionali-
ties are managed separately by two submodules:

– The Local query engine applies the vague query evaluation process over the local
XML database, producing partial answers. Such answers may bring along part of
the local schema, for extracting proper information (e.g., key constraints) which
is subsequently used to evaluate the degree of dissimilarity among different XML
elements. Moreover, each XML element in the answers is paired with the query
transformation cost introduced to match the actual data. The results of the local
query evaluation process are returned to the global query engine if the query was
submitted to the local peer, otherwise they are sent back through the P2P network
sublayer. The local query engine also connects to an external ontology (not shown in
the figure) that provides the semantic distance function between two element names.

292 B. Fazzinga, S. Flesca, and A. Pugliese

– The Global query engine is employed when a query is issued locally. It forwards the
query to the super-peer of reference and collects answers through the P2P network
sublayer, then completes the global query evaluation process by joining the partial
results obtained and returning them to the user through the querying API. More
details on the overall vague query evaluation process are given in Section 3.1.

The architecture of super-peers comprises three main modules: the Synopsis repos-
itory, the P2P network sublayer, and the Routing module. The P2P network sublayer
receives data synopses from peers and stores them into the repository. Moreover, it re-
ceives vague queries from peers and passes them to the routing module. The routing
module works in co-operation with the other super-peers. It gathers data synopses from
its local repository and from the repositories of other super-peers, then it applies an ef-
ficient routing strategy that, by exploiting the information in the synopses, is capable of
(i) reducing the number of query issued on non-relevant peers, i.e., peers whose local
schema ensures that the local query evaluation would not provide results; (ii) giving
priority to peers that will possibly provide more results. This routing strategy is based
on selectivity estimation techniques that make use of XSketch data synopses [12], and
will be described in Section 3.2.

3.1 Evaluating Vague Queries

We now briefly describe the overall process of vague evaluation of a VXPeerQL query
over a set of peers. The process is composed of 4 main steps:

Local evaluation. The query is evaluated over each peer by possibly applying suitable
transformations. At each step of the evaluation, the evaluation algorithm tries to
apply all possible transformations to a query step that make it match the available
data while not violating the local thresholds.

Joining. The partial answers (XML elements) yielded by the local evaluation which
are likely to refer to the same object are joined. This process is based on a function
measuring the dissimilarity of the objects two elements describe by looking at their
keys. XML elements whose dissimilarity value is under a certain join threshold are
grouped in sets (named vague XML elements). The output of this step is a set of
vague XML elements, each representing a query answer and having an “overall”
transformation cost.

Selection. Vague elements whose associated transformation cost is under the global
threshold are selected.

Pruning. As the joining step may produce vague elements that are subsets of others
and thus needless in the final result, redundant vague elements are pruned from the
result. Note that, as shown in [9], if the dissimilarity function has certain properties,
it is feasible to prune intermediate results during query evaluation, thus notably
increasing the efficiency of the query evaluation process.

A more detailed description of the vague query evaluation process can be found in [9].

3.2 Routing VXPeer Queries

In this section we describe the routing strategy implemented by the super-peers in VX-
Peer. This routing strategy is based on the use of the XSketch synopses proposed in [12].

Vague Queries on Peer-to-Peer XML Databases 293

The XSketch synopsis associated with an XML document is a graph whose nodes rep-
resent sets of elements in the document that have the same name. Each node in the
synopsis is annotated with the cardinality and the shared element name of the corre-
sponding set. An edge between two nodes n1, n2 represents a parent-child relationship
between an element in n1 and an element in n2. Moreover, the edge from n1 to n2 is
labeled with F iff every element in n1 has at least one child in n2; the edge is instead
labeled with B iff for every element in n2, its parent is in n1. For instance, in the docu-
ment represented by the synopsis in Fig. 4, (i) there are 2 book and 4 title elements;
(ii) each book and paper has a title; (iii) each book has an isbn, and isbns are
children of books only; (iv) the 4 authors elements are children of both books and
papers, but all of the 11 author elements are children of authors elements.

book (2) conference (1)

DB (1)

isbn (2) title (4) year (1)name (1)paper (2)authors (4)

author (11)

B,F B,F

B,F

B,F

B,F
B,F

B,F
F

F

F

F

Fig. 4. An example XSketch synopsis

An XSketch synopsis can be exploited to estimate the selectivity of an XPath ex-
pression, that is the number of XML elements that are selected by the expression. In
general, the selectivity estimation of an XPath expression q using a synopsis S is per-
formed by first computing the whole set of embeddings of q in S, then summing up the
selectivity associated with each embedding. In particular, our algorithm uses the algo-
rithm proposed in [12] to compute the selectivity of an XPath query q w.r.t. a node n of
the synopsis, denoted as sel(q, n).

Selectivity estimation is used by the VXPeer query routing module to compute an
overall score given to a synopsis with respect to a VXPeerQL query. This score is then
employed to drive routing decisions, i.e., more priority is given to the peers whose syn-
opses exhibit higher scores. The score given to a synopses w.r.t. a query is computed
by first removing textual filters from the query, as this information is not represented
by the synopsis. Then, for each node in the synopsis, the selectivity of the transformed
versions of the query w.r.t. the node is computed. Since a transformed query does not
represent all the original query conditions, we weigh the selectivity associated with a
node in the synopsis with the “relative” cost of the transformed query which selects the
node. Given a VXPeerQL query q and a transformed query rq, the relative transforma-
tion cost of rq is given by the cost for obtaining rq from q (cost(rq, q)) divided by the
maximum transformation cost for every possible transformed query obtainable from q
(maxcost(q)). The score given to a synopsis S w.r.t. a query q is defined as follows:

score(q,S) =
∑

n∈S
maxrq∈R(q,n)

(

sel(rq, n) ∗ cost(rq, q)
maxcost(q)

)

294 B. Fazzinga, S. Flesca, and A. Pugliese

whereR(q, n) is the set of transformed queries obtainable from q, without violating cost
thresholds, that return node n when evaluated on S. Note that the formula correctly rules
out non-output nodes as no transformed query exists for them under the cost thresholds.

4 Experimental Results

In this section we show some preliminary experimental results assessing the effective-
ness of our proposed system. The experiments have been performed by issuing queries
against a network of 100 peers providing clinical and diagnostic data. The peers adopted
different schemas (partially shared with the other peers) and differently-structured keys
comprising social security, fiscal, and personal data. 10 of the 100 peers acted as super-
peers and were part of a fully-connected network; each of them was connected to 9
peers. The total data size was 100MB. The 4 queries issued (Q1, Q2, Q3, and Q4)
returned elements describing patients, with decreasing selectivity: Q1 imposed condi-
tions on a specific disease and year of hospitalization; Q2 and Q3 looked for patients
who suffered from two and three specific diseases, respectively; Q4 also imposed con-
ditions on the surgeries undergone by the patients. We employed three different global
cost thresholds, corresponding to the 50% (high), 30% (medium), and 10% (low) of
the maximum cost of the transformed versions of the queries. The local cost thresh-
old has been set equal to the global one increased by a 25%. Moreover, we made the
conservative choices of setting the global maximum number of marked transformations
applicable equal to 1 and the local one equal to the 50% of the number of marked trans-
formations in each query. The experiments have been run on a LAN with 100 Pentium
IV machines each equipped with 512MB RAM. The queries have been executed using
a two-minutes timeout.

Fig. 5(left) shows the number of correct answers returned. Here, a vague element is
assumed to be an incorrect answer if either it contains an element describing an object
that is not an answer to the query, or if it contains two elements describing different

Correct answers - cost-based queries

0

10

20

30

40

50

60

70

80

90

100

Q1 Q2 Q3 Q4

High treshold

Medium threshold

Low threshold

Exact

Average precision and gain - cost-based queries

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

high medium low

Threshold

Precision

Gain

Correct answers - count-based queries

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4

High treshold

Medium threshold

Low threshold

Exact

Average precision and gain - count-based queries

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

high medium low

Threshold

Precision

Gain

Fig. 5. Experimental results

Vague Queries on Peer-to-Peer XML Databases 295

objects. The figure compares the number of correct answers obtained by adopting cost-
based and count-based evaluation with the baseline of exact evaluation. Fig. 5(right)
reports the average precision obtained, defined as the ratio between the number of cor-
rect answers and the total number of answers. We do not report the recall, that is the
ratio between the number of correct answers and total number of objects satisfying the
query, as it is impractical to assess the total number of satisfying objects. We instead
report a parameter estimating the recall increment obtained by relaxing the query; this
parameter, called gain, is defined as ans/exAns− 1 where ans is the number of cor-
rect answers to the query, and exAns is the number of correct answers to the exact
version of the query. The experimental results show that in all cases relaxed queries al-
low the retrieval of more answers than exact queries (the gain was 45.5% on average for
cost-based queries and 52.2% for count-based queries) with a generally high precision
(97.8% on average for cost-based queries and 98.3% for count-based queries).

We also evaluated our proposed scoring function by looking at how the number of
partial answers returned by peers is related to the score given to their synopses. Fig. 6 re-
ports the percentage of partial answers retrieved as the evaluation proceeds; the X-axis
reports the percentage of peers already contacted (we recall that peers are contacted
in decreasing score order). We averaged the values over the 4 cost-based queries with
medium threshold. The results obtained show that the routing policy gives proper prior-
ity to the peers that are more likely to contribute to the query results. Specifically, in the
case depicted in the figure, more than 80% of the total number of answers are returned
to the user after having accessed just 40% of the contributing peers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

% of contacted peers

%
o

f
re

s
u

lt
s

re
tr

ie
v

e
d

Fig. 6. Effect of the routing policy

5 Related Work and Conclusions

Significant research efforts have recently been made to make P2P infrastructures capa-
ble of supporting complex data models and expressive querying languages [1,5,13,19].
Several solutions have also been proposed to the problem of XML data sharing and
querying in the context of P2P networks [7,8,14,20,24,25]. For instance, in the Hep-
ToX [7] system, schema correspondences are established using visual annotations and
queries against a local peer schema are translated according to the schemas of its neigh-
bors using schema correspondences. In DBGlobe [20], data are wrapped by services and
distributed indexes are used to discover peers that offer an appropriate service. Infor-
mation exchanged between peers is expressed in a language supporting calls to services

296 B. Fazzinga, S. Flesca, and A. Pugliese

embedded in XML data. In PIAZZA [24] each peer stores the XMLSchema of its data
and mappings between this schema and those of its neighbors. Query processing relies
on the propagation of the reformulated query to the neighbors, according to the map-
pings. Techniques for pruning paths in the reformulation process and for minimizing
the reformulated query are also applied.

Approaches to the problem of vague XML querying have also been proposed, tar-
geted at query answering over single XML documents [2,3,4,10,22,25]. None of the
proposed approaches tackles the problem of integrating partial XML data coming form
different sources. In particular, [22] proposes a query language that allows node in-
sertion, deletion, and renaming, and employs a bottom-up query evaluation algorithm
based on a list algebra. Costs are associated with labels and possible node renamings are
chosen in advance and completely specified by the user, independently of the available
data. In [2], allowed transformations are node renaming, leaf deletion, subtree promo-
tion, and edge relaxation. The evaluation algorithm works with complex join plans that
embed all possible transformations. The proposed querying mechanism only supports
node renamings w.r.t. fixed name hierarchies that must be provided.

In this paper we proposed a system for querying P2P XML databases. The system
ensures high autonomy to participating peers, as it does not rely on a global schema
or semantic mappings. Nonetheless, it enables the retrieval of meaningful results by
combining partial answers coming from different peers, through the use of (limited)
knowledge about their local schemas. We also proposed an intelligent routing tech-
nique that proved useful in improving the efficiency of the distributed query evaluation
process.

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Building internet-
scale semantic overlay networks. International Semantic Web Conference, pp. 107–121
(2004)

2. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree pattern relaxation. In: Jensen, C.S., Jeffery,
K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS,
vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

3. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and content
scoring for XML. In: VLDB (2005)

4. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: Flexible structure and full-text
querying for XML. In: SIGMOD Conference, pp. 83–94 (2004)

5. Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R.J., Mylopoulos, J.: The
hyperion project: From data integration to data coordination. In: SIGMOD Record (2003)

6. http://www.bittorrent.com
7. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R.: HePToX: Marrying

XML and heterogeneity in your P2P databases. In: VLDB, pp. 1267–1270 (2005)
8. Comito, C., Patarin, S., Talia, D.: PARIS: A peer-to-peer architecture for large-scale semantic

data integration. In: DBISP2P (2005)
9. Fazzinga, B., Flesca, S., Pugliese, A.: Vague queries on heterogeneous XML data

sources. Technical Report (2006), http://si.deis.unical.it/ apugliese/
vague.pdf

10. Fuhr, N., Großjohann, K.: XIRQL: An XML query language based on information retrieval
concepts. ACM Trans. on Information Systems (2004)

http://www.bittorrent.com
http://si.deis.unical.it/~apugliese/vague.pdf
http://si.deis.unical.it/~apugliese/vague.pdf

Vague Queries on Peer-to-Peer XML Databases 297

11. http://www.gnutella.com
12. Polyzotis, N., Garofalakis, M.: XSKETCH Synopses for XML Data Graphs. ACM Transac-

tions on Database Systems 31(3), 1014–1063 (2006)
13. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.: Querying the

internet with PIER. In: VLDB, pp. 321–332 (2003)
14. Kokkinidis, G., Christophides, V.: Semantic query routing and processing in P2P database

systems: The ICS-FORTH SQPeer middleware. In: Lindner, W., Mesiti, M., Türker, C., Tz-
itzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 486–495. Springer, Heidel-
berg (2004)

15. Koloniari, G., Pitoura, E.: Peer-to-peer management of XML data: Issues and research chal-
lenges. In: SIGMOD Record (2005)

16. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J. ACM 51(1),
2–45 (2004)

17. http://www.napster.com
18. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M.,

Risch, T.: EDUTELLA: A P2P networking infrastructure based on RDF. In: WWW, pp.
604–615 (2002)

19. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: A P2P-based system for distributed data
sharing. In: ICDE 2003, pp. 633–644 (2003)

20. Pitoura, E., Abiteboul, S., Pfoser, D., Samaras, G., Vazirgiannis, M.: DBGlobe: A service-
oriented P2P system for global computing. In: SIGMOD Record (2003)

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001 (2001)

22. Schlieder, T.: Schema-driven evaluation of approximate tree-pattern queries. In: Jensen, C.S.,
Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, pp. 514–532. Springer, Heidelberg (2002)

23. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. In: SIGCOMM 2001, pp. 149–160
(2001)

24. Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-data management systems.
In: SIGMOD Conference (2004)

25. Theobald, A., Weikum, G.: Adding Relevance to XML. In: WebDB (Informal Proceedings),
pp. 35–40 (2000)

http://www.gnutella.com
http://www.napster.com

Proximity Search of XML Data Using Ontology

and XPath Edit Similarity

Toshiyuki Amagasa1,2, Lianzi Wen1, and Hiroyuki Kitagawa1,2

1 Graduate School of Systems and Information Engineering,
Department of Computer Science

2 Center for Computational Sciences,
University of Tsukuba

1–1–1 Tennodai, Tsukuba 305–8573, Japan
{amagasa, kitagawa}@cs.tsukuba.ac.jp, moon@kde.cs.tsukuba.ac.jp

Abstract. XML data is explosively increasing, and a large amount of
XML data, in which similar contents are described using different tag
names and structures, have been emerging as a consequence. In such
a situation, one cannot write a query against such XML data unless
he/she knows the structure of the data. In this research, we propose a
scheme to cope with this problem. Specifically, we expand XPath queries
by replacing tag names with similar ones with the help of ontologies.
In addition, we try to realize (structural) proximity matching of path
expressions using edit similarity, which is a similarity measure based on
edit distance. We also discuss application of SSJoin, which is an operator
to support similarity joins in relational database systems, for speeding up
the proposed scheme. We finally show the effectiveness of the proposed
method by a series of experimentations.

1 Introduction

For the past several years, XML (Extensible Markup Language) [1] has become
a ubiquitous format for electronic data representation and exchange. XML is a
meta-language for (semi)structured data; any tree-structure can be represented
in terms of nested elements in plain text. For this brevity, growing number of
applications in B2B, B2C, Web services, e-Sciences, and e-Governments use XML
as their data formats.

Because of the explosive diffusion of XML, huge amount of information re-
sources written in XML is available in the Internet. For this reason, it is essential
that we are able to locate portions of XML data of interest. XPath (XML Path
Language) [2] is a language for locating arbitrary portions of XML data in terms
of path expressions. Due to its importance, XPath has been used in many appli-
cations and related standards, such as XSLT [3] and XQuery [4], as a (simple)
query language or a sub-language.

A remarkable observation here is that there are many cases where similar
contents are described with different XML schemata1. Let us take bibliographic
1 We use the term “XML schema” to denote schemata for XML data in a general

sense, and discriminate it from W3C XML Schema.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 298–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Proximity Search of XML Data Using Ontology and XPath Edit Similarity 299

databases for example. As is well-known for researchers, many academic so-
cieties, such as ACM and IEEE-CS, publish their bibliographic data in digital
libraries, and some of them are also provided in the form of XML data. Although
such data have similar contents, their (document) structures are different with
each other in many cases. Such situations give rise to several problems. One is
diversity of tag names among XML data, that is, similar contents may be de-
scribed in different tag names. For example, information about papers may be
described using paper tag in an XML data. However, in another data, article
tag may be used. Another problem is structural difference among XML data.
For example, in an XML data, authors of a paper may be represented with a
path like /papers/paper/authors/author, while /bib/paper/author may be
used in another data. In such situations, an XPath query, which is tailored for
an XML data, cannot be applied to other XML data unless the underlying XML
schema is unified.

To cope with this problem, we propose a scheme that allows us to apply an
XPath query designed for known XML data to those XML data whose structure
is not known. Specifically, given an XPath query, we attempt to expand it with
the help of ontologies, by rewriting tag names with different ones which are ex-
pected to describe similar contents. Another technique proposed in this paper is
proximity matching of path expressions using edit similarity. The edit similarity
is a similarity measure between a pair of sequences, which can be computed from
the edit distance between them. In addition, in order to compute edit similarity
efficiently, we employ SSJoin [5], which is a primitive operator for similarity joins
in relational databases. This enables us to match large amount of different but
similar path expressions efficiently.

The rest of this paper is organized as follows. Section 2 describes some related
works. In Section 3, our proposed scheme is presented and Section 4 is to discuss
the proposed system based on the scheme, The effectiveness is evaluated in
Section 5, and Section 6 concludes this paper.

2 Related Work

In the context of relational databases, similarity joins have been well studied in
order for proximity matching of structured data [6].

Meanwhile, XML has been dominated as a de facto standard of data represen-
tation, and many researchers have devoted on the issues of proximity search and
similarity join on XML data. Liang et al. [7] proposed a scheme for similarity
join over two distinct XML data. In their approach, for each pair of extracted
XML subtrees, similarity of text contents and path expressions are computed,
and they are joined if the similarity is higher than a given threshold. Although
they address the problem of proximity matching over XML path expressions,
their approach is quite simple in the sense that they just count the number of
shared tag names over two distinct path expressions.

In order to deal with the heterogeneity of XML data, a number of researchers
addressed the problem of proximity searching of XML data. For example,

300 T. Amagasa, L. Wen, and H. Kitagawa

Amer-Yahia et al. [8] proposed a scheme for proximity search on XML data
using the technique called tree pattern relaxation. A user query is given in terms
of a tree pattern consisting of nodes and weighted edges. A tree pattern can be
relaxed in order to control the number of matching query results. For a given
query, the ranking of candidate results is done by computing scores of each
candidate in consideration of tree pattern weights.

It is well known that tree edit distance (TED) [9] has been used to measure
structural similarity over XML fragments. It is defined as the minimum number
of operations over nodes, such as insertion, deletion, and replacement, necessary
to transform a tree to another. However, TED is costly to compute, and it is
therefore difficult to apply them to massive data, consequently.

In this paper, we attempt to investigate a scheme for proximity matching of
path expressions rather than subtrees, with the aim of introducing more detailed
measurements based on ontologies and edit similarity. In particular, most of the
related works are parameterized by lexical choices, whereas our proposed scheme
uses ontological information to overcome the limitations. Furthermore, we make
the best use of the power of RDBMSs to speed up the processing.

3 The Proposed Scheme

For the purpose of proximity matching between a pair of path expressions, we
attempt to use ontologies for expanding tag names and edit similarity for eval-
uating structural similarity between the paths.

3.1 Tag Name Expansion Using Ontologies

certificate

document

diploma

dissertation web log

assay

diary

writing

report

treatise essay

Fig. 1. An example of ontology

As discussed in the introduction, it is of-
ten the case that different tag names are
used to describe similar facts and/or con-
tents for real XML data. For example,
article may be used in a bibliographic
XML data, while paper may be used in
another data.

To cope with this problem, we employ
ontologies that are controlled vocabular-
ies for specific problem domains. An on-
tology is usually represented as a graph structure2, where a concept (or a term)
corresponds to a node in the graph, and edges among the nodes represent rela-
tionships among the concepts. It turns out that for a given concept (or a term),
similar ones can be obtained by finding neighboring nodes. In particular, we use
the concept of LCAs (Least Common Ancestors) to decide whether given pair
of terms are similar or not. For a pair of distinct nodes in a DAG, the LCA is
the least ancestor node shared by the nodes. A pair of nodes is hence expected

2 We assume that an ontology is represented as a DAG (Directed Acyclic Graph).

Proximity Search of XML Data Using Ontology and XPath Edit Similarity 301

to represent similar concepts, if the maximum distance between the LCA and
the nodes being considered is smaller than a given threshold,

Taking an ontology in Figure 1 for example, the LCA of report and diploma
is document, and the LCA of diploma and diary is writing. Suppose that the
threshold is 2, we decide that report and diploma are similar, but diploma and
diary are not.

Types of ontologies. When considering our objective, it appears that there
are several choices on the types of ontologies.

General purpose thesauri. Ontologies in this category collect general terms
like “title” and “author”. A most well-known example may be the Word-
Net [10]. Such ontologies are suitable for those XML data which contain
general terms as their tag names, while they are not applicable in such cases
that XML data include domain specific terms, composite words, acronyms,
or symbols.

Domain specific ontologies. Besides general purpose thesauri, there have
been many ontologies dedicated for their specific domains. Gene Ontol-
ogy [11] is an example. They are useful when tags are named using domain
specific terminologies.

Tailored ontologies. When sets of tag names or the schemas of the XML
data, which are going to be queried, are known in advance, it is likely that
users can construct a dedicated (relatively small) ontology consisting of the
known vocabulary. This approach has the advantage that users can design
an ontology taking account of the requirements of the application. However,
it is costly to construct, and maintain as well, when the vocabulary or the
schema is huge.

In fact, we can choose any of the above approaches or their combinations. So,
it is important to decide the choice by taking into account the characteristics of
the XML data. In the following discussion, we use the WordNet as the ontology.
Notice that the discussion can be applied other kind of ontologies without loss
of generality.

WordNet. WordNet [10] is an English thesaurus. The basic component for
describing semantics of words is synset, which is a set of synonyms. Semantic in-
formation among terms, such as hypernym, hyponym, holonym, and meronym, is
given as relationships among synsets. As a consequence, the entire data structure
can be represented as a graph, where synsets are nodes and their relationships
are edges.

In order to make WordNet processible in computers, there have been several
projects that attempt to convert WordNet into machine readable formats. In this
work, we employ RDF/OWL Representation of WordNet [12] in that WordNet is
represented using RDF (Resource Description Framework) [13]. It is consisting
of several RDF files, and we use wordnet-senselabels.rdf, in which correspon-
dence between synsets and words is described, and and wordnet-hyponym.rdf,
in which relationship among synsets is described.

302 T. Amagasa, L. Wen, and H. Kitagawa

Tag name retrieval using SPARQL. Since an ontology is represented in
RDF, for the purpose of retrieving similar tag names using (the above men-
tioned) distance from LCA, we can make use of query languages for RDF. Tak-
ing a closer look at such a query, it is actually a subgraph matching problem.
SPARQL (SPARQL Query Language for RDF) [14], which is still a W3C work-
ing draft, but is expected to be a standardized query language for RDF, has
such a functionality. We do not go into the detail of the language due to the
page limitation, but such a query can be processed in the following way:

1. Find synsets Sw containing the tag name w from wordnet-senselabels.rdf.
2. Find synsets Swi s.t. the distance between its LCA, identified with Sw, is

less than a given threshold from wordnet-hyponym.rdf
3. Collect all the words contained in Swi using wordnet-senselabels.rdf.

3.2 Proximity Matching of Path Expressions Based on Edit
Similarity

Edit distance is a similarity measure between a couple of strings. It is defined
as the minimum number of point mutations required to change one string into
another, where a point mutation is change, insertion, or deletion of a letter. There
are several variations depending on the way how point mutations are defined and
weighted. For example, humming distance only permits insertion and deletion.
In this work, we use Levenshtein distance, where change, insertion, and deletion
are permitted and are equally weighted, due to its brevity.

From the definition, for a given couple of strings, the edit distance between
them is affected by the lengths, which is an undesirable when using it as a
similarity measure. In order to cancel those effects, we can make use of edit
similarity [5], which can be obtained from edit distance by the following formula:

ES(σ1, σ2) = 1.0− ED(σ1,σ2)
max(|σ1|,|σ2|)

where σ1 and σ2 denote strings being compared, and ED and ES denote edit
distance and edit similarity, respectively.

When comparing a given couple of path expressions, what we all have to do is
to regard each location step (tag name) as an alphabet. Suppose that we attempt
to compute the edit similarity between p1 = /articles/article/author and
p2 = /article/authors/author. The edit distance can be computed as follows:

p1 /articles /article /author
p2 /article /authors /author

Cost 1 0 1 0

From the result that ED(p1, p2) = 2, we have ES(p1, p2) = 1.0 − 2
3 = 0.33

Notice that it is quite time consuming if we compute edit similarities for all pos-
sible combinations over the sets of path expressions. To cope with the problem,
we make use of a technique to accelerate the processing.

Proximity Search of XML Data Using Ontology and XPath Edit Similarity 303

3.3 Using Set Similarity Join (SSJoin) for Improving Performance

Fig. 2. An overview of SSJoin

Set similarity join (SSJoin)
[5] is a novel operator for
RDBMSs to accelerate pro-
cessing proximity matching
over strings, originally devel-
oped for the data cleaning
problem. In this work we at-
tempt to use SSJoin for effi-
cient edit similarity computa-
tion over large number of path
expressions.

Figure 2 illustrates how
similarities are computed in SSJoin. Every string (path expressions in this work)
stored in a database is decomposed into q-grams and stored in another relational
table R. q can be arbitrary integers, but we use 2 in this example. For a given set
of query strings, we also convert them into bigrams and store in another table S.
Then, we equi-join the tables, and count the cardinalities for each combination
of strings, which is denoted as OverlapB(R.A, S.A).

An important notice here is that we can obtain rough estimation of edit
distance by the following formula:

ED(R.A, S.A) ≥ max(|R.A|,|S.A|)−q+1
q − OverlapB(R.A,S.A)

q

Due to the fact that the edit distance (and edit similarity as well) is guaranteed
to be larger than the real value, we can use it to filter out unnecessary candidates.
Finally, we refine the resulting candidates by computing real edit similarities in
order to get rid of false negatives.

As we can see, the total performance could be significantly improved, because
the number of candidate results is reduced by SSJoin, and it ends up with re-
ducing the number of costly edit similarity computation. When applying SSJoin
to our scheme, all that we need to do is to regard each tag name as an alphabet.

4 System Overview

Figure 3 depicts an overview of our proposed system. The system resides out-
side of an XML database, and acts as its subsystem for query expansion. We
extract all occurrences of distinct path expressions from XML data stored in the
XML database, compute q-grams of the path expressions, and store them in an
underlying relational database (pathngram) beforehand.

Given a user’s query (p = /p1/p2/ . . . /pn) and a threshold α, we first ex-
tract all tag names from each location step (pi, . . . , pn), and try to find similar
tag names for them (P1, . . . , Pn) using ontologies. We implement this step us-
ing SPARQL as mentioned above. Having retrieved similar tag names, we ob-
tain candidate path expressions by computing Cartesian product over them, i.e.,

304 T. Amagasa, L. Wen, and H. Kitagawa

Fig. 3. System overview

P = P1 × P2 × . . . × Pn. Finally, we omit those path expressions that do not
really exist in the XML database.

The next step is to decompose the user’s query into q-grams, store them in
another table (queryngram), and perform SSJoin over the tables, pathngram and
queryngram, for filtering out unnecessary candidates whose similarities are less
than threshold (α) from P . For the remaining candidates P , we calculate real
edit similarities, and get rid of false negatives.

Coping with descendant axis. The readers can easily suspect that we need a
special care about such queries that include descendant axis (//). A workaround
for the problem is to rewrite (or expand) the original query to queries without
descendant axis. For example, suppose that we are going to process //title.
What we need to do is to find such path expressions stored in the database that
end with title, such as:

– /article/prolog/title,
– /article/body/section/title, and
– /article/body/section/subsec/title.

As a consequence, we can query the database with these expanded path expres-
sions instead of the original query (//title).

For other kinds of axes, we can apply a scheme to rewrite queries including
backward axes to those that consist of forward axes [15].

5 Experimental Evaluation

We have conducted several experimentations to evaluate the effectiveness of our
proposed scheme.

Proximity Search of XML Data Using Ontology and XPath Edit Similarity 305

5.1 Experimental Setup

Table 1. Dataset statistics

Data Size (KB) # paths
SIGMOD Record 464 12
DBLP 357,284 164
Wikipedia 266,108 10
XBench 10,608 38

We used 4-way Intel(R) Xeon(TM) 3.0GHz
with 6GB memory running Red Hat Enter-
prise Linux 4.0. The program was imple-
mented using J2SE 1.5, and we used Post-
greSQL 8.1.0 as the underlying RDBMS.

We used XML versions of SIGMOD
Record3 and DBLP bibliography4, Wikipedia’s abstract5, and synthetic data
generated by XBench [16]. Table 1 shows a statistics of the dataset.

In this experiment, we firstly checked the feasibility of the proposed scheme
from the viewpoint of accuracy. Specifically, we created a set of benchmark
queries, whose target is SIGMOD Record data, and tried to find corresponding
path expressions from other dataset. We then tested the effectiveness of the
method.

5.2 Experimental Results

Accuracy. In our preliminary experiment, we had a problem that irrelevant
path expressions were ranked higher, i.e., both /dblp/book/author (1st) and
/dblp/book/series (2nd) were ranked higher for the query /SigmodRecord
/issues/issue/articles/article/authors/author. This is due to the nature
of edit distance that any alphabet (tag name for this case) can be replaced by
another one with a fixed cost. To cope with this problem, we added an additional
refinement step in that candidate paths were filtered out if their tag names at the
bottom are irrelevant to that of the query. In the above case, /dblp/book/series
may be filtered out, if the maximum distance between series and author and
their LCA is larger than a given threshold.

Tables 2 (a)–(f) show the top 5 query results for the benchmark queries.
It appears that the proposed scheme is successful in retrieving similar path
expressions. The percentages of correct answers for the queries were: (a) 100%,
(b) 83.3%, (c) 80%, (d) 75%, (e) 71.4%, (f) 80%, and 81.3% on average.

Efficiency. We investigated the efficiency of the proposed scheme, in particular
to see the benefit from SSJoin. We conducted two cases where the maximum
distance from LCA is 1 and 2. For each case, we tested SSJoin with 1-gram and
2-gram, and without SSJoin as the baseline.

Figure 4 illustrates the elapse time for the benchmark queries. We can observe
that the larger the maximum LCA distance the more time it takes to process,
because the number of candidate path expressions increases significantly as the
LCA distance grows. However, it seems that SSJoin is quite successful in reducing
the computational cost. Note that some 2-gram results are missing. This is due
to the fact that path expressions (queries and the ones that extracted from
3 http://www.acm.org/sigmod/record/xml/
4 http://www.informatik.uni-trier.de/∼ley/db/
5 http://en.wikipedia.org/wiki/Wikipedia:Database download

http://www.acm.org/sigmod/record/xml/
http://www.informatik.uni-trier.de/~ley/db/
http://en.wikipedia.org/wiki/Wikipedia:Database_download

306 T. Amagasa, L. Wen, and H. Kitagawa

Table 2. Query results (top 5)

p1 /SigmodRecord/issues/issue/articles
/article/authors/author

pathID pathexp ES
184 /dblp/article/author 0.285

7 /article/prolog/authors/author 0.285
96 /dblp/book/author 0.285
69 /dblp/mastersthesis/author 0.142
62 /dblp/phdthesis/author 0.142

p2 /SigmodRecord/issues/issue
pathID pathexp ES

103 /dblp/book/series 0.333
67 /dblp/phdthesis/series 0.333
40 /dblp/proceedings/series 0.333
73 /dblp/article/journal 0.333

195 /dblp/proceedings/journal 0.333

p3 /SigmodRecord/issues/issue/number

pathID pathexp ES
125 /dblp/article/number 0.25
186 /dblp/phdthesis/number 0.25
158 /dblp/proceedings/number 0.25
202 /dblp/inproceedings/number 0.25
187 /dblp/book/month 0.25

p4 /SigmodRecord/issues/issue/volume

pathID pathexp ES
89 /dblp/book/volume 0.25

176 /dblp/article/volume 0.25
196 /dblp/proceedings/volume 0.25
103 /dblp/book/series 0.25
67 /dblp/phdthesis/series 0.25

p5 /SigmodRecord/issues/issue/articles/article/title
pathID pathexp ES

131 /dblp/article/title 0.333
120 /dblp/mastersthesis/title 0.333
71 /dblp/book/title 0.333
5 /article/prolog/title 0.166

219 /feed/doc/title 0.166

p6 /SigmodRecord/issues/issue/articles/article
pathID pathexp ES

55 /dblp/article 0.2
195 /dblp/proceedings/journal 0.2
73 /dblp/article/journal 0.2
33 /article/epilog 0.2
38 /article/prolog/genre 0.2

documents) are too short to extract enough 2-grams for applying SSJoin. So, we
are thinking about the possibility to adaptively combine 1-gram and 2-gram (or
more) depending on the length of queries in the future work.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6

Query

E
la
p
s
e

t
im

e
[
m

s
]

Baseline

SSJoin(1-gram)

SSJoin(2-gram)

p p p p p p
0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6

Query

E
la
p
s
e

t
im

e
[
m

s
]

Baseline

SSJoin(1-gram)

SSJoin(2-gram)

p p p p p p

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6

Query

E
la
p
s
e
 t
im
e
[
m
s
]

Baseline

SSJoin(1-gram)

SSJoin(2-gram)

p p p p p p

585759

Fig. 4. Elapse time: LCA dist = 1 (left), LCA dist = 2 (right)

6 Conclusions

In this paper we proposed a novel scheme for applying a path query to those
XML data whose structures are not known. The core idea is to apply ontologies
for finding similar tag names, and to introduce edit similarity for performing
proximity matching among slightly different path expressions. The experimental
results suggest that the proposed scheme seems to be reasonable in both accuracy
and effectiveness.

In the future, we plan to introduce weighted edit similarity in that the edit
cost for similar tag names is less than that of different tag names. We also plan
to apply the proposed scheme to the problem of similarity join over XML data.

Proximity Search of XML Data Using Ontology and XPath Edit Similarity 307

Acknowledgments

This study has been supported by Grant-in-Aid for Scientific Research of JSPS
(#18650018 and #19700083) and of MEXT (#19024006).

References

1. W3C: Extensible Markup Language (XML) 1.0, 3rd edn., Recommendation (April
2004), http://www.w3.org/TR/xml/

2. W3C: XML Path Language (XPath) Version 1.0. Recommendation (November
1999), http://www.w3.org/TR/xpath.html

3. W3C: XSL Transformations (XSLT) Version 1.0. Recommendation (November
1999), http://www.w3.org/TR/xslt

4. W3C: XQuery 1.0: An XML Query Language. Recommendation (January 2007),
http://www.w3.org/TR/xquery/

5. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: Proc. ICDE 2006, p. 5 (2006)

6. Cohen, W.W.: Data integration using similarity joins and a word-based information
representation language. ACM Transactions on Information Systems (TOIS) 18(3),
288–321 (2000)

7. Liang, W., Yokota, H.: A path-sequence based discrimination for subtree matching
in approximate XML joins. In: Proc. The 2nd Int’l Special Workshop on Databases
for Next-Generation Researchers (SWOD), p. 116 (2006)

8. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree pattern relaxation. In: Jensen, C.S.,
Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.)
EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

9. Zhang, K., Shasha, D.: 11. In: Tree pattern matching. Pattern Matching Algo-
rithms, Oxford University Press, Oxford (1997)

10. WordNet a lexical database for the English language,
http://wordnet.princeton.edu/

11. The Gene Ontology project,
http://www.geneontology.org/

12. RDF/OWL Representation of WordNet (2006),
http://www.w3.org/,/03/wn/wn20/

13. W3C: Resource Description Framework (RDF):
Concepts and Abstract Syntax (February 2004) Recommendation (2004),
http://www.w3.org/TR/,/REC-rdf-concepts-20040210/

14. W3C: SPARQL Query Language for RDF, Working Draft (October 2006),
http://www.w3.org/TR/rdf-sparql-query/

15. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Chaudhri,
A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490,
pp. 109–127. Springer, Heidelberg (2002)

16. XBench – A Family of Benchmarks for XML DBMSs,
http://se.uwaterloo.ca/∼ddbms/projects/xbench/

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery/
http://wordnet.princeton.edu/
http://www.geneontology.org/
http://www.w3.org/, /03/wn/wn20/
http://www.w3.org/TR/, /REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-sparql-query/
http://se.uwaterloo.ca/~ddbms/projects/xbench/

Cooperative Data Management for XML Data

Katja Hose and Kai-Uwe Sattler

Department of Computer Science and Automation,
TU Ilmenau, Germany

{katja.hose, kus}@tu-ilmenau.de

Abstract. Emerging non-standard applications like the production of
high-quality spatial sound pose new challenges to data management. Be-
side the need for a flexible transactional management of complex hier-
archical scene descriptions a main requirement is the support of cooper-
ative processes allowing a group of authors to edit a scene together in
a distributed environment. Based on previous work on cooperative and
non-standard transactions we present in this paper a transaction model
and protocol for XML databases addressing this issues.

1 Introduction

In recent years, XML has been widely established as a data exchange format but
also as a native data format for (semi-)structured data. XML data management
is particularly well suited in application domains where a fixed structure of data
is too restrictive and where hierarchical structures have to be represented. In
this way, XML data management can be seen as a successor of object-oriented
database technology. An example of an emerging application domain from which
we derive the motivation for our work presented here is media production, e.g.
the production of movies, sounds, and graphics. The authoring process in this
domain is typically characterized by

(1) the incremental construction of scenes which are often represented as graphs
with varying structures.
For example, sound production in high quality spatial sound systems, like
the IOSONO system1, is based on an object-oriented modelling of scenes.
The scene is rendered at runtime to compute the signals for a large number
of loudspeakers installed in the listening room. In such a system, a scene
consists of several audio objects with properties as well as spatial and tem-
poral relationships describing position, movement, start time and duration
of the sound [1]. Scenes are organized in several layers such as dialog, foley,
effects, atmosphere and music.

(2) the duration and cooperativeness of the construction process.
In bigger projects we already encountered situations where up to 60 sound
designers in up to 8 different studios – located all over the world – are
working simultaneously on one sound production project. Each designer is

1 www.iosono-sound.com

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 308–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cooperative Data Management for XML Data 309

responsible for a part of a scene, e.g. modelling special effects, while others
model the actors’ dialogs. Both groups must know the current state of the
other group’s work because for example the volume of a speaker has to be
set with respect to the background noise.

Basically, (1) can be addressed by representing a scene as an XML graph stored
in a database. Today, commercial DBMS provide support for XML data manage-
ment, either by treating XML documents as CLOB objects or by “shredding”
the document into a set of tables. In both cases, the transactional support is
restricted to the native (relational) structure and is not adopted to the special
characteristics of (hierarchical) XML data.

The alternative of using a native XML DBMS promises a better handling of
XML data, e.g. wrt. querying, but regarding transactional support these systems
are more or less still in their infancies.

Orthogonal to the scheme of storing the scene data we can look at the issue
of supporting cooperative work (2) in different scenarios:

Single User: The simplest and in fact non-cooperative case is the situation
where a single author (sound designer) is working on the sound produc-
tion. Though, basic database functionality like persistence and recovery is
required, advanced techniques for distributed and cooperative operation are
not needed.

Workgroup: When multiple designers work on the same scene together in a
workgroup, their updates have to be synchronized. In this scenario a central
repository is needed but can be extended by local caches or databases for
better response times.

Workspace: In a large-scale scenario multiple studios (maybe situated on dif-
ferent continents) work on the same scene data. Here, permanent connections
to a central repository (as in the case of the workgroup scenario) may not
be assumed. Therefore, the different users work on their own workspaces
requiring a decoupled synchronization technique similar to version control
systems like CVS.

In our work we focus on the workgroup scenario because it is the most interesting
one for the intended application of sound production. In any case, the notion of
transaction is required and because of the characteristics of work we need long
running, nested transactions. Furthermore, in order to allow a cooperative work
on the same scene (e.g. on different layers of a scene) modifications should be
visible to other authors before the end of the global transaction.

Based on these observations and the above mentioned challenges of data man-
agement in media authoring processes, we present in this paper an approach
using an open-nested transaction model for XML data supporting cooperative
processes. The remainder of the paper is structured as follows. In Section 2 we
give a brief survey on related work. Based on this, we introduce in Section 3
our cooperative transaction model. Next, we describe the protocol implement-
ing this model by a combination of locking and notification in Section 4. Finally,
we conclude the paper and point out to future work.

310 K. Hose and K.-U. Sattler

2 Related Work

For many years transactions have been used to enable concurrent access to a
database where each transaction adheres to the ACID properties. A very com-
mon means to enforce serializability are lock protocols. They have advantages
like low complexity and disadvantages like limiting concurrency. Thus, many
variants have been developed; 2PL [2] and hierarchical locks [3] to mention only
a few.

In order to overcome the disadvantage of limited concurrency advanced trans-
action models have been developed by relaxing some of the ACID properties. One
principle is to divide a transaction into several smaller ones. This concept is for
example used by nested transactions [4,5] and multi-level transactions [6,7]. With
the advent of CAD systems with typically long transactions chained transactions
and sagas [8] have been proposed. Whereas both of these concepts require the
definition of subtransactions in advance, split/join transactions [9, 10] can be
used to determine subtransactions at runtime.

As XML became more important DBMS were extended by XML modules.
At first, it was sufficient to support XML as input and output format. But
since this limits querying abilities, first concepts for native XML databases have
been developed. In general, classic lock protocols are too restrictive in terms
of concurrency for use in XML DBMS. One possibility is to use path based
locks as proposed by several groups [11, 12, 13, 14]. Natix [15] is a native XML
DBMS that recognizes that transaction management needs a non-traditional
approach. However, the authors focus more on recovery and isolation, and use a
lock manager supporting multi granularity locking and strict two-phase locking.

Another possibility to realize concurrent access are protocols based on the ta-
DOM model, e.g., [16,17]. They use multi granularity locking, apply the concept
of intensional locks on the path from the root node to the context node, and
provide lock conversion. taDOM models attributes and text content as special
nodes. By this, attributes or text can be locked without locking the original XML
node as a whole. Lock granularity and lock escalation can be adapted according
to the users needs.

As indicated in the introduction we need to allow multiple users to work on
the same XML document simultaneously. The approaches on XML databases
mentioned above do net (yet) pay attention to the requirements imposed by our
scenario where we have deal with long transactions adhering to an open nested
transaction model.

3 Transaction and Cooperation Model

The basic architecture of our solution is a client-server-model where the server
holds the latest version of the data and coordinates the clients. An arbitrary
number of clients can be connected to the server. Both client and server have
a DBMS to manage their data. The server maintains the global copy ensuring
data consistency. The client uses its local DBMS to manage its local copy of the

Cooperative Data Management for XML Data 311

portion of the data that it downloaded from the server. Since we are working
with XML data, we chose Berkeley DB XML2 for both client and server. For
the local DBMS on client side, we can use any standard transaction model since
only one user is working on the local copy. Using the DBMS, however, the client
may also benefit from database functionality like persistence and recovery.

In the following we at first identify a transaction model that fulfills the re-
quirements stated in the introduction. Then, we describe how notifications can
be used to make non-committed updates visible to other users.

3.1 Transaction Model

As motivated in the introduction transactions may endure a rather long time
period. In order to support concurrent access to the common global database
we need a transaction model that efficiently supports long transactions but still
allows multiple users to work concurrently on the same data. This suggests the
use of a nested transaction model [4, 5] where a global transaction is divided
at runtime into several subtransactions. In our model a subtransaction is not
vital for the global transaction. Thus, when a subtransaction is aborted not all
changes have to be undone but only those that have been made by the aborted
subtransaction. The global transaction goes on until the global commit or the
global abort.

Table 1. Primitives at Client and Server

Client Server

user-level
primitives

query checkout
update checkin

savepoint subcommit, publish, subbegin
revert subabort, subbegin

begin, abort, commit begin, abort, commit

system-level
primitives

lock, unlock lock, unlock
subscribe, unsubscribe subscribe, unsubscribe

Having started a transaction the user issues commands on the client side. The
client communicates with the server to initiate corresponding actions. Table 1
lists the main primitives that are supported by client and server instances. They
can be divided into two groups: user-level primitives and system-level primitives.
The former are issued more or less by the user himself, the latter by the system
transparently to the user.

Figure 1 illustrates a sample sequence of primitives that are issued in a typical
transaction. When the user starts to work a global transaction is started (begin).
Since we are using a nested transaction model, the first subtransaction starts at
the same time (subbegin). The query primitive allows the user to read elements
of the XML document that are identified using XPath. Hence, this primitive
corresponds to the classic read operation. Its counterpart, i.e. a write operation,
2 http://www.sleepycat.com/products/bdbxml.html

312 K. Hose and K.-U. Sattler

begin

begin

subbegin
checkout

subscribe

checkin

lock

subcommit

publish

subbegin

true/

false

query update savepoint commit

subcommit

commit

Client

Sub1

T1

Sub2

Server

Transactions

Fig. 1. Basic Sequence of Actions for Transactions

is represented by the update primitive. The query primitive results in a checkout
at the server retrieving the latest version of the read data. The update primitive
of the client is realized by the checkin primitive at the server. This, however,
requires another step: first the server is trying to lock the data that is to be
updated. If the lock has been acquired the data is updated, if not the attempt
to update is refused.

When the user decides for a savepoint the currently running subtransaction
commits and the next subtransaction is implicitly started. All changes that have
been made by the first subtransaction are now visible to other users – but may
not yet be changed by them. In case a subtransaction is aborted, all changes
that have been made since the beginning of the subtransaction are undone with-
out any effect on the global transaction. Finally, when the global transaction
commits, the current subtransaction is committed and all locks are released.

3.2 Cooperation Model

As mentioned above other users might need to see the changes of committed
subtransactions before the global transaction submits. In order to achieve such
a cooperative transaction model we use the concept of notifications. For this pur-
pose the server maintains a list of Listeners. Each entry is defined by two pieces
of information: the identifier of the corresponding client and an XPath expres-
sion that indicates a subtree of the XML document. Whenever a subtransaction
of another client commits, all clients that have registered for the affected data
are notified using the publish primitive (see Figure 1). When the client reads
data in a transactional context using the query primitive the client is implicitly
registered at the server for updates concerning the read data.

Figure 2 illustrates this concept in a situation where two transactions are
working on the same version of the data. Both transactions start with checking
out version V 1 from the server, they implicitly register for updates concerning the
retrieved data. Both transactions (T 1 and T 2) are now starting to work concur-
rently. When subtransaction Sub1.1 of T 1 commits, the changes are propagated
to the client that T 2 is running on. The client updates the affected portion of
local data. Afterwards, the data of both clients corresponds to subversion V 1.1.

Cooperative Data Management for XML Data 313

V1

V1

V1

V1.1

checkout
register

Sub1.1
updates

Sub2.1
commit

Sub1.1
abort

V2

Sub1.2/global
commit
unlock

notify
delta V1-V1.1

checkout
register

V1.2
--> V1.1

Sub1.1
commit

notify
delta V1.1-V1.2

--> V1.2

Sub2.1
updates

Transaction
T1

Transaction
T2

Fig. 2. Example for Versioning Using Listeners

By the use of our locking protocol that we use for synchronization (Section 4) it
is not possible that both transactions changed the same data records.

In case another transaction T 3 would now checkout the current version from
the server it would retrieve the basic version V 1 and all updates of already com-
mitted subtransactions so that the local version of T 3’s data would correspond
to subversion V 1.1.

After subtransaction Sub1.1 of T 1 has committed assume that now subtrans-
action Sub1.1 of T 2 commits. Then, the client that T 1 runs on retrieves the
updates made by Sub2.1 of T 2. Both clients now have the same subversion
V 1.2. Finally, the global transaction T 1 commits. The server now retrieves the
changes, releases the locks still held by T 1, and converts the global version to
V 2. After having notified the client that T 2 runs on, the corresponding client
updates its local data, and now works on version V 2. In case T 2 now aborts, then
the changes made by the already committed subtransactions of T 2 are undone
and the registered clients are notified. In case T 2 submits the the server creates
version V 3 and notifies the registered clients.

4 Transaction Protocol

In this section we at first identify operations that need to be supported and
their demands on a suitable locking protocol. Then, we present such a protocol
that we use for synchronization. Finally, we show how to increase concurrency
by using a special internal representation.

4.1 Operations and Lock Compatibility

The set of relevant operations that we need to support consists of: (i) edit, (ii)
delete, (iii) add, and (iv) move. XML documents consist of nodes organized in
a hierarchical structure. Each node may contain text and attributes and might

314 K. Hose and K.-U. Sattler

have attached child node. To change the content of a node’s text or attribute, the
edit operation is used. Obviously, this requires an exclusive lock so that no other
user is able to edit attributes and text at the same time. The delete operation
can be used to delete attributes, nodes, text, or whole subtrees that are attached
to a given node n. Since the deletion of attributes and text directly affects n,
we need n to be locked exclusively. In case we want to delete a node n1 (or a
subtree rooted with n1) that is attached to n as a child, we only need a shared
lock on n and an exclusive lock on n1 (and on all subtree nodes).

The add operation can be used to attach attributes, text, child nodes, or
subtrees to node n. Since text and attributes are an integral part of n we need
an exclusive lock on n for adding text and attributes. Intuitively, all we need
to attach child nodes or subtrees to n is a shared lock on n. Thus, adding a
child node n1 and deleting another child node n2 (both children of n) by two
concurrent transactions is possible at the same time.

The move operation can be used to move attributes, nodes, text, and subtrees
from node n to node m. We can treat this as a deletion followed by an insertion
so that we can use the two operations introduced above. Table 2 shows the lock
matrix that results from the considerations discussed so far.

Table 2. Operations and required locks when attributes and text cannot be locked
apart from the corresponding node – XL = Exclusive Lock, SL = Shared Lock

edit delete add
attribute XL on node XL on node XL on node

text XL on node XL on node XL on node
node – XL on node, SL on parent SL on parent

subtree – XL (root and descendants), SL on parent SL on parent

This is still rather restrictive. Under the assumption that we can lock at-
tributes and text independently from the corresponding XML nodes, we can
achieve a higher level of concurrency: e.g. concurrent operations on attributes
and text are now compatible with each other. Furthermore, these operations are
compatible with concurrent deletion and addition of child nodes. Table 3 shows
the resulting lock matrix.

Since we have to deal with only two kinds of locks (exclusive and shared), we
can apply the tree protocol that has been developed for hierarchical databases.

Table 3. Operations and required locks when attributes and text can be locked apart
from the corresponding node – XL = Exclusive Lock, SL = Shared Lock

edit delete add
attribute XL on attr. XL on attr., SL on corr. node SL on corr. node

text XL on text XL on text, SL on corr. node SL on corr. node
node – XL on node, SL on parent SL on parent

subtree – XL (root and descendants), SL on parent SL on parent

Cooperative Data Management for XML Data 315

Thus, the remainder of this section first presents the tree protocol. Then, we
point out how to manage locks on attributes and text without locking the whole
node.

4.2 Tree Protocol

In contrast to most lock protocols the tree protocol [3] does not imply two phase
locking (2PL). It has been designed for use in hierarchically organized data
structures and thus can be used for XML data as well. The basic variant of this
protocol only knows one kind of locks: exclusive locks. The advanced variant
– that we consider – also knows non-exclusive locks. Any transaction Ti that
adheres to the following rules satisfies the advanced tree protocol and leads to a
serializable schedule:

1. At first, Ti locks any node of the hierarchy – provided that any existing locks
are compatible

2. Ti locks each node at most once – there is no lock conversion
3. locks may be released at any time – in contrast to 2PL protocols
4. Ti may lock node u if and only if it is currently holding a lock on a predecessor

(father) of u
5. LS(Ti) ⊆ μ(L(Ti)), where LS(Ti) is the set of shared locks held by Ti,

L(Ti) the set of all locks (shared or exclusive) held by Ti, and μ(W) = {v ∈
W |there exists at most one w ∈ W such that v and w are neighbors}

Note that if Ti satisfies conditions 1−4 it fulfills the basic tree protocol [18]. The
fifth condition assures that deadlocks cannot occur when allowing non-exclusive
locks.

With respect to Section 4.1 using the tree protocol means that locks are
acquired based on the tree protocol and may be released before the commit.
However, in our implementation those locks that are required by the supported
operations (Table 3) need to be held until the global transaction commits. Only
then can be guaranteed that a rollback is possible without side-effects on other
transactions.

4.3 XML Representation

In order to improve concurrency on XML nodes especially with respect to editing
attributes and text, we apply the taDOM concept [19] and adopted it to our
needs.

Representing XML Documents for Fine Grained Locking. taDOM [19]
has originally been designed for supporting a fine grained lock granularity for
documents that are accessed by the DOM API. In contrast to our application
and access methods the DOM API knows functions like getAttributeNode(), get-
Value() etc. In order to support these functions efficiently, the authors split up
XML nodes into several parts, e.g. each XML node is represented by one el-
ement node ne, one text node nt (as child of ne) and one string node ns (as

316 K. Hose and K.-U. Sattler

child of nt). If the original XML node contained attributes then an additional
attribute root node nAR is inserted as child of the ne. For each attribute, nAR

has one attribute child node nai where each nai has a string node that contains
the attribute value.

Since we do not aim to support such APIs we do not need such a large number
of nodes. Thus, we reduce the overhead by simply splitting up an XML element
node into one element node ne, one child for the contained text nt, one attribute
root node nAR with one attribute child node nai for each attribute – nai contains
all information about the attribute. In short, we keep text nodes and string nodes
together in one node. The separation of attributes from the original node has
two advantages: first, locking attributes apart from their nodes is possible and
second, locking all attributes at once promises to be low effort.

Figure 3 illustrates these concepts with an example. It shows a small extract
of a sample XML file and its corresponding representation where we distinguish
between element nodes, text nodes, attribute root nodes, and attribute nodes.
Inner nodes of XML documents are represented by element nodes.

<scene id=”scene1”>

 <room id=”room1”>

 <layer id=”layer0”>

<audio id=”Tom”

begin=”0” end=”20”>

 <sound src=”Tom1.wav”

begin=”0” end=”10”/>

Tom talking in sleep

 </comment>

</audio>

 </layer>

 </room>

</scene>

<comment userID=”123”>

element node

text node

name

attribute root node

attribute nodetext

name

text

scene

1

room

1.3

layer

1.3.3

1.1

scene1

id

1.1.3

layer0

id

1.3.3.1.3

audio

1.3.3.3

0

begin

20

end

Tom

id

123

userID

Tom1.wav

src

0

begin

10

end

Tom talk

commentsoundsource

1.3.3.3.3

1.3.3.3.3.1

1.3.3.3.3.1.3 1.3.3.3.3.1.5 1.3.3.3.3.1.7

1.3.3.3.5

1.3.3.3.5.3 1.3.3.3.5.1

1.3.3.3.5.1.3

1.3.3.3.1

1.3.3.3.1.3 1.3.3.3.1.5 1.3.3.3.1.7

1.3.1

1.3.3.1room1

id

1.3.1.3

Fig. 3. Internal XML Representation

DeweyIDs. By using DeweyIDs [20] we assign a unique identifier to each node
and thus enable an efficient management of read and write sets. As we have
borrowed the idea of separating attributes from elements and using an extra
attribute root node to group them, we also adopt most of the adaptations of
DeweyIDs that were made to support taDOM. DeweyIDs are based on the dec-
imal classification and serially number all nodes in the same level with odd
numbers. With the exception of the document root node, the number 1 is only
assigned to attribute root nodes. This makes finding and identifying attributes
easy. The ID of a node is defined as the conjunction of the parent-ID and the
assigned number separated by a point. Thus, the prefix of each ID reveals its
level and unambiguously identifies the parent node and all ancestor nodes. Since
initially only odd numbers are used new nodes may be added at any position.
For instance, between DeweyIDs 1.3 and 1.5 we may add nodes with the following

Cooperative Data Management for XML Data 317

IDs: 1.4.3, 1.4.5, etc. Figure 3 gives an example for the DeweyID numbering
scheme that we use in our implementation.

5 Conclusion

In this paper we have addressed the problem of concurrent access and modifi-
cation to XML documents. The application scenario demands that users may
see changes of other users whose global transactions have not yet committed.
To solve this problem we proposed an open nested transaction model that uses
the advanced tree protocol for synchronization. Notifications take care of prop-
agating recent updates to registered clients, so that they are always up-to-date.
Future work will consider to further increase concurrency. One possibility to
achieve this is releasing locks already with the commit of a subtransaction so
that other transactions may update the same elements before the global transac-
tion submits. Introducing compensating transactions might be a solution to the
problem. However, it remains a task for future work to define such compensat-
ing transactions and maybe determine their actions without extensive interaction
with the user.

References

1. Heimrich, T., Reichelt, K., Rusch, H., Sattler, K., Schröder, T.: Modelling and
streaming spatiotemporal audio data. In: OTM Workshops, pp. 7–8 (2005)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley Publishing Company, London (1987)

3. Silberschatz, A., Kedem, Z.: Consistency in hierarchical database systems. Journal
of the ACM 27, 72–80 (1980)

4. Härder, T., Rothermel, K.: Concepts for transaction recovery in nested transac-
tions. In: SIGMOD ’87, pp. 239–248 (1987)

5. Moss, J.E.: Nested transactions: an approach to reliable distributed computing.
Massachusetts Institute of Technology, Cambridge (1985)

6. Weikum, G.: Principles and realization strategies of multilevel transaction man-
agement. ACM Transactions on Database Systems 16, 132–180 (1991)

7. Weikum, G., Schek, H.J.: Concepts and applications of multilevel transactions and
open nested transactions. Database transaction models for advanced applications,
515–553 (1992)

8. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD ’87, pp. 249–259 (1987)
9. Kaiser, G., Pu, C.: Dynamic restructuring of transactions. In: Database Transac-

tion Models for Advanced Applications, pp. 265–295 (1992)
10. Pu, C., Kaiser, G., Hutchinson, N.: Split-transactions for open-ended activities. In:

VLDB ’88, pp. 26–37 (1988)
11. Choi, E., Kanai, T.: XPath-based Concurrency Control for XML Data. In: DEWS

2003 (2003)
12. Dekeyser, S., Hidders, J.: Path Locks for XML Document Collaboration. In: WISE

’02, pp. 105–114 (2002)
13. Dekeyser, S., Hidders, J.: Conflict scheduling of transactions on XML documents.

In: ADC ’04, pp. 93–101 (2004)

318 K. Hose and K.-U. Sattler

14. Jea, K., Chen, S., Wang, S.: Concurrency Control in XML Document Databases:
XPath Locking Protocol. In: ICPADS ’02 , p. 551 (2002)

15. Fiebig, T., Helmer, S., Kanne, C., Moerkotte, G., Neumann, J., Schiele, R., West-
mann, T.: Natix: A Technology Overview. In: Web, Web-Services, and Database
Systems, pp. 12–33 (2003)

16. Haustein, M., Härder, T.: Adjustable Transaction Isolation in XML Database Man-
agement Systems. In: Proc. 2nd Int. XML Database Symposium, pp. 173–188
(2004)

17. Haustein, M., Härder, T., Luttenberger, K.: Contest of XML Lock Protocols. In:
VLDB 2006, pp. 1069–1080 (2006)

18. Kedem, Z., Silberschatz, A.: Controlling Concurrency Using Locking Protocols
(Preliminary Report). In: FOCS, pp. 274–285 (1979)

19. Haustein, M.P., Härder, T.: taDOM: A Tailored Synchronization Concept with
Tunable Lock Granularity for the DOM API. In: Kalinichenko, L.A., Manthey,
R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 88–102.
Springer, Heidelberg (2003)

20. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
insert-friendly XML node labels. In: SIGMOD ’04, pp. 903–908 (2004)

C-ARIES: A Multi-threaded Version of the

ARIES Recovery Algorithm

Jayson Speer and Markus Kirchberg

Information Science Research Centre, Department of Information Systems,
Massey University, Private Bag 11 222, Palmerston North 5301, New Zealand

M.Kirchberg@massey.ac.nz

Abstract. The ARIES recovery algorithm has had a significant impact
on current thinking on transaction processing, logging and recovery. In
this paper, we present the C-ARIES algorithm, which extends the orig-
inal algorithm with the capability to perform transaction aborts and
crash recovery in a highly concurrent manner. Concurrency is achieved by
performing transaction aborts and the Redo and Undo recovery phases
on a page-by-page basis. An additional benefit of C-ARIES is that the
database system can commence normal processing at the end of the Anal-
ysis phase, rather than waiting for the recovery process to complete.

1 Introduction

Introduced by Mohan et al. [1], the ARIES (Algorithm for Recovery and Isolation
Exploiting Semantics) algorithm has had a significant impact on current thinking
on database transaction logging and recovery. It has been incorporated into
IBM’s DB2 Universal Database, Lotus Notes and a number of other systems [2].

ARIES, like many other recovery algorithms, is based on the WAL (Write
Ahead Logging) protocol that ensures recoverability of databases in the presence
of a crash. However, ARIES’ Repeating History paradigm sets it apart from
other WAL based protocols. The repeating history paradigm involves returning
the database to the exact state it was in before the crash occurred and allows
ARIES to support properties such as fine granularity locking, operation logging
and partial rollbacks.

1.1 Contribution

We propose an adaptation of the original ARIES recovery algorithm. The pro-
posed C-ARIES algorithms extends the original algorithm with the capability
to perform transaction aborts during normal processing and crash recovery in
a highly concurrent manner. Concurrency is achieved by performing transac-
tion aborts and the Redo and Undo crash recovery phases on a page-by-page
basis. An additional benefit of our approach is that the database system can
be returned to normal processing at the end of the Analysis phase, rather than
waiting for the recovery process to complete.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 319–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

320 J. Speer and M. Kirchberg

1.2 Outline

This paper is organised as follows: Section 2 introduces the original ARIES
recovery algorithm. Sections 3 to 5 present the proposed concurrent ARIES (i.e.
C-ARIES) adaptation. Finally, Section 6 concludes this paper.

2 ARIES

This section provides a brief overview of the original ARIES algorithm [1,3].
ARIES, like many other algorithms, is based on the WAL protocol that ensures

recoverability of a database in the presence of a crash. All updates to all pages
are logged. ARIES uses a log sequence number (LSN) stored on each page to
correlate the state of the page with logged updates of that page. By examining
the LSN of a page (called the PageLSN) it can be easily determined which logged
updates are reflected in the page. Being able to determine the state of a page
w.r.t. logged updates is critical whilst repeating history, since it is essential that
any update be applied to a page once and only once. Failure to respect this
requirement will in most cases result in a violation of data consistency.

Updates performed during forward processing of transactions are described
by Update Log Records (ULRs). However, logging is not restricted to forward
processing. ARIES also logs, using Compensation Log Records (CLRs), updates
(i.e. compensations of updates of aborted / incomplete transactions) performed
during partial or total rollbacks of transactions. By appropriate chaining of CLR
records to log records written during forward processing, a bounded amount of
logging is ensured during rollbacks, even in the face of repeated failures during
crash recovery. This chaining is achieved by 1) assigning LSNs in ascending
sequence; and 2) adding a pointer (called the PrevLSN) to the most recent
preceding log record written by the same transaction to each log record.

When the undo of a log record causes a CLR record to be written, a pointer
(called the UndoNextLSN) to the predecessor of the log record being undone
is added to the CLR record. The UndoNextLSN keeps track of the progress
of a rollback. It tells the system from where to continue the rollback of the
transaction, if a system failure were to interrupt the completion of the rollback.

Periodically during normal processing, ARIES takes fuzzy checkpoints in or-
der to avoid quiescing the database while checkpoint data is written to disk.
Checkpoints are taken to make crash recovery more efficient.

When performing crash recovery, ARIES makes three passes (i.e. Analysis,
Redo and Undo) over the log. During Analysis, ARIES scans the log from the
most recent checkpoint to the end of the log. It determines 1) the starting point of
the Redo phase by keeping track of dirty pages; and 2) the list of transactions to
be rolled back in the Undo phase by monitoring the state of transactions. During
Redo, ARIES repeats history. It is ensured that updates of all transactions have
been executed once and only once. Thus, the database is returned to the state
it was in immediately before the crash. Finally, Undo rolls back all updates of
transactions that have been identified as active at the time the crash occurred.

C-ARIES: A Multi-threaded Version of the ARIES Recovery Algorithm 321

3 C-ARIES: The Multi-threaded ARIES Algorithm

In the next three sections, we introduce a multi-threaded version of the ARIES
recovery algorithm (referred to as C-ARIES).

In this section, basic concepts such as modifications to data structure, logging
and checkpointing are outlined. Based on these concepts, Section 4 discusses
crash recovery processing in greater detail. Subsequently, Section 5 considers
necessary modifications to transaction rollback during normal processing.

C-ARIES preserves the desirable properties of the original ARIES algorithm.
However, enhancements were made to the Redo and Undo phases of the crash
recovery process, whereby these phases are now performed on a page-by-page
basis. This results in a much higher degree of concurrency since operations that
would normally be performed serially can now be performed concurrently. This
page-by-page technique also provides the basis for the improved method to trans-
action aborts during normal processing.

It was important not to impose any unnecessary costs on the algorithm in
terms of logging, since this is purely overhead on the system that offers no
benefit until recovery is required [4]. The extra logging required for C-ARIES is
very small with a single extra field being added to some log record types and
fields removed from others.

3.1 Logging

ARIES and also C-ARIES require that LSNs be monotonically increasing. This,
however, is not a burden but rather a benefit. It allows a direct correspondence
between a log record’s physical and logical address to be maintained.

However, in order to adopt a page-by-page approach to crash recovery and
transaction abort, a number of modifications must be made to the way the
ARIES algorithm performs logging, these are as follows:

Modification of the CLR. In C-ARIES, extensive changes are made to the
CLR, both in terms of the information it contains and the way in which it is
used:

1. TheUndoneLSNfield replaces theNextUndoLSNfield.Whereas theUndoNextLSN
records the LSN of the next operation to be undone, the UndoneLSN records the
LSN of the operation that was undone.

2. The PrevLSN field is no longer required for the CLR record.
3. CLR records are now used to record undo operations during normal process-

ing only, the newly defined SCR records (refer below) is used to record undo
operations during crash recovery.

The rationale behind these modifications can be understood by observing the
differences in how C-ARIES and the original ARIES algorithm perform undo
operations and how this affects the information required by C-ARIES. In ARIES,
operations are undone one at a time in the reverse order to which they were

322 J. Speer and M. Kirchberg

performed by transactions. However, in order to increase concurrency, C-ARIES
can perform multiple undo operations concurrently, where updates to individual
pages are undone independently of each other.

Definition of the SCR. The Special Compensation log Record (SCR) is almost
identical to the modified version of the CLR, the only differences being:

1. The record type field (SCR rather than CLR).
2. When SCR records are written.

During normal rollback processing, operations are undone in the reverse or-
der to which they were performed by individual transactions. However, during
crash recovery rollback, operations are undone in reverse order that they were
performed on individual pages. Having separate log records for compensation
during recovery and normal rollback allows us to exploit this fact.

PageLastLSN Pointers. The PageLastLSN pointer is added to all ULR, SCR
and CLR records. It records the LSN of the record that last modified an object
on this page. Recording these PageLastLSN pointers provides an easy method of
tracing all modifications made to a particular set of objects (stored on a page).

3.2 Fuzzy Checkpoint

As with ARIES, a fuzzy checkpoint is performed in order to avoid quiescing the
database while checkpoint data is written to disk. The following information is
stored during the checkpoint: Active transaction table and DirtyLSN value.

For each active transaction, the transaction table stores the following data:

– TransId, i.e. an identifier of the active transaction.
– FirstLSN, i.e. the LSN of the first log record written for the transaction.
– Status, i.e. either Active or Commit .

Given the set of pages that were dirty at the time of the checkpoint, the
DirtyLSN value points to the record that represents the oldest update to any
such page that has not yet been forced to disk.

4 C-ARIES: Crash Recovery

With C-ARIES, recovery remains split into three phases: Analysis, Redo and
Undo. However, recovery takes place on a page-by-page basis, where updates
are reapplied (Redo phase) and removed from (Undo phase) pages independently
from one another. The Redo phase reapplies changes to each page in the exact
order that they were logged and the Undo phase undoes changes to each page in
the exact reverse order that they were performed. Since the state of each page
is accurately recorded (by use of the PageLSN), the consistency of the database
will be maintained during such a process.

C-ARIES: A Multi-threaded Version of the ARIES Recovery Algorithm 323

4.1 Data Structures

Data collected during the Analysis pass is stored in the following data structures:

Transaction Status Table. The transaction status (TransStatus) table deter-
mines the final status of all transactions that were active at some time after the
last checkpoint. This information is used to determine whether changes made to
the database should be kept or discarded. The TransStatus table holds:

– TransId, i.e. the identifier of the active transaction.
– Status, i.e. the status of the transaction, which determines whether or not

it must be rolled back. Possible stares are: Active, End and Commit .

Any transaction with status ‘Active’ is declared a Loser Transaction (LT),
whilst all other transactions are declared Winner Transactions (WTs).

Page Link List. The page link (PLink) list provides a linked list of records
for each modified page. This list is used in the Redo phase to navigate forwards
through the log. For each page that has CLR, SCR or ULR records, such a PLink
list, which is an ordered list of all LSNs that modified that page, is created.

Page Start List. The Page Start List determines, for each page, from where to
commence recovery. It holds the following field: PageId, i.e. the page identifier.

During the forward scan of the log, the first time the algorithm encounters a
log record for a page Pj , it creates a Page Start List entry for page Pj . The Page
Start List captures all pages that are to be visited during the Redo and Undo
phases of recovery. Thus, we can lock those pages exclusively on behalf of the
recovery algorithm and make available all other pages for normal processing1.

Page End List. The Page End List is an optional data structure intended to
optimise the Undo phase of recovery by accurately determining where this phase
should stop processing. The Page End List has the following fields:

– PageId, i.e. the identifier of the page.
– TransId, i.e. the identifier of the transaction that has modified the page.
– EndLSN, i.e. the LSN of the last record to process this page during Undo.

Given a set of records, the rule for creating and updating an entry for some
page Pj in the Page End List proceeds as follows:

1. The first time a log record written for page Pj by transaction Tk is en-
countered, the following entry should be inserted into the Page End List: (
PageId, TransId, EndLSN) = (Pj , Tk, LSN from record).
Each page should have only one entry in the Page End List for each trans-
action that has written a log record for it.

1 Note, at this stage there was no access to persistent data other than that of the log.

324 J. Speer and M. Kirchberg

2. Once the scanning of all records back to ScanLSN is completed and the
set of all winner and loser transactions is known, the following actions are
performed:

(a) Delete all entries where TransId is in TW.
(b) For each page, retain only the entry with the lowest EndLSN.

Finally, there will be at most a single Page End List entry for any page. The
EndLSN value indicates where the Undo phase will terminate for that page.

Undone List. The Undone List stores a list of all operations that have been
previously undone. It has the following fields:

– PageId, i.e. the identifier of the page.
– UndoneLSN, i.e. the LSN of the record that has been undone.

During the scan of the log, whenever the algorithm encounters a CLR record,
it adds an entry to the Undone List.

4.2 Analysis Phase

During the Analysis phase, the algorithm collects all data that is required to
restore the database to a consistent state. This involves performing a forward
scan through the log, collecting the data required for the Redo and Undo phases
of recovery. The Analysis phase of the recovery process is comprised of three
steps, being: Initialisation, Data Collection and Completion.

Step 1: Initialisation. Initialisation involves reading the most recent check-
point in order to construct an initial TransStatus table and determine the start
point (ScanLSN) for the forward scan of the log.

TransStatus Table. For each transaction stored in the Active Transaction table,
a corresponding entry is created in the TransStatus table.

Start Point. The log scan starts from the lowest LSN of either the DirtyLSN,
or the lowest FirstLSN of any active transaction in the TransStatus table.

Step 2: Data Collection. During the forward scan of the log, data for all data
structures as discussed in Section 4.1 is collected. The type of record encountered
during the log scan determines the data that is collected and into which data
structure(s) it is stored. The records from which the Analysis phase collects data
are Commit Log Record, End Log Record, ULR, CLR, and SCR.

Commit Log Record. Each time a commit log record is encountered, an entry
is inserted into the TransStatus table for the transaction with status set to
Commit . Any existing entries for this transaction are replaced.

C-ARIES: A Multi-threaded Version of the ARIES Recovery Algorithm 325

End Log Record. Each time an end log record is encountered, an entry is inserted
into the TransStatus table for the transaction with status set to End .

Update Log Record (ULR). Upon encountering an ULR:

– If no entry exists in the TransStatus table for this transaction, then an entry
is created for this transaction with status set to Active.

– Add an entry to the PLink list.
– Create a Page Start List entry and a Page End List entry as required.

Compensation Log Record (CLR). Upon encountering a CLR, the same step as
for ULRs are performed and an entry is added to the Undone List.

Special Compensation Log Record (SCR). Same as for an ULR record.

Step 3: Completion. Once the forward scan of the log is completed, the
recovery algorithm acquires an exclusive lock on all pages identified in the Page
Start List. Subsequently, the DBS can commence normal processing. Only those
pages that are locked for recovery will remain unavailable.

Now, the Redo phase may be entered. Once all loser transactions are known,
a page can potentially enter the Undo phase – Page End Lists are not required
but rather help the algorithm to determine where to terminate. In the absence
of Page End Lists, Undo terminates as soon as the ScanLSN record is reached.

4.3 Redo Phase

The Redo phase is responsible for returning each page in the database to the
state it was in immediately before the crash. For each page in the Page Start
list, the redo algorithm will spawn a thread that ‘repeats history’ for that page.
Given a page Pj , history is repeated by performing the following tasks:

1. Start by considering the oldest log record for page Pj that was written after
PageLSN. This requires reading the page into main memory.

2. Using the PLink lists for page Pj , move forward through the log until no
more records for this page exist.

3. Each time a redoable record is encountered, reapply the described changes.
Redoable records are: SCR, CLR and ULR records.

Once the thread has processed the last record for this page, the recovery
algorithm may enter the Undo phase. The recovery algorithm may enter the
Undo phase for different pages at different times, for example page P1 might
enter the Undo phase while page P2 is still in the Redo phase.

Once the recovery algorithm has completed the Redo phase for all pages, an
End Log Record can be written for all transactions whose status is Commit in
the TransStatus table. For expediency, this can be deferred until after the Undo
phase is complete if so desired.

326 J. Speer and M. Kirchberg

4.4 Undo Phase

The Undo phase is responsible for undoing the effects of all updates that were
performed by loser transactions. The thread that was spawned for the Redo
phase will now begin working backwards through the log undoing all updates to
the page that were made by loser transactions:

1. Work backwards through the log using the PageLastLSN pointers processing
each log record until all updates by loser transactions have been undone.

2. Each time an SCR or ULR record is encountered, take the following actions:
– (SCR): Jump to the record immediately preceding the record pointed

to by the UndoneLSN field. The UndoneLSN field indicates that during a
previous invocation of the recovery algorithm, the updates recorded by
the record at UndoneLSN have already been undone.

– (ULR): If the update was not written by a loser transaction or has pre-
viously been undone, then no action is taken. Otherwise:
(a) Write an SCR record that describes the undo action to be performed

with the UndoneLSN field set equal to the LSN of the ULR record
whose updates have been undone.

(b) Execute the undo action described in the SCR record written.

Once the thread has completed processing all records back to EndLSN, the
page can be unlocked and, thus, made available for normal processing again.
The advantage of allowing each page to be unlocked individually is that the
database can return to normal processing as quickly as possible. Once the recov-
ery algorithm has completed the Undo phase for all pages, an End Log Record
can be written for all transactions whose status is Active in the TransStatus
table.

4.5 Crashes During Crash Recovery

By preserving ARIES’ paradigm of repeating history, it can be guaranteed that
multiple crashes during crash recovery will not affect the outcome of the recovery
process. The Redo phase ensures that each update lost during the crash is applied
exactly once by using the PageLSN value to determine which logged updates have
already been applied to the page. Since all compensation operations are logged
during the Undo phase, the Redo phase and the nature of the Undo phase ensure
that compensation operations are also performed exactly once. The UndoneLSN
plays a similar role in C-ARIES as the UndoNextLSN does in ARIES.

5 C-ARIES: Rollback During Normal Processing

Having defined the algorithm for rollback of transactions during crash recovery,
it is now necessary to do the same for normal processing. There are two main
classes of schedules that must be considered when defining a rollback algorithm,
these are: Schedules with cascading aborts and schedules without.

C-ARIES: A Multi-threaded Version of the ARIES Recovery Algorithm 327

The case where cascading aborts do not exist is trivial, where rolling back a
transaction simply involves following the PrevLSN pointers for the transaction
backwards undoing each operation as it is encountered. Since cascading aborts do
not exist in these schedules, no consideration need be given to conflicts between
the aborting transaction and any other transactions.

The case where cascading aborts do exist is a great deal more complex, since
rolling back a transaction may necessitate the rollback of other transactions.
Each time an operation is undone, it is necessary to consider which transactions,
if any, must be rolled back in order to avoid database inconsistencies.

In ARIES, rollback of transaction Ti involves undoing each operation in re-
verse order by following the PrevLSN pointers from one ULR record to the next.
Whenever an undo operation for transaction Ti conflicts with an operation in
some other transaction Tj, a cascading abort of transaction Tj must be initi-
ated. Transaction Ti must then suspend rollback and wait for transaction Tj to
rollback beyond the conflicting operation before it can recommence rollback.

Clearly this is not the most efficient method, since the rollback of the entire
transaction is suspended due to a single operation being in conflict. A more
desirable method is to suspend rollback only of those operations that are in
conflict and to continue rollback of all other operations. It is also desirable to
trigger the cascading abort of all transactions in conflict as early as possible. By
taking advantage of multi-threading, it is possible to roll back a transaction on
a page-by-page basis. This allows a transaction in rollback to simultaneously:

– Trigger multiple cascading aborts,
– Suspend rollback of updates to pages whilst waiting for other transactions

to roll back, and
– Continue rolling back updates that do not have any conflicts.

Partial rollback of transactions is achieved by establishing save points [5] dur-
ing processing, then at some later point requesting the rollback of the transaction
to the most recent save point. This can be contrasted with total rollback that
removes all updates performed by the transaction.

5.1 Sketch of Algorithms

Rollback of a transaction is achieved by the use of a single ‘Master Thread’ that
is responsible for coordinating the rollback process and multiple ‘Slave Threads’
that are responsible for the rollback of updates made to individual pages.

The master thread is responsible for coordinating the rollback of a transaction
by performing the following actions:

– Triggering the cascading abort of transactions as required.
– Undoing all update operations that are not in conflict with update operations

from other active transactions. By consulting the lock table in the usual way,
the concurrency control manager is able to detect these conflicts.

– Spawning a new slave thread whenever a conflict detected requires the undo
of updates to a page be delayed while other transaction(s) roll back.

328 J. Speer and M. Kirchberg

The algorithm terminates once the master thread has reached the save point
and has received a done message from all slave threads spawned.

The slave thread is responsible for undoing all updates made by the trans-
action to a single page. This thread must not undo any operation until any
conflicting operation(s) have been undone. Once the slave thread has completed
rolling back all changes to the page, it sends a message to the master thread.

Optimisation. In rollback, it is possible for both the master thread and the
slave threads to reduce the frequency with which they check for conflicts between
the current operation and operations belonging to other transactions. Given a
ULR record written for page Pj by transaction Ti, it is only necessary to check for
conflicts if the last ULR record written for page Pj was not written by transaction
Ti. The PageLastLSN pointers are ideally suited for determining whether or not
the last ULR record written for page Pj was written by transaction Ti.

6 Conclusion

In this paper, we presented the C-ARIES algorithm, which extends the original
ARIES recovery algorithm with the capability to perform transaction aborts
and crash recovery in a highly concurrent manner. Concurrency is achieved by
performing transaction aborts and the Redo and Undo crash recovery phases on
a page-by-page basis. Additional enhancements are included that decrease the
time taken for the DBS to recover from a crash and reduce the time that the
database remains unavailable for normal processing.

It should also be mentioned that the proposed algorithm offers support for
recovery from isolated hardware failures (e.g. a single-page restore after a torn
write) is provided. Moreover, the proposed algorithm readily permits to exploit
a common and very effective optimisation, namely logging of disk writes.

References

1. Mohan, C., Haderle, D.J., Lindsay, B.G., Pirahesh, H., Schwarz, P.M.: ARIES:
a transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Transactions on Database Systems
(TODS) 17, 94–162 (1992)

2. Mohan, C.: ARIES family of locking and recovery algorithms (2004), On the Internet
at http://www.almaden.ibm.com/u/mohan/ARIES Impact.html

3. Mohan, C.: Repeating history beyond ARIES. In: Atkinson, M.P., Orlowska, M.E.,
Valduriez, P., Zdonik, S.B., Brodie, M.L. (eds.) Proceedings of 25th International Con-
ference on Very Large Data Bases, pp. 1–17. Morgan Kaufmann, San Francisco (1999)

4. Mohan, C., Treiber, K., Obermarck, R.: Algorithms for the management of remote
backup data bases for disaster recovery. In: Proceedings of the 9th International
Conference on Data Engineering, pp. 511–518. IEEE Computer Society Press, Wash-
ington (1993)

5. Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F.,
Traiger, I.: The recovery manager of the System R database manager. ACM Com-
puting Surveys (CSUR) 13, 223–242 (1981)

http://www.almaden.ibm.com/u/mohan/ARIES_Impact.html

Optimizing Ranked Retrieval

Thomas Neumann

Max-Planck-Institut Informatik
Saarbrücken, Germany

neumann@mpi-inf.mpg.de

Abstract. Ranked retrieval plays an important role in explorative
querying, where the user is interested in the top k results of complex
ad-hoc queries. In such a scenario, response times are very important,
but at the same time, tuning techniques, such as materialized views, are
hard to use. Therefore it would be highly desirable to exploit the top-k
property of the query to speed up the computation, reducing interme-
diate results and thus execution time. We present a novel approach to
optimize ad-hoc top-k queries, propagating the top-k nature down the
execution plan. Our experimental results support our claim that inte-
grating top-k processing into algebraic optimization greatly reduces the
query execution times and provides strong evidence that the resulting
execution plans are robust against statistical misestimations.

1 Introduction

Ranked queries occur during explorative querying, where users want to get an
impression of the available data. As the data set is typically huge, a user is often
only interested in the top-k most relevant/important entries, where k is usually
small. A typical example query, aiming to find out the ten orders with the most
revenue placed in 2006 by customers from France, is shown below:

SELECT *
FROM Customers C, Orders O
WHERE C.id=O.cid AND C.country="France" AND O.year=2006
ORDER BY O.revenue DESC
LIMIT 10

The natural way to evaluate this query is to first optimize and execute the
query without the LIMIT part, including sorting the (potentially huge) inter-
mediate result, and eventually return the top ten entries. However, this involves
an expensive join, producing and sorting thousands of tuples that are discarded
later. This is not only wasteful, but irritating to the user, who usually issues
explorative queries in an ad-hoc fashion and waits for the results.

A more promising approach would be to somehow push the LIMIT operator
down, such that only the largest orders are joined in the first place, reducing the
join effort and the number of produced tuples. While this approach seems similar
to the standard optimization technique of pushing selections down, it involves

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 329–338, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

330 T. Neumann

one particular difficulty: How many tuples from Orders have to be joined such
that ten output tuples can be produced? More general, how does k change when
pushing a top k operator (the equivalent of the LIMIT statement) down another
operator? This question is difficult to answer, as it highly depends on the data
distribution (in this case, on the customers from France). In fact, we will show
that it typically cannot be answered without looking at the individual data items,
which is infeasible to do during query optimization. Optimization techniques for
ranked queries therefore need to use an approach more sophisticated than simply
pushing the top k operators down.

Existing work, for example the seminal RankSQL paper [1], usually concen-
trates on the efficient calculation of the (potentially aggregated) ranking func-
tions, revenue in our simple example. We assume that this problem is already
solved, and augment the query optimizer to more aggressively use these ranking
functions. Our novel optimization approach generalizes the rewriting approach
based on equivalences for usage in ranked queries. We present an execution model
that efficiently copes with estimation errors that might happen during the opti-
mization, always guaranteeing the correct result as it would have been computed
by a classical database system.

The remainder of this paper is structured as follows: After reviewing related
work in Section 2, we present an algebraic formulation of our approach in Sec-
tion 3. We discuss physical operators and their optimization in Sections 4 and
5. Our approach is evaluated in Section 6, with final conclusion in Section 7.

2 Related Work

Ranked retrieval is very common in IR applications, where data is retrieved
and aggregated according to some measure of quality (score). An overview and
instance optimal algorithms for this kind of problem is presented in the seminal
paper by Fagin [2]. It calculates thresholds to decide which tuple might make it
into the final top k and updates the thresholds while processing tuples. Many
variations of this approach have been proposed, some try to exploit statistical
information to improve threshold estimations (see e.g. [3]), some try to minimize
communication effort etc. Another approach transforms the top-k query into
range queries by guessing the required ranges [4]. However, all these algorithms
only support ”simple” queries, i.e., IR-style queries without complex operators.

A more database-oriented approach for ranked queries is the RankSQL pro-
posal [1,5]. It integrates the decision about rank computation and usage into
the query optimization step and extends the relation algebra into a rank-aware
algebra for rank computations. This is orthogonal to the problem we try to
solve here, we simply assume that the ranking attribute is known. Related, they
suggest an efficient joins strategy when the ranking attribute is derived from
multiple relations (more details in [6]). Another database-oriented approach is
presented in [7]. It does not consider query optimization but proposes an execu-
tion strategy related to our approach. The main idea is to partition the input
data on the domain of the ranking attribute. If the output is ranked on the

Optimizing Ranked Retrieval 331

attribute a, a condition a ≥ α is introduced at the base relation for a. If this
condition removes too many tuples from the result, the query is restarted with
a new condition α > a ≥ β to produce the missing tuples and so on. The main
difficulty of this approach is predicting α and β. The paper only briefly suggests
using histograms, but it is unclear how to handle complex queries.

3 Ranked Queries

3.1 An Operator for Ranked Queries

In order to optimize ranked queries using standard techniques, we have to define
an algebraic operator that expresses the limitation to the top-most entries. Note
that we are only interested in a well-defined operator, i.e., an operator that
produces a deterministic result, as otherwise optimization becomes difficult. This
implies that we require a well defined tuples order (i.e. a ORDER BY clause)
when optimizing LIMIT queries, that is queries of the form:

SELECT ... ORDER BY a DESC LIMIT k

We concentrate on descending single-attribute ORDER BY conditions here,
multi-attribute ORDER BY conditions can be translated into this form by using
a suitable encoding (see [1] for more details on multi-attribute ranking).

While queries of this form provide a well-defined meaning of ranking, they still
bear the problem of potentially producing non-deterministic results in the case
of ties for the ranking attribute. As there is obviously no natural ordering for
ties, we instead extend the LIMIT to include all tuples with the same ranking
value as the k-th result tuple. This leads to the following operator definition:

topak(R) := {t|t ∈ R ∧ |{t′|t′ ∈ R ∧ t′.a > t.a}| < k}

The operator topak produces the k tuples with the largest value of a (more
than k if there are ties for the k-th place).

3.2 Equivalences for Ranked Queries

Besides the integration into the query processing algebra, the efficient execution
of ranked queries also requires a proper integration into the query optimizer.
Query optimizers rely upon algebraic equivalences to find plan alternatives to
eventually create better (faster) query execution plans.

Regarding the interaction of top k operators with themselves, we observe that
the operators determine the maximum number of tuples that pass through them,
effectively reducing the k for later operators:

topak1(topak2(R)) ≡ topa min(k1, k2)(R)

When pushing the top k operator below some other operators, we have to
make sure that the operators never eliminate a tuple from the final top k result.

332 T. Neumann

Furthermore, we can usually only push a top k operator down by duplicating
it, as the operator itself might create new ties, e.g. a many-to-many join with a
selectivity > 1. This observation leads to the following push down equivalences
for binary operators:

topak(R1 ∪R2) ≡ topak(topak(R1) ∪ topak(R2))
topak(R1 ×R2) ≡ topak(topak(R1)×R2) if a ∈ A(R1)
topak(R1 �R2) ≡ topak(topak(R1)� R2) if a ∈ A(R1)

Unfortunately these equivalences are limited in application. Finding more
general equivalences is not an easy task, as we will discuss in the next subsection.

3.3 Equivalences Are Not Enough

To efficiently optimize top k operators, we want to push them down commonly
used operators, for example selections. This can be quite difficult, as can be seen
by the following example. Consider the query top k(σ(R)). We would like to
transform it into an equivalent query σ(top k′(R)), pushing the top k below the
selection. The question is how to choose k′. Consider the example illustrated in
Figure 1 with topa2, σb=1. For the relation R1, topa2(σb=1(R)) is equivalent to
σb=1(topa3(R)), while for R2 it is not. The difference for R2 is caused by the tuple
[3,2] that ”kicks out” the desired tuple [2,1] in the intermediate result computed
by topa3(R). This illustrates that the top k push-down is highly data-dependent,
being sensitive even to minor variations.

a b

5 1
4 2
2 1
1 2

a b

5 1
2 1

a b

5 1
2 1

R1 topa2(σb=1(R1)) σb=1(topa3(R1))

a b

5 1
4 2
3 2
2 1

a b

5 1
2 1

a b

5 1

R2 topa2(σb=1(R2)) σb=1(topa3(R2))

Fig. 1. top k push-down with different data instances

This has unpleasant consequences: first, it is nearly impossible to calculate
the new k′ after a push down without looking at the data tuples, which is not
feasible during optimization. Second, a mistake in the estimation of the new
k′ can lead to an incorrect result, which is unacceptable. Therefore, we cannot
expect to find hard equivalences for pushing top k operators down in general.

Instead, we have to use a weaker concept. The key idea is to estimate how k
changes, and compensate misestimations at runtime. For this purpose we intro-
duce a soft operator for top k, coined softtop k. This softtop k operator initially
behaves like a normal top k operator, but produces more tuples if needed. In
our above example, when rephrasing the query to topa2(σb1(softtopa3(R)), the
new operator guarantees the correct result as follow: for R1, the plan directly
produces the correct output; for R2, conceptually, the softtopa3 operator will

Optimizing Ranked Retrieval 333

initially only let 3 tuples pass, but will produce the missing tuple as topa2 re-
quests it. We can consider a softtop k operator as a prediction that we only
need k tuples from its input. Pipeline breakers that are followed by a softtop k
operator will try to produce only k tuples initially, leaving some of their input
unprocessed. We will look at the operator model in more detail in Section 4.

Predicting the required number of tuples is not without dangers: while a
misprediction in the plan will still produce the correct result, it can cause the
query optimizer to underestimate the costs of a plan, resulting in an inefficient
execution plan. The problem can be mitigated by using statistics and learning
optimizers [8,9], but a misprediction can still occur. The operators described in
Section 4 handle a misprediction gracefully if it is within reasonable bounds. If
the runtime system detects that the prediction is off by orders of magnitude, it
is preferable to re-optimize the full query [9,10].

3.4 Adding Soft top k Operators

The softtop k operator can be introduced by starting from a regular top k oper-
ator (where the required cardinality is known exactly) and pushing the resulting
softtop k operator down, changing k as the expected cardinality changes:

topak(R) ≡ topak(softtopak(R))
softtopak(σ(R)) ≡ σ(softtopa

k
s (R)) where s = |σ(R)|

|R|
softtopak(R1 � R2) ≡ (softtopa

k
s (R1)) �R2 where s = |R1�R2|

|R1| , a ∈ A(R1)

When pushing the operator down, an adjusted k′ is derived by dividing the
former k by s, which is the selectivity used during query optimization. This esti-
mation model makes some simplified assumptions: first, it assumes that the top k
attribute a is independent from the selection/join predicate. Second, the factor
s is usually not known exactly, but can itself only be estimated from statistics.
However these are the standard problems of query optimization, where cardi-
nality estimates and, thus, cost functions are always inaccurate to some degree.
Many techniques have been proposed to increase the accuracy of estimations
(e.g. [11]) and are applicable here as well. With our new softtop k operator,
misestimation can lead to a wrong cost estimation, but the produced result will
still be correct.

The equivalences above illustrate how a softtop k operator can be pushed
down. However the softtop k operators represent information also useful for
other operators, therefore they are not really pushed down, but instead repli-
cated:

softtopak(σ(R)) ≡ softtopak(σ(softtopa
k

s
(R)))

By using replication instead of push downs, the plan is annotated with ex-
pected cardinality assumptions, which helps the query optimizer and the
pipeline-breaking operators.

334 T. Neumann

4 Operators

The logical topak operator can be implemented as a physical operator in two
ways. Either, it reads the whole input and keeps the top k entries in memory,
discarding the rest. After the whole scan, it produces the k entries. Alternatively,
if the input is already sorted on a, it reads and produces the first k tuples and
then stops. Here, the second strategy is often preferable: The first alternative
always has to read its complete input, even though it avoids sorting. The second
alternative requires sorted input, but the sort can often be done early, avoiding
sorting (and reading) the whole intermediate result.

The logical softtopak operator could similarly be implemented in two ways.
It could either initially behave like a regular topak operator, i.e. read the whole
input, keep the top k entries, and eventually discard the rest. But a softtop k
operator must be able to produce more than k tuples if requested (e.g. k was
misestimated), requiring a restart in this implementation. The implementation
that we will assume throughout this paper expects an input that is sorted on
attribute a, which makes the softtopak operator trivial: it just passes its input
to its consumer, producing as many tuples as needed. The parameter k only
affects the cost model and the behavior of pipeline breakers.

The main purpose of the softtop k operators is to give runtime hints to the
pipeline breaking operators following them. In particular, a pipeline breaker
should try to read only k tuples if possible. This principle can be illustrated
by looking at a hybrid hash join. For simplicity and without loss of generality,
we assume that the left-hand side of the join is a softtop k operator and the
right hand side is an arbitrary execution plan. The hash operator first reads the
right-hand side fully, partitions the data into partitions on disk, or, if possible,
in memory. After this step, it reads k tuples from the left-hand side, partitions
them, and joins the partitions with the right-hand side. If the estimation of k
was correct, this should be enough to produce the required number of output
tuples. If not, i.e. the hash operator is requested to produce more tuples, it can
request another k tuples from the softtop k operator in the attempt to produce
more output tuples. Conceptually, this approach converts pipeline breakers into
”pipelining” operators for the softtop k side, in the sense that they only process
chunks of k tuples instead of the whole input.

5 Integration into the Query Optimizer

We now look at the problem of integrating softtopak operators into the query
optimizer. Considering softtopak operators clearly increases the search space, as
they can be added at any point where a is available without affecting the query
result. In fact, this increase seems to be rather tremendous, as the operator
has a parameter k, and different k might lead to different optimal plans. For a
transformative approach this is not a problem, as the operator is pushed down
and therefore ”knows” the required k. But for the standard technique of building
plans bottom-up, it is unclear which operators follow and therefore which k is

Optimizing Ranked Retrieval 335

needed. They key insight to tackle this problem is that for any given partial
plan, only one value of k makes sense: the minimal k such that all output tuples
are still produced. Of course we do not know the value and cannot calculate
it easily, but we can estimate it — and the estimations should be unaffected
by operators that are still missing: the (unknown) operators that are above the
partial plan will obviously not remove any of the tuples that will make it into
the final results, therefore they do not affect k.

The estimation is carried out in two phases: The base estimation (concerning
a single relation) is done before the plan generation, while the estimation for
more complex plans is calculated bottom up during the search. Before the plan
generation, we construct an arbitrary execution plan and use the transformative
techniques from Section 3.4 to push the softtopak down to the applicable relation
containing a. If a is a compound, we just take any single attribute from a for
the purpose of the estimation. The k at the relation now tells us how many
of the top tuples of this relation we expect in the final result. In the case of
compound values for a, we could not compute the top tuples yet, but this does
not affect the expected required cardinality. We use the k as base estimation
for the parameter k, and propagate it up: During the plan generation, we now
update the estimation for k by reversing the transformations from Section 3.4.
This gives as an estimation for k at any plan that contains the base relation with
a. Note that this estimation for k does not increase the search space, just like
cardinality it only requires an additional attribute for each partial plan.

6 Evaluation

In this section we study the benefits of our approach and show its robustness
towards misestimations. We first compare it to previously published work. Due
to the limited scope of the other work, we then perform experiments of our
own on more general queries, and finally study the effect of misestimations on
the query runtime. All experiments were done on Athlon64 3500+ with 1GB
of memory running Linux 2.6.17. To avoid the complex area of buffer space
management, all operators were given 1 MB each to store intermediate results.
This is somewhat unfair towards the optimizing approaches (which need less
memory in some operators), but makes the comparison more reproducible. As
database back end we used a custom textbook database system.

6.1 Comparison with Existing Approaches

Most of the previously published related work addresses different aspects of
ranked retrieval, therefore comparisons cannot be done easily. One exception
is [7], that uses partitioning of the input data to speed up ranked retrieval.
Unfortunately, most examples in [7] are very simple from an optimizers point of
view (they consider only a single relation), which does not allow for meaningful
comparisons. Their only example with more than one relation was Query 4, that
joined two relations (see Figure 2a).

336 T. Neumann

SELECT *
FROM Emp e, Dept d
WHERE e.age > 20 AND

d.budget > 1000 AND
e.works_in=d.dno

ORDER BY e.salary DESC
LIMIT 10;

SELECT *
FROM Emp e, Dept d, Tasks t
WHERE e.age > 20 AND

d.budget > 1000 AND
e.works_in=d.dno AND
t.done_by=e.eno AND
t.duration > 5

ORDER BY e.salary DESC
LIMIT 10;

(a) (b)

Fig. 2. SQL queries used in the experiments

topsalary10

�works in=dno

σbudget>1000σage>20

deptemp

sortsalary

topsalary10

�works in=dno

σbudget>1000σage>20

deptemp

softtopsalary10

idxscansalary

softtopsalary10

emp dept

σage>20

σbudget>1000

�works in=dno

topsalary10

σsalary≥499991

emp dept

σage>20

σbudget>1000

�works in=dno

topsalary10

5.8s 3.1s 1.0s 2.0s
without softtop k sorting index scan [7], perfect partitioning

Fig. 3. Query Plans and Execution Time for Query from Figure 2 (a)

We create a randomized data set as described in [7], consisting of 500.000
tuples in Emp and 100.000 in Dept, for a total database size of about 65 MB.
We then considered four different execution strategies using blockwise nested
loop joins, the last one corresponding to the plan in the paper: First, a normal
execution plan with a final top 10 operator, then a plan using softtop k oper-
ators and sorting, a plan using an index scan instead of sorting and finally the
partitioning approach from [7]. The paper itself did not make it clear how the
partitioning should be done. We therefore use perfect partitioning on the salary
(σsalary≥499991 produces just the required tuples from Emp), although this re-
quires prior knowledge and could not be done in practice. The corresponding
execution plans and the query executions times are shown in Figure 3.

Adding softtop k operator clearly improved the runtime compared to a stan-
dard top k execution. When the plan requires sorting, the gain is not that large,
as more than 70% of all data has to be sorted here. When the sorting can be
avoided, the plan is much faster, about a factor of 5 compared to standard top k.
The partitioning scheme from [7] is in the middle between of these two alter-
natives, even though we use a perfect partitioning scheme. As described in the
paper, a misestimation would require restarting the query, i.e. executing it at
least twice. Therefore even the sort based softtop k approach seems more at-
tractive here, as it is only somewhat slower than the partitioning scheme but
very robust concerning misestimations, as we will see below.

Optimizing Ranked Retrieval 337

6.2 Larger Queries

The above top k query taken from [7] consists of a join of two relations, where
the top k can be pushed down to the larger of the two relations. This is scenario
is very favorable for top k processing, as we can expect large gains by reducing
the largest partition. To get a more difficult query, we extended the data set
by adding a relation tasks(done by,duration,description) containing tasks with
descriptions. Each employee handles 0-10 tasks, where each task has a duration
between 1-20. The tasks relation contains about 2.5 Mio. tuples, which makes it
the largest relation in the combined query (shown in Figure 2 b). The join with
the tasks relation is expensive, as can be seen on the left-hand side of Figure 4).

without sorting index
softtop k scan

runtime [s] 4.7s 3.5s 2.5s

without sorting index
softtop k scan

runtime [s] 4.7s 2.4s 0.2s
hash joins index nested loop joins

Fig. 4. Results for Query from Figure 2 (b)

The softtop k optimization can only reduce the runtime up to a certain degree,
as the costs for the tasks relation cannot be avoided. The query optimizer can
cause much larger gains, if the necessary building blocks are available. The query
above can benefit greatly from indices on dno and done by: The query optimizer
can then use index nested loop joins, which significantly decreases the runtime,
as shown on the right-hand side of Figure 4. When using an index scan, the
database only has to lookup a few of tuples and can produce the answer almost
instantaneous. This demonstrates that softtop k operators have to be integrated
into the query optimizer: index nested loop joins are expensive, they were only
selected because the query optimizer expected few lookups.

6.3 Sensitivity to Misestimations

A critical aspect of top k optimization is the effect of misestimations. Overesti-
mations are usually fine (except some wasted work), but underestimations can
lead to too few tuples and thus requires some kind of query restarting, poten-
tially doubling the execution time. Our approach of adding softtop k operators
handles underestimations more gracefully, as additional tuples can be produced
as needed. This can be seen in Figure 5: The figure shows results for the previ-
ous query with a varying degree of misestimation, both for hash joins and for

estimation error -90% -50% -25% 0% +25% +50% +90%

no softtop k, hash joins [s] 4.7 4.7 4.7 4.7 4.7 4.7 4.7
softtop k, hash joins [s] 3.9 3.8 3.7 3.7 3.7 3.7 3.7
softtop k, bnl joins [s] 5.4 4.6 4.6 3.8 3.8 3.8 3.8

Fig. 5. Effect of Misestimations, top 1000

338 T. Neumann

blockwise nested loop joins. Both approaches are unaffected by overestimations
here, as the additional effort is minor compared to the rest of the query. For
underestimations, hash joins have to partition and join another block of k tu-
ples, but this does not affect the runtime much. Blockwise nested loops are more
sensitive, as additional passes over the data are required for underestimations.
Note that index nested loop join results from above are unaffected by misesti-
mations, as tuples are produces on demand. The only danger there is that the
query optimizer might decide to use a different join technique due to overesti-
mated costs. Overall the softtop k approach handles misestimations reasonably
well, in particular hash joins are a robust choice against misestimations.

7 Conclusion

We proposed two algebraic operators, top k and softtop k, to efficiently pro-
cess and optimize ranked queries. Both offer new equivalences when optimizing
ranked queries, and can be integrated into a dynamic programming approach.
Our experimental results show that query processing can greatly benefit from
these operators, and that the approach is robust against misestimations. Future
work should include more precise statistics to estimate k after a push-down, in
particular taking correlations into account.

References

1. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: Ranksql: Query algebra and optimiza-
tion for relational top-k queries. In: SIGMOD (2005)

2. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS (2001)

3. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic
guarantees. In: VLDB (2004)

4. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over
multimedia repositories. TKDE 16(8), 992–1009 (2004)

5. Ilyas, I.F., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware query
optimization. In: SIGMOD, pp. 203–214 (2004)

6. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. In: VLDB, pp. 754–765 (2003)

7. Carey, M.J., Kossmann, D.: Reducing the braking distance of an sql query engine.
In: VLDB (1998)

8. Markl, V., Megiddo, N., Kutsch, M., Tran, T.M., Haas, P.J., Srivastava, U.: Con-
sistently estimating the selectivity of conjuncts of predicates. In: VLDB (2005)

9. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: Leo - db2’s learning optimizer.
In: VLDB, pp. 19–28 (2001)

10. Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In:
SIGMOD (2000)

11. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: Cords: Automatic
discovery of correlations and soft functional dependencies. In: SIGMOD (2004)

Similarity Search over Incomplete Symbolic

Sequences

Jie Gu and Xiaoming Jin

Software School of Tsinghua University
guj05@mails.tsinghua.edu.cn,

xmjin@tsinghua.edu.cn

Abstract. Reliable measure of similarity between symbolic sequences
is an important problem in the fields of database and data mining. A
lot of distance functions have been developed for symbolic sequence data
in the past years. However, most of them are focused on the distance
between complete symbolic sequences while the distance measurement
for incomplete symbolic sequences remains unexplored. In this paper, we
propose a method to process similarity search over incomplete symbolic
sequences. Without any knowledge about the positions and values of the
missing elements, it is impossible to get the exact distance between a
query sequence and an incomplete sequence. Instead of calculating this
exact distance, we map a pair of symbolic sequences to a real-valued
interval, i.e, we propose a lower bound and an upper bound of the un-
derlying exact distance between a query sequence and an incomplete
sequence. In this case, similarity search can be conducted with guaran-
teed performance in terms of either recall or precision. The proposed
method is also extended to handle with real-valued sequence data. The
experimental results on both synthetic and real-world data show that
our method is both efficient and effective.

1 Introduction

It is a common requirement to determine the similarity between two symbolic
sequences for a large number of applications such as information retrieval and
pattern recognition[1][2]. Due to its importance, similarity measurement of sym-
bolic sequences has received considerable attention in the past years. The core
of similarity measurement lies in the similarity function, which maps a pair of
sequences to a real number. Distance functions are analogous, except that the
higher the distance, the lower the similarity. We will use the two terms inter-
changeably, depending on which interpretation is more suitable. While most
of the previous work has been focused on the distance function for complete
symbolic sequences where all elements of the sequence are available, incomplete
symbolic sequences have been ignored largely. Symbolic sequence is defined to
be incomplete if several number of the its elements are missing. In real-world
applications, the elements of symbolic sequence can be missing for various rea-
sons, including: the data were not recorded by the observer, the data collection

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 339–348, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

340 J. Gu and X. Jin

equipment was not functioning properly, or the data were deemed to be bad by
quality control procedures. Then there is a natural requirement for similarity
measurement for incomplete symbolic sequences.

In this paper, we mainly tackle the problem of similarity search of incomplete
symbolic sequences. This problem is challenging since the both the positions and
values of missing elements in a symbolic sequence are unknown in most cases.
Then it is impossible for us to determine the exact similarity, but this does not
mean no useful similarity information can be extracted from incomplete symbolic
sequences.

In our method, the Hamming distance is employed as the basic similarity
model since it is most popular and has been long used in similarity measure-
ment for symbolic sequences[4]. But it should be noted that our technique can
be applied to any other distance metrics without any substantial modification.
We propose a novel method for incomplete symbolic sequence which can map a
pair of symbolic sequences(one is the complete query sequence, the other is an
incomplete sequence in the data set) to a real-valued interval, whose two end
points are the lower bound and the upper bound of the underlying exact Ham-
ming distance. It is unnecessary to know anything about the missing elements
to get the lower(upper) bound in our approach. With the proposed lower(upper)
bound, similarity search can be conducted over incomplete sequences data set
with guaranteed performance in terms of either precision or recall(more details
in Section 3.3). Since the brute-force approach is prohibitive in time complex-
ity, we mainly propose a dynamic programming technique which can reduce the
computation cost from O(n ∗ Cn

m) to O(m ∗ (m − n))(n < m), where m and n
are the lengths of the two symbolic sequences being compared. We also propose
several filtering techniques to further speed up the similarity search process.

The remainder of this paper is organized as follows. We formulate in section
2 the motivation of our proposed similarity function. In section 3, the algorithm
of our function is presented. We extend our method to real-valued sequence in
section 4. In section 5, the experimental result is reported.

2 Problem Description

2.1 Distance Function for Complete Symbolic Sequence

A symbolic sequence X comprises an ordered list of symbols, i.e., X=(X1,
X2, ..., Xn), where n is the length of X . Each element in X , denoted as Xi(1 ≤
i ≤ n), is a symbol from a global symbol set D which is called a dictionary. The
content of D varies among different applications, e.g., D = {A, C, G, T } in DNA
database.

Similarity search over symbolic sequences is an operation that retrieves all the
sequences similar to a query sequence from a large sequence data set. Similar-
ity measurement is the core subroutine in this process, where a certain distance

Similarity Search over Incomplete Symbolic Sequences 341

function is adopted(high similarity low distance). Before move on to the topic of
similarity of incomplete symbolic sequences, we first have a brief review of the
distance function and similarity search for complete symbolic sequences. Below
we give a variant of the Hamming distance:

Definition 1. Distance Function for Complete Symbolic Sequences
X=(X1, X2, ..., Xn) and Y =(Y1, Y2, ..., Yn) are two symbolic sequences with n
elements. The distance between X and Y can be defined as follows:

D(X, Y) =
∑n

i=1 δ(Xi, Yi)
n

, δ(Xi, Yi) =

{
0 if Xi == Yi

1 otherwise

Take two symbolic sequence X=(ADCABADC) and Y =(ABCABADA) for
example, D(X, Y)=0.25 since (X2=D)=/ (Y2=B) and (X8=C)=/ (Y8=A).

Based on the definition of distance described above, the similarity search over
complete sequences can be formulated as follows:

Definition 2. ε-Approximation Sequence Search Given a set of sequences
S and a query sequence Q together with a threshold ε(0 ≤ ε ≤ 1), the ε-
Approximation Sequence Search is to retrieve all the sequences from S that satisfy
the following inequality:

D(Q, Si) ≤ ε, Si ∈ S

2.2 Distance Function for Incomplete Symbolic Sequence

A symbolic sequence is said to be incomplete if several elements in it are missing.
The most popular technique dealing with missing elements is imputation which
produces an artificial value to replace a missing element. For an incomplete
symbolic sequence, a new artificial complete sequence will be obtained after
imputation. For example, given an incomplete symbolic sequence X=(A, D, ?, B)
where ‘?’ represents a missing element whose value is unknown, we can impute
the missing element with ‘C’ and get X

′
=(A, D, C, B). X

′
is referred as the

complete form of an incomplete symbolic sequence X .
The challenge in our problem is that we have no priori knowledge such as

positions and values about the missing elements, which makes it impossible
to get a deterministic complete form of an incomplete sequence. In the above
example, if the position of the missing element ‘?’ is unknown, there may be 4
possible forms of X

′
since ‘?’ may appear in all the 4 positions of X . It should

be noted that it is only the case when we impute the missing element with a
constant value, if the missing element can be replaced by various values, the
number of possible complete forms will expand. Given the huge amounts of
possible complete forms, it is impossible to measure the exact distance between
a query symbolic sequence and an incomplete symbolic sequence. However, we
argue that a lower bound and an upper bound for this unaccessible exact distance
can be derived. The problem can be formulated as:

342 J. Gu and X. Jin

Given a query sequence Q=(Q1, Q2, ..., Qm), for an incomplete sym-
bolic sequence S=(S1, S2, ..., Sn) whose length of complete form should
be m(n < m), calculate two distances DLB(Q, S) and DUB(Q, S) such
that

DLB(Q, S) ≤ D(Q, S) ≤ DUB(Q, S)

where D(Q, S) is the exact distance between Q and S.

The proposed problem can be divided into two subproblems:

* What values should be used to replace the missing elements?
* How to determine the positions for missing elements in order to get the

lower(upper) bound?

3 Proposed Approach

3.1 Imputation Method

We first fix the positions of missing elements and show how to solve the first
subproblem. It is straightforward to find that the values to replace the missing
elements in an incomplete sequence should be determined by the query sequence.

Lemma 1. Query Sensitive Imputation: Given a query sequence Q and an
incomplete sequence where the positions of missing elements are known, the lower
bound of D(Q, S) can be derived by imputing the missing elements in S with the
elements in corresponding positions of the query sequence Q. The upper bound
can be obtained by imputing the missing elements with values that are different
from the elements in corresponding positions of the query sequence Q.

Proof. Consider the distance function proposed in Definition 2, the distance
between Q and S can be expressed as:

D(Q, S) =
∑n

i=1 δ(Q1
i , S

1
i) +

∑m−n
i=1 δ(Q2

i , S
2
i)

m

where S1 represents the elements in S that are not missing and S2 is the miss-
ing part. Q1 and Q2 are the corresponding parts in Q. By the proposed query
sensitive imputation,

∑m−n
i=1 δ(Q2

i , S
2
i) can be reduced to 0. Then

DLB(Q, S) =
∑n

i=1 δ(Q1
i , S

1
i)

m
≤ D(Q, S)

Similarly, the upper bound can be obtained by maximizing
∑m−n

i=1 δ(Q2
i , S

2
i) to

m− n, then

DUB(Q, S) =
∑n

i=1 δ(Q1
i , S

1
i) + m− n

m
≥ D(Q, S)

Similarity Search over Incomplete Symbolic Sequences 343

Now we provide a running example to illustrate this method in more detail.
Suppose the query sequence is Q=(B, A, C, D, B) and the incomplete sequence
is S=(B, ?, E, D, ?) with two elements missing, if we impute the two miss-
ing elements with ‘A’ and ‘B’ respectively, the complete form of S will be
S

′
=(B, A, E, D, B), then DLB(Q, S)=D(Q, S

′
)=0.2. If the two missing elements

are imputed with values other than ‘A’ and ‘B’, say, ‘B’ and ‘E’, we then get
S

′
=(B, B, E, D, E). Consequently, DUB(Q, S)=D(Q, S

′
)=0.6. The exact dis-

tance D(Q, S) must satisfy 0.2 ≤ D(Q, S) ≤ 0.6.

3.2 Determine Positions of Missing Elements

In last subsection, it is shown that when the positions of missing elements are
fixed, by query sensitive imputation, we can get the lower bound and upper
bound of the exact distance between the query sequence and the incomplete
sequence. Now the first subproblem has been solved and the original problem
proposed in Section.3 has been reduced to the problem below:

Given a query sequence Q=(Q1, Q2, ..., Qm), for an incomplete sym-
bolic sequence S=(S1, S2, ..., Sn) whose length of complete form should
be m(n < m), find the m-n positions such that the lower(upper) bound
obtained by applying query sensitive imputation at the m-n positions is
minimal(maximal).

For all the m positions (1, 2, 3, ..., m), we refer to any arbitrary n positions as
an n-position combination. A simple three-phase approach to the above problem
can be described as:

• Enumerate all possible (m-n)-position combinations.
• Apply query sensitive imputation in every (m-n)-position combination and

calculate the corresponding lower bound and upper bound
• Select out the minimal lower bound and the maximal upper bound among

all the (m-n)-position combinations.

The seemingly straightforward method is prohibitive since enumerating all the
possible (m-n)-position combinations is an extremely time-consuming task.

Lemma 2. Given an incomplete symbolic sequence S with n elements missing,
if the complete form of S is of length m(n < m), the number of possible n-position
combinations for the missing elements is Cn

m.

Now we propose a more efficient method to tackle the explosion of position
combinations. Given a query sequence Q of length m and an incomplete sequence
S of length n(n < m), a m× n matrix M is proposed to represent the pairwise
distance of elements in Q and S. M [i][j]=0 if Qi=Sj, M [i][j]=1 otherwise. A
dynamic programming approach can be applied to the matrix to find the position
combinations that corresponding to the minimal lower bound and maximal upper
bound.

Fig.1 shows the running process of our algorithm.The query sequence is
Q = (A, C, D, C, D, A, B), it should be noted the query sequence is given by the

344 J. Gu and X. Jin

1

1

1 0

0 1

1 11

1 1

0

A C B
A

A D

D
C
D
C

B
A

01 1

2

2

2 1

1 4

1 21

1 1

0

11 3

(a) I n i t i a l S t a t e (b) L o w e r B o u n d

5

3

4 3

2 4

1 22

1 1

0

A C B
A

A D

D
C
D
C

B

A

22 3

A C B A D
A

D
C
D
C

B
A

(c) U p p e r B o u n d

Fig. 1. Example of the Calculating Algorithm

user and is always complete. The incomplete sequence is S = (A, B, C, D, A),
whose complete form should have the same length with Q. Fig.1(a) is the initial
state of the matrix. The minimal element in the rightmost column of the matrix
in Fig.2(b) is M [6][5]=1, then the lower bound distance is 1

7 ≈ 0.14, where 7 is
the length of Q. This means that, if we impute the missing elements of Q in its 3rd

and 7th position with the corresponding element in Q, the distance between Q
and the complete form S

′
of S is minimal. In this case, S

′
=(A, B,D, C, D, A,B),

where the symbol in bold is imputed by the proposed query sensitive imputa-
tion. The maximal element in the rightmost column of the matrix in Fig.2(c)
is M [7][5]=5, then the upper bound distance is 5

7 ≈ 0.71, meaning that if S

is imputed to be S
′
=(A, A, B,C, C, D, A), the distance between Q and S

′
is

maximal. Now we have successfully mapped the two sequences Q and S to the
real-valued interval [0.14, 0.71], where 0.14 and 0.71 are the lower bound and the
upper bound of the underlying exact distance between Q and the incomplete
sequence S.

3.3 Usage in Similarity Search

Now we discuss how to employ the proposed method in similarity search over
symbolic sequences. Given a database of sequences, a query sequence Q, a thresh-
old ε, the goal is to find sequences in the database within distance ε from Q. For
each pair (Q, S):

• if ε ≤ DLB(Q, S), add S to the pruned set
• if ε ≥ DUB(Q, S), add S to the true result set
• if DLB(Q, S) < ε < DUB(Q, S), add S to the candidate set

After this process, the sequences in the true result set must be the qualified data.
If all the sequences in the candidate set are excluded from the final result set, we
have a precision as high as 100% but with a relatively low recall. The recall can
be improved to be 100% if all the sequences in the candidate set is included in
the final result data set, but the precision will be degraded in this case. Thus the

Similarity Search over Incomplete Symbolic Sequences 345

candidate set can be used depending on the accuracy requirement of different
applications.

4 Extension to Real-Valued Sequence

The algorithm proposed in previous sections is designed for sequences whose el-
ements are discrete symbols. In this section, we show that our method can also
be extended to handle with real-valued sequences. We also exploit the Hamming
distance as the basic similarity model. When dealing with real-valued sequences,
its form is as follows:D(X, Y) =

∑n
i=1 |Xi − Yi|. Given a query sequence Q

and an incomplete sequence X , there is no upper bound of their exact dis-
tance when they are both real-valued. For example, for Q=(2, 9, 3, 9, 0, 7, 2) and
X=(7, 5, 7, ?, 1, 2, 8), the missing element ‘?’ in X is totally unknown and can be
infinitely large. Thus D(Q, X) can be infinitely large and no upper bound exists.
However, the lower bound for D(Q, X) does exist and can be calculated with
the same algorithm presented. Then we can process similarity search over in-
complete real-valued sequences database with a recall of %100, i.e., all qualified
data objects will be retrieved. Moreover, there is an efficient method to speed
up the similarity search process with this lower bound.

Suppose that Q=(Q1, Q2, ..., Qm) is given as an real-valued query sequence,
X=(X1, X2, ..., Xn) is an incomplete real-valued sequence, ε is a given threshold,
we want to determine whether DLB(Q, X) < ε. We define the data structure
QL=(QL

1 , QL
2 , ..., QL

n) and QU =(QU
1 , QU

2 , ..., QU
n), where

QL
i = min {Qi, .., Qi+m−n}, QU

i = max {Qi, .., Qi+m−n}

A lower bound of DLB(Q, X) can be derived with the proposed QL and QU ,

D
′

LB(Q, X) =
n∑

i=1

g(Xi, W
L
i , WU

i), where

g(Xi, Q
L
i , QU

i) =

⎧
⎪⎨

⎪⎩

|Xi −QL
i | if Xi ≤ QL

i

|Xi −QU
i | if Xi ≥ QU

i

0 otherwise

It is obvious that D
′

LB(Q, X) < DLB(Q, X), then it is possible for us to avoid
calculating DLB(Q, X) explicitly since if D

′

LB(Q, X) > ε, it can be concluded
safely that DLB(Q, X) > ε.

5 Experimental Evaluation

In this section, we present a group of experiments to show the efficiency and
effectiveness of the proposed method. For this purpose, we use both real-world
and synthetic data sets. All experiments were conducted on a PC with a Pentium
4 processor running at 1.7 GHz and 512M of main memory. The programming
language was Java with JDK 1.6.

346 J. Gu and X. Jin

5.1 Data Set

All the sequences in the following data sets are complete, we made each of them
to be incomplete by eliminating several elements randomly. By this way, we can
compare the query result of our approach with the ground truth.

NSF Abstract Title Data Set: This data set consists of strings extracted
from the NSF Research Awards Abstracts.1 We selected those strings of length
15 from this data set and used them in our experiments.

Synthetic Data Set: This is a synthetic data set with 5, 000 symbolic sequences
generated from dictionary D={A, G, C, T } randomly. Each of the sequences is
of length 20.

5.2 Precision and Recall

In this subsection, the effect of our method in similarity search is evaluated.
As mentioned in subsection 3.3, the precision and recall of the query result
can be adjusted according to the accuracy requirement. In Fig.2(a,b), we show
the precision of the query result when all the sequences in the candidate set
are considered to be qualified(the recall is 100% in this case). As the ratio of
missing elements increases, the precision decreases since more false candidate
are included in the final result. But the overall performance of the proposed
method is nice, since the precision is considerately high when the ration of miss-
ing elements remains at a low level. In Fig.2(c,d), the recall of the query result,
when all candidate set are excluded from the final result, is described. Analogous
to the precision, the recall also degrades as more elements in the sequence are
missing. From the figure, we can see that the lower bound and upper bound
should be employed in different situations. When the query threshold is small ,
it is rationale to use the lower bound in the query process since a considerably
high precision is achievable. If the query threshold is large, the upper bound is
a better choice due to the higher recall.

5.3 Tightness of Lower Bound and Upper Bound

In this subsection we examine the tightness of the proposed lower bound and
upper bound in an intuitive way. As descried in Figure.3, we show the relation-
ship of the three distance values. We first chose 50 pairs of symbolic sequences
randomly from the synthetic data set, and calculate their hamming distance as
the true distance. Then for each pair, we make one of the sequences incomplete
by eliminating some of its elements. Then we calculate the lower bound and
upper bound of the true distance according to the incomplete distance and an-
other complete distance. This figure shows that both the lower bound and the
upper bound is tight to the true distance. When the ration of missing elements
decreases, the two bounds get more tighter.

1 http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html

Similarity Search over Incomplete Symbolic Sequences 347

5% 10% 15%
0

0.2

0.4

0.6

0.8

1

Ratio of Missing Elements

P
re

ci
si

o
n

 o
f

Q
u

er
y

R
es

u
lt

Threshold=0.15
Threshold=0.20
Threshold=0.25

(a) Synthetic Data

7% 14% 21%
0

0.2

0.4

0.6

0.8

1

Ratio of Missing Elements

P
re

ci
si

o
n

 o
f

Q
u

er
y

R
es

u
lt

Threshold=0.14
Threshold=0.21
Threshold=0.28

(b) NSF Data

5% 10% 15%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ratio of Missing Elements

R
ec

al
l o

f
Q

u
er

y
R

es
u

lt

Threshold=0.85
Threshold=0.80
Threshold=0.75

(c) Synthetic Data

7% 14% 21%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ratio of Missing Elements

R
ec

al
l o

f
Q

u
er

y
R

es
u

lt

Threshold=0.95
Threshold=0.9
Threshold=0.85

(d) NSF Data

Fig. 2. Precision&Recall

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Upper Bound
True Distance
Lower Bound

(a) 5% Missing Elements

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Examples of Upper Bound and Lower Bound of the True Distance

Upper Bound
True Distance
Lower Bound

(b) 10% Missing Elements

Fig. 3. Example of Lower(Upper) Bound

6 Conclusion

In this paper, we propose a strategy for similarity search over incomplete sym-
bolic sequence data set. Though the exact distance between a query sequence
and an incomplete sequence cannot be reached, our approach can determine the
lower bound and upper bound of this exact distance. Thus similarity search can
be conducted with a guaranteed performance. We also extend this method to
real-valued sequences together with a pruning technique to further speed the
query process.

Acknowledgement

The work was supported by the NSFC 60403021.

348 J. Gu and X. Jin

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient Similarity Serach in Sequence
Database. In: Proc. Conference of Foundations of Data Organization and Algorithms
(1993)

2. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases. VLDB Jour-
nal (1995)

3. Park, S., Chu, W.W., Yoon, J., Won, J.: Similarity Search of Time-warped Subse-
quences via a Suffix Tree. Information Systems 28(7), 867–883 (2003)

4. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query
Processing Using Wavelets. The VLDB Journal (2000)

5. Kahveei, T., Singh, A.: Variable Length Queries for Time Series Data. In: Proc. of
The ICDE (2001)

6. Yi, B.-K., Jagadish, H.V., Faloutsos, C.: Efficient Retrieval of Similar Time Sequence
Under Time Warping. In: Proceedings of the 14th International Conference on Data
Engineering (ICDE’98) (1998)

7. Zdonik, S., Cetintemel, U., Cherniack, M., Convey, C.: Monitoring Streams:a New
Class of Data Management Applications. In: Proc. VLDB (2002)

8. Hsul, C.: Efficient Searches for Similar Subsequences of Different Lengths in Se-
quence Databases. In: Proceedings of the 16th International Conference on Data
Engineering

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 349–358, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Random Multiclass Classification: Generalizing Random
Forests to Random MNL and Random NB

Anita Prinzie and Dirk Van den Poel

Department of Marketing, Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium
{Anita.Prinzie, Dirk.VandenPoel}@UGent.be

Abstract. Random Forests (RF) is a successful classifier exhibiting
performance comparable to Adaboost, but is more robust. The exploitation of
two sources of randomness, random inputs (bagging) and random features,
make RF accurate classifiers in several domains. We hypothesize that methods
other than classification or regression trees could also benefit from injecting
randomness. This paper generalizes the RF framework to other multiclass
classification algorithms like the well-established MultiNomial Logit (MNL)
and Naive Bayes (NB). We propose Random MNL (RMNL) as a new bagged
classifier combining a forest of MNLs estimated with randomly selected
features. Analogously, we introduce Random Naive Bayes (RNB). We
benchmark the predictive performance of RF, RMNL and RNB against state-of-
the-art SVM classifiers. RF, RMNL and RNB outperform SVM. Moreover,
generalizing RF seems promising as reflected by the improved predictive
performance of RMNL.

1 Introduction

Random Forests (RF), introduced by Breiman [Breiman] to augment the robustness of
classification and regression trees, have been applied successfully in many domains.
RF is a bagged classifier building a ‘forest’ of decision trees splitting at each node on
the best feature out of a random subset of the feature space. Whereas bagging
enhances the robustness of the original base classifier, random feature selection
improves the accuracy in domains characterized by many input variables, with each
one containing only a small amount of information. It seems logical, that methods
other than decision trees, might also benefit from the exploitation of these two sources
of randomness, i.e. random inputs (bagging) and random feature selection.

Firstly, most algorithms suffer the curse of dimensionality and therefore they will
benefit from random feature selection. Given the susceptibility of many methods to
Hughes phenomenon (on increasing the number of features as input to the classifier
over a given threshold, the accuracy decreases) and the tendency towards huge input
spaces, most algorithms benefit from any type of feature selection. However, as the
dimensionality of the feature space grows, a complete search is infeasible. Hence,
random feature selection might be an acceptable solution. Secondly, building an
ensemble, e.g. bagging, typically results in significant improvements in accuracy.
Therefore, this paper investigates the performance improvement of classification

350 A. Prinzie and D. Van den Poel

algorithms by injecting randomness by adopting a randomized ensemble approach.
We generalize the RF framework to two classification algorithms, MultiNomial Logit,
a Random Utility (RU) model explaining unordered multiple choices using a random
utility function, and naive Bayes, a probabilistic classifier simplifying Bayes’
Theorem. We propose Random MNL (RMNL) as a new bagged classifier combining
a forest of MNLs estimated with randomly selected features. Analogously, we
introduce Random Naïve Bayes (RNB). The performance of RF, RMNL and RNB is
benchmarked against state-of-the art SVMs [Vapnik]. We illustrate our RMNL and
RNB on a multiclass classification problem; a cross-sell case. The results are
promising as generalizing RF to MNL substantially improves predictive performance.

2 Methodology

2.1 Random Forests (RF)

Random Forests (RF) [Breiman] is a highly accurate machine-learning algorithm far
more robust than decision trees and capable of modeling huge feature spaces. RF is a
bagged classifier combining a collection of T classification or regression trees (i.e.
forest of trees), here T classification trees. Each tree t is grown on a different
bootstrap sample St containing randomly drawn instances with replacement from the
original training sample. Besides bagging RF also employs random feature selection.
At each node of the decision tree t, m features are selected at random out of the M
features and the best split selected out of these m. Each decision tree is grown using
CART methodology to the largest extent possible. An instance is classified into the
class having the most votes of over all T trees in the forest, i.e. Majority Voting.

Breiman [Breiman] estimates the importance of each feature on out-of-bag (oob)
data, cf. in each bootstrap sample about 1/e instances are left out. Randomly permute
the feature m in the oob data and put the data down the corresponding tree. Subtract
the number of votes for the correct class in the feature-m-permuted data from the
number of correct votes in the untouched data and average over all trees T in the
forest. This is the raw importance score for feature m from which the z-score is
derived by dividing the raw score by its standard error.

The exploitation of randomness make RF accurate classifiers in several domains.
While bagging increases stability of the original decision trees, the random feature
selection enhances the ‘noise’ robustness, yielding error rates that compare even
favorably to Adaboost [Freund and Shapire].

2.2 Random MultiNomial Logit (RMNL)

Within multinomial-discrete choice modeling [Ben-Akiva], RU models define a
random utility function Uik for each individual i for choice k belonging to choice set
DK with K > 2 (cf. multiclass). This random utility is decomposed into a deterministic
and stochastic component (1):

ikikik xU εβ += ' (1)

 Random Multiclass Classification: Generalizing Random Forests 351

where x is a matrix of observed attributes which might be choice (e.g. price of
product) or individual specific (e.g. age of customer), β’ is a vector of unobserved
marginal utilities (parameters) and εik is an unobserved random error term (i.e.
disturbance term or stochastic component). Different assumptions on the error term of
the random utility function Uik give rise to different classes of models. In this paper,
we apply the MultiNomial Logit (MNL, independent and i.i.d. disturbances). To date,
the MultiNomial Logit (MNL) model is the most popular RU model due to its closed-
form choice-probability solution [Baltas]. The probability of choosing an alternative k
among Ki choices for individual i can be written as in (2). The classifier utilizes the
maximum a posteriori (MAP) decision rule to predict the class for individual i. MNL
exhibits great robustness but is susceptible to multicollinearity.

∑ ∈
=

Kk ik

ik
i x

x
kP

)'exp(

)'exp(
)(

β
β

 (2)

We will estimate a MNL model incorporating all features. This model might serve
as a benchmark for the Random MNL.

Just like the instable decision trees (cf. RF), even a robust classifier like MNL
could benefit from injecting randomness by random input selection and random
feature selection. Where decision trees performance improves mainly because
bagging enhances stability, we hypothesize that MNLs performance will increase
because random feature selection reduces the estimation bias due to multicollinearity.
We prefer to combine this random feature selection with bagging as it can still
improve the stability of an even robust base classifier like MNL. Therefore, inspired
by RF, we propose Random MNL (RMNL) as a new bagged classifier combining a
forest of R MNLs estimated with m randomly selected features on the r-th bootstrap
sample. Firstly, just like RF builds T classification trees on bootstrap samples St, in
RMNL each MNL r is estimated on a different bootstrap sample Sr containing
randomly drawn instances with replacement from the original training sample.
Secondly, this bagging is used in tandem with random feature selection. To classify
an observation put the input vector ‘down’ the R MNLs in the ‘forest’. Each MNL
votes for its predicted class. Finally, unlike RF, we assess the predictive value of the
bagged predictor using the adjusted Majority Vote (aMV) as each rth MNL delivers
continuous outputs, i.e. posterior probabilities.

We utilize the out-of-bag (oob) to assess the feature importances [Breiman].

2.3 Random Naïve Bayes (RNB)

Naive Bayes (NB) is a probabilistic classifier simplifying Bayes’ Theorem by naively
assuming class conditional independence. Although this assumption leads to biased
posterior probabilities ((3), Z is a scaling factor), the ordered probabilities of NB
result in a classification performance comparable to that of classification trees and
neural networks [Langley].

() () ()∏
=

=
n

i
imi CFpCp

Z
FFCp

1

1
,..., (3)

352 A. Prinzie and D. Van den Poel

Notwithstanding NB’s popularity due to its simplicity combined with high
accuracy and speed, its conditional independence assumption rarely holds. There
are mainly two approaches [Zhang, Jiang and Su] to alleviate this naivity: 1)
Selecting attribute subsets in which attributes are conditionally independent (cf.
selective NB; [Langley and Sage]), or 2) Extending the structure of NB to represent
attribute dependencies [AODE, Web et al. 2005]. We adopt the first approach and
hypothesize that NB’s performance might improve by random feature selection.
Analogous to AODE, we build an ensemble, but unlike AODE, we combine zero-
dependence classifiers. To decrease the variance of the ensemble, we build a bagged
NB classifier. Hence generalizing RF to NB, Random Naive Bayes (RNB) is a
bagged classifier combining a ‘forest’ of B NBs. Each bth NB is estimated on a
bootstrap sample Sb with m randomly selected features. To classify an observation
put the input vector ‘down’ the B NBs in the ‘forest’. Each NB votes for its
predicted class. Finally, unlike RF, we assess the predicted class of the ensemble by
adjusted Majority Vote (aMV) as each bth NB delivers continuous posterior
probabilities.

We estimate the importance of each feature on oob data [Breiman].
The predictive performance of RF, MNL, RMNL, NB, RNB and a multi-class one-

against-one SVM [Vapnik] with RBF-kernel function is evaluated on a separate test
set. Given the objective to classify cases correctly in all classes K and the small class
imbalance, a weighted PCC (each class-specific PCCk is weighted with the relative
class frequency fk,) [Prinzie] is more appropriate than a PCC [Morrison, Barandela et
al.]. Secondly, we benchmark the model’s performance to the proportional chance
criterion Crpro rather than the maximum chance criterion Crmax [Morrison]. A final
evaluation criterion is the Area Under the receiver Operating Curve (AUC) [Fawcett].
A multiclass AUC results from averaging K binary AUCs (one-against-all).

3 A CRM Cross-Sell Application

The methodological framework is applied on scanner data of a major home-
appliances retailer to analyze customers’ cross-buying patterns in order to support
cross-sell actions. The objective is to predict in what product category the customer
will acquire his next durable. We partition the home-appliance product space into nine
product categories Hence, Y ∈{1, 2, …, 9}, K=9. Y has prior distribution f1 = 9.73%,
f2 = 10.45, f3 = 20.49, f4 = 12.64, f5 = 11.70, f6 = 9.74, f7 = 8.67, f8 = 8.13 and f9 =
8.45. We randomly assigned 37,276 (N1) customers to the estimation sample and
37,110 (N2) customers to the test sample. For each customer we constructed a number
of predictors X building a general customer profile (e.g. purchase profile, brand
loyalty, socio-demographical information) as well as capturing sequential patterns in
customer’s purchase behavior (the order of acquisition of durables - ORDER, and the
duration between purchase events - DURATION) [Prinzie].

 Random Multiclass Classification: Generalizing Random Forests 353

4 Results

4.1 Random Forests (RF)

We estimated RF with 500 trees (default), balanced (higher weights for smaller
classes, [Breiman]), on a range of m values starting from the square root of M
(default); m=4411/2. We engage in a grid search with main step size 1/3 of the default
setting. Table 1 reports some of the results and shows the sensitivity of RF to m. On
the estimation data, a balanced RF with 500 trees, m=336 delivers the best
performance: wPCCe=21.04%, PCCe=21.67% and AUCe=0.6097.

Table 1. Estimation performance of RF

m wPCCe PCCe AUCe

21 19.74 20.38 0.6007
42 20.20 20.88 0.6057
63 20.56 21.23 0.6071
84 20.63 21.25 0.6061

168 20.98 21.59 0.6089
231 20.86 21.56 0.6090
294 21.01 21.69 0.6114
336 21.04 21.67 0.6067

4.2 MultiNomial Logit (MNL) and Random MNL (RMNL)

MNL. We estimated a MNL model with M non-choice specific parameters (89
corresponding to RF’s 441). A stable solution was not obtained. Alternatively,
adopting a wrapper approach, we firstly selected the best features within three types
of covariates (general, purchase order and duration). We subsequently compared four
MNL models: 1) General, 2) General and Order, 3) General and Duration and 4)
General, Order and Duration. The third MNL model delivered the highest
performance (wPCCe= 19.75, PCCe=22.00 with Crpro=12.28% and AUCe=0.5973).

RMNL with R=100 (RMNL_100). Initially, we combine 100 MNLs (R=100)
estimated on 100 bootstrap samples with m (m ≤ M) randomly selected features. We
take the square root of M; m=89^1/2 as default parameter setting and, subsequently,
engage in a grid search with main step size 1/3 with m in [3, 84]. Unfortunately, MNL
models with more than 48 dimensions failed to estimate (cf. multicollinearity). Table
2, R_MNL (R=100) gives an overview of the results. The highest performance is
observed for m=48 (wPCCe=21.25, PCCe=26.87, AUCe=0.6491, Crpro=12.28%).

RMNL combining MNLs with 10% highest wPCC (RMNL_10). Combining only
the MNLs for a given m with the 10% highest wPCCe might improve the accuracy
[Dietterich]. We refrain from evaluating a) combining the 10% with highest PCCe or
AUCe, as the wPCCe is the main criterion and b) the sensitivity to the number of

354 A. Prinzie and D. Van den Poel

Table 2. Estimation performance of RMNL

wPCCe PCCe AUCe wPCCe PCCe AUCe
3 11.53 21.41 0.6163 19.30 23.93 0.6232
9 15.60 23.62 0.6270 19.69 24.98 0.6315

15 18.36 24.98 0.6328 20.56 26.33 0.6403
21 19.33 25.56 0.6390 21.09 26.78 0.6436
27 19.74 25.90 0.6423 21.14 26.63 0.6435
33 20.37 26.53 0.6458 21.59 27.13 0.6468
42 20.91 26.69 0.6480 21.82 27.31 0.6477
48 21.25 26.87 0.6491 22.01 27.33 0.6489

R_MNL (R=100) 10_R_MNL (R=10)

m

classifiers combined. Table 2, column 10_R_MNL reports that, analogous to
RMNL_100 (R=100), the highest predictive performance is attained for m=48.

4.3 Naive Bayes (NB) and Random Naive Bayes (RNB)

NB. To assess the value of RNB, we benchmark it with a Laplace estimation of NB
with all features M (441). We preprocessed numeric attributes by Fayad’s and Irani’s
supervised discretization method [Fayad and Irani]. NB’s wPCCe is comparable to
MNLs (wPCCe= 19.74, PCCe=21.69, AUCe=0.5982).

RNB with B=100 (RNB_100). We investigate the value of injecting randomness for
NB as an attempt to mitigate its class conditional independence assumption. We build
an ensemble of 100 NBs (B=100) with m (m ≤ M) randomly selected features. Similar
to RF and RMNL, we engage in a grid search for m starting from the square root of M
(4411/2) with step size 1/3. Table 3, first column, reports some of the results. The
highest performance is measured for RNB_100 with 42 (m) randomly selected
features: wPCCe=19.83, PCCe=20.00, AUCe=0.6100.

Table 3. Estimation performance for RNB

wPCCe PCCe AUCe wPCCe PCCe AUCe
7 17.46 23.46 0.6141 18.96 22.29 0.6071

14 19.41 22.74 0.6134 19.39 22.26 0.6078
28 19.74 22.31 0.6115 19.87 22.99 0.6081
42 19.83 22.15 0.6100 20.19 22.39 0.6122
56 19.78 22.05 0.6083 20.13 22.28 0.6115
77 19.78 21.97 0.6066 20.21 22.31 0.6096

133 19.73 21.78 0.5508 20.03 21.98 0.6048
294 19.78 21.75 0.6011 19.85 21.82 0.6008

RNB_100 RNB_10

m

 Random Multiclass Classification: Generalizing Random Forests 355

RNB combining NBs with 10% highest wPCC (RNB_10). Analogous to RMNL,
we address whether combining only the 10% best classifiers (based on wPCCe) of the
ensemble might improve its accuracy [Dietterich 1997]. The results (Table 3, second
column), show a maximum improved wPCCe (+ 0.74 pctp) for m=77, with
corresponding PCCe (+ 0.62 pctp). Benchmarked against NB, an increase of almost 1
pctp is observed for RNB_10s AUCe with smaller comparable improvements for
wPCCe and PCCe. Hence, generalizing RF to NB slightly enhances the accuracy of
NB, but not as substantially as for generalizing RF to MNL.

4.4 Support Vector Machines (SVM)

We benchmark the performance RF, MNL, RMNL, NB and RNB against that of
state-of-the SVM with RBF kernel [LIBSVM] determined by parameters (C,γ).
Numerical attributes are scaled from [P1, P99] to the range [-1,+1]. Each SVM (C,γ)
is estimated on the scaled training data omitting instances having at least one
attribute’s value outside the range [-1,+1]. The optimal (C,γ) is determined as the
SVM with the highest cross-validation accuracy over 5 folds via parallel grid search.
In a first step, using a coarse grid with C=2-5, 2-3, …, 213 and γ=2-15, 2-13, …, 23 (100
SVMs) we identified (27,2-11) as a “better” region on the grid. In a second step, we
conducted a best-region-only grid search around (27,2-11) with C={26, 26.585, 27, 28,
28.585} and γ={2-9.415, 2-10, 2-11, 2-11.415, 2-12} preserving the same difference between
subsequent C/γ values. Taking the wPCCe as main criterion, the best predictive
performance is measured for (27, 2-11.415): wPCCe=18.66%, PCCe=25.01% and
AUCe=0.6111.

4.5 Predictive Model Evaluation on Test Data

We assess the robustness of the results on the estimation sample by applying the best
RF (m=336, balanced), the best MNL (general and order), the best RMNL (m=48,
RMNL_10), the original NB, the best RNB (m=77, RNB_10) and the best SVM (27,2-

11.415) on a separate test sample (N2=37,110). For SVM we first estimate the SVM
(27,2-11.415) on the full scaled training data (not cross validation data) excluding
instances with at least one attribute with value outside [-1,+1] and applied this SVM
on the full scaled test sample including instances with values outside [-1,+1].

Table 4 and Fig. 1 clearly corroborate the estimation findings. The arrows in Fig. 1
show the improvement in accuracy from MNL or NB as compared to RMNL and
RNB. Both MNL and NB benefit from injecting randomness, but generalizing RF is
most profitable for MNL. Clearly, random feature selection addresses the
multicollinearity problem of MNL thereby sincerely enhancing predictive
performance. The smaller advantage of injecting randomness for NB might stem from
diminished (as compared to full NB), but still considerable dependence between the
attributes in the subset of m randomly selected features. Overall, the highest test
performance is measured for RMNL_10 (m=77). Note that only RMNL_10 achieves
to combine a high PCC (26.41%) with a high wPCC (21.06%). For this best test
model (RMNL_10), we determine whether its k AUCs are statistically different from
those of RF, MNL, NB, RNB_10 and SVM. Per product category, we employ the
non-parametric test by DeLong et al. [DeLong] to determine whether the areas under

356 A. Prinzie and D. Van den Poel

Table 4. Predictive test performance

wPCCt PCCt AUCt
RF 20,66 21,39 0.6090

MNL 19,75 21,84 0.5626

RMNL 21,06 26,41 0.6322

NB 19,27 21,05 0.5899

RNB_10 19,61 21,56 0.5983

SVM 18,92 25,24 0.6188

RF RMNLRNB SVM
0

5

10

15

20

25

w
P

C
C

 t
es

t

RF RMNLRNB SVM
0

5

10

15

20

25

30

P
C

C
 t

es
t

RF RMNLRNB SVM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
U

C
 t

es
t

Fig. 1. Test set performance of RF, MNL, RMNL, NB, RNB and SVM

the ROC curves (AUCs) within a product category are significantly different. All
AUCs on the test set are statistically significant at α=0.05 except for
10_R_MNL_SVM, k=4 and k=5. Finally, also the k AUCs for NB and RNB_10 are
significantly statistically different at α=0.05.

4.6 Feature Importance

From a CRM cross-sell action perspective, it is vital to gain insight in which features
drive cross-buying propensities. Therefore, we assess the importance of the seleceted
features in the RF, RMNL_10 and RNB_10 models.

 Random Multiclass Classification: Generalizing Random Forests 357

Table 5 lists the top-10 features for RMNL_10 (best overall model) together with
their z-score calculated on oob data as well as their appropriate rank in RF and
RNB_10. A serious loss in predictive accuracy occurs when dropping features on the
number of (different) appliances acquired per product category, the gender of the
customer, the order of acquisition of home appliances and the time until a first
acquisition or between repeated acquisitions in a product category.

Table 5. Top-10 features

Rank Description z RF RNB

1 monetary, depth and width 29.27 18
2 monetary, depth and width 24.91 9
3 socio-demo 19.70 14 41
4 order 16.01 78
5 duration 9.48 4 63
6 order 9.21 81
7 order 7.69 51 15
8 order 4.86 7 34
9 socio-demo 4.84 35

10 brand-loyalty 4.74 16 11

5 Conclusion

RU models are robust multiclass models dominating marketing choice modelling due
to their micro-economic theoretical underpinnings. Unfortunately, these RU models
are un-suited to model choice settings with many features as they suffer heavily from
multicollinearity. The latter might prevent convergence and seriously distorts
parameter estimate interpretation. As to date, RU models lack any feature selection,
we propose Random MNL, employing bagging in tandem with random feature
selection, as alternative.

Acknowledgments

Our thanks go to Ghent University for funding computer infrastructure (Grantno.
011B5901). Dr Anita Prinzie is a Postdoctoral Fellow of the Research Foundation,
Flanders (FWO Vlaanderen).

References

1. Baltas, G., Doyle, P.: Random utility models in marketing: a survey. Journal of Business
Research 51(2), 115–125 (2001)

2. Barandela, R., Sánchez, J.S., Garcia, V., Rangel, E.: Strategies for learning in class
imbalance problems. Pattern Recognition 36(3), 849–851 (2003)

358 A. Prinzie and D. Van den Poel

3. Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel
Demand. The MIT Press, Cambridge (1985)

4. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
6. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or

more correlated receiver operating characteristic curves: a nonparametric approach.
Biometrics 44, 837–845 (1988)

7. Dietterich, T.G.: Machine-Learning Research – Four current directions. AI
Magazine 18(4), 97–136 (1997)

8. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers. Technical
Report HPL-2003-4, HP Laboratories (2003)

9. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for
classification learning. In: Proceedings of the 13th International Joint Conference on
Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann, San Francisco (1993)

10. Freund, Y., Shapire, R.: Experiments with a new boosting algorithm. In: Machine
Learning: Proc. of the Thirteenth International Conference, pp. 148–156 (1996)

11. Langley, P., Iba, W., Thomas, K.: An analysis of Baysian classifiers. In: Proceedings of
the Tenth National Conference on Artificial Inteligence, pp. 223–228. AAAI Press,
Stanford (1992)

12. Louviere, J., Street, D.J., Burgess, L.: A 20+ retrospective on choice experiments. In:
Wind, Y., Green, P.E. (eds.) Marketing Research and Modeling: Progress and
Prospectives, Academic Publishers, New York (2003)

13. Morrison, D.G.: On the interpretation of discriminant analysis. Journal of Marketing
Research 6, 156–163 (1969)

14. Prinzie, A., Van den Poel, D.: Predicting home-appliance acquisition sequences:
Markov/Markov for Discrimination and survival analysis for modelling sequential
information in NPTB models. Decision Support Systems (accepted 2007),
http://dx.doi.org/10.1016/j.dss.2007.02.008

15. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
16. Zhang, H., Jiang, L., Su, J.: Hidden Naive Bayes. In: Proceedings of the Twentieh National

Conference on Artificial Inteligence, AAAI Press, Stanford (2005)

Related Terms Clustering for Enhancing the

Comprehensibility of Web Search Results

Michiko Yasukawa and Hidetoshi Yokoo

Department of Computer Science, Gunma University
1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515 Japan

{michi,yokoo}@cs.gunma-u.ac.jp

Abstract. Search results clustering is useful for clarifying vague queries
and in managing the sheer volume of web pages. But these clusters are
often incomprehensible to users. In this paper, we propose a new method
for producing intuitive clusters that greatly aid in finding desired web
search results. By using terms that are both frequently used in queries
and found together on web pages to build clusters our method combines
the better features of both “computer-oriented clustering” and “human-
oriented clustering”. Our evaluation experiments show that this method
provides the user with appropriate clusters and clear labels.

1 Introduction

Recently, web search engines have become indispensable for everyday life. Peo-
ple all over the world use them to find various information about businesses,
education, hobbies, etc. Search engines (e.g. Google1) have become so advanced
that they can search a vast number of web pages for exact matches of strings
(terms and phrases) in less than a second. However, search engine users can
have difficulties in finding information that fits their needs. The following are
problems often encountered during web searches.

– User query ambiguity: If users are unable to be specific and concise in ex-
pressing their information needs, their sessions with search engines take more
time than needed. Search engines require concise, correctly-spelled terms,
which precisely express the users information needs for best results. It is
difficult for ordinary users to provide such terms.

– Unmanageable number of search results: Another problem for search
engine users is the sheer volume of search results. A search engine may return
thousands of URLs, titles and summaries (snippets). It is no longer possible
to check the entirety of results manually. It would be helpful to users if the
results could be understood with a simple look.

The information retrieval techniques related to these two problems are the
following.
1 Google, http://www.google.com/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 359–368, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

360 M. Yasukawa and H. Yokoo

Fig. 1. Example of Query Logs and Related Terms

– Query recommendation ([1], [2]): Pairs or triads of terms are recom-
mended to users to help their queries become more specific and relevant.
These terms have been obtained from query logs of the search engine, and
selected as those that are related to frequently-asked questions or to the
most popular queries. The recommended queries are given as a simple list,
which is neither organized nor grouped. Therefore, the user must use trial
and error to find the correct query.

– Search results clustering ([3], [4], [5]): Clustering works well for clarifying
vague queries. It can also be useful for showing users the major topics of
the returned results. The main disadvantage of clustering is difficulty in
building meaningful and understandable clusters and in giving proper labels
to clusters.

Despite its disadvantage, search results clustering is a promising solution for
users to enhance their search activities and experiences. The main purpose of this
research is to design a method that makes intuitive clusters from search results.
We have taken a hint from the Query Recommendation approach to develop
a new method, which we have designed to solve the aforementioned problems.
The clusters of our method are built by grouping already-collected terms that are
related to the query issued by the user. Similar or associative related terms are
grouped into a cluster, and web pages corresponding to each cluster are shown
to the user with an understandable label.

2 Preliminaries and Definitions

2.1 Query Logs and Related Terms

Unless query recommendation or search results clustering is available, search
engine users submit query terms accompanied by the related terms in order to
obtain more relevant results. For example, when usera submits a query Qa =
{salsa, dance, lesson}, he/she may recognize that the search term qa

1 = {salsa}
is accompanied by the related terms wa

1 = {dance} and wa
2 = {lesson}.

Related Terms Clustering for Enhancing the Comprehensibility 361

On the other hand, userb may submit a query Qb = {salsa, dance, lesson}, in
which the search term is qb

1 = {dance} and the related terms are wb
1 = {salsa}

and wb
2 = {lesson}, while userc may issue a query Qc = {salsa, dance, lesson},

in which the search terms are qc
1 = {salsa} and qc

2 = {dance}, the related term
is wc

1 = {lesson}. For simplicity, we consider only usera-type cases where one
query consists of one search term and one or more related terms.

A collection of related terms can be obtained from query logs of a search
engine (Fig. 1). Let V k(q) = {w1, w2, · · · , wk} be a collection of k related terms
to a search term q. Let qid term(qid, term) be a relation between the identifier
qid of a query and a term term included in the query. Here, the collection of
related terms V (salsa) can be derived by the following SQL statement2.

select count(*), term from qid_term
where term<>’salsa’ and
qid in (select qid from qid_term where term=’salsa’)
group by term order by count desc;

Query recommendation that suggests l related terms is possible by presenting
the enumeration of related terms, such as V l(salsa)={dance, sauce, step, recipe}
for l = 4. However, it is not helpful for users. The terms should be organized or
grouped.

2.2 Search Results and Document-Term Matrix

Suppose that a search engine returns m resutls Rm(q) for query q. Here, let
results coll(rid, URL, title, summary) be a relation between the identifier rid
for a result and URL, title, summary. A tuple within the results coll corre-
sponds to a document, i.e., a web page. Consequently, search results Rm(q) re-
trieved by a search term q have links to m documents Dm(q) = {d1, d2, · · · , dm}.
The documents collection Dm(q) corresponds to a collection of n terms, T n(q) =
{t1, t2, · · · , tn}. Let did term(did, term) be a relation between the identifier did
for a document and a term term included in the document. The collection of
terms T n(q) can be derived by the following SQL statement.

select count(*), term from did_term
group by term order by count desc;

A relationship between the documents in Dm(q) and the terms in T n(q) can
be described in a document-term matrix. The element fij of the matrix is the
term frequency, which represents the number of occurrences of the term tj in
the document di. Note that the terms are sorted by the collection frequency cfj ,
which represents the total number of occurrences of the term tj in Dm(q). An
example of search results for “Salsa” and the document-term matrix are shown
in Fig. 2.

2 We do not use SQL in actual implementation. See Section 3.3.

362 M. Yasukawa and H. Yokoo

Fig. 2. Example of Search Results and Document-Term Matrix

2.3 Naive Clustering Methods and Their Problems

With the document-term matrix, we may have the following algorithms.

1. Documents clustering
The most naive method for the clustering is documents clustering. Docu-
ments are grouped into disjoint clusters by the similarities in their terms fre-
quencies. Usually, the clusters are labeled by the feature-terms. This method
is simple and easy, but the clusters and labels become meaningless when the
documents are intermingled with miscellaneous topics and concepts. The two
dotted oval parts in the matrix (Fig. 2) degrade the quality and intelligibility
of clusters.

2. Terms clustering
Another naive method for the clustering is terms clustering. Terms are
grouped in disjoint clusters by the similarity of documents. And then, the
feature documents are assigned to the terms clusters.
In general, important terms are the most frequent terms in the documents.
Therefore, the clustering of frequent terms could be meaningful. Actually, we
found that it is much more descriptive than the naive documents clustering.
However, the clusters are quite familiar or descriptive but they do not cor-
respond to the users interests well. The left dotted oval part in the matrix
(Fig. 2) shows such features. The clustering independent from users interests
cannot be useful when there is a discrepancy between the tendency of entire
documents and typical users’ interests.

3 The Method: Related Terms Clustering

3.1 Vocabulary Selection

In our method, the collection of related terms is exploited to build meaningful
and useful clusters. The collection contains user-friendly terms which may reflect

Related Terms Clustering for Enhancing the Comprehensibility 363

potential purposes or situations of many users. Therefore, the collection can
be the important set of objects for the clustering. If the product set E(q) =
V k(q) ∩ T n(q) has more terms than needed for the clustering, a subset El(q),
which consists of l related terms is obtained by the following algorithms.

Basic Method: Order by Related Terms. In this algorithm, related terms
are selected by the priority of the number of times occurred in query logs. Let
vid term(vid, term) be a relation between the identifier vid of a related term and
the related term term. Similarly, let tid term(tid, term) be a relation between
the identifier tid of a term and the term term. The l related terms can be derived
by the following SQL statement.

select vid,term from vid_term
where term in (select term from tid_term)
order by vid limit l;

This algorithm was evaluated in [15] and mostly effective. However, some related
terms are too specialized for ordinary users to understand. For example, sup-
pose that two unknown strange strings are the name of a band that plays salsa
music and the name of a restaurant that is famous for salsa source, respectively.
The cluster including such terms cannot be understood at a glance. Some other
related terms are more easy to understand but they do not produce meaningful
clusters when they have few good features in the matrix.

Advanced Method: Order by Frequent Related Terms. In this algorithm,
related terms are selected by the priority of the collection frequency. A term tj ,
which has high collection frequency cfj , is one of the important terms. However,
if its document frequency is very high or low, it tends to form a useless or futile
cluster. Here, the document frequency dfj is the number of documents that term
tj occurs in. Therefore, the document frequency as well as collection frequency
in the matrix should be considered. Let tid df(tid, df) be a relation between the
identifier tid of a related term and a document frequency df of the related term.
To limit the extent of the document frequency, let us define two thresholds: the
maximum threshold df max and the minimum threshold df min. The l related
terms can be derived by the following SQL statement.

select tid,term from tid_term
where term in (select term from vid_term) and
tid in (select tid from tid_df where df <= df_max and df >= df_min
order by tid limit l;

The related terms that have moderately high frequency in the matrix are ex-
pected to be good descriptors both for documents and for users.

3.2 Building the Cluster

How to group related terms has an impact on the reasonability and the intelligi-
bility of the clusters. Even if the selected terms are understandable, unsuccessful

364 M. Yasukawa and H. Yokoo

grouping makes them meaningless and useless. The Hierarchical Bayesian Clus-
tering (HBC) algorithm is proposed in [8]. The algorithm has been shown to
be effective to automatic thesaurus construction based on verb-noun relations
in [9]. Although users’ query is not necessarily a grammatical expression, such
the algorithm is expected to be effective for the related terms clustering because
the queries as {salsa, order, cd} and {salsa, learn, dance, step} are some kind of
interrogative sentences presented to the search engine. The algorithm based on
HBC for building L clusters of related term is the following.

(1) Initialize
(1-a) Create term clusters, each of which has a single term.
(1-b) Calculate the similarity P(c|x).

(2) Repeat the process
(2-a) Merge the pair of clusters that have the maximum and the

second maximum sums of P(c|x).
(3) Evaluate the condition
(3-a) If the number of the clusters is more than L, repeat (2-a).
(3-b) If the number of the clusters is L, end.

Here, P (c|x) is the probability of the term x ∈ Dm(q), which is included in
the cluster c, and defined as follows[8].

P (c|x) = P (c)
m∑

i=1

P (di|c)P (di|x)
P (di)

3.3 Web Application Prototype

We have developed a prototype of clustering meta search engine. The prototype is
implemented by C (for clustering) and PHP (for web interface and pre-process).
The process of the system is the following. (1) Data Collection: To retrieve search
results and web pages (cache pages), we utilize the Search API of Yahoo!JAPAN3

and MSN4. The keyword tool of Overture5 is utilized to acquire a collection of
related terms. (2) Preprocess: A piece of text data is extracted from each web
page, stop words are removed, and the remaining terms are stemmed by the
Porter Stemming Algorithm[13]. (3) Clustering: The document-term matrix is
created, the clusters of related terms are built, and stemmed terms are reversed
to the normal terms, documents are assigned to the clusters and the clusters are
shown to the user. The sample of clustering is shown in Fig. 3.

4 Evaluation

In this section, we evaluate the proposed method with the test data and the
prototype system. The test data was built from actual data. User study is also
conducted for the evaluation from the user’s viewpoint.
3 Yahoo!JAPAN Developer Network, http://developer.yahoo.co.jp/
4 MSN Search SDK, http://msdn.microsoft.com/msn/
5 Keyword Selecter Tool, http://inventory.overture.com/

Related Terms Clustering for Enhancing the Comprehensibility 365

Fig. 3. Example of Web Application Fig. 4. Comparison of Similarity Measure

4.1 Comparison of Clustering Quality

Test Data. The topic data of NTCIR-3 WEB[14] were utilized as test queries.
At first, we collected the related terms to these queries. Among the 105 queries,
81 queries have one or more related terms. Next, we retrieve search results for
the queries. Some queries have few search results and/or no related term. Except
for those scarcity queries, we collected the search results and related terms of
the 40 queries to setup the test data. In the test data, each query has 1900 or
more cached web pages, and 80 or more related terms. Based on the studies of
[12] and [15], we have adjusted each method to build 10 clusters and label them
with 40 terms. The minimum and maximum document frequencies were set 5%
and 50% of the number of documents in the collection respectively.

Quality Measure of Clusters. When a single document have multiple top-
ics, it may belong to multiple, say N , clusters. In that sense, clusters are not
necessarily disjoint. Usually, a cluster may (a) cover a lot of interesting docu-
ments, (b) overlap with other clusters, (c) omit uninteresting documents, or (d)
separate dissimilar documents and group similar documents.

In order to examine these characteristics of the clusters, we consider the num-
ber of documents that are assigned to N clusters. For various N , we represent
its ratio to the total number of documents by

(a) coverage: one or more clusters (N ≥ 1),
(b) overlap: two or more clusters (N ≥ 2),
(c) omission: no cluster (N = 0),
(d) gathering: a single cluster (N = 1).

Note that the sum of (b) and (c) is equal to (a) for each query. Since the sum
of (b), (c) and (d) is 100% for each query, there is a trade-off between (b), (c)
and (d).

Comparison with General Distance Measures. In order to investigate the
proposed method, which is based on HBC, other general distance measures for

366 M. Yasukawa and H. Yokoo

agglomerative clustering[11] are introduced to the evaluation experiments. They
are SLINK (single linkage method), CLINK (complete linkage method), GAVE
(group average method) and WARD (Ward’s method).

The distance measure functions D(C1, C2) of them are defined as follows.

(1) SLINK: D(C1, C2) = minx1∈C1,x2∈C2D(x1, x2)
(2) CLINK: D(C1, C2) = maxx1∈C1,x2∈C2D(x1, x2)
(3) GAVE: D(C1, C2) = 1

n1n2

∑
x1∈C1

∑
x2∈C2

D(x1, x2)
(4) WARD: D(C1, C2) = E(C1 ∪ C2)− E(C1)− E(C2)

E(C1) =
∑

x∈C1
(D(x, ci))2

In the proposed method (described in Section 3.1 Advanced Method), the
HBC algorithm (described in Section 3.2) is compared with the general distance
measures. Its results are shown in Fig. 4. CLINK has remarkably a higher omis-
sion ratio and a lower gathering ratio than others. This means that it cannot
build informative clusters. Clusters should be informative as well as compre-
hensible. Except for CLINK, the other distance measures yield no significant
differences. Although SLINK is close to HBC, it is slightly inferior to HBC. In
summary, HBC is preferable in that it has higher coverage, higher overlap and
lower omission.

Comparison with Naive Methods. The proposed methods, Related Terms
Clustering (proposed-r) and Frequent Related Terms Clustering (proposed-fr)
described in Section 3.2 are compared with the naive methods, Documents Clus-
tering (naive-doc) and Terms Clustering (naive-term) described in Section 2.3.
The behavior of the algorithm depends on the commonality of the frequent terms
and related terms. Here, the commonality ratio is of the top 40 frequent terms
and related terms. Except for the outliers, the typical ratio is between 30% and
60%. The comparisons of the methods are divided into three groups according
to the ratio. When the ratio is 40% or more, frequent related terms closely re-
sembles related terms. In Fig. 5, the ratio is 30% or more and less then 40%. It
shows that the proposed-fr is between the proposed-r and the two naive meth-
ods. The proposed-fr is more explanatory than the proposed-r. However, the
proposed-r is less complicated than the proposed-fr. Which method can produce
more comprehensible clusters for users? It is evaluated in the following.

4.2 Comparison of Clustering Comprehensibility

We compared the proposed-r with the naive methods in [15]. The user study
has shown that the clusters built by the proposed-r are more understandable for
users since the proposed-r is more human-oriented than the naive methods.

Here, let us compare the proposed-fr with the proposed-r. We conducted a
new experiment where 12 university students were shown the clusters produced
by the two methods on 6 queries. The students glanced through a set of clusters,
and evaluated the set subjectively on a 4-point scale: (1) not understandable,
(2) not so understandable, (3) rather understandable, (4) understandable. The

Related Terms Clustering for Enhancing the Comprehensibility 367

Fig. 5. Comparison of Methods (30-40%) Fig. 6. Comprehensibility by Queries

average comprehensibility is shown in Fig. 6. The proposed-fr produces more
comprehensible terms and clusters. As for the query “Turtle,” the clusters were
not comprehensible because its frequent related terms did not have good features.
In such case, the documents collection should be expanded to include more
related terms.

5 Discussion

Clustering of query logs for query recommendation (e.g. [1], [2]) and mining of
query logs for improving efficiency of search engine (e.g. [6], [7]) were proposed.
These researches utilize not only query logs but also users’ clickthrough data,
which is also recorded by the search engine. On the other hand, our algorithm
utilizes query log, but does not utilize clickthrough data. Methods for automatic
thesaurus construction (e.g. [9], [10]) were proposed, and general or universal
thesauri were built. Different from them, main subject of our research is build-
ing dynamic, just-in-time thesaurus-like clusters, which are useful for a user to
understand a certain search results. Methods for search results clustering (e.g.
[3], [4], [5]) were proposed. Different from these methods, the related terms clus-
ters are labeled from the user’s viewpoint with our proposed method since the
labels of clusters consist of extracted terms from a collection of related terms to
the query. The collection is acquired from many users’ query logs of the search
engine and reflect users’ information needs. The algorithm was evaluated both
in the quality of labels and in the user study and it was found to be effective
for building understandable clusters. The documents clustering and the terms
clustering are more “computer-oriented” and effective to discover knowledge (i.e.
data mining). On the other hand, the related terms clustering is rather “human-
oriented” and effective to share knowledge (i.e. social filtering). Visualized and
interactive user interfaces (e.g. clusty6) are thought to be useful. Development
of an advanced user interface is the future work.
6 Clusty the clustering search engine, http://clusty.com/

368 M. Yasukawa and H. Yokoo

6 Conclusion

Our method enables easier viewing of search results by the creation of com-
prehensive clusters. We first form related terms using words that often appear
together on web pages and are frequently used together in search engine queries.
These related terms are the most reliable way to conduct concise searches. The
HBC, an algorithm based on a stochastic model, is used to separate and collect
related terms to form understandable clusters. This method can also provide
clusters that contain synonyms and/or terms related to the original query. This
allows the results to be displayed in a succinct and concise manner. In the future,
we plan to investigate how to better present our clusters in an easy-to-navigate
fashion. We also intend to develop an intuitive visual interface.

References

1. Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M.: Query Recommendation Using
Query Logs in Search Engines. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas,
Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Hei-
delberg (2004)

2. Zhang, Z., Nasraoui, O.: Mining search engine query logs for query recommenda-
tion. WWW2006, pp. 1039–1040 (2006)

3. Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration.
SIGIR 1998, pp. 46–54 (1998)

4. Kohonen, T.: Self-Organizing Maps of Massive Document Collections. IJCNN
2000 2, 3–12 (2000)

5. Osinski, S.: Improving Quality of Search Results Clustering with Approximate
Matrix Factorisations. In: ECIR 2006, pp. 167–178 (2006)

6. Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query
log. KDD 2000, 407–416 (2000)

7. Wen, J.R., Nie, J.Y., Zhang, H.J.: Query clustering using user logs. ACM Trans.
Inf. Syst. 20(1), 59–81 (2002)

8. Iwayama, M., Tokunaga, T.: Hierarchical Bayesian Clustering for Automatic Text
Classification. IJCAI 1995, 1322–1327 (1995)

9. Tokunaga, T., Iwayama, M., Tanaka, H.: Automatic Thesaurus Construction based
on Grammatical Relations. IJCAI, 1308-1313 (1995)

10. Schutze, H., Pedersen, J.: A Cooccurrence-Based Thesaurus and Two Applications
to Information Retrieval. Inf. Process. Manage. 33(3), 307–318 (1997)

11. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Process-
ing. Mit Pr (1999)

12. Kaki, M.: Optimizing the number of search result categories. CHI 2005, 1517–1520
(2005)

13. PorterStemmer, http://tartarus.org/∼martin/PorterStemmer/index.html
14. Eguchi, K., Oyama, K., Ishida, E., Kando, N., Kuriyama, K.: NTCIR-3 WEB: An

Evaluation Workshop for Web Retrieval. NII Journal 6, 31–56 (2003)
15. Yasukawa, M., Yokoo, H.: Web Search Based on Clustering of Related Terms Ac-

quired from Search Log. IEICE Trans. Inf. Syst (Japanese) J90-D(2), 269–280
(2007)

http://tartarus.org/~martin/PorterStemmer/index.html

Event Specification and Processing for Advanced
Applications: Generalization and Formalization�

Raman Adaikkalavan1 and Sharma Chakravarthy2

1 CIS Department, Indiana University South Bend
raman@cs.iusb.edu

2 CSE Department, The University of Texas At Arlington
sharma@cse.uta.edu

Abstract. Event processing is being used extensively in diverse application do-
mains. Simple and composite events play a critical role in event processing sys-
tems and were identified based on application domains. They were formally de-
fined using detection-based (point-based) and occurrence-based (interval-based)
semantics over various consumption modes. Even though both the semantics are
required they are insufficient for handling emerging applications such as infor-
mation security, stream and sensor data processing systems. Generalizing the
event specification and detection is inevitable for supporting these new applica-
tions that were not foreseen by extant systems. First, we motivate the need for
generalization using applications from diverse domains. Second, we generalize
and formalize primitive and composite events. Finally, we briefly discuss how
generalized events can be detected using event registrar graphs.

1 Introduction

Active (or Event-Condition-Action) rules used for situation monitoring are considered
as one of the most general formats for expressing rules. There has been a lot of work
done in the area of event detection and specification in the form of ECA rules. As
the event component was the least understood (conditions correspond to queries, and
actions correspond to transactions) part of the ECA rule, there was a large body of work
on the language for event specification. A number of event processing systems using
ECA rules have been proposed and implemented in the literature [1,2,3,4,5,6,7,8,9].
Recently, there have also been some work on semantic events [10].

The above mentioned works provide well-defined point-based and interval-based
event semantics. Although both event semantics can be used for event processing, they
are inadequate for supporting many newer application domains. The main shortcoming
of both the semantics is that they are solely based on timestamp of the event occurrence.
In this paper we generalize and formalize events and briefly discuss the generalized
event detection. We discuss the existing temporal semantics in Section 2. We motivate
the need for event generalization using various real time applications in Section 3. Event
generalization is discussed in Section 4 and generalized event detection is discussed in
Section 5. Section 6 has conclusions.
� This work was supported, in part, by NSF grants IIS-0326505, EIA-0216500, MRI-0421282,

IIS-0534611.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 369–379, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

370 R. Adaikkalavan and S. Chakravarthy

2 Background: Events and Temporal Semantics

An event is “any occurrence of interest in an application, system, or environment”,
which can be either primitive (e.g., depositing cash) or composite (e.g., depositing cash,
followed by withdrawal of cash). Primitive events occur at a point in time (i.e., time of
depositing) and composite events occur over an interval (i.e., starts at the time cash is
deposited and ends when cash is withdrawn). With current event processing systems,
primitive events are detected at a point in time, whereas the composite events can be
detected either at the end of the interval (i.e., detection- or point-based semantics, where
start of the interval is not considered) [1,2,3,4] or can be detected over the interval (i.e.,
occurrence- or interval-based semantics) [5,6,7,8,9]. To the best of our knowledge, all
the active databases operate using temporal semantics. In this paper, we use Snoop [3]
and SnoopIB [9] that was developed as the event specification component of the ECA
rule formalism used as a part of the Sentinel active object-oriented database [11]. Main
motivation to use Snoop and SnoopIB is that they support expressive event specification
using both point- and interval-based semantics in various event consumption modes.

Definition 1 (Point-based Event). A point-based event E[t] is a function from the time
domain (T) onto the boolean values. “E : T → {True, False}”. It is given by

E[t] =

{
T (rue) if event E occurs at time point [t]

F (alse) otherwise.

Similarly, an interval-based event E[ts, te] is a function from the interval domain (I)
onto the boolean values. “E : I → {True, False}”. ts and te represent the start and
end time of the event, respectively.

2.1 Primitive Events

Primitive events are the basic building blocks in an event processing system and are
derived from the application domains. Below we define them formally1.

Definition 2 (Point-based Primitive Event). An event E occurs atomically at a point
[t] on the time line. It is detected at [t] and is expressed as D(E[t]). It is defined as
“D(E[t]) � ∃t (E[t]);”

Definition 3 (Interval-based Primitive Event). An event E occurs atomically at a
point [t] on the time line. It is detected over an interval [t, t′], where [t] is the start
time and [t′] is the end time and (t = t′). It is expressed as O(E[t, t′]) and is defined as
“O(E[t, t′]) � ∃t = t′ (E[t, t′]);”

Based on the object-oriented paradigm, Snoop and SnoopIB allow two primitive event
definition types using function signatures (instance- and class-level), as shown below.

E1 = F(formal parameters); E2 = X → F(formal parameters);

When a function F is invoked, events E1 and E2 should be raised. However, event
E2 is raised only when object X has invoked the function i.e., condition on the object.

1 In this paper, we use D to represent detection- or point-based and O to represent occurrence-
or interval-based semantics.

Event Specification and Processing for Advanced Applications 371

In addition to function signatures, events can also be based on time, transaction, etc.
On the other hand, ODE [12] allows primitive events to be associated with masks. For
instance, an event “buyStock(double price) && price > 500” is detected when the
function “buyStock” is invoked and price > 500. Masks (predicates) can only be based
on the formal parameters of the function or based on the state of the database object.

2.2 Composite Events

Composite events are defined by composing more than one primitive or composite event
using event operators [3,9]. Using temporal composition conditions, an event operator
defines how a composite event needs to be composed and detected.

Definition 4 (Point-based Composite Event). A composite event D(E) occurs over
an interval [ts, te] and is detected at a time point [te], where ts is the start time of
initiating event, and te is the end time of detecting event. “D(Eop (E1, . . . En), [te]);”

Definition 5 (Interval-based Composite Event). A composite eventO(E) occurs and
is detected over an interval [ts, te]. It is defined as “O(Eop (E1, . . . En), [ts, te]); ”

Eop represents an n-ary event operator (e.g., binary). (E1, . . . En) represents the con-
stituent events. When the event operator’s temporal composition conditions are satis-
fied, a composite event is detected. In a composite event, Initiator starts the detection,
detector detects and raises the event, and terminator ends the detection. Based on the
operator semantics the same event can act as initiator/detector/terminator. Formaliza-
tion of all other operators can be found in [3,9]. Below we explain two operators.

SEQUENCE (E1 � E2): A binary event operator that captures the sequential
occurrence of constituent events is raised when event E1 occurs before event E2. It is
detected when E2 occurs. It is formally defined in point and interval semantics as:

D(E1 � E2, [t2]) � ∃t1, t2(D(E1, [t1]) ∧ D(E2, [t2]) ∧ (t1 < t2));

O(E1 � E2, [ts, te]) � ∃ts, te, t, t
′(O(E1, [ts, t]) ∧ O(E2, [t′, te]) ∧ (ts ≤ t < t′ ≤ te));

In the above, events E1 and E2 can be primitive or composite. In the first definition,
event E1 is detected at [t1] and E2 at [t2]. Sequence event is detected if t1 < t2. With
interval-based, sequence is detected if end time of E1 is less than start time of E2.

NOT O(¬(E2)(E1 � E3), [t1, t2]): Non-occurrence of an event E2 in between
two other events E1 and E3 triggers the NOT event.

The above temporal semantics is based on the unrestricted event consumption mode
where no constituent event is dropped after participating in an event detection. In order
to avoid the unnecessary event detection, event consumption modes [9] such as Recent,
Continuous, Chronicle, and Cumulative were defined based on the application domains.
Similar to primitive events, composite events can also be associated with “Mask” in
ODE. But, “Any mask predicate applied to a composite event, unlike the mask predi-
cates of logical (primitive) events can only be evaluated in terms of the ‘current’ state
of the database. [12]” Thus masks associated with composite events are very restricted
as they are just constant integer expressions.

372 R. Adaikkalavan and S. Chakravarthy

3 Temporal Semantics Limitations

We discuss two different application domains and show that event processing based on
temporal semantics alone is not sufficient. Even though there are other domains, we are
restricting to only two due to space constraints [13,14]. We will also discuss only the
need for the composite event generalization as it subsumes primitive events.

3.1 Stream Data Processing

Many stream applications (e.g., smart homes) seem to not only need computations
on data streams, but these computations also generate interesting events and several
such events have to be composed, detected and monitored for taking necessary actions
[13,15,16]. In an automobile accident detection and notification system, based on the
linear road benchmark, each expressway is modeled as a linear road, and is further
divided into equal-length segments. Each registered vehicle reports its location periodi-
cally (say, every 30 seconds) using a sensor. Based on this location stream data, we can
detect a car accident in a near-real time manner. Detecting an accident (or traffic jam)
has at least three requirements. (1) IMMOBILITY: whether a car is immobile for four (or
n) consecutive time units, (2) SPEED REDUCTION: whether there is at least one car that
has reduced its speed by 30% or more, and (3) SAME SEGMENT: determining whether
the car identified in (2) is in the same segment and it follows the car identified in (1).

Assume that location stream sends inputs to two continuous queries; CQ1 checks
every car for immobility, and CQ2 checks for speed reduction. Primitive events Eimm
and Edec are defined on CQ1 and CQ2. An accident is modeled using the sequence
event operator as event Eacc, as an accident is detected when Eimm happens before
Edec. In addition to the sequence condition, both the cars should be from the same seg-
ment. CQ1 and CQ2 generate primitive events and raise them along with their attributes,
and notify events Eimm and Edec, respectively. Attributes of both events are:

Eimm: (timestamp, carId, speed, expWay, lane, dir, segmentId)
Edec: (timestamp, carId, speed, expWay, lane, dir, segmentId, decreaseInSpeed)

Eimm occurs at 10:00 a.m. (10:00 a.m, 1, 0 mph, I123, 3, NW, 104), and Edec
occur at 10:03 a.m. and 10:04 a.m. (10:03 a.m., 2, 40 mph, I123, 1, NW, 109, 45%), and
(10:04 a.m., 5, 20mph, I123, 4, NW, 104, 40%).

With current event processing, tuples with carId 1 (10:00 am) and carId 2 (10:03
am) triggers the event Eacc. Similarly tuples with carId 1 and carId 5 trigger the event
Eacc. Thus, the important condition that both the cars should be from the same segment
can only be checked in the condition part of the rule after the event Eacc is detected.
As a result, this introduces a high overhead on the rule processing system (and the event
processing system) to deal with large number of unnecessary events as the condition can
evaluate to false in most cases. The above example can be modeled using instance level
events of Snoop(IB) (but not in other event processing languages) or masks. However,
all the instances need to be pre-defined (or known previously) which may be impossible
in a system where the data streams’ attribute values are dynamic. In addition, instance
level events introduce a high overhead for computation.

As mentioned earlier, event consumption modes play a critical role in event process-
ing systems. In our example, using modes will reduce duplicate accident detections,

Event Specification and Processing for Advanced Applications 373

which is not possible with relational operators. When modes are used, same segment
condition cannot be checked in the rule, since it will lead to incorrect event detection
[13,14]. Hence, the two problems discussed above clearly shows there is an inevitable
need for enhancing event detection semantics in addition to or in lieu of temporal se-
mantics. Please refer [13,14] for detailed discussion.

3.2 Information Security

Access control is considered as one of the pillars of information security. In role-based
access control (RBAC) [17], users and objects are assigned to one or more roles. Thus,
users should be active in the role that has the required permissions, before access is
granted. On the other hand, composite constraints can be placed on the role activations,
so that users are allowed to activate a role only when those constraints are satisfied.
Below we explain two examples, for more examples please refer to [14].

Consider a prerequisite role constraint, that requires any user to be active in a role
(e.g., A) for activating another role (e.g., B). This constraint can be modeled using a
sequence event. The first constituent event captures the activation of role A. The second
constituent event captures the activation request for role B. In this case, any user (or
object) can activate (or invoke activation function) the role. Consider a scenario when
user Tom is activating role A at 10:00 a.m. and user Bob is requesting an activation
for role B at 10:05 a.m. As the current semantics is based on time this will lead to an
event detection, allowing Bob to activate the role. In other words, Bob should have
activated role A before role B. Thus, there needs to be a condition that requires both the
users (or userId’s) to be same, similar to the same segment condition in the previous
example.

Capturing violations are critical in the security domain. Currently, only the events
that follow a particular order are considered for event detection (i.e., complete events).
For example, with a Sequence operator there are two constituent events where the first
event should occur ahead of the second event. What happens when a second event oc-
curs without the first event’s occurrence? With extant event systems, the second event
is dropped and it is a limitation, since this occurrence of the second event without the
first event can be a violation of a security policy.

Consider the security policy; “Allow a user to enter the pregnant ward in a hospital
from a virus ward only when the user has visited the hygienize ward.” When the access
is granted without hygienizing it can allow the user to spread the virus. This policy
can be modeled with the NOT operator (O(¬(EHS)(EV W � EPW), [t1, t2])); user
entering virus ward is modeled as initiator event EV W , entering hygienize ward is EHS

and entering pregnant ward is detector/terminator EPW . With NOT operator, when the
user enters virus ward, does not enter hygienize ward, and enters pregnant ward, then
the NOT event is detected. On the other hand, what happens when the user enters the
pregnant ward directly, or from the hygienize ward without going to the virus ward
(i.e., no initiator)? With the current semantics, NOT event is not detected and events
are dropped when; 1) all EV W , EHS and EPW occur, 2) only EHS and EPW occur,
or 3) when EPW occurs alone. In our example, the user should be allowed to enter the
pregnant ward when all three events occur. Thus, incomplete (partial) and failed events
have to be captured in addition to complete events.

374 R. Adaikkalavan and S. Chakravarthy

4 Event Generalization

Event generalization should accommodate the existing temporal semantics and should
allow users to use point- or interval-based with or without the generalization.

Each event has a well-defined set of attributes based on the implicit and explicit
parameters, that provide the necessary information about that event. Implicit parame-
ters are optional and contain system and user defined attributes, such as: event name,
and time of occurrence (tocc). These parameters are defined internally based on the
application domain and are collected at the time when the event is raised. Explicit pa-
rameters are collected from the event itself and values for these parameters are assigned
when it is raised. When a function is defined as a primitive event, then explicit pa-
rameters are just the formal parameters of that function. In this paper we represent
optional implicit parameters as “[Ai1, Ai2, . . . , Ail]” and available explicit parameters
as “(Ax1, Ax2, . . . , Axm)”.

Currently, event operators just utilize the timestamp for composition conditions.
Computations using the parameters are carried out in the condition and action pro-
cedures of the ECA rule, which is not sufficient, as discussed previously. Thus gen-
eralizing events by allowing composition conditions to be based on both implicit and
explicit parameters seems natural as they provide all the necessary information about
an event. In order to generalize events, two types of expressions are constructed based
on the parameters and are associated with the events. Implicit expressions (Iexpr) are
based on the implicit parameters and explicit expressions (Eexpr) are based on the ex-
plicit parameters. Both these expressions can be based on logical operators, relational
operators, etc. such as <, >, <=, >=, ! =, =,∈,⊂.

4.1 Generalized Primitive Event

Definition 6 (Generalized Primitive Event). A generalized primitive event G(E) can
be a point- or interval-based primitive event with conditional expressions based on
Iexpr and Eexpr. They are formally defined as

GP (E[t]) � ∃t (GP ((E, [t]) ∧ (Iexpr ∧ Eexpr)));

GO(E[t, t′]) � ∃t = t′ (GO((E, [t, t′]) ∧ (Iexpr ∧ Eexpr)));

In both the generalized definitions, primitive event is detected if it occurs, and both
the conditional expressions return TRUE. Below, generalized primitive event for Snoop
and SnoopIB is defined. eName corresponds to the name of the event, F corresponds
to the name of the function on which the event is defined. Only one implicit parameter,
“ObjInstance” is shown. Both the expressions evaluate to either TRUE or FALSE.

Event eName = (F(objInstance, Ax1, Ax2, . . . , Axr), (Iexpr ∧ Eexpr));

Four possible types of primitive events based on Iexpr and Eexpr are:

(Iexpr ∈ ∅) ∧ (Eexpr ∈ ∅) → E1 = F(Ax1, Ax2, . . . , Axr);

(Iexpr /∈ ∅) ∧ (Eexpr ∈ ∅) → E2 = X → F(Ax1, Ax2, . . . , Axr);

(Iexpr ∈ ∅) ∧ (Eexpr /∈ ∅) → E3 = (F(Ax1, Ax2, . . . , Axr) : Eexpr);

(Iexpr /∈ ∅) ∧ (Eexpr /∈ ∅) → E4 = (X → F(Ax1, Ax2, . . . , Axr) : Eexpr);

Event Specification and Processing for Advanced Applications 375

Events E1 and E2 are class-level and instance-level events, same as the existing event
specifications shown in Section 2. Event E1 is raised when function F is invoked by
any object, and event E2 is raised when it is invoked by an object X (i.e., Iexpr = X
is TRUE). Event E3 is detected when the method is invoked by any object but must
satisfy Eexpr. Event E4 is raised when both Iexpr and Eexpr return TRUE. Even though
some of the conditions can be specified by existing systems via masks, not all possible
conditions can be specified. In all, our generalization is simple and powerful. As shown
below, events EP3, EP4 and EP5 have Iexpr and events EP2 and EP5 have Eexpr.

EP1 = setPrice(price); EP2 = (setPrice(price), (price > 100));
EP3 = (setPrice(price), (tocc > 18.00));
EP4 = (setPrice(price), (stockId = GOOG));
EP5 = (setPrice(price), ((stockId = GOOG) ∧ (price > 500)));

Although the effect of generalization can be achieved by moving both Iexpr and
Eexpr to the rules it will be inefficient - due to unnecessary rule processing as all
events are raised, but filtered in the rules. Another critical issue is that when the expres-
sions are moved to the rules, those events cannot be used as part of composite events.

4.2 Generalized Composite Event

Similar to the primitive event definition generalization, we have generalized the current
event operator definitions, so that composition condition can be based on Iexpr and
Eexpr and not just based on time.

Definition 7 (Composite Event). A generalized composite event G(E) can be a point-
or interval-based composite event with conditional expressions based on Iexpr and
Eexpr. They are formally defined as

GD(Eop (E1, . . . En), (Iexpr ∧ Eexpr), [te]);

GO(Eop (E1, . . . En), (Iexpr ∧ Eexpr), [ts, te]);

– GD and GO correspond to generalized point-based and interval-based events.
– Eop represents an n-ary event operator. Some of the event operators are; And, Or,

Sequence, Not, Plus, Periodic, Aperiodic, Periodic*, and Aperiodic*.
– (E1, . . . En) are the constituent events. For example, E1 can be primitive/composite.
– [ts] is the start time of the initiator and [te] is the end time of the detector. Point-

based events have [te] as the time of occurrence and interval-based events have
[ts, te] as the time of occurrence.

– Implicit parameter expression Iexpr subsumes existing point- and interval-based
semantics. For instance, a binary event operator with events E1 and E2 can have
Iexpr = tocc(E1) θ tocc(E2), where tocc represents the timestamp of event
occurrence, and θ can be any operator <, >,≤,≥, =, �=,∈, . . .

– Eexpr has conditions based on the explicit parameters. For instance, a binary event
operator with the events E1 and E2 can have Eexpr = E1(Axi) θ E2(Axj), where
attributes E1(Axi) and E2(Axj) have values from the same domain.

– composite event is detected iff all the above mentioned expressions return TRUE.
We assume that all these conditional expressions must not be empty at the same
time, otherwise it will detect the composite event always.

376 R. Adaikkalavan and S. Chakravarthy

As opposed to the alternate primitive event generalization, the effect of composite
event generalization cannot be achieved by moving both Iexpr and Eexpr to rules when
consumption modes are involved. This is because composite events will be detected
incorrectly if Iexpr or Eexpr are moved to rules as explained in Section 3.

Temporal Semantics using Generalized Event Formalization: As an example, be-
low we formalize the generalized Sequence operator (E1 � E2) and show how the
generalization can incorporate the existing temporal semantics using Iexpr.

GD(E1 � E2, [t2]) �∃t1, t2(GD(E1, [t1]) ∧ GD(E2, [t2]) ∧ (Iexpr ∧ Eexpr));

Iexpr = (t1 < t2);

GO(E1 � E2, [ts, te]) �∃ts, te, t, t
′(GO(E1, [ts, t]) ∧ GO(E2, [t′, te]) ∧ (Iexpr ∧ Eexpr));

Iexpr = (ts ≤ t < t′ ≤ te);

Complete, Incomplete and Failed Events: As composite events combine more than
one event, they are detected only when the event completes in the current event de-
tection systems. We categorize these events as complete events. Actions corresponding
to an event can be performed iff that event is complete. Even though event comple-
tion is necessary in many situations it is not required in all the domains. Consider the
prerequisite role constraint explained in Section 3.2. When user Bob tries to activate
role B without activating role A, activation request should be declined and notified. This
requires an additional capability of current event detection semantics paradigm to infer
that a constituent event (always the detector) of a composite event has been detected,
but not other events to complete the detection of the composite event. To identify such
occurrences the If-Then-Else mechanism is proposed (because the If-Then mechanism
only detects complete events). This allows for additional actions to be taken when the
detector occurs and the event is not completed because of the non-occurrence of other
constituent events. We term these events as incomplete events.

As explained in Section 3.2, in addition to complete and incomplete events there can
be other type of events. Consider a NOT event operator. When the first and third event
occur without the middle event it is a complete event. When the second and third event
occur without the first event or when the third event occurs without the first event then
they are considered as incomplete events. On the other hand, when all the first, second
and third event occur, a NOT event is not detected and is categorized as failed event.
In general, “A complete event E occurs when, i) initiator occurs, ii) all the constituent
events occur, and iii) detector occurs.” “An incomplete (partial) event E occurs when
i) no initiator occurs, ii) other constituent events can occur, and iii) detector occurs.”
“A failed event E occurs when i) initiator occurs, ii) other constituent events occur, and
iii) detector occurs, but the event fails because some constituent event that should not
occur has occurred.”

Generalized Event Operators - Stream Processing: Below we show how the auto-
mobile accident notification example defined in Section 3.1 can be modeled using the
generalized event definition. For brevity, we will explain it using the point-based se-
mantics. Consider the attributes of events Eimm and Edec from Section 3.1.

GD(Eimm � Edec, [t2]) � ∃t1, t2(GD(Eimm, [t1]) ∧ GD(Edec, [t2]) ∧ (Iexpr ∧ Eexpr));

Iexpr = (t1 < t2); Eexpr = (Eimm.segmentId.equals(Edec.segmentId));

Event Specification and Processing for Advanced Applications 377

In the above event, Iexpr requires event Edec to follow Eimm and Eexpr requires
both of them to be from the same segment. Below we consider the same event occur-
rences from Section 3.1 and show what events are detected. In the event occurrences,
carId 1 (10:00 a.m.) is combined with carId 5 (10:04 a.m.) as both of them are from the
same segment 104, as opposed to the current event semantics where carId 1 and carId
2 are combined to form the composite event.

Generalized Event Operators - Information Security: Similar to the above, role ac-
tivation problem discussed in Section 3.2 can be addressed. On the other hand, the
example from Section 3.2 where a user is controlled from entering the pregnant ward
based on the history is modeled using a NOT operator. We define a NOT event

Event Esec = (NOT (EV W , EHS, EPW) ∧ (Iexpr ∧ Eexpr));

Iexpr = (Point/Interval Semantics);

Eexpr = (EV W .userId = EHS.userId = EPW .userId);

With the NOT operator, first event EV W is the initiator, last event EPW is the detec-
tor and middle event EHS is the non-occurrence event. The predicate relates all the
events with the same user for controlling each user simultaneously. This condition can
be modified to include specific roles, users, and so forth.

Case 1: When the user enters virus ward, Esec is initiated. When the user tries to
enter pregnancy ward EPW is raised and Esec is detected as EHS has not occurred.
As both the initiator and detector have happened according to the semantics, a complete
event is raised. Thus, this triggers the complete rule that in turn denies the user to enter
the pregnancy ward. Case 2: Assume the user proceeds from the virus ward to hygiene
stop and then to pregnancy ward. In this case the middle event occurs, thus making
Esec a failed event. In other words, the non-occurrence has failed. The failed rule as-
sociated with the event is triggered and the user is allowed to enter the pregnancy ward.
Case 3: When the users proceeds from hygiene stop to pregnancy ward or directly to
the pregnancy ward, an incomplete event is triggered. As the initiator did not occur this
is an incomplete event and the incomplete rule is triggered. As the user has not entered
the virus ward before, this rule allows the user to enter the pregnancy ward.

5 Event Registrar Graphs (ERG)

EP1

�
�

EJ

addActiveRole(user, session, role)

ET

��
�

I ^ E I E NULL

Fig. 1. Event Registrar Graph

We have implemented the generalized event de-
tection in the Sentinel active database [11]. ERGs
(or extended event detection graphs) record event
occurrences as and when they occur and keep
track of the constituent event occurrences over the
time interval they occur. ERGs are acyclic graphs,
where each event pattern is a connected tree. In
addition, event sub-patterns that appear in more
than one event pattern are shared. ERG shown in
Figure 1 has two leaf nodes and each of them rep-
resent a simple or primitive event. Similarly the

378 R. Adaikkalavan and S. Chakravarthy

internal node represents the complex event. The ERG as a whole represents a compos-
ite event. In Figure 1, the complex event is a binary event operator (e.g., AND), thus
having two child events. Extant event detection graphs (EDGs) [3] are extended to han-
dle primitive and composite event generalization, to support implicit and explicit event
expression computations. Please refer [14] for more detailed explanations of ERGs and
limitations of EDGs.

6 Conclusions

We discussed the need for generalizing event processing with some critical examples
from two different domains. We generalized and formalized the traditional primitive
and composite events. We explained how existing temporal semantics can be supported
using the generalization. Even though the generalization seems to be simple on the face
of it, it is powerful and inevitable; 1) as it reduces the high overhead, 2) detects events
correctly, and 3) extends the situations that can be monitored, thus catering a larger
class of applications. In addition, generalization also introduced some significant chal-
lenges while detecting complete, incomplete and failed events with implicit and explicit
expressions. We also briefly discussed event detection using event registrar graphs.

References

1. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite Event Specification in Active
Databases: Model & Implementation. In: Proc. of VLDB, pp. 327–338 (1992)

2. Gatziu, S., Dittrich, K.R.: Events in an Object-Oriented Database System. In: Proceedings of
Rules in Database Systems (September 1993)

3. Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification Language for Active
Databases. DKE 14(10), 1–26 (1994)

4. Zimmer, D.: On the semantics of complex events in active database management systems.
In: Proc. of the ICDE, p. 392. IEEE Computer Society, Washington (1999)

5. Roncancio, C.: Toward Duration-Based, Constrained and Dynamic Event Types. In: Andler,
S.F., Hansson, J. (eds.) ARTDB 1997. LNCS, vol. 1553, pp. 176–193. Springer, Heidelberg
(1999)

6. Galton, A., Augusto, J.: Two Approaches to Event Definition. In: Hameurlain, A., Cicchetti,
R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556. Springer, Heidelberg
(2002)

7. Mellin, J., Adler, S.F.: A formalized schema for event composition. In: Proc. of Conf on
Real-Time Computing Systems and Applications, Tokyo, Japan, pp. 201–210 (March 2002)

8. Carlson, J., Lisper, B.: An Interval-based Algebra for Restricted Event Detection. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 121–133. Springer, Heidel-
berg (2004)

9. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-Based Event Specification and De-
tection for Active Databases. DKE 59(1), 139–165 (2006)

10. Nagargadde, A., Varadarajan, S., Ramamritham, K.: Semantic Characterization of Real
World Events. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453,
pp. 675–687. Springer, Heidelberg (2005)

11. Chakravarthy, S., Anwar, E., Maugis, L., Mishra, D.: Design of Sentinel: An Object-Oriented
DBMS with Event-Based Rules. IST 36(9), 559–568 (1994)

Event Specification and Processing for Advanced Applications 379

12. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Event Specification in an Object-Oriented
Database. In: Proc. of SIGMOD, San Diego, pp. 81–90 (June 1992)

13. Jiang, Q., Adaikkalavan, R., Chakravarthy, S.: MavEStream: Synergistic Integration of
Stream and Event Processing. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS,
vol. 4353, Springer, Heidelberg (2006)

14. Adaikkalavan, R.: Generalization and Enforcement of Role-Based Access Control Us-
ing a Novel Event-based Approach. Ph.D. dissertation, UTA, [Online]. Available (2006),
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Ada06PHD.pdf

15. Garg, V., Adaikkalavan, R., Chakravarthy, S.: Extensions to Stream Processing Architecture
for Supporting Event Processing. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006.
LNCS, vol. 4080, pp. 945–955. Springer, Heidelberg (2006)

16. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
SIGMOD Conference 2006, pp. 407–418 (2006)

17. RBAC Standard: ANSI INCITS 359-2004 (2004)

http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Ada06PHD.pdf

An Evaluation of a Cluster-Based Architecture for
Peer-to-Peer Information Retrieval

Iraklis A. Klampanos and Joemon M. Jose

Department of Computing Science
University of Glasgow

United Kingdom

Abstract. In this paper we provide a full-scale evaluation of a cluster-based ar-
chitecture for P2P IR, focusing on retrieval effectiveness. We observe that there
is a significant difference in performance between the architecture we examine
and a centralised index. After inspecting our experimental methodology and our
results, we provide evidence that suggests that this discrepancy is due to the in-
formation clustering algorithms employed throughout. The construction errors of
the resource descriptions as well as the failure of the clustering mechanisms to
discover the structure of the smallest of peer-collections lead to erroneous query
routing. We proceed further to show experimentally how content replication and
relevance-feedback mechanisms can help to alleviate the problem.

1 Introduction

Information retrieval (IR) over peer-to-peer (P2P) networks is a challenging problem
that is frequently referred to in the IR literature ([1,2,3,4,5], etc.). A number of archi-
tectures have been proposed that address various instantiations of this problem. It is
clear that different applications of P2P networks will pose different challenges for IR.
Popular applications of P2P IR include digital libraries, open information-sharing and
others ([1,2] etc.). Information clustering is often used by various studies as an architec-
tural component or as a tool for achieving realistic evaluation environments. However,
the application of clustering in P2P IR may lead to errors in the cluster centroids. These
errors are caused by the inadequate information that describes the constituent objects.
However, the effects of this problem have not been studied within the context of P2P
IR and so we do not know the extent of the problem, let alone which solutions could be
applied in order to amend it. These are the issues that this paper contributes insight and
solutions for.

In this paper we provide a wide-scale experimental evaluation of a cluster-based
P2P IR architecture [2], using a set of testbeds that were devised for this purpose
[6]. Through clustering, this architecture attempts to organise the shared content into
semantically-related peer-groups. The testbeds employed are totally independent of the
experimental evaluation process itself. As our initial effectiveness results are poor, we
provide insight into what may be causing this behaviour and we propose solutions that
we justify experimentally.

In the next section we present the cluster-based architecture our study is based on as
well as the experimental testbeds we use for our experiments. In Section 3 we present

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 380–391, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Evaluation of a Cluster-Based Architecture for P2P IR 381

an initial evaluation that is targeted on retrieval performance. In Section 4 we narrow
down our evaluation on a near-optimal (for retrieval purposes) subset of the original
testbeds. We use this smaller collection in order to focus on various individual aspects
of the architecture, isolate potential problems and suggest potential solutions. Finally,
in Section 5 we present our conclusions and provide pointers for future work.

2 Related Work

2.1 A P2P IR Architecture

We base our evaluation on an architecture [2] that employs clustering at two levels: first,
in order to derive usable resource description vectors from the participating information
providers and, subsequently, in order to generate content-aware peer-groups (CAGs).
The ultimate goal is to form groups of peers that share similar content. The main hy-
pothesis behind this organisation is that it can, potentially, increase the retrieval effec-
tiveness through selective query routing, i.e. bypassing irrelevant information sources.
Content-based network organisation also increases efficiency since it avoids uninformed
query-routing strategies, such as query flooding.

Another property of this architecture is that it is hybrid (i.e. there exist super-peers
with additional administrative responsibilities) and service-oriented (please refer to [2]
for the exact services that are identified). For our evaluation purposes peers are either
hubs, i.e. peers that are responsible for managing connections and routing messages, or
information providers, i.e. peers that share documents with the rest of the network.

2.2 Testbeds for Evaluating P2P IR

The evaluation of P2P IR systems is an intimidating task due to the potential size of
the network and the total volume of the shared information. An additional challenge
is posed by factors having to do with the distribution of documents among the peer-
collections, the concentration of relevant documents in the evaluation testbeds etc. Dif-
ferent potential applications of P2P IR technologies exhibit different such properties.
Since these factors, generally, affect retrieval performance, they have to be taken into
account during evaluation.

We performed our evaluation using the testbeds proposed in [6]. These testbeds are
based on TREC’s WT10g collection and are designed to address a number of P2P IR
applications through different document distributions and concentrations of relevant
documents. The individual testbeds used are the following:

ASISWOR. This testbed is designed to reflect the properties of open information-
sharing environments. It exhibits a steep power-law distribution of documents. In
this testbed, each web-domain of WT10g corresponds to a peer-collection.

UWOR. This is a testbed designed to address P2P IR in environments where the doc-
uments are uniformly distributed across the participating information providers.
Such environments may include strict DRM environments, networks of devices
with restricted resources etc.

382 I.A. Klampanos and J.M. Jose

DLWOR. This testbed aims to reflect a digital-library setting. The number of collec-
tions are less than in the ASISWOR, making the individual collections larger in
average.

DLLC. This is a testbed originally proposed and made available by Lu and Callan in
[1] and it also addresses the problem of P2P IR in digital libraries.

3 Initial Evaluation

3.1 Methodology and Parameters

The evaluation we present in this paper is simulation-driven. For simulating this ar-
chitecture one has to take under consideration a number of parameters that affect its
behaviour. These parameters, having to do with content representation and network
topology, are presented in the following sections.

Content Descriptions. In the proposed architecture, content descriptions are used at
two stages: by information providers that advertise their content to hubs and by hubs
that organise the network performing some kind of clustering. In this study, content
descriptions are either term-frequency (TF) or binary vectors 1.

Network Topology. The topology of the network depends primarily on how the hubs
group the information providers. For the evaluation of this architecture we implemented
two different approaches to this organisation. The first is to cluster the clusters of the in-
formation providers using single-pass clustering in its simplest form (Simple topology).
The second alternative is to use a fixed number of CAGs, as attractors for the informa-
tion providers. For the experiments that follow, we used the largest relevant document
for each topic of WT10g as CAG attractors (Fixed topology).

3.2 IR-Related Results

For our evaluation we assessed the underlying document collection (WT10g) against
the standard 100 TREC topics as a centralised index. Even though these results are not
directly comparable to the results from the P2P architecture, they provide a point of ref-
erence for discussion. The results of the centralised index run are presented in Table 1.

Table 1. IR effectiveness for WT10g as a centralised index

Topics Relevant Retrieved Rel. Retrieved P@10
100 5, 980 97, 048 3, 817 0.2960

Simple Single-Pass Topology. For the Simple topology, a simple single-pass clustering
algorithm [8] was used to cluster peer-centroids into CAGs. For this, we did not cap the
number of CAGs to be created. The results for IR effectiveness can be seen in Table 2.

1 Even though binary vectors are thought to lead to worse IR effectiveness, it has been reported
[7] that there is no evidence to suggest that are inferior to TF vectors for clustering.

An Evaluation of a Cluster-Based Architecture for P2P IR 383

Table 2. IR effectiveness across non-replication testbeds for the Simple topology

Testbed Threshold CAGs Topics Relevant Retrieved Rel. Retrieved P@10

0.05 57 46 3, 562 7, 525 83 0.0196
ASISWOR 0.1 145 22 1, 050 3, 184 27 0.0000

0.2 559 16 954 1, 979 41 0.0125

0.05 70 30 2, 248 5, 900 23 0.0233
UWOR 0.1 203 28 2, 064 5, 050 49 0.0250

0.2 523 10 437 1, 400 14 0.0600

0.05 44 35 2, 051 5, 300 36 0.0057
DLWOR 0.1 126 17 952 2, 700 9 0.0059

0.2 471 16 1, 112 1, 850 48 0.0063

0.05 17 20 1, 226 3, 076 12 0.0100
DLLC 0.1 64 14 745 1, 776 26 0.0286

0.2 272 9 606 887 15 0.0111

Table 3. IR effectiveness across non-replication testbeds for the Fixed topology

Testbed Threshold Topics Relevant Retrieved Rel. Retrieved P@10

0.05 61 3, 987 10, 912 158 0.0393
ASISWOR 0.1 37 2, 328 6, 829 56 0.0189

0.2 15 773 2, 277 19 0.0067

0.05 55 3, 725 10, 100 101 0.0164
UWOR 0.1 37 2, 320 6, 500 28 0.0108

0.2 14 761 2, 300 13 0.0000

0.05 59 3, 892 10, 950 182 0.0492
DLWOR 0.1 37 2, 328 6, 900 61 0.0054

0.2 13 759 2, 000 26 0.0231

0.05 56 3, 800 9, 150 152 0.0286
DLLC 0.1 34 2, 272 5, 700 52 0.0206

0.2 13 621 1, 600 23 0.0615

The column entitled Threshold corresponds to the threshold that was used for the doc-
ument clustering as well as for the query routing that took place after the topology was
created. The column CAGs shows the number of CAGs that were created with the given
threshold. The column Topics shows the number of topics that were successfully routed
to the network for matching. This number depends on the routing threshold. The initi-
ating hub only routes a query to a CAG if its similarity to the CAG’s centroid is higher
than this threshold. The column Relevant shows the number of relevant documents for
the number of topics that responses were given for. This comes from the relevance as-
sessments provided by TREC for WT10g. The column Retrieved shows the number of
documents that were retrieved in total, while Rel. Retrieved shows the number of rele-
vant documents that were retrieved. Last, P@10 is the precision achieved for the first
10 results in the result list, averaged over all the topics that got evaluated.

From this table we can see that there is a significant difference in retrieval effective-
ness when compared to the results we obtained for the centralised index of Table 1.
Even though these results may seem rather poor, one has to keep in mind a number of

384 I.A. Klampanos and J.M. Jose

factors that are known to affect retrieval. First, WT10g is a web collection and there-
fore its documents cannot be expected to be of the same quality as the ones in other
collections of documents such as collections of journal articles. Another important fac-
tor is the lengths of the documents. In the web, most documents are very small. This
affects matching and, more importantly for this architecture, clustering. Very small doc-
uments (like very large documents) are harder to relate to other documents and classify
automatically. Therefore, these results are not as surprising as they may seem at first,
especially since no measures have been taken to counteract the aforementioned issues.

Fixed Topology. For this topology we created a fixed number of CAGs based on the 100
TREC topics and their relevance assessments. We took the largest relevant documents
for all the topics and used them as attractors for the rest of the documents. This gave
us a topology of 94 CAGs – 2 topics have no relevant documents while 4 more did not
attract any other documents apart from themselves. The retrieval effectiveness results
we obtained are shown in Table 3. In this table, Threshold corresponds to the routing
thresholds only, since we did not threshold similarity during the CAGs creation. The
rest of the columns have the same meaning as their counterparts in Table 2, explained
in the previous Section.

It can be seen in Table 3 that the effectiveness for this topology is very low and com-
parable to that exhibited by the Simple topology presented in the previous Section. This
may seem unexpected as a result. Indeed, we included this alternative topology expect-
ing to achieve significantly higher retrieval effectiveness, especially since the attractor
documents were based on the topics that we would eventually evaluate against. This is
a strong hint that there is a more important factor involved that impedes effectiveness.
We believe that this factor has solely to do with the formation of cluster centroids and
we will be analysing it further in Section 4.

4 Evaluating on an Optimal Testbed

In this section we re-assess the architecture using a small and near-optimal testbed
based on the ASISWOR testbed of Section 2.2. We used ASISWOR as a base for our
near-optimal testbed because it addresses openly available information-sharing envi-
ronments and, as such, it is arguably the most generally applicable environment for the
given architecture. We choose a smaller and more manageable testbed in order to better
analyse and understand the P2P IR architecture and, therefore, to discover its patholog-
ical sources in a better controlled environment.

4.1 Characteristics and Conditions

Testbed Characteristics. The minimal ASISWOR testbed is near-optimal for the IR-
based evaluation we will be presenting because it has a very high concentration of rel-
evant documents. It was derived by randomly removing non-relevant documents from
peer-collections also randomly picked. It consists of 4834 documents in total, spanning
1316 peers. 2267 of these documents are the relevant documents of the 100 standard

An Evaluation of a Cluster-Based Architecture for P2P IR 385

TREC topics while the rest were left intentionally in order to preserve some minimal
distortion.

The, relatively to the total number of documents, large number of peer-collections
ensured some skewness in the document distribution. This skewness is an important
property that makes the ASISWOR testbed realistic and so even partially retaining it in
the minimal testbed is important. The maximum number of documents a peer-collection
has is 137, while 71% of the collections have 1 or 2 documents.

Minimal ASISWOR as a Centralised Collection. Similarly to the previous section, we
provide the testbed’s IR behaviour as a centralised corpus. These results are shown in
Table 4.

Table 4. The retrieval effectiveness of minimal ASISWOR as a centralised collection

#Topics Relevant Retrieved Rel Retrieved P@10
100 5980 47710 4596 0.6900

4.2 Evaluation Results

The overall retrieval effectiveness results are presented in Table 5. These results show
that the IR effectiveness of the architecture is still at very significant odds compared
to its centralised counterpart (Table 4). The sources of this discrepancy include the
following:

1. The testbed does not encapsulate any structure to be found by the clustering mech-
anisms of the architecture.

2. The clustering mechanisms fail to discover the structure in the testbed.
3. The routing fails to locate enough relevant sources for the query to get forwarded

to.

However, for this study instead of discussing these issues further, we will take them
for granted, as a property of a realistic environment for P2P IR. Instead, we will pursue
potential solutions that might help us to counter them2.

Table 5. Results on retrieval effectiveness

#Topics #CAGs Relevant Retrieved Rel Retrieved P@10
S-P – 0.0 87 1 5475 3550 740 0.2678

S-P – 0.05 19 10 1976 747 123 0.1737
S-P – 0.1 16 30 1573 78 54 0.2562
S-P – 0.2 16 139 1335 62 40 0.2125

FIXED 89 89 5530 16162 551 0.0596

2 Additional experimental evidence, not presented herein, suggests that the fundamental as-
sumptions made by both the architecture and the minimal-ASISWOR testbed hold. Hence
they were omitted from this paper.

386 I.A. Klampanos and J.M. Jose

4.3 Compensating for Distortion

In Section 3 we showed experimentally that a two-level clustering, especially on small
collections, can potentially limit the retrieval effectiveness of our P2P IR architecture.
However, in our treatment, we neglected to look into a feature present in other archi-
tectures and indeed a very important feature for P2P networks in general, namely repli-
cation [4,9,10,1]. In this section we will look into whether replication can improve
retrieval effectiveness. We will also look into term-weight adjustment, as this can result
from relevance-feedback. Without arguing for a particular relevance-feedback imple-
mentation, we will show that weight-adjusted resource descriptions can increase the
retrieval effectiveness in cluster-based P2P environments.

Replication. In order to assess the effect of replication on the P2P IR architecture, we
implemented a replication strategy based on hypothetical popularities for the standard
TREC topics. In our implementation, popularity is represented by a real number within
the range [0, 1) with 0 representing a topic that is not popular at all. The relevant docu-
ments to the topics are replicated to a number of peers according to their corresponding
topic’s popularity value, i.e. a document whose topic is popular has more chances to
reside to another peer-collection etc. In order to calculate these popularities we used an
inverse power law. Where, according to power-law, y = αxk , in our case, a popularity
score st, for a topic t, is given by s = α/rk , where α is a constant that determines the
popularity score for the most popular topic, r is the rank of the topic with 1 being the
most popular and k is the exponent that determines the skewness of the output values.
Once all topics have been assigned a popularity score, our algorithm iterates over all
relevant documents and peer-collections and replicates documents randomly, accord-
ing to their topic’s score. This technique allows us to introduce realistic replication,
scaled-down to the number of topics that we experiment on. For our experiments we
took α = 0.9 and k = 2. The α value ensures that no document gets replicated to all
the peer-collections, while the k value ensures that the trend of the popularities is not
too steep so as to get meaningful replication for at least some of the topics.

For our experiments we created seven minimal testbeds with different arrangements
of replicated content. This was done because of the element of randomness involved
in the replication process described in the previous paragraph. The IR effectiveness
results can be seen in Table 6. Comparing this table to Table 5 we notice two impor-
tant differences: first, the effectiveness in the testbeds with replication is higher than in
the testbed without. In particular, after the introduction of replication, for the testbeds
used, we get an average P@10 of 0.4071, while in the testbed without replication, for
the same threshold, P@10 is 0.2562. On the other hand we notice that the number of
topics that get to be answered (column #Topics) in the testbeds with the replication is
much smaller (average of 1.86) than its corresponding figure for the testbed without
replication (16). These two artifacts show that there is a significant improvement in ef-
fectiveness when replication is introduced, but only for the popular topics. In fact, the
rest of the topics do not even get to be answered, i.e. their similarity to any CAG de-
scription falls below the threshold. This behaviour can be explained by looking into the
cosine similarity measure that is used. When more similar documents, about a particu-
lar topic, are included in a cluster centroid (or a resource description for our purposes),

An Evaluation of a Cluster-Based Architecture for P2P IR 387

Table 6. Results on retrieval effectiveness on testbeds with replication. These results were ob-
tained for a threshold of 0.1. The size of the original minimal testbed (before introducing repli-
cation) is 4834 documents.

Size #Topics Relevant Retrieved Rel Retrieved P@10
Testbed 0 68, 469 3 316 600 169 0.3667
Testbed 1 81, 081 3 316 600 186 0.3333
Testbed 2 65, 199 2 310 400 177 0.5000
Testbed 3 75, 454 1 269 200 13 0.4000
Testbed 4 101, 168 1 269 200 101 0.5000
Testbed 5 23, 729 1 269 200 112 0.6000
Testbed 6 153, 885 2 59 350 20 0.1500

Average 81, 283.57 1.86 258.29 364.29 111.14 0.4071

the similarity between this centroid and any topic other than the heavily replicated ones
decreases. In this particular case, this decrease pushes the similarity below the lowest
acceptable threshold, hence the small number of topics that get answered. Even though
this seems to be a drawback, we believe it is to be expected in a large and widely avail-
able P2P information-sharing environment, where the potential number of topics are in
the millions, not just one hundred. We believe that in such an environment the system
could work sufficiently well for the majority of the users.

Relevance Feedback. For experimenting, we use the relevance assessments in or-
der to alter the CAG centroids instead of the queries (the standard relevance-feedback
application). Our goal is to counter-balance the noise that is introduced by the two-
level clustering, by filtering, not augmenting, the document vectors. We assume that a
relevance-feedback mechanism exists, which allows the aforementioned modification
of resource-description vectors. For an original term weight ti of a CAG centroid, ti
becomes ti + 0.5 if ti is relevant (i.e. being a term of a document that is relevant to
any of the TREC topics); otherwise ti becomes ti − 0.5. In other words, the terms that
describe relevant documents, collectively, to any of the topics, get promoted by 50% of
their original weight while the rest get demoted by the same percentage. For these exper-
iments we only adjusted the CAG centroids. Alternatively we could have also adjusted
the cluster centroids that form the resource descriptions of the information-providers.
This would lead to the re-clustering of these peers into new CAGs and possibly to better
performance. However, while the creation of the CAG descriptions is a responsibility
of the network, the creation of the cluster descriptions is a responsibility of the partici-
pating information providers. We did not want to directly adjust the cluster descriptions
of the information providers since the architecture assumes that they are autonomous
and trusted.

Evaluating this adjustment on the minimal ASISWOR testbed gives the results in Ta-
ble 7.In Table 8 we summarise the difference in performance between the two different
flavours of the architecture. From this table, apart from the aforementioned difference
in P@10, we also note that the architecture with the hypothetical relevance-feedback
mechanism manages to address more topics than the basic one. Beside this difference
between the architectures one can observe that more topics are addressed for the higher

388 I.A. Klampanos and J.M. Jose

Table 7. Results on retrieval effectiveness with relevance-feedback term-weighting on the re-
source descriptions

#Topics #CAGs Relevant Retrieved Rel Retrieved P@10
S-P – 0.05 39 10 3543 1540 404 0.2667
S-P – 0.1 32 30 3329 997 293 0.2844
S-P – 0.2 49 138 4294 823 314 0.2510

Table 8. Comparison of IR effectiveness between the basic and relevance-feedback architecture

Threshold 0.05 0.1 0.2

#Topics
P@10

Basic RelFbk
19 39

0.1737 0.2667

Basic RelFbk
16 32

0.2562 0.2844

Basic RelFbk
16 49

0.2125 0.2510

threshold of 0.2. In this case, this is a desirable fact, since the effective routing of more
topics does not hinder the overall performance (as measured by P@10) of the system.

Applying Weight-Adjustment along with Replication. Having observed how the re-
trieval effectiveness increases when using relevance-feedback-based weight adjustment
and replication separately, in this section we look into the effectiveness when both these
mechanisms are applied. For the experiments presented below we adjusted the weights
of the CAGs in the small testbeds we used in Section 4.3. The results in effectiveness
are summarised in Table 9.

Table 9. Results on retrieval effectiveness on testbeds with replication and weight adjustment
based on relevance-feedback. These results were obtained for a threshold of 0.1.

#Topics Relevant Retrieved Rel Retrieved P@10
Testbed 0 10 1064 2000 253 0.3000
Testbed 1 14 1302 2650 527 0.2786
Testbed 2 19 1564 3500 476 0.3263
Testbed 3 21 1940 3900 598 0.3190
Testbed 4 18 1385 3600 616 0.2889
Testbed 5 19 1430 3650 663 0.2842
Testbed 6 21 1557 4200 680 0.2333

Average 17.43 1463.14 3357.14 544.71 0.2900

Comparing this to the results of Table 6, showing the retrieval effectiveness when
only replication has been used, we notice that the introduction of relevance-feedback
(the use of better aligned vectors to the topics) helps routing more topics than when
we just used replication. In actual numbers, the average number of topics effectively
routed when only replication was used is 1.86, while when both relevance-feedback and
replication is used, for the same replication testbeds, the corresponding figure is 17.43.
On the other hand the overall effectiveness, as measured by P@10, falls by about 11%.
Because the gain in the number of topics that get routed is disproportionate to the loss
of retrieval effectiveness we conclude that the use of both replication and relevance-
feedback would probably benefit most P2P IR applications; however, this would still

An Evaluation of a Cluster-Based Architecture for P2P IR 389

depend on the application requirements, with some applications preferring more precise
results over wider query penetration.

Comparison. In Table 10 we present a comparison in retrieval performance across
all variations of the minimal testbed. From these results we conclude that the term
weighting adjustment, that could be accomplished by relevance feedback, is the most
effective means to overcome the loss of information caused by clustering. We derive
this conclusion after observing that, even though retrieval effectiveness does not fall –
it actually increases – more topics are routed to the network. Even though not experi-
mentally verified we anticipate that if network clusters were to change according to the
new term-weights, retrieval effectiveness and query penetration would increase even
more.

Replication significantly improves the effectiveness for the few topics that are popu-
lar, even though it impedes penetration. From our experiments it appears that replication
and weight-adjustment complement each-other and so they could yield meaningful re-
sults if used together. However, since we only use the standard 100 TREC topics, the
popular topics, used for replication, end up being very few and so we will not be ex-
panding on it any further.

Table 10. Comparison in effectiveness across all variations of the minimal ASISWOR testbed

Basic Relevance-Feedback Replication Both
#Topics 16 32 1.86 17.43
P@10 0.2562 0.2844 0.4071 0.2900

4.4 Adjusting Term-Weights on Large Testbeds

So far, we have demonstrated two main points. First, that the use of clustering for large-
scale P2P IR, at least on testbeds that have similar properties to ours, proves to be
ineffective due to the loss of information inherent to the creation of cluster centroids.
The second point is that two effective ways to amend this problem is by either intro-
ducing (or by using existing) replication and/or introducing some relevance-feedback
mechanism that would help overcome the noise in the network resource descriptions.
The second point has still to be demonstrated in a larger evaluation environment than
the small ASISWOR-based testbed that we have used so far in this chapter.

In this section we present the retrieval effectiveness achieved in the original testbeds
when weight-adjustment is used. These results can be seen in Table 11 and they demon-
strate that even though the overall effectiveness across all testbeds does not rise beyond
approximately 5% (for the case of DLWOR), an important difference in favour of the
use of term-weighted resource description emerges, namely that the query penetration
almost doubles across all the testbeds. This effect becomes more significant as the num-
ber of the topics that get routed rises alongside the retrieval performance.

The results of Table 11 confirm the results derived from earlier experiments using the
minimal ASISWOR testbed of Section 4.3. The use of weighted vectors as resource de-
scriptions, as opposed to using the original term-frequency vectors, appear to increase
retrieval performance while it greatly enhances the query penetration of the network.

390 I.A. Klampanos and J.M. Jose

Table 11. Retrieval effectiveness in the original P2P IR testbeds in both the basic and the weight-
adjustment configurations. The routing threshold is set to 0.1 while the adjusted vectors were
only used for routing and not for peer-clustering.

Testbed Configuration #Topics Relevant Retrieved Rel. Ret P@10

ASISWOR
Basic

RelFbk
22
40

1050
3497

3184
7358

27
72

0.0000
0.0175

UWOR
Basic

RelFbk
28
36

2064
2907

5050
6750

49
91

0.0250
0.0361

DLWOR
Basic

RelFbk
17
44

952
3595

2700
7800

9
160

0.0059
0.0591

While the effectiveness in both the minimal testbed we used in this section as well as
in the large testbeds of Section 3 is by far worse than in a centralised index alterna-
tive, the findings of this Chapter are important for future studies and systems as they
provide solid experimental evidence suggesting that relevance-feedback is a promising
and natural evolution of current P2P IR technologies. Especially the automatic topo-
logical adaptation of a P2P network based on feedback seems to be promising as far as
retrieval effectiveness is concerned.

5 Conclusions and Future Work

In this paper we presented a full-scale evaluation of a cluster-based P2P IR architecture,
focusing on retrieval effectiveness. The architecture [2] we considered uses a two-level
clustering in order to organise the shared content of the participating peers, taking no as-
sumptions on the actual document distributions or other properties of the overall shared
content. For our experiments we used a set of testbeds [6], which are based on TREC’s
WT10g. The use of a number of testbeds offers a more holistic view on the behaviour
of the architecture we evaluate.

Our findings are the following: Employing a two-level clustering for P2P IR, espe-
cially in an open information-sharing environment, seems to amplify issues having to do
with clustering itself, therefore resulting in poor retrieval performance. In particular, the
noise in the resource descriptions created through clustering impedes standard IR prac-
tices such as query-routing based on cosine similarity. Building on this conclusion, we
proposed replication and relevance-feedback as potential solutions for this problem and
showed experimentally, using a small and manageable testbed, that both mechanisms
can improve retrieval effectiveness for cluster-based P2P IR. Finally, we replicated our
findings on the large testbeds we used originally. The results show that the performance
of the architecture gets improved, mainly, through the significant increase of its query
penetration rate.

Obvious pointers for future work include distributed relevance-feedback algorithms,
devising replication strategies targeted at IR performance as well as studying the adapt-
ability of the network given real-time changes of resource descriptions from an effi-
ciency viewpoint.

An Evaluation of a Cluster-Based Architecture for P2P IR 391

References

1. Lu, J., Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In: Proceedings of
the twelfth international conference on Information and knowledge management, pp. 199–
206. ACM Press, New York (2003)

2. Klampanos, I.A., Jose, J.M.: An architecture for information retrieval over semi-
collaborating peer-to-peer networks. In: Proceedings of the 2004 ACM Symposium on Ap-
plied Computing, vol. 2, pp. 1078–1083. Nicosia, Cyprus (2004)

3. Tang, C., Xu, Z., Mahalingam, M.: Peersearch: Efficient information retrieval in peer-peer
networks. Technical Report HPL-2002-198, Hewlett-Packard Labs (2002)

4. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-
to-peer networks. In: ICS, New York (2002)

5. Nottelmann, H., Fuhr, N.: Comparing different architectures for query routing in peer-to-
peer networks. In: Proceedings of the 28th European Conference on Information Retrieval
Research (ECIR 2006) (2006)

6. Klampanos, I.A., Poznański, V., Jose, J.M., Dickman, P.: A suite of testbeds for the realistic
evaluation of peer-to-peer information retrieval systems. In: Losada, D.E., Fernández-Luna,
J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 38–51. Springer, Heidelberg (2005)

7. Tombros, A.: The Effectiveness of Hierarchic Query-Based Clustering of Documents for
Information Retrieval. PhD thesis, Department of Computing Science, University of Glasgow
(2002)

8. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)
9. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in

a distributed environment. In: Proceedings of the ninth annual ACM symposium on Parallel
algorithms and architectures, pp. 311–320. ACM Press, New York (1997)

10. Cuenca-Acuna, F.M., Martin, R.P., Nguyen, T.D.: Planetp: Using gossiping and random
replication to support reliable peer-to-peer content search and retrieval. Technical Report
DCS-TR-494, Department of Computer Science, Rutgers University (2002)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 392–403, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Conceptual Framework for Automatic Text-Based
Indexing and Retrieval in Digital Video Collections

Mohammed Belkhatir1 and Mbarek Charhad2

1 Monash University, School of Information Technology
2 FSM, Computer Science Department, Tunisia

Abstract. The growing need for 'intelligent' video retrieval systems leads to
new architectures combining multiple characterizations of the video content that
rely on expressive frameworks while providing fully-automated indexing and
retrieval processes. As a matter of fact, addressing the problem of combining
modalities for video indexing and retrieval is of huge importance and the only
solution for achieving significant retrieval performance. This paper presents a
multi-facetted conceptual framework integrating multiple characterizations of
the visual and audio contents for automatic video retrieval. It relies on an ex-
pressive representation formalism handling high-level video descriptions and a
full-text query framework in an attempt to operate video indexing and retrieval
beyond trivial low-level processes, keyword-annotation frameworks and state-
of-the art architectures loosely-coupling visual and audio descriptions.

1 Introduction and Related Work

The size, heterogeneity of content, and temporal characteristics of the video data
bring about many interesting challenges to the video indexing and retrieval commu-
nity. Among these challenges is the modeling task for efficient content-based index-
ing and user access capabilities such as querying, retrieval and browsing. In the litera-
ture, a video document is modeled based on its visual content (such as color, motion,
shape, and intensity) [1,7], audio content [9,12], and semantic content in the form of
text annotations [8,11,19]. Because machine understanding of the video data is still an
unsolved research problem, text annotations are usually used to describe the video
content according to the annotator’s expertise and the purpose of this content. How-
ever, such descriptions are biased, incomplete and often inaccurate since subjected to
the annotator’s point-of-view. Also, manual annotation is a costly task which cannot
keep pace with the ever-growing size of video collections.

Dealing with video indexing and search also entails taking into account an impor-
tant number of modalities due to its multimedia aspect. For instance, a given concept
(person, object ...) can be present under several forms in a video: it can indeed be
seen, heard, talked of and a combination of these three characterizations can also
occur. Being able to model aspects related to visual and audio contents is crucial in
order to assist a human user in the tasks of querying and browsing. Also, since users
are more skilled in defining their information needs using language-based descriptors
[2,3,11], this modeling task is to consider a symbolic representation of the visual and

 A Conceptual Framework for Automatic Text-Based Indexing and Retrieval 393

audio features as textual descriptors. Indeed, a user would naturally formulate his
need to being provided with videos where X is shown through the query ''videos with
X'', or with videos where Y is speaking about X with the full-text query ''videos where
Y is speaking about X''. The processing of the first query would consider the visual
representation of the video while the processing of the second would entail searching
in the audio track for a segment in which Y is the speaker and X is mentioned in the
transcription. We could also imagine providing the possibility to combine both visual
and audio descriptions within a unique full-text query instead of two distinct ones.
This particularly brings about an exciting challenge since it is the main focus of the
TRECVID evaluation campaign where a set of multimedia topics (i.e. textual tran-
scriptions of information needs involving multiple characterizations of the visual and
audio contents) are proposed to be solved. For this, the traditional keyword-based
approaches in state-of-the-art video architectures would appear clearly not satisfactory
since they fail to take into account aspects related to conceptual and relational de-
scriptions of the video content. Indeed, we believe that in order to process a query
such as “videos with Bill Clinton speaking and a US flag behind him” (proposed in
the framework of the TRECVID topic search track), a system is to characterize visual
concepts such as Bill Clinton and US flag as well as the relations between them (here
the spatial relation Behind). Also it is to model the fact that the audio characterization
of the concept Bill Clinton is linked to the audio relation Speaking.

In order to process these queries involving non-trivial information needs, we pro-
pose in this paper to integrate audio and visual descriptions within a unified full-text
framework by considering:

-The specification of a rich video model featuring all characterizations of the visual
and audio contents. It is based on visual and audio objects, structures abstracting
visual entities and audio flow related to a video document.

-The integration of a knowledge representation formalism (conceptual graphs) in
order to instantiate the video model within a video indexing and retrieval framework
and therefore specify indexing, querying and matching processes.

-The specification of fully-automated processes to build and manipulate the con-
ceptual index and query descriptions. Indeed, the strength of our approach relies in the
specification of high-level descriptions of the video content while being able to proc-
ess video corpus of relatively important size.

2 A Strongly-Integrated Model and Its Representation Formalism

A video document has a specific organization in terms of scenes, each characterizing
a specific event. A video scene is itself composed by a number of shots, each of
which is an unbroken image sequence captured continuously by the same camera. A
shot could legitimately be compared to a word, as they are both the basic entities
structuring respectively a video sequence and a text fragment. We will therefore con-
sider a video shot as our elementary unit of description.

We propose the outline of a video model combining visual and audio/speech char-
acterizations, each considered as a particular description layer of the video, to build
the most exhaustive video specification.

394 M. Belkhatir and M. Charhad

The visual layer considers the representation of a video shot through its extracted
key-frames: images providing a compact representation of the video shots. They can
serve as pointers to the given portion of the video content for indexing and retrieval.
This layer therefore groups all aspects of the image (keyframe) content as well as its
general context and is itself seen as a bi-facetted object with the two principal facets
being the visual semantics and signal facets. At the core of the visual layer is the no-
tion of visual object (VO), abstract structure representing a visual entity within a
keyframe. Their specification is an attempt to operate visual indexing and retrieval
operations beyond simple low-level processes or object-based techniques [16] since
VOs convey the visual semantics and signal information.

- The visual semantics facet describes the keyframe semantic content and is based
on labeling VOs with a visual semantic concept. E.g., in fig. 1, the second VO (Vo2)
is tagged by the semantic concept Flag. Its description will be dealt with in section
3.1.

 - The signal facet describes the keyframe signal content in terms of symbolic percep-
tual features and consists in characterizing VOs with signal concepts. It is itself composed
of three subfacets. The color subfacet features the keyframe signal content in terms of
symbolic color words. E.g., the second VO (Vo2) is associated with color words Blue, Red
and White. The texture subfacet describes the signal content in terms of symbolic texture
features. E.g. Vo2 is associated with texture words lined/striped and uniform. The spatial
subfacet specifies the spatial relationships that indicate the relative positions of VOs
within a keyframe. For instance, in fig. 1, Vo2 is covered by (behind) Vo1. The signal
facet is detailed and formalized in section 3.2.

The audio layer describes the information related to video shots through audio segment
flows. It is represented by two facets:

 - The audio object facet characterizes audio objects (AOs), abstraction of audio ele-
ments extracted from the audio flow.

 - The audio semantics facet provides the semantic description related to each AO. It is
based on concepts such as person identity, organization, location… and consists in speci-
fying the speaker identity in each shot as well as the characterization of the audio content
being spoken of. For example, in fig. 1, it represents the fact that the audio object Ao1
(corresponding to the concept B. Clinton) is speaking and that the audio object Ao2 is
about the concept Iraq.

In order to instantiate this model as a video retrieval framework, we need a representa-
tion formalism capable of representing VOs and AOs as well as the visual and audio in-
formation they convey. Moreover, this representation formalism should make it easy to
visualize the information related to a video. It should therefore combine expressivity and a
user-friendly representation. As a matter of fact, a graph-based representation and particu-
larly conceptual graphs (CGs) [17] are an efficient solution to describe a video and charac-
terize its components. The asset of this knowledge representation formalism is its flexible
adaptation to the symbolic approach of multimedia image and video retrieval [2,3,11]. It
allows indeed to uniformly represent components of our architecture and to develop ex-
pressive and efficient index and query frameworks.

Formally, a CG is a finite, bipartite, connex and oriented graph. It features 2 types of
nodes: the first one between brackets in our CG alphanumerical representation (i.e. as

 A Conceptual Framework for Automatic Text-Based Indexing and Retrieval 395

coded in our framework) is tagged by a concept (graphically represented by a rectangle in
fig. 4) however the second between parentheses is tagged by a conceptual relation (graphi-
cally represented by a circle in fig. 4). E.g., the CG [DEXA_07]←(Name)←[Confer-
ence]→(Location)→[Regensburg] is interpreted as: the DEXA 2007 conference is held in
Regensburg.

Concepts and conceptual relations are organized within a lattice structure partially
ordered by the IS-A (≤) relation. E.g., Person ≤ Man denotes that the concept Man is a
specialization of the concept Person, and will therefore appear in the offspring of the
latter within the lattice organizing these concepts. Within the scope of the model, CGs
are used to represent the video shot content in the visual and audio layers.

The indexing module provides a representation of a video shot document in the
corpus with respect to the bi-layered video model. It is a CG called video shot docu-
ment index graph. In fig. 1, a video shot belonging to the corpus is characterized at
the conceptual level by a bi-layered representation, each layer consisting itself of
several facets.

Also, as far as the retrieval module is concerned, a user full-text query is translated
into a video shot conceptual representation: the video shot query graph corresponding

Concept
extraction

Cyan,
White
Red

Color subfacet Texture subfacet

Lined

Uniform

Behind
Spatial subfacet

Vo1 Vo2

Visual Object facet
Clinton Flag
Visual Semantics facet

Signal facet

Audio Object facet

Audio Semantics facet

Speaks_about

AUDIO LAYER

QUERY MODULE

Ao1

Audio Object facet

Audio Semantics facet

Clinton

Behind
Spatial subfacet

Visual Object facet
Clinton US

Visual Semantics facet

Signal facet

Clinton speaking with a striped red, white and blue
flag (US flag) behind him

Visual Conceptual
Representation

Audio Conceptual
Representation

(...)

Concept Lattices
Relation Lattices

MATCHING

VISUAL LAYER

S

Keyframe
extraction

Video

Shot

Scene

Speech in
shot

A
capabe visual

semantic a
s the visual semantic
as the visual semantic
as the visual semantic

(...)
Cyan, White

Red
Texture subfacet

Lined

Uniform

Clinton Iraq

Speaks

Speaking

Color subfacet

Vo1 Vo2

Ao1 Ao2

Fig 1. Bi-layered Multi-facetted Video Model and Index, Query and Matching Processes

396 M. Belkhatir and M. Charhad

to the bi-layered multi-facetted shot description. In fig. 1, the query “Find shots of Bill
Clinton speaking with a US flag behind him” is translated into a multi-facetted conceptual
representation for each of the visual and audio layers. Let us note that the visual semantic
concept US flag which is not characterized in our semantic extraction framework (cf. 3.1)
is translated into a visual conceptual representation combining both semantics (the concept
flag) and signal features (the texture concept striped and the color concepts red, white and
blue).

The video shot query graph is then compared to all conceptual representations of
video shot documents in the corpus. Lattices organizing visual and audio concepts are
processed and a relevance value, estimating the degree of similarity between video
shot query and index graphs is computed in order to rank all video shot documents
relevant to a query.

3 The Visual Layer

3.1 The Visual Semantics Facet

Automatic extraction of Visual Concepts. Visual concepts are learnt and then auto-
matically extracted given a visual ontology. From the specification of twenty catego-
ries or picture scenes describing the image content at a global level (such as outdoor
scene, city scene…), web-based image search engines (google, altavista) are queried
by textual keywords corresponding to these picture scenes and 100 images are gath-
ered for each query. These images are used to establish a list of visual concepts char-
acterizing objects that can be encountered in these scenes. This list (in particular con-
cepts related to individuals’ names) is enriched with concepts provided by VideoAn-
nex [14] and a total of 96 visual concepts to be learnt and automatically extracted are
specified.

A 3-layer feed-forward neural network with dynamic node creation capabilities is
used to learn these concepts from 1000 labeled key-frame patches cropped from the
training and annotation corpus of the TRECVID 2003 search task. Color and texture
features are computed for each training region as an input vector for the neural net-
work. Once the network has learnt the visual vocabulary, the approach subjects a tiled
keyframe to be indexed to multi-scale, view-based recognition against these visual
semantic concepts. A keyframe to be processed is scanned with windows of several
scales. Each one represents a visual token characterized by a feature vector con-
structed with respect to the feature vectors of visual concepts previously highlighted.
Recognition results are then reconciled across multiple resolutions and aggregated
according to configurable spatial tessellation. (cf. [13] for further details).

Model of the visual semantics facet. VOs are represented by Vo concepts and visual
semantic concepts are organized within a multi-layered lattice ordered by a spe-
cific/generic partial order (we propose a part of the lattice in fig. 2(a)). An instance of
the visual semantics facet is represented by a set of canonical CGs, each one contain-
ing a Vo type linked through the conceptual relation is_a to a visual semantic concept.

 A Conceptual Framework for Automatic Text-Based Indexing and Retrieval 397

The basic graph controlling the generation of all visual semantic facet graphs is:
[Vo] (is_a) [VSC]. E.g., the representation of the visual semantics facet for our
example image in fig.1 is [Vo1] (is_a) [Clinton] and [Vo2] (is_a) [flag], trans-
lated as the first VO represents Clinton and the second VO a flag.

President King Prime_Minister

Ocean Sea

Region

Geographic

Land area Water area

Country City
Lake

Thing

Organization

Sex

Male

AgentEvent

Voice
 F. speech

Occupation

Presenter Reporter

Audio Concepts

 Political Religious

Politician Sportsman Corporate_leader TV_figure
Female

M. speech

Island
Person

 Forest

Beach Lake
Pool

SkyPhysical Object Thing Vegetation/Flora

WaterLiving thingGround Manmade Object

 Way Construction

Window Pillar Building Fence WallRoad Stairs

Field Forest Beachfront
Floor

Organ-

Flower GrassBody Plant Roc Geological Form

Pebble Leaf Foliage Trunk Face Beach Mountains Dune

Natural Object Person

Visual Concepts

Plant

Fig. 2. (a) Lattice of Visual Concepts, (b) Lattice of Audio Concepts

3.2 The Signal Facet

The integration of signal information within the visual layer is not straightforward and
involves highlighting a mapping between low-level signal features and their equiva-
lent symbolic representation. For each of the color, texture and spatial subfacets, we
propose the processes for mapping low-level to symbolic features, then present their
conceptual characterizations and finally provide the algorithms for the automatic
generation of the conceptual structures.

The Color Subfacet. The first step is to specify symbolic colors which correspond to
low-level extracted features, therefore specifying a correspondence process between
color names and color stimuli. Our symbolic representation of color information is
guided by the research carried out in color naming and categorization [4] stressing a
step of correspondence between color names and their stimuli. We will consider the
existence of a formal system of color categorization and naming which specifies a set
of color words. Within the scope of this paper, 11 color words (C1=red, C2=white,
C3=blue, C4=grey, C5=cyan, C6=green, C7=yellow, C8=purple, C9=black, C10=skin,
C11=orange) spotlighted in [10] are described in the HVC perceptually uniform space
by a union of brightness, tonality and saturation intervals.

Each VO is indexed by a color index concept (CIC) featuring its color distribution
by a conjunction of color words and their corresponding integer pixel percentages.
The second VO (Vo2) corresponding to the semantic concept flag in fig. 1 is charac-
terized by the CIC <r:40,w:45,b:15,g:0…>, interpreted as Vo2 having 40% of red,
45% of white and 15% of blue. CICs are elements of partially-ordered lattices,
organized with respect to the query operator processed: either a Boolean or a quantifi-
cation operator (at most, at least, mostly, few) explicited in [2]. Index color
graphs link a Vo type through the conceptual relation has_color to a CIC:
[Vo] (has_color) [CIC].

398 M. Belkhatir and M. Charhad

The algorithm summarizing the automatic generation of all conceptual structures of
the color subfacet is as follows:

For each IO:
1.Compute the RGB value of each of its pixels
2.Map it to tonality, brightness & saturation values in the HVC perceptive space
3.Determine the associated color word considering the HVC perceptive color word partition [10]

 4.Store for each color word the percentage of associated pixels
5.Generate the associated CIC and the alphanumerical color CG: [Vo] (has_color) [CIC]

E.g., the representation of the color subfacet for our example image in fig.1 is
[Vo2] (has_color) [<r:40,w:45,b:15,g:0…>], translated as the second VO (Vo2) is
associated with the CIC <r:40,w:45,b:15,g:0…> (i.e. 40% of red, 45% of white &
15% of blue).

The Texture Subfacet. Although several works have proposed the identification of
low-level features and the development of algorithms and techniques for texture com-
putation, few attempts have been made to propose an ontology for texture symbolic
characterization and naming. In [5], a texture lexicon consisting of 11 high-level tex-
ture categories is proposed as a basis for symbolic texture classification. In each of
these categories, several texture words which best describe the nature of the character-
ized texture are proposed. We consider the following texture words as the representa-
tion of each of these categories: tw1=bumpy, tw2=cracked, tw3=disordered,,
tw4=interlaced, tw5=lined, tw6=marbled, tw7=netlike, tw8=smeared, tw9=spotted,
tw10=uniform and tw11=whirly. These 11 high-level texture words, foundation of our
framework for texture symbolic characterization are mapped to automatically-
extracted 49-dimension vectors of Gabor energies (simulating the action of the visual
cortex, where an object is decomposed into several primitives by the filtering of corti-
cal neurons sensitive to several frequencies and orientations of the stimuli) through
support vector machines [18].

Each VO is indexed by a texture concept (TC). A TC is supported by a vector
structure t with eleven elements corresponding to texture words twi. Values t[i], i ∈
[1,11] are booleans stressing that the texture distribution of the considered VO is
characterized by the texture word twi. E.g., the second VO (Vo2) corresponding to the
semantic concept flag in fig. 1 is characterized by the TC <B:0…D:0…L:1…U:1…>,
translated as Vo2 being characterized by the texture words striped (lined) and uni-
form. TCs are elements of partially-ordered lattices which are organized respectively
to the type of the query processed [3]. The basic graphs controlling the generation of
all texture subfacet graphs links a Vo type through the conceptual relation has_tex to
a texture concept: [Vo] (has_tex) [TC]

The algorithm generating all conceptual structures of the texture subfacet is as
follows:

For each VO
1. Compute its associated 49-dimensions vector of Gabor energies
2. Map it to the linked texture words through a support vector machine architecture
3. Compute the posterior recognition probabilities of association [3]
4. Generate the associated TC & the texture CG: [Vo] (has_tex) [TC]

 A Conceptual Framework for Automatic Text-Based Indexing and Retrieval 399

E.g., the representation of the texture subfacet for our example image in fig.1 is
[Vo2] (has_tex) [<B:0…D:0…L:1…U:1…>], translated as the second VO (Vo2,
representing the semantic concept flag) is associated with the TC
<B:0…L:1…U:1…> (i.e. striped/lined and uniform).

The Spatial Subfacet. In order to model spatial data, we first consider a subset of the
topological relations explicited in the RCC-8 theory [6]; 5 relations which are exhaus-
tive and relevant for image querying are chosen. Considering 2 VOs (Vo1 and Vo2),
these relations are (s1=C,Vo1,Vo2): ‘Vo1 partially covers (in front of) Vo2’,
(s2=C_B,Vo1,Vo2): ‘Vo1 is covered by (behind) Vo2’, (s3=P,Vo1,Vo2): ‘Vo1 is a
part of Vo2’, (s4=T,Vo1,Vo2): ‘Vo1 touches Vo2 (externally connected)’ and
(s5=D,Vo1,Vo2): ‘Vo1 is disconnected from Vo2’. Directional relations Right (s6=R),
Left (s7=L), Above (s8=A), Below (s9=B) are invariant to basic geometrical transfor-
mations (translation, scaling). Two relations specified in the metric space are based on
the distances between VOs. They are the Near (s10=N) and Far (s11=F) relations.

Each pair of VOs are related through a spatial concept (SpC), compact structure
summarizing spatial relationships between these VOs. A SpC is supported by a vector
structure sp with eleven elements corresponding to the previously explicited spatial
relations. Values sp[i], i ∈ [1,11] are booleans stressing that the spatial relation si
links the two considered VOs. E.g., Vo1 and Vo2 are related through the SpC
<C:1,C_B:0…N:1,F:0>, translated as Vo1 covering and being near to Vo2 (Vo2 be-
ing therefore behind Vo1). SpCs are elements of a partially-ordered lattice. The basic
graph controlling the generation of all spatial subfacet graphs links two Vo types
through the conceptual relations agent_1 and agent_2 to a SpC:
[Vo1]←(agent_1) ← [SpC] →(agent_2) → [Vo2].

The algorithm generating all conceptual structures of the spatial subfacet is as
follows:

Given a pair of VOs, Vo1 and Vo2
1.Associate a topological relation to the results of interior and boundary sets of Vo1 and Vo2
2.Compare the centers of gravity of both VOs to determine the directional relations linking them
3. Compute d(Vo1_g,Vo2_g). To determine the near/far relations between Vo1 & Vo2, compare it to the
measure of the spread of the distribution of centers of gravity of VOs.
4.Generate the associated SpC and the alphanumerical spatial CG:
[Vo1] ←(agent_1) ← [SpC] →(agent_2) → [Vo2]

E.g., the representation of the spatial subfacet for our example image in fig. 1 is
[Vo1]←(agent_1) ← [<C:1,C_B:0…N:1,F:0>] →(agent_2) → [Vo2], translated as Vo1
covering and being near to Vo2.

Conceptual Specification of the Visual Layer. The conceptual representation of the
visual layer is a CG obtained through the combination of CGs over the color, texture
and spatial subfacets. The CGs: [Visual_Layer] [has_VO] [VO] are automatically
added (for each visual entity characterized by a visual semantic concept as explicited
in section 3.1) in order to unify conceptual representations of the three subfacets. For
our example video shot of fig.1, the CG representation of the visual layer is the sub-
graph of fig.4 whose graphical elements have dashed contours.

400 M. Belkhatir and M. Charhad

4 The Audio Layer

4.1 Speaker Identification and Automatic Concept Detection

We base our automatic audio processing on the tasks of speaker identification and
automatic concept detection. For this, we analyze automatic speech recognition
(ASR) [9] transcripts. The ASR process is based on the processing of the audio flow
in order to transcribe speech. The obtained output is a structured text with temporal
descriptions.

Speaker Identification. We first aim at analyzing the transcription content for
speaker identification in each segment using three classes of linguistic patterns. The
first category is for detecting the identity of the speaker who is speaking in the current
segment. For example, when the speaker introduces himself: "... this is C.N.N. news
I' m [Name]... ". The second category is used to detect the identity of the speaker who
has just spoken in the previous segment. The third category is for detecting the iden-
tity of the person who will speak (speaker of the next segment).

Table 1 summarizes some of the patterns that we use in our approach gathered by
category.

Table 1. List of some linguistic patterns

Previous
segment

Curr.ent
segment

Next segment

thank you...[name]
thanks … [name]
[name] reporting

…….

I’m [name]
[name] CNN
[name] ABC

…….

tonight with [name]
ABC’s [name]
[name] reports

………

Fig. 3. Overview of the identity detection approach

The detection process consists in parsing each segment and identifying passages
containing one of these patterns. We then apply a tool for identity recognition. For
this, we use a named-entity extraction process based on two lists of concepts. The first
contains a set of first names (~12400) and the second contains common words except
family names. We compare neighboring words of each detected pattern with the con-
tent of the 2 lists. If neighboring words are for example elements of the first list and
not present in the second list, we can estimate that they deal with a person’s identity.
We then infer the corresponding identity by comparing its localization with respect to
a linguistic pattern.

Our approach is summarized in fig. 3 which displays the complete process for
automatic speaker identification. We tested our approach on the TRECVID 2004
benchmark collection and obtained a success rate of 82 % for automatic speaker’s
identity recognition.

 A Conceptual Framework for Automatic Text-Based Indexing and Retrieval 401

Automatic Concept Extraction. The other challenging task related to audio flow
analysis is the specification of what is being spoken of in each audio segment. We
have specified four concept classes in the extraction process: person, place, organiza-
tion and acronyms. To extract this information, we parse transcriptions files to detect
symbolic information by comparing their items to elements in the four concept classes
(e.g. a person’s identity, the name of a city, an organization etc...). We then extract,
from each document, the concepts which correspond to each class. This process is
based on the projection of each document on a specific domain ontology (we provide
a part of its lattice representation in fig. 2(b)). We exploit linguistic patterns to specify
concepts such as the titles Mr., Mrs. appearing before a person’s identity or proposi-
tions like “in”, “at”, “from”… before a localization concept (place). Here is the algo-
rithm summarizing the concept extraction process:

For all audio segments:
1. Extract AOs by projecting the transcription of the audio segment on specific ontologies
2. Collect AOs belonging to the concept category person
3. Collect AOs belonging to the concept category place
4. Collect AOs belonging to the concept category organization
5. If AOs belong to the concept category person, specify AOs corresponding to speakers using
linguistic patterns.

4.2 A Conceptual Model for the Audio Layer

Extracted concepts are related through specific audio relations to AOs. Considering
for example two AOs (Ao1 and Ao2), these relations are spk(Ao1) where Ao1 be-
longs to the concept class person translated as Ao1 speaks and spk_abt(Ao1,Ao2)
translated as Ao1 is speaking about Ao2. For the audio layer modeling we use all
automatically extracted concepts, they are labeled audio semantic concepts (ASC).

The audio layer is represented by a set of canonical CGs:
[Ao1] (spk_abt) [Ao2], [Ao1] (spk) and [Ao] (is_a) [ASC] linking AOs to
ASCs.

The visual layer of our example video shot in fig.1 is given by the the subgraph of
fig.4 whose graphical elements are highlighted (grey background).

5 Unification of CGs over Visual and Audio Layers

The conceptual representation of a video shot is a CG obtained through the combina-
tion (join operation [17]) of CGs over all the facets of both visual and audio layers.
The CGs: [Video] → [composed_of] → [Visual_layer] and [Video] → [com-
posed_of] → [Audio_layer] are automatically added in order to unify conceptual rep-
resentations of the audio and visual layers. For the example video shot of fig.1, the
unified visual/audio conceptual representation is given in fig. 4.

As far as querying is concerned, our conceptual architecture is based on a unified
full-text framework allowing a user to query over both the visual and audio layers.
This obviously optimizes user interaction since the user is in ‘charge’ of the query
process by making his information needs explicit to the system. The retrieval process
using CGs relies on the fact that a query is also expressed under the form of a CG.

402 M. Belkhatir and M. Charhad

Ao2 is_a Iraq

speaks_abt
has_AO

composed_of

Audio_layerAo1 is_a B.Clinton

speaks

has_AO

Video

<R:40,W:45,B:15,G:0…>has_col

<B:0…D:0…L:1…W:0>

Vo1 is_a B.Clinton

Vo2 is_a Flag

has_tex

<C:1,P:0…N:1,F:0>

Visual_layer

has_VO

composed_of

has_VO agent_1

agent_2

Q

Fig. 4. Unified visual/audio index representation of the example video shot

The representation of a user query in our model is, like image index representations,
obtained through the combination (join operation) of CGs over all the facets of both
visual and audio layers. Without going into details, a trivial grammar composed of a
list of the previously introduced visual and audio concepts, as well as the specified
visual and audio relations allows to translate a query string into an alphanumerical CG
structure. For instance, the string: “Bill Clinton speaking with a striped blue, white
and red flag (US flag) behind him” is translated into the subgraph Q within the
framed structure in fig. 4.

The matching framework is based on an extension of VanRijsbergen’s logical
model proposed in [15]. We define the relevance of a video shot VS with respect to a
query Q as a combination of the exhaustivity and specificity measures: Rele-
vance(VS,Q) = F[P(VS Q), P’(Q VS)]

Exhaustivity quantifies to which extent the video shot satisfies the query. It is
given by the value of P(VS Q), P being the exhaustivity function. Specificity meas-
ures the importance of the query themes within the considered video shot, it is given
by the value of P’(Q VS), P’ being the specificity function.

6 Conclusion

We proposed the specification of a video retrieval framework unifying visual and
audio characterizations within a strongly-integrated architecture to achieve greater
retrieval accuracy. We introduced visual and audio objects, abstract structures repre-
senting visual and audio entities in order to operate indexing and retrieval operations
at a higher abstraction level than state-of-the-art frameworks. We specified the visual
and audio layers, their related facets and/or subfacets as well as their conceptual rep-
resentations. Also, we presented the automated processes handling the indexing and
retrieval operations of video documents with respect to both visual and audio layers.
We are currently in the process of evaluating our framework on the topic retrieval
task of the TRECVID evaluation campaign.

References

1. Amato, G., Mainetto, G., Savino, P.: An Approach to a Content-Based Retrieval of Multi-
media Data. Multimedia Tools and Applications 7, 9–36 (1998)

2. Belkhatir, M., Mulhem, P., Chiaramella, Y.: Integrating Perceptual Signal Features within
a Multi-facetted Conceptual Model for Automatic Image Retrieval. In: McDonald, S., Tait,
J. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 267–282. Springer, Heidelberg (2004)

 A Conceptual Framework for Automatic Text-Based Indexing and Retrieval 403

3. Belkhatir, M.: Combining semantics and texture characterizations for precision-oriented
automatic image retrieval. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005.
LNCS, vol. 3408, pp. 457–474. Springer, Heidelberg (2005)

4. Berlin, B., Kay, P.: Basic Color Terms: Their universality and Evolution. UC Press (1991)
5. Bhushan, N., et al.: The Texture Lexicon: Understanding the Categorization of Visual Tex-

ture Terms and Their Relationship to Texture Images. Cognitive Science 21(2), 219–246
(1997)

6. Cohn, A., et al.: Qualitative Spatial Representation and Reasoning with the Region Con-
nection Calculus. Geoinformatica 1, 1–44 (1997)

7. Fablet, R., Bouthémy, P.: Statistical motion-based video indexing and retrieval. In: Conf.
on Content-Based Multimedia Information Access, pp. 602–619 (2000)

8. Fan, J., et al.: ClassView: hierarchical video shot classification, indexing, and accessing.
IEEE Transactions on Multimedia 6(1), 70–86 (2004)

9. Gauvain, J.L., Lamel, L., Adda, G.: The LIMSI Broadcast News transcription system.
Speech Communication 37, 89–108 (2002)

10. Gong, Y., Chuan, H., Xiaoyi, G.: Image Indexing and Retrieval Based on Color Histo-
grams. Multimedia Tools and Applications II, 133–156 (1996)

11. Kokkoras, F.A., et al.: Smart VideoText: a video data model based on conceptual graphs.
Multimedia Syst. 8(4), 328–338 (2002)

12. Kwon, S., Narayanan, S.: Speaker Change Detection Using a New Weighted Distance
Measure. In: ICSLP, pp. 16–20 (2002)

13. Lim, J.H.: Explicit query formulation with visual keywords. ACM Multimedia, 407–412
(2000)

14. Lin, C.Y., Tseng, B.L., Smith, J.R.: VideoAnnEx: IBM MPEG-7 Annotation Tool for
Multimedia Indexing and Concept Learning. IEEE ICME (2003)

15. Nie, J.Y.: An outline of a General Model for Information Retrieval Systems. ACM SIGIR,
495–506 (1988)

16. Smeulders, A.W.M., et al.: Content-based image retrieval at the end of the early years.
IEEE PAMI 22(12), 1349–1380 (2000)

17. Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-
Wesley publishing company, London (1984)

18. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
19. Zhu, X., et al.: InsightVideo: toward hierarchical video content organization for efficient

browsing, summarization and retrieval. IEEE Trans. on Multimedia 7(4), 648–666 (2005)

Dimensionality Reduction in High-Dimensional

Space for Multimedia Information Retrieval

Seungdo Jeong1, Sang-Wook Kim2, and Byung-Uk Choi2

1 Department of Electrical and Computer Engineering, Hanyang University
2 College of Information and Communications, Hanyang University

17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 Korea
{sdjeong, wook, buchoi}@hanyang.ac.kr

Abstract. This paper proposes a novel method for dimensionality re-
duction based on a function approximating the Euclidean distance, which
makes use of the norm and angle components of a vector. First, we iden-
tify the causes of errors in angle estimation for approximating the Eu-
clidean distance, and discuss basic solutions to reduce those errors. Then,
we propose a new method for dimensionality reduction that composes a
set of subvectors from a feature vector and maintains only the norm and
the estimated angle for every subvector. The selection of a good refer-
ence vector is important for accurate estimation of the angle component.
We present criteria for being a good reference vector, and propose a
method that chooses a good reference vector by using the Levenberg-
Marquardt algorithm. Also, we define a novel distance function, and
formally prove that the distance function consistently lower-bounds the
Euclidean distance. This implies that our approach does not incur any
false dismissals in reducing the dimensionality. Finally, we verify the
superiority of the proposed approach via performance evaluation with
extensive experiments.

1 Introduction

Multimedia information retrieval is to search for information satisfying a query
condition from multimedia databases. In most previous studies, a multimedia
object is represented as a feature vector, which quantifies its contents or features
in a form of a vector. In order to express the original object sufficiently, feature
vectors normally become several tens to a few hundreds dimensional [4,10,11].
We call feature vectors stored in a database data vectors. Also, we call feature
vectors used in querying query vectors.

A majority of previous studies used the Euclidean distance as a measure for
evaluating the similarity between two vectors [2,4]. Diverse indexing methods
have been proposed. However, the performance of these indexing methods de-
grades dramatically with the increasing dimensionality of feature vectors. This
has been known as dimensionality curse [3,11]. One of its solutions is dimen-
sionality reduction that transforms feature vectors in high-dimensional space to
those in low-dimensional space [1,7,5]. For simplicity, we call feature vectors of
reduced low-dimensional space low-dimensional feature vectors.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 404–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dimensionality Reduction in High-Dimensional Space 405

Multimedia information retrieval using dimensionality reduction consists of
two steps: a filtering step and a post-processing step. We call this the two-step
searching method. A desirable two-step searching method not only guarantees no
false dismissals but also minimizes false alarms [10]. In previous researches, var-
ious mathematical transformations have been used for dimensionality reduction.
The principal component analysis(PCA), the discrete cosine transform(DCT),
and the discrete Fourier transform(DFT) are typical ones [8]. The methods using
the PCA and the DCT have been known to outperform that using the DFT [7].

This paper deals with effective dimensionality reduction for high-dimensional
applications. To guarantee no false dismissals, the distance between any pair of
feature vectors in low-dimensional space should lower-bound the distance be-
tween the original feature vectors. The function for computing the Euclidean
distance includes the inner product of two vectors. The Cauchy-Schwartz in-
equality defines the relationship between the norm multiplication and the inner
product of two vectors [8]. The distance function substituting the multiplication
of norms for their inner product is a lower-bounding function to the Euclidean
distance [5]. However, this function suffers from large errors because it uses only
norms. To solve this problem, Jeong et al. proposed a novel distance function
that lower-bounds the Euclidean distance [6]. This function takes the angle com-
ponent between two vectors into account as well as norms, and thus, can reduce
effectively the error of the approximated distance.

We propose a novel method for dimensionality reduction based on the function
approximating the Euclidean distance, which makes use of the norm and angle
components of a vector. For this, we identify the causes of the errors in angle
estimation for approximating the Euclidean distance, and then propose a new
method for dimensionality reduction that composes a set of subvectors from a
feature vector and maintains only the norm and the estimated angle for every
subvector. We verify the superiority of the proposed approach via performance
evaluation with extensive experiments.

2 Related Work

2.1 Lower-Bounding Function Using Cauchy-Schwartz Inequality

< X, Y > denotes the inner product of two vectors X and Y in n-dimensional
space. Equation (1) is the Cauchy-Schwartz inequality. It defines the upper-
bound of their inner product.

< X, Y >≤ ‖X‖‖Y ‖ where ‖X‖2 =
∑n

i=1 x2
i (1)

The Euclidean distance between two vectors is defined as equation (2).

D(X, Y) =
√∑n

i=1(xi − yi)2 =
√

‖X‖2 + ‖Y ‖2 − 2 < X, Y > (2)

We define a function approximating the Euclidean distance using the Cauchy-
Schwartz inequality, Dcs(X, Y), as in equation (3).

Dcs(X, Y) =
√

‖X‖2 + ‖Y ‖2 − 2‖X‖‖Y ‖ (3)

406 S. Jeong, S.-W. Kim, and B.-U. Choi

From the definition of the Cauchy-Schwartz inequality, the relationship be-
tween two distance functions D(X, Y) and Dcs(X, Y) is represented as equa-
tion (4). Thus, Dcs(X, Y) is a function lower-bounding the Euclidean distance
D(X, Y).

D(X, Y) ≥ Dcs(X, Y) (4)

Therefore, the retrieval using Dcs(X, Y) does not incur any false dismissals.
Besides, the computation is very fast because only norms instead of all the
dimension values are considered.

2.2 Lower-Bounding Function Considering the Angle Component

Dcs(X, Y) does not take the angle component of two vectors into account. This
causes large approximation errors. To solve this problem, Jeong et al. proposed a
lower-bounding function considering the angle component [6]. We can compute
the Euclidean distance by using norms and angles as shown in equation (5).

D(X, Y) =
√

‖X‖2+ ‖Y ‖2−2 <X, Y> =
√

‖X‖2+ ‖Y ‖2− 2‖X‖‖Y ‖cosθ (5)

Q

R

1X

1QXθ

QRθ

1RXθ
ii RXQRQX θθθ −≈

2QXθ

2X

2RXθ

Q

R

1X

1QXθ

QRθ

1RXθ
ii RXQRQX θθθ −≈

2QXθ

2X

2RXθ

Fig. 1. Angle approximation using a reference vector

Jeong et al. introduced the notion of the reference vector R to estimate the
angle component between a query vector Q and every data vector Xi as shown in
Fig. 1 [6]. If we know the angle θRXi between R and Xi, we can approximate the
angle θQXi between Q and Xi by a simple calculation given in equation (6). The
angles between R and every Xi are computed and stored at the time of database
construction. The function DA(Q, Xi), which approximates the distance to be
compared with a tolerance in the filtering step, is given in equation (7).

θ̃QXi = |θQR − θRXi | (6)

DA(Q, Xi) =
√

‖Xi‖2 + ‖Q‖2 − 2‖Xi‖‖Q‖cosθ̃QXi (7)

Although R, Q, and Xi do not exist on the same plane, θQXi is also approx-
imated by the same equation. In this case, the approximated angle is always
less than or equal to the actual angle. Therefore, any false dismissals are not
introduced by this method.

Theorem 1. For any pair of two vectors X and Y , the following equation holds.
D(X, Y) ≥ DA(X, Y)

Dimensionality Reduction in High-Dimensional Space 407

x

y

]4.0 ,8.0[=Q
]5.0 ,0[=R

]7.0 ,3.0[=X

x

y

]4.0 ,8.0[=Q
]5.0 ,0[=R

]7.0 ,3.0[=X

Fig. 2. An example of two-
dimensional vectors

Errors in Angle Approximation

0

5

10

15

20

25

30

35

40

45

90 80 70 60 50 40 30 20 10 0
Theta(R)= 90~0 (degree)

Angle(deg)

Approximated Angle Error

Fig. 3. Errors in angle approximation with
varying angles

z

x

y

]0.0 ,5.0 ,5.0[=Q

]0.0 ,2.0 ,3.0[=R

]0.0 ,5.0 ,2.0[=X

z

x

y

]0.0 ,5.0 ,5.0[=Q

]0.0 ,2.0 ,3.0[=R

]0.0 ,5.0 ,2.0[=X

Fig. 4. An example of three-
dimensional vectors

Errors in Angle Approximation

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Attribute (Rz=0~1)

Angle(deg)

Approximated Angle Error

Fig. 5. Errors in angle approximation for vary-
ing values for the z coordinate of a reference
vector

Proof. Refer to [6].

DA(X, Y) has the norm and angle referred to the reference vector as arguments.
Thus, this is a kind of dimensionality reduction that maps a data vector in high-
dimensional space to that in two-dimensional space whose axes are the norm
and angle.

3 Proposed Method

3.1 Error Analysis

In the angle approximation, an error of the approximated angle occurs depending
on the locations among a data vector X , a query vector Q, and a reference vector
R. Fig. 2 shows an example of three vectors X , Q, and R in two-dimensional
space. Fig. 3 presents the approximated angles and their errors. Here, we fix
the norm of R as 0.5 and vary the angle of R from 90 to 0. We note that
approximation errors occur if R is located between X and Q as shown in Fig. 3.

Fig. 4 shows an example of three vectors X , Q, and R in three dimensional
space. The value for the z coordinate of all these three vectors is 0.0. This means
that these three vectors are on the same plane. Because three vectors are on the
same plane and R is not located between X and Q, the approximated angle
between X and Q is exactly same as the actual angle.

408 S. Jeong, S.-W. Kim, and B.-U. Choi

Fig. 5 shows the difference between the approximated and actual angles. Here,
we increase the value for the z coordinate of R from 0 to 1. As the value for
the z coordinate of R increases, the errors of the approximated angles also get
larger. In other words, as the three vectors get closer to the same plane, the
errors become smaller. To reduce such errors, we employ two kinds of reference
vectors: (1) One is very close to a plane composed of Q and every X and (2)
The other is most close to an axis.

3.2 Dimensionality Reduction Using Dimension Grouping

To use DA(X, Y) that lower-bounds the Euclidean distance, we store only norms
of original vectors and angle components between those and the reference vector.
In low-dimensional space, the probability for arbitrary three vectors to be close
to the same plane is relatively high. That is, the lower the dimensionality is,
the less the approximation errors are. To reflect this characteristic, we propose
a dimension grouping method that represents high-dimensional space as a set
of low-dimensional space. Because arbitrary three vectors are likely to close to
one plane in low-dimensional space, we can successfully reduce the errors of the
approximated angle.

We call the number of groups for dimensionality reduction the reduced di-
mensionality k. We also choose k as the same as the number of dimensions in
low-dimensional space. A vector X ′ which is composed of some attributes among
n attributes of the n-dimensional data vector X is defined as a subvector. Let
X ′

i be the i-th subvector of X and X ′
i = [xi1, xi2, . . . , xili] be its numerical rep-

resentation. k subvectors satisfy two constraints shown in equation (8), where
A(X) = {∀xi|xi ∈ X}, that is a set composed of respective attributes of X .

{A(X ′
i) ∩A(X ′

j)|∀i(≤ k), j(≤ k), i �= j} = ∅, A(X) =
k⋃

i=1

A(X ′
i) (8)

∑k
i=1 li = n, where li is the number of attributes of the i-th subvetor. The

reference vector R can be also represented by k subvectors R′
i. we can compute

their norms and angles using equation (9) and equation (10), respectively, where
X ′

i = [xi1, xi2, . . . , xili], R′
i = [ri1, ri2, . . . , rili].

‖X ′
i‖ =

√
√
√
√

li∑

j=1

x2
ij (9)

θX′
i

= cos−1(
li∑

j=1

xijrij/‖X ′
i‖‖R′

i‖) (10)

If we divide X into k subvectors, a reduced data vector XGA is represented
as equation (11). Also, we define the distance DGA(X, Y) between two vectors
XGA and YGA in reduced dimensional space as equation (12).

XGA = [‖X ′
1‖, θX′

1
, ‖X ′

2‖, θX′
2
, . . . , ‖X ′

k‖, θX′
k
] (11)

Dimensionality Reduction in High-Dimensional Space 409

DGA(X, Y) =
√∑k

i=1(‖X ′
i‖2 + ‖Y ′

i ‖2 − 2‖X ′
i‖‖Y ′

i ‖cosθ̃X′
iY

′
i
)

where θ̃X′
iY

′
i

= |θX′
i
− θY ′

i
|

(12)

3.3 Selection of a Reference Vector

In order to reduce approximation errors, it is necessary to select R that is close
to the plane formed by Q and every Xi. In addition, to reduce the errors caused
by the position of R, R should be as close as possible to one of the axes that
form data space.

We assume that the distribution of Q follows that of Xi [9]. Thus, to locate R,
Xi, and Q as close as possible to the same plane, it is necessary to select R whose
distance to the plane, which is approximated by all Xi, should be minimized.
For this, we propose a method to select R using the Levenberg-Marquardt(L-M)
algorithm [8].

V = [v1, v2, . . . , vn] denotes a normal vector of an n-dimensional plane. Nu-
merical representation of this plane is the same as equation (13), where we
represent an axis of n-dimensional space as A = [a1, a2, . . . , an]. For this plane
and Xi, a constant Ti satisfying equation (14) exists. If the magnitude of V is
equal to 1, Ti is the distance between Xi and the plane. Rearranging equation
(14) for Ti, we can obtain equation (15).

v1a1 + v2a2 + . . . + vnan = 0 (13)

v1(xi1 + Tiv1) + v2(xi2 + Tiv2) + . . . + vn(xin + Tivn) = 0 (14)

Ti = −v1xi1 + v2xi2 + . . . + vnxin

v2
1 + v2

2 + . . . + v2
n

(15)

A sum of squared distances from N data vectors to the plane is the same as
equation (16). Thus, if we could obtain V that minimizes equation (16), it is the
plane whose distance to all Xi is minimum.

T∑

i=1

T 2
i =

T∑

i=1

(v1xi1 + v2xi2 + . . . + vnxin)2 (16)

In this paper, we compute V using the Levenberg-Marquardt algorithm to
minimize equation (16). Next, we obtain projection of every Xi to this plane,
and select one of a pair of projection as R. Here, the selected pair of projection
has the largest angle. R selected by our algorithm is very close to the same plane
as well as an axis. Thus, we can reduce errors significantly.

3.4 Database Construction and Query Processing

First, we select R as described in Section 3.3. Next, we compute a k-dimensional
data vector for every Xi using equations (9) and (10). In query processing, we
use low-dimensional data vectors at the filtering step for obtaining candidates
and original data vectors at the post-processing step for discarding false alarms.

410 S. Jeong, S.-W. Kim, and B.-U. Choi

3.5 Discussions

In this section, we prove that our dimensionality reduction method guarantees
no false dismissals.

Theorem 2. For any pair of two vectors X and Y , the following equation holds.
D(X, Y) ≥ DGA(X, Y)

Proof. For the subvectors X ′
i = [xi1, xi2, . . . , xili] and Y ′

i = [yi1, yi2, . . . , yili],
D(X ′

i, Y
′
i) can be obtained by equation (17).

D(X ′
i, Y

′
i) =

√
‖X ′

i‖2 + ‖Y ′
i ‖2 − 2 < X ′

i, Y
′
i > (17)

In the same way, DA(X ′
i, Y

′
i) can be also computed by equation (18).

DA(X ′
i, Y

′
i) =

√
‖X ′

i‖2 + ‖Y ′
i ‖2 − 2‖X ′

i‖‖Y ′
i ‖cosθ̃X′

iY
′

i
(18)

Equation (19) shows the relationship of D(X, Y) and D(X ′
i, Y

′
i). Also, by using

equations (12) and (18), we can show the relationship between DGA(X, Y) and
DA(X ′

i, Y
′
i) as in equation (20).

D(X, Y)2 =
k∑

i=1

D(X ′
i, Y

′
i)2 (19)

DGA(X, Y)2 =
k∑

i=1

DA(X ′
i, Y

′
i)2 (20)

From equations (19) and (20) with Theorem 1, we know that D(X, Y) ≥
DGA(X, Y) always holds. Therefore, the distance function using the dimension
grouping lower-bounds the Euclidean distance. !

4 Performance Evaluation

We used synthetic and real-life data sets for experiments. The synthetic data
sets are composed of 20,000 to 100,000 data vectors of 25 to 200 dimensions.
The real-life Corel image data set consists of 68,040 images [12], each of which is
described with a 32-dimensional feature vector. We compared the performance
of the proposed method with those of the previous ones using the PCA and
the DCT by counting the number of candidates obtained after filtering. The
hardware platform for the experiments was the PC equipped with 2.8G Pentium
CPU and 512MB RAM. The software platform was the MS Windows 2000 and
Visual C++ 6.0.

Fig. 6 shows the results with various kinds of reference vectors. “small(+)”
denotes the result with the reference vector having very small values for all
the attributes to be located close to an axis. “minus one” does that with the
reference vector having -1 for all the attributes. “random1” and “random2”

Dimensionality Reduction in High-Dimensional Space 411

5-NN search for 100,0000 200-dimensional synthetic vectors

10

100

1000

10000

100000

1 2 3 4 5
Reduced Dimensionality

Candidates

small(+) minus one random1 random2 proposed one

Fig. 6. Results with various reference vec-
tors(log scale)

5-NN search for 100,000 200-dimensional synthetic vectors

1

10

100

1000

10000

100000

1 2 3 4 5

Reduced Dimensionality

Candidates

DCT PCA proposed one

Fig. 7. Results with various reduced di-
mensionality(log scale)

100,000 200-Dimensional synthetic vectors

(Reduced Dimensioanlity k=4)

0

500

1000

1500

2000

2500

1 3 5 7
Nearest Neighbors

Candidates

DCT PCA proposed one

Fig. 8. Results with various tolerances

5-NN search for 100,000 synthetic vectors

(Reduced Dimensionality k=4)

0

500

1000

1500

2000

2500

25 50 75 100 125 150 175 200

Original Dimension

Candidates

DCT PCA propoded one

Fig. 9. Results with various dimensionality

denote the results with randomly selected reference vectors from data vectors.
Finally, “proposed one” denotes the result with the reference vector selected by
our selection method in Section 3.3. Our selection method outperforms the others
as shown in the result because it considers both causes of errors mentioned in
Section 3.1. In the following experiments, we used the reference vector selected
by the this method.

Fig. 7 shows the results with varying the reduced dimensionality k. In all the
methods, the number of candidates decreases dramatically as k increases. The
proposed method 2 to 60 times outperforms the method using the DCT, and 2
to 50 times outperforms the one using the PCA.

Fig. 8 shows the results with various tolerances. The number of candidates
obtained in all three methods slightly increases as a tolerance increases. The
proposed method produces candidates 60 and 50 times less than the methods
using the DCT and the PCA, respectively.

Fig. 9 shows the results with various dimensionality. In cases of the previ-
ous methods using the PCA and the DCT, the number of candidates increases
rapidly as the original dimensionality increases. However, it is kept nearly con-
stant in the proposed method even with increasing dimensionality. In high-
dimensionality such as 200, our method 60 times and 50 times outperforms the
methods using the DCT and the PCA, respectively.

Fig. 10 shows the results with varying numbers of data vectors. The number
of candidates in the previous methods using the PCA and the DCT increases
rapidly as the number of data vectors increases. This is due to the statistical

412 S. Jeong, S.-W. Kim, and B.-U. Choi

5-NN search for 100,000 200-dimensional synthetic vectors

(Reduced Dimensionality k=4)

0

500

1000

1500

2000

2500

20000 40000 60000 80000 100000

Data Size

Candidates

DCT PCA proposed one

Fig. 10. Results with various numbers of
data vectors

5-NN search for 32-dimensional Corel Image data

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

Reduced Dimensionality

Candidates

DCT PCA proposed one

Fig. 11. Results with varying k for the
Corel image data set(log scale)

property that data vectors are spread over entire high-dimensional space [11].
Otherwise, the proposed method shows almost the same number of candidates
in all cases. Our method 18 to 60 times outperforms the method using the DCT
and 15 to 50 times outperforms the method using the PCA.

Fig. 11 shows the results using the real-life Corel image data set with varying
reduced dimensionality. In case of k = 1, the method using the DCT retrieves
every data vector as a candidate. The method using the PCA retrieves 48% of
data vectors and our method does only 31% of data vectors as candidates. In
other words, our method filters 69% of data vectors out, which should not be
included in the final answer set by using only one reduced dimension. In case of
k = 9, the method using the DCT selects 2.47% of data vectors and the method
using the PCA does 0.89% of data vectors as candidates. Our method chooses
only 0.15% of data vectors as candidates, and produces candidates about 6 times
and 16 times less than the methods using the DCT and the PCA, respectively.

5 Conclusions

This paper has proposesd a novel method for dimensionality reduction based on a
function approximating the Euclidean distance, which makes use of the norm and
angle components of a vector. First, we have identified the causes of errors in angle
estimation, and have discussed basic solutions to reduce those errors. Next, we
have proposed a new method for dimensionality reduction that composes a set of
subvectors from a feature vector and maintains only the norm and the estimated
angle for every subvector. Also, we have defined a novel distance function that
consistently lower-bounds the Euclidean distance. This implies that our method
does not incur any false dismissals caused by reducing the dimensionality. Finally,
we have performed a variety of experiments. The results show that our method
improves the performance remarkably in comparison with previous ones.

Acknowledgement

This research was supported by the MIC(Ministry of Information and Commu-
nication) of Korea under the ITRC(Information Technology Research Center)

Dimensionality Reduction in High-Dimensional Space 413

support program supervised by the IITA(Institute of Information Technology
Assessment) (IITA-2005-C1090-0502-0009).

References

1. Aggarwal, C.C.: On the Effects of Dimensionality Reduction on High Dimensional
Similarity Search. In: Proc. of Int’l. Symp. on Principles of Database Systems, pp.
256–266 (2001)

2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence
Database. In: Proc. of Int’l. Conf. on Foundations of Data Organization and Algo-
rithms, pp. 69–84 (1993)

3. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is Nearest Neighbor
Meaningful? In: Proc. of Int’l. Conf. on Database Theory, pp. 217–235 (1999)

4. Bohm, C., Berchtold, S., Keim, D.A.: Searching in High-Dimensional Spaces-Index
Structures for Improving the Performance of Multimedia Databases. ACM Com-
puting Surveys 33(3), 322–373 (2001)

5. Egecioglu, O., Ferhatosmanoglu, H., Ogras, U.: Dimensionality Reduction and Sim-
ilarity Computation by Inner Product Approximations. IEEE Trans. on Knowledge
and Data Engineering, 714–726 (2004)

6. Jeong, S., Kim, S.-W., Kim, K., Choi, B.-U.: An Effective Method for Approximat-
ing the Euclidean Distance in High-Dimensional Space. In: Proc. of Int’l. Conf. on
Databases and Expert Systems Applications, pp. 863–872 (2006)

7. Kanth, K.V.R., Agrawal, D., Singh, A.: Dimensionality Reduction for Similarity
Searching in Dynamic Databases. In: Proc. of Int’l. Conf. on Management of Data.
ACM SIGMOD, pp. 166–176. ACM Press, New York (1998)

8. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal
Processing. Prentice-Hall, Englewood Cliffs (2000)

9. Pagel, B.-U., Six, H-W., Winter, M.: Window Query-Optimal Clustering of Spatial
Objects. In: Proc. of Int’l. Conf. on Very Large Data Bases. VLDB., pp. 506–515
(1997)

10. Seidl, T., Kriegel, H.-P.: Optimal Multi-Step k-Nearest Neighbor Search. In: Proc.
of Int’l. Conf. on Management of Data. ACM SIGMOD, pp. 154–165. ACM Press,
New York (1998)

11. Weber, R., Schek, H.J., Blott, S.: A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional Spaces. In: Proc. of Int’l. Conf.
on Very Large Data Bases. VLDB., pp. 194–205 (1998)

12. http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

Integrating a Stream Processing Engine and

Databases for Persistent Streaming Data
Management

Yousuke Watanabe1, Shinichi Yamada2, Hiroyuki Kitagawa2,3,
and Toshiyuki Amagasa2,3

1 Japan Science and Technology Agency
2 Graduate School of Systems and Information Engineering, University of Tsukuba

3 Center of Computational Sciences, University of Tsukuba

Abstract. Because of increased stream data, managing stream data has
become quite important. This paper describes our data stream manage-
ment system, which employs an architecture combining a stream process-
ing engine and DBMS. Based on the architecture, the system processes
both continuous queries and traditional one-shot queries. Our proposed
query language supports not only filtering, join, and projection over data
streams, but also continuous persistence requirements for stream data.
Users can also specify continuous queries that integrate streaming data
and historical data stored in DBMS. Another contribution of this paper
is feasibility validation of queries. Processing queries on streams with fre-
quent inputs may cause the system to overflow its capacity. Specifically,
the maximum writing rate to DBMS is a significant bottleneck when
we try to store stream data into DBMS. Our system detects infeasible
queries in advance.

1 Introduction

Advancements of device technologies and network infrastructures enable us to
access data streams, which provide up-to-date information that changes over
time. From a huge number of streams, we can get many kinds of information
such as weather forecasts, news, stock prices, and sensor data from the real
world. Requirements for stream data management are increasing and diverse.
The requirements we consider in this paper are classified into four types.

1. Continuous queries [3] on streaming data: This type of requirement lets a
system monitor streams over the long term. An example of the requirements
is “When a new data unit satisfying the conditions arrives from the stream,
deliver it to me.”

2. Persistence requirements for stream data: Archiving stream data is important
for applications that ought to keep logs. An example is “Continuously store
stream data onto disk for later browsing”,

3. One-shot queries on historical data stored in disks: This type of query cor-
responds to traditional SQL queries used to retrieve data from DBMS.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 414–423, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating a Stream Processing Engine and Databases 415

4. Integration of streaming data and historical data: An example is failure de-
tection using historical data. “Monitor similarity between two time-series
data sequences: streaming data and historical data received in the past.”

Stream processing engines [1,2,6,8] are well-designed systems to handle stream
data. They mainly focus on memory processing, and execute continuous queries
over stream data. Our objective, however, is to implement a data stream man-
agement system that achieves the four types of requirements listed above. We
need a system that supports not only continuous query processing but also so-
phisticated disk management. From the standpoint of disk management, stream
processing engines are not better than traditional DBMS. Thus, combining a
stream processing engine and DBMS is a reasonable approach to implement a
data stream management system.

This paper explains Harmonica, our data stream management system, which
is based on an architecture combining a stream processing engine [12] and
databases. It provides an SQL-like query language that supports continuous
queries, one-shot queries, persistence requirements and integration requirements
for streams and databases. Our proposed language is designed as an extension
to the previous continuous query languages and SQL.

Another contribution of this paper is feasibility validation for queries includ-
ing persistence requirements. Suppose we have a persistence requirement for a
stream whose arrival rate is quite frequent, the output rate of the stream process-
ing engine may exceed the maximum writing rate of the database. Since such
overflows often bring data loss, it is a critical problem for some applications.
Thus, we have to validate queries before starting query executions. We propose
a rate-based query validation scheme to detect queries that cause the system to
overflow capacity.

The remaining part of this paper consists of the following parts: Section 2
introduces an example scenario. Section 3 describes our system. Our query lan-
guage is explained in Section 4. Section 5 proposes our feasibility validation
scheme. Related work is summarized in Section 6. Finally, Section 7 presents
conclusions and introduces future research issues.

2 Example Scenario

We assume an application system for an industrial plant managing gas turbines
(Figure 1). Behavior of individual turbines is monitored by many types of sensors,
temperature (ttxd11), revolutions per minutes (rpm), and amount of fuel (fsr).
Each sensor periodically produces data each second. In this example, we need
both real-time monitoring over stream data (e.g., online failure detection) and
archiving stream data into persistent storage (e.g., trouble analysis).

3 System Architecture

Here is the architecture of Harmonica (Figure 2). The system consists of the
following modules:

416 Y. Watanabe et al.

Fig. 1. Industrial plant monitoring Fig. 2. System architecture

– Query parser: This module analyzes queries given by users, and constructs
query plans. Our query language is explained in Section 4.

– Feasibility validator: This module decides whether or not a given query
plan is feasible. We will present the validation scheme in Section 5. A query
that has passed the validation process is sent to the stream processing en-
gine. It collects the information needed to validate plans from the stream
processing engine and stream archiver.

– Stream processing engine: StreamSpinner [12] is a stream processing
engine that we implemented earlier. A characteristic of our engine is event-
driven operator evaluation. When the engine receives an event-notification
from a wrapper, it evaluates operators associated with the event. If a query
plan contains operations to access DBMS, the stream processing engine
makes requests of the stream archiver. The engine delivers the query result
to the user.

– Wrapper: A wrapper takes charge of a stream. When it receives data from
the stream, it transforms the data into a tuple. It notifies the stream pro-
cessing engine of an event to trigger operator evaluation.

– Stream archiver: The stream archiver module manages databases. It main-
tains schema information on all databases, and transfers access requests to
corresponding databases.

– Database connector: A database connector holds a database connection.
The connectors to MySQL, PostgreSQL, and SQL Server are available.

We have implemented Harmonica in Java. Figure 3 is a screen-shot of our system.

4 Harmonica Query Language

4.1 Syntax

The following introduces a query language used in the system. We employ a
relational model as the common data model in the system. Data streams are
modeled as unbounded relations. Each delivery unit from a stream is regarded as
a tuple included in the relation. A relation consists of multiple normal attributes
and one special attribute to hold an arrival timestamp for each tuple.

Integrating a Stream Processing Engine and Databases 417

Fig. 3. A screen-shot of Harmonica

[MASTER event 1,. . .]
SELECT attribute 1,. . .
FROM source 1,. . .
[WHERE conditions]
[GROUP BY key 1,. . .]

Fig. 4. Syntax of query

The syntax of our query language is presented in Figure 4. A MASTER
clause specifies events to trigger query processing. When new data arrives from
the streams written in the MASTER clause, the query is evaluated by the stream
processing engine. If a MASTER clause is omitted, the query is regarded as a tra-
ditional one-shot query. SELECT–FROM–WHERE–GROUP BY clauses
are the same as with SQL except for the time-based window specification in
the FROM clause. A window specification is used to specify sliding-window.
It consists of an interval and an origin of the moving window. For example,
“Turbine[1min, now]” in a FROM clause indicates tuples delivered from the
Turbine stream within the most recent minute. A window slides as time pro-
gresses, and tuples within the range are evaluated at each event occurrence.

Although INSERT INTO, CREATE TABLE and DROP TABLE are
omitted in Figure 4, users can give requirements using these clauses.

4.2 Examples

Figure 5 is continuous query filtering stream data. It means “Deliver data when
its temperature exceeds 100 degrees.” The MASTER clause indicates that the
query is triggered by an arrival of Turbine data. Width of the temporal window
is 1 millisecond, and the origin is the arrival time of the Turbine data. ttxd11 is
an attribute including a value from a temperature sensor.

Figure 6 is a persistence requirement. It says “When new data arrives from
the Turbine, store it into the Turbine log table if the temperature value exceeds
100.” Turbine log is the name of a table in DBMS. rpm is an attribute including
a value of revolutions per minute.

When a MASTER clause is not given in a query, the requirement is for a one-
shot query. Figure 7 is an example of a one-shot query. “Retrieve an average of
temperature data that arrived on June 16 from Turbine log table.” Turbine log
is a table stored in DBMS. “1day” gives the interval of the query’s window, and
“June 16, 2007 00:00 000” gives the origin of the window. “avg” is an aggregate
function to calculate the average.

418 Y. Watanabe et al.

MASTER Turbine
SELECT ttxd11
FROM Turbine [1msec, now]
WHERE ttxd11 > 100

Fig. 5. Filtering query

MASTER Turbine
INSERT INTO Turbine log
SELECT ttxd11, rpm
FROM Turbine [1msec, now]
WHERE ttxd11 > 100

Fig. 6. Persistence requirement

SELECT avg(ttxd11)
FROM Turbine log [1day, “June 16, 2007 00:00 000”]

Fig. 7. One-shot query

Following is an example of a query integrating stream and DBMS. Figure
8 means “Report similarity between recent temperature values from Turbine
stream and historical temperature values in turbine log.” Clock 1minute is a
timer stream provided by the system. “array” is a function to convert a set of
attribute values into an array. “sim” is a function to compute similarity between
two arrays.

4.3 Query Plan

Query parser constructs a query plan from a given query. A query plan is a tree of
operators. Figure 9 shows the query plan constructed from the query in Figure 8.
When a data arrival from Clock 1minute is notified to the stream processing en-
gine, the query plan is designated to be evaluated. The operators included in the
plan are evaluated from bottom to top of the tree. The plan contains seven oper-
ators, including projection, cartesian-product, grouping and function evaluation.

5 Feasibility Validation

This section proposes a feasibility validation scheme for a query plan. Our
scheme is an extension of Ayad’s method [4]. However, their original method
does not consider persistence requirements and integration queries for streams
and databases.

Here, we assume that the average input rate of each stream is almost stable.
Although bursty data arrivals may happen in data streams, our objective is
to detect (in advance) queries that cause stationary overflow. We think that a
system with sufficient queues can treat bursty arrivals.

5.1 Definition

Except for one-shot queries, a query is triggered by events specified by the MAS-
TER clause in the query. To keep pace with data arrivals from streams, the
system must finish evaluations of all operators corresponding to an event before

Integrating a Stream Processing Engine and Databases 419

MASTER Clock 1minute
SELECT sim(S1.V, S2.V)
FROM
(SELECT array(ttxd11) AS V

FROM Turbine [1min, now]) AS S1,
(SELECT array(ttxd11) AS V

FROM Turbine log [1min, “June 16, 2007 00:00 000”]) AS S2

Fig. 8. Integration of stream data and historical data

Fig. 9. An example of query plan Fig. 10. Validation example

the next event occurs. If evaluation tasks are continuously stacked in the system,
the system will eventually crash. We use “unit time” to specify the average time
interval between one event and the next.

As described in Section 3, our system consists of a stream processing engine
and DBMS. We can divide query plan q into two parts: stream processing part
SPq, which is mainly processed by the stream processing engine, and writing
part WPq, which is processed mainly by DBMS. SPq is a subtree of the query
plan constructed by removing the store operator from q. WPq is a store operator
when q is a persistence requirement. Otherwise, WPq is empty. Before defining
feasibility of a whole query plan, we define feasibility of SPq and WPq.

Definition 1. Let ok (1 ≤ k ≤ n) be an operator included in SPq and τk be
the average time needed by operator ok to evaluate input tuples per unit time. A
stream processing part SPq is feasible if the following condition is satisfied.

n∑

k=1

τk < unit time (1)

Formula 1 means that the sum of evaluation time of all operators should not
exceed unit time.

Definition 2. Let λSP be an output rate produced by stream processing engine
with a query plan q, and λDB be the maximum writing rate to DBMS. A writing
part WPq is feasible if the following condition is satisfied.

420 Y. Watanabe et al.

λSP < λDB (2)

Formula 2 means a number of output tuples produced by the stream processing
engine should not exceed the number of maximum writing rate to DBMS.

Definition 3. A query plan q is feasible if and only if both the stream processing
part SPq and the writing part WPq are feasible.

5.2 Validation Algorithm

According to the above definitions, our algorithm consists of three steps.

1. A query plan q is constructed from a query, and it is separated into the
stream processing part SPq and the writing part WPq .

2. We obtain τk, which is the average time needed by each operator ok in SPq.
How to estimate τk is explained in Section 5.3. After that, Formula 1 is
validated. If SPq is feasible and WPq is not empty, we go to the next step.

3. Formula 2 is validated. An output rate of stream processing engine λSP is
obtained by the previous step. The system estimates λDB using the method
described in Section 5.4.

5.3 Estimating Operator Costs

Validator traverses a query plan from bottom to top. It estimates the cost of
each operator based on Ayad’s cost model [4]. For each operator ok, we derive an
output rate λk, a time to process tuples arriving in unit time τk, and the number
of output tuples included in the window Wk. Wk is required to compute costs
for window-join and cartesian-product. The stream processing engine provides
information needed by this estimation: input rates of streams λi, a time to
process one tuple in an operator Co. We first explain how to estimate costs of
unary operators such as selection, projection, grouping, and function evaluation.
We then present an estimation for binary window-join and cartesian-product.

Unary Operators. Let λi be an input rate to the operator ok, Wi be a num-
ber of input tuples included in the window and fk be ok’s selectivity (=#out-
puts/#inputs). The output rate λk is derived by the input rate: λk = fkλi.
And, τk, the time to process tuples arriving in unit time, is also obtained from
the input rate λi: τk = Ckλi. Finally, we can obtain Wk, the number of output
tuples included in the window, from the number of input tuples in the window:
Wk = fkWi. In selecting and grouping operators, getting accurate selectivity
values is sometimes difficult. In such cases, we use fk = 1 pessimistically. For
projection and function evaluation operators, we always use fk = 1.

Binary Operators. Suppose a binary-join operator is connected to two input
streams L and R. Let λL and λR be input rates of L and R respectively, and
WL, WR be numbers of tuples included in the windows of L and R respectively. A

Integrating a Stream Processing Engine and Databases 421

new tuple from L is compared to tuples held in the R’s window, thus the number
of output tuples produced by input tuples from L equals fkλLWR. In the same
way, the number of output tuples produced by input tuples from R is fkλRWL.
Therefore, the output rate of operator ok is obtained by the following formula.

λk = fk(λLWR + λRWL)

The time to process tuples arriving in unit time is calculated as follows.

τk = τL + τR = Ck(λL + λR)

Finally, the number of output tuples included in the window becomes as follows.

Wk = fkWLWR

In the estimation for cartesian-product operator, we use fk = 1.

5.4 Estimating the Maximum Writing Rate to DBMS

To validate Formula 2, we need λSP , which is the output rate produced by
stream processing, and λDB , which is the maximum writing rate to DBMS. λSP

is obtained by the estimation in Section 5.3, because λSP equals the output rate
of the top operator in SPq.

The maximum writing rate to DBMS depends on environment, such as ma-
chine power and implementations of DBMS. In addition, the rate may change
according to the data size of one tuple. Generally, the writing rate for a large
tuple is lower than that for a small tuple. However, measuring actual writing
rates for all sizes of data is impractical. Our approach is measuring rates only
for different N sample sizes. With N samples, we can estimate a writing rate
for other data sizes by applying linear approximation. λDB for query plan q is
estimated by the following formula.

λDB " rate estimate(tuple size(Sq)) (3)

Sq is a schema corresponding to the output produced by query plan q. tuple size
is a function to compute average data size based on the schema, and rate
estimate is a function to estimate writing rate by applying linear approximation.

5.5 Validation Example

The following illustrates the validation process for the query in Figure 6. At the
first step, the system constructs a query plan (Figure 10). The plan consists of
selection operator o1, projection operator o2 and store operators o3.

Next, the system validates whether or not SP is feasible. In this example, we
suppose λTurbine and λDB are 10 and 5 (tuples/second) respectively. We also
suppose f1 and f2 equal 0.3 and 1.0, C1 and C2 equal 0.02 and 0.01 respectively.
Based on the estimation method in Section 5.3, we can obtain λ1 = f1λTurbine =
0.3∗10 = 3 (tuples/second). And, τ1 = C1λTurbine = 0.02∗10 = 0.2 (second). For

422 Y. Watanabe et al.

Fig. 11. Feasibility validator

input rate decision result
: : :

33 tuples/s feasible succeed (hit)
34 tuples/s feasible overflow (miss)
35 tuples/s not feasible overflow (hit)

: : :

Fig. 12. Experiment results for the query in Fig. 6

qid operators estimated border result
1 store 34 tuples/s 33 tuples/s
2 selection, store 68 tuples/s 66 tuples/s
3 projection, store 35 tuples/s 34 tuples/s
4 selection, projection, store 70 tuples/s 68 tuples/s
5 cartesian product, (left) 3 tuples/s 3 tuples/s

projection, store (right) 5 tuples/s 5 tuples/s

Fig. 13. Summary of experiments

the projection operator o2, λ2 = f2∗λ1 = 1.0∗3 = 3 tuples/second. τ2 = C2λ1 =
0.01 ∗ 3 = 0.03 second. Since Formula 1 becomes τ1 + τ2 = 0.2 + 0.03 = 0.23 < 1,
SP is feasible.

Finally, feasibility of WP is checked. Because o2 is located at the top of SP ,
λSP equals λ2. λSP is smaller than λDB, therefore WP is feasible. We can get
the result that the query plan in Figure 10 is feasible. Figure 11 is a screen-shot
of feasibility validator in our system.

5.6 Experiment

We investigated accuracy of validation results. Our environment consists of a
Pentium D 3GHz, 2GB memory, Windows Vista Business, MySQL 5.0 and JDK
6. Since we chose the default parameters for MySQL, it was not tuned.

In this experiment, our system first validates the query in Figure 6 with
several input rates. We then tried to execute the query in the system. The result
is presented in Figure 12. Although there is a miss near the border, overall
accuracy seems good. If we want to improve accuracy, we have to estimate λSP

and λDB more precisely. We show the summary of our experiments validating
5 queries (Figure 13). Figure 13 indicates that our method can work for several
types of queries.

6 Related Work

There is much research on stream processing engines. Aurora [1], Borealis [2],
TelegraphCQ [6], NiagaraCQ [7], STREAM [8], CAPE[11] and so on. The re-
search focuses mainly on continuous query processing in main memory. Har-
monica combines the stream processing engine and DBMS, because we need the
system to support not only in-memory continuous query processing but also so-
phisticated disk management. CQL [3] is a continuous query language for stream
processing engines. The window specification in CQL does not contain a window
origin. And, CQL cannot specify any event-specification. Our query language

Integrating a Stream Processing Engine and Databases 423

supports both facilities. In addition, we can explicitly write persistence require-
ments to DBMS. Load shedding [5,9] is a technique to reduce inputs when the
load become quite high. These methods do not consider persistence requirements.

7 Conclusion

This paper described our data stream management system which integrates a
stream processing engine and DBMSs. We also presented a feasibility validation
scheme for persistence requirements. There are some future research issues. The
first is recommendation of feasible candidate queries when an original query is
detected to be infeasible. In our current scheme, once an infeasible query is found,
we have to manually rewrite the requirement to pass the validation process. The
second is treating streams whose input rates may dynamically change over time.

Acknowledgement

This research was supported in part by CREST, Japan Science and Technology
Agency, and Grant-in-Aid for Scientific Research (A) from Ministory of Educa-
tion, Culture, Sports, Science and Technology.

References

1. Abadi, D.J., et al.: Aurora: a New Model and Architecture for Data Stream Man-
agement. VLDB Journal 12(2), 120–139 (2003)

2. Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: Proc.
CIDR, pp. 277–289 (2005)

3. Arasu, A., et al.: The CQL Continuous Query Language: Semantic Foundations
and Query Execution. VLDB Journal 15(2) (2006)

4. Ayad, A.M., et al.: Static Optimization of Conjunctive Queries with Sliding Win-
dows Over Infinite Streams. In: Proc. ACM SIGMOD, pp. 419–430 (2004)

5. Babcock, B., et al.: Load Shedding for Aggregation Queries over Data Streams. In:
Proc. ICDE, pp. 350–361 (2004)

6. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. In: Proc. CIDR (2003)

7. Chen, J., et al.: NiagaraCQ: A Scalable Continuous Query System for Internet
Databases. In: Proc. ACM SIGMOD, pp. 379–390 (2000)

8. Motwani, R., et al.: Query Processing, Resource Management, and Approximation
in a Data Stream Management System. In: Proc. CIDR (2003)

9. Tatbul, N., et al.: Load Shedding in a Data Stream Manager. In: Proc. VLDB, pp.
309–320 (2003)

10. Viglas, S.D., et al.: Rate-based Query Optimization for Streaming Information
Sources. In: Proc. ACM SIGMOD, pp.37–48 (2002)

11. Wang, S., et al.: State-Slice: New Paradigm of Multi-query Optimization of
Window-based Stream Queries. In: Proc. VLDB, pp. 619–630 (2006)

12. StreamSpinner. http://www.streamspinner.org/

http://www.streamspinner.org/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 424–433, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Data Management for Mobile Ajax Web 2.0 Applications

Stefan Böttcher and Rita Steinmetz

University of Paderborn (Germany)
Computer Science

Fürstenallee 11
D-33102 Paderborn

stb@uni-paderborn.de , rst@uni-paderborn.de

Abstract. Whenever Ajax applications on mobile devices have to retrieve large
XML data fragments from a remote server, a reduction of the exchanged data
volume may be crucial to manage limited bandwidth and limited energy of the
mobile device. We propose to use an XML compression technique that
compresses an XML document to a binary directed acyclic graph (DAG) and to
use DAG-based DOM evaluation on the client side. Our experiments show that
the data transfer for applications like amazon or eBay can be reduced to 70% of
the original data transfer needed.

1 Introduction

Whenever web applications shall involve small mobile devices, limited resources like
energy and bandwidth require minimizing data exchange. While Ajax [7] has the
advantage that new web pages can be shown on the mobile client device without a full
exchange of the data that is contained in the web page, Ajax still uses a DOM model,
which, in the case of XML data exchange, requires exchanging at least fragments of
XML. As XML tends to be verbose, a promising optimization is to use compressed
XML instead of exchanging and storing XML as a DOM tree.

The contributions of this paper are the following.

• We summarize the requirements to an Ajax engine working on compressed XML
(in Section 2).

• We show how XML data can be converted into a binary directed acyclic graph
(binary DAG) that can be transported from client to server in order to reduce the
amount of data exchanged (in sections 3.1 and 3.2)

• We outline how to implement the navigation operations of the DOM model on
top of the binary DAG, such that the client can navigate on the cached binary
DAG which contains the compressed XML data (in Section 3.3).

• We describe how the binary DAG representing the DOM model of the client can be
updated to modify the data stored in the client side Ajax engine (in Section 3.4)

• Finally, we present an experimental evaluation that shows that, in comparison to
the standard XML exchange and the standard DOM parser in the Ajax engine,
our approach significantly reduces both, the amount of data exchange and the
amount of main memory storage needed on the small mobile client devices (in
Section 4).

 Data Management for Mobile Ajax Web 2.0 Applications 425

1.1 Related Works

Our work applies XML compression techniques including navigation and
manipulation of compressed XML data to Ajax-based Web 2.0 programming.

Ajax [7] is a programming technique for interactive web applications that
combines an XML data representation in a DOM tree on the client with
XMLHttpRequest as data exchange protocol and JavaScript as the client side
programming language. The potential of Ajax for building rich web applications and
the current state of the art concerning Ajax are summarized in [13].

There exist several algorithms for XML compression, some of which are DAG-
based and others or not DAG-based. However, not all of them can be used to decrease
communication costs and main memory consumption for Ajax applications, as they
do neither support efficient search operations nor updates without prior
decompression, and therefore do not allow to build a DOM model on top of them. An
example for such a compression approach generating a non-searchable compressed
data structure is XMILL[9].

Among the not DAG-based compression techniques, there exist several approaches
to the compression of XML data that are efficiently searchable or queryable. The
approaches XGrind [15], XPRESS [10] and XQueC [2] compress the tag information
using dictionaries and Huffman-encoding and replaces the end tags by either a ‘/’-
symbol or by parentheses.

XQC [11], DTD subtraction [3] and the approach presented in [14] omit all
information from the XML document that is redundant, as this information can be
inferred from the given DTD.

We however follow the DAG-based approaches to XML compression, like XQZip
[7] which uses a DAG for compressing the structure of an XML document, and LZCS
[1] and [4] which use a DAG for compressing the whole XML document, as DAGs
offer the following advantages. A DAG does not only allow efficiently compressing
XML documents. According to [5], the DAG also allows a more efficient search and
query evaluation as could be provided on the original XML data, even for large
repositories of data.

Our approach of write operations on the DAG-based DOM implementation follows
the technique of DAG updates described e.g. in [5]

In contrast to XQZip [7], LZCS [1], and [5], which regard the unranked XML tree
and the unranked DAG, we use a binary DAG to implement a DOM model, which
allows us to simplify both, path search and modifications on the DOM model.

In comparison to all other approaches, our approach uses a binary DAG-based
implementation of a DOM tree to optimize data transfer of Ajax-based Web 2.0
applications, which is an application field of increasing interest.

2 Requirements to an Ajax Engine Working on Compressed XML

In order to be able to present web pages to the client, Ajax needs all the operations
that a DOM interface offers. Therefore, as with uncompressed XML, our client
working on compressed XML shall offer all the operations that are offered by a DOM
client, i.e., traversing all the axes and inserting, deleting or modifying DOM nodes or
sub-trees.

426 S. Böttcher and R. Steinmetz

As we want to exchange compressed XML and want to traverse compressed XML
on the client side, this includes navigation and partial modification on compressed
structures. As we use a binary DAG as the compressed XML data structure, which
shares common XML structures instead of storing them multiple times, we have to
support navigation and all modification operations on this binary DAG. Navigation on
the shared data structures of the DAG has to know about the context in which a
shared part of a DAG is used whenever a navigation operation has to leave this shared
part.

Modification of an XML structure that previously has been compressed to a DAG
sharing common sub-trees has to consider that modifying a common sub-tree S would
change all XML fragments represented by S. Therefore, modification usually requires
a re-organization of the shared structures of the DAG, and the goal is to minimize the
changes of the DAG.

Finally, the client should allow for updates at arbitrarily selected points of the
DOM representation of the XML data which has to be supported by the DAG
implementing the DOM representation. This includes direct access to any node of the
DOM representation of the XML data or the DAG representation implementing this
DOM tree.

The server has to compress the XML tree structure that shall be transferred to the
client in such a lossless way, that arbitrary DOM operations can still be executed on
the compressed data structure. JavaScript commands that are embedded in the XML
document shall be still executable when the compressed binary DAG for of the XML
document is transferred to the client and is used to execute operations on the DOM
model of the client.

3 The Solution: A DAG-Based DOM Model

Our solution consists of some preparation steps on the server followed by evaluation
steps on the client. We first transform the SAX event stream of the given XML file
into a stream of binary SAX-events reporting on first-child, next-sibling, and parent
axes steps. As a second step on the server, we use a hash table in order to store and to
reuse binary DAG sub-trees instead of re-sending binary DAG sub-trees. Then a
stream of binary DAG events is sent from the server to the client. After this
preparation steps, all the DOM operations can be implemented on the binary DAG on
the client side.

3.1 Server-Side Binarization of the XML Document

In general, XML documents can be regarded as unranked trees, i.e., a parent node
may have arbitrary many child nodes. For the simplification of the following steps,
we have decided to transform the given XML document into a binary tree using the
first-child and next-sibling axes as the ‘left’ and the ‘right’ pointers in the binary tree.

In order to transform a given SAX event stream into a stream of binary SAX
events, we regard pairs of SAX events. The generation of binary SAX events from
given SAX events is summarized in Figure 1.

 Data Management for Mobile Ajax Web 2.0 Applications 427

Fig. 1. Example XML document with the resulting SAX and binary SAX streams

Each start-element event followed by another start-element event in the SAX input
stream represents a first-child-axis location step in the binary SAX event stream.

Each end-element event followed by a start-element event in the SAX input stream
represents a next-sibling-axis location step in the binary SAX event stream.

Each end-element event followed by another end-element event in the SAX input
stream represents a parent-axis location step in the binary SAX event stream.

The transformation of the SAX event stream into the binary SAX event stream is
done in two phases.

Phase 1: In the first phase, we reduce the events of the SAX stream to two kinds of
events: start-element(…) and end-element(…). For this purpose, we transform the
SAX event character(T) generated for a text value T found in the XML document into
a SAX event sequence

start-element(=T), end-element(=T).

Similar, we transform each attribute/value pair A=V found in the XML document
into a SAX event sequence

start-element(@A), start-element(=V), end-element(=V), end-element(@A) .

The symbols ‘@’ and ‘=’ uniquely identify attributes and text nodes respectively,
therefore, they are not allowed as an initial character for element-names.

The SAX event start-document is transformed into a SAX event start-
element(“root”), and the SAX event end-document is transformed into a SAX event
end-element(“root”), assuming that “root” does not exist as an element-name
within the XML-document. At the end of Phase 1, the transformed SAX event stream
contains only two kinds of events: start-element(…) and end-element(…).

Phase 2: In the second phase, we analyze pairs of start- and end-element events to
transform them into the binary SAX events first-child::a, next-sibling::a and parent::*:

428 S. Böttcher and R. Steinmetz

1. first-child: Whenever a SAX event start-element(x) is followed by a second
SAX event start-element(a), ‘a’ is the first child of ‘x’. Therefore, our binary SAX
encoder generates the binary SAX event first-child::a.

2. next-sibling: Whenever a SAX event end-element(x) is followed by a SAX
event start-element(a), ‘a’ is the next sibling of ‘x’. Therefore, our binary SAX
encoder generates the binary SAX event next-sibling::a.

3. parent: Furthermore, whenever a SAX event end-element(x) is followed by a
second SAX event end-element(y), ‘y’ is the parent of ‘x’. Therefore, our binary SAX
encoder generates the event parent::*.

4. Whenever a start-element(x) is followed by an end-element(x), no binary SAX
event is created.

Altogether, Phase 1 and Phase 2 together transform a SAX stream into a binary
SAX stream of first-child::a, next-sibling::a, and parent::* events.

3.2 Transferring a Binary DAG

As a binary DAG is in general much more compact than a binary XML tree, we have
decided to transfer a sequence of binary DAG nodes instead of a sequence of binary
XML tree nodes.

This however requires transforming the binary SAX event input stream of a given
XML document into a stream of binary DAG events. Each binary DAG event
represents that the DAG parser has received a new input node of the binary DAG
together with its pointers to the first child and the next-sibling DAG nodes. Note that,
as the DAG is calculated bottom-up, we require the first-child and the next-sibling
DAG nodes of an actual DAG node N to be sent before N is sent.

The construction of the binary DAG event stream from the binary SAX event
stream is implemented by using a hash table for the DAG. Each new DAG node is
stored in the hash table, whereas the hash table is also used to check whether or not a
DAG node is new. Whenever the DAG contains already an identical node, i.e., a node
with the same node name, the same first-child and the same next-sibling, this node is
not stored a second time in the DAG. Instead a pointer to the already stored DAG
node is used to reference the already stored node or tree or DAG. Note that the binary
DAG event is a generalization of a binary SAX event, i.e., it represents that a DAG
node has been read. The DAG now can be transferred from the server to the client,
which is in our case done by transferring a sequence of binary DAG events.

3.3 DOM Read Operations Implemented on a Binary DAG

Each implementation of the DOM model requires supporting the concept of a current
context node and supporting navigation starting from the current context node.

Each current context node in the DOM can be represented or identified by a unique
sequence of edges starting from the root in the binary DAG, called the DAG edge
sequence representing the current context node. Each edge of the DAG edge
sequence representing the current context node is either a ‘left’ edge connecting a
DAG node to its first-child or a ‘right’ edge connecting a DAG node to its next-
sibling node.

When we start at the root of the binary DAG and follow the DAG edge sequence
representing the current context node, we traverse a sequence of DAG nodes, which is

 Data Management for Mobile Ajax Web 2.0 Applications 429

called the DAG path of the current context node. The final DAG node of the DAG
path of the current context node is called the DAG node of the current context node.
The DAG node of the current context node always has the same node name as the
current context node of the DOM.

In our implementation, we use a stack to store the DAG edge sequence
representing the current context node together with pointers to the referenced nodes of
the DAG path of the current context node, i.e., the stack contains pairs of entries

 (DAG node pointer, edge),

where the DAG node pointer references a node on the DAG path of the current
context node and egde is either ‘left’ or ‘right’. We use this stack for all navigation
operations and for insert, delete, and modification operations on the DAG as follows.
Each navigation operation in the DOM is implemented by one or more operations
modifying the stack, where some operations, e.g., computing a list of child nodes is
composed of more basic operations, e.g., the first-child and the next-sibling axes.

first-child, next-sibling
Whenever the application requires moving from any current context node C of the
DOM tree along the first-child-axis or the next-sibling-axis to a node C2 of the DOM
tree, we implement this in the DAG as follows. We simply push a pair (Dnp,edge) on
the stack, where edge is ‘left’ if we have to use the first-child axis and edge is ‘right’
if we have to use the next-sibling axis in the DOM model, and Dnp is a pointer to the
DAG node of C2. C2 becomes the new current context node of the DOM. Note that
the pointer Dnp found in the top element of the stack points to the DAG node of the
new current context node (C2), i.e., the DAG edge sequence is correctly implemented
by our stack.

following-sibling
Whenever the application requires returning a list of following-sibling nodes of the
current context node in the DOM, we perform as many next-sibling steps as possible,
and we return the collected pointers to the resulting following-sibling nodes.

child
Whenever the application requires returning a list of child nodes of the current context
node in the DOM, we perform one first-child step and zero or one following-sibling
step, and we return the collected pointers to the found child nodes.

previous-sibling, parent-of-first-child
When the DOM model requires moving along the previous-sibling axis or the parent-
of-first-child axis to a DOM node D, we simply pop the top-most element from the
stack. As a result, the new stack contains the DAG edge path representing the D, and
the top-most stack element points to the DAG node of D.

preceding-sibling
Whenever the application requires returning a list of preceding-sibling nodes of the
current context node in the DOM, we perform as many previous-sibling steps
as possible, and we return the collected pointers to the resulting preceding-sibling
nodes.

430 S. Böttcher and R. Steinmetz

parent
Whenever the application requires returning the parent node of the current context
node in the DOM, we perform as many previous-sibling steps as possible followed by
one parent-of-first-child step, and we return the pointer to the found parent node.

descendant-or-self
Whenever the application requires returning a list of descendant-or-self nodes of the
current context node in the DOM, we perform zero or more child steps, and we return
the collected pointers to the resulting descendant-or-self nodes.

ancestor-or-self
Whenever the application requires returning a list of ancestor-or-self nodes of the
current context node in the DOM, we perform zero or more parent steps, and we
return the collected pointers to the resulting ancestor-or-self nodes.

3.4 DOM Write Operations Implemented on a Binary DAG

Write operations on a DOM tree implemented by our binary DAG have to consider
that shared DAG structures have to be updated only once, i.e., only for one of the sub-
trees represented by a DAG entry.

In order to explain the implementation of write operations, we need the concept of
the top-most join node on the root path of the DAG. The root path is the path from the
current context node to the root of the DAG. A join node J is a DAG node that has at
least two different nodes pointing to J. The top-most join node on the root path of the
DAG is that join node that is closest to the root on the root path of the DAG.

Whenever a current context node Nc has to be modified by either changing the
label, or changing (i.e., inserting, deleting, or modifying) the ‘left’ or the ‘right’ sub-
tree of Nc, we have to distinguish two cases for the implementation of this DOM
operation on the binary DAG:

Case 1: There is no Join node on the root path of Nc. Then, we simply modify Pc.
Case 2: There is at least one join node on the root path of Nc. Then, we copy the

DAG nodes <N0,N1,…,Nc> on the root path of the DAG to Nc, where N0 is the top-
most join node on this root path into a path <N0’,N1’,…,Nc’>. All nodes Ni’ get the
same labels as the corresponding nodes Ni. All first-child or next-sibling pointers of
the nodes Ni that do not point to the next node Ni+1 are copied to the corresponding
nodes Ni’. Note that each of these copied pointers is either null or points to a node
that was already previously in the DAG and now is a join node. Therefore,
modifications on the DOM tree need only one sub-path of the root path of the DAG to
be copied which is usually only a small extension of a given DAG. Thereafter, the
current root path of the DAG has to be adjusted in such a way that the predecessor of
N0 now points to N0’ instead of N0. Finally, the modification can be done on the
node Nc’, which does not affect Nc, i.e., it does not affect the other parts of the DAG.

4 Evaluation and Results

We have implemented an XML compression system which compresses HTML and
Ajax to binary DAGs representing the data structure and embedding the JavaScript
commands. Our implementation has been tested on a Pentium 4 with 2.4 GHz
Windows XP system with 1 GB of RAM running Java 1.5.

 Data Management for Mobile Ajax Web 2.0 Applications 431

We have tested our technique with the following web application data sets:

• ebay: A set of article listings (printers) of the online auction website eBay.
• amazon: A set of book listings and book article pages of the bookstore

amazon
• Zuggest: A web service that displays a table containing the first 10 amazon

results as soon as a search word fragment is entered.
• AutoComp: An Ajax based search service including auto-completion for the

online encyclopedia Wikipedia offering the 6 best choices in a combo-box
as soon as a search word fragment is entered.

We have performed two test series. In the first test series, we have measured the
communication costs, i.e., the size of the HTML file to be sent from the server to the
client and compared this with the size of the DAG. In a second series, we have
measured the main memory consumption that is needed to load the received data into
the client’s main memory, i.e., to load the DOM tree or the DAG.

Figure 2 summarizes the improvements that we have achieved by using a DAG
instead of exchanging and using plain HTML, i.e., it compares the communication
costs of the DAG with the communication costs of plain HTML and shows the
relationship |DAG|/|HTML|. Furthermore, Figure 2 summarizes the relative
improvements in memory consumption when using a DAG based DOM
implementation in comparison to a pure DOM implementation representing the
HTML files as XML tree, i.e.,

|MemoryUsageOf(DAG_based_DOM)|/|MemeoryUsageOf(HTML_DOM)| .

0%

20%

40%

60%

80%

100%

eBay amazon Zuggest AutoComp

memory consumption

communication costs

Fig. 2. Memory Consumption (MemoryUsageOf (DAG_based_DOM) / MemeoryUsageOf (
HTML_DOM)) and Communication Costs (sizeOf (DAG) / sizeOf (HTML)) of DAG
compared to plain HTML

As can be seen from Figure 2, the DAG representation of the application requires
only between 62% and 92% of the size required by the plain HTML or XML
representation of the data. Furthermore, the DAG-based DOM implementation
requires only between 58% and 86% of the size required by the HTML or XML based
DOM implementation. Therefore, we conclude that the DAG is much more suitable

432 S. Böttcher and R. Steinmetz

for energy and bandwidth saving data exchange, and the DAG-based DOM
implementation is much more suitable for small mobile devices than the standard
DOM representation of the XML file.

5 Summary and Conclusions

Whenever Web 2.0 applications based on Ajax technology have to exchange large
XML data fragments with small mobile devices, the amount of data transfer can be
reduced by using data compression. Our approach transforms XML data on the server
side into a binary DAG of XML data that includes JavaScript commands, transfers
this binary DAG to the client, and implements a DOM interface on top of the
compressed binary DAG representation of the compressed data. We do not only
support all navigation operations on the DOM model, but also support all insert,
update, and delete modifications on the compressed binary DAG representation.
Finally, our experimental evaluation has shown that, in comparison to the standard
XML exchange and the standard DOM parser in the Ajax engine, our approach
significantly reduces both, the amount of data exchange and the amount of main
memory storage needed on the small mobile client device. Therefore, we consider it
to be an interesting contribution to optimize the data exchange of Ajax-based Web 2.0
applications that involve small mobile devices.

References

[1] Adiego, J., Navarro, G., de la Fuente, P.: Lempel-Ziv compression of structured text. In:
Proceedings of the 2004 IEEE Data Compression Conference (DCC 2004), pp. 112–121
(2004)

[2] Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, I., Pugliese, A.: XQueC:
Pushing queries to compressed XML data. In: Proc. VLDB, pp. 1065–1068 (2003)

[3] Böttcher, S., Klein, N., Steinmetz, R.: XML Index Compression by DTD Subtraction. In:
9th International Conference on Enterprise Information Systems. ICEIS (to appear)

[4] Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., Viglas, S.: Vectorizing and
Querying Large XML Repositories. In: ICDE 2005, pp. 261–272 (2005)

[5] Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: VLDB 2003,
pp. 141–152 (2003)

[6] Busatto, G., Lohrey, M., Maneth, S.: Efficient Memory Representation of XML
Dokuments. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 199–
216. Springer, Heidelberg (2005)

[7] Cheng, J., Ng, W.: XQzip: Querying Compressed XML Using Structural Indexing. In:
Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M.,
Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 219–236. Springer,
Heidelberg (2004)

[8] Garrett, J.: Ajax: A New Approach to Web Applications. Adaptive path (2005),
http://www.adaptivepath.com/publications/essays/archives/000385.php

[9] Liefke, H., Suciu, D.: XMill: An Efficient Compressor for XML Data. In: Proc. of ACM
SIGMOD (May 2000)

 Data Management for Mobile Ajax Web 2.0 Applications 433

[10] Min, J.K., Park, M.J., Chung, C.W.: XPRESS: A Queriable Compression for XML Data.

In: Proceedings of SIGMOD (2003)
[11] Ng, W., Lam, W.-Y., Wood, P.T., Levene, M.: XCQ: A Queriable XML Compression

System. In: Knowledge and Information Systems, Springer, Heidelberg (to appear, 2006)
[12] Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Chaudhri, A.B.,

Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 109–127.
Springer, Heidelberg (2002)

[13] Paulson, L.D.: Building Rich Web Applications with Ajax. IEEE Computer 38 (2005)
[14] Sundaresan, N., Moussa, R.: Algorithms and programming models for efficient

representation of XML for Internet applications. WWW 2001 (2001)
[15] Tolani, P.M., Hartisa, J.R.: XGRIND: A query-friendly XML compressor. In: Proc. ICDE

2002, pp. 225–234. IEEE Computer Society Press, Los Alamitos (2002)

Data Management in RFID Applications

Dan Lin1, Hicham G. Elmongui1,�, Elisa Bertino1, and Beng Chin Ooi2

1 Department of Computer Science, Purdue University, USA
{lindan, elmongui, bertino}@cs.purdue.edu

2 Department of Computer Science, National University of Singapore, Singapore
ooibc@comp.nus.edu.sg

Abstract. Nowadays, RFID applications have attracted a great deal of interest
due to their increasing adoptions in supply chain management, logistics and se-
curity. They have posed many new challenges to existing underlying database
technologies, such as the requirements of supporting big volume data, preserving
data transition path and handling new types of queries. In this paper, we pro-
pose an efficient method to manage RFID data. We explore and take advantage of
the containment relationships in the relational tables in order to support special
queries in the RFID applications. The experimental evaluation conducted on an
existing RDBMS demonstrates the efficiency of our method.

1 Introduction

Radio frequency identification (RFID) [6] has been around for decades, and recently,
there has been greater push from governments for its adoption for more efficient man-
ufacturing, logistics and supply-chain management, and as a measure for security en-
forcement and weeding out counterfeiting. Take the supply-chain management for
example (Figure 1), RFID enables accurate and real-time tracking of inventory by com-
panies throughout an entire supply chain. Specifically, data stored in RFID are captured
remotely via radio waves. Information from goods tagged with RFIDs can then be read
simultaneously using fixed or mobile readers rather than requiring the scanning of indi-
vidual bar code. Such a better supply chain visibility with the use of RFID also means
that loss of inventory will be minimized during shipment. Businesses are suggested to
use RFID for better inventory control since it may reduce excess inventories and free
up capital for other activities.

Unfortunately, traditional database cannot efficiently support these new applications.
Tracking each individual item causes data input to increase tremendously, and volume
of data is enormous. As an example, Venture Development Corporation [4] has pre-
dicted that when tags are used at the item level, Walmart supermarket will generate
around 7 terabytes of data every day. Though some compression techniques have been
proposed (e.g. [8]), none of them fully explore the speciality of the RFID data while
supporting online tracking.

For a better understanding of the characteristics of RFID data, consider the follow-
ing example of the supply-chain management. Suppose there are several warehouses

� Also affiliated with Alexandria University, Alexandria, Egypt.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 434–444, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Data Management in RFID Applications 435

Fig. 1. Supply-Chain Management

and stores. Products like T-shirts, milk packages are tagged with RFIDs and shipped
respectively from warehouses to stores by trucks. During the shipment, products may
be reallocated or reorganized at some intermediate warehouses. All such information
is recorded in a central database system when products pass through a warehouse or a
store. In this scenario, suppose a type of T-shirts at a store is sold out and a customer
wants to know when his order can be completed. To answer such a query, the retailer
needs to check current status of the shipment. If he knows from the database that this
type of T-shirts is now at a warehouse close to his store and will soon be sent to his
store, he can then estimate the arrival time for the customer. Next, let us examine a
more interesting but complicated situation. A retailer finds that a box of milk packages
in his store is contaminated. He thus asks a query on the path of the shipment: “which
place did the box of milk packages stay before arriving at my store?” If it is deemed
to be contaminated in a truck, an alerting query may be issued to avoid more losses:
“where is the truck now and what goods are in it?” This requires the system to quickly
identify suspected trucks (which are possibly heading to other stores), and stop them
to prevent possible contamination that may happen in other stores. The scenario would
have been more disastrous if the movement of goods or living things causes infectious
diseases to spread (for example, the breakout of SARS in Asia in 2003).

In this paper, we tackle the above problems specifically. We summarize our contri-
butions as follows.

– We have explored the path and containment relationships in the RFID data and
developed an ER-model based on it. To the best of our knowledge, it is the first
time to clearly identify such inherent data connections in RFID applications so that
they can be taken into account during the system design.

– We have proposed a real-time tracking system for applications in supply-chain
management, manufacturing, logistics and delivery services. Both incremental up-
dates and online queries are supported.

– We have conducted an extensive experimental study. The results demonstrate the
efficiency of our system compared with the traditional method.

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 presents our proposed ER-model and discusses queries in the RFID applications.

436 D. Lin et al.

Section 4 proposes our approaches for the RFID data management. Section 5 reports
the experimental results. Finally, Section ?? gives the conclusion.

2 Related Work

RFID technology has posed many new challenges to database management systems
[10,12]. Some IT companies are providing RFID platforms [1,2,3,5,6], through which
RFID data are acquired, filtered and normalized, and then dispatched to applications.
Thus high level RFID data modelling and management is up to applications. However
little research has been observed in this area.

Chawathe et al. [7] presented an overview of RFID data management from a high-
level perspective and introduced the idea of an online warehouse but without providing
details at the level of data structure or algorithms. Later, Wang et al. [11] proposed a
model for RFID data management. This model shares many common principles with
the traditional models and hence is still inefficient in representing the specialty of RFID
data. Hu et al. [9] proposed a bitmap data type to compactly represent a collection of
identifiers, which can significantly reduce the storage overhead. However, the bitmap
technique may not work well when the data in the same cluster are not continuous. As
also reported by the authors, this approach might not be a good candidate for some
applications like postal mail dispatch, because unlike the retail sector, the items in these
applications do not lend themselves well to grouping based on a common property, thus
precluding the use of bitmap for these cases.

Most recently, Gonzalez et al. [8] have proposed a new warehousing model that pre-
serves object transitions while providing significant compression and path-dependent
aggregates. The warehouse is constructed after all data have been collected. Specifi-
cally, each object is registered in the database only once at the end of its movement,
which is different from traditional method that records each object at each station dur-
ing its movement. This approach can largely reduce information volume. However, it
may not be able to answer online queries on current status of objects, and hence it is not
applicable for real-time tracking problems.

3 RFID Data Modeling

In this section, we will first introduce a new ER-model for the RFID data management,
and then address the query types. Finally, we discuss a running example to present an
overview of functions that are achieved by our approach.

3.1 ER-Model and Query Types

In RFID applications, it is often the case that items tagged with RFIDs move and stay
together during their movements or are regrouped at some locations [8]. Consequently,
queries on path and containment relationship naturally arise. In order to efficiently sup-
port these queries, we propose an ER-model that captures such internal relationships
among RFID data.

Data Management in RFID Applications 437

Container ObjectGroup

ISA

Means

Contain

Transport

tstart tend

tstart tend

Moving Unit Landmark

tstart tend

Contain

Fig. 2. The ER-Model

In our ER-model, there are three main entities: landmark, means and moving units.
Landmarks can be warehouses, delivery centers, super markets, etc. Means can be
trucks, ships or airplanes. Moving units can be moving objects (goods item), groups
of objects, or containers. Figure 2 shows the relationships among the entities, where
moving units are transported to some landmarks by some means from time tstart to
time tend. There exists a hierarchy of containment relationship. That is Object is con-
tained in Group and Group is contained in Container. Another implicit containment
relationship is that of the containers and locations. Note that there may be multiple
levels in the hierarchy, though our example uses only three levels.

Queries on RFID data can be categorized from different aspects. According to the
query time, there are three types of queries: current queries, predictive queries and his-
torical queries. According to the query condition, queries can be classified into two
categories: ID-based queries and location-based queries. In the ID-based queries, re-
trieval is based on given ID information. In the location-based queries, retrieval is based
on given location information. According to the information being queried, we identify
two types of queries: containment-relationship queries and path-preserving queries. The
containment-relationship queries find all objects contained in a given object at a higher
level. The path-preserving queries retrieve path information of one or more objects un-
der specified constraints. Queries in the last categorization mostly reflect RFID data
characteristic, and hence we will address their processing in details.

3.2 An Illustrative Example

For illustration purpose, we adopt a simple example from the supply-chain management
scenario, which will be used throughout the paper. As shown in Figure 3, there are two
locations L1, L2, three containers C1, C2, C3, and three groups G1, G2, G3. Each group
contains one object: G1 contains O1, G2 contains O2 and G3 contains O3. During time
0 to 5, container C1 stayed at location L1 and contained two groups G1 and G2. C1

was then shipped from L1 to L2. After C1 arrived at L2, its containment was changed,
where group G2 was moved to container C2. At time 50, a new container C3 arrived at
location L1. Note that this example is only a part of the whole scenario. In the following
discussion, we represent different entities by using their IDs. The detailed information

438 D. Lin et al.

of these entities can be stored in a separate information table, which will not affect the
efficiency of the proposed method.

Regarding this example, we will examine three representative queries. The first one
(denoted as Q1) is “what objects are (were) in group G (container C) at time t?”, which
is a containment-relationship query. Second, Q2 is “where has object O (or group G,
container C) been to?”. Third, Q3 is “what objects (groups, containers) were shipped
from L1 to L2 via L3 and L4 (L3 and L4 are intermediate warehouses) during time t1
to t2?”. The last two are both path-preserving queries.

4 RFID Data Management

Handling a large amount of RFID data as well as providing efficient query services
poses new challenges to existing database techniques. To make this point clear, we first
study a straightforward method – Time-Line approach, and discuss its limitations. After
that, we propose a more efficient approach – Multi-Table approach.

4.1 Time-Line Approach

The Time-Line approach is a naive method that stores all information in one table ac-
cording to the insertion time. The format of each row in the table is 〈Ts, Te, LID,
CID, GID, OID, Means〉, where Ts is the arrival time, Te is the leaving time, LID,
CID, GID and OID correspond to the IDs of the location, container, group and object
respectively, and Means is the way the moving units being transported. Figure 4 shows
how the data in the previous example is stored by using this Time-Line approach. Once
there is an update on a field of the table, a new row is inserted. Here, an update could be
a location update (e.g. a container reaches a new station), or a containment update (e.g.
reallocation of goods in a container, or an object being delivered).

The aforementioned three queries can all be answered by combination of projection,
selection and join operations. For example, Q2 (to find where has object O been to) can
be answered as: SELECT ∗ FROM Table WHERE OID = ‘O’.

The main disadvantage of this approach is the data redundancy. Specifically, if the
containment of a container (or a group) does not change frequently during the trans-
portation, the Time-Line approach will store a lot of redundant information caused by

time

L1 L2 L1

C1 C3

G1 G2

C1 C2

O1 O2

G1 G2

O1 O2

G3

O3

0−5 20−25 50−55

Fig. 3. An Example

Data Management in RFID Applications 439

Truck3

25 L2 C1 G1 O1

0 O2L1 C1 G25

..

.
..
.

..

.
..
.

..

.
..
.

..

.

CID GID OID

0

Ts Te LID

L1 G1 O1C1

O225 L2 C2 G2

5

C3 G3 O350 55 L1

20

Means

Truck1

Truck1

Truck1

Truck2

20

Fig. 4. Time-Line Approach

the containment relationships. As shown in the example (Figure 3), O1 stayed in the
same container C1 and the group G1 when being transported from L1 to L2. The con-
tainment information of O1 is unchanged but repeatedly stored in two records (1st and
3rd records in Figure 4). Such redundant information will unnecessarily increase the
table size and result in poor performance.

4.2 Multi-table Approach

To alleviate the data redundancy problem and take advantage of the specialty of RFID
data, we develop a Multi-Table Approach based on our proposed ER-model. Our ap-
proach adopts the following assumptions. Each object only belongs to one group, which
means we do not reallocate objects to other groups. This is due to the consideration of
the scenario like a box of milk packages, where a single milk package (object) usu-
ally stays at the same box (group) during its transportation. Unlike objects which are
at the lowest level of the containment relationship hierarchy, groups can be reallocated
to other containers, containers can be reallocated to other trucks, and so on. More-
over, groups and objects have their final destinations while containers and trucks can be
reused.

G3

.

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.

..

.
..
.

..

.
..
.

CID

0

Ts Te LID

L1 C15

20 25 L2 C1

20 25 L2 C2

50 55 L1 C3

Means

Truck1

Truck1

Truck2

Truck3

Location−Container Table Container−Group Table

Ts Te CID GID

0 25 C1 G1

0 5 C1 G2

20 25 C2 G2

50 55 C3 G3

Group−Object Table

Ts Te GID OID

0 25

0 25

O1

O2

O350 55

G1

G2

.

Fig. 5. Three Main Relational Tables of Multiple-Table Approach

...

GID

G2

G1

G3

<L1, 5>, <L2, 25>, ...

<L2, 25>, ...

<L1, 55>, ...

LID−Time List

...

Fig. 6. An Example of Group Path Table

440 D. Lin et al.

In the Multi-Table approach, there are two types of relational tables: the containment
table and the path table. The containment table stores the information of containment
relationship and the path table captures the path information of moving units.

Figure 5 gives an overview of the containment tables in our system. There are
Location-Container (L-C for short) table, Container-Group (C-G) table and Group-
Object (G-O) table. Each row of these tables consists of at least four fields. [Ts, T e]
is the time interval during which one moving unit (e.g. GID) stays at the same place
(e.g. CID). In the L-C table, there is one more field – Means, which indicates the trans-
portation means of the containers. Each table has corresponding history tables. Records
are moved to history tables periodically (details will be covered shortly).

Figure 6 shows the structure of the path table, i.e., the Group Path table. This table
is a query-driven table, which is created during the query processing. It stores part of
query results in order to facilitate new queries. Each row of this table contains two
fields: a group ID GID and an LID-Time list. The LID-Time list records a sequence
of 〈location, T e〉 pairs, which indicates the location that the group has visited and the
corresponding departure time.

In the rest of this section, we first present how to update information in the contain-
ment and path tables. Then we present the query algorithms.

Construction. Consider the scenario at a station, where several containers arrive at
time Ts. First, there will be an arrival scan that reports the container IDs to the system.
During their stay, their containments will be scanned and checked. If there is any change
of the containments, i.e., rearrangement of goods, the system will receive new invento-
ries for the corresponding containers. Finally, when containers leave, a departure scan
is carried out and reports the departure time Te to the system. From the above scenario,
we identify three types of events: (i) Arrival event; (ii) Containment arrangement event;
(iii) Departure event. The algorithm for each event is presented as follows.

The arrival event provides the location information of containers, and hence only the
L-C Table is modified at this stage. Specifically, for each container, we will insert a new
record 〈Ts, , LID, CID, 〉 to the L-C Table. The two fields Te and Means will be
filled later when more information is received.

The containment arrangement event includes two sub-events corresponding to con-
tainers and groups respectively. We first elaborate the management of containment
change in containers. If there is a reallocation in container C1, C2, . . ., Cn, in the C-G
table, set the Te of groups that move out of the above containers to be the reallocation
time, and insert a set of new records of groups that move into these containers. The
event of containment arrangement of groups is triggered by object arrival or delivery.
If objects O1, O2, ..., Om are new objects to the system, insert records like 〈GID, O1,
Ts, , 〉 to the G-O table. If objects O has been delivered, move its record from G-O
table to history G-O table and set the Te to be the delivery time.

Finally, we handle the departure event. The operation is simple. We only need to
update the departure time Te of each departure container as well as its transportation
means (e.g. truck ID) in the L-C table.

Apart from the event handling, there is one more step for system optimization, which
is the construction of history tables. Every certain time interval Tint, we will check
L-C and C-G tables to move records with Te older than current time to the history

Data Management in RFID Applications 441

tables. Each history table has a global time interval that indicates the earliest and latest
timestamps of its records. As time elapses, there may exist a set of history tables. Here,
Tint is an application dependent parameter which controls the table size. It can be set
according to the speed of information grow. For example, if updates are frequent, a
small value of Tint may benefit the query retrieval.

Query Processing. We proceed to present algorithms for three representative queries
(in Section 3.1). Note that other queries are special cases of the techniques used for these
three representative queries. To speed up the search in each table, we have a clustered
index on one type of ID and an unclustered index on the other.

For Q1 (containment-relationship query) on location L1, the search starts from the
L-C table, where we obtain a list of containers at location L1. Then we search the C-G
table to find the groups of these containers. Finally, we retrieve the G-O table to get the
objects at location L1.

For Q2 (path-preserving query) on object O, there are two main steps. The first step
is to find the group that object O belongs to. According to the object status (delivered
or not), we can find its group ID in G-O table or history G-O tables. The second step
is to find the locations that this group G has visited within the life time of object O.
Here, we may take advantage of the Group Path table. If there exists a record with
respect to the group G in the Group Path table, we further check whether this record
contains sufficient information of object O, i.e., whether the location list contains a
location with Te larger than the object delivery time (or the latest update time). If yes,
we report locations in the list till the one with Te larger than the query time. If we can
not find a corresponding record of group G in the Group Path table or the table does not
contain full path of object O, we have to retrieve C-G table to obtain a set of containers
that group G ever belonged to, and then retrieve L-C table to find the locations of the
containers. Finally, we need to append the query results to the Group Path table.

The last query Q3 is more complicated than previous ones since it requires to retrieve
both containment and path information. The algorithm consists of following three steps.
First, we find all containers at location L1 during time t1 to t2 by searching the L-C
table. Second, we find all groups of these containers and store them in a group list. The
Third step is to check the Group Path table to see if the path of each group in the group
list contains a sequence of locations 〈L1, L3, L4, L2〉. If yes, we report the objects in
the qualified groups with lifetime cover the query time interval. Otherwise, there could
be two situations. One is that the path of the group as recorded in the Group Path table
is different from the query path, which can be safely pruned. The other situation is that
the path of the group is not completed or there is not a record of this group. For this
case, we need to find the locations of the group by retrieving all the containers that it
ever belonged to, and retrieving all the locations of these containers. Then we check
if the path of the group matches the query path. Finally, we append the group path
information to the Group Path table for the use of future queries.

5 Performance Study

We implemented the proposed algorithms as stored procedures in MS SQL Server 2005.
For all experiments, we use a Xenon 2.0GHz CPU with 1GB of RAM. We created

442 D. Lin et al.

0

500

1000

1500

2000

2500

10 20 30 40 50
Days

T
o

ta
l
D

a
ta

 S
iz

e
 (

M
B

) Time-Line(no index)

Time-Line(index)
Multi-Table

(a) Storage Requirement

0

5000

10000

15000

20000

25000

10 20 30 40 50
Days

T
o

ta
l

U
p

d
a

te
 T

im
e

 (
s

e
c

)

Time-Line(no index)

Time-Line(index)

Multi-Table

(b) Total Update Time

0

5

10

15

20

25

30

35

10 20 30 40 50
Days

Tr
uc

k
Lo

ad
in

g
tim

e(
se

c) Time-Line(no index)
Time-Line(index)
Multi-Table

(c) Average Update Time

0

10

20

30

40

10 20 30 40 50
Days

Q
1

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Time-Line(no index) Time-Line(index)
Multi-Table(no gtable) Multi-Table(gtable)

(d) Q1

0

2

4

6

8

10 20 30 40 50
Days

Q
2
 R

e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

Time-Line(no index) Time-Line(index)
Multi-Table(no gtable) Multi-Table(gtable)

(e) Q2

0

10

20

30

40

10 20 30 40 50
Days

Q
3
 R

e
sp

o
n
se

 T
im

e
 (

se
c)

Time-Line(no index) Time-Line(index)
Multi-Table(no gtable) Multi-Table(gtable)

(f) Q3

Fig. 7. Experimental Results

an application that simulates the movement of 18-wheelers between warehouses and
stores. The simulated scenario is for 20 trucks and 80 warehouses. Each 18-wheeler
contains 8 containers; each container holds up to 8 boxes; each box contains 12 objects.
All containers, boxes, and objects are tagged with RFIDs. Upon arrival to a warehouse,
the 18-wheeler is filled to completion. Upon arrival to a store, the probability that a
container contains boxes for delivery is set to (1−p). The probability that a box in such a
container is to be delivered is also (1−p). Thus objects are delivered to stores according
to a geometric distribution with average numbers of hops 1/q, where q = 1− (1− p)2.
We set default value of this average to 6 hops. The parameters of this simulation come
from real samples of 18-wheelers. The trip from a warehouse to a store is uniform with
mean equal to a day and with a standard deviation of 20 minutes.

We implemented two variants of Time-Line approaches distinguished by having in-
dex assistance or not, denoted as “Time-Line(no index)” and “Time-Line(index)” re-
spectively. We also implemented two version of Multi-Table approaches distinguished
by using the Group Path table or not, denoted as “Multi-Table(no gtable)” and “Multi-
Table(gtable)” respectively. It is worth noting that the size of the Group Path table is
ignorable compared to the total data size and the table is not involved in the data update
process. Therefore we do not distinguish the two variants in the experiments regarding
storage space and update performance.

Storage Requirement. The total data size that needs to be stored for an application is
an important concern in database system design since a small data size can save cost
for companies and may also benefit the system performance. To evaluate the storage
efficiency, we examine the total data size stored by each approach every 10 days. Fig-
ure 7(a) shows the results, in which the Multi-Table approach requires the least storage
space than the Time-Line approaches. The main reason is that the Time-Line approach
maintains more redundant information. For example, if a container contains 100 items,
each time the container reaches a station with the same items inside, the Time-Line

Data Management in RFID Applications 443

approach needs to create 100 new records for all the items, whereas the Multi-Table
approach only needs to create one new record corresponding to the container itself. In
addition, Time-Line(index) needs more space than Time-Line(no index) to store the
indexes.

Update Performance. Figure 7(b) plots the total update time every 10 days for each
approach. It is not surprising that the insertion time of all approaches increases as time
elapses due to the increased table sizes. Among all, the update time of Multi-Table
approach is the shortest because it has the smallest table size (as shown in Figure 7(a)).
The Time-Line(index) is the slowest approach with respect to the insertion performance.
This is because Time-Line(index) needs to maintain its indexes for each update.

Figure 7(c) shows the average update time of each truck. The result again shows that
the Multi-Table approach is the best. Moreover, we also observe that both the Multi-
Table approach and Time-Line(no index) achieve steady performance, while the Time-
Line(index) requires more time to maintain its indexes with the growth of the data size.

Query Performance. In the following experiments, we will evaluate three represen-
tative queries. Figure 7(d) and (f) show the average response time of Q1 and Q3 re-
spectively. We can observe that Multi-Table approaches achieve the best performance,
which possibly due to small data sizes that reduce the data retrieval and table join time.

Figure 7(e) shows the performance of query Q2. We can see that the Time-Line(no
index) is extremely slow (more than 100 times slower), and the other three approaches
yield the similar performance. The slowness of the Time-Line(no index) is mainly be-
cause without any index support, it has to execute “brute-force” join operations. The
Time-Line(index) is sometimes a little bit better than the Multi-Table approaches, but
we should note that the Time-Line(index) requires much more space and longer update
time. Another interesting observation is that the Group Path table can reduce the query
cost and its benefit increases as time passes (this effect is a little hard to be seen from
the figure due to the large value of Time-Line approach).

6 Conclusion

In this paper, we study the important features of RFID applications, such as the hierar-
chy of containment relationships and path preserving in query operations. We propose
an expressive ER-model. Based on the ER-model, we develop a simple yet efficient
real-time tracking system for RFID data managements. Our extensive experimental re-
sults prove the significant performance improvement achieved by our system compared
with a naive method.

References

1. Developing auto-id solutions using sun java system rfid software.
http:// java.sun.com/ developer/ technical-Articles/
Ecommerce/rfid/ sjsrfid/ RFID.html

2. Microsoft’s rfid ‘momentum’ includes middleware platform, apps.
http://www.eweek.com/article2/0,1759,1766050,00.asp

http:// java.sun.com/ developer/ technical-Articles/Ecommerce/ rfid/ sjsrfid/ RFID.html
http:// java.sun.com/ developer/ technical-Articles/Ecommerce/ rfid/ sjsrfid/ RFID.html
http://www.eweek.com/article2/ 0,1759,1766050,00.asp

444 D. Lin et al.

3. Oracle sensor edge server.
http://www.oracle.com/technology/products/sensor edge server

4. Venture development corporation (vdc): http://www.vdc-corp.com
5. Websphere rfid premises server.http://www-306.ibm.com/software/

pervasive/ws rfid premises server
6. Bornhovd, C., Lin, T., Haller, S., Schaper, J.: Integrating automatic data acquisition with

business processes - experiences with sap’s auto-id infrastructure. In: Proc. VLDB, pp. 1182–
1188 (2004)

7. Chawathe, S., Krishnamurthy, V., Ramachandran, S., Sarma, S.: Managing rfid data. In: Proc.
VLDB, pp. 1189–1195 (2004)

8. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive rfid data sets.
In: Proc. ICDE, p. 83 (2006)

9. Hu, Y., Sundara, S., Chorma, T., Srinivasan, J.: Supporting rfid-based item tracking applica-
tions in oracle dbms using a bitmap datatype. In: Proc. VLDB, pp. 1140–1151 (2005)

10. Lampe, M., Flrkemeier, C.: The smart box application model. In: Proc. Int. Conf. of Pervasive
Computing (2004)

11. Wang, F., Liu, P.: Temporal management of rfid data. In: Proc. VLDB, pp. 1128–1139 (2005)
12. Want, R.: The magic of rfid. ACM Queue 2(7), 40–48 (2004)

 http:// www.oracle.com/ technology/ products/ sensor_edge_server
http://www.vdc-corp.com
http://www-306.ibm.com/software/pervasive/ws_rfid_premises_server
http://www-306.ibm.com/software/pervasive/ws_rfid_premises_server

When Mobile Objects’ Energy Is Not So Tight:

A New Perspective on Scalability Issues of
Continuous Spatial Query Systems

Tai T. Do, Fuyu Liu, and Kien A. Hua

School of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, FL 32816-2362

{tdo, fliu, kienhua}@cs.ucf.edu

Abstract. The two dominant costs in continuous spatial query systems
are the wireless communication cost for location update, and the eval-
uation cost for query processing. Existing works address both of these
scalability factors by employing the distributed computation strategy,
in which some part of query processing is carried out by mobile ob-
jects. In this paper, we make one important assumption about mobile
objects’ energy; that is for many applications, mobile objects’ energy is
not limited, as opposed to the battery-powered objects assumed in ex-
isting works. Under this new assumption, we re-examine the scalability
issues for continuous spatial query systems. Our examination points out
that the major bottleneck of these systems is now the wide-area wire-
less uplink bandwidth, which has not been addressed adequately in the
past. We attack the problem by leveraging the local-area wireless com-
munication between mobile objects, leading to our proposal of a hybrid
communication architecture to be used in these continuous spatial query
systems. The hybrid communication architecture unifies the two commu-
nication paradigms, wide-area and local-area wireless networks. We then
propose a proof of concept system, called P2MRQ (Peer-to-peer tech-
nique for Moving Range Queries), to answer continuous moving range
queries over moving objects. While MobiEyes [1], an existing continuous
range query system, only utilizes distributed computation, our P2MRQ
is able to leverage both distributed computation and local-area wireless
communication. Our performance study shows that the required wide-
area wireless uplink bandwidth from P2MRQ is consistently less than
that of MobiEyes; for all considered cases, P2MRQ requires at most 50%
of the wide-area wireless uplink bandwidth as MobiEyes does.

1 Introduction

A location-based service allows the users query for information based on their
own locations and/or other users’ locations. The explosive growth rate of the
number of location-aware mobile wireless devices, ranging from navigational sys-
tems in vehicles to handheld devices and cell phones, means future location-based
services need to employ scalable architectures to support a large and growing
number of users and more complex queries. The research community [2,3,1,4,5,6]

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 445–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

446 T.T. Do, F. Liu, and K.A. Hua

has spent considerable efforts in finding scalable solutions to support continuous
spatial queries, an important class of these location-based services.

Two dominant costs that dictate the scalability of continuous spatial query
systems are the wireless communication cost for location update, and the eval-
uation cost for query processing. Many papers, for instance [2, 4], have focused
on reducing the evaluation cost. To address the wireless communication cost,
the authors in [6] use distributed servers to leverage the aggregate bandwidth
of the servers. To address both scalability issues, the distributed computation
strategy has been used [3,1,5], in which some part of query processing is directed
to mobile devices. These mobile devices monitor their own locations, and they
report their location updates to the server only when the location changes likely
affect some query results. Leveraging the mobile device’s computational capacity
interestingly mitigates both the wireless communication cost and the evaluation
cost. For an environment with battery-powered mobile devices, wireless commu-
nication cost is translated into both wireless bandwidth and the devices’ battery
power. In [3, 1, 5], wireless bandwidth consumption is reduced because location
update messages are no longer sent periodically. Since mobile devices trade off
high energy operations in wireless communication with low energy operations in
local query processing and monitoring, mobile devices’ enery is saved. In addi-
tion, allowing mobile objects to monitor the query regions directly relieves the
server from the overwhelming workload of query evaluation.

We observe that existing distributed approach only tries to leverage the com-
putational capabilities of mobile devices. This calculated decision can be traced
back to the limitation of mobile devices’ energy. The concern over mobile devices’
energy is a valid one in a range of applications, in which mobile devices’ batter-
ies are not easily recharged during operation. For instance, tracking sensors are
attached to wild animals for animal tracking, or monitoring badges are assigned
to children during their field trip [3]. Since it is well-known that sending a wire-
less message consumes substantially more energy than running a simple proce-
dure [7], it is a good design choice to utilize only the computational capabilities
of battery-powered mobile devices. Nonetheless, there are also many applications
in which the energy issue for mobile devices is not so critical, because the power
source for these devices is not so limited. Such mobile devices are often found
in vehicles like cars or airplanes, where mobile wireless devices share the power
source with the vehicles. In this paper, we divide mobile devices into two cate-
gories based on the availability of their energy source, energy-limited mobile de-
vices (i.e. battery-powered devices) and energy-abundant mobile devices (i.e. car-
rying vehicle-powered devices). Our interest is to re-examine the scalability is-
sues for continuous spatial query systems assuming that there are only energy-
abundant mobile devices. Under the new assumption, two scalability issues are
still the wireless communication cost and the evaluation cost but with a subtlety,
in which wireless communication cost now only means wireless bandwidth. While
existing distributed computation approaches [3, 1, 5] have done a respectable job
of addressing both scalability issues as discussed in the previous paragraph, the
wireless bandwidth bottleneck has not been handled adequately. In these past

When Mobile Objects’ Energy Is Not So Tight 447

works, communication is carried out through a wide-area wireless network (i.e. cel-
lular network), presumably a third generation (3G) wireless data network. In 3G
wireless data networks, 1xEV-DO (Evolution-Data Only) networking technology,
also known as HDR (High Data Rate), is an integral part of the CDMA2000 family
of 3G standards [8]. The HDR downlink channel has a data rate of 2.4 Mbps, while
the HDR uplink data rate is only 153.6Kbps [9,8,10]. Since location updates from
mobile devices to the server account for most of the communication in continuous
spatial query systems, the limited HDR uplink data rate would easily become the
communication bottleneck in existing distributed systems.

We leverage the local-area wireless network, also known as ad hoc network, to
address the wide-area wireless uplink problem. First, using the ad hoc network,
mobile devices send their location updates to some designated mobile devices.
Then after processing these location updates, the designated mobile devices fi-
nally send the data to the server through the wide-area network. So instead of
having lots of wide-area wireless connections as done in past works, we use lots
of local-area wireless connections together with a few wide-area wireless con-
nections to transmit location updates from mobile devices to the server. While
the improvement for the wide-area uplink bottleneck problem could be quite
obvious, the price we pay is the involvement of the local-area wireless network.
This ad hoc communication consumes the local-area wireless bandwidth as well
as the mobile devices’ energy. Since the ad hoc network is currently unused in
the existing continuous spatial query systems, in our opinion usage of the under-
utilized local-area wireless bandwidth should not pose any problem. Moreover,
we already assume energy-abundant mobile devices in this paper; hence, energy
consumed by ad hoc communication is acceptable to us too.

To the best of our knowledge, we are the first to investigate the scalability
issues of continuous spatial query systems under the new, yet practical assump-
tion of energy-abundant mobile devices. The new assumption allows us to look
further into and analyze the wireless communication bottleneck found in the ex-
isting continuous spatial query systems. The rest of our paper provides technical
details to solidify our findings and analysis. Section 2 discusses in details the hy-
brid communication architecture, a unified framework to allow the co-existence
of both the wide-area wireless network and the local-area wireless network. To
demonstrate the benefit and the integration process of the hybrid communica-
tion architecture into the framework of continuous spatial query systems, we
propose a proof-of-concept system, called P2MRQ in Sections 3 and 4. We com-
pare P2MRQ with MobiEyes in our performance study in Section 5. Finally, we
conclude the paper in Section 6.

2 Communication System Architecture

2.1 The Hybrid Wireless Network Architecture

Hybrid wireless network architectures have been considered in the past. Wei’s dis-
sertation presents a survey on more than a dozen of recent proposed architectures
[10]. Our focus in this paper is not to introduce a new or better hybrid architecture.

448 T.T. Do, F. Liu, and K.A. Hua

Weonlywish tohaveanarchitecture that is appropriate toallow the local-area wire-
less network to assist the wide-area wireless network as discussed in section 1. We
start with the UCAN (Unified Cellular and Ad-hoc Network) architecture [8] since
it is closest to our need. Fig. 1 shows the general architecture employed in UCAN.
In UCAN, each mobile device has two radio interfaces, one for the local-area wire-
less network and one for the wide-area wireless network. The local-area wireless
network represents communication among mobile devices using the IEEE 802.11b
protocol in its ad-hoc mode. The wide-area wireless network represents connec-
tion between the base station and mobile devices within the cell coverage using the
1xEV-DO (Evolution-Data Only) protocol, also known as HDR (High Data Rate).
The goal of UCAN is to improve the cell’s aggregate throughput, while maintaining
fairness [8]. The key idea that allows UCAN to achieve both of these contradicting
goals is the opportunistic use of the IEEE 802.11 interfaces to improve the wide-
area cell throughput. When receiving data from the base station, if a destination
client experiences low HDR downlink channel rate, instead of transmitting directly
to the destination, the base station transmits the data frames to another client
(proxy client) with a better channel rate. These frames are further relayed, pos-
sibly through multiple clients, to the destination, using the high-bandwidth IEEE
802.11b links. The paper addresses three main technical challenges 1) proxy dis-
covery, routing and maintenance, 2) scheduling algorithm at the base station, and
3) an incentive mechanism to encourage mobile clients to participate in message
relaying. Out of these three issues, the first one is the most relevant to our paper.
Due to space limitation, we omit altogether the detailed description of the solution
of the first challenge as well those of the other two challenges, and refer interested
readers to the original paper [8].

2.2 Adapting UCAN for Continuous Spatial Query Systems

Even though we adopt the UCAN framework in our paper, the targeted appli-
cations in the two papers are very different. UCAN supports applications that
provide wireless Internet access to mobile users, while we support continuous

Fig. 1. The Unified Cellular and Ad-hoc
Network Architecture Fig. 2. Server-side Data Structure

When Mobile Objects’ Energy Is Not So Tight 449

spatial query systems. The data flows in UCAN are from the Internet through
the base station to mobile clients. On the other hand, in our system, data are
location updates generated by mobile clients themselves; hence our data flows
are from mobile clients to the base station. Consequently, UCAN improves the
aggregate downlink channel utilization, while we want to improve the aggregate
uplink channel utilization for the wide-area wireless network.

When a mobile object (henceforth called data object) in our systems wants
to send a location update message to the base station, instead of sending the
message directly to the base station using the HDR uplink channel, the data
object sends the message to a mobile object (henceforth called query object)
using the IEEE 802.11b interface. The query object receives location update
messages from a number of data objects, processes the messages and periodically
sends the data to the base station through the HDR uplink channel.

Since a data object is aware of the identifier and location of the query object,
which will be clear later in section 4, the data object does not have to go through
the discovery phase to find the query object. The routing of messages from
the data object to the query object is done using the position-based routing
strategy [11]. In this paper, we choose one of the Location Aided Routing (LAR)
protocols [12] for its simplicity and efficiency. Using the LAR1 protocol [12], a
rectangular region is formed in which the data object and the query object are the
two opposite corners of the rectangle. A mobile object only relays the message for
the data object, if the mobile object’s position is inside the rectangular region.
As a result, the LAR1 protocol routes a message from the data object to the
query object without flooding the entire local-area wireless network.

3 Models and Notations of the P2MRQ System

3.1 System Assumptions

This section summarizes the underlying assumptions that we make in this paper.
1) Each mobile device is equipped with two wireless interfaces. These two wire-
less interfaces, an IEEE 802.11x interface and a 3G interface, are used to enable
the mobile device to operate in the ad hoc and the cellular modes, respectively.
2) Mobile devices are able to locate their positions using positioning devices such
as GPS. 3) Mobile devices are able to determine their velocity vector. The ve-
locity vector of a mobile device can easily be determined given its location and
an internal timer. 4) Mobile devices have computational capabilities to carry out
computational tasks. 5) Mobile devices have relatively unlimited energy source.
These mobile devices share the energy source with the vehicles that carry them.
As long as the carrying vehicles can be refueled, the mobile devices do not need
to concern much about energy consumption. 6) Mobile devices have synchronized
clocks. This assumption can be made if the mobile objects are equipped with GPS.

3.2 Basic Notations

– Mobile Object, Mobile Device, Peer, and Client : are used interchangeably in
this paper.

450 T.T. Do, F. Liu, and K.A. Hua

– Query Object : A mobile object that is the moving center of a moving range
query is called a query object.

– Data Object : Every mobile object is a data object, in the sense that the result
set of a query contains the identifiers of mobile objects, which are currently
in the query range.

– Rectangle Shaped Region: is defined by its lower left corner point (lx, ly) and
upper right corner point (ux, up). Specifically, a rectangle

R(lx, ly, ux, uy) = {(x, y) : lx ≤ x ≤ ux ∧ ly ≤ x ≤ uy}

– Geographical Area of Interest : is a big rectangle R(LX, LY, UX, UY), in
which LX, LY, UX, UY are system parameters to be set at the system
initialization time.

– Grid and Grid cells: The geographical area of interest is mapped onto a
grid G of cells, where each cell is an a × a square area, and a is a system
parameter that defines the size of the grid cell. Gi,j denotes an a× a square
area representing the grid cell that is located on the ith row and j column
of the grid G.

– Position to Grid Cell Mapping: Given pos = (x, y) as the current position of
a mobile object o, the following function f(pos) determines the current grid
cell of o, i.e. the grid cell currently containing o:

f(pos) = G�| pos.x−(UX−LX)
a |�,�| pos.y−(UY −LY)

a |�

3.3 Moving Query Model

Let Q be the set of moving queries. A query q in Q is represented by a triplet:
(qid, o, radius), where qid is the unique query identifier, o is the query object,
and radius is the range or search radius around the query object. We consider
the result of a query as the set of object identifiers of the mobile objects that
are located within the area covered by the spatial region of the query. P2MRQ
utilizes peers’ computational capability in the distributed query processing. The
following concepts are the keys in that distributed process.

– Monitoring Region of a Moving Query: Consider a query q = (qid, o, radius),
and Gi,j is the current grid cell of the query object, i.e. Gi,j = f(o.pos).
Let (lx, ly) and (ux, uy) be the lower left corner and upper right corner of
the grid cell Gi,j . The Minimum Bounding Rectangle that covers all pos-
sible areas that the spatial region of the query q may move into when the
query object moves within its current grid cell can be defined as R(Gi,j .lx−
radius, Gi,j .ly− radius, Gi,j.ux+ radius, Gi,j.uy + radius). The grid region
defined by the union of all grid cells that intersect with the Minimum Bound-
ing Rectangle of the query forms the monitoring region of the query. The
monitoring region of q covers all the mobile objects that are subject to be
included in the result set of q when the query object stays in its current grid
cell.

When Mobile Objects’ Energy Is Not So Tight 451

– Nearby Queries of an Object : Given a mobile object o, we refer to all queries
whose monitoring regions intersect with the current grid cell of the mobile
object o the nearby queries of the object o.

4 Data Structures and Algorithms of the P2MRQ System

In P2MRQ, the server acts as the mediator coordinating mobile objects. A new
query is always posed to the server. The server then computes the monitoring re-
gion of the query, based on the current reported location of the query object and
the search radius. The server also determines the list of mobile objects, whose list
of nearby queries now includes the new query. Using the wide-area wireless down-
link channel, the server communicates updates to affected mobile objects. On the
mobile objects’ side, a mobile object monitors its own location, velocity vector and
its nearby queries. In general, mobile objects only need to send their location up-
dates to the server when their location changes affect one or more query results. In
P2MRQ system, mobile objects use the local-area wireless communication to send
their location updates to query objects, which in turn use the wide-area wireless
uplink channel to send location updates in batches to the server. The subsequent
sections describe in details the data structures and algorithms used in P2MRQ.

4.1 Data Structures

Server Side Data Structure. Fig. 2 shows the three main data structures
used at the server. The Query Object Table, QOT, stores the list of query objects
and their associated parameters including velocity vectors and current positions.
The Server Query Table, SQT, keeps the list of moving range queries. Each query
is associated with the query object identifier, oid, and the defined range, radius.
Given the current position, pos, and the radius radius of the query object, the
current cell, current cell, of the query object can be inferred using the position
to grid cell mapping in section 3.2, and the monitoring region, mon region, of
the query object can be determined as shown in section 3.3. The Reverse Query
Index, RQI, is introduced to speed up the search of nearby queries for a data
object, given that the current grid cell of the data object is known.

Mobile Object Side Data Strcuture. Every mobile object o has a Nearby
Query Table, NQT, and a boolean variable hasQuery. The schema of the NQT is
as follows (qid, oid, pos, v, up time, radius, mon region, isTarget), where qid is
the identifier of the nearby query whose monitoring region mon region intersects
with the object’s current grid cell, oid is the identifier of the query object associ-
ated with the nearby query, pos and v are position and velocity vector reported
by the query object from the most recent time, denoted as up time. radius is
the range of the query. The boolean variable isTarget indicates whether o in
the result set of the query based on the distance calculation from o to the query
object, carried out by o. The variable hasQuery is true if o is also a query ob-
ject. If o is also a query object, o maintains an additional data structure, Object

452 T.T. Do, F. Liu, and K.A. Hua

Location Table, OLT= (oid, qid, report time, isTarget). oid is the identifier of
a data object. qid is the query identifier of a query, whose query object is o.
report time stores the most recent time the query object receives location update
from the data object. The boolean variable isTarget is set to true if the data
object is in the query set, based on the location update at time report time.
The idea is OLT temporarily stores the location updates of the data objects
which just recently move in or out of one of the queries associated with the
query object o. This data structure is used solely to support our location update
strategy using the hybrid communication architecture.

4.2 Installing Queries

Installing a moving range query into the system consists of two phases. First,
the query is installed at the server side, and the server state is updated to reflect
the installation of the query. Second, the query is installed at the set of mobile
objects that are located inside the monitoring region of the query.

Updating the Server State. When the server receives a new query, with
the query object’s identifier oid and the search radius radius, it performs the
following actions. 1) The server first checks whether the query object with iden-
tifier oid is already contained in the QOT . 2) If the query object of the query
is not present in the QOT , the server-side installation manager needs to con-
tact the query object of this new query and request the position and velocity
information. Then the server can directly insert the entry (oid, pos, v, t) into
QOT , where t is the timestamp when the object with identifier oid has recorded
its pos and v information. 3) The server then assigns a unique identifier qid
to the query and calculates the current grid cell curr cell of the query object
and the monitoring region mon region of the query. A new moving query en-
try (qid, oid, radius, curr cell, mon region) will be created and added into the
SQT . The server also updates the RQI by adding this query with identifier qid
to RQI(i, j) if Gi,j

⋂
mon region(qid) �= φ. At this point the query is installed

on the server side.

Installing Queries on the Mobile Objects. After installing queries on the
server side, the server needs to complete the installation by triggering query in-
stallation on the mobile object side. This job is done by performing two tasks.
First, the server sends an installation notification to the query object with iden-
tifier oid, which upon receiving the notification sets its hasQuery variable to
true. This makes sure that the mobile object knows that it is now a query object
and is supposed to report velocity changes to the server. The second task is for
the server to forward this query to all objects that reside in the query’s monitor-
ing region, so that they can install the query and monitor their position changes
to determine if they become the target objects of this query. This broadcast
message contains information similar to the schema of the Nearby Query Table
NQT as in section 4.1. When an object receives the broadcast message, it checks
whether its current grid cell is covered by the query’s monitoring region. If so,

When Mobile Objects’ Energy Is Not So Tight 453

the object installs the query into its neighbor query table NQT . Otherwise, the
object discards the message.

4.3 Handling Query Objects that Change Their Velocity Vectors

Once a query is installed in the P2MRQ system, the query object needs to
report to the server any significant change to its location information, including
significant velocity changes or changes that move the query object out of its
current grid cell. We describe the mechanisms for handling velocity changes
in this section and the mechanisms for handling objects, including both query
objects and data objects, that change their current grid cells in the section 4.5.

A velocity vector change from a query object, once identified as significant,
will need to be relayed to the objects that reside in the query’s monitoring re-
gion through the server acting as a mediator. A significant change means either
change in speed or direction of the velocity vector exceeds a predefined thresh-
old. When the query object reports a velocity change, it sends its new velocity
vector, its position and the timestamp at which this information is recorded,
to the server. The server first updates the QOT with the information received
from the query object. Then for each query associated with the query object, the
server communicates the newly received information to objects located in the
monitoring region of the query by using a wide-area wireless broadcast message.

4.4 Handling Data Objects That Change Their Spatial Relationship
with Nearby Queries

A data object periodically processes all queries registered in its NQT . For each
query, it predicts the position of the query object of the query using the velocity,
time, and position information available in the NQT entry of the query. Then it
compares its current position and the predicated position of the query’s query
object to determine whether itself is covered by the query’s spatial region or not.
When the result is different from the last result computed in the previous time
step, the object notifies the query object associated with the affected query of
the change through the local-area wireless network. The message the data object
sends to the query object has a similar format as the schema of OLT .

Upon receipt of the location update message from a data object, the query
object updates its OLT . Using the isTarget variable in the OLT , for each query
bounded to it, the query object periodically computes two sets, namely IN
and OUT . The IN and OUT sets contain the new inclusion and exclusion,
respectively, of data objects to the query’s result set since the previous time
step. The query object then sends a result update message, containing the IN
and OUT sets, to the server through the wide-area wireless uplink channel. Upon
receipt of the result update message from a query object, the server just needs
to update the SQL accordingly, i.e. adding (removing) data objects in the IN
(OUT) set to (from) the result set of the specified query.

One issue with the use of the hybrid communication architecture to handle mo-
bile objects’ location updates is the delay, coming from both the communication

454 T.T. Do, F. Liu, and K.A. Hua

protocol and the periodic result update of the query objects. We offer the fol-
lowing explanations. In P2MRQ, the communication delay of a location update
consists of delays on both the local-area wireless network and the wide-area wire-
less network. Since the bandwidth of the IEEE 802.11x protocol (11 Mbps for
802.11b) used in the local-area wireless network is much higher than the uplink
bandwidth of the HDR protocol (153.6Kbps) used in the wide-area wireless net-
work, the delay from the local-area wireless communication can be considered
negligible; hence, location update delay from communication in P2MRQ is not
different from that of the previous continuous spatial query systems. The delay
associated with the periodic result update can be controlled by how frequently
the query object sends the result update to the server. Our simulation study in
section 5 shows that even with a high update frequency, the benefit of utilizing
the local-area wireless network is still significant.

4.5 Handling Mobile Objects That Change Their Grid Cells

In P2MRQ, when a mobile object changes its current grid cell, the nearby query
set of the object is also changed. In case the object is also a query object, the
change also has an impact on the set of objects which are monitoring the queries
bounded to this query object.

When an object changes its current grid cell, it notifies the server of this
change by sending its object identifier, its previous grid cell and its new cur-
rent grid cell to the server. The object also removes those queries whose mon-
itoring regions no longer cover its new current grid cell from it nearby query
table NQT . Upon receipt of the notification, the server uses the QOT to check
whether the object is a query object. If the object is not a query object, the
server only needs to find out from the RQI what new queries should be in-
stalled on this object and then perform the query installation on this mobile
object. If the object is also a query object, the server needs to take the follow-
ing actions. First, the server updates the SQT with the new values of cur cell
and mon region for all queries bounded to the query object. Second, for each
affected query, the server updates the RQI by removing the query off the in-
fluence list of grid cells overlapping with the old monitoring region, and in-
serting the query to the influence list of grid cells overlapping with the new
monitoring region. Finally, the server needs to forward this change of moni-
toring regions to mobile objects so that they can update their nearby query
tables accordingly. For each affected query, the server sends a broadcast mes-
sage including both the old and new monitoring regions of the query, denoted
as mon regionold and mon regionnew. Upon receiving the broadcast message,
mobile objects take one of the following actions depending on the spatial relation-
ship of their current grid cells with mon regionold and mon regionnew. 1) if its
current grid cell belongs to (mon regionold

⋂
mon regionnew), the object does

not need to do anything, 2) if its current grid cell belongs to mon regionold −
(mon regionold

⋂
mon regionnew), the object removes the query off its nearby

query table, 3) if its current grid cell belongs to mon regionnew−(mon regionold⋂
mon regionnew), the object inserts the query into its nearby query table.

When Mobile Objects’ Energy Is Not So Tight 455

5 Performance Evaluation

5.1 Simulation Study

We implement a simulator to measure the performance of our proposed tech-
nique P2MRQ against the existing MobiEyes technique [1] and a naive tech-
nique. In the naive method, mobile objects periodically report their locations to
the servers; hence, there is no need for the server to send messages back to the
objects. We introduce the naive technique as a way to gauge how much better
P2MRQ and MobiEyes improve over a do-nothing approach. We use the fol-
lowing two performance metrics in our simulation study: 1) Wide-area Wireless
Uplink Bandwidth: The total number of messages sent by mobile objects to the
server. 2) Wide-area Wireless Bandwidth: This metric includes both the uplink
bandwidth and the downlink bandwidth. It is defined as the sum of the number
of messages sent by mobile objects to the server and the number of messages
sent by the server to mobile objects. We also study the sensitivity of the system
with two variables, namely the number of queries and the number of objects.
We measure the bandwidth in terms of number of messages, which we assume
have the same size.

Our simulation is set up as follows. The area of interest in our simulation
is a square shaped region of 10,000 square miles. The whole region is mapped
into grid cells, where each grid cell has a size a of 5 miles. Mobile objects are
randomly placed in the region. The initial speeds of the mobile objects follow
a Zipf distribution with a deviation of 0.7, and the values are between 0 and 1
mile per time unit. The initial directions of the velocity vectors are set randomly.
At each time unit, one tenth of the mobile objects will change their velocities.
Query objects are selected randomly from the mobile objects. In our simulation,
the number of mobile objects varies from 2000 to 10000, and the number of
queries is in the range of 10 to 1000. Query’s range is selected randomly from
the list 1, 2, 3, 4, 5 (miles). In P2MRQ, the query objects send the result update
messages every one simulation time unit. Likewise, in the naive technique, the
mobile objects also send their location updates to the server every one simulation
time unit. For each simulation setting, we run the simulation for 10 times with
different seed numbers and take the average as the final output. Each simulation
run lasts for 200 time units.

Fig. 3 and Fig. 5 show the impact of number of mobile objects on the wide-
area wireless bandwidth, when the number of queries is fixed at 1000. Fig. 5 is
similar to Fig. 3, except it decomposes the wide-area wireless bandwidth into
uplink and downlink bandwidth. We do not show the naive technique in Fig. 5,
because in this technique the uplink messages accounts for all of the messages
exchanged between the objects and the server. P2MRQ and MobiEyes require
similar wide-area downlink bandwidth, but P2MRQ requires much less wide-
area uplink bandwidth than MobiEyes does. For all cases, the required uplink
bandwidth from P2MRQ is at most 50% of that from MobiEyes. In addition,
P2MRQ is able to save more uplink bandwidth when there are more mobile
objects, an indication that P2MRQ is scalable with respect to the number of

456 T.T. Do, F. Liu, and K.A. Hua

0

2000

4000

6000

8000

10000

12000

2000 3000 4000 6000 8000 10000

of Moving Objects

o

f
M

es
sa

g
es

 /
T

im
e

U
n

it

P2MRQ Naive MobiEyes

Fig. 3. Wide-area Wireless Bandwidth

0

2000

4000

6000

8000

10000

12000

10 50 100 200 500 1000

of Queries

o

f
M

es
sa

g
es

 /
T

im
e

U
n

it

P2MRQ Naive MobiEyes

Fig. 4. Wide-area Wireless Bandwidth

mobile objects; when the number of objects is 10000, P2MRQ requires only 30%
of the uplink bandwidth comparing to MobiEyes.

Similarly, Fig. 4 and Fig. 6 show the impact of number of queries on the
wide-area wireless bandwidth, when the number of objects is fixed at 10000.
Again, P2MRQ and MobiEyes require similar wide-area downlink bandwidth,
but P2MRQ needs much less wide-area uplink bandwidth than MobiEyes does.
When the number of queries increases, P2MRQ tends to save even more wide-
area wireless uplink bandwidth comparing to MobiEyes.

The improved performance of P2MRQ over MobiEyes in terms of the required
wide-area wireless uplink bandwidth can be easily attributed to the utilization of
the local-area wireless network. Additionally, while we do not compare the eval-
uation cost of the two systems, we can infer with high probability that the two
systems have similar the evaluation cost. First, they both employ the distributed
computation approach. Second, since in these two systems computation at the
server is usually followed by communication with the mobile clients, similarity
in the required wide-area downlink bandwidth should indicate similarity in the
evaluation cost at the server.

0

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 6 8 10

of Moving Objects (x 10^3)

o

f
M

es
sa

g
es

/T
im

e
U

n
it

P-down: Downlink channel of P2MRQ

P-Up: Uplink channel of P2MRQ

M-down: Downlink channel of MobiEyes

M-Up: Uplink channel of MobiEyes

Fig. 5. Wide-area Wireless Bandwidth
Breakdown

0

1000

2000

3000

4000

5000

6000

7000

8000

10 50 100 200 500 1000

of Queries

o

f
M

es
sa

g
es

/T
im

e
U

n
it

P-down: Downlink channel of P2MRQ

P-Up: Uplink channel of P2MRQ

M-down: Downlink channel of MobiEyes

M-Up: Uplink channel of MobiEyes

Fig. 6. Wide-area Wireless Bandwidth
Breakdown

When Mobile Objects’ Energy Is Not So Tight 457

6 Conclusion

In this paper, we have re-examined the scalability issues in continuous spatial
query systems under the new assumption on the availability of mobile devices’
energy. With the assumption of energy-abundant mobile devices, we have iden-
tified the wide-area wireless uplink bandwidth as these systems’ communication
bottleneck, which has not received adequate attention from previous works. We
propose to leverage the local-area wireless network to alleviate the burden on
the wide-area uplink channel. We then propose a hybrid communication archi-
tecture, augmented from the UCAN system [8], to allow the co-existence of the
wide-area wireless network and the local-area wireless network. To demonstrate
the significance of the communication bottleneck problem, as well as the appli-
cation of the hybrid communication architecture, we propose a proof-of-concept
system, called P2MRQ, to answer continuous range queries over mobile objects.
P2MRQ is able to utilize both the distributed computation approach and the
local-area wireless network to successfully address both scalability issues of the
system. Comparing to MobiEyes [1], P2MRQ requires only at most 50% of the
wide-area uplink bandwidth as MobiEyes does.

We hope that our observations in this paper may lead to new interests in
location-based services in moving databases, especially continuous spatial query
services. While we do not claim that the technical details in our P2MRQ are
readily applicable to other continuous spatial query systems, such as continuous
k-Nearest Neighbor queries, the principle design of using the local-area wireless
network should still be very helpful. As for our future works, we wish to follow
a number of directions. One immediate task is to provide a formal analytical
study of the P2MRQ and MobiEyes systems, using geometrical probability. The
other direction is to study how demanding the P2MRQ system is on the local-
area wireless network, something we skip in the performance study of this paper
since for the time being we assume that the local ad hoc wireless network is still
vastly underutilized.

References

1. Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries
on moving objects in a mobile system. In: Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 67–87. Springer, Heidelberg (2004)

2. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query
indexing and velocity constrained indexing: Scalable techniques for continuous
queries on moving objects. IEEE Trans. Computers 51, 1124–1140 (2002)

3. Cai, Y., Hua, K.A.: An adaptive query management technique for efficient real-
time monitoring of spatial regions in mobile database systems. In: IPCCC, pp.
259–266 (2002)

4. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of
continuous queries in spatio-temporal databases. In: SIGMOD Conference, pp.
623–634 (2004)

458 T.T. Do, F. Liu, and K.A. Hua

5. Liu, F., Do, T.T., Hua, K.A.: Dynamic range query in spatial network environ-
ments. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080,
pp. 254–265. Springer, Heidelberg (2006)

6. Wang, H., Zimmermann, R., Ku, W.S.: Distributed continuous range query pro-
cessing on moving objects. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA
2006. LNCS, vol. 4080, pp. 655–665. Springer, Heidelberg (2006)

7. Stemm, M., Katz, R.H.: Measuring and reducing energy consumption of network
interfaces in hand-held devices. IEICE Trans. on Communications E80-B, 1125–
1131 (1997)

8. Luo, H., Ramjee, R., Sinha, P., Li, L.E., Lu, S.: Cellular and hybrid networks:
Ucan: a unified cellular and ad-hoc network architecture. In: ACM MobiCom.,
ACM Press, New York (2003)

9. Inc, Q.: 1xev: 1x evolution is-856 tia/eia standard. White Paper (2001)
10. Wei, H.: Integrating mobile ad hoc networks with cellular networks. PhD thesis,

Department of Electrical Engineering, Columbia University (2004)
11. Giordano, S., Stojmenovic, I., Blazevic, L.: Position-Based Routing Algorithms for

AdHoc Networks: A Taxonomy. In: Ad hoc Wireless Networks, Kluwer Academic
Publishers, Dordrecht (2003)

12. Ko, Y.B., Vaidya, N.H.: Location-aided routing (lar) in mobile ad hoc networks.
In: MOBICOM, pp. 66–75 (1998)

Sequence Alignment as a Database Technology

Challenge

Hans Philippi

Dept. of Computing and Information Sciences
Utrecht University
hansp@cs.uu.nl

http://www.cs.uu.nl/people/hansp

Abstract. Sequence alignment is an important task for molecular biolo-
gists. Because alignment basically deals with approximate string match-
ing on large biological sequence collections, it is both data intensive and
computationally complex. There exist several tools for the variety of
problems related to sequence alignment. Our first observation is that the
term ’sequence database’ is used in general for textually formatted string
collections. A second observation is that the search tools are specifically
dedicated to a single problem. They have limited capabilities to serve
as a solution for related problems that require minor adaptations. Our
aim is to show the possibilities and advantages of a DBMS-based ap-
proach toward sequence alignment. For this purpose, we will adopt tech-
niques from single sequence alignment to speed up multiple sequence
alignment. We will show how the problem of matching a protein string
family against a large protein string database can be tackled with q-
gram indexing techniques based on relational database technology. The
use of Monet, a main-memory DBMS, allows us to realize a flexible en-
vironment for developing searching heuristics that outperform classical
dynamic programming, while keeping up satisfying sensitivity figures.

1 Introduction

There is no doubt about the importance of sequence alignment for molecular
biologists. Homology searching comes down to matching a specific string, the
query, to a large collection of already known strings, the database. The database
can either contain nucleotide strings, based on the ACGT-alphabet or amino
acid strings, based on a twenty letter alphabet. Evolutionary changes force us
to deal with inexact matching. So essentially we are talking about approximate
string matching on large string collections.

Traditionally, sequence databases have a pure textual format. The actual
string contents are mixed with identifiers and annotation. Moreover, dedicated
tools like Blast ([3], [4], [1]) and HMMER ([9]) are used for searching. In other
words, if a DBMS is used at all, it is only used as a storage engine. So, the
challenge for the database community is to show that the query facilities of a
DBMS can simplify searching and make it more flexible.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 459–468, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

460 H. Philippi

Single sequence alignment, i.e. the matching of one query string to a large
string collection, has been exhaustively investigated ([5]). The exact solution is
provided by a dynamic programming algorithm (Smith-Waterman). The need
for quick response led to the development of Blast, a heuristic alignment tool
based on q-gram indexing.

The q-gram indexing techniques on which the Blast heuristics are based, can
be easily translated to a relational database environment. The indexing is real-
ized at the logical level: the q-gram set is added as a table. The filtering process
based on q-gram indexing can be concisely expressed in relational algebra. Vari-
ations in the filtering heuristics can be investigated by minor changes in the
query expression.

To illustrate the versatility of the DBMS approach, we will focus on multi-
ple sequence alignment. The notion of multiple sequence alignment deals with
matching a collection of related protein strings (a so called family) to a database.
This collection can be represented by a Hidden Markov Model (HMM). Models
representing a protein string collection are known as profile HMM’s. Matching
a profile HMM to a protein string database is generally solved using Viterbi-like
dynamic programming principles. The HMMER-package by Sean Eddy ([9]) is
a freely available, open source implementation of these techniques. A typical
matching operation using HMMER with a medium size database will take sev-
eral minutes on commodity hardware. The answer is exact, in the sense that it
finds all matches within some similarity distance.

In this paper, we will describe a generalized, Blast-like, heuristic search method
based on q-gram indexing. Adapting these ideas to the context of multiple align-
ment turns out to be surprisingly straightforward, due to the flexibility that our
DBMS provides. This way, our database supports both single string queries and
family queries. The implementation of our methods on the Monet main-memory
DBMS enables us to reduce the reponse time compared to HMMER significantly,
while keeping up satisfactory sensitivity figures.

2 Preliminaries

In this section, we will introduce the concepts needed to discuss the domain of
protein sequence alignment.

2.1 Strings

Our basic objects of interest are strings and q-grams. We will define them here.

– A string is a mapping from an integer interval [k..n] to the set of characters.
We have the notion of substring. Our alphabet is limited to the twenty amino
acid symbols.

– A q-gram is a string of length q, a fixed number that typically is 3 for protein
databases. We will use the value q = 3 in our examples. The term word is a
synonym for q-gram and more common in the Blast community.

Sequence Alignment as a Database Technology Challenge 461

– A position specific q-gram is a combination of a q-gram and the position in
the string where it refers to. Example: in the string ACDEG, with starting
position 1, we identify the position specific q-grams (1, ACD), (2, CDE),
(3, DEG).

– Basically, our database is a set of strings which all have k = 1.
– A hitlist is a set of position specific q-grams.

2.2 A Relational View on Q-Gram Indexing

In general, sequence databases are files in a character based format, like the
Fasta format. In Fasta collections, the strings are listed interleaved with their
annotation. We represent a string collection by two tables: Strings and Annots.

Strings(id, string)
Annots(id, annot)

Strings are internally identified with a system generated id. It maintains the
connection between the protein strings, the annotation strings and the q-grams.
So for each string in Strings, we have a describing tuple in Annots.

The Q-grams table contains a set of position specific q-grams. It serves as the
index for matching hits between query data and the string database. Note that,
on the physical level, we do not make use of either traditional indexing support
or specialized string indexing techniques, such as suffix trees. We rely on the
power of our main-memory DBMS to process the queries efficiently.

Q-grams(id,j,qg)

The position of the q-grams in the strings is denoted by a j in the database
strings and an i in the query. The annotation table joins in (literally) at a very
late stage.

BLASTP works as follows. A query string is, like the database strings, de-
composed into q-grams. Suppose we have the query string denoted by qs and a
database string by s.

qs = CWYWRWYY
s = RRWYWAWYYRR

In Table 1, we see a q-gram decomposition of the query string. We see a few
q-gram matches between qs and s. (2, WY W) in qs matches (3, WY W) in s;
(6, WY Y) in qs matches (7, WY Y) in s.

Because the distance between the matching q-grams is equal in the two strings,
we say that they are ’on the same diagonal’. Technically, the notion of diagonal
is represented by the difference of the q-gram positions: 6-2 = 7-3. The essence of
the BLASTP filtering approach comes down to looking for two non-overlapping
q-gram hits on the same diagonal within a certain distance (default 40).

To improve sensitivity for BLASTP, we also have the notion of ’similar’ q-
grams. The q-grams (1, CWY) in qs and (2, RWY) in s will generally be iden-
tified as similar, due to the notion of evolutionary distance (see [2] for further

462 H. Philippi

Table 1. Example database and query

Strings
id string
1 RRWYWAWYYRR
2 RRRWYWAWYWRR
3 RRWYWAAWYYRR

Annots
id annot
1 comments on string 1 ..
2 comments on string 2 ..
3 comments on string 3 ..

Qgrams
id j qg
1 1 RRW
1 2 RWY
1 3 WYW
...
3 10 YRR

Query
i qg
1 CWY
2 WYW
... ...
6 WYY

details). This means that we should extend the basic q-gram set of a query string
with similar q-grams.

Our query string defines a hitlist containing, among others, (1, CWY),
(1, RWY), (2, WY W) and (6, WY Y). It depends on the parameter settings
which similar q-grams will show up in our hitlist.

2.3 Profile HMM Matching

We now direct our attention toward the problem of matching a family of related
sequences to a string database. A profile HMM ([6]) is a probabilistic model that
represents a collection of related protein strings, often called a family. Figure 1
shows the basic HMM-architecture as used in the HMMER package ([9]). By

Fig. 1. HMM-architecture, as used in the HMMER package

Sequence Alignment as a Database Technology Challenge 463

matching a string to a HMM, we get a quantitative expression for the level of
’relatedness’ between this string and the family that is represented by this model.
Algorithms exist to calculate the optimal matching. They are based on dynamic
programming techniques ([2], [5]). Note that these algorithms are exact: they
find all matches with at least a specified minimal similarity.

The optimal match of a string to an HMM is represented by a path through
the model. The begin and end-state are straightforward. The M-states represent
a match. For each possible character, it specifies the ’emission probability’, i.e.
the probability of finding this character on this position. The I-states and D-
states represent gaps in the match. By adding the rewards for matching and the
penalties for mismatching, we get a final value expressing the relatedness.

To get a feeling for the principle, let us take a look at this small fraction of a
four string family. The ’-’ represents a gap.

AFVEFEDP
GFVEFEDY
AFV-FEDP
AFVRF-DK

Because of these strings have length eight, we need an HMM with eight match-
ing states. Matching state M1 (corresponding to the first column in the family)
emits character A with probability 3/4 and G with probability 1/4. State M2
emits F with probability 1: there is ’consensus’, just as in columns 3, 5, 6 and
7. State M4 emits character E with probability 2/3 and R with probability 1/3.
State M8 emits P with probability 1/2 and emits Y and K with probability 1/4.
Note that, if we would match the last string to this HMM, the optimal path for
traversing the model would go from state M5 to state M7 through state D6,
resulting in a gap in position 6.

In the model, these probabilities are transformed to the log-odds of the em-
mission probabilities, according to the random amino acid distribution model.
This log-odds conversion enables us to transform multiplication of probabili-
ties into additions. States D1 and D4 are optional, depending on the choice
to match globally (i.e. matching the whole model) or locally (i.e. matching the
model partially).

A profile HMM defines a hitlist in a straightforward way. For each position we
inspect the corresponding matching state with its characters and corresponding
log-odds values. The most extended hitlist generated from our example family
would be
(1, AFV), (1, GFV), (2, FV E), (2, FV R), (3, V EF), (3, V RF), ..., (6, EDP).

We will use limited HMM-hitlists for filtering purposes, thereby focussing on
position-character combinations with high probability. This choice is made at the
character level, taking into consideration only the characters that have position
specific emmission log-odds values meeting a threshold value T .

Summarizing, we see that the q-gram indexing principles can be extended
from single protein query strings to profile HMM’s. Both can serve as a query,
because from a technical point of view, the matching object is in both cases a
hitlist.

464 H. Philippi

3 Filtering

As we have seen, the classical BLASTP approach uses the two-hit-diagonal fil-
tering principle. Thresholds to limit the hitlist can, to some extend, be set by the
user, influencing sensitivity and selectivity. In the case of profile HMM matching,
we have added a tuning parameter n, making the number of required hits on
the diagonal a user defined variable. It is clear that by increasing n, we increase
selectivity and decrease sensitivity. Note that the principle of n-hit diagonal
filtering corresponds to the framecount notion of CAFE ([11]).

We will describe how n-hit diagonal filtering can be expressed as a relational
query. We choose to formulate the constituent expressions in an extended version
of the relational algebra (RA). See [10] for details.

Note that the query, essentially a hitlist, might represent both a single string
and a profile HMM. A hit represents an exact match between a q-gram in the
query and a q-gram in the database. Recall that in the hitlist, at the same
position, more than one (similar) q-gram may occur.

Hits := πid,diag←(j−i)(Qgrams �� Query) (1)

According to the n-hit diagonal filtering method, candidates are defined by n
hits in the same string and on the same diagonal. We first apply a self join on
Hits to find hit pairs on the same diagonal. We need a copy of the hits table to
express this self join. Hits2 should be interpreted as an alias of (or view on) the
Hits table, not as a physical copy.

Hits2 := πid2,i2,j2,diag2(Hits) (2)

Pairs := πid,diag,j,j2(Hits ��θ Hits2) (3)

where θ denotes the join condition:

θ : (id = id2, diag = diag2, |j − j2| ≤ A)

Here A denotes the range, i.e. the maximal distance between two hits. Note
that, en passant, we have by now expressed BLASTP filtering. Enforcing the
n-diagonal is expressed by the grouping operator Γgrp;function of the relational
algebra.

Filter := σcnt≥(n−1)(Γid,diag,j;cnt()(Pairs) (4)

Note that we select on n− 1 values within the group because j itself is already
one hit. The relevant strings can now be selected.

Candidates := Strings � Filter (5)

This approach can be refined by taking in account the actual hit positions in
the database and query string. That allows us to define a substring as a candidate
for matching in stead of the complete string. Defining the boundaries however
is quite tricky, because the HMM allows gapping. We will stick to the approach
of pure string filtering as defined by the last step.

Sequence Alignment as a Database Technology Challenge 465

4 The Monet Approach

Our DBMS of choice is Monet (version 4.10.2), developed at the CWI in Am-
sterdam ([7], ([8]). To realize a full-fledged Monet based profile search tool, we
should incorporate the hmmsearch method into our system to execute the ex-
pansion phase. For our project, this approach was to laborious, although all the
required information was in the database. To get an impression whether our
filtering approach would be fruitful, we simply wrote the filtered strings into a
file in Fasta format and let the HMMER hmmsearch tool run on this selection in
stead of the full database. As long as the selectivity was reasonable, the overhead
of generating the output after the filtering step could be ignored.

There were two reasons to choose Monet.

– main-memory approach
Monet is a main-memory DBMS (MMDBMS). The data and, possibly, in-
dexes are supposed to be resident in main-memory. Where the classical
DBMS focuses on minimizing IO, Monet gains performance by optimizing
for main-memory access and by applying cache-conscious techniques. The
data easily fits in main memory and it results in a very short running time
for the initial join.

– layered levels of access and extensibility
Monet provides the developer with a extensible relational algebra. It offers
the possibility to write specific algebraic operators in C, using an API to
access the binary tables, and add them to the Mil collection of standard
algebraic operators. This makes sense in the case of very performance critical
operations. For performance reasons, we decided to write a Mil-extension to
execute the combined self-join-grouping step.

The memory requirements of our approach can be quantified easily. A protein
collection in Fasta format (i.e. protein character strings and annotation mixed)
has a total size of B bytes. All the protein character strings together contain N
characters, where N is practically equal to the number of q-grams. The number
of protein strings is L. For the selection of the Swissprot database we used, the
values are approximately L = 100, 000, N = 38, 000, 000 and B = 48, 000, 000.

The tables Strings and Annots can be mapped easily to Monet, requiring
8L+B bytes. The Qgrams table is split into three columns according to Monet’s
binary data model. The column id can be represented in a minimal sense with a
virtual identifier. For the column qg, we used two-byte integers. The total space
requirement for the Qgrams table now is 14N bytes, which is about 0,5 GB for
the 48 MB Swissprot selection, easily fitting in main memory.

4.1 HMMER

The HMMER package ([9]) by Sean Eddy provides us with several tools to
build and use HMM’s. Our main tool of interest is hmmsearch, that matches a
profile HMM to a string database. Hmmsearch was run with an expectation value

466 H. Philippi

parameter E < 0.1. This value expresses the probability that a match is found
purely by chance.

The package contains a tutorial with two prepared HMM’s, that we used
gratefully. The first one is the ’RNA recognition motif (rrm)’ HMM. It has a
size of 77 matching states. The second one is the ’globins50’ alignment. It is
about twice as long as the ’RNA recognition motif’ HMM.

We used version 2.3.2 of HMMER.

5 Experiments and Discussion

Our results of the experiments on the Swissprot selection were compared to the
results of running hmmsearch from the HMMER package.

The choice of the threshold T for the emission log-odds is a bit of an art.
It should be positive to make sense, but values that are too high destroy the
sensitivity. We varied around T = 1, which turned out to be a good choice.

Selectivity was measured by simply counting the number of bytes of the result-
ing reduced string set after filtering, compared to the original string collection.
It is expressed as a percentage, where a low value indicates a strong selectivity.
Because hmmsearch behaves quite linear in the size of the string database, the
selectivity percentage gives a good indication of the response time behaviour on
the filtered string selection.

Sensitivity was measured by checking the presence of high scoring domains.
Apart from complete HMM alignments, hmmsearch gives a list of local high
scoring segments of the database. For each of these local matches, we checked if
there was overlap with the candidates we found. Sensitivity is also expressed as
a percentage, where a high value is good. We give figures for the complete set
of matches found by HMMER (sens100) and for the top k lists, where we only
compare the best k% of the HMMER results. We did this for k = 60, 40, 20. The
range parameter was fixed on 40 (the Blast default).

The most interesting tuning parameter is n, defining the number of diagonal
hits within the range. We mention only the interesting values of n, keeping
selectivity close to or less than 10%.

The tests were done on a dual processor Xeon 3.2 GHz machine with 4GB of
main memory and 2MB of cache, running under Linux.

In general, we observe that, with adequate tuning, we are able to combine
high top k sensitivities with selectivities around or less than 10%. Note that
the HMM-hitlist generation requires only a fraction of a second and gives the
hitlist size, so the user has the possibility to tune the parameters before running
the query. Keep in in mind that output lists will be inspected by biologists
manually. Therefore, we claim that referring to the ’upper half’ sensitivities is
justified, analogous to the practice with web search tools.

The measurements also suggest that the log-odds threshold T is less interest-
ing as a tuning parameter. Fixing T = 1 and varying n turns out to be a better
tuning principle.

Sequence Alignment as a Database Technology Challenge 467

Table 2. Test results

HMM = rrm; runtime hmmsearch = 92 sec
T=1

Filtering time: 7.2 sec

n sens100 sens60 sens40 sens20 selectivity

7 64% 85.4% 96.7% 99% 1.04%
6 74.8% 93.1% 98.9% 100% 3.9%
5 85.8% 98.9% 100% 100% 16.6%

HMM = globins50; runtime hmmsearch = 166 sec
T=1

Filtering time: 3.3 sec

n sens100 sens60 sens40 sens20 selectivity

7 75.7% 100% 100% 100% 0.11%
6 81.4% 100% 100% 100% 0.2%
5 82.6% 100% 100% 100% 1.2%
4 87.4% 100% 100% 100% 9.2%

HMM = rrm; runtime hmmsearch = 92 sec
T=1.2

Filtering time: 3.4 sec

n sens100 sens60 sens40 sens20 selectivity

6 58.4% 78.8% 87.3% 92.3% 0.7%
5 74.8% 91.6% 95.1% 96.7% 3.9%
4 86.0% 97.4% 99.5% 100% 19.7%

HMM = rrm; runtime hmmsearch = 92 sec
T=0.8

Filtering time: 10.2 sec

n sens100 sens60 sens40 sens20 selectivity

8 64.3% 89.1% 96.2% 98.9% 0.7%
7 73.5% 93.8% 97.8% 100% 2.6%
6 84.0% 97.8% 100% 100% 9.2%

6 Conclusions

Our first goal was to investigate whether main-memory database technology can
be succesfully applied to biological sequence alignment. The paper shows that
the q-gram indexing techniques of Blast, designed for single sequence matching,
could be extended to the HMM matching problem with limited effort, due to the
support of the DBMS query facilities. The filtering and its tuning possibilities
are fully realized with the possibilities offered by Monet, in a rather concise
way. In particular, we extended the algebra with a new operator to calculate the
candidates efficiently. We were able to reach filtering times that were significantly
smaller than the running times of hmmsearch, resulting in filtered string sets with
the desired sensitivity and selectivity figures.

A secondary goal was to investigate whether Blast-like q-gram indexing tech-
niques could be applied to profile HMM-matching. Especially the behaviour on
the ’top k’ result lists is very satisfying when we restrict ourselves to the upper

468 H. Philippi

40 or 60 percent. With appropriate tuning of the querying parameters, we can
combine top k sensitivity figures close to 100% with selectivities of less than
10%.

Acknowledgements

The author thanks the Monet development team at the CWI, Amsterdam, for
hospitality and support during the development of the prototype.

References

1. Korf, I., Yandell, M., Bedell, J.: Blast, O’Reilly (2003)
2. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis.

Cambridge University Press, Cambridge (1998)
3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-

ment search tool. Journal of Molecular Biology 215, 403–410 (1990)
4. Altschul, S.F., Madden, T.L., et al.: Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs. Nucleic Acids Research 25(17),
3389–3402 (1997)

5. Aluru, S. (ed.): Handbook of Computational Molecular Biology, Chapman &
Hall/CRC (2005)

6. Krogh, A.: An introduction to Hidden Markov Models for biological sequences. In:
Salzberg, S.L., Searls, D.B., Kasif, S. (eds.) Computational Methods in Molecular
Biology, pp. 45–63. Elsevier, Amsterdam (1998)

7. Boncz, P.A., Kersten, M.L.: MIL Primitives for Querying a Fragmented World.
The VLDB Journal 8, 101–119 (1999)

8. Boncz, P.A.: Monet: A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications, PhD thesis, UVA, Amsterdam, The Netherlands (May 2002)

9. http://hmmer.janelia.org
10. Garcia Molina, H., Ullman, J.D., Widom, J.D.: Database System Implementation.

Prentice-Hall, Englewood Cliffs (2000)
11. Williams, H.E., Zobel, J.: Indexing and Retrieval for Genomic Databases. IEEE

Transactions on Knowledge and Data Engineering 14, 63–78 (2002)

http://hmmer.janelia.org

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 469–478,2007.
© Springer-Verlag Berlin Heidelberg 2007

Fuzzy Dominance Skyline Queries

Marlene Goncalves and Leonid Tineo

Universidad Simón Bolívar, Departamento de Computación, Apartado 89000,
Caracas 1080-A, Venezuela

{mgoncalves,leonid}@usb.ve

Abstract. Skyline is an important and recent proposal for expressing user
preferences. While no one best row exists, Skyline discards rows which are
worse on all criteria than some other and retrieves non-dominated or the best
ones that match user preferences. Nevertheless, some dominated rows could be
interesting to user requirement, but they will be rejected by Skyline. Dominated
rows could be discriminated (or ranked) by means of user preferences, but
Skyline only discards dominated ones and it does not discriminate them. SQLf
is a proposal for preferences queries based on fuzzy logic that allows to
discriminate rows and includes user-defined terms, such as fuzzy comparison
operators. In this work, we propose to flexibilize Skyline queries using fuzzy
comparison operators in order to retrieve interesting dominated rows. We also
introduce an evaluation mechanism for these queries and our initial
experimental study shows that this mechanism has a reasonable performance.

Keywords: Skyline, SQLf, Flexible Querying, Fuzzy Conditions.

1 Introduction

Preference queries have received special attention of many database researchers.
Thus, several SQL extensions have been introduced for expressing user preferences in
a query and some of them are: Skyline [7] and SQLf [4].

Skyline [7] selects the best rows or all non-dominated based on a crisp multicriteria
comparison. A row dominates another one if it is as good or better than the other in all
multiple criteria and better in at least one criterion. In Skyline, multicriteria must be
satisfied simultaneously in order to obtain the best rows.

It is known that the problem of identifying the skyline is Ο(n2) where “n” the
number of rows in the data set [9]; it seems to be of high processing cost. In
consequence, some efficient algorithms have been defined in order to evaluate such
queries in a relational system [7]. The Sort-Filter-Skyline (SFS) [9] is one of the most
relevant algorithms at present time for improving performance of Skyline
computation in relational databases. SFS algorithm begins sorting the table, after it
passes a cursor over the sorted rows and finally it discards dominated rows.

On the other hand, Skyline has another problem: dominance rigidity. There is no
distinction between rows that are dominated by fare and those that are near to
dominant rows. Additionally, Skyline answers are not discriminated due to the fact

470 M. Goncalves and L. Tineo

that Skyline is based on crisp comparison. Skyline rigidity could be solved by means
of fuzzy logic. In the past, this approach has demonstrated to be the most general [2].
Thus, a SQL extension based on fuzzy sets was proposed: SQLf [4]. An interesting
feature of SQLf is user-defined fuzzy comparators [4] and they might be used to
flexibilize Skyline comparisons. A first effort to integrate Skyline and SQLf was
made in [10], but it has not solved the Skyline rigidity.

Also, some variations of Skyline queries were presented in [12]. Ranked Skyline
queries retrieve the top-k rows from the Skyline in terms of a monotonic score
function. Constrained Skyline queries select Skyline rows restricted according to
some constraints. Enumerating and K-dominating queries are kinds of Skyline queries
that enumerate and return the number of dominated rows for each row in the Skyline.
Although these extensions are more expressive, they do not solve the Skyline rigidity.

In this work, we propose a new Fuzzy Dominance Skyline operator in order to
solve Skyline rigidity. It relaxes Skyline by means of fuzzy dominance comparisons
among rows. Thus, a Fuzzy Dominance Skyline query selects and discriminates rows
that are actually not dominated, but also rows that are near to be not dominated.

However, fuzzy queries presuppose high processing costs [3]. Some evaluation
mechanisms have been proposed for SQLf queries [1][2][5]. The most relevant is that
based on the Derivation Principle [2][5] because it has shown to keep low the extra
cost for fuzzy conditions computation. For this reason, we propose a Derivation
Principle based evaluation mechanism for the new Fuzzy Dominance Skyline queries
and we present a performance study to show the feasibility of such queries.

This paper is organized as follows: Section 2 presents the Skyline semantics and its
rigidity problem. The new Fuzzy Dominance Skyline operator is formally defined in
the section 3. Section 4 describes implementation issues and evaluation mechanisms
of Fuzzy Dominance Skyline queries. A performance analysis for these queries is
shown in section 5. Finally, conclusions and further works are addressed in section 6.

2 Skyline Operator

Skyline [7] is a SQL extension that incorporates a new clause where user preferences
are specified. For simplicity, we assume one-relation queries without the WHERE clause
in order to understand Skyline semantics. Thus, Skyline query structure is:

SELECT * FROM rel SKYLINE OF a1 dir1, an dirn

Here, a1,…,an, named dimensions, are the attributes that user preferences range
over and their domains are integers, floats or dates. The directives dir1,…,dirn, may
be either MIN or MAX or DIFF. The MIN and MAX directives specify whether the user
prefers lowest or highest values, respectively. The DIFF directive defines the interest
in retaining best choices with respect to every distinct value of that attribute. Thus, a
multicriteria function is defined in the SKYLINE OF clause. Formally, the result set of a

Skyline query is presented in (1), where i∝ is the comparator corresponding to the

directive diri (“<” for MIN, “>” for MAX and “=” for DIFF). This semantics is based on
crisp comparison.

() (){ }nnnr rrr.rrr aaaarel rel ... 111 ∝′∧∧∝′¬∃∧∈ ∈′ … (1)

 Fuzzy Dominance Skyline Queries 471

As an example, consider that a user wants to determine the best hotels for booking.
A hotel is described by an identifier (idHotel), the average of the room price
(avgPrice), the quality of the service (qService) and the quality of the place (qPlace).
Quality measures are numeric values between 0 and 80. Thus, a hotel can be retrieved
if and only if there is no other one that has better service and better place quality.
Graphically, points in Fig. 1 represent hotels in a database and Skyline was drawn as
black round points.

0
5

10
15

2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

6 0
6 5
7 0
7 5

8 0

0 5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 55 6 0 6 5 70 7 5 8 0

qService

qP
la

ce

Fig. 1. Skyline of Best Service and Best Place Quality Hotels

Skyline, as Fig. 1 shows, left out rows that are in the frontier. That is: points that
are close to the non-dominated ones. Instead of just a curve of “perfect” answers, we
would like to obtain this curve but also those points that are near to it. Rows in the
frontier might be interesting to the user, but they are rejected by the Skyline query. On
the other hand, if we give all these points, how can the user establish difference
between them? Moreover, how can the system aid user in discriminating desired
answers? Fig. 1 might be rather interpreted with legend in Fig. 3 (next section).

3 Fuzzy Dominance Skyline

Zadeh [16] introduced fuzzy sets in 1965. In regular sets, there is a discontinuity
between the set members and neighbor elements in the universe. Fuzzy sets provide
the transition between the complete membership and the complete exclusion, using a
membership function ranked in the real interval [0,1]. Any universe element is
provided of a degree that represents its membership to the fuzzy set.

Some Skyline rows might be unsatisfactory to the user need. For example, consider
a query for retrieving services and providers where selected service providers are
unavailable for much time or simply they are disagreeable to the user. Many
alternative solutions in the frontier are left out by Skyline. The solution to Skyline
rigidity could be fuzzy sets. Thus, we can think that a row dominates other when it is
much better than the other one. In this way, the querying system might provide an
answer more suitable to user preferences.

472 M. Goncalves and L. Tineo

In order to provide a mechanism for expressing fuzzy dominance, we propose to
adopt SQLf[4] user defined fuzzy comparators that are specified with the syntax [13]:

CREATE COMPARATOR symbol ON domain AS expression IN fuzzy_set

This statement defines a linguistic comparator identified by symbol. A linguistic
comparator is interpreted as a fuzzy binary relation. The expression may be (X-Y),
(X/Y) or (X,Y). This expression specifies how to compare: based on the difference,
the quotient, or by pairs. The expressions (X-Y) and (X/Y) may be used only in case
of numeric domain. The (X,Y) expression may be used in any domain, even if it has
not a natural order.

The v1 symbol v2 fuzzy condition’s satisfaction degree is denoted as μsymbol(v1,v2)
and is given by the membership degree to the fuzzy_set for expression evaluated in
X=v1 and Y=v2. The fuzzy_set may be defined by a trapezium, in case of (X-Y) or
(X/Y) expression or by extension in case of (X,Y) expression.

A trapezium is specified by four values (A,B,C,D). It defines a fuzzy set F with
membership function μF where (V≤A)→(μF(V)=0), (A<V<B)→(μF(V)=(V-A)/(B-
A)), (B≤V≤C)→(μF(V)=1), (C<V<D)→(μF(V)=(D-V)/(D-C)), (D≤V)→(μF(V)=0).

A fuzzy binary relation specified by extension is of the form {μ1/(A1,B1),

μ2/(A2,B2), ... , μn/(An,Bn)}. It defines a fuzzy set F with membership function μF

where μF((Ai,Bi))=μi.
Let’s see an example of user defined fuzzy comparator:

CREATE COMPARATOR >> ON 0..80 AS (X-Y) IN (0,20,INFINIT,INFINIT)

With this statement, the user defines a >> fuzzy comparator according to user
preference. Here, the comparison is based on the difference. The underlying fuzzy set
is defined by the trapezium shape membership function of Fig. 2. For example:
μ>>(75,10)=1, μ>>(65,55)=.5, μ>>(75,70)=.25 and μ>>(70,75)=0.

0
1/4

1/2
3/4

1

0 5 10 15 20 … … 80

Fig. 2. Membership function of the fuzzy set in >> comparator definition

We propose a way to change crisp Skyline dominance with more general fuzzy
comparison. Thus, the Fuzzy Dominance Skyline query structure is like:

SELECT * FROM rel SKYLINE OF a1 cmp1, … , an cmpn

The new directive cmpi allows using any comparator: crisp and fuzzy. Directives
MIN, MAX and DIFF and their aliases (<, > and =, respectively) may be used. The

 Fuzzy Dominance Skyline Queries 473

formal interpretation of this new querying structure becomes from the extension of
the classic Skyline adding fuzzy set semantics [10].

The satisfaction degree of a conjunction is given by the minimum between the
satisfaction degrees of the conditions in the conjunction. The inf operator over sets is
intended to be the generalization of the minimum. The satisfaction degree of a fuzzy
sentence with an existential quantifier becomes given by the highest value for the
fuzzy condition under the quantification (sup operator). Finally, the satisfaction
degree for the negation of a fuzzy condition is the complement to one. For all these
fuzzy logic operators, we have adopted the same interpretation that SQLf uses [4].
Moreover, this interpretation is commonly used for database querying [8].

The query result is a fuzzy relation. Each row r in the result is pervaded of a
satisfaction degree μr obtained from the fuzzy criteria. It is formally represented with
the notation rrμ in a fuzzy relation specification. Rows with satisfaction degree

equal to 0 are completely excluded of the result. Therefore, the Fuzzy Dominance
Skyline query produces as result set of (2).

{ }
() ()

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>∧⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−=∧∈
∈∈′

0a.,a1rel c
1

infsup riimp
nirelr

rr r.rrr
i

μμμμ
…

 (2)

In a final user interface, selected rows would be automatically shown in decreasing
order of their satisfaction degrees to the fuzzy criteria, as SQLf does.

Let’s consider the example from Section 2. We ask for hotels with best service
quality and best place quality, but based on the fuzzy comparator >> (as defined
above), instead the classic MAX directive. Our Fuzzy Dominance Skyline query is:

SELECT * FROM hotel SKYLINE OF qService >>, qPlace >>

It retrieves more hotels than classic Skyline operator does. Moreover, the answer is
discriminated. Using Fig. 3 given legend, we can see in Fig. 1 the result of this query,

Hotels with degree 1.0 Hotels with degree .75 Hotels with degree .50

Hotels with degree .25 Non-retrieved Hotels

Fig. 3. Legend for Fuzzy Dominance Skyline of Best Service and Place Quality Hotels

We must remark that this new query feature allows user to define its own
dominance comparison. It is done by means of user defined fuzzy comparators. Fuzzy
Dominance Skyline may be based on different comparators in different dimensions.
Thus, this new operator is more expressive than classic Skyline Operator is. The
representation of user preference is richer. Moreover, Fuzzy Dominance Skyline may
be defined using attributes whose domains might not have a natural order. This is
made with the use of comparators interpreted as fuzzy binary relation defined by
extension.

474 M. Goncalves and L. Tineo

4 Implementation Issue

As ever, the problem of a new flexible querying feature is to provide reasonable time
processing mechanisms. The naive strategy for Fuzzy Dominance Skyline consists in
a nesting procedure computing all rows satisfaction degrees as follows:

1 PROCEDURE NPS

2 Result := ∅
3 FOR r1 IN rel LOOP
4 S := 0
5 FOR r2 IN rel LOOP

6 m :=
{ } imp

ni
cμ

…1
inf

∈
(r2.ai,r1.ai)

7 IF m>s THEN s := m
8 END LOOP

9 IF s<1 THEN result := result ∪ {(1-s)/r1}
10 END LOOP
11 RETURN result
12 END NPS

In the context of SQLf, the Derivation Principle has been proposed for keep low
the added cost of fuzzy query processing[3][6]. This principle consists in deriving a
classic SQL query intended for selecting rows whose satisfaction degree is greater or
equal to a user given threshold t. If the user does not specify a threshold, rows with
non-zero satisfaction degree must be selected. A variety of this kind of
transformations is given in [11].

Formally, according to [6] and [15], given a fuzzy query in SLQf Ψ, the derived
query DQ(Ψ) is a regular SQL query Φ such that support(result(Ψ)) ⊆ result(Φ).
Where: result(Ψ) is the fuzzy set of rows retrieved by Ψ; remark that each row r in
result(Ψ) is provided of its satisfaction degree to the query μΨ(r);
support(result(Ψ)) is the regular set of elements in result(Ψ) with μΨ(r)>0;
and, finally, result(Φ) is the answer set of the regular query Φ .

The basis of the principle is to derive boolean conditions from fuzzy ones. Given a
fuzzy condition fc, a desired satisfaction degree λ, and a relational comparator ∝ in
(>,<,=,≥ or ≤), DC(fc,∝,λ) is a booelan condition bc such that bc(v) ⇔ (μfc(v)∝
λ). thus given a user defined fuzzy comparator cmp, DC(v2 cmp v1,=,1) is a crisp
condition equivalent to (μcmp(v1,v2)=1) and DC(v2 cmp v1,<,1) is a boolean
condition derived from (μcmp(v1,v2)<1) by equivalence. It is obvious the existence
of such boolean conditions due to the definition of fuzzy comparators. There are
distribution rules for the DC operator in order to be applied to complex fuzzy
conditions. A complete list of derived conditions may be seen in [305].

We propose the following derived query for Fuzzy Dominance Skyline queries:
DQ(SELECT * FROM rel SKYLINE OF a1 cmp1, … , an cmpn)=

SELECT * FROM rel AS r1 WHERE NOT EXISTS

(SELECT * FROM rel AS r2 WHERE
DC(r2.a1 cmp1 r1.a1,=,1) AND … AND DC(r2.an cmpn r1.an,=,1))

 Fuzzy Dominance Skyline Queries 475

It may proved that this is in fact a query that retrieves the same rows that the fuzzy
one. The demonstration is not easy. It involves the formal semantics of Fuzzy
Dominance Skyline queries given here in Section 3 above. In also involves the formal
semantics of SQL nested queries. The proof must be done by equivalence based logic
derivation. We do not present here the proof due to space limitation. Interested
readers are referred to [13][14][15] where Derivation Principle is applied to others
querying structures with corresponding formal proofs.

Previous derived query must be used in the Derivation Principle based processing
method. As we can see in PROCEDURE NPS, the processing of Fuzzy Dominance
Skyline queries requires an inner set processing. We introduce the notation DIBQ(Ψ)
for the derived query for obtaining relevant rows to inner loop:

DIBQ(SELECT * FROM rel SKYLINE OF a1 cmp1, … , an cmpn)=

SELECT * FROM rel AS r2 WHERE
DC(r2.a1 cmp1 r1.a1,<,1) OR … OR DC(r2.an cmpn r1.an,<,1)

Derivation Principle based method for Fuzzy Dominance Skyline queries, named
PROCEDURE DPS, is obtained from PROCEDURE NPS with these three changes:

− In line 3, change rel with
DQ(SELECT * FROM rel SKYLINE OF a1 cmp1, … , an cmpn)

− In line 5, change rel with
DIBQ(SELECT * FROM rel SKYLINE OF a1 cmp1, … , an cmpn)

− In line 9, omit the condition check IF s<1 THEN.

5 Performance Analysis

We have proposed here a Fuzzy Dominance Skyline Operator that is based on user
defined fuzzy comparators. It allows a richer expression of user preference regarding
classic Skyline Operator. We have also proposed an evaluation mechanism for this
new querying feature. But we still must to show if the processing cost of Fuzzy
Dominance Skyline Operator is reasonable for a database system. Therefore, we make
an experimental study of performance using formal model statistic. The idea of the
performance analysis method is to explain the influence of several considered factors
in the observed values from experiments. The importance of a factor is measured by
the proportion of the total variation in the response that is explained by the factor.

In the experimentation: The queries were addressed to a database relation
populated with 1000 random generated rows. Each row had ten integer values in the
range from 1 to 30 and one string value. Each row was randomly generated following
a uniform distribution. We adopted simple table structures with an index for each
attribute. Queries randomly generated. Each query has its classic (crisp) and fuzzy
version. We would like to compare the behavior of fuzzy query respects similar
classic one. In case of Classic Skyline queries, we use the directive MIN, in case of
Fuzzy Dominance Skyline queries, we use the directive << defined by:

CREATE COMPARATOR << ON 1..30 AS (X/Y) IN (0,0,0.33,1)

476 M. Goncalves and L. Tineo

In this performance study, we just observe the Total Spent Time in query
processing. The experiments were performed with three replicas. Considered factor
where: ⎯ The Dimension (quantity of attributes in the criteria preference expression)
with three considered levels: 2D (two dimensions), 3D (three dimensions) and 5D
(five dimensions). For each one of these levels, we have used a random generated
query. ⎯ The Method, with three considered levels: SKL (Classic Skyline with SFS
algorithm), NPS (Fuzzy Dominance Skyline with Naive Processing Strategy) and
DPS (Fuzzy Dominance Skyline with Derivation Principle based Strategy).

We have chosen a full factorial design for our experimental study. That is, we
considered all the factors with all their levels. We think that all factors and their
interactions have significant influence in the performance. This kind of design allows
study the influence of each factor and all their interactions.

Experiments were run in a flexible querying system prototype on top of Oracle 9i
RDBMS, running on a Red Hat Linux 8.0 operated 895MHz Pentium III computer
with 512MB RAM and 20GB HDD. Query translator was coded in SWI Prolog. We
have loaded the experimental results in R statistical software. The summary of the
analysis of variance with the full factorial model is presented in Table 1.

Table 1. ANOVA of Full Factorial Model

 Df Sum Sq Mean Sq F value Pr(>F)
Dimension 2 52242 26121 1010.6 < 2.2e-16 ***
Method 2 2217356 1108678 42895.7 < 2.2e-16 ***
Dimension:Method 4 119122 29780 1152.2 < 2.2e-16 ***
Residuals 18 465 26

Signif. Codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The stochastic F-test in Table 1 shows that the model fits very well to the data.
Therefore, we may take conclusions about the performance using this experiment,
because it is stochastically valid. We can see also in Table 1 that the interaction
between factors is very significant to explain the results (*** marks).

Fig. 4. Dimension-Method Interaction Plot

 Fuzzy Dominance Skyline Queries 477

Let’s analyze the interaction between factors, shown in Fig. 4. We are interested
here in two comparisons: DPS vs. SKL methods, which show the over cost of Fuzzy
Dominance Skyline queries against Skyline. On the other hand, DPS vs. NPS
methods, that shows the advantage of using DPS for Fuzzy Dominance Skyline
queries, respects the NPS.

We observe that DPS and SKL are similar in tendency: In both cases, times
increase a little while Dimension does. We may explain it due to the non-dominated
points increasing behavior regarding the dimension. While the criteria use more
dimensions, it is less probable for a row to be dominated. Higher times for DPS
respects SKL are reasonable. They seem to be in the same order. The difference obeys
to the fact that with DPS we obtain a richer answer: with elements in frontier and
discrimination. This shows that it is reasonable to implement a querying system with
Fuzzy Dominance Skyline operator using DPS without an unacceptable impact in
performance. On the other hand, times for NPS are too high respects to DPS. This is
due to some extra computation and access to undesired rows. We observe that times
decrease for the NPS while the Dimension increases. This is an amazing result that
would be explored in future studies. Despite this behavior, NPS times are too high. It
shows in fact that DPS improves processing of these kinds of queries.

6 Conclusions and Future Works

We have proposed a new querying operator: Fuzzy Dominance Skyline. It is an
extension of Skyline based on SQLf fuzzy comparators. A more general new directive
cmpi allows using any comparator both crisp and fuzzy in Skyline dominance relation.
It solves the Skyline problem of rigidity, retrieving frontier rows and giving
discriminated answers. Fuzzy Dominance Skyline may be defined using attributes
whose domains might not have a natural order.

In order to process these queries, we have presented a Naïve Processing
Mechanism and a Derivation Principle based evaluation method. The fuzzy query is
evaluated over the result of a derived Boolean query. Derivation Principle takes
advantage of relationship between fuzzy and classic sets with the concept of support.

An experimental performance study has been made analyzing new operator
behavior respects classic Skyline queries. In the study: fuzzy queries were processed
with both presented methods; and classic Skyline was processed with the SFS
algorithm. The strategy based on the Derivation Principle demonstrated to keep low
the extra-added cost of fuzzy query processing. Therefore, it is reasonable to
implement a querying system with this new feature. It would be helpful to do more
experimental studies involving non-considered factors, such as databases of different
volume, queries with multiple tables.

Here, we have only dealt with the relaxation of the comparisons involved in the
Skyline. In a future work we will deal with Skyline extension considering the use of
fuzzy quantifiers combined with fuzzy comparators in order to provide more flexible
dominance criteria. It would also be matter of further work to explore the possibility
of defining specific algorithms for obtaining better performance in these new kinds of
Fuzzy Dominance Skyline queries.

478 M. Goncalves and L. Tineo

Acknowledgments. This work was supported in part by the Venezuela Foundation
for Science, Innovation and Technology FONACIT Grant G-2005000278. The main
reason for doing this work and all things that we do in this life is to acknowledge that
person in our lives that helps us anytime: Jesus Christ the Lord of Lords. “Whatever
you do, work at it with all your heart, as working for the Lord, not for men”
(Colossians 3:23).

References

1. Bosc, P., Farquhar, K., Pivert, O.: Integrating Fuzzy Queries into an Existing Database
Management System: An Example. International Journal of Intelligent Systems 9, 475–492
(1994)

2. Bosc, P., Pivert, O.: Some Approaches for Relational Databases Flexible Querying.
International Journal of Intelligent Systems 1(34), 323–354 (1992)

3. Bosc, P., Pivert, O.: On the efficiency of the alpha-cut distribution method to evaluate
simple fuzzy relational queries. Advances in Fuzzy Systems-Applications and Theory,
251–260 (1995)

4. Bosc, P., Pivert, O.: SQLf: A Relational Database Language for Fuzzy Querying. IEEE
Transactions on Fuzzy Systems 3(1) (February 1995)

5. Bosc, P., Pivert, O.: SQLf Query Functionality on Top of a Regular Relational Database
Management System. Knowledge Management in Fuzzy Databases, 171–190 (2000)

6. Bosc, P., Liétard, L., Pivert, O.: Evaluation of Flexible Queries: The Quantified Statement
Case. In: Proceedings of IPMU, Madrid, España, pp. 1115–1122 (2000)

7. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings of
International Conference on Data Engineering (ICDE), pp. 421–430 (2001)

8. Cox, E.: Relational Database Queries using Fuzzy Logic. Artificial Intelligent Expert, 23–
29 (January 1995)

9. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data Sets. In:
Proceedings of the Conference on Very Large Databases (VLDB), pp. 229–240 (2005)

10. Goncalves, M., Vidal, M.E.: Preferred Skyline: A Hybrid Approach between SQLf and
Skyline. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS,
vol. 3588, pp. 375–384. Springer, Heidelberg (2005)

11. Ma, Z.M., Yan, L.: Generalization of Strategies for Fuzzy Query Translation in Classical
Relational Databases. Information and Software Technology 49(2), 172–180 (2007)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm for
Skyline Queries. In: Proceedings of ACM SIGMOD, pp. 467–478. ACM Press, New York
(2003)

13. Tineo, L.: Interrogaciones Flexibles a Bases de Datos Relacionales., Trabajo de Ascenso,
Universidad Simón Bolívar, Caracas, Venezuela (1998)

14. Tineo, L.: Extending the power of RDBMS for Allowing Fuzzy Quantified Queries. In:
Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 407–416.
Springer, Heidelberg (2000)

15. Tineo, L.: Una Contribución a la Interrogación Flexible de Bases de Datos: Evaluación de
Consultas Cuantificadas Difusas, Tesis Doctoral, Universidad Simón Bolívar (2006)

16. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

Pruning Search Space of Physical Database

Design

Ladjel Bellatreche1, Kamel Boukhalfa1, and Mukesh Mohania2

1 Poitiers University - LISI/ENSMA France
{bellatreche,boukhalk}@ensma.fr
2 I.B.M. India Research Lab - India

mkmukesh@in.ibm.com

Abstract. Very large databases and data warehouses require many op-
timization structures to speed up their queries. These structures can be
classified into two main categories: (1) redundant structures like mono
attribute indexes, multi-attribute indexes (bitmap join indexes), materi-
alized views, etc. and (2) no redundant structures, like horizontal parti-
tioning and vertical partitioning. The problem of selecting any of these
structures is a very crucial decision for the performance of the data ware-
house. In this work, we focus on horizontal partitioning and bitmap join
indexes. We first show the similarity between horizontal partitioning and
bitmap join indexes. Secondly, we propose a new approach of selecting
simultaneously these structures in order to reduce the query processing
cost. It consists in using the horizontal partitioning schema obtained by
a genetic algorithm to prune the search space of the problem of bitmap
join index selection. Thirdly, we propose a greedy algorithm to select
bitmap join indexes under a storage bound. Finally, we conduct several
experimental studies using an adaptation of APB-1 benchmark in order
to validate our proposed algorithms.

Keywords: Physical design, data partitioning, Bitmap join index.

1 Introduction

Very large databases and data warehouses store large amounts of data usu-
ally accessed by complex queries with many join operations. To speed up these
queries, many optimization structures were proposed. We can divide them into
two main categories: redundant structures like materialized views [8], advanced
indexing schemes (bitmap, bitmap join indexes, etc.) [10] and non-redundant
structures like horizontal, vertical partitioning [14] and parallel processing [15].
The main drawbacks of redundant structures are: extra storage cost and mainte-
nance overhead. Horizontal partitioning (HP) is an important aspect of physical
database design. In context of relational data warehouses, it allows tables, in-
dexes and materialised views to be partitioned into disjoint sets of rows that
are physically stored and accessed separately [14]. It has a significant impact
on performance of queries and manageability of data warehouses. Many studies

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 479–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

480 L. Bellatreche, K. Boukhalfa and M. Mohania

have recommended the combination of redundant and non-redundant structures
to get a better performance for a given workload [14][12][16][3].

In [2], we showed that the best way to partition a relational data warehouse
is to decompose the fact table based on the fragmentation schemas of dimen-
sion tables. Concretely, we (1) partition some/all dimension tables using their
simple selection predicates1, and then (2) partition the facts table using the
fragmentation schemas of the fragmented dimension tables (this fragmentation
is called derived horizontal fragmentation). This fragmentation procedure takes
into consideration the star join queries requirements 2.

The number of horizontal fragments (denoted by N) of the fact table generated

by this partitioning procedure is given by: N =
g∏

i=1

mi , where mi and g are the

number of fragments of the dimension table Di and the number of dimension
tables participating in the fragmentation process, respectively. This number may
be very large [2].

Bitmap index is probably the most important result obtained in the data
warehouse physical optimization field [6]. The bitmap index is more suitable
for low cardinality attributes since its size strictly depends on the number of
distinct values of the column on which it is built. Bitmap join indexes (BJIs) are
proposed to speed up join operations. In its simplest form, it can be defined as
a bitmap index on a table R based on a single column of another table S, where
S commonly joins with R in a specific way.

Most of previous work in physical database design considered the problems of
HP selection and BJI in isolation. However, both BJI and HP are fundamentally
similar - both are structures that speed up query execution, pre-compute join
operations and defined on selection attributes of dimension tables. Furthermore,
BJIs and HP can interact with one another, i.e., the presence of an index can
make a partitioned schema more attractive and vice versa. To illustrate this
similarity, we consider an example in next section.

1.1 Similarity Between HP and BJIs: A Motivating Example
To show the similarity between HP and BJIs, we consider the following scenario
that serves as a running example in this paper. Suppose we have a data warehouse
represented by three dimension tables (TIME, CUSTOMER and PRODUCT)
and one fact table (SALES). The population of this schema is given in Figure 1.
The following query is executed on this schema.
SELECT Count(*)
FROM CUSTOMER C, PRODUCT P, TIME T, SALES S
WHEERE C.City=’Poitiers’
AND P.Range=’Beauty’
AND T.Month=’June’
AND P.PID=S.PID AND C.CID=S.CID AND T.TID=S.TID

1 A simple predicate p is defined by: p : Ai θ V alue, where Ai is an attribute, θ ∈ {=
, <, >, ≤, ≥}, and Value ∈ Dom(Ai).

2 A star join query is a query defined on a star schema. It imposes restrictions on
the dimension values that are used for selecting specific facts; these facts are further
grouped and aggregated according to the user demands.

Pruning Search Space of Physical Database Design 481

This query has three selection predicates defined on dimension table attributes
City, Range and Month and three join operations. It can be executed using only
HP (this strategy is called HPFIRST) or only BJI (BJIFIRST).

C_RID CID Name City

6 616 Gilles Poitiers

5 515 Yves Paris

4 414 Patrick Nantes

3 313 Didier Nantes

2 212 Eric Poitiers

1 111 Pascal Poitiers

P_RID PID Name Range

6 106 Sonoflore Beauty

5 105 Clarins Beauty

4 104 WebCam Multimedia

3 103 Barbie Toys

2 102 manure Gardening

1 101 SlimForm Fitness

T_RID TID Month Year

6 11 January 2003

5 22 February 2003

4 33 March 2003

3 44 April 2003

2 55 May 2003

1 66 June 2003

S_RID CID PID TID Amount

1 616 106 11 25

2 616 106 66 28

3 616 104 33 50

4 545 104 11 10

5 414 105 66 14

6 212 106 55 14

7 111 101 44 20

8 111 101 33 27

9 212 101 11 100

10 313 102 11 200

11 414 102 11 102

12 414 102 55 203

13 515 102 66 100

14 515 103 55 17

15 212 103 44 45

16 111 105 66 44

17 212 104 66 40

18 515 104 22 20

19 616 104 22 20

20 616 104 55 20

21 212 105 11 10

22 212 105 44 10

23 212 105 55 18

24 212 106 11 18

25 313 105 66 19

26 313 105 22 17

27 313 106 11 15

Customer

Product

Time

Sales

Fig. 1. A sample of a data warehouse population

HPFIRST: The DBA can derived partitioned the fact table SALES using frag-
mentation schemas of dimension tables: CUSTOMER, TIME and PRODUCT
based on City, Month, Range, respectively. Consequently, the fact table is frag-
mented in 90 fragments 3, where each fact fragment is defined as follows:

Sales i=SALES� CUSTOMERi � TIMEi � PRODUCTi,
� represents semi-join operation. Figure 2c shows the fact fragment SALES BJP
corresponding to sales of beauty products realized by customers living at Poitiers
city during month of June. To execute the above query, the optimizer shall
rewrite it. Therefore, it loads only the fact fragment SALES BJP. The above
query is then rewritten as follows: SELECT Count(*) FROM SALES BJP

BJIFIRST: The DBA selects an BJI on three dimension attributes: City, Month
and Range as follows:

CREATE BITMAP INDEX sales_cust_city_prod_range_time_month_bjix
ON SALES(CUSTOMER.City, PRODUCT.Range, TIME.Month)
FROM SALES S, CUSTOMER C, TIME T, PRODUCT P
WHERE S.CID= C.CID AND S.PID=P.PID AND S.TID=T.TID

Figure 2a shows the generated BJI. To execute the above query, the opti-
mizer just accesses the bitmaps corresponding to the columns representing June,
Beauty and Poitiers and performs the AND operation. This example shows the

3 We suppose we have 3 cities, 6 months and 5 ranges of product.

482 L. Bellatreche, K. Boukhalfa and M. Mohania

Customer.city Product.Range Time.Month

S.RID Poitiers Beauty June AND

1 1 1 0 0

2 1 1 1 1

3 1 0 0 0

4 0 0 0 0

5 0 1 1 0

6 1 1 0 0

7 1 0 0 0

8 1 0 0 0

9 1 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 1 0

14 0 0 0 0

15 1 0 0 0

16 1 1 1 1

17 1 0 1 0

18 0 0 0 0

19 1 0 0 0

20 1 0 0 0

21 1 1 0 0

22 1 1 0 0

23 1 1 0 0

24 1 1 0 0

25 0 1 1 0

26 0 1 0 0

27 0 1 0 0

S.RID CID PID TID Sales

2 616 106 66 28

16 111 105 66 44

(b)(a)

(c)

Fig. 2. (a) The bitmap join index (b) The result of AND operation, (c) The fact
fragment

similarity between HP and BJIs. Both of them save three join operations. Con-
trary to HP, BJI needs to be stored and maintained. Based on this similarity we
propose a new approach for selecting simultaneously HP and BJIs by pruning
search space of BJIs. To the best of our knowledge, our proposed work is the
first article that addresses this issue.

This paper is divided in five sections: Section 2 reviews the HP and BJI
selection problem and their formalizations. Section 3 proposes our approach for
selecting HP and BJIs that uses pruning rules of search space of BJI selection
problem and a greedy algorithm to solve it. Section 4 gives the experimental
results using an adaptation of the APB-1 benchmark. Section 5 concludes the
paper by summarizing the main results and suggesting future work.

2 Selecting HP and BJIs

In this section, we propose our formulations of the two problems:

2.1 Horizontal Partitioning Selection Problem

A formulation of the HP problem is the following:
Given a data warehouse with a set of dimension tables D = {D1, D2, ..., Dd}
and a fact table F , a workload Q of queries Q = {Q1, Q2, ..., Qm}, where each
query Qi (1 ≤ i ≤ m) has an access frequency. The HP selection problem con-
sists in fragmenting the fact table into a set of fact fragments {F1, F2, ..., FN}
such that: (1) the sum of the query processing cost when executed on top of the
partitioned star schema is minimized and (2) N ≤ W , where W is a threshold,
fixed by the database administrator (DBA), representing the maximal number of

Pruning Search Space of Physical Database Design 483

fact fragments that she can maintain. We have chosen this constraint because,
in a DBMS supporting HP, each global query having conjunction of selection
predicates G must be rewritten using horizontal fragments. Each one is defined
by a conjunction of predicates P 4. Three scenarios are possible to rewrite the
query on the fragments [7]: (a) no rewriting: where P ∧G is unsatisfiable, imply-
ing that the fragment will not contribute to the answer to the query, (b) perfect
rewriting: where P → G, implying that the whole fragment will be in the answer
to the query and (c) partial rewriting: neither P contradicts G nor P implies G,
implying that there may exist tuples in the fragment that will contribute to the
answer to the query. The problem of rewriting global queries on horizontal frag-
ments has been showed to be NP-Complete, if the number of selection predicates
of P is equal or higher than 3 [7].

To solve the HP selection problem, we have proposed a genetic algorithm [2],
that we use in the present work.

2.2 BJIs Selection Problem

Formally, a BJI selection problem has the same formulation as HP, except the
definition of its constraint. The aim of BJI selection problem is to find a set of
BJIs minimizing the query processing cost and storage requirements of BJIs do
not exceed S (representing storage bound).

The index selection problem has been studied by many people [5], [9], [4],
but there is not enough work in dealing with the BJI selection problem [1].
The main difficulty of BJI selection is the large number of dimension attributes
that can participate on selection process (see Motivating example). To reduce
this number, Aouiche et al. [1] proposed the use of data mining techniques (like
CLOSE algorithm [13] that generates frequent itemsets). The basic idea is that
if one attribute or a group of attributes are frequently present in the queries then
it is interesting to consider them in the process of selection of BJIs. We claim
that this approach does not give better results since it uses only the frequency
of appearance of attributes to generate frequent itemsets. To ensure a better
performance, there are other parameters, like size of tables, selectivity factors,
cardinality of dimension attributes etc. that shall be taken into account.

3 Pruning Search Space of BJIs Selection Using HP

Actually, most commercial database systems support HP and BJIs. Therefore,
to speed up a set of queries, the DBA have several choices: (1) using only HP-
FIRST, (2) using only BJIFIRST and (3) HP−→BJI, where she combines the
two structures. In the proposed work, we mainly focus on the third scenario, be-
cause HP preserves the schema of base tables 5, therefore, the obtained fragments
can further be indexed.
4 This process is called, the localization of the fragments, in the context of the dis-

tributed databases [11].
5 A horizontal fragment has the same schema as its original base table.

484 L. Bellatreche, K. Boukhalfa and M. Mohania

In order to reduce the complexity of BJI selection problem, we propose the
following approach that prunes its search space.

1. Partition the database schema using any algorithm. In this work, we use
a genetic algorithm [2] according a set of queries Q = {Q1, Q2, · · · , Qm}.
Our genetic algorithm generates a set of fragmentation attributes FASET
(dimension attributes used in definition of fragments). In our motivating
example, Month, City and Range represent fragmentation attributes. Among
m queries, we can identify those that get benefit from HP, denoted by Q′ =
{Q′

1, Q
′
2, · · · , Q′

l}. This identification is done using a rate defined for each
query Qj as follows:

rate(Qj) =
C[Qj , FS]
C[Qj , φ]

(1)

where C[Qj , FS] and C[Qj , φ] represent the cost of executing the query Qj

on un-partitioned database and partitioned schema FS, respectively. The
DBA has the right to set up this rate using a threshold λ: if rate(Qj) ≤ λ
then Qj is a profitable query, otherwise it is a no profitable query.

2. Among FASET , pick attribute(s) with a low cardinality in order to built
BJIs. The set of these attributes is denoted by BJISET .

3. The selection of BJIs is then done using BJISET and no profitable queries
Q′ = {Q′

1, Q
′
2, · · · , Q′

l} using a greedy algorithm that we describe in the fol-
lowing section. Note that the selected BJIs shall reduce the cost of executing
no profitable queries obtained by HPFIRST.

The architecture of our approach is summarized in Figure 3.

Example 1. To understand our approach let us consider the scenario based on our
Motivating example, where HPFIRST generates 90 fact fragments. Assume that
the DBA wants to fragment the database in only 18 fragments (W = 18). In this
case, our genetic algorithm generates a fragmentation schema defined on dimen-
sion attributes City and Month (FASET = {Month, City}). Consequently, the
attribute Range of PRODUCT is not taken in the fragmentation process
(BJISET = {Beauty}). To speed up the whole queries, DBA may define a BJI
on Range.

3.1 Greedy Algorithm for Generating BJIs

Our greedy algorithm is based on a mathematical cost model which is an adap-
tation of Aouiche’s model [1]. It starts with configuration having a BJI defined
on an attribute (of BJISET) with smallest cardinality (let say, Imin), and itera-
tively improves the initial configuration until no further reduction in total query
processing cost and no violation of the storage bound. Details of the algorithm
are given in Algorithm 1.

4 Experimental Studies

To evaluate our approach, we conduct several experimental studies. We adapt the
dataset from the APB1 benchmark, by adding new attributes on

Pruning Search Space of Physical Database Design 485

HPFIRST
(genetic algorithm)

Pick up non profitable
queries

Dimension attribute
candidates selection

BJIFIRST
(greedy algorithm)

Pruning
phase

COST MODEL

HP schema
BJI configuration

1. Database
2. Queries Q
3. Storage bound S
4. Threshold W

HPFIRST
(genetic algorithm)

Pick up non profitable
queries

Dimension attribute
candidates selection

BJIFIRST
(greedy algorithm)

Pruning
phase

COST MODEL

HP schema
BJI configuration

1. Database
2. Queries Q
3. Storage bound S
4. Threshold W

Fig. 3. Architecture of the proposed solution

Algorithm 1. Greedy Algorithm for BJIs Selection
Inputs: Set of non profitable queries: Q′ = {Q′

1, Q
′
2, · · · , Q′

p}, BJIASET , S.
BJIj : Bitmap join index defined on attribute Aj . Size(BJIj): storage cost of BJIj

C[Q′, HPFIRST]: cost of executing Q′ using HPFIRST
Output: Configfinale: set of selected BJIs.
begin

Configfinale = BJImin;
S := S − Size(BJImin);
BJISET := BJISET − Amin; Amin is the attribute used to defined BJImin

WHILE (Size(Configfinale) ≤ S) DO
FOR each Aj ∈ BJISET DO

IF (C[Q′, (Configfinale ∪ BJIj))] < C[Q′, HPFIRST])
AND ((Size(Configfinale ∪ BJIj) ≤ S)) THEN

Configfinale := Configfinale ∪ BJIj ;
Size(Configfinale) := Size(Configfinale) + Size(BJIj);
BJISET := BJISET − Aj ;

end

dimension tables in order to have more dimension attributes. The star schema of
this benchmark has one fact table Actvars and four dimension tables: Actvars(24
786 000 tuples), Prodlevel (9 000 tuples), Custlevel (900 tuples), Timelevel (24
tuples) and Chanlevel (9 tuples). We have considered 74 queries with 17 selec-
tion attributes. These queries may contain from 1 to 6 selection attributes. Our
algorithms have been implemented using Visual C++ performed under a Intel
Centrino with a memory of 1 Go.

In the first experiments, we compare HPFIRST and BJIFIRST strategies. The
parameters of our genetic algorithm are: number of chromosomes = 40, number
of generations = 100, crossover rate = 75, mutation rate = 30 and threshold W =
100. Figure 4 shows performance in terms of cost of evaluating the set of queries
(74), by varying the storage capacity from 20 to 400 Mo. We observe that HP

486 L. Bellatreche, K. Boukhalfa and M. Mohania

outperforms the BJIs when the storage bound is between 20 and 200. But when
we assign more storage, BJIs outperforms better, especially for COUNT() queries.
HP can also performs well when we relax its maintenance constraint representing
the threshold W (see Figure 5). In this case, we increase the probability that all
selection attributes will participate in the final fragmentation schema.

Fig. 4. HPFIRST vs. BJIFIRST(S) Fig. 5. BJIFIRST vs. HPFIRST(W)

To evaluate our approach against other approaches, we conduct the follow-
ing experiment. We use genetic algorithm with a fragmentation maintenance
constraint W = 100 and λ = 0.6 (used to identify the profitable queries from
HP). After execution of this algorithm, among 74 queries, we identify 19 no
profitable queries (Q’) and 8 (HPSET = 8) fragmentation attributes. Conse-
quently, 9 (BJISET = 9) will be used to select the finale configuration of BJIs.
Our greedy algorithm is then executed using Q′, BJISET and a space bound
equal 20 Mo. Three BJIs have been selected. The performance of our approach is
shown in Figure 6. It reduces the cost obtained by HPFIRST by 12% and with-
out adding extra space cost. We conduct also experiment to compare HPFIRST
(with W = 100 and λ = 0.6.) with our approach, by varying storage space from
0 (where none BJI is selected) to 70 (all BJIs candidates are selected) in our
greedy algorithm. Figure 7 shows the comparison results.

To evaluate the importance of λ on performance of our approach, we com-
pare it by varying λ from 0 (all queries are non profitable from HP) to 1 (all
queries are profitable from HP). Figure 8 shows that when this parameter is
equal 0, our approach reduces the cost by 18% by assigning 18 Mo to the se-
lected BJIs and when it reaches 1, its performance is equal to HPFIRST (no
index). This parameter is important in physical database design. DBA can em-
phasize HP, by only using HPFIRST strategy (by setting up for example λ to
1), BJIs by using only BJIFIRST strategy (λ is set up to 0), or combining the
two strategies. Thus, this approach can cater to the existing database design
strategies.

Pruning Search Space of Physical Database Design 487

Fig. 6. Quality of our approach Fig. 7. Our approach vs. storage

Fig. 8. Effect of lambda on performance

5 Conclusion

Databases have grown very large in size and accessed with complex queries
having several join operations. To optimize these queries, several structures are
available and supported by commercial DBMSs that we can classify into two cat-
egories: redundant and non-redundant structures. In this paper, we concentrate
on one redundant structure (bitmap join indexes) and non-redundant (horizon-
tal partitioning). By an example, we showed the strong similarity between them.
We have proposed a new approach to select simultaneously a HP schema and
BJIs to optimize a set of queries. It starts by selecting a HP schema using a
genetic algorithm, and then selects BJIs by using greedy algorithm that consid-
ers only queries that do not get profit from HP and eliminating fragmentation
attributes. This approach prunes the search space of BJI selection problem. We
have conducted several experimental studies that showed the cost savings with
modest storage requirements.

In the future, we plan to develop and compare a number of heuristics for prun-
ing the exhaustive search space in order to improve the quality of the selected
solution. Another issue that we should consider applying the same approach for
selecting materialized views.

488 L. Bellatreche, K. Boukhalfa and M. Mohania

References

1. Aouiche, K., Boussaid, O., Bentayeb, F.: Automatic Selection of Bitmap Join In-
dexes in Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS,
vol. 3589, Springer, Heidelberg (2005)

2. Bellatreche, L., Boukhalfa, K.: An evolutionary approach to schema partitioning se-
lection in a data warehouse environment. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK
2005. LNCS, vol. 3589, pp. 115–125. Springer, Heidelberg (2005)

3. Bellatreche, L., Schneider, M., Lorinquer, H., Mohania, M.: Bringing together par-
titioning, materialized views and indexes to optimize performance of relational data
warehouses. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2004.
LNCS, vol. 3181, pp. 15–25. Springer, Heidelberg (2004)

4. Chaudhuri, S.: Index selection for databases: A hardness study and a principled
heuristic solution. IEEE Transactions on Knowledge and Data Engineering 16(11),
1313–1323 (2004)

5. Chaudhuri, S., Narasayya, V.: An efficient cost-driven index selection tool for mi-
crosoft sql server. In: Proceedings of the International Conference on Very Large
Databases, pp. 146–155 (August 1997)

6. Golfarelli, M., Rizzi, S.: A methodological framework for data warehouse design.
In: DOLAP, pp. 3–9 (November 1998)

7. Guo, S., Wei, S., Weiss, M.A.: On satisfiability, equivalence, and implication prob-
lems involving conjunctive queries in database systems. IEEE Transactions on
Knowledge and Data Engineering 8(4), 604–612 (1996)

8. Gupta, H.: Selection of views to materialize in a data warehouse. In: Afrati, F.N.,
Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg
(1996)

9. Labio, W., Quass, D., Adelberg, B.: Physical database design for data warehouses.
In: Proceedings of the International Conference on Data Engineering (ICDE)
(1997)

10. Oneil, P.: Multi-table joins through bitmapped join indioces. In: SIGMOD, vol.
24(03) (1995)

11. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

12. Papadomanolakis, S., Ailamaki, A.: Autopart: Automating schema design for large
scientific databases using data partitioning. In: Proceedings of the 16th Interna-
tional Conference on Scientific and Statistical Database Management (SSDBM
2004), pp. 383–392 (June 2004)

13. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416.
Springer, Heidelberg (1998)

14. Sanjay, A., Narasayya, V.R., Yang, B.: Integrating vertical and horizontal par-
titioning into automated physical database design. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 359–370 (June
2004)

15. Stöhr, T., Märtens, H., Rahm, E.: Multi-dimensional database allocation for paral-
lel data warehouses. In: Proceedings of the International Conference on Very Large
Databases, pp. 273–284 (2000)

16. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M, Storm, A., Garcia-Arellano, C.,
Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In:
Proceedings of the International Conference on Very Large Databases, pp. 1087–
1097 (August 2004)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 489–498,2007.
© Springer-Verlag Berlin Heidelberg 2007

A Two-Phased Visual Query Interface for Relational
Databases

Sami El-Mahgary 1 and Eljas Soisalon-Soininen2

1 Computing Centre, Helsinki University of Technology, Box 1100,
FI-02015 TKK, Finland.

Sami.Mahgary@tkk.fi
2 Laboratory of Software Technology, Helsinki University of Technology,

Box 5400, FI-02015 TKK, Finland.
Eljas.Soisalon-Soininen@tkk.fi

Abstract. Developing an easy-to-use, visual query tool for non-expert users to
perform their own ad-hoc queries from relational databases is an active research
area. The challenge lies in designing a visual query application that is both
versatile and user-friendly; often expressive power comes at the expense of
non-intuitive user interfaces. This work is based on a novel two-phased
approach, so that users first specify the subset of data that is of interest (using a
so-called principal concept), whereby the query generates an intermediary
dataset. In the second phase, users query this dataset to further eliminate
unwanted rows through Boolean constraints and to perform any additional
operations, i.e. grouping or columns renaming. The user interface has been kept
simple and the presented ideas have been successfully implemented in a
prototype known as OVI-2, for use with the university student database at
Helsinki University of Technology.

Keywords: Relational databases, visual query interfaces, query languages.

1 Introduction

Applications that provide a visual query interface for a database are commonly
referred to as visual query systems (VQS). Developing an easy-to-use VQS for users
to perform their own ad-hoc queries from relational databases has been an active
research area in the last decades; a compilation in the late 1990s already counted
dozens of different approaches [1,2]. While many authors use the terms VQS and
query languages rather interchangeably, few approaches actually incorporate a full,
‘self-standing’ query language with its well-defined grammar such as [3]. Most VQS,
including this work, focus on developing a user-friendly interface for ad-hoc querying
that maps queries to an existing commercial query language such as SQL or OQL
(Object Query Language) [4,5,6].

The goal in this project was to develop a user-friendly visual query interface for
querying a relational student database consisting of a large number of relations. The
requirement was that the tool be versatile, yet easy enough to use without requiring

490 S. El–Mahgary and E. Soisalon–Soininen

any specific knowledge of the underlying database schema. The developed query
interface is named OVI-2 (Oodi’s Visual Interface) with the ‘2’ emphasising the fact
that there are two distinct stages to generating the query, and Oodi being the name of
the student database.

One reason why developing a user-friendly and yet powerful VQS is not an easy
task is that typically, versatility and expressive power come at the expense of user-
friendliness. Moreover, some query operations such as universal or existential
quantification do not lend themselves to a clear visual representation [7, 8]. The
Visual Query Language developed by [3] is an example of a VQS built on top of a
powerful language supporting universal quantification. However, a successful use of
such an interface for complex queries requires expertise, as the user may need to
specify database variables in the query.

There are today simply too many different VQS implementations so that it is not
within the scope of this work to provide a history of the developments in the field.
Based on [1,5] query interfaces may be classified into four categories, depending on
how the query formulation is visualised [1]. These are (1) tabular, (2) diagrammatic,
(3) iconic and (4) hybrid. To this list could be added the (5) graph-based approach
(the nodes being the entities and the arcs the existing relationships), which portrays
the underlying schema as a graph, such as the Gql implementation [9].

Tabular approaches are part of the first generation which produced the well-known
language QBE [10]. At their simplest, tabular systems alleviate the user’s task by
providing a tabular representation of the underlying schema, so that users need not
input the names of relations or attributes.

The diagrammatic (2) approach represents the underlying database schema with
graphic elements such as rectangles (typically denoting entities), circles and lines. An
icon-based system (3) relies heavily on icons and uses a specific icon for each
important concept in the schema. Because finding a suitable, unique icon for each
concept is not always possible, icons are often used together with a tabular or
diagrammatic approach to enhance the visual appeal of the system. A hybrid interface
(4) uses any combination of the previous three approaches (1-3). Although OVI-2
relies on interactive forms, it uses icons and concepts and is best characterised as a
hybrid approach.

The remainder of this paper is organised as follows: Chapter 2 discusses the basics
of OVI-2, and Chapter 3 presents it using a real example. Chapter 4 briefly examines
implementation issues while Chapter 5 shows some users’ comments. Chapter 6
compares OVI-2 to previous work and finally, Chapter 7 presents the concluding
remarks.

2 Basic Idea Behind OVI-2

The ideal VQS should be versatile and allow even complex queries to be defined in a
user-friendly fashion. An SQL-query may be considered as complex when it involves
sub-queries or makes use of Boolean conditions on the group operator (i.e. the
Having-clause in SQL) [6]. Special care should be taken to ensure that the query
formulation can be done with as little ambiguity as possible, so that the user can be
assured that the query defined is indeed what was originally intended.

 A Two-Phased Visual Query Interface for Relational Databases 491

Besides allowing for the selection of attributes, a user-friendly VQS should
provide support for some kind of high-level data abstraction so that users can
easily interact with the database schema. This can be achieved by using
concepts which are often visualised as icons or simple boxes. Simply put, a
concept is a higher-level entity that simplifies query formulation. A concept
such as ‘Exam’ may be comprised of several attributes (e.g. exam date, exam
grade). The requirement in [5] that attributes of a concept must belong to the
same relation is not enforced here.

OVI-2 queries are thus performed in two separate stages, where the first
stage is concerned with defining the basic result set. Users first select a single
concept of primary interest, known as the principal concept [5]. A primary
concept helps to hide some of the complexities of the database schema by
showing only those concepts that are relevant to the user’s query. Selecting the
principal concept in OVI-2 (currently either ‘Students’ or ‘Teachers’) displays
respectively either a ‘Student’ or a ‘Teacher’ form. Users then fill-in a few
simple details to characterise the selected principal concept. This in effect
defines the query topic, i.e. that subset of the schema that is shown to the
user [6].

Once the user has defined the query topic, s/he can run the query against the
database to obtain a simple tabular report. The user can then freely browse these
results and decide (i) to either go back and refine the query topic, or (ii) proceed
to the second query stage.

At the onset of the second stage, the user has at his/her disposal all the
required data re-arranged into new, intuitive temporary relations. No further
access to the original database server is needed in the second stage. In this
respect, the presented approach differs from the traditional incremental query
building techniques in the literature [6]. The user can also define simple
Boolean conjunctions/disjunctions to further eliminate unwanted rows, and
apply additional operations such as grouping. In the second stage, the query is
run against the temporary relations obtained from Stage I and the final results
are presented in a tabular or spreadsheet format.

Table 1. The basic steps for querying with OVI-2

Step Example of What Step Might Involve
(1) Select primary concept (Stage I) Choosing ’Students’ as Primary

Concept.
(2) Define query topic: restrict the set using sub-
concepts and simple restrictions (Stage I). Each sub-
concept represents a unique set of students.

Selecting Undergraduates who started
in 2005 or later and have not
completed a given set of courses.

(3) Run query and browse results set. Proceed to
Stage II to further restrict result set or return to
Stage I to loosen restriction on the sub-concepts.

Browsing results to ascertain that all
required data is included.

(4) Place Boolean conditions to eliminate unwanted
rows and pick attributes to include in final result set
(Stage II)

Restricting query to undergraduates
who have taken over 20 courses and
have registered with the university.

492 S. El–Mahgary and E. Soisalon–Soininen

3 A Working Example of OVI-2

This chapter presents a real-life example based on the needs of the users of the student
database used at Helsinki University of Technology. Users would like to get a list of
all students who have not yet completed their Swedish Language Proficiency Test
(SLPT), which is a mandatory part of the graduation requirements. This need creates a
challenging query as the SLPT can be completed in a number of ways; namely, by
taking a single advanced Swedish course, or two upper-level Swedish courses. The
following is a step-by-step overview on defining the example query using OVI-2.

Example: What are the names of those undergraduates students who started their
studies in the year 2005 or later but have not yet passed the Swedish Language
Proficiency Test ?

3.1 Stage I: Specifying the Sub-concepts

In the very first step, the user simply determines the query’s principal concept.
Currently in OVI-2, when the user starts the application s/he chooses the principal
concept to be either ‘Students’ or ‘Teachers’. In this example query, the user is
interested in finding out the set of students that meet a given criteria (e.g. have
completed the SLPT requirement) so the query results are directly related to students,
and thus ‘Students’ is the query’s principal concept.

Once the user has decided on the principal concept, s/he is presented with a main
form for defining the query topic. Since ‘Students’ is the principal concept, the user
now indicates what type of students s/he is interested in retrieving, e.g. the sub-
concepts of interest. The ‘Students’ concept is divided into five sub-concepts: (1)
Undergraduates, (2) Graduates, (3) Doctoral students, (4) those who have completed
their doctoral studies and finally (5) Non-Degree students. One or several sub-
concepts can be selected through checkmarks.

As the user is now only interested in undergraduates, a single checkmark is placed
(Fig. 1). The acceptance year for undergraduates is then restricted to be at least 2005
in the form as shown in Fig. 1. Having defined the set of students to be included in the
query, the user may then specify any requirements for courses taken/not taken for the
given set of students (Sect. 3.2)

Fig. 1. Specifying the set of students using one to five sub-concepts derived from the principal
concept ‘Students’ in (a). On the right, restricting undergraduates to those accepted in 2005 or
later (b).

 A Two-Phased Visual Query Interface for Relational Databases 493

3.2 Stage I : Existential Quantification

With OVI-2, the courses taken/not taken are specified through a separate Course
form, part of which is shown in Figure 2. In this case we’re interested in
students who have not passed the SLPT, which in fact is a test for negation (of
existential quantification). Because SLPT can be completed in more than one
way, OVI-2 makes use of a special User-Defined Course List (UDCL), where
users have beforehand created their own course lists (please see Appendix for
details).

Using such a list greatly simplifies the visual interface, as the user now needs
only to indicate s/he is using a UDCL (Fig. 2a) and then select SLPT from a
pop-up window showing all previously defined UDCLs (Fig. 2c). Finally,
selecting the option ‘Not yet taken!’ (Fig. 2b) will eliminate all students in
question who have passed the Swedish Language Proficiency Test, effectively
returning those who have not yet passed it.

Fig. 2. Selecting a user-defined list (a) will cause the previously defined course lists to appear
in a pop-up window for the user to pick from (c). The selection in Fig. 2b indicates that the
specified course(s) must not have been taken by the set of students in question.

3.3 Stage II : Selecting the Attributes and Eliminating Unwanted Rows

At the last stage, the user can further refine the query by issuing Boolean
conditions through a point-and-click interface. Attributes to be included in the
final result set are selected by placing checkmarks next to them. Users can also
perform various operations such as attributes renaming, along with grouping
and sorting.

As an example, the result set obtained in Stage I (undergraduates who started
in 2005 or later and had not taken their SLPT) could now be restricted to only
those students who have completed at least 20 courses and who have not been
marked as unregistered during the last two semesters, Autumn 2006 and Spring
2007. This is visualised in Fig. 3.

4 Implementation Issues

OVI-2 is basically a user interface (developed with Delphi, an object-oriented Pascal
language) for querying a complex database schema (Oracle server). Additionally, the
system maintains a data repository for storing ‘lookup data’ that does not change on a
daily-basis. This includes basic information on Teachers, Courses, Departments and
Student Majors, which are typically updated into this repository every month or so.

494 S. El–Mahgary and E. Soisalon–Soininen

Fig. 3. The eight attributes (marked with a plus-sign) to be included have been selected (the
data has been re-organised into four temporary relations, ‘Achieved’, ‘Attendance’, ‘Courses’
and ‘Student’). The condition box at the bottom further restricts the set of students to those who
have taken at least 20 courses and have registered during the last two semesters, Autumn 2006
and Spring 2007.

The OVI-2 implementation generates its own temporary relations (without
resorting to data warehousing) based on data extracted from the database server in the
first stage. As a special twist, lookup data is read from a data repository that can be
quickly rebuilt from scratch through a simple mouse-click to reflect the latest state.
OVI-2 also supports user settings, of which the most important is the section for
defining the user-defined course list. The use of such a UDCL greatly reduces query
complexity and the possibility for errors when searching for students who have
completed/not completed a given set of courses.

5 User Comments

At the time of writing, OVI-2 had undergone limited testing by actual users (mostly
University Study Counsellors), but some feedback was already available. In
particular, users appreciated the following:

1. No special language needs to be learnt, nor are there possibly time consuming
dragging operations to be mastered.

2. The two-phase approach allows for quick data browsing without the need to
specify the attributes to be retrieved.

3. The Boolean conditions that are interactively defined in Stage II effectively filter
out unnecessary rows. Determining for instance students who have been absent a
given semester is easily defined using the condition box approach of Fig 3.

Regarding improvements, the OVI-2 interface could be enhanced for negating
existential qualification. For instance, when looking for students who have not taken
French I and French II, the interface should make it clear whether the query will
return students who have not yet completed both French I and French II, or whether

 A Two-Phased Visual Query Interface for Relational Databases 495

the query will return only those have taken neither French I nor French II (a smaller
subset). Both negations are supported by OVI-2, but users may get confused as to the
meaning of each negation if the difference is not clearly visualised.

6 Comparison with Other Approaches

The following briefly discusses four VQSs that are all aimed at mostly non-expert
users and that like OVI-2, support concepts in some way.

VISIONARY uses a viewpoint (similar to a query topic) to display the underlying
structure of the database in a user-friendly way, limiting the view to the part that
interests the user [5]. Once the primary concept has been selected, the system displays
concepts as icons and their associations as arrows with descriptive text. In some cases,
the default associations are not what the user is after, so VISIONARY has capabilities
for allowing the user to edit the viewpoint. That is, the user may (i) edit/disable
associations between concepts, and if required, (ii) drop associations or drag them to
the new concepts.

A similar interesting approach is ConQuer-II, which is also built around the theme
of concepts [11]. As with VISIONARY, the user builds the query topic through
various dragging operations. The attributes of the concepts are initially hidden to
reduce complexity, but can be included or dropped from the query through a simple
mouse-click. ConQuer-II’s expressive power is well founded as it is built on top of an
Object-Role Modelling approach. It does however, rely less on icons and visual aids
than VISIONARY for instance.

QueloDB presents the user with a visual query frame for building the query topic
in progressive steps. As with OVI-2, the user must first select a principal concept (the
so-called starting class) which in the database used by the authors is one of
Professors, LectureSeries, or Students [12]. The user then gradually builds the query
by selecting sub-concepts that are semantically correct with respect to the selected
principal concept (or a previously selected sub-concept). This allows for a rather
intuitive interface. However, as the authors of QueloDB note, the expressive power is
a bit limited, and although Boolean constraints are supported, negation is supported
only for literals and not at the existential quantification (e.g. tuple) level.

Kaleidoquery presents some very interesting ideas on implementing a VQS.
Kaleidoquery was developed for an object-oriented database, and concepts (referred
to as classes) are represented visually through an icon and the name of the concept
[4]. The equivalent of a principal concept (the so-called ‘initial data type’) is shown as
the lowest icon on the visualisation screen from which the query is considered to flow
to (an upward arrow represents the flow) other concepts in the query. As the query
grows in complexity however, it requires more and more visualisation space and the
workspace may thus become cluttered and the query’s meaning harder to grasp.

Although OVI-2 and VISIONARY both share similarities (support of a principal
concept and aggregation for instance), OVI-2 takes a different approach for the query
topic through its two-phased technique. For one, OVI-2 is based on the assumption
that attribute selection (e.g. projection) is a simple, albeit time-consuming task that
should be performed only when the user has ascertained that the obtained dataset does
indeed satisfy his/her requirements. This is why in the first query stage, OVI-2

496 S. El–Mahgary and E. Soisalon–Soininen

automatically returns a set of fixed, pre-defined attributes which the user can then
expand in the second stage to freely pick those that are actually needed for the final
result set. This two-phased approach has the added benefit that it re-organises the data
into more intuitive relations and generates new calculated attributes to which the user
can refer to when generating the Boolean conditions in the second phase. This
enhances the expressive power of OVI-2, as not all complex queries can be dealt with
in a single query. Finally, deciding on the primary concept is somewhat simpler with
OVI-2 than with VISIONARY, since a primary concept is simply defined as the
concept to which the attributes returned by the query are related to.

Allowing the user to build the query topic through dragging and editing certainly
adds to the flexibility of the query. But it may also increase the possibility for errors
while designing the query. This is especially true if the system is geared towards users
with little knowledge of the underlying database structure. This is why OVI-2, unlike
Kaleidoquery for instance, eliminates altogether the step of building the query topic
incrementally through graphical primitives, and relies instead on an interactive query
form.

Moreover, defining the query topic in OVI-2 does not involve changing the
associations between the concepts as with VISIONARY. Instead, the user simply
defines the query topic by filling in a few items on an interactive query-form. These
items are basically high-level operations which are then translated into join operations
and existential quantification behind the scenes. With OVI-2, the user is thus happily
unaware of the complexity of the query and can focus on those parts of the query-
form relevant to the query at hand.

7 Conclusions

With regards to the non-expert user, this work has presented a two-stage approach for
formulating user-friendly queries. In particular, the OVI-2 approach has the following
advantages:

1. The interface prevents the formulation of semantically incorrect queries and
queries that don’t make real sense in the first place.

2. Because the query is formulated in two distinct stages, it allows for flexible queries
by re-arranging the data into a more query-friendly structure.

With a visual and especially diagrammatic query language, there is always the
possibility that users build a query that is semantically correct, but is not what was
intended. To reduce this possibility, a VQS should not require users to specify
complex operations of which the meaning may not be always clearly understood.
Based on observing non-expert users, restriction operations (e.g. Boolean conditions)
present little or no problem. However, requiring users to join relations or understand
sub-queries is beyond the scope of most users; this kind of terminology should be
reserved to database professionals. This does not of course imply that complex
queries or negation at the tuple level cannot be supported by the interface, only that
they be well integrated into the system so that users are not required to deal with these
notions ‘as such’.

 A Two-Phased Visual Query Interface for Relational Databases 497

While this work focused on a student database, the ideas presented should be
applicable elsewhere too. For instance, if the students database analogy is extended to
a typical order database schema involving Products, Customers and Orders, finding
those customers who have not ordered a set of given items is quite akin to finding out
students who have not completed a set of given courses.

This work has presented some of the key features found in OVI-2. Generally
speaking, a VQS could probably be simplified by incorporating only the query topics
that are actually needed for each principal concept selected by the user, without thus
resorting to a full implementation of relational algebra operations. Nevertheless,
designing a VQS that is intuitive and yet powerful enough for sophisticated queries is
quite challenging and it may not be possible to accommodate all different types of
database users in a single VQS implementation.

Acknowledgments

The following persons (in alphabetical order) have supported and given valuable
comments regarding OVI-2; their help is gratefully acknowledged: Mr. Petri Autio,
Prof. Kalevi Ekman, Ms. Pirjo Häkkinen, Ms. Päivi Kauppinen, Ms. Katriina
Korhonen, Ms. Päivi Koivunen, Mr. Harri Långstedt, Prof. Lauri Malmi, Mr. Juhani
Markula, Ms. Kirsti Olamo, Ms. Vuokko Rantanen, Ms. Rita Rekonen, Ms. Pia
Rydestedt, Ms. Pirjo Solin, Mr. Timo Tuhkanen and Mr. Jan von Pfaler.

References

1. Catarci, T., Constabile, M., Levialdi, S., Batini, C.: Visual query systems for databases: A
survey. J of Visual Lang. Comput. 8, 215–260 (1997)

2. Ower, V.: Development of a conceptual query language: Adopting the user-centred
methodology. Comp. J. 46, 602–624 (2003)

3. Mohan, L., Kashyap, R.: A Visual Query Language for Graphical Interaction with
Schema-Intensive Databases. IEEE T. Knowl. Data En. 5, 843–858 (1993)

4. Murray, N., Paton, N., Goble, C., Bryce, J.: Kaleidoquery: a flow-based visual language
and its evaluation. J. of Visual Lang. Comput. 11, 151–189 (2000)

5. Benzi, F., Maio, D., Rizzi, S.: VISIONARY: a Viewpoint-based Visual Language for
Querying Relational Databases. J. of Visual Lang. Comput. 10, 117–145 (1999)

6. Zhang, G., Chu, W., Meng, F., Kong, G.: Query Formulation from High-Level Concepts
for Relational Databases. In: Proc. of User Interfaces to Data Intensive Systems, Los
Angeles, pp. 64–74 (1999)

7. Bélières, B., Trépied, C.: New metaphors for a visual query language. In: Proc. Of
International Workshop on Database and Expert Systems Applications, DEXA ’96
University of Zurich, pp. 229–236 (1996)

8. Whang, K.-Y., Malhotra, A., Sockut, G.H., Burns, L., Choi, K.-S.: Two-Dimensional
specification of universal quantification in a grapahical database query language. IEEE
Transact. on Softw. Eng. 18, 216–224 (1992)

9. Papantonakis, A., King, P.J.H.: Gql a declarative graphical query language based on the
functional mode. In: Proc of the Workshop on Advanced Visual Interfaces, Bari Italy, pp.
113–122 (1994)

498 S. El–Mahgary and E. Soisalon–Soininen

10. Zloof, M.M.: Query-By-Example, a data base language. IBM Syst. J. 16, 324–343 (1977)
11. Bloesch, A., Halpin, T.: Conceptual queries using ConQuer-II. In: Embley, D.W. (ed.) ER

1997. LNCS, vol. 1331, pp. 113–126. Springer, Heidelberg (1997)
12. Bresciani, P., Nori, M., Pedot, N.: QueloDB: a Knowledge Based Visual Query System.

In: Arabinia, H. (ed.) Proceedings of the 16th International Conference of Artificial
Intelligence-IC-AI ’2000, Las Vegas, pp. 1319–1325. Springer, Heidelberg (2000)

Appendix: User-Defined Course Lists

User-Defined Course Lists are part of the settings in OVI-2 for defining beforehand a
set of courses that is then treated by OVI-2 as a single entity. Users assign each user-
defined list a unique descriptive name and may define for instance the Swedish
Language Profiency Test as shown in Table 2. Any reference to the user-defined list
SLTP will be translated by OVI-2 to the Boolean conditions of the courses in question
as shown in Table 2.

Table 2. The user has defined that SLT can be complete by passing either one of the five
courses (A1-A5) in the left-hand column or by taking any single combination of one of the
three pairs of courses (B1-B3) shown on the right-hand column.

Single Courses Satisfying Requir. for SLTP Course Pairs Satisfying Requir. for SLTP
(A1) Lang-98.344 (A2) Lang-98.519
(A3) Lang-98.5166 (A4) Lang-98.5170
(A5) Lang-98.5172.

(B1) Lang-98.5001 and Lang-98.5002
(B2) Lang-98.013 and Lang-98.012
(B3) Lang-98.340 and Lang-98.349.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 499–508,2007.
© Springer-Verlag Berlin Heidelberg 2007

Wavelet Synopsis: Setting Unselected Coefficients to Zero
Is Not Optimal

Chong Sun, Yan Sheng Lu, Chong Zhou, and Jun Liu

DB& Software Engnieering Lab, Department of Computer Science,Huazhong universtiy of
Sci.&Tech.430074 Wuhan, China
SunChong217@hotmail.com

Abstract. Histogram and Wavelet synopses provide useful tools in query
optimization and approximate query answering. Traditional wavelet synopsis
construction algorithms treat the construction algorithms as the wavelet
coefficients selection problem which is called Coefficient Thresholding.
However, all these algorithms just focus on the selection of best wavelet
coefficients but deal with the unselected ones naively (just setting them to zero).
A key problem is whether it can achieve the optimum of error when the
unselected ones are set to one single value: zero. In this paper, we consider a
novel Wavelet-based Synopsis construction for the known L2 error measure
which can handle the unselected wavelet coefficients effectively. We provide a
comprehensive theoretical analysis and demonstrate the effectiveness of these
algorithms in providing more optimal error significantly through synthetic data
sets.

Keywords: query optimization; data reduction; wavelet synopsis; error
measure.

1 Introduction

The reduction of massive data sets into a more manageable size is required in many
database applications. Wavelet decomposition [6] provides a very effective data
reduction tool, with applications in data mining [7], selectivity estimation [8], and
approximate and aggregate query processing of massive relational tables [9]. In
simple terms, a wavelet synopsis is extracted by applying the wavelet decomposition
on an input collection (considered as a sequence of values) and then summarizing it
by retaining only a select subset of the produced wavelet coefficients. The original
data can be approximately acquired by wavelet reconstruction based on this compact
synopsis. The wavelet reconstruction just simply treats the wavelet coefficients not in
synopsis to be zero. Given an N wavelet coefficients collection Wall[n] and space
budget B, Wavelet Thresholding is used to determine which B wavelet coefficients
should be retained in the synopsis for some error measure. In other words, it is to
determine which N-B wavelet coefficients should be discarded. Traditional wavelet
synopsis construction algorithms [1], [2], [3], [4], [5] view the discarded coefficients
as zero, but that cannot always make the synopsis achieve the optimal error. Suppose

500 C. Sun et al.

we are given the one-dimensional data vector A containing the N = 8 data values A =
[2, 2, 0, 2, 3, 5, 4, 4]. First, by wavelet decomposition on A, we get the wavelet
coefficients collection [2.75, 1.25,0.5,0,0, 1, 1,0]allW = − − − .Second, we determine to

retain four (e.g., B=4) coefficients (e.g., 2.75,-1.25,-1,-1) as wavelet synopsis of A by
wavelet coefficients selection for L2 error measure and view all the unselected ones
(e.g., 0.5, 0, 0, 0) as zero. However, setting unselected coefficients to zero makes the
L2 error value of the synopsis to 1, while if we set unselected coefficients to 1/6, the
error value is changed to 2/3. Therefore, we propose two questions for the
conventional method.

Question1. For a certain error measure, is it really optimal when setting all the
coefficients not in the synopsis to zero?

Question2. Why just set one single value to the unselected coefficients, but not two
or more?

Contribution. To the best of our knowledge, we are the first ones to propose these
problems and give proofed answers to them. Out of the consideration of the these
problem, we study the construction method for the known L2 error measure as well as
propose a novel synopsis method called kX wavlet which handles the unselected

coefficients effectively and achieves the error closer to the optimum. We also provide
a comprehensive theoretical analysis and demonstrate the effectiveness of these
algorithms through synthetic data sets.

Organization. The remainder of the paper is organized as follows. Some
backgrounds and related work are provided in section 2. The answer to our first
question is offered in section 3 by introducing an example and our observations with
proof as well, while the second question and how to determine the multi values are
answered in section 4 and also the construction methods of kX wavlet are given in this

section. Experimental results on various synthetic data sets are outlined in section5.
Finally, in section 6 we present our conclusions and the future work.

2 Backgrounds and Related Work

2.1 Haar Wavelet and Error Tree

Haar function is the common wavelet decomposition function used for data reduction.
References [6], [8] introduce the wavelet decomposition procedure based on haar
function in detail.

Reference [8] introduces a hierarchical structure called error tree which illustrates
the key properties of the Haar wavelet decomposition. The error tree is built on top of
the original data set. Each leaf node A[i] (i = 0...N) of the error tree is associated with
a data value in the original vector A, while each internal node S[i] (i = 0...N) is
associated with a wavelet coefficient value in allW . Figure 1(a) shows the Haar
wavelet decomposition in the form of an error tree for the example above. Given a
node u in an error tree T, let path(u) denote the set of all proper ancestors of u in T
(i.e., the nodes on the path from u to the root of T, including the root but not u) with

 Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal 501

coefficients. A key property of the Haar wavelet decomposition is that the
reconstruction of any data value A[i] depends only on the values of the coefficients on
path(A[i]); more specifically, we have

[] []

[] ,, []

()

[] []
0

1

,

1

in the left child subtree of
or

otherwise

 j i

i i ji j j

S path A

A i S j
j

signA sign S
∈

=
+⎧
⎪== ⎨
⎪−⎩

∑ i (1)

Thus, reconstructing any data value involves summing at most (logN + 1)
coefficients. In our example, as demonstrated in Figure 1, A [4] = - (-1) - (0.5) + (-
1.25) + (2.75) = 2.

2.2 Wavelet-Based Data Reduction: Coefficient Thresholding

Given an N wavelet coefficients collection Wall[n] and space budget B, the goal of
Wavelet Thresholding is to determine which B wavelet coefficients should be retained
in the synopsis, so that some overall error measure in the approximation is minimized.
In other words, it determines which N-B coefficients should be eliminated.

Intuitively, wavelet coefficients carry different weights with respect to their
importance in rebuilding the original data values. In order to equalize the importance
of all wavelet coefficients, we need to normalize the final entries of

allW appropriately. A common normalization scheme is ()* / 2 ilevel S

i iS S= in [8], while

()ilevel S denotes the level of error tree at which the coefficient iS appears. Retaining

the B largest Haar-wavelet coefficients in absolute normalized value is provably
optimal with respect to minimizing the overall root-mean-squared error (i.e., L2-norm
average error) in the data compression. More formally, let []iR denote the
approximately data value reconstructed (from wavelet synopsis) for cell i, and L2
error measure can be expressed as

2
[] []

1

min ()i i

i n

Opt A R
≤ ≤

= −∑ (For the given amount of space B). (2)

2.3 Definition and Problem Formulation

Definition. kX wavelet Synopsis is a 3-item tuple defined as

:: (,),k k kWsX wavelet X ρ= . Ws and Ws denote the two collections of selected and

unselected wavelet coefficients respectively. kX means we will allocate k different

values (e.g., ...1 kx x stored in vector kX) to the entries inWs . The symbol kρ records

the allocation plan from Ws to kX . In fact, kρ is a mapping relation between them, we

will discuss the problem of storing the mapping relation with low space cost in later
section. Given a kX wavelet synopsis t, ()2L norm t denotes the value of L2 error

502 C. Sun et al.

produced by t, if ()2L norm t achieves the optimal error we consider t as the optimal

synopsis denoted by ()opt
kX wavelet .

Problem Formulation. The wavelet synopsis created in the traditional method can be
represented in our formal definition as

1 10 {Ws, 0 , }wavelet X φ= =< > . It means we just

allocate one single value to the unselected coefficients and the value is zero, such that

recording the mapping relation betweenWs and kX is unnecessary and kρ is denoted

byφ . From the definition, these two questions can be formalized.

Question1. Is it correct that 10 wavelet is 1()optX wavelet ?

Question2. Is it correct that 2 (())opt
kL norm X wavelet is no less than

12 (())opt
kL norm X wavelet+ ?

3 1()optX wavelet Construction

3.1 A Counterexample

Returning to the same example in section 1, we check whether the answer to question
1 is ‘yes’. Replacing the unselected coefficients in the error tree T with symbol x and
doing the wavelet reconstruction based on the modified error tree XT produce the
approximated data collection in which every entry is an expression containing symbol
x. Further more, evaluating the L2 error of this collection can produce the L2 error
function of x, which is a quadratic function (e.g., 2Ax Bx C+ +) . Figure 1(b) illustrates
this procedure.

2.75

-1.25

x

x -1

2x+1.5 1.5 -x+0.5 -x+2.5 x+3 x+5 4 -2x+4

x

-1 x

A[1]=2 A[2]=2 A[3]=0 A[4]=2 A[5]=3 A[6]=5 A[7]=4 A[8]=4

(b) The Modified Error Tree XT ofA[8]=[2,2,0,2,3,5,4,4]

Selected coefficients

x Unselected coefficients

L2 norm error operator

Data expression of x
£«

£«

£«

£« £« £«

£«

£«

£-

£- £-

£-£- £- £-

(2x-0.5)
2

(0.5)
2

(-x+0.5)
2

(-x+0.5)
2

(x)
2

(x)
2

0 (-2x)
2

£« £« £« £« £« £« £« =12x-4x+1
2

L2 Error=

2.75

-1.25

0.5

0 -1

2 2 0 2 3 5 4 4

0

-1 0

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

(a) The Error Tree T of A[8]=[2,2,0,2,3,5,4,4]

+

+

+ -

_

-+

+ - - - -+ + +

S[0]

S[1]

S[2] S[3]

S[4] S[5] S[6] S[7]

S[0]

S[1]

S[2] S[3]

S[4] S[5] S[6] S[7]

Wall=[2.75,-1.25,0.5,0,0,-1,-1,0]

Fig. 1. An error tree and a modified error tree

In this example, the L2 error function is 212x 4x 1− + . Obviously, when x = 1/6,
this function can achieve the minimum 2/3, in other words,

1 10 ()optwavelet X wavelet≠ and the L2 optimum is 2/3 not 1 (respecting to x = 0).

 Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal 503

3.2 Theorem and Proof

Theorem 1. Setting all the unselected coefficients to zero cannot produce the optimal
wavelet synopsis for the L2 error measure. In other words,

10 wavelet is

not
1()optX wavelet .

Proof. Given a modified error tree XT and its L2 error function
as 2()f x Ax Bx C= + + , from the definition of XT and the calculation procedure of L2

error based on it, we can know A is no less than zero. If A were zero, then no entry in
the leaf nodes of XT would contain symbol x, so A is bigger than zero. With the
method of evaluating the minimum of quadratic function with one variable, we can

get the following equations
2 2

/ 2 0

/ 2 0

df dx Ax B

d dx Af

= + =⎧
⎨

= >⎩
. When / 2B Ax −= function f gets

the minimum 2(4) / 4AC B A− .

3.3 Construction Algorithm of 1()optX wavelet

Fig.2 shows our construction algorithm. Note that, some functions (e.g., waverec,
L2norm, diff) in our algorithm need symbolic computation, but most programming
languages just support numerical computation. For this reason, we choose matlab to
implement our algorithm.

Fig. 2. Construction Algorithm of
1()optX wavelet

Procedure SingleXOpt(A , B)
Input: Array A = [A1,...,An] of N original data items, Space budget B (number of
retained coefficients).
Output: Struct X1Wavelet {Ws, Xopt} is the optimal wavelet synopsis, X1Wavelet.Ws is
the collection of selected coefficients, X1Wavelet.Xopt is the value setting to all
unselected coefficients

begin
1. Wall := wavedec(A) // Haar wavelet decomposition, all coefficients retain in Wall.
2. X1Wavelet.Ws := wavethreshold(Wall,B) // Coefficients Thresholding.
3. Xmark(Wall , X1Wavelet.Ws) // Mark all the unselect ones with symbol x.
4. // Haar wavelet reconstruction, XA is an N-item array each item in XA is an
5. // expression of symbol x.
6. XA := waverec(Wall)
7. FX := L2norm(XA, A) // Compute the L2 error expression FX.
8. DiffFX := diff(FX, ‘x’) // Compute the differential expression of FX.
9. X1Wavelet.Xopt := solve(DiffFX, ‘x’) // Compute the equation of x
10. return (X1Wavelet)

end.

504 C. Sun et al.

4 Construction Algorithms of kX wavelet

A B-item wavelet synopsis occupies 2B+1 space. The total space is divided into two
parts: 2B space is allocated to retain indices and values for each selected coefficient
and 1 space is used to record the default value of all the unselected coefficients. When
the space allocated to the unselected coefficients is fixed, the L2 error of synopsis
decreases with the increase of the number of selected coefficients. Meanwhile, when
the number of selected coefficients is fixed, the L2 error of synopsis also decreases
with the increase of the number of default values to which the unselected coefficients
are mapped. Accordingly, the space allocation plan of traditional algorithms may not
be the optimal and we can check all plans to find the best one.

Section 4.1 shows that when the selected coefficients collection is fixed, the more
numbers we allocate to make the unselected coefficients map to, the smaller error of
the synopsis we can get. In section 4.2, the space-efficient method is introduced to
deals with the unselected coefficients by multi default values.

4.1 Theorems and Proof

Theorem 2. 2 (())opt
kL norm X wavelet is no less than 12 (())opt

kL norm X wavelet+

Proof. (Constructive proof method)
We can view the ()opt

kX wavelet as some 1kX wavelet+ , so 2 (())opt
kL norm X wavelet and

12 ()kL norm X wavelet+ are equivalent. Because the error value of any
1kX wavelet+ is

0no less than 12 (())opt
kL norm X wavelet+ , we can get that 2 (())opt

kL norm X wavelet is

no less than 12 (())opt
kL norm X wavelet+ . The following example shows the details.

Suppose Ws = {s4, s5, s7, s8} and the 2()optX wavelet (depicted in figure 3 (a)) is

given. We can viewed
2()optX wavelet as a 3X wavelet (depicted in figure 3 (b)).

Although the two wavelet synopses are different, the unselected coefficients

collection they produced are the same (both of which are {s4=4, s5=6, s7=4,
s8=6}) so that L2norm (2()optX wavelet) equals L2norm (3X wavelet). Because L2norm

(3X wavelet) is no less than L2norm (3()optX wavelet), we can get that L2norm

(2()optX wavelet) is no less than L2norm (3()optX wavelet).

 Fig. 3. an example of viewing a 2()optX wavelet as a 3X wavelet

2()optX wavelet

2X : < x0 = 4 , x1 = 6 >

2 4 7 0 5 8 1:{ , } ,{ , }s s x s s xρ → →

3X wavelet

3X : < x0 = 4 , x1 =x2 = 6>

3 4 7 0 5 1 8 2:{ , } ,{ } ,{ }s s x s x s xρ → → →

(a). a 2()optX wavelet (b). a 3X wavelet

 Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal 505

2ρ

3ρ

4ρ

×

1x

'1 1x x=

2x

'2 1x x= '3 2x x= '4 2x x=

''1x ''2x ''3x

 Fig. 4. "k=2" solution can only create "k=4" solution

Ws

Ws

Ws

4.2 Near Optimal Construction of ()opt
kX wavelet

Dealing with unselected coefficients with multi default values, we need to do two
things: one is to map all unselected coefficients to the multi default values; the other
is to determine the multi default values.

The second one is easy. Given the mapping relation kρ , the L2norm error of
wavelet synopsis is a k-variable quadratic function f(x1, …,xk) and the multi default
values (

kX) are determined by solving the system of equations:

1 1

1

(,...,) / 0

(,...,) / 0

k

k k

f x x x

f x x x

∂ ∂ =⎧
⎪
⎨
⎪∂ ∂ =⎩

 (3)

The key problem is how to create the mapping relation and record it in a low space.
Our method is described as follows.

Similar to Equi-Width histogram, we partition the sorted Ws into k adjacent Equi-

width intervals and map all coefficients in the ith interval to the ith component of kX ,

so that we can map k intervals to k components of kX . What’s more, it just needs 1

space to keep the width of interval from which the mapping relation can be derived.
Using this method, it just needs k+1 space (in the wavelet synopsis) to handle the
unselected coefficients collection with k default values.

However, producing the kρ in

this way cannot always make the
theorem 2 satisfied. For example,
a ‘k=2’ optimal solution can be
viewed as a ‘k = 4’ feasible
solution but not as a ‘k =3’ one, so
it is hard to tell whether the ‘k=3’
solution is less than the ‘k=2’
solution for the L2 error. Figure 4
illustrates this problem. Although
there is such a problem, our method is still useful to create near optimal solution and
to decrease the L2 error, for the theorem 3.

Theorem 3. The Equi-width partition can guarantee that (),2 i

kL norm X k Cwavelet = is

larger than (), i

kL norm X k Cwavelet += 12 ,while C is any natural number lager than 1.
The proof is similar to the theorem 2. We can also view a k=Ci wavelet synopsis as

a k=Ci+1 synopsis. Such that (),2 i

kL norm X k Cwavelet = is larger than
(), 12 i

kL norm X k Cwavelet += .
Figure 5 demonstrates the construction algorithm of near optimal

synopsis ()near opt
kX wavelet − .

506 C. Sun et al.

Fig. 5. Equi-width construction Algorithm of ()near opt
kX wavelet −

5 Experimental Evaluations

In this section, we present the results of an empirical study we have conducted
through the algorithmic techniques developed in this article for synopses optimized
for L2 error measure. The primary objective of our study is to verify theorems
proposed above and to demonstrate the improvement that the new synopsis can
achieve comparing to the traditional ones. Our experimental study has made the
following comparisons for the L2 error measure:

 The comparison between 1()optX wavelet and the traditional wavelet synopsis;

 The comparison between 1()optX wavelet and Near opt
kX wavelet − constructed by

equi-width scheme.

We ran our techniques against several different one-dimensional synthetic data
distributions, generated as follows. First, a Zipf data generator was used to produce
Zipf frequencies for various levels of skew (controlled by the z parameter of the Zipf),
numbers of distinct values N, and max frequency values. We varied the z parameter

Procedure KX_NearOpt(A , B, K)
Input: Array A = [A1,...,An] of n original data items, Space budget B (number of
retained coefficients), Space budget K (number of the variables which unselected
ones map to).
Output: Struct XkWavelet {Ws, KXopt, P} is the optimal wavelet synopsis,
X1Wavelet.Ws is the vector of selected coefficients, X1Wavelet.KXopt is a k-item
vector which record values set to all unselected coefficients, X1Wavelet.P is a k-item
array used to record the end point of each partitioned(from the unselected coefficients
collection)interval.
begin

1. // Haar wavelet decomposition, all coefficients are retained in Wall.
2. Wall := wavedec(A)
3. XkWavelet.Ws := wavethreshold(Wall,B) // Coefficients Thresholding.
4. // partition the unselected coefficients into K adjacent intervals.
5. XkWavelet.P := partition(Wall , Ws, K)
6. // Mark the K adjacent intervals with symbols x1…xk.
7. KXmark(Wall , Ws, P)
8. // Haar wavelet reconstruction, XA is an n-item array each item in XA is a
9. // symbol expression.
10. XA := waverec(Wall)
11. // Compute the L2 error expression FX.
12. FX := L2norm(XA,A)
13. // Compute the partial differential expressions of FX.
14. for i = 1 to k do
15. DiffFX[i] := diff(FX, xi)
16. end
17. XkWavelet.Xopt[] :=solve(DiffFX[])// Compute the system of equations
18. return X1Wavelet

end.

 Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal 507

from 0.5 (low skew) to 2.0 (high skew), the frequency dataset size N between 128 and
1,024, and the max count between 1k and 16k. Next, a random permutation step was
applied on the generated data set. We used a Zipf distribution generator coded by
Kenneth J. Christensen (University of South Florida) which can be found at [10].

0. 00%

1. 00%

2. 00%

3. 00%

4. 00%

5. 00%

6. 00%

7. 00%

8. 00%

1 2 3 4 8 9

Number of K
Er

ro
r

Im
pr

ov
em

en
t

Ra
te B=32

B=16

B=8

B=4

(a) N=128 Z=0.5 (b) N=128 Z=1.0

0. 00%

1. 00%

2. 00%

3. 00%

4. 00%

5. 00%

6. 00%

1 2 3 4 8 9
Number of K

Er
ro

r
Im

pr
ov

em
en

t
Ra

te

B=32

B=16

B=8

B=4

0. 00%

2. 00%

4. 00%

6. 00%

8. 00%

10. 00%

12. 00%

14. 00%

1 2 3 4 8 9

Number of K

Er
ro

r
Im

pr
ov

em
en

t
Ra

te

B=32

B=16

B=8

B=4

(c) N=128 Z=2.0 (d) N=1024 Z=0.5

(e) N=1024 Z=1.0 (f) N=1024 Z=2.0

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1 2 3 4 8 9

Number of K

E
r
r
o
r

I
m
p
r
o
v
e
m
e
n
t

R
a
t
e

B=256

B=128

B=64

B=32

0. 00%

0. 10%

0. 20%

0. 30%

0. 40%

0. 50%

0. 60%

0. 70%

0. 80%

0. 90%

1 2 3 4 8 9
Number of K

Er
ro

r
Im

pr
ov

em
en

t
Ra

te

B=256

B=128

B=64

B=32

0. 00%

0. 10%

0. 20%

0. 30%

0. 40%

0. 50%

0. 60%

0. 70%

0. 80%

0. 90%

1. 00%

1 2 3 4 8 9
Number of K

Er
ro

r
Im

pr
ov

em
en

t
Ra

te

B=256
B=128
B=64
B=32

Fig. 6. Experiment Results

508 C. Sun et al.

Each picture of fig.6 illustrates the experiment results of one data distribution. We
vary the K parameter and B parameter on every data distribution. The Y axis shows
the error improve rate of our wavelet synopsis (corresponding to traditional synopsis)
and X axis shows the number of K. As fig.6 shows, all of our synopses are more
optimal than traditional ones and our theorems are supported by the experiment
results. Most of error improve rate functions increase with k, but there are some
exceptions, for example: in fig.6(a) , when B=32, the error improve rate of k=9 is less
than that of k=8 ,but the error improve rate increases in the order of k=1,2,4,8 and in
the order of k=1,3,9. This situation is caused by the equi-partition method and
Theorem 3 gives the explanation of it.

6 Conclusions and Future Work

In this paper, we point out that processing the unselected wavelet coefficients of
wavelet synopses effectively is also very important, and provide effective solutions at
the same time. For now, our solutions are off-line. We will try to create the
(approximate) algorithms for the time series model and for the dynamic maintenance
of our synopsis in the future.

References

1. Garofalakis, M.N., Kumar, A.: Wavelet synopses for general error metrics. ACM Trans.
Database Syst. 30(4), 888–928 (2005)

2. Garofalakis, M.N., Gibbons, P.B.: Probabilistic wavelet synopses. ACM Trans. Database
Syst. 29, 43–90 (2004)

3. Garofalakis, M.N., Gibbons, P.B.: Wavelet synopses with error guarantees. In: SIGMOD
Conference, pp. 476–487 (2002)

4. Karras, P., Mamoulis, N.: One-Pass Wavelet Synopses for Maximum-Error Metrics.
VLDB, pp. 421–432 (2005)

5. Muthukrishnan, S.: Subquadratic Algorithms for Workload-Aware Haar Wavelet
Synopses. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 285–
296. Springer, Heidelberg (2005)

6. Blatter, C.: Wavelets: A Primer. A K Peters (1998)
7. Li, T., Li, Q., Zhu, S., Ogihara, M.: A survey on wavelet applications in data mining.

SIGKDD Explorations Newsletter 4(2), 49–68 (2002)
8. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In:

Proc. of SIGMOD Conf., pp. 448–459 (1998)
9. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing

using wavelets. VLDB Journal 10(2-3), 199–223 (2001)
10. http://www.cs.unc.edu/~vivek/home/stenopedia/zipf/genzipf.c

A Logic Framework to Support

Database Refactoring

Shi-Kuo Chang1, Vincenzo Deufemia2, Giuseppe Polese2, and Mario Vacca2

1 University of Pittsburgh, Department of Computer Science
6101 Sennott Building, Pittsburgh, PA, USA, 15260

chang@cs.pitt.edu
2 Università di Salerno, Dipartimento di Matematica e Informatica

Via Ponte don Melillo, 84084 Fisciano (SA), Italy
{deufemia,gpolese,mvacca}@unisa.it

Abstract. We propose a formal framework for database refactoring,
analyzing both the changes to the database schema, and their impact on
queries. The framework defines a logic model of changes, and views the
database refactoring process as an agent based one. The agent tries to
discover and resolve inconsistencies, and it is modeled as a problem solver
capable to perform changes triggered upon the detection of database
schema anomalies. The framework can be considered a first step towards
the automation of the database refactoring process.

1 Introduction

Waterfall methodologies have their weakness in their incapability to cope with
changes, which makes maintenance considerably an expensive process. For this
reason, incremental and iterative methodologies were introduced [12]. They view
system development as a step by step process, with the introduction of new func-
tionalities to meet user needs. The main problem arising in both paradigms is the
complexity in facing the effects of changes. Therefore, an increased automated
support in this task would result in a reduction of efforts and costs, especially
in incremental methodologies, because it would make them more systematic.

Changes are often necessary to reflect the continuous evolution of the real
world, which causes frequent changes in functional requirements. This entails
frequent modifications to the software, yielding a gradual decay of its overall
quality. For this reason, many researchers in this field have developed software
refactoring techniques [15]. Software refactoring is intended as the restructuring
of an existing body of code, aiming to alter its internal structure without chang-
ing its external behavior [5]. It consists of a series of small behavior preserving
transformations, which altogether can produce a significant software structural
change. Moreover, system modifications resulting in changes to the database
structure are also relatively frequent [21]. These changes are particularly criti-
cal, since they affect not only the data, but also the application programs relying
on them [1,10].

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 509–518, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

510 S.-K. Chang et al.

Several disciplines have faced the problem of managing the effects of database
schema changes. In particular, schema modification has faced the problem of
changing the schema of a populated database. In addition to this, schema evo-
lution pursues the same goal, but it tries to avoid loss of data. Alternatively,
schema versioning performs modifications of the schema, but it keeps old ver-
sions to preserve existing queries and application programs running on it. Al-
though schema versioning faces the problem of query and application programs
preservation, it considerably increases the complexity and the overhead of the
underlying DBMS. Finally, database refactoring aims to modify the database
schema, and to change the corresponding application programs accordingly. In
other words, database refactoring is the process of slowly growing a database,
modifying the schema by small steps, and propagating changes to the queries [1].

So far research on database refactoring has led to the definition of several
methodologies [1]. However, no significant contribution has been provided to-
wards the automation of this process. This is mainly due to the lack of formal
approaches, like those developed for schema versioning and schema evolution
[3,6,11,17,18]. Nevertheless, these approaches use models that do not consider
queries, hence they do not analyze the impact of schema changes on queries and
application programs. In this paper we propose a formal framework for database
refactoring, analyzing both the changes to the database schema and their im-
pact on queries and application programs. The framework defines a logic model
of changes, and views the database refactoring process as an agent based one.
Here, the goal of agents is to discover and resolve inconsistencies. The agent is
modeled as a problem solver capable to perform changes which are triggered
upon the detection of database schema anomalies.

The use of elementary operators can already be found in many other ap-
proaches (see, for example, [3,6,18]), but their application relies on designer
decisions or it is strongly coupled with the model features. By triggering such
operators upon the detection of anomalies, our approach can potentially reduce
the designer effort, providing the basis to automate the database refactoring
process.

The paper is organized as follows. In section 2 we discuss related works, while
section 3 introduces the approach we propose to automate database refactoring.
In the sections 4 and 5 a more detailed discussion about the proposal is provided.
Finally, conclusions and future works are provided in Section 6.

2 Related Work

Database refactoring is a relatively new research topic [1], and no formal ap-
proaches have been proposed for dealing with it. On the contrary, many theo-
retical models exist for schema evolution and schema versioning [3,6,11,17,18].

Nowadays, database researchers agree on the fact that schema evolution and
versioning introduce two main problems: the semantics of changes, and the
change propagation. The former requires determining the effects of changes on
the schema, whereas the second analyzes the consequences of changes on data.

A Logic Framework to Support Database Refactoring 511

So far two kinds of theoretical models have been proposed: the invariant and
rule model [3,17], and the axiomatic or formal model [6,18].

The invariant and rule model is based on the ORION object-oriented data
model [3,17]. It is structured into three components: a set of properties of the
schema (invariants), a set of schema changes, and a set of rules. The invariants
state the properties of the schema (for example, the classes are arranged in a
lattice structure), whereas rules help detecting the most meaningful way of pre-
serving the invariants when the schema changes. This model of schema evolution
yields two important issues: completeness and soundness of the schema evolu-
tion taxonomy. Both of them have been proved only for a subset of the schema
change operations.

The axiomatic model has three basic components: terms, axioms, and changes
[18]. The basic concept underlying this model is the type (analogous to the con-
cept of class in ORION), which is in turn characterized by the terms. Examples
of terms are the lattice of types and the set of type properties. The axioms state
the properties of the terms, like the properties of the lattice of types. Changes on
the schema are performed by means of three basic change operations: add, drop,
and modify. The problem of the semantics of changes is solved by re-computing
the entire lattice using the axioms. The model satisfies the properties of sound-
ness and completeness.

An approach based on the axiomatic model is provided in [6], and it models
schema versioning from a logical and computational point of view. In particu-
lar, it proposes a semantic and formal framework based on Description Logic
[2]. The basic elements of the model are: classes and their attributes, schema
(a set of class definitions), and elementary schema change operators. A basic
concept underlying the framework is the legal database instance, which, infor-
mally represents a database instance satisfying all the constraints. This notion
allows broadening the number of consistencies that are considered as reasoning
problems, according to the style of Description Logic. Finally, all the consistency
problems considered have been proved as decidable.

The approaches based on the two models mentioned above present two main
limitations. The former regards the explosion of rules when facing more general
schema changes, whereas the second regards the fact that they are all suited to
the object-oriented data model. Although a taxonomy of change operations for
the relational model has been proposed [20], it does not represent a complete
model.

The refactoring of relational databases entails facing two important prob-
lems, which cannot be managed through the two models above: the variability
of schema properties, and the propagation of changes into queries. In this paper
we face both these problems.

3 Database Refactoring Through Epistemic Logic

Epistemic logic is the logic of knowledge [7,16]. It deals with the reasoning mech-
anisms of knowledge and with the process of belief revision, i.e., the evolution

512 S.-K. Chang et al.

of a base of beliefs. In epistemic logic there are three kinds of belief changes:
expansion, revision, and contraction. The first change refers to the addition of
a belief to a base, the second is related to the addition of an inconsistent belief
to a base that causes the deletion of other beliefs, and finally, the third takes
into account the retraction of a belief. Epistemic logic deals with both the for-
mulation of postulates for belief revision and the constructions of the revision
process.

Database refactoring can be seen as a revision process. In fact, an example
of schema change (together with its queries) is the addition of a functional de-
pendency, which might cause the split of a table (revision) in order to keep the
schema in a certain normal form. It is easy to notice that changes in a database
schema depend on the properties holding in it. For instance, the addition of an
attribute might only entail the modification of the table in which it is added,
but it might also require more complex changes. In fact, the new attribute might
alter the degree of normalization of the table if it depends only from a portion
of the primary key, or it might require the introduction of new referential in-
tegrity constraints in case it coincides with the primary key of another table
in the schema. Therefore, the process of database refactoring is not simply a
composition of elementary changes, but it implies more sophisticated reasoning
tasks, like detec! ting inconsistencies.

If we look at the schema as a knowledge base, the refactoring becomes a pro-
cess of changes in the knowledge, and hence it can be interpreted as an epistemic
process, which can be naturally modeled through Epistemic Logic. Within this
view, it becomes natural to see refactoring as an agent managed process aiming
to operate on the schema in order to perform the required changes, and trying
to preserve original properties in terms of knowledge and queries.

We abide by the Thagard conception [22], which views concepts like data
structures. Since a data structure can be modeled as a signature with axioms
[13], we will see a database schema as a kind of data structure, and will focus
on those changes involving elements in the signature (for instance, the addition
or the deletion of an attribute or a functional dependency). Therefore, we need
to precisely define both the knowledge on which the agent operates, and the
behavior of the agent. In order to do this, we need to define

– the features of the schema;
– the allowed change requirements;
– the reasoning mechanisms of the agent.

When a change requirement arises, the agent has to decide the actions to per-
form. For example, when the agent receives a request of adding a new attribute,
it might decide to also add one or more new functional dependencies involving
the attribute. Thus, the agent is a kind of problem solver.

A Logic Framework to Support Database Refactoring 513

4 A Formalization of the Database Refactoring Problem
Using Predicate Logic

In this section we formalize the problem of database refactoring using predicate
logic. To this end, in the following we introduce the notations that will be used
throughout the paper.

Let Σ be the set of all the attribute symbols, D the set of types, N the set of
names, and V a set of variables, A = {(n, t)|n ∈ N, t ∈ D} the set of attributes,
R = {(n, a1 × . . . × am)| n ∈ N, a1, a2, . . . , am ∈ Σ} the set of relations, and
Φ = {(n, a1 × . . . × ak → b)|a1, a2, . . . , ak, b ∈ Σ, n ∈ N} the set of functional
dependencies. In order to express the schema properties, we will use the following
functions and predicates: table(R) to state if R is a relation, attr(R) returning
the set of attributes of table R. Queries are non-recursive, function-free, and
Datalog formatted [4], i.e., a query is formed by a head and a body. The head is
a couple (name, X) with X ∈ V n; the body is a conjunction of predicates on X .
The functions body(Q) and var(Q) ⊆ V return the body of a query Q, and the
set of its variables, respectively. Variables are labeled with the attribute to which
they refer. For instance, xa indicates that x is a variable referring to attribute a.
Moreover, FD(f) is a predicate that is true when f is a functional dependency,
LHS(f) (resp. RHS(f)) is a function returning the set of attributes on the left
(resp. right) hand side of f , and finally, table(f) returns the table to which f
refers to.

Definition 1. A database system K is a quintuple K = (A, T, F, Q, P), where
A ⊆ Σ, T ⊆ R, F ⊆ Φ, Q is a set of queries, and P is a set of properties
(propositions) involving elements of A, T , and F .

Example 1. Let us consider a database system storing data about employees of
a company, and having a query for retrieving all employees of the Computer
Science personnel department can be represented by K = (A, T, F, Q, P) where

A = {Employee ID, Name, Department ID, Salary, Address}
T = {R(Employee ID, Name, Department ID, Salary, Address)}
F = {f1 : Employee ID → Name; f2 : Employee ID → Department ID;

f3 : Employee ID → Salary, f4 : Employee ID → Address}
Q = {q(x, y, w, z) ≡ R(x, y, “CS”, w, z)}
P = {1)primary key(R, Employee ID)

2)∀r ∈ T ∃k ⊆ Attr(r) such that primary key(r, k)
3) key dep(r, k) ≡ ∀a ∈ (attr(r) − k)
(∃f ∈ F such that (LHS(f) = k ∧RHS(f) = {a})∧
(¬∃f such that (LHS(f) �= k ∧RHS(f) = {a}))
4)∀r ∈ T (primary key(r, k) → key dep(r, k))}

The properties in P state that every relation has a primary key, and the at-
tributes fully depend on the primary key only.

514 S.-K. Chang et al.

Definition 2. A database system K = (A, T, F, Q, P) is said to evolve towards
a database system K ′ = (A′, T ′, F ′, Q′, P ′) iff there are four functions

εAttr : P(Σ) → P(Σ)
εTable : P(R) → P(R)
εConstr : P(Φ) → P(Φ)
εP : P(Prop) → P(Prop)

where P is the power set operator and Prop is the set of all propositions on A,
T , F ;

and a substitution θ = (n1 ← expr1, . . . , nk ← exprk) where nj are names and
exprj are expressions constituted by either single names or their conjunctions,
such that

A′ = εAttr(A)
T ′ = εTable(T)
F ′ = εConstr(F)
P ′ = εP (P)
Q′ = {q′| q′ = qθ with q ∈ Q} i.e., q′ is obtained by applying θ to q.

For sake of brevity, when no confusion occurs, we use symbol ε, named “evo-
lution”, to refer to the four functions together with the substitution. We also
write D′ = ε(D).

The semantics of the database systems modeled through logic frameworks is
usually specified by interpretation functions (e.g., [2]). An interpretation I is a
couple (ΔI , ·I) where ΔI is a domain and ·I is an interpretation function pro-
viding set theoretic interpretations. For instance, the interpretation of a relation
R having two attributes is RI ⊆ ΔI ×ΔI .

Given a database system K, a database instance on K, denoted by Δ(D), is
an interpretation in K. The interpretation of a query q ∈ Q , denoted with qI ,
is the set of all tuples in the database satisfying q. Two queries q and q′ are
equivalent in a database instance if and only if they produce the same answers.
The following definition introduces the concept of query equivalence under the
projection operator, which will be used for defining the concept of refactored
systems.

Definition 3. A query q is equivalent to a query q′ under the projection operator
π, denoted by q ≡π q′, if and only if

π(var(q)∩var(q′))(qI) = π(var(q)∩var(q′))(q′I)

where I is an interpretation function.

Now we are ready to introduce a formal definition of refactoring.

Definition 4. A database system K = (A, T, F, Q, P) is said refactored in K ′ =
(A′, T ′, F ′, Q′, P ′) if and only if

i. ∀q ∈ Q ∃q′ ∈ Q′ such that q ≡π q′

ii. if ∀Δ(K) Δ(K) |= P then ∀Δ(K ′) Δ(K ′) |= P ′

A Logic Framework to Support Database Refactoring 515

Refactoring functions are particular kinds of evolution functions preserving
the results of queries and the properties of the database system. For instance,
if D is in third normal form, then also D′ must be in the same normal form.
Notice that schema evolution is a special case of refactoring. In fact, if Q = Q′

and P = P ′ refactoring reduces to schema evolution.

Example 2. Let us consider the database system D introduced in example 1 and
the following evolution functions:

εAttr(A) = A
εTable(T) = (T − {R}) ∪ {R1, R2}
εConstr(F) = F ∪ { f5 : Department ID → Address}
θ = (R ← R1 ∧R2)

whereR1 andR2 haveattributes(Employee ID, Name, Salary, Department ID)
and (Department ID, Address), respectively.

By applying ε on D we obtain the database system D′ = (A′, T ′, F ′, Q′, P ′)
with
A′ ={Employee ID, Name, Department ID, Salary, Address}
T ′={R1(Employee ID, Name, Salary, Department ID), R2(Department ID,

Address)}
F ′ = {f1 : Employee ID → Name; f2 : Employee ID → Department ID;

f3 : Employee ID → Salary, f4 : Employee ID → Address,
f5 : Department ID → Address}

Q′ = {q(x, y, w, z) ≡ R1(x, y, w, “CS”) ∧R2(“CS”, z)}
P ′=(P−{primary key(R, Employee ID)}∪{primary key(R1, Employee ID),

primary key(R2, Department ID)}

5 The Process of Database Refactoring

As the refactoring is an agent based process, in order to realize the required
changes, the agent has to operate on the schema in a way that preserves the
properties of the knowledge and of the queries. Two kinds of approaches can be
used to accomplish this task: axiom based and constructive. The former is based
on a set of postulates, known in the literature as postulates for belief revision
[7,14]. The constructive approaches use propositions and programs for handling
changes in the knowledge [8].

In the proposed refactoring process we use the constructive approach and build
the evolution operator ε by using propositions, questions, and change operations.
A question is denoted with ?p, where p is a proposition.

An example of change operation is the splitting of a table t after the introduc-
tion of a new functional dependency f , which could be described in the following
way:

split table(t, t′, t′′, f) ←
(A′ = A ∧
T ′ = (T − {t}) ∪ {t′, t′′} ∧

516 S.-K. Chang et al.

F ′ = F ∧
Q′ = {q′| var(q′) = var(q), body(q′) = ρ(body(q), t, t′ ∧ t′′)} ∧
attr(t′) = attr(t)−RHS(f) ∧
attr(t′′) = LHS(f) ∪RHS(f))

The database refactoring process is based on the following predicates: Con-
sistent(change-operation), Hold(p), and Resolve(change-operation, p). The for-
mer is true when the set of properties P ′ obtained by the application of the
change-operation is consistent. The second is true when proposition p holds. Fi-
nally, the third is true when proposition p holds after the application of change-
operation.

These logical operations can be expressed using the K operator of epistemic
logic [9]. The K operator is applied to a proposition p using the expression
Kp, whose meaning can be informally expressed by “it is known that p”. As a
consequence, Hold(p) can be expressed as Kp, Consistent(change-operation) as
K(∀p ∈ ε(P)).p, whereas Resolve(change-operation, p) as Kp applied after the
change-operation.

The agent uses the previous predicates to submit questions or to answer ques-
tions according to rules like the following:

¬Consistent(change− operation)
?∃ωResolve(ω, p)

¬Consistent(change− operation)
?∃x ¬Hold(x)

¬Hold(¬∃x.P (x))
?Resolve(add(x), ∃xP (x))

¬Hold(∃x.P (x))
?Resolve(drop(x), ∃xP (x))

?Resolve(ω, p)
?Consistent(change− operation)

¬Resolve(ω, p)
?∃ω′((ω′ �= ω) ∧Resolve(ω′, p))

For instance, if an inconsistency on a proposition p arises, the first rule sug-
gests the agent to ask the question “Does there exist a change operation resolving
the inconsistency?”.

In general, the reasoning process of the agent has a question as starting point,
and a change operation as ending point. The process of answering a question
like the previous one is a problem solving process, since it involves the choice

A Logic Framework to Support Database Refactoring 517

of a change operation. This is made through heuristics, as it usually happens in
the problem solving domain [19].

Example 3. Let us consider the database system of example 1. When the agent
receives a request of adding a functional dependency

f5 : Department ID → Address

it processes the following questions (answers are visualized in bold):

?Consistent(add(f5)) NO
?∃x ¬Hold(x) YES x = (LHS(f5) �= Employee ID ∧RHS(f5) = {Address})
?Resolve(drop(f5), P) NO
?Resolve(split table(R, R′, R′′), f5) YES
?Consistent(split table(R, R′, R′′)) NO

6 Conclusions and Future Works

We have presented a formal framework for database refactoring based on epis-
temic logic. The framework defines a logic model of changes, and uses an agent
to discover and resolve inconsistencies, and to analyze the impact of changes on
queries.

In the future we would like to investigate several important issues. Firstly, it
is necessary to study the system of rules and their properties. We also need the
agent to be capable of making decisions. Thus, we should make the agent more
autonomous and should equip it with problem solving heuristics. Moreover, we
need the agent to be more communicative, in order to base its decisions also
on user suggestions. For example, adding a functional dependency is a serious
decision, and it would be desirable having the agent ask for user support. We
would also like to investigate the possibility to exploit the second generation of
epistemic logic that is based on the erotetic logic [9].

Finally, we would like to investigate the possibility of using visual language
based tools capable of supporting the database refactoring process directly on
the database conceptual or logic schema by means of special gesture operators.

References

1. Ambler, S.W., Sadalage, P.J.: Refactoring databases: Evolutionary database de-
sign. Addison-Wesley, London (2006)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: Theory, implementation, and applications. Cambridge
University Press, Cambridge (2003)

3. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data, pp. 311–322. ACM
Press, New York (1987)

518 S.-K. Chang et al.

4. Bonner, A.J.: Hypothetical Datalog: Negation and linear recursion. Rutgers Uni-
versity (1989)

5. Du Bois, B., Van Gorp, P., Amsel, A., Van Eetvelde, N., Stenten, H., Demeyer, S.,
Mens, T.: A discussion of refactoring in research and practice. Technical report, n.
2004-03, University of Antwerp, Belgium (2004)

6. Franconi, E., Grandi, F., Mandreoli, F.: A general framework for evolving schemata
support. In: Proceedings of SEBD 2000, pp. 371–384 (2000)

7. Gärdenfors, P.: Belief revision: An introduction. In: Belief Revision, pp. 1–20. Cam-
bridge University Press, Cambridge (1992)

8. Gerbrandy, J.: Dynamic epistemic logic. In: Moss, L.S., Ginzburg, J., de Rijke, M.
(eds.) Logic, Language and Computation, vol. 2, pp. 67–84. CSLI Publications,
Stanford (1999)

9. Hintikka, J.: A second generation epistemic logic and its general significance. In:
Hendricks, et al. (eds.) Knowledge Contributors, Synthese Library no. 322, Kluwer
Academic Publishers, Dordrecht (2003)

10. Karahasanovic, A.: Identifying impacts of database schema changes on application.
In: Proceedings of the 8th Doctoral Consortium at the CAiSE*01, pp. 93–104
(2001)

11. Lakshmanan Laks, V.S., Sadri, F., Subramanian, I.N.: On the logical foundations
of schema integration and evolution in heterogeneous database systems. In: Ceri,
S., Tsur, S., Tanaka, K. (eds.) DOOD 1993. LNCS, vol. 760, pp. 81–100. Springer,
Heidelberg (1993)

12. Larman, C., Basili, V.R.: Iterative and incremental development: A brief history.
IEEE Computer 36(6), 47–56 (2003)

13. Luo, Z.: Program specification and data refinement in type theory. Mathematical
Structures in Computer Science 3(3), 333–363 (1993)

14. Maghsoudi, S., Watson, I.: Epistemic logic and planning. In: Negoita, M.G.,
Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 36–45.
Springer, Heidelberg (2004)

15. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2), 126–139 (2004)

16. Meyer, J.J., Van Der Hoek, W.: Epistemic logic for AI and computer science.
Cambridge University Press, Cambridge (1995)

17. Nguyen, G., Rieu, D.: Schema evolution in object-oriented database systems. Rap-
ports de Recherche 947 (1988)

18. Peters, R.J., Özsu, M.T.: An axiomatic model of dynamic schema evolution in
objectbase systems. ACM Transactions on Database Systems 22(1), 75–114 (1997)

19. Polya, G.: How to Solve It. Princeton University Press, Princeton (1957)
20. Roddick, J.F., Craske, N.G., Richards, T.J.: A taxonomy for schema versioning

based on the relational and entity relationship models. In: Elmasri, R.A., Koura-
majian, V., Thalheim, B. (eds.) ER 1993. LNCS, vol. 823, pp. 137–148. Springer,
Heidelberg (1994)

21. Roddick, J.F.: A survey of schema versioning issues for database systems. Infor-
mation and Software Technology 37(7), 383–393 (1995)

22. Thagard, P.: Conceptual revolutions. Princeton University Press, Princeton (1992)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp.519–528,2007.
© Springer-Verlag Berlin Heidelberg 2007

An Iterative Process for Adaptive Meta- and Instance
Modeling

Melanie Himsl1, Daniel Jabornig1, Werner Leithner1, Peter Regner1,
Thomas Wiesinger1, Josef Küng1, and Dirk Draheim2

1 FAW-Institute
Johannes Kepler University of Linz, Austria

{mhimsl,djabornig,wleithner,pregner,twiesinger,
jkueng}@faw.uni-linz.ac.at

2 Software Competence Center Hagenberg
draheim@acm.org

Abstract. In this paper we propose a practice for organizing modeling activity.
We see substantial, successful modeling efforts in enterprises, e.g., in our logis-
tics, manufacturing, banking and insurance projects, even without model-driven
engineering metaphor. The focus of our discussion is the working domain ex-
pert. The working domain expert desires tool support, service support, and
adaptivity of the modeling approach. We discuss these topics in the proven
framework of the IT Infrastructure Library.

Keywords: Metamodeling, Iterative Modeling Process, Adaptive Modeling,
Model Evolution, IT-Infrastructure Library (ITIL).

1 Introduction

In this paper we investigate modeling as a tailorable common activity in companies,
we investigate modeling languages as tailorable modeling tools. An adaptive meta-
modeling tool that has been designed with respect to the needs of the working domain
expert serves as the basis of this discussion. We present our thoughts in terms of the
IT Infrastructure Library.

Adaptivity of modeling languages is a major driving issue in the community of
Model-Driven Architecture [1], [2] (MDA), which is the current automatic program-
ming [3], [4] metaphor. Modeling is pervasive in modern enterprises; however, it is so
without automatic programming metaphor. Of course, modeling, and visual modeling
in particular, is used in Software development projects. With respect to Software de-
velopment, there are different opinions about the role and the importance of model-
ing. For example, the Rational Unified Process (RUP) [5] is based on modeling – it is
model-driven. On the other hand, in agile processes like Extreme Programming (XP)
[6] modeling is deemphasized. Despite that we see severe modeling efforts in compa-
nies, in both vertical and horizontal projects, not only Software development projects
but projects [7] in general. For example, we currently see huge business process re-

520 M. Himsl et al.

documentation projects in major enterprises. In day-to-day projects we see modeling
activities in business reengineering, logistics, supply chain management, industrial
manufacturing and so on. Even if models are not intended as blueprints in Software
development projects they add value. Why? They foster communication between
stakeholders, because they enforce a certain standardization of the respective domain
language. Therefore, they speed up requirement elicitation and than serve as a long-
time documentation of system analysis efforts.

Modeling is here to stay. Research in model-driven engineering is important. In
this paper we have a different focus on modeling than model-driven engineering. We
have a look at the working domain [8] expert. Often, it is necessary to adapt the mod-
eling method and, in particular, to adapt the used modeling language to the current
needs of the domain. It may become necessary to introduce new modeling elements,
to deprecate an existing model element, to add properties to an existing modeling
element, to detail the semantics or to change the appearance of a model element.
However, changes to a modeling apparatus must be done in a disciplined manner.
Ideally, all stakeholders in the project should agree upon changes. At least, there
should be an authority in the project, a senior modeler so to speak, who coordinates
and eventually allows or rejects changes.

With respect to a disciplined approach to adaptive modeling, it is a good practice to
use a modeling tool. A modeling tool not only eases modeling, it also helps in stream-
lining the modeling efforts. All stakeholders have the same view onto modeling ef-
forts as the set of modeling elements supported by the used tool. Now, if adaptivity is
an issue, the modeling tool should allow for changes to the supported modeling lan-
guages. If it is not possible to change the modeling language at all, the only work-
around is the introduction of names for specific modeling elements and specific prop-
erties along with naming conventions. However, the loose introduction of specific
names weakens the aforementioned streamlining effect of the modeling tool. There-
fore, the modeling tool should ideally support metamodeling. Metamodeling capabili-
ties introduce the flexibility needed for modeling language adaptation. At first sight,
metamodeling capabilities do not come at the price of weakening the streamlining ef-
fect of the tool, because changes to the modeling language are now done systemati-
cally in the framework of the defined metamodeling features. However, if every
stakeholder in the project gets access to the metamodeling features, the described
risks again exist. A concrete risk is, for example, that a modeler is tempted to intro-
duce modeling elements from his or her own modeling idiolect. Another risk is that
modelers start modeling on the metamodeling level, i.e., introducing concrete ele-
ments of the concrete modeling problem as modeling elements into the method. All
this can lead to an uncoordinated rank growth of the metamodel. It remains a task to
define guidelines for modeling and metamodeling activities.

The introduction of metamodeling not only has the risk of uncontrolled changes to
the modeling apparatus. A converse kind of phenomenon can also be observed. Some
stakeholders are challenged with metamodeling concepts. They just want to do their
modeling job good and do not want to learn about metamodeling and metamodeling
tool features. They want to communicate their problems with the modeling apparatus
and get the problems fixed by a tool smith. This means, the working modeler typically
perceives the modeling tool as a Software service. For the working modeler a change
request to the modeling language is not different from a change request to any other

 An Iterative Process for Adaptive Meta- and Instance Modeling 521

feature of the modeling tool. This means that for the working modeler the adaptivity
of the modeling language just belongs to the changeability of the tool in the sense of
Software product quality – see ISO standard 9126 [9].

With this paper we want to give guidance for projects that show modeling by do-
main experts. Most importantly, we incorporate metamodeling into the considerations
in order to achieve the desired flexibility. On the other hand, we want stay in control
of the metamodeling activity. In general, the domain expert has the characteristics of
an end user [10] and therefore he or she wants to be supported by the modeling tool as
a Software service. For these reasons, we consequentially define a Software service
support process for the modeling scenario backed by metamodeling capabilities. We
do this in the terminology of ITIL for the reason of maximal reuse of concepts, be-
cause ITIL is the most comprehensive, most widely used collection of best practices
in managing Software services and the group of ITIL users is steadily growing.

2 Addressed Problem Areas

Because of the different domains modeling is used for, it is important to represent the
domain specific knowledge in the modeling techniques. The level of abstraction and
the genericness of standard techniques often constrict a complete modeling of a spe-
cific issue. This leads to an incorrect description of the reality or to an inappropriate
abstraction level. For example the area of business process management includes a
wide range of activities. They reach from quality management to the introduction of
standard software. Each activity needs a custom process modeling technique which
should be able to define the knowledge of a specific branch, company or assignment.

To grant an accurate representation of the modeling domain, a customized model-
ing technique is necessary. In practice it is often impossible to adapt the given model-
ing techniques. However if adaptations would be possible either the users are gener-
ally prevented from making adaptations or they must have special skills and
knowledge like knowing specific programming or scripting languages.

Furthermore, to find an optimal solution for a domain specific modeling technique
it is necessary to traverse several building cycles to get an ideal description of the sub-
ject. The reason therefore is that the requirements often can’t be completely defined
before the technique definition and they first arise during the modeling of the domain.
The requirements can also vary if changes in the modeling domain occur. Changed
requirements need an adaptation of the modeling technique and probably an adapta-
tion of all models which have already been defined with that technique.

3 A Concept for an Iterative Meta- and Instance Modeling Process

At the “Institute of Applied Knowledge Processing” (FAW) of the Johannes Kepler
University Linz a concept was developed for graphical meta- and instance modeling.
The goal behind the concept is to enable users to create or adapt modeling techniques
to their specific research area. The creation and/or adaptation should be done on a
meta-layer and the usage of the method takes place on an instance-layer.

522 M. Himsl et al.

On the meta-layer the user has the possibility to define the elements the modeling
method should consist of. Also attributes and visual properties can be defined for
elements and connections between those elements can be attached. Based on a created
metamodel any number of instance models can be produced. The metamodeling con-
cept makes the user feel free to define a modeling method which fits exactly to his re-
search area.

The metamodeling is done graphically to keep the users away from learning pro-
gramming- or scripting languages for defining a metamodel and to facilitate the defi-
nition of a modeling method. So the user can build metamodels intuitively by con-
necting objects and connections in a graphical editor like on the instance-layer. That
implies that the representation of the elements is the same on the instance and the
meta-layer: objects are displayed as figures and connections as edges.

Fig. 1. The iterative modeling process

Another goal and basic requirement for the concept is the support of an iterative
modeling process. That means adaptations of the metamodel can be made although
instances already exist. This process will be displayed in figure 1 and includes the fol-
lowing four steps:

1. Creation of a metamodel
2. Creation of a instance model
3. Adaptation of the metamodel
4. Adaptation of the instance model

The first step in the iterative modeling process is the creation of a metamodel. The
metamodel defines model elements, which are available for modeling at the instance-
layer. In the second step an instance model will be created. Each instance model has
exactly those characteristics defined in the metamodel. These first two steps describe
together the creation process of an instance model.

If it is necessary to extend the instance model (for example with additional ele-
ments or attributes) or to add certain restrictions e.g. due to domain evolution, the un-
derlying metamodel has to be changed. This adaptation of the metamodel is the third
step of the iterative modeling process. As the instance model is an instance of the
changed metamodel, it follows that the instance model has to be adapted. This step is
performed with an integrated transformation engine. The adaptation of the metamodel
and the following adaptation of the instance model belong to the adaptation process.
The number of iterations in the adaptation process is not limited.

 An Iterative Process for Adaptive Meta- and Instance Modeling 523

4 A Concept for Iterative Meta- and Instance Modeling Within an
Organizational Process

Metamodeling and particularly the previously described iterative modeling process
can lead to several unintended situations when they are implemented in an inappro-
priate way within an organizational structure. The main reason therefore is that a me-
tamodel has to define a common language for a specific domain and should be con-
stant until an adaptation is inescapable. Areas where such adaptations are often
mandatory were described previously and can lead to inconsistencies in the company-
wide library of defined metamodels.

Due to that fact, one major criterion for a successful organizational implementation
of metamodeling is the iterative metamodeling process, which describes the resulting
adaptation of instances after metamodel changes. This process prevents that several
different versions of a specific metamodel are used in an organization. In other words,
there always will be only one valid version of a metamodel for all its instances, and
that leads to consistency as well as transparency.

As a metamodel defines a common language that is used at least company-wide or
possibly across depended companies, any changes on a metamodel, especially if there
exists a huge number of instances, has to be planned carefully and coordinated with
all stakeholders concerned. For that reason it is obligatory to implement standardized
and predefined change- and authorization-processes. Those processes should be inte-
grated in a main modeling support process that defines activities, roles and permis-
sions for all occurring incidents. Then the main process has to be implemented in the
organizational structure. Figure 2 visualizes this “Modeling Support Process” (MSP)
on an abstract level by defining its main sub-processes and results.

Prerequisite for the MSP is the prevention from any redundancies. That can be
achieved at best by the integration of a central repository for all defined metamodels.
The repository not only contains metamodels but also any changes made to them. By
that it becomes obvious how a metamodel evolved. With additional information about
why a metamodel was changed, who changed it and the primary incidents that caused
the change, an ex-post view is practicable and often recommended to evaluate the im-
provement.

The origin of a change in a metamodel can be any request expressed by a stake-
holder, who is somehow affected by the metamodel. Mostly a request will occur be-
cause the stakeholder uses the metamodel to create instances and wants an improve-
ment of the modeling technique. But not always every request is a reason for a change
in the metamodel. Some requests will also be a result of disinformation about the cor-
rect usage, possibilities and domain of a given metamodel. Within the MSP there has
to be a central point where such a request will be accepted and handled by following a
well defined process. At this point the request has to be rated and it has to be detected
if there are requirements for a change or if the request can be responded with informa-
tion about the correct usage.

If the incoming request can not be handled directly there may be a problem with
the metamodel or room for improvement and that has to be considered in detail. Basis
for that process are records of known problems and workarounds that can be also part
of the central repository. If there are no recorded workarounds nor there can be work-
arounds created, the main decision that has to be made is if the request desires a

524 M. Himsl et al.

change in the metamodel. As basis for decision the importance of the request and of
course the number of similar requests will be crucial. If, as result of this problem-
rating process, the change of the metamodel is decided, a “Request for Change”
(RFC) has to be created.

Fig. 2. The Modeling Support Process (MSP) describes the recommended activities for the or-
ganizational integration of an adaptive and iterative meta- and instance modeling approach. The
left swimlane shows the MSP sub-processes, the process flow and the main results of each sub-
process. Back-links between each sub-process exist but are omitted for abstraction. The MSP is
an instance of the well-established Service Support Process (SSP) defined by the IT Infrastruc-
ture Library (ITIL). The right swimlane shows the five SSP sub-processes by mapping them to
the corresponding MSP sub-processes.

Any change of the metamodel affects all its instances and with that any stakeholder
that is dependent on one of these instances. Those consequences make it obvious and
essential that any change must be planned in detail and that all effects have to be con-
sidered in advance. This has to be done in a well-defined process that has a compre-
hensive change plan and schedule as result.

 An Iterative Process for Adaptive Meta- and Instance Modeling 525

After the detailed planning process the results have to be realized through an
adaptation of the concrete metamodel. In most cases it makes sense to summa-
rize planned changes of a metamodel to one major release. Beside that, a new or
adapted metamodel requires an update of all documentations, descriptions and
training information. All stakeholders have to be informed about the new meta-
model release and additional data of the performed changes has to be provided
to them.

All processes described in this chapter are intended to be wide scalable. In
the minimum case a single person within an organizational unit is responsible
for all sub-processes of the MSP. Main requirement for the scalability is a de-
tailed definition of roles and activities assigned to them.

4.1 MSP Meets ITIL Service Support

In practice modeling is an activity that is used in several different areas within a
company, dependent on the type of company and the domain that has to be
visualized. But at least the service of modeling and modeling tools provided to
users are a key domain of every IT-Management. During the years the way how
IT-Services are provided to users has changed. Now it is a requirement that ser-
vices provided are strongly focused on bringing value to users and supporting
business processes to enhance business performance. Due to that the focus is
now on the implementation of a service-oriented IT-Management.

When talking about service-oriented IT-Management the IT-Infrastructure-
Library (ITIL) developed by the British Central Computer and Telecommunica-
tions Agency (CCTA) is the de-facto standard and becomes more and more
popular not at least because of the strong support of some major developers and
users. ITIL is a best-practice framework for IT-Service-Management and con-
sists of five process areas where the “Service Delivery” [11] and the “Service
Support” [12] processes describe the administrative tasks of delivering IT-
Services to users including the definition of “Service Level Agreements”
(SLAs) and the operative tasks of supporting IT-Service users.

Within a service-oriented IT-Management approach like ITIL, modeling, as
part of the IT-Management service-portfolio, will be provided as an IT-Service
to users. “Service Delivery” is responsible for defining SLAs for the modeling
service and has to plan the availability, capacity, continuity and financial re-
quirements that need to be maintained as a result of the SLAs.

The “Service Support” as defined in ITIL has to deal with incidents that oc-
cur by “Service Requests” from users and by monitoring the IT-Service. As the
figure 2 shows, the complete previously defined “Modeling Support Process”
(MSP) can be mapped to the “Service Support Process” (SSP) defined by ITIL.
Moreover the specified process can be seen as an instance of the ITIL-“Service
Support”-Process for the specific domain “Modeling” and fully integrated as
part of an overall IT-Service Support Process within a service-oriented IT-
Management.

526 M. Himsl et al.

5 A Platform for Iterative Meta- and Instance Modeling

The iterative meta- and instance modeling process has been implemented in a proto-
typic modeling platform by the use of open-source technologies. As a main feature an
intuitive and flexible metamodel definition language was integrated to allow a simpli-
fied graphical definition of metamodels and to support the iterative modeling process.

The tool defines a meta-layer for textual or graphical definition of metamodels that
are persisted in an integrated or central metamodel repository. To enable the creation
of metamodel instances an instance-layer has been implemented. Both the meta- and
instance-layer are integrated as modules within the platform and can be optionally
removed to create either only a metamodeling- or instance modeling tool. Beside that
the access to each module is role dependent and can be restricted by an administration
module that manages roles, users and user groups.

The role specific access to modules is especially important to integrate into the
Modeling Support Process (MSP) that was specified previously in this work. Only
with the definition of privileged roles it is possible to access the meta-layer. This and
a central metamodel repository prevent from the decentralized definition or adaptation
of metamodels by unauthorized users. To integrate completely into the MSP the plat-
form will be extended to send Service Requests (SRQs) and to handle replies to that
requests.

6 Related Work

In general, best practices in project management are [7] actually polymorphic collec-
tions of techniques – both with respect to activities and work products. The meta ac-
tivity of designing or tailoring a concrete project management guideline is not in issue
in general. Not so for the domain of Software development. For example, the Rational
Unified Process considers adaptivity from the outset – the RUP classifies itself as a
tailorable process. Actually, in the RUP the tailoring of the process is addressed as
part of the project, i.e., the process instance, so that dynamic changes of the Software
process are considered. However, the tailoring of the process can be done only in
terms of the predefined process entities and work product items of the RUP and the
UML. In particular, the work product items are not subject to design. The latter is also
a true for OMG’s Software Process Engineering Metamodel Specification (SPEM)
[13]. This is pointed out in [14] and a co-design for process and work products is pro-
posed. The results of this strand of work [14, 15] are now available as ISO standard
24744 [16] – the Software Engineering Metamodel for Development Methodologies
(SEMDM). In SEMDM, special emphasis is put on the semantic foundations of me-
tamodeling [17]. However, if the tailoring of the work products during the project li-
fecycle is an issue, the appropriate framework is given by a meta-process model like
the generic spiral model [18], where the next phase planning segment is a natural
place for such endeavor. Our interest in this paper is different. We do not focus on the
process of metamodeling nor on the process incorporating metamodeling, but an or-
thogonal service support process for modeling supported by metamodeling. We be-
lieve that this is an interesting viewpoint, because it allows for improving important
commonalities of the different modeling efforts in companies. Furthermore, we are

 An Iterative Process for Adaptive Meta- and Instance Modeling 527

interested in enterprise modeling efforts in general, not only in modeling efforts in
Software development projects.

7 Further Work

One problem addressed by the concepts in our paper is integrated metamodeling and
model migration, i.e., the challenge to keep existing models in synch with the evolv-
ing metamodel. As an instance of this problem we have discussed the deletion of a
metamodel entity. A non-trivial example is the refinement of a metamodel entity into
several new entities. Currently, we elaborate sophisticated support mechanisms like
guidelines, a versioning concept, and a customizable tool feature for automatic model
migration. This strand of work is analog to the ubiquitous problem of integrated mod-
el evolution and data migration in model-driven engineering of multi-tier architec-
tures [19].

8 Conclusion

We observed:

• We need awareness for the working domain expert as a modeler, independent
from model-driven engineering approaches.

• The domain expert has the characteristics of an end-user. He or she is no Software
development expert.

• The domain expert wants to use the modeling tool as Software service.
• Adaptivity of the modeling approach is a key success factor in projects.
• Metamodeling offers the appropriate support for adaptivity.
• Adaptivity and metamodeling capabilities bear the risk of uncontrolled rank

growth of the metamodel.

We contributed:

• We have developed a combined modeling and metamodeling tool that is oriented
towards the needs of the working domain expert.

• We have unified the above observations in the proven framework of the IT Infra-
structure Library.

• We have proposed concrete guidance for the organization of modeling and meta-
modeling efforts in enterprises. In particular, we elaborated a service support
process for the enabling metamodeling tool.

References

1. Atkinson, C., Kühne, T.: The Role of Metamodeling in MDA. In: Proceedings of
WISME@UML2002 – International Workshop in Software Model Engineering (2002)

2. Soley, R.: Model Driven Architecture, white paper formal/02-04-03, draft 3.2, Object
Management Group (November 2003)

528 M. Himsl et al.

3. Czarnecki, K., Eisenecker, U.W.: Generative Programming – Methods, Tools, and Appli-
cations. Addison-Wesley, London (2000)

4. Parnas, D.L.: Software Aspects of Strategic Defense Systems. In: Software Engineering
Notes, ACM Sigsoft, vol. 10(5), ACM Press, New York (1985)

5. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son-Wesley, London (1999)

6. Beck, K.: Extreme Programming Explained – Embrace Change. Addison-Wesley, London
(2000)

7. Duncan, W.R.: A Guide to the Project Management Body of Knowledge. Project Man-
agement Institute (1996)

8. Bjorner, D.: On Domains and Domain – Engineering Prerequisites for Trustworthy Soft-
ware – A Necessity for Believable Project Management. Domain Engineering and Digital
Rights Group (April 2006)

9. ISO Technical Committee JTC 1/SC7. ISO/IEC 9126-1:2001. Software Engineering –
Product quality – Part 1: Quality model. International Organization of Standardization
(2006)

10. Jones, C.: C. End-User Programming. In: IEEE Computer, vol. 28(9), pp. 68–70. IEEE
Press, New York (1995)

11. Office of Government and Commerce: Service Delivery (IT Infrastructure Library). Sta-
tionery Office (2001)

12. Central Computing and Telecommunications Agency: Service Support (IT Infrastructure
Library). The Stationery Office (2002)

13. Object Management Group: Software Process Engineering Metamodel Specification.
OMG document formal/2002-11-14, OMG (2002)

14. Gonzalez-Perez, C., Henderson-Sellers, B.: Templates and Resources in Software Devel-
opment Methodologies. Journal of Object-Technology 4(4) (May 2005)

15. Gonzalez-Perez, C., Henderson-Sellers, B.: An Ontology for Software Development
Methodologies and Endeavours. In: Ontologies in Software Engineering and Software
Technology, pp. 123–151. Springer, Heidelberg

16. ISO Technical Committee JTC 1/SC7. ISO/IEC 24744:2007. Software Engineering –
Metamodel for Development Methodologies. International Organization of Standardization
(2007)

17. Gonzalez-Perez, C., Henderson-Sellers, B.: On the East of Extending a Powertype-based
Methodology Metamodel. In: Proceedings of WoMM2006 – the 2nd Workshop on Meta-
modelling and Ontologies. LNI, vol. 96, pp. 11–25 (2006)

18. Boehm, B.W.: A Spiral Model of Software Development and Enhancement. IEEE Com-
puter 21(5), 61–72 (1988)

19. Bordbar, B., Draheim, D., Horn, M., Schulz, I., Weber, G.: Integrated Model-Based Soft-
ware Development, Data Access and Data Migration. In: Briand, L.C., Williams, C. (eds.)
MoDELS 2005. LNCS, vol. 3713, Springer, Heidelberg (2005)

Compiling Declarative Specifications

of Parsing Algorithms�

Carlos Gómez-Rodŕıguez, Jesús Vilares, and Miguel A. Alonso

Departamento de Computación, Universidade da Coruña (Spain)
{cgomezr, jvilares, alonso}@udc.es

Campus de Elviña, s/n - 15071 A Coruña (Spain)
Tel: +34 981 16 70 00 - Fax: +34 981 16 71 60

Abstract. The parsing schemata formalism allows us to describe pars-
ing algorithms in a simple, declarative way by capturing their fundamen-
tal semantics while abstracting low-level detail. In this work, we present a
compilation technique allowing the automatic transformation of parsing
schemata to efficient executable implementations of their corresponding
algorithms. Our technique is general enough to be able to handle all
kinds of schemata for context-free grammars, tree adjoining grammars
and other grammatical formalisms, providing an extensibility mechanism
which allows the user to define custom notational elements.

1 Introduction

The process of parsing, by which we obtain the structure of a sentence as a
result of the application of grammatical rules, is a highly relevant step in the
automatic analysis of natural language sentences. Parsing schemata, described
in [14], provide a formal, simple and uniform way to describe, analyze and com-
pare different parsing algorithms. The notion of a parsing schema comes from
considering parsing as a deduction process which generates intermediate results
called items. Each item contains a piece of information about the sentence’s
structure, and a successful parsing process will produce at least one final item
containing a full parse tree for the sentence or guaranteeing its existence. An
initial set of items is directly obtained from the input sentence, and the parsing
process consists of the application of inference rules, called deductive steps, of
the form η1...ηm

ξ Φ that allow us to infer the item specified by its consequent
ξ from those in its antecedents η1 . . . ηm. Side conditions (Φ) specify the valid
values for the variables appearing in the antecedents and consequent, and may
refer to grammar rules or specify other constraints that must be verified in order
to infer the consequent.
� Partially supported by Ministerio de Educación y Ciencia (MEC) and

FEDER (TIN2004-07246-C03-01, TIN2004-07246-C03-02), Xunta de Galicia
(PGIDIT05PXIC30501PN, PGIDIT05PXIC10501PN, Rede Galega de Procesa-
mento da Linguaxe e Recuperación de Información) and Programa de Becas FPU
(MEC).

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 529–538, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

530 C. Gómez-Rodŕıguez, J. Vilares, and M.A. Alonso

A schema specifies the steps that must be executed and the intermediate re-
sults that must be obtained in order to parse a given string, but it makes no
claim about the order in which to execute the steps or the data structures to
use for storing the results. Their abstraction of low-level details makes parsing
schemata very useful, allowing us to define parsers in a simple and straightfor-
ward way. Comparing parsers, or considering aspects such as their correctness
and completeness or their computational complexity, also becomes easier if we
think in terms of schemata. However, when we want to actually test a parser
and check its results, we need to implement it in a programming language, so
we have to abandon the high level of abstraction and worry about implementa-
tion details that were irrelevant at the schema level. The technique presented in
this paper automates this task, by compiling parsing schemata to Java language
implementations of their corresponding parsers.

2 From Declarative Descriptions to Program Code

Our compilation process proceeds according to the following principles:

– A class is generated for each deductive step in the schema.
– The generated implementation will create an instance of this class for each

possible set of values satisfying the side conditions that refer to production
rules.

– The classes representing deductive steps have an applymethod which tries to
apply the deductive step to a given item. If the step is in fact applicable to the
item, the method returns the new items obtained from the inference. In order
to achieve this functionality, the method works as follows: first, it checks if
the given item matches any of the step’s antecedents. For every successful
match found, the method searches for combinations of previously-generated
items in order to satisfy the rest of the antecedents. Each combination of
items satisfying all antecedents corresponds to an instantiation of the step
variables which is used to generate an item from the consequent.

– The execution of deductive steps in the generated code is coordinated by
a deductive parsing engine. This is a schema-independent algorithm, and
therefore its implementation is the same for any schema:

steps = {deductive step instances};
items = {initial items};
agenda = [initial items];
For each deductive step with an empty antecedent (s) in steps {
result = s.apply([]);
items.add(result);
agenda.enqueue(result);
steps.remove(s);

}
While agenda not empty {
curItem = agenda.removeFirst();
For each deductive step applicable to curItem (p) in steps {
result = p.apply(curItem);
items.add(result);
agenda.enqueue(result);

}
}
return items;

Compiling Declarative Specifications of Parsing Algorithms 531

The algorithm works with the set of all items that have been generated (either
as initial hypotheses or as a result of the application of deductive steps) and an
agenda, implemented as a queue, which contains the items we have not yet
tried to trigger new deductions with. When the agenda is emptied, all possible
items will have been generated, and the presence or absence of final items in
the item set at this point indicates whether or not the input sentence belongs to
the language defined by the grammar. The correctness and completeness of this
algorithm can easily be proved by induction. The parse forest can be recovered
easily from the item set, as in [1].

2.1 Indexing

The implementation described above will only be efficient if we can efficiently
access items and deductive steps. In particular, implementation of the operations
checking if a given item exists in the item set (implicitly used by the items.add
operation in the pseudocode above) and searching the item set for all items satis-
fying a certain specification (used by the apply method of deductive steps) affects
the resulting parser’s computational complexity. An inefficient implementation
of any of these operations will give as result a parser with a computational com-
plexity above the expected theoretical bounds for the corresponding algorithms.
In order to maintain the theoretical complexity, we must provide constant-time
access to items. In this case, each single deduction takes place in constant time,
and the worst-case complexity is bounded by the maximum possible number of
step executions: all complexity in the generated implementation is inherent to
the schema.

In order to achieve this, we generate indexing code allowing efficient access
to the item set. Two distinct kinds of indexes are generated for each schema,
corresponding to the operations mentioned before: existence indexes are used
to check whether an item exists in the item set, and search indexes allow us
to search for items conforming to a given specification. Apart from items, de-
ductive steps are also indexed in deductive step indexes. These indexes are used
to restrict the set of “applicable deductive steps” for a given item, discarding
those known not to match it. Deductive step indexes usually have no influence
on computational complexity with respect to input string size, but they do have
an influence on complexity with respect to the size of the grammar, since the
number of deductive step instances depends on grammar size when production
rules are used as side conditions.

Our indexing mechanism is explained in detail in [7]. As an example of how
the adequate indexes can be determined by a static analysis of the schema prior
to compilation, we analyze the case where we have a deductive step of the form

[a, d, e, g] [b, d, f, g]
(consequent)

c e f g

where each lowercase letter represents the set of elements (be them grammar
symbols, string positions or other entities) appearing at particular positions in

532 C. Gómez-Rodŕıguez, J. Vilares, and M.A. Alonso

the step, so that a stands for the set of elements appearing only in the first
antecedent item, e represents those appearing in the first antecedent and side
condition, g those appearing in both antecedents and side condition, and the rest
of the letters represent the other possible combinations as can be seen in the step.
In this example, we consider only two antecedents for the sake of simplicity, but
the technique is general and can be applied to deductive steps with an arbitrary
number of antecedents.

In this case, the following indexes are generated:

1. One deductive step index for each antecedent, using as keys the elements ap-
pearing both in the side condition and in that particular antecedent: there-
fore, two indexes are generated using the values (e, g) and (f, g). These in-
dexes are used to restrict the set of deductive step instances applicable to
items. As each instance corresponds to a particular instantiation of the side
conditions, in this case each step instance will have different values for c, e,
f and g. When the deductive engine asks for the set of steps applicable to a
given item [w, x, y, z], the deductive step handler will use the values of (y, z)
as keys in order to return only instances with matching values of (e, g) or
(f, g). Instances of the steps where these values do not match can be safely
discarded, as we know that our item will not match any of both antecedents.

2. One search index for each antecedent, using as keys the elements appearing
in that antecedent which are also present in the side condition or in the
other antecedent. Therefore, a search index is generated by using (d, e, g)
as keys in order to recover items of the form [a, d, e, g] when d, e and g are
known and a can take any value; and another index using the keys (d, f, g)
is generated and used to recover items of the form [b, d, f, g] when d, f and g
are known. The first index allows us to efficiently search for items matching
the first antecedent when we have already found a match for the second,
while the second one can be used to search for items matching the second
antecedent when we have started our deduction by matching the first one.

3. One existence index using as keys all the elements appearing in the conse-
quent, since all of them are instantiated to concrete values when the step
successfully generates a consequent item. This index is used to check whether
the generated item already exists in the item set before adding it.

As this index generation process must be applied to all deductive steps in
the schema, the number of indexes needed to guarantee constant-time access to
items increases linearly with the number of steps. However, in practice we do not
usually need to generate all of these indexes, since many of them are repeated or
redundant. For example, if we suppose that the sets e and f in our last example
contain the same number and type of elements, and elements are ordered in the
same way in both antecedents, the two search indexes generated would in fact
be the same, and our compiler would detect this fact and generate only one.
In practical cases, the items used by different steps of a parsing schema usually
have the same structure, so most indexes can be shared among several deductive
steps and the amount of indexes generated is small.

Compiling Declarative Specifications of Parsing Algorithms 533

All the generated indexing code is placed into two classes (the item handler
and the deductive step handler) whose function is to provide efficient access to
items and deductive steps, responding to queries issued by the deductive parsing
engine.

2.2 Elements in Schemata

The variety of elements that may be present in parsing schemata poses an inter-
esting difficulty if we want our technique to be general enough to cope with all
sorts of schemata. The schemata notation is open, and any mathematical object
could potentially appear as part of the definition of a schema.

As it is obviously impossible to provide a system that will recognize any kind
of element that we could potentially include in a schema, but neither do we
want our compiler to be limited to certain types of elements, we have defined
an extensibility mechanism which allows us to define new elements that can
be handled by the system in an easy way. For this purpose, we will classify all
notational elements into four basic types, according to the treatment they should
receive during code generation. Any new kind of element added to the system
should be classified into one of these types:

– Simple Elements: Atomic, unstructured elements, which can be instantiated
or not in a given moment. When simple elements are instantiated, they take
a single value from a set of possible values, which can be bounded or not.
Values can be converted to indexing keys. Examples of simple elements are
grammar symbols, integers, string positions, probabilities...

– Expression Elements : These elements denote expressions which take simple
elements or other expressions as arguments. For example, i + 1 is an ex-
pression element representing the sum of two string position arguments, and
tree[A, B] is an expression over nonterminal symbols. Feature structures and
logic terms are also represented by this kind of elements. When all simple
elements in an expression are instantiated to concrete values, the expression
will be treated as a simple element whose value is obtained by applying the
operation it defines (for example, summation). For the code generator to be
able to do this, a Java expression must be provided as part of the expression
element type definition, so that, for example, sums of string positions ap-
pearing in schemata can be converted to Java integer sums in the generated
implementation. Unification of feature-structures has been implemented in
this way.

– Composite Elements : Composite elements represent sequences of elements
whose length must be finite and known. Composite elements are used to
structure items. For instance, the Earley item [A → α.Bβ, i, j] is represented
as a composite element with three components: the first one is in turn a
composite element, representing a grammar rule, while the remaining two
are simple elements which denote string positions.

– Sequence Elements : These elements denote sequences of elements of any
kind whose length is finite, but only becomes known when the sequence is

534 C. Gómez-Rodŕıguez, J. Vilares, and M.A. Alonso

Table 1. Information about the grammars used in the experiments: total number of
symbols, nonterminals, terminals, production rules, distribution of rule lengths, and
average rule length

Grammar |N ∪ Σ| |N | |Σ| |P | Epsilon Unary Binary Other Rule length

Susanne 1,921 1,524 397 17,633 0% 5.26% 22.98% 71.76% 3.54
Alvey 498 266 232 1,485 0% 10.64% 50.17% 39.19% 2.4
Deltra 310 282 28 704 15.48% 41.05% 18.18% 25.28% 1.74

instantiated to a concrete value. The strings appearing in Earley items are
examples of sequence elements, being able to represent symbol strings of any
length. The code generator must take this fact into account when generating
matching code for these elements.

In order to add a new kind of element to the schema compiler, the user will
have to define it as a subclass of one of these four basic types, and implement
that type’s interface by following some simple guidelines. In addition to this,
the user must provide one or more regular expressions in order to specify the
format of the strings representing the new kind of element in schemata definition
files. These expressions can be included in a global configuration file or directly
in the schema files that will use the element. The schema parser will use the
regular expressions to identify our new type of element in schema files. When
one of these elements is found in a schema, the compiler will dynamically load
the corresponding class and instantiate it by using Java’s reflection mechanisms,
thus avoiding the need to recompile the system in order to add new element
classes. This makes our technique highly extensible, and easily allows us to work
with schemata containing all kinds of non-predefined items.

3 Experimental Results

We have used our technique to generate implementations of three popular pars-
ing algorithms for context-free grammars: CYK [9,15], Earley [3] and Left-
Corner [10]. The schemata we have used describe recognizers, and therefore their
generated implementation only checks sentences for grammaticality by launch-
ing the deductive engine and testing for the presence of final items in the item
set. However, these schemata can easily be modified to produce a parse forest
as output [1]. If we want to use a probabilistic grammar in order to modify the
schema so that it produces the most probable parse tree, this requires slight
modifications of the deductive engine, since it should only choose the item with
the highest probability when several items are available to match an antecedent.

The three algorithms have been tested with sentences from three different
natural language grammars: the English grammar from the Susanne corpus [11],
the Alvey grammar [2] (which is also an English-language grammar) and the
Deltra grammar [12], which generates a fragment of Dutch. The Alvey and Del-
tra grammars were converted to plain context-free grammars by removing their

Compiling Declarative Specifications of Parsing Algorithms 535

arguments and feature structures. The test sentences were randomly generated
by starting with the axiom and randomly selecting nonterminals and rules to
perform expansions, until valid sentences consisting only of terminals were pro-
duced. Note that, as we are interested in measuring and comparing the per-
formance of the parsers, not the coverage of the grammars; randomly-generated
sentences are a good input in this case: by generating several sentences of a given
length, parsing them and averaging the resulting runtimes, we get a good idea of
the performance of the parsers for sentences of that length. Table 1 summarizes
some facts about the three grammars, where by “Rule Length” we mean the
average length of the right-hand side of a grammar’s rules.

For Earley’s algorithm, we have used the schema described in [14]. For the
CYK algorithm, grammars were converted to Chomsky normal form (CNF),
since this is a precondition of the algorithm. In the case of the Deltra grammar,
which is the only one of our test grammars containing epsilon rules, we have
used a weak variant of CNF allowing epsilon rules. For the Left-Corner parser,
the schema used is the sLC variant described in [14].

Performance results1 for all these algorithms and grammars are shown in
table 2. The following conclusions can be drawn from the measurements:

– The empirical computational complexity of the three algorithms is below
their theoretical worst-case complexity of O(n3), where n denotes the length
of the input string. In the case of the Susanne grammar, the measurements
we obtain are close to being linear with respect to string size. In the other
two grammars, the measurements grow faster with string size, but are still
far below the cubic worst-case bound.

– CYK is the fastest algorithm in all cases, and it generates less items than the
other ones. This may come as a surprise at first, as CYK is generally con-
sidered slower than Earley-type algorithms, particularly than Left-Corner.
However, these considerations are based on time complexity relative to string
size, and do not take into account complexity relative to grammar size. In
this aspect, CYK is better than Earley-type algorithms, providing linear —
O(|P |) — worst-case complexity with respect to grammar size, while Earley
is O(|P |2). Therefore, the fact that CYK outperforms the other algorithms
in our tests is not so surprising, as the grammars we have used have a large
number of productions2. The greatest difference between CYK and the other
two algorithms in terms of the amount of items generated appears with the
Susanne grammar, which has the largest number of productions. It is also
worth noting that the relative difference in terms of items generated tends

1 The machine used for these tests was a standard laptop: Intel 1500 MHz Pentium M
processor, 512 MB RAM, Sun Java Hotspot virtual machine (version 1.4.2 01-b06)
and Windows XP.

2 It is possible to reduce the computational complexity of Earley’s parser by applying
some transformations to the schema. Even in this case, CYK performs better than
Earley’s algorithm due to the smaller number of items generated: O(|N ∪ Σ|n2) for
CYK vs. O(|G|n2) for Earley, where |G| denotes the size of the grammar measured
as the number of productions plus the summation of the lengths of all productions.

536 C. Gómez-Rodŕıguez, J. Vilares, and M.A. Alonso

Table 2. Performance measurements for generated parsers

Grammar String Time Elapsed (s) Items Generated
length CYK Earley LC CYK Earley LC

Susanne 2 0.000 1.450 0.030 28 14,670 330
4 0.004 1.488 0.060 59 20,945 617
8 0.018 4.127 0.453 341 51,536 2,962
16 0.050 13.162 0.615 1,439 137,128 7,641
32 0.072 17.913 0.927 1,938 217,467 9,628
64 0.172 35.026 2.304 4,513 394,862 23,393
128 0.557 95.397 4.679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.002 61 1,660 273
4 0.002 0.112 0.016 251 3,063 455
8 0.010 0.363 0.052 915 7,983 1,636
16 0.098 1.502 0.420 4,766 18,639 6,233
32 0.789 9.690 3.998 33,335 66,716 39,099
64 5.025 44.174 21.773 133,884 233,766 170,588
128 28.533 146.562 75.819 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.158 1,290 1,847 1,161
4 0.012 0.208 0.359 2,783 3,957 2,566
8 0.052 0.583 0.839 6,645 9,137 6,072
16 0.204 2.498 2.572 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 207,745 282,393 261,649
128 14.532 157.172 143.730 878,964 1,154,710 1,110,629

to decrease when string length increases, at least for Alvey and Deltra, sug-
gesting that CYK could generate more items than the other algorithms for
larger values of n.

– Left-Corner is notably faster than Earley in all cases, except for some short
sentences when using the Deltra grammar. The Left-Corner parser always
generates fewer items than the Earley parser, since it avoids unnecessary pre-
dictions by using information about left-corner relationships. The Susanne
grammar seems to be very well suited for Left-Corner parsing, since the
number of items generated decreases by an order of magnitude with respect
to Earley. On the other hand, the Deltra grammar’s left-corner relationships
seem to contribute less useful information than the others’, since the differ-
ence between Left-Corner and Earley in terms of items generated is small
when using this grammar. In some of the cases, Left-Corner’s runtimes are a
bit slower than Earley’s because this small difference in items is not enough
to compensate for the extra time required to process each item due to the
extra steps in the schema, which make Left-Corner’s matching and indexing
code more complex than Earley’s.

– The parsing of the sentences generated using the Alvey and Deltra grammars
tends to require more time, and the generation of more items, than that of

Compiling Declarative Specifications of Parsing Algorithms 537

the Susanne sentences. This happens in spite of the fact that the Susanne
grammar has more rules. The probable reason is that the Alvey and Deltra
grammars have more ambiguity, since they are designed to be used with their
arguments and feature structures, and information has been lost when these
features were removed from them. On the other hand, the Susanne grammar
is designed as a plain context-free grammar and therefore its symbols contain
more information.

– Execution times for the Alvey grammar quickly grow for sentence lengths
above 16. This is because sentences generated for these lengths tend to be
repetitions of a single terminal symbol, and are highly ambiguous.

4 Conclusions

In this paper, we have presented a compilation technique which allows us to au-
tomatically transform a parsing schema into an implementation of the algorithm
it describes, keeping the theoretical computational complexity of the algorithm.
This makes our work different from the parsing machine described by Shieber
et al. in [13], a Prolog implementation of a deductive parsing engine which can
also be used to implement parsing schemata; however, its input notation is less
declarative, since schemata have to be programmed in Prolog, and it does not
support automatic indexing, so the resulting parsers are inefficient unless the
user programs indexing code by hand, abandoning the high abstraction level.
Another alternative for implementing parsing schemata is the Dyna language
[4], which can be used to implement some kinds of dynamic programs; but it
has a complex notation, clearly less declarative than ours, which is specifically
designed for denoting schemata: in our approach, the user only has to write the
schema without worrying about implementation details. In addition, we provide
an extensibility mechanism that allows the user to add new kinds of elements to
schemata apart from the predefined ones.

Compilation of parsing schemata has been shown very useful for the design,
analysis and prototyping of parsing algorithms, as it has allowed us to test them
(even variants with “tricks” that improve practical performance in some cases)
and check their results and performance without having to implement them in
a programming language. As we have seen by comparing the performance of
CYK, Earley and Left-Corner parsers for several grammars, not all algorithms
are equally suitable for all grammars. In this work we provide a quick way to
evaluate several parsing algorithms in order to find the best one for a particular
application.

Our compilation technique is not limited to working with context-free gram-
mars, since all grammars in the Chomsky hierarchy can be handled in the same
way as context-free grammars, and other formalisms can be added by defining
element classes for their rules using the extensibility mechanism. In this way,
we have used our compiler to generate implementations for some of the most
popular parsers for tree adjoining grammars (TAG) [8]. A detailed explanation
of the performance results obtained by applying our compilation technique to
TAG parsers can be found at [5,6].

538 C. Gómez-Rodŕıguez, J. Vilares, and M.A. Alonso

Currently, we are applying our compilation technique to generate robust,
error-correcting parsers for context-free grammars and tree adjoining grammars.

References

1. Billot, S., Lang, B.: The structure of shared forest in ambiguous parsing. In: Proc.
of the 27th Annual Meeting of the Association for Computational Linguistics,
Vancouver, British Columbia, Canada, pp. 143–151. ACL (June 1989)

2. Carroll, J.A.: Practical unification-based parsing of natural language. Technical
Report no. 314, University of Cambridge, Computer Laboratory, England. PhD
Thesis (1993)

3. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2), 94–102 (1970)

4. Eisner, J., Goldlust, E., Smith, N.A.: Dyna: A declarative language for imple-
menting dynamic programs. In: Proceedings of ACL 2004 (Companion Volume),
Barcelona, pp. 218–221 (July 2004)

5. Gómez-Rodŕıguez, C., Alonso, M.A., Vilares, M.: On theoretical and practical com-
plexity of TAG parsers. In: Monachesi, P. Penn, G., Satta, G., Wintner, S. (eds.)
FG 2006: The 11th conference on Formal Grammar. Malaga, Spain, July 29-30,
2006, ch. 5, pp. 61–75, Center for the Study of Language and Information, Stanford
(2006)

6. Gómez-Rodŕıguez, C., Alonso, M.A., Vilares, M.: Generating XTAG parsers from
algebraic specifications. In: Proceedings of the 8th International Workshop on Tree
Adjoining Grammar and Related Formalisms. Sydney, July 2006, pp. 103–108,
Association for Computational Linguistics, East Stroudsburg (2006)

7. Gómez-Rodŕıguez, C., Alonso, M.A., Vilares, M.: Generation of indexes for com-
piling efficient parsers from formal specifications. In: Moreno-Dı́az, R., Pichler, F.,
Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory. LNCS, Springer,
Heidelberg (2007)

8. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, Beyond Words, ch. 2, vol. 3, pp. 69–123.
Springer, Heidelberg (1997)

9. Kasami, T.: An efficient recognition and syntax algorithm for context-free lan-
guages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Lab.,
Bedford, Massachussetts (1965)

10. Rosenkrantz, D.J., Lewis II, P.M.: Deterministic Left Corner parsing. In: Confer-
ence Record of 1970 Eleventh Annual Meeting on Switching and Automata Theory,
Santa Monica, pp. 139–152. IEEE Computer Society Press, Los Alamitos (1970)

11. Sampson, G.: The Susanne corpus, Release 3 (1994)
12. Schoorl, J.J., Belder, S.: Computational linguistics at Delft: A status report, Report

WTM/TT 90–09 (1990)
13. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of de-

ductive parsing. Journal of Logic Programming 24(1-2), 3–36 (1995)
14. Sikkel, K.: Parsing Schemata — A Framework for Specification and Analysis of

Parsing Algorithms. Springer, Heidelberg (1997)
15. Younger, D.H.: Recognition and parsing of context-free languages in time n3. In-

formation and Control 10(2), 189–208 (1967)

Efficient Fragmentation of Large XML Documents

Angela Bonifati1 and Alfredo Cuzzocrea2

1 ICAR Inst., National Research Council, Italy
bonifati@icar.cnr.it

2 DEIS Dept., University of Calabria, Italy
cuzzocrea@si.deis.unical.it

Abstract. Fragmentation techniques for XML data are gaining momentum
within both distributed and centralized XML query engines and pose novel and
unrecognized challenges to the community. Albeit not novel, and clearly inspired
by the classical divide et impera principle, fragmentation for XML trees has been
proved successful in boosting the querying performance, and in cutting down
the memory requirements. However, fragmentation considered so far has been
driven by semantics, i.e. built around query predicates. In this paper, we pro-
pose a novel fragmentation technique that founds on structural constraints of
XML documents (size, tree-width, and tree-depth) and on special-purpose struc-
ture histograms able to meaningfully summarize XML documents. This allows us
to predict bounding intervals of structural properties of output (XML) fragments
for efficient query processing of distributed XML data. An experimental evalu-
ation of our study confirms the effectiveness of our fragmentation methodology
on some representative XML data sets.

1 Introduction

An imminent development of XML processing is undoubtly making it as fast and effi-
cient as possible. Query engines for XML are being designed and implemented, with
the specific goal of employing indexes to improve their performance [10]. Others [23]
employ statistics to cost the most frequently asked queries, or use classical algebraic
techniques [16] to optimize query plans.

On the other hand, XML query processors suffer from main-memory limitations
that prevent them from processing large XML documents. While content-based pred-
icates can be used to project down parts of documents, an XML query engine which
is parsimonious in resources, may still enable a further resizing of the obtained pro-
jection/query results. This may also happen in many resource-critical contexts, such as
a distributed database, or a stream processor. The advantages of XML fragmentation
are already being proved in an XML query engine [4,5] or in a distributed setting [3].
Fragmentation of XML documents as proposed by the previous works has been based
on semantics, whereas in this paper we work out a novel kind of fragmentation, which
is orthogonal to the first and is only guided by the structural properties of an XML
document.

Given an XML document, modeled w.l.g. as a tree, there exist several ways of split-
ting it into subtrees, which may be semantically driven or structurally driven. Usu-
ally, query processors decides to apply projections and selections beforehand in order

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 539–550, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

540 A. Bonifati and A. Cuzzocrea

to reduce the amount of data to be manipulated in memory during query evaluation.
Notwithstanding the effectiveness of pushing algebraic operators within the query plan,
it may happen that the size of intermediate results are still too large to fit in memory. If
for instance we consider a 100MB XMark document, and a query Q1 asking for open
auctions sold by people owning a credit card (creditcard being an optional element)
and for closed auctions sold by any people, the result query plan would look like the one
shown in Fig. 1 (a). The two branches of the join operator(s) would in such a case be
of size 29.6MB(6.1MB) and 17.09MB(11.8MB), respectively. Along with the size, the
intermediate results can be also resized w.r.t. tree-width and tree-depth constraints that
may affect the query processing time as well. These can be prohibitively large for the
join branches above, i.e. 70 (38) and 9 (2) respectively for the left-hand-side join opera-
tor. If structure-driven fragmentation is employed, the subtrees output by the selections
and projections can be resized to smaller pieces according to the structural constraints
and can be then processed per piece. Fig. 1(b) pictures the result of fragmentation on
the two operands of the join(s).

A suitable application of structure-driven fragmentation is streaming XML process-
ing (e.g. [8]). Stream query processors are mainly memory-based, thus motivating the
use of smaller fragments given for instance by top-down navigation of the original doc-
ument. Our fragmentation could be employed to obtain smaller XML messages input
to the stream, carefully designed to not exceed specified memory requirements at query
runtime. Thus, using the three structural constraints altogether allows us to obtain ap-
proximately uniform fragments, e.g. to be used in a uniform stream. Finally, distributed
and parallel query processing may leverage the fragmentation of the original docu-
ments, in order to improve their performance. This issue will be further discussed in
our experimental study on XP2P [3], a P2P-based infrastructure we have developed.

Coming back to our problem, we can state it as follows. Let t be an XML tree, w
a tree-width constraint, d a tree-depth constraint and s a tree-size constraint, we split t
into valid fragments f of t such that size(f) <= s, tw(f) <= w and td(f) <= d and
� ∃f ′ �= f such that f ∩ f ′ �= ∅, size, tw and td being functions returning the size of f ,
the maximum width of f , and the maximum depth of f , and f ′ being a valid fragment
of t, respectively. Specifically, we consider performance issues of an arbitrary XML
processor for what concerns (i) the aspect of fragmenting a given XML document, and
(ii) the aspect of querying the fragmented representation of a given XML document. To
this end, we propose an innovative approach for efficiently supporting XML document
fragmentation via structural constraints, according to which a given XML document is
fragmented by imposing “range-shaped” constraints to size, tree-width and tree-depth
of output fragments. We name the resulting fragmentation technique as structure-driven
fragmentation of XML documents.

Although a set of heuristics performing this kind of fragmentation can be easily
devised, a key problem is determining the values of structural constraints input to the
above heuristics, given that the search space is prohibitive at large. To alleviate the
problem, we introduce special-purpose structure histograms that report the constraint
values for the fragments of a given document. We then present a prediction algorithm
that probes those histograms to output the expected number of fragments, when fixed
input values of the constraints are used. This number is obtained in dependence on

Efficient Fragmentation of Large XML Documents 541

Fig. 1. Query plan of query Q1 without (a) and with (b) the fragmentation operator applied

structural properties of the input document, thus constituting a value that “summarizes”
these properties. Furthermore, we study how to relax the fixed constraints by means of
classical distributions. The overall approach we propose is codified within a novel set
of heuristics, called SimpleX, which, to the best of our knowledge, is the first proposal
addressing the XML data fragmentation problem via structural constraints. Finally, we
also provide an experimental evaluation of SimpleX that clearly shows the effectiveness
of our fragmentation methodology in a relevant real-life scenario drawn by a P2P setting
and against some representative XML data sets.

The rest of the paper is organized as follows: Section 2 shows the SimpleX heuristics
for structure-driven fragmentation; Section 3 describes the structure histograms and
their use in-support-of the prediction task; Section 4 presents a variety of experiments
that probe the effectiveness of our techniques; Section 5 discusses the related work;
finally, Section 6 states conclusions and further research.

2 SimpleX: Simple Top-Down Heuristics for Shredding an XML
Document

The fragmentation problem stated above is a problem with linear cost function and in-
teger constraints, which is intrinsically exponential. To effectively explore the search
space, we have designed a set of simple top-down heuristics for document fragmen-
tation, SimpleX. They all have in common the fact that they start at the root of the
document and proceed in a top-down fashion. At each step the current subtree width,
depth and size are checked against the constraints w, d, s. If the constraints are satisfied,
the subtree becomes a valid fragment and is pruned from the document to constitute a
separate valid XML document. A new node containing as PC-data the path expression
of the obtained fragment will then replace the given subtree in the original document.
If instead the constraints are not satisfied, the algorithm inspects the next subtree in the
XML tree according to the criteria assessed by the heuristic.

A first criterion to select the next subtree is for instance given by the order of visit,
i.e. depth-first or breadth-first. We call these variants in-depth and in-width. Fig. 2

542 A. Bonifati and A. Cuzzocrea

Table 1. Sizes of subtrees of Fig. 2

Node Size (KB)

site 145
person1 20
edge1 15

Node Size (KB)

people 100
person2 50
edge2 10

Node Size (KB)

catgraph 45
person3 30
edge3 20

represents an XML tree compliant to the XMark DTD, whose subtree sizes 1 are re-
ported in Table 1 as absolute numbers (dots in Fig. 2 represent PC-data elements whose
sizes appear in Table 1).

Applying for instance the in-depth heuristics with constrained size s = 100 and
depth d = 2 and unconstrained width w, the XML tree gets fragmented as in Fig. 2 (a),
whereas with s = 100, d = 2 and w = 1, it gets fragmented as shown in Fig. 2 (b). The
application of the other heuristics on the sample tree is omitted for conciseness.

catgraph

person1 person2 person3 edge1 edge2 edge3

site

people

f2

f1
catgraph

person1 person2 person3 edge1 edge2 edge3

site

people

f1 f2

f3

f4 f5

f6

(a) (b)
....

....

Fig. 2. A sample XMark tree fragmented with one of the SimpleX heuristics and two (three)
constraints in (a) (in (b))

SimpleX 2 is one possible set of simple heuristics among the various ones that can
be applied for shredding a document (e.g. bottom-up or random-access). In principle,
there is no better heuristics than any other, as it actually depends on the structure of the
document. Our aim in this paper is not finding the best heuristic, but instead to show how
to tune the fragmentation constraints for SimpleX heuristics, if summary data structures
are employed. In fact, note that the constraints of the problem statement introduced in
Section 1 may turn to be incompatible if randomly specified, thus possibly leading to
empty solutions.

Being the search space prohibitively large, a key problem is determining the val-
ues of structural constraints input to the above heuristics. To alleviate the problem, we
have designed the structure histograms, which let determine correct combinations of the
constraint values, without actually doing the fragmentation beforehand. The histograms
have been implemented within an analysis module that uses algorithms to predict an
interval for the number of fragments produced by the heuristics. This is particularly

1 The subtree depth and width can be easily inferred from Fig. 2 and are omitted for space
reasons.

2 In the remainder, and in the experiments, we will simply indicate the set of heuristics as Sim-
pleX. We mean that we apply all the heuristics in the set and pick the results of the most
efficient one at each run.

Efficient Fragmentation of Large XML Documents 543

interesting for large XML data sets and query results, as it offers a visual summariza-
tion tool that can be inspected at any time for prediction. We introduce the structure
histograms next.

3 Structure Histograms

Given an XML document X , the structure histograms present X as summarized by
counting the fragments (i.e., the sub-trees) in X such that these fragments hold the
following structural properties: (i) the fragment size s, (ii) the fragment tree-depth d,
and (iii) the fragment tree-width w.

Formally, let X be an XML document, let p be a structural property defined on X , let
Dp = [pmin, pmax] be the value domain of p, a class Δp is defined on Dp as follows:
Δp = [p′min, p′max], such that pmin ≤ p′min ≤ p′max ≤ pmax. Then, a structure his-
togram built on X , denoted by HS(X, p, Δp), grouping p by an aggregation function f
= COUNT (thus, reporting the frequency of the fragments) over Δp-wise steps, is a tuple
〈Dp, Hp〉, such that each bucket b(Δp) in the co-domain Hp counts the fragments in X
having a value of the (structural) property p ranging Δp = [p′min, p′max]. We call HS a
one-dimensional histogram computed over p. Moreover, to support parametric summa-
rization of XML data and thus improve the fragmentation prediction, we introduce the
parametric structure histogram HP

S (X, p, Δp), which is an extension of the previous
histogram, where P is a fixed structural property w.r.t. which the histogram over p is
computed. Specifically, HP

S is a two-dimensional histogram computed over 〈P , p〉.
In our fragmentation framework, we make use of the following structure histograms

summarizing a given XML document X : (i) the Tree-Size Structure Histogram HS

(X, s, Δs), which summarizes X w.r.t. the size s (i.e., p = s); (ii) the Tree-Depth
Structure Histogram HD(X, d, Δd), which summarizes X w.r.t. the tree-depth d (i.e.,
p = d); (iii) the Tree-Width Structure Histogram HW (X, w, Δw), which summarizes
X w.r.t. the tree-width w (i.e., p = w); (iv) the Max-Tree-Size Parametric Structure
Histogram HS

D(X, s, Δd), which, fixed the size s by computing the max value (i.e.,
P = MAX(s)), summarizes X w.r.t. the tree-depth d (i.e., p = d).

More precisely, given an input XML document X , and a structural property p, we
build the output structure histogram HS(X, p, Δp) by setting the input parameters Dp

and Δp as follows (it should be noted that the input parameter p is directly set by
the target user/application): (i) Dp = [0, MaxV alue], such that MaxV alue is the
maximum value of the structural property p among all the fragments in X , (ii) Δp = N·
|Dp|, such that 0 ≤ N ≤ 1 is an empirically set parameter, and |Dp| is the cardinality
of Dp. Examples of such structure histograms for the subtree in Fig. 2 are sketched
in Table 2. Note that building the histograms for an arbitrary XML tree is necessarily
exponential in the worst case, but our heuristics can significantly trim the number of
inspected fragments.

A user (or application) willing to partition a document who knows how many frag-
ments he/she wants to obtain, may want to know the values of constraints that let
exactly obtain that number of fragments. In other words, he/she would like to prop-
erly tune the constraints values. Moreover, constraints as specified by the user may
not be compatible among each other or the final results may be biased to the data set

544 A. Bonifati and A. Cuzzocrea

Table 2. HD, HS (partial) and HW for the sample XMark tree of Fig. 2

HD

D f

2 1
1 2
0 6

HS

S f

145 1
100 1
45 1
20 1
.

HW

W f

2 1
3 2
0 6

inherent structure. In order to automatize the task of deciding the constraint values,
we have devised algorithm predictInterval that predicts the range of frequencies by in-
specting the structure histograms. The algorithm pseudocode is shown in Fig. 3. For
space reasons, we limit ourselves to discuss the algorithm on the XMark sample of
Fig. 2 and show that it lets predict the range of frequencies quite sharply. Earlier, we
have pointed out that if we disregard the width w in (a), we obtain a rather different
fragmentation w.r.t. (b), where w has a non-null value. We start by looking at the his-
togram HD reported in Table 2 and we remark that for a value of depth d = 1, we would
obtain two fragments. If we look at the histogram HW , this in turn tells that there are
two nodes with width w = 3, and these nodes cannot be part of the same fragment if
w is chosen to be 1. In such a case we would generate 6 fragments out of those nodes.
Thus, only by looking at HD and HW , we learn that the number of fragments shall
be in the range [2, 6]. If we further add the third constraint s, the upper bound of the
above range may raise or not, depending on whether the fragments so far obtained sat-
isfy or not the value of s. This leads to choose a value of s from histogram HS , that
pessimistically corresponds to the size of the largest subtree located at depth d = 1 (e.g.
subtrees rooted in nodes people and catgraph in Fig. 2), information that we learn
from an HS

D histogram. In this particular example, we can choose for instance a size
s equal to 100, thus obtaining the fragmentation shown in Fig. 2 (b) quite straightfor-
wardly.

As we have seen, choosing correct values for the input constraints of the fragmenta-
tion algorithm is a non trivial task. An incorrect value for such constraints would lead
to too many fragments or too few of them, or even to an empty solution in some cases.
Indeed, there may exist random values of w, d and s, which turn out to be incompat-
ible among each other. In order to alleviate this problem, we let the constraints vary
along classical distributions (such as Uniform, Gauss, Zipf), thus relaxing constraints
with such distributions. Thus, along with choosing fixed bounds for s, w, d, we assign
ranges to them according to those distributions. This is further motivated by the fact
that an XML document contains “unbreakable” pieces of text (such as PC-data, entities
etc.) that needs to be taken into account in the choice of the constraint values (espe-
cially for the size constraint). By empirically comparing the output of SimpleX against
the baseline case given by a constant distribution, we will show below that non-constant
distributions have in general a better behavior.

Efficient Fragmentation of Large XML Documents 545

algorithm predictInterval(HD: tree-depth structure histogram,
HS : tree-size structure histogram,
HW : tree-width structure histogram,
s0, d0, w0: size, depth, width constraints): return [fmin, fmax]

1 Let d0 be the chosen depth in HD // alternatively, w0 in HW

2 such that HD(d0, Δd0, f0)
3 Pick the max width wmax in HW //alternatively, dmax in HD

4 Let fmin = f0, fmax = sum(f0,wmax − w0)
5 Let smax the max size at depth d0 in HS

D

6 Let fsmax the corresponding frequency in HS

7 If s0 >= smax

8 return [fmin, fmax]
9 else {

10 fmax += fsmax

11 for each wi in the interval wmax − w0 in HW

12 fmax += fwi ∗ (wi − w0)
13 }
14 return [fmin, fmax]

Fig. 3. Algorithm predictInterval

4 Experimental Assessment

We have conducted an experimental study aimed at showing the effectiveness of our
structure-driven fragmentation methodology. The experiments are divided into three
classes. First, we build the structure histograms for representative XML data sets, and
show their use to decide the final values of constraints. Secondly, we define and measure
the accuracy error of fragmentation using the SimpleX set of heuristics, when fixed
constraints are employed against the cases (baseline) in which the constraints vary with
classical distributions (e.g. Uniform, Gauss, Zipf). Finally, we demonstrate the utility
of fragmentation in a distributed setting, such as a DHT-based P2P network. In such
a case, we measure the impact of fragmentation on network performance against the
expected ideal behavior.

All the experiments have been performed on a machine with a 1.2 GHz processor,
512 MB RAM, and running Linux Suse 9.1. We uniquely identify each fragment with
its absolute root-to-leaf path expression. Each fragment stores with extra sub nodes
the path expression of subfragments and separately the path expression of its parent
fragment. We have presented this data model in [3]. Notice that any data model (such
as [5] for instance) other than ours can be adopted here to represent the fragments.
Finally, the data sets and queries employed in the study are summarized in Table 3.

Fig. 4 shows the structure histograms for the Nasa data set. In order to improve
readability, we separately report the complete histograms in Fig. 4 and some of the fre-
quency values in Table 4. Note that such histograms have a size of the order of KB,
thus being reasonably small. For instance, considering a triple d0 = 5, w0 = 1200 and
s0 = 230KB, and applying the Algorithm in Fig. 3, we obtained a prediction range
equal to [1200, 2500]. Similar results for the other data sets of Table 3 and other values
of the constraints are omitted for space reasons. Moreover, notice that the histograms

546 A. Bonifati and A. Cuzzocrea

Table 3. XML documents and queries used

Document d (MB) # elems. maxDepth maxWidth provenance

XMARK (113) 3,332,129 11 25,500 [20]
XMARK (30) 501,705 11 7649 [20]

NASA (24) 476,645 7 2434 [19]
FourReligiousWorks-Bom (1.5) 7,656 5 79 [9]

Query Description

QDi FOR $p IN XPathExpr RETURN $p

 0

 200

 400

 600

 800

 1000

80604020

475812

Size Nasa.xml

fr
e

q

s (kB)

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40

fr
e

q

w

Width Nasa.xml
355610 109555

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1 2 3 4 5 6 7

Depth Nasa.xml
104725307857

d

fr
e

q

 0

 50k

 100k

 150k

 200k

 250k

 300k

 0 1 2 3 4 5 6 7

Max Size w.r.t. Depth Nasa.xml21.5 M

d

sm
a

x

(b
y

te
)

Fig. 4. Tree-Size (HS), Tree-Width (HW), Tree-Depth (HD) and, finally, Max-Tree-Size Para-
metric (HS

D) structure histograms for the Nasa data set

also allow a user to quickly discard incompatible values of constraints as they summa-
rize only valid constraints values.

We have put at work the proposed heuristics on the data sets of Table 3. We have
considered various values of parameters s, w and d and run the heuristics with fixed
values of these parameters and with their variations as given by classical distributions
(e.g. Uniform, Gauss, Zipf). We define the accuracy error ec of fragmentation w.r.t. con-
straint c as follows. Let ca be the average value of the size (tree-depth and tree-width,
resp.) obtained with SimpleX heuristics, c0 the fixed value of constraint input to algo-
rithm predictInterval (see Fig. 3), cmin and cmax the interval of the constraint value
as obtained via the particular distribution, then the accuracy error of fragmentation is

Efficient Fragmentation of Large XML Documents 547

Table 4. Window frames of histograms in Figure 4 depicting some of the frequency values

[s1 − s2] (KB) freq

[50 - 100] 20
[100 - 150] 8
[150 - 200] 6
[200 - 250] 1

w freq

674 1
730 1

1188 1
2434 1

d freq

4 6100
5 3430
6 1854
7 1

Table 5. Application of SimpleX to NASA with/without distribution

Distribution # fragments Avg. # nodes es ed ew

None 1879 253 0.97 0.6 0.97
Uniform 61 7813 0.02 0.57 0.89

Gauss 57 8362 0.09 0.42 0.88
Zipf 71 6713 0.1 0.57 0.9

given by the formula |c0−ca|
c0

for fixed constraints, and by the formula | cmin+cmax
2 −ca|

| cmin+cmax
2 |

for non-fixed constraints.
As an example, Table 5 shows the obtained results with the NASA data set and value

of constraints: s = 230KB, w = 1200 and d = 5. The lower is the accuracy error, the
better is the matching of the heuristics with the fragmentation constraints. It can be
noticed that the case when the constraints are strict upper bounds leads to fairly more
fragments than the cases when distributions are applied. On average, fragmentation via
distributions obtains lower accuracy errors than the case when distributions are not used.
Results with other data sets and other values of constraints showed the same trend.

As we already discussed, there exist several applications of our fragmentation strat-
egy, which justify its effectiveness. Here, we present some experiments that have been
performed on XP2P, our DHT-based P2P simulator [3]. For each experiment, we have
scattered a certain number of fragments in the network obtained with our structure-
driven fragmentation. We then measured the network scalability when both varying the
number of peers and the number of queries.

Fig. 5 (a) shows the nr. of hops versus the number of peers when XMark(30) has
been divided into 1000 fragments with the constraint values predicted by our analysis
tool. Here we have considered exactly as many queries of kind QDi (see Table 3) as the
number of fragments, each query being propagated to the successor peers as dictated
by the current peer list of successors (i.e. at logarithmic distance). It can be noticed that
the case where XML structure-driven fragmentation is used closely tracks the original
Chord 3 logarithmic curve. Finally, Fig. 5 (b) shows the nr. of hops when varying the
nr. of fragments for XMark(30) data set within a network of 500 peers. The fragmen-
tation slightly increases the number of hops, if compared with the constant curve that
represents no fragmentation.

3 The original Chord simulator only stores on each peer an identifier of resources. In XP2P, we
have extended it to store XML fragments.

548 A. Bonifati and A. Cuzzocrea

Fig. 5. Nr. of hops w.r.t. nr. of peers with 1000 fragments (a); Nr. of hops w.r.t. nr. of fragments
with 500 peers (b). In both cases, the number of queries of kind QDi equals the number of
fragments.

5 Related Work

The advantages of fragmenting relational databases are well established [17] as both
horizontal fragmentation [7], which splits a given relation into disjoint sub-relations,
and vertical fragmentation [13], which projects a given relation onto a subset of its at-
tributes. More recently, fragmentation techniques have been adapted to object-oriented
[1], semi-structured [14], and native XML [4] databases.

[15] proposes an innovative approach for supporting the distribution of XML
databases via horizontal fragmentation. It employs a query-oriented cost model taking
into account the most frequently asked queries, and uses heuristics to optimize the frag-
mentation based on the efficiency of such queries. Being query-driven, this approach
does not consider the structural properties of XML data, as we do in our proposal.
XFrag [4] is a framework for processing XQuery-formatted queries on XML fragments
in order to reduce memory processing. This work focuses on how to employ fragments
to make query optimizations, thus strengthening our proposal. Several query optimiza-
tion techniques have been presented for XML data, among which [16] and [11]. While
the former relies on algebraic projections, the latter is based on tree-automata. These
techniques can be combined with ours to let the processor evaluate queries in parallel
on multiple fragments.

[6] and [18] propose summary data structures for XML twigs and paths that let de-
rive an estimation of queries selectivity by using statistical methods, such as histograms
or wavelets. Notwithstanding the importance of the above data structures for query opti-
mization, our histograms are instead aimed at predicting the number of fragments of an
XML document when applying SimpleX heuristics. The latter prediction could not be
inferred by looking at the above data structures. [22] proposes the position histograms,
which allow the estimation of both simple and complex pattern query answers. Further-
more, when XML schema information is available, they employ the so-called coverage
histograms that extend the former and allow the target XML database to be better sum-
marized. Differently from ours, those histograms help estimating the sizes of child and
descendant steps in path expressions. Histograms are used for a rather different purpose
in our framework, as stated above.

Efficient Fragmentation of Large XML Documents 549

Finally, XRel [21] is a path-based approach to store XML documents into RDBMS
and retrieve them afterwards. While the path identification of fragments is similar to
ours, the focus of the paper is on building an extension of relational databases for XML
data.

6 Conclusions and Future Work

We have presented a fragmentation strategy for XML documents that is driven by struc-
tural constraints. To the best of our knowledge, this is the first work addressing such a
problem. We further offer the user or the application a prediction of the “outcome” of
the fragmentation, by means of the so-called structure histograms. By means of dis-
tributions, we are able to vary the constraint values thus improving the fragmentation
performance.

We are currently developing new classes of heuristics. The first one uses additional
data structures in combination with histograms in order to make the prediction more
precise. The other one considers schemas of XML documents (when available) during
the prediction. Moreover, another research direction we are considering consists in pro-
viding full support to XML join queries via devising ad-hoc heuristics that focus on the
fragment size, which is a critical parameter affecting the computational cost due to eval-
uating such queries. Finally, we plan to embed our fragmentation tool and its analysis
module in an existing XQuery engine.

References

1. Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and Support for Horizontal Class
Partitioning in Object-Oriented Databases. Distributed and Parallel Databases 8 (2000)

2. Bohannon, P., Freire, J., Roy, P., Simeon, J.: From XML Schema to Relations: A Cost-based
Approach to XML Storage. In: Proc. of ICDE (2002)

3. Bonifati, A., Cuzzocrea, A.: Storing and Retrieving XPath Fragments in Structured P2P Net-
works. Data & Knowledge Engineeering 59 (2006)

4. Bose, S., Fegaras, L.: XFrag: A Query Processing Framework for Fragmented XML Data.
In: Proc. of WebDB (2005)

5. Bremer, J.M., Gertz, M.: On distributing xml repositories. In: Proc. of WebDB (2003)
6. Chen, Z., Jagadish, H.V., Korn, F., Koudas, N., Muthukrishnan, S., Ng Raymond, T., Srivas-

tava, D.: Counting Twig Matches in a Tree. In: Proc. of ICDE (2001)
7. Ezeife, C., Barker, K.: A Comprehensive Approach to Horizontal Class Fragmentation in a

Distributed Object based System. Distributed and Parallel Databases 3 (1995)
8. Florescu, D., Hillery, C., Kossman, D., et al.: The BEA/XQRL Streaming XQuery Processor.

In: Proc. of VLDB (2003)
9. Ibiblio.org web site (2004), Available at http://www.ibiblio.org/xml/books/

biblegold/examples/baseball/
10. Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V., Nierman, A., Paparizos, S.,

Patel, J., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu., C.: Timber: a Native XML Database.
VLDB Journal 11 (2002)

11. Koch, C.: Efficient Processing of Expressive Node-Selecting Queries on XML Data in Sec-
ondary Storage: A Tree Automata-based Approach. In: Proc. of VLDB (2003)

http://www.ibiblio.org/xml/books/biblegold/examples/baseball/
http://www.ibiblio.org/xml/books/biblegold/examples/baseball/

550 A. Bonifati and A. Cuzzocrea

12. Krishnamurthy, R., Chakaravarthy, V.T., Naughton, J.F.: On the Difficulty of Finding Optimal
Relational Decompositions for XML Workloads: A Complexity Theoretic Perspective. In:
Proc. of ICDT (2003)

13. Lin, X., Orlowska, M., Zhang, Y.: A Graph-based Cluster Approach for Vertical Partitioning
in Databases Systems. Data & Knowledge Engineeering, 11 (1993)

14. Ma, H., Schewe, K.D.: Fragmentation of XML Documents. In: Proc. of SBBD (2003)
15. Ma, H., Schewe, K.D.: Heuristic Horizontal XML Fragmentation. In: Proc. of CAiSE (2005)
16. Marian, A., Simeon, J.: Projecting XML Documents. In: Proc. of VLDB (2003)
17. Ozsu, M., Valduriez, P.: Principles of Distributed Database Systems. Alan Apt (1999)
18. Polyzotis, N., Garofalakis, M.N.: Statistical synopses for graph-structured XML databases.

In: Proc. of SIGMOD (2002)
19. University of Washington’s XML repository (2004),

Available at http://www.cs.washington.edu/research/xml/datasets
20. Xmark: An XML Benchmark Project (2002),

Available at http://monetdb.cwi.nl/xml/
21. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: A Path-based Approach to

Storage and Retrieval of XML Documents Using Relational Databases. ACM Transactions
on Internet Technology 1 (2001)

22. Wu, Y., Patel, J., Jagadish, H.: Using Histograms to Estimate Answer Sizes for XML Queries.
Information Systems 28 (2003)

23. Zhang, N., Haas, P., Josifovski, V., Lohman, G., Zhang, C.: Statistical Learning Techniques
for Costing XML Queries. In: Proc. of VLDB (2005)

http://www.cs.washington.edu/research/xml/datasets
http://monetdb.cwi.nl/xml/

Locating and Ranking XML Documents Based

on Content and Structure Synopses

Weimin He, Leonidas Fegaras, and David Levine

University of Texas at Arlington, CSE
Arlington, TX 76019-0015

{weiminhe,fegaras,levine}@cse.uta.edu

Abstract. We present a new framework for indexing, locating and rank-
ing XML documents based on content and structural synopses extracted
from the documents. Instead of indexing each single element or term in
a document, we extract a structural summary and a small number of
data synopses from the document, which are indexed in an efficient way
suitable for query evaluation. Our query language is XPath extended
with full-text search. The result of query evaluation is a ranked list of
document locations that best match the query. We propose a novel ag-
gregated ranking scheme, which is integrated into the query evaluation
to score the documents based on those data synopses. Our experimen-
tal evaluation shows that our indexing scheme outperforms the standard
XML indexing scheme based on inverted lists and our ranking scheme is
effective in terms of precision and recall.

1 Introduction

With the proliferation of XML as the data format for a wide variety of web data
repositories, extensive work has been motivated on designing powerful query
languages, developing efficient indexing and query evaluation algorithms, and
proposing effective ranking schemes over XML data [1,2,4,5,6]. Khalifa et al [1]
propose a bulk algebra called TIX, which integrates simple IR scoring schemes
into a traditional pipelined query evaluator for an XML database. In [2], the
authors propose XML scoring methods that account for both structure and con-
tent while considering query relaxations. Carmel et al [4] present an extension
of the vector space model for searching XML collections via XML fragments
and ranking results by relevance. XSEarch [6] is a semantic search engine that
extends simple keyword search by incorporating keyword context information
into the query, i.e., each query term is a keyword-label pair instead of a single
keyword.

However, most of existing proposals combine structure indexes and inverted
lists extracted from XML documents to fully evaluate a full-text query against
these indexes and return the actual XML fragments as query answers. In gen-
eral, these approaches perform costly containment joins among long inverted
lists in order to evaluate a full-text XML query, which may not be suitable for
online interactive and data-intensive web applications. In this paper, we present

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 551–561, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

552 W. He, L. Fegaras, and D. Levine

a novel framework for indexing, locating and ranking XML documents based
on condensed summaries extracted from the structural and textual content of
the documents. In our framework, a user can publish concise summaries of its
local XML documents onto the server. As an XML document is published, the
document itself remains at the publisher’s site, only essential meta-data are ex-
tracted from the document and published onto the server. The server will be
responsible for indexing these meta-data and answering queries from any client
based on these meta-data. The result of the query evaluation is a ranked list of
document locations that best match the query. A document location includes
the important meta information about the document, such as the IP address
of the document owner, the document schema and the document description.
Upon receiving these meta information, the user may choose some interesting
document locations from the ranked answer list, requesting the document owner
to evaluate the original query over the actual document and return the XML
fragments as query answers. We believe that our framework can serve as an in-
frastructure for a wide range of web applications, such as online interactive XML
data exploring systems and XML search engines in a peer-to-peer environment.

In summary, our main contributions are the following:

– We present an effective framework for searching XML documents based on
content and structure synopses.

– We propose an efficient XML meta-data indexing scheme that is suitable for
a full-text XPath evaluation.

– We introduce an effective aggregated ranking scheme to score an XML doc-
ument based on our proposed data synopses.

– We experimentally validate the efficiency of our indexing scheme and demon-
strate the effectiveness of our ranking scheme.

2 Query Specification and Document Indexing

Our query language is XPath extended with a full-text search predicate e ∼ S,
where e is an XPath expression. This predicate returns true if at least one element
from the sequence returned by e matches the search specification, S. A search
specification is a simple IR-style boolean keyword search that takes the form

“term” | S1 and S2 | S1 or S2 | (S)

where S, S1, and S2 are search specifications. A term is an indexed term that
must be present in the text of an element returned by the expression e. As a
running example used throughout the paper, the following query Q:

//proceedings//article[abstract ~ "XML"]
[body//paragraph ~ "index" and "rank"]/title

searches for the titles of all articles whose abstract contains the keyword ”XML”
and whose body contains the terms “index” and “rank” in their paragraph.

Locating and Ranking XML Documents 553

As an XML document is published, the following meta-data are indexed:
Structural Summary(SS), Content Synopses(CS), and Positional Filters(PF).

Structural Summary. A structural summary [7] is a tree that captures all
unique paths to the data in an XML document. An example is shown in Fig-
ure 1(a). Each node in an SS has a tagname and a unique id. Note that one SS
node may be associated with many elements in the actual document.

1

2 11

3

4

5

9
10

12 13

proceedings

article publisher

abstract address name

authors body
keywords title

author

name

paragraph

6

7

8

(a) Structural Summary

Term

Document
Position

0 1 2 20

0
1

2
29

Hash(“index”) = 2 Hash(“rank”) = 11

11

CS for /proceedings/article/body/paragraph

Document
Position

0
1

2
29

PF for /proceedings/article

(b) Data Synopses

Fig. 1. Structural Summary & Data Synopses Examples

Content Synopses. A node in an SS is called a text node if the element
associated with that node contains text data in an XML document. If an XML
document does not contain intermixed data, a text node is a leaf node in SS. To
capture the textual content of a document, for each text node k in the structural
summary S of document D, we construct a content synopsis HD

p to summarize
the textual data associated with k in D. The label path p from the root of S
to k is used as the index key in DB. HD

p is a bit matrix of size L ×W , where
W is the number of term buckets and L is the document positional ranges of
the elements that directly contain terms associated with node k. The positional
information is represented by the document order of the begin/end tags of the
elements. More specifically, for each term t contained directly in an element
associated with k, whose begin/end position is b/e, we set all matrix values
HD

p [i, hash(t) mod W] to one, for all b × L/|D|� ≤ i ≤ e × L/|D|�, where
‘hash’ is a string hashing function and |D| is the document size. That is, the
[0, |D|] range of tag positions in the document is compressed into the range
[0, L]. For example, the content synopsis for SS node paragraph is illustrated
on the right in Figure 1(b). As we can see, after the term “rank” is hashed to the
term bucket 11, we obtain a bit vector that has 4 one-bit ranges(emphasized by
black color). Each one-bit range represents a paragraph element that directly
contains “rank” in the document. The start/end of the range is the document
order of begin/end tag of the paragraph element. We can evaluate the search
predicate body//paragraph∼ “index” and “rank” in the query Q by bitwise anding
the vectors H8[“index”] and H8[“rank”], which are the 2nd and 11th columns
respectively in the CS(emphasized by black color) in Figure 1(b). If all bits in the
resulting bit vector are zeros, the corresponding document does not satisfy the

554 W. He, L. Fegaras, and D. Levine

search predicate because it does not have both the term “index” and “rank” in
the same paragraph element. Note that the subscript number 8 in H8[“index”]
is the id number of node paragraph in SS.

Positional Filters. Although the positional information in CS enforces the
constraint that the terms in a single search predicate must be in the same el-
ement associated with the predicate, it can not ensure that different elements
associated with different search predicates are contained in the same element in a
document. For example, given the relevant bit vectors H8[“index”], H8[“rank”],
and H3[“XML”] only, we can not enforce the containment constraint in Q that
the article whose abstract contains “XML” must be the same article whose para-
graph contains “index” and “rank”. To address this problem, for each non-text
node n in the structural summary, we construct another type of data synopsis,
called Positional Filter, denoted by FD

p . FD
p is a bit matrix of size L×M , where

L is the document positional ranges of the elements associated with node n that
is reachable by the label path p, and M is the number of bit vectors in FD

p . The
positional filter for SS node article is demonstrated on the left in Figure 1(b).
The 7 one-bit ranges indicate there are 7 article elements in the document.

article
(F2)

abstract
XML A B

paragraph

index rank

CF(F2,
 H3[“XML”])

CF(A,
 and(H8[“index”,
 H8[“rank”]))

Fig. 2. Containment Filtering Illustration

Containment Filtering. We can enforce the element containment constraints
in the query using an operation called Containment Filtering. Let F be a posi-
tional filter of size L×M and V be a bit vector extracted from a content synopsis
whose size is L × W . The Containment Filtering copies a continuous range of
one-bits from F to the resulting positional filter F ′ if there is at least one posi-
tion within this range in which the corresponding bit in V is one. Figure 2 shows
how to employ containment filtering to determine whether a document is likely
to satisfy the query Q. First, we do a containment filtering between the initial
positional filter F2 and the bit vector H3[“XML”]. In the resulting positional
filter A, only 5 one-bit ranges out of 7 in F2 are left. Counting from bottom to
top, the 2nd and 4th one-bit ranges in F2 are discarded in A because there is
no any one-bit range in H3[“XML”] that intersects with the 2nd or 4th range,
which means that the 2nd or 4th article element does not contain an abstract
element that contains the term “XML”. Similarly, we can do containment fil-
tering between A and the resulting bit vector derived from the bitwise anding

Locating and Ranking XML Documents 555

between the bit vectors H8[“index”] and H8[“rank”]. The 3 one-bit ranges left in
B indicate 3 article elements in the document satisfy all the search predicates
in Q, thus the document is considered to satisfy the query.

3 Query Processing

We briefly describe the query processing in our framework in this section. In
our framework, the first step in evaluating an XPath query is deriving a query
footprint from the query. A query footprint(QF) captures the essential structural
components and all the entry points associated with the search predicates. For
example, the query footprint of Q is:

//proceedings//article:1[abstract:2][body//paragraph:3]/title

The numbers 1, 2, and 3 are the numbers of entry points in QF that indicate the
places where data synopses are needed for query evaluation. Our query footprint
derivation algorithm is omitted due to the space limitation.

In the server local indexes, each node k in a structural summary S is encoded
by the triple (b, e, l), where b/e is the begin/end numbering of k and l is the
level of k in S. We leverage the iterator model in relational databases to form
a pipeline of iterators derived from the query footprint to retrieve all matching
structural summaries. Meanwhile,we also derive the full label paths from the
structural summary that match the entry points in QF . In the example query Q,
the label paths are /proceedings/article, /proceedings/article/abstract,
and /proceedings/article/body/paragraph. Using these label paths as keys,
the corresponding data synopses are retrieved from DB and qualified document
locations are filtered out using containment filtering and returned to the client.

4 Aggregated Ranking

Since a query footprint may match a large number of structural summaries and
there may be a large number of documents that match each SS, it is desirable
to rank all the qualified documents using a scoring function. We first extend
tf ∗ idf ranking to score a document and then enhance it with a positional
weight derived from containment filtering. Finally, we combine term proximity
with the enhanced scoring to further improve the quality of ranking results.

4.1 Extended TF*IDF Scoring

We consider a path-term pair as the unit for content scoring. The formal defini-
tions of TF and IDF scores of a path-term pair are given below.

Definition 1. TF Score of a Path-Term Pair. Let D be an XML document
associated with the pair (p, t), where p is a full text label path from its structural
summary and t is a term. Let paths(D) be the set of tuples (tx, px, bx, ex, ix)
for all terms tx in D, where bx/ex is the begin/end position of the element that

556 W. He, L. Fegaras, and D. Levine

directly contains tx, px is a full label path that reaches tx, and ix is the document
position of tx in D. The TF score of (p, t) relevant to D is defined as:

TF D(p, t) = |{ix|(tx, px, bx, ex, ix) ∈ paths(D) ∧ p = px ∧ t = tx}| (1)

Basically, TFD(p, t) counts the number of (p, t) pairs in the document D. If t
occurs n times in the same element reachable by p, (p, t) will be counted n times.

Definition 2. IDF Score of a Path-Term Pair. Let N be the total number
of documents in the corpus. Let Dj , 1 ≤ j ≤ N , be an XML document associated
with the pair (p, t), where p is a full text label path derived from SS matching
and t is the term in the query. The IDF score of (p, t) is defined as:

IDF (p, t) = log

(
Np

N(p, t)

)

(2)

where Np and N(p, t) are calculated as follows:

Np =
N∑

j=1

|{j|(tx, px, bx, ex, ix) ∈ paths(Dj) ∧ p = px}| (3)

N(p, t) =

N∑

j=1

|{(tx, px)|(tx, px, bx, ex, ix) ∈ paths(Dj) ∧ p = px ∧ t = tx}| (4)

Basically, Np counts the total number of documents that contain path p and
N(p, t) counts the total number of documents that contain (p, t) in the corpus.

4.2 Enhanced Scoring with Positional Weight

A path-term pair (p, t) corresponds to a positional bit vector V in the content
synopsis associated with p. A one-bit range in V represents an element that con-
tains t and is reachable by p. For instance, in Figure 2, the bit vector H8[“index”]
corresponds to the pair (/proceedings/article/body/paragraph,“index”) and it con-
tains 5 one-bit ranges. The number of one-bit ranges in the vector reflects the
TF score of the pair (/proceedings/article/body/paragraph,“index”). However, af-
ter the bitwise anding operation, only 3 one-bit ranges are left in the resulting
bit vector, which indicates that among those 5 paragraph elements, only 3 of
them contain both “index” and “rank”. Similarly, after the containment filtering
between the positional filter of article(F2) and H3[“XML”], only 5 article ele-
ments are left out of 7 in the resulting positional filter(A). To make the weight
calculation of a path-term pair more accurate, we introduce the positional weight,
which is the percentage of qualified path-term pairs found during the contain-
ment filtering or bitwise anding operation.

Definition 3. Positional Weight of a Path-Term Pair. Let D be an XML
document, PFD

0 (p, t) be the PF associated with (p, t), and PFD(p, t) be the result
from containment filtering or bitwise anding operation. In addition, let NPF D

0 (p,t)

Locating and Ranking XML Documents 557

be the number of one-bit ranges in PFD
0 (p, t) and NPF D(p,t) be the number of

one-bit ranges in PFD(p, t). The positional weight of (p, t) in D is defined as:

PW D(p, t) =
NPF D(p,t)

NPF D
0 (p,t)

(5)

Combining the TF score, IDF score, and the positional weight, the definition of
the weight of (p, t) in D is determined by the following equation:

W D(p, t) = PW D(p, t) × TF D(p, t) × IDF (p, t) (6)

Finally, we give the definition of the enhanced content score of D relevant to
Q.

Definition 4. Enhanced Content Score of a Document. Let Q be the
query and D be an XML document. Let WQ

i (pQ
i , tQi) be the weight of the path-

term pair (pQ
i , tQi) in Q and WD

i (pD
i , tDi) be the weight of the corresponding

path-term pair (pD
i , tDi) in the document D. The enhanced content score of D

relevant to Q is defined as

ECS(D, Q) =

n∑

i=1

W Q
i (pQ

i , tQ
i) × W D

i (pD
i , tD

i)

√
√
√
√

n∑

i=1

W Q
i (pQ

i , tQ
i)2 ×

√
√
√
√

n∑

i=1

W D
i (pD

i , tD
i)2

(7)

where n is the number of path-term pairs.

4.3 Combined Scoring with Term Proximity

We incorporate term proximity into the scoring to further improve the ranking
scheme. We first use the size of the lowest common ancestor (LCA) of the full
label paths derived from structural summary matching to measure the depth
term proximity.

Definition 5. Depth Term Proximity. Let Q be the query and D be an XML
document. Let (pD

i , tDi), 1 ≤ i ≤ n, be a matching path-term pair in D. Let rlca

be the root of the tree rooted at LCA of all paths pD
i and DIST (pD

i , rlca) be the
number of steps between the leaf node of pD

i and rlca. The depth term proximity
of D is defined as

DTP (D, Q) =
1

∑n
i=1 DIST (pD

i , rlca)
(8)

At the end of containment filtering, a non-zero positional filter PF is derived
for each qualified document. Each one-bit range in PF represents an element
that is associated with the PF entry in the query footprint. The smaller the size
of this element, the closer the search terms in the document. In addition, more
one-bit ranges in PF indicate the document contains more qualified elements,
so the document should be ranked higher. Thus, we use the average length of
one-bit range and the number of one-bit ranges in the PF to measure the width
term proximity.

558 W. He, L. Fegaras, and D. Levine

Definition 6. Width Term Proximity. Let Q be the query and D be an XML
document. Let PF be the final positional filter after the containment filtering.
Let NPF

obr (D, Q) be the total number of one-bit ranges in PF and LPF
avg(D, Q) be

the average length of one-bit ranges in PF . The width term proximity of D is
defined as

WTP (D,Q) =
NPF

obr (D, Q)

LPF
avg(D, Q)

(9)

The final score of the document D is determined by the following equation:

S(D, Q) = ECS(D, Q)α × DTP (D, Q)β × WTP (D,Q)γ (10)

where α, β, and γ are experimental parameters.

5 Experimental Results

We have implemented our framework using Java (J2SE 6.0) and Berkeley DB
Java Edition 3.2.13 [3] was employed as the storage manager. Our experiments
were carried out on a WindowsXP machine with 2.8GHz CPU and 512M mem-
ory. The datasets we used were synthetically generated from the XMark and
XBench [10] benchmarks. The main characteristics of our datasets and data
synopses size are summarized in Table 1. For each dataset, our query work-
load is 10 full-text XPath queries exhibiting different sizes, query structures and
search predicates. From Table 1, we can see that our data synopses are small
enough to make our system scalable.

Table 1. Data Set Characteristics and Data Synopses Size

Data Set Data Size
(MB)

Files Avg. File Size
(KB)

Avg. SS Size
(KB)

Avg. CS Size
(KB)

Avg. PF Size
(KB)

XMark 55.8 11500 5 0.413 0.305 0.016
XBench 1050 2666 394 0.427 2.012 0.174

Efficiency of Indexing Scheme. To demonstrate the efficiency of our Data
Synopses Indexing(DSI) scheme, we compared it with traditional Inverted List
Indexing(ILI) scheme. Note that we didn’t compare our indexing scheme with
XCluster [8] because the proposed XML synopses in [8] are mainly used for
selectivity estimation, rather than for locating and ranking XML documents.
Figure 3 shows that for XMark dataset, ILI consumes over 2 times index build
time, disk space and query response time than DSI. For XBench dataset, DSI is
much more efficient than ILI because XBench data is text-centric data generated
from Text-Centric Multiple Document(TC/MD) class, which is more suitable
for the index comparison experiments. In fact, DSI consumes less than 8% index
build time than ILI and the index size of DSI is about 3% of that of ILI. The
query response time of DSI is over 40 times faster than ILI.

We first measured our ranking scheme based on content similarity, then we
incorporated the positional weight and term proximity into the ranking function

Locating and Ranking XML Documents 559

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

XMark XBench

Data Set

In
d

ex

B
u

ild

T
im

e
(s

)

ILI DSI

(a) Index Build Time

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

XMark XBench

Data Set

In
d

e
x

 S

iz
e

 (
M

B
) ILI DSI

(b) Index Size

0

100

200

300

400

500

600

700

XMark XBench

Data Set

A
V

G
 Q

u
e

ry
 R

e
s

p
o

n
s

e
 T

im
e

(s
)

ILI DSI

(c) Query Response Time

Fig. 3. Comparison between ILI and DSI

to demonstrate the improvement of ranking scheme. To construct the accurate
relevant set for each query, we exploited Qizx/open [9] to evaluate the query over
each dataset to obtain the strict relevant set. In the following figures, the width
factor is the ratio between the width of a content synopsis and the number of
terms the associated SS node contains. The height factor is the ratio between
the height of a data synopsis and the number of begin/end tags in the document.

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

Number of documents returned

A
ve

ra
g

e
 p

re
ci

si
o

n
 /

re
ca

ll
(%

)

xmark-P xbench-P xmark-R xbench-R

(a) Vary Answer Set Size

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5

Height factor

A
ve

ra
g

e
 p

re
ci

si
o

n
 /

re
ca

ll
(%

)

xmark-P xbench-P xmark-R xbench-R

(b) Vary Height Factor

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Width factor

A
ve

ra
g

e
 p

re
ci

si
o

n
 /

re
ca

ll
(%

)
xmark-P xbench-P xmark-R xbench-R

(c) Vary Width Factor

Fig. 4. Effectiveness of Content Scoring

Effectiveness of Content Scoring. We first fixed the size of data synopses to
measure the average precision and recall of a query. The results in Figure 4(a)
show that as the number of returned documents increases, the average preci-
sion(recall) of a query over each dataset drops(increases) smoothly, which indi-
cates that our scoring function can effectively rank the relevant documents on
the top of the ranked list so that the precision does not drop too much. We then
varied the height factor to see its impact on precision and recall. Figure 4(b)
shows that as the height factor varies, the precision and recall almost remain at
the same value for each dataset. This is expected because when the height of
data synopses is reduced, a query may get more false positives, but our ranking
function can effectively rank the most relevant documents close to the top, while
moving false positives near the bottom of the answer set so that the precision
and recall almost do not change. Finally, we varied the width factor to see its
impact on precision and recall. As we can see from Figure 4(c), the precision
and recall change a little more than those in Figure 4(b). This result implies
that if we want to decrease the size of data synopses to reduce the data storage
overhead but still keep high precision, the height factor should be adjusted first.

560 W. He, L. Fegaras, and D. Levine

Effectiveness of Aggregated Scoring. Since most existing ranking schemes
[2,6] focus on ranking XML elements in original XML documents, rather than
ranking XML documents based on data synopses, it is inappropriate to make
direct comparisons with those ranking schemes. Instead, we fixed the number of
returned documents to 50 and compared the three ranking schemes over our data
synopses: Content Similarity Scoring(CS), Enhanced Scoring with Positional
Weight(CS-PW) and Combined Scoring with Term Proximity(CS-PW-TP). Fig-
ure 5 shows that for both datasets, the average precision(recall) of CS-PW-TP
is higher than that of CS-PW, which is in turn higher than the precision(recall)
of CS. Note that for XBench(XMark) dataset, the average precision(recall) is a
little lower because its relevant set is smaller(larger).

0

10

20

30

40

50

60

70

80

XMark XBench

Data Set

Av
era

ge
 p

rec
isi

on
 (%

)

CS
CS-PW
CS-PW-TP

(a) Average Precision

0

5

10

15

20

25

30

35

40

XMark XBench

Data Set

Av
era

ge
 re

ca
ll (

%) CS
CS-PW
CS-PW-TP

(b) Average Recall

Fig. 5. Effectiveness of Aggregated Scoring

6 Conclusion

We presented a framework for indexing, querying and ranking XML documents
based on extracted content and structural synopses. We introduced an aggre-
gated ranking scheme that scores an XML document based on content similarity,
positional weight and term proximity. Our experiments show that our data syn-
opses indexing scheme outperforms the standard XML indexing scheme based
on inverted lists and our ranking scheme is effective in terms of precision and
recall.

Acknowledgments. This work is supported in part by NSF under grant IIS-
0307460.

References

1. Al-Khalifa, S., Yu, C., Jagadish, H.V.: Querying Structured Text in an XML
Database. In: Proc. of ACM SIGMOD, San Diego, pp. 4–15 (2003)

2. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and
Content Scoring for XML. In: Proc. of VLDB, Trondheim, pp. 361–372 (2005)

3. Berkeley, D.B.: http://www.sleepycat.com/
4. Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML

Documents via XML Fragments. In: Proc. of ACM SIGIR, Toronto, pp. 151–158
(2003)

http://www.sleepycat.com/

Locating and Ranking XML Documents 561

5. Clarke, C.: Controlling Overlap in Content-Oriented XML Retrieval. In: Proc. of
ACM SIGIR, Salvador, pp. 314–321 (2005)

6. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine
for XML. In: Proc. of VLDB, Berlin, Germany, pp. 45–56 (2003)

7. Kaushik, R., Bohannon, P., Naughton, J.F., Shenoy, P.: Updates for Structure
Indexes. In: Proc. of VLDB, Hongkong, China, pp. 239–250 (2002)

8. Polyzotis, N., Garofalakis, M.: XCluster Synopses for Structured XML Content.
In: Proc. of 22nd Int. Conference on Data Engineering, Atlanta, vol. 62 (2006)

9. Qizx/open. http://www.axyana.com/qizxopen/
10. XBench. http://se.uwaterloo.ca/∼ddbms/projects/xbench/

http://www.axyana.com/qizxopen/
http://se.uwaterloo.ca/~ddbms/projects/xbench/

MQTree Based Query Rewriting over Multiple

XML Views�

Jun Gao, Tengjiao Wang, and Dongqing Yang

Department of Computer Science and Technology,
Peking University, Beijing, China, 100871

{gaojun,tjwang,dqyang}@pku.edu.cn

Abstract. Using XML views to answer the XML query is an important
query optimization strategy especially in the distributed environment.
Although many methods have been proposed to handle the single XML
view rewriting, they will lead to the redundant computation cost due
to the shared paths among different XML views. This paper handles
the query rewriting over multiple views by organizing the multiple XML
views into a tree called MQTree, in which the shared sub paths among
the multiple views have been merged in a top down fashion. In addition,
this paper designs a MQTree based query rewriting method. The candi-
date query rewriting plans are generated over MQTree directly. In order
to reduce the validation cost of the candidate query rewriting plans,
the preliminary validation is made at the granularity of the path query
{//,/,*} over the MQTree first, which prunes the candidate views fur-
ther and provides the intermediate results for the plans validation at the
granularity of the whole tree. The final experiments show the efficiency
and effectiveness of our method.

1 Introduction

The query rewriting problem is a fundamental problem in many database re-
search areas, including data integration, query optimization, semantic cache,
etc. The problem can be formulated informally as follows: given a query q and a
view v defined over a database D, find a query q′ which runs over v, the result
q′(v) of q′ over v is contained or the same as q(D) of q over D [8].

With the XML emerging as information representation and exchange stan-
dard in the Internet, XML is used in the distributed computing environment
increasingly. How to rewrite the XML query using XML views also receives high
attention. Since the XML query supports much more features than the rela-
tional query, the XML query rewriting faces more challenges. The current study
[7] shows that the XML query containment, one of the fundamental steps in
the XML query rewriting, is a Co NP problem even when only commonly used
features including {//,/,*,[]} of XPath are considered.
� Supported by Project 2006AA01Z230 under the National High-tech Research and

Development of China, Project 60503037 under National Natural Science Founda-
tion of China (NSFC), Project 4062018 under Beijing Natural Science Foundation
(BNSF).

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 562–571, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

MQTree Based Query Rewriting over Multiple XML Views 563

The existing methods handle the problem from different perspectives. The
XPath {//,/,*,[]} query rewriting is studied [1] to generate a sound but incom-
plete equivalent plan in a polynomial time if the index is regarded as a special
case of the XML materialized view. The XPath query rewriting problem with
more limited features [11] is studied to produce a sound and complete equivalent
rewriting plan. The maximally contained query rewriting plan is discussed in [9]
on XPath {//,/,[]} with and without the consideration of the schema.

There are maybe multiple XML views due to the possible different query pat-
terns in real applications of the distributed computation. The paper [2] has dis-
cussed how to select XML queries to cache from a set of queries workload. In order
to exploit all possible data from each cached XML view to answer the new XML
query, the naive idea is to employ existing methods to generate rewriting plans
for each view separately and union the results from all plans. However, the shared
common paths among the multiple XPath views indicate the redundant cost in
the query rewriting. Due to the high cost in the XML query rewriting plans gen-
eration and validation, the redundant computation cost should not be ignored.

This paper studies the problem on how to generate maximally contained
XPath {//,/,*,[]} rewriting plans over multiple views. More specifically, our con-
tributions can be summarized as follows:

– We propose an XML view management framework to organize the multi-
ple XML views as a whole. We merge the shared paths of the XML view
tree patterns in a top down fashion to generate a MQTree, which indicates
that the redundant computation cost caused by the shared paths among the
multiple views can be reduced.

– We propose a MQTree based query rewriting method. The candidate query
rewriting plans are generated over the MQTree directly. In order to reduce
the validation cost of the candidate query rewriting plans defined with XPath
query {//,/,*,[]}, we make the preliminary validation at the granularity of the
path query {//,/,*} over the MQTree first. We implement the containment
mapping at the granularity of the whole tree with the intermediate results
in the preliminary validation.

– We implement extensive experiments to illustrate the efficiency and effec-
tiveness of our method.

The rest of the paper is organized as follows: We introduce background knowl-
edge and define the problem formally in section 2. We propose a MQTree based
query rewriting method, including the generation and validation method for can-
didate query rewriting plans in section 3. The extensive experimental evaluations
are presented in section 4. Related works are discussed in section 5. The paper
is summarized and the future work is discussed in section 6.

2 Background Knowledge

This section reviews some background knowledge including the XML query and
the query rewriting problem, and defines the problem in this paper.

564 J. Gao, T. Wang, and D. Yang

2.1 XPath Query

XPath is a basic mechanism to select nodes in the XML tree [3]. The features
of XPath discussed in this paper include {/} for parent/child relationship, {//}
for ancestor/descendant relationship, {*} for wildcards, {[]} for the predicates.
The XPath expression can be represented by an XPath tree pattern [7], which
can be defined as:

Definition 1 (XPath tree pattern). An XPath query can be represented by
a tree pattern Q = (N, E, r), where N represents a set of element nodes, E
represents a set of relation in term of e = (n1, n2), where n1 ∈ N , n2 ∈ N . For
each e ∈ E, type(e) = “AD” (short for ancestor/descendant) or “PC” (short for
parent/child). r denotes the root node of Q. The target element node of XPath
query is called the return node. The path from the root node to the return node
is called the main path. The XPath q without {[]} can be regarded as a special
case of the XPath tree pattern, which is called the path query. We call a path
query p the root-leaf path when p starts at the root node and ends at the leaf
node.

Two important notations, query equivalence and query containment, are used to
determine the validation of the XML query rewriting plan [7]. Given two XPath
expressions p1 and p2, we call p1 is contained in p2 if p1(D) ⊆ p2(D) for any
XML document D; we call p1 is equivalent to p2 if p1 is contained in p2 and p2

is contained in p1. The containment between two XPaths indicates the existence
of a containment nodes mapping between two XPath tree patterns.

Definition 2 (The containment nodes mapping between XPath pat-
tern). Given two XPath tree pattern {//,/,*,[]} p1 and p2, p2 is contained in
p1, the containment nodes mapping M from p1 to p2 should meet the following
requirements: 1) the root node of p1 is mapped to the root node of p2; 2) for each
sub path p11 = (n11, n12) in p1, the mapped sub path M(p11) = (M(n11), M(n12))
in p2 contained in p11; 3) the main path of p1 is mapped to the main path of p2.

2.2 XML Query Rewriting over Single XML View

Definition 3 (XML query rewriting). Given an XPath query tree pattern q
over an XML document T , an XML view v over the same XML T , suppose a
query q1 can be evaluated over v, where the results q1(v) of q1 evaluated over v is
a sub set of results q(T) of q evaluated over T , q1 is called the query q rewriting
plan over view v.

Given an XML query q and an XML view v, the query rewriting plan qr should
meet the requirement illustrated in Fig 1: if we construct a composite query
qc by merging the root node qr and the return node of v, we can establish a
containment mapping M from q to qc. We call node n in the main path of q the
pivot node if n is mapped to the return node of v under M . We also notice
that the main path of v is contained in the prefix path from the root node to
the pivot node in q.

MQTree Based Query Rewriting over Multiple XML Views 565

return node

return node

root noderoot node

prefix
path

suffix
path

pivot node

query q

view v

query rewriting plan
qr

composite query qc

Fig. 1. Containment Mapping from a query to a view

In order to generate the maximally contained query rewriting plans, the suffix
path rooted with the pivot node in the main path of the query can be a part of
the query rewriting plan qr. As for the root-leaf query s which is not the main
path of q, it may also have the pivot node n, which indicates that the suffix path
rooted with n may also a part of the query rewriting plan qr.

2.3 Problem Definition

With the above definitions, the problem in this paper can be defined as follow:
Given an XML Database T , a set of predefined materialized views V defined

with the XPath {//,/,*,[]}over T , how to generate the maximally contained query
rewriting plans for an XPath{//,/,*,[]} query q over views set V efficiently?

3 MQTree Based Query Rewriting over the Multiple
XML Views

Since the cost of the query rewriting plan generation over the single XML view
is expensive, the shared paths among the multiple XML views should not be
ignored. In order to improve the efficiency of the query rewriting over the multiple
XML views, we organize the XML view tree patterns into a MQTree(short for
Multiple Queries tree) via merging the shared paths in a top down fashion, and
design a query rewriting method over the MQTree directly.

Definition 4 (The MQTree for XPath tree patterns). Given an XPath
tree patterns set Q = {q1, . . . qn} defined over the same XML document, each
node in qi(1 ≤ i ≤ n) assigned with a unique id[qi] for qi and isMain to indicate
the node in the main path, the MQTree T = (V, E, r) is constructed in the
following way: the root node r of T is initialized with the IDS[r] = {id[q0]} ∪
. . . {id[qn]} to indicate r is the mapped node for the root node of qi(1 ≤ i ≤ n);
if there is one path starting from the root node to node n in MQTree which is
equivalent to the path from the root node to node m in qi, IDS[n] = IDS[n] ∪
{id[qi]}, n is the mapped node for m; otherwise m is added under node k in T
which is the mapped node for the parent node of n in qi, and IDS[m] = {id[qi]}.

566 J. Gao, T. Wang, and D. Yang

q2

q3 q7

q4

q5

d

e

g

a

b

p1

r1

q1

q9

q10 q13

q11

q12

d

e g h

q14

a

b

c
p2

q8

r2

c

q16

q19 q21

q17

q20

d[2]

e[2] g[2] h[2]

q22

a[1,2]

b[1,2]

c[1,2]

MQTree p3 for p1 and p2

q15

r3

q24

q18

q23

d[1]

e[1] g[1]

r r[1,2]r

Fig. 2. An Example of MQTree

Fig. 2 illustrates a MQTree p3 from two XPath tree patterns p1 and p2. The
single(double) line represents PC(AD) relation between nodes. We notice that
the root node of MQTree is merged from the root node of p1 and p2. Node
q3 in p1 and node q10 in p2 can be merged into q19 in MQTree since the path
expression from r1 to q3 in p1 is equivalent to the expression from r2 to q10 in p2,
while node q4 in p1 can not be merged with node q11 in p2 due to the different
sub path expressions.

3.1 The Candidate Query Rewriting Plans Generation over the
MQTree

The candidate query rewriting plan generation can be reduced to the problem
on how to locate pivot nodes in the main path of the query against the main
path of views. We discover pivot nodes in a top down fashion with the nodes
mapping encoded in the form of the nodes pair (nq, nv), where nq is a node in
the main path of a query q, nv is a node in the main path of a view v indicated
by isMain in the MQTree. The whole process can be described as follows:

The root node of a MQTree t and the root node of a query q is combined
into an initial nodes pair and added it into a queue Q. We repeat the following
process until Q is empty. We remove the first nodes pair (nq, nv) from Q, and
add all possible next nodes pairs, (nq1, nv1) or (nq, nv1), into Q according to
type(nq, nq1), type(nv, nv1) and the elements annotated on nq1 and nv1, where
nq1 is a child node of nq and nv1 is a child node of nv. The rules to add new
nodes pair should also guarantee a validated nodes mapping. For example, in the
case type(nq, nq1) = AD and type(nv, nv1) = AD, we add a nodes pair (nq, nv1)
into Q, and add a node pair (nq1, nv1) into Q if nq1 and nv1 are annotated with
the same element or nq1 is annotated with the wildcards. If there exists one
nodes pair (nq, nv) added in Q, where nv is the return node for view v, nq can
be regarded as a pivot node for the main path of query q. The final candidate
rewriting plan takes the form of (q, ns, v), where q is a XML query, ns is a pivot
node in the main path of query q, and v is an XML view in the MQTree.

3.2 The Validation of Candidate Rewriting Plan over MQTree

With the candidate plan in the form of (q, ns, v), we know there is a containment
mapping M from the path from the root node to ns in q to the main path of

MQTree Based Query Rewriting over Multiple XML Views 567

the view. In the following, we need to determine whether M can be extended to
other parts of the XML tree.

The establishing of a containment mapping between two XPath tree pattern
{//,/,*,[]} is a Co NP problem as discussed in [5,7]. The existing studies also
reveal that it takes polynomial time to implement the path query containment.
We can exploit such a feature to validate the candidate query rewriting plans
preliminarily over the MQTree first.

The Preliminary Validation for the Candidate Query Rewriting Plan.
The containment mapping M from a query q to the composite query qc indicates
the following properties: for each root-leaf path query p in q, we can 1) locate
the mapped path M(p) in v which is contained in p, or 2) the main path of v is
contained in a prefix path of p.

In other words, if property 1 or property 2 are not satisfied either, we know
that we can not establish the containment mapping. Since property 1 and prop-
erty 2 can be tested in a polynomial time, we can remove the views which do
not satisfy the properties efficiently. Such a validation method is called the pre-
liminary validation.

We also notice that we still need to validate the candidate plan at the gran-
ularity of the whole XML tree even after the preliminary validation is passed.
In order to reduce the cost in the next step, we record the mapped nodes in the
preliminary validation step on key nodes in the query tree pattern.

Definition 5 (The key nodes and the XPath segment in the XPath).
The key nodes set K in XPath tree pattern q includes all branching nodes, leaf
nodes and the root node. The sub path s = (n1, n2) of q is called the XPath
segment if the start node n1 and the end node n2 are in K, and there is no other
key nodes in the middle of s.

For each root-leaf path p in query q, the preliminary test runs on path query v
in the MQTree, where the IDS[n] of node n in v is the superset of candidate
views set C in the candidate plan generation. We detect whether p satisfies
property 1 or property 2 with the similar method as the location of pivot nodes
in the section 3.1. In the case that the properties are satisfied, we record the
mapped view nodes set map[n, p] for the key node n in p; otherwise, we know
the preliminary validation fails directly. If two path queries p1 and p2 in q share
the same branching node n, the mapped nodes set map[n] for n can be regarded
as the intersection of map[n, p1] and map[n, p2]. We repeat the process until
all root-leaf paths have been handled. The final results in the preliminary test
include a candidate views set C1 each of which passes the preliminary validation,
and the mapped nodes set annotated on the each key nodes in q.

The Construction of the Containment Mapping for the Whole Tree.
The preliminary validation alone does not guarantee the soundness of the query
rewriting plan. We have to validate plans at the granularity of the whole XML
tree and produce the final XML query rewriting plan. Let C denotes the candi-
date views which pass the preliminary test, we validate whether the view v ∈ C

568 J. Gao, T. Wang, and D. Yang

can be used to answer query q. As for each key node n in q, we select one mapped
node m from the mapped nodes set map[n]. The key nodes and their mapped
nodes can formulate a containment mapping M from q to v. The containment
mapping M is valid if only the mapped segment M(s) in v is contained in the
each segment s in q, where s is not in the sub tree rooted with the pivot node
in the main path of q.

Another thing should be noticed that when a root-leaf path p other than the
main path in q is mapped to the main path of view v under a valid mapping M ,
we know that p contains a pivot node n. We need to merge the suffix path p1

rooted with n into the final query rewriting plan.
Although the validation of each candidate containment nodes mapping can be

implemented in a polynomial time, the number of possible nodes mappings may
be exponential. Suppose the number of the mapped nodes ni[m] for the key node
node ni(1 ≤ i ≤ n) in q, we have to validate

∏n
i=1 ni[m] different containment

mappings at the worst case. However, since the preliminary validation can prune
much validation space, and the intersection of the mapped nodes for the key
nodes from the different root-leaf path can reduce the number of the mapped
nodes, the validation can be implemented efficiently for the XPath in the real
applications.

4 Performance Study

4.1 Experimental Setup

The algorithms we proposed have been implemented using JDK 1.41 in a Win-
dow XP environment on a Dell Optiplex GX260 with P4 2.0GHz CPU and 512MB
RAM. We select one XPath generator developed at Berkeley [12], which can gen-
erate XPaths set with the assigned probabilities for {//, /, *,[]} respectively.

Since the increase of probability for {//,*,[]} in XPath set can lead to the in-
crease of the size of the MQTree and the cost of related operations, we generate
XPaths sets with various probability of different features. Due to the space con-
straints, we report the experimental results on two representative XPath query
sets with different size, XPaths set P33 generated with prob(//) = prob(∗) =
prob([]) = 0.3, XPaths set P11 generated with prob(//) = prob(∗) = prob([]) =
0.1.

We implement the MQTree based XPath rewriting method, and compare the
cost with the query rewriting over each XML view separately. In addition, we also
illustrate the effectiveness of the optimization strategies proposed in MQTree,
for example, the preliminary validation at the granularity of the path query.

Since the construction of the MQTree can be implemented in a linear time
in the size of the XPath tree nodes, we focus on the cost of the rewriting plans
generation. Given a set of generated XPath set Q with the size n, we implement
the query rewriting in the following way: for each query q ∈ Q, we assume that
the queries set (Q − {q}) are materialized views V , and try to answer q using
views V . Therefore, we implement n − 1 times query rewriting for each XPath
query.

MQTree Based Query Rewriting over Multiple XML Views 569

4.2 Performance Study

Fig. 3(a) and Fig. 3(b) compare the whole rewriting cost between the method
based on MQTree (denoted as MQTree) and the method to handle each view sepa-
rately(denoted as Separate). We notice that the MQTree based method takes 1/5
to 1/10 cost of separate method since the shared path can only be handled once in
the MQTree based method. The efficiency of MQTree increases with the increase
size of the XPaths set since more XPath nodes can be merged into MQTree. In ad-
dition, the time cost of MQTree takes high cost to handle P33 set than to handle
P11 set. This is due to that the increase of uncertain factor leads to the decrease of
the merging probability for the query tree and the increase of size of the MQTree.

The validation of the XPath query rewriting plans occupies a large portion
of the total cost. We propose a two-phase candidate plans validation method
in this paper. In Fig. 3(c) and Fig. 3(d), we compare the time cost of MQTree
with or without the optimization strategy of the preliminary validation. We
notice that the preliminary validation can improve the efficiency of the XPath
rewriting especially on the XPaths set P33, since the more predicates {[]} in the
XPath indicate there exist more path queries in the XPath tree pattern and the
preliminary validation can prune more validation space on P33.

1K 2K 3K 4K 5K
0

10

20

30

40

T
im

e
C

os
t(

m
s)

The Number of Views

 MQTree
 Separate

(a) Total Time Cost on P11

1K 2K 3K 4K 5K
0

10

20

30

40

50

T
im

e
C

os
t(

m
s)

The Number of Views

 MQTree
 Separate

(b) Total Time Cost on P33

1K 2K 3K 4K 5K
0

2

4

6

8

10

12

14

16

18

20

22

V
al

id
at

io
n

T
im

e(
m

s)

The Number of Views

 WithPreliminary
 WithoutPreliminary

(c) Validation Time Cost on P11

1K 2K 3K 4K 5K
0

5

10

15

20

25

30

35

40

45

50

55

V
al

id
at

io
n

T
im

e(
m

s)

The Number of Views

 WithPreliminary
 WithoutPreliminary

(d) Validation Time Cost on P33

Fig. 3. Time cost in the XML query rewriting

570 J. Gao, T. Wang, and D. Yang

5 Related Work

Answering query using views has been extensively studied on the relational
model [8]. Two fundamental algorithms, bucket algorithm and inverse rule algo-
rithms, have been proposed in [10,6]. Although much work has been done on
the relational model, it is not a trivial work to extend the existing techniques to
the nested data model, due to the semantic mismatch between two models and
different expressive power of two query languages.

Some attempts have been made on the semi-structured data model or the
graph data model. The method supports [13] the nested query expression and
the results reconstruction. However, the work does not discuss the query with
features similar to “//” or “*” in XPath. Regular path query rewriting discussed
in [4] on the graph model supports regular expressions, which has the similar ex-
pression as XPath {//,/,*}, while the regular expression query does not support
the result reconstruction and “[]”.

The most recent progress in XPath rewriting is made at the server side [1]
or at the client side [11]. The paper [1] studies the query rewriting problem
if the index is regarded as a special kind of the XML view. It extends the
query containment test [7] and proposes an incomplete but efficient XPath
{//,/,[],*} rewriting algorithm via the dynamic programming method. The paper
[11] studies the query rewriting problem at the client side. It proposes a sound
and complete method to handle XML query rewriting with the more restricted
features. The work [9] studies the maximally contained query rewriting for
XPath{//,/,[]} and discusses the impact of the schema to reduce the number of
the sub plans. Although our work also studies the maximally contained XML
query rewriting, our method considers the XPath features includes {//,/,[],*}
and discusses how to handle multiple XML views efficiently.

The XML query processing over the XML data stream handles millions XML
query at the same time [12]. The redundancy shared computation paths are
merged together to reduce the evaluation cost for the whole set. Our work shares
the similar idea on the merging XPath. However, the operations on the merged
structure in the data stream are totally different from those in XML query
rewriting.

6 Conclusion

In this paper, we propose a MQTree based method to generate query rewriting
plans over multiple views efficiently. The future work will study the impact of
schema on the MQTree.

References

1. Beyer, K., Cochrane, R., Pira-hesh, H., Balmin, A., Ozcan, F.: A framework for
using materialized xpath views in xml query processing. In: Proc. VLDB, pp. 60–71
(2004)

MQTree Based Query Rewriting over Multiple XML Views 571

2. Suciu, D., Mandhani, B.: Query caching and view selection for xml databases. In:
Proc. VLDB, pp. 469–480 (2005)

3. Clark, J.: Xml path language(xpath). W3C (1999), http://www.w3.org/TR/XPath
4. Lenzerini, M., Vardi, M., Calvanese, D., Giacomo, G.D.: Rewriting of regular ex-

pressions and regular path queries. In: Proc. PODS, pp. 194–204 (1999)
5. Schwentick, T., Neven, F.: Xpath containment in the presence of disjunction, dtds,

and variables. In: Proc. ICDT, pp. 315–329 (2003)
6. Mendelzon, A.O., Grahne, G.: Tableau techniques for querying information sources

through global schemas. In: Proc. ICDT, pp. 332–347 (1999)
7. Suciu, D., Miklau, G.: Containment and equivalence for an xpath fragment. In:

Proc. PODS, pp. 65–76 (2002)
8. Halevy, A.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294

(2001)
9. Zhao, Z., Lakshmanan, L., Wang, H.: Answering tree pattern queries using views.

In: Proc. VLDB, pp. 571–582 (2006)
10. Duschka, O.M., Genesereth, M.R., Keller, A.M.: Infomaster: An information inte-

gration system. In: Proc. SIGMOD, pp. 539–542 (1997)
11. zsoyoglu, Z.M., Xu, W.: Rewriting xpath queries using materialized views. In: Proc.

VLDB, pp. 121–132 (2005)
12. Franklin, M., Zhang, H., Diao, Y.l., Altinel, M., Fischer, P.: Path sharing and

predicate evaluation for high-performance xml filtering. In: TODS (2003)
13. Vassalos, V., Papakonstantinou, Y.: Query rewriting for semi-structured data. In:

Proc. SIGMOD, pp. 455–466 (1999)

http://www.w3.org/TR/XPath

Convex Cube: Towards a Unified Structure
for Multidimensional Databases

Alain Casali, Sébastien Nedjar, Rosine Cicchetti, and Lotfi Lakhal

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS UMR 6166, Université de la Méditerranée

Case 901, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
lastname@lif.univ-mrs.fr

Abstract. In various approaches, data cubes are pre-computed in order
to efficiently answer Olap queries. Such cubes are also successfully used
for multidimensional analysis of data streams. The notion of data cube
has been explored in various ways: iceberg cubes, range cubes, differential
cubes or emerging cubes. In this paper, we introduce the concept of
convex cube which captures all the tuples satisfying a monotone and/or
antimonotone constraint combination. It can be represented in a very
compact way in order to optimize both computation time and required
storage space. The convex cube is not an additional structure appended
to the list of cube variants but we propose it as a unifying structure that
we use to characterize, in a simple, sound and homogeneous way, the
other quoted types of cubes.

1 Introduction and Motivations

Pre-computing all the possible aggregates at various levels of granularity makes it
possible to handle data cubes and efficiently answer Olap queries
[Han and Kamber, 2006]. The data cube is thus a key concept for data ware-
house management. More recently, cube computation has been successfully used
for multidimensional analysis of data streams [Han et al., 2005]. In this kind of
applications, huge amounts of data, at a very thin granularity, are generated in
continuous flows. Such flows must be scanned only once because of a threefold
reason: the reading cost, the very quick changes in data and the needs of rapid
reactions for users faced with data changes. In such a context, computing cubes
is an interesting way to investigate the described issue.

Research work has proposed different variations around the concept of data
cubes. For instance, iceberg cubes are partial cubes inspired from frequent pat-
terns. They capture only sufficiently significant trends by enforcing minimal
threshold constraints over measures [Beyer and Ramakrishnan, 1999]. Range
cubes can be seen as extending the previous ones because measures are con-
strained in order to belong to a given range [Casali et al., 2003]. Users are then
provided with trends fitting in a particular “window”. New trends appearing (or
established trends disappearing) when a data warehouse is refreshed or along
a data stream capture are exhibited by differential cubes [Casali, 2004]. The

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 572–581, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Convex Cube: Towards a Unified Structure for Multidimensional Databases 573

latter can be perceived as the result of a set difference between two cubes: for
instance one stored in the data warehouse and the other computed from the
refreshment data or also one computed from a data stream at a precise instant
and the other later. Depending on the order of the two operands, appearing or
disappearing trends are exhibited. Finally, emerging cube [Nedjar et al., 2007]
captures trends which are not significant at a moment but which grow significant
later. In a dual way, it can exhibit relevant trends which become irrelevant. In
addition with the appearing or disappearing trends of the differential cube, the
emergent cube provides the decision maker with trend reversals. Such a knowl-
edge is strongly required in multidimensional analysis of data stream [Han et al.,
2005] and Olap.

Frequently these different types of cubes, by starting with the original data
cube itself [Gray et al., 1997], have not been grasped as concepts but rather as
the result of queries or more efficient algorithms.

In this paper, we propose a novel and unifying structure which offers a soundly
founded framework for characterizing the various quoted cubes. More precisely,
our contributions are the following:

(i) we state the foundations of a new structure called convex cube which is based
on the search space of the cube lattice [Casali et al., 2003]. The convex cube
takes into account combinations of monotone and antimonotone constraints.
We show that such a structure is a convex space and thus can be represented,
in a very compact way, by its borders;

(ii) by taking benefit of the convex cube structure, we propose formal and homo-
geneous definitions for the data cube, iceberg cube, range cube,
differential cube and emmerging cube.

The article is organized as follows. Section 2 presents the background of our
proposal by briefly describing the multidimensional search space that we use:
the cube lattice. In section 3, we detail the structure of convex cube. Its use for
characterizing the various types of cubes is proposed in the next section.

2 Cube Lattice Framework

In this section, we recall the concepts of cube lattice [Casali et al., 2003] which
is used to formalize the new structure proposed in this paper.

Throughout the paper, we make the following assumptions and use the in-
troduced notations. Let r be a relation over the schema R. Attributes of R are
divided in two sets (i) D the set of dimensions, also called categorical or nominal
attributes, which correspond to analysis criteria and (ii) M the set of measures.

The multidimensional space of the categorical database relation r groups all
the valid combinations built up by considering the value sets of attributes in
D, which are enriched with the symbolic value ALL. The latter, introduced in
[Gray et al., 1997] when defining the operator Cube-By, is a generalization of all
the possible values for any dimension.

The multidimensional space of r is noted and defined as follows: Space(r) =
{×A ∈ D(Dim(A) ∪ ALL)} ∪ {(∅, . . . , ∅)} where × symbolizes the Cartesian

574 A. Casali et al.

product, Dim(A) is the projection of r on the attribute A and tuple (∅, . . . , ∅)
stands for the combination of empty values. Any combination belonging to the
multidimensional space is a tuple and represents a multidimensional pattern.

The multidimensional space of r is structured by the generalization/special-
ization order between tuples, denoted by %g. This order has been originally
introduced by T. Mitchell [Mitchell, 1997] in the context of machine learning.
In a datawarehouse context, this order has the same semantic as the operator
Rollup/Drilldown [Gray et al., 1997] and is used, in the quotient cube
[Lakshmanan et al., 2002], to compare tuples (cells).

Let u, v be two tuples of the multidimensional space of r:

u %g v ⇔
{
∀A ∈ D such that u[A] �= ALL, u[A] = v[A]
or v = (∅, . . . , ∅)

If u %g v, we say that u is more general than v in Space(r). In other words, u
captures a similar information than v but at a rougher granularity level.

Example 1. Let us consider the relation Document (cf Table 1) yielding the
quantities sold by Type, City and Publisher. In the multidimensional space of our
relation example, we have: (Novel, ALL, ALL) %g (Novel, Marseilles, Hachette),
i.e. the tuple (Novel, ALL, ALL) is more general than (Novel,
Marseilles, Hachette) and (Novel, Marseilles, Hachette) is more specific than
(Novel, ALL, ALL).

Table 1. Relation example Document

RowId Type City Publisher Qty

1 Novel Marseilles Hachette 2
2 Novel Marseilles Collins 2
3 Essay Paris Collins 1
4 Textbook Paris Collins 6
5 Essay Marseilles Collins 1

The two basic operators provided for tuple construction are: Sum (denoted
by +) and Product (noted •). The Sum of two tuples yields the most specific
tuple which generalizes the two operands. The Product of two tuples yields the
most general tuple which specializes the two operands. If it exists, for these
two tuples, a dimension A having distinct and real world values (i.e. exist-
ing in the original relation), then the only tuple specializing them is the tuple
(∅, . . . , ∅) (apart from it, the tuple sets which can be used to retrieve them are
disjoined).

By providing the multidimensional space of r with the generalization order
between tuples and using the above-defined operators Sum and Product, we de-
fine an algebraic structure which is called cube lattice. Such a structure provides
a sound foundation for several multidimensional data mining issues.

Convex Cube: Towards a Unified Structure for Multidimensional Databases 575

Theorem 1. Let r be a categorical database relation over D ∪M. The ordered
set CL(r) = 〈Space(r),%g〉 is a complete, graded, atomistic and coatomistic
lattice, called cube lattice in which Meet (

∧
) and Join (

∨
) elements are given

by:

1. ∀ T ⊆ CL(r),
∧

T = +t∈T t

2. ∀ T ⊆ CL(r),
∨

T = •t∈T t

3 Convex Cubes

In this section, we study the cube lattice structure faced with conjunctions of
monotone and antimonotone constraints according to the generalization order.
We show that this structure is a convex space which is called convex cube. We
propose condensed representations (with borders) of the convex cube with a
twofold objective: defining the solution space in a compact way and deciding
whether a tuple t belongs or not to this space.

We take into account the monotone and antimonotone constraints the most
used in database mining [Han and Kamber, 2006]. They are applied on:

– measures of interest like pattern frequency, confidence, correlation. In these
cases, only the dimensions of R are necessary;

– aggregates computed from measures of M and using statistic additive
functions (Count, Sum, Min, Max).

We recall the definitions of convex space notion, monotone and/or antimonotone
constraints according to the generalization order %g.

Definition 1. Convex Space - Let (P ,≤) be a partial ordered set, C ⊆ P is a
convex space [Vel, 1993] if and only if ∀x, y, z ∈ P such that x ≤ y ≤ z and
x, z ∈ C then y ∈ C. Thus C is bordered by two sets: (i) an “Upper set”, noted
U , defined by U = max≤(C), and (ii) a “Lower set”, noted L and defined by
L = min≤(C).

Definition 2. Monotone/antimonotone constraints

1. A constraint Const is monotone according to the generalization order if and
only if: ∀ t, u ∈ CL(r) : [t %g u and Const(t)] ⇒ Const(u).

2. A constraint Const is antimonotone according to the generalization order if
and only if: ∀ t, u ∈ CL(r) : [t %g u and Const(u)] ⇒ Const(t).

Notations: We note cmc (camc respectively) a conjunction of monotone
constraints (antimonotone respectively) and chc an hybrid conjunction of
constraints. By resuming the symbols U and L according to the considered case,
the introduced borders are indexed by the type of the constraint in question.
For instance, Ucamc symbolizes the set of the most specific tuples satisfying the
conjunction of antimonotone constraints.

576 A. Casali et al.

Example 2. - In the multidimensional space of our relation example Document
(cf. Table 1), we would like to know all the tuples for which the measure value
is greater than or equal to 3. The constraint “ Sum(Quantity) ≥ 3 ” is anti-
monotone. If the amont of sales by Type, City and Publisher is greater than 3,
then the quantity satisfies this constraint at a more aggregated granularity level
e.g. by Type and Publisher (all the cities merged) or by City (all the types and
publishers together). In a similar way, if we aim to know all the tuples for which
the quantity is lower than 6, the underlying constraint “ Sum(Quantity) ≤ 6 ”
is monotone.

Theorem 2. The cube lattice with monotone and/or antimonotone constraints
is a convex space which is called convex cube, CC(r)const = {t ∈ CL(r) such
that const(t)}. Its upper set Uconst and lower set Lconst are:

1. if const = cmc,

{
Lcmc = min�g (CC(r)cmc)
Ucmc = (∅, . . . , ∅)

2. if const = camc,

{
Lcamc = (ALL, . . . ,ALL)
Ucamc = max�g(CC(r)camc)

3. if const = chc,

{
Lchc = min�g (CC(r)chc)
Uchc = max�g(CC(r)chc)

The upper set Uconst represents the most specific tuples satisfying the
constraint conjunction and the lower set Lconst the most general tuples re-
specting such a conjunction. Thus Uconst and Lconst result in condensed rep-
resentations of the convex cube faced with a conjunction of monotone and/or
antimonotone constraints.

The following corollary provides a characterization of the convex cube borders
with an hybrid conjunction chc = camc ∧ cmc by knowing only (i) either the
maximal border for the antimonotone constraints (Ucamc) and the monotone
ones cmc, (ii) or the minimal border for the monotone constraints (Lcmc) and
the antimonotone ones camc

Corollary 1

1. Given Ucamc and cmc, the convex cube borders CC(r)chc are:
{

Lchc = min�g({t ∈ CL(r) | ∃t′ ∈ Ucamc : t %g t′ and cmc(t)})
Uchc = {t ∈ Ucamc | ∃t′ ∈ Lchc : t′ %g t}

2. Given Lcmc and camc, a condensed representation of CC(r)chc is:
{

Uchc = max�g ({t ∈ CL(r) | ∃t′ ∈ Lcmc : t′ %g t and camc(t)})
Lchc = {t ∈ Lcmc | ∃t′ ∈ Uchc : t %g t′}.

Example 3. Table 2 gives the borders Ucamc, Uchc, Lcmc and Lchc of the
convex cube of our relation example with the hybrid constraint
“3 ≤ Sum(Qty) ≤ 6”.

Convex Cube: Towards a Unified Structure for Multidimensional Databases 577

Table 2. Borders of the convex cube for 3 ≤ Sum(Quantity) ≤ 6

Ucamc

(Novel, Marseilles, ALL)
(ALL,Marseilles, Collins)
(Textbook, Paris, Collins)

Uchc

(Novel, Marseilles, ALL)
(ALL, Marseilles, Collins)
(Textbook, Paris, Collins)

Lcmc

(Novel, ALL, ALL)
(Essay, ALL, ALL)
(Textbook, ALL, ALL)
(ALL, Marseilles, ALL)
(ALL, ALL, Hachette)

Lchc

(Novel, ALL, ALL)
(Textbook, ALL, ALL)
(ALL, Marseilles, ALL)

The characterization of the convex cube as a convex space makes it possible to
know whether a tuple satisfies or not the constraint conjunction by only knowing
borders of the convex cube. Actually if a conjunction of antimonotone constraints
holds for a tuple of Space(r) then any tuple generalizing it also respects the
constraints. Dually if a tuple fulfils a monotone constraint conjunction, then all
the tuples specializing it also satisfy the constraints.

Example 4. From the borders of the convex cube for our relation Document
(cf. Table 2) the following queries can be easily answered:

1. Is the sold quantity in Marseilles between 3 and 6?
2. Is the number of textbooks sold in Paris between 3 and 6?
3. Is the number of documents sold in Paris and published by Collins between

3 and 6?

The answer to the first question is yes because the tuple (ALL, Marseilles,
ALL), giving the sales in the city of Marseilles, all the products and dates merged,
belongs to the border Lchc. We answer the second query in a similar way because
the tuple (Textbook, Paris, ALL) generalizes the tuple (Textbook, ALL, ALL)
belonging to Lchc and specializes the tuple (Textbook, Paris, Collins) included
in the border Uchc. In contrast, the answer to the third question is no because
the tuple (ALL, Paris, Collins) (all the purchases made in Paris and puiblished
by Collins) does not specialize any tuple of Lchc even if it generalizes the tuple
(Textbook, Paris, Collins) of Uchc.

4 Formalization of Existing Cubes

In this section, we review different variants of data cubes and, by using the convex
cube structure, we propose a characterization both simple and well founded.

578 A. Casali et al.

4.1 Datacubes

Originally proposed by J. Gray et al. [Gray et al., 1997], The data cube according
to a set of dimensions is presented as the result of all the Group By that it is
possible to express using a combination of dimensions. The result of any Group
By is called a cuboid, and the set of all the cuboids is structured within a relation
noted Datacube(r). The schema of this relation remains similar to the one of r,
i.e. D ∪M and the very same schema is used for all the cuboids (in order to
perform their union) by enforcing a simple idea: any dimension which is not
envolved in the computation of a cuboid (i.e. not mentioned in the Group By)
is provided with the value ALL. For any attribute set X ⊆ D, a cuboid of the
data cube, noted Cuboid(X, f({M|∗})), is yielded by the following Sql query:

Select [All ,] X, f ({M|∗ })
From r
Group By X;

Thus a data cube can be achieved by the two Sql queries:

1. by using the operator Cube By (or Group By Cube according to the
DBMS):

Select D, f ({M|∗ })
From r
Cube By D;

2. by performing the union of the cuboids:

Datacube(r, f({M|∗})) =
⋃

X⊆D
Cuboid(X, f({M|∗}))

A tuple t belongs to the data cube of r if and only if it exists a tuple t′ in
r which specializes t; else t cannot be built up. As a consequence, whatever the
aggregative function is, the tuples of the data cube projected over the dimensions
remain invariant, only the values computed by the aggregative function vary.

Proposition 1. Let r be a relation projected over D, the set of tuples (i.e. with-
out the measure values) of the data cube of r is a convex cube for the constraint
“Count(*) ≥ 1”: Datacube(r) = {t ∈ CL(r) | t[Count(∗)] ≥ 1}

Since the constraint “Count(*) ≥ 1” is an antimonotone constraint (according
to %g), a data cube is a convex cube. By applying theorem 2, we infer that any
data cube can be represented by two borders: the relation r which is the upper
set and the tuple (ALL, . . . , ALL) which is the lower set. Then we can easily
assess the belonging of any tuple t to the data cube of r: we have just to find a
tuple t′ ∈ r specializing t.

Example 5. With our relation example Document (cf. Table 1), the tuple
(Novel, Marseilles, ALL) belongs to the data cube because it generalizes the
tuple (Novel, Marseilles, Hachette) of the original relation.

Convex Cube: Towards a Unified Structure for Multidimensional Databases 579

In this secion, we have shown that we can characterize the datacube as a convex
cube. In the same way, in the following section we use the genericity of our
structure to capture various type of cubes.

4.2 Others Cubes

Most of the existing cubes can achieved by Sql queries or with by using by using
our structure. In a first time, we present cubes, the most used in practice. Then
we summarize characterizations of these in table 3.

(i) Inspired from frequent patterns, Beyer et al. introduce the Iceberg cubes
[Beyer and Ramakrishnan, 1999] which are presented as tuple subset of the
data cube satisfying for the measure values a minimal threshold constraint.
The proposal is motivated by the following objective: the decision makers are
interested in general tendencies, the relevant trends are trends sufficiently
distinctive. Thus it is not necessary to compute and materialize the whole
cube (the search space is pruned). This results in a significant gain for both
execution time and required storage space.

(ii) The tuples of a range cube have measure values which fit in a given range.
Such cubes place emphasis on middle tendencies, not too general and not
too specific.

(iii) Differential cubes [Casali, 2004] result from the set difference between the
data cubes of two relations r1 and r2. They capture tuples relevant in a re-
lation and not existing in the other. In contrast with the previous ones, such
cubes perform comparisons between two data sets. For instance in a dis-
tributed application, these data sets are issued from two different sites and
their differential cube highlights trends which are common here and unknown
there. For OLAP applications as well as data stream analysis, trend com-
parisons along time are strongly required in order to exhibit trends which are
significant at a moment and then disappear or on the contrary non-existent
trends which latter appear in a clear-cut way. If we consider that the original
relation r1 is stored in a data warehouse and r2 is made of refreshment data,
the differential cube shows what is new or dead.

(iv) Emerging cubes [Nedjar et al., 2007] capture trends which are not relevant
for the users (because under a threshold) but which grow significant or on the
contrary general trends which soften but not necessarily disappear. Emer-
gent cubes enlarge results of differential cubes and refine cube comparisons.
They are of particular interest for data stream analysis because they exhibit
trend reversals. For instance, in a web application where continuous flows
of received data describe in a detailed way the user navigation, knowing the
craze for (in contrast the disinterest in) such or such URL is specially im-
portant for the administrator in order to allow at best available ressources
according to real and fluctuating needs.

580 A. Casali et al.

T
ab

le
3.

Fo
rm

al
iz

at
io

n
of

ex
is

ti
ng

cu
be

s

T
y
p
e

o
f
D

a
ta

cu
b
e

S
q
l

Q
u
er

y
C

o
n
st

ra
in

ts
C

h
a
ra

ct
er

iz
a
ti

o
n

Ic
eb

er
g

cu
b
es

S
e
l
e
c
t

D
,

f
(
{M

|∗
}
)

F
r
o
m

r
C

u
b
e

B
y

D
H

a
v
in

g
f
(
{M

|∗
}
)
>

=
M

in
T

h
re

sh
o
ld

;

f
(
M

|∗
)

≥
M

in
T

h
r
e
s
h
o
ld

C
u
b
e
I
c
e
r
b
e
r
g
(
r
)

=
{t

∈
C

L
(
r
)

|
t[
f

(
{M

|∗
})

]
≥

M
in

T
h
r
e
s
h
o
ld

}.

R
a
n
g
e

cu
b
es

S
e
l
e
c
t

D
,

f
(
{M

|∗
}
)

F
r
o
m

r
C

u
b
e

B
y

D
H

a
v
in

g
f
(
{M

|∗
}
)

B
e
t
w

e
e
n

M
in

T
h
re

sh
o
ld

A
n
d

M
a
x
T

h
re

sh
o
ld

;

f
(
M

|∗
)

≥
M

in
T

h
r
e
s
h
o
ld

f
(
M

|∗
)

≤
M

a
x
T

h
r
e
s
h
o
ld

R
a
n
g
e
C

u
b
e
(
r
)

=
{t

∈
C

L
(
r
)

|
t[
f

(
{M

|∗
})

]
≥

M
in

T
h
r
e
s
h
o
ld

a
n
d

t[
f

(
{M

|∗
})

]}
≤

M
a
x
T

h
r
e
s
h
o
ld

}.

D
iff

er
en

ti
a
l
cu

b
es

S
e
l
e
c
t

D
,

f
(
{M

|∗
}
)

F
r
o
m

r
2

C
u
b
e

B
y

D
H

a
v
in

g
f
(
{M

|∗
}
)
>

=
M

in
T

h
re

sh
o
ld

M
in

u
s

S
e
l
e
c
t

D
,

f
(
{M

|∗
}
)

F
r
o
m

r
1

C
u
b
e

B
y

D
;

f
(
M

|∗
)

≥
M

in
T

h
r
e
s
h
o
ld

n
o
t
be

lo
n
gi

n
g

to
th

e
d
a
ta

cu
be

o
f

r
1

D
if

f
C

u
b
e
(
r
2
,
r
1
)

=
{t

∈
C

L
(
r
)

|
t[
f

(
{M

|∗
})

]
≥

M
in

T
h
r
e
s
h
o
ld

a
n
d

�
t′

∈
r
1

|
t
�

g
t′

}.

E
m

er
g
in

g
cu

b
e

S
e
l
e
c
t

D
,

f
(
{M

|∗
}
)

F
r
o
m

r
2

C
u
b
e

B
y

D
H

a
v
in

g
f
(
{M

|∗
}
)
>

=
M

in
T

h
re

sh
o
ld

2
A
n
d

D
N

o
t

I
n

(
S
e
l
e
c
t

D
F
r
o
m

r
1

C
u
b
e

B
y

D
H

a
v
in

g
f
(
{M

|∗
}
)
>

M
in

T
h
re

sh
o
ld

1
)

f
(
M

|∗
,
r
2
)

≥
M

in
T

h
r
e
s
h
o
ld

2

f
(
M

|∗
,
r
1
)

<
M

in
T

h
r
e
s
h
o
ld

1

E
m

e
r
g
in

g
C

u
b
e
(
r
2
,
r
1
)

=
{t

∈
C

L
(
r
1

∪
r
2
)

|
f

(
M

|∗
,
r
2
)

≥
M

in
T

h
r
e
s
h
o
ld

2
a
n
d

f
(
M

|∗
,
r
1
)

<
M

in
T

h
r
e
s
h
o
ld

1
}.

C
o
n
v
ex

C
u
b
es

S
e
l
e
c
t

D
,

f
(
{M

|∗
}
)

F
r
o
m

r
C

u
b
e

B
y

D
H

a
v
in

g
cm

c
(
t
)

A
n
d

ca
m

c
(
t
)

;

m
o
n
to

n
e

co
n
st

ra
in

t
c
m

c
(
)

a
n
ti

-m
o
n
o
to

n
e

co
n
st

ra
in

t
c
a
m

c
(
)

C
o
n
v
e
x
C

u
b
e
(
r
)

=
{t

∈
C

L
(
r
)

|
c
m

c
(
t)

a
n
d

c
a
m

c
(
t)

}.

Convex Cube: Towards a Unified Structure for Multidimensional Databases 581

5 Conclusion

In this paper, we review different declensions of the concept of data cube. With
their compact representation and their efficient computation, such cubes are
good candidates for multidimensional analysis of data stream. Actually, users of
such dynamic applications are strongly interested by trend evolutions over time
for reacting at these changes in real time.

We define a unifying structure, the convex cube, which is a formal and generic
framework making it possible to characterize in a simple and sound way different
variants of data cubes. The latter have frequently been seen as the result of queries
or algorithms rather than concepts. We pay particular attention to confront these
two visions. It results from this work an homogeneous characterization of the ex-
amined types of cubes, a didactic classification facilitating the user choice for the
cube variant the most suitable, but above all a compact representation, soundly
founded for the generic structure of the convex cube and applied to its specific
declensions which are the iceberg, range, differential and emerging cubes.

For future work, we plan to study different ways to summarize emergent cubes
by using cube closures and to extract emergent efficiently cuboids for a finer
analysis in Olap databases.

References

Beyer, K., Ramakrishnan, R.: Bottom-Up Computation of Sparse and Iceberg
CUBEs. In: Proceedings of the International Conference on Management of Data,
SIGMOD, pp. 359–370 (1999)

Casali, A.: Mining borders of the difference of two datacubes. In: Proceedings of the
6th International Conference on Data Warehousing and Knowledge Discovery,
DaWaK, pp. 391–400 (2004)

Casali, A., Cicchetti, R., Lakhal, L.: Cube lattices: a framework for multidimensional
data mining. In: Proceedings of the 3rd SIAM International Conference on Data
Mining, SDM, pp. 304–308 (2003)

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery 1(1),
29–53 (1997)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream cube:
An architecture for multi-dimensional analysis of data streams. Distributed and
Parallel Databases 18(2), 173–197 (2005)

Lakshmanan, L., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of
a data cube. In: Proceedings of the 28th International Conference on Very Large
Databases, VLDB, pp. 778–789 (2002)

Mitchell, T.M.: Machine learning. Computer Science. MacGraw-Hill, New York (1997)
Nedjar, S., Casali, A., Cicchetti, R., Lakhal, L.: Emerging cubes for trends analysis in

Olap databases. In: Proceedings of the 9th International Conference on Data
Warehousing and Knowledge Discovery, DaWaK (2007)

Vel, M.: Theory of Convex Structures. North-Holland, Amsterdam (1993)

Dependency Management for the Preservation

of Digital Information

Yannis Tzitzikas

Computer Science Department, University of Crete, Greece, and
Institute of Computer Science, FORTH-ICS, Greece

tzitzik@ics.forth.gr

Abstract. The notion of dependency is ubiquitous. This paper ap-
proaches this notion from the perspective of digital information preser-
vation. At first, an abstract notion of module and dependency is intro-
duced. Subsequently, and for building preservation information systems,
the notion of profile is proposed as a gnomon for deciding representation
information adequacy (during input) and intelligibility (during output).
Subsequently some general dependency management services for identi-
fying and filling gaps during input and output are described and analyzed
(also described as protocols that could be used in the communication be-
tween a preservation information system and information consumers and
providers).

1 Introduction

The preservation of digital information is an important requirement of the mod-
ern society. Digital information has to be preserved not only against hardware
and software technology changes, but also against changes in the knowledge
of the community. According to the OAIS reference model [2], metadata are
distinguished to various broad categories. One very important (for preservation
purposes) category of metadata is named Representation Information (RI) which
aims at enabling the conversion of a collection of bits to something useful. In
brief, the RI of a digital object should comprise information about the Struc-
ture, the Semantics and the needed Algorithms for interpreting and managing a
digital object. Figure 1 shows one corresponding part of the information model
of OAIS.

In order to abstract from the various domain-specific and time-varying de-
tails, in this paper we model the RI requirements as dependencies. This view
is very general and can capture a plethora of cases. Subsequently, we identify a
set of core services for managing dependencies. These services aim at identifying
the knowledge gaps (missing RI), and at computing and proposing ways to fill
these gaps. These services can be used during both importing and exporting
information (to and from a preservation information system). As different users
(consumers or providers), or communities of users, have different characteris-
tics (in terms of RI), we introduce the notion of DC (Designated Community)
profile. Subsequently, we describe protocols (interaction schemes) that could be

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 582–592, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dependency Management for the Preservation of Digital Information 583

class OAIS Information Model

Information Object Data Object

Physical Obj ect Digital Obj ect Bit SequenceRepresentation

Information

Structure

Information

Semantic

Information
Softw are

Information
Algorithms

Informatoin

0..*

interpretedUsing

1..* 1..*

Fig. 1. The information model of OAIS

used in the communication between a preservation information system and in-
formation consumers and providers. This work can be exploited for building
advanced preservation information systems and registries. Motivation for this
work is the ongoing EU project CASPAR (FP6-2005-IST-033572) whose objec-
tive is to build a pioneering framework to support the end-to-end preservation
lifecycle for scientific, artistic and cultural information.

The paper is organized as follows. Section 2 formalizes the notion of depen-
dency and knowledge gap, while Section 3 describes interaction schemes for
identifying and filling these gaps. Finally, Section 4 concludes the paper and
identifies issues for further research.

2 Formalizing Dependencies

Let Obj = {o1, . . . on} be set of all objects of the domain, e.g. the set of all
data objects of an archive. Let T be the set of all modules (or components)
that are needed for understanding/executing/managing the objects in Obj. We
adopt a very general interpretation of the term module. It can be a software or
hardware module. In addition, it could be a knowledge model expressed either
formally or informally, explicitly or tacitly. For instance, it could be an English-
To-Greek dictionary that is useful for a Greek-speaking person to understand a
piece of text written in English. It could also be a ontology A (which could be
expressed in RDF/S) that is useful for understanding the contents of a metadata
file (expressed in RDF), or for understanding another ontology B (e.g. if B uses
or specializes elements defined in A).

584 Y. Tzitzikas

README.txt

TEXT EDITOR
ENGLISH

LANGUAGE

WINDOWS XP

README.txt

TEXT EDITOR
ENGLISH2GREEK

DICTIONARY

WINDOWS XP
GREEK

LANGUAGE

(a) (b)

Fig. 2. Dependencies for a text file

There is dependency relation between modules in the sense that a module
may require the availability of one or more other modules in order to function.
We can model this as a graph Γ = (T , <). A relationship t < t′ means that t′

depends on t, e.g. it may mean that t′ cannot function without the existence of
t. Below we describe some small examples (based on the needs of the CASPAR
project). Figure 2(a) shows the dependencies of a text file written in English.
However, a Greek-speaking consumer may define a dependency graph like the
one illustrated in Figure 2(b).

FITS1 is a standard data format that is used in astronomy. To understand
such a file one needs to understand the FITS standard which is in turn de-
scribed in a PDF document. To understand the keywords contained in a FITS
file one needs to be able to understand the FITS dictionary (that explains the
usage of keywords). Figure 3(a) illustrates these dependencies, while Figure 3(b)
shows the dependencies of a digital object representing an interactive multime-
dia performance. Finally, an example of dependencies between formal knowledge
expressed in the form of RDF Schemas is shown in Figure 4 (where fat arrows
are used to denote dependencies between namespaces).

FITS FILE

FITS
STANDARD

PDF
STANDARD

FITS
JAVA s/w

JAVA VM
PDF
s/w

FITS
DICTIONARY

DICTIONARY
SPECIFICATION

UNICODE
SPECIFICATION

XML
SPECIFICATION

(a)

MULTIMEDIA
PERFORMANCE DATA

C3D DirectX MAX/MSP

3D motion
data files

3D scene
data files

motion to music
mapping strategy

(b)

Fig. 3. Dependencies of scientific and multimedia performance data

A general remark is that there is no standard method for defining what a
module is. For instance, we may have modules of various levels of abstraction.
One module in one dependency graph could correspond to a large number of
interconnected and interdependent finer modules in another dependency graph.

1 http://fits.gsfc.nasa.gov/

Dependency Management for the Preservation of Digital Information 585

Fig. 4. Dependencies between RDF Schemas

For instance, the WINDOWS XP module in Figure 2 is actually the aggregation of
several interconnected modules2. Hereafter we shall make the working assump-
tion that the dependency graph is acyclic, i.e. it is a DAG. Equivalent modules
(e.g. all editors that can read and edit ASCII texts) can be captured by assuming
that each element of T is not atomic but it is a set of equivalent modules (this
is like having disjunctive dependencies).

The intelligibility of a digital object, i.e. of an element in Obj, may require the
existence of one or more modules in T . We can model this by a binary relation
R (R ⊆ Obj × T). To keep notations simple we abuse notation and we will
also use < to denote R. So we can view all dependencies (among modules and
between object and modules) as one graph Γ = (T ∪ Obj, <). For example, if
the management of an object o requires two modules t1, t2 where t2 requires a
module t3 we can write t1 < o, t2 < o, t3 < t2. Table 1 introduces some notations
that will be used in the sequel. The minimal elements of T , i.e. the set min(T),
comprises the primitive modules which are assumed to be always available (e.g.
an Operating System, a programming language, or the English vocabulary).
However, probably nothing in this world is self-existent so the notion of primitive
modules is actually a convention.

Regarding OAIS, we could say that the interpretedUsing relation of Figure
1 defines a plain dependency graph with the only difference that the nodes of this
graph may be further specialized, i.e. classified under the indicative categories
that are shown (e.g. Algorithm, Semantics, Structure, etc). In any case, the
resulting object graphs would contain a dependency graph like the one we have
introduced so far.

2 Hierarchical clustered graphs could be probably used for modeling and formalizing
the dependencies among modules of different granularity, but this goes beyond the
scope of this paper.

586 Y. Tzitzikas

Table 1. Notations

Notation Definition

T the set of all modules and objects

t an element of T
S a subset of T
t < t′ t′ depends on t (in other words, t′ requires t)

<∗ the transitive closure of <

min(S) the minimal elements of S w.r.t. <∗

max(S) the maximal elements of S w.r.t. <∗

Nr(t) { t′ | t′ <∗ t}, i.e. all modules that t requires

Nr(S) ∪{ Nr(t) | t ∈ S}

2.1 Intelligibility of Data Objects

Given an object or module t, we can define the required for understandability
(or intelligibility) modules of t as follows: req(t) = Nr(t). If S ⊆ T , then we can
define req(S) = ∪{ req(t) | t ∈ S}. Let u be an actor (e.g. user, or information
consumer) and let Tu be the modules available to him (e.g. software/hardware
modules available at his computer or knowledge available at his/her mind), where
Tu ⊆ T . Now suppose that u is given a set of objects A (A ⊆ Obj). The set
A could be the answer of a query q posed to an information system, or the
result of browsing an information space, or the result of any other method (e.g.
u may have received the set A by email). The prerequisites for understanding
the set A is req(A). For example, consider the case illustrated in Figure 5 where
T = {t1, . . . , t8}, A = {ox, oy}, and Tu = {t3, t6}. Since Tu contains t6 and
none of its narrower modules t7 and t8, we can understand that t6 is a primitive
module for u. So we can safely make the assumption that u knows t7 and t8.
We can call this unique module assumption (uma), meaning that each module
is uniquely identified by its name and that its required modules are always the
same. Here we have req(ox) = T and req(oy) = {t3, t6, t7, t8}. Also note that
max(req(ox)) = t1 and max(req(oy)) = t3.

We can easily see that u can understand an object o if max(req(o)) ⊆ Tu.
In the current example u can understand oy because max(req(oy)) = t3 ∈ Tu,
however u cannot understand ox because max(req(ox)) = t1 �∈ Tu.

2.2 Intelligibility Gaps

Consider the case of an object ox that is not understandable by u. In this case we
can say that we have an intelligibility gap. To fill the gap, we need to find the missing
modules. The set of missing modules that u needs in order to understand an object
o are given by the formula: Missing(o, u) = req(o) − Nr(Tu). In our example,
Missing(ox, u) = req(ox)−Nr(Tu) = T −{t3, t6, t7, t8}= {t1, t2, t4, t5}. Clearly,
if A ⊆ Obj, then we can define Missing(A, u) = ∪{ Missing(o, u) | o ∈ A}.

Dependency Management for the Preservation of Digital Information 587

t1

t2 t3

t4 t5 t6

t8 t7

ox oy

Tu

T

Obj

Fig. 5. Example of a dependency graph (between objects and modules)

Note that without the unique module assumption (uma), we could not make
the assumption that u knows t7 and t8. In that case we would have to define
Missing(o, u) = req(o) − Tu. In our running example we would have Missing
(ox, u) = req(ox) − Tu = T − {t3, t6} = {t1, t2, t4, t5, t7, t8}. The relationships
between two dependency graphs are specified formally below.

Consider an information provider p and an information consumer u, each
having a dependency graph Γp and Γu respectively.

Definition 1. Let Γu = (Tu, <u) and Γp = (Tp, <p) be two dependency graphs.
We say that Γu is subgraph of Γp, and we write Γu ⊆ Γp, if (a) Tu ⊆ Tp, and
either (b1) <u⊆<p, or (b2) <u=<p|Tu

.

Note that (b2) is more strict than (b1). Specifically, and regarding the rela-
tionships between the elements of Tu, (b1) ensures that p has at least the re-
lationships that u has, while (b2) ensures that p has exactly the relationships
that u has. For instance, Γu of Figure 5 satisfies (b2). If Γu did not contain
the relationship t6 < t3 then it would satisfy only (b1). If Γ did not contain
the relationship t6 < t3 then it would not satisfy neither (b1) nor (b2). Note
that: (b1) implies that Nrp(t) ⊇ Nru(t), ∀t ∈ Tu, while (b2) implies that
Nrp(t) = Nru(t), ∀t ∈ Tu.

3 (Intelligibility-Aware) Interaction Schemes

Consider an information provider p and an information consumer u. Here we
describe various interaction methods that could be used for identifying and filling
intelligibility gaps.

3.1 For Consuming (Delivering) Information

Without loss of generality we can assume a query-and-answer interaction scheme
where u sends to p a query q and p returns a set of objects A. Below we describe

588 Y. Tzitzikas

some interaction schemes that enrich the query-and-answer interaction scheme
with intelligibility-related concerns.

Note that given an object o and a user u, for computing Missing(o, u) =
req(o) −Nr(Tu) one needs to be able to compute req(o) and Nr(Tu). If req(o)
or Nr(Tu) are very large in size then this could cause inefficiencies (especially in
a distributed setting). For this reason below we describe a number of options.

Interaction Schemes with Fixed Number of Messages

(A) u submits a query, p returns the answer with all modules that are required.
(1) u → p: query(q)
(2) p → u: return(A, req(A))
Note that req(A) does not necessarily return the modules themselves. It
may return references to these modules which one could use in order to
find the actual modules (e.g. for downloading and installing them). The
user can identify the missing modules (i.e. those elements in req(A) which
are unknown to him) and proceed accordingly. However in practice req(A)
could be very large in size.

(B) u submits her query and profile, p returns answers accompanied by the
missing modules.
(1) u → p: query(q, Tu)
(2) p → u: return(A, Missing(A, u))
Note that if Tu is smaller than req(A) then this scheme is more efficient
than (A). We can further improve the above scheme, specifically we can
reduce the data that have to be exchanged, if Γu ⊆ Γp. In particular, in
that case step (1) can be replaced by:
(1’) u → p: query(q, max(Tu))

(C) u registers her profile once, p returns answers accompanied by the missing
modules. This scheme avoids sending the profile with each query. Instead, u
registers a (DC) profile Tu once, which is then exploited in the subsequent
query-and-answer interactions. Again the provider sends back the answer
and the missing modules.
(1) u → p: register(u, Tu)
(2) u → p: query(q)
(3) p → u: return(A, Missing(A, u))
We can further improve the above scheme, specifically we can reduce the
data that have to be exchanged for the registration, if Γu ⊆ Γp. In partic-
ular, in that case, step (1) can be replaced by:
(1’) u → p: register(u, max(Tu))

Progressive Interaction Schemes (with variable number of messages).
In some cases it might be useful (or efficient) to provide gradual/progressive
methods for identifying and filling intelligibility gaps. Two such schemes are
described bellow.

(Ai) This is a progressive version of scheme (A). Instead of sending req(A), the
provider at first sends only the maximal elements.

Dependency Management for the Preservation of Digital Information 589

(1) u → p: query(q)
(2) p → u: return(A, max(req(A)))

The user can identify the missing modules (i.e. those elements in max(req(A))
which are unknown to her) and proceed accordingly. Note that u could also
ask again p about the required modules of the elements of
max(req(A)) and so on, i.e. the dialog could be continued as shown next.
Below we use recmsg to denote the previously received message.

(3) u: repeat
(4) u: M := recmsg − Tu // i.e. M := max(req(A)) − Tu

(5) u: If M �= ∅ then
(6) u → p: getDirectReqsOf(M)
(7) p → u: return(max(req(recmsg)))
(8) u: until M = ∅

For instance, in our running example the formula max(req(ox))−Tu returns
the highest missing module, i.e. t1. The entire sequence of M ’s is shown
below:

M1: t1 (= max(req(ox))− Tu)
M2: t2 (= max(req(t1))− Tu)
M3: {t4, t5} (= max(req(t2))− Tu)
M4: {t8} (= max(req(t5))− Tu)
M5: ∅

Note that t8 could be already known to u as it is narrower than t6 ∈ Tu.
(D) u submits only the query, p returns only the answer.

Here u sends to p only q. If u cannot understand the result, she can send
to p what she did not understand. With the assumption that each object
has links to its direct required modules, u can identify the direct missing
modules and send these to p and continue in this way until reaching to her
primitive elements or getting all elements of req(A).

(1) u → p: query(q)
(2) p → u: return(A)
(3) u: repeat
(4) u: M := computeDirectReqsOf(recmsg) −Tu

(5) u: If M �= ∅ then
(6) u → p: getDirectReqsOf(M)
(7) p → u: return(max(req(recmsg)))
(8) u: until M = ∅

3.2 For Providing (Ingesting) Information

A preservation system could follow a policy of the form: the dependencies of the
stored objects should be known and stored. This means that the submission of
information, e.g. the submission of an object or module t, to the system should
be accompanied by adequate representation information. In other words req(t)

590 Y. Tzitzikas

should be known. However as there is not any objective method for deciding
whether req(t) is complete or not (may nothing is complete in the strict sense)
we can again use the notion of profile in order to decide whether the submitted
RI is complete or not (with respect to a specific profile or with respect to all
profiles known by the preservation system).

As one can imagine, the provision (ingestion) of information has many simi-
larities with the consumption (delivery) of information. We could capture the in-
gestion of information by changing the previously described interaction schemes.
Specifically we could ignore the query submission step and consider that the user
u is the preservation system who wants to ingest the set of objects A that p sends
to u. Fore reasons of space their detailed description is omitted.

3.3 Complex Objects and Other Technicalities

Let us for example consider the case of Web pages. Consider a digital
file named a.html. The extension of the filename gives us a hint about
the type of the digital object, so we may write type(a.html) = HTML,
and as a.html > HTML, we may generalize and consider that for every
o ∈ Obj, it holds o > type(o), if type(o) is known. However, an html
page is a text that may contain pointers to other types of data (images,
sounds, etc). In order to obtain this content, we need a HTML parser. So
we could say that computeDirectReqsOf(a.html) needs the availability of an
HTML parser3. Consequently, computeDirectReqsOf(o) could be as follows:
computeDirectReqsOf(o) = type(o)∪ type(o).parse(o).getContents(). To com-
pute all required modules of an object we have to continue analogously.

4 Concluding Remarks

Dependencies are ubiquitous and dependency management is an important re-
quirement that is subject of research in several (old and new emerged) areas, from
software engineering [6,7,8,1] to ontology engineering [3,5]. In software engineer-
ing the various build tools (e.g. make, gnumake, nmake, jam, ant) are definitely
related, as well as the problems of installability, deinstallability and maintainabil-
ity. Recall that the art of large-scale design is to minimize dependencies (recall
Model Driven Architecture). However we could say that the preservation of the
intelligibility of digital objects requires a generalization (or abstraction) able to
capture also non software modules (e.g. explicit or implicit domain knowledge).
The agenda of ontology engineering includes similar in spirit problems, e.g. the
problem of how to reflect a change of an ontology to the dependent ontologies
(i.e. to those that reuse or extend parts of it), which may be stored in differ-
ent sites, as well as the schema evolution problem, i.e. the problem of reflecting
schema changes to the underlying instances.
3 As another example, for a .java named file we need to parse the file in order to

extract all import statements, while for a .rdf named file, we need to parse it in
order to extract the namespaces it uses.

Dependency Management for the Preservation of Digital Information 591

A modern preservation system should be generic, i.e. able to preserve hetero-
geneous digital objects which may have different interpretation of the notion of
dependency. The dependency relations should be specializable and configurable
(e.g. it should be possible to associate different semantics to them). Focus should
be given on finding, recording and curating the dependencies. For example, the
makefile of an application program is not complete for preservation purposes.
The preservation system should also describe the environment in which the ap-
plication program (and the make file) will run. Recall the four worlds of an
information system (Subject World, System World, Usage World, Development
World) as identified by Mylopoulos [4]. Finally, the provision of notification ser-
vices for risks of loosing information (e.g. obsolescence detection services) is
important.

The contribution of this paper lies in specifying a generic view by adopting an
abstract notion of module and dependency and by introducing the notion of DC
profile. Subsequently it specified a number of core services around these notions,
allowing to check and control whether the ingestion of information is complete
and for computing the minimum extra information required to be delivered to
ensure the intelligibility of a digital object by the consumer. Based on these
services a number of interaction schemes for identifying and filling the intelli-
gibility gaps were presented. A proof-of-concept prototype based on Semantic
Web technologies has already been built. The benefits of adopting Semantic Web
languages, for the problem at hand, is that although the core dependency man-
agement services need to know only a very small core ontology (defining the
abstract notion of module and dependency), it is possible to refine (specialize)
the dependency relation.

Issues for further research include (a) extending the framework with converters
(for tackling migration/emulation), (b) studying the effects of changes in the
dependency graphs (and what kind of notification services are required), and (c)
studying composite modules and dependencies of different granularity.

Acknowledgements. This work was partially supported by the EU project
CASPAR (FP6-2005-IST-033572). Many thanks to David Giaretta and the rest
“CASPARtners”.

References

1. Franch, X., Maiden, N.A.M.: Modeling Component Dependencies to Inform their
Selection. In: 2nd Intern. Conf. on COTS-Based Software Systems (2003)

2. International Organization For Standardization: OAIS: Open Archival Information
System – Reference Model (2003), Ref. No ISO 14721:2003

3. Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Approach.
In: International Conference on Ontologies, Databases and Applications of Seman-
tics (ODBase), pp. 1238–1254 (2002)

4. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowl-
edge about Information Systems. ACM Transactions on Information Systems, 8(4)
(October 1990)

592 Y. Tzitzikas

5. Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: An Environment for Dis-
tributed Ontology Development Based on Dependency Management. In: Fensel, D.,
Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 453–468.
Springer, Heidelberg (2003)

6. Vieira, M., Dias, M., Richardson, D.J.: Describing Dependencies in Component
Access Points. In: Proceedings of The 23rd International Conference on Software
Engineering (ICSE’01), Toronto, Canada, pp. 115–118 (2001)

7. Vieira, M., Richardson, D.: Analyzing dependencies in large component-based sys-
tems. ASE, 00:241 (2002)

8. Walter, M., Trinitis, C., Karl, W.: OpenSESAME: An Intuitive Dependability Mod-
eling Environment Supporting Inter-component Dependencies. In: Procs. of 2001
Pacific Rim International Symposium on Dependable Computing, pp. 76–83 (2001)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 593–602, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Constraints Checking in UML Class Diagrams:
SQL vs OCL

D. Berrabah and F. Boufarès

LIPN, Paris13 University,
99 avenue J.B.Clément, 93430 Villetaneuse - France
{db,boufares}@lipn.univ-paris13.fr

Abstract. Numerous CASE tools are used for applications analysis and design.
These tools often do not take into account all the information (structures and
constraints) given in a conceptual level. So, the elements obtained at the physic-
cal level do not completely coincide with the conceptual elements. Consequent-
ly, some semantics are lost. Our goal, in this paper, is to give rules to translate
some constraints not taken into account in the processes used to translate the
conceptual schema. In object databases, these constraints are expressed in OCL
while they are expressed, in relational databases, using active mechanisms.
Consequently, these constraints are checked during databases updates.

Keywords: conceptual schema, constraint translation, SQL, OCL.

1 Introduction

The Unified Modeling Language UML [16] has become the most commonly used and
most powerful formalism for applications analysis and design. Numerous CASE tools
which are available on the market, such as Power AMC and Rational Rose [22 and
17], produce a very flexible environment for UML diagrams modeling. These tools do
not answer all the designer’s needs: many constraints are neither well defined nor
translated or checked. In other word, in database (DB) design methodologies [8 and
23], the processes used to translate a UML class diagram (database conceptual
schema (DBCS)) into a target database schema (TDBS) left aside the constraint satis-
faction problem. The elements obtained during these processes do not completely
coincide with the conceptual elements, thus bringing about some semantic losses [3].
This problem often arises when most of the constraints established in the DBCS and
that reflect the universe of discourse are not translated correctly. Moreover, it should
be noted that if the conceptual diagram is not valid (i.e. it contains conflicts) then this
translation is useless. For instance, an XOR constraint defined on two associations
can be in contradiction with a minimum multiplicity constraint equals to 1 and in
addition it remains unchecked. Many kinds of constraints are well known nowadays,
but little is done for possible conflicts between them. We think that adding a new step
in DB design process is necessary. In this step, possible conflicts which may be gen-
erated by constraints must be detected, localized and corrected [2, 3, 5 and 4]. If the

594 D. Berrabah and F. Boufarès

DBCS is valid, it can be translated in a specific language. Many transformation proc-
esses which concern the formal and/or non-formal translations were presented in
literature. Among these translations, structure properties in a UML class diagram can
be expressed through UML basic structures and the Object Constraint Language
(OCL) [9]. It is also possible to translate UML diagrams into formal specification Z or
B [11, 12, 20 and 21]. Up today, using case tools, only some multiplicity constraints
are considered. Within SQL [8] some constraints must be translated using procedures
and triggers. Unfortunately, there are no rules to generate these procedures and trig-
gers. Consequently, they are not generated using CASE tools. Our major aim is to
study both categories. First, we deal with the expression of the highest number of
constraints in a target language and second we study their coherence.

In this paper, we give a comparison study on participation constraints (PC) defined
on binary associations and those defined on generalization/specialization associations.
The general idea is to define and express these constraints using a constraints specifi-
cation language. We use event-condition-action (ECA) rules and OCL [16 and 25] to
translate these constraints. This study aims to give the designer the possibility of a
total coherence control of constraints in order to deal with the creation and mainte-
nance of databases.

The structure of this paper is as follows. Section 2 synthesizes the basic princi-
ples of constraints and their role in preserving the semantics of the universe of dis-
course. Section 3 shows how to introduce and express participation constraints on
binary associations and generalization/specialization associations with a constraint
specification language. Our approach is based on OCL and trigger-based SQL
scripts which are represented as ECA rules. Finally, the paper ends with a conclu-
sion and perspectives.

2 Constraints

A constraint is a condition or a semantic restriction expressed in a linguistic instruc-
tion form using a textual language (Fig.1). Generally, a constraint is linked to one or
more elements of the DBCS (property, class, association …). It represents semantic
information associated with these elements. Constraints can have the same name but
not the same signification. For instance, the participation constraints defined on clas-
sical binary associations are different from those defined on inheritance links. Some
constraints are inherent to the DBCS whereas others require an explicit definition.
The graphic elements offered by CASE tools do not allow expressing the most of the
constraints such as dependency and participation constraints. In addition, not all the
expressed constraints are translated. For instance, multiplicity constraints in a..b form
(a>1 and b< ∞) are not translated in the TDBS.

Sometimes, constraints are checked using declarative constraints. Unfortunately,
this solution does not always hold. Consequently, more powerful systems based on
OCL or triggers have to be used. OCL is a formal specification language used to ex-
press constraints in UML or other object oriented languages. The kind of constraints
which can be expressed using OCL includes invariants on the structures of the DBCS.
Thus those expressions must be true for all instances of those structures.

 Constraints Checking in UML Class Diagrams: SQL vs OCL 595

Triggers constitute a good mean to implement referential actions. On the common
database management systems (DBMS), it is necessary to use triggers to perform
actions other than those defined by default. Though triggers are found in the majority
of DBMS, unfortunately the execution models of the triggers vary from one DBMS to
another. There are some principle components which are valid for all the systems and
generally these do not change. Trigger is expressed by ECA rules [6, 7 and 10]. It is
activated during DB transition state.

k5

Professor Student

to be registered ► ASSEDICk2

k1

Organization
to work in ►

k4k3

K6

The set of constraints: K
k1: 1..*
k2: 0..1
k3: 1..*
k4: 0..1
k5: {XOR}
k6: {disjoint, incomplete}

employer

assedic

Person

Fig. 1. Human resources management schema

The example of the Fig.1 represents the management of human resources. The set
K of constraints defined on this DBCS is composed by two subsets of constraints,
multiplicity ({ki, i=1,4}) and participation constraints ({ki, i=5,6}). The last one con-
tains an XOR and a disjoint PCs. The XOR PC (k5) ensures that each person must be
registered in ASSEDIC1 or work in an organization but not both. The disjoint PC (k6)
guarantees that a person may be either a professor or a student but not both. She/he
may be neither. We have shown in [3] that the DBCS is valid if and only if the set of
all its constraints is coherent. Otherwise the translation of the DBCS to a TDBS has
not to be done. For instance, if k2 is equal to 1 then the constraint XOR has no signi-
fication.

3 Transformation Rules of Participation Constraints

Participation constraints generally refer to conditions on links between objects of a
class and objects of two or more others classes. In this section, we study two kinds of
participation constraints: those defined on classical binary associations and those
defined on generalization/specialization links (inheritance links). In the latter, every
object can belong to the generalization as well as to its specialization. Each special
object has a link with exactly one general object but the reverse does not necessarily
hold. Thus, the special objects indirectly have features of the more general objects.

Generally, Inheritance links are considered as a one-to-one association type. Unfor-
tunately, this representation brings about semantic loss. Consequently, it will be
strengthened with an OCL or a SQL additional constraint (Fig.2). This constraint

1 ASSEDIC : "ASSociation pour l'Emploi Dans l'Industrie et le Commerce" means Organiza-

tion for Employment in Industry and Trade.

596 D. Berrabah and F. Boufarès

must ensure that each special object has a link with exactly one general object but the
reverse does not necessarily hold.

The additional constraint is expressed in OCL as follow,

Context Specialization inv:
Self.general notEmpty()
Self.general size()=1

Context generalization inv:
Self.special forAll(s1,s2| s1<>s2 implies s1.general<>s2.general

In relational model, the translation of both kinds of links shown below strongly de-
pends on the multiplicity constraints. Indeed, structures and multiplicity constraints
translations are done simultaneously. However, the translation of the other constraints
is done later (but must be done). Many structures translations rules were proposed in
the literature. We retain the basic ones and which we need in this paper. So, any class
is transformed into a table with a primary key; association with a maximum multiplic-
ity equal to 1 is represented in the form of a foreign key; association which does not
contain a maximum multiplicity equal to 1 is represented by a table.

The translation of DBCS constraints into a TDBS must be done in a specific lan-
guage. The following subsections show how PC translations are given in OCL and
SQL languages. The aim of this study is first, to remove ambiguities on definitions of
these two categories of constraints; secondary, to show how to express them in OCL
and SQL and then check them; and finally, to give their common points.

3.1 Checking PCs on Generalization/Specialization Associations

PCs defined on generalization/specialization links are mainly divided into disjoint and
complete constraints. A disjoint constraint specifies whether two objects of different
specializations may be related to the same object of the generalization. A complete
constraint specifies whether objects of the specifications are related to all generaliza-
tion-objects (Fig.2).

0..1

general2

spec1

Generalization

Specialization1 Specialization2

1

spec2

Generalization

Specialization1 Specialization2

{PCs}
Additional constraints {kj, j=3,n}

1general1

0..1

Fig. 2. PCs on generalization/specialization relationship

• A disjoint constraint
A PC may be disjoint if each general object has a link to at most one special object. In
the reverse case, this constraint is said to be overlapping. To check the disjoint con-
straint, we must ensure that each general object is a member of at most one specializa-
tion. This is expressed in object model by adding an OCL constraint using Empty and
notEmpty properties as follow.

 Constraints Checking in UML Class Diagrams: SQL vs OCL 597

Context g: generalization
inv: g.spec1 notEmpty implies g.spec2 Empty

Context g: generalization
inv: g.spec2 notEmpty implies g.spec1 Empty

In relational model, this constraint must be checked during the maintenance of data.
To do so, an ECA rule that events are insertion or update of an object in specialization
is generated. The action of this rule is rejecting the operation if that object already
exists in the other specialization. Note that ECA rules are easily translated within SQL.

ECA
event: insert or update on Specialization1
condition: new value of object to be insert or update exists in

 Specialization2
action: reject operation

• A complete constraint
A PC defined on a generalization/specialization association is complete if each gen-
eral object has a link to at least one special object, otherwise it is said to be incom-
plete. This can be maintained by adding OCL constraints which state that if a general
object is not related to any object in one specialization then it must be related to an
object in the other.

Context g: generalization
inv: g.spec1 Empty implies g.spec2 notEmpty

Context g: generalization
inv: g.spec2 Empty implies g.spec1 notEmpty

In relational model, three ECA rules are needed. The first one is to check the PC dur-
ing insertion into the generalization and the others during deletion or update in spe-
cializations. These two later ECA have the same definition.

ECA1
event: insert on Generalization
condition: none
action: insert obligatory object in Specialization1 or Specialization2

ECA2
event: delete or update on Specialization1
condition: old value of object to be deleted or updated do not exists in

 Specialization2
action: reject operation

• A disjoint and complete constraint
A PC defined on a generalization/specialization association may be disjoint and com-
plete at the same time. In this case each general object must be related to at least one
special object and at most to one object in both specializations. This case joins to-
gether the two preceding cases, from where it is possible to use additional constraints
used to express disjoint and complete PCs. That assertion can also be expressed in
OCL using the logic operator xor.

Context g: Generalization inv:
Self.allInstances forAll(g| g.spec1 notEmpty xor g.spec2 notEmpty)

598 D. Berrabah and F. Boufarès

When the TDBS is represented in relational model, the ECA rules generated are as
follow.

ECA1
event: insert on Generalization
condition: none
action: insert obligatory object in one in only Specialization

ECA2
event: delete on Specialization1
condition: none
action: delete object from generalization or insert it in

 Specialization2

ECA3
event: update on Specialization1
condition: none
action: delete new object from Specialization2 if it exists there or

 reject operation
 delete old object from Generalization or insert it in
 Specialization2

3.2 Checking PCs on Binary Associations

PCs on binary associations are also called interrelation constraints. They frequently
relate to the coexistence of occurrences of class objects in one or several associations
(Fig.3). They can also be defined by the number of times an object of a class can
participate to a connected association set. More detailed definitions of this constraint
category are given by [14, 18, 2 and 15].The introduction of these constraints into a
DBCS must be taken into account in order to preserve the semantics of the real world.
Consequently, they must be translated in the TDBS.

R2

B

{ PC }

R1

C

A
k2 k1

k3 k4

R2

B

R1

C

A
k2 k1

k3 k4

Additional constraints {kj, j=5,n}

ra'1 ra1 ra'1

rcrb

ra1

rcrb

Fig. 3. Translation of participation constraints on binary associations

PCs control the link of objects of the same class to objects of different classes via as-
sociations. We talk about inclusion PC (for instance R1 is included in R2) when an A-
object participating in R1 must participate in R2. The simultaneity PC states that an A-
object must participate in both associations, simultaneously or not. We also find the
exclusion PC which ensures that an A-object participates either in R1 or R2 or in neither
of them. The totality PC means that all A-objects must participate in R1 or R2 or both at
the same time. Finally, joined together exclusion and totality PCs define so called XOR
PC which state that all A-objects must participate but only in one association. It seems
that PCs on binary associations are similar to those defined on generalization/specializa-
tion associations. Though there is a great resemblance in the definition, the semantics is

 Constraints Checking in UML Class Diagrams: SQL vs OCL 599

not the same. PCs on binary associations must also be expressed and checked. This task
strongly depends on multiplicity constraints in relational model since the multiplicity
constraints decide whether the participation of A-objects may appear in R1 or R2.

For instance, XOR constraint defined on two associations expresses that any object
of a class connected to these two associations must take part in only one of the asso-
ciations. It has obviously the same definition as that of the {disjoint, compete} con-
straint. Thus, OCL additional constraints used to express the later can be used to ex-
press the XOR constraint. The following OCL constraint can also be used.

Context A inv:
Self.allInstances forAll(a |
 B.allInstances forAll (b |
 C.allInstances forAll (c |
 (b.ra1 excludes(a) or c.ra’1 excludes(a))
 and
 (b.ra1 includes(a) or c.ra’1 includes(a)))))

Developing the formula of the constraint k5 gives the following one which ensures
that any A-object a must be a member of one and only one of the sets b.ra1 and c.ra’1.

Context A inv:
Self.allInstances forAll(a |
 B.allInstances forAll (b |
 C.allInstances forAll (c |
 (b.ra1 excludes(a) and c.ra’1 includes(a)) or
 (c.ra’1 excludes(a) and b.ra1 includes(a)))))

This constraint can also be expressed using the xor operator and Empty property. This
is done starting from an A-object and navigating the R1 and R2 associations to refer
the sets of B-objects and C-objects linked to the A-object via these associations. Con-
sequently, one and only one of these sets must be empty and the other must not.

Context A inv:
Self.allInstances forAll(a | a.rb notEmpty xor a.rc notEmpty)

In relational model, as said above, expressing XOR constraint strongly depends on the
multiplicity constraint. Thus, following ECA rules are defined in general forms con-
sidering that R1 and R2 are translation tables of associations R1 and R2 respectively. In
practice case, associations R1 and R2 are translated by foreign keys in the table A, the
table B or the table C or also by creating new tables according to the multiplicity
constraints.

ECA1
event: insert on A
condition: none
action: insert obligatory object in one of R1 or R2

ECA2
event: insert on R1
condition: if object in R2
action: reject operation

ECA3
event: delete or update on R1
condition1: if (deleting or updating) and old object is unique in R1
action1: insert this object in R2 or reject operation
condition2: if new object exist in R2
action2: delete this object from R2 or reject operation

600 D. Berrabah and F. Boufarès

Two other ECA rules are generated on R2 which have the same definition as ECA2 and
ECA3.

Example
In Fig.1, the XOR participation constraint states that a person must work in an organi-
zation or she/he must be registered at an ASSEDIC, but she/he does not have the right
to do both. This constraint can be expressed, as mentioned above, using the definition
of {disjoint, complete} PC defined on generalization/specialization association as
follow:

Context p: Person inv:
Self.allInstances forAll(p| p.assedic notEmpty xor
 p.employer notEmpty)

In relational model, since R1 and R2 belong to the one-to-many association type, the
participation of all A-objects in these associations appear in the table A because R1
and R2 are translated by the primary keys of the tables B and C respectively in A as
foreign keys. Consequently, checking the XOR constraint consists in checking the
values of the foreign keys which refer the tables B and C. To do so, a trigger must be
generated. This one ensures that the values of these foreign keys are different and one
of them is null. The trigger statement is as follow.

Create trigger Insert_Update_Person
Before insert or update on Person
For each row

DECLARE Const_viol EXCEPTION;
Begin
If NEW.FK_ASS<>NEW.FK_ORG

and (NEW.FK_ASS is null XOR NEW.FK_ORG is null)
Then true else RAISE Const_viol;
End If;

EXECPTION
When Const_viol then OUTPUT.PUT_LINE(‘XOR constraint violated’);

End Insert_Update_Course;

3.3 Recapitulative

Some times OCL and SQL must be used at the same time. For instance, in the DBCS
of Fig.1, if a person is a student then she/he can not be registered in ASSEDIC. This
condition must be expressed in textual language. Consequently, OCL is needed to
express it. In addition, if this DBCS is translated into a relational TDBS then OCL
and SQL are combined. Another solution can be done checking automatically OCL
constraints using a DBMS-based approach [13].

Whatever the language used, using the one-to-one association type to represent
generalization/specialization links, PCs defined on the latter can be treated in the
same way that those defined on classical binary associations. The following table
(Tab.1) gives for participation constraints defined on generalization/specialization
associations their equivalent one on binary associations and equivalent cases to check
them.

 Constraints Checking in UML Class Diagrams: SQL vs OCL 601

Tab1e 1. Comparison of PCs defined on generalization/specialization and binary associations

PCs defined on generalization
/specialization associations

The same definition
as that of:

Is checked as:

Exclusion

Totality

XOR G
S1R1

{disjoint,
complete} S2

G
S1R1

{complete}

 S2

G
S1R1

{disjoint}

 S2

G
S1

S2

R1

R1

XOR

1

1 0..1

0..1

G
S1

S2

R1

R1

totality

1

1 0..1

0..1

G
S1R1

R1

{exclusion}

1

1 0..1

 S20..1

4 Conclusion

In this paper, we reported a systematic study of the use of participation constraints to
specify assertions defined on the behavior of class object participations. Sometimes, it
is necessary to use these constraints in a DBCS to satisfy customer requirements. Our
aim is to remove any ambiguity from the definition of PCs. Though PCs have the
same definition on binary associations as well as on generalization/specialization
ones, their semantics is not the same. We translate the two categories of PCs using
OCL and trigger-based SQL additional constraints to cover object and relational mod-
els. Thus, we provide a general framework for transforming PCs.

We are completing our prototype of data modeling by integrating the approach
developed in this paper. This prototype, first checks the coherence of constraints
defined in the DBCS [3, 4] then translates all constraints in a specific language [2]. It
is also very useful for information system integration and building Datawarehoses.

References

1. Al-Jumaily, H.T., Cuadra, D., Martinez, P.: Plugging Active Mechanisms to Control Dy-
namic Aspects Derived from the Multiplicity Constraint in UML. In: The workshop of 7th
International Conference on the Unified Modeling Language, Portugal (2004)

2. Berrabah, D., Boufarès, F., Ducateau, C.F.: Analysing UML Graphic Constraint, How to
cope with OCL. In: 3rd International Conference on Computer Science and its Applica-
tions, California (2005)

3. Berrabah, D., Boufares, F., Ducateau, C.F., Gargouri, F.: Les conflits entre les contraintes
dans les schémas conceptuels de Bases de Données: UML – EER. Journal of Information
Sciences for Decision Making, Special Issue of the 8th MCSEAI’04 19, 234 (2005)

4. Berrabah, D.: Etude de la cohérence globale des contraintes dans les bases de données. Ph.
D. Thesis report, Laboratory CRIP5, Paris 5 University (December 2006)

5. Boufarès, F.: Un outil intelligent pour l’analyse des schémas EA. Interne Report. Informat-
ics Laboratory of Paris Nord, University of Paris 13 France (2001)

602 D. Berrabah and F. Boufarès

6. Ceri, S., Widom, J.: Deriving production rules for constraint maintenance. In: Proc. of the
16th International Conference on Very Large Data Bases, pp. 566–577. Brisbane, Australia
(1990)

7. Cochrane, R.J., Pirahesh, H., Mattos, N.M.: Integrating triggers and declarative constraints
in SQL database systems. In: Proceedings of the 22nd International Conference on Very
Large Data Bases, Mumbai, India, pp. 567–578 (1996)

8. Eisenberg, A., Melton, J., Kulkarni, K., Michels, J., Zemke, F.: SQL: 2003 has been pub-
lished. ACM SIGMOD Record 33(1) (March 2004)

9. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. In: Ob-
ject Modeling with the OCL, pp. 85–114. Springer, Heidelberg (2002)

10. Horowitz, B.: Intermediate states as a source of non deterministic behavior in triggers. In:
4th International Workshop on Research Issues in Data Engineering: Active Database Sys-
tems, Houston TX, pp. 148–155 (February 1994)

11. Laleau, A., Mammar, A.: Overview of method and its support tool for generating B from
UML notations. In: Proceeding of 15th international conference on Automated Software
Engineering, Grenoble, France (2000)

12. Ledru, Y., Dupuy, S.: Expressing dynamic properties of static diagrams. In: Z. Conference
of Approches Formelles dans l’Assistance au Développement de Logiciels, Rennes, France
(2003)

13. Marder, U., Ritter, N., Steiert, H.-P.: A DBMS-based Approach for Automatic Checking
of OCL Constraints. In: OOPSLA’99-Workshop Rigorous Modeling and Analysis with the
UML: Challenges and Limitations. Denver, Co. (1999)

14. Matheron, J.P.: Approfondir Merise. Tome1. Edition Eyrolles (1991)
15. Nanci, D., Espinasse, B.: Ingénierie des systèmes d’information: Merise deuxième généra-

tion. 4th edn. Edition-Vuibert (2001)
16. OMG, editor: UML 2.0., http://omg.org
17. Rational: http://www-306.ibm.com/ software/ rational/ sw-bycategory/ subcategory/

SW710.html
18. Rochfeld, A., Negros, P.: Relationship of relationships and other inter-relationship links in

ER model. Data and Knowledge Engineering 9, 205–221 (1993)
19. Rumbaugh, J., Jacobson, I., Booch, G.: UML 2.0 Guide de Référence, Edition Campus

Press (2004)
20. Shroff, M., France, R.B.: Towards a Formalization of UML Class Structures. In: Z. 21st

IEEE Annual international computer Software and Applications Conference, pp. 646–651
(1997)

21. Soon-Kyeong, K., Carrington, D.: A formal mapping between UML models and Object-Z
specifications. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) B 2000, ZUM
2000, and ZB 2000. LNCS, vol. 1878, pp. 2–21. Springer, Heidelberg (2000)

22. Sybase: http://www.sybase.com/products/information management/powerdesigner
23. Toby, J.T.: Database Modeling & Design, 3rd edn. Data Management Systems. Morgan

Kaufmann, San Francisco (1999)
24. Truongm, N.T., Souquières, J.: Validation des propriétés d’un scénario UML/OCL à partir

de sa dérivation en B. Conference: Approches Formelles dans l’Assistance au Développe-
ment de Logiciels, Besançon, France, pp. 99–114 (2004)

25. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. 2nd edn. Paperback-Edition (2003)

XML-to-SQL Query Mapping in the Presence of

Multi-valued Schema Mappings and Recursive
XML Schemas

Mustafa Atay, Artem Chebotko, Shiyong Lu, and Farshad Fotouhi

Department of Computer Science
Wayne State University

Detroit, Michigan 48202 USA
{matay, artem, shiyong, fotouhi}@wayne.edu

Abstract. Several query mapping algorithms have been proposed to
translate XML queries into SQL queries for a schema-based relational
XML storage. However, existing query mapping algorithms only sup-
port single-valued mapping schemes, in which each XML element type
is mapped to exactly one relation, and do not support multi-valued
mapping schemes, in which each XML element type can be mapped to
multiple relations. In this paper, we propose a generic query mapping
algorithm, ID-XMLToSQL, for a schema-based relational XML stor-
age. To the best of our knowledge, our algorithm provides the first
generic solution to the XML-to-Relational query mapping problem that
is applicable to both single-valued and multi-valued mapping schemes.
Moreover, our algorithm also provides an elegant solution to the query
mapping problem in the presence of recursive XML schemas and recur-
sive queries. While existing algorithms need special recursion operators,
our algorithm only requires the traditional relational operators and thus,
can work with all relational databases.

1 Introduction

Numerous researchers propose to use relational databases for storing and query-
ing XML documents in order to get benefits of this mature technology. This
approach requires algorithms to map XML schemas, documents and queries,
into their relational equivalents.

An XML-to-SQL query mapping algorithm for a schema-based relational
XML storage should respect the underlying XML-to-Relational schema map-
ping scheme. The XML-to-Relational schema mapping schemes in the literature
can be classified into the following two categories:

– Single-valued Schema Mappings. In a single-valued schema mapping, an
XML element or attribute type is mapped into exactly one single relation in
the target relational schema. Thus, it shows the characteristics of a function.
The Shared schema mapping approach introduced in [1] and ODTDMap
approach introduced in [2] fall into this category.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 603–616, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

604 M. Atay et al.

– Multi-valued Schema Mappings. In a multi-valued schema mapping, an XML
element or attribute type can be mapped into more than one relation in the
target relational schema. The multi-valued schema mappings do not show
the characteristics of a function and thus they are harder to deal with. The
Basic and Hybrid schema mapping approaches proposed in [1] fall into this
category.

Although there are several query mapping algorithms for single-valued schema
mapping schemes, there is no published query mapping algorithm which supports
multi-valued schema mapping schemes to our best knowledge. Therefore, we
propose a generic query mapping algorithm which supports both multi-valued
and single-valued schema mapping schemes in this paper.

Our generic algorithm also provides an elegant solution to the XML-to-
Relational query mapping problem in the presence of recursive XML schemas
and recursive queries. This problem is identified as an important practical prob-
lem in the literature [3,4,5]. Recursive XML schemas are common in practice as
pointed out by [6] in which 35 DTDs found to be recursive out of 60 real-world
DTDs. On the other hand, recursive XML queries, which include descendant
axis ‘//’, are also common in practice.

The challenge of XML-to-SQL query mapping is that, when there is recursion
both in an XML query and in its underlying XML schema, there might be
infinitely many paths corresponding to the given recursive XML query. There
are two elegant algorithms [4,5] in the literature which address this issue. These
algorithms solve the recursion within the relational engine by using special SQL
operators which are not supported by some RDBMSs. On the other hand, we
solve the recursion at XML schema level without using special SQL operators.

The main contributions of this paper include the following:

1. We propose a generic query mapping algorithm, ID-XMLToSQL, for a
schema-based relational XML storage scheme. To the best of our knowledge,
our algorithm provides the first generic solution to the XML-to-Relational
query mapping problem that is applicable to all relational XML storage
mapping schemes proposed in the literature, including both single-valued
and multi-valued schema mapping schemes.

2. We propose to convert a cyclic XML schema graph to a directed acyclic graph
by unfolding the cycles in the XML schema graph to facilitate the recursive
query mapping process. Thus, we can find out a finite number of matching
paths on the generated acyclic graph for an arbitrary XML query including
the recursive ones. Therefore, our proposed query mapping technique can
be implemented on any RDBMS as it does not require using special SQL
operators to capture the recursion while the existing algorithms need special
recursion operators.

Organization: The rest of the paper is organized as follows. Section 2 gives a
summary of related work. We give a motivation on generic query mapping in
Section 3. Section 4 includes all necessary preliminaries for our generic query
mapping algorithm. The outline of our proposed query mapping algorithm ID-
XMLToSQL is given in Section 5. We demonstrate a performance study of the

XML-to-SQL Query Mapping in the Presence 605

algorithm ID-XMLToSQL in Section 6. Finally, Section 7 concludes the paper
and points out some potential future work.

2 Related Work

In order to query XML data stored in a relational database, one should map the
XML queries into relational queries based on the underlying XML-to-Relational
schema mapping scheme. Hence, we can split the XML-to-Relational query map-
ping algorithms into the following two categories based on the underlying schema
mapping schemes:

– Schema-less Query Mapping. There has been a lot of work on schema-less
query mapping [7,8,9,10,11,12,13,14]. In this approach, XML schema is con-
sidered to be missing or not used and a generic relational schema is generated
for all XML documents. Then, a given XML query is mapped to its relational
equivalent using the generic relational schema.

– Schema-based Query Mapping. There have been several works on schema-
based query mapping [1,15,4,5,16,17,18] where an XML schema is provided
and used to generate a good relational schema. The generated relational
schemas vary according to the input XML schemas. Therefore, an XML-to-
Relational query mapping algorithm should know and respect the underlying
XML-to-Relational schema mapping to generate correct and efficient rela-
tional queries.

The problem of mapping recursive XML queries in the presence of recur-
sive schemas studied in schema-less query mapping space [8,10]. However, their
query mapping algorithms are not applicable to the schema-based query map-
ping space. Recently, two elegant approaches proposed in [4,5] to map recursive
XML queries to their relational equivalents in the presence of recursive XML
schemas.

The query mapping algorithm of [4] first derives a query graph for an input
path query from the XML schema graph. Then, it partitions the query graph into
strongly-connected components and generates an SQL query for each component.
If a component is recursive, then, the recursion in this component is captured in
the corresponding SQL query by using the with construct of SQL’99.

The query mapping algorithm of [5] first rewrites a given XPath query into
a regular XPath expression which is capable of capturing recursion both in a
DTD and in an XPath query. Furthermore, they provide an algorithm for trans-
lating regular XPath expressions to relational queries using least fixpoint (LFP)
operator. The LFP operator is used to capture the recursion in the queries.

However, these recursive query mapping algorithms are not generic enough
to be used with multi-valued mappings such as Basic and Hybrid introduced
in [1]. Moreover, they require the usage of special SQL operators such as with
construct of SQL’99 or LFP operator which are not supported by some RDBMSs.
Our proposed ID-XMLToSQL algorithm overcomes these limitations.

606 M. Atay et al.

3 Motivation

A generic query mapping algorithm for a schema-based relational XML storage
is supposed to work with a general class of XML-to-Relational schema map-
pings which can be classified into two main categories as Single-valued Schema
Mappings and Multi-valued Schema Mappings.

Surprisingly, there is no published XML-to-Relational query mapping algo-
rithm in the schema-based XML storage space which is generic enough to work
with the multi-valued XML-to-Relational schema mappings. The recursive query
translation algorithm of [4] handles a general class of single-valued XML-to-
Relational mappings. The main query translation procedure SQL() in [4] uses the
function Annot() to find out the relation/column corresponding to an XML ele-
ment. Neither Annot() nor SQL() support the multi-valued XML-to-Relational
schema mapping. Thus, [4] is not generic enough to handle all types of mappings
proposed in the literature. While the RegToSQL algorithm proposed in [5] sup-
ports a broad class of XPath queries, it still lacks the support for multi-valued
schema mappings.

A single-valued mapping is a function which returns only one relation for
an input XML element/attribute type. The target relation to retrieve an XML
element or attribute can easily be determined from a single-valued mapping.
Thus, single-valued mappings are relatively easier to handle during the query
mapping phase.

A multi-valued mapping is not a function since it can return multiple relations
for an input XML element/attribute type. This situation may cause ambiguity
while a query mapping algorithm is trying to locate the target relation for an
XML element type to retrieve its data. Hence, a query mapping algorithm based
on a multi-valued mapping should be intelligent enough to resolve this possible
ambiguity and find out the correct relation(s) to access. Thus, it is more chal-
lenging to map XML queries to relational queries under multi-valued mapping
schemes than under single-valued mapping schemes.

A

B1 B2 B3

C

D1 D2 D3

E

* *
*

*

*
*

*

Fig. 1. A Sample XML Schema Graph

XML-to-SQL Query Mapping in the Presence 607

Table 1. Single-valued and Multi-valued Schema Mapping Examples

Single-valued σ-mapping (Shared)
Element Relation
A A
B1 B1
B2 B2
B3 B3
C C
D1 D1
D2 C
D3 D3
E E

(A)

Multi-valued σ-mapping (Hybrid)
Element Relation
A A
B1 B1
B2 B2
B3 B3
C B1, B2, B3
D1 D1
D2 B1, B2, B3
D3 A, B1, B2, B3
E E

(B)

We use a data structure to store XML-to-Relational schema mapping informa-
tion. We call this data structure as σ-mapping and formally define it in Section
4.1. The σ-mappings based on Shared and Hybrid approaches for the XML
schema shown in Figure 1 are given in Table 1.A and Table 1.B, respectively.
We assume the XML attribute types are mapped to the same relation with their
parent element types.

Example 1. If the XPath expression /A/B1/C/D3 is given against the XML
schema graph shown in Figure 1, following will be its SQL equivalent based on
a typical query mapping algorithm which generates a SQL query by joining all
the relations along a path:

Select T4.ID
From σ(A) T1, σ(B1) T2, σ(C) T3, σ(D3) T4
Where T1.ID=T2.parentID And T2.ID=T3.parentID And T3.ID=T4.parentID

While it is trivial to find out the matching relations in this SQL query based
on the single-valued σ-mapping given in Table 1.A, it is not straightforward to
find out them in case of the multi-valued σ-mapping shown in Table 1.B. For
instance, it is not clear which relation should be returned for σ(C) out of the set
{B1,B2,B3} and for σ(D3) out of the set {A,B1,B2,B3}.

We propose the notion of path-based σ-mapping (σp-mapping) in Section 4.2
to resolve the ambiguity due to the multi-valued schema mapping schemes by
the help of input path structure and the existing mapping information.

4 Preliminaries

4.1 Schema-Based Query Mapping

In schema-based relational XML storage, query mapping typically takes an XML
query, an XML schema, the XML-to-Relational schema mapping information,
which is called σ-mapping, and a database as input, produces a relational query,
runs it against the database where the XML document is stored, and returns the
query results as output. In the following, we formalize the notions of σ-mapping
and query mapping:

608 M. Atay et al.

Definition 1 (σ-Mapping). Given an XML schema S with element-type set
E and attribute-type set A, and a database schema R, a σ-mapping is a mapping
σ : (E ∪A) → R, such that given an attribute/element type e, σ(e) is the set of
relations in which the instances of e will be stored.

Definition 2 (Query Mapping). A query mapping QM is a function that
assigns to each tuple (Q, S, X, R, B, σ) a relational query Q′, where Q is an
XML query, S is an XML schema, X is an XML document conforming to S, R
is a database schema, B is a database of R, σ is a mapping from S to R, and
Q′ is a set of relational queries equivalent to Q such that Q′(B) ≡ Q(X).

4.2 σp-Mapping

We propose to define a path-based σ-mapping (σp-mapping) to resolve the map-
ping ambiguity that arises in the presence of multi-valued schema mappings.
The σp-mapping uses the information obtained from the path structure and
σ-mapping to find a single relation for each element in the input path. Once
σp-mapping of a particular path expression is computed, then the equivalent
relational query can be constructed without any ambiguity concern.

Lemma 1. Any edge in an XML schema graph G is identified either as a
normal-edge or a *-edge.

Proof. If an element can occur at most once under its parent, then it is connected
to its parent by an edge labeled by ‘,’ or ‘?’ in XML schema graph G. All the
edges in G labeled by ‘,’ and ‘?’ operators constitute normal-edges. If an element
can occur more than once under its parent, then this element is connected to
its parent by an edge labeled by ‘*’ or ‘+’ in G. All the edges in G labeled by
‘*’ and ‘+’ operators constitute *-edges. Since there is no occurrence operator
other than {‘,’, ‘?’, ’*’, ’+’} in G, any edge in an XML schema graph is either a
normal-edge or a *-edge.

In the following, we formalize the notions of simple path expression and σp-
mapping:

Definition 3 (Simple Path Expression). A simple path expression p can be
denoted as /n1/n2/.../nk where each ni is the node type of step i and the axis
of each step is child axis ‘/’ which denotes parent-child relationship. The node
type n1 represents the root element of the XML document and k represents the
number of steps in p.

Definition 4 (σp-Mapping). Given an input simple path p = /e1/e2/.../en,
σ-mapping σ, and an XML schema graph G, σp(ei) is defined as follows where
i = 1, 2, ..., n:

σp(ei) =

{
σ(ei), if |σ(ei)|=1
ei, if |σ(ei)| >1 and (ei−1,ei) is a *-edge in G
σp(ei−1), if |σ(ei)| >1 and (ei−1,ei) is a normal-edge in G

XML-to-SQL Query Mapping in the Presence 609

Example 2. If the XPath expression p=/A/B1/C/D3 is given based on the XML
schema graph shown in Figure 1, the below σp-mapping is produced by comput-
ing the σp based on the multi-valued schema mapping shown in Table 1.B:

σp

Element Relation
A A
B1 B1
C B1
D3 B1

Theorem 1 (Correctness). Given an input simple path expression p =
/e1/e2/.../en, σp(ei) returns the correct and single target relation for every ele-
ment ei in p, where i = 1, 2, ..., n.

Proof (Sketch). First, σp(ei) returns the same relation as σ(ei) if the input ele-
ment ei is mapped to a single relation.

Second, if the input element ei is mapped to multiple relations, then the type
of the edge between ei and its parent ei−1 is checked from the XML schema
graph. If the edge is a *-edge, then the σp(ei) returns the relation ei since ei is
mapped to a separate relation as it occurs multiple times under its parent.

Third, if the input element ei is mapped to multiple relations and the type
of the edge between ei and its parent ei−1 is a normal-edge, then the σp(ei−1)
is called to determine the target relation for ei since it is mapped to the same
relation as its parent ei−1. Recursive call to σp(ei−1) stops whenever a single
relation is returned. If all the edges from e1 to ei−1 are normal-edges, then the
recursion is going to stop at σp(e1) since e1 is the root element and it is always
mapped to the single relation e1.

All the edges in an XML schema graph fall into either normal-edge or *-edge
categories as it follows from Lemma 1. As a result, σp(ei) returns the correct
and the single relation corresponding to element ei.

Besides multi-valued mappings, the σp-mapping can deal with single-valued
schema mappings where it returns the same values as σ-mapping. Therefore,
σp-mapping is sufficient to develop a generic XML-to-Relational query mapping
algorithm in the presence of multi-valued schema mappings as well as single-
valued schema mappings.

4.3 Unfolded XML Schema Graph

The challenge with translating recursive XML queries over recursive XML
schemas is to identify the infinite number of matching paths in the XML schema
graph. However, if we unfold the recursive XML schema based on the maximum
levels of depths for each cycle in the schema graph, we can find out a finite num-
ber of matching paths for an arbitrary XML query including the recursive ones.
This observation leads us to an elegant and efficient solution for the problem of
translating recursive XML queries in the presence of recursive XML schemas.

We propose to convert a cyclic XML schema graph to a directed acyclic graph
by unfolding the cycles in the original schema. This new schema is called unfolded

610 M. Atay et al.

<A>
 < B1 >
 < C >
 < D1 >< E /></ D1 >
 < D2 >

 < E >< D1 /></ E >
 </ D2 >
 < D3 >< E /></ D3 >
 </ C >
 </ B1 >
 < B1 >
 < C >
 < D1 >< E /></ D1 >
 < D2 >< E /></ D2 >
 < D3 >
 < E >
 < D1 >< E /></ D1 >
 </ E >
 </ D3 >
 </ C >
 </ B1 >
 < D3 />

A

B1 B2 B3

C

D1 D2 D3

E

* *
*

*

*

*

*

D1

E

*

Fig. 2. A Sample XML Document and its Unfolded XML Schema Graph (UXG)

XML schema graph (UXG). A UXG of a sample XML document, which conforms
to the XML schema graph given in Figure 1, is shown in Figure 2. The formal
definition of UXG is given in Definition 5.

Definition 5 (Unfolded XML Schema Graph (UXG)). Given an XML
schema S, unfolded schema of S is a directed acyclic graph UXG =(V , E , d1 , ...dk),
where V is the set of vertices, E is the set of edges, each di is the maximum level
of depth for each cycle ci in S and k denotes the number of cycles in S. Each cycle
ci in S is unfolded to depth di in UXG in top-down topological order. The vertices
represent element types in S, and the edges represent their parent-child relation-
ships. Each vertex is labeled with the name of the corresponding element type. An
edge is labeled by ‘*’ if it is incident to a vertex which can appear more than once
under its parent in the corresponding XML documents, otherwise no label is used.

A recursive XML schema S can be converted into a non-recursive one in the form
of a UXG G by unfolding the recursion in S with a finite number of occurrences
of recursion that is decided from the XML documents X stored in the database,
such that X conforms to S and G at the same time. In other words, S and G
are equivalent to each other with respect to X .

We can create a UXG by using one of the following two approaches:

– Static approach. The maximum depth of each cycle in the XML schema graph
is determined by the help of a domain expert and a fixed UXG is generated
during the schema mapping phase. This fixed UXG is used during the query
mapping regardless of the structure of underlying XML documents.

– Dynamic approach. The maximum depth of each cycle in the XML schema
graph is initialized to 1 and a default UXG is generated during schema

XML-to-SQL Query Mapping in the Presence 611

mapping phase. When a new XML document is loaded to the database during
the data mapping phase, the maximum depth of each cycle in the current
document is found and UXG is modified if any current depth value is greater
than the existing one.

Static UXG approach does not have any computation overhead during the
data mapping phase. However, it may return unnecessary matching paths for a
given recursive XML query. On the other hand, dynamic UXG approach asso-
ciates some computational cost during the data mapping phase to maintain the
UXG for minimizing the total number of matching paths for the input recursive
XML queries.

The UXG graph is constructed either during the schema mapping phase or the
data mapping phase. We assume bulk data is loaded to the database system first,
then it is queried next in a batch-processing fashion. Therefore, the construction
of UXG does not introduce additional overhead to XML-to-Relational query
mapping performance since it is precomputed before query mapping phase.

5 ID-Based Generic Query Mapping

All the schema-based approaches proposed for XML-to-Relational query map-
ping in the literature have used ID-based techniques as in [4,5]. In ID-based
techniques, each element is associated with a unique ID and the tree structure
of the XML document is preserved by maintaining a foreign key to the parent
which we call parentID. Each child axis ‘/’ is translated into an equijoin be-
tween child and parent elements over their parentID and ID columns in ID-based
techniques.

We propose a generic ID-based XML-to-Relational query mapping algorithm,
ID-XMLToSQL, in this section. An outline of ID-XMLToSQL is given in
Figure 3. The ID-XMLToSQL algorithm first identifies all the matching sim-
ple paths pi and σp-mappings σpi corresponding to those paths when a path
expression P and a UXG Gu is given. Then it calls the SQL generation pro-
cedure SPathToSQL() for each simple path pi along with its mapping σpi , and
then, gets the union of the output SQL queries. We formalize the notion of a
path expression as follow:

Definition 6 (Path Expression). A path expression P can be denoted as
a1n1a2n2...aknk where each ni is a node type and each ai is either child axis
‘/’ or descendant axis ‘//’. Each aini constitutes a navigation step of P and k
is the number of steps in P .

A naive XML-to-SQL query mapping procedure follows a blindfold approach.
It takes an input simple path expression and generates a relational query by
joining the relations corresponding to each step in the simple path expression.
A sample SQL query generated using naive query mapping approach is given in
Example 1.

When consecutive elements in a simple path expression are mapped to the
same relation, then the naive approach unnecessarily joins the same relation

612 M. Atay et al.

00 Algorithm ID-XMLToSQL
01 Input: Path Expression P , UXG Gu

02 Output: SQL query sql
03 Begin
04 Let pi, i=1,2,...,n, be the set of all matching simple paths of P in Gu

05 Let σpi
be σp-mapping for the simple path pi, i=1,2,...,n

06 sql=∅
07 sql =

⋃n
i=1 SPathToSQL(pi,σpi

)
08 Return sql
09 End

00 Procedure SPathToSQL(Simple Path Expression p, σp-Mapping σp)
01 Begin
02 Use σp to cluster p = /e1/e2/.../em according to Definition 7
03 FromClause=“From”
04 WhereClause=“Where”
05 For i=1 to m do /* Construct From Clause */
06 If ei is the first element of a cluster then
07 FromClause += “$σp(ei)”
08 End If
09 End For
10 For i=2 to m do /* Construct Where Clause */
11 If ei is the first element of a cluster then
12 WhereClause += “$σp(ei−1).(ei−1.ID) = σp(ei).(ei.parentID)”
13 End If
14 If ei is neither first nor last element of a cluster then
15 WhereClause += “$σp(ei).(ei.ID) is not null”
16 End If
17 End For
18 sql=“Select $σp(em).(em.ID)” + FromClause + WhereClause
19 Return sql
20 End

Fig. 3. ID-based Query Mapping Algorithm ID-XMLToSQL

with itself multiple times. For the simple path expression and its σp-mapping
given in Example 2, corresponding SQL query will include two unnecessary self
joins since the elements of last three steps in the path are mapped to the same
relation.

An intelligent XML-to-SQL query mapping algorithm should be able to rec-
ognize the elements mapped to the same relations and avoid the unnecessary
self-join operations. We deal with this issue in SPathToSQL() procedure. The
outline of SPathToSQL() procedure is shown in Figure 3. The SPathToSQL()
procedure identifies the clusters in a path expression which are the groups of
elements in consecutive navigation steps mapped into the same relation. The
SPathToSQL() procedure recognizes each cluster in a simple path expression
and only joins the relation corresponding to the last element of a cluster to the
relation corresponding to the first element of its successor cluster. Thus, it avoids
the self-join problem of a blindfold query mapping approach. The notion of a
cluster is formalized as follows:

Definition 7 (Cluster). Given a simple path expression p and a mapping σp

over p, the elements of consecutive steps in p which are mapped to the same
relation constitute a cluster. Hence, p can be denoted as a sequence of clusters

XML-to-SQL Query Mapping in the Presence 613

such that p = c1c2...ck where each ci is a cluster and k is the number of clusters
in p.

The SPathToSQL() procedure given in Figure 3 first constructs the From clause
at lines 05-09. It introduces one relation per cluster to the From clause since all
the elements in a cluster are mapped to the same relation. The Where clause is
constructed at lines 10-17. A transition from one cluster to another in the input
path is handled at lines 11-13. A predicate of the form σp(ei−1).(ei−1.ID) =
σp(ei).(ei.parentID) joining the last element of the previous cluster to the first
element of current cluster is added to the Where clause. As a result, the re-
lations representing all the neighboring cluster are joined. The SPathToSQL()
procedure adds an existential predicate of the form σp(ei).(ei.ID) is not null
for the intermediate elements of a cluster to the Where clause (lines 14-16) as
it skips the intermediate elements in a cluster. Thus, it ensures that the middle
elements of a cluster co-exist with the elements at each end of the cluster in the
underlying XML document. The output SQL query is constructed and returned
at lines 18-19.

The existential predicate not null is not introduced for the elements at each
end of a cluster since they are already included within the join conditions of
the output SQL query. Although the last element in a path expression may not
be used in a join condition, we do not need to check the existence of the last
element as it is used in the Select clause. We do not need to check the existence
of the first element of a simple path expression, which is the root element, as all
the simple paths start from the root element.

Example 3. If the path expression /A/D3//E is given against the UXG shown
in Figure 2 and input to ID-XMLToSQL algorithm, ID-XMLToSQL calls SPath-
ToSQL() procedure with the following simple paths identified from the UXG: (i)
/A/D3/E and (ii) /A/D3/E/D1/E and, their σp-mappings: (i) {(A,A), (D3,A),
(E,E)} and (ii) {(A,A), (D3,A), (E,E), (D1,D1), (E,E)}, respectively. Below is
the generated output SQL query by our ID-XMLToSQL algorithm:

Select E.ID
From A, E
Where A.D3.ID=E.parentID
UNION ALL
Select E.ID
From A, E T1, D1, E T2
Where A.D3.ID=T1.parentID And T1.ID=D1.parentID and D1.ID=T2.parentID

Theorem 2 (Time Complexity). The time complexity of the procedure SPath-
ToSQL is O(n) where n is the number of steps in an input simple path expression
p.

Proof (Sketch). The statement at line 02 navigates p once to cluster it and can
be evaluated in O(n). The loop at lines 05-09 navigates p once to construct the
From clause and is evaluated in O(n). The loop at lines 10-16 navigates p once to

614 M. Atay et al.

construct the Where clause and is executed in O(n). Thus, the time complexity
of SPathToSQL() is O(n).

6 Experimental Study

We compare the performance of our ID-XMLToSQL algorithm and the recursive
query translation algorithm SQLGen of [4] in this section. We used a Pentium IV
computer with 2.4 GHz processor and 1 GB main memory for the experiments.
The experiments were run using the Java software development kit. We mini-
mized the usage of system resources during the experiments to get more realistic
results. We ran the programs 6 times and got the average value, excluding the
first run, to have more accurate results.

We used auction.xml document of XMark benchmark [19] as our data set to
compare the performance of our proposed ID-XMLToSQL algorithm and SQL-
Gen algorithm of [4]. The DTD of XMark includes several cycles, and thus, it
is an appropriate XML schema for our experiments.The number of elements in
the test XML document is 73,740.

We selected nine queries with particular features for the test suit. Our test
query suit is shown in Table 2. All the queries in our test suit are recursive
queries as they contain descendant axis ‘//’. All the queries return the elements
which are included in a cycle in the XML schema. While the queries Q1, Q8 and
Q9 include clusters of two or more elements, the queries Q2, Q3, Q5, Q7, Q8
and Q9 include shared elements which have more than one parents in the XML
schema.

We implemented only a single-valued schema mapping scheme to run the two
query mapping algorithms ID-XMLToSQL and SQLGen as SQLGen does not
support multi-valued schema mapping schemes. We used a commercial relational
DBMS which allows the usage of advanced SQL’99 with clause as it is centric to
the algorithm of SQLGen. We measured the response time for each test query
by running the queries generated by two algorithms separately. The experimen-
tal results are shown in Figure 4. We used logarithmic scale to increase the
readability of the chart.

As can be seen from the chart, our ID-XMLToSQL algorithm outperformed
the SQLGen algorithm in all the test queries. The main reasons for the perfor-
mance difference between ID-XMLToSQL and SQLGen include the followings:

Table 2. Query Suit for Testing

Query Query Definition
Q1 /site/categories/category/description//parlist
Q2 //text
Q3 //parlist
Q4 //asia//listitem
Q5 //item//listitem
Q6 //asia//parlist
Q7 //item/parlist
Q8 /site/regions/asia/item//parlist
Q9 /site/regions/asia/item//listitem

XML-to-SQL Query Mapping in the Presence 615

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Queries

T
im

e
(L

o
g

ar
it

h
m

ic
)

Interval-XMLToSQL SQLGen

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Queries

T
im

e
(L

o
g

ar
it

h
m

ic
)

ID-XMLToSQL SQLGen

Fig. 4. Experimental Results for Query Mapping

– ID-XMLToSQL resolves the recursion at the XML schema level using pre-
computed unfolded XML schema graph unlike SQLGen which resolves it
inside the relational engine using recursive SQL query.

– The queries generated by SQLGen are typically more complex and larger
than the ones generated by our ID-XMLToSQL.

– ID-XMLToSQL uses the notion of clustering and avoids unnecessary self-
joins.

7 Conclusions and Future Work

In this paper, we proposed the generic XML-to-SQL query mapping algorithm
ID-XMLToSQL which can be used with multi-valued schema mappings as well
as with single-valued schema mappings. ID-XMLToSQL uses our proposed path-
based σp-mapping technique to find the target relation for a given element of a
path query in the presence of multi-valued schema mappings.

We proposed to convert a cyclic XML schema graph to an acyclic one by
unfolding the cycles in the graph to a maximum level of depth. Thus, we are
able to map the recursive XML queries over the unfolded XML schema graph to
SQL queries without using special operators to capture the recursion. Therefore,
our proposed query mapping algorithm can be used on any RDBMS as it uses
standard SQL features unlike other recursive query mapping algorithms in the
literature.

We compared the performance of our ID-XMLToSQL algorithm to SQLGen
algorithm of [4] and observed that ID-XMLToSQL outperformed SQLGen for
all the queries in our test suit. We consider augmenting our proposed ID-based
generic query mapping algorithm with interval-based and path-based mapping
schemes as a potential future work.

Acknowledgment

The authors would like to thank Rajasekar Krishnamurthy for providing the
source code of SQLGen algorithm and his cooperation, and Dapeng Liu for
involving in the implementation of our ID-XMLToSQL algorithm.

616 M. Atay et al.

References

1. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton,
J.F.: Relational databases for querying XML documents: Limitations and oppor-
tunities. In: VLDB, pp. 302–314 (1999)

2. Atay, M., Chebotko, A., Liu, D., Lu, S., Fotouhi, F.: Efficient schema-based XML-
to-Relational data mapping. Information Systems Journal 32(3), 458–476 (2007)

3. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: XML-to-SQL query translation
literature: The state of the art and open problems. In: XML Database Symposium
(2003)

4. Krishnamurthy, R., Chakaravarthy, V.T., Kaushik, R., Naughton, J.F.: Recursive
XML schemas, recursive XML queries, and relational storage: XML-to-SQL query
translation. In: Proc. of the 20th International Conference on Data Engineering,
Boston, pp. 42–53 (March 2004)

5. Fan, W., Yu, J.X., Lu, H., Lu, J., Rastogi, R.: Query translation from XPath to
SQL in the presence of recursive DTDs. In: Proc. of the 31sh VLDB Conference,
Trondheim, Norway (2005)

6. Choi, B.: What are real DTDs like. In: WebDB Workshop (2002)
7. Deutsch, A., Fernandez, M.F., Suciu, D.: Storing semistructured data with

STORED. In: SIGMOD Conference, pp. 431–442 (1999)
8. Florescu, D., Kossmann, D.: Storing and querying XML data using an RDBMS.

IEEE Data Engineering Bulletin 22(3), 27–34 (1999)
9. Schmidt, A., Kersten, M., Windhouwer, M., Waas, F.: Efficient relational storage

and retrieval of XML documents. In: WebDB (2000)
10. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: A path-based ap-

proach to storage and retrieval of XML documents using relational databases. ACM
Transactions on InternetTechnology (TOIT) 1(1), 110–141 (2001)

11. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
SIGMOD Conference, pp. 204–215 (2002)

12. Dehaan, D., Toman, D., Conses, M.P., Ozsu, T.: A comprehensive XQuery to SQL
translation using dynamic interval encoding. In: SIGMOD Conference (2003)

13. Teubner, J., Grust, T., Keulen, M.V.: Staircase join: Teach a relational DBMS to
watch its (axis) steps. In: VLDB Conference (2003)

14. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: Efficient XML-to-Relational
query translation: Where to add intelligence? In: Proc. of the 30th VLDB Confer-
ence, Toronto, Canada (2004)

15. Runapongsa, K., Patel, J.M.: Storing and querying XML data in object-relational
dbmss. In: EDBT Workshops (2002)

16. Cheng, J., Xu, J.: DB2 extender for XML. IBM (2000),
http://www-4.ibm.com/software/data/db2/extenders/xmlext/

17. Oracle: XML Database Developer’s guide - Oracle XML DB Release 2 (2002),
http://otn.oracle.com/tech/xml/xmldb/content.html

18. Microsoft: SQLXML and XML Mapping Technologies (2004),
http://msdn.microsoft.com/sqlxml/default.asp

19. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: a benchmark for XML data management. In: VLDB, pp. 974–985 (2002)

http://www-4.ibm.com/software/data/db2/extenders/xmlext/
http://otn.oracle.com/tech/xml/xmldb/content.html
http://msdn.microsoft.com/sqlxml/default.asp

Efficient Evaluation of Nearest Common Ancestor in
XML Twig Queries Using Tree-Unaware RDBMS

Klarinda G. Widjanarko, Erwin Leonardi, and Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
Singapore-MIT Alliance, Nanyang Technological University, Singapore

{klarinda,lerwin,assourav}@ntu.edu.sg

Abstract. Finding all occurrences of a twig pattern in a database is a core oper-
ation in XML query processing. Recent study showed that tree-aware relational
framework significantly outperform tree-unaware approaches in evaluating struc-
tural relationships in XML twig queries. In this paper, we present an efficient strat-
egy to evaluate a specific class of structural relationship called NCA-twiglet in a
tree-unaware relational environment. Informally, NCA-twiglet is a subtree in a
twig pattern where all nodes have the same nearest common ancestor (the root of
NCA-twiglet). We focus on NCA-twiglets having parent-child relationships. Our
scheme is build on top of our SUCXENT++ system. We show that by exploiting
the encoding scheme of SUCXENT++ we can reduce useless structural compar-
isons in order to evaluate NCA-twiglets. Through a comprehensive experiment,
we show that our approach is not only more scalable but also performs better
than a representative tree-unaware approach on all benchmark queries with the
highest observed gain factors being 352.

1 Introduction

Finding all occurrences of a twig pattern in a database is a core operation in XML query
processing, both in relational implementations of XML databases [3,6,7,8,12,13,14,19,
20], and in native XML databases [1, 4, 5, 10, 11]. Consequently, in the past few years,
many algorithms have been proposed to match twig patterns. These approaches (i) first
develop a labeling scheme to capture the structural information of XML documents, and
then (ii) perform twig pattern matching based on the labels alone without traversing the
original XML documents.

For the first sub-problem of designing appropriate labeling scheme, various methods
have been proposed that are based on tree-traversal order [1, 8, 9], region encoding
[4, 20], path expressions [10, 14] or prime numbers [17]. By applying these labeling
schemes, one can determine the structural relationship between two elements in XML

documents from their labels alone. The goal of second sub-problem of matching twig
patterns is to devise efficient techniques for structural relationship matching. In general,
structural relationship in a twig query may be categorized in two different classes: (a)
NCA-twiglet, and (b) path expression. Given a query twig pattern Q = (V, E), the
nearest common ancestor (denoted as NCA) of two nodes x ∈ V , y ∈ V is the common
ancestor of x and y whose distance to x (and to y) is smaller than the distance to x
of any other common ancestor of x and y. The twig substructure rooted at such NCA

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 617–628, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

618 K.G. Widjanarko, E. Leonardi, and S.S. Bhowmick

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, DeweyOrderSum,

 PathId, BranchOrder, LeafOrder,

 SiblingSum, LeafValue)

Attribute (DocId, LeafOrder, PathId,

 LeafValue)

DocumentRValue (DocId, Level, RValue)

entry

gene
Location

uniprot

comment

location name

only appears 8 times

entry

organism
Host

gene
Location

appears 0 time

(a) /uniprot/entry[comment/location and
geneLocation/name]

(b) /uniprot/entry[geneLocation and
organismHost]

(c) Schema of SUCXENT++

(1)

(254,609)

(1,036,352)

(5,190)

(14,097)

(3,711)

(254,609)

(14,097) (17,557)

(1) uniprot

Fig. 1. Example of twig queries and SUCXENT++ schema

entry

gene
Location

entry

gene
Location

uniprot

comment

location

comment

location

entry

gene
Location

comment

location

positionbegin end begin end

entry

gene
Location

name

gene
Location

D1 = 0

D2 = 7 D3 = 8

D4 = 57

D5 = 114

D6 = 171

D7 = 178 D8 = 185

D9 = 192 D10 = 193

 l |Ml| Rl

 1 9 57

 2 4 7

 3 1 3

 4 1 1

 5 0 0

name name

e2

g2

n1

Fig. 2. Example of XML data

node is called NCA-twiglet. For example, consider the twig query in Figure 1(a). The
twig structure rooted at entry node is an example of NCA-twiglet as it is the NCA of
location and name nodes. On the other hand, path expression is a linear structural
constraint. For example, /uniprot/entry is a path expression in Figure 1(a). In this
paper, we focus on efficient evaluation of NCA-twiglets in a relational implementation
of XML databases.

In literature, evaluation strategies of twig pattern matching can be broadly classified
into the following three types: (a) binary-structure matching, (b) holistic twig pattern
matching, and (c) string matching. In the binary-structure matching approach, the twig
pattern is first decomposed into a set of binary (parent-child and ancestor-descendant)
relationships between pairs of nodes. Then, the twig pattern can be matched by match-
ing each of the binary structural relationships against the XML database, and “stitching”
together these basic matches [1, 7, 9, 13, 20]. In the holistic twig pattern matching ap-
proach, the twig query is decomposed into its corresponding path components and each
decomposed path component is matched against the XML database. Next, the results of
each of the query’s path expressions are joined to form the result to the original twig
query [4, 10]. Lastly, approaches like ViST [15] and PRIX [11] are based on string
matching method and transform both XML data and queries into sequences and answer
XML queries through subsequence matching.

A key challenge in NCA-twiglets evaluation (as well as twig pattern matching in gen-
eral) is to develop techniques that can reduce generation of large intermediate results.
For instance, the binary-structure matching approaches may introduce very large inter-
mediate results. Consider the sample document fragment from UNIPROTKB/ SWISS-
PROT and the NCA-twiglet in Figures 2 and 1(a), respectively. The path match (e2, g2,

Efficient Evaluation of Nearest Common Ancestor 619

n1) for path entry/geneLocation/name does not lead to any final result since
there is no comment/location path under e2. Note that this problem is exacerbated
for queries that are high-selective but each path in the query is low-selective. Note that
we use “high-selective” or “very selective” to characterize a twig query with few results
and “low-selective” to characterize a query with many results. For example, the query
in Figure 1(a) is very selective as it returns only 8 results. However, all the paths are
low-selective. The number associated with each node in the queries in Figure 1 repre-
sents the number of occurrences of the path from the root node to the specific node in
the XML database. Similarly, the query in Figure 1(b) is a high-selective query as it does
not return any results although all the paths are low-selective. To solve this problem, the
holistic twig pattern matching has been developed in order to minimize the intermediate
results. In this approach, only those root-to-leaf path matches that will be in the final
twig results are enumerated. However, when the twig query contains parent-child (PC)
relationships, these solutions may still generate large numbers of useless matches [5].
Hence, in this paper we focus our attention on NCA-twiglets containing PC relationship
and are components of high-selective queries having low-selective paths.

2 Framework and Contributions

The problem of efficiently finding NCAs in a general tree has been studied extensively
over the last three decades [2]. Most of these approaches work using some mapping of
the tree to a completely balanced tree, thereby exploiting the fact that for completely
binary trees the problem is easier. Different algorithms differ by the way they do the
mapping. However, these techniques cannot be directly used in the XML context for the
following reasons. (i) Although the labels of the nodes used in some of the NCA algo-
rithms can compute the label of NCA in constant time [2], they are not generic enough
to efficiently support evaluation of various XPATH axes. Hence, the XML community
has resorted to devising novel labeling schemes to support efficient twig matching. (ii)
Due to the nature of XML data, the mapping of an XML tree to a completely binary
tree may not be an efficient technique for processing different types of XPATH axes.
Consequently, the research community has proposed various techniques on native and
relational frameworks to evaluate twig queries.

2.1 Relational Approaches for Twig Query Processing and Our Contributions

While a variety of approaches have been proposed in the literature to process twig
queries in native XML storage [4, 5, 10, 11], finding ways to evaluate such queries in
relational environment has gained significant momentum in recent years. Specifically,
there has been a host of work [3, 4, 6, 8, 9, 20] on enabling relational databases to be
tree-aware by invading the database kernel to implement XML support. On the other
side of the spectrum, some completely jettison the approach of internal modification of
the RDBMS for twig query processing and resort to alternative tree-unaware approach
[7, 12, 13] where the database kernel is not modified in order to process XML queries.

While the state-of-the-art tree-aware approaches are certainly innovative and power-
ful, we have found that these strategies are not directly applicable to relational databases.

620 K.G. Widjanarko, E. Leonardi, and S.S. Bhowmick

The RDBMS systems need to augment their suite of query processing strategies by in-
corporating special purpose external index systems, algorithms and storage schemes to
perform efficient XML query processing. Therefore, the integration of external modules
into commercial relational databases could be complex and inefficient. On the other
hand, there are considerable benefits in tree-unaware approaches with respect to porta-
bility as they do not invade the database kernel. Consequently, they can easily be in-
corporated in an off-the-shelf RDBMS. However, one of the key stumbling block for the
acceptance of tree-unaware approaches has been query performance. In fact, recent re-
sults reveal that the tree-aware approaches appear scalable and, in particular, perform
orders of magnitude faster than several tree-unaware approaches [3, 8]. In this paper,
we explore the challenging problem of efficient evaluation of NCA-twiglets in a tree-
unaware relational framework.

In summary, the main contributions of this paper are as follows. (a) Based on a novel
labeling scheme, in Section 3, we present an efficient algorithm for determining nearest
common ancestor (NCA) of two elements in an XML document. Our strategy accesses
much fewer elements compared to existing state-of-the-art tree-unaware approaches
in order to evaluate NCA-twiglets. Importantly, our proposed algorithm is capable of
working with any off-the-shelf RDBMS without any internal modification. (b) Through
an extensive experimental study in Section 4, we show that our approach significantly
outperforms a state-of-the-art tree-unaware scheme (GLOBAL-ORDER [14]) for evalu-
ating benchmark NCA-twiglets.

2.2 Overview of SUCXENT++ Approach

Our approach for NCA-twiglet evaluation is based on the SUCXENT++ system [12]. It is
a tree-unaware approach and is designed primarily for query-mostly workloads. Here,
we briefly review the storage scheme of SUCXENT++ which we shall be using in our
subsequent discussion. The SUCXENT++ schema is shown in Figure 1(c). Document
stores the document identifier DocId and the name Name of a given input XML docu-
ment T . We associate each distinct (root-to-leaf) path appearing in T , namely PathExp,
with an identifier PathId and store this information in Path table. For each leaf element
n in T , we shall create a tuple in the PathValue table.

SUCXENT++ uses a novel labeling scheme that does not require labeling of inter-
nal elements in the XML tree. For each leaf element it stores four additional attributes
namely LeafOrder, BranchOrder, DeweyOrderSum and SiblingSum. Also, it encodes each
level of the XML tree with an attribute called RValue. We now elaborate on the semantics
of these attributes. Given two leaf elements n1 and n2, n1.LeafOrder < n2.LeafOrder
iff n1 precedes n2. LeafOrder of the first leaf element in T is 1 and n2.LeafOrder =
n1.LeafOrder+1 iff n1 is a leaf element immediately preceding n2. Given two leaf ele-
ments n1 and n2 where n1.LeafOrder+1 = n2.LeafOrder, n2.BranchOrder is the level of
the NCA of n1 and n2. The data value of n is stored in n.LeafValue.

To discuss DeweyOrderSum, SiblingSum and RValue, we introduce some auxiliary def-
initions. Consider a sequence of leaf elements C: 〈n1, n2, n3, . . . , nr〉 in T . Then, C
is a k-consecutive leaf elements of T iff (a) ni.BranchOrder ≥ k for all i ∈ [1,r]; (b)
If n1.LeafOrder > 1, then n0.BranchOrder < k where n0.LeafOrder+1 = n1.LeafOrder;
and (c) If nr is not the last leaf element in T , then nr+1.BranchOrder < k where

Efficient Evaluation of Nearest Common Ancestor 621

nr.LeafOrder+1 = nr+1.LeafOrder. A sequence C is called a maximal k-consecutive
leaf elements of T , denoted as Mk, if there does not exist a k-consecutive leaf elements
C′ and |C|<|C′|.

Let Lmax be the largest level of T . The RValue of level �, denoted as R
, is defined as
follows: (i) If � = Lmax−1 then R
 = 1; (ii) If 0 < � < Lmax−1 then R
 = 2R
+1×
|M
+1| + 1. For example, consider the XML tree shown in Figure 2. Here Lmax = 5.
The values of |M1|, |M2|, |M3|, and |M4| are 9, 4, 1, and 1, respectively. Then, R4 = 1,
R3 = 3, R2 = 2 × 3 × |M3| + 1 = 7, and R1 = 2 × 7 × |M2| + 1 = 57. Note that
due to facilitate evaluation of XPATH queries, the RValue attribute in DocumentRValue
stores R�−1

2 + 1 instead of R
.
DeweyOrderSum is used to encode a element’s order information together with its

ancestors’ order information using a single value. Consider a leaf element n at level
� in T . Ord(n, k) = i iff a is either an ancestor of n or n itself; k is the level of a;
and a is the i-th child of its parent. DeweyOrderSum of n, n.DeweyOrderSum, is defined
as
∑

j=2 Φ(j) where Φ(j)=[Ord(n, j)-1]×Rj−1. For example, consider the rightmost
name element in Figure 2 which has a Dewey path “1.4.3.1”. DeweyOrderSum of this
element is: n.DeweyOrderSum = (Ord(n, 2) − 1) × R1 + (Ord(n, 3) − 1) × R2 +
(Ord(n, 4) − 1) × R3 = 3 × 57 + 2 × 7 + 0 × 3 = 185. Note that DeweyOrderSum
is not sufficient to compute position-based predicates with QName name tests, e.g.,
entry[2]. Hence, the SiblingSum attribute is introduced to the PathValue table. We do
not elaborate further on SiblingSum as it is beyond the scope of the paper.

To evaluate non-leaf elements, we define the representative leaf element of a non-leaf
element n to be its first descendant leaf element. Note that the BranchOrder attribute
records the level of the NCA of two consecutive leaf elements. Let C be the sequence of
descendant leaf elements of n and n1 be the first element in C. We know that the NCA

of any two consecutive elements in C is also a descendant of element n. This implies (a)
except n1, BranchOrder of a element in C is at least the level of element n and (b) the
NCA of n1 and its immediately preceding leaf element is not a descendant of element
n. Therefore, BranchOrder of n1 is always smaller than the level of n. The reader may
refer to [12] for details on how these attributes are used to efficiently evaluate ordered
XPATH axes.

3 Evaluation of NCA-Twiglets

In this section, we present the evaluation strategy of NCA-twiglets in SUCXENT++. We
begin by formally introducing the notion of NCA-twiglet.

3.1 Data Model and NCA-Twiglet

We model XML documents as ordered trees. In our model we ignore comments, pro-
cessing instructions and namespaces. We also ignore attributes for determining NCA as
an attribute is not a child of an element. Queries in XML query languages make use of
twig patterns to match relevant portions of data in an XML database. The twig pattern
node may be an element tag, a text value or a wildcard “*”. We distinguish between
query and data nodes by using the term “node” to refer to a query node and the term

622 K.G. Widjanarko, E. Leonardi, and S.S. Bhowmick

“element” to refer to a data element in a document. In this paper, we focus only on
parent-child relationships between the nodes in the twig pattern. Recall that existing
holistic twig pattern matching approaches achieve optimality for ancestor-descendant
relationships but may generate large numbers of useless matches when the twig query
contains parent-child relations [5]. We now formally define NCA-twiglet.

Definition 1 (NCA-Twiglet). Given a query twig pattern Q = 〈V, E〉, a NCA-Twiglet
N = 〈Vn, En,'〉 in Q, denoted as N ≺ Q, is a subtree in Q rooted at node ' ∈ V
such that (a) Vn ⊂ V is a set of nodes whose nearest common ancestor is ', and (b)
En ⊆ E.

A NCA-twiglet consists of a collection of rooted path patterns, where a rooted path
pattern (RP) is a root-to-leaf path in the NCA-twiglet. The level of the root ' is called
NCA-level. For example, the NCA-twiglet in Figure 1(a) consists of the rooted paths
entry/comment/location andentry/geneLocation/name. Note that each
of the above RPs has a parent-child relationship between the nodes. The path from
Root(Q) to ' is called the reachability path of N . For instance, /uniprot/entry
is the reachability path.

Given a NCA-twiglet N ≺ Q and an XML document D, a match of N in D is
identified by a mapping from the nodes in N to the elements in D, such that: (a) the
query node predicates are satisfied by the corresponding database elements, wherein
wildcard “*” can match any single tag; (b) the parent-child relationship between query
nodes are satisfied by the corresponding database elements; and (c) the reachability path
of N is satisfied by the database elements. Next, we present our approach to match N
in D.

3.2 NCA-Twiglet Matching

Recall that in SUCXENT++ each root-to-leaf path of an XML document is encoded with
the attributes LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum. Additionally
each level of the XML tree is associated with a RValue. Hence, given the NCA-twiglet
N ≺ Q and document D, our goal is to use these attributes to efficiently determine
those root-to-leaf paths that satisfy N . We achieve this by using the following lemma
and theorem.

Lemma 1. Let n1 and n2 be two leaf elements in an XML document. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| < R�−1

2 + 1 then the level of the nearest
common ancestor is greater than �. �

Theorem 1. Let n1 and n2 be two leaf elements in an XML document. If
R�+1−1

2 + 1 ≤|n1.DeweyOrderSum - n2.DeweyOrderSum| < R�−1
2 + 1 then the level

of the nearest common ancestor of n1 and n2 is � + 1. �

Due to space constraints, we do not present the proof here. The reader may refer
to [16] for formal proof. We now illustrate with an example the above lemma and
theorem in the context of a twig query. Consider the query in Figure 1(a) and the
fragment of the PathValue table in Figure 3 (Step 1). Note that for clarity, we only

Efficient Evaluation of Nearest Common Ancestor 623

D2 = 7

D5 = 114

D9 = 192

D4 = 57

D7 = 178

D8 = 185

D9 = 192

D7 = 178

D9 = 192

D8 = 185

Da: /uniprot/entry
/comment/location

Db: /uniprot/entry
/geneLocation/name

Pair of leaf nodes
that have nearest
common ancestor

at level 2

2
3

D1 = 0

D2 = 7

D3 = 8

D4 = 57

D5 = 114

D6 = 171

D7 = 178

D8 = 185

D9 = 192

D10 = 193

1

PathValue table

4 = |Da – Db| < 29

D7 = 178

D8 = 185

4

Fig. 3. An example of NCA-twiglet evaluation

evaluateNCATwiglet (queryTwig)

01 i = 1
02 for every rootedPath in the queryTwig {
03 from_sql.add("PathValue as Vi")
04 where_sql.add("Vi.pathid in rootedPathi.getPathId()")
05 where_sql.add("Vi.branchOrder < rootedPathi.level()")
06 if (i > 1) {
07 where_sql.add("Vi.DeweyOrderSum BETWEEN
 Vi-1.DeweyOrderSum –
 RValue(rootedPathi.NCAlevel() - 1) + 1 AND
 Vi-1.DeweyOrderSum +
 RValue(rootedPathi.NCAlevel() - 1) - 1")
08 }
09 i++
10 }
11 select_sql.add("DISTINCT Vi-1.docId, Vi-1.DeweyOrderSum")
12 return select_sql + from_sql + where_sql

XPath: /uniprot/entry[comment/location and
 geneLocation/name]

01 SELECT DISTINCT V2.DocId, V2.DeweyOrderSum
02 FROM PathValue V1, PathValue V2
03 WHERE V1.pathid in (2,3,4)
04 AND V1.branchOrder < 4
05 AND V2.docId = V1.docId
06 AND V2.pathid in (5)
07 AND V2.branchOrder < 4
08 AND V2.DeweyOrderSum BETWEEN

V1.DeweyOrderSum - CAST(29 as BIGINT) + 1 AND
V1.DeweyOrderSum + CAST(29 as BIGINT) - 1

(a) evaluateNCATwiglet algorithm (b) An example of Translated SQL query

Fig. 4. evaluateNCATwiglet algorithm

show the DeweyOrderSums of the root-to-leaf paths in the PathValue table. Let Da be
DeweyOrderSum of the representative leaf elements satisfying /uniprot/entry/
comment/location (second, fifth, and ninth leaf elements) and Db be
DeweyOrderSum of the representative leaf elements satisfying /uniprot/entry/
geneLocation/name (fourth, seventh, and eighth leaf elements). This is illustrated
in step 2 of Figure 3. From the query we know that Da and Db have NCA at level 2
(/uniprot/entry level). Hence, based on Theorem 1 we can find pairs of
(location,name) elements which have NCA at level 2. Da and Db fall on the fol-
lowing range: (R2− 1)/2 + 1 ≤ |Da−Db| < (R1− 1)/2 + 1⇒ 4 ≤ |Da−Db| < 29
which return the (seventh, ninth) and (eighth, ninth) leaf elements pairs (Step 3 of Fig-
ure 3). We can easily return the entry subtree by applying Lemma 1 on either one of
the elements in the pair (Step 4). Note that since from the XPATH we know that Da and
Db can not have NCA at level greater than 2, we only need to use Lemma 1 for match-
ing NCA-twiglets. Observe that the above approach can reduce unnecessary comparison
as we do not need to find the grandparent of location and name elements. We can
determine the NCA directly by using the DeweyOrderSum and RValue attributes.

3.3 Query Translation Algorithm

Given a query twig (XPATH), the evaluateNCATwiglet procedure (Figure 4(a))
outputs SQL statement. A SQL statement consists of three clauses: select sql, from sql
and where sql. We assume that a clause has an add() method which encapsulates
some simple string manipulations and simple SUCXENT++ joins for constructing valid

624 K.G. Widjanarko, E. Leonardi, and S.S. Bhowmick

Q1

of NCA-
Twiglet

0 - 30
Q2 0 - 30
Q3 0 - 30
Q4 0 - 30
Q5 0 - 30
Q6 0 - 30

Min Max
of RP
10MB

589 1,926
3,066 3,249

394 1,698
1,201 1,284
1,233 1,292

316 1,906

Min Max
of RP
100MB

6,261 18,759
31,057 31,393

4,179 16,587
12,335 12,675
12,414 12,596

3,085 18,899

Min Max
of RP
1000MB

62,023 187,997
311,802 313,531

41,323 165,279
124,718 125,302
124,754 125,246

31,035 187,621

Query

contact_information

author

middle_name

name

mailing_address

name_of_state

contact_information

FAX_number web_site phone_number

item

related_items pricing

quantity_in_stock

item

related_items attributes

size_of_book

Q2

Q4

Q5

(a) Queries for XBench Data Set

(b) Statistics of NCA and RPs for DCSD Data Sets

entry

gene
Location

comment

location name

entry

organism
Host

gene
Location

U1

of NCA-
Twiglet

0
U2 2
U3 2
U4 0
U5 12

Min Max
of RP

20MB

67 76
57 67
57 67
44 104
74 97

Min Max
of RP

200MB

952 1,044
302 1,044
302 338
325 520
502 1,279

Min Max
of RP

2000MB

14,097 17,557
5,190 14,097
3,711 5,190
5,459 13,223
4,853 10,875

Query

entry

gene
Location

comment

location

protein

domaincomponent

comment

eventnote

of NCA-
Twiglet

0
8
3
0

166

of NCA-
Twiglet

0
347

8
162

1063

U1

U2 U3

U4 U5

(c) Queries for UniProt Data Set

(d) Statistics of NCA and RPs for UniProt Data Sets

uniprot

uniprot uniprot

catalog

item

catalog

item

catalog

item

publisher

Q3

contact_information

FAX_number web_site

catalog

item

publisher

Q1

mailing_address

name_of_state

contact_information

FAX_number web_site phone_number

catalog

item

publisher

Q6

catalog

item

authors

entry

uniprot

entry

uniprot

Fig. 5. Query and data sets

SQL statements. In addition to preprocessing PathId, for a single XML document, we
also preprocess RValue to reduce the number of joins.

The procedure firstly breaks the query twig into its subsequent rooted path (Line 02).
Then for every rooted path, it gets the representative leaf nodes of the rooted path by
using PathId and BranchOrder (Lines 04-05). After that, for the second rooted path on-
wards, it uses Lemma 1 to get the pair of leaf elements that have NCA at the NCA-
level (Line 07). After processing the set of rooted paths, we return the DocId and
DeweyOrderSum of the rightmost rooted path (Line 11) since only either one of the pairs
is needed to construct the whole subtree. Finally, we collect the final SQL statement
(Line 12). For example, consider the query in Figure 1(a). The output SQL statement
can be seen in Figure 4(b). Lines 03-04 and Lines 06-07 are used to get the represen-
tative leaf elements of the respective rooted path. Line 08 is used to get the pair of leaf
elements that have NCA at the NCA-level.

4 Performance Study

In this section, we present the performance results of our proposed approach and com-
pare it with a state-of-the-art tree-unaware approach. Since there are several tree-unaware
schemes proposed by the community, our selection choice was primarily influenced by
the following two criteria. First, the storage scheme of representative approach should
not be dependent on the availability of DTD/XML schema. Second, the selected approach
must have good query performance for a variety of XPATH axes (ordered as well as un-
ordered) for query-mostly workloads. Hence, we chose the GLOBAL-ORDER storage
scheme as described in [14]. Prototypes for SUCXENT++ (denoted as SX), and GLOBAL-
ORDER (denoted as GO) were implemented with JDK 1.5. The experiments were

Efficient Evaluation of Nearest Common Ancestor 625

conducted on an Intel Pentium 4 3GHz machine running on Windows XP with 1GB of
RAM. The RDBMS used was Microsoft SQL Server 2005 Developer Edition.

Data and Query Sets: In our experiments, we used XBench DCSD [18] as synthetic
dataset and UNIPROT (downloaded from www.ebi.ac.uk/uniprot/database/download.
html) as real dataset. We vary the size of XML documents from 10MB to 1GB for
XBench and from 20MB to 2GB for UNIPROT. Recall that we wish to explore twig
queries that are high-selective although the paths are low-selective. Hence, we modi-
fied XBench dataset so that we can control the number of subtrees (denoted as K) that
matches the NCA-twiglet and the number of occurrences of the rooted paths. We set
K ∈ {0, 10, 20, 30} for XBench dataset. Note that we did not modify the UNIPROT

dataset. Figures 5(a) and 5(c) depict the benchmark queries on XBench and UNIPROT,
respectively. We vary the number of rooted paths in the queries from 2 to 4. The num-
ber of occurrences of subtrees that satisfies a NCA-twiglet and the minimum and maxi-
mum numbers of occurrences of rooted paths in the datasets are shown in Figures 5(b)
and 5(d) for XBench and UNIPROT queries, respectively.

Test Methodology: Appropriate indexes were constructed for all approaches through
a careful analysis on the benchmark queries. Particularly, for SUCXENT++ we create
the following indexes on PathValue table: (a) unique clustered index on PathId and
DeweyOrderSum, and (b) non-unique, non-clustered Index on PathId and BranchOrder.
Furthermore, since our dataset consists of a single XML document, we removed the
DocId column from the tables in SX and GO. Prior to our experiments, we ensure that
statistics had been collected. The bufferpool of the RDBMS was cleared before each
run. Each query was executed 6 times and the results from the first run were always
discarded.

Since GO and SX have different storage approaches, the structure of the returned
results are also different. Recall from Section 3.2, the goal of our study is to identify
subtrees that matches the NCA-twiglet. Hence, we return results in the select mode
[14]. That is, we do not reconstruct the entire matched subtree. Particularly, for the GO

approach, we return the identifier of the root of the subtree (without its descendants) that
matches the NCA-twiglet. Whereas for SX, we return the DeweyOrderSum of the root-to-
leaf path of the matching subtree. This path must satisfy the rightmost rooted path of the
NCA-twiglet. For example, for the query in Figure 1(a), we return the identifiers of the
entry elements in GO and the DeweyOrderSums of the root-to-leaf paths containing
the rightmost rooted path entry/geneLocation/name elements in SX. Lastly, for
SX we enforce a “left-to-right” join order on the translated SQL query using query hints.
The performance benefits of such enforcement is discussed in [12].

NCA-twiglet evaluation times: Our experimental goal is to measure the evaluation time
for determining those subtrees that match a NCA-twiglet with a specific reachability
path in the twig queries in Figure 5. Figures 6(a) and 6(b) depict the NCA-twiglet evalu-
ation times of SUCXENT++ and GLOBAL-ORDER, respectively. Figure 6(c) depicts the
evaluation time for UNIPROT data set. We observe that SX significantly outperforms GO

for all queries with the highest observed factor being 352 (Query U5 on 2GB dataset).
Particularly, SX is orders of magnitude faster for high-selective queries. Observe that for
XBench dataset, when K = 0, SX is up to 332 times faster (Query Q6 on 1GB dataset)

626 K.G. Widjanarko, E. Leonardi, and S.S. Bhowmick

ID
10MB

K=0 K=10 K=20 K=30

Q1

Q2

Q3

Q4

Q5

Q6

25.60 27.00 28.60 27.40

61.00 62.40 62.60 69.80

68.80 85.80 85.80 84.20

26.00 28.00 27.60 27.40

63.80 75.40 62.20 75.60

92.00 100.40 112.40 114.00

100MB

K=0 K=10 K=20 K=30

142.80 157.40 151.80 158.20

430.40 418.20 475.20 427.00

100.00 182.60 185.60 189.00

205.20 168.20 194.40 180.00

180.20 186.80 192.80 189.20

83.60 257.00 239.20 237.60

1000MB

K=0 K=10 K=20 K=30

1,586.80 1,564.80 1,574.20 1,596.60

3,846.80 3,631.20 3,994.80 3,619.60

990.80 1,664.80 1,620.60 1,640.40

1,980.40 1,995.40 1,950.60 1,985.20

1,994.40 1,947.60 1,963.20 1,952.60

617.20 2,161.20 2,159.00 2,159.00

ID
10MB

K=0 K=10 K=20 K=30

Q1

Q2

Q3

Q4

Q5

Q6

609.60 603.00 936.40

599.00 467.00 443.20

698.20 736.00 957.20

494.80 474.00 473.80

553.60 492.60 570.20

762.40 1,205.00 792.60

100MB

K=0 K=10 K=20 K=30

1000MB

K=0 K=10 K=20 K=30

(a) SUCXENT++ (XBench, in msec)

717.60 8,478.80 8,316.60

448.80 6,080.00 5,996.40

675.00 5,510.60 5,565.20

763.80 3,522.80 4,250.40

655.60 4,915.40 4,959.40

970.60 7,516.40 6,925.40

8,862.20 6,066.80

5,451.40 6,640.00

5,458.40 5,464.60

4,727.20 4,598.80

4,010.60 4,161.60

7,907.20 7,948.60

114,717.60 83,035.80

349,974.00 236,906.20

80,954.80 78,541.20

107,910.20 108,039.40

70,275.20 111,901.60

204,835.40 249,687.40

80,979.60 84,053.80

226,509.20 225,286.20

76,998.20 80,571.40

71,082.40 111,399.20

71,232.80 75,587.40

259,323.20 238,127.40

(b) Global Order (XBench, in msec)

ID
SUCXENT++

20MB 200MB 2000MB

U1

U2

U3

U4

U5

9.00 23.40 163.60

9.00 21.00 156.80

5.00 12.20 86.00

5.40 14.40 123.60

5.00 22.20 123.60

Global Order

20MB 200MB 2000MB

201.00 1,424.60 17,281.60

363.80 2,512.60 23,839.20

266.00 2,675.20 23,705.20

14.00 618.80 6,870.80

438.80 2,800.00 43,502.20

(c) UniProt (in msec)

Fig. 6. Performance results

and on average 56 times faster than GO. This is significant in an environment where
users would like to issue exploratory ad hoc queries. In this case, the user would like to
know quickly if the query returns any results. If the result set is empty then he/she can
further refine his/her query accordingly.

SX is significantly faster than GO because of the following reasons. Firstly, SX uses
an efficient strategy based on Theorem 1 to reduce useless comparisons. Furthermore,
the number of join operations in GO is more than SX. For example, for Q6, GO and SX

join six tables and four tables, respectively. Secondly, GO stores every element of an
XML document whereas sx stores only the root-to-leaf paths. Consequently, the number
of tuples in the Edge table is much more than that in the PathValue table.

5 Related Work

We first compare our proposed approach with existing tree-unaware techniques [7, 12,
13, 14, 19]. Note that we do not compare our work with tree-aware relational schemes
[1,3,6,8,9,20] as these techniques modify the database internals. Our approach differs
from these tree-unaware techniques in the following ways. First, we use a novel and
powerful numbering scheme that only encodes the leaf elements and the levels of the
XML tree. In contrast, most of the tree-unaware approaches encode both internal and leaf
elements. Second, the translated SQL of SUCXENT++ does not suffer from large num-
ber of joins. Third, all previous tree-unaware approaches, reported query performance
on XML documents with small/medium sizes – smaller than 500 MB. We investigate
query performance on large synthetic and real datasets (up to 2GB). This gives more
insights on the scalability of the state-of-the-art tree-unaware approaches for twig query
processing.

In our previous work [12], we focused on efficiently evaluating ordered path expres-
sions rather than tree-structured queries. In this paper, we investigate how the encoding

Efficient Evaluation of Nearest Common Ancestor 627

scheme in [12] can be used for efficiently processing NCA-twiglet, a specific class of
structural relationship in a twig pattern query.

6 Conclusions

The key challenge in XML twig pattern evaluation is to efficiently match the struc-
tural relationships of the query nodes against the XML database. In general, structural
relationship in a twig query may be categorized in two different classes: path expres-
sion and NCA-twiglet. A path expression enforces linear structural constraint whereas
NCA-twiglet specifies tree-structured relationship. In this paper, we present an efficient
strategy to evaluate NCA-twiglets having parent-child relationship in a tree-unaware re-
lational environment. Our scheme is build on top of SUCXENT++ [12]. We show that
by exploiting the encoding scheme of SUCXENT++ we can reduce useless structural
comparisons in order to evaluate NCA-twiglets. Our results showed that our proposed
approach outperforms GLOBAL-ORDER [14], a representative tree-unaware approach
for all benchmark queries. Importantly, unlike tree-aware approaches, our scheme does
not require invasion of the database kernel to improve query performance and can easily
be built on top of any off-the-shelf RDBMS.

References

1. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., et al.: Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. In: ICDE (2002)

2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and
a new Distributed Algorithm. In: SPAA (2002)

3. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: Mon-
etDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine. In: SIGMOD
(2006)

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Matching.
In: SIGMOD (2002)

5. Chien, S., Li, H-G., Tatemura, J., et al.: Twig2Stack: Bottom-up Processing of Generalized-
Tree-Pattern Queries over XML Documents. In: VLDB (2006)

6. DeHaan, D., Toman, D., Consens, M.P., Ozsu, M.T.: A Comprehensive XQuery to SQL
Translation Using Dynamic Interval Coding. In: SIGMOD (2003)

7. Florescu, D., Kossman, D.: Storing and Querying XML Data using an RDBMS. IEEE Data
Engg. Bulletin 22(3) (1999)

8. Grust, T., Teubner, J., Keulen, M.V.: Accelerating XPath Evaluation in Any RDBMS. In:
ACM TODS, vol. 29(1) (2004)

9. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions. In: VLDB
(2001)

10. Lu, J., Ling, T.W., Chen, T.Y., Chen, T.: From Region Encoding to Extended Dewey: On
Efficient Processing of XML Twig Pattern Matching. In: VLDB (2005)

11. Rao, P., Moon, B.: PRIX: Indexing and Querying XML Using Prufer Sequences. In: ICDE
(2004)

12. Seah, B.-S, Widjanarko, K.G., Bhowmick, S.S., Choi, B., Leonardi, E.: Efficient Support for
Ordered XPath Processing in Tree-Unaware Commercial Relational Databases. In: DASFAA
(2007)

628 K.G. Widjanarko, E. Leonardi, and S.S. Bhowmick

13. Shanmugasundaram, J., Tufte, K., et al.: Relational Databases for Querying XML Docu-
ments: Limitations and Opportunities. In: VLDB (1999)

14. Tatarinov, I., Viglas, S., Beyer, K., et al.: Storing and Querying Ordered XML Using a Rela-
tional Database System. In: SIGMOD (2002)

15. Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: A Dynamic Index Method for Querying XML
Data by Tree Structures. In: SIGMOD (2003)

16. Widjanarko, K.J., Leonardi, E., Bhowmick, S.S.: Efficient Evaluation of Nearest Common
Ancestor in XML Twig Queries Using Tree-Unaware RDBMS. Technical Report (2007),
Available at
http://www.cais.ntu.edu.sg/∼assourav/TechReports/nca-TR.pdf

17. Wu, X., Lee, M., Hsu, W.: A Prime Number Labeling Scheme for Dynamic Ordered XML
Trees. In: ICDE (2004)

18. Yao, B., Tamer Özsu, M., Khandelwal, N.: XBench: Benchmark and Performance Testing of
XML DBMSs. In: ICDE (2004)

19. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based approach to stor-
age and retrieval of xml documents using relational databases. ACM TOIT 1(1), 110–141
(2001)

20. Zhang, C., Naughton, J., Dewitt, D., Luo, Q., Lohmann, G.: On Supporting Containment
Queries in Relational Database Systems. In: SIGMOD (2001)

http://www.cais.ntu.edu.sg/~assourav/TechReports/nca-TR.pdf

Exclusive and Complete Clustering of Streams

Vasudha Bhatnagar and Sharanjit Kaur

Department of Computer Science, University of Delhi, Delhi, India
{vbhatnagar,skaur}@cs.du.ac.in

Abstract. Clustering for evolving data stream demands that the algo-
rithm should be capable of adapting the discovered clustering model to
the changes in data characteristics.

In this paper we propose an algorithm for exclusive and complete
clustering of data streams. We explain the concept of completeness of a
stream clustering algorithm and show that the proposed algorithm guar-
antees detection of cluster if one exists. The algorithm has an on-line
component with constant order time complexity and hence delivers pre-
dictable performance for stream processing. The algorithm is capable of
detecting outliers and change in data distribution. Clustering is done by
growing dense regions in the data space, honouring recency constraint.
The algorithm delivers complete description of clusters facilitating se-
mantic interpretation.

1 Introduction

Clustering of data streams aids summarization of data characteristics and finds
important applications in both scientific and commercial domains. The result of
clustering on streaming data is an approximation of data characteristics accord-
ing to some predefined properties like centroid, radius etc. [6]. The approxima-
tion arises because of single scan constraint on data streams, unlike traditional
clustering methods where multiple scans over data lead to exclusive clustering
[7]. Traditionally clustering of data streams is carried out using window-based
models, where recent points are given due importance in clustering [3].

Sub-cluster maintenance is the most common approach for clustering evolving
data streams. The issue of likely (poor) approximation during clustering of data
streams using this approach has been addressed in [6]. In this paper we address
three other important issues related to clustering of data streams.

1. Complete clustering: Pyramidal time window [1], sliding window [5] and
damped window [2,8] models are some of the commonly used approaches for
clustering evolving data streams. The effect of these models is to discount
historical data in a continuous manner. These approaches suffer from the
deficiency that if the speed of the stream suddenly changes or the interval
between two consecutive clusterings is large, some of the historical data may
be discounted before being used in the construction of the model. Though,
the parameters like fading factor are tuned on the basis of anticipated speed

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 629–638, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

630 V. Bhatnagar and S. Kaur

of the stream, these parameters do not change dynamically. This may hap-
pen if a small outlier cluster appears for a period of time that is much smaller
compared to the time interval between two clusterings. Thus it is not guar-
anteed that all the clusters that appeared after the last clustering will always
be detected leading to incomplete clustering.
Figure 1 shows a small cluster marked X, appearing right after time T1, when
clustering was performed. The other prominent clusters also form during this
time. The next clustering at time T2 may not report cluster X if the weight
of the micro-cluster corresponding to X falls below a prespecified threshold
because of passing of relatively longer interval of time.
We propose the notion of complete clustering where it is guaranteed that a
point recieved between two consecutive clusterings will be accounted for. I.e.
every data point is reported as a member of a cluster, noise or an outlier at
least once.

X

T2T1

Time

Fig. 1. Cluster X fades out before the next clustering at T2 resulting in incomplete
clustering

2. Predictable performance of on-line component: The on-line component of
clustering algorithm for streams must be efficient so that there is no data
loss. In micro-cluster based approaches, the complexity of the stream pro-
cessing component is O(dn) where d is the number of dimensions and n is
the number of micro-clusters. Since the number of micro-clusters may keep
on changing with time [1,4], the performance of the on-line component may
be unpredictable.

3. Human-Centric description of clusters: Clusters discovered in the streaming
data are commonly described by the cluster features [1,4]. In case of arbitrary
shaped clusters this description is not of much help for the end-user. In short,
the clustering approximations delivered by the stream clustering algorithms
are not amenable to easy interpretation.

1.1 Our Approach

To achieve Exclusive and Complete Clustering, we propose ExCC algorithm for
streams which has an on-line component with predictable performance (Section
2.1). The second component of the algorithm performs clustering on demand
(Section 3) and may be run either on-line or offline depending on requirement.

The clustering approximation is improved by pruning the outdated regions in
data space just before clustering. This ensures completeness and a cluster, how

Exclusive and Complete Clustering of Streams 631

so ever small (X in Fig. 1), that showed up in the stream after the last clustering
is detected and reported. The salient features of the algorithm are:

1. Maintaining detailed data distribution along with the speed of streaming
data for clustering of streams (Section 2.1, 2.2).

2. On-line component takes constant time for stream processing (Section 2.1)
3. Outliers are detected on-the-fly and noise is reported separately (Section 2.4)
4. Exclusive clustering with user centric description like boundary of cluster,

signature of seed etc. (Section 3)

1.2 Related Works

The single scan for data streams has motivated several good algorithms like
CluStream [1], HPStream [2] and DenStream [4]. These algorithms are based on
the philosophy of micro-cluster maintenance and use either density or distance
criteria to discover clusters on-demand. GCHDS is a grid based algorithm for
high dimensional data streams [8] and discovers clusters by applying connected
component analysis on the grid. These algorithms are not robust with respect
to outliers in the stream and may result into incomplete clustering.

The micro-cluster maintenance approach for clustering of data streams has
been dissected and critically analyzed in [6]. It has been shown with the help of
carefully crafted counter-examples that this approach may lead to violation of
basic requirements of clustering. I.e., it may happen that although a point exists
in one cluster but it maybe close to the center of another cluster.

2 ExCC Algorithm

The proposed ExCC algorithm implements a multidimensional grid to maintain
the detailed distribution of data along all dimensions. The actual speed of the
different data distributions is also maintained in the grid. Each cell in the grid
represents a region in data space. The grid is pruned before clustering so as to
discard obsolete data regions. Clustering is performed by combining the signifi-
cant regions in the data space, taking both recency and density into account.

Freak data points are reported on-the-fly to the user as outliers and noisy
points are reported separately. We explain these features and the methodology
in following subsections.

2.1 Grid Structure

Grid structure is suitable for stream clustering because the processing time of a
data point in a grid, which is crucial in stream mining algorithms, is a known
constant [7,9]. A point is placed in the grid only on the basis of the values of
its dimensional components, thereby avoiding the need of distance computation
function. At any time instance, the grid structure G contains the detailed data
distribution of recent data points coming in the stream S and maintains only
those nodes which have at least one point.

632 V. Bhatnagar and S. Kaur

Given the dimension set Δ = {d1, . . . , dd} , let li and hi respectively be the
lowest and the highest data values along dimension di, as known to the domain
expert. The range ri = [li, hi] of di is divided into k (even) number of equi-
width intervals (l1i , h

1
i),]l2i , h

2
i), . . . ,]lki , hk

i), such that l1i = li, h
k
i = hi. k is a user

defined parameter and determines the granularity of the grid. Keeping number
of intervals same for all dimensions simplifies notation, even though the proposed
framework does not have any limitation in this respect. In the rest of the paper,
we use k as the number of intervals for all dimensions.

Initially the grid G is empty. It gets populated as incoming data points are
inserted. A data point is stored using d internal nodes at d levels in G, each
corresponding to d dimensions. A leaf node (cell) in the grid corresponds to the
region in the data space determined by the intersection of one interval from each
dimension. Number of data points in a cell indicates the density of the region.
The cell also stores the rate at which the data points are getting added to the
region. Though the actual memory requirement of the grid will depend on the
data distribution in the stream, memory bound of O(kd) may be used as a broad
guideline to decide the granularity of the grid.

Lemma 1. The insertion time for a data point in the grid is O(d), where d is
the dimension of a data point.

Proof. Insertion of a data point involves two tasks viz. i) finding the interval for
each dimension value ii) inserting the data point in grid. For d dimensions, task
(i) can be completed in O(d) time. Since the depth of the grid is exactly d, task
(ii) takes O(d) time. Hence total insertion time per point is O(d).

The constant order time complexity guarantees predictability of the performance
of the on-line component of the algorithm.

2.2 Speed of the Stream

Intuitively, in a fast stream, data decays relatively faster than in a slow stream.
To be fair enough to all data regions, we maintain the speed of the incoming
data at each region in the data space. Varying data speed for a cell in the grid
is averaged out and is used to compute its recency.

Definition 1. Let C be an arbitrary cell in the grid with count n, by virtue
of accumulating points p1, . . . , pn at times t1, . . . , tn respectively. The average
inter-arrival time aatC is computed as follows.

aatC =
{

1 n = 1
1
n

∑n−1
j=1 (tj+1 − tj) n > 1

(1)

Based on the average inter-arrival time, the speed of the stream at cell C is
defined as SpC = 1

aatC . The speed of the stream (speed at root node) is denoted
by SpR. Please note that the notion of speed is conceptual and in computations
we make use of aat’s.

Exclusive and Complete Clustering of Streams 633

2.3 Grid Pruning

Unbounded nature of the stream necessitates design of a mechanism to keep a
check on the size of the grid. We prune the grid just before clustering and remove
the non-recent cells. Non-recent cells denote those regions in data space which
have not seen significant addition of data points since the last clustering or even
longer. These regions indicate that currently the stream is not supportive of the
particular data distribution and hence are candidates for pruning.

If tcurr is the current time, tCl is the time when the last point was added to
the cell and Numpoints is the number of points actually arrived in stream since
the last clustering, the cell is pruned iff the following criterion holds.

tcurr − tCl
Numpoints

≥ aatC (2)

The computation of recency is optimistic in the sense that as soon as a data
point is added to a cell, its aat is reduced in anticipation that more data points
will be added to it in near future and hence, retained. This permits regions like
shown in Figure 1 to be reported to the user, even though the trend was observed
for a short duration and gives complete clustering.

Lemma 2. The pruning function does not prune any region (cell in the grid)
that was added in the grid since last clustering, irrespective of the speed of the
stream and length of the period between two clusterings.

Proof. Let two consecutive clusterings be done at times t0 and t1. During this
time, say n points came in the stream and only one point was received in a newly
created cell C immediately after t0. We show that C is never pruned at t1.

For sake of simplicity, let t0 = 0 and t1 = t. C will be pruned iff t−0
n ≥ 1

(refer Eq. 2). But the LHS is aatR, which is always ≤ 1 irrespective of t. Thus
C will never be pruned.

2.4 Handling Data Drift and Outliers

Since the data space D = [l1, h1] × . . . × [ld, hd] is based on the experience of
the human experts in the domain, it is necessary to address the situation when
a data point falls outside D.

A point px(vx1, . . . , vxd) /∈ D is actually an aberration and is considered
anomalous. However if there is a drift in the underlying data generation pro-
cess, the algorithm should be able to detect it and redefine D.

An anomalous point px is recognized by assessing its distance outside the
boundary of D, which also indicates its extent of outlying. Given ri as range of
dimension di, let δi be the distance of px from the boundary of D along di.

δi =
{

0 if li ≤ vxi ≤ hi
1
ri
∗min(|vxi − li|, |vxi − hi|) otherwise (3)

634 V. Bhatnagar and S. Kaur

px is an outlier iff ∃ i, such that δi ≥ 1. A outlier is identified on-the-fly by the
algorithm in constant time. In other cases where 0 < δi < 1, we wait-and-watch
before declaring the data point as an outlier.

Arrival of an anomalous point once in a while is an aberration in the data
generating process. In case this happens more often than expected, a change
in data distribution is signified. The algorithm uses average arrival rate of an
anomalous point as the indicator of the frequency of their arrival in S.

The algorithm parks an anomalous point in a Hold Queue (HQ) instead of
immediately reporting it to the user. The objective is to gather evidence whether
the point is actually an outlier, or there is a indication of shift in data distribu-
tion. The Hold Queue is processed periodically to determine the nature of the
data points it contains.

Let aatji denote the arrival rate of data points in the jth interval of dimension
di. Under the assumption that an out-of-range data point is a spill over from
either first or last interval of dimension di, aatoi is compared with aat1i and aatki
leading to the following three cases:

1. In case aatoi is one, the singleton is clearly an outlier and is reported.
2. If aatoi (aat1i or aatki , a temporary data drift is concluded and reported.

It can be construed as some change in the distribution along this dimension,
which has probably now reversed. Malfunctioning of a sensor in a sensor
network, corrected subsequently, could lead to a situation like this.

3. If aatoi ≈ aat1i or aatki then a definite change in the data distribution along
the dimension in question can be concluded, motivating investigation of the
data generating process.

Data drift (Case 3) is handled by expanding the grid along the dimension di.
Grid expansion is carried out by merging the adjacent intervals in all the nodes
at the level corresponding to di, and inserting relevant points from the HQ in
the grid. Reconstruction of the grid redefines D and the time required for this
expansion depends on the location of the dimension.

3 Clusters Generation

Clusters are generated from the grid by identifying regions that are adjacent to
the dense region in the data space. Each dense region that is not adjacent to
other dense region denotes a cluster. This strategy of growing clusters together
with Lemma 2 ensures completeness and exclusiveness of the clustering scheme.

After pruning, a pool of eligible cells is available for clustering. The algorithm
chooses the dense cell (seed) from unused cells on the basis of weight1.

Definition 2. The weight WC of the cell C, with average inter arrival time
aatC and number of points nC is computed as

WC =
nC

aatC
(4)

1 An experienced user can optionally use the weight to further prune the pool of cells
to be clustered by specifying an appropriate threshold.

Exclusive and Complete Clustering of Streams 635

The cell with highest weight is selected as the seed for cluster formation.

3.1 Connectivity and Clustering

As mentioned earlier, in order to discover clusters from grid, cells connected to
the seed need to be identified. Definition 3 formalizes the intuitive notion of
connectedness of two cells.

Definition 3. Let C1(k1, . . . , kd) and C2(k′
1, . . . , k

′
d) be two cells with respective

dimensional intervals shown in brackets. C1 and C2 are connected iff ∀ i either
ki = k′

i or |ki − k′
i| = 1.

Clusters are generated iteratively using a greedy approach starting with the
seed. As soon as a cluster is found, the member cells of the discovered cluster are
removed from the pool, and search begins for another cluster with a new seed.
Thus in one iteration all clusters are found including the smallest one.

This strategy gives rise to exclusive clusters of arbitrary shapes and varied
sizes and is guaranteed not to miss a cluster if one exists. The worst case com-
plexity of the procedure is O(NumCellNumClust), where NumCell is the number
of cells in the pool and NumClust is the number of clusters discovered.

The flip side of the completeness property of this algorithm is that the number
of reported clusters may be very large. We propose an optional step in which,
all clusters which overlap on at least half of the dimensional space and their
corresponding seeds are adjacent, are merged.

3.2 Cluster Description

For each discovered cluster, signature of the seed, its boundary and density are
reported to the user. Seed signature along with the boundary of the cluster gives
an idea of the shape of the cluster. Analysis of the spread of each dimension in the
cluster gives an idea of the compactness along the dimension. Thus a dimension
along which all cells in the cluster have same interval, is the most compact
dimension (i.e. 100 % compact). To the best of our knowledge, this is the most
explicit reported description of a cluster by a stream clustering algorithm.

3.3 Noise Detection

The data points that do not belong to any of the discovered clusters as per the
specified quality criterion represent the noise in the data. The quality criterion
filters out non-significant regions and reports the same separately. Since the
noise is a subjective notion, the quality criterion may vary depending on the
application. For example, density of the cluster, % of dimensions with desired
compactness etc... could be used for noise detection.

4 Experimental Study

We implemented the algorithm in ANSI C with no optimizations, and compiled
using g++ compiler (3.3.2-2) and executed on Intel Centrino processor with 256

636 V. Bhatnagar and S. Kaur

MB RAM, running Linux (kernel 2.4.22-1). All the experiments reported here
are done on a simulated stream with uniform speed. The data sets used are:

i) Intrusion Detection data set (KDD cup 99) available at [10], consists of
494,021 records, each having 42 attributes (34 continuous and 8 categorical).
Each record corresponds to either normal class or an attack class. We performed
experiments with 23 classes using 34 continuous attributes.

ii) Forest Cover type data set available at [11] has 581,012 observations each
with 54 attributes out of which 10 quantitative attributes are used in the reported
experiment.

4.1 Performance of On-Line Component of ExCC

We performed experiments with both data sets to support Lemma 1. We simulate
a stream with aat ≈ 0 so as to get the accurate stream processing time. Figure
2 shows processing time of a point for Forest data set. The time remains nearly
constant for fixed k and marginally increases with increase in the number of
intervals (k). Figure 3 shows total processing time for KDD Cup data using
window of size 50K . The time shows a linear trend with little variation because
of changes in data distribution leading to creation of new cells.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 50 100 150 200 250 300 350

Pro
ces

sing
 tim

e pe
r po

int(
mil

lise
cs)

No. of points (in thousand)

k = 10
k = 20
k = 30

Fig. 2. Per point processing time (For-
est Data)

 2

 2.2

 2.4

 2.6

 2.8

 3

 50 100 150 200 250 300 350

Pro
ces

sing
 tim

e (m
illis

ecs
)

No. of points (in thousand)

k = 8
k = 14
k = 20

Fig. 3. Total processing time (Intrusion
Data)

4.2 Clustering Quality Evaluation

We investigated the effect of granularity of the grid on purity of the clustering
scheme using 150,000 records of intrusion data. Figure 4 shows cluster purity for
different values of k in a single window. Cluster purity increases initially with
increasing k, and then dips before stabilizing. We also compared the clustering
quality of ExCC algorithm with CluStream and HPStream using 34 continu-
ous dimensions of intrusion data. We recreate the experiment reported in [2] to
make the comparison fair and fix k = 14 in ExCC. Figure 5 shows that cluster
purity is better for ExCC than that for CluStream. Marginal lowering of cluster
purity of ExCC compared to HPStream is explained by the latter’s capability
to perform projection.

Exclusive and Complete Clustering of Streams 637

 90

 92

 94

 96

 98

 100

 4 6 8 10 12 14 16 18 20

Clu
ste

r P
uri

ty (
%)

Interval (k)

Cluster Purity

Fig. 4. Effect of granularity on cluster
purity (Intrusion data)

Fig. 5. Comparison of clustering qual-
ity for Intrusion data

4.3 Testing for Complete Clustering

We used Intrusion Data to demonstrate completeness of clustering. We picked
up two small classes LAND and WAREZMASTER containing 21 and 20 records
respectively. We placed records of class WAREZMASTER in the beginning of
file and records of LAND after 150000 records in same file to simulate two small
clusters (attacks). The data was streamed with aat ∈ U [0, 1] and clustering
was performed after 150,000 and 400,000 records. The completeness property
guarantees that attack WAREZMASTER occurring in the beginning of the first
window and attack LAND occurring in the beginning of the second window
(larger) are not missed.

In the first time window, the algorithm detected a 100% pure cluster of
WAREZMASTER class containing 15 records. The remaining 5 records got
merged with the cluster with NORMAL as a dominant class. In the second
window 100 % pure cluster for LAND class was detected containing 14 records.
The remaining seven records get merged with other clusters.

Table 1 shows the sample output of ExCC algorithm for the first window. We
have highlighted only the targeted cluster and two other prominent clusters. It is
interesting to see that the smurf cluster is a small and high density data region

Table 1. Cluster Description using 150000 records of KDD CUP ’99

Attack Cells Points Dimensions Cluster Purity
Class Compactness Description (%)

Smurf 17 30398 0-24,29-33 (100%) 0 ≤ d0 ≤ 4166.36 100
27 (85.71%) 0 ≤ d1 ≤ 4.95e + 7

25,26,28 (71.43%) 0 ≤ d2 ≤ 368248
15,16 (50%) 0 ≤ d3 ≤ 0.2143...

Neptune 229 41047 0-14,16-19,28-33 (100%) 0 ≤ d0 ≤ 4166.36 100
20,27 (92.86%) 22,25, 0 ≤ d1 ≤ 4.95e + 7

26 (71.43%) 23 (64.29%) 0 ≤ d2 ≤ 368248
18 (50%) 15,21 (42.86%) 0 ≤ d3 ≤ 0.2143...

Warez 1 15 0-33 (100%) 0 ≤ d0 ≤ 4166.36 100
Master 0 ≤ d1 ≤ 4.95e + 7

4.78e + 6 ≤ d2 ≤ 5.15e + 6...

638 V. Bhatnagar and S. Kaur

while neptune class is spread over much larger region. The output also indicates
the compactness of the dimensions.

Acknowledgment. We are thankful to Naveen Kumar and Manoj Aggarwal
for their help in understanding of KDD cup data and related experiments.

5 Conclusion

Completeness and exclusiveness of stream clustering algorithms is an important
characteristics. We developed a novel algorithm which is guaranteed not to miss
a cluster if one exists. The data points are mapped in data space and clustering
is obtained by growing dense regions. The algorithm provides a better approxi-
mation of clusters in streaming data by ensuring that each point lies in the most
appropriate cluster. The discovered clusters are reported to the user in terms
of boundary in the data space, facilitating semantic interpretation. Experiments
related to clustering purity, timings and completeness gave promising result.

References

1. Aggarwal, C.C., Han, J., Yu, P.S: A Framework for Clustering Evolving Data
Streams. In: VLDB conference, pp. 81–92 (2003)

2. Aggarwal, C.C., Han, J., Yu, P.S: Framework for Projected Clustering of High
Dimensional Data Streams. In: VLDB conference. Canada, pp. 852–863 (2004)

3. Barbára, D.: Requirements of Clustering Data Streams. SIGKDD 3, 23–27 (2002)
4. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-Based Clustering over an Evolving

Data Stream with Noise. In: SIAM, pp. 326–337 (2006)
5. Dong, G., Han, J., Lakshmanan, L.V.S., et al.: Online Mining of Changes from Data

Streams: Research Problems and Preliminary Results. ACM SIGMOD (2003)
6. Orlowska, M.E., Sun, X., Li, X.: Can Exclusive Clustering on Streaming Data be

Achieved? SIGKDD 8, 102–108 (2006)
7. Maimon, O., et al.: Data Mining and Knowledge Discovery Handbook. Springer,

Heidelberg (2004)
8. Lu, Y., Sun, Y., Xu, G., Liu, G.: A Grid-Based Clustering Algorithm for High-

dimensional Data Streams. ADMA. China (2005)
9. Agrawal, R., et al.: Automatic Subspace Clustering of High Dimensional data for

Data Mining application. In: ACM SIGMOD (1998)
10. KDD CUP 99 Intrusion Data:

http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html
11. University of California at Irvine: UCI Machine Learning Repository,

http://www.ics.uci.edu/∼mlearn/MLSummary

http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html
http://www.ics.uci.edu/~mlearn/MLSummary

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 639–649, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Clustering Quality Evaluation Based on Fuzzy FCA

Minyar Sassi1, Amel Grissa Touzi1, and Habib Ounelli2

1 Ecole Nationale d’Ingénieurs de Tunis
Bp. 37, Le Belvédère 1002 Tunis, Tunisia

{minyar.sassi,amel.touzi}@enit.rnu.tn
2 Faculté des Sciences de Tunis

Campus Universitaire -1060 Tunis, Tunisia
habib.ounelli@fst.rnu.tn

Abstract. Because clustering is an unsupervised procedure, clustering results
need be judged by external criteria called validity indices. These indices play an
important role in determining the number of clusters in a given dataset. A
general approach for determining this number is to select the optimal value of a
certain cluster validity index. Most existing indices give good results for data
sets with well separated clusters, but usually fail for complex data sets, for
example, data sets with overlapping clusters. In this paper, we propose a new
approach for clustering quality evaluation while combining fuzzy logic with
Formal Concept Analysis based on concept lattice. We define a formal quality
index including the separation degree and the overlapping rate.

Keywords: Clustering Quality, Overlapping Rate, Separation Degree, Validity
Index, Formal Concept Analyis, Fuzzy Concept Lattice.

1 Introduction

Fuzzy clustering allows objects of a data set to belong to several clusters
simultaneously, with different degrees of membership. The data set is thus partitioned
into a number of fuzzy partitions (clusters) [1].

Despite being a very effective technique, difficulties arise when evaluating the
quality of clusters.

So, evaluating the quality of the clustering results is an important issue in cluster
analysis. Because clustering is an unsupervised procedure, clustering results need be
judged by an external criterion.

For low dimensional data sets (1-, 2- or 3-dimensional), humans can also evaluate
the clustering results by visual observation. For high dimensional data sets (more then
3-dimentional), there is no objective criterion for evaluating the clustering results;
they are assessed using a cluster validity index.

Depending on the type of clustering approach (crisp or fuzzy), there are various
validity indices designed for evaluating the clustering results [2]. The general
principle of these indices consists on minimizing the compactness within a cluster and
maximizing the separation between clusters.

640 M. Sassi, A.G. Touzi, and H. Ounelli

These measures play an important role in determining the number of clusters. It is
expected that the optimal value of the cluster validity index should be obtained at the
true number of clusters. A general approach for determining the number of clusters is
to select the optimal value of a certain cluster validity index. Whether a cluster
validity index yields the true number of clusters is a criterion for the validity index.

Most existing indices give good results for data sets with well separated clusters,
but usually fail for complex data sets, for example, data sets with overlapping
clusters. One of the main reasons for this problem is that many fuzzy clustering
methods fail to distinguish between partially overlapped clusters [3].

Because they disregard lack of considering the theoretical characterization of the
overlapping phenomenon, they often yield questionable results for cases involving
overlapping clusters [4].

To cure this problem, we propose to use conceptual scaling theory [5] based on an
extension of Formal Concept Analysis (FCA) [6] which permits us to:

− Visualizing the clusters results will help us in interpreting and distinguishing
overlapping clusters, and hence,

− Evaluating the quality of clusters while calculating a separation degree and an
overlapping rate for a given clustering.

The rest of the paper is organized as follows. Section 2 discusses the backgrounds in
FCA based on concepts lattices and Conceptual scaling. Section 3 presents our quality
evaluation process. Section 4 concludes the paper and gives some future works.

2 Backgrounds

FCA provides a conceptual framework for structuring, analyzing and visualizing data,
in order to make them more understandable [6]. In FCA, application domains are
organized and structured according to concept lattices. In this section, we discuss
about concept lattices and conceptual scaling.

2.1 Concept Lattices

The reason for the introduction of FCA was to relate the mathematically oriented
theory of lattices and orders to practical problems [6,7].

In 1979, Wille [6] recognized that this description could be formalized by the
introduction of ‘formal concepts’ of a given data table, which consists of a set G of
object, a set M of attributes and a binary relation MGI ×⊆ . Then the triple

()IMGK ,,= is called a formal context, representing just a set of statements of the

form ‘object g has attribute m ’, written ‘ g I m ’.

The basic definition of a ‘formal concept’ of K is based on two well-known
operations: For any subset GX ⊆ we are interested in the set ↑X of all common
attributes of X , defined formally by { XgMmX ∈∀∈=↑: g I }m and dually for any

MY ⊆ we are interested in the set ↓Y of all common objects of Y , defined formally
by { YmGgY ∈∀∈=↓: g I }m . A formal concept of a formal context K is a pair ()BA,

where GA ⊆ , MB ⊆ and BA ↑= and AB ↓= . A is called the extent, B the intent of ()BA, .

 Clustering Quality Evaluation Based on Fuzzy FCA 641

The set of all formal concepts of K is denoted by ()KB . The conceptual hierarchy

among concepts is defined by set inclusion: For ()11, BA , () ()KBBA ∈22 , let

() () 212211 ,, AABABA ⊆⇔≤ (which is equivalent to
12 BB ⊆ .

An important role is played by the object concepts () { } { }()↑↑↓= ggg ,:γ for

Gg ∈ and dually the attribute concepts () { } { }()↓↑↓= mmm ,:μ for Mm∈ .

The pair ()()≤,KB is an ordered set, i.e., ≤ is reflexive, anti-symmetric, and

transitive on ()KB .

2.2 Conceptual Scaling

An arbitrary ternary relation on a set G of ‘objects’ is a special case of a ternary
relation among three sets of objects. In formal descriptions of measurements by data
tables the following three sets play a fundamental role: A set G of ‘objects’, a set
M of ‘measurements’ and a set W of values which are related by a ternary relation
whose elements ()wmg ,, are interpreted as ‘object g has at measurement m the value

w ’. That leads to the following definition of a many-valued context ()IWMG ,,, as a

quadruple of four sets, where the elements of G are called ‘objects’, the elements of

M ‘many-valued attributes’, the elements of W ‘values’, and I is a ternary relation,
WMGI ××⊆ , such that for any Gg ∈ , Mm ∈ there is at most one value w satisfying

() Iwmg ∈,, . Therefore, a many-valued attribute m can be understood as a (partial)

function, and we write () wgm = iff () Iwmg ∈,, . A many-valued attribute m is called

complete iff for any Gg ∈ there is (exactly one) Ww∈ such that () wgm = .

()IWMG ,,, is called complete if each Mm∈ is complete [7].

The central process in conceptual scaling theory is the construction of a formal context
()mmmm IMWS ,,= for each Mm ∈ such that (){ }GggmGW mm ∈=⊇ : . Such formal contexts,

called conceptual scales, represent a contextual language about the set of values of m .
Usually one chooses

mW as the set of all ‘possible’ values of m with respect to some

purpose. Each attribute mMn ∈ is called a scale attribute. The set { }nwIwn m↓= is the

extent of the attribute concept of n in the
mS scale. Hence, the choice of a scale induces a

selection of subsets of
mW . The set of all intersections of these subsets constitutes just the

closure system of all extents of the concept lattice of mS .

The granularity of the language about the possible values of m induces in a natural
way a granularity on the set G of objects of the given many-valued context, since
each object g is mapped via m onto its value ()gm and ()gm is mapped via the object

concept mapping
mγ of

mS onto ()() () ()()gmgmggm mm γγ →→: .

Hence the set of all object concepts of
mS plays the role of a frame within which

each object of G can be embedded. For two attributes m , Mm ∈' each object g is

mapped onto the corresponding pair: () ()() ()() ()()() () ()''
'' ,,

mmmm SBSBgmgmgmgmg ×∈→→ γγ .

642 M. Sassi, A.G. Touzi, and H. Ounelli

The standard scaling procedure, called plain scaling, constructs from a scaled
many-valued context () ()()MmSIWMG m ∈,,,, , consisting of a many-valued context

()IWMG ,,, and a scale family ()MmSm ∈ the derived context, denoted by

(){ }()JMnMmnmGK m ,,,,: ∈∈= , where ()nmgJ , iff () nIgm m

()mMnMmGg ∈∈∈ ,, .

The concept lattice ()KB can be (supremum-) embedded into the direct product of

the concept lattices of the scales [8]. That leads to a very useful visualization of
multidimensional data in so-called nested line diagrams [9]).

3 The Quality Evaluation Process

As we have mention in section 1, evaluating the quality of clusters is an important
issue in cluster analysis. It often based on a clustering validity index. The general
principle of these indices consists on minimizing the compactness within a cluster and
maximizing the separation between clusters. Most existing criteria give good results
for data sets with well separated clusters, but usually fail for complex data sets, for
example, data sets with overlapping clusters.

In this paper, we use conceptual representation of clustering results which permits
us to formally calculate the compactness and the separation degrees which permits us
to evaluate the quality of clusters. However, there are many situations in which
uncertainty information also occurs. For example, it is sometimes difficult to judge
whether an object belongs totally to an attribute or not. Traditional conceptual
representation is hardly able to represent such vague information. To tackle this
problem, we propose to combine fuzzy logic [10] with FCA as Fuzzy FCA (FFCA).
Once this structure is built, we calculate a certain similarity distance based on
membership degrees. This distance permits us to evaluate the compactness and the
separation of the clustering result.

Analyze Visualization Interpretation

Fuzzy
Clustering

Fuzzy
partitions Fuzzy

Conceptual
Scales

A Fuzzy
Clusters
Lattice Evaluation

Fig. 1. The Quality Evaluation Process

The principle of our quality evaluation process determines three steps. The first
step consists of analysing the fuzzy clusters for a given dataset based on fuzzy
conceptual scaling. The second step consists of visualizing the results based on fuzzy

 Clustering Quality Evaluation Based on Fuzzy FCA 643

Formal Concept Analysis. This allows deducing overlapping between clusters. The
third step consists of evaluating the quality of clustering results which includes the
separation between clusters and compactness within a cluster. Fig. 1 shows the
proposed approach.

3.1 Analyze

Fuzzy clustering methods allow objects to belong to several clusters simultaneously,
with different degrees of membership. A data, set X is thus partitioned into C
fuzzy partitions (clusters). In many applications training data relates individual
objects to attributes that take on several values. For the generation of fuzzy formal
context, we propose to relate objects with the clusters of each attribute that take on
several values. These values represent the membership degrees of each object in each
cluster. Fuzzy formal context incorporate fuzzy clustering, to represent vague
information.

Definition 1. A fuzzy conceptual scale for a set MY ⊆ is a (single-valued) fuzzy
formal context ()()YYYYYY MGIMGS ×== ϕ,,: with

mYmY WG ∈×⊆ .

The idea is to allow objects G to belong to several clusters simultaneously. We
replace the attribute values in mW with different degrees of membership. Each

relation () YImg ∈, has a membership value ()mg ,μ in []1,0 . The sum of the values

of each fuzzy conceptual scale is equal to 1.

Definition 2. Given a fuzzy conceptual scale ()()YYYYYY MGIMGS ×== ϕ,,: , we define

() ()() 1−=− ii SCSCutα where ()iSC is the number of clusters of scale
iS .

Example: Table. 1 present the results of fuzzy clustering applied to price and surface
scales. For price scale, fuzzy clustering generate three clusters (C1,C2 and C3) for
surface attribute, two clusters (C4,C5). Table 1 shows the fuzzy conceptual scales for
price and surface attributes with Cut−α . In this example, () 3.0=− priceCutα and

() 5.0=− surafceCutα .

Table 1. Fuzzy Conceptual Scales with Cut−α for price and surface attributes

 Price Surface
 C1 C2 C3 C4 C5

A1 - 0.5 0.4 0.5 0.5

A2 0.3 0.6 - - 0.6

A3 0.7 - - 0.7 -

A4 - 0.4 0.5 - 0.8

A5 - 0.4 0.4 0.6 -

A6 0.5 0.3 - 0.5 0.5

644 M. Sassi, A.G. Touzi, and H. Ounelli

3.2 Visualization

Traditional FCA is hardly able to represent fuzzy properties from uncertainly data. To
tackle this problem, we use a new technique that incorporates fuzzy logic into FCA as
Fuzzy Formal Concept Analysis (FFCA), in which uncertainty information is directly
represented by a real number of membership value in the range of [0,1]. So we give
some defined the so called Fuzzy Formal Context, the Fuzzy Formal Concept
Analysis and the similarity concept.

Definition 3. Given a fuzzy formal context ()IMGK ,,= and an Cut−α , we define

(){ }CutmggMm −≥Χ∈∀∈=Χ αμ ,:* for G⊆Χ and (){ }CutmgmGg −≥Υ∈∀∈=Υ αμ ,:* for

MY ⊆ . A fuzzy formal concept (or fuzzy concept) of a fuzzy formal context

()IMG ,, with an Cut−α is a pair ()()ΥΧ=Χ ,ϕf
 where ,G⊆Χ MY ⊆ ,

YX =* and Χ=Υ* . Each object ()Χ∈ϕg has a membership gμ defined

as ()mg
Ym

g ,min μμ
∈

= . Where ()mg,μ is the membership value between object g and

attribute m , which is defined in I . Note that if { }=Υ then 1=gμ for every g .

Generally, we can consider the attributes of a formal concept as the description of the
concept. Thus, the relationships between the object and the concept should be the
intersection of the relationships between the objects and the attributes of the concept.
Since each relationship between the object and an attribute is represented as a set of
membership values in fuzzy formal context, then the intersection of these membership
values should be the minimum of these membership values, according to fuzzy theory
[8].

Definition 4. Let ()11 , BA and ()22 , BA be two fuzzy concepts of a fuzzy formal

context ()()MGIMG ×==Κ ϕ,, .

()()11 , BAϕ is a the subconcept of ()()22 , BAϕ denoted as ()() ()()2211 ,, BABA ϕϕ ≤ if

and only if () ()21 AA ϕϕ ⊆ ()12 BB ⊆⇔ .

Equivalently, ()22 , BA is the superconcept of ()11 , BA .

Definition 5. A fuzzy concept lattice of a fuzzy formal context K with an Cut−α
is a set C of all fuzzy concepts of K with the partial order ≤ with the Cut−α value.

We noted as ()Cℑ .

Definition 6. The similarity of a fuzzy formal concept ()()111 , BAC ϕ= and its

subconcept ()()222 , BAC ϕ= is defined as:

() () ()
() ()21

21
21 AA

AA
CCS

ϕϕ
ϕϕ

∪
∩

= (1)

Exemple: The corresponding fuzzy concept lattices of fuzzy context presented in table
1 are given by the following fuzzy lattices. These are illustrated in fig. 2.

 Clustering Quality Evaluation Based on Fuzzy FCA 645

({ },{C1,C2,C3})

{A1(0.4),A4(0.5),A5(0.4)},{C2,C3})

({A2(0.3),A6(0.5)},{C1,C2})

({A1(0.0),A2(0.0),A3(0.0),A4(0.0),A5(0.0),A6(0.0)},{ })

({A1(0.5),A2(0.6),A4(0.4),A5(0.5),A6(0.5)},{C2})

0.00.0

0.0

0.53
0.36 0.52

0.0

{A2(0.3),A3(0.7),A6(0.5)},{
({A1(0.5),A3(0.7),A5(0.6),A6(0.5)},{C4})

({A1(0.5),A6(0.5)},{C4,C5})

({A1(0.5),A2(0.6),A4(0.8),A6(0.5)},{C5})

0.430.41

0.00.0

({A1(0.0),A2(0.0),A3(0.0),A4(0.0),A5(0.0),A6(0.0)},{ })

Fig. 2. The fuzzy concept lattices of the context in the Table 1

({A1(0.0),A2(0.0),A3(0.0),A4(0.0),A5(0.0),A6(0.0)},{ })

0.46
0.54

0.5
2

0.6
9

A1(0.5),A4(0.8)

A6(0.5)

A1(0.5),A2(0.6),A4(0.8),A6(0.5) ,A3(0.7),A6(0.5)

A1(0.5),A5(0.6)

A1(0.5),A5(0.6),A6(0.5)

C5 C4({ },{C1,C2,C3})

0.0 0.0

({A1(0.5),A2(0.6),A4(0.4),A5(0.5),A6(0.5)},{C2}
)

0
0.52{A2(0.3),A3(0.7),A6(0.5)},{C1})

A1(0.5),A6(0.5)

A1(0.5)

A1(0.5),A2(0.6),A4(0.8),A6(0.5)
A1(0.5),A3(0.7),A5(0.6),A6(0.5)

0.69

0.5
0.5

{A1(0.4),A4(0.5),A5(0.4)},{C2,C3})

Fig. 3. A Fuzzy Nested Lattice

This very simple sorting procedure gives us for each many-valued attribute the
distribution of the objects in the line diagram of the chosen fuzzy scale. Usually, we
are interested in the interaction between two or more fuzzy many-valued attributes.
This interaction can be visualized using the so-called fuzzy nested line diagrams. It is
used for visualizing larger fuzzy concept lattices, and combining fuzzy conceptual
scales on-line. Fig. 3 shows the fuzzy nested lattice constructed from Fig.2.

646 M. Sassi, A.G. Touzi, and H. Ounelli

In this fuzzy nested line diagram, we are interested to see for each concepts of
diagram represented in Fig.2 how its students are distributed in the fuzzy scale
surface. We blow up each circle of fuzzy line diagram of Fig. 2 and insert the fuzzy
line diagram of the surface fuzzy scale. Hence, Fig. 3 represents all pairs ()dc, of

concepts c from the first and concepts d from the second fuzzy lattice. This
structure is called the direct product of the two given fuzzy lattices.

From the fuzzy nested lattice, we can draw a nice usual fuzzy lattice of the same
fuzzy context. This illustrated in Fig. 4.

({A1(0.0),A2(0.0),A3(0.0),A4(0.0),A5(0.0),A6(0.0)},{ })

({A1(0.5),A2(0.6),A4(0.8),A6(0.5)},{C5})

({A1(0.5),A2(0.6),A4(0.4),A6(0.5)} ,{C2,C5})

({A3(0.7),A6(0.5)} ,{C1,C4})

({A1(0.5),A5(0.5),A6(0.5), {C2,C4})

({A1(0.4),A4(0.4)}

({A1(0.4)} ,{C2,C3,C4,C5})({A6(0.5)} ,{C1,C2,C4,C5})

({ },{C1,C2,C3,C4,C5)})

({A1(0.5),A2(0.6),A4(0.4),A5(0.5),A6(0.5)},{C2})

{A1(0.4),A4(0.5),A5(0.4)},{C2,C3})

({A1(0.4),A5(0.4)}

({A1(0.5),A6(0.5)} ,{C2,C4,C5})

0.00 0.00 0.00 0.00

0.5

0.62

0.00 0.00

0.5

0.6

0.68

0.5

0.4

0.61

0.6

0.41

0.4

0.86

0.52

0.42

0.5

1.00 1.00
0.6

0.52

0.5

{A2(0.3),A3(0.7),A6(0.5)},{C1})
({A1(0.5),A3(0.7),A5(0.6),A6(0.5)},{C4}

({A2(0.3),A6(0.5)} ,{C1,C2,C5})

Fig. 4. A Fuzzy Clusters Lattice: FCL

3.3 Quality Evaluation

In general, the evaluation is based on a clustering validity index. The general principle
of these indices consists on minimizing the compactness within a cluster and
maximizing the separation between clusters.

Because they disregard lack of considering the theoretical characterization of the
overlapping phenomenon, they often yield questionable results for cases involving
overlapping clusters.

To cure this problem, we propose a new process of quality clustering evaluation.
We give firstly an interpretation of the generated clusters and then study the quality. It
consists of selection of characteristics in a given data set.

From fig. 4, we can deduce the possible overlapping between the various clusters.
Let { } M

j RCjvV ⊂== ,...,1: a set of C clusters generated from the

dataset { } M
i RNixX ⊂== ,...,1:

 Clustering Quality Evaluation Based on Fuzzy FCA 647

We define a distance function D as follows:
+→ RVD :

 () dvv kj →,

d is the weight of the arc connecting jv with kv in FCL. We note kj vv ℜ if ∃

() dvvDd kj =,/

The following properties are required:

 -If
jv ℜ

kv and
kv ℜ

iv then
jv ℜ

iv .

 -If
jv ℜ

kv then
jv and

kv overlapped.

We study the overlapping phenomenon in the case of deducing the overlapping
rate.

These properties enabled us to deduce the overlapping between different clusters.
They will be used in the quality evaluation process. So, we define the separation
degree and the overlapping rate. These measures form the quality index which will
judge if two clusters must be merged or not.

Let { } M
j RCjvV ⊂== ,...,1: a set of C clusters generated from the

dataset { } M
i RNixX ⊂== ,...,1: , kj vv ℜ and ik vv ℜ having respectively

() jkkj dvvD =, and () kiik dvvD =, as similarity between concepts ()kj CCS , and

()jk CCS , . We can deduce that () ()ikkijkjiij CCSdddvvD ,, =+== .

The separation Sep is given by equation 1:

()∑
≠=

=
C

jkj
kj CCSSep

,1

, (2)

In general, when Sep is large, the thj and thk clusters are well separated.

For example, { }() 86.0,, 411 =vvvD and { }() 52.0,, 441 =vvvD

imply () 38.152.086.0, 41 =+=vvD .

We can calculate the overlapping rate, noted Overl , as the ratio between the
number of extensions of sub-concepts, noted)(ConceptsSubExtension − , and the

number of extensions of super-concepts, noted)(ConceptsSuperExtension − . This

rate is given by equation 2.

∑
∑

−
−

=
)(

)(

ConceptsSuperExtension

ConceptsSubExtension
Overl

(3)

In general, a definition for the overlap rate implements the following principle: 1)
the overlap tends to decrease ()0→ as the two components become more separated, 2)

the overlap rate increases ()1→ as the two components become more strongly

overlapped.

648 M. Sassi, A.G. Touzi, and H. Ounelli

Once these requirements are met, we can evaluate the quality of clusters while
basing on separation degree and the overlapping rate. We noted QualityInd _ as the

quality index for a given clustering.

Sep

Overl
Overl = (4)

The clusters to be merged into one cluster are those which must maximizing the
overlapping rate and minimizing the separation degree. So, a large value of

QualityInd _ imply that the clusters must be merged into one.

4 Conclusion

Validity indices measure the goodness of the clustering result. A clustering is
considered good if it optimizes two conflicting criteria. One of these is related to
within-class scattering (the compactness), which needs to be minimized; the other to
between-class scattering (the separation), which needs to be maximized. Most
existing indices give good results for data sets with well separated clusters, but
usually fail for complex data sets, for example, data sets with overlapping clusters.

This motivated our search for a new quality evaluation process based on Fuzzy
FCA (FFCA). It consists of three steps. The first step consists of analyse the
clustering results. To do this, we have proposed the fuzzy conceptual scaling notion.
The second step consists of visualization. The FFCA has been proposed. It bases itself
on a Fuzzy Clusters Lattice (FCL) which includes the similarity distances between
different concepts in the FCL. The third step consists of evaluation the quality of
generated clusters. We have defined a formal separation degree and an overlapping
rate. We have defined a quality index while basing on the separation degree and the
overlapping rate. The large value if this index means that the clusters must be merged
into one cluster.

Future work will focus on the applicability of our quality evaluation process formal
to test clustering algorithms in a more controlled way.

References

1. Menard, M., Eboueya, M.: Extreme physical information and objective function in fuzzy
clustering. Fuzzy Sets and Systems 128, 285–303 (2002)

2. Bezdek, J.C.: Pattern Recognition in Handbook of Fuzzy Computation, ch. F6. IOP
Publishing Ltd, Bristol (1998)

3. Sun, H.: A theory on distinguishing overlapping components in mixture models, Research
Report, DMI, University of Sherbrooke, No 345 (Novenber 2003)

4. Sassi, M., Grissa Touzi, A., Ounelli, H.: Two Levels of Extensions of Validity Function
Based Fuzzy Clustering. In: The 4th International Multiconference on Computer Science
& Information Technology (CSIT 2006), Amman-Jordan (April 5-7, 2006)

5. Priss, U.: Formal Concept Analysis in Information Science, Annual Review of Information
Science and Technology (ARIST), Preview, vol. 40 (2006)

 Clustering Quality Evaluation Based on Fuzzy FCA 649

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer,
Heidelberg (1999)

7. Valtxhev, P., Missaoui, P., Godin, R.: Formal Concept analysis for Knowledge Discovery
and Data Mining: The New Challenges. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS
(LNAI), vol. 2961, Springer, Heidelberg (2004)

8. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer,
Heidelberg (1999)

9. Vogt, F., Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data. In:
Tamassia, R., Tollis, I.G. (eds.) Graph Drawing, pp. 193–205. Springer, Heidelberg (1994)

10. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

Comparing Clustering Algorithms and Their Influence
on the Evolution of Labeled Clusters

Rene Schult

Otto-von-Guericke-University Magdeburg
Institute of Technical and Business Information Systems

Abstract. We study the influence of different clustering algorithms on cluster
evolution monitoring in data streams. The capturing and interpretation of clus-
ter change delivers indicators on the evolution of the underlying population. For
text stream monitoring, the clusters can be summarized into topics, so that cluster
monitoring provides insights on the data and decline of thematic subjects over
time. However, such insights should always be taken with a grain of salt: The
quality of the clusters has a decisive impact on the observed changes. In the sim-
plest case, cluster change across the stream may be due to the low quality of the
original cluster than to a drift in the population belonging to this cluster. We show
our framework ThemeFinder for topic evolution monitoring in streams and com-
pare the influence to the quality of two very different cluster algorithms. After an
evaluation of different cluster algorithms with external and internal quality mea-
sures, we use the center based bisecting k-means algorithm and the density-based
DBScan algorithm. Our results show that the influence is relatively high and show
that different clustering algorithms results allow to draw conclusion to the evalu-
ation of the other cluster algorithm. Our experiments were done on a subarchive
of the ACM library.

1 Introduction

Stream clustering considers two different perspectives: On the one hand, one is focused
on grouping multiple independent streams of signals (e.g. signals from multiple sen-
sors) into clusters and adapting or monitoring these clusters while the senders continue
delivering signals. On the other hand, data of complex structures or texts can arrive as
a single stream, the contents of which are grouped into clusters according to similar-
ity; cluster monitoring is then devoted to identify changes in these clusters, as the data
flow continues. In this paper, we take the second approach on stream clustering and
cluster monitoring into account and study the impact of different clustering algorithms
on cluster evolution. For monitoring clusters evolution we focus on monitor labels of
clusters.

As a case study, we consider the ACM archive1, which uses the ACM taxonomy
for keyword assignment, categorization and browsing as well. A stream of documents
is added to the archive and is ranged to the existing taxonomy. This taxonomy could
be considered as the labels/topic of the clusters of the documents under this taxonomy

1 http://portal.acm.org/ccs.cfm

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 650–659, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Comparing Clustering Algorithms and Their Influence 651

point. The ACM taxonomy has been expanded with subjects like “data mining” and
“image databases” under the existing subject “database applications” to assign the doc-
ument to the appropriate taxonomy. All existing documents in “database applications”
are not automaticially assigned to the new created subcategories like “data mining”
or “image databases”. If a knowledge seeker is interested on early advances on data
mining, he or she has to go through the whole subarchive on database applications.
Although keyword-based search is available, the appropriate keywords for search on
data mining in the early nineties are likely to be different from those of today. A ret-
rospective re-categorization of the documents or at least the discovery of the keywords
characterizing them is needed.

We propose the monitoring of cluster evolution by focusing on monitor cluster la-
bels. We are aiming to find persistent labels of clusters or at least some changes at the
labels in order to find the real cluster evolution. We have set up our experiments under
the assumption that the terminology of the document archive changes over long time.
Thus, we should be able to detect cluster changes over time. In our case study of the
ACM archive, we have looked for evidence on the emergence of themes like “data min-
ing” and for words that correspond to this theme like subtopics of this from the time
it emerged till today. To detect temporal trends, we have also used a non accumulated
archive in [11]. Here our goal is to find out the influence of the used cluster algorithm to
the quality of detected long term trends. We have discovered evolution of the detecting
trends, but we have tried to minimize the changes of the used feature space.

We have applied text clustering in an evolving feature space. It must be stressed
that a classification is not appropriate for this problem: Classification (even adaptive
classification) requires a labeled dataset. Here, the challenge lays more in identifying
documents that adhere to a yet unknown subject, with these documents having been
assigned to some more generic class label. Moreover, themes consists of words in a
feature space that must be adapted as the language of the documents’ authors evolves. In
[11] and in [10] we present an algorithm, the ThemeFinder , to detect such “themes” at
cummulated and non-cummulated datasets and show it with experiments on clustering
the data with a bisecting k-means algorithm. Now we will show the influence of the
used clustering algorithm to the functionality and the quality of the ThemeFinder and
to the quality of the detected cluster evolutions.

In the next section, we have discussed relevant research. In section 3, we first have
short present the ThemeFinder and the used clustering algorithms. Section 4 we have
shown our new experiments with the ACM archive. The last section concludes our
work.

2 Related Work

The subjects of Topic Detection and Topic Tracking are defined in [1], where the five
tasks of TDT are enlisted. As stated in that book, TDT concentrates on the detection
and tracking of stories (a “topic” is a story) and encompasses the tasks of (1) story
segmentation, (2) first story detection, (3) cluster detection, (4) tracking and (5) story
link detection. However in this paper we address the influence of different clustering
algorithms on the quality of label monitoring that is not the focus of TDT works.

652 R. Schult

Moringa et al. [8] and Wang and McCallum [12] present different methods for detect-
ing topics over time, but in [8] only persistent topics over the whole time are detected
and in [12] they have the assumption that topics never change over time, which differ
from our point of view.

In [5] the authors compare hierarchical algorithms with K-means and bisecting K-
means. First the authors compare different hierarchical algorithms to select the algo-
rithm which produces the best quality. After that, they compare the selected hierarchical
(UPGMA) with both K-means algorithms. The result of this comparison is the follow-
ing: the bisecting K-means shows the same or better quality as other algorithms. One
reason for this result could be the nature of text documents. The authors used the en-
tropy and the ”Overall Similarity” to measure the quality of the clustering algorithm.
The comparison was made with a different number of clusters. We use these results
as input for our evaluation of different cluster algorithms. We exclude the incremental
versions of the k-means algorithm, developed by Lin et al in [6] or from Pham et al in
[9], and the online spherical k-means algorithm presented by Zhong in [13] from the
evaluations point because we will not mix incremental and not incremental algorithms.

We decided also to use the DBScan algorithm from Ester [7] because it is a funda-
mental different cluster algorithm to k-means. So we have two very different algorithms
for evaluating the impact of clusterer on the monitoring process.

3 ThemeFinder on an Accummulated Document Collection

In this section we shortly summarise our model of the ThemeFinder in order to provide
a better understanding of our algorithm and for understanding the experiments and the
results. For a more detailed presentation we refer to [10].

The ThemeFinder takes a text collection as input, which consist of documents over
several time periods ti. A document is described as a vector of words derived from a
feature space. We do not observe documents in their entirety, but concentrate on title,
keywords and a limited number of sentences (e.g. from the document’s abstract), as-
suming that these fragments are particularly designed to disseminate the content to the
reader in a compact way2.

In each period ti, the document set Di contains the documents of the period ti−1 and
the documents which have been inserted in the archive during the period ti. The feature
space is the set of the n “dominant” words, which we define as the words with the
highest TF×IDF values. For each time period ti we define the “period-specific feature
space” as the set of n dominant words of the document set of the period. For some
documents a small value of n could produce null-vectors.

The notions of label and thematic cluster reflect the insights of [4] on concept index-
ing and of [2] on latent semantic indexing: Both studies agree, that the importance of
a component can be derived from the weight it receives in the analysis. We define the
label for the clusters consisting of all words of the actual feature space. In it the fraction
of documents in the cluster containing the word, divided by the number of documents
in the cluster have to exceed a threshold. It means that the dominant words in the cluster

2 PageRank of Google also checks only a small part of the document, including header, preample
etc.

Comparing Clustering Algorithms and Their Influence 653

become the label, in case the support of the word passes over a threshold. All clusters,
whose label is not empty, are called thematic clusters.

In order to deal with clustering quality assessment, ThemeFinder will define a clus-
tering as being good, if the number of thematic clusters in it is no less than a threshold.
Hence we call it a good clustering. The feature space used for the clustering is good
enough and doesn’t have be updated if it results in a good clustering. It is implicitly
assumed that the period-specific feature space always delivers a good clustering of the
document set, since it reflects exactly the dominant features of the documents. Only in
case the feature space for the actual period is not sufficient it will be changed to the
periodic specific feature space.

Based on these clarified fundamentals we are now briefly explaining the procedure
of ThemeFinder. Starting with the establishment of a clustering at period t1 for the
document set D1 using the period-specific feature space, the first set of labels is derived
over ζ(D1, FS1). For each subsequent period ti, i ≥ 2, the algorithm first builds the
clustering ζi over Di using the feature space of the previous period(s) (originally FS1).
ThemeFinder initially verifies, if the used feature space is a good feature space for this
period. If not, the feature space is replaced by the current period-specific feature space
and the actual period is re-clustered. In case a good clustering is achieved, ThemeFinder
compares this to the clustering of the previous period and identifies pairs of similar
clusters. The function best match(·) returns for each cluster in period ti−1 the cluster
of period i with the most similar label, or the empty set if no such cluster exists.

4 Experimenting with the ACM Archive

The Dataset. As a case study we used the ACM archive and particularly the subsections
of H2.8, named “database applications”, which we downloaded from the ACM library.
We considered the documents accumulated until December 2004. We will use the term
“ACM subarchive”for this collection hereafter.

The ACM taxonomy below H2.8 has been gradually expanded with 5 specific topics.
Once made available to the authors, they have been used as keywords. The topic “image
databases” appears already in the first period of observations (≤ 1994), the topic “data
mining” first appears in 1995, “spatial databases and GIS” in 1996, while “scientific
databases” and “statistical databases” are used since 1997. The parent topic “database
applications” is further not used, giving a total of 5 “ACM topics”. So we decide to use
only documents from 1996 till 2004. The distribution of documents is shown in Table 1.

Table 1. Number of documents in the ACM subarchive “database applications”

Period 1996 1997 1998 1999 2000 2001 2002 2003 2004
numbers 89 150 369 675 1155 1634 2338 3371 4434

For our case study, we considered the title and keywords of each document, remov-
ing the ACM topic to which the document was assigned. We did not consider abstracts,
because many documents did not have an abstract and those having one could otherwise

654 R. Schult

bias the feature space contents. The document excerpts were vectorised as described be-
fore. For the first partition, its period-specific feature space was used. For subsequent
partitions, the selection of the feature space was governed by the heuristics of The-
meFinder, as we will see in the follow up. As preprocessing tasks we used basic NLP
preprocessing and stopword removal and vectorisation with TFxIDF weighting.

The goal of our case study is to show the influence of the clustering algorithm for
the functionality of ThemeFinder. First we start with the bisecting k-means algorithm,
as a result from [5] and try to find out the best cluster number. We produced clusterings
with k = {2...10} over the whole dataset and calculate different quality indexes. We
used the Normalized Mutual Information (NMI), the purity index and the rand index.
The NMI measure has the best value at k = 5, the purity and the Rand index have at
different k the same, best value, but both include k = 5, see table 2. So we decide to
use k = 5 for the experiments.

Table 2. External quality measures at different k

2 3 4 5 6 7 8 9 10
NMI measure 0,09 0,17 0,16 0,19 0,15 0,17 0,16 0,18 0,17
purity index 0,58 0,62 0,63 0,66 0,64 0,65 0,64 0,66 0,66
rand index 0,46 0,56 0,61 0,62 0,61 0,62 0,62 0,62 0,62

Secondly we want to check if a change of the clustering algorithm leads to an in-
creasing of the quality of the clustering. For good measure the quality of the clus-
tering we used the same indexes as before. We clustered the dataset with the normal
k-means, a spherical k-means and a fuzzy c-means algorithm as partitional algorithms.
We used the Non-negative Matrix Factorization (NMF) technique that at first minimises
the Kullback-Leibler divergence and second minimises squared Euclidean distance. We
also tried a kernel k-means clustering algorithm. As result of all the measures, it can be
said that the best clustering is produced by the bisecting k-means algorithm, see table 3.

Table 3. External quality measures at different algorithms (k=5)

bisecting KM KM spherical KM fuzzy CM NMF(K-L) NMF(en) kernel KM
NMI measure 0,19 0,14 0,15 0,05 0,04 0,11 0,15
purity index 0,66 0,62 0,64 0,58 0,58 0,61 0,63
rand index 0,62 0,59 0,59 0,41 0,57 0,57 0,59

In contrast to the nature of the bisecting k-means algorithm, we decide to used the
density-based DBScan algorithm from [3].

Number of themes. The number of themes that our algorithm can find, depends on
the number of thematic clusters it finds in each period of observation. Hence, we have
varied the value of k for bisecting k-means. Since bisecting k-means generates one
bucket-cluster, in which all otherwise dissimilar vectors are put together, a clustering

Comparing Clustering Algorithms and Their Influence 655

can contain at most k − 1 thematic clusters. Based on the relatively high value of the
threshold for labels (0, 60), we have set the threshold for cluster matching from different
periods so that a clustering over a given feature space is sufficient if three clusters
are thematic clusters. As explained before, in case a clustering contains less thematic
clusters, the feature space is replaced by the period-specific feature space.

4.1 Using ThemeFinder at the Clustering Results

The new ACM topics in the subarchive indicate that the ACM taxonomy designers have
responded to emerging research threads. These threads are associated with a drift in the
frequent terms in the documents: new research areas use new terms. A simple way of
detecting such a drift is by clustering the documents and check whether the thematic
clusters degenerate. So we first have checked whether the anticipated themes could be
found without using ThemeFinder.

A high number of feature space changes is not desirable, because it is apt to features
of short-term popularity and prohibits a long-term observation of the clusters.

Bisecting K-Means Clustering Results. For the bisecting k-means clustering we used
the time periods from “1996” to “2004”. So the first time period was “1996” and the
feature space of this period was used for the first clustering. In case three clusters should
be minimum thematic clusters, a change of the feature space is only needed for 2 pe-
riods. The same holds true for the threshold of only 2 thematic clusters, which is less
restrictive. Although the value of threshold for thematic clusters is too small (4 the-
matic clusters) for generalisation, this experiment indicates that the selected value of
2 thematic clusters for matching is appropriate for those experiments. We found that
no label persists across all periods. However, there are several quite interesting themes:
the label {datum,mine} qualifies as theme because it is present at 4 periods, while the
label {retrieval,image,base} persists in 4 non-consecutive periods. If we allow that a
label may change by at most one word, then {retrieval,image}with the additional word
“base” becomes a very stable theme, appearing for the last 5 time periods. This theme
obviously refers to “image retrieval”, a subcategory of image databases that emerges in
1997, disappears for a short time and then becomes stable from 2000 on.

The emergence and evolution of labels associated to data mining is also very inter-
esting. The first cluster of period 1996 contains the words “discovery”, “knowledge”
and “datum” (data) in all documents, the word “pattern” is also very frequent. With
the period-specific feature space of 1997, the cluster on data mining becomes separated
under the label {datum,discovery}. The words “knowledge” and “discovery” persist in
the next three periods. The label {datum,discovery,knowledge} is present at 3 periods,
the “knowledge discovery [from] data”. Starting from 1998, the label {datum,mining}
becomes present; the two sibling labels {datum,mine} and {datum,mining} finally ab-
sorb the older label {datum,discovery,knowledge} and the new theme for “data mining”
becomes a very stable label.

An explaination of the sibling labels {datum,mine} and {datum,mining} is necessary
here. They are an artefact of the linguistic preprocessor, which (correctly) distinguishes
between “mining” and “mine”. Since the documents of the ACM subarchive are quite
unlikely to refer to explosives, though, we can assume that all appearances of “mine”

656 R. Schult

refer to data mining. We intend to remove the artefact in future implementations. For the
time being, however, the artefact causes either distinct clusters (as in 2001) or cannibal-
isation – none of the two words is adequately frequent to appear in a label. We suspect
that this is the cause of the uninformative label “datum” that appears in the last three
periods. This is further indicated by the juxtaposition of the cluster labeled “datum” to
the ACM categories: 64% of its members refer to data mining.

DBScan Clustering Results. First we describe our experiments to find out good values
for the input parameters for the DBScan, the eps and the minPts value.

Experiments with different eps and minPts values: For clustering the data with the
DBScan algorithm we made experiments with the dataset from period “1996” and tried
to change the values for eps and minPts, which gave the size of the eps-region and
the minimum number of other points in this region, in order to build a new cluster. We
tried short values for both and short values for one of them and for the other a bigger
value. On this experiments every time we get only one small cluster and a big number
of noise documents. One reason could be the relative small number of documents at
period “1996”. Thats why we made similar experiments with the period “2000” to find
out good values at this period and if the problem with the good clustering is caused by
the number of documents. In figure 1(a) we show the results of the cluster numbers at
different eps and different minPts where we used the feature space of period 1996 to
make a better comparision with the bisecting k-means clustering. The clustering results
looks very similar every time. We get a relative big number of noise point, which are
not in any cluster and get different numbers of very small clusters.

Experiments from period “2000”: For the experiments with DBScan we decided to
start at period “2000”. But if we set the period “2000” as start period we had to use
the feature space of the period “2000” too as start feature space and so we make short
experiments with this feature space and dataset to check the decision and find out a
good start value for eps and minPts. The results are shown in figure 1(b). From this
diagram it shows clearly that we used eps = 0.5 and minPts = 10 for the following
clustering experiments, so the smallest clusters have minimum 11 members.

We limited the feature space size to the most 100 used words for this experiments. At
the cluster results we see that we have many “noise” data points, which are not a mem-
ber of a cluster. But with increased size of the data set the relative size of the “noise”
data points decrease. We concentrate only on the clusters founded by the algorithm, and
on the labels of the clusters. We recognised that we could not produce a label for only
one founded cluster. After a detailed view to this cluster we see the reason. This cluster
members are all documents which are represented by a null-vector by the used feature
space. So it was acceptable that this cluster had no label.

The following table 4 shows the number of clusters of each period and the number
of refound clusters of the previous period via ThemeFinder.

It can clearly be seen that we have no matched clusters at period “2000” with a pre-
vious period because “2000” is the start period. We found all clusters of the previous
period again in the next period with the exception at period “2004” where we did not
found again only one of the 27 clusters of period “2003”. Another effect of found again
nearly all clusters at the next period is that the labeled clusters at one period are per-
sistent over future periods, for example the 3 labels of period 2000 are also present on

Comparing Clustering Algorithms and Their Influence 657

(a) FS = 1996 (b) FS = 2000

Fig. 1. Cluster numbers at different eps and minPts

Table 4. Results of matched clusters with the DBScan

period 2000 2001 2002 2003 2004
no.of clusters 3 6 12 27 41
matched clusters 3 6 12 26

period 2004. It could be mentioned that every new period new clusters showed up be-
cause at earlier periods there were not enough documents about the topic of the new
clusters. So the relative size of the noise decrease.

Comparison of the ThemeFinder for different clustering algorithms. Both algo-
rithm found labels with our method for label creation and label monitoring with the
ThemeFinder. A comparision of the labels is not easy because the number of labels
at the bisecting k-means clustering results is static and with the DBScan variable. We
have 4 labels at a maximum at the bisecting k-means results and found 2 of the labels
at the periods “2000” and “2001” again at the labels at the clustering results from the
DBScan algorithm. For the periods from “2002” and later we found 3 labels actually at
both label sets.

As second both cluster algorithm produce the dominant clusters from the dominant
group. The number of documents from the “data mining” subgroup becomes more and
more dominant with time. If we evaluate the cluster labels to the subgroups by calcu-
late the percentage of documents in the cluster from which subgroup they originate, we
found 2 labeled clusters from the “data mining” subgroup with the bisecting k-means.
With the DBScan algorithm all clusters at period “2000” and “2001” are from the sub-
group “data mining” and in the following periods the percentage of labeled clusters
from this group is very high.

In figure 2 we show the number of clusters where the most documents (> 51%) come
from one subgroup. The shortcuts at the lines stands for the names of the subgroups,
data mining (dm), spatial databases (sp), image databases (im), statistical databases (st)
and scientific databases (sc). The difference between the number of clusters at each
period from this figure and table 4 arises because we have some clusters which have a

658 R. Schult

Fig. 2. Clusters with dominant source subgroup

mixed composition from the several subgroups and here we list only the clusters where
the majority come from one group.

We also see too that changes are be found at the labels by monitoring the labels with
the ThemeFinder. But the difference between both clustering algorithms is the kind of
changes which we found. At the clustering with the bisecting k-means the label of a
cluster changes during the time. In contrast to this, with the DBScan, the labels of a
cluster are very stable but the number of clusters increase and so from one to an other
period new labels will be created and show new topics.

We present ahead the results of the ThemeFinder ones with the bisecting k-means and
ones with the DBScan clustering algorithm. As a main result, we see that ThemeFinder
is useful at both algorithms to detect and monitor the topics of the clustering. The big
size of noise data as one result of the DBScan shows us, that the data used is very noisy
and so it could be one reason for rather negative clustering results with the bisecting
k-means. This is already known as one disadvantage of this algorithm.

Another result is, that we can see the change of topics in the data, when monitoring
the labels at both algorithm results. The difference is, at the bisecting k-means we see
it on the change at the labels itself and at the DBScan we see it on the labels of the new
created clusters from one to next period.

We have also seen, that the number of adjusting the feature space is very small. At
bisecting k-means it was for 9 periods only two times and for the 5 periods with the
DBScan zero times.

5 Conclusions and Outlook

We have seen that our ThemeFinder is able to monitoring label/topic evolutions at both
cluster result sets, one from a bisecting k-means algorithm and one from the DBScan
algorithm and so can monitor cluster evolutions. This underlines our design point of
the ThemeFinder to be cluster algorithm independent and work only on the results of
the clustering and has an influence only to the used feature space. We also see the
influence of the clustering algorithms to the results of label monitoring and to monitor
this labels with ThemeFinder. As a next step we will try experiments with different label
mechanism, to see the influence of the label mechanisms to the monitoring results with
ThemeFinder.

Comparing Clustering Algorithms and Their Influence 659

References

1. Allan, J.: Introduction to Topic Detection and Tracking. Kluwer Academic Publishers, Dor-
drecht (2002)

2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by La-
tent Semantic Analysis. Journal of the American Society of Information Science 44(6), 391–
407 (1990)

3. Ester, M., Sander, J.: Knowledge Discovery in Databases. Techniken und Anwendungen.
Springer, Heidelberg (2000)

4. Karypis, G., Han, E.-H.(S): Fast Supervised Dimensionality Reduction Algorithm with
Apllications to Document Categorization & Retrieval. In: Proceedings of CIKM-00, pp. 12–
19. ACM Press, New York (2000)

5. Karypis, G., Steinbach, M., Kumar, V.: A comparison of document clustering techniques. In:
TextMining Workshop at KDD2000 (May 2000)

6. Lin, J., Vlachos, M., Keogh, E., Gunopulos, D.: Iterative Incremental Clustering of Time
Series. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis,
M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, Springer, Heidelberg (2004)

7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In: Proc. 2nd int. Conf. on Knowledge Discovery
and Data Mining (KDD 96), Portland, Oregon, AAAI Press, Stanford (1996)

8. Moringa, S., Yamanishi, K.: Tracking Dynamics of Topic Trends Using a Finite Mixture
Model. In: Kohavi, R., Gehrke, J., DuMouchel, W., Ghosh, J. (eds.) Proceedings of the 2004
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 811–
816. ACM Press, New York (2004)

9. Pham, D.T., Dimov, S.S., Nguyen, C.D.: An Incremental K-means algorithm. In: Proceed-
ings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, vol. 218, pp. 783–795 (2004)

10. Schult, R., Spiliopoulou, M.: Discovering emerging topics in unlabelled text collections. In:
Manolopoulos, Y., Pokorný, J., Sellis, T. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 353–366.
Springer, Heidelberg (2006)

11. Schult, R., Spiliopoulou, M.: Expanding the Taxonomies of Bibliographic Archives with Per-
sistent Long-Term Themes. In: Procedings of the 21th Annual ACM Symposium on Applied
Computing (SAC’06), ACM Press, New York (2006)

12. Wang, X., McCallum, A.: Topics over time: a non-markov continuous-time model of topical
trends. In: Procedings of KDD06, Philadelphia, Pennsylvania, ACM Press, New York (2006)

13. Zhong, S.: Efficient streaming text clustering. Neural Networks 18(5-6), 790–798 (2005)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 660–670, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Journey to the Centre of the Star:
Various Ways of Finding Star Centers in Star Clustering

Derry Tanti Wijaya and Stéphane Bressan*

School of Computing, National University of Singapore, 3 Science Drive 2, Singapore
derrytan@comp.nus.edu.sg, steph@nus.edu.sg

Abstract. The Star algorithm is an effective and efficient algorithm for graph
clustering. We propose a series of novel, yet simple, metrics for the selection of
Star centers in the Star algorithm and its variants. We empirically study the per-
formance of off-line, standard and extended, and on-line versions of the Star al-
gorithm adapted to the various metrics and show that one of the proposed met-
rics outperforms all others in both effectiveness and efficiency of clustering.
We empirically study the sensitivity of the metrics to the threshold value of the
algorithm and show improvement with respect to this aspect too.

1 Introduction

Clustering is the task of grouping similar objects. In a graph, when vertices represent
objects and (possibly weighted) edges represent similarity among objects, clustering
is the separation of dense from sparse regions where clusters are the dense regions. A
vector space clustering naturally translates into a graph clustering problem for a dense
graph in which vertices correspond to vectors and pairs of vertices are connected with
an edge whose weight is the cosine of the corresponding vectors. The graph is a
clique [1]. In 1998, Aslam et al. [2] proposed the Star algorithm for graph clustering
and gave a complete presentation in 2004 in [3], in which they proposed both an off-
line and an on-line version and studied analytically and empirically the properties and
performance of their algorithms. Star algorithm replaces the computation of vertex
covering of a graph by cliques by a very simple computation of dense sub-graphs:
lower weight edges of the graph are first pruned; then vertices with higher degree are
chosen in turn as Star centers while vertices connected to a center become satellites.
The algorithm terminates when every vertex is either a center or a satellite; each cen-
ter and its satellites forming one cluster. Two critical elements in this algorithm are
the threshold value for the pruning of edges and the metrics for selecting Star centers.
In their paper [2], Aslam et al. derived the expected similarity between two satellite
vertices in a cluster as a function of similarities between satellites and their star center
and the threshold value. They show empirically that this theoretical lower bound on
the expected similarity is a good estimate of the actual similarity. Yet the metrics they

* This work was funded by the National University of Singapore ARG project R-252-000-285-

112.

Journey to the Centre of the Star: Various Ways of Finding Star Centers in Star Clustering 661

propose for selecting star centers: the degree of a vertex; does not leverage this find-
ing. Our work is motivated by the suspicion that degree is not the best possible met-
rics for selecting Star centers. A metric that maximizes intra cluster similarity, i.e. av-
erage similarity among all pairs of vertices in the cluster, should improve
performance. We propose a series of novel, yet simple, metrics for selecting Star cen-
ters that take into account the similarity between vertices (i.e. weight of edges). In
particular we propose average metrics which, as we argue analytically, maximizes in-
tra-cluster similarity. We empirically study the performance of off-line and on-line
versions of Star algorithm adapted to the various proposed metrics. We show that av-
erage metrics outperforms all others in both effectiveness and efficiency. Our contri-
bution is the presentation of metrics and their comprehensive comparative perform-
ance analysis with real world and standard corpora for the task of clustering
documents.

2 Background and Related Works

2.1 Vector and Graph Clustering

Algorithms for vector and graph clustering can be grouped into: partitioning, hierar-
chical, and graph algorithms. Partitioning algorithms, such as K-means [4] divide ver-
tices into K clusters by defining K centroids and associate each vertex to nearest cen-
troid. The algorithm iteratively recalculates the position of K centroids until the
centroids no longer move. Hierarchical algorithms [5] can be categorized into ag-
glomerative and divisive. The agglomerative method treats each vertex as a separate
cluster, iteratively merges clusters that have smallest distance from one another until
all clusters are grouped into one, yielding a hierarchical tree of clusters. Divisive
method is the reverse of agglomerative that starts with all objects in one cluster and
divides them into smaller clusters. Markov Clustering (MCL) is a graph clustering al-
gorithm based on simulation of (stochastic) flow/random walks in graphs [6]. The
Star clustering algorithm replaces the NP-complete computation of a vertex-cover by
cliques by the greedy, simple and inexpensive computation of star shaped dense sub
graphs. Star clustering does not require the indication of an a priori number of clus-
ters. It also allows the clusters to overlap. Star clustering analytically guarantees a
lower bound on the similarity between objects in each cluster and computes more ac-
curate clusters than either the single [7] or average [8] link hierarchical clustering.

2.2 Star Clustering and Extended Star Clustering

To produce reliable document clusters of similarity σ (i.e. clusters where documents
have pair-wise similarities of at least σ, where σ is a user-defined threshold), Star al-
gorithm starts by representing the document collection by its σ-similarity graph where
vertices correspond to documents and there is an undirected edge from vertex vi to
vertex vj if their cosine similarity in a vector space [1, 9] is greater than or equal to σ.
Star clustering formalizes clustering by performing a minimum clique vertex cover
with maximal cliques on this σ-similarity graph [10]. Since covering by cliques is an
NP-complete problem [11, 12], Star clustering approximates a clique cover greedily

662 D.T. Wijaya and S. Bressan

by dense sub-graphs that are star shaped, consisting of a single Star center and its sat-
ellite vertices, where there exist edges between the Star center and each satellite ver-
tex. Star clustering guarantees pair-wise similarity of at least σ between the Star and
each of its satellites. However, it does not guarantee such similarity between satellite
vertices. By investigating the geometry of the vector space model, Aslam et al. derive
a lower bound on the similarity between satellite vertices and predict that the pair-
wise similarity between satellite vertices in a Star-shaped sub-graph is high. Together
with empirical evidence [2], Aslam et al. conclude that covering σ-similarity graph
with Star-shaped sub-graphs is an accurate method for clustering a set of documents.

Each vertex v in Star clustering has a data structure containing v.degree: the degree
of v, v.adj: the list of v’s adjacent vertices, v.marked: a bit denoting if v is already in a
cluster, and v.center: a bit denoting if v is a Star center. The off-line Star algorithm
(for static data) sorts vertices by degree. Then, it scans the sorted vertices from high-
est to lowest degree as a greedy search for Star centers. Only vertices that are not yet
in a cluster can be Star centers. Once a new Star center v is selected, v.center and
v.marked bits are set, and for all vertices w adjacent to v (i.e. w ∈ v.adj), w.marked is
set. Only one scan of the sorted vertices is needed to determine all Star centers. Upon
termination when all vertices have their marked bits set, these conditions must be met:
(1) the set of Star centers are the Star cover of the graph, (2) a Star center is not adja-
cent to any other Star center, and (3) every satellite vertex is adjacent to at least one
center vertex of equal or higher degree. The algorithm has a run time of Θ (V + Eσ)
where V is the set of vertices and Eσ edges in the σ-similarity graph Gσ [2].

Star algorithm has some drawbacks that the Extended Star algorithm [13] by Gil et
al. proposes to solve. The first drawback [13] is the Star covers (hence the clusters
produced) are not unique. When there are several vertices of the same highest degree,
the algorithm arbitrarily chooses one as Star. The second drawback is because no two
Star centers can be adjacent to one another; the algorithm can produce illogical clus-
ters [13]. The extended Star algorithm addresses these issues by choosing Star centers
independently of document order. It uses complement degree of a vertex v, CD(v),
which is the degree of v only taking into account its adjacent vertices not yet included
in any cluster: CD (v) = | v.adj \ Clu |; where Clu is the set of vertices already clus-
tered. Extended Star algorithm also considers a new notion of Star center. A vertex v
is considered a Star if it has at least an adjacent vertex x with less or equal degree than
v, and x satisfies these conditions: (1) x has no adjacent Star, or (2) the highest degree
of Stars adjacent to x is not greater than v’s degree. Extended Star algorithm has two
versions: unrestricted and restricted. In the restricted version, another condition is im-
posed: only unmarked vertices: vertices not yet included in any cluster can be Star
centers. Extended Star processes vertices independently of document order. If more
than one vertex with the same highest degree exists, the extended Star selects all of
them as Star centers. Extended Star algorithm allows two Stars to be adjacent to one
another as long as they satisfy the required conditions to be Star centers.

On-line Star algorithm [2] supports insertion and deletion of vertices from the
graph. When a new vertex is inserted into (or deleted from) the graph, new Stars may
need to be created and existing Stars may need to be destroyed. On-line Star algo-
rithm maintains a queue containing all satellite vertices that have the possibility of
being ‘promoted’ into Star centers. As long as these vertices are indeed satellites, the
existing Star cover is correct. The vertices in the queue are processed in order of their

Journey to the Centre of the Star: Various Ways of Finding Star Centers in Star Clustering 663

degree (from highest to lowest). When an enqueued satellite is promoted to Star cen-
ter, one or more existing Stars may be destroyed; creating new satellites that have the
possibility of being promoted. These satellites are put into the queue and the process
repeats. Our discussion in the next section is, to some extent, orthogonal to the im-
provement of the extended Star algorithm or to the extensions of the on-line version.
Our algorithms retain the logic of the off-line and on-line extended and original Star
algorithms but aim within reasonable complexity at improving the performance of
off-line, on-line, extended and original Star algorithms by maximizing the ‘goodness’
of the greedy vertex cover through novel yet simple metrics for selecting Star centers.

3 Finding Star Centers

Our work is motivated by the suspicion that degree is not the best metrics for select-
ing Star centers. We believe Star centers should be selected by metrics that take into
consideration the weight of the edges in order to maximize intra-cluster similarity.

3.1 Markov Stationary Distributions

Star centers are ‘important’ or ‘representative’ vertices. Intuitively, it seems that
maximum flow vertices as used in Markov clustering should be good candidate Star
centers. This idea is similar to the one used in Google’s page Rank algorithm [14] for
quantifying the importance of a Web page. The first metrics that we propose is there-
fore the probability of reaching a vertex after a random walk, i.e. in the stationary dis-
tribution of the Markov matrix. A Markov matrix A=[aij] is a square matrix such that:
∀i, ∀j 0 ≤ aij ≤ 1 , and ∀i Σ∀j aij ≤ 1 (or ∀j Σ∀i aij ≤ 1). The adjacency matrix of a
weighted graph is or can be normalized into a symmetric Markov matrix. We repre-
sent the similarity graph (without threshold) G = (V, E) as an adjacency matrix A
where each entry aij is the normalized similarity between vertex i and j in G: aij =
sim (i, j) / Σ∀x ∈ V sim (i, x). A is therefore a sub-stochastic matrix. Each entry aij
represents the probability of passing from i to j traversing one edge during a random
walk in G. The matrix A×A or A2, represents probabilities of two edge transversals.
At infinity, the Markov chain Ak converges. We call A* the fix point of the product of
A with itself. The sum of the stationary values is the probability to end up on a given
vertex after a random walk. For a given vertex represented by row and column i in the
adjacency matrix A of the graph, it is the value Σ∀j bij in the matrix A*= [bij]. Because
A is a Markov matrix A* can be computed directly as follows: A* = (I-A)-1.

Incorporating this metrics in Star algorithm, we sort vertices by the sum of their
stationary values and pick unmarked vertex with highest value to be the new Star cen-
ter. In the remainder we refer to Star algorithm in which Star centers are determined
using sum of stationary values as Star-markov: the off-line star algorithm with
Markov stationary distribution metrics. The computation of A* is relatively expensive
(it is accounted for in experimental results presented in section 4). For this reason, we
do not consider this metrics for extended and on-line versions of the algorithm; nei-
ther do we investigate in this paper technique for on-line approximation of the value.

664 D.T. Wijaya and S. Bressan

3.2 Lower Bound, Average and Sum

In their derivation of expected similarity between satellite vertices in a Star cluster
[2], Aslam et al. show that the similarity cos(γi,j) between two satellite vertices vi and
vj in a Star cluster is such that:

cos(γi,j) ≥ cos(αi) cos(αj)+ (σ / σ + 1) sin(αi) sin(αj) . (1)

Where cos(αi) is the similarity between the Star center v and satellite vi and cos(αj) is
the similarity between the Star center v and satellite vj. They show that the right hand
side of inequality (1) above is a good estimate of its left hand side. Hence it can be
used to estimate the average intra-cluster similarity. For a cluster of n vertices and
center v, the average intra-cluster similarity is therefore: (Σ (vi , vj)∈ v.adj × v.adj (cos(γi,j)))
/ n2 ≥ ((Σvi ∈ v.adj cos(αi))

 2 + (σ / σ + 1) (Σvi ∈ v.adj sin(αi))
 2)/n2; where γi,j is the angle be-

tween vertices vi and vj and αi is the angle between v and vertex vi and where v.adj is
the set of vertices adjacent to v in Gσ (i.e. vertices in the cluster). This is computed on
the pruned graph (i.e. the σ-similarity graph). Based on this average intra-cluster simi-
larity, we derive our first metrics: for each vertex v in Gσ, we let: lb(v) = ((Σvi ∈ v.adj
cos(αi))

 2 + (σ / σ + 1) (Σvi ∈ v.adj sin(αi))
 2)/n2. We call this metrics lb(v), the lower

bound. This is the theoretical lower bound on the actual average intra-cluster similar-
ity when v is Star center and v.adj are its satellites. The lower bound metrics is
slightly expensive to compute because it uses both cosine and sine. We consider two
additional simpler metrics and empirically evaluate whether they constitute good ap-
proximations of lb(v). The metrics are computed on the pruned graph. Namely, for
each vertex v in Gσ, we let: ave(v) = Σ∀vi ∈ v.adj cos(αi)/ degree(v) and sum(v) = Σ∀vi ∈

v.adj cos(αi); where αi is the angle between v and vertex vi. We call the metrics ave(v)
and sum(v) the average and sum metrics, respectively. Notice that the ave(v) metrics
is the square root of the first term of the lb(v) metrics. lb(v) grows together with
ave(v). Therefore ave(v) should be a criteria equivalent to lb(v) for the selection of
Star centers. Incorporating these metrics in off-line and on-line Star algorithms, we
sort vertices by sum and average and pick unmarked vertex with highest sum and av-
erage to be the new Star center, respectively. In the remainder we refer to Star algo-
rithm in which Star centers are determined using the sum and average as the Star-sum
and Star-ave, respectively. We incorporate the lower bound, average and sum metrics
in the original and extended Star algorithms by using lb(v), sum(v) and ave(v) in the
place of degree(v) and by defining and using complement lower bound CL(v), com-
plement sum CS(v), and complement average CA(v) in the place of complement de-
gree, CD(v), respectively. We define CL(v) = ((Σvi ∈ v.adj\ Clu cos(αi))

 2 + (σ / σ + 1) (Σvi

∈ v.adj\ Clu sin(αi))
 2)/n2, CS (v) = Σ∀vi ∈ v.adj \ Clu cos(αi), CA (v) = Σ∀vi ∈ v.adj \ Clu cos(αi)/

CD(v), where Clu is the set of vertices already clustered.
We integrate the above metrics in the Star algorithm and its variants to produce the

following extensions: (1) Star-lb: the off-line star algorithm with lb(v) metrics; (2)
Star-sum: the off-line star algorithm with sum(v) metrics; (3) Star-ave: the off-line
star algorithm with ave(v) metrics; (4) Star-markov: the off-line star algorithm with
Markov stationary distribution metrics; (5) Star-extended-sum-(r): the off-line re-
stricted extended star algorithm with sum(v) metrics; (6) Star-extended-ave-(r): the

Journey to the Centre of the Star: Various Ways of Finding Star Centers in Star Clustering 665

off-line restricted extended star algorithm with ave(v) metrics; (7) Star-extended-sum-
(u): the off-line unrestricted extended star algorithm with sum(v) metrics; (8)
Star-extended-ave-(u): the off-line unrestricted extended star algorithm with ave(v)
metrics; (9) Star-online-sum: the on-line star algorithm with sum(v) metrics; (10)
Star-online-ave: the on-line star algorithm with ave(v) metrics. For the sake of sim-
plicity and concision, we only show results for lower bound in the original Star algo-
rithm in the performance analysis section (we do not evaluate Star-extended-lb-(u)
and Star-extended-lb-(r), the off-line unrestricted and restricted extended star with
lower bound metrics, nor Star-online-lb: the on-line star algorithm with lower bound
metrics).

4 Experiments

In order to evaluate the proposed metrics, we compare the performance of our exten-
sions with the original off-line and on-line Star clustering algorithms and with the re-
stricted and unrestricted extended Star clustering algorithms. We use data from
Reuters-21578 [15], TIPSTER–AP [16] and our original collection: Google. The
Reuters-21578 collection contains 21,578 documents that appeared in Reuter’s news-
wire in 1987. The TIPSTER–AP collection contains AP newswire from the TIPSTER
collection. Our original collection: Google contains news documents obtained from
Google News website [17] in December 2006. Each collection is divided into several
sub-collections. By default and unless otherwise specified, we set the value of thresh-
old σ to be the average similarity of documents in the given sub-collection. We meas-
ure effectiveness (recall, r, precision, p, and F1 measure, F1 = (2 * p * r) / (p + r)), ef-
ficiency (running time) and sensitivity to σ. In each experiment, for each topic, we
return the cluster which “best” approximates the topic, i.e. cluster that produces maxi-
mum F1with respect to the topic: topic(i) = maxj {F1(i, j)}; where F1(i, j) is the F1
measure of the cluster number j with respect to topic i. The weighted average of F1
measure for a sub-collection is calculated as: F1 = Σ (ni/S) * F1(i, topic (i)); for 0 ≤ i ≤
N; where N is the number of topics in the sub-collection, ni is the number of docu-
ments belonging to topic i in the sub-collection, and S = Σ ni; for 0 ≤ i ≤ N. For each
sub-collection, we calculate the weighted-average of precision, recall and F1-measure
produced by each algorithm. We then present the average results over each collection.

4.1 Performance of Off-Line Algorithms

We empirically evaluate the effectiveness (precision, recall, F1 measure) and effi-
ciency (time) of our proposed off-line algorithms: Star-markov, Star-lb, Star-sum,
Star-ave and compare their performance with the original Star algorithm: Star and its
variant: Star-random that picks star centers randomly. The results reported for Star-
random are average results for various seeds that gives us a base line for comparison.

In Fig. 1 we see that Star-lb and Star-ave achieve the best F1 values on all collec-
tions. This is not surprising because as we argued, lb(v) metrics maximizes intra-
cluster similarity. The fact that our Star-ave achieves comparable F1 to Star-lb is evi-
dence that average is a sufficient metric for selecting star centers. In Fig. 1, based on

666 D.T. Wijaya and S. Bressan

F1: when compared to original Star, our proposed algorithms: Star-ave and Star-
markov by far outperform the original Star on all collections. An interesting note is
that Star-random performs comparably to original Star when threshold σ is the aver-
age similarity of documents in the collection. This further proves our suspicion that
degree may not be the best metric. In Fig. 2 we see that our proposed algorithms with
the exception of Star-markov perform as efficiently as original Star. Star-markov
takes longer time as it uses matrix calculation to compute random walk. As expected,
Star-lb takes the longest time due to its expensive computation.

0

0.2

0.4

0.6

0.8

1

1.2

st
ar

st
ar

-a
ve

st
ar

-
su

m
st

ar
-

m
ar

ko
v

st
ar

-
ra

nd
om

st
ar

-lb st
ar

st
ar

-a
ve

st
ar

-
su

m
st

ar
-

m
ar

ko
v

st
ar

-
ra

nd
om

st
ar

-lb st
ar

st
ar

-a
ve

st
ar

-
su

m
st

ar
-

m
ar

ko
v

st
ar

-
ra

nd
om

st
ar

-lb

reuters tipster-ap google

Precision
Recall
F1

0

50000

100000

150000

200000

250000

300000

350000

400000

st
ar

st
ar

-a
ve

st
ar

-
su

m
st

ar
-

m
ar

ko
v

st
ar

-
ra

nd
om

st
ar

-lb st
ar

st
ar

-a
ve

st
ar

-
su

m
st

ar
-

m
ar

ko
v

st
ar

-
ra

nd
om

st
ar

-lb st
ar

st
ar

-a
ve

st
ar

-
su

m
st

ar
-

m
ar

ko
v

st
ar

-
ra

nd
om

st
ar

-lb

reuters tipster-ap google

T
im

e
(m

s)

Fig. 1. Effectiveness of off-line Star Fig. 2. Efficiency of off-line Star

From Fig. 1 and Fig. 2 we can conclude that (1) since Star-random is more effi-
cient and achieves comparable F1 to original Star, using degree to pick stars may not
be the best metric, (2) since Star-ave is more efficient and achieves comparable F1 to
Star-lb; Star-ave can be used as a good approximation to Star-lb to maximize the re-
sulting intra-cluster similarity.

4.2 Order of Stars

We empirically demonstrate that Star-ave indeed approximates Star-lb better than
other algorithms by a similar choice of star centers.

In Fig. 3 and 4 we present the order in which the algorithms choose their star cen-
ters on TIPSTER-AP and Reuters collections (similar trend is observed on Google

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

iteration

ex
p

ec
te

d
 s

im
ila

ri
ty

 r
an

k

star
star-sum
star-markov
star-ave
star-lb

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

iteration

ex
pe

ct
ed

 s
im

ila
ri

ty
 r

an
k

star
star-sum
star-markov
star-ave
star-lb

Fig. 3. Order of Stars for TIPSTER-AP Fig. 4. Order of Stars for Reuters

Journey to the Centre of the Star: Various Ways of Finding Star Centers in Star Clustering 667

collection): from the first star center to the nth star center and where star centers are
ranked by their expected intra-cluster similarity (computed from equation 1) from
highest to lowest. Star-lb chooses star centers in the order of their expected similarity
rank, from highest to lowest. In Fig. 3 and 4, we see that Star-ave chooses star centers
in an order similar to Star-lb. This is not the case of the other algorithms. Therefore
picking star centers in descending order of expected intra-cluster similarity can be ap-
proximated simply by picking star center in descending order of average similarity
with its adjacent vertices.

4.3 Performance of Off-Line Algorithms at Different Threshold (σ)

Star clustering has one parameter σ. With a good choice of σ, just enough edges are
removed from the graph to disconnect sparsely connected dense sub-graphs. Remov-
ing too few edges will group these sparsely connected sub-graphs together; producing
high recall but low precision clusters. Removing too many edges will break these
dense sub-graphs into smaller, perhaps not-so-meaningful components; producing low
recall but high precision clusters. Fig. 5 illustrates the empirical performance evalua-
tion of our proposed off-line algorithms at different threshold values σ on Reuters col-
lection (similar observation is found on TIPSTER-AP and Google collections). For a
similarity graph G (V, E), we represent σ as a fraction (s) of the average edge weight
(Emean) in G, i.e. σ = Emin + (s * Emean); where Emin is the minimum edge weight in G.

0

0.2

0.4

0.6

0.8

1

1.2

0

0.
2

0.
6

1
(m

ea
n) 1.
2

1.
6 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 9

9.
5 10 20

s

F
1

star
star-ave
star-markov
star-sum
star-lb

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.
2

0.
6

1
(m

ea
n

)

1.
2

1.
6 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 9

9.
5 10 20

s

star
star-ave
star-markov
star-sum
star-lb

Fig. 5. Performance of off-line algorithms with varying σ on Reuters data

In Fig. 5, we see that Star-ave and Star-markov converge to a maximum F1 at a
lower threshold than the original Star. Star-ave and Star-markov are able to ‘spot’
sparsely connected dense sub-graphs and produce reliable vertex cover even when
there are few edges removed from the graph. On the contrary, the original Star algo-
rithm needs to remove more edges from the graph before it is able to produce reliable
clusters. The maximum F1 value of Star-ave is also higher than the maximum of the
original Star. In Fig. 5 we see that the F1 values of Star-ave coincide closely with the
F1 values of Star-lb at all thresholds. This is further evidence that Star-ave can be
used to approximate Star-lb at varying thresholds. In Fig. 5, we see that the F1 gradi-
ent (the absolute change in F1 value with each change in threshold) is smaller (some
approaching zero) for Star-ave and Star-markov as compared to the original Star. This

668 D.T. Wijaya and S. Bressan

small gradient means the value of F1 does not change/fluctuate much with each
change in threshold. The smaller F1 gradient means that Star-ave and Star-markov are
less sensitive to the change in threshold as compared to the original Star.

From Fig. 5 we can conclude that: (1) Based on maximum F1 value: our proposed
algorithm Star-ave outperforms the original Star, (2) our proposed algorithms: Star-
ave and Star-markov are able to produce reliable clusters even at a lower threshold
where there are only fewer edges removed from the graph; (3) F1 values of Star-ave
coincide closely with F1 values of Star-lb at all thresholds; this is further evidence
that Star-ave can approximate Star-lb at any given threshold value.

4.4 Performance of Off-Line Extended Star Algorithms

We present the results of the experiment that incorporates our idea into the extended
Star. In Fig. 6 and 7, we present effectiveness and efficiency comparison between: our
algorithm: Star-ave that has performed the best so far, the original restricted extended
star: Star-extended-(r), our algorithms: Star-extended-ave-(r), and Star-extended-sum-
(r). Due to space constraints we do not present the results of comparison with the un-
restricted version of extended star in which we observe similar findings.

0

0.2

0.4

0.6

0.8

1

1.2

st
ar

-a
ve

st
ar

-e
xt

en
de

d-
(r

)

st
ar

-e
xt

en
de

d-
av

e-
(r

)

st
ar

-e
xt

en
de

d-
su

m
-(

r)

st
ar

-a
ve

st
ar

-e
xt

en
de

d-
(r

)

st
ar

-e
xt

en
de

d-
av

e-
(r

)

st
ar

-e
xt

en
de

d-
su

m
-(

r)

st
ar

-a
ve

st
ar

-e
xt

en
de

d-
(r

)

st
ar

-e
xt

en
de

d-
av

e-
(r

)

st
ar

-e
xt

en
de

d-
su

m
-(

r)

reuters tipster-ap2 google

Precision
Recall
F1

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

st
ar

-a
ve

st
ar

-e
xt

en
d

ed
-(

r)

st
ar

-e
xt

en
de

d-
av

e
-(

r)

st
ar

-e
xt

en
de

d-
su

m
-(

r)

st
ar

-a
ve

st
ar

-e
xt

en
d

ed
-(

r)

st
ar

-e
xt

en
de

d-
av

e
-(

r)

st
ar

-e
xt

en
de

d-
su

m
-(

r)

st
ar

-a
ve

st
ar

-e
xt

en
d

ed
-(

r)

st
ar

-e
xt

en
de

d-
av

e
-(

r)

st
ar

-e
xt

en
de

d-
su

m
-(

r)
reuters tipster-ap2 google

T
im

e
(m

s)

Fig. 6. Effectiveness of restricted extended
Star

Fig. 7. Efficiency of restricted extended Star

In Fig. 6, based on F1 values: we see that our proposed algorithm: Star-ave; outper-
forms Star-extended-(r) on all collections. This is despite the fact that Star-ave uses
only very simple idea to incorporate into the original Star. Our proposed algorithm:
Star-extended-ave-(r) that incorporates the idea of complement-ave metric to the ex-
tended Star algorithms improves the performance of Star-extended-(r). In Fig. 7, in
terms of efficiency: our proposed algorithms perform comparably or faster than the
extended Star; with the exception on TIPSTER-AP collection (in which Star-ave takes
longer time). We believe this difference in time could be because Star-ave picks dif-
ferent Star centers from the extended Star. We also see that incorporating the idea of
complement-ave and complement-sum to extended Star does not reduce its original
efficiency on all collections. From Fig. 6 and 7, we can conclude that: (1) our pro-
posed algorithm: Star-ave obtain higher F1 values than the extended Star on all col-
lections, (2) incorporating the idea of complement-ave metric to the extended Star
improves its F1 without affecting its efficiency on all collections.

Journey to the Centre of the Star: Various Ways of Finding Star Centers in Star Clustering 669

4.5 Performance of On-Line Algorithms

Fig. 8 and 9 illustrate the effectiveness and efficiency of the on-line algorithms: the
original on-line Star: Star-online, and our on-line algorithms, Star-online-ave and
Star-online-sum. We compare the performance of these algorithms with a randomized
version of the algorithm: Star-online-random that picks star centers randomly.

Star-online-ave outperforms Star-online on all collections in terms of F1 (cf. Fig.
8). Both Star-online-ave and Star-online-sum perform better on all collections than
Star-Random. They are more efficient (cf. Fig. 9) than Star-online on TIPSTER-AP
data and comparable on other collections. From Fig. 8 and 9, we can conclude that
Star-online-ave achieves higher F1 than Star-online. However, due to the fact that
Star-online-ave may pick different star centers than Star-online; its efficiency may be
affected.

0

0.2

0.4

0.6

0.8

1

1.2

st
ar

-o
nl

in
e

st
ar

-o
nl

in
e-

av
e

st
ar

-o
nl

in
e-

su
m

st
ar

-o
nl

in
e-

ra
nd

om

st
ar

-o
nl

in
e

st
ar

-o
nl

in
e-

av
e

st
ar

-o
nl

in
e-

su
m

st
ar

-o
nl

in
e-

ra
nd

om

st
ar

-o
nl

in
e

st
ar

-o
nl

in
e-

av
e

st
ar

-o
nl

in
e-

su
m

st
ar

-o
nl

in
e-

ra
nd

om

reuters tipster-ap google

Precision
Recall
F1

0

50000

100000

150000

200000

250000

300000

350000

400000

st
ar

-o
nl

in
e

st
ar

-o
nl

in
e-

av
e

st
ar

-o
nl

in
e-

su
m

st
ar

-o
nl

in
e-

ra
nd

om

st
ar

-o
nl

in
e

st
ar

-o
nl

in
e-

av
e

st
ar

-o
nl

in
e-

su
m

st
ar

-o
nl

in
e-

ra
nd

om

st
ar

-o
nl

in
e

st
ar

-o
nl

in
e-

av
e

st
ar

-o
nl

in
e-

su
m

st
ar

-o
nl

in
e-

ra
nd

om

reuters tipster-ap google

T
im

e
(m

s)

Fig. 8. Effectiveness of on-line algorithms Fig. 9. Efficiency of on-line algorithms

5 Conclusion

We suspected that the metrics used for selecting star centers in Star clustering is not
optimal. The theoretical argument was presented in the original papers of Star cluster-
ing but was not exploited. We therefore proposed various new metrics for selecting
star centers: Markov metrics that find vertices of maximum flow; and metrics estimat-
ing and commensurating to the maximum intra-cluster similarity (lower bound, aver-
age and sum). We empirically studied the performance of off-line star, extended re-
stricted and unrestricted Star and on-line Star with these different metrics. Our results
confirm our conjecture: selecting star centers based on degree (as proposed by the
original algorithm inventors) performs almost as poorly as a random selection. One
needs to use a metrics that maximizes intra-cluster similarity such as the lower bound
metrics. While it indeed yields the best results, it is expensive to compute. The aver-
age metrics is a fast and good approximation of the lower bound metrics in all vari-
ants of Star algorithm: (1) Star-ave yields up to 4.53% improvement of F1 with a
19.1% improvement on precision and 1.77% on recall; (2) Star-extended-ave-(r)
yields up to 14.65% improvement of F1 with a 27.2% improvement on precision and
0.25% on recall; (3) Star-extended-ave-(u) yields up to 138% improvement of F1 with
a 102% improvement on precision and 3.4% on recall; (4) Star-online-ave yields up to
an outstanding 20.81% improvement of F1 with a 20.87% improvement on precision
and 20.67% on recall. We notice that, since intra-cluster similarity is maximized, it is

670 D.T. Wijaya and S. Bressan

precision that is mostly improved. We can therefore propose Star-online-ave as a very
efficient and very effective graph clustering algorithm.

References

1. Salton, G.: Automatic Text Processing: the transformation, analysis, and retrieval of in-
formation by computer. Addison-Wesley (1989)

2. Aslam, J., Pelekhov, K., Rus, D.: Static and Dynamic Information Organization with Star
Clusters. In Proceedings of the 1998 Conference on Information Knowledge Management,
Baltimore, MD (1998)

3. 3. Aslam, J., Pelekhov, K., Rus, D.: The Star Clustering Algorithm. In Journal of Graph
Algorithms and Applications, 8(1) 95–129 (2004)

4. MacQueen, J. B.: Some Methods for classification and Analysis of Multivariate Observa-
tions. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.
Berkeley, University of California Press, 1:281-297 (1967)

5. Johnson, S. C.: Hierarchical Clustering Schemes. Psychometrika, 2:241-254 (1967)
6. van Dongen, Stijn Marinus: Graph clustering by flow simulation - Tekst. - Proefschrift

Universiteit Utrecht (2000)
7. Croft, W. B.: Clustering large files of documents using the single-link method. Journal of

the American Society for Information Science, 189-195 (November 1977)
8. Voorhees, E.: The cluster hypothesis revisited. In Proceedings of the 8th SIGIR, 95-104
9. Salton, G.: The Smart document retrieval project. In Proceedings of the Fourteenth Annual

International ACM/SIGIR Conference on Research and Development in Information Re-
trieval, 356-358

10. Karp, R.: Reducibility among combinatorial problems. Computer Computations, 85–104,
Plenum Press, NY (1972)

11. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems.
Journal of the ACM 41, 1960-981 (1994)

12. Press W., Flannery B., Teukolsky S., Vetterling W.: Numerical Recipes in C: The Art of
Scientific Computing, Cambridge University Press (1988)

13. García, R.J. Gil, Contelles, J.M. Badía, Porrata, A. Pons: Extended Star Clustering Algo-
rithm. Proc. Of CIARP’03, LNCS 2905, 480-487 (2003)

14. Brin Sergey, Page Lawrence: The anatomy of a large-scale hypertextual Web search en-
gine. Proceedings of the seventh international conference on World Wide Web 7, 107-117
(1998)

15. http://www.daviddlewis.com/resources/testcollections/reuters21578/ (visited on December
2006)

16. http://trec.nist.gov/data.html (visited on December 2006)
17. Google News (http://news.google.com.sg)

Improving Semantic Query Answering

Norbert Kottmann and Thomas Studer

Institut für Informatik und angewandte Mathematik,
Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland

{kottmann,tstuder}@iam.unibe.ch

Abstract. The retrieval problem is one of the main reasoning tasks for
knowledge base systems. Given a knowledge base K and a concept C, the
retrieval problem consists of finding all individuals a for which K logically
entails C(a). We present an approach to answer retrieval queries over
(a restriction of) OWL ontologies. Our solution is based on reducing
the retrieval problem to a problem of evaluating an SQL query over
a database constructed from the original knowledge base. We provide
complete answers to retrieval problems. Still, our system performs very
well as is shown by a standard benchmark.

1 Introduction

Over the last decade, ontologies left the realm of academia and became an im-
portant technology in many domains. However, in order to be of practical use for
full-fledged applications, tools and techniques that can deal with huge amounts
of (ontological) information are needed.

Relational databases are one of the well-established cornerstones for systems
managing large data loads. In this paper, we present a method to solve the
ontological retrieval problem based on a relational database system. Our im-
plementation shows that this provides an efficient and scalable solution for the
retrieval problem.

An ontology defines the terms used to describe and represent an area of knowl-
edge [7]. It consists of the definitions for the basic concepts of a domain and their
relationships. These definitions and relations are formulated in a so-called on-
tology language which should be not only understandable for humans but also
machine readable, hence supporting automatic knowledge processing. The W3C
defined the ontology language OWL for applications in the semantic web. How-
ever, OWL also became the language of choice for many other applications in
the area of knowledge representation and reasoning.

One of the main reasoning tasks for knowledge base systems is the so-called
retrieval problem [2]. Let us illustrate this problem by an example.

Assume a zoological ontology defines the following:

(1) A carnivore is an animal that eats only animals.
(2) A lion is a carnivore.
(3) A lion eats gnus.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 671–679, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

672 N. Kottmann and T. Studer

Further, assume that this ontology has been loaded into a knowledge base
system. This system will answer the query show me all animals as follows:

1. A lion is an animal since a lion is a carnivore (2) and every carnivore is an
animal (1).

2. A gnu is an animal since a lion is a carnivore (2), everything that is eaten
by a carnivore is an animal (1), and gnus are eaten by lions (3).

The abstract definition of the retrieval problem reads as follows: given a knowl-
edge base K and a concept description C, find all individuals a such that K
logically entails C(a). That is given K and C, look for all individuals a such
C(a) is a logical consequence of K. There is a trivial algorithm for this problem,
namely to test for each individual occurring in K whether it satisfies the concept
C or not. This approach has the advantage that it provides (almost) complete
reasoning for quite expressive knowledge representation languages. However, if
large data sets have to be treated, then for efficiency reasons, one may need to
turn to another approach.

It is possible to extend relational database systems to support storing and
querying OWL [4] data as follows: when data is loaded into the database, the
system precomputes the subsumption hierarchy and stores also the statements
inferred from this hierarchy. Prominent projects following this approach are
DLDB [10] and its successor HAWK1. Queries to the knowledge base can then
be translated to standard SQL queries that are evaluated over the relational
representation of the knowledge base. This has the advantage that all the query
optimization techniques provided by relational database systems can be used
and it becomes possible to work with huge datasets.

However, DLDB and HAWK often do not give complete answers to queries.
We overcome this problem by identifying the description logic pos-ALE which
is the positive fragment of ALE with transitive and inverse roles. Based on
pos-ALE , we present an extension of relational database systems to support
OWL retrieval queries which is sound and complete with respect to pos-ALE .

The language of pos-ALE provides enough expressive power for many ap-
plications. It also suffices for the LUBM benchmark for OWL knowledge base
systems [5]. We evaluate our system with this standard benchmark and compare
our results with HAWK. The main observation is that our systems performs very
well although we provide complete pos-ALE reasoning. For many queries we are
even faster that HAWK (which is often not complete).

Another approach for querying ontologies with the use of an SQL engine has
been presented in [1,3]. There, the DL-Lite family of description logics is intro-
duced. These languages are also well suited for the translation of description
logic queries into SQL queries. However, DL-Lite languages are quite different
from pos-ALE . On one hand, pos-ALE features value restrictions and transitive
roles which are both not included in DL-Lite. DL-Lite, on the other hand, sup-
ports functional restrictions and conjunctive queries which cannot be treated in

1 http://swat.cse.lehigh.edu/downloads/

Improving Semantic Query Answering 673

pos-ALE . Because of all these differences, we could not compare our approach
with a DL-Lite system.

2 DL to DB Mapping

The concepts of pos-ALE are given as follows, where A is used for an atomic
concept, S is an atomic role, R, T denote roles, and C, D stand for concept
descriptions:

C, D → A | (atomic concept)
) | (top)
C D | (conjunction)
∀R.C | (value restriction)
∃R.C (full existential quantification)

R → S | (atomic role)
S− (inverse role).

Additionally, we consider a set R+ of transitive roles. A TBox T contains concept
inclusions C * D as well as role inclusions R * T . An ABox A contains concept
assertions C(a) and role assertions R(a, b). A knowledge base K is the union of
a TBox and an ABox.

We make use of the standard semantics for description logics [2]. Accordingly,
we write K |= C(a) if every model of K is a model of C(a).

Our aim is to build a completion A∗ of the ABox A such that is possible to
answer arbitrary pos-ALE retrieval queries by only querying atomic concept and
roles in A∗. Assume DBK is the subset of all atomic concept and role assertion
of such a completed ABox (stemming from an initial knowledge base K). Then
we write DBK |=DB C(a) if a is in the answer to the retrieval query C when it is
evaluated over DBK. This evaluation is inductively defined as follows.

1. DBK |=DB A(a) if A(a) ∈ DBK

2. DBK |=DB R(a, b) if R(a, b) ∈ DBK

3. DBK |=DB C D(a) if DBK |=DB C(a) and DBK |=DB D(a)
4. DBK |=DB ∀R.C(a) if DBK |=DB C(∀R,a)
5. DBK |=DB ∃R.C(a) if there exists a constant b with DBK |=DB C(b) and

DBK |=DB R(a, b)

The constants ∀R,a are special individual terms introduced in the completion
process in order to correctly answer queries which involve value restrictions.

Remark 1. The above definition makes it possible to formulate retrieval queries
over DBK using standard SQL.

Before we can perform the completion algorithm which computes the relational
representation of a knowledge base K, we have to normalize K, that is replace
every occurrence of ∀R.(C D) with ∀R.C ∀R.D.

674 N. Kottmann and T. Studer

Then, the precompletion A′ of A is built by applying the following rules to an
ABox A until a fixed point is reached. Of course, these rule are reminiscent of
the tableau construction for description logics with transitive and inverse roles,
see for instance [8].

1.)(a) ∈ X if a occurs in X
2. C(a) ∈ X and D(a) ∈ X if C D(a) ∈ X
3. C(x) ∈ X and R(a, x) ∈ X for a new x if ∃R.C(a) ∈ X and no such x exists

yet
4. C(a) ∈ X if ∀R.C(b) ∈ X and R(b, a) ∈ X for some b
5. C(∀R,a) ∈ X if ∀R.C(a) ∈ X
6. C(∀R,a) ∈ X if ∀R.C(b) ∈ X, R(b, a) ∈ X, and R ∈ R+

7. R(a, b) ∈ X if T (a, b) ∈ X and T * R ∈ T
8. R−(a, b) ∈ X if R(b, a) ∈ X where we set (R−)− := R
9. R(a, c) ∈ X if R ∈ R+, R(a, b) ∈ X, and R(b, c) ∈ X for some b

The only part of K that is not taken into account in the build up of the precom-
pletion are the concept inclusions present in the TBox. In order to treat them
properly, we have to apply the following algorithm.

Algorithm 1. Procedure for building the completion of an ABox
Input: ABox X and TBox T
Output: Completion of the ABox

Y ←− ∅
repeat

X ←− X ∪ Y
X ←− precompletion of X
Y ←− {C(a) : there exists a concept D such that DBX |= D(a) and D *
C ∈ T}

until Y = ∅
return X

That is starting from an initial ABox A1 we build the precompletion A′
1.

Then we add all assertions implied by inclusion axioms yielding an ABox A2.
We have to precomplete this ABox resulting in A′

2. Again, the inclusion axioms
may imply new assertions which gives us an ABox A3. This process eventually
stops which provides the completion A∗ of A1

Example 1. Consider the zoological ontology given in the introduction. We have

T := {Carnivore * Animal ∀Eats.Animal}

and
A := {Carnivore(lion), Eats(lion, gnu)}.

Let A1 := A. Building the precompletion of A1 does not give any new assertions.
The second step deals with the concept hierarchy. That yields

Improving Semantic Query Answering 675

A2 = A1 ∪ {Animal ∀Eats.Animal(lion)}.

Building the precompletion of A2 gives us

Animal(lion), ∀Eats.Animal(lion), Animal(gnu) ∈ A′
2.

Since no new individuals have been added to Carnivore, the second step dealing
with the concept hierarchy does not result in additional assertions. Thus, we
reached a fixed point and we have A′

2 = A∗.

If we start from a finite knowledge base K, then by a cardinality argument we
easily can see that a fixed point is reached after finitely many steps.

Theorem 1. If K is a finite knowledge base, then also its completion K∗ is
finite.

Proof. First observe, that only finitely many new individual constants are needed
in the course of the inductive built up of K∗. Consider the case for value restric-
tions. There, it may be that a constant of the form ∀R,∀···,∀T,a

is introduced.
However the role depth of such a new constant can at most be the role depth of
the original knowledge base K. The same goes for the case of existential quan-
tification. Therefore, only finitely many new constants have to be introduced.
Moreover, individual constants are only added to subconcepts of concepts oc-
curring in K and there are only finitely many such subconcepts. Hence, the fixed
point will be reached after finitely many stages. !

The database instance DBK of a knowledge base K consists of all atomic concept
assertions A(a) and role assertions R(a, b) of the completion K∗.

Due to the interplay of ∀ and ∃, the size of DBK can be exponential in the size
of K [2]. However, in many practical applications this blow-up does not happen.
For instance, our evaluation shows that in the LUBM benchmark the database
size grows only linearly in the size of the original knowledge base.

In the sequel we show that query evaluation over DBK is sound and complete.

Theorem 2 (Completeness). Let K be a knowledge base, C be a concept de-
scription, and a be an individual constant. We have that

K |= C(a) =⇒ DBK |=DB C(a).

Proof. Assume DBK �|=DB C(a). Completeness is easily established by construct-
ing a canonical counter model M with M |= K and M �|= C(a). The only point
that needs a bit of attention is the case when C is a value restriction ∀R.D. In
this case we have to observe that it is always possible in pos-ALE to extend a
given interpretation of R to falsify ∀R.D(a). !

In order to prove soundness we need some auxiliary definitions.

Definition 1. The ∗ unfolding of a concept assertion is given by:

1. C(a)∗ := C(a) if a is not of the form ∀R,b,
2. C(a)∗ := (∀R.C(b))∗ if a = ∀R,b.

676 N. Kottmann and T. Studer

Test Queries

�
��

UBA

�
OWL Ontology

�
��

UBT Performance Results�

�
����
���

REAL

BM Interface

Completion

�
����

��	

HAWK

BM Interface

Racer�

PostgreSQL
�
�

PostgreSQL
�
�

Fig. 1. Benchmark setup

Definition 2. The basis of an individual constant is given by:

1. basis(a) := basis(b) if a = ∀R,b,
2. basis(a) := a otherwise.

Theorem 3. Let K be a knowledge base, C be a concept description, and a be
an individual constant such that basis(a) occurs in K. We have that

DBK |=DB C(a) =⇒ K |= C(a)∗.

Proof. By induction on the structure of C. We show only the case when C
is ∀R.D. Then DBK |=DB D(∀R,a). By the induction hypothesis we get K |=
D(∀R,a)∗. That is K |= ∀R.D(a)∗ by the previous definition. !

As a corollary we obtain:

Corollary 1 (Soundness). Let K be a knowledge base, C be a concept descrip-
tion, and a be an individual constant. We have that

DBK |=DB C(a) =⇒ K |= C(a).

3 Evaluation

To show the applicability of our approach, we developed a system called REAL
based on pos-ALE and the completion procedure presented above, see [9]. We

Improving Semantic Query Answering 677

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 01

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 05

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 10

real
hawk

100’000

10’000

1’000

100

10

1
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
im

e
[m

s]
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Query [#]

Query Answering of Dataset 20

real
hawk

Fig. 2. All datasets with the response time of each query

evaluated our implementation with the Lehigh University Benchmark [5]. This
is a standard benchmark for expressive semantic web knowledge base systems.
We compared the performance of our system with that of HAWK which also
follows a completion approach. We used a 3 GHz Pentium 4, 2 GB RAM, and a
PostgreSQL DB to run the tests.

The overall setup of the benchmark is shown in Figure 2.The benchmark
system contains

1. an OWL ontology modeling a university domain,
2. a data generator (UBA) creating datasets (ABoxes) of different size,
3. a performance test application (UBT) which runs the benchmark, and
4. a set of test queries.

The system under consideration have to provide a benchmark interface (BM)
which is called by the test application. Note that HAWK uses an external rea-
soner (RacerPro, see [6]) for some initial computations in the loading process of
an ontology. The detailed settings and all results of the evaluation can be found
in [9].

We tested four different datasets called 01, 05, 10, and 20. The smallest dataset
(01) contains about 100’000 triples which equals a file size of 8 MB whereas the
largest dataset (20) counts more than 2’700’000 triples with a total size of 234
MB.

678 N. Kottmann and T. Studer

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

210

T
im

e
[m

s]

Triples [#] Millions

Query 1

real
hawk

 0

 500

 1000

 1500

 2000

 2500

 3000

210

T
im

e
[m

s]

Triples [#] Millions

Query 6

real
hawk

Fig. 3. Response time of queries 1 and 6 in relation to the number of triples in the
database

The benchmark consists of 14 queries which we issued against the four datasets
in both systems. First note that our system provides complete answers to all
queries whereas HAWK only provides complete answers to the queries 1,2,3,4,
and 14. For all datasets, the answer times to the queries are shown in Figure 2.
We find that although we provide complete answers to all queries, our system
often perform even better than HAWK.

Our system also scales up very well. For many queries we have linear (some-
times almost constant) behavior of the answering time with respect to the num-
ber of triples. See Figure 3 for two typical examples.

For the queries 2, 9, and 12 we need much more time than HAWK and our sys-
tem does not show a good scaling behavior. These queries need a lot of joins and
we have not yet found an optimal database configuration to better support such
queries in our approach. However note that HAWK does not provide complete
answers to 9 and 12. Still query 2 shows that there is room for improvement.

4 Concluding Remarks

We identified pos-ALE , a description logic which can easily be represented in
a relational setting. This leads to an extension of relational databases which
supports semantic web queries. So far, such extensions often did not provide
complete answers to retrieval problems. Our relational representation provides
sound and complete query answering with respect to pos-ALE . The evaluation
of our implementation with the LUBM benchmark showed that our approach is
suitable for practical applications. In particular, it exhibits good scaling proper-
ties. However, the tests also showed that we still need better support for queries
that involve many join operations.

Scalability is not the only feature which makes our approach valuable for
practical applications. The use of a classical database system has the additional
advantage that all the features provided by the database may be employed. For
example, access control for the ontological system can be implemented based on
the privileges and rights system the database provides.

Improving Semantic Query Answering 679

Acknowledgments

We would like to thank Yuanbo Guo for his support on LUBM.

References

1. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: Quonto: Querying ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pp. 1670–1671 (2005)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge (2003)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)

4. Dean, M., Schreiber, G.: OWL web ontology language reference (2004)
5. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-

tems. Journal of Web Semantics 3, 158–182 (2005)
6. Haarslev, V., Möller, R.: Racer system description. In: Goré, R.P., Leitsch, A.,

Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

7. Heflin, J.: OWL web ontology language use cases and requirements (2004), Avail-
able at http://www.w3c.org/TR/webont-req/

8. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. Journal of Logic and Computation 9(3), 385–410 (1999)

9. Kottmann, N.: Description logic query answering with relational databases. Mas-
ter’s thesis, University of Bern (2006)

10. Pan, Z., Heflin, J.: DLDB: Extending relational databases to support semantic
web queries. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 109–113. Springer, Heidelberg (2003)

http://www.w3c.org/TR/webont-req/

A Method for Determining Ontology-Based Semantic
Relevance

Tuukka Ruotsalo and Eero Hyvönen

Semantic Computing Research Group (SeCo)
Helsinki University of Technology (TKK), Laboratory of Media Technology

University of Helsinki, Department of Computer Science
firstname.lastname@tkk.fi
http://www.seco.tkk.fi/

Abstract. The semantic web is based on ontologies and metadata that indexes
resources using ontologies. This indexing is called annotation. Ontology based
information retrieval is an operation that matches the relevance of an annotation
or a user generated query against an ontology-based knowledge-base. Typically
systems utilising ontology-based knowledge-bases are semantic portals that pro-
vide search facilities over the annotations. Handling large answer sets require
effective methods to rank the search results based on relevance to the query or
annotation. A method for determining such relevance is a pre-requisite for ef-
fective ontology-based information retrieval. This paper presents a method for
determining relevance between two annotations. The method considers essential
features of domain ontologies and RDF(S) languages to support determining this
relevance. As a novel use case, the method was used to implement a knowledge-
based recommendation system. A user study showing promising results was con-
ducted.

1 Introduction

The semantic web [4] promotes the use of explicit background knowledge (metadata) to
manage diverse resources. Metadata has a defined meaning in terms of a domain ontol-
ogy that provides a shared conceptualisation of the domain of discourse [9]. Resources
are indexed using metadata schemas and values from domain ontologies. Resources
indexed with ontological values are called annotations. While the research of the log-
ical structure of the ontologies and metadata schemas has gained much popularity in
the past years, the methods for information retrieval have mainly concentrated on strict
boolean querying of a knowledge-base rather than assessing relevance for the annota-
tions in the knowledge-base. Good examples can be found in a field of semantic portals
[14], that provide search facilities to access the data. Many of the portals so far have
utilised search facilities that are based on Boolean queries or facet-based search [2,16].
To enable effective information retrieval, methods for ranking and clustering the search
results are a necessity.

The relevance determination problem has an important background in text retrieval
where document-term matrices are used to calculate similarity of the documents [5].
Good results have been achieved with tf-idf weighting of the feature vectors [19,3].

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 680–688, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Method for Determining Ontology-Based Semantic Relevance 681

The majority of current research in ontology-based information retrieval has focused
on crisp logic with intelligent user interfaces to formulate the query [16]. These have
been further developed to support fuzzy logic [10]. Determining structural similarity
has been investigated in SimRank [13], SimFusion [20], AKTiveRank [1] and Swoogle
[8]. SimRank measures similarity of structural contexts, but concentrates only on graph
theoretical model instead of feature vectors. SimFusion considers object features, but
does not bind the features to ontologies. The Swoogle search engine uses term rank and
onto rank algorithms to provide the relevance to predict correct ontology and instances
for terms and concepts. However, Swoogle concentrates on matching classes and terms
to ontologies, but does not consider the mutual relevance of annotations. AKTiveRank
uses semantic similarity and the alignment of the terms in separate ontologies as a
ranking principle.

In this paper we present a method that calculates the mutual relevance of annotations.
Unlike SimRank, SimFusion, Swoogle and AKTiveRank we concentrate on the rele-
vance of the annotations based on the underlying domain ontology. We extend the tf-idf
[19,3] method by considering essential features of the domain ontologies and RDF(S)
languages. The method can be used for numerous applications such as knowledge-based
recommendation [15,7], information retrieval and clustering [3]. As a novel use case
we present a recommendation system implemented with a real-life dataset. Finally, we
show initial empirical results from a user test that support the method.

2 Knowledge Representation on the Semantic Web

2.1 Representation of Annotations

The Semantic web contains metadata about resources. This metadata is called annota-
tions. Annotations are formulated with a RDF(S) [6] language, where each statement
about the resource is given as an annotation triple. A set of annotation triples describe
a resource x.

An annotation is a set of triples E = {< subject, predicate, object >}, where
at least one subject ≡ x (i.e. it is connected to the resource that is being annotated).
Triples that have a resource as the object value are called ontological elements; triples
with literal values are called literal elements. In this paper, we are concerned with on-
tological relevance and therefore only ontological elements are considered.

In addition to the triples, RDF Schema language (RDFS) defines a schema for RDF.
RDFS separates classes and instances. For example a resource GeorgeWBush could be
defined to be an instance of the classes Person and President. In RDFS classes can be
defined as subsumption hierarchies. For example class President could be defined to be
a subClassOf a class PoliticalRole.

We next present requirements for a method by which the ontology-based semantic
relevance between resources can be determined.

2.2 Requirements for Annotation Relevance Calculation

To fully support the data model behind RDF(S), the following criteria must be taken
into account by the method determining the relevance:

682 T. Ruotsalo and E. Hyvönen

1. Classes and instances. A typical approach in knowledge representation is to
separate classes and instances. For example, when annotating a web page with
the resource ’GeorgeWBush’, the particular instance of a class, say ’Politician’,
is referred to. Any other annotation stating something about the same resource
’GeorgeWBush’ would also refer to this particular instance. The instance sharing
approach leads to undisputed benefits because the resources have a unique identi-
fier. However, if the instance is commonly referred in the knowledge-base it may
over-dominate traditional retrieval methods.

2. Subsumption. Concepts in the domain ontologies are typically ordered in sub-
sumption hierarchies. For example, if ’GeorgeWBush’ is an instance of the class
’Politician’ this could be subsumed by the class ’Person’. It is clear that the fact that
it is implicitly known that ’GeorgeWBush’ is also related to class ’Person’ has to
be taken into a consideration by information retrieval methods, but intuitively with
less relevance than the class ’Politician’, since persons may also be non-political.

3. Part-of relations. In addition to subsumption, many domain ontologies introduce
relations to support the theory of parts and wholes (part-of). For example, if a re-
source is annotated with the instance ’New York City’, it may be relevant in the
scope of ’New York State’ due to the part-of-relation between the resources, al-
though the notion of the state does not subsume the notion of the city. Part-of re-
lations are useful in information retrieval, but require separate handling from sub-
sumption relations [17].

Next we present the method for determining ontology-based annotation relevance
where these requirements are taken into consideration.

3 A Method for Determining Semantic Relevance of Annotations

Consider resources x and y. The ontological relevance r of a resource y, when a re-
source x is given, is defined by the quadripartite relation S

S ⊂ {< x, y, r, e > |x ∈ C, y ∈ C, r = ar(ann(x), ann(y)) ∈ [0, 1], e is a literal},

where C is the set of resources, ar is a real valued function annotation relevance
expressing how relevant y is given x, ann is a function returning annotation triples
for a resource, and e is a literal explanation of why y is relevant given x. A tuple
< x, y, r, e >∈ S intuitively means that “x is related to item y by relevance r because
of e”. For example:

<GeorgeWBush, WhiteHouse, 0.8, "George W. Bush workingIn Whitehouse">
The relevance relation can be used in semantic recommending: it provides the set of

explained recommendations for each content item x. In addition, the relevance relation
could be used for clustering or as a search base of its own if the end-user is interested
in finding relations between resources instead of resources themselves.

Below, we first present a method for computing the annotation relevance r =
ar(ann(x), ann(y)) for resources x and y, and then discuss how to provide the ex-
planation e.

A widely used method for determining the relevance of a document with respect to
a keyword k is tf-idf [3]. Here the relevance rk of a document d with respect to k is

A Method for Determining Ontology-Based Semantic Relevance 683

the product of term frequency (tf) and inverse document frequency (idf) rk = tf × idf .
The term frequency tf = nk/nd is the number of occurrences of k in d divided by
the number nd of terms in d. The inverse document frequency is idf(d) = log N

Nk

where N is the number of documents and Nk is the number of documents in which k
appears. Intuitively, tf-idf determines relevance based on two components: tf indicates
how relevant k is w.r.t. d and idf lessens the relevance for terms that are commonly used
in the whole document set.

Our case is different from the classical text document retrieval in the following ways.
First, the document set is a set of ontological annotations. The tf component cannot be
based on term frequency as in tf-idf. Second, we will not search for relevant documents
with respect to a key word, but try to find semantically related ontological annotations.
To account for these differences, we devised idf-like measures inverse class factor, in-
verse instance factor, and inverse triple factor that account for the global usage of
classes, individuals and triples in the annotations.

Definition 1 (inverse class factor). The inverse class factor icf(c) for a class c is
icf(c) = log N

Nc
, where N is the total number of instances of all classes used in the

annotations, and Nc is the number of instances of the class c.

Intuitively, icf(c) is higher for annotation instances whose class are rarely used in anno-
tation.

Definition 2 (inverse instance factor). The inverse instance factor iif(i) for an in-
stance i is iif(i) = log I

n , where I is the total number of instances shared by the anno-
tations, and n is the number of usage of the instance i.

This measure takes into account the fact that instances can be shared by the annotations.
The idea of using iif(i) will be to lessen relevance of content items that share same
instances, when such instances are commonly used.

In order to define the inverse triple factor we first define the predicate cmatch(x, y)
for matching two instances and pmactch(p, q) for matching two properties (rdf predi-
cates). Let cl(x) denote the class of instance x, sp(c) denote the set of superclasses of
class c, and pr(p) denote the set of super properties of property p. Then:

cmatch(x, y) = true, if x = y or cl(x) ∈ sp(cl(y))
pmatch(p, q) = true, if p = q or p ∈ pr(q).

Definition 3 (inverse triple factor). The inverse triple factor itf(t) for a triple
t =< s, p, o > is: itf(t) = log T

N , where T is the total number of annotation triples
< s′, p′, o′ >, such that cmatch(s′, s) and pmatch(p′, p) and cmatch(o′, o) hold, and
N is the total number of annotation triples.

In addition, a measure is needed to determine the relevance between two instances based
on the class membership, part-of, and an instance equivalence relations in the domain
ontology:

684 T. Ruotsalo and E. Hyvönen

Definition 4 (ontological instance relevance).
The ontological instance relevance of instance y given instance x is

oir(x, y) =

⎧
⎪⎨

⎪⎩

iif(y)× icf(cl(y)) if cmatch(x, y)
0.70× iif(y)× icf(cl(y)) if partOf(y, x) or partOf(cl(y), cl(x)),
0 otherwise

where partOf(x, y) is true if x is a part of y. If two first cases match at the same time,
the maximum value is selected.

The ontological instance relevance is given by the product of the inverse instance factor
and inverse class factor. The similarity can be calculated if the instance between anno-
tation objects is shared or the class membership of the target instance is in the transitive
closure of the class membership of the source instance. In addition the target instance or
target class membership can be connected to the source instance or to the source class
membership with a part-of relation. We have used 0.70 as the part-of multiplier based
on extensive empirical tests by Rodriquez and Egenhofer [17]. Intuitively, oir(x, y) is
high, i.e. y is relevant for x, when y and sp(cl(y)) are rarely used in annotations, and x
and y are related by hyponymy, meronymy, or equivalence.

The ontological triple relevance can now be defined.

Definition 5 (ontological triple relevance). The ontological relevance of a triple
y =< s, p, o >, given a triple x =< s′, p′, o′ > and assuming that pmatch(p, p′)
holds, is:

otr(x, y) = oir(s, s′) + oir(o, o′) + itf(y).

Intuitively, otr(x, y) is high, i.e. y is relevant for x, when the subject and object of y
are relevant given the subject and object of x, respectively, and y is rarely used.

Finally the annotation relevance is the sum of the ontological triple relevances for
the annotations.

Definition 6 (annotation relevance). The annotation relevance ar(A, B) of an anno-
tation A, given an annotation B, is

ar(A, B) =

∑
a∈A,b∈B otr(a, b)

nt
,

where nt is a number of triples in a target annotation used as a normalisation factor.

When determining the values ar(x, y), the explanation literal e can be formulated
based on the labels of the matching triples.

4 Implementation and Evaluation

The method presented above has been implemented in the recommendation system of
the CULTURESAMPO prototype portal [11]. A user study was conducted to evaluate

A Method for Determining Ontology-Based Semantic Relevance 685

how well the method predicted the ranking of the resources compared to opinions of
the users. In information retrieval systems, the users usually want to see just ten to
twenty documents, and if these do not correspond to the information need of the users
the search is re-adjusted [3]. This is why in practical applications, such as knowledge-
based recommendation, the ranking of the documents is a crucial task.

A user study was conducted to evaluate the method. The hypothesis tested was: does
the ranking performed by the annotation relevance method correspond with the end-
user’s opinion of the ranking. In practice this means testing whether the users liked
more the recommended resources ranked higher (target documents) based on a source
resource (source document) they were looking at.

The most obvious way to measure this is to calculate the correlation between the
ordering of the items made by the method and by the user. Based on a preliminary user
test, it turned out that the ordering of the documents was difficult for the users. However,
the users indicated that it was rather easy to classify the documents into two groups: the
highly relevant and less relevant. Therefore, this simple ranking dichotomy was used in
the test.

4.1 Dataset

The dataset used contained annotations of three different resources: images of mu-
seum items, images of photographs and images of paintings. These were annotated
by domain experts in Finnish museums. The General Finnish Ontology (YSO) [12]
was used as a domain ontology. This domain-ontology consists of more than 23.000
classes organised in subsumption and part-of hierarchies. Seven documents were ran-
domly selected as source documents representing the source resources: two images of
museum items, three images of photographs and two images of paintings. Ten target
recommendations were then calculated for each source document representing the tar-
get resources, which resulted to a set of 70 target documents. The calculation was per-
formed against a knowledge-base that contained annotations of nearly 10.000 resources
of before-mentioned types.

The five top-ranked recommendation documents given by our method were consid-
ered the higher relevance group. The other five, the lower relevance group, were a sam-
ple of the lower half of the ranking based on the median relevance. To exclude highly
non-relevant recommendations its was required that the source document and its target
recommendation should share at least two triples.

4.2 Test Setting

Figure 1 illustrates the user interface showing a page about a photograph in a dataset.
The pages were printed without the recommendations that can be seen on the right
side of the figure. A card sorting experiment was conducted based on the printed pages
[18]. Seven test subjects were first asked to classify the recommendations according
to the seven source documents, based on the metadata and the image. After this the
subjects were asked to formulate the higher relevance group and the lower relevance
group for each source document. In both tests the test subjects were able to leave a

686 T. Ruotsalo and E. Hyvönen

target recommendation document out, if the they felt that it was not relevant given any
source document.

Fig. 1. CULTURES AMPO user interface showing a photograph, its metadata, and semantic rec-
ommendation links

4.3 Results

The right source document for a recommendation was found in 71 per cent (%) of the
cases. Test subjects then classified the items in the higher relevance group correctly in
82% of the cases. From the documents that were classified under the wrong group, 23%
were in the higher relevance group and in 77% in the lower relevance group. The share
of the target recommendation documents that the test subjects were unable to classify
into either the high or low relevance group, 5% were in higher relevance group, and
95% in the lower relevance group.

4.4 Conclusions of Empirical Evaluation

These results show that the method predicted the relevance very well for a first attempt:
only 5% of the recommendations were left out as non-relevant. All of the recommenda-
tions left out were from the lower relevance group. Only 18% of the recommendations
were classified wrongly in the higher relevance group (including the items that still be-
longed to the lower relevance group). Only 3% of the recommendations were classified
under the wrong source item in the higher relevance group.

A Method for Determining Ontology-Based Semantic Relevance 687

5 Conclusions

Previous work in knowledge-based recommendation and object relevance has focused
on measuring the similarity of feature vectors [7,15], where similarity measures are
used to calculate nearest neighbours from a vector space. This approach works well in a
single domain, where features can be predefined and weights assessed for features. The
tf-idf methods have shown promising results in measuring the relevance in information
retrieval from natural language documents [3].

Our work extends such measures by adopting the ontology and the annotation triples
as a source for feature matching. In terms of tf-idf, we have extended the idf component
to consider three essential features of ontology-based systems, namely separation of
classes and instances, support for subsumption and support for part-of relations. We
have implemented the method in the semantic portal CULTURESAMPO. In addition, we
have conducted a user study that gives preliminary empirical evidence of the value of
the approach.

Acknowledgements

This research is part of the National Finnish Ontology Project (FinnONTO) 2003-
20071, funded mainly by The National Technology Agency (Tekes) and a consortium
of 37 companies and public organisations.

References

1. Alani, H., Brewster, C.: Ontologies and knowledge bases: Ontology ranking based on the
analysis of concept structures. In: Proceedings of the 3rd international conference on Knowl-
edge capture K-CAP 2005 (2005)

2. Athanasis, N., Christophides, V., Kotzinos, D.: Generating on the?y queries for the semantic
web: The ics-forth graphical rql interface. In: Proceedings of the Third International Seman-
tic Web Conference, pp. 486–501 (2004)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, ACM
Press, New York (1999)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–
43 (2001)

5. Berry, M.: Survey of Text Mining Clustering, Classification, and Retrieval. Springer, Heidel-
berg (2004)

6. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema W3C
Recommendation 10 February 2004. Recommendation, World Wide Web Consortium
(February 2004)

7. Burke, R.: Knowledge-based Recommender Systems. In: A. Kent (ed.) Encyclopedia of Li-
brary and Information Systems. vol. 69, Supplement 32. Marcel Dekker (2000)

8. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs,
J.: Swoogle: a search and metadata engine for the semantic web. In: Proceedings of the
thirteenth ACM international conference on Information and knowledge management, pp.
652–659 (2004)

1 http://www.seco.tkk.fi/projects/finnonto/

688 T. Ruotsalo and E. Hyvönen

9. Klein, H.K., Hirschheim, R., Lyytinen, K.: Information Systems Development and Data
Modeling: Conceptual and Philosophical Foundations. Cambridge University Press, Cam-
bridge (1995)

10. Holi, M., Hyvönen, E.: Fuzzy view-based semantic search. In: Proceedings of the 1st Asian
Semantic Web Conference (ASWC2006), Beijing, Springer, Heidelberg (2006)

11. Hyvönen, E., Ruotsalo, T., Häggström, T., Salminen, M., Junnila, M., Virkkilä, M., Haaramo,
M., Mäkelä, E., Kauppinen, T., Viljanen, K.: Culturesampo–finnish culture on the semantic
web: The vision and first results. In: Developments in Artificial Intelligence and the Semantic
Web - Proceedings of the 12th Finnish AI Conference STeP 2006, October 26-27 (2006)

12. Hyvönen, E., Valo, A., Komulainen, V., Seppälä, K., Kauppinen, T., Ruotsalo, T., Salmi-
nen, M., Ylisalmi, A.: Finnish national ontologies for the Semantic Web - towards a content
and service infrastructure. In: Proceedings of International Conference on Dublin Core an
Meltadata Applications (DC 2005) (November 2005)

13. Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 538–543 (2002)

14. Maedche, A., Staab, S., Stojanovic, N., Struder, R., Sure, Y.: Semantic portal — the SEAL
approach. MIT Press, Cambridge (2003)

15. McSherry, D.: A generalized approach to similarity-based retrieval in recommender systems.
Artificial Intelligence Review 18, 309–341 (2002)

16. Mäkelä, E., Hyvönen, E., Saarela, S.: Ontogator — a semantic view-based search engine
service for web applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg
(2006)

17. Rodriquez, A., Egenhofer, M.: An asymmetric and context-dependent similarity measure.
International Journal of Geographical Information Science 18(3), 229–256 (2004)

18. Rugg, G., McGeorge, P.: The sorting techniques: a tutorial paper on card sorts, picture sorts
and item sorts. Expert Systems 14(2), 80–93 (1997)

19. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Technical
report tr87-881, Cornell University Ithaca, NY (1987)

20. Xi, W., Fox, E.A., Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: Simfusion: measuring
similarity using unified relationship matrix. In: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, pp. 130–137
(2005)

Semantic Grouping of Social Networks in P2P Database
Settings�

Verena Kantere, Dimitrios Tsoumakos, and Timos Sellis

School of Electr. and Comp. Engineering, National Technical University of Athens
{vkante, dtsouma, timos}@dbnet.ece.ntua.gr

Abstract. Social network structures map network links to semantic relations be-
tween participants in order to assist in efficient resource discovery and informa-
tion exchange. In this work, we propose a scheme that automates the process
of creating schema synopses from semantic clusters of peers which own au-
tonomous relational databases. The resulting mediated schemas can be used as
global interfaces for relevant queries. As our experimental evaluations show, this
method increases both the quality and the quantity of the retrieved answers and
allows for faster discovery of semantic groups by joining peers.

1 Introduction

In the variety of P2P applications that have been proposed, Peer Data Management
Systems (PDMSs) (e.g., [6, 19]) hold a leading role in sharing semantically rich in-
formation. In a PDMS, each peer is an autonomous source that has a local schema.
Sources store and manage their data locally, revealing part of their schemas to the rest
of the peers. Due to the lack of global schema, they express and answer queries based
on their local schema. Peers also perform local coordination with their acquaintees,
i.e., their one-hop neighbors in the overlay. During the acquaintance procedure, the two
peers exchange information about their local schemas and create mediating mappings
semi-automatically [9]. The establishment of an acquaintance implies an agreement for
the performance of data coordination between the acquaintees based on the respective
schema mapping. However, peers do not have to conform to any kind of data or schema
transformation to establish acquaintances with other peers and participate in the sys-
tem. The common procedure for query processing in such a system is the propagation
of the query on paths of bounded depth in the overlay. At each routing step, the query is
rewritten to the schema of its new host based on the respective acquaintance mappings.
A query may have to be rewritten several times from peer to peer till it reaches nodes
that are able to answer it sufficiently in terms of quality but also quantity.

In such systems, in order to enable efficient data sharing between heterogeneous
sources, the properties of social networks [21] are usually applied: Just as humans di-
rect their queries either to personal acquaintances or other knowledgeable individuals,

� This work has been funded by the project PENED 2003. The project is cofinanced 75% of
public expenditure through EC - European Social Fund, 25% of public expenditure through
Ministry of Development - General Secretariat of Research and Technology and through pri-
vate sector, under measure 8.3 of OPERATIONAL PROGRAMME ”COMPETITIVENESS”
in the 3rd Community Support Programme.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 689–699, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

690 V. Kantere, D. Tsoumakos, and T. Sellis

Group
Schema

Q

Fig. 1. Query directed towards a
group schema

StuartDB

P2P Layer

LuDB

P2P Layer

DavisDB

P2P Layer

SDavisDB :

Visits(Pid, Date, Did)

Disease (Did, DisDescr, Symptom)

Treatment (Did, Drug, Dosology)

SLuDB :

Sickness(Did, AvgFever, Drug)

Patients(Insurance#, Did, Age, Ache)

SStuartDB:
Treatment(Pid, Did, Date, Symptom, TreatDescr, DisDescr)

Fig. 2. Part of a P2P system with peer-databases from
the health environment

peers try to identify other participants in the overlay with interests that match theirs.
Similar to human social networks, social networking services such as MySpace [15],
Orkut [17], etc, form virtual communities, with each participant setting her own char-
acteristics and interests. Their goal is to allow members to form relationships through
communication with other members and sharing of common interests. Extending this
paradigm, computing social networks consist of a mesh of interconnected nodes (peers).
Initially, each of the nodes is connected to a random subset of peers. Gradually, nodes
get acquainted with each other, with the new connections indicating semantic proximity.
Although not explicitly stated, there has been considerable work to apply the principle
of semantic grouping and routing in order to improve performance in distributed sys-
tems (e.g., [2, 16, 10, 18, 1], etc).

Assuming a social network organization in a PDMS, an interesting question is how
to automatically create a synopsis of the common interests of a group of semantically
related nodes. This will be a mediating schema representative of the group along with
its mappings with the local databases. Queries can then be expressed on this medi-
ated schema (see Figure 1). This functionality is desirable for multiple reasons: First, it
allows queries to be directed to a single, authoritative schema. Second, it actively expe-
dites the acquaintance between semantically related peers. Finally, it minimizes human
involvement in the process of creating/updating the group schema. Until now, nodes
have been organized by means of a human-guided process (usually by one or more ad-
ministrators and application experts) into groups of peers that store semantically related
data. The administrator, using schema matching tools as well as domain knowledge,
initiates and maintains these synopses. This approach requires manual work, extensive
peer coordination and repetition of this process each time the group changes.

As a motivating example, envision a P2P system where the participating peers are
databases of private doctors of various specialties, diagnostic laboratories and databases
of hospitals. Figure 2 depicts a small part of this system, where the peer databases (or
else, pDBMSs) are: DavisDB - the database of the private doctor Dr. Davis, LuDB -
the database of pediatrist Dr Lu and StuartDB - the database of the pharmacist, Mr Stu-
art. A P2P layer, responsible for all data exchange of a peer with its acquaintees, sits

Semantic Grouping of Social Networks in P2P Database Settings 691

on top of each database. Among others, the P2P layer is responsible for the creation and
maintenance of mappings of local schemas during the establishment of acquaintances
towards the line of [9]. Moreover, each peer owns a query rewriting and a query-schema
matching mechanism. The schemas of the databases are shown in Figure 2.

We would like to automatically produce a merged schema for all three peers of our
example, semantically relevant to their local schemas. Such a merged schema could be
the following:

Disease/Sickness(Did, DisDescr, Symptom, Drug)
Visits/Patients(Pid/Insurance#, Did, Date, Age, Ache)
Treatment(Did,Drug, Dosology)

Obviously, in the merged schema we would like alternative names for relations or at-
tributes (separated by ‘/’ above). We would also like the merged schema to contain
relations or attributes according to their frequency in the set of local schemas. For ex-
ample, the attribute Patients.AvgFever is not present, possibly because the respective
concept is not considered to be frequent in the set of local schemas.

In this paper, we describe a mechanism that operates on a semantically clustered
PDMS and automatically creates relational schemas that are representative of the ex-
isting clusters. Given the semantic neighborhoods, our system can initiate the creation
of a mediating schema SG that summarizes the semantics of the participating database
schemas. It is created by the gradual merging of peer schemas along the path followed
by the process. We call interest or semantic groups the semantic clusters that exist in
social networks operating on PDMSs; moreover, we call group schema the inferred
schema of the group SG . SG holds mappings with each of the peers involved in its cre-
ation and functions as a point of contact for all incoming queries, whether from inside
or outside the semantic neighborhood. Thus, requesters of information need only main-
tain mappings and evaluate queries against one schema, instead of multiple ones. Our
experimental evaluation shows that our group creation process increases both the accu-
racy and the number of answers compared to individually propagating and answering
queries in an unstructured PDMS.

2 Interest Group Creation

Our goal in creating a group schema is to represent the semantic clusters in a social
network using a distributed process that iteratively merges local schemas into the final
group schema that preserves their most frequent semantics.

In the following, we assume a PDMS with a social-network organization of peers,
i.e., semantically relevant pDBMSs are acquainted or close in the overlay. This can
be achieved either manually or using one of the proposed schemes (e.g., [12, 16]). Fi-
nally, we also assume that peer mappings between acquaintees are of the widely-known
GAV/LAV/GLAV form [6, 13] and peer schemas are relational, (i.e., the only internal
mappings are foreign key constraints). Moreover, peers do not carry semantic informa-
tion about their schemas and mappings.

692 V. Kantere, D. Tsoumakos, and T. Sellis

2.1 Group Inference

In this section, we describe the process through which a group schema emerges from a
set of clustered nodes in our system. The group-creation procedure (or group inference)
comprises the following steps:

– Initialization: Who and when initiates the group schema inference
– Propagation: How does the process advance among peers of the same group
– Termination and Refinement: When is the process over/reiterated

Initialization: The nature of our application requires that the group inference is per-
formed in a distributed manner, without global coordination. Peers should be able to
start the process that creates the respective schema with minimum message exchange.
In our system, each member of the social group is eligible to initiate the inference pro-
cess. Nevertheless, such groups may consist of numerous participants resulting in very
frequent collisions among competing initiators. Hence, we only allow active members
to become the initiators of the process. This is enforced by a system-wide parameter
that defines the minimum number of queries posed in the most recent time frame. Intu-
itively, more active peers have a better knowledge of the social network and the schemas
of the other participants through the answers they receive.

The initiator’s local schema becomes a point-of-reference regarding the inferred one.
Thus, the peer schemas considered for the formation of the group schema should not
differ semantically a lot from the schema of the initiator. Specifically, we require that
the participating local schemas should be at least t-similar to the initiator’s schema: t
is a parameter that mainly determines how specialized (only peers very similar to the
initiator considered) or general (a broad collection of peers participate in the process)
the inferred schema will be. The initiator peer is called the originator of the group, its
schema is the origin of the group schema and the maximum similarity distance between
the origin and the peer schemas that participate in the group schema inference is the
semantic radius of the group. The following function calculates the directed semantic
similarity, SS, of two relational schemas:

SS(S,T) = ∑i ∑ j wi jMappedT (SRi j)
∑i ∑ j wi jSRi j

In the above function, S is the source schema and T is the target schema. SS calculates
the portion of S’s attributes (SR) that are mapped on T , with the indices i, j referring
to the jth attribute of the ith relation. Also, wi j > 1 for attributes that belong to relation
keys and wi j = 1 otherwise. Obviously, SS(S,T) �= SS(T,S) in general. SS achieves to
measure semantic similarity because it takes into consideration the mapping of concepts
beyond their structural interpretations on the schema level. In our setting we define
a distinct concept of a schema S to be each element R.A, where A is an attribute of
relation R of schema S1. Moreover, since SS ignores the schema structure, it is very
easily calculated.

Propagation: The initiator I (with schema SI) of the inference process initializes the
group schema to its own and creates a stack ST (I) with its acquaintees that are part of

1 For more details on concepts, see [12].

Semantic Grouping of Social Networks in P2P Database Settings 693

the cluster. Specifically, ST (I) = {A1,A2, ...,Am} is an ordered set of elements A j =
{Pj,SS(SI,SPj)}, where Pj is a peer with schema SPj . Elements A j refer to the I’s
most similar acquaintees: SS(SI,SPj) ≥ t, j = 1, ..,m and SS(SI,SPj) ≥ SS(SI,SPj+1),
j = 1, ..,m−1. The initiator propagates the inference procedure to the first peer on the
stack. The latter is supposed to merge its own schema with the group schema it re-
ceives according to the merging procedure described in the section 2.2. Every peer P
on the network path of the inference process determines its acquaintees Pj for which
SS(SI,SPj) ≥ t, adds the respective pair Pj, SS(SI,SPj), to ST (I) and orders it. Any
peer P on the inference process path calculates SS(SI,SPj) indirectly, as the product:
SS(SI,SP) ·SS(S′P,SPj), where S′P is the part of SP mapped on SI . Essentially, SS(SI,SP)
aims to measure how much of the semantics of SI can be found on schema SP, indepen-
dently of other semantics that the latter captures. The only way to measure this (without
automatic matching) is through the chain of mappings of SI all the way to SP. Thus, the
value of SS(SI,SP) depends on the path followed by the inference process and fails to
consider concepts that exist both in SI and SP but not in the schemas of intermediate
nodes.

In order for this formula to produce a satisfactory result, the existing clustering in
the social network should assure that the similarity between local schemas decreases
with the hop-distance of the respective peers in the overlay. Therefore, schemas that are
considered later in the process will have lower similarity than previously considered
ones. Moreover, if a peer P already in ST(I) is considered for addition, the entry with
the highest SS(SI,SP) value is kept.

Even though the participation or not of peers in the inference process is judged by a
part of their schemas, their whole schema contributes to the inferred group schema (see
subsection 2.2). Intuitively, the goal of the inference process is to produce a schema that
represents semantics encapsulated in the cluster. In order to determine the cluster’s se-
mantic borders we use the semantics of the initiator as reference. This way, the process
is safe from producing a schema too broad or distorted from the interests of the initiator.

Termination: As aforementioned, the group inference procedure ends when the stack
of participating peers becomes empty. However, if too many peers own schemas very
similar to the originator’s schema or the similarity threshold t is too small (i.e., the
semantic radius of the inferred group is big), then it may be the case that the stack is
provided at each step with a lot of new entries. Thus, the inference procedure is pro-
longed taking into account a big number of peers. After a certain number of iterations,
there is usually no point of considering more peer schemas in the inference procedure,
because they do not alter the schema significantly. In order to expedite the inference
process and reduce the exchanged messages, we add a limit to the maximum number
of encountered peer schemas, MaxP, as a termination condition. MaxP is not a TTL
condition, since successive hops are not always on the same path; MaxP refers to the
total number of participating peers and not just the peers on one path.

2.2 Schema Merging Algorithm

The goal of the merging procedure is to produce a schema that represents the semantics
of the majority of the peers that belong to the respective cluster. This is achieved gradu-

694 V. Kantere, D. Tsoumakos, and T. Sellis

ally by merging the schemas of peers on consecutive steps of the path that the merging
procedure follows. We need a merging procedure that preserves the most popular con-
cepts of the respective peer schemas and produces a schema representative of almost
all the source schemas. Thus, we require a merging procedure that performs high com-
pression before throwing away schema elements (i.e., relations or attributes). Finally,
we require that merging is only based on available information on the peers, i.e., it
solely exploits the peer schemas and the peer mappings. Each mapping is considered
to be a set of 1-1 correspondences between attributes that hold with an optional set of
value and join constraints on some attributes (see [12] for details).

The schema merging procedure is designed with respect to the following dictations:

D1 Fewer relations with more attributes are preferred to more relations with fewer
attributes

D2 The semantic relevance of two relations is proportional to the number of correspon-
dences between their sets of attributes

D3 If the keys of two relations are mapped thoroughly, both relations are considered to
be projections of the same relation with the same key

D4 The key of a merged relation consists of the keys of both relations that are merged
D5 If two attributes are merged and at least one of them is a key, then the merged

attribute is part of the key of the merged relation
D6 Correspondences that involve the same attribute imply that all involved attributes

are semantically equivalent
D7 Correspondences that are based on any value constraints are considered valid only

under certain conditions and never produce merged attributes.
D8 There are two pre-specified constants that represent the maximum number of re-

lations that the schema of the interest group is allowed to have and the maximum
number of attributes per relation

Briefly, the schema merging procedure produces the interest group schema but also a
set of internal mappings and a dictionary. The internal mappings are the peer mappings
that were not consumed in the successive schema merges. These hold additional syntac-
tic and implicit semantic information for the group schema elements; thus, they can be
very helpful to peers that would like to join the group and create mappings to their local
schema. Moreover, this set of mappings includes all mappings with value constraints
met during the merging procedure. Such mappings cannot be consumed: the involved
relations/attributes cannot be merged, since they are mapped under certain conditions
(the value constraints). Furthermore, the merged schema has alternative keywords for
the same element that result from the merged mapping correspondences. These alterna-
tives are entered in the dictionary that accompanies the group schema. The dictionary
is then used to identify semantic similarity between a group and a new node and also
assist in the creation of mappings if so desired.

The algorithm first merges relations that share the same key and then those that do
not. In the latter case, priority is given to relations that share most of their attributes.
Additional criteria in order to break ties can be based on whether the corresponding
attributes are parts of the relation keys, or whether unmapped attributes are parts of the
relation keys. Nevertheless, refining the algorithm based on additional criteria is future
work. At the end of the schema merging procedure, i.e., when all relevant peer schemas

Semantic Grouping of Social Networks in P2P Database Settings 695

Disease

SIG

VisitsTreatment

Did Descr Symptom Pid Date DidDid Drug Dosology

Sickness

SLuDB

Patients

AvgFever Insurance# Age AcheDid Drug Did

M1 M1 M1M1

Fig. 3. SIG is initialized to SDavisDB and there is mapping M1 between SIG and SLuDB

Disease/
Sickness

SIG

VisitsTreatment
Did

Descr
Symptom/
AvgFever

Pid Date DidDid Drug Dosology

Insurance#

Age

Ache

Did

Patients

Drug

M1

Fig. 4. Relations Disease and Sickness of Figure 3 are merged

have been merged, relations and relation attributes that have been rarely met during
the procedure can be dropped. In order to do this, we need to keep a counter for each
of them during the merging. For a thorough analysis and presentation of the merging
algorithm the reader is referred to [11]. We present a simple merging example.

Example: Assume the pDBMSs of the motivating example in Section 1. The schemas
of DavisDB and LuDB are presented in Figure 2; assume that the databases have the
following mapping:

M1LuDB DavisDB:
Disease (Did, , Symptom), Treatment (Did, Drug,):-

Sickness(Did, AvgFever, Drug),
where the correspondences Symptom = AvgFever and Disease = Sickness are implied
and ’ ’ is introduced for attributes that are not needed.

As shown in Figure 3, there are three correspondences that are encapsulated in map-
ping M1. We assume that the peer of Dr Davis initializes the schema merge. Thus, the
group schema SIG is initialized to SDavisDB. First, all relations of SLuDB are added to
SIG. Relations Disease and Sickness are merged in one (Figure 4), since they share
the same key; thus, attributes Symptom and AvgFever are merged. The correspon-
dence Disease/Sickness.Drug = Treatment.Drug is kept as an internal one. Also, the
dictionary D is enriched with correspondences Disease = Sickness and Symptom =
AvgFever; actually the schema keeps one name for each relation or attribute from the al-
ternative ones. At the end of the schema merging procedure we propose that the schema

696 V. Kantere, D. Tsoumakos, and T. Sellis

Disease/Sickness/Treatment

SIG

Visits

Did

Descr
Symptom/
AvgFever Pid Date Did

Drug Dosology

Insurance#

Age

Ache

Did
Patients

Fig. 5. Relations Disease/Sickness and Treatment of Figure 4 are merged

keeps for relation and attribute names the most common ones encountered during the
procedure. Relations Disease/Sickness and Treatment are merged (Figure 5), since they
are the only ones related with a mapping. Now there is one attribute named ‘Drug’ and
it is part of the relation key, even though just one of the attributes that where merged
was a key. Additional iterations can merge relations based on foreign key constraints,
since no other internal mappings exist.

3 Performance Evaluation

To evaluate the performance of the proposed group inference procedure, we use a
message-level simulator that implements it over an unstructured overlay of semanti-
cally clustered nodes. The clustering is performed using the GrouPeer system [12]. In
GrouPeer, peers decide to add new (and abolish old) one-hop neighbors in the overlay
(acquaintees) according to the accuracy of the answers they receive from remote peers.
This is measured using a function that tries to capture the semantic similarity between
rewritten versions of a query. Specifically, requesters (i.e., peers that pose queries) accu-
mulate correct and erroneous mappings with remote peers through a learning procedure.
Based on these mappings, they decide to become acquainted with peers that store in-
formation similar to their interests. The result is an effective semantic clustering of the
overlay, where the accuracy of query rewritings and answers is a lot higher compared
to the unclustered overlay (for details see [12]).

We compare the query evaluation performed by GrouPeer with the evaluation that
utilizes the inferred groups on the overlay. When the first group is created, we direct
relevant queries to the inferred schema. The basic performance metrics are the average
accuracy of answers to the original queries (i.e., the similarity of the rewritten query
that is answered over the original one), as well as the number of nodes that provide an
answer. Similarity is calculated by a formula presented in [12] that identifies erroneous
or not-preserved correspondences in mappings, which degrade the complete and perfect
rewriting. To identify the gains of our grouping approach, we present the percentile in-
crease/decrease in accuracy and number of answers compared to GrouPeer’s clustering
as these are measured on the first created group. Participants of the group hold map-
pings with the group schema; thus, when the query is rewritten to the group schema,
the successive rewritings through the chain of mappings are avoided. Non-members
create mappings with relevant group schemas.

We present results for 1,000-node random graphs (an adequate number of partici-
pants regarding our motivating application) with average node degrees around 4, cre-
ated by the BRITE [14] topology generator. Results are averaged over 20 graphs of the

Semantic Grouping of Social Networks in P2P Database Settings 697

100 200 300 400 500
MaxP

-10

0

10

20

30

40

50

Si
m

ila
ri

ty
 I

nc
re

as
e

(%
)

t=0.2
t=0.6
t=0.8
t=1.0

Fig. 6. % Increase in answer
similarity over variable MaxP
and t

100 200 300 400 500
MaxP

0

500

1000

1500

2000

2500

3000

3500

%
 I

nc
re

as
e

in
 A

ns
w

er
s

t=0.2
t=0.6
t=0.8
t=1.0

Fig. 7. % Increase in number
of answers over variable MaxP
and t

5000 10000 15000 20000 25000 30000 35000 40000
query number where group is created

0

10

20

30

Si
m

ila
ri

ty
 I

nc
re

as
e

(%
)

50 requesters
100 requesters
200 requesters
400 requesters

Fig. 8. % Increase in answer
similarity over variable group
creation time

same type and size, with multiple runs in each. Results using power-law topologies
constructed by Inet-3.0 [8] with the same number of peers are qualitatively similar.

For the schemas stored at each node, we use an initial schema whose relations and
attributes are uniformly distributed at the nodes. The initial schema comprises of 5
relations and 33 attributes. Seven attributes are keys with a total of 11 correspondences
between them. Each peer stores 10 table columns (attributes) on average. Queries are
formed on a single or multiple tables if applicable (join queries). The maximum size
of the inferred schema is always in the order of the size of the initial schema used to
produce the local ones during start-up.

First, we vary the maximum group size limit, MaxP, as well as the minimum simi-
larity of participating peers to the initiator node, t. Figures 6 and 7 show the obtained
results for 100 requesters and maximum 100 queries each. As t increases, the group
becomes more specialized and less general. In contrast, small similarity values produce
groups too general that incorporate many concepts foreign to the initiator. This results
in specialized groups (i.e., high value of t) that receive fewer queries, while more “gen-
eral” ones receive more but cannot answer them all satisfactorily. As the graphs show,
there exists a point where grouping ceases to increase its relative gains to clustering.

Both metrics increase as MaxP increases. This is reasonable since more nodes can
participate and produce results. Very specialized grouping causes significantly less pop-
ulated groups, which in turn affects the number of returned answers. As groups get more
general (around t = 0.6), an improvement of 13-23% in accuracy is achieved, while the
gains in replies are 40-900%. As t decreases, the gains in accuracy decrease but more
results are generated. These curves show that a t value of around 0.65 with the group
initiator and MaxP = 80 achieve good results without too much generalization. These
will be our default values for the rest of this discussion.

Next, we try to determine the quality of the created group based on the quality of
the semantic clustering. Figure 8 show the percentile improvement in the similarity
of answers when the first group is created at various points (i.e., number of queries)
in the clustering process. The results show a decrease in the relative gains in accuracy
which is due to the improvement of clustering with time. What is important is that
groups that are allowed to be created as soon as possible (which would be the com-
mon case) show about 20% more accurate answers and return about three times more
results compared to clustering, even though the inference procedure is performed on a
less optimally clustered overlay. The clustering process is expedited with more active

698 V. Kantere, D. Tsoumakos, and T. Sellis

requesters, which suits the purposes of grouping. An extended experimental study is
presented in [11].

4 Related Work

There exist several interesting research efforts that have discussed about semantics and
semantic clustering of peers. The work in [3] is one of the first to consider semantics
in P2P systems and suggest the construction of semantic overlay networks, i.e., SONs.
Various other researchers have attempted to go beyond the a priori static formulation of
SONs: the work in [18] suggests the dynamic construction of the interest-based short-
cuts in order for peers to route queries to nodes that are more likely to answer them.
Inspired by this work, the authors of [20] and [7] exploit implicit approaches for discov-
ering semantic proximity based on the history of query answering and the least recently
used nodes. In the same spirit, the work in [4] presents preliminary results about the
clustering of the workload on the popular e-Donkey and Kazaa systems.

Finally, Bibster [5] is a project that exploits ontologies in order to enable P2P sharing
of bibliographic data. Ontologies are used for importing data, formulating and routing
queries and processing answers. Peers advertise their expertise and learn through on-
tologies about peers with similar data and interests.

5 Summary

In this paper we have described a method to automatically create schemas in order to
characterize semantic clusters in PDMSs. Our scheme operates on clustered unstruc-
tured P2P overlays. By iteratively merging relevant peer schemas and maintaining only
the most frequent common characteristics, we provide a schema representative of the
cluster. Group schemas can be used in order to increase both query performance and
the volume of returned data. Our experimental evaluations confirm these observations
in a detailed comparison with the GrouPeer system.

References

[1] Aberer, K., Cudre-Mauroux, P., Hauswirth, M., Van Pelt, T.: Gridvine:Building internet-
scale semantic overlay networks. In: International Semantic Web Conference (2004)

[2] Cohen, E., Fiat, A., Kaplan, H.: Associative search in peer to peer networks: Harnessing
latent semantics. In: INFOCOM (2003)

[3] Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. In: Technical
Report (2003)

[4] Le Fessant, F., Handurukande, S., Kermarrec, A.-M., Massoulie, L.: Clustering in Peer-to-
Peer File Sharing WorkLoads. In: IPTPS (2004)

[5] Haase, P., Schnizler, B., Broekstra, J., Ehrig, M., van Harmelen, F., Menken, M., Mika, P.,
Plechawski, M., Pyszlak, P., Siebes, R., Staab, S., Tempich, C.: Bibster - a semantics-based
bibliographic peer-to-peer system. In: Journal of Web Semantics (2005)

[6] Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema Mediation in Peer Data Management
Systems. In: ICDE (2003)

Semantic Grouping of Social Networks in P2P Database Settings 699

[7] Handurukande, S., Kermarrec, A.-M., Le Fessant, F., Massoulie, L.: Exploiting Semantic
Clustering in the eDonkey P2P Network. In: ACM SIGOPS, ACM Press, New York (2004)

[8] Jin, C., Chen, Q., Jamin, S.: Inet: Internet Topology Generator. Technical Report CSE-
TR443-00, Department of EECS, University of Michigan (2000)

[9] Kantere, V., Kiringa, I., Mylopoulos, J., Kementsientidis, A., Arenas, M.: Coordinating P2P
Databases Using ECA Rules. In: DBISP2P (2003)

[10] Kantere, V., Tsoumakos, D., Roussopoulos, N.: Querying Structured Data in an Unstruc-
tured P2P System. In: WIDM (2004)

[11] Kantere, V., Tsoumakos, D., Sellis, T.: Semantic Grouping of Social Networks in P2P
Database Settings. Technical Report TR-2007-2, National Technical Un. of Athens (2007),
http://www.dbnet.ece.ntua.gr/pubs/uploads/TR-2007-2

[12] Kantere, V., Tsoumakos, D., Sellis, T., Roussopoulos, N.: GrouPeer: Dynamic Clustering
of P2P Databases. Technical Report TR-2006-4, National Technical Un. of Athens (2006),
http://www.dbnet.ece.ntua.gr/pubs/uploads/TR-2006-4

[13] Levy, A.Y.: Answering Queries Using Views: A Survey. VLDB Journal (2001)
[14] Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal Topology

Generation. In: MASCOTS (2001)
[15] MySpace website: http://www.myspace.com
[16] Ooi, B., Shu, Y., Tan, K.L., Zhou, A.Y.: PeerDB: A P2P-based System for Distributed Data

Sharing. In: ICDE (2003)
[17] Orkut website: http://www.orkut.com
[18] Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient Content Location Using Interest-Based

Locality in Peer-to-Peer Systems. In: INFOCOM (2003)
[19] Tatarinov, I., Halevy, A.: Efficient Query Reformulation in Peer-Data Management Systems.

In: SIGMOD (2004)
[20] Voulgaris, S., Kermarrec, A.-M., Massoulie, L., van Steen, M.: Exploiting Semantic Prox-

imity in Peer-to-Peer Content Searching. In: FTDCS (2004)
[21] Wang, F., Moreno, Y., Sun, Y.: Structure of peer-to-peer social networks. Physical Review

E, 73 (2006)

http://www.dbnet.ece.ntua.gr/pubs/uploads/TR-2007-2
http://www.dbnet.ece.ntua.gr/pubs/uploads/TR-2006-4
http://www.myspace.com
http://www.orkut.com

Benchmarking RDF Production Tools

Martin Svihla and Ivan Jelinek

Czech Technical University in Prague,
Karlovo namesti 13, Praha 2, Czech republic

{svihlm1, jelinek}@fel.cvut.cz
http://webing.felk.cvut.cz

Abstract. Since a big part of web content is stored in relational databases
(RDB) there are several approaches for generating of semantic web meta-
data from RDB. In our previous work we designed a novel approach for
RDB to RDF data transformation. This paper describes experimental
comparison of our system with several means of RDF production. We
benchmarked both systems for the RDB to RDF transformation and native
RDF repositories. The test results show a good performance of our system
but also bring a new look at the effectiveness of the RDF production.

1 Introduction

It is widely accepted fact that the growth of the semantic web is dependent
on the mass creation of metadata that will cover current web resources. Since
the most of web content is backed by relational databases our previous work is
focused on the transformation of relational data into RDF metadata, which is
based on mapping between a relational database schema and existing RDF-S
ontology. We have recently proposed METAmorphoses [1] – a new data trans-
formation model based on two layers. This model is designed with regard to
its performance, robustness and usability. Our work stands on the theoretical
foundations of the semantic web technologies, but we also took into the account
practical issues while developing the formal model. In this paper we briefly in-
troduce our approach and compare our system with several other approaches for
the RDB to RDF transformation as well as with some native RDF repositories
built over relational databases. Our approach appears to be the fastest solution
for RDF production between selected systems but results shows much more gen-
eral conclusions – it appears that a well designed RDF production directly from
RDB can be faster than querying the native RDF repositories.

2 METAmorphoses

The METAmorphoses processor1 is a data transformation tool developed in our
previous work [1]. It transforms relational data to RDF according to mapping
from a relational schema into an existing ontology. The transformation process
1 Available at http://metamorphoses.sourceforge.net/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 700–709, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Benchmarking RDF Production Tools 701

has two steps: (i) mapping from a particular RDB schema into an existing RDF-
S ontology and (ii) creating RDF documents from relational data based on the
mapping from the first step. Thus the model has two layers (figure 1). The
mapping between a database schema and ontology consists of mapping elements
and is processed in the mapping layer. A mapping element addresses relational
concepts by SQL queries. The mapping is used in the template layer, which
processes templates – XML-based documents for querying RDB. Since templates
have a form of RDF and uses SQL from mapping elements to fetch data from
RDB, they can be considered as a RDF view to RDB. METAmorphoses supports
all RDF and RDF-S features and is relational complete. We designed the system
so that it uses no RDF API, which is not neccessary for a data transformation
and can slow a performance of the system. This fact together with the template
user interface instead of RDF query language is a novel contribution to the RDB
to RDF data transformation. The system is implemented in Java language.

The scope of this paper does not allow us to describe the system in detail.
The complete description is available in [1].

Mapping Element
- relational concept
- ontology concept
- id

z

Person

+Name

+Age

Ontology

<person>

 <hasName/>

 <hasProject/>

</person>

RBDMS

 RDF

Template document

Template
layer

Mapping
layer

Fig. 1. Two-layer data transformation in METAmorphoses

3 Experiment Overview

3.1 Compared Systems

We compared 5 different systems in our experiments – 3 tools for the RDB to
RDF transformation (METAmorphoses, D2RQ and SquirrelRDF) and 2 native
RDF repositories with RDB back-end (Jena and Sesame1). Moreover, we per-
formed 2 different tasks with D2RQ and Jena in the most of tests – we queried
dataset with both SPARQL and graph API.

METAmorphoses v0.2.5 is briefly described above. To perform tests we
created a schema mapping between the relational schema of the experimental
dataset and RDF-S ontology and then queried the dataset using our template
documents as queries.

702 M. Svihla and I. Jelinek

D2RQ v0.5 [2] is a plug-in for the Jena [4], which uses mappings to rewrite
Jena API calls to SQL queries and passes query results as RDF triples up to the
higher layers of the Jena framework. Using D2RQ mapping it is possible to access
relational database as a virtual RDF graph via classical Jena API. This way the
relational database can be queried by SPARQL [8] or find(s p o) functions and
a result is an RDF. When testing D2RQ, we performed two separate experiments:
one with find(s p o) functions and another with SPARQL. We run D2RQ in
Jena v2.5.1 in these tests.

SquirrelRDF [3] is a tool which allows relational databases to be queried using
SPARQL. It provides a tool that creates just a rough mapping for a database
schema (its the näıve RDB to RDF mapping, described in [9], which does not
consider an ontology) and a set of different SPARQL interfaces. Result of the
SPARQL query over RDB is RDF. SquirrelRDF requires Jena v2.4 and we used
its API to perform SPARQL queries in our experiments.

Jena v2.5.1 (persistent DB model) [4] is a Java framework for building
semantic web applications. It provides a programmatic environment for RDF,
RDF-S, SPARQL and includes a rule-based inference engine. Jena can also store
RDF data persistently in relational databases. We stored testing dataset in the
persistent storage (backed by MySQL RDBMS) and then performed exactly the
same experiments as in the case of D2RQ.

Sesame v1.2.6 (persistent DB model) [6] is an open source Java framework
for storing, querying and reasoning with RDF and RDF-S. It can be used as a
database for RDF and RDF-S, or as a Java library for applications that need to
work with RDF internally. Sesame provides also relational storage for RDF data
(so called RDBMS-Sail). We uploaded our testing RDF dataset to the Sesame
persistent datastore (backed by MySQL RDBMS) and queried it with SeRQL
(the internal query language of Sesame) in our experiments.

3.2 Experiment Methodology

To compare the tools listed above we used micro-benchmarks. The measured as-
pect was a time of an RDF production on a given query. Each test task consisted
of (i) preliminary phase, where the source data, query engine and query were
prepared and (ii) measured phase, where the query was executed and resulting
RDF was written to standard output in the RDF/XML syntax. We decided to
measure also RDF output because the tested aspect is the RDF production. Ac-
cording to granularity of the benchmarking tool (10ms) and the very short time
of a query execution, we executed each query 100 times in a measured phase of
each task. A warm-up was executed before each measured task in order to avoid
JVM performance unbalance. A test consisted of the 5 same tasks executed in
a row and its result was an arithmetic mean computed of the 5 task times.

Benchmarking RDF Production Tools 703

3.3 Testing Dataset

The dataset used for the benchmarks is an XML dump of the DBLP computer
science bibliography [7]. XML was converted into an SQL database dump and
into an RDF representation2. The relational version of the dataset consists of
6 tables (InProceeding, Person, Proceeding, Publisher, RelationPersonIn
Proceeding, Series) without indexes and contains 881,876 records. These re-
lational data were stored in a MySQL database and used while testing META-
morphoses, D2RQ and SquirrelRDF. The RDF representation of DBLP contains
1,608,344 statements and it was loaded into relational backends of Jena2 and
Sesame1 to test them. To obtain more granular data, we created the tables
Proceeding500 and Proceeding1500, which contains the first 500 and 1500
records respectively from the table Proceeding. These data were also added to
the RDF version of the dataset.

3.4 Testing Environment

The tests ran on Intel Pentium M processor 1400MHz with 1536 MB of RAM.
The operating system was Linux (i386) with kernel version 2.6.12. Java Virtual
Machine was the one implementated by Sun Microsystems Inc., version 1.5.0 01-
b08. The RDBMS for storing data was MySQL server 5.0.30-Debian 1. All tests
were performed within a simple Java benchmarking framework called JBench3,
which provides an easy way to compare Java algorithms for speed. The CPU
timer based on the native JVM profiling API was used to obtain more accurate
times. This timer reports the actual CPU time spent executing code in the test
case thread rather than the wall-clock time that is affected by CPU load. The
granularity of the timer was 10ms.

4 Experiments and Results

Testing queries are described in SPARQL formal terminology even their form
vary between systems. In case of SPARQL and SeRQL queries we used CON-
STRUCT form so that the result was a graph - as well as in the case of META-
morphoses templates or Jena Graph API. To compare various aspects of the
RDF production, we divided our tests into three groups. In these groups we
tested RDF production according to a (i) result size, (ii) query graph pattern
complexity and (iii) query condition complexity.

4.1 Experiments with the Result Size

In this test set we performed very simple query, based on the following general
graph pattern:

(?s < rdf : type > < particular RDF − S class URI >)
2 Thanks to Richard Cyganiak (FU Berlin) for providing us the converted datasets.
3 Available at http://www.yoda.arachsys.com/java/jbench/

704 M. Svihla and I. Jelinek

We applied this query on RDF-S classes with different amount of RDF in-
dividuals and we compared the behaviour of the tools according to the size of
resulting RDF graph. We performed 5 tests in this group - we stepwise selected
all resources with type Series, Publisher, Proceeding500, Proceeding1500
and Proceeding. The specific SPARQL queries for these tests with number of
triples in the resulting graphs are in the table 1, results are listed in the table 2.

Table 1. Tests with the result size: queries

Test Query Result
no. triples
1.1 CONSTRUCT * WHERE {?r rdf:type d:Series.} 24

1.2 CONSTRUCT * WHERE {?r rdf:type d:Publisher.} 64

1.3 CONSTRUCT * WHERE {?r rdf:type d:Proceeding500.} 500

1.4 CONSTRUCT * WHERE {?r rdf:type d:Proceeding1500.} 1500

1.5 CONSTRUCT * WHERE {?r rdf:type d:Proceeding.} 3007

Table 2. Tests with the result size: results (times in ms)

Test no. (number of result triples)
System 1.1 (20) 1.2 (64) 1.3 (500) 1.4 (1500) 1.5 (3007)

METAmorphoses 84 230 1840 5692 13124

SquirrelRDF 830 1314 5180 16228 42504

D2RQ SPARQL 522 1332 7730 25530 45704

Jena SPARQL 482 1444 8296 27478 49968

D2RQL Graph API 366 1134 6434 20922 38253

Jena Graph API 368 1028 6902 22874 42588

Sesame1 SeRQL 194 423 2144 6624 12826

4.2 Experiments with the Graph Pattern Complexity

Test queries from this group consist of one graph pattern matching condition,
which identifies exactly one RDF resource:

(?s < my ontology : hasT itle > ”TITLE”̂ ˆxsd : string)

These queries differ in amount of resources and literals linked by graph pat-
terns in the query. The size of resulting RDF graph does not differ too much in
these queries so that we can compare tools according to complexity of the query
graph pattern. The graph patterns are depicted on the figure 4.3, test results
are listed in the table 3.

4.3 Experiments with the Query Condition Complexity

The tests in the third test set have a very simple graph pattern and they reffer
to individuals from only one RDF-S class. These tests differ in number and

Benchmarking RDF Production Tools 705

?inProc

"TITLE"

?pages
?inProc

"TITLE"

?pages

?proc ?title

?year

?inProc

"TITLE"

?pages

?proc ?title

?year

Test 2.1 Test 2.2

Test 2.3

?author ?name

?inProc

"TITLE"

?pages

?proc ?title

?year

Test 2.4

?author ?name

?publisher ?title

Fig. 2. Tests with the graph pattern complexity: graph patterns

Table 3. Tests with the graph pattern complexity: results (times in ms)

Test no. (number of result triples)
System 2.1 (2) 2.2 (4) 2.3 (6) 2.4 (8)

METAmorphoses 28 76 110 124
SquirrelRDF 640 678 768 808

D2RQ SPARQL 252 426 674 850

Jena SPARQL 212 360 456 552

D2RQL Graph API 106 224 434 506

Jena Graph API 94 150 204 262

Sesame1 SeRQL 100 198 272 324

type of conditions in the query. We performed these tests only with 5 systems
– we ommited Jena and D2RQ graph API because this API does not allow
straightforward queries with more conditions.

In SPARQL, there are two ways how to restrict possible solutions of a query:
graph pattern matching and constraining values. This test set contains 4 tests
that combines these conditions in various ways. The size of a resulting RDF is
very small so that tests are focused on the query algorithm performance.

The test queries are depicted on the figure 3. The first query (test 3.1) contains
a single graph pattern matching condition (similar to queries from the second
test set) and the resulting graph contains 8 triples. The second query (test 3.2)

706 M. Svihla and I. Jelinek

adds one graph pattern matching condition to the first query and fetches 2 triples
from the dataset. The query in the test 3.3 uses a condition with constraining
value to obtain the same result as the test 3.2. The last query (test 3.4) combines
conditions from test 3.1 and 3.3. The test times are in the table 4.

?proc ?title

?year

"22"

hasSeriesId

Test 3.1

?proc ?title

?year

"22"

hasSeriesId

Test 3.2

?proc ?title

?year

"22"

hasSeriesId

Test 3.4

?proc ?title

?year

?isbn

hasIsbn

Test 3.3

"22"

hasEditorId

FILTER ?isbn = "981-02-1055-8"

?isbn FILTER ?isbn = "981-02-1055-8"

hasIsbn

Fig. 3. Tests with the query condition complexity: graph patterns

Table 4. Tests with the query condition complexity: results (times in ms)

Test no. (number of result triples)
System 3.1 (8) 3.2 (2) 3.3 (2) 3.4 (2)

METAmorphoses 78 36 30 32
SquirrelRDF 636 582 9670 598

D2RQ SPARQL 618 336 17480 360

Jena SPARQL 544 240 30794 232

Sesame1 SeRQL 238 124 110 126

5 Discussion on Results

The test results show that our approach (METAmorphoses) was the fastest one
almost in all tests (except test 1.5, where Sesame1 had slightly better perfor-
mace).

In the first test set all systems have approximatelly linear computation per-
formace. This relation between the result size and performance is illustrated in
the table 5, which contains average times for producing 1 triple (100 times).
It is obvious that these times are almost the same for each system, but vary

Benchmarking RDF Production Tools 707

between systems. Interesting is also the test 1.1, where the time-for-one-triple
index is slightly higher for the most systems. We reason that this is caused by
a starting phase of the query execution, which does not depend on the result
size and is obvious at the query with a small resulting RDF (24 triples). The
relatively shortest starting phase appears with METAmorphoses, the longest is
with SquirrelRDF (more than 2 times higher than in other tests). Considering
this starting phase there is no point to compute the time-for-one-triple index in
the second and third test set – a resulting RDF is very small in these tests (2-8
triples).

The METAmorphoses was the fastest system also in the second test set. It
keeps its high performance and small growth of the test time with the growing
graph pattern complexity. The METAmorphoses has the best performance also
in all tests in the third test set 4. Sesame1 is a little bit slower but similarity of its
results with those of METAmorphoses is interesting. On the other hand, other
three systems are much more slower. It is obvious in the test 3.3, where result
times are very high. This is probably caused with non-optimized constraint value
handling in the Jena SPARQL query engine, which is used by all these systems.

Table 5. Time (in ms) for producing one triple (100 times) - based on the first test
set

Test no. (number of result triples)
System 1.1 (20) 1.2 (64) 1.3 (500) 1.4 (1500) 1.5 (3007)

METAmorphoses 3,5 2,67 3,68 3,79 4,36

SquirrelRDF 34,58 15,28 10,36 10,82 14,14

D2RQ SPARQL 21,75 15,49 15,46 17,02 15,2

Jena SPARQL 20,08 16,79 16,59 18,32 16,62

D2RQL Graph API 15,25 13,19 12,87 13,95 12,72

Jena Graph API 15,33 11,95 13,8 15,25 14,16

Sesame1 SeRQL 8,08 4,92 4,29 4,42 4,27

An interesting observation is that all systems based on Jena (SquirrelRDF,
D2RQ and Jena itself) have very similar results, especially in the first and third
test set. We explain this by the same algorithms for a resulting RDF graph
composition (in the first test set) and SPARQL query execution (in the third
test set). This means all solutions build above Jena shares all its advantages and
disadvantages and are limited by its performance. Sesame1 and METAmorphoses
had considerably different (and usually much better) test performance. Sesame1
is obviously optimized for querying big amounts of data and METAmorphoses
was designed to be a high performance data transformation tool. According to
the test results, we can say that our concepts implemented in METAmorphoses
shows higher performance compared to other tested data transformation systems
(D2RQ and SquirrelRDF). Our assumption that using RDF API is performance
limitation was correct – our system is faster than those with RDF API.

708 M. Svihla and I. Jelinek

METAmorphoses is also faster than tested native RDF persistent storages
(persistent DB model in Jena and Sesame1). This is very interesting point. We
proved that if one needs just to publish relational data in RDF, there is no need
to migrate RDB to RDF repository and query this repository. On-the-fly data
transformation (using METAmorphoses) can be done faster than queries over
native RDF repository.

We did not measured RAM footprint of tested systems. However, METAmor-
phoses does not build RDF graph in a memory (it is a stream data transformation
processor) thus its memory consumption does not depend on a size of a resulting
RDF. All other tested systems first create resulting graph in memory and then
serialize it, which means that their RAM footprint depends on a size of resulting
RDF graph.

6 Related Work

There are not many similar comparison experiments for RDF production tools
because the lack of a common query language and access method make bench-
marking RDF stores a time consuming task (as mentioned in [5]). However,
several attemps are described in [5], [11] or [10]. Due to different metodologies
and tested systems it is very difficult to compare results, but our performance
comparison can be considered as one of the most complex due to the number of
tested systems and performed tests, too.

7 Conclusion

In this work we performed three test sets focused on computational performance
to compare our ideas implemented in METAmorphoses with other RDB to RDF
transformation tools (D2RQ and SquirrelRDF) and native RDF stores with RDB
back-end (Jena and Sesame1). METAmorphoses had the best performance in
the most tests (12 out of 13) and also other performance aspects discused in the
section 5 were better. We proved that our system of data transformation has
higher performance than other similar tools as well as native RDF repositories.

The main contribution of this paper is that we showed the on-the fly data
transformation can be faster than queries over native RDF repository – thus
it is not neccessary to migrate relational data to RDF repositories in order to
publish them as RDF.

Acknowledgements

ThisresearchhasbeensupportedbyMSMTunderresearchprogramno.6840770014
and by the grant of the Czech Grant Agency no. 201/06/0648.

Benchmarking RDF Production Tools 709

References

1. Svihla, M., Jelinek, I.: The Database to RDF Mapping Model for an Easy Se-
mantic Extending of Dynamic Web Sites. In: Proceedings of IADIS International
Conference WWW/Internet, Lisbon, Portugal (2005)

2. Seaborne, A., Bizer, C.: D2RQ – Treating Non-RDF Databases as Virtual RDF
Graphs. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004.
LNCS, vol. 3298, Springer, Heidelberg (2004)

3. Steer, D.: SquirrelRDF, http://jena.sourceforge.net/SquirrelRDF/
4. Jeremy, J., et al.: Jena: implementing the semantic web recommendations. In:

Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, New York (2004)

5. Harth, A., Decker, S.: Optimized index structures for querying RDF from the Web.
In: Proceedings of LA-WEB (2005)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Proceedings of the First
International Semantic Web Conference, Sardinia, Italy (2002)

7. Ley, M.: DBLP Bibliography, http://www.informatik.uni-trier.de/∼ley/db/
8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-

ommendation (February 2005)
9. Beckett, D., Grant, J.: Semantic Web Scalability and Storage: Mapping Semantic

Web Data with RDBMSes. SWAD-Europe deliverable (February 2003)
10. Streatfield, M., Glaser, H.: Report on Summer Internship Work For the AKT

Project: Benchmarking RDF Triplestores. Technical Report. Electronics and Com-
puter Science, University of Southampton (November 2005)

11. Cyganiak, R.: Benchmarking D2RQ v0.2. Technical Report. Freie Universität
Berlin, Germany (June 2004)

http://jena.sourceforge.net/SquirrelRDF/
http://www.informatik.uni-trier.de/~ley/db/

Creating Learning Objects and Learning

Sequence on the Basis of Semantic Networks

Przemys�law Korytkowski1 and Katarzyna Sikora2

Szczecin University of Technology, Faculty of Computer Science and Information
Technology, ul. Zo�lnierska 49, 71-210 Szczecin, Poland

pkorytkowski@wi.ps.pl, ksikora@wi.ps.pl

Abstract. With the growing popularity of distance courses the demand
for good didactic materials also increases. However, preparing such ma-
terial is a complicated task, often done in an inproper way, by simply
transforming traditional teaching/learning material into a digital form.
In such case, one of the most important aspects of learning – the presence
of a teacher, is not considered. The following paper presents a method
that allows creating didactic materials for distance learning that could
compensate for the lack of direct contact with a teacher in the learning
process.

1 Introduction

The main goal of education, that every organisation should aim at, is not only
spreading information or raw knowledge, but creating competency. According
to [3], competency is a set of certain characteristics owned and used by a per-
son to achieve desired results. Knowledge by itself, without the ability to use it,
does not lead to achieving any level of competency in a given domain. There-
fore, nowadays teaching should not only mean sharing information, but rather
presenting a way of thinking, a way of manipulating knowledge.

Although the popularity of distance courses increases, it still happens very
often that materials meant for distance learning are simply a digitalised version
of didactic materials meant for a traditional teaching/learning process. This
means that material created for being presented by a teacher is being presented
without his/her participation, causing a significant decrease in the quality of
learning. It is connected to the fact that the way of reasoning in a given domain
is usually presented by the teacher during class, didactic materials include only
raw information about the subject.

In this paper, authors present a method of preparing didactic materials for
distance learning in such a way, that allows including in them the teacher’s way
of thinking.

The presented method was succesfully used as a basis for creating learning
material and sequence for teaching the course of ,,Modelling and simulation
of production processes”. In this paper a part of the discrete-event simulation
domain serves as an example for presenting the procedure.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 710–719, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Creating Learning Objects and Learning Sequence 711

2 Developing Semantic Network of the Chosen Scope of
Material

The first step in creating a distance learning course is defining the scope of
knowledge that has to be mastered during the course. This scope should be
presented in the form of a knowledge representation model.

In order to ensure reflecting the teacher’s way of thinking, semantic network
was chosen as the best mean of representing domain knoweldge. It consists of
two basic types of elements [7]:

– concepts – allow unambigous recognition of objects and classes of objects
belonging to a given domain;

– relations – bind together different concepts, reflecting relationships and con-
nections that occur between them and associations that link them.

Semantic networks of the same part of domain knowledge may differ when
created by different experts, as for each them direct and indirect connections
may occur between different concepts. Hence, a semantic network represents the
way of thinking and reasoning of a given expert in a certain domain. Therefore,
using it is the first step to ensuring such a level of education that will lead to
creating in the student’s mind his/her own thinking schemes, what is necessary
to achieve competency in a given area of knowledge.

The type of relations used is very important for the level of unambiguousness
of the semantic network. Many approaches, for example the depth matrix pre-
sented in [11], assume that for a proper representation of a concept out of the
known relations [9] two: IS A and PART OF are enough. However, in case of a
semantic network this might cause an ambiguous interpretation. Therefore, the
method presented in this article assumes using relations that represent three ba-
sic types of connecting information, according to [4]: IS A – generalisation, PART
OF – aggregation, MEMBER OF – association, and relation HAS – describing
a characteristic of an object or, eventually, a possesion relationship.

A semantic network represents a certain fragment of a domain. However, very
often just one domain, or it’s part, is not enough to represent the whole subject.
In such cases several semantic networks are created and then joined together.
The joining requires a concepts mapping process.

Mapping can be defined as the process of identifying concepts and relations
being approxiamtely equal [2]. This process can be described as follows [10]: with
two given sets of concepts, Sa and Sb, mapping one set of concepts onto another
means that for each element of set Sa a matching element (or elements) with
the same or similar semantic in set Sb should be found, and vice-versa.

We can distinguish two layers of mapping. The first one is connected to the
way that a concept is understood in a given context. In this case, according
to [5], the following types of mapping can be defined:

– concept-to-concept mapping – two concepts include the same type of infor-
mation,

712 P. Korytkowski and K. Sikora

– attribute-to-attribute mapping – two concepts posses attributes that can be
mapped,

– attribute-to-concept mapping – this way can be defined as searching for an
instance of a certain object.

The second layer refers to the amount of information included in both con-
cepts. The following types of equivalence can be defined [2]:

– partial equivalence – one concept becomes superior to the other,
– exact equivalence – concepts are identical,
– inexact equivalence – the definitions of concepts overlap, there is a certain

common area,
– single-to-multiple equivalence – any of the above occuring for more than two

concepts, e.g. A is partially equivalent to B AND C; logical operators
AND, OR and negation are used.

The process of mapping is a complicated one, especially since finding equiva-
lent concepts can be truely difficult due to [2]:

– different use of concepts in individual domains,
– different meaning scope of the concept: in one domain it can be considered

generally, while in the other in a detailed way,
– different semantic, usually caused by different classification, e.g. ,,museum”

can mean an organisation in one domain and a building in another.

3 Creating a Distance Learning Course

The scope of material, prepared in the form of a semantic network, is the basis
for developing a distance learning course. However, first of all the structure of
such a course should be specified.

According to current distance learning standards, the most popular of which is
SCORM [1], each course can be divided into knowledge modules, called Learning
Objects (LO), arranged in a proper order to create a learning sequence. There-
fore, designing such modules and creating a proper sequence makes up the basis
for developing didactic materials for distance learning.

The module structure assumes dividing knowledge embedded in the course
into pieces small enough to be mastered in one learning session, and at the
same time big enough for their content to be meaningful by itself. It is a very
important aspect, because unful mastering of knowledge can cause a need to
go back to lessons already completed, what can significantly discourage from
further learning.

We can distinguish three basic aspects that have to be considered when de-
ciding about the size (capacity) of LO:

– reuse possibility – small elements are easier to use again;
– time required to master the content – the smaller the size, the faster the

material can be mastered;

Creating Learning Objects and Learning Sequence 713

– the amount of information that has to be presented in one session to enable
understanding all the content included in the LO;

The educational process assumes spreading knowledge in such a way, that
it will be permanently accumulated in the memory of the student. It can be
achieved only if all the information and knowledge is repeated enough times
[6]. The neccessity to refresh information is an important aspect, as it means
that neither the course, nor a single knowledge module can consist of only new
knowledge. Information should be used repeatedly and connected to the knowl-
edge already obtained, only then it will be remembered permanently.

For that reason, during one learning session too many new concepts should
not be introduced. According to [8] the optimal number of concepts in one LO
should be between five and seven. For the purpose of the method being presented,
number five was chosen as the basic capacity of LO. Not always an even division
of the domain knowledge is possible, therefore the possibility of a deviation of
one is assumed.

3.1 Marking LO Out of the Semantic Network

In order to mark out of the semantic network concepts that should be included
in individual knowledge modules, several assumptions should be made:

– concepts not connected by a direct or indirect relation should not be placed
in one LO;

– choosing concepts for individual LOs should begin at the lowest level of
hierarchy in the network;

– very often one concept posseses many outgoing relations, in case when those
relations are of different types and including all of them in one LO is not
possible, it is necessary to decide which relation is more important for repre-
santing the concept.

Considering the essenciality of considering the type of relation for a proper
choice of concepts that should be placed in individual learning units, creating a
hierarchy of importance is necessary. The hierarchy is as follows:

1. is a (generalisation),
2. part of (aggregation),
3. has (characteristic, possesion),
4. member of (association).

The best representation of knowledge is achieved when in one LO as many
concepts connected with the same type of relation as possible are placed. That
allows understanding a given concept and its related concepts in a comprehensive
way.

Before marking the LOs out of the semantic network it is necessary to make
several transformations and formalisations.

First of all, the semantic network will be presented as a list of concepts, where
concept is understood as:

P = {Def, Lev, Rin, Rout, LO},

714 P. Korytkowski and K. Sikora

where:

Def is the definition of the concept,
Lev the level in hierarchy, where the concept is placed,
Rin the set of relations entering the concept,
Rout the set of relations leaving the concept, and
LO is the list of knowledge modules that the concept belongs to.

All sets of relations are ordered according to the presented hierarchy of im-
portance, then according to their length, beginning with the shortest one. The
length is understood as the distance between the level in hierarchy where the
concept the relation leaves from is placed and the level where the concept the
relation enters can be found.

Relation is defined in the following way:

R = {Levk, Pk, Pp, L, LO},

where:

Levk is the level in hierarchy, where the end of relation is found, in other words,
the level where the concept the relation enters is placed,

Pk the ending concept of the relation, similarly
Pp the starting concept,
L the length relation, and
LO the number of the learning module the relation was assigned to.

Before beginning to create the set of learning units it is necessary to make a
so called list of free relations (LFR). At first, it will include all relations in the
semantic network. Relations in the list will be ordered according to the following
three criterions:

1. location in the semantic network hierarchy (the lowest level has the highest
priority),

2. type of relation (according to the presented hierarchy),
3. length of relation.

Regarding to LO as a set of concepts we can consider its capacity as the
cardinal number of this set and mark it as: O = cardLO = 5. Number five was
chosen for the purpose of presenting the method, however, it can be adjusted by
the expert controlling the process of marking out knowledge modules, therefore
it is possible for a bit smaller or bigger LOs to exist.

For transforming the semantic network into a set of Learning Object the
following algorithm is proposed:

1. Rel := first relation from LFR;
2. (a) IF (Pk(Rel) ∈ LOi AND Pp(Rel) ∈ LOi) THEN

LOi := LOi ∪Rel;
LFR := LFR−Rel;
GO TO 1;

Creating Learning Objects and Learning Sequence 715

(b) ELSE
NLO := new LO;
NLO := NLO ∪ Pk;
P1 := Pk(Rel);

3. Rel := first free relation ∈ Rin(P1);
4. P2 := Pp(Rel);

(a) IF (card Rout(P2) > 1)
IF (O − card NLO < card {free relations ∈ Rout(P2)})

GO TO 3;
ELSE

NLO := NLO∪ each free relation ∈ Rout(P2) and its Pk;
(b) NLO := NLO ∪ P2 ∪Rel;
(c) LFR := LFR−Rel;
(d) IF (card NLO = O) THEN ask for expert’s opinion before GO TO 1;
(e) ELSE

IF (card {free relations ∈ Rin(P1)} = ∅)
Rel := first relation from Rin(P1) ∈ NLO;
P1 := Pp(Rel);

GO TO 3;

3.2 Learning Sequence Creation

There are several possible approaches to organising LOs in a learning sequence.
The first one assumes presenting modules according to their position in hierarchy,
introducing the ones placed at the highest level first and then moving to lower
levels. However, this approach does not consider relationships between individual
LOs. A sequence based on connections linking the learning units is much more
effective in teaching, especially if we consider the fact that new information is
remembered through associations with old knowledge.

Requirements and abilities of a student should be considered when creating
the learning sequence. Through evaluating the student’s knowledge of a given
domain and domains that should also be known, it is possible to decide which
parts of the course have to be emphasised, which ones should be introduced at
the beginning and which ones can be introduced later. Evaluating the level of
student’s knowledge can be done with the use of different kinds of control tests.
The knowledge mastered to the lowest degree should be introduced first, so that
it could be as fast as possible, permanently and properly remembered.

However, the process of establishing the sequence is not entirely flexible, a
part of the sequence – connected to the relationships between LOs, has to be
maintained for proper understanding of information. It can be changed only if
tests show that the student has mastered all the knowledge included in a given
LO. In such case this LO should not be included in the sequence at all.

The entire procedure of creating learning objects and learning sequence on
the basis of semantic networks was presented in Fig.1.

716 P. Korytkowski and K. Sikora

Fig. 1. Procedure of creating a distance learning course on the basis of a semantic
network

4 Example of Using the Method

Let’s illustrate the procedure described above on the example of the course of
,,Modelling and simulation of production processes” which is given for Produc-
tion Engineering and Management students. It is a one-semester course, the
aim of which is to create competency regarding understanding the functioning
of production systems and their optimalization with the use of discrete-event
simulation.

As the scope of the entire course is quite wide and includes knowledge from
more than one domain, in order to facilitate understanding of the proposed
method it was restricted to just a part of one knowledge domain – discrete-event
simulation.

The entire procedure begins with analysing the semantic network (Fig.2),
created in cooperation with the domain expert.

According to the presented procedure, first of all the list of free relations is
created. Relation IS A with the end at the lowest level is going to be considered
first. The concept at its end (,,state of system”) is added to the newly created
LO1, like the relation itself and the concept it leaves from (,,variable”). The
relation is removed from the list of free relations. Because the concidered concept
has no more entering relations we are moving to a higher level in hierarchy.

Creating Learning Objects and Learning Sequence 717

Fig. 2. Semantic network of a part of the modeling and simulation domain

At the higher level we can choose between four relations, three of them are
of IS A kind and one is a HAS relation. Because the choice is made according
to the hierarchy of importance of the relation type, three IS A relations and the
concepts at their beginnings will be added to LO1. This way LO1 is filled.

Relation HAS joining the concepts of ,,variable” and ,,model” is next on the
list. ,,Model” has an un-empty set of outgoing relations, fortunately, all of them
can be included in one LO, thus creating LO2.

The next LO is created beginning with relation HAS between ,,warm-up pe-
riod” and ,,experiment”. Further proceeding according to the algorithm leads to
creating the following six LOs:

– LO1 = state of system, variable, warm-up period, number of replications,
replication time,

– LO2 = variable, model, entity, resource, experiment,
– LO3 = warm-up period, experiment, number of replications, replication

time, list of events,
– LO4 = list of events, event, seize, delay, release,
– LO5 = schedule, resource, seize, delay, release,
– LO6 = queue, resource, entity, set.

The modules themselves are not enough to create a distance learning course.
It is also necessary to create a sequence in which these modules will be presented

718 P. Korytkowski and K. Sikora

Fig. 3. Knowledge modules hierarchy

to the user. In order to do so, first of all, the knowledge modules marked out of
the semantic network have to be ordered. Connections between the created LOs
can be seen in Fig.3.

Because there are connections between LOs from all the levels, they have to
be introduced according to hierarchy. Therefore, the sequence for this course will
be as follows: LO2 → LO6 → LO5 → LO4 → LO3 → LO1.

Criterions of creating the learning sequence can be set by the creator of the
course, but they can be just as well left to the user of the course.

5 Conclusion

Developing didactic materials for distance learning is not a trivial matter. That
is caused mainly by the fact that those materials have to be able to succesfully
replace the teacher. To achieve such an effect it is best to use semantic network
in developing the course, as it not only presents the facts themselves but also
the rules of connecting them. The relations are what best reflects the teacher’s
way of thinking, what enables recognising, developing and creating one’s own
schemes of reasoning in a given domain.

The algorithm of transforming a semantic network into a set of Learning
Object presented in this paper assumes creating the course beginning with the
concept that requires knowing all other concepts in order to be understood.
Thanks to this, identifying concepts that have to be introduced first, before
moving to the ones at lower levels of the semantic network hierarchy, is much
easier. Moreover, all the time the semantic of relations is respected, it also sig-
nificantly influences the process of creating knowledge modules. The paper also
proposes a hierarchy of importance of the types of relations.

Creating Learning Objects and Learning Sequence 719

The modules created according to the presented method can be used for cre-
ating a learning sequence adapted to the needs of a certain student. Maintaining
the semantic of relations represented in the network allows giving priorities to
individual LOs in the sequence not only on the basis of their placement in hierar-
chy. Considering the type of relations connecting concepts shared with modules
appearing at higher levels in the hierarchy gives the possibility to better adjust
the learning sequence within individual levels.

References

1. Advanced Distributed Learning: Sharable Content Object Reference Model
(SCORM), 2nd edn. Overview. ADL (2004)

2. Doerr, M.: Semantic Problems of Thesaurus Mapping. Journal of Digital Informa-
tion, Article No. 52 (2001)

3. Dubois, D.D., Rothwell, W.J., et al.: Competency-Based Human Resource Man-
agement. Davies-Black Publishing (2004)

4. Goldstein, R.C., Storey, V.C.: Data abstractions: Why and how. Data & Knowledge
Engineering 29, 293–311 (1999)

5. Maier, A., et al.: Integration with Ontologies. In: Conference Paper WM2003 (2003)
6. Maruszewski, T.: Cognitive psychology (in Polish). Biblioteka Myśli Semiotycznej.

Znak - J ezyk - Rzeczywistość. Warszawa (1996)
7. Mulawka, J.J.: Expert Systems (in Polish). WNT. Warszawa (1996)
8. Różewski, P.: Method of developing an information system of knowledge repre-

sentation and sjaring for distance learning (in Polish). PhD thesis. Politechnika
Szczecińska. Szczecin (2004)

9. Storey, V.C.: Understanding Semantic Relationships. VLDB Journal 2, 455–488
(1993)

10. Xiaomeng, S., Gulla, J.A.: Semantic Enrichment for Ontology Mapping. NLDB,
217–228 (2004)

11. Zaikine, O., Kushtina, E., Róewski, P.: Model and algorithm of the conceptual
scheme formation for knowledge domain in distance learning. European Journal of
Operational Research 175(3), 1379–1399 (2006)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 720–729, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SQORE-Based Ontology Retrieval System

Rachanee Ungrangsi1, Chutiporn Anutariya1, and Vilas Wuwongse2

1 School of Technology, Shinawatra University
99 Moo 10 Bangtoey, Samkok, Pathum Thani, 12160 Thailand

{rachanee, chutiporn}@shinawatra.ac.th

2 School of Engineering and Technology, Asian Institute of Technology
P.O. Box 4, Klong Luang, Pathum Thani, 12120 Thailand

vw@cs.ait.ac.th

Abstract. Most existing ontology search engines primarily base their search
mechanisms solely on keyword matching. Users, therefore, are not well
equipped with expressive means to structurally and semantically describe their
ontology needs. We propose an ontology retrieval system based on SQORE, a
novel framework that enables precise formulation of a semantic query in order
to best capture a user’s ontology requirements and rank the resulting ontologies
based on their conceptual closeness to the given query. This paper develops a
prototype system, investigates the effectiveness of SQORE framework, and
compares its experimental results with the ones obtained from well-known
ontology search engines. This investigative analysis indicates that SQORE
system yields better results and better rankings.

1 Introduction

Ontology is a key technology that supports the increasing need in knowledge sharing
and Semantic Web [5] application integration. In general, creating an ontology from
scratch is often a difficult and time-consuming task, whereas reusing and modifying
an existing one is preferable. However, as the number of publicly available ontologies
grows, it becomes more difficult to find a suitable ontology that meets a user’s needs.
Therefore, an ontology retrieval system is demanded to enable ontology developers
and users to find and compare existing ontologies, reuse complete or partial ones.

Existing ontology search engines, such as Swoogle [9], OntoSearch [18],
OntoSearch2 [13] and OntoKhoj [14], mainly base their approaches solely on search
terms which cannot sufficiently capture the structural and semantic information about
the desired domain concepts and relations. Semantics of a query and ontologies are
thus ignored and not taken into account when executing a query, hence resulting in a
demand for a semantic-based retrieval system, which can significantly improve the
retrieval performance.

To tackle these problems, this paper presents and develops an effective ontology
retrieval system, namely SQORE (Semantic Query Ontology Retrieval Framework)
[2], which enables users to precisely and structurally formulate their ontology
requirements in terms of a semantic query, containing not only the desired classes and
properties, but also their relations and restrictions. Each query is evaluated by

 SQORE-Based Ontology Retrieval System 721

considering the semantic closeness between the query itself and an ontology in the
database by means of SQORE’s semantic similarity measure.

In order to evaluate and demonstrate SQORE’s effectiveness, a prototype system
available at http://ict.shinawatra.ac.th:8080/sqore is developed. Comprehensive user-
based experiments are performed to analyze its precision and recall on a set of real-
world ontologies. Furthermore, the comparison of the search results returned by
SQORE and other existing systems is conducted, which shows that SQORE can yield
better search results and better rankings.

The paper is organized as follows. Sect. 2 reviews related works. Sect. 3 informally
introduces SQORE, and Sect. 4 illustrates the approach via an example. Sect. 5
explains the prototype system. Sect. 6 discusses the conducted experiments and the
obtained results, and followed by conclusions and future work in Sect. 7.

2 Related Work

This section reviews recently-emerging ontology retrieval approaches, which can be
classified into the following three groups:

• WordNet-based approaches: Hwang et al. [10] has proposed an approach to
domain ontology retrieval based on concepts of search terms. It adopts WordNet
[11] to determine semantic relations of terms and the concepts of searched
ontology and then uses Jaccard similarity [16] for measuring similarity between
query concepts and ontology concepts. However, this approach relies on only
keywords, while lacking a capability to capture the structural and semantic
information about the desirable concepts and relations.

• PageRank-based approaches: By employing the PageRank algorithm of Google
[6], the most popular Web search engine, the two ontology search engines,
namely, Swoogle [9], and OntoKhoj [14], have implemented their PageRank-like
search algorithms based on ontology referral network. OntoKhoj focuses only on
ontologies only whereas Swoogle supports searching and querying of both
ontologies and Semantic Web databases. This approach is currently inefficient
due to the lack of links among ontologies on the Web. Furthermore, it ignores
semantic relations between query terms and concept/property terms in ontologies.
For instance, it cannot determine that Academician and Faculty_Member are
synonym; hence an ontology containing the concept Academician will not be the
answer of the query searching for Faculty_Member.

• Structure-based approaches: Another well-known ontology search engine is
OntoSearch [18] which allows users to search, evaluate and browse the
ontologies based on several criteria. It has been enhanced by employing
AKTiveRank [1] as metrics for ontology ranking based on the taxonomic structure
information such as class names, shortest paths, linking density and positions of
focused classes in the ontology. Recently, OntoSearch2 [13], the successor of
OntoSearch, has been developed to search and query both ontologies and their
associated data-sets using SPARQL [15] query language. Each query is evaluated
by a DL-Lite [7] inference engine. Although this approach considers the
semantics of a query and an ontology, when evaluating a query, it still lacks a
capability to determine semantic relations (e.g., synonym, hyponym) between

722 R. Ungrangsi, C. Anutariya, and V. Wuwongse

two given terms. Users may have to learn specific query syntax to be able to
compose queries. Moreover, since DL-Lite is a sub-language of OWL DL, it
could not support OWL ontologies and ontological constructs that exceed its
expressiveness such as owl:TransitiveProperty, owl:SymmetricProperty and
owl:InverseProperty.

3 SQORE: Semantic Query Based Ontology Retrieval

SQORE [2] employs XML Declarative Description (XDD) theory [3, 17] as its
theoretical foundation for modeling ontology databases and evaluating semantic
queries, which does not only facilitate ontology matching and retrieval, but also
support reasoning capability to enhance the matching results. Moreover, it also
enables the use of a semantic lexical database, such as WordNet [11], for determining
semantic relation between two given terms. Thus, the retrieval performance (precision
and recall) can be significantly improved when compared to a conventional keyword
search. To rank the relevant ontologies, SQORE employs similarity score by focusing
on their conceptual closeness to the formulated semantic query.

Query

Ranked ontologies

SQORE

Ontology Database

 Collection of Ontologies

 Axiomatic Semantics of Ontology

Modeling Constructs

Semantic Lexical Database

(i)

(ii)

(iv)

(iii)

Fig. 1. SQORE System Architecture

Fig. 1 illustrates the system architecture of SQORE which comprises four major
components: i) a semantic query, ii) a retrieval engine, iii) an ontology database, and
iv) a semantic lexical database. In essence, the system works as follows: First, a user
formulates and submits a semantic query which precisely captures his/her ontology
requirements. The system then executes such query by semantically evaluating it
against the ontology database, which comprises a collection of ontologies and a set of
rules defining ontology axiomatic semantics. By incorporating these rules, implicit
information about classes/properties in a query and an ontology can be derived, and
hence enabling semantic query evaluation. Furthermore, when class/property names
defined in a query and an ontology do not exactly match (=), four possibilities occur:
i) equivalence (≡): the two terms are synonym, ii) more general (⊇): the query term is
broader, iii) less general (⊆): the ontology term is broader, and iv) unknown (≠): the
relation is unknown. To support this, a referenced lexical database, such as WordNet
[11], is employed in order to determine their appropriate semantic relation. Finally,
the system computes the semantic similarity score between a given query and an
ontology in the collection, which ranges from 0 (strong dissimilarity) to 1 (strong
similarity), and returns as the answer the list of ranked ontologies.

 SQORE-Based Ontology Retrieval System 723

In SQORE, there are four measures used for calculating similarity scores, as
follows:

• Element Similarity Score (SSE): The similarity score of any two given
elements x and y, denoted by SSE(x, y), depends on their semantic relation
determined by the referenced lexical database as explained earlier. For any
two given restrictions r(a1,b1) and r(a2,b2), their similarity is equal to the
product of a1-a2 similarity score and b1-b2 similarity score i.e., SSE(a1, a2)*
SSE(b1, b2). When x and y do not belong to the same type, for instance x is a
class name and y a property name, their similarity score is undefined.

• Best Similarity Score (SSB): Based on the element similarity score SSE,
SSB(x,O) represents the similarity between a given element x of a query and
an ontology O by finding the highest similarity score between x and each
element y that is semantically defined by O. In other words, the element y in
O that is most similar to x, will be used for measuring the closeness between x
and O.

• Satisfaction Score of Mandatory conditions (SSM) and Optional
conditions (SSO): In SQORE, a semantic query comprises mandatory
conditions and optional conditions. If an ontology semantically satisfies all
mandatory conditions of a given query, then that ontology will be included in
the answer. Optional conditions, on the other hand, are useful for expressing
additional means for measuring the extent of closeness between the ontology
and the query.

• Query-Ontology Similarity Score (SS): This similarity score represents the
semantic closeness between a query and an ontology, which is measured by
the satisfaction degree of the ontology with respect to the mandatory and
optional conditions of the query.

In addition, SQORE defines several weight factors, as follow:

• Semantic relation weight factors (w=, w≡, w⊇, w⊆, w≠) quantify the

similarity between two elements based on the discovered semantic relations.
• Mandatory-condition weight factor (wM) indicates how important the

mandatory conditions are, and hence 1–wM becomes the weight for the
optional conditions.

In practice, these weights are configured as default settings of the system which
can be redefined by a user. For more details of the measures, the readers are referred
to Reference [2].

4 An Example: Step by Step

This section illustrates how SQORE works by means of an example. Assume that an
application developer wants to search for an ontology that meets the following conditions:

• It must contain concepts about Student and Professor.
• It may have telephone property, the domain of which is the concepts

Student and Professor.

724 R. Ungrangsi, C. Anutariya, and V. Wuwongse

Ontology A:
<owl:Class rdf:resource="Professor">

 <rdfs:subClassOf rdf:resource=”Person”/>
</owl:Class>
<owl:Class rdf:resource="Student">

 <rdfs:subClassOf rdf:resource=”Person”/>
</owl:Class>
<owl:DataTypeProperty rdf:resource="telephone">
 <rdfs:domain rdf:resource=”#Person”/>
<owl:DataTypeProperty/>

<owl:Class rdf:resource="Student"/>
<owl:Class rdf:resource="Professor"/>

<owl:DatatypeProperty rdf:resource="telephone">
 <rdfs:domain rdf:resource=”#Student”/>
<owl:DatatypeProperty/>

<owl:DatatypeProperty rdf:resource="telephone">
 <rdfs:domain rdf:resource=”#Professor”/>
<owl:DatatypeProperty/>

Ontology B:
<owl:Class rdf:resource="Student"/>
<owl:DataTypeProperty rdf:resource="telephone"/>

Ontology C:
<owl:Class rdf:resource="Student"/>
<owl:Class rdf:resource="Faculty_member"/>
<owl:DataTypeProperty rdf:resource="phone"/>

1.0

0

0.48

Query Q:

<owl:DatatypeProperty rdf:resource="telephone"/>

Mandatory Conditions

Optional Conditions

Weight Factors

w= = 1 w≡ = 0.8 w⊇ = 0.6
w⊆ = 0.4 w≠ = 0 wM = 0.5

Fig. 2. An example of SQORE evaluation

Fig. 2 demonstrates how to formulate such a semantic query and shows how SQORE
evaluates the query against three different ontologies and compute their similarity scores

with the weight factors w==1, w≡=0.8, w⊇=0.6, w⊆=0.4, w≠=0 and wM =0.5.

In this example, Query Q searches for ontologies that must contain both Student
and Professor classes. Ontology A is obviously one of the answer due to the exact
matches. Ontology C is also an answer because Faculty_member is a hypernym of
Professor. The similarity score of Ontology B is equal to 0 since it fails to meet one of
the mandatory requirements, i.e., it does not have the concept Professor defined.
Therefore, Ontology B will not be included in the answer list.

In addition, Query Q has optional conditions which specify that telephone is a
DatatypeProperty, the domain of which is Student and/or Professor. By incorporating
inference mechanisms, one can see that Ontology A satisfies this requirement because
it has telephone DatatypeProperty with Person as the domain, and since both Student
and Professor are defined as subClassOf Person, one can derive that Student and
Professor are also the domain of telephone. On the other hand, Ontology C contains a
DatatypeProperty named phone, which is a synonym of telephone; thus C partially
satisfies the optional conditions.

As a result, SQORE returns two Ontologies A and C as the query’s answer. The
similarity score of Ontology A is 1.0 since it perfectly satisfies all requirements
whereas that of Ontology C is 0.48.

5 SQORE Prototype System

In the implementation of SQORE, the main component is a Java Servlet that receives
a semantic query from a user. The query consists of both mandatory conditions and
optional conditions to search for concepts, properties and relations. When a query is
submitted, SQORE starts evaluating the query against ontologies in the database and

 SQORE-Based Ontology Retrieval System 725

returns the results including the ontology URIs, their similarity scores and their ranks.
WordNet [11] and XET inference engine [4] are employed during query evaluation to
semantically match the query with ontologies and compute their similarity scores. The
user can formulate a query using OWL syntax and can also specify his/her preferable

weight factors, such as w=, w≡, w⊇, w⊆, w≠ and wM .

SQORE system development is in progress with continuing enhancement.
Currently, it allows user to query by using owl:Class, owl:ObjectProperty,
owl:DatatypeProperty, rdfs:subClassOf, rdfs:domain, rdfs:range, owl:onProperty,
owl:someValuesFrom and owl:allValuesFrom. Its ontology database comprises a large
number of OWL ontologies related to the University domain.

A complete support of all OWL/RDFS modeling constructs as well as an insertion
of more ontologies in various domains are part of SQORE’s development plan. In
addition, important NLP techniques that are often used in information retrieval
systems, such as word stemming, tokenization, stop word elimination, will be applied
in order to further improve the precision and recall of the system. Fig. 3 shows the
current SQORE interface and sample search results.

a) Main page b) Sample search results

Fig. 3. SQORE Interface

6 Experiment

This section describes the design and methodology of the conducted experiment, and
then reports the results of running SQORE over a set of existing ontologies with a set
of test queries for measuring its precision and recall. Finally, the ranking result
obtained from SQORE is compared with those recommended by users and by existing
ontology search systems. However, OntoKhoj [14] and OntoSearch [18] seem to be
currently inactive and are no longer accessible from the Web, while OntoSearch2 [13]
is not specifically developed as an ontology retrieval system, but focuses mainly on
datasets query. Therefore, Swoogle [9] is the only system used in the experiment.

6.1 Experimental Design

A user-based experiment was conducted to evaluate SQORE system. There were 10
users in the experiment and all of them are familiar with ontology technologies and

726 R. Ungrangsi, C. Anutariya, and V. Wuwongse

Protègè [12] ontology editor. The users were presented a general scenario, a set of
questions and a set of existing ontologies. In the experiment, they need to find an OWL
ontology that provides schema about people and their relationships in the university
domain such as contact information, position, research interest, publication, etc.

The experiment employed top ten OWL ontologies about University domain,
retrieved from Swoogle as listed in Table 1. Users were asked to generate a small set
of keywords/queries, evaluate a set of queries against the given set of ontologies and
also rank them based on the application requirements. The weight factors for
computing similarity score in SQORE for this experiment were as follows: w==1.0,

w≡=0.8, w⊇=0.6, w⊆=0.4, w≠=0 and wM=0.5.

Table 1. Top ten OWL ontologies about University domain retrieved from Swoogle and used
in the Experiment

Ranking Ontology URL

1 A http://swrc.ontoware.org/ontology

2 B http://www.aktors.org/ontology/portal

3 C http://annotation.semanticweb.org/iswc/iswc.owl

4 D http://www.csd.abdn.ac.uk/~cmckenzi/playpen/rdf/akt_ontology_LITE.owl

5 E http://protege.stanford.edu/plugins/owl/owl-library/ka.owl

6 F http://www.architexturez.in/+/--c--/caad.3.0.rdf.owl

7 G http://www.mindswap.org/2004/SSSW04/aktive-portal-ontology-latest.owl

8 H http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

9 I http://ontologies.isx.com/onts/saturn/2004/10/core.owl

10 J http://ontologies.isx.com/onts/2005/02/isxbusinessmgmtont.owl

6.2 Precision vs. Recall

To evaluate SQORE’s retrieval performance, a set of test queries and the ten given
ontologies are presented to five expert users for evaluating the ontology-query
relevance. Then, for each query, the set of these manually determined relevant
ontologies are compared with the results suggested by SQORE and Swoogle. The
precision values of each query at each recall level are computed and averaged.
Finally, the precision values of all test queries are calculated and represented as a
precision-recall graph as shown in Fig. 4.

As depicted by Fig. 4, SQORE has higher precision values over Swoogle at all
recall levels, which implies that it can search and retrieve practically well and has
better relevance ranking metrics. However, at very high recall levels (> 0.8), the
precision dramatically decreases because the system fails to retrieve ontologies that
have required classes or properties, but appear in different word-forms. For example,
it yet fails to match the properties Supervises, Supervised, Supervising,
isSupervisedBy and Supervise. Therefore, its performance can be significantly
improved by applying additional NLP techniques used in information retrieval
systems, such as eliminating the stop word list, word stemming, tokenization, etc.

 SQORE-Based Ontology Retrieval System 727

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re
ci
si
on SQORE

Swoogle

Fig. 4. Average Recall-Precision Curves

6.3 Rank Evaluations

In the experiment, the users were asked to give 16 keywords that represent the
application requirements such as main concepts and relationships for searching an
existing ontology. We selected only keywords that were proposed by more than half
of the users in order to formulate a test query as presented in Table 2.

Table 2. Top Keywords by users

Top Keywords Ratio
Student, Course 7/10
Professor, University, Department, Faculty 6/10

In order to compare the user ranking with that of Swoogle and SQORE, the users
were requested to rank the ten ontologies based on how much they fit the application
requirements. Then, all the top keywords, given by Table 2 and related by the OR
condition, were submitted to Swoogle and SQORE. Table 3a shows the average user
ranking compared to those obtained from Swoogle and SQORE.

Ontology A is ranked the first in both of the user and Swoogle rankings. On the
other hand, SQORE ranks Ontology H the first, and Ontology A the third. When
manually evaluating the submitted query with both Ontologies A and H, we observe
that Ontology H satisfies all requirements in the query, while Ontology A fails to
satisfy some keyword requirements; for instance, it does not have the keywords
Professor and Faculty. We suspect that since those ten ontologies used in the
experiments are rather huge in size, it is possible that the user rankings might contain
some mistakes, and the ranking computed by SQORE is more accurate and can
eliminate human errors.

Pearson Correlation Coefficient (PCC) [8] is then employed to measure the
similarity between the user ranking and the system ranking. If the calculated PCC
value is closer to 1, it indicates a stronger linear relationship between the two

728 R. Ungrangsi, C. Anutariya, and V. Wuwongse

rankings. Table 3b shows that the PCC value of SQORE-user ranking is 0.765, while
that of Swoogle-user ranking is 0.474. Therefore, one can draw that the ranking
returned by SQORE is much closer to the user ranking than Swoogle.

Table 3. Results from User Evaluations

a. Ranks given by users, Swoogle and SQORE b. Pearson Correlation Coefficient for
SQORE and Swoogle wrt. user ranking

Ontology User
Ranking

Swoogle

SQORE System Pearson Correlation
Coefficient

A 1 1 3 SQORE 0.765

B 6 2 5 Swoogle 0.474

C 6 3 2

D 8 4 7

E 2 5 3

F 3 6 5

G 5 7 8

H 3 8 1

I 9 9 9

J 10 10 10

7 Conclusions and Future Work

This paper has presented an ontology retrieval system based on SQORE framework. It
enables a user to precisely and structurally formulate their ontology requirements,
which include not only the desired class and property names, but also their relations
and restrictions. The system not only facilitates ontology matching and retrieval, but
also supports reasoning capability and incorporates semantics of keyword terms to
enhance the matching results. In other words, during the query evaluation, a query’s
semantics together with an ontology’s semantics are also taken into account in order
to correctly and semantically match them. Comprehensive user-based experiments
have been conducted and the results have shown that SQORE system can offer better
quality of results and rankings than Swoogle, a widely-used existing ontology
retrieval system.

SQORE system development is in progress with continuing enhancement. More
features will be added to the system in order to improve the quality of search results
and facilitate user search activities. In addition, since it is possible that none of the
existing ontologies in the database satisfies all user requirements, the next goal of
SQORE is to find an efficient algorithm that recommends a set of relevant ontologies
such that their integration will lead to the solution for users with minimum ontology
modification efforts.

 SQORE-Based Ontology Retrieval System 729

References

1. Alani, H., Brewster, C.: Metrics for Ranking Ontologies. In: Proc. of 4th Int’l EON
Workshop, 15th Int’l WWW Conf., Edinburgh (2006)

2. Anutariya, C., Ungrangsi, R., Wuwongse, V.: SQORE: a Framework for Semantic Query
based Ontology Retrieval. In: DASFAA07. LNCS, vol. 4443, pp. 924–929. Springer,
Heidelberg (2007)

3. Anutariya, C., Wuwongse, V., Akama, K.: XML Declarative Description with First-Order
Logical Constraints. Computational Intelligence 21(2), 130–156 (2005)

4. Anutariya, C., Wuwongse, V., Wattanapailin, V.: An Equivalent-Transformation-Based
XML Rule Language. In: Proc. Int’l Workshop on Rule Markup Languages for Business
Rules in the Semantic Web (CEUR Workshop Proc.), Sardinia, Italy, vol. 60 (2002)

5. Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web, Scientific American (May
2001)

6. Brin, S., Page, L.: The anatomy of a large-scale hyper-textual web search engine. In: Proc.
of 7th Int’l WWW Conf., Brisbane, Australia (1998)

7. Clavanese, D., et al.: DL-Lite: Tractable Description Logics for Ontologies. In: Proc. of
the 20th National Conference on Artificial Intelligence, pp. 602–607. Pittsburgh (2005)

8. Conover, W.J.: Practical Non-Parametric Statistics, 2nd edn. John Wiley and Sons,
Chichester (1980)

9. Ding, L., Finin, T., Joshi, A., Pan, R., Scott Cost, R., Peng, Y., Reddivari, P., Doshi, V.,
Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: Proc. 13th
ACM Int’l Conf. Information and Knowledge Management, DC, pp. 8–13. ACM Press,
New York (2004)

10. Hwang, M., Kong, H., Kim, P.: The Design of the Ontology Retrieval System on the Web.
In: Proc. 8th Int’l Conf. Advanced Communication Technology (ICACT2006) (2006)

11. Miller, A.: WordNet: A lexical database for English. Communications of the ACM 38(11)
(1995)

12. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating
semantic web contents with protege-2000. IEEE Intelligent Systems, pp. 60–71
(March/April 2001)

13. Pan, J.Z., Thomas, E., Sleeman, D.: ONTOSEARCH2: Searching and Querying Web
Ontologies. In: Proc. of the IADIS International Conference WWW/Internet (2006)

14. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a semantic web portal for ontology
searching, ranking and classification. In: Proc. 5th ACM Int’l Workshop on Web
Information and Data Management, Louisiana, (November 07-08, 2003)

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C, Working
Draft (2004), http://www.w3.org/TR/rdf-sparql-query/

16. Sokal, R.R., Sneath, P.H.A.: Principles of numerical taxonomy, San Francisco (1963)
17. Wuwongse, V., Anutariya, C., Akama, K., Nantajeewarawat, E.: XML Declarative

Description (XDD): A Language for the Semantic Web. IEEE Intelligent Systems 16(3),
54–65 (2001)

18. Zhang, Y., Vasconcelos, W., Sleeman, D.: Ontosearch: An ontology search engine. In:
Proc. 24th SGAI In’l. Conf. on Innovative Techniques and Applications of Artificial
Intelligence, Cambridge (2004)

Crawling the Web with OntoDir

Antonio Picariello and Antonio M. Rinaldi�

Universitá di Napoli Federico II - Dipartimento di Informatica e Sistemistica
80125 Via Claudio, 21 - Napoli, Italy
{picus,amrinald}@unina.it

Abstract. Managing large amount of information on the internet needs more
efficient and effective methods and techniques for mining and representing in-
formation. The use of ontologies for knowledge representation has had a fast
increase in the last years: in fact the use of a common and formal representation
of knowledge allows a more accurate analysis of a number of documents con-
tent, in several contexts. One of these challenging applications is the Web: the
World Wide Web, in fact, has nowadays those kinds of requirements which are
hard to satisfy, especially when one considers a complex scenario as the Seman-
tic Web. In this paper we present a methodology for automatic topic annotation
of Web pages. We describe an algorithm for words disambiguation using an ap-
posite metric for measuring the semantic relatedness and we show a technique
which allows to detect the topic of the analyzed document by means of ontolo-
gies extracted from a knowledge base. The strategy is implemented in a system
where these information are taken into account to build a topic hierarchy auto-
matically created and not a priori defined. Experimental results are presented and
discussed in order to measure the effectiveness of our approach.

1 Introduction

The extremely rapid growth of information on the internet requires of novel approaches
to help users during their information searches. There are several ways to aid users in
this task and in the last years new techniques for mining the Web have been proposed.
One of these approaches is based on the creation of catalogues in which the Web pages
are arranged into categories using methods and techniques from the field of information
filtering and retrieval [14]. The navigation across categories has a great impact on the
perception of the user information needs satisfaction [4]. The large amount of informa-
tion on the Web makes impossible to manually classify data contained in tons of Web
pages [9]. Thus, several methods for automatic Web pages classification have been pre-
sented in the last years. The aim of this paper is to define a framework for automatic
Web page classification using hierarchical categories dynamically built. The approach
presented in this paper is based on ontologies. This choice depends on some considera-
tions derived from the definition of ontology and the specific application field. A formal
definition of ontology is proposed in [6] “An ontology can be defined as a formal, ex-
plicit specification of a shared conceptualization”; in it we can find some useful terms

� Authors wish to thank the student Antonluca Paruolo for the precious contribution to the de-
velopment of the system.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 730–739, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Crawling the Web with OntoDir 731

to explain our approach: conceptualization is referred to an abstract model of specified
reality in which the component concepts are identified; explicit means that the type of
concepts used and the constraints on them are well defined; formal is referred to the
ontology propriety of being “machine-readable”; shared is about the propriety that an
ontology captures the consensual knowledge, accepted to a group of person, not only to
a single one. On the other hand there are new views for mining the Web such as the one
in the Semantic Web vision [2]. Therefore the ontological aspects of information can
be used to really get in cooperation computers and people. In our approach we use a
general knowledge base for extracting domain ontology to define the Web pages topic.
In the proposed framework ontologies are not used only for indexing the terms in the
documents but also for computing the topic detection step. The proposed techniques
are implemented in a system for automatic Web page classification using hierarchical
categories dynamically created by means of a knowledge base. For this purpose we
implemented a Semantic Web Crawler called OntoDir to perform the necessary tasks.
The Crawler is not limited to explore the Web but it has a specific module to annotate
a Web page using a Word Sense Disambiguation and a Topic Detection task based on
innovative metric and algorithms.

The paper is organized as follows: in section 2 some related works are presented;
the OntoDir system architecture is drawn in section 3; the proposed method and the
Word Sense Disambiguation and the Topic Detection algorithms and metrics are dis-
cussed in section 4; experimental results and conclusions are presented in section 5 and
6 respectively.

2 Related Works

Web page organization and classification is a hot topic in the field of Information Re-
trieval and Representation (IRR) and a number of works about it have been presented
using various approaches. These methods includes: Web summarization-based classifi-
cation, fuzzy similarity, natural language parsing for Web page classification and clus-
tering, text classification approach using supervised neural networks, machine learning
methods, kNN model-based and fuzzy classifiers. In [15] is presented an approach for
automatic classification based on ontologies used to express the meaning of relation-
ships contained in Web documents. The classification method is based on the similari-
ties of documents already categorized by ontologies using information extracted from
the documents. The proposed document classification technique does not involve any
learning processes. A probabilistic approach for Web page classification is described
in [16] where the authors propose a dynamic and hierarchical classification system that
is capable of adding new categories as required, organizing the Web pages into a tree
structure, and classifying Web pages by searching through only one path of the tree
structure. In [17] is proposed a fuzzy classification method for Web pages. It is used
for reducing the complexity related to the large amount of number of keywords of Web
pages. The method is based on fuzzy learning and parallel feature selection where the
fuzzy learning is adopted to increase the accuracy, while parallel feature selection based
on weighted similarity is used to decrease the dimension of the features and inhibit the
learning parameters. A genetic K-means approach is presented in [13]. The authors

732 A. Picariello and A.M. Rinaldi

adopt this technique to evolve the weights associated with the keywords which charac-
terize each class instead of evolving the centroid population. The approach is used to
implement a hierarchical automated Web page classifier. LiveClassifier [7] is a system
that automatically train classifiers through Web corpora based on user-defined topic hi-
erarchies. The system is based on the assumption that the Web offers an inexhaustible
data source for almost all subjects. Therefore LiveClassifier uses Web search result
pages as the corpus source than it exploits the structural information inherent in the
topic hierarchy to train the classifier and create key terms to amend the insufficiency of
the topic hierarchy. In [8] a subject-oriented Web information classification system is
presented. The Web pages are collected and classified into several subjects using text
preprocessing, index, inverted files and vector space distance algorithm. The subjects
are defined using a classification prototype built in according to the users requirements.
Calado et al. [3] use a hybrid approach considering link-based and content-based meth-
ods for Web documents classification. The authors evaluate four different measures of
subject similarity, derived from the Web link structure and by means of a bayesian
network model, they combine these measures with the results obtained by traditional
content-based classifiers to improve the results. A hierarchical structure to classify Web
content is presented in [5]. The proposed method uses support vector machine (SVM)
classifier and the authors use the hierarchical structure to train a different second-level
classifier and to combine scores from the top and second-level models using different
combination rules.

3 The System Architecture

So far we have described both the complexity of a Web classification tasks and its actual
emergent utility for a variety of applications in the Web domain. For this reason, we
provide a novel and effective general IIR system that can be suitably and simple used
in a number of application domains. Let us quickly describe our system architecture at
a glance. In Figure 1, we can consider the several modules we have proposed to solve
the basic Web page classification steps. In other words, we imagine that our system
is an intelligent Crawler exploring the Web. This crawler is not built for a single and
specific problem, but it has been thought as a general engine: so we first provide a
user with a Crawler Interface for setting the crawler’s search parameters, such as a
Web page address to analyze, a single IP or an IP range, for scanning a number of
Web sites, the number of exploration levels in a Web site. Once retrieved a single page,
we need to download its information content for our subsequent analysis: this is the
Fetcher job, which downloads the information contents from the several links and it
explores the Web considering the external Web sites linked to the actual Web site. All
the extracted information is thus stored in the Web Page Data Base. Note that this data
base is designed and implemented considering the Web page structure, HTML tags and
metatags. The Web Page Data Base is used by the Web Page Pre-Processor. In fact, in
order to analyze the real information content of a page, we have to “clear” the page,
collecting only useful information from a semantic point of view. For this reason, we
have to eliminate HTML tags and to use appropriate morphological text functions to get
into basic form the terms extracted from the analyzed text. At the end of this module,

Crawling the Web with OntoDir 733

pre-processed Web pages are stored in the Web Text Repository. The core of our system
is the Annotator module. In fact, its purpose is that of furnishing a meaning to a certain
text, so effectively annotating the given text according to a number of topics. To best
understand the task of the Annotator component, we just think of a module which try
to associate to a list of basic topic the considered Web page. We note that it is not
simple to do that: in fact, natural language is imprecise and full of ambiguity also at the
word level: a single word may have, in fact, several meanings (polysemy) that need to
be associated to a context. In order to do that, the module has two main components:
the Word Sense Disambiguator (WSD) and the Topic Detector (TD). The first module
tries to set the right sense to the analyzed word due to the polysemy property; the
second one, after the effective WSD task, performs a topic detection over the considered
page, identifying the page argument. The algorithms at the base of those tasks will be
described in the next section and make use of a general knowledge base, i.e. WordNet
[12]. Even if WordNet has several lacks in some conceptual domains, it is one of the
most used linguistic resources in the research community. The detected topic is arranged
in a directory schema built by means of the hierarchical WordNet structure.

Fig. 1. System Architecture

4 The Proposed Method

In the previous section we have had a look over the whole proposed system. It is not
difficult to recognize that several steps in this challenging process are nowadays well
established and some research and also commercial products are available. The core of
our system is the Annotator module, particularly what we have called the Word Sense
Disambiguation and Topic Detection tasks. Because these steps are accomplished us-
ing WordNet as previously described, before reporting and detailing each phase, it’s
useful to introduce some consideration about the WordNet structure, so we can better
understand our novel algorithm. All information in WordNet is arranged using lin-
guistic properties. The basic unit is the synset a logic set of words related through the

734 A. Picariello and A.M. Rinaldi

synonymy property. Each synset is a concept in WordNet. All the synsets are related
to the others by pointers that represent linguistic properties. Two kinds of relations
are represented: lexical and semantic; lexical relations hold between word forms while
semantic relations hold between word meanings.

4.1 Word Sense Disambiguation Step

In the Word Sense Disambiguation step, the system assigns the right sense to the terms
in the analyzed page due to the polysemy property. To perform this task we must analyze
the context where the considered term is located; each sense term is compared with all
the senses of the others terms. The similarity between terms is computed using an ad hoc
metric that we will discuss in the next, in order to measure their semantic relatedness.
The sense with the best score is chosen as representative of the considered term. We
need a similarity function, that may be implemented using a suitable metric in order
to measure a semantic relatedness between words. At the end of this process, we can
easily identify what is the sense which has the best score, so that it can be chosen as
the representative sense of the considered term. In our approach we propose a metric
to measure the semantic relatedness among terms in a document introducing a novel
technique to calculate the paths between terms and we also consider a component to take
into account the weight of a single term in the document itself. The paths between terms
are computed by means of a semantic network dynamically built from the first common
subsumer (i.e. the first common ancestor) of the considered term senses. We can have
more concepts related to a term due the polysemy property; therefore we consider the
combination of all possible senses of the analyzed terms. In a previous work [1], the
authors have just proposed an innovative algorithm to build dynamically a semantic
network (DSN: Dynamic Semantic Network) starting from WordNet. Briefly the DSN
is built starting from the synset that represents the concept Si. We then consider all the
component synsets and construct a hierarchy, only based on the hyponymy property;
the last level of our hierarchy corresponds to the last level of WordNet one. After
this step we enrich our hierarchy considering all the other kinds of relationships in
WordNet. Based on these relations we can add other terms in the hierarchy obtaining an
highly connected semantic network. An example of DSN is shown in Figure 2 where we
can see its complexity 2(a) and structure 2(b); they are music and car DSNs respectively.
The labeling of the graph is obtained using different colors.

We are now in a position to introduce the similarity metric. Our assumption is that
we are considering the intersection among DSN and the retrieved documents, leaving
out stop words. First of all we assign to the properties, represented by arcs between
the nodes of the DSN, a weight σi, in order to express the strength of the relation.
The weights are real numbers in the [0,1] interval and their values are defined by ex-
periments. To calculate the relevance of a term we assign a weight to each one in the
DSN considering the polysemy property, that can be considered as a measure of the
ambiguity in the use of a word, if it can assume several senses.

Thus we define as centrality of the term i as:

�(i) =
1

poly(i)
(1)

Crawling the Web with OntoDir 735

(a) DSN Music sense 1 (b) DSN Car sense 1

Fig. 2. A DSN example

poly(i) being the polysemy (number of senses) of i. As an example, the word music has
five senses in WordNet so the probability that it is used to express a specific meaning
is equal to 1/5. We argue that those words have only one meaning strongly characterize
the expressed concept. The metric has two types of information; one in order to take
into account syntactic information based on the concepts of document word centrality
and another one in order to consider the semantic component calculated on relevant
couple of words in the document.

About the first contribute, the syntactic-semantic grade (SSG), we can define the
relevance of a document in a domain represented by a DSN as the sum of its terms
centrality:

SSG(ν) =
n∑

i=1

�(i) (2)

n being the number of terms in the document ν.
The other contribution is based on a combination of the path length (l) between pairs

of terms and the depth (d) of their subsumer, expressed as the number of hops. The
correlation between the terms is the semantic relatedness and it is computed through a
nonlinear function. The choice of a nonlinear function to express the semantic related-
ness between terms derives from several considerations. The values of path length and
depth, based on their definition, may range from 0 to infinity, while relatedness between
two terms should be expressed as a number in the [0, 1] interval. In particular, when the
path length decreases toward 0, the relatedness should monotonically increase toward
1, while it should monotonically decrease toward 0 when path length goes to infinity.
We need a scaling effect w.r.t. the depth, because words in the upper levels of a seman-
tic hierarchy express more general concepts than the words in a lower level. We use a
non linear function for scaling down the contribution of subsumers in a upper level and
scaling up those in a lower one.

Given two words w1 and w2, the length l of the path between w1 and w2 is computed
using the DSN and it is defined as:

736 A. Picariello and A.M. Rinaldi

l(w1, w2) = min
j

hj(w1,w2)∑

i=1

1
σi

(3)

j spanning over all the paths between w1 and w2, hj(w1, w2) being the number of hops
in the j-th path and σi being the weight assigned to the i-th hop in the j-th path in respect
to the hop linguistic property; the weights are experimentally set. Using this formula
we find the best path between two words because we consider not only a geometric
distance (number of hops) but also a logic proximity, i.e. the kind of properties between
words. The depth d of the subsumer of w1 and w2 is also computed using WordNet.
To this aim only the hyponymy and hyperonymy relations (i.e. the IS-A hierarchy) are
considered. d(w1, w2) is computed as the number of hops from the subsumer of w1

and w2 to the root of the hierarchy. Given the above considerations, we selected an
exponential function, that satisfies the previously discussed constraints.

We can now introduce the definition of Semantic Grade (SeG), that extends a metric
proposed in [11]:

SeG(ν) =
∑

(wi,wj)

e−α·l(wi,wj)
eβ·d(wi,wj) − e−β·d(wi,wj)

eβ·d(wi,wj) + e−β·d(wi,wj)
(4)

(wi, wj) being a pairs of words in the document ν, α ≥ 0 and β > 0 being two scaling
parameters whose values have been defined by experiments.

The final grade is the sum of the Syntactic-Semantic Grade and the Semantic Grade.

4.2 Topic Detection Step

In the Topic Detection step the system gets a synset which represents the set of synsets
detected in the word sense disambiguation step. This synset called Topic Synset,
is representative of the page topic. We consider every concepts previously found in the
Word Sense Disambiguation step and the system builds a DSN starting from the related
synset. Therefore we calculate the intersection among the DSN from Si with each
DSNs from all single concepts. We argue that the number of common concepts be-
tween the DSNSi and the other DSNs is the representation grade of the considered con-
cept with respect to the whole Web page: this measure is called Sense Coverage.
We take into account the concepts specialization also using a scaling factor get from
the depth of the synset from the related WordNet root. After those considerations,
the Topic Synset will be the synset having the best trade-off between the Sense
Coverage and the Sense Depth form the correspondent WordNet root:

TopicSynset = max(depth(Si) ∗ Cover(DSNSi)) (5)

If the intersection set is empty, the system does not return any classification at all.
The directory structure, in which the analyzed page is arranged, is obtained from the

path started from the Topic Synset to the correspondent WordNet root.
This path is calculated using the hyperonymy property. An example of this path using

XML is in the next figure where there is a comparison with the Yahoo! directory.

Crawling the Web with OntoDir 737

<web-page>
<Url>
http://dialspace.dial.pipex.com/agarman/jaguar.htm

</Url>
<Yahoo_Category>
Science/Biology/Zoology/Animals_Insects_and_Pets/

Mammals/Cats/Wild_Cats/Jaguars
</Yahoo_Category>
<Category>
entity/object/living_thing/organism/animal/chordate

/vertebrate/mammal/placental/carnivore
/feline/big_cat/jaguar/

</Category>
<Topic_Description>
a large spotted feline of tropical America similar

to the leopard
</Topic_Description>
<Keywords>
jaguar,panther,Panthera_onca,Felis_onca

</Keywords>
</web-page>

This XML file is used to annotate the considered Web page; in addition to the di-
rectory paths we have information about the Url, a description of page topic using the
WordNet gloss of the Topic Synset and some keywords derived from the synonyms of
the Topic Synset.

5 Experimental Results

In order to have a reliable evaluation of our system and methods, we used a stan-
dard test set collection of Web documents. Note that to the best of our knowledge,
no general Web page test set collections are available for our propose, therefore we
choose to use the 20 Newsgroups test collection [10]. In particular we analyze all
the categories because they refer to very different subjects and we use this hetero-
geneity to obtain a general and formal evaluation of our system, algorithms and our
knowledge base. In fact WordNet is a general ontology with a different specialization
on conceptual domains. We think that this test set is a good example of a real sce-
nario and the task performed by our system could be a step before an opinion anal-
ysis or other emergent application on the Web. As reported in the 20 Newsgroups
documentation, some of the newsgroups are very closely related to each other (e.g.
comp.sys.ibm.pc.hardware / comp.sys.mac.hardware), while others are highly unrelated
(e.g misc.forsale / soc.religion.christian). We calculate what we call “local precision”
simply considering precision of each category. Structural relation among categories in
the 20 Newsgroups defined by the talk topics have been found during the experimental
test. We defined different classes of annotated documents with respect to the system
analysis output. The evaluation of the experimental results has been performed by hu-
man experts following the strategy afterward described. The Right Classification class
is referred to the annotations fitting with the relevance assessment given to the 20 News-
groups categories and subjects; in the Wrong Classification class are all the documents
with an erroneous analysis; with the label General Classification we suggest the cate-
gories too much general to satisfy the user needs but with a right beginning root path;
None Classification is the tag for those documents with none annotation. In Figure 3 are

738 A. Picariello and A.M. Rinaldi

shown the experimental results where the number of documents for each classes are on
the y-axis and the categories are on the x-axis. From the documents in the None Classi-
fication class we found very few or none words and the DSNs built from them have no
concepts in common. On the other hand annotations in the General Classification class
are obtained from documents about general arguments within no specific concepts. In a
general point of view we notice that for all the categories the lack of specific terms in
WordNet lead the system to an incorrect classification giving a misrepresent analysis.
We also investigated about the document topics. In fact we have a good detection for
some topics; for some other ones, we have a low accuracy. We argue that this is due to
the considered general dictionary WordNet and to the fact that such kind of dictionary
has small sized ontologies that can be extracted for specific conceptual domain. This
idea is also supported by the analysis of log system, where we noticed many DSNs and
several matching terms in the document with good precision.

Fig. 3. Topic Detection Accuracy

6 Conclusions

In this paper we used ontologies in the Web page classification process. We use a novel
approach to classify Web documents in order to create a directory structure not a priori
defined but dynamically built using a general knowledge base. Our method involves two
tasks to perform a word sense disambiguation and a topic detection. Novel algorithms
and metrics are proposed and the preliminary results are very promising. Currently we
are investigating about the use of other types of data, such as images, in order to obtain a
more accurate classification; we are studying ontology merging techniques to increase
the ontological definition of a conceptual domain. Furthermore, we are planning to
successively compare our method with the ones proposed in the literature.

Crawling the Web with OntoDir 739

References

1. Albanese, M., Picariello, A., Rinaldi, A.M.: A semantic search engine for web information
retrieval: an approach based on dynamic semantic networks. In: ACM SIGIR Semantic Web
and Information Retrieval Workshop (SWIR 2004), pp. 25–29. ACM Press, New York (2004)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web: A new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American 284(5), 28–37 (2001)

3. Calado, P., Cristo, M., Moura, E., Ziviani, N., Ribeiro-Neto, B., Gonçalves, M.A.: Combin-
ing link-based and content-based methods for web document classification. In: CIKM ’03:
Proceedings of the twelfth international conference on Information and knowledge manage-
ment, pp. 394–401. ACM Press, New York (2003)

4. Chen, H., Dumais, S.: Bringing order to the web: automatically categorizing search results.
In: CHI ’00: Proceedings of the SIGCHI conference on Human factors in computing systems,
pp. 145–152. ACM Press, New York (2000)

5. Dumais, S., Chen, H.: Hierarchical classification of web content. In: SIGIR ’00: Proceedings
of the 23rd annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 256–263. ACM Press, New York (2000)

6. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Ac-
quis. 5(2), 199–220 (1993)

7. Huang, C.-C., Chuang, S.-L., Chien, L.-F.: Liveclassifier: creating hierarchical text classifiers
through web corpora. In: WWW ’04: Proceedings of the 13th international conference on
World Wide Web, pp. 184–192. ACM Press, New York (2004)

8. Huang, Y., Wang, Q., Yang, J., Ding, Q.: The design and implementation of a subject-oriented
web information classification system. In: Proceedings of the 9th International Conference
on Computer Supported Cooperative Work in Design, vol. 2, pp. 836–840 (2005)

9. Jackson, M., Burden, P.: WWLib-TNG - new directions in search engine technology. IEE
Informatics Colloquium Lost in the Web - navigation on the Internet, pp. 10/1–10/8 (1999)

10. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, pp. 331–339 (1995)

11. Li, Y., Bandar, Z., McLean, D.: An approach for measuring semantic similarity between
words using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882
(2003)

12. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)
13. Qi, D., Sun, B.: A genetic k-means approaches for automated web page classification. In:

IRI, pp. 241–246 (2004)
14. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of In-

formation by Computer. Addison-Wesley, London (1989)
15. Song, M.-H., Lim, S.-Y., Kang, D.-J., Lee, S.-J.: Automatic classification of web pages based

on the concept of domain ontology. In: Proceeding of the 12th Asia-Pacific Software Engi-
neering Conference (APSEC ’05), Taipei, Taiwan, pages CD–ROM (2005)

16. Xiaogang, P., Choi, B.: Automatic web page classification in a dynamic and hierarchical way.
In: Proceeding of the IEEE International Conference on Data Mining (ICDM ’02), Maebashi
City, Japan, pp. 386–393 (2002)

17. Zhang, M.-Y., Lu, Z.-D.: A fuzzy classification based on feature selection for web pages. In:
WI ’04: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence
(WI’04), pp. 469–472. IEEE Computer Society Press, Washington (2004)

Extracting Sequential Nuggets of Knowledge

Christine Froidevaux1,�, Frédérique Lisacek2, and Bastien Rance1

1 LRI; Univ. Paris-Sud, CNRS UMR 8623; F-91405 Orsay, France
chris@lri.fr, bastien.rance@lri.fr

2 Proteome Informatics Group, Swiss Institute of Bioinformatics, Geneva, Switzerland
frederique.lisacek@isb-sib.ch

Abstract. We present the notion of sequential association rule and in-
troduce Sequential Nuggets of Knowledge as sequential association rules
with possible low support and good quality, which may be highly relevant
to scientific knowledge discovery. Then we propose the algorithm SNK
that mines some interesting subset of sequential nuggets of knowledge
and apply it to an example of molecular biology. Unexpected nuggets
that are produced may help scientists refine a rough preliminary classi-
fication. A first implementation in Java is freely available on the web1.

1 Introduction

Mining the collection of records in a large database to find out association rules is
a classical problem introduced by [1] that has received a great deal of attention.
Association rules are expressions of the form A → B, where A and B are disjoint
itemsets. Frequent sequential patterns mining was introduced in [2] in the case
where the data stored in the database are relative to behavioural facts that occur
over time as a refinement of frequent pattern mining that accommodates ordered
items. It is an active research field in data mining that is applied in various
domains including, among others, analysis of customer shopping sequences, web
usage mining, medical processes, DNA sequences.

In this paper, we introduce the notion of sequential association rule which
is based on the notion of interestingness measure. Unlike common approaches,
we are only interested in producing rules whose consequent belongs to some
predefined set of items (target items), disjoint from the set of the items present
in the antecedent. We want to detect tight associations between antecedents of
rules and their consequent rather than rules with high support. Thus as in [14],
we also search for significant rare data that co-occur in relatively high association
with the specific data. Namely discovering close dependencies between facts that
almost always co-occur is informative, even if these facts are not frequent in the
database. In contrast, associations with large support cannot be surprising since
they are relative to a large part of the objects ([3], [8]). Unexpected associations
are interesting because they may reveal an aspect of the data that needs further
study [7].
� To whom correspondence should be addressed.
1 http://www.lri.fr/∼rance/SNK/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 740–750, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extracting Sequential Nuggets of Knowledge 741

We determine the relevance of a rule merely by its value for some interesting-
ness measure. We will consider several interestingness measures because not all
measures are equally good at capturing the dependencies between the facts and
no measure is better than others in all cases [12]. Then we introduce Sequential
Nuggets of Knowledge as sequential association rules that may have a low sup-
port in the database but are highly relevant for some interestingness measure.
Finally, not all Sequential Nuggets of Knowledge, but only the maximal ones
are searched for. The rational is to reduce the number and the length of rules,
assuming that such rules correspond in some way to a typical signature of the
objects, that is, represent concise characteristics of the studied objects. Moreover
they are easier to analyse for human experts.

Maximal Sequential Nuggets of Knowledge could be used for example to im-
prove the organisation of a web site. Given the log (list of tuples <IP address,
date, visited web page>) of visitors to our university web site, IP addresses could
be used to identify different profiles of users: e.g. students of our university, re-
searchers from other universities, visitors from the remainder of the world. If we
could discover typical signatures for each profile, we would improve our web site
organisation by adding hyperlinks between different pages and would simplify
the navigation for the users.

In this paper, we present the algorithm SNK which calculates the most general
Sequential Nuggets of Knowledge and illustrate its use in the domain of molecular
biology, more specifically, in the perspective of protein functional classification.
Sequential Nuggets of Knowledge express context-sensitive sequential constraints
that are mostly verified in a sub-class of objects as opposed to another sub-class.
This approach is particularly interesting in biology.

The remainder of the paper is organised as follows. In section 2 we intro-
duce the fundamental concepts underlying the notion of Sequential Nuggets of
Knowledge. We present and study the algorithm SNK (section 3) that computes
these nuggets. We show in (section 4) how this algorithm is useful in an example
of SNK application in the domain of molecular biology. We report related work
and conclude by discussing our results and giving some perspectives (section 5).

2 Basic Concepts

2.1 Definitions

We aim at discovering dependencies between the descriptions of objects in terms
of sequences of items in relation with some specific target item. We denote by
IDT the set of identifiers of the objects and by T the set of the target items.
Let I be the set of all items (boolean attributes). The sets I and T are supposed
to be disjoint. An itemset is any subset of I.

The following notion of sequence is borrowed from [2]. A sequence s on I is
an ordered list of itemsets, denoted by 〈E1, E2, ..., El〉, where Ei ⊆ I, 1 ≤ i ≤ l.
Note that an itemset can have multiple occurrences in a sequence.

The size of a sequence s is the number of itemsets in s and is written |s|.
A sequence s = 〈E1, E2, ..., En〉 is called a subsequence of another sequence

742 C. Froidevaux, F. Lisacek, and B. Rance

s′ = 〈F1, F2, ..., Fm〉, denoted s * s′, if and only if there exist integers j1, ..., jn,
such that 1 ≤ j1 < j2 < ... < jn ≤ m and E1 ⊆ Fj1 , E2 ⊆ Fj2 , ... , En ⊆ Fjn ,
where ⊆ denotes the classical inclusion between sets. We will say that s′ contains
s. If s and s′ are distinct sequences such that s * s′, we will write s � s′.

Let s = 〈E1, E2, ..., En〉 and s′ = 〈F1, F2, ..., Fm〉 be two sequences on I. We
will denote by s · s′ the sequence resulting from the concatenation of the two
sequences: s · s′ = 〈E1, E2, ..., En, F1, F2, ..., Fm〉.

We define a categorised sequence database as a set CSD of tuples 〈sid, s, tg〉,
sid ∈ IDT , tg ∈ T , where sid is the object identifier, s the sequence of itemsets
from I describing it and tg the target item associated to it. A tuple 〈sid, s, tg〉
is said to contain a sequence s′ if and only if s′ is a subsequence of s.

Running example:

CSD =

id seq target
{α1 = 〈id1, 〈a, b, f, c, e, f, g〉 , tg1〉,
α2 = 〈id2, 〈a, e, b, h, c, f, g〉 , tg1〉,
α3 = 〈id3, 〈c, e, a, b, e, g, f〉 , tg2〉,
α4 = 〈id4, 〈c, e, a, b, e, g, f, a, e, b, f, d〉 , tg2〉}

In CSD the sequence 〈b, e, f〉 is a subsequence of 〈a, b, f, c, e, f, g〉 and α1 con-
tains the sequence 〈b, e, f〉. In this example all the itemsets are singletons denoted
by their unique element, which is not required in the general definition.

We introduce the notion of sequential association rule as a combination of
classical association rules and sequential patterns. Formally, a sequential associ-
ation rule r on CSD is an implication of the form ANT → CONS, where ANT
is a sequence of itemsets from I and CONS an element of T . We call ANT (resp.
CONS) the antecedent (resp. consequent) of r and write ant(r) (resp. cons(r)).

The support of a sequential association rule r in a database CSD is defined
as the number of tuples of CSD that contain both its antecedent and its conse-
quent. Formally we have: supportCSD(ANT → CONS) =
|{〈sid, s, tg〉 ∈ CSD s.t. (ANT * s) ∧ (CONS = tg)}|.
Note that the items in ANT need not be consecutive in s, in order to be sup-
ported by the tuple.

Example: supportCSD(〈a, b, f〉 → tg1) = 2
The confidence of a sequential association rule r in the database CSD indicates
amongst all the tuples of CSD containing its antecedent the fraction in which
its consequent appears. confCSD(ANT → CONS) =

|{〈sid, s, tg〉 ∈ CSD s.t. (ANT * s) ∧ (CONS = tg)}|
|{〈sid, s, tg〉 ∈ CSD s.t. ANT * s}|

Example: confCSD(〈a, b, f〉 → tg1) = 0.5; confCSD(〈a, b, f, g〉 → tg1) = 1.
A sequential association rule r1 is said to contain another rule r2, written (r2 %
r1), if and only if cons(r1) = cons(r2) and ant(r2) * ant(r1). We also say that
r2 is more general than r1. If r1 �= r2 and r2 % r1 we will write r2 ≺ r1.

Extracting Sequential Nuggets of Knowledge 743

We now focus on the main notion of this paper, namely Sequential Nuggets
of Knowledge. We introduce them as sequential association rules with possible
low support but with high quality. Minimal support is required in order not to
discover strong associations that involve only a few objects, which may come
from noise.

A sequential nugget of knowledge is defined as a sequential association rule r in
CSD such that its support is no less than some threshold and its interestingness
measure value (cf. section 2.2) is no less than to some other threshold.

In the applications we have foreseen, objects are merely described by sequences
of items, so that sequences of itemsets are unnecessarily complicated. Therefore,
in the remainder of the paper, we will consider only sequences where itemsets
have a single item. The definition of subsequence can be rewritten in a simpler
form where inclusion is replaced by equality.

2.2 Interestingness Measures

Identifying sequences of variables that are strongly correlated and building rel-
evant rules with those variables is a challenging task. Interestingness measures
help to estimate the importance of a rule: they can be used for pruning low utility
rules, or ranking and selecting interesting rules. Selecting a good measure allows
to reduce time and space costs during the mining process ([12], [7]). As pointed
earlier, all the interestingness measures do not capture the same kind of associa-
tion. For example, using a support-confidence approach, a rule ANT → CONS
may be considered as important, even if CONS is often found without ANT .
In our work we mainly studied, besides confidence, another measure which is
well adapted to our data, Zhang’s measure as it takes into consideration the
counter-examples [16].

[8] and [7] suggest a number of key properties to be examined for selecting
the right measure that best suits the data. Note that while support satisfies
anti-monotonicity (if r % r′ then supportCSD(r′) ≤ supportCSD(r)), not all in-
terestingness measures satisfy monotonicity (if a rule is considered to be relevant
any of its specialisations is relevant too).

2.3 Postfix-Projection

The method proposed for mining sequential nuggets of knowledge follows the
approach of [11] for sequential patterns. We recursively project the initial cate-
gorised sequential database into a set of smaller categorised sequential databases,
thus generating projected databases by growing prefixes.

Let CSD be a categorised sequential database, α = 〈sid1, 〈e1...en〉, c1〉 a tuple
of CSD and s′ = 〈e′1...e′m〉 a sequence with m ≤ n. s′ is called a prefix of α if
and only if ∀i, 1 ≤ i ≤ m , e′i = ei.

Example (continued): The sequence 〈a, b, f〉 is a prefix of α1.
Let α = 〈sid, s, tg〉 be a tuple of CSD. We denote id, seq and target the methods
which return respectively the identifier, the sequence and the target of α: id(α) =
sid, seq(α) = s and target(α) = tg.

744 C. Froidevaux, F. Lisacek, and B. Rance

The notion of s′-projection corresponds to the longest subsequence having s′

as a prefix. Let α be a tuple and s′ be a sequence such that s′ * seq(α). A
tuple α′ = 〈id(α′), seq(α′), target(α′)〉 is the s′-projection of α if and only if (1)
id(α′) = id(α), (2) seq(α′) * seq(α), (3) target(α′) = target(α), (4) s′ is a prefix
of α′ and (5) � ∃α′′ a tuple s.t. seq(α′) � seq(α′′) and seq(α′′) * seq(α) and s′ is
a prefix of α′′.

Note that with such a definition only the subsequence of seq(α) prefixed with
the first occurrence of s′ should be considered for α′.

Example (continued):
〈id1, 〈a, b, f, c, e, f, g〉, tg1〉 is an abf-projection of α1, while 〈id1, 〈a, b, f, g〉, tg1〉
is not because (5) is not satisfied. Similarly, 〈id4, 〈a, b, f, a, e, b, f, d〉, tg2〉 is an
abf-projection of α4, while 〈id4, 〈a, b, f, d〉, tg2〉 is not because of (5).

The s′-projection of α, if it exists (i.e. if s′ can be a prefix of a tuple whose
sequence is contained in α) is unique. It is the s′-projection of α.

Let α be a tuple of CSD and let s = 〈e1, ..., en〉 be a sequence on I. Let α′ =
〈id1, 〈e1, ..., en, en+1, ..., en+p〉, tg1〉 be the s-projection of α, where s is a prefix
of α′. Then γ = 〈id1, 〈en+1, ..., en+p〉, tg1〉 is the s-postfix of α′. If p > 0, then the
s-postfix has a sequence of size > 0: it is said to be not empty and is denoted
by α/s. Note that γ satisfies: seq(α′) = s · seq(γ).

The s-projected database, denoted by s−postfix(CSD), is defined as follows:
s−postfix(CSD) = {(α/s), α ∈ CSD}
Running example :

abf−postfix(CSD) =

id seq target
{〈id1, 〈c, e, f, g〉 , tg1〉,
〈id2, 〈g〉 , tg1〉,
〈id4, 〈a, e, b, f, d〉 , tg2〉}

The recursive principle of our algorithm is based on the following property:

Property 1:
Let CSD be a categorised database. Let s1 and s2 be any sequences on I, and
let r be any sequential association rule. Then:

(i) s2−postfix(s1−postfix(CSD)) = s1 · s2−postfix(CSD)
(ii) supports1.s2−postfix(CSD)(r) = supportCSD((s1 · s2 · ant(r)) → cons(r))
(iii) supportCSD(r) ≥ supports1−postfix(CSD)(r).

3 SNK Algorithm

3.1 Specification and Pseudo-code

Now we present SNK, an algorithm which mines the most general sequential
nuggets of knowledge from a categorised sequential database, given some thresh-
olds specified by the user.

Extracting Sequential Nuggets of Knowledge 745

SNK method
Parameters:
In: CSD a categorised sequential database; min supp a support threshold; IM
an interestingness measure; min meas an IM value threshold;
Out: RESULTS the set of the most general Sequential Nuggets of Knowledge;
Method used: SNKrec;
Begin
RESULTS = ∅; ST = the set of all target items of T present in CSD;
Foreach y in ST do

//sequential nuggets of knowledge targeted on y are searched for
Sy = the set of all tuples of CSD having y as a target;
SNKrec(Sy,y,min supp,IM ,min meas,〈〉,RESULTS) endfor end SNK;

SNKrec method
// generates rules r of the form (p · x) → y, where x is any item occurring in
S and p the prefix used; updates RESULTS with r in order to get only the
most general sequential nuggets of knowledge; calls recursively itself on the x-
projected database of S if r has good support but bad interestingness measure
value
Parameters:
In: S a set of tuples having y as a target; min supp, IM , min meas;
p the sequence used as a prefix;
In/Out: RESULTS a set of Sequential Nuggets of Knowledge s.t. � ∃r1, r2 ∈
RESULTS with r1 ≺ r2;
Methods used:
add rule; //add rule(r,RES) adds rule r to RES unless if r is less general than
or equal to some rule in RES and removes from RES any rule that is less gen-
eral than r.
measure; // measureIM,CSD(r) evaluates the value of r for IM in CSD
support: // supportS(r) evaluates the support of r in S
Begin SI = the set of all items of I occurring in elements of S;
Foreach x in SI do

if supportS(x → y) ≥ min supp then
if measureIM,CSD((p · x) → y) ≥ min meas then

RESULTS = add rule((p · x) → y,RESULTS)
else if x-postfix(S) �= ∅ then

SNKrec(x-postfix(S),y,min supp,IM ,min meas,p · x,RESULTS)
endifendifendifendfor end SNKrec;

Running example:
Let min supp = 2, IM = confidence, min meas = 1. SNK yields the set of all
the maximal sequential nuggets of knowledge:
RESULTS = {〈e, e〉 → tg2, 〈e, a〉 → tg2, 〈c, b〉 → tg2, 〈c, a〉 → tg2, 〈g, f〉 →
tg2, 〈b, c〉 → tg1, 〈f, g〉 → tg1, 〈a, c〉 → tg1}.

746 C. Froidevaux, F. Lisacek, and B. Rance

3.2 Properties of SNK

First the algorithm is sound and complete w.r.t its specification [6]. Formally:

Theorem 2. Let CSD be a categorised sequential database, IM an interesting-
ness measure, min supp a support threshold and min meas an interestingness
measure threshold for IM . Then:
SNK returns exactly all the most general sequential association rules r on CSD
that satisfy suppCSD(r) ≥ min supp and measIM,CSD(r) ≥ min meas.

The time complexity of SNK is related to the number of target items, and
for each target item, to the number of recursive calls of SNKrec. The worst
case for SNKrec occurs when all the rules generated have good support but bad
measure, leading to a maximal number of recursive calls. Each call requires a
calculation of support and of IM measure, and involves either the cost of a
postfix-projection or that of the add rule method. With our depth-first search
approach all the projected databases need not be stored in memory and they
can be built independently. The analysis shows (see [6] for details) that the
theoretical time complexity is high in the worst case. However, in practice, for
the applications foreseen, the SNK algorithm remains efficient because the size
of the projected databases decreases very quickly.

SNK allows to discover rules describing regularities in a sequential data set.
Moreover, SNK provides the user with a parameterisation process for adapting
the tool to specific needs. The user can select among a dozen measures the mea-
sure that best fits his application field (by default confidence is selected) [7]. A
bootstrap mode is also available, where SNK is run on a categorised sequential
database resampled from the original database as an input in order to check the
consistency of the generated rules. In the data mining mode, SNK runs in about
3 seconds for mining sequential nuggets of knowledge for 760 tuples (described
by sequences of size less than 17 where the set of items has about 35 distinct ele-
ments), 6 seconds for 1200 tuples. SNK is fully implemented in Java and the web
Applet is freely available on SNK website (http://www.lri.fr/∼rance/SNK/).

4 Example

We show how SNK can be useful through the study of a family of bacterial
proteins. Each protein is described by its sequence of motifs (we call “motif”
a functional or well conserved part of the amino acid sequence). We consider
the Phospholipase D (PLD) family of proteins which are present in all species
from virus to eukaryote, and involved in many cell processes. These proteins
are grouped together simply because they carry the PLDc motif repeated once.
They also contain a wide range of other motifs. In [10], a surprising regularity
concerning the C-terminal part of proteins was reported. More precisely, the dis-
tance between the end of the second PLDc motif and the C-terminal end of the
protein (rightmost) was shown to correlate with the known functions of the pro-
teins. Consequently, proteins could be grouped into classes using this distance
as a classification criterion. In the remainder of this section we will refer to the

Extracting Sequential Nuggets of Knowledge 747

length of this region as the C-terminal length (this length is either: 40, 60, 72, 82,
100). Each class is then functionally consistent. Using SNK we have investigated
a possible relationship between module architecture, C-terminal length and func-
tion. We have considered all bacterial proteins of the UniProtKB database [4]
which contain two PLDc motifs. The corresponding set of proteins showed a va-
riety of motif combinations involving other protein family signatures as well as
so-called “low complexity regions” (poorly informative sequences [13]). The total
number of proteins is 676. We first considered the possible existence of a link
between low-complexity regions and C-terminal length. In this first test, pro-
teins were described as successions of PLDc motifs and low complexity regions.
We studied a set of proteins containing all the PLD proteins with C-terminal
length from classes “72” and “82” using Zhang’s interestingness measure. SNK
was performed with a very low support threshold (min supp=15) and with a
good measure threshold (min meas=0.8). Among the 20 most general sequen-
tial nuggets of knowledge obtained, 3 rules were especially interesting. In the
rules presented below, lc denotes low-complexity region and the values between
brackets are respectively support and Zhang’s measure values.
(1a) lc,PLDc,PLDc -> 82, (273,0.80),
(1b) lc,lc,PLDc -> 82, (174,0.68),
(1c) PLDc,PLDc,lc -> 72, (136,0.90)
The sequential association rules returned by SNK are high quality rules. Rule
(1a) and (1c) highlight the importance of the order between modules in the
assignment to a class. The location of low complexity regions is closely linked
to the C-terminal length. Depending on whether lc is in front of or behind the
double PLDc motif, the conclusion of the rule is one or the other class. Simple
association rules could not have expressed such a clear distinction.
In a second test information about protein family signatures as compiled in both
Pfam-A [5] and Pfam-B databases was added. Amongst the rules generated with
min supp=7 and min meas=0.9,
(2a) PLDc,Pfam-B 115,Pfam-B 2786 -> 40, (7,0.90) and
(2b) PLDc,Pfam-B 115,Pfam-B 6054 -> 40, (7,0.93)
are the only rules where PLDc precedes Pfam-B 115 and therefore appear to
characterise class 40. In all other rules where the two entities occur Pfam-B 115
precedes PLDc. A complementary test was performed with the same initial data
set but taking the protein function as a target for SNK (either diacyltrans-
ferase, cardiosyntase, transphosphatidylase or unspecialised phospholipase D).
Amongst the 9 rules (min supp=7, min meas=0.9), one strongly corresponds
to the cardiosyntase function:
(3a) Pfam-B 1038,lc,Pfam-B 115,Pfam-B 2786 -> cardio, (7,1.00)
This rule appears quite similar to one of the rules generated (same thresholds)
for the length criterion
(2c) lc,Pfam-B 115,lc,Pfam-B 2786 -> 60, (15,0.94)
Likewise, (3b) lc,Pfam-B 5151 -> diacyltransferase, (7,0.91)
strongly corresponds to the diacyltransferase function while (3c) Pfam-B 5151
-> 72, (53,1.00) was previously generated for the length criterion.

748 C. Froidevaux, F. Lisacek, and B. Rance

This generalises the correlation suggested in [10] between length 60 and 72 re-
spectively and the cardiosyntase and diacyltransferase functions. Other rules
generated with the protein function as a target are potentially misleading due
to inconsistencies of the automated assignment of function in these proteins. We
are currently testing the possibility of correcting mistakes using rules generated
with the length criterion.

5 Related Work and Discussion

In this paper, we have proposed a definition of sequential association rules and
introduced sequential nuggets of knowledge. Those definitions are based on the
works presented in [11], but unlike classical sequential pattern mining, our ap-
proach focuses on rules with predefined targets as consequents. We have designed
SNK, an algorithm based on a pattern-growth strategy (as PrefixSpan [11]) to
generate the most general sequential nuggets of knowledge using an interest-
ingness measure that evaluates the pertinence of a rule. Other efficient works
have been proposed for sequential pattern mining. SPADE [15] is as fast as Pre-
fixSpan but uses a bitmap structure which is better adapted to the study of
very long sequences but less suitable for short sequences. [9] had proposed a
method to generate sequential association rules, but is based on an a priori-like
strategy with two steps, a candidate test step and a candidate generation step.
This approach generates many unnecessary candidates that our pattern-growth
approach avoids.

Sequential nuggets of knowledge are defined by a good interestingness measure
value. SNK offers the choice between a dozen of interestingness measures. The
choice of a suitable measure for a given application domain can be guided by
the examination of criteria described in [7] and in [12]. On the other hand,
[8] proposes a statistical bootstrap-based method to assess the significance of
a measure (thus avoiding false discoveries) that could be used with SNK. A
first implementation of SNK is freely available on the web with some other
functionalities.

Finally we have presented an example in biology involving the PLDc fam-
ily of proteins. The link between C-terminal length of a PLDc protein and its
function was investigated. Let us recall that a protein function usually corre-
sponds to a specific sequence of structural units. Most studies take into account
the combinatorial aspect of the structural composition of proteins. We showed
that the identification of sequential constraints could lead to a refinement of the
functional classification of proteins. As a result, a large class grouped upon one
rough criterion can be subdivided into sub-classes upon explicit and informa-
tive distinctive traits. We are currently testing the possibility of using the rules
discovered as a way of automatically correcting mistakes.

We also envisage to use our algorithm in other applications, e.g. on web logs,
and to extend it by adding non-sequential items in the antecedent of a rule. In
that way, it could take into account more expressive descriptions of objects. Since

Extracting Sequential Nuggets of Knowledge 749

the projected databases can be considered independently, we also plan to develop
a distributed version for a cluster of PC thereby drastically speeding up SNK.

Acknowledgement

Authors are very grateful to Céline Arnaud for her great help for the imple-
mentation of SNK applet. This work was supported in part by the French ACI
IMPBio grant RAFALE.

References

[1] Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets
of Items in Large Databases. In: Proc. of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207–216 (1993)

[2] Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. Eleventh Interna-
tional Conference on Data Engineering, pp. 3–14 (1995)

[3] Azé, J., Kodratoff, Y.: A study of the Effect of Noisy Data in Rule Extraction
Systems. In: Proc. of the Sixteenth European Meeting on Cybernetics and Systems
Research (EMCSR’02) (2), pp. 781–786 (2002)

[4] Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro,
S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale,
D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.: The Universal Protein Resource
(UniProt), Nucleic Acids Res. 33, D154–159 (2005)

[5] Finn, R.D., Mistry, J., Schuster-Backler, B., Griffiths-Jones, S., Hollich, V.,
Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R.,
Sonnhammer, E.L.L., Bateman, A.: Pfam: clans, web tools and services. Nucleic
Acids Research, Database Issue 34, D247–D251 (2006)

[6] Froidevaux, C., Lisacek, F., Rance, B.: Mining sequential nuggets of knowledge
UPS-LRI, Technical report (to appear)

[7] Geng, L., Hamilton, H.J.: Interestingness Measures for Data Mining: A Survey.
ACM Computing surveys 38(3), Article 9 (2006)

[8] Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: mea-
sure and statistical validation. In: Guillet, F., Hamilton, H.J. (eds.) Quality Mea-
sures in data Mining, Springer, Heidelberg (to appear, 2006)

[9] Masseglia, F., Tanasa, D., Trousse, B.: Web Usage Mining: Sequential Pattern
Extraction with a Very Low Support. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y.
(eds.) APWeb 2004. LNCS, vol. 3007, pp. 513–522. Springer, Heidelberg (2004)

[10] Nikitin, F., Rance, B., Itoh, M., Kanehisa, M., Lisacek, F.: Using Protein Motif
Combinations to Update KEGG Pathway Maps and Orthologue Tables. Genome
Informatics 2, 266–275 (2004)

[11] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.-C.: Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach.
IEEE Transactions on Knowledge and Data Engineering 16, 1424–1440 (2004)

[12] Tan, P.N., Kumar, V., Srivastava, J.: Selecting the Right Interestingness Measure
for Association Patterns. In: SIGKDD’02 (2002)

[13] Wootton, J.C., Federhen, S.: Statistics of local complexity in amino acid sequences
and sequence databases. Comput. Chem. 17, 149–163 (1993)

750 C. Froidevaux, F. Lisacek, and B. Rance

[14] Yun, H., Ha, D., Hwang, B., Ryu, K.H.: Mining association rules on significant
rare data using relative support. The Journal of Systems and Software 67, 181–191
(2003)

[15] Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. In:
Fisher, D. (ed.) Machine Learning Journal, special issue on Unsupervised Learn-
ing, vol. 42, pp. 31–60 (2001)

[16] Zhang, T.: Association Rules. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000.
LNCS, vol. 1805, pp. 245–256. Springer, Heidelberg (2000)

Identifying Rare Classes with Sparse Training

Data

Mingwu Zhang, Wei Jiang, Chris Clifton, and Sunil Prabhakar

Department of Computer Science, Purdue University
West Lafayette, IN 47907-2107, USA

{mzhang2, wjiang, clifton, sunil}@cs.purdue.edu

Abstract. Building models and learning patterns from a collection of
data are essential tasks for decision making and dissemination of knowl-
edge. One of the common tools to extract knowledge is to build a classi-
fier. However, when the training dataset is sparse, it is difficult to build
an accurate classifier. This is especially true in biological science, as
biological data are hard to produce and error-prone. Through empirical
results, this paper shows challenges in building an accurate classifier with
a sparse biological training dataset. Our findings indicate the inadequa-
cies in well known classification techniques. Although certain clustering
techniques, such as seeded k-Means, show some promise, there are still
spaces for further improvement. In addition, we propose a novel idea
that could be used to produce more balanced classifier when training
data samples are very limited.

1 Introduction

With the explosion of data, data mining techniques gain much attention for
their promise in building models and learning patterns from a collection of data.
These tasks are essential for decision making and dissemination of knowledge
in many areas. Well-known learning techniques such as association rule mining,
classification and clustering have been successfully applied in many applications.

Recently, biological science has emerged as a challenging area to apply data
mining techniques. One common problem in this field is that given a dataset
of which a small fraction has class labels, we need to identify class labels for
the other data items [1]. To solve this problem, we can either use supervised
(e.g., classification) or unsupervised (e.g., clustering) learning methods. To apply
classification techniques, the data with class labels can be treated as a training
dataset, and a classifier can be constructed from it. Then, the classifier is used
to predict class labels for the rest of unlabeled data items. On the other hand,
clustering techniques can also be adopted to achieve this task. For example,
assume the total number of class labels in the dataset is known. The dataset
can be clustered first, then each unlabeled data is assigned to the majority class
label in its cluster. (Thereafter, we term the set of data with class labels as a
training dataset and the rest of data as unlabeled data or dataset.)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 751–760, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

752 M. Zhang et al.

Although these techniques can be applied directly, different techniques pro-
duce various results. Therefore, how to choose the best method or design a
suitable method for a specific domain is challenging. Before making any deci-
sion, we first need to understand the characteristics of biological data. Generally
speaking, collecting biological data requires major efforts and years of research,
and biological data are noisy and error-prone. Thus, it is very likely that the
training dataset are sparse: either the size of the training dataset is small or the
training dataset contains incomplete class information.

For example, in cell wall genomics research, the mutants of cell wall synthesis
are extremely valuable to study the genes responsible for biosynthesis of the
cell wall and the genes that regulate the cell wall biosynthesis pathways. Tradi-
tional experimental methods to find the mutants are time consuming and labor
intensive. Although techniques such as Fourier Transform InfraRed microspec-
troscopy (FTIR) followed by Principle Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) has been successfully applied to rapidly identify
mutants [1], one common challenge biologists faced is the fact that certain mu-
tants might not have visually abnormal or known phenotypes. In other words,
there may not exist any training data for these mutants even though they are
detectable. These mutants that do not have known phenotypes are very valuable
to biologists because their mutations may be in the regulatory component of the
cell wall biosynthetic pathways. In addition, these unidentified mutants could
be much less common than the known mutants. The problem appears when the
training dataset has many data samples for common mutants but very few or
none for rare mutants that are potentially important. Consequently, classifiers
built on this kind of sparse training dataset are biased toward the common mu-
tants and could be useless in identifying rare mutants. It would be a great loss
for biological science if these potentially valuable mutants cannot be discovered.

Another issue that has not been addressed in data mining community is that
the training data may not be reliable and contain errors. Some biological exper-
iments (e.g., Yeast 2-hybrid Assay, Mass Spectrometry) are known to produce a
large number of false positives. If the results of these experiments are used as the
training data for supervised learning, the classifier could be defective because it
is built on unreliable training data. Another source of uncertainty comes from
the computational methods extensively used in bioinformatics. With the devel-
opment of high throughput experiment techniques, biologists more and more
rely on data mining and machine learning methods to rapidly and automatically
process the data. For example, Swiss-Prot is a curated protein function database
[2]. To alleviate the intense labor of manually curating protein function annota-
tions, scientists explore using decision tree to predict the functions of the protein
sequences [3]. The function annotations in the Swiss-Prot database are used as
training data. As Peter Karp points out in [4], some function annotations are
computed using computational methods such as BLAST [5] and may not be
reliable. Because of the complexity and inherent uncertainty of the biological
data, collected biological data samples are very unlikely to be complete and ac-
curate. Therefore, when training data samples are sparse, developing learning

Identifying Rare Classes with Sparse Training Data 753

techniques that can discover rare important classes and tolerate the noise in the
training data has great value.

These examples highlight the nature of biological data in that the training
dataset portion is sparse and some rare data may have great value in biological
research. Under our problem domain, classification techniques generally perform
better than clustering techniques if sufficient and unbiased training data are
available. When training data are sparse, the computed classifier is likely biased.
We expect that such a classifier is likely to ignore rare class labels. This could
lead to potential loss in research. Therefore, with sparse training data, cluster-
ing techniques could be the better option in assigning more correct class labels
without ignoring rare class items.

Through empirical results, this paper shows challenges faced by biologists
in building an accurate classifier with a sparse training dataset. Our findings
indicate that when the training dataset is sparse, well known classification tech-
niques are inadequate in producing accurate classifiers. Using them to discover
rare classes is almost impossible. Semi-supervised clustering techniques, such as
seeded k-means, show some promise in identifying rare classes, but there are
still spaces for further improvement. Based on these observations, we also pro-
pose a novel idea that could be used to identify rare classes when training data
samples are very limited. The paper is organized as follows: Section 2 presents
a brief overview of related works. Section 3 provides empirical results showing
inadequacies of common classification techniques to detect rare classes when the
training dataset is sparse. Section 4 proposes a novel idea in hopes that better
learning techniques can be designed to produce unbiased classifiers. Section 5
concludes the paper with lessons learned and future research directions.

2 Related Work

Machine learning and data mining methods can be classified into supervised and
unsupervised learnings. Supervised learning requires a training dataset while un-
supervised learning does not. Lately, semi-supervised learning has gained increas-
ing attention [6,7] because semi-supervised learning promises the advantage of
both supervised and unsupervised methods. In particular, semi-supervised clus-
tering tries to use a small number of labeled data to guide the clustering process.
By incorporating the domain knowledge in the clustering process, one hopes that
the result of semi-supervised clustering will be better than totally ignoring this
information. In [6], unlike the traditional k-means algorithm, instead of using
random seed, the initial seeds are the mean of each class of the labeled data.

However, this approach cannot be applied directly to the problem presented
in this paper because they assume that every class labels are included in the
training dataset. In section 3, we leverage this work and show how to choose
the seeds when training data contain incomplete information. A related problem
often emerging in biological application is Single Class Classification (SCC). In
[8], SCC is defined as distinguishing one class of the data from the universal set
of multiple classes. In our problem domain, because we would like to identify

754 M. Zhang et al.

rare classes from multiple classes, without training data for the rare classes,
single-class approaches cannot be applied.

3 Seeded k-Means vs. Classification Techniques

Here, we show that when training data is sparse, well-known classification tech-
niques rarely produce accurate and unbiased classifiers. We also point out that
with careful choice of seeds, seeded k-means (SkM) performs better in classifying
unknown data instances and identifying rare class instances with a sparse train-
ing dataset. By sparse training data, we mean that either the size of the training
dataset is small or the training dataset contains incomplete class informations
due to errors occurred during data collection process. For the rest of this section,
we distinguish these two cases and present our findings independently.

The experiments are done using two datasets, Ecoli and Yeast datasets from
UC Irvine Machine Learning Repository [9]. Ecoli dataset contains 336 instances,
7 numeric attributes and 8 classes: cp (143), im (77), pp (52), imU (35), om
(20), omL (5), imL (2) and imS (2) (the number in parentheses is the number of
instances belonging to that class). The Yeast dataset contains 1462 instances, 8
attributes and 10 classes: CYT (463), NUC (429), MIT (244), ME3 (163), ME2
(51), ME1 (44), EXC (37), VAC (30), POX (20) and ERL (5).

As stated in Section 1, different techniques produce various results. Our ex-
periments focus on three commonly used methods: decision tree (C4.5) [10],
k-nearest neighbor (kNN) [11,12], and seeded k-means (SkM) [6]. Based on our
own observations, the generic k-means did not produce better results than SkM.
Hence, we only show SkM’s results. In addition, when there are missing class
labels in the training data, SkM cannot be used directly because the number
of seeds it picks is equal to the number of distinct class labels in the training
dataset. To get around this issue, we propose two variations of SkM: SkMr and
SkMd. When there are missing class labels, SkMr chooses the rest of cluster cen-
ters randomly (as with the basic k-means) and SkMd chooses the rest of cluster
centers by picking the seed with largest Euclidean distance to the chosen cluster
centers, randomly choosing the seed if there are multiple candidates.

Both C4.5 and kNN were used in [13] to classify Ecoli and Yeast datasets,
where it was reported that the two classification techniques are most effective
for these datasets. We choose the same k values (for kNN) as those used in [13].
First, the training data and test data are generated using Weka [14] to create the
stratified n-fold cross-validation. Since we are interested in the situation when
little training data is available, we use one fold of data as the training data to
build the classifier and n-1 folds of data to test the classifier. In order to fairly
compare the clustering techniques with the classifiers, only the test data are used
to estimate the accuracy (or precision) and confusion matrices.

Fig. 1 shows the results for Ecoli dataset. Fig. 1 (a) is related to the orig-
inal Ecoli dataset, and it presents the accuracy changes with the number of
data samples varying from 16 to 168 (or 5% to 50%). Each error bar indicates
maximum, minimum and average values. Note that the label J48 in the fig-

Identifying Rare Classes with Sparse Training Data 755

45
50
55
60
65
70
75
80
85
90

16 33 67 168

Number of training data

A
cc

u
ra

cy
J48 kNN SkMr SkMd

(a) Ecoli

45
50
55
60
65
70
75
80
85
90

16 32 65 163

Number of training data

A
cc

u
ra

cy

J48 kNN SkMr SkMd

(b) Ecoli with missing classes

1
2

3
4

5
6

7
8

J48
kNN

SkMr
SkMd0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

Classes

(c) Ecoli 5% training data (d) Ecoli 5% training data with miss-
ing classes

1
2

3
4

5
6

7
8

J48
kNN

SkMr
SkMd0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

Classes

(e) Ecoli 10% training data (f) Ecoli 10% training data with
missing classes

Fig. 1. Ecoli dataset: Accuracy is computed based on test data only. Subfigures (a) and
(b) indicate overall accuracy of each algorithm, and the error bars indicate maximum,
minimum and average values across n-1 folds of test data. The rest of subfigures indicate
overall accuracy regarding each individual class.

ure indicates a Java implementation of C4.5. The figure shows when the number
of training data is small, C4.5 and kNN perform worse than SkMd and SkMr. As

756 M. Zhang et al.

10

20

30

40

50

60

14 29 73 146 292

Number of training data

A
cc

u
ra

cy
J48 kNN SkMr SkMd

(a) Yeast

10
15
20
25
30
35
40
45
50
55
60

14 28 70 140 281

Number of training data

A
cc

u
ra

cy

J48 kNN SkMr SkMd

(b) Yeast with missing classes

1 2 3 4 5 6 7 8 9 10

J48
kNN

SkMr
SkMd0

10

20

30

40

50

60

70

80

A
cc

u
ra

cy

Classes

(c) Yeast 1% training data

1 2 3 4 5 6 7 8 9 10

J48
kNN

SkMr
SkMd0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

Classes

(d) Yeast 1% training data with miss-
ing classes

1 2 3 4 5 6 7 8 9 10

J48
kNN

SkMr
SkMd0

10

20

30

40

50

60

70

80

A
cc

u
ra

cy

Classes

1 2 3 4 5 6 7 8 9 10

J48
kNN

SkMr
SkMd0

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy

Classes

(e) Yeast 2% training data (f) Yeast 2% training data with miss-
ing classes

Fig. 2. Yeast dataset: Accuracy is computed based on test data only. Subfigures (a) and
(b) indicate overall accuracy of each algorithm, and the error bars indicate maximum,
minimum and average values across n-1 folds of test data. The rest of subfigures indicate
overall accuracy regarding each individual class. In addtion, subfigures (d) and (f) are
related to the case where class 8 (VAC), class 9 (POX) and class 10 (ERL) have been
removed from the training data.

Identifying Rare Classes with Sparse Training Data 757

the number of the training data increases, the classifiers outperform both SkMd

and SkMr. This confirms that when training data are adequate, classification
techniques are well suited for the tasks. Since SkMd performs better than SkMr,
we can be certain that the choice of seeds does make a difference in the outcome.

Fig. 1 (c) and (e) present the accuracy in each class with 5% and 10% of the
training data respectively. The figures reveal that the classifiers fail to discover
the rare classes, such as class 6 (omL), class 7 (imL), and class 8 (imS), while
SkMd and SkMr successfully identify class 6 and class 7. For class 5 (om), SkMd

and SkMr substantially perform better than the two classifiers. In particularly,
the SkMd outperforms SkMr in rare classes. Since SkMd chooses the seeds that
are furthest away from the known seeds, it has a higher chance of picking a seed
that is close to the true center of the rare class. SkMr chooses a random seed for
the missing class, this random seed could be actually in a known cluster and is a
bad seed for the missing class. The reason that the classifiers does not perform
well is that when the training data is sparse, the training dataset contains none
or few data items belonging to rare classes.

In order to test the performance when the training dataset does not contain
some rare classes, we remove the most scarce classes from the dataset. In the case
of Ecoli dataset, the data of three classes 6, 7 and 8 are removed. The training
and test data are generated as described before. Then the rare classes are added
back to the test data. Fig. 1 (b)1 shows that the classifiers perform better as the
number of training data increases. Fig. 1 (d) and (f) show that the classifiers fail
to discover any rare classes as expected even when the size of the training dataset
increases. We conclude that SkMd and SkMr outperform classifiers for the rare
classes and that SkMd outperforms SkMr in rare classes. Fig. 2 shows the results
for Yeast dataset indicating similar trends as Ecoli dataset. Particularly, Fig. 2
(d) and (f) show that SkMd outperforms SkMr in class 9 (POX) and class 10
(ERL) but fails to identify class 8 (VAL). In [13], even when the whole dataset
was used to construct kNN classifier, VAL could not be identified. Thus, we
suspect that the training data related to class 8 are too similar to other classes.

4 Entropy-Based Semi-supervised Learning

As discussed in Section 3, when the training dataset is sparse (less than 70 data
samples), seeded k-means can classify data more accurate than C4.5 and kNN
algorithms. In addition, it can also identify more instances that belong to rare
classes. Seeded k-means only utilizes the labeled instances at the initial stage of
the algorithm, so here we propose a novel semi-supervised approach that uses
labeled instances during each execution round to make a more reasonable and
logical choice when assigning a data instance to clusters. We term this new
approach as entropy k-means (EkM).

1 Note that the numbers indicating the sizes of training data are slightly different
between the top two sub-figures. This is because the underlying datasets are modified
slightly to fit our experiments.

758 M. Zhang et al.

B

B

B
B

A

A

A

A

A2

B1 C

CC

C C C

C C

Cluster 2

Cluster 1

Cluster 3

A1

Fig. 3.

The intuition behind the EkM is shown in Figure 3. In this example, the
broken line circle represents the clusters before one iteration and solid line circle
represents the clusters after the iteration. The distance from the A1

2 to the
center of cluster 1 is more than that of cluster 2. Under the k-means algorithm,
A1 will be assigned to cluster 2. However, since most data in cluster 2 have
class label B and most data in cluster 1 have class label A, it is apparently
more reasonable to assign A1 to cluster 1. Because class labels of some data are
known, we want the data having the same class labels stay in the same cluster
as much as possible. Having this goal in mind, we incorporate entropy into our
decision making process. EkM works as follows: given a small number of data
items having class labels, EkM decides a cluster for a data item based on a score
metric that combines both the distance-based similarity metric and the entropy
of the cluster to which the item is added. The metric is defined as:

sj
i = p ·Dj

i + q ·Ej
i (1)

Ej
i =

n∑

m=1

−P j
mi lg P j

mi (2)

In Equation 1, sj
i represents the score of data item ti related to the center of

cluster Cj , Dj
i is the Euclidean distance between Cj ’s center and ti; Ej

i is the
entropy of Cj when ti is added. If ti is labeled, Ej

i is calculated, otherwise the
entropy does not change. In Equation 2, P j

mi is the probability a given class

2 A1 has class label A. The subscription is used to identify data element.

Identifying Rare Classes with Sparse Training Data 759

has been assigned to cluster Cj . n is the number of distinct classes in Cj . The
lowest sj

i value indicates ti is assigned to Cj during current iteration, and p, q
are coefficients to adjust the weight between distance and entropy. This score
function determines if the distances to the centers of different clusters are similar,
the cluster having lower entropy will win. Nevertheless, if the distance to a cluster
is very small and adding the data item to this cluster will increase its entropy,
this could indicate that the label actually is not correct. Consequently, EkM will
allow this item to go into a different cluster with the correct class label. We
expect that EkM will perform better in classifying and identifying rare classes.

The distance and entropy can offset each other. Fig. 3 shows a situation where
distance could dominate entropy. A2 and B1 are assigned to cluster 3. Although
we would like the data items having the same labels stay together, the distance
from A2 to cluster 1 is much larger than the distance to cluster 3. The same is
true for B1. In this case, the distance is too large to overcome and entropy has
little impact on the score metric; as a result, B1 and A2 should be assigned to
cluster 3 if we believe Euclidean distance is a good measure of similarity between
objects. On the other hand, if the distance from A1 to cluster 1 is close enough
to that from A1 to cluster 2, the entropy will guide A1 to cluster 1.

Our work is still in preliminary stage, but it did show some promise on cer-
tain datasets. Several issues need to be solved before giving a full evaluation of
EkM: using the score metric, convergence is not guaranteed because EkM is no
longer an EM based algorithm. Also, how to decide the values for p and q (in
equation 1) is another challenge. Our experiments conducted on Ecoli and Yeast
datasets show the magnitudes of distance and entropy are very similar, so we
set p = q = 0.5. In other words, distance and entropy have the same weight in
calculation of the score metric. In general, we think p and q are dataset depen-
dent. Furthermore, overfitting could cause potential problems in identifying rare
classes when using classification techniques. Since our proposed approach is a
combination of classification and clustering, our approach might be less likely to
cause overfitting. We will investigate this issue extensively in the future.

Another issue is that using this as an enhancement on k-means only affects
the center of the cluster. In reality, clusters may have different sizes or shapes;
using the (limited) class data to adjust size/shape of clusters as well as the cen-
ter would have even greater promise. We have started with a k-means basis due
to the success of k-means clustering in our problem domain, but K-means algo-
rithm assumes that K is known in advance, which may not be true for biological
applications. (e.g., the number of types of mutants are not known). Density-
based and hierarchical clustering algorithms are more suitable. We believe the
entropy-based idea can be used to guide density-based or hierarchical clustering
as well. The difficulty is to avoid over-reliance on the known data (leading to
the same problem of not recognizing rare classes that standard classifiers face),
while still getting full benefit. The simplicity of k-means makes this less of a
problem; further research is needed to see how this can affect other techniques.

760 M. Zhang et al.

5 Conclusion / Future Work

We have shown that when rare classes have few instances or are completely
missing in the training data, classification techniques using this training data
perform poorly to identify rare classes. We also showed seeded k-means can be
adopted in our problem domain, but the choice of seeds makes a difference. In
the future, we will systematically and theoretically investigate the best ways to
choose these seeds. Under the semi-supervised learning framework, we proposed a
novel idea that incorporates entropy into the score metric to guide the clustering
process. The preliminary results show some promise in identifying rare classes,
and we will thoroughly investigate this idea and apply it to a real application in
cell wall genomics. Since many clusters in biological data do not have a spherical
shape, we will extend this idea into density-based clustering techniques.

References

1. Chen, L., Carpita, N., Reiter, W., Wilson, R., Jeffries, C., McCann, M.: A rapid
method to screen for cell-wall mutants using discriminant analysis of fourier trans-
form infrared spectra. The plant Journal 16(3), 385–392 (1998)

2. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A.,
O’Donovan, C., Redaschi, N., Yeh, L.L.: Uniprot: the universal protein knowledge-
base. Nucleic Acids Research 32, D115–D119 (2004)

3. Kretschmann, E., Fleischmann, W., Apweiler, R.: Automatic rule generation for
protein annotation with the c4.5 data mining algorithm applied on swiss-prot.
Bioinformatics 17(10), 920–926 (2001)

4. Karp, P.D.: What we do not know about sequence analysis and sequence databases.
BioInformatics 14(9), 753–754 (1998)

5. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.: Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

6. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In:
ICML, pp. 27–34 (2002)

7. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: ICML (2004)

8. Yu, H.: Svmc: Single-class classification with support vector machines. In: IJCAI,
pp. 567–574 (2003)

9. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-

ers, San Francisco (1993)
11. Duda, R., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley &

Sons, Chichester (1973)
12. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press,

San Diego (1990)
13. Horton, P., Nakai, K.: Better prediction of protein cellular localization sites with

the k nearest neighbors classifier. In: Proc Int Conf Intell Syst Mol Biol., pp. 147–
152 (1997)

14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, San Fransisco (1999)

Clustering-Based K-Anonymisation Algorithms

Grigorios Loukides and Jianhua Shao

School of Computer Science
Cardiff University

Cardiff CF24 3AA, UK
{G.Loukides, J.Shao}@cs.cf.ac.uk

Abstract. K-anonymisation is an approach to protecting private infor-
mation contained within a dataset. Many k-anonymisation methods have
been proposed recently and one class of such methods are clustering-
based. These methods are able to achieve high quality anonymisations
and thus have a great application potential. However, existing clustering-
based techniques use different quality measures and employ different data
grouping strategies, and their comparative quality and performance are
unclear. In this paper, we present and experimentally evaluate a family
of clustering-based k-anonymisation algorithms in terms of data utility,
privacy protection and processing efficiency.

1 Introduction

Advances in the Internet and data storage technologies have resulted in an in-
creasing amount of data being produced and stored. Often, the collected data is
used in studies such as healthcare research, business analysis and lifestyle sur-
veys. However, if sensitive information contained within the data is not suitably
protected, individuals’ privacy, such as medical history and consumer prefer-
ences, may be revealed. Unfortunately, simply removing unique identifiers (e.g.
names or credit card numbers) from data is not enough, as individuals can still
be identified through a combination of non-unique attributes (often called quasi-
identifiers or QIDs) such as age and postcode [14].

In response, k-anonymisation, a conceptually simple but powerful technique,
has been proposed to address this issue. It works by organising data into groups
of at least k tuples and modifying the tuples in each group so that they share the
same value in the set of QIDs. This makes individual identification through QIDs
difficult, hence protects individuals’ privacy. Many methods for k-anonymising
data have been proposed [2,9,8,15] and one class of such methods are clustering-
based [13,3,11,16,4]. These methods work by first grouping data into clusters
using a quality measure and then generalise the data in each group separately
to achieve k-anonymity. It has been shown that clustering-based methods are
able to produce high quality anonymisations. However, existing clustering-based
techniques use different quality measures and employ different data grouping
strategies, and their comparative quality and performance are unclear.

Motivated by this, we study clustering algorithms in this paper by comparing
them in terms of three criteria that we believe are essential to gauging the quality

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 761–771, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

762 G. Loukides and J. Shao

of a k-anonymisation and its derivation. These are data utility (the extent of
information loss as a result of anonymisation), data protection (the extent to
which individual identification is prevented), and processing efficiency (how fast
k-anonymisations may be derived). Several representative clustering strategies
are analysed and compared in terms of these criteria, which provide insight into
the strength and weakness of the existing clustering-based algorithms.

The paper is organised as follows. Section 2 discusses optimality criteria for
k-anonymisation. Section 3 presents several clustering-based k-anonymisation
strategies, which are experimentally evaluated in Section 4. Finally, we conclude
in Section 5.

2 Preliminaries

In this section, we first formally define k-anonymisation and then discuss opti-
mality criteria for k-anonymising data.

Definition 1 (K-anonymisation). K-anonymisation is the process in which
a table T (A1, . . . , Ad), where Aj , j = 1, . . . , q are quasi-identifiers (QIDs) and
Am, m = (q + 1), . . . , d are sensitive attributes (SAs), is partitioned into groups
{g1, . . . , gh} s.t. |gi| ≥ k, 1 ≤ i ≤ h and tuples in gi have the same values in
every Aj .

Consider Table 2, for example. The values contained in Age and Postcode (QIDs)
are anonymised in such a way that each tuple is made identical to at least
other two tuples. Thus, Table 2 is 3-anonymised w.r.t. {Age, Postcode}. It is
typical that values are anonymised by replacing specific QID values with more
general ones, such as ranges (for interval attributes) or sets of values (for discrete
attributes). For instance, the original values in Age in Table 1 have been replaced
by [20-45] and [25-50], and the values in Postcode by {NW,SO} in Table 2.
Obviously, this process incurs some information loss, but makes identification of
private information difficult: an individual can not be associated with a specific
value in Disease (SA) with a probability greater than 1/k.

Table 1. Original
data

Age Postcode Disease

20 NW HIV
45 SO Cancer
25 NW HIV
21 NW HIV
47 SO Cancer
50 SO Cancer

Table 2. An anonymisation
of Table 1

Age Postcode Disease

[20-45] {NW,SO} HIV
[20-45] {NW,SO} HIV
[20-45] {NW,SO} Cancer
[25-50] {NW,SO} HIV
[25-50] {NW,SO} Cancer
[25-50] {NW,SO} Cancer

Table 3. Another anonymi-
sation of Table 1

Age Postcode Disease

[20-25] NW HIV
[20-25] NW HIV
[20-25] NW HIV
[45-50] SO Cancer
[45-50] SO Cancer
[45-50] SO Cancer

Many different anonymisations are possible for a given table [4]. Thus, opti-
mality criteria should be considered. First, anonymised data should remain use-
ful for data analysis. Measuring information loss incurred by k-anonymisation
is one way to capture data utility. For example, Discernability Metric (DM) [2]

Clustering-Based K-Anonymisation Algorithms 763

measures information loss as the sum of squared size of each anonymised group.
Intuitively, a larger anonymised group may indicate more information loss, as
more tuples are made indistinguishable. Alternatively, the size of the range or set
used in recoding original values in a QID (i.e. the distance between its two fur-
thest values) can be used to quantify information loss. For instance, Loss Metric
[8], Ambiguity Metric [13], Information Loss Metric [15] and Usefulness Metric
(US) [11] quantify data utility using the distances between the two furthest val-
ues in all QIDs of a group (i.e. group extent). Intuitively, groups that contain
close QID values are preferable, as they tend to incur less information loss in
anonymising data. Finally, how well anonymised data supports an intended task
can also be used to indicate data utility [8,10,5]. A well-known measure specif-
ically constructed for evaluating anonymised data intended for classification is
the Classification Metric (CM) proposed in [8]. It measures the accuracy of a
classifier built on anonymised data by counting the number of tuples whose class
label is different from that of the majority of tuples in their group, as the labels
of these tuples are not retained in the group after anonymisation.

Fig. 1. Individual identification through linkage of data

Second, anonymised data should prevent individual identification. As dis-
cussed before, individuals can be identified when de-identified data is linked
to publicly available data using QIDs (illustrated by link (1) in Figure 1). K-
anonymisation attempts to weaken link (1) by grouping tuples together. How-
ever, the possibility of identification through linking data is not completely elimi-
nated. For instance, when there is a strong correlation between anonymised QIDs
and SAs (link (2) in Figure 1), sensitive information can be inferred in presence
of some background knowledge [12]. In order to see this, observe that knowing
that somebody aged 20 is included in Table 3, one can infer that this person suf-
fers from HIV. In contrast, such an inference cannot be easily made in Table 2,
as each group has 2 ”well-represented” values in Disease. Machanavajjhala et
al. [12] proposed l-diversity to measure protection based on how ”diverse” SA
values are, using the frequency of unordered distinct SA values in each group.
Recently, protection measures that can be applied on attributes with ordered
domains have been proposed as well [15,10,11]. In [11], for example, a measure
called Protection Metric (PR) was proposed, which is expressed as the average
distance of SA values in anonymised groups.

Third, anonymisations should be derived efficiently. Many formulations of the
k-anonymisation problem have been shown to be NP-hard [9,3,16] and heuristic

764 G. Loukides and J. Shao

methods are typically employed. Many methods often differ substantially in
terms of processing efficiency, as shown in our experiments.

3 Clustering-Based k-Anonymisation Methods

Clustering is a well-established technique for data analysis that attempts to
divide data into groups of similar objects. However, the goal of clustering in the
case of k-anonymisation is not just to find groups of similar data as pursued
by traditional methods, but also requires that at least k tuples are contained
in each group and data remains “useful” after being anonymised. Many well-
known methods for clustering are not applicable in this context and alternative
approaches have been proposed [3,13,11,5,16,4]. They typically work as follows.
A seed tuple is chosen and a cluster is built around the seed by adding tuples
into the cluster until a stopping criterion is met. Deciding which tuples should
be inserted into a cluster is determined by some optimality measures (e.g. one of
those discussed in Section 2). This process is iteratively repeated until every tuple
of the dataset is clustered. Then, tuples in each group are anonymised separately.
Thus, a clustering method for k-anonymisation can be seen as built around three
main components: seed selection, similarity measurement and stopping criterion.

Seed selection. Unlike many traditional clustering methods which select all
seeds prior to forming clusters, clustering-based k-anonymisation methods tend
to select one seed [13,1,3,16,11] or a pair of seeds [4] at a time. Seeds can either
be chosen randomly [13,1,11] or using a furthest-first selection strategy [4,16,3].
That is, the most dissimilar tuple from the last selected seed [4,16] or from the
last tuple added into a cluster [3] is selected as seed.

Similarity measurement. A key component in clustering-based algorithms for
k-anonymisation is the measurement of similarity between the tuples in a clus-
ter and candidate tuples that are being examined for insertion into the clusters.
There are two different ways to define similarity. One is to compute similarity
between the whole cluster and each candidate tuple (full linkage) [3,16]. Alter-
natively, a single tuple of a cluster (cluster representative) can be used instead of
the whole cluster in similarity measurement. This tuple can be either a random
tuple (single linkage) [11,1] or the cluster centroid (centroid linkage). Centroids
can be constructed by averaging interval values or by using the median for dis-
crete ones [4].

Stopping criterion. Many clustering-based methods employ a size-based stop-
ping criterion that restricts the maximum cluster size, so that clusters of nearly
k tuples [3,16] are created, based on the intuition that large clusters do not help
data utility. Alternatively, a quality-based stopping criterion is suggested in [11]
that allows a cluster to be extended only when its quality does not exceed a
user-specified threshold.

Discussion. We now comment on the clustering strategies in terms of runtime
performance and quality.

Clustering-Based K-Anonymisation Algorithms 765

Selecting cluster seeds randomly is clearly more efficient than using a furthest-
first seed selection strategy, which requires quadratic time to the cardinality of
the dataset. For example, a heuristic furthest-first seed selection strategy [4]
finds a pair of seeds t, t′ in two steps. First, it finds the most dissimilar tuple t
from the most central tuple of the dataset (i.e. the centroid tuple of the whole
dataset) and then the most dissimilar tuple t′ from t. This can find a pair of
seeds can be found in linear time to the cardinality of the dataset. However, the
number of seeds can be comparable to the cardinality of the dataset when k is
small, making furthest-first seed selection strategy expensive.

All linkage strategies have a quadratic time complexity to the cardinality
of the dataset, since all candidate tuples are checked for insertion into a cluster
every time a cluster is extended. However, sorting pairwise distances between the
cluster representative and candidate tuples can speed up single linkage strategy.
This is because a cluster can be formed by retrieving the |c| − 1 most similar
tuples to a cluster representative (for single and centroid linkage strategies) in
O(|c| − 1) time (|c| is the cluster size), and sorting requires log-linear time to n,
the cardinality of the dataset. Thus, the complexity of single linkage clustering
becomes O(n2

|c|−1 log(n)) , which is smaller than O(n2), as typically |c| > log(n).
Furthermore, the quality-based stopping criterion has a higher computational

cost compared to that of the size-based stopping criterion. In fact, that com-
putational cost may not be negligible in practice. For example, assuming that
evaluating quality of a cluster needs accessing all tuples currently in this cluster
after each tuple insertion and that n

k clusters comprised of exactly k tuples have
been formed, the cost of the quality-based criterion is O(n

k
×(1+. . .+k)) ≈ O(n×k).

Thus, the quality-based stopping criterion can be expensive when k is large.

Fig. 2. The effect of linkage strategy on clustering quality

Linkage strategies also affect the quality of clustering. Representing a cluster
by using only one tuple for example, may degrade the quality of clustering.
Consider Figure 2(a) where single linkage is used. The representative tuple is
denoted with t and a size-based stopping criterion that creates clusters of 9
tuples is used. In this case, tuples t1 to t8 are added into the cluster (one at a
time), as they are the closest to t. On the contrary, when full or centroid linkage
is used, tuple t′ is added to the cluster after choosing t1. This is because t′

becomes closer to the cluster (for full linkage) or to the centroid of the cluster
(for centroid linkage). The cluster centroid is depicted with X in Figure 2(b).
Subsequent iterations of the full or centroid linkage strategies result in creating

766 G. Loukides and J. Shao

the cluster depicted in Figure 2(b). This cluster is preferred, as it has a smaller
extent than that of the cluster shown in Figure 2(a). However, in the case of
large or arbitrary shaped clusters, it is difficult to represent a cluster using only
one tuple as a centroid [6].

In addition to linkage strategy, seed selection does play an important role
in generating a good clustering for k-anonymisation as well. Randomly selected
seeds for example, may end up being close together, resulting in clusters with
large extents. In order to see this, observe Figure 3(a), where close seeds (de-
picted as encircled points) resulted in the two clusters shown with different sym-
bols, when single linkage is used. Unlike single linkage, full and centroid linkage
strategies are less susceptible to bad seeds, as closeness to a candidate tuple is
determined by the shape of the cluster, which changes when tuples are added
into the cluster. Figure 3(b) depicts the clusters generated by centroid linkage.
Observe that the position of the centroid (denoted with X) moved away from
the centroid in the first two iterations. Thus, the created clusters are more sepa-
rated than those of Figure 3(a). On the other hand, a furthest-first seed selection
strategy achieves two compact and well separated clusters as shown in Figure
3(c), where the previously described heuristic was used for seed selection (seeds
are depicted as encircled points).

Fig. 3. The effect of seed selection strategy on clustering quality

Finally, the stopping criterion can also affect the quality of anonymisations.
Intuitively, creating compact, equal-sized clusters using a size-based stopping
criterion can help data utility. However, this depends on how anonymised data
is used. For example, equal-sized clusters may degrade classification accuracy
[5]. The quality-based stopping criterion is more flexible, as it is expressed in
terms of optimality measures. For instance, special requirements implied by a
security policy or application, which can be expressed as the maximum distance
between values in a group, can be modelled.

4 Experimental Evaluation of Clustering Strategies

In this section we experimentally evaluate clustering-based k-anonymisation
methods. For our experiments, we have implemented two well-known clustering-
based algorithms called Greedy Clustering [11] and K-Members [3], which com-
bine some of the strategies described in Section 3. For convenience, we refer to

Clustering-Based K-Anonymisation Algorithms 767

the first algorithm as TSR (Threshold-based stopping, Single linkage and Ran-
dom seed selection). This algorithm is expected to achieve anonymisations of
low quality (due to random seed selection and single-linkage) but will be very
efficient (due to single linkage). We also refer to K-Members as SFF (Size-based
stopping, Full linkage and Furthest-first seed selection). SFF allows us to exam-
ine the effect that furthest-first seed selection and full linkage strategies have on
the quality and efficiency. Due to these two strategies, SFF is expected to achieve
anonymisations of high quality but will be less efficient than TSR. Finally, we
developed SCF (Size-based stopping Centroid linkage Furthest-first seed selec-
tion). SCF differs from SFF only in the employed linkage strategy, thus it allows
us to compare the centroid and full linkage strategies. As discussed in Section
3, centroid linkage can be worse than full linkage in terms of quality but it is
more efficient. Thus, we expect SCF to lie in between TSR and SFF in terms
of data quality and processing efficiency. We have used a heuristic [11] that
captures information loss using the size of ranges or sets used in recoding QID
values for all three algorithms. Different heuristics [3,16] can also be used but
for sake of space we do not report these experiments in this paper. Furthermore,
we compare these clustering-based algorithms to Mondrian [9], a very effective
non-clustering based algorithm, which works in a way reminiscent to kd-tree
construction. It uses a search strategy which recursively splits a group of tuples
at the median value of the QID that has the largest range of values, until the
resultant partitions contain at least k but no more than 2k − 1 tuples.

We have used two datasets in our experiments. The first dataset is a projection
of the Adults dataset [7] on 6 attributes: Age, Race, Marital Status, Salary,
Education and Occupation. This dataset has 30718 tuples after removing tuples
with missing values. We treat Education and Occupation as SAs. We also used
synthetic data, generated from a standard normal distribution. This dataset has
8000 tuples and 6 attributes, two of which are discrete. We treat one interval
and one discrete attribute as SAs. All the algorithms were implemented in Java
and ran on a Pentium-D 3GHz machine with 1 GB of RAM under Windows XP.

Quality evaluation. We evaluated the quality of k-anonymisations in terms
of three utility measures applying the algorithms on the Adults dataset. First,
we used the DM measure. As illustrated in Figure 4, both SFF and SCF achieve
very good results with respect to DM compared to that of TSR. This is because
the size-based stopping criterion used by SFF and SCF creates small anonymised
groups of no more than 2k − 1 tuples. Mondrian also achieves a good result for
that reason. In contrast, the quality-based stopping criterion (expressed as a
maximum allowed US value) used in TSR does not pose any restriction in terms
of cluster size and thus creates larger clusters. We then used the US measure to
evaluate data utility. The result is shown in Figure 5. As expected, SFF achieved
the best result due to the full linkage strategy. In order to see this, observe that
the US values achieved by SFF are much better than those achieved by SCF (SFF
and SCF differ only in the linkage strategy). The US values achieved by SCF,
TSR and Mondrian were comparable for small k’s (up to k = 15), while for larger
k’s TSR outperformed both SCF and Mondrian. This is because clusters cannot

768 G. Loukides and J. Shao

Fig. 4. DM Fig. 5. US Fig. 6. CM

Fig. 7. DM (normal) Fig. 8. US (normal) Fig. 9. CM (normal)

be accurately represented by centroids for large k’s and thus SCF performed as
poorly as Mondrian did. Finally, we used the CM measure, retaining Salary as
the target attribute for classification. As illustrated in Figure 6, SFF continues
to perform better (lower CM values are preferred) than both SCF and TSR due
to the full linkage strategy. However, both SCF and TSR outperform Mondrian.
This is because Mondrian hardly splits data using Salary (0.4%-13% of the total
cuts), and as a result groups tend to have a lot of different values in this attribute.

We repeated the same experiments with the synthetic dataset. The result for
DM illustrated in Figure 7 is similar to that of Figure 4, as TSR created large
groups due to the quality-based stopping criterion. Evaluating data utility using
US, we observed that again SFF outperforms both TSR and SCF, similarly
to when real data was used. However, all clustering-based algorithms perform
significantly better than the Mondrian. The reason is that when data is skewed,
the median-splitting criterion employed by Mondrian creates elongated clusters
that have very high (bad) US values. Indeed, when data skewness is reduced
(i.e. by increasing the standard deviation of the normal distribution) the gap
between clustering-based algorithms and Mondrian becomes smaller. Due to
space limitation, we do not report the full result of this experiment. The result
for CM is illustrated in Figure 9. Again, SFF outperforms both TSR and SCF,
due to the full linkage strategy. Observe that Mondrian also performs reasonably
well. This is because, most splits were done on the attribute used for evaluating
CM. Thus, the resultant groups were similar with respect to this attribute.

We then studied the protection using the entropy l-diversity [12] and PR [11]
measures. For the Adults dataset, we used Occupation for computing l-diversity.
Figure 10 depicts the result. It is easy to see that TSR achiever better protection
for all values of k. This is because the quality-based threshold employed by TSR
created large groups with many diverse values in the sensitive attribute in this
experiment. Note however, that large groups cannot always guarantee protec-

Clustering-Based K-Anonymisation Algorithms 769

Fig. 10. l-diversity Fig. 11. PR Fig. 12. l-diversity
(normal)

Fig. 13. PR (normal) Fig. 14. Runtime vs.
size of dataset

Fig. 15. Runtime vs.
different k’s

tion and special attention in handling sensitive attributes is required [12,15]. In
contrast, Mondrian, SFF and SCF achieve a very low level of l-diversity particu-
larly for small k’s. For instance, Mondrian creates groups which do not offer any
protection (i.e. they contain the same value in Occupation) for all k values up
to 25. As for PR, the algorithms achieved a similar result illustrated in Figure
11 (low values in PR are preferred). Our results indicate that protection can in
practice be unacceptably low, especially when optimising towards data utility
and QIDs are strongly correlated to the SAs as in this dataset. Finally, we eval-
uated data protection using synthetic data. As can be seen in Figures 12 and 13,
all algorithms achieve a low level of protection as measured by l-diversity and
PR respectively, although there is no correlation between QIDs and SAs in this
dataset. This is because many tuples have similar SA values due to large data
skewness and thus groups that offer low level of protection are formed.

Performance evaluation. We also evaluated the runtime performance of the
algorithms. First, we used random samples of the Adults dataset with a cardi-
nality n ranging from 500 to 10000 fixing k to 5. As illustrated in Figure 14,
Mondrian is faster by at least one order of magnitude than all clustering-based
algorithms. This is because, in contrast to clustering-based algorithms which
have a quadratic time complexity, the complexity of Mondrian is log-linear with
respect to the cardinality of the dataset. TSR is the most efficient, SFF the least
and SCF is lying in between of the two. These results confirm our theoretical
analysis in Section 3. Second, we tested clustering-based algorithms fixing n to
2500 and varying k. As can be seen in Figure 15, SFF is sensitive to k being more
expensive than TSR and SCF when a large k is used. This again confirms the
computational overhead that the full linkage brings. Furthermore, SCF is slower
than TSR due to the additional overhead imposed by the centroid computation,

770 G. Loukides and J. Shao

while TSR and SCF are not significantly affected by k. This is because, we sorted
pairwise distances between cluster representatives and candidate tuples prior to
forming clusters, as discussed in Section 3, and centroid computation was not
significantly affected by k.

5 Conclusions

Recent research has recognised the power of clustering-based algorithms for cre-
ating high quality anonymisations when compared to alternative methods. How-
ever, the superiority of certain clustering strategies and their performance under
different quality measures had not been clearly shown. In this paper, we per-
formed a comparative study of different strategies employed by well-known clus-
tering techniques and demonstrated their effectiveness and efficiency using both
real world and synthetic data. We showed that each of the three key components
of a clustering-based algorithm (seed selection, similarity measurement and stop-
ping criterion) can have significant impact on both quality and performance. In
particular, furthest-first seed selection and full linkage strategy tend to be good
for data utility, whereas random seed selection and single linkage enhance pro-
cessing efficiency. However, combining furthest-first seed selection with centroid
linkage can offer a good balance between data utility and performance as long
as k is small. Finally, we observed that the quality-based stopping criterion is
flexible but can be expensive to compute, and many clustering-based algorithms
[16,13] with the exception of [11,3] optimise data utility but may not sufficiently
protect from individual identification.

References

1. Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data
mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp.
183–199. Springer, Heidelberg (2004)

2. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In:
ICDE ’05, pp. 217–228 (2005)

3. Byun, J., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymization using clustering
techniques. In: DASFAA ’07, pp. 188–200 (2007)

4. Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogeneous k-anonymity
through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212
(2005)

5. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: ICDE, pp. 205–216 (2005)

6. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for cate-
gorical attributes. Information Systems 25(5), 345–366 (2000)

7. Hettich, S., Merz, C.J.: Uci repository of machine learning databases (1998)
8. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: KDD ’02, pp.

279–288 (2002)
9. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-

anonymity. In: ICDE ’06, p. 25 (2006)

Clustering-Based K-Anonymisation Algorithms 771

10. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization. In:
KDD ’06, pp. 277–286 (2006)

11. Loukides, G., Shao, J.: Capturing data usefulness and privacy protection in k-
anonymisation. In: SAC ’07, pp. 370–374 (2007)

12. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity:
Privacy beyond k-anonymity. In: ICDE ’06, p. 24 (2006)

13. Nergiz, M.E., Clifton, C.: Thoughts on k-anonymization. In: 22nd International
Conference on Data Engineering Workshops (ICDEW’06), p. 96 (2006)

14. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems 10, 557–570 (2002)

15. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD ’06, pp. 229–240
(2006)

16. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W-C.: Utility-based anonymiza-
tion using local recoding. In: KDD ’06, pp. 785–790 (2006)

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 772–779, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Investigation of Semantic Similarity as a Tool for
Comparative Genomics

Danielle Welter1, W. Alexander Gray1, and Peter Kille2

1 School of Computer Science, Cardiff University, Cardiff, UK
2 School of Biosciences, Cardiff University, Cardiff, UK

D.N.Welter@cs.cardiff.ac.uk, W.A.Gray@cs.cf.ac.uk, kille@cf.ac.uk

Abstract. The project sets out to investigate the concept of semantic similarity
between individual and collections of gene products based on functional
descriptors such as “Gene Ontology” (GO) annotations. Different existing
concepts for quantifying semantic similarity are implemented into a basic
“Semantic Similarity Calculator” and the resulting tool applied to assess its
utility in different biological contexts. It is discussed what kinds of problems
were encountered during the implementation of the prototype, and how these
problems were addressed, or are planned to be addressed in the future. An
overview over future work is given.

1 Introduction

1.1 The Gene Ontology

The last decade has seen an exponential increase in the availability of biological data
such as DNA sequences, protein sequences and gene expression data. In addition to
the raw experimental data, there are annotations that put the data into context, i.e. by
describing the function of proteins, mutations associated with certain genes,
conditions associated with mutations and other factors. In the light of this wealth of
information, the need has arisen to process information computationally. However,
most of the annotation data is available in formats that are readily accessible to
humans but do not readily lend themselves to computer processing.[1, 2, 3, 4]

The understanding gained from this new data has revealed that the core
mechanisms of life are common to all eukaryotic organisms, from simple yeast cells
to complex mammals.[2] However, each research field or species group has its own
conventions for annotating and storing data due to historical research origins. This has
led to the problem that, although biological data is readily available in the public
domain, its distribution through a wide variety of heterogeneous data sources makes
its computational analysis very difficult.

Changing and homogenizing all the existing knowledge bases would however be a
Herculean task that would most likely cause more confusion than it would contribute to
solving this problem. The development of a common controlled vocabulary that can be
used to annotate the different data sources with the same terms represents a much
better solution. To this end, in 1998, the model organism databases Flybase, Mouse

 Investigation of Semantic Similarity as a Tool for Comparative Genomics 773

Genome Informatics and the Saccharomyces Genome Database began a collaborative
project, the Gene Ontology (GO) Consortium.[2] The Consortium’s mission statement
is “to produce a structured, precisely defined, common, controlled vocabulary for
describing the roles of genes and gene products in any organism.”[2, 5]

Since the early days of the GO, the number of member databases has more than
quadrupled. A complete list of members can be found under [6].

The GO actually consists of three orthogonal ontologies, rather than a single
hierarchy, as one might expect at first. The three ontologies or “sub-ontologies” are:

- “molecular function”, which refers to the biochemical activity of a gene product;
- “biological process”, which is the larger context or pathway that a gene product

contributes to, and
- “cellular component”, which refers to the location within the cell at which the

gene product is active.[7]

Each ontology is structure as a directed acyclic graph (DAG), i.e. each parent can
have more than one child, and each child can have more than one parent [7], but
circular relationships between terms are not allowed [8]. Relationships between terms
belong to one of the followings two types:

- “is-a” links between parent and child, which make up the majority of links;
- “part-of” links between part and whole.[7]

The Gene Ontology is updated daily and currently comprises over 22500 terms.
About 96% currently have definitions.[5]

1.2 Semantic Similarity

A number of similarity measures have been exploited in molecular biology to
compare gene products, such as DNA sequence similarity, amino acid sequence
similarity, and protein family similarity (based on the presence of certain 3D
structures in proteins). During the last few years, another form of similarity has
become of interest: comparing individual or groups of gene products based on their
“meaning”, i.e. their functional annotation (“what they do, where they do it and how
they do it” [9]). This concept is termed “semantic similarity”, and has been employed
for decades in domains such as artificial intelligence, psychology and natural
language processing.[10].

In 2002, P.W. Lord et al.[3] were the first to publish a study on the use of semantic
similarity measures in the context of the Gene Ontology. They used the method
described by Resnik (1995)[10] to quantify the semantic relationship between
different proteins based on the information content of a common ancestor of two
proteins.

The information content of a concept c is defined as

“negative the log likelihood, -ln p(c)”[10],

where p(c) is the probability of a concept c occurring in a taxonomy. This probability
is determined as:

)(cp =
N

cfreq)(
 (1)

774 D. Welter, W.A. Gray, and P. Kille

where

−)(cfreq = ∑ ∈)(
)(

cconceptsn
ntotal ;

− concepts(c) is the set of concepts that are descendants of c;
− total(n) is the number of occurrences of term n in the corpus;
− N is the total number of terms in the corpus.

As two terms may have more than one common ancestor, the most meaningful of
those ancestors should be considered. This is generally the first common ancestor, i.e.
the ancestor with the smallest p(c). Lord et al. called this the

“probability of the minimum subsumer” [3]

)}(min{ cppms = (2)

Therefore, similarity between concepts c1 and c2 according to Resnik [10] is given by

)(ln),(21 cpccsimilarity ms−= (3)

In 2003, Lord’s group published another paper [4] in which they also investigated the
information content approach of Lin [11], which differs from the Resnik method
insofar that it also considers the information content of the query terms themselves, as
well as a distance-based approach proposed by Jiang and Conrath [12].

Similarity according to Lin is given, in equation (4), as

=),(21 ccsimilarity
)(ln)(ln

)(ln*2

21 cpcp

cpms

+
 (4)

while Jiang’s approach in equation (5) represents the semantic distance between
two terms, which is the inverse of the semantic similarity.

distance))(ln)((ln)(ln2),(2121 cpcpcpcc ms +−−= (5)

The group's findings [3, 4] revealed a significant correlation between semantic
similarity and sequence similarity, i.e. two gene products that were strongly
semantically similar were generally found to have a high degree of sequence
similarity. Out of the three approaches to quantifying semantic similarity, none was
found to significantly outperform the other two, although each approach presented
some advantage that the other two lacked. The Resnik approach was found to give
identical similarity scores when comparing a term β’s parent α with some other term
γ, as when comparing β and γ directly because it does not take into account the query
terms, but only their common ancestor. This problem did not occur with the Lin
approach, which takes into account the information content of both query terms and
their common ancestor. On the other hand, Lin is bounded between 0 and 1, and only
really performs well if a large corpus is underlying the calculations. As GO is
constantly growing, this is not a problem in this context. The Jiang approach scored
the lowest correlation for the “molecular function” aspect, but like Lin’s approach, it
does have the benefit of considering the information content of query terms and
shared parents. Considering these findings, it was decided to use all three measures in

 Investigation of Semantic Similarity as a Tool for Comparative Genomics 775

the present project. However, we propose that it might be of greater interest for
researchers to find semantically similar gene products from different species than only
consider gene products within the human species.

2 The Semantic Similarity Calculator

2.1 Design and Implementation

An application was implemented to compare a single given gene product from one
species with all annotated products from a different species to determine whether this
approach might allow a better analysis and interpretation of biological data than the
approach that only compares pairs of given gene products.[9]

In a first phase, the nematode worm C.elegans [13] and the mouse M. musculus
[14] were chosen as ideal model organism. The program prototype was designed in a
way to ensure that addition of further species could be done easily and without the
need to rewrite much code. In the near future, the fruit fly D.melanogaster [15], as
well as the human will be added to list of species available for semantic comparison.
It is also possible to use this software to do comparisons within a species.

Lord et al. [4] stated that the correlation between the three different ontologies of
GO was of little significance, i.e. the orthogonal ontologies are largely independent of
each other. Although we considered that there might be some cases in which
researchers would want to look for high semantic similarity scores across all three
ontologies, especially when comparing gene products from two or more different
species, it was decided to follow Lord’s conclusion at this stage of our investigation
and only use one the sub-ontologies per query.

The implementation of the semantic similarity calculator was done in the Java
programming language, and the GO data and species-specific gene product
annotations were downloaded and stored in a MySQL database. Any kind of database
could have been used for the species-specific annotations as these can be downloaded
from the GO download website [5, 16] as flat files, but the full GO database is only
available in two formats, namely GO RDF-XML and MySQL, and only the latter
contains the full database, including electronically inferred annotations (IEA evidence
code). Connection between the program and the database occurred through the use of
JDBC.

After entering a query term, the GO terms associated with that query term for the
ontology selected are returned to the user. The user has to decide which term the
query is run on, as it was decided that this was the best way to ensure the query is run
in the desired context of a researcher. The selection of a single GO term for
comparison is based on the assumption that a researcher wants to find semantically
similar terms based on a specific characteristic of the query term. Another, equally
valid assumption states that a protein has all its functions at the same time, which
would be expressed by computing the average similarity of all the GO terms
annotated to the query protein. This approach will be investigated in the future.

Once the query GO term has been determined, the program retrieves all the gene
products of the comparison species annotated with one or more terms from the right
ontology. It then goes through the list term by term. For each term, the common

776 D. Welter, W.A. Gray, and P. Kille

ancestor between that term and the query term is determined using a complex retrieval
statement that was directly taken from the GO help website and only slightly modified
to fit its intended purpose. The common ancestor term is compared to a list of GO
terms that are judged to be too general, i.e. not informative enough to produce any
significant results. If the common ancestor term corresponds to any of the terms in
that list, the term is disregarded, and the program passes to the next comparison term.

If the common ancestor is appropriate, the different probabilities (depending on the
calculation approach selected by the user) are calculated. This involves several
MySQL queries, the results of which are returned to the program for processing. After
the semantic similarity coefficient has been calculated, the program moves on to the
next term.

Overall, there are quite a large number of database accesses in the program. At the
time of design, this was not considered to be a problem as the aim was to investigate
whether the approach was promising.

2.2 Testing

Initial tests of the semantic similarity calculator revealed runtimes in the order of 24
to 36 hours, due to the very large amount of comparisons that need to be done and to
the limitation of the technology being used. Adding indexes to the species tables,
which did not have indexes before this, speeded the program up 100fold, giving run
times of between 15 minutes and 3 to 4 hours. The slower queries were however still
deemed to be a problem as end users would not want to wait for such lengths of time
for their results. The reason for the excessive runtimes was found to be in the access
to the database server, where a bottleneck situation occurred. This problem was
provisionally remedied by moving the database to a local machine instead of
accessing it over a network, which reduced the run time by almost half.

This can however not be a permanent solution. The semantic similarity calculator
is expected to eventually be available to all members of the scientific community, and
should ideally even work through a web interface. In this situation, downloading a
multi-megabyte database to a local machine is highly impractical.
Another option, which was being worked on at the time of submission of this paper,
was to limit the number of times the database server needs to be accessed by either
retrieving large amounts of data at a time, or performing some of the data processing
within the database, rather than returning the data to the program for handling.

To ensure that the different methods had been implemented correctly and that the
prototype generated biologically meaningful results, a three-step testing strategy was
designed:

• Stage 1 involves testing gene products from a well-documented pathway, such as
the TCA cycle [1], known to be conserved in mouse and nematode worm

• Stage 2 involves testing gene products from a well-documented pathway that is
known not to be fully conserved in the two species, such as fatty acid metabolism
[1]

• Stage 3 involves testing the gene products of a pathway that is known to be
completely unconserved between mouse and worm.

 Investigation of Semantic Similarity as a Tool for Comparative Genomics 777

As this project is a work-in-progress, only stage 1 of this testing strategy has been
undertaken at the time of writing to determine whether the approach is promising.
Evaluation of the results of this phase showed that the expected gene products scored
the highest similarity coefficients for the Resnik and Lin approaches, and in each of
the three ontologies. A sample result set is shown in table 2, with the mouse terms
used to run the query, and their chosen GO terms in table 1. Only results obtained
through the Lin approach are shown as these are the easiest to evaluate because they
are bounded between 0 and 1.

As the Jiang approach is distance-based, i.e. the closer two terms are in the
hierarchy, the more semantically similar they are, it would be expected that the terms
with the highest similarity would obtain the lowest score values. Initial test with the
semantic similarity calculator revealed results which followed the opposite trend, i.e.
the most similar terms had the highest scores. It was determined that this was due to
an error in the implementation for the Jiang approach, although the exact nature of
this error has not yet been identified at this time. Until the problem with the Jiang
approach has been resolved, the measure will be excluded from further tests.

From the data shown in tables 1 and 2, a particularly noteworthy observation can
be made in the annotations of the mouse gene products for the “Cellular Component”
ontology: one term is annotated with “cytoplasm” (GO:0005737), while the other is
annotated with “mitochondrion” (GO:0005739), even though the two gene products
are actually involved in the same biological pathway, the TCA cycle. In fact,

Table 1. Query mouse gene products, with the selected GO term for each ontology

Mouse Gene
Product

GO Ontology GO Term Definition

MF GO:0003994 Aconitate hydratase activity
CC GO:0005737 cytoplasm

MGI:87879

BP GO:0006099 Tricarboxylic acid cycle
MF GO:0004108 Citrate (Si)-synthase activity
CC GO:0005739 mitochondrion

MGI:88529

BP GO:0006099 Tricarboxylic acid cycle

“mitochondrion” is a child of the term “cytoplasm”, i.e. it is more detailed than its
parent. The same situation exists for mouse gene product “MGI:87879” and its worm
equivalents: the worm gene products are annotated with the more detailed
“mitochondrion”, leading to a seemingly lower similarity score of 0.811 rather than 1
because of the lack of detail in the mouse term annotation.

These examples illustrate how the level of detail with which gene products are
annotated varies greatly. This is an issue in the whole area of bioinformatics: any
biological data is annotated at a level of detail known to the annotator. Annotations
are not set in stone, and will become more detailed as new knowledge is gained. In
many cases, evaluation by a human is required to determine whether or not a result
reflects a less than ideal annotation or is caused by a wrong assignment of an
annotation.

778 D. Welter, W.A. Gray, and P. Kille

Table 2. Worm gene products expected to correspond to each query mouse gene product. Note
that some worm gene products are annotated with more than one GO term from a given
ontology. This can be because a protein may have the different functions, or be involved in
more than one biological process, or because new knowledge about a protein was gained and a
more detailed annotation was made to reflect this.

MF CC BP Mouse Gene
Product

Expected Worm
Gene Products GO Term Score GO Term Score GO Term Score

GO:0003994 1 WP:CE25005
GO:0016836 0.853

GO:0005739 0.811 GO:0006099 1

GO:0003994 1 WP:CE30144
GO:0016836 0.853

GO:0005739 0.811 GO:0006099 1

GO:0003994 1 WP:CE32436
GO:0016836 0.853

GO:0005739 0.811 GO:0006099 1

GO:0003994 1

MGI:87879

WP:CE03812
GO:0016836 0.853

n/a n/a n/a n/a

GO:0004108 1 GO:0006099 1 MGI:88529 WP:CE000513
GO:0046912 0.916

GO:0005737 0.812
GO:0006092 0.878

3 Conclusions and Future Work

The results obtained from the semantic similarity calculator prototype have
demonstrated that the semantic similarity concept originally investigated by Lord et
al. [3, 4] shows great potential when applied to compare similarity across species.
Even though the implemented prototype is still far from being utilizable as an end
user tool, proof of concept has been delivered by the results that were as expected.
Ongoing testing will show whether this promising start is also going to be successful
for more complex, and less well-studied, and therefore less predictable, gene
products. A number of modifications of the initial prototype are expected to be
necessary before it can function as an end user tool. In particular, the advantages and
disadvantages of evaluating single-term similarity versus average similarity require
further evaluation.

In addition to the approach used so far, i.e. the comparison of a single gene product
on a list of gene products, it is planned to allow comparison of a whole list of gene
products, for example obtained from gene expression experiments, on both inter- and
intra-species level. It is also planned to combine the semantic similarity measure with
other existing measures such as sequence similarity, family similarity and over- and
under-representation of terms in gene datasets. This is expected to allow more
efficient and diversified analysis and interpretation of biological data than existing
approaches that only look at one of these aspects.

On a computational level, the challenge of this project is to study the interoperation
of data in different databases that do not necessarily follow identical standards, in
order to integrate these different sources into one integrated search and calculation
process. This ties in with current research at Cardiff University, which has been
developing a system that uses as “Soft Link Method” (SLM) [17] to enable different
approaches to statistical linkage of bioinformatics data sources to be run through a
single system. One option to resolve the run time problems encountered during the
early phases of this project is to investigate the use of GRID enabled resources, in
particular the Cortex 2 Grid-enabled Pattern Matching Engine at the Welsh e-Science

 Investigation of Semantic Similarity as a Tool for Comparative Genomics 779

Centre. This is expected to enable hardware matching of the annotations which will
speed up this process.

It is expected that this project will find new and improved ways for comparative
genomic analysis to allow novel insights into a number of aspects that are currently at
the forefront of advanced biological research. Computational prediction of results will
be made more efficient, allowing scientists to avoid the waste of precious time and
resources on “wet” experiments by accurately evaluating which experiments are
worth undertaking.

References

1. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry. W. H. Freeman and Co., New York
(2002)

2. The Gene Ontology Consortium: Gene Ontology: Tool for the Unification of Biology.
Nature Genet. 25, 25–29 (2000)

3. Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating Semantic Similarity
Measures across the Gene Ontology: The Relationship between Sequence and Annotation.
Bioinformatics 19, 1275–1283 (2003)

4. Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Semantic Similarity Measures as Tools
for Exploring the Gene Ontology. In: Proc. Pacific Symp. Biocomputing, vol. 8, pp. 601–
612 (2003)

5. Gene Ontology general documentation, http://www.geneontology.org/doc/GO.doc.html
6. The GO Consortium, http://www.geneontology.org/GO.consortiumlist.shtml
7. The Gene Ontology Consortium. Creating the Gene Ontology resource: Design and

implementation. Genome Res. 11, 1425–1433 (2001)
8. Sevilla, J.L., Segura, V., Podhorski, A., Guruceaga, E., Mato, J.M., Martinez-Cruz, L.A.,

Corrales, F.J., Rubio, A.: Correlation between Gene Expression and GO Semantic
Similarity. IEEE TCBB 2(4), 330–338 (2005)

9. Welter, D.: Development of a System for Comparison of Gene Products through Semantic
Similarity based on their Gene Ontology Annotation. Thesis (MSc), Cardiff University
(2006)

10. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In:
Proc. 14th Int’l Joint Conf. Artificial Intelligence, pp. 448–453 (1995)

11. Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc.15th Int’l Conf.
Machine Learning, pp. 296–304 (1998)

12. Jiang, J.J., Conrath, D.W.: Semantic Similarity Based on Corpus Statistics and Lexical
Taxonomy. In: Proc. Int’l Conf. Research in Computational Linguistics, ROCLING X (1997)

13. Wormbase website release WS170, date 12/02/2007, http://www.wormbase.org
14. Eppig, J.T., Bult, C.J., Kadin, J.A., Richardson, J.E., Blake, J.A., the members of the Mouse

Genome Database Group: The Mouse Genome Database (MGD): from genes to mice—a
community resource for mouse biology. Nucleic Acids Res. 2005 33, D471–D475 (2005)

15. Grumbling, G., Strelets, V., The FlyBase Consortium,: FlyBase: anatomical data, images
and queries. Nucleic Acids Research 34, D484–D488 (2006)

16. The Gene Ontology Consortium. The Gene Ontology (GO) Project in 2006. Nucleic Acids
Res. 34, D322–D326 (2006)

17. Al-Daihani, B., Gray, A., et al.: Bioinformatics data source integration based on Semantic
Relationships across species. In: Dalkilic, M.M., Kim, S., Yang, J. (eds.) VDMB 2006.
LNCS (LNBI), vol. 4316, Springer, Heidelberg (2006)

On Estimating the Scale of National Deep Web�

Denis Shestakov and Tapio Salakoski

Turku Centre for Computer Science,
University of Turku, Turku, Finland-20520

denis.shestakov@utu.fi

Abstract. With the advances in web technologies, more and more in-
formation on the Web is contained in dynamically-generated web pages.
Among several types of web “dynamism” the most important one is the
case when web pages are generated as results of queries submitted via
search web forms to databases available online. These pages constitute
the portion of the Web known as deep Web. The existing estimates of
the deep Web are predominantly based on study of English deep web
sites. The key parameters of other-than-English segments of the deep
Web were not investigated so far. Thus, currently known characteristics
of the deep Web may be biased, especially owing to a steady increase in
non-English web content. In this paper, we survey the part of the deep
Web consisting of dynamic pages in one particular national domain. The
estimation of the national deep Web is performed using the proposed
sampling techniques. We report our observations and findings based on
the experiments conducted in summer 2005.

1 Introduction

With the advances in web technologies, more and more information on the Web
is contained in dynamically-generated web pages. The “dynamism” apparently
improves the interactivity of web pages but, at the same time, leads to ignoring
a huge number of dynamic pages by the current-day web crawlers (like, for in-
stance, google.com) due to crawlers’ limited abilities in retrieving and indexing
dynamic web data. Among several types of web dynamism the most important
one is the case when web pages are generated as results of queries submitted
via search web forms to databases available online. These pages constitute the
portion of the Web known as deep Web [2] and often also referred to as hidden
or invisible Web. The data in the deep Web is hidden behind search forms which
are the only access points to myriads of databases on the Web.

Recent study [3] has estimated the total number of online databases for April
2004 as around 450,000. Since current web search engines cannot effectively query
networked databases, the information contained in these hundred thousands of
repositories is mostly invisible to web crawlers and hence hidden from users.

This paper surveys databases on one specific national segment of the Web.
The survey is based on our experiments for the scale of the national deep Web
� This work was partially supported by Yandex LLC (grant number 102104).

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 780–789, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Estimating the Scale of National Deep Web 781

conducted in summer 2005. This work extends our study [10], which has not been
reported in English, by including additional experiments and providing slightly
updated results.

To our knowledge, this survey is the first attempt to consider the specific
national segment of the deep Web. The known deep Web characterization efforts
(see Section 2) have predominantly concentrated on study of English deep web
sites and, therefore, the estimates of the deep Web obtained in these works may
be biased, especially owing to a steady increase in non-English web content.
The national deep Web was studied on the example of the Russian segment of
the Web (called Runet hereafter in this paper). There were several reasons to
choose exactly the Russian part of the deep Web. Firstly, since Russian is written
using the Cyrillic alphabet, which is non-Latin, one can expect that Runet is
considerably more separated from the entire Web than, say, the German segment
(where Latin alphabet is used). Secondly, we had an access to the data set
provided by Yandex, a Russian web search engine (see Section 3.2 and Appendix
C). And last but not least, having Russian as one of the author’s mother tongue
language was essential due to many web sites in Runet need to be manually
inspected.

The rest of the paper is organized as follows. We start in Section 2 by reviewing
the related work. Section 3 reports our experimental results. Section 4 discusses
our findings and, finally, Section 5 concludes the paper.

2 Related Work

Several studies on the characterization of the indexable Web space of various
national domains have been published. The review work [1] surveys several re-
ports on national Web domains, discusses a methodology to present these kinds
of reports, and presents a side-by-side comparison of their results. At the same
time, national domains of the deep Web have not been studied so far and, hence,
their characteristics can be only hypothesized.

There are two key works devoted to the characterization of the entire deep
Web. The first one is a highly cited study [2] where overlap analysis [5] ap-
proach was used. Several well-known estimates of the deep Web for March 2000
have been reported in this paper. Particularly, it has been estimated that there
were 43,000-96,000 deep web sites in the deep Web at that time (ultimate but
disputable estimate in this study is even 200,000 deep sites for the year 2001).

The second survey [3] is based on the experiments performed in April 2004.
In this work, the scale of the deep Web has been measured using the random
sampling of IP addresses method, which was originally applied to the character-
ization of the entire Web [7]. To reduce uncertainty when identifying deep web
resources Chang et al. distinguished three related notions1 for accessing the deep
Web - a deep web site, a web database, and a web interface. Among the findings
obtained are the total number of deep web sites, web databases, and web inter-
faces, which were estimated as 307,000, 450,000 and 1,258,000 correspondingly.
1 See [3] for more details.

782 D. Shestakov and T. Salakoski

There are solid grounds for supposing that the estimates obtained in the
aforementioned surveys [2,3] are actually lower-bound because web databases in,
at least, several national segments of the Web were for the most part ignored.
For instance, the semi-automatic process of identifying a web interface to a web
database in [3] consists of automatic extraction of web forms from all considered
web pages, automatic removal of forms, which are definitely non-searchable, and
finally manual inspection of the rest, potentially searchable forms, by human
experts. Due to the limited number of experts (presumably just the authors of [3]
were those experts) and, hence, the limited number of languages they were able
to work with one can expect that a certain number of web interfaces in unknown
(to experts) languages has not been taken into account. Notwithstanding that
the approach used in [2] did not require multilingual skills from people involved in
the study, we still argue that some number of non-English deep web sites has not
been counted in this report as well. Indeed, the results produced by the overlap
analysis technique depend significantly on “quality” of sources used in pairwise
comparisons. The deep-Web directories considered by Bergman are mainly for
English-speaking web users and, thus, omitted a number of national deep web
sites. This makes the overlap analysis imperfect under the circumstances and
suggests that the Bergman’s estimate for the total number of deep web sites is
a lower bound. In this way, we consider our survey as an attempt to supplement
and refine the results presented in [2,3] by studying online databases in one
particular national segment of the Web.

In our work, we adopted the random sampling of IP addresses (rsIP) method
to our needs. Unlike [3] we noted an essential drawback of the rsIP method
leading to underestimating of parameters of interest and suggested a way to
correct the estimates produced by the rsIP. Additionally, we proposed a new
technique for the deep Web characterization, the stratified random sampling of
hosts (called srsh further on) method.

3 Estimation of Russian Deep Web Scale

In June 2005 and in August 2005 we performed a series of experiments to esti-
mate the number of deep web sites in Runet. We used two techniques: the rsIP
method and the srsh method. The experiments themselves and the results for
each method are described in the following subsections.

3.1 Random Sampling of IP Addresses

We extracted all ranges of IP addresses used by Russian networks from the
IP-Country database [6]. There were totally around 10.5 millions of IPs at the
time of June 2005, N = 10.5 × 106. Then, n = 10.5 × 104 unique IP addresses
(1% of the total number) were randomly selected and scanned for active web
servers (tools we used for that are mentioned in Appendix A). We detected

On Estimating the Scale of National Deep Web 783

1,379 machines with web servers running on port 80. For each of these machines
the corresponding hostnames were resolved2 based on a machine’s IP address.
Next step was crawling each host to depth three3. While crawling we checked
if links point to pages located on hosts on the same IP. To not violate the
sampling procedure (i.e., study only those IP addresses which are in the sample)
we ignored any page returned by a server on another IP. The automatic analysis
of retrieved pages performed by our script in Perl was started after that. All pages
which do not contain web forms and pages which do contain forms, but those
forms that are not interfaces to databases (i.e., forms for site search, navigation,
login, registration, subscription, polling, posting, etc.) were excluded. In order
to consider just unique search forms pages with duplicated forms were removed
as well. Finally, we manually inspected the rest of pages and identified totally
x = 33 deep web sites. It should be noted that unlike [3] we counted only the
number of deep web sites. The number of web databases accessible via found
deep web sites as well as the number of interfaces to each particular database
were not counted since we did not have a consistent and reliable procedure to
detect how many web databases are accessible via particular site. The typical
case here (not faced in this sample though) is to define how many databases are
accessed via a site with two searchable forms - one form for searching new cars
while another for searching used ones. Both variants, namely two databases for
used and new cars exist in this case or it is just one combined database, are
admissible. Nevertheless, according to our non-formal database detection, 5 of
33 deep web sites found had interfaces to two databases, which gives us 38 web
databases in the sample in total.

The estimate for the total number of deep web sites is D̂rsIP = 33×10.5×106

10.5×104 =

3300. An approximate 95% confidence interval4 for D̂rsIP is given by the follow-

ing formula: D̂rsIP ± 1.96
√

N(N−n)(1−p)p
n−1 , where p = x

n (see Chapter 5 in [11]).
Thus, the total number of deep web sites estimated by the rsIP method is
3300±1120.

To our knowledge, there are four factors which were not taken into account in
the rsIP experiment and, thus, we can expect that the obtained estimate D̂rsIP

is biased from the true value. Among four sources of bias the most significant
one is the virtual hosting. A recent analysis [12] of all second-level domains in
the .RU zone conducted in March 2006 has shown that there are, in average, 7.5
web sites on one IP address. Unfortunately, even with the help of advanced tools
for reverse IP lookup (see Appendix B) there is not much guarantee that all
hostnames related to a particular IP address would be resolved correctly. This
means that during the experiment we certainly overlooked a number of sites,
some of which are apparently deep web sites.

2 The first hostname is always the IP address itself in a string format. Others host-
names are non-empty values returned by gethostbyaddr function.

3 See [3] for discussion on crawling depth value.
4 This interval contains the true value of the estimated parameter with 95 percent

certainty.

784 D. Shestakov and T. Salakoski

Next essential factor is the assignment of multiple IP addresses to only one
web site. A web site mapped to several IPs is more likely to be selected for the
sample than a site with one IP address. Therefore, our rsIP estimate should
be expected to be greater than the true value. Similar to the virtual hosting
factor, there is no guarantee in detecting all web sites with multiple IPs. We
checked all 33 identified deep web sites for multiple IPs by resolving their IP
addresses to corresponding hostnames and then resolving those hostnames back
to their corresponding IPs (the same technique as in [7]). Though no multiple IP
addresses for any of these sites were detected by this procedure, we are are not
confident whether every deep web site in the sample is accessible only via one
IP address. In any case, sites on multiple IPs are less common than sites sharing
the same IP address and, hence, we believe that the virtual hosting’s impact on
the estimate should exceed one-site-on-multiple-IPs factor influence.

Third unconsidered factor is the exclusion of web servers running on ports
other than 80 (default port for web servers). In our experiment we did not
detect web servers that are not on port 80 and, obviously, missed a number of
servers that may host deep web sites. However, the number of deep resources
on non-default port numbers seems to be negligible since using non-default port
numbers for web servers is not a widespread practice.

While previous three factors are about how well we are able to detect deep
web sites in the sample the IP geodistribution factor concerns how well the
whole IP pool covers the object of study, Runet in our case. Recall that our
pool of IP addresses is all IPs assigned to the Russian Federation. Since web
hosting is not restricted to geographical borders one can expect that a number
of Runet web sites are hosted outside Russia. Analysis of all second-level domains
in the .RU zone [12] revealed that, indeed, this is the case and approximately
10.5% of all studied domains are hosted on IPs outside the Russian Federation.
Although only second-level RU-domains were investigated in [12] we suppose
that the found distribution (89.5% of web servers are in Russia and the rest is
outside) is applicable to all domains related to Runet5. This allows us to make
a correction to our rsIP estimate. Under the fact that our sample was selected
from the population which covers just around 90% of Runet, we updated the
estimate and, finally, got that there are approximately 3650±1250 (rounded to
the nearest 50) deep web sites in Runet.

3.2 Stratified Random Sampling of Hosts

In this experiment we used the data set “Hostgraph” (its description is given in
Appendix C) provided by Yandex, a Russian search engine. All hosts indexed by
Yandex were extracted from the Hostgraph. Besides, “host citation index”, i.e.
the number of incoming links for each host, was calculated. To improve method’s
accuracy, the shortening procedure was applied to the list of extracted hosts:
5 The geodistribution of third and higher-level domains in the .RU zone should be

almost the same. The distribution of second and higher-level domains in other than
.RU zone (i.e., those ending with .com, .net, and so on) may differ but their fraction
in all Runet domains is not so significant, around 25% according to Appendix C.

On Estimating the Scale of National Deep Web 785

– Web sites which are certainly not deep web sites were removed from the list.
In particular, we removed all sites on free web hostings known to us.

– We grouped all host by their second and third-level domain names (for ex-
ample, all hosts of the form *.something.ru are in the same group). The
largest groups of hosts were checked and groups with sites leading to the
same web databases were removed. As an example, we eliminated all hosts
of the form *.mp3gate.ru (except the host www.mp3gate.ru) since the same
web database is available via any of these hosts.

We stopped the procedure at the total list of N = 299, 241 hosts. At the
beginning, we decided to check our assumption that the proportion of deep web
sites among highly cited sites is higher than among less cited sites. If so, applying
stratified random sampling technique to our data would be more preferable than
using simple random sampling.

Table 1. Results of the preliminary stratified random sampling

Stratum(k) Nk n∗
k d∗

k

1 49,900 50 7

2 52,100 50 2

3 197,240 100 1

To examine the assumption we divided the list of hosts into three strata
according to the number of incoming links for each host. The first stratum con-
tained the most cited N1 = 49, 900 hosts, less cited N2 = 52, 100 hosts were
in the second stratum, and the rest, N3 = 197, 240 hosts, was assigned to the
third stratum (the strata sizes are rounded to the nearest ten). Then, n∗

1 = 50,
n∗

2 = 50, and n∗
3 = 100 unique hosts were randomly selected from each stratum

correspondingly. Similar to the rsIP method, each of the selected hosts were
crawled to a depth three. While crawling we checked if links point to pages lo-
cated on the same host or on other hosts not mentioned in the total list of hosts.
To meet the conditions of the sampling procedure all pages on hosts, which are
in the list, were ignored. After that, the procedure becomes identical to the rsIP
one (see Section 3.1). The results, number of deep web sites d∗k detected in each
stratum, are shown in Table 1.

It is easy to see from Table 1 that our assumption is correct and, indeed, the
probability of having a web interface to a web database is higher for highly cited
hosts than for less cited ones. Thus, for reliable estimation of the total number
of deep web sites in Runet we decided to use the stratified random sampling
approach with the same division into strata.

We selected n1 = 294 (including n∗
1 hosts already studied in the prelimi-

nary sampling), n2 = 174 (including n∗
2 hosts), and n3 = 400 (including n∗

3

hosts) unique hosts for each of the three strata correspondingly. The process
of analyzing totally 6686 sampled hosts and identifying deep web sites was the
6 200 of 868 hosts were already studied.

786 D. Shestakov and T. Salakoski

Table 2. Results of the srsh experiment

Stratum(k) Nk nk dk D̂k Dk,cor Duplication

1 49,900 294 35 5940 5600 10 of 35 resources have one or more
duplicates: 4 duplicates in stratum1,
1 in stratum2, and 7 in stratum3

2 52,100 174 8 2395 2090 2 of 8 resources have one duplicate:
1 duplicate in stratum2 and 1 in
stratum3

3 197,240 400 3 1480 100 0 of 3 resources have duplicates

Total 299,240 868 46 9815 7790 12 of 46 resources have duplicates

same as in the preliminary sampling of hosts. Our findings are summarized in
Table 2, where dk and D̂k = Nk

dk

nk
are the number of deep web sites in the sam-

ple from stratum k and the estimated total number of deep web sites in stratum
k correspondingly.

The estimate for the total number of deep web sites is D̂srsh =
∑3

k=1 D̂k =
9815. An approximate 95% confidence interval for D̂srsh is given by the following

formula: D̂srsh ± 1.96
√∑3

k=1
Nk(Nk−nk)(1−pk)pk

nk−1 , where pk = dk

nk
(see Chapter

11 in [11]). In this way, the total number of deep web sites estimated by the srsh
method is 9815±2970. This estimate is not a final one, however. There are two
factors which have to be considered in order to correct D̂srsh.

The most significant source of bias in the srsh experiment is the host du-
plication problem. It is rather common that a web site can be accessed using
more than one hostname. Naturally, several hostnames per one deep web site is
typical as well. By using tools described in Appendix B (resolving a hostname
of interest to an IP address and then reverse resolving IP to a set of hostnames)
and inspecting our list of hosts manually we were able to identify that 12 of
46 deep web sites are accessible via more than one hostname. The distribution
of duplicates among different strata is given in Table 2 in the “Duplication”
column. The correction to be done is pretty straightforward: the existence of
one duplicate for a particular host means that this host is twice more likely to
be in the sample than a host without any duplicate. Thus, the corrected esti-
mate for the first stratum is D1,cor = N1

n1
× (31 + 4

2) = 5600. D1,cor × 1
35 and

D1,cor × 7
35 deep resources should be excluded from the estimates for second

and third stratum correspondingly since they were already counted in the es-
timate for the first stratum. Similarly, we obtained the corrected estimates for
the second and third stratum: D2,cor = N2

n2
× (7 + 1

2)−D1,cor × 1
35 = 2090 and

D3,cor = D̂3 −D1,cor × 7
35 −D2,cor × 1

8 = 100 deep web sites respectively.
The second factor, similar to the geodistribution factor in the rsrIP experi-

ment, is how well the list of hosts we studied covers Runet. The list we worked
with contained all hosts indexed by Yandex, a Runet search engine, at the time

On Estimating the Scale of National Deep Web 787

of February 2005. Recent study [9] has shown that Yandex has one of the best
coverage of Runet among the largest web crawlers indexing Russian part of the
Web. In this way, one can expect that our list represented Runet with sufficient
accuracy. More importantly, we believe that the only way for a web database
content to be available for web users is having at least one web interface located
on a page indexed by a search engine. Otherwise, not only data in this database
is hidden but also its whole existence is completely unknown to anyone. There-
fore, according to our point of view, the population of hosts used in the srsh
experiment is essentially complete for purposes of detecting deep web sites. It
should be noted however that since the “Hostgraph” data was created in Febru-
ary 2005 and our experiments were performed in June and August 2005 those
deep web sites which appeared mainly in spring 2005 were not counted.

To sum up, due to the fact that at least one of four deep web sites is accessible
via more than one hostname we corrected D̂srsh and obtained that the total
number of deep web sites in Runet is around 7800±2350 (rounded to the
nearest 50).

3.3 Subject Distribution of Web Databases

We manually categorized 79 deep web sites sampled in the rsIP and srsh exper-
iments into ten subject categories: Libraries (lib), Online Stores (shop), Auto
(auto), Business (biz), Address Search (addr), Law&Goverment (law), People
Search (pe), Travel (tra), Health (he), and Science (sci). Note that more than one
category may be assigned to a deep web site - for instance, nearly half of deep web
sites assigned to the “Auto” category were also placed into “Online Stores” since
these sites were auto parts&accessories online stores. Figure 1 shows the distri-
bution of deep web databases over the categories. The particular observation we
made is that almost 90% of deep resources in the category “Online Stores” (13
of 15 sites) have a navigational access to their data, i.e. these sites have not only
one or several web search forms but also have a browse interface which allows
a user to reach the necessary data from a web database via a series of links. In
this way, such resources cannot be considered as entirely “hidden” from search
engines since their content may be accessed by following hyperlinks only.

Fig. 1. Distribution of deep web sites over subject category

788 D. Shestakov and T. Salakoski

4 Discussion

The experiments provided us with two estimates for the total number of deep
web sites in Runet: 3650±1250 as estimated by the rsIP method, and 7800±2350
as estimated by the srsh method.

In fact, there is no contradiction between the estimates since the rsIP method
should give us a lower-bound estimate due to the virtual hosting factor (see
Section 3.1) while the srsh method should result in an upper-bound estimate
because of the host duplication problem (see Section 3.2). In any case, it is
unquestionable that a 95% confidence interval for the total number of deep web
sites in Runet is (2400,10150), that is, the scale of the Russian deep Web
is on the order of 103 resources. We also believe that the estimate obtained
by the srsh method is closer to the true number than the estimate by the rsIP
method because the host duplication factor was at least partially addressed
in the srsh experiment (duplicates were identified and then the corresponding
correction was done) while the influence of virtual hosting on the rsIP estimate
was just mentioned as very important but not measured quantitatively.

The quick and indirect attempt to correct the rsIP estimate is to reconstruct
the process of detecting deep web sites for specifically designed list of IPs. In
order to build such a list, we took 46 deep web sites detected by the srsh method
and resolved their hostnames to the list of IP addresses. “Ideal” rsIP method
should detect 46 deep web resources in this list, non-ideal rsIP method detects
less due to shortcomings of IP-to-host resolving procedure. Our rsIP method
was able to detect 25 (54%) deep resources, and the rest, 21 (46%) of deep
web sites, were not detected7. Thus, we can expect that around 46% deep re-
sources were missed in our rsIP experiment and, hence, the corrected rsIP esti-
mate is 6800±2300. The intervals for the rsIP and srsh estimates, (4500,9100)
and (5450,10150) correspondingly, are well overlapping, and their intersection,
namely (5450,9100) or approximately (rounded to the nearest 100) 7300±1800,
is our final estimate for the total number of deep web sites in Runet.

It is interesting to compare the number of deep resources in Runet and in the
entire Web. The number of deep web sites resources in the entire Web estimated
by Chang et al. [3] is 307,0008 for April 2004 while our estimate for Runet
obtained by the same method as in [3] is 3650±1250 for summer 2005. The
comparison suggests that in terms of the number of deep web sites the Russian
deep Web is approximately the hundredth part of the entire deep Web. This
roughly coincides with the portion of Russian web sites in the Web - survey [8]
indicated that one percent of public sites in the Web in 1999 as well as in 2002
were in Russian.
7 In more than half cases no hostnames were resolved from an IP address and then

the only URL to use http://IP address returned just an error page or a web server
default page.

8 No confidence intervals were mentioned in [3] but it is easy to calculate them from
their data: particularly, a 95% confidence interval for the number of deep web sites is
307,000±54,000. A 99% confidence intervals have also been specified in more recent
work of the same authors [4].

On Estimating the Scale of National Deep Web 789

5 Conclusion

This paper presented our survey of web databases on one specific national seg-
ment of the Web. The national deep Web was studied on the example of the
Russian segment of the Web. Based on the proposed sampling techniques we
estimated the total number of deep web sites in Runet as 7300±1800. The com-
parison with results of [3] showed that in terms of the number of deep web
resources the Russian deep Web is approximately the hundredth part of the en-
tire deep Web. Additionally, we demonstrated that the proportion of deep web
sites among highly cited web sites is higher than among less cited sites.

Notes and Comments. We would like to thank Yandex LLC for providing us
with the data set “Hostgraph”. Appendices can be downloaded at:

http://denshe.googlepages.com/shestakov dexa07 appendices.pdf.

References

1. Baeza-Yates, R., Castillo, C., Efthimiadis, E.: Characterization of national Web
domains. TOIT 7(2) (2007)

2. Bergman, M.: The deep Web: surfacing hidden value. Journal of Electronic Pub-
lishing 7(1) (2001)

3. Chang, K., He, B., Li, C., Patel, M., Zhang, Z.: Structured databases on the web:
observations and implications. SIGMOD Rec. 33(3), 61–70 (2004)

4. He, B., Patel, M., Zhang, Z., Chang, K.: Accessing the deep web. CACM 50(5),
94–101 (2007)

5. Lawrence, S., Giles, C.: Searching the World Wide Web. Science 280(5360), 98–
1000 (1998)

6. MaxMind GeoIP Country R© Database. URL: http://www.maxmind.com/app/
country

7. O’Neill, E., McClain, P., Lavoie, B.: A methodology for sampling the World Wide
Web. Annual Review of OCLC Research 1997 (1997)

8. O’Neill, P., Lavoie, B., Bennett, R.: Trends in the evolution of the public Web.
D-Lib Magazine 9(4) (2003)

9. Segalovich, I., Zelenkov, Y., Nagornov, D.: Methods for comparative analysis of
modern search systems and Runet size determination. In: Proc. of RCDL’06, [in
Russian] (2006)

10. Shestakov, D., Vorontsova, N.: Characterization of Russian deep Web. In: Proc. of
Yandex Research Contest 2005, pp. 320–341 [In Russian] (2005)

11. Thompson, S.: Sampling. John Wiley&Sons, New York (1992)
12. Tutubalin, A., Gagin, A., Lipka, V.: Black quadrate: Runet in March (2006) [In

Russian] (2006), http://www.rukv.ru/analytics-200603.html

http://www.maxmind.com/app/country
http://www.maxmind.com/app/country
http://www.rukv.ru/analytics-200603.html

Mining the Web for Appearance Description

Shun Hattori, Taro Tezuka, and Katsumi Tanaka

Department of Social Informatics, Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo, Kyoto 606-8501, Japan

{hattori, tezuka, tanaka}@dl.kuis.kyoto-u.ac.jp

Abstract. This paper presents a method to extract appearance descrip-
tions for a given set of objects. Conversion between an object name and
its appearance descriptions is useful for various applications, such as
searching for an unknown object, memory recall support, and car/walk
navigation. The method is based on text mining applied to Web search
results. Using a manually constructed dictionary of visual modifiers, our
system obtains a set of pairs of a visual modifier and a component/class
for a given name of object, which best describe its appearance. The ex-
perimental results have demonstrated the effectiveness of our method in
discovering appearance descriptions of various types of objects.

1 Introduction

In recent years, there has been an exponentially growing amount of information
available on the Internet, especially the World Wide Web. With the improve-
ment and maintenance of mobile computing environments, we have been able to
access information anywhere at any time in our daily lives. Information retrieval
systems such as Web search engines, which we must often pass through to access
necessary information, have increased their significances or more.

In utilizing such a large information source as the Web for our daily activities,
converting a name of an object to its appearance description and vice versa
sometimes becomes necessary for us. For example, let us suppose that the user
sees an object which she does not know the name at all or exactly and wishes to
retrieve web pages about the object. Using conventional search engines such as
Google, the user will have difficulty in finding relevant web pages by submitting
only the appearance descriptions of the object as a query. Although conventional
search engines are efficient in finding relevant web pages when the name of the
object is given, they are far from satisfactory in retrieving information when the
name of the object is not given.

On the other hand, there are situations where the user wants to get the
appearance description by using the name of the target object as a clue. For
example, in an auditory car/walk navigation system, the user wants to know the
appearance description of the landmark, rather than its name, especially when
she is not well acquainted with the area.

These conversions between the name of an object and its appearance descrip-
tion have many applications, as described below in more detail.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 790–800, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mining the Web for Appearance Description 791

Object Name Search by Appearance Description
Web search engines are powerful tools for finding information when the name
of the object is given. On the other hand, if the user does not know the name
of the object, she has to put in much effort to identify it.

There are cases where the user encounters an unknown species of bird,
insect, or plant when she is out in a field, and wants to know its name
and obtain more information about it. Such situations have become very
common with the advent of mobile devices that enable access to the Web at
any moment.

The user also forgets the name of an object, such as a do-it-yourself tool
that she rarely uses. Unless the user can remember the name of the tool, she
cannot obtain further information about it by doing a Web search.

Search engines for children also need to incorporate this type of function,
because children have smaller vocabularies than adults and can only describe
many objects by their appearance descriptions [1].

Appearance Description Search by Object Name
There are cases where the user wants to know the appearance of a certain
object. For example, in a car/walk navigation system, presenting the ap-
pearance descriptions of a landmark is more helpful to the driver/walker,
especially when the navigation is performed by using auditory media.

By just submitting the name of the object as a query to an image search
engine, the user can obtain relevant images. Converting the object name to
an appearance description by surveying them, however, is not a difficulty
task for humans, but the task is hard for computational systems.

Fig. 1. Conversion between object names and appearance descriptions

792 S. Hattori, T. Tezuka, and K. Tanaka

One way to cope with these problems is to manually construct a dictionary
that stores relationships between names of objects and their appearance de-
scriptions. There are already many good databases for certain domains. There
is, however, still a vast amount of information yet to be utilized on the Web. By
mining the Web, we can construct much larger databases for various domains.

The aim of this paper is to present a method that automatically constructs a
database of correspondences between names of objects and their appearance de-
scriptions. We accomplish this task by finding typical appearance descriptors and
components of the target object by Web mining. Our proposed method involves
immensely time consuming calculations, so the method should be implemented
as a process of constructing a database before any search is performed.

The remainder of the paper is organized as follows. Section 2 presents some
work related to this research. Section 3 presents our method to discover ap-
pearance descriptions for names of objects and its implementation. Section 4
describes the experimental results. Finally, we conclude the paper in Section 5.

2 Related Work

2.1 Visual Description Mining

Tezuka �et al. has developed a method for extracting object names and their
“visual descriptions” from large document collections, such as the Web and en-
cyclopedias, by applying knowledge mining and dependency analysis [2]. Their
method was mainly targeted on extracting descriptions of geographic objects,
such as buildings and landmarks, and developing search and navigation support
applications in geographic space.

2.2 Visualness of Adjectives

Yanai et al. has proposed the concept of “visualness” of word concepts, especially
adjectives [3]. By applying image processing to text-annotated images by Google
Image Search, they obtained values that indicate how appropriate each adjective
is for describing an image’s visual characteristics. Their definition of visualness is
based on the calculation of decision trees. Adjectives that could be used to divide
images into characteristic groups have higher visualness. Their method was not
applied to nouns and other parts of speech, which could have visualness as well.
The vocabulary of visual modifiers could be automatically built by visualness.

2.3 Object Identification by Photographs

There are some online services where the user takes a picture of an unknown
object, submits it to the system through a network, and the system identifies the
name of the object based on image analysis [4,5]. Such systems often identify the
name of an unknown object in a picture by measuring the similarity with the
corpus of pictures labeled by names of known objects. However, the precisions
of systems for object identification, especially general object identification, are
not sufficiently high at this moment [6,7,8,9].

Mining the Web for Appearance Description 793

3 Extracting Appearance Descriptions for General
Objects from Very Large Corpus of Documents

In this section, we present our method to discover appearance descriptions for
each name of object by mining a very large corpus of documents such as the
Web. First, we give an overview of our method.

3.1 Overview

We have formalized the most simplified model of an appearance description for a
general object, as a triplet of the name of object itself, a name of its component
or class, and a visual modifier describing its visual characteristic:

appearance = (object, visual-modifier, component/class)

For example, “A kingfisher has a short blue tail and a long bill.” could be
simplified to three triplets of an object, a visual modifier, and its modifying
component of the object, (kingfisher, short, tail), (kingfisher, blue, tail) and
(kingfisher, long, bill). Meanwhile, the sentence “A kingfisher is a small bird.”
could be simplified to one triplet of an object, a visual modifier, and its mod-
ifying class of the object, (kingfisher, small, bird). This model is based on the
observation that an object is usually perceived as an aggregation of components
with specific visual characteristics. If the visual modifier describes the whole of
the object itself, such as in the case of “A kingfisher is colorful.”, then the class
would be the name of the object itself, that is, the simplified triplet would be
(kingfisher, colorful, kingfisher).

The goal of our method presented in this paper is to collect a set of pairs
(visual, component/class) that correctly describes the appearance of the given
object o. We call these pairs, V-C pairs,

o =⇒ {(v1, c1), (v2, c2), ..., (vn, cn)}.

Moreover, we also aim to rank these V-C pairs in the order of weight wi, which
indicates the suitability of each V-C pair as an appearance description of the
target object o,

o =⇒ {(v1, c1, w1), (v2, c2, w2), ..., (vn, cn, wn)}.

When a name of object o ∈ O is inputted, our method processes the following
four steps and then outputs its appearance as several V-C pairs ordered by their
weights. In the remainder of this section, we describe these steps in detail.

Step 0: Constructing General Dictionary of Visual Modifiers

Step 1: Collecting Components/Classes of Object for V-Modifiers

Step 2: Ranking of V-C Pairs Using Sampled Documents

Step 3: Filtering of V-C Pairs Using Whole Documents

794 S. Hattori, T. Tezuka, and K. Tanaka

3.2 Dictionary of Visual Modifiers

We have manually collected a set of visual modifiers as the basic data set for
our method. It consists of 617 words that describe color, shape, size, and surface
material of objects. The composition of the set is shown in Table 1.

Table 1. Set of Visual Modifiers

Type Number Examples
aeruginous, amber, amethyst,

Color 192 antique, apricot, ..., wheat,
white, wine, wisteria, yellow

antisymmetric, aquiline, arc,
Shape 143 asymmetric, ..., vertical,

wavy, wedge-shaped, winding

abrasive, allover, argyle, banded,
Texture 119 belted, ..., veined, velvety,

watermarked, wet, zebra-stripe

abundant, average, big, bold,
Size 53 brief, broad, ..., thick, thin, tiny

tremendous, trivial, vast, wide

acrylic, adobe, alloy, aluminum,
Surface material 110 asphalt, bamboo, ..., vinyl, waxy,

wire, wood, wooden, woolly

Total 617

The dictionary contains many words (maybe too many) referring to size, such
as short/long, small/big, high/low, many, much, few, and little. Although they
are important for describing the appearance in some occasions, they have also
caused some noise in the results.

3.3 Collection of Components/Classes

To collect the names of components/classes for a target object, first, our system
crawls web pages described about only the object, by submitting the name of
the object as a query to Google Web Search [10], which is a common Web search
engine. To increase the accuracy of our method, the system only retrieves web
pages that contain the name of the object o in the title, by submitting not [“o”]
but [intitle:“o”] as a query to Google. Henceforth, we use D(o) as the set
of crawled documents for each name of object o obtained from D, the set of all
documents of a corpus such as the Web.

Next, the parser scans through the collected web pages and finds phrases that
contain a visual modifier in the dictionary. Words that immediately follow a
visual modifier in the crawled web documents are considered as candidates for
component/class name of the target object. There are, however, many irrelevant
words on the candidate list. We apply the following ranking technique to refine
the results.

Mining the Web for Appearance Description 795

3.4 Ranking of V-C Pairs Using Sampled Documents

After obtaining the V-C pairs, our system evaluates their weights to offer the
users them ranked according to their significance for the target object. We
present three methods to weight the V-C pairs.

Method 1
This method is a very simple approach that evaluates each weight of a V-C
pair, (vi, ci), for the target object, o, by the number of web documents in
D(o) that contains the phrase “vi ci”, that is, vi immediately followed by ci:

weight1o(v, c) := dfo(“v c”),

where dfo(“p”) stands for the number of web documents within D(o) that
contain the phrase p. Because this method considers a word that frequently
appears after a visual modifier to be a component/class automatically, it
is vulnerable to a compound word that starts with a visual modifier but is
not an appearance description, such as “high school” and “yellow pages.”
Therefore, the below Method 3 is proposed to cope with this problem.

Method 2
This method is a more refined approach that evaluates the significance of
V-C pair, (vi, ci), for the target object, o, in the following manner:

weight2o(v, c) := weight1o(v, c) ·weighto(c),

weighto(c) :=
∑

vi∈V

fo(vi, c),

fo(vi, c) :=
{

1 if dfo(“vi c”) > t2,
0 otherwise.

In the formula, t2 is a threshold value. In this paper, our system sets t2 = 1.
fo(vi, c) is a boolean function that indicates whether or not there is a mean-
ingful co-occurrence as the phrase “vi c” in the crawled web documents D(o)
for the target object o, and weighto(c) means that the number of variations
of visual modifiers that have a meaningful co-occurrence with a candidate
component/class c of the object in D(o).

Method 3:
This method filters problematical V-C pairs, as described in Method 1, al-
most completely. However, the method also filters too many acceptable V-C
pairs for appearance descriptions of the target object, because the number
of the crawled web documents D(o) is at most 1000 and they do not often
include the phrase “c is/are v” even when (v, c) is acceptable. Therefore, our
system does not adopt this method.

weight3o(v, c) :=

{
weight2o(v, c) if

dfo(“c is/are v”)

dfo(“v c”)
> 0,

0 otherwise.

796 S. Hattori, T. Tezuka, and K. Tanaka

3.5 Filtering of V-C Pairs Using the Whole Documents

After weighting the V-C pairs by using the sampled documents D(o) for the
target object o, our system filters them by using all the documents of a corpus
such as the Web to offer the better results to the users.

Method 4:
This method is similar to Method 3 with regard to the below-mentioned
fundamental, but it does not filter too many acceptable V-C pairs for the
appearance descriptions of the target object unlike Method 3 because the
number of all the documents of a corpus is much greater than the number
of the crawled web documents D(o). Of course, problematical V-C pairs, as
described in Method 1, are filtered out almost completely:

weight4o(v, c) :=

{
weight2o(v, c) if

df(“c is/are v”)

df(“v c”)
> t4,

0 otherwise.

where t4 is a threshold value set to 10−4 in our system. df(“p”) stands for
the number of documents that contains the phrase p within D, the set of all
the documents of a corpus, not just the sampled documents D(o).
The formula is based on an observation for a set phrase “v c” that df(“v c”)
is too great but df(“c is/are v”) is too small or nearly equal to 0. For ex-
ample, in the case of (kingfisher, red, legs), both “legs are red” and “red
legs” appear with a high frequency in all the documents and maybe also
in D(“kingfisher”). Therefore, this V-C pair (red, legs) is considered as an
appearance description in general. On the other hand, although the phrase
“high school” appears at a certain high rate in D(“kingfisher”), this V-C
pair (high, school) is not considered as an appearance description in general
because of low frequency of the phrase “school is high”, and thus should not
always be considered as an appearance description of the object “kingfisher”.

Method 5:
This method is an approach like conventional tf·idf methods, that weights
a V-C pair (v, c) based on the proportion of the local connectedness to the
global connectedness in the form of phrase “v c”:

weight5o(v, c) :=

{
weight2o(v, c) if connecto(v,c)

connect(v,c)
> t5,

0 otherwise.

connecto(v, c) =
dfo(“v c”)2

dfo(“v”) · dfo(“c”)
,

connect(v, c) =
df(“v c”)2

df(“v”) · df(“c”)
.

However, our system in this paper does not adopt this method because its
evaluation task requires submitting numerous queries to a web search engine
such as Google to evaluate each local connectedness more accurately.

Mining the Web for Appearance Description 797

4 Experiment

In this section, we justify our method by using the above-defined weight to
extract appearance descriptions for a name of a target object from the Web.

We performed experiments on a set of object names, consisting of four typical
categories that the users may encounter in their daily lives. Each set has five
objects, as indicated in the following list.

Landmarks: Big Ben, Leaning Tower of Pisa, Statue of Liberty, Taj Mahal,
Tokyo Tower

Birds: Jungle Myna, Kingfisher, Shoebill, Snowy Owl, Sun Conure
Flowers: Edelweiss, Japanese Cherry, Lavender, Lily of the Valley, Sunflowers
Products: InterCityExpress, PS3, TGV, ThinkPad, Wii

Table 2 illustrates the results of an experiment performed on the object, “edel-
weiss” (a name of flower). We have applied the methods described in the previ-
ous section, to obtain appearance descriptions appropriate for “edelweiss”. V-C
pairs in bold font in Table 2 indicate correct answers for the target object, where
authors have checked manually whether or not each V-C pair is acceptable for
appearance descriptions for it. The results suggest that Method 2 is substantially
better than Method 1. Filtering based on Method 4 also improves the result, by
giving higher ranks to the correct answers. On the other hand, the correct an-
swers that were ranked too low by Method 2 did not become sufficiently high or
were filtered out as a result of using Method 4.

Fig. 2 to 5 compares our defined weights on the top k average precision for
each category. Fig. 6 compares our defined weights on the top k average precision

Table 2. For an object o = “edelweiss” (as a name of flower)

Method 1

v c w1
o

1 few steps 18
2 snow report 17
3 dark matter 15
4 high quality 14
4 yellow pages 14
6 snow may 13
6 beautiful mountain 13
8 old world 12
8 great deals 12
8 rock climbing 12
...

...
...

...
17 small flower 9
29 yellow flower 6
42 white flower 5
42 small heads 5

Method 2

v c w2
o

1 beautiful mountain 65
2 rock climbing 48
3 small flower 45
4 arc climbing 44
5 yellow flower 30
5 big mountain 30
7 yellow pages 28
8 dry rope 27
9 white flower 25
9 red mountain 25
...

...
...

...
72 silver star 6
72 cream edelweiss 6
98 small heads 5
98 beautiful flower 5

Method 4

v c w4
o

1 beautiful mountain 65
2 small flower 45
3 yellow flower 30
3 big mountain 30
5 dry rope 27
6 white flower 25
7 wide selection 20
8 few steps 18
9 snow mountain 15
9 dark matter 15
...

...
...

...
67 small heads 5
67 beautiful flower 5
- silver star 0
- cream edelweiss 0

798 S. Hattori, T. Tezuka, and K. Tanaka

Fig. 2. For five landmarks
Fig. 3. For five birds

Fig. 4. For five flowers Fig. 5. For five products

Fig. 6. For twenty general objects

Mining the Web for Appearance Description 799

in total for all categories. The graphs illustrate that the results obtained after
applying Method 4 are substantially better than the previous results. This is
especially significant for highly ranked results (with low k).

5 Conclusion and Future Work

We proposed a method to extract appearance descriptions for a given set of
objects to build a database that stores relationships between the name of an ob-
ject and its appearance descriptions and allows users to convert between them
bi-directionally. Our system mines a very large corpus of documents, such as the
Web, for a set of V-C pairs of a visual modifier and a component/class that best
describe the appearance of the given object by using a manually constructed
dictionary of visual modifiers. The experimental results have showed the effec-
tiveness of our method in discovering appearance descriptions for various types
of objects. We plan to improve the method by using the lexical relations of hy-
ponymy and meronymy in a thesaurus for component and class names of a target
object, and also challenge to automatically build a dictionary of visual modifiers.

Acknowledgments. This work was supported by a MEXT Grant for “Devel-
opment of Fundamental Software Technologies for Digital Archives”, Software
Technologies for Search and Integration across Heterogeneous-Media Archives
(Project Leader: Katsumi Tanaka), and a MEXT Grant-in-Aid for Scientific Re-
search on Priority Areas “Cyber Infrastructure for the Information-explosion
Era”, Planning Research “Contents Fusion and Seamless Search for Information
Explosion” (Project Leader: Katsumi Tanaka, A01-00-02, Grant#: 18049041).

References

1. Nakaoka, M., Shirota, Y., Tanaka, K.: Web information retrieval using ontology for
children based on their lifestyle. In: Proceedings of the First International Special
Workshop on Databases for Next Generation Researchers (SWOD’05) in conjunc-
tion with ICDE’05 (2005)

2. Tezuka, T., Tanaka, K.: Visual description conversion for enhancing search engines
and navigational systems. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang,
Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 955–960. Springer, Heidelberg (2006)

3. Yanai, K., Barnard, K.: Image region entropy: A measure of “visualness” of web
images associated with one concept. In: Proceedings of ACM International Con-
ference on Multimedia 2005 (MM’05), pp. 420–423 (2005)

4. NTT-IT Corporation: Magicfinder/o (2007), http://www.ntt-it.co.jp/goods/
bcj/MagicFinder/o/pro index j.html

5. TechIndex Corporation: PicLin (2007), http://www.piclin.jp/
6. Rue, H., Hurn, M.A.: Bayesian object identification. Biometrika 86(3), 649–660

(1999)
7. Duygulu, P., Barnard, K., de Freitas, N., Forsyth, D.: Object recognition as ma-

chine translation: Learning a lexicons for a fixed image vocabulary. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp.
97–112. Springer, Heidelberg (2002)

http://www.ntt-it.co.jp/goods/bcj/MagicFinder/o/pro_index_j.html
http://www.ntt-it.co.jp/goods/bcj/MagicFinder/o/pro_index_j.html
http://www.piclin.jp/

800 S. Hattori, T. Tezuka, and K. Tanaka

8. Barnard, K., Duygulu, P., Forsyth, D.A.: Recognition as translating images into
text. In: Proceedings of Internet Imaging IV, SPIE, vol. 5018, pp. 168–178 (2003)

9. Barnard, K., Duygulu, P., Forsyth, D.A., de Freitas, N., Blei, D.M., Jordan, M.I.:
Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135
(2003)

10. Google Corporation: Google Web Search (2007), http://www.google.com/

http://www.google.com/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 801–810, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Rerank-by-Example:
Efficient Browsing of Web Search Results

Takehiro Yamamoto, Satoshi Nakamura, and Katsumi Tanaka

Department of Social Informatics, Graduate School of Informatics,
Kyoto University

Yoshida-Honmachi, Sakyo, Kyoto 606-8501 Japan
{tyamamot,nakamura,tanaka}@dl.kuis.kyoto-u.ac.jp

Abstract. The conventional Web search has two problems. The first is that
users’ search intentions are diverse. The second is that search engines return a
huge number of search results which are not ordered correctly. These problems
decrease the accuracy of Web searches. To solve these problems, in our past
work, we proposed a reranking system based on the user’s search intentions
whereby the user edits a part of the search results and the editing operations are
propagated to all of the results to rerank them. In this paper, we propose
methods of reranking Web search results that depend on the user’s delete and
emphasis operations. Then, we describe their evaluation. In addition, we
propose a method to support deletion and emphasis by using Tag-Clouds.

Keywords: edit-and-propagate, tag-cloud, reranking, user-interface.

1 Introduction

A variety of ranking algorithms have been proposed and implemented. They are used
in many Web search engines such as Yahoo! and Google. However, they sometimes
do not return search results that adequately meet the user’s needs as they are affected
by two big problems in Web searches.

The first problem is that users’ search intentions are diverse. For example, if a
product named “A” is used as a query, one user might be seeking reviews of “A”,
whereas another user might be seeking information on how to buy “A”. Moreover, the
search intentions might be diverse even if the same user uses the same query. If a
Web search engine returns the search results that do not satisfy the user’s intention,
the precision of the search results is considered low, because the user has to check
more search results or modify the query. Instead, if the user could inform the user’s
search intention to the system while browsing the search results, the system might be
able to return good search results for the user.

The second problem is that Web search engines return a huge number of Web
search results, but the user usually checks merely the top 5 or 10 results. Therefore,
almost all Web search results are not checked by the users. Moreover, there has been
widespread usage of search engine optimization (SEO) techniques recently. Many
companies and site owners spend much money on SEO in order to raise the search

802 T. Yamamoto, S. Nakamura, and K. Tanaka

rank order of their Web sites. As a result, currently, high ranked search results are
often the result of applying SEO techniques and the accuracy and reliability of Web
search results have decreased. This problem stems from the fact that it is burdensome
for the user to check low ranked search results. Therefore, if we introduce reranking
functions that the user can use easily, the user will be able to check a lot of good Web
search results efficiently and the impact of SEO techniques will become weaker.

To solve these problems, in our past work, we proposed and implemented a
reranking system based on edit-and-propagate operations [1]. In this work the system
enables the user to edit any portion of a browsed page of Web search results at any
time while the user is searching. Our system detects the user’s search intention from
the editing operations. For example, if the user deletes a part of the search results, our
system guesses that “this user does not want this kind of the result”. If the user
emphasizes a part of the search results, our system guesses that "this user wants more
of this kind of result". Our system propagates the users’ search intention based on
their editing operations to all search results in order to rerank them. In this way, the
user can easily obtain optimized search results.

In this paper, we propose the three reranking methods of Web search results when
the user performs the delete/emphasis operation to rerank them. Then, we provide the
experimental results of these reranking methods. In addition, in order to perform
delete/emphasis operations more effectively for the user, we propose and implement
MultiTagCloud, which are generated by using Web search results.

2 Edit-and-Propagate Operations for Reranking

Our system reranks search results according to the type of operations users want to
edit and the target that the user edits. The flow is as follows:

1. The user inputs a query to our system.
2. The system sends to the query to Web search engine.
3. The system receives the search results and shows them to the user.
4. The user checks the search results ranked by the search engine.
5. The user edits a portion of the search results by using editing operations.
6. The system detects the user's editing operations and guesses the user's search

intention. Then the system reranks the whole search results according to this guess
and shows the reranked search results to the user.

7. If the user is not satisfied with the reranked search results, go to 4.

The editing operations are as follows:

 Deletion: Deletion is an operation that indicates what types of search results the
user does not want to obtain from the system.

 Emphasis: The role of an emphasis operation is opposite to the delete
operation. Emphasis operation indicates what types of search results the user
wants to obtain.

Search engines usually return title, snippet and URL as one of the search results to
the user. If a user deletes/emphasizes a keyword or sentence from a title or snippet of

 Rerank-by-Example: Efficient Browsing of Web Search Results 803

a search result, the system guesses that the user wants to degrade/upgrade some
results which include the deleted/emphasized text. The system also guesses that the
user wants to degrade/upgrade some results which include the topic about the
deleted/emphasized text. For example, while browsing the Web search results of
“Katsumi Tanaka”, if a user deleted “pianist” from a search result, the system guesses
that the user has the intention to degrade the search results which are related to the
topic about Katsumi Tanaka who is a pianist.

If a user deletes a URL or a part of a URL, the system guesses that the user wants
to degrade the results which include deleted strings. If the user does not need the
results whose domain is JP, he/she might delete “.jp” from a URL of the search
results. If the user deletes a search result item, the system guesses that he/she wants to
degrade the search results which are similar to the deleted item.

 Figure 1 shows the implementation of our system when the user submits “kyoto”
as the query. For this query, some of the high ranked search results are related to the
Kyoto Protocol. If the user does not need information about the Kyoto Protocol, the
user deletes “protocol” from the search result. After deleting a keyword, the system
guesses the user’s intention and degrades the search results which include “protocol”
in their titles or snippets. Then, the user receives reranked search results whose high
ranked ones are related to Kyoto City or Kyoto University.

Fig. 1. Examples of the results produced by our system: The search results are reranked after
deleting a keyword

3 Reranking Methods

Our goal is to estimate the user's intention when he/she uses editing operations and to
reflect this intention in the search results page. For this purpose, we propose methods
of reranking Web search results by deleting or emphasizing a keyword.

When the user inputs a query to our system, the system obtains the top N search
results r1, r2, …, rN (ri is the ith search result item). Then, the system initializes the
score of each search result item as:

804 T. Yamamoto, S. Nakamura, and K. Tanaka

 iNrScore i −=)((1)

(This formula allocates scores to search results depending on their search ranks.)
If the user deletes/emphasizes a keyword, the system re-calculates the scores of

search result items and shows the search results in order of their scores to the user.

3.1 Selection Keyword Method

When the user deletes or emphasizes the term t, this method degrades or upgrades the
search results including t. Our system calculates the score of ri when it includes t in its
title or snippet according to Equation 2.

 NtyperScorerScore lastinewi ×+=)()((2)

⎩
⎨
⎧

−
=

deletionisoperationeditif 1

emphasisisoperationeditif 1
type

3.2 Extended Keyword Method

When the user inputs query like “Katsumi Tanaka” in order to seek information about
Katsumi Tanaka who is a professor, he/she receives the search results which include
not only a professor, but also a pianist, a poet, and so on. If a user deletes the term
“pianist” in the search result, the system guesses his/her search intention as “the user
wants to degrade the results about ‘Katsumi Tanaka who is a pianist’ ”. So when the
user deletes “pianist”, it is better for the user to degrade the search results that not
only include “pianist” but also include terms like “piano” or “concert” and so on. To
accomplish this, we propose two methods called “inner extended keyword” and “outer
extended keyword”.

If the user deleted/emphasized term t , both methods obtain terms w1, w2, … , wk as
extended keywords. Then, for each term t, w1, w2, … , wk, the system calculates the
score of the search result items which include these terms in their titles or snippets
according to Equation 2. R(q) denotes the set of search result items of q. W(q) denotes
the set of terms which appear in R(q). TF(w, R(q)) denotes the term frequency of
w∈W(q) in R(q). In this work, by using Japanese morphological analyzer ChaSen [3],
we extract proper nouns and general nouns as terms appear in the search results.

 Inner Extended Keyword Method: To obtain extended keywords, this method
uses the term frequency of search results that include the term (we call this set of
search result items as R’(q)). For each term w∈ W(q), the system calculates
TF(w, R’(q)) and extracts the top k terms in order of this value as extended
keywords.

 Outer Extended Keyword Method: This method uses the difference of term
frequency between R(q AND t) and R(q). For each term w∈W(q), the system
calculates TF(w,R(q AND t)) – TF(w,R(q)). Then the system extracts the top k
terms in order of this value as extended keywords.

For example, when the user deletes “pianist” in the search results of “Katsumi
Tanaka”, the inner extended keyword method degrades the search results which

 Rerank-by-Example: Efficient Browsing of Web Search Results 805

include “homepage”, “information”, “profile”, or “concert”. On the other hand, the
outer extended keyword method degrades the search results which include “profile”,
“concert”, “lesson”, or “piano” (if the system uses Google, N=500 and k=4).

4 Experiment

To evaluate our reranking methods, we investigated how the search results are
reranked by deleting or emphasizing keywords using the reranking methods in
Section 3. We prepared 15 search tasks and also prepared the correct answer sets for
each search task.

In the keyword deletion task, the user inputs the prepared search query and submits
the query to the search engine using our system. Then, the user checks the search
results sequentially after receiving the search results. If the user reaches an unmatched
search result, the user selects the keyword and deletes it. If the system detects the
user's deletion, the system reranks the search results and shows the reranked search
results to the user. Then the user also rechecks the search results from top to bottom.
The user does this three times.

After each deletion, we calculated the precision of the ranking and the number of
correct search results which the system incorrectly degraded. We compared the
selection keyword method (SKM), inner extended keyword method (IEKM), and outer
extended keyword method (OEKM) in this task.

In the keyword emphasis task, the user inputs the prepared search query and
submits the query to the search engine using our system. Then, he/she checks the
search results sequentially after receiving the search results. If the user finds a
keyword which the user thinks is relevant, the user selects the keyword and
emphasizes it. If the system detects the user's emphasis operation, the system reranks
the search results and shows the reranked search results to the user. Then the user
rechecks the search results from top to bottom. This action is performed once, because
the keyword emphasis task is so effective that after second emphasis almost all the
top 20 reranked search results become correct.

After each emphasis, we calculated the precision of the ranking. We compared the
SKM, the IEKM, and the OEKM in this task.

If the reranked all top 20 search results are correct, the user stops the operation.
Figure 2 shows the average precisions of the top K (K=1, 2, …, 20) in the search

results of each deletion. Figure 3 shows average precisions of each emphasis. Figure 4
shows average initial order of lowest original matched search results in top K by using
SKM. This figure shows how low rank of the matched search results are upgraded as
the user performs the emphasis operation. Table 1 shows the numbers of matched
search results which are removed from the top 20 by the deletion. Number of total
deletions means the total number of search results which are removed from the top 20
by three delete operations. Number of error deletions means the number of the
matched search results which are removed from the top 20 by three deletions. Error
ratio means the ratio of the total deletion number and the error number.

806 T. Yamamoto, S. Nakamura, and K. Tanaka

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of search results (in top K)

A
v
e
r
a
g
e
 o
f
p
r
e
c
is
io
n
 r
a
t
e

Google
1st deletion (SKM)

2nd deletion (SKM)
3rd deletion (SKM)

1st deletion (IEKM)
2nd deletion (IEKM)

3rd deletion (IEKM)
1st deletion (OEKM)
2nd deletion (OEKM)

3rd deletion (OEKM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of search results (in top K)

A
v
e
r
a
g
e
 o
f
p
r
e
c
is
io
n
 r
a
t
e

Google

1st emphasis(SKM)

1st emphasis(IEKM)

1st emphasis(OEKM)

Fig. 2. Average precision obtained after each
deletion

Fig. 3. Average precision obtained after each
emphasis

Table 1. Ratio of matched search results
removed from the top 20

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of search results (in top K)

A
v
e
ra
g
e
 i
n
it
ia
l
o
r
d
e
r
o
f
lo
w
e
s
t
 m
a
tc
h
e
d
 s
e
a
rc
h
 r
e
s
u
lt
s

Google

1st emphasis(SKM)

2nd emphasis(SKM)

3rd emphasis(SKM)

 # of total
deletions

of
error

deletions

Error
ratio

SKM 127 2 1.57%
IEKM 191 20 10.47%

OEKM 208 35 16.83%

Fig. 4. Average initial order of lowest matched
search results in top K

4.1 Discussion

Figure 2 shows that the number of relevant search results in the top 20 increases after
each delete operation in all reranking methods. We note that the effect of the first
deletion is biggest and the effect of the deletion becomes smaller as the user repeats
deletions.

The effect of the IEKM is smallest and the difference between the effectiveness of
the OEKM and that of the SKM was relatively small. In particular, if we assume that
users usually check only the top 10 search results, both reranking methods have the
same effectiveness. As shown in Table 1, the main reason for this is that although the
two extended keyword methods degrade more search results than the SKM does, they
also degrade more relevant search results. As shown in Section 3.2, when the user
deletes “pianist” from the search results of “Katsumi Tanaka”, the OEKM degrades

 Rerank-by-Example: Efficient Browsing of Web Search Results 807

the search results which contain terms related to “pianist”. In contrast, the IEKM
degrades the search results which contain “information”. The search results which are
related to the Katsumi Tanaka who is a professor have frequent co-occurrences with
“information”. Therefore, when the system degrades the search results which contain
“information”, many relevant search results are degraded. The OEKM also obtains
popular teams or terms which appear in multiple topics although the OEKM obtains
fewer such terms than the IEKM. We need to solve this problem to increase the effect
of the two extended keyword methods.

The effect of emphasis operations is much bigger than that of delete operations.
We note that the first emphasis operation is effective, by which all top 20 search
results are relevant in more than two-thirds of the queries.

In the emphasis operation task, the OEKM outperformed the SKM and the IEKM.
In the delete operation task, the fact that the extended keyword methods often obtain
popular terms like “information”, which are related to multiple topics, lowers their
accuracy. In the emphasis task, however, if the term which the user emphasized
directly is related to relevant search results, this problem does not occur. We think the
extended keyword methods outperformed the SKM because of this reason.

As shown in Figure 4, our system can pick up very low ranked relevant search
results as the user performs the emphasis.

5 Supporting Deletion and Emphasis by Using MultiTagCloud

A tag-cloud is used as a visual depiction of tags. In a tag-cloud, more frequently used
tags or more popular tags are shown bigger or more emphasized. The widely known
use of tag-clouds is made by flickr [4]. Flickr displays many kinds of tags that users
tag to photos by using a tag-cloud. One of the biggest merits of tag-clouds is that
users can instantly check the popular tags and easily look over many tags.

We therefore applied this interface model to the Web search results page in order
to support the use of the delete and emphasis operations for users.

5.1 Method of Generating MultiTagCloud

The general tag-cloud is a list of tags that users tagged. Our tag-cloud is a list of
keywords that appear in Web search results. Moreover, in order to visualize how the
contents of the Web search results are distributed on the page, we split search results
into several groups, and for each of the groups we generate a tag-cloud. The system
shows these tag-clouds simultaneously as a MultiTagCloud. The process of creating a
MultiTagCloud is as follows:

1. The system splits a set of the search result items R={r1, r2, … , rN} in page p,
ordered by their scores, into n groups. (We call this split group
R’={R1 , R2, … , Rn})

2. For each Ri∈R’, we generate a tag-cloud according to the following steps.
 (a) By doing a morphological analysis on the titles and the snippets of the search

result items in Ri, the system obtains the set of keywords Ti, and calculates the
term frequency of keyword T ∈Ti

808 T. Yamamoto, S. Nakamura, and K. Tanaka

 (b) The system finds the top k frequent keywords, and then adds them to a tag-
cloud in appearance order in Ri.

 (c) When the term frequency of a keyword in a tag-cloud exceeds the threshold

iθ (i=1, 2, 3, …), the system modifies the font size of the keyword in it.

3. The system simultaneously shows all the tag-clouds as a MultiTagCloud.

5.2 Example of System Output

Figure 5 shows an example of the output produced by our system. The normal search
results are displayed on the left side of the system. The MultiTagCloud is displayed
on the right side of the system. In Figure 5, the system displays the top 500 search
results, with MultiTagCloud consisting of tag-clouds of the 1st to 100th, 101st to
200th, …, 401st to 500th search results. For each tag-cloud, the system displays
keywords whose term frequency is within the top 30. The users can use editing
operations on any of the keywords in the tag-clouds as well as those in search results.
Therefore, the user can rerank search results by deleting or emphasizing any
keywords in the MultiTagCloud. According to the user's operations, the system
reranks the search results using the methods in Section 3, and then the system shows
the reranked search results and the re-generated MultiTagCloud (right of Figure 5).

Fig. 5. Example of MultiTagCloud. The MultiTagCloud is re-generated depending on the
reranked search results (Right).

5.3 Effectiveness of MultiTagCloud

By showing MultiTagCloud with the search results, the user can easily and quickly
understand what keywords are influential.

We can visually understand that if we delete a keyword displayed in a large font,
many search results will be reranked to the bottom and that if we emphasize a
keyword displayed in a small font, a few sparse search results will be gathered and
reranked to the top. For these reasons, showing tag-clouds enables users to know how
to modify the search results when they delete or emphasize a keyword. Users can
more easily find keywords they need or do not need in a tag-cloud than in the
conventional search results. Moreover, by using a MultiTagCloud, the user can also

 Rerank-by-Example: Efficient Browsing of Web Search Results 809

see the propagation of keywords. In Figure 5, when the user submits “iPod” and then
emphasizes “software” in a MultiTagCloud, keywords related to the “software” such
as “iPhone”, “iTunes”, “Free”, and “Download” come to appear at the top of the
Multi-Tag-Cloud.

6 Related Work

Broder [2] and Rose and Levinson [8] have classified the goals of a user searching the
Web into three categories: navigational, informational, and transactional/resource.
There are also many studies on automatic classification of user goals by using queries
[5, 6]. These works focused on the recognition of the users' search intentions by
analyzing their queries. However, it is difficult to recognize such intentions just by
analyzing the inputted queries because even if the same user uses the same query in a
Web search, the user’s search intention might depend on the time and situation. Our
goal is to estimate the user's search intention through interactions between the user
and the system, and to reflect this intention in the Web search results page.

Yahoo! Mindset [11] allows the user to specify his/her search intentions to the
system. It weights each Web page as ‘more research’ or ‘more shopping’. The user
can specify that his/her search intention is research or shopping by using a slide bar;
then the system re-ranks the search results according to the weight. However, in this
system, the user cannot re-rank the search intentions without prepared factors.

There are many reranking methods. Relevance feedback [9] is the most popular
retrieval system to retrieve documents using the user’s feedback. Relevance feedback
is based on a vector space model [10]. Non-relevance feedback [7] is a retrieval
method for documents. It uses only non-relevant documents to find the target
documents from a large data set of documents. We think that we can apply both of the
relevance feedback and non-relevance feedback to optimizing searched results.

7 Conclusion and Future Work

We proposed reranking methods for users to delete or emphasize keywords and did
detailed evaluation tests. We showed the effectiveness of edit-and-propagate
operations for reranking Web search results. In the future, we plan to compare the
effect of our reranking methods with that of a query expansion which uses Boolean
operators such as AND and NOT. We also plan to devise more advanced reranking
methods because reranking methods proposed in this paper are simple algorithms.

Moreover, we proposed the use of the MultiTagCloud in order to support the delete
and emphasis operations.

In this work, we only implemented reranking by keyword deletion and emphasis.
In the future, however, we plan to implement reranking by deletion and emphasis of
search results item or sentence in a snippet. In addition, we would like to introduce
other operations such as drag-and-drop, and replace.

In this paper, we only focused on reranking. However, we think that the user may
have many other intentions in browsing search results pages. For example, the user
may want to modify a snippet which is generated by the search engine in order to

810 T. Yamamoto, S. Nakamura, and K. Tanaka

check another part of the original content which does not appear in the snippet. Users
might also want to compare multiple targets using Web searches. We will attempt to
support such a comparison by introducing editing operations.

Moreover, we can apply edit-and-propagate operations to browse other types of
Web pages. For example, while browsing a bulletin board, users might want to delete
improper messages or spam in order to increase readability, or emphasize a term in
order to check topics quickly. We will develop such an editable browser for many
kinds of Web pages.

Acknowledgements

This work was supported in part by MEXT Grant-in-Aid for Scientific Research on
Priority Areas: "Cyber Infrastructure for the Information-explosion Era", "Contents
Fusion and Seamless Search for Information Explosion" (Project Leader: Katsumi
Tanaka, A01-00-02, Grant#: 18049041), and by "Design and Development of
Advanced IT Research Platform for Information" (Project Leader: Jun Adachi, Y00-
01, Grant#: 18049073), and by Grant-in-Aid for Young Scientists (B) "Content
Manipulation and Browsing by Reversible Display" (Leader: Satoshi Nakamura,
Grant#: 18700129).

References

1. Yamamoto, T., Nakamura, S., Tanaka, K.: An Editable Browser for Reranking Web
Search Results. In: Proceedings of the Third International Special Workshop on Databases
for Next-Generation Researchers (2007)

2. Broder, A.: A taxonomy of web search. ACM SIGIR Forum 36(2), 3–10 (2002)
3. Morphological analyzer: ChaSen. http://chasen.naist.jp/hiki/ChaSen/
4. flickr. http://www.flickr.com/
5. Kang, I.H., Kim, G.C.: Query type classification for web document retrieval. In:

Proceedings of SIGIR2006, pp. 64–71 (2006)
6. Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in Web search. In:

Proceedings of WWW2005, pp. 391–400 (2005)
7. Onoda, T., Murata, H., Yamada, S.: Non-Relevance Feedback Document Retrieval Based

on One Class SVM and SVDD. In: 2006 IEEE World Congress on Computational
Intelligence, pp. 2191–2198 (2006)

8. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: Proceedings of the
WWW2004, pp. 13–19 (2004)

9. Salton, G.: The SMART Retrieval System Experiments in Automatic Document
Processing. pp. 312–323 (1971)

10. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill,
New York (1986)

11. Yahoo! Mindset. http://mindset.research.yahoo.com/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 811–822, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Computing Geographical Serving Area Based on Search
Logs and Website Categorization*

Qi Zhang2, Xing Xie1, Lee Wang1, Lihua Yue2, and Wei-Ying Ma1

1 Microsoft Research Asia, 5F, Sigma Building, No.49, Zhichun Road. Beijing,
100080, P.R. China

{xingx, wyma}@microsoft.com
2 Department of CS, University of Science and Technology of China, Hefei,

230027, P.R. China
wizard@mail.ustc.edu.cn, llyue@ustc.edu.cn

Abstract. Knowing the geographical serving area of web resources is very
important for many web applications. Here serving area stands for the
geographical distribution of online users who are interested in a given web site.
In this paper, we proposed a set of novel methods to detect the serving area of
web resources by analyzing search engine logs. We use the search logs to detect
serving area in two ways. First, we extracted the user IP locations to generate the
geographical distribution of users who had the same interests in a web site.
Second, query terms input by users were considered as the user knowledge about
a web site. To increase the confidence and to cover new sites for use in real-time
applications, we also proposed a categorization system for local web sites. A
novel method for detecting the serving area was proposed based on categorizing
the web content. For each category, a radius was assigned according to previous
logs. In our experiments, we evaluated all these three algorithms. From the
results, we found that the approach based on query terms was superior to that
based on IP locations, since search queries for local sites tended to include
location words while the IP locations were sometimes erroneous. The approach
based on categorization was efficient for sites of known categories and were
useful for small sites without sufficient number of query logs.

Keywords: Location-based web application, serving area; serving radius, web
classification.

1 Introduction

More and more web applications such as local search and local advertisement take
geographical dimension of web resources into consideration. In this paper, we are
interested in a special characteristic, “serving area”, which can be regarded as the
expected geographical distribution of online users who are interested in a given web
site. For instance, in a search engine, giving a query of “pizza seattle”, the search

* This work was done when the first author was visiting Microsoft Research Asia.

812 Q. Zhang et al.

engine should better return pizza related web sites whose serving area is Seattle. The
serving area of a web resource can be different from the street address of the entity who
owns that web resource.

Many research works have been carried out to detect the “geographical scope” of
web resources. They are mainly based on analyzing web content and hyperlink
structures. Geographical names, postal codes, telephone numbers and a number of
other features are extracted from the web content to help get the geographical scope of
a web page or a web site [1][2][3][4][5][6][16][17][18]. The underlying assumption is
that if a web resource does have a non-global (thus local) geographical scope, it will be
more likely to contain the location names or other named entities covered by the
geographical scope. The geographical scope of a web resource can be used as an
approximation to its serving area. However, geographical scope is different from
serving area in that it describes content, not user. For example, www.newzealand.com
has a clear geographical scope of New Zealand, but it will interest global users. Its
serving area, therefore, should be global.

Link analysis has been widely used to measure the relevance among web documents.
Two documents are considered relevant when one links to another. In location based
web applications, hyperlinks can be used to measure the geographical relevance among
web resources [1]. Hyperlinks are indirect hints for the serving area of a web resource,
since they indicate the interests of web authors of those sites link to that web resource.
However, information brought by links is usually incomplete and inaccurate. For new
or less popular web sites, there are few linked resources that can be used to help the
serving area detection.

In this paper, we propose and study a novel method for detecting serving areas by
analyzing web search logs, which are direct hints of end user interests. A web content
classification based serving area detection algorithm is also proposed for web sites
without sufficient logs. Experiments on large samples of real world data are carried out
to evaluate the performance of our algorithms.

The rest of the paper is organized as follows: Section 2 surveys the related work. In
section 3, we describe the concept of serving area. Section 4 provides the details of our
proposed algorithms. We give the experimental results in section 5 and in section 6 we
conclude our work.

2 Related Work

Much work has been done to improve the accuracy of extracting web locations. The
progress in Named Entity Recognition (NER) has helped a lot to the location detection
problem [5]. By using various geographical cues (such as geographical names, IPs and
hyperlinks, etc.) and developing effective computation approaches, the precision of
extracted geographical scope has been greatly enhanced.

Ding [1] proposed an algorithm to detect the geographical scope of a web resource
based on analyzing resource links and resource content. They first analyzed the
geographical locations of the hosts linking to the site in question. Then they exploited
the web content by taking an NER step. In the algorithm, they defined two measures:
power for measuring interest and spread for measuring uniformity. Locations with

Computing Geographical Serving Area Based on Search Logs and Website Categorization 813

significant interest (large power) and smooth distribution (large spread) were
considered as the geographical scope.

Amitay [5] presented a system named web-a-where which employed a gazetteer
based approach. A geographical focus was assigned to each web page after identifying
and processing all geographical occurrences in these pages.

In [6], the authors classified locations of web resources into three types: provider
location, content location, and serving location. Provider location is defined as the
physical location of the entity that owns the web resource. Content location is the
geographical location that the content of the web resource talks about. Serving location
is the geographical scope that a web resource reaches. In our paper, the concept of
serving area is somewhat similar to the serving location proposed in [6], but our
definition is more user-oriented. In [6], page links were used to calculate the serving
location, while search logs are studied here.

There exist quite a few commercial local search engines such as Google local search
[19] and MSN local search [20]. Most of them get geographical information from
Yellow Pages or manual classification of web resources. The geographical information
got from Yellow Pages is usually a geo-point, for example, when we search for “pizza
redmond” on a local search engine, one of the results might be a pizza restaurant “Third
Place Pizza and Sandwich” whose street address is “509 Jackson St Seattle, WA
98104.” However, we still don’t know its serving area. Will people who live in
Redmond (about 30 miles from Seattle) be interested in this restaurant? Does the
serving radius of this pizza restaurant cover Redmond? Current approaches can hardly
give us an accurate answer. In the following sections, for a local web site, we propose a
novel approach to analyze search logs to understand more about its serving area. Before
going to the algorithm details, we will first describe the concept of serving area.

3 Definitions

In this paper, we use the following definitions:

Serving area: The geographical distribution of users who are interested in a certain
web site. Serving area of a web resource can be also seen as the geographical area that
this web resource intends to reach.

Serving radius: It represents the size of the geographical serving area of a web
resource. Serving radius can be continuous, like miles, or discrete levels, like city level
or state level.

Provider location: We take the same definition as in [6]. Provider location in this
paper can be seen as the street address where the owner of the web resource locates.

4 Serving Area Detection

4.1 Computing Serving Area by Analyzing User IP Locations

In search logs, the relationship between user locations and clicked URLs can be
estimated by analyzing the collection of user IP locations. In our algorithm, we use two

814 Q. Zhang et al.

measures: weight and spread. Weight is used to measure the percentage of users in a
certain location who are interested in a web site. Spread of a certain location is used to
measure the uniformity of weight in its child locations on an administrative hierarchy.
The user’s interest here is regarded as the number of clicks on a web site URL in search
logs. The more clicks on the URL, the higher interests the users put on.

Weight is defined as follows:

))((/)(
)(/

lParentPopulation)lrentClick(w,Pa
lPopulationClick(w,l)

)Weight(w,l = (1)

Where Click(w, l) is the number of clicks on web resource w by people in location l.
Population (l) is the population of location l. Parent(l) is the parent location of l on an
administrative hierarchy.

Spread is defined as same as that in Ding [1] and the entropy definition is chosen for
the best performance based on their results:

n

lwWeight

lwWeight

lwWeight

lwWeight

lwSpread

n

i n

j j

i

n

j j

i

log

)
),(

),(
log(

),(

),(

),(

1

11

∑
∑∑=

==

×−

= (2)

Where n is the number of children of location l. li or lj is a direct children of l.
Once weight and spread are computed, user logs can be used to detect the serving area
of a web site:

1 Map all user IPs to locations.
2 Map all the locations got from step 1 onto a geographical hierarchy, where

location nodes distribute on different geographical levels such as country, state or
city.

3 Travel the geographical hierarchy down from the root. For each node, weight and
spread values will be calculated and the node will be pruned if its spread or
weight values do not exceed given thresholds. Otherwise we continue the
traveling to its offspring nodes if there are any. When the algorithm stops, the
nodes where we stop at constitute the serving area.

4.2 Computing Serving Area by Analyzing Query Terms

When a user wants to find a local web resource, he or she is very likely to input a
location term in the query. For instance, a user will input a query “pizza seattle” or
“seattle pizza” if he or she wants to find some pizza related sites in Seattle.

From search logs, we can build up a relationship between query terms and user
clicked URLs. If we get all the query terms which lead to clicks on URLs in a specific
domain, we can then detect the geographical distribution by analyzing the location
information in these query terms.

For example, we have extracted a sample list of query terms in whose search results
users clicked one of the URLs in web site Lombardi’s (www.lombardispizza.com). We

Computing Geographical Serving Area Based on Search Logs and Website Categorization 815

list all these queries below (the number after each query term is the number of its
occurrences in the log)

Lombardi pizza 3 lombardi spring "street nyc" 1 lombardi's pizza new york 2

big sauage pizza.com 1 lombardi's 1 lombardi's new york 1

lombardis 1 lombardi's pizza nyc 1 Lombardi pizza in new york city 6

As one can see that the percentage of queries which contain New York or NYC is
11/17 = 0.647. By only looking at the query terms, we conclude that Lombardi’s has a
strong relationship with New York City. Actually, Lombardi’s is a very famous pizzeria
in New York City.

The query terms are often short, so it is more difficult to analyze query terms than to
analyze web pages. There are several difficulties that we need to address:

1. Geo/geo and geo/non-geo disambiguation.
Due to the shortness of query terms, there are usually only one or two
candidate geo-names in a query. Disambiguation approaches used in web
content analysis can be hardly applied here. In the above example, we found
that many query terms contain “new york” or “ny” only. It is therefore
difficult to know whether it stands for New York State or New York City.

2. Recognizing location abbreviations.
From the above example, we find that users like to input abbreviations instead
of full names when they are using search engines. In the example, “ny” and
“nyc” are used to represent New York City. It is difficult to recognize all these
abbreviations.

3. Lack of query terms.
For new or less popular web sites, there will be fewer query terms associated
with them. The lack of query terms will affect the confidence of location
information extraction.

In our algorithm, we solve geo/geo and geo/non-geo ambiguities by looking at query
context. The query context here is the query terms input by other users. Using the
example of Lombardi’s, if we see query terms like “lombardi's new york”, we don’t
know whether “new york” here stands for New York City or New York State, we will go
forward to look at other query terms. From other query terms, we found that users have
explicitly stated New York City instead of New York State, like “lombardi's pizza nyc”
and “Lombardi pizza in new york city”. This information is what we call query context.
Finally, we know that “new york” here is more likely to represent New York City than
New York State. For the other two difficulties, we leave them for future work.

The serving area detecting includes three steps:

1. Given a web site, extract all the related query terms and build a query document.
2. Run a content location detection algorithm on the query document. Any content

location detecting algorithms can be applied here, such as the algorithm proposed
in [6]. The query context will be considered in the algorithm.

816 Q. Zhang et al.

3. The content location computed from step 2 is regarded as the serving area of the
web site. The result can be seen as the user knowledge about the location
information of the web site.

The disadvantage of this approach, as mentioned above, is that the number of query
terms might be insufficient for obtaining reasonable results.

4.3 Computing Serving Area by Web Content Classification

In this section, we propose a web content classification based algorithm which extracts
serving radius and provider location from the web resource, then combines them to
obtain the serving area.

As defined previously, serving radius can be numeric or levels. In real applications,
it is hard to calculate or manually assign a numeric radius to each web resource.
Therefore, here we use coarse levels to represent the radius for practicability. Serving
radius of a local web site is defined as three levels:

City Level: The serving area of the web resource is within the city where it locates.
State Level: The serving area of the web resource is beyond its city but within its state.
Country Level: The serving area of the web resource covers the entire country.

First we group web sites into categories. Then we either calculate or assign (from
common knowledge or user study) a radius for each of them. The radius can be
calculated by averaging the radius of sites with sufficient search logs. In this approach,
all the web resources which fall in a certain category will have the same radius. For
example, businesses such as banking service and restaurant are local services whose
users are usually within a city, while businesses such as airport are state-level service,
since not all cities have local airport. There are also country level services such as
software development.

Note that not all categories can be assigned with a fixed level, for example, the
category of government can be in all levels. This is because the serving radius of web
sites in this category can be either a city, a state or a country. To solve this problem, we
add a new level: hybrid level. If a web site is in a hybrid level category, we regard its
content location as its serving area directly, because no unified radius can be assigned.

Web content classification is an extension to text classification, which involves a
training phase and a testing phase. During the training phase, a set of web pages or sites
with known category labels is used to train a classifier. During the testing phase, the
trained classifier is used to classify new web content. For classifying web sites, there
are already many research works [7][8][9][10][14] in the literature. We choose
Supported Vector Machine (SVM) [12][13][15] since it has been proved to be an
efficient algorithm in many applications.

Provider location can be acquired from existing business databases such as Yellow
Pages or other commercial contact information databases. In many cases, provider
locations can also be found in the home pages or contact pages.

Computing Geographical Serving Area Based on Search Logs and Website Categorization 817

Now we conclude our algorithm as three steps:

1. Classify web sites into categories according to their business types.
2. Assign each category a serving radius according to search logs or common

knowledge. Radius here can be either numeric, like miles, or levels.
3. Compute provider locations of the web resources. We refer to the algorithm

proposed in [6]. If the provider location is not available, content location will be
regarded as an approximation.

The main difficulties for this approach are the assignment of radius for different
categories and the definition of categories. It is difficult and time-consuming to propose
a complete categorization scheme for every local site.

5 Experiments

5.1 Gazetteers and Search Logs

The gazetteers we used are extracted from various sources on the Web [11]
[21][22][23]. There are six attributes for each location: name, population, longitude,
latitude, postal code and area code. Our experiments focus on the geographical scope of
United States. Therefore, the gazetteers just cover all the cities and states in US.

The log used in our experiments is a 30-day collection of search logs from a famous
search engine. We define web resources in the unit of web sites. Each URL will be
converted to the corresponding domain. Besides, a commercial IP to location database
is used in our experiments, which contains the mapping relationship between IP
addresses and corresponding geographical locations.

5.2 Results for Using User IP Locations

We first evaluated the performance of detecting serving area of web resources from
user IP locations. We chose 535 USA governmental sites whose top domains are .gov
as the test set. The sites were selected so that they have more than 200 clicks in the
search log. The governmental sites can be easily labeled. For example, the serving area
of Wisconsin Government Home Page (www.wisconsin.gov) is Wisconsin state. We
manually labeled all the test sites with correct serving areas in advance.

As described in the previous section, thresholds for spread and weight were used to
prune the traveling on the geographical tree. Fig. 1 shows the impact of Ts (threshold
for spread) on the final performance. As we can see, F–measure reaches the highest
point 0.87 when Ts = 0.5. Recall and F-measure will drop dramatically when Ts is
larger than 0.8. In the following experiments, we will fix Ts = 0.5.

The performance of the algorithms is also greatly affected by the number of clicks
available in the log. If there are more clicks for a web site, more precise results are
expected to be obtained. From Fig. 2, we can clearly see that with the increasing of
click count, F-measure increases quickly. In addition, the click count has a much bigger
impact on recall than precision.

818 Q. Zhang et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1Ts

Precision

Recall

F-measure
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

200 300 400 500 600 700 800

Number of clicks

Precision

Recall

F-measure

Fig. 1. Impact of Ts on computing serving area
from IP locations

Fig. 2. Impact of click count on computing
serving area from IP locations

5.3 Results for Using Query Terms

As shown in the example of section 4.2, users tend to input location names in queries
when searching local information. In this section, we will test the performance of using
query terms for serving area detection.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 0.05 0.1 0.15 0.2

WKD

Precision

Recall

F-measure

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

200 300 400 500 600 700 800

Number of clicks

Precision

Recall

F-measure

Fig. 3. Impact of Well-Know Degree (WKD)
on computing serving area from query terms

Fig. 4. Impact of click count on computing
serving area from query terms

We use the same test set of 535 USA government sites as in the previous
sub-section. According to our log, every log item will have a user IP and a query. For
each web site, we do not group identical queries together. Therefore, the number of
queries equals to the number of user IPs here.

Computing Geographical Serving Area Based on Search Logs and Website Categorization 819

When analyzing the collection of query items, we try to study how the number of
query terms that contain location l affects the performance. In other words, how many
people who think the web site relates to l will make us believe it is truly serving l?

We define a Well-Known Degree (WKD) in the algorithm. When WKD is 0.05, it
means a web site is serving location l only if more than 5% of query terms contain l.
Figure 3 shows the impact of WKD on the performance of our algorithm. From the
figure, we find that when WKD is 0.12, F-measure reaches the best value of 0.87. In the
following experiments, we will fix WKD=0.12.

Fig. 4 shows the performance of computing serving area from query terms.
Comparing Fig. 4 and Fig. 2, we found that the performance of using query terms is
more stable than that of using IP locations. The F-measure of query term based approach
is better than that of IP location based approach when the click count is less than 600.
The main reason here is that IP locations are usually not very precise. Therefore, in most
cases, query term information will be considered superior to user IPs.

5.4 Results for Web Content Classification

In this experiment, we randomly chose 3162 web sites from ten categories in the Open
Directory Project (ODP) [24] which is the largest human-edited directory on the Web.
The names of these ten categories are shown in the first column of Table 1. Each web
site has already been annotated with location information by ODP editors. This
location information is regarded as the actual serving area of these web sites.

In the experiments, support vector machine (SVM) with a linear kernel is used as the
classifier. Our data set is divided into two parts: training set (70%) and test set (30%).
The performance of classification on our data is listed in Table 1. In the table, P, R and
F stand for precision, recall and F-measure respectively. Train and Test columns
represent the number of sites included in training set and test set.

Table 1. Performance of web site classification

Category Name Radius Level Train Test P R F

Limousines and shuttles City level 93 39 0.97 0.85 0.90

Airport State level 102 43 0.95 0.86 0.90

Government Hybrid level 180 76 0.96 0.87 0.91

Apartment rentals City level 131 55 0.80 0.67 0.73

Hardware retailers Country level 340 144 0.83 0.85 0.84

Real estate residential City level 350 149 0.95 0.95 0.95

Software development Country level 341 146 0.87 0.86 0.87

Software retailers Country level 99 42 0.73 0.45 0.56

Zoos and aquariums State level 93 39 0.90 0.90 0.90

Restaurants and bars City level 150 64 0.98 0.89 0.93

Average - - 0.90 0.82 0.86

820 Q. Zhang et al.

Table 1 shows that the SVM classifier is efficient for most of the categories (0.86 for
average F-measure). There are two categories which have pretty low F-measure,
software retailer and apartment rentals. The serving radius levels for each category are
also shown in Table 1 (In the second column).

Due to the lack of address strings in many web sites and the difficulties in
recognizing whether an address string is the provider location, we use content location
to approximate the provider location in our experiments. Serving area of web resources
can be computed by combining serving radius and provider location. The final
performance of our algorithm is shown in Table 2.

In Table 2, we compare our algorithm with a straightforward algorithm that directly
uses content location detection [6] results as the serving area. As we can see, the results
of categorization based algorithm (average F-measure is 0.86) are much better than that
of the content only algorithm (average F-measure is 0.61), especially when the serving
radius is a state or a country. The reason here can be illustrated by an example. Suppose
a web site is in the category of software development. The company who owns this site
locates in California. It is very likely to have California as its content location by
content analysis. In our algorithm, we will recognize this site as covering the whole
USA, because it’s serving radius is defined to be country level. On the contrary, if we
use content location as the serving area directly, we will mistake California as its
serving area, which is incorrect for this software company.

Table 2. Performance comparison of our algorithm with the content location only algorithm

Category Name F-measure(our algorithm) F-measure(content only)

Limousines and shuttles 0.70 0.70
Airport 0.94 0.60
Government 0.98 0.98
Apartment rentals 0.71 0.71
Hardware retailers 1 0.37
Real estate residential 0.72 0.72

Software development 0.59 0.59

Software retailers 1 0.44

Zoos and aquariums 1 0.41
Restaurants and bars 0.93 0.59
Average 0.86 0.61

6 Conclusion

In this paper, we studied the serving area of web resources, which stands for the
geographical distribution of their potential users. Knowing the serving area is important
to improve the performance of certain web applications such as local search and local
advertisement.

Experimental results showed that all the algorithms we proposed worked well while
the query term based algorithm was more effective than the IP location based approach.

Computing Geographical Serving Area Based on Search Logs and Website Categorization 821

For web resource without sufficient logs, the performance of the classification based
algorithm was much better than that of a content location only algorithm.

References

1. Ding, J., Gravano, L., Shivakumar, N.: Computing geographical scopes of web resource. In:
26th International Conference on Very Large Data Bases (VLDB’00), Cairo, Egypt
(September 2000)

2. Buyukkokten, O., Cho, J., Garcia-Molina, H., Gravano, L., Shivakumar, N.: Exploiting
geographical location information of web pages. In: ACM SIGMOD Workshop on the Web
and Databases 1999 (WebDB’99), Philadelphia (June 1999)

3. Yokoji, S., Takahashi, K., Miura, N.: Kokono search: a location based search engine. In:
10th International World Wide Web Conference (WWW01), Hong Kong (May 2001)

4. Kosala, R., Blocakeel, H.: Web mining research: a survey. In: 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’00), Boston
(August 2000)

5. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In:
Proceedings of the 27th SIGIR, pp. 273–280 (2004)

6. Wang, C., Xie, X., Wang, L., Lu, Y., Ma, W.-Y.: Detecting Geographic Locations from
Web Resources. In: The 2nd Internatinal Workshop on Geographic Information Retrieval
(GIR 2005), ACM Fourteenth Conference on Information and Knowledge Management
(CIKM 2005), Bremen (October 2005)

7. Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proceeding of
SIGIR-00, 23rd ACM International Conference on Research and Development in
Information Retrieval, Athens, Greece, pp. 256–263. ACM Press, New York (2000)

8. Glover, E.J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D.M., Flake, G.W.: Using web
structure for classifying and describing web pages. In: Proceedings of the Eleventh
International Conference on World Wide Web, pp. 562–569. ACM Press, New York (2002)

9. Yang, Y., Slattery, S., Ghani, R.: A study of approaches to hypertext categorization. Journal
of Intelligent Information Systems

10. Gravano, L., Hatzivassiloglou, V., Lichtenstein, R.: Categorizing web queries according to
geographical locality. In: 12th ACM Conference on Information and Knowledge
Management (CIKM’03), New Orleans (November 2003)

11. CITY-DATA.COM. http://www.city-data.com
12. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining

and Knowledge Discovery 2(2), 121–167 (1998)
13. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In:

Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods—Support
Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

14. Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In:
Proceedings of the 1998 ACM SIGMOD international conference on Management of data
(1998)

15. Hearst, M.A.: Trends and controversies: support vector machines. IEEE Intelligent
Systems 13(4), 18–28 (1998)

16. Hill, L.L., Frew, J., Zheng, Q.: Geographic names: the implementation of a gazetteer in a
georeferenced digital library. Digital Library, 5(1) (January 1999)

822 Q. Zhang et al.

17. Iko, P., Takahiko, S., Katsumi, T., Masaru, K.: User behavior analysis of location aware
search engine. In: 3rd International Conference on Mobile Data Management (MDM’02),
Singapore (January 2002)

18. McCurley, K.S.: Geographical mapping and navigation of the web. In: 10th International
World Wide Web Conference (WWW01), Hong Kong (May 2001)

19. Google Local Search. http://www.google.com/local
20. MSN Local Search. http://search.msn.com/local
21. Geographic Names Information System (GNIS). http://geonames.usgs.gov/
22. North American Numbering Plan. http://sd.wareonearth.com/ phil/npanxx
23. USPS – The United States Postal Services. http://www.usps.com
24. Open Directory Project. http://dmoz.org/

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 823–833, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A General Framework to Implement Topological
Relations on Composite Regions

Magali Duboisset1, François Pinet1, Myoung-Ah Kang2, and Michel Schneider2

1 Cemagref, Clermont Ferrand, France
{magali.duboisset,francois.pinet}@cemagref.fr

2 Laboratory of Computer Science, Modeling and System Optimisation (LIMOS)
Blaise Pascal University, Clermont Ferrand, France

{kang,schneider}@isima.fr

Abstract. Many GIS (Geographic Information Systems) handle composite
geometries, i.e. geometries made of the union of simple shapes. Recent works
show that relations between composite regions can be modelled with the well-
known 9-Intersection Method (9IM). In this case, each relation is represented
by a matrix. The proposed paper presents a general method to deduce the
topological relations between the “parts” of regions from the matrix
representation. Thus relations between composite regions could be easily
implemented.

1 Introduction

The specification of topological relations on regions composed of several parts
remains difficult. Existing methods very often propose a particular semantics for
topological predicates applied on this type of regions [2][3][4][7][8].

Using 9-Intersection Method to model relations between composite regions. As
presented in [1] and [8], a relation between two composite regions can be represented
by a matrix in using the well-known 9-Intersection Method [5][6]. This model
constitutes an excellent mean to distinguish an interesting number of possible
topological relations; in using 9IM, the authors of [1] and [8] presents 33 possible
topological relations between two composite regions with or without holes.

To illustrate the model let us consider the following 9IM matrix R which represents
a topological relation between two composite regions A and B.

 B° ∂B B⎯
 A° 1 0 1

R = ∂A 1 0 1
 A⎯ 1 1 1

The 9IM matrix represents the intersections between the interiors, the boundaries
and the exteriors of 2 spatial objects. The result of these intersections might be empty
(0) or not (1). The interior, the boundary and the exterior of a spatial object O are

824 M. Duboisset et al.

respectively denoted by O°, ∂O and O⎯. The interior, the boundary and the exterior of
the composite region A are respectively the union of the interiors, the union of the
boundaries and the intersection of the exteriors of all parts of A.

A3
A2

A1

B1

B2

Fig. 1. Drawing of a spatial configuration corresponding to matrix R. There are two composite
regions A and B made of several simple parts.

Figure 1 illustrates a possible spatial scene corresponding to the matrix R. In this
example, the composite region A is composed of 3 parts (i.e. 3 simple regions, A1, A2
and A3) and the composite region B is composed of 2 parts (i.e. 2 simple regions, B1
and B2). According to the matrix R, the interiors of A and B must intersect each other
(cf. the value of the cell in first line first column); this is the case in figure 1 because
the interior of at least one part of A intersects the interior of at least one part of B. In
the matrix R, the boundary of A must intersect the interior of B; this is the case in
figure 1 because the boundary of at least one part of A intersects the interior of at least
one part of B, etc.

Deducing the topological relations between the “parts”. The relations between
each part of two composite regions do not appear explicitly in the definition of the
9IM matrix. In the previous example, the relations “disjoint” and “inside/contains”
between the parts are not “explicit” in the matrix (see the drawing in figure 1 – for
instance “A3 is inside B2”). This is due to the fact that a 9IM matrix represents the
intersections between the interior, the boundary and the exterior of the whole of each
spatial object involved in the relation.

Thus, our objective is to propose a transformation method to deduce the basic
topological relations between parts, from each 9IM matrix representing a relation
between 2 composite regions. More precisely, we suggest a logical expression
semantically equivalent to a 9IM matrix; each element in this expression involves
only topological relations between parts of composite regions. In this paper, we will
consider only composite regions without holes.

For example, our method produces from the matrix R (previously presented) the
following output. This is a logical expression presenting the possible relations
between the parts of A and B:

(∃i∈1..n, ∃j∈1..m | 〈Ai, inside, Bj〉) ∧
(∃k∈1..n, ∀l∈1..m | 〈Ak, disjoint, Bl〉) ∧
(∀r∈1..n, ∀s∈1..m, 〈Ar, inside, Bs〉 ∨ 〈Ar, disjoint, Bs〉)

In this expression, Ai and Bj are simple regions i.e. parts of the composite regions A

and B involved in the relation. This logical expression and the matrix R have the

 A General Framework to Implement Topological Relations on Composite Regions 825

same semantics; they represent the same topological relation. The drawing of
figure 1 verifies this logical expression.

Implementing relations between the composite regions. The main interest of this
logical expression is to allow a systematic coding of procedures which check if a
topological relation between two composite regions is true or false. We show that
these procedures can be coded in any language supporting an implementation of the 8
Egenhofer’s basic relations (disjoint, contains, inside, equal, meet, covers, coveredBy,
overlap) which can exist between parts.

For example, at present, no DBMS’ SQL implements all the topological relations
proposed in [1][8] but the Oracle Spatial SQL supports the 8 Egenhofer’s basic
relations cited before. Thus, as illustrated in this paper, it becomes possible to check
relations between composite regions (without holes) in Oracle Spatial SQL. In this
case, we can benefit of the optimization already developed in the implementation of
these 8 basic relations as well as the associated existing functionalities (e.g. support of
different spatial coordinate systems). The programmers do not need to develop new
geographic functions to check relations on composite regions.

The remainder of the paper is organized as follows: section 2 introduces the 9-
intersection method (9IM). Section 3 presents our transformation method, which
translates 9IM matrixes into logic-based expressions. Section 4 is dedicated to the
mapping to Oracle Spatial SQL queries. Lastly, section 5 draws some conclusions and
discusses future works.

2 Overview of 9IM

A well-known model for specifying topological relations is the 9-intersection model
(9IM) [5][6]. It provides a methodology to characterize topological relations between
two spatial objects.

In 9IM, each topological relation is represented by a matrix. This matrix presents
the intersections of boundary, interior and exterior of two spatial objects. The result of
these 9 intersections might be empty (0) or not (1). The interior, the boundary and the
exterior of a spatial object O are respectively denoted by O°, ∂O and O⎯. Thus, each
topological relation between two spatial objects A and B is represented by a 3x3
matrix whose coefficients correspond to the results of the intersections between A°,
∂A, A⎯ and B°, ∂B, B⎯ as shown in figure 2.

 A° ∩ B° ≠ ∅ A° ∩ ∂B ≠ ∅ A° ∩ B⎯ ≠ ∅
M = ∂A ∩ B° ≠ ∅ ∂A ∩ ∂B ≠ ∅ ∂A ∩ B⎯ ≠ ∅

 A⎯ ∩ B° ≠ ∅ A⎯ ∩ ∂B ≠ ∅ A⎯ ∩ B⎯ ≠ ∅

Fig. 2. Matrix M characterizing a topological relation between two spatial objects A and B [6]

In theory, there are 29 = 512 matrixes. However, some of them are inconsistent;
they cannot be drawn in a 2 dimensional space.

For two simple regions, 8 meaningful configurations have been identified which
lead to the 8 predicates illustrated in figure 3.

826 M. Duboisset et al.

Fig. 3. 8 Egenhofer’s basic topological relations between two simple regions [6]

In [1] and [8], the authors extend this model to complex geographic objects. This
paper only focuses on composite regions without holes defined as follows.

Definition 1. Region abstract model.
A simple region is a closed connected point set without holes in a 2-dimensional
space R2. A composite region is a set CR = {R1 , ..., Ri , ... , Rn} where Ri is a simple
region also called “part” of CR.

We define that: ∀i ≠ j, Ri° ∩ Rj° = ∅ and ∂Ri ∩ ∂Rj = ∅ to avoid the cases where
two or more parts form something similar to a hole.

The interior, the boundary and the exterior of a composite region are respectively the
union of the interiors, the union of the boundaries and the intersection of the exteriors
of all its parts. The 9IM matrixes applied on composite regions have the same
interpretation as the one presented above; the matrix coefficients are the results of the
intersections of boundaries, interiors and exteriors of two composite regions without
taking into account their number of parts. Therefore, the relations between each part
of two composite regions do not appear explicitly in the definition of the matrix.

In [1], the authors enumerated all the possible matrixes for composite regions; they
identified 33 topological relations between composite regions (with and without
holes).

3 Mapping Theorem

In this paper, we only consider the topological relations between composite regions
(CR) without holes. Our proposal of mapping theorem (theorem 1) returns the
“logical expression” equivalent to a 9IM matrix; they both represent the same

 A General Framework to Implement Topological Relations on Composite Regions 827

relation. In the proposed logical expressions, quantifiers and topological operators on
simple geometries are combined (see the example in section 1). This logical form
highlights the set of topological relations between the parts of the two considered CR.

In this section, we will show that all the topological relations between CR without
holes defined in 9IM could be rewritten in a logical form.

We first identify the set of matrixes that characterize relations between CR with
holes among the 33 matrixes of [1]. These matrixes represent relations that imply at
least one region with one or several holes.

Definition 2. 9IM matrix characterizing topological relations between composite
regions with holes.

Let A and B be two non-empty composite regions. Two conditions imply that at
least A or B contains holes. They can be written as follows:

i) (A° ∩ B⎯ = ¬∅) ∧ (δA ∩ B⎯ = ∅), and,
ii) (A⎯ ∩ B° = ¬∅) ∧ (A⎯ ∩ δB = ∅).

The matrix patterns of these 2 cases are given in table 1. From this characterization it
results that among the 33 matrixes of [1], 17 involve a composite region with holes.

Table 1. Matrix patterns of topological relations between composite regions with holes.
x ∈ {0;1}.

Case (i) Case (ii)

x x 1
x x 0
x x x

x x x
x x x
1 0 x

Corollary 1. 9IM matrix characterizing topological relations between composite
regions without holes.

All relations between 2 non-empty composite regions without holes can be
represented by the 16 remaining matrixes. If the 2 regions A and B are without holes,
the interior of A cannot be outside B while the boundary of A is not outside B, and
reciprocally. For the following, we note M the set of these 16 matrixes.

We will show that the 16 matrixes of this set M can be rewritten into a logical form.
First, it appears that each of these 16 matrixes can be defined as a logical combination
of topological relations between the parts of the composite regions involved in the
relation. In these combinations each topological relation between 2 parts corresponds
to a “factorization matrix”.

We define the concept of factorization matrix.

Definition 3. Factorization matrixes.
The factorization matrixes are 9IM matrixes that represent topological relations
between parts of composite regions.

828 M. Duboisset et al.

The set of factorization matrixes is F = {fContains, fInside, fEqual, fMeet, fCovers,
fCoveredBy, fOverlap, fDisjoint1st, fDisjoint2nd}.

The 9IM matrixes that correspond to the factorization matrixes are given in table 2.

Table 2. Factorization matrixes

1 1 1
0 0 1
0 0 1
〈A, fContains, B〉

1 0 0
1 0 0
1 1 1
〈A, fInside, B〉

1 0 0
0 1 0
0 0 1
〈A, fEqual, B〉

0 0 1
0 1 1
1 1 1
〈A, fMeet, B〉

1 1 1
0 1 1
0 0 1
〈A, fCovers, B〉

1 0 0
1 1 0
1 1 1
〈A, fCoveredBy, B〉

1 1 1
1 1 1
1 1 1
〈A, fOverlap, B〉

0 0 1
0 0 1
0 0 1
〈A, fDisjoint1st, B〉

0 0 0
0 0 0
1 1 1
〈A, fDisjoint2nd, B〉

There are 2 cases for the disjoint relation: fDisjoint1st and fDisjoint2nd. Indeed, the
disjoint relation applied to composite regions’ parts is not always commutative. One
part of A can be disjoint of each part of B, while no parts of B are disjoint from A.
〈A, fDisjoint1st, B〉 means that at least one part of A is disjoint from every part of B.
Reciprocally, 〈A, fDisjoint2nd, B〉 means that at least one part of B is disjoint from
every part of A.

We now introduce theorem 1 which details how a topological relation between two
composite regions can be expressed into a logical combination of factorization
matrixes.

Theorem 1
Let R be a matrix of the set M defined in corollary 1. Let ci be a boolean and bi a
factorization matrix of the set F:

R = Σ cibi

Notice that c8 cannot be the only non-null coefficient, as well as c9 as they cannot
exist between simple geometries.

Sketch. The interior, the boundary and the exterior of a composite region are
respectively the union of the interiors, the union of the boundaries and the intersection
of the exteriors of all its parts. Thus, a matrix specifying a relation between 2
composite regions is equal to the logical union of factorization matrixes, i.e. the
Egenhofer matrixes that represent the topological relations between composite
regions’ parts.

i∈{1..9}

 A General Framework to Implement Topological Relations on Composite Regions 829

Example 1
We recall the matrix R presented in section 1.

 1 0 1
R = 1 0 1

 1 1 1

We have to determine all the booleans from c1 to c9 such that:

R = c1.fContains + c2.fInside + c3.fEqual + c4.fMeet + c5.fCovers + c6.fCoveredBy
+ c7.fOverlap + c8.fDisjoint1st + c9.fDisjoint2nd

More explicitly we have :

1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1
1 0 1 = c1. 0 0 1 + c2. 1 0 0 + c3. 0 1 0 + c4. 0 1 1 + c5. 0 1 1
1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1

 1 0 0 1 1 1 0 0 1 0 0 0
 + c6. 1 1 0 + c7. 1 1 1 + c8. 0 0 1 + c9. 0 0 0
 1 1 1 1 1 1 0 0 1 1 1 1

It leads to the following system of boolean sums:

(e11) c1 + c2 + c3 + c5 + c6 + c7 = 1
(e12) c1 + c5 + c7 = 0
(e13) c1 + c4 + c5 + c7 + c8 = 1
(e21) c2 + c6 + c7 = 1
(e22) c3 + c4 + c5 + c6 + c7 = 0
(e23) c1 + c4 + c5 + c7 + c8 = 1
(e31) c2 + c4 + c6 + c7 + c9 = 1
(e32) c2 + c4 + c6 + c7 + c9 = 1
(e33) c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 = 1

The equations (e13) and (e23) are equivalent so as (e31) and (e32).
The equation (e12) implies c1 = c5 = c7 = 0.
The equation (e22) implies c3 = c4 = c5 = c6 = c7 = 0.

It remains:

(e11) c2 =1
(e13) c8 = 1
(e21) c2 = 1
(e31) c2 + c9 = 1
(e33) c2 + c8 + c9 = 1
(e4) c1 = c3 = c4 = c5 = c6 = c7 = 0

(e11) and (e13) imply that c2 =1 and c8 = 1.

830 M. Duboisset et al.

The final solution of this system is:

(c2=1 and c8=1) and (c1=c3=c4=c5=c6=c7=0).

The value of c9 is not significant as in (e31) and (e33), c2 is never null.

The next definition provides a logical expression for each of the factorization
matrices. Since a factorization matrix can be expressed into a logical form, the overall
combination can be also expressed into a logical form.

Definition 4
A factorization matrix that corresponds to one of the first seven Egenhofer relations
(i.e. fContains, fInside, fEqual, fMeet, fCovers, fCoveredBy, fOverlap), can be
expressed into the following logical expression:

〈A, fTopologicalRel, B〉 ∃r∈1..n, ∃s∈1..m | 〈Ar, topologicalRel, Bs〉

where Ar and Bs are parts of the composite regions A and B, and topologicalRel is an
Egenhofer relation of figure 3.

The matrixes fDisjoint1st and fDisjoint2nd can be expressed as follows:

〈A, fDisjoint1st, B〉 ∃r∈1..n, ∀s∈1..m | 〈Ar, disjoint, Bs〉
〈A, fDisjoint2nd, B〉 ∀r∈1..n, ∃s∈1..m | 〈Ar, disjoint, Bs〉

In order to derive the logical expression of the total combination we must distinguish
2 parts in this combination: the first part with non-null coefficients and the second
part with null coefficients. The mapping of these 2 parts into a logical form is given
by theorem 2.

Theorem 2
Logical expression of the first part (with non-null coefficients)

Let N1 be the set of i such as the coefficient ci is not null in the result of the
application of theorem 1. The first part of the final logical form is the logical
intersection of the factorization matrixes expressed in a logical form (cf. definition 4).

Logical expression of the second part (with null coefficients)

Let N2 be the set of i such as the coefficient ci is null in the result of the application
of theorem 1. The second part of the final logical form is then:

∀r∈1..n, ∃s∈1..m | ∨ 〈Ar, topologicalReli, Bs〉

where Ar and Bs are parts of the composite regions A and B, and topologicalReli is a
relation of figure 3. fDisjoint1st and fDisjoint2nd are associated to disjoint.

Thus, the topological relations that can exist between parts of the composite regions
are, on the one hand, those corresponding to the non-null coefficients and, on the
other hand, those that do not appear among the null-coefficients. The logical form
could be seen as the logical intersection of 2 parts: mapping of non-null coefficients ∧
mapping of null coefficients.

i∈{1..9}\ N2

 A General Framework to Implement Topological Relations on Composite Regions 831

The second part of the logical form is the union of each factorization matrixes that
do not appear among the null coefficients, applied on all parts of the 2 composite
regions. It corresponds to the union of each factorization matrixes that could be
applied between parts of the 2 composite regions involved in the relation.

Example 2. Let us continue with example 1. The first part of the result, defined from
the non-null coefficients, is (c2=1 and c8=1) leads to:

(∃i∈1..n, ∃j∈1..m | 〈Ai, inside, Bj〉)
 ∧ (∃k∈1..n, ∀l∈1..m | 〈Ak, disjoint, Bl〉)

The second part of the result, defined from the null coefficients,

(c1 = c3 = c4 = c5 = c6 = c7 = 0) is rewritten as follows:

(∀r∈1..n, ∀s∈1..m | 〈Ar, inside, Bs〉 ∨ 〈Ar, disjoint, Bs〉)

Thus, the final logical expression is the intersection of these 2 expression parts:

(∃i∈1..n, ∃j∈1..m | 〈Ai, inside, Bj〉) ∧
(∃k∈1..n, ∀l∈1..m | 〈Ak, disjoint, Bl〉) ∧
(∀r∈1..n, ∀s∈1..m | 〈Ar, inside, Bs〉 ∨ 〈Ar, disjoint, Bs〉)

where Ai, Bj, Ak, Bl, Ar and Bs are parts of the composite regions A and B involved in
the relation specified by R. One possible spatial configuration of 2 composite regions
checking the topological relation R is exemplified in figure 1.

4 Example of Implementation

This section illustrates how the generated logical expressions can be used to obtain an
implementation of procedures for checking topological relations on composite
regions. Indeed, the produced logical expressions provide all the conditions that must
be checked between the parts of the composite regions. These conditions can be
checked in different programming or query languages.

Thus, a major interest of our work is to propose a generic mechanism to obtain a
direct implementation of procedures checking topological relations between
composite regions in languages and systems supporting the 8 Egenhofer’s basic
relations. Thus, we can benefit of the optimizations already developed in the
implementation of these 8 relations.

To illustrate this mechanism we consider the matrix R of example 1. Our goal is to
elaborate the procedure which checks if the relation R between two CR is true or
false. Parts of the 2 composite regions A and B are stored in a relational table (named
TCR). The SQL query which checks the relation can be easily derived from the
logical expression obtained in example 2. The query is composed of 3 subqueries
connected with an intersect operator. It returns a row containing a ‘TRUE’ record if
the relation is true, or no row if it is false.

832 M. Duboisset et al.

-- (∃i∈1..n, ∃j∈1..m | 〈Ai, inside, Bj〉):
(select distinct 'TRUE' from TCR TA, TCR TB where
 TA.CR_ID='A' and TB.CR_ID='B' and
 MDSYS.SDO_RELATE(TA.PART_GEO, TB.PART_GEO,

 'mask=INSIDE querytype=WINDOW')='TRUE')
intersect
--(∃k∈1..n, ∀l∈1..m | 〈Ak, disjoint, Bl〉):
(select distinct 'TRUE' from TCR TA, TCR TB where
 TA.CR_ID='A' and TB.CR_ID='B' and
 MDSYS.SDO_RELATE(TA.PART_GEO,TB.PART_GEO,

 'mask=DISJOINT querytype=WINDOW')='TRUE'
 GROUP BY TA.part_id
 having count(*) = (select count (*) from TCR where CR_ID= 'B'))
intersect
-- (∀r∈1..n, ∀s∈1..m, 〈Ar, inside, Bs〉 ∨ 〈Ar, disjoint, Bs〉):
(select distinct 'TRUE' from tcr where
 (select count(*) from TCR TA, TCR TB
 where TA.CR_ID='A' and TB.CR_ID='B')
 = (select count(*) from TCR TA, TCR TB where
 TA.CR_ID='A' and TB.CR_ID='B' and
 MDSYS.SDO_RELATE(TA.PART_GEO,TB.PART_GEO,
 'mask=DISJOINT+INSIDE querytype=WINDOW')='TRUE'))

5 Conclusion and Perspectives

A well-known method for specifying topological relations is the 9-intersection model
(9IM). In the context of composite regions, each topological relation can be modelled
by a 9IM matrix. However, the topological relations between each part do not appear
explicitly in the definition of the matrix. The proposed paper offers the possibility to
deduce the relations between parts from a 9IM matrix representing a relation between
2 composite regions without holes.

As presented in section 4, the proposed approach can facilitate the implementation
of operations that check the relations on composite regions in different languages
supporting the 8 Egenhofer relations. In this case, we can benefit, in a transparent
manner, of the optimization already developed in the implementation of these 8
relations as well as the associated existing functionalities (e.g. support of different
spatial coordinate systems). In using these already developed spatial operations, the
programmers or the database users do not need to develop other geographic functions
to check relations on composite regions. Thus our approach could be very useful to
help the implementation of the integrity subsystem of a GIS.

This paper focuses on topological relations between composite regions without
holes. In the future, we will try to generalize the proposed approach to consider
topological relations between different kinds of composite geometries (e.g. points,
lines, regions with holes) and between heterogeneous set of geometries. The
optimization of the implementation is another important issue.

References

[1] Behr, T., Schneider, M.: Topological Relationships of Complex Points and Complex
Regions. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp.
56–69. Springer, Heidelberg (2001)

[2] Claramunt, C.: Extending Ladkin’s Algebra on Non-convex Intervals towards an Algebra
on Union-of Regions. In: GeoInformatica Proc. of the Int. ACM Symposium on Advances
in Geographic Information Systems, USA, pp. 9–14 (2000)

 A General Framework to Implement Topological Relations on Composite Regions 833

[3] Clementini, E., Di Felice, P., Califano, G.: Composite Regions in Topological Queries.
Information Systems 20(7), 579–594 (1995)

[4] Clementini, E., Di Felice, P., Oosterom, P.: A Small Set of Formal Topological
Relationships For End-User Interaction. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS,
vol. 692, pp. 277–295. Springer, Heidelberg (1993)

[5] Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. Int. Journal of
Geographical Information Systems 5(2), 161–174 (1991)

[6] Egenhofer, M., Herring, Categorizing, J.: Binary topological relationships between regions,
lines, and points in geographic databases. Technical Report, 1992. Department of Surveying
Engineering, University of Maine, Orono, ME. http://www.cs.umn.edu/Research/shashi-group/
CS8715/MSD11_egenhofer_herring.pdf

[7] Schneider, M.: Implementing Topological Predicates for Complex Regions. In:
Symposium on Geospatial Theory, Processing and Applications, Ottawa (2002)

[8] Schneider, M., Behr, T.: Topological Relationships between Complex Spatial Objects.
ACM Transactions on Database Systems (TODS) 31, 39–81 (2006)

Active Adjustment: An Approach for Improving

the Performance of the TPR*-Tree

Sang-Wook Kim1, Min-Hee Jang1, and Sungchae Lim2

1 Department of Information and Communications, Hanyang University, Korea
wook@hanyang.ac.kr, zzmini@ihanyang.ac.kr

2 Department of Computer Science, Dongduk Women’s University, Korea
sclim@dongduk.ac.kr

Abstract. The TPR*-tree is most popularly accepted as an index struc-
ture for processing future-time queries in moving object databases. In the
TPR*-tree, the future locations of moving objects are predicted based on
the CBR(Conservative Bounding Rectangle). Since the areas predicted
from CBRs tend to grow rapidly over time, CBRs thus enlarged lead to
serious performance degradation in query processing. Against the prob-
lem, we propose a novel method to adjust CBRs to be tight, thereby
improving the performance of query processing. Our method examines
whether the adjustment of a CBR is necessary when accessing a leaf node
for processing a user query. Thus, it does not incur extra disk I/Os in
this examination. Also, in order to make a correct decision, we devise a
cost model that considers the I/O overhead for the CBR adjustment and
the performance gain in the future-time owing to the CBR adjustment.
With the cost model, we can prevent unusual expansions of BRs even
when updates on nodes are infrequent and also avoid unnecessary execu-
tion of the CBR adjustment. For performance evaluation, we conducted
a variety of experiments. The results show that our method improves the
performance of the original TPR*-tree significantly.

1 Introduction

The recent advances of technologies in mobile communications and global posi-
tioning systems have increased people’s attentions to an effective use of location
information on the objects that move in 2-dimensional space. Moving objects
usually send their current positions to a central server in a periodic fashion. A
database that stores the time-varying information of numerous objects’ positions
is called a moving object database [10].

The future-time query in a moving ojbect database is to predict moving ob-
jects’ movements in the future-time [7]. The system answering the future-time
queries can be used for the applications such as location-based services, traffic
information services, and air traffic controls [2]. A typical example of future-time
queries seems to be ”Retrieve all the vehicles that will pass over the Golden Gate
Bridge at 1 pm”.

Many studies have been done to develop efficient index structures such as the
VCR-tree [5], the TPR-tree [6], and the TPR*-tree [8] suitable for the process-

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 834–843, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Active Adjustment: An Approach for Improving the Performance 835

ing of future-time queries [4]. Among them, the TPR*-tree has been reported to
provide the best query performance by solving some shortcomings of the previ-
ous TPR-tree. The TPR*-tree basically adopts the data structure of the R*-tree
[1] and uses the notion of a conservative bounding rectangle (CBR) to predict
the future-time positions of the moving objects indexed in a node. The CBR
is represented with a minimum bounding rectangle (MBR) [1] enclosing all the
moving objects within it and a velocity vector expressing their maximum and
minimum speeds along X and Y axes. To predict the future-time position of a
moving object, we apply the velocity vector to its MBR and thus get a rectan-
gular region wherein the object may move. Since the predicted region obtained
from a CBR expands in a rapid and continuous rate, the TPR*-tree usually con-
tains large dead space [1] in its index space, which causes serious performance
degradation in query processing.

In this paper, we address a novel CBR adjustment method that can signifi-
cantly reduce the size of dead space in CBRs. In our method, we make the CBR
adjustment performed in query processing times. Our CBR adjustment comes
from the idea that the I/O cost can be reduced if we use the CBR data read
for query processing. If we cache the nodes accessed during query processing
on buffer memory, the cached nodes can be used without extra I/O overhead
thereafter. From that, we can avoid the I/O cost paid for the CBR adjustment.
In our research, we call our CBR adjustment by the query processor the active
CBR adjustment (ACA). As a result, the proposed method is able to continu-
ously detect the unusual growing of the BRs, thereby efficiently reducing dead
space. Also, in order to make a correct decision, we devise a cost model that
considers the I/O overhead for the CBR adjustment and the performance gain
in the future-time owing to the CBR adjustment. With the cost model, we can
prevent unusual expansions of BRs even when updates on nodes are infrequent
and also avoid unnecessary execution of the CBR adjustment. To show the supe-
riority of our method, we conduct extensive experiments. The results show that
our method provides significant performance improvement in query processing
compared to the original TPR*-tree.

2 Related Work

2.1 TPR-Tree

The TPR-tree [6], which has been devised based on the R*-tree [1], predicts
the future-time positions of moving objects by storing the current position and
velocity of each object at a specific time point. To express the time-varying
positions of moving objects, the TPR-tree uses the notion of the conservative
bounding rectangle(CBR).

A CBR is composed of two sorts of data: the minimum bounding rectan-
gle(MBR) and a velocity vector. The MBR is a rectangle encompassing a group
of moving objects indexed in a node, and the velocity vector represents the max-
imum and minimum speeds of the moving objects within the MBR along X and
Y axes. If it is necessary to predict the future time position of a moving object,

836 S.-W. Kim, M.-H. Jang, and S. Lim

then the velocity vector is applied to the corresponding MBR in order to com-
pute a rectangle covering the predictable positions of the queried object. Such
a predicted rectangle is called the bounding rectangle(BR). The CBR of a leaf
node is to express the BR for the moving objects in that node, and the CBR
of a non-leaf node is used to represent the BR covering the BRs of its child
nodes. To process a user query Q with a future prediction time t, the TPR-tree
computes the BRs for time t by expanding the CBRs saved in the root node
and recursively searches down the sub-trees whose BRs overlap with the target
query region of Q [1, 6].

2.2 TPR*-Tree

The data structure and the query processing algorithm of the TPR*-tree [8] are
very similar to those of the TPR-tree. A difference is found in their insertion
algorithm. The TPR*-tree employs an insertion algorithm that considers how
much the BR will sweep the index space from the insertion time to a specific
future-time. For instance, consider two different time points of t1 and t2 (t1 < t2).
The sweeping region of a BR from t1 to t2 is defined to be an index space area
that is swept by the BR expanding during the time interval (t2-t1).

The insertion algorithm searches down the TPR*-tree for a leaf node, by recur-
sively choosing the child pointers to the sub-trees where its insertion will occur.
During the downward search, it chooses its insertion paths so that the over-
all sweeping region remains smallest. Consequently, the TPR*-tree can provide
better performance in processing future-time queries because its compactness of
CBRs.

3 The Proposed Method

3.1 Motivation

Because the CBR of the TPR*-tree stores only the maximum and minimum
speeds of moving objects in the MBR, the BR predicted from the CBR enlarges
in a rapid and continuous rate. Such rapid growth of the BR leads to huge dead
space and thus causes large overlaps among nodes’ BRs as time goes on.

In Figure 1(a), a CBR is created to contain the objects of O1 and O2 at the
initial time 0 and it is denoted by rectangle N . Note that, at the initial time, the
BR is identical to the MBR of the CBR. If those objects move at their velocities
then their real positions at time 1 are enclosed by a minimum rectangle of N ′′

as in Figure 1(b). On the other hand, the BR for objects O1 and O2 at time
1 becomes larger than the minimum rectangle N ′′. Since the BR is expanded
according to CBR’s maximum and minimum speeds, it usually gets larger than
is necessary. The BR is denoted by N ′ in Figure 1(b) and the dead space in this
case is the difference between N ′ and N ′′

To prevent continuous BR’s growth, the TPR-tree updates the CBR data in
such a way that it covers the positions of objects more tightly, whenever any
object pertaining to the CBR changes its velocity or location information. By

Active Adjustment: An Approach for Improving the Performance 837

(a) time 0. (b) time 1.

Fig. 1. An example: CBR adjustment is executed at time 1

updating the CBR data, the TPR-tree can reduce the areas of the dead space.
We call such a CBR update the CBR adjustment.

As known from Figure 1(b), the BR N ′ contains large dead space inside. If
any of objects O1 and O2 changes its location information and thus a node
update occurs, then the TPR*-tree will perform the CBR adjustment along the
tree path from that leaf node to the root in a bottom-up fashion. In the case of
Figure 1(b), a CBR adjustment can reduce the BR into N ′′ if an update on the
node arises at time 1. The reduction of the BR improves the query processing
time by decreasing dead space and overlaps among BRs.

The CBR adjustment is allowable only at the update time in the original
TPR*-tree. Therefore, the CBR adjustment does not happen for a long period
if moving objects are infrequently updated. Such a problem mainly comes from
the passive characteristic of the CBR adjustment in the original TPR*-tree.

3.2 Basic Strategy

For exposition, let us consider a situation where a user query reaches a leaf node
N of a TPR*-tree for its query processing. Let Tuj and Tuj+1 be the time points
when the j-th and the (j + 1)-th updates arise on N , respectively. If the user
query is the i-th one accessing N within the interval of [Tuj , Tuj+1], we denote
the query by Qj,i. That is, Qj,i is the i-th user query accessing N after the j-th
update has occurred on N . Also, we let Tqj,i be the access time of Qj,i to N . If
k user queries has reached N in the time of [Tuj , Tuj+1], then we have a timing
sequence as below.

Tuj < Tqj,1 < Tqj,2 < Tqj,3 < · · · < Tqj,k
< Tuj+1

Because the original TPR*-tree can do its CBR adjustment only at the update
times, user queries at Tqj,i (1 ≤ i ≤ k) tend to view the constantly growing BR

838 S.-W. Kim, M.-H. Jang, and S. Lim

of N since there is no CBR adjustment on N by time Tuj+1 . If the time interval
to Tuj+1 is a large one, the dead space in N also can be large. Meanwhile, if
we can do a CBR adjustment on N within [Tuj , Tuj+1], then we can avoid the
performance degradation by reducing the number of user queries unnecessarily
reaching N .

We allow the query processor, which is reaching N at Tqj,i , to perform a
CBR adjustment, if needed. Here, the necessity depends on the result of benefit
prediction regarding the CBR adjustment on N . Since the benefit prediction
requires the involved CBR data, disk I/Os are needed to read nodes in general.
Fortunately, the processor can access those CBR data without such disk I/Os
since the processor has cached those nodes on its buffer memory during its
downward search. Using the caching mechanism, the query arriving at N can
do the benefit prediction without additional node reads. If the result of the
benefit prediction indicates that the CBR adjustment will favorably affect the
future query performance, then the query processor actively initiates a CBR
adjustment. In this paper, we call this an active CBR adjustment (ACA). We
note that the ACA is performed in query processing.

Although our benefit prediction does not incur any I/O overhead, the exe-
cution of the ACA requires disk writes for updating the changed CBR on the
search path. Therefore, while making the benefit prediction, we should take into
account the I/O cost for an ACA execution as well as the expected performance
gains of future-time’s query processing. For this, we develop a cost model that
evaluates the performance trade-off based on some probabilistic assumptions.

Our cost model used for benefit prediction is mainly based on the notion
of the sweeping region. Consider a situation where we are processing a future-
time query Q. In processing Q, the query processor reads every node having
any overlap between the BR of that node and the target query region of Q.
Therefore, the probability of the access to node N by a specific time becomes
proportional to the sweep region size of N by that time if query regions are
randomly selected in the index space [8]. Since the reduced sweeping region
decreases the probability of unnecessary node reads in query processing, we can
improve the query performance by properly executing the ACAs.

For example, consider the time point Tqj,i when the i-th user query reads the
leaf node N after the update time of Tuj . Let SR be the size of the sweeping
region of N from Tqj,i to Tuj+1 . Also, let SR′ be a new size of the reduced sweep-
ing region of N in case the CBR of N is adjusted at time Tqj,i . In this case, the
difference (SR − SR′) determines the performance enhancement for other user
queries that will arrive at N in [Tqj,i , Tuj+1]. That is, a greater difference entails
more enhancement in the future-time’s query processing. From this observation,
we use the reduced size of sweeping regions to estimate the amount of perfor-
mance enhancement. We refer to the profit from the ACA as the CAB(CBR
Adjustment Benefit). If the amount of the CAB is greater than I/O overheads
for executing the ACA, we make the ACA initiated at time Tqj,i .

The query frequency is a major factor in the computation of the CAB. Since
the CAB is the sum of benefits of the user queries issued in [Tqj,i , Tuj+1], we

Active Adjustment: An Approach for Improving the Performance 839

have to take into account the future-time’s queries that will reach N at time t
(Tqj,i < t < Tuj+1). The number of such future-time’s queries can be obtained
by multiplying the query frequency with the length of interval [Tqj,i , Tuj+1].

Since we cannot exactly forecast the update time of Tuj+1 in advance, a proba-
bilistic approach is taken instead. That is, we compute the average update period
of a leaf node, which can be obtained from dividing the average update period
of a moving object by the average number of objects in a leaf node. If we let Pu

be the average update period of a leaf node, we can predict the time of Tuj+1

as the time point of Tuj + Pu. In our research, we use a time stamp (TS) field
for saving the expected update time of Tuj + Pu. Each leaf node has a TS field
and the field is looked up in the time of CAB computation. From the notations
above, we can have a formula for the CAB computation as follows.

CAB(Tqj,i , Tuj + Pu) = (
SR(Tqj,i , Tuj + Pu)− SR′(Tqj,i , Tuj + Pu)

2
)

× Qfreq × (Tqj,i , Tuj + Pu)

In the formula, CAB(Tqj,i , Tuj +Pu) denotes the CAB that seems obtainable
by the next update time if the ACA is executed at time Tqj,i . SR(Tqj,i , Tuj +Pu)
denotes the size of the sweeping regions that the non-adjusted CBR will sweep
by the next update time, and SR′(Tqj,i , Tuj + Pu) does the size of the reduced
sweeping regions in case an ACA is executed at Tqj,i . Qfreq denotes the average
query frequency of our TPR*-tree, and its multiplication with (Tqj,i , Tuj + Pu)
yields the average number of queries in the future time. By multiplying (SR −
SR′) with the number of queries, we can estimate the average number of queries
that will not access node N owing to the reduced sweeping region. Note that the
estimated number implies the number of reduced disk accesses to N caused by
the ACA execution. As it is not possible to predict the exact size of sweeping
regions viewed by future-time’s queries, we divide SR − SR′ by 2 to get the
average size of sweeping regions for the CAB computation.

Although the CAB can be computed without extra I/Os using cached CBR
data, the execution of the ACA incurs additional disk writes. To avoid the un-
profitable ACA executions, we use the benefit prediction as below.

CAB(Tqj,i , Tuj + Pu) > H - 1 (Condition i)

The ACA is profitable if (Condition i) holds. In other words, if (Condition i)
is satisfied, the ACA is allowable. Here, H is the height of the TPR*-tree and
H − 1 acts as the maximum number of node writes for an ACA execution. Note
that, since the root node resides on the memory buffer in most cases, we do not
count its node write. Therefore, H − 1 is the number of disk writes that are
needed in the presence of worst-case upward propagation of CBR updates.

Although there is no I/O overhead for the CAB computation in (Condition
i), there exists a CPU cost. Because the query processor may perform such com-
putation every time, the overall CPU cost could be a performance bottleneck
with a large volume of user queries. Against this, we check (Condition ii), which

840 S.-W. Kim, M.-H. Jang, and S. Lim

is much cheaper than (Condition i) in computation, to avoid unnecessary com-
putations of CAB. That is, we compute (Condition i) only when (Condition ii)
below holds.

Tqj,i + epsilon < Tuj + Pu (Condition ii)

This is because the ACA is not that advantageous if the remaining time to
Tuj + Pu is too short. The epslilon is a parameter variable. As its value, we can
use the time taken to read H nodes. Since the remaining time should be enough
to read H nodes to meet (Condition i), that time can be used as a minimum
value of epsilon.

4 Performance Evaluation

4.1 Experimental Environment

We generated the datasets for our experiments using the GSTD [9], a data
generator widely used in many previous researches for performance evaluation
[3]. With the GSTD, we generated 100,000 moving objects in such a way that
each object has a random speed in the range of [0, 70]. Those objects are made to
move around within the normalized 2-dimensional space whose size is 10,000 by
10,000. In the space, an object is represented as a point, and its initial position
follows one of uniform, skewed, and Gaussian distribution.

Parameters can be flexibly altered in order to reflect the various characteristics
of moving objects and user queries. Table 1 gives such parameters. While any
parameter in Table 1 is being varied for different experimental environments,
other parameters are fixed as the boldface pivot values.

Table 1. Simulation parameters and their values

parameters parameter values

update frequency (per moving object) 20, 50, 100, 150

query frequency (per unit time) 20, 40, 60, 80, 100

size of target query regions 0.01%, 0.16%, 0.64%, 2.56%

average speed of moving objects 30, 50, 70, 90

future prediction time point 20, 40, 60, 80, 100

We used two performance measures, i.e., the average number of node accesses
and the average response time for a hundred of future-time queries. The exper-
iments was performed on a Windows 2000 server equipped with a Pentium 4
processor of 4.23 GHz and 512 MB of main memory.

4.2 Results and Analyses

In this section, we present performance comparisons between our method and
the original TPR*-tree. Due to space limitations, we omit the experiment results

Active Adjustment: An Approach for Improving the Performance 841

from Gaussian distribution because the results are very similar to those of uni-
form and skewed distribution. Figure 2 shows how the query frequency affects
the query performance. The results show that our method provides a better
performance, and the performance gains get greater as the query frequency in-
creases. The average number of node accesses is reduced in our method by up
to 34% in uniform distribution and by up to 37% in skewed distribution. The
average response time is also improved in our method by up to 26% and 28% in
uniform and skewed distribution, respectively.

(a) Uniform distribution. (b) Skewed distribution.

Fig. 2. Performance comparisons with respect to the query frequency

In Figure 2, the performance gain increases until the query frequency does
not exceed 80 per unit time. After that point, the performance gain comes to be
nearly constant. That means that the occurrence frequency of the ACA becomes
constant above a high point of the query frequency. This is because the ACA is
not executed when it seems unprofitable.

Also, we examined performance gains with respect to the update frequency
of the moving objects. The results are given in Figure 3, where our method con-
sistently outperforms the original TRR*-tree. Our performance gain increases
as the update period gets longer, i.e., the update frequency gets lower. In our
method, the average number of node accesses is reduced by up to 39% in uni-
form distribution and by up to 43% in skewed distribution. The response time
is also improved by up to 34% and 37% in uniform and skewed distribution, re-
spectively. Since the original TPR*-tree can execute the CBR adjustment only
when the update operation occurs on a node, the prolonged update period en-
tails infrequent CBR adjustments. On the other hand, the proposed method can
initiate the ACA when user queries are being processed. From this, our method
provides a better performance even while the update period gets longer. On the
contrary as in Figure 3, our method does not provide a performance gain in the
presence of a quite short update period of less than 10 unit time. However, since
such a short update period is not common in reality, we can say that the pro-
posed method have a better performance than the original TPR*-tree in almost
cases.

842 S.-W. Kim, M.-H. Jang, and S. Lim

(a) Uniform distribution. (b) Skewed distribution.

Fig. 3. Performance comparisons with respect to different update periods

Lastly, in Figure 4, we examined how the performance varies as the future
prediction time point goes farther. From the figure, we can see that our method
reduces the number of node accesses by up to 15% and 16% in uniform and
skewed distribution, respectively. As to the response time, the performance im-
proves by up to 18% in uniform distribution and by up to 16% in skewed distri-
bution. As to a target query region of Figure 4, the future prediction time is also
a less dominant factor. However, since user queries with farther prediction times
require greater numbers of node accesses, the proposed method can improve the
query performance greatly.

(a) Uniform distribution. (b) Skewed distribution.

Fig. 4. Performance comparisons with respect to varying future prediction time points

5 Conclusions

The TPR*-tree for processing future-time queries is apt to suffer from perfor-
mance degradation because of quickly growing dead space and overlapping areas
among BRs over time. Against the problem, we have proposed a new method ca-
pable of executing the CBR adjustment during query processing. In our method,
the query processor can do the CBR adjustment in an active manner. Since the

Active Adjustment: An Approach for Improving the Performance 843

query processor can cache the CBR data of its search path on the buffer memory,
we allow the query processor to perform the active CBR adjustment (ACA) in a
quite efficient way. For the ACA mechanism to be useful, we have also proposed
a cost model that assesses both of the performance benefit to be obtained during
the future-time’s query processing and the I/O cost for an ACA execution. To
show the superiority of the proposed method, we have conducted various perfor-
mance experiments. The results reveal that our method outperforms the original
TPR*-tree significantly in most cases.

References

[1] Beckmann, N., et al.: The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. In: Proc. ACM Int’l. Conf. on Management of Data(ACM
SIGMOD), pp. 322–331. ACM Press, New York (1990)

[2] Lee, D.L., Xu, J., Zheng, B., Lee, W.C.: Data Management in Location-Dependent
Information Services. IEEE Pervasive Computing 1(3), 65–72 (2002)

[3] Lin, B., Su, J.: On Bulk Loading TPR-Tree. In: Proc. IEEE Int’l. Conf. on Mobile
Data Management, pp. 395–406 (2004)

[4] Mokbel, M.F., Ghanem, T.M., Aref, W.G.: Spatio-Temporal Access Methods.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineer-
ing 26(2), 40–49 (2003)

[5] Prabhakar, S., et al.: Query Indexing and Velocity Constrained Indexing: Scalable
Techniques for Continuous Queries on Moving Objects. IEEE Trans. on Comput-
ers 51(10), 1124–1140 (2002)

[6] Saltenis, S., et al.: Indexing the Positions of Continuously Moving Objects. In:
Proc. ACM Int’l. Conf. on Management of Data(ACM SIGMOD), pp. 331–342.
ACM Press, New York (2000)

[7] Sistla, A.P., et al.: Modeling and Querying Moving Objects. In: Proc. IEEE Int’l.
Conf. on Data Engineering (ICDE), pp. 422–432 (1997)

[8] Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal
Access Method for Predictive Queries. In: Proc. Int’l. Conf. on Very Large Data
Bases (VLDB), pp. 790–801 (2003)

[9] Theodoridis, Y., Silva, R., Nascimento, M.: On the Generation of Spatiotemporal
Datasets. In: Proc. Int’l. Symp. on Spatial Databases, pp. 147–164 (1999)

[10] Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving Objects Databases: Is-
sues and Solutions. In: Proc. Int’l. Conf. on Scientific and Statistical Database
Management (SSDBM), pp. 111–122 (1998)

Performance Oriented Schema Matching

Khalid Saleem1, Zohra Bellahsene1, and Ela Hunt2

1 LIRMM - UMR 5506 CNRS University Montpellier 2,
161 Rue Ada, F-34392 Montpellier

{saleem, bella}@lirmm.fr
2 Department of Computer Science, ETH Zurich, CH-8092

hunt@inf.ethz.ch

Abstract. Semantic matching of schemas in heterogeneous data shar-
ing systems is time consuming and error prone. Existing mapping tools
employ semi-automatic techniques for mapping two schemas at a time.
In a large-scale scenario, where data sharing involves a large number of
data sources, such techniques are not suitable. We present a new robust
mapping method which creates a mediated schema tree from a large set
of input XML schema trees and defines mappings from the contribut-
ing schema to the mediated schema. The result is an almost automatic
technique giving good performance with approximate semantic match
quality. Our method uses node ranks calculated by pre-order traversal.
It combines tree mining with semantic label clustering which minimizes
the target search space and improves performance, thus making the al-
gorithm suitable for large scale data sharing. We report on experiments
with up to 80 schemas containing 83,770 nodes, with our prototype im-
plementation taking 587 seconds to match and merge them to create
a mediated schema and to return mappings from input schemas to the
mediated schema.

1 Introduction

Schema matching relies on discovering correspondences between similar elements
of two schemas. Several different types of schema matching tools [8,9] have been
studied, demonstrating their benefit in different scenarios. In data integration
schema matching is of central importance [1]. The need for information inte-
gration arises in data warehousing, OLAP, data mashups [6], and work flows.
Omnipresence of XML as a data exchange format on the web and the presence
of metadata available in that format force us to focus on schema matching, and
on matching for XML schemas in particular.

We consider schemas to be rooted, labeled trees. This supports the computa-
tion of contextual semantics in the tree hierarchy. The contextual aspect is ex-
ploited by tree-mining, making it feasible to use almost automated approximate
schema matching [4] and integration in a large-scale scenario. The individual
semantics of node labels have their own importance. We utilize linguistic match-
ers, based on tokenisation, and synonym and abbreviation tables, to extract the

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 844–853, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Performance Oriented Schema Matching 845

concepts hidden within them. The use of synonym and abbreviation tables is
considered to be a form of user intervention.

Tree mining techniques extract similar sub tree patterns from a large set of
trees and predict possible extensions of these patterns. A pattern starts with one
node and is incrementally augmented. There are different techniques [11] which
mine rooted, labeled, embedded or induced, ordered or unordered sub-trees. The
function of tree mining is to find sub-tree patterns that are frequent in the given
set of trees, which is similar to schema matching that tries to find similar con-
cepts among a set of schema trees.

Our Contributions
a) Matching, merging and the creation of a mediated schema with semantically
approximate mappings, in one algorithm which has good performance.
b) Use of tokenisation, abbreviation and synonym matching of label tokens, in-
tuitively supporting the clustering of similar labels to minimize the search space.
c) Extension of a tree mining data structure [11] to schema matching, using an-
cestor/ descendant properties for quality contextual semantic matching.
d) Ability to produce element level [8] simple 1:1 mappings, and complex map-
pings, including 1:n(leaf mapped to non-leaf) and n:1(non-leaf mapped to leaf).
e) Experiments with real XML schema instances (OAGIS, XCBL1) showing per-
formance appropriate for a large scale scenario.
f) Quality evaluation based on precision, showing that our method is reliable.

The remainder of the paper is organized as follows. Section 2 presents the
related work in large-scale schema integration. Section 3 defines the concepts. In
Section 4 we describe our approach, Performance Oriented Schema Matching,
along with a running example. Section 5 presents the experimental evaluation.
Section 6 gives a discussion, outlines future work and concludes.

2 Related Work

Nearly all schema-matching systems compare two schemas at a time and aim
for quality matching but require significant human intervention. Several sur-
veys [3,8,9] shed light on this aspect and show that extending the matching
to data integration is time consuming and limited in scope. Large scale schema
matching has been investigated in the web interface schema integration [5,10] us-
ing data mining. Matching of two large bio-medical taxonomies [3,7] was demon-
strated using COMA++ [3] and Protoplasm [2].

There are numerous issues in the semantic integration of a large number of
schemas. For example, Semantic Web, by definition, offers a large-scale dynamic
environment where individual service providers are independent. In such a situ-
ation the mappings can never be exact, rather they are approximate [4,5].

Performance is an open issue in schema matching [3,8,9]. The complexity of
the schema matching task is proportional to the size of participating schemas
1 OAGIS : http://www.openapplications.org/, XCBL : http://www.xcbl.org/

846 K. Saleem, Z. Bellahsene, and E. Hunt

and the number of match algorithms employed, i.e. O(nma), where n and m are
node counts in the source and target schema and a is the number of algorithms
applied. The quality of mappings depends on the type and number of matching
algorithms and their combination strategy [2,3].

One of the most recent matching and merging tool is Coma++ [3] which pro-
duces quality matches. Coma is a composite matcher which can reuse previous
mappings. It uses user defined synonym and abbreviation tables, along with
other matchers. Coma can map large schemas with the help of user input. The
user can identify fragments of the schema to be mapped. This option is intended
to manage the namespace/ include characteristics of XML schemas. However,
human intervention in the schema mapping and merging process is needed. Sys-
tems like Coma, which produce mappings and no integrated schema, do not
support automated data integration suitable for application environments with
hundreds of schemas.

Semantically, a match between two nodes can be either an equivalence or
a partial equivalence. In a partial match, the similarity is partial, e.g., an ele-
ment Name = ‘John M. Brown’ in source schema is partially matched to Last-
Name=‘Brown’ and FirstName =‘John’ in the target, because Name also con-
tains the MiddleInitial=‘M’. If there are several possible matchings of the source
element to the mediated schema, the best/most correct match can be selected
(manual in [2,3]). The choice can depend upon match quality confidence com-
puted at run time [2,3,8,9]. We use a hybrid approach which automatically selects
the best match and performs the binary integration of schemas using the ladder
technique [1]. Our method caters both for the quality as well as performance
in large scale scenarios, using domain specific linguistic matching (synonym and
abbreviation oracles), clustering, and tree mining.

3 Preliminaries

Semantic matching requires the comparison of concepts which are structured as
schema elements. Node labels of schema elements are considered to be concepts
and each element’s contextual placement in the schema enhances the semantics
of the concept. For example, in Fig. 1 Sb, the elements writer/name and pub-
lisher/name have similar labels but their contexts are different, which makes
them conceptually disjoint. In an XML tree, the combination of the element
label and the structural placement of the element produces the concept.

Fig. 1. Input Schema Trees Sa and Sb

Performance Oriented Schema Matching 847

Def. 1 (Schema Tree). A schema tree is a rooted, labeled tree [11]. A schema
tree, S=(V,E), consists of V={0,1,. . . ,n}, a set of nodes, and E={(x,y) | x,y ∈
V}, a set of edges. One distinguished node r ∈ V is designated the root, and for
all x ∈ V, there is a unique path from r to x. Further, lab:V → L is a labeling
function mapping nodes to labels in L={l1, l2,. . . }, and vt:L → P(V) is a func-
tion which returns for each label li∈ L a set of nodes Vi ⊆V with labels similar
to li.

Def. 2 (Node Scope). Nodes x ∈ V are numbered according to their position
in the pre-order traversal of the tree S (where the root is numbered 0, and x
is numbered X). Let T(x) denote the sub-tree rooted at x, and let y be the
rightmost leaf (or highest numbered descendant) under x, numbered Y. Then
the scope of x is defined as scope(x)=[X,Y]. Intuitively, scope(x) is the range
of nodes under x, and includes x itself (Fig. 1). The count of nodes in T(x) is
Y-X+1.

Def. 3 (Label Semantics). Label semantics corresponds to the conceptual
meaning of the label (irrespective of context). It is a composition of concepts
attached to the tokens making up the label. Cl : l → (C(t1), . . . , C(tm)) where
m is the number of tokens making up the label.

Def. 4 (Node Semantics). Node semantics for x ∈ V, Cx, combines the se-
mantics of the node label Clx with its contextual placement in the tree, TreeCon-
text(x), as follows [11]: Cx : x → (Clx , T reeContext(x)). TreeContext of a node
x is its scope (Def. 2).

3.1 Scope Properties

Scope properties describe the contextual placement of a node [11]. Property test-
ing involves simple integer comparisons.

Unary Properties, given a node x with scope [X,Y]
Pr. 1: Leaf Node(x): X=Y, Pr. 2: Non-Leaf Node(x): X < Y.
Binary Properties, given x [X,Y], xd[Xd,Yd], xa[Xa,Ya], and xr[Xr,Yr]
Pr. 3: Descendant (x,xd), xd is a descendant of x: Xd>X ∧ Yd≤Y
Pr. 4: DescendantLeaf (x,xd) combines Pr. 1 and 3:
Xd>X ∧ Yd≤Y ∧ Xd=Yd
Pr. 5: Ancestor (x,xa), complements Pr. 3, xa is ancestor of x: Xa<X ∧ Ya≥Y
Pr. 6: RightHandSideNode (x,xr) with non-overlapping scope, xr is RHSNode
of x: Xr>Y.

Example 3.1: In Fig. 1 Sa, Pr. 1 for node price[3,3] defines it as a leaf. Pr. 2
for author[1,2] states that it is a non-leaf (an inner node).

Example 3.2: The task is to find a mapping for Sa tree node author/name in
Sb. In Fig. 1 Sb there are two nodes called name: [2,2] and [4,4]. Given synonymy
between words author and writer, and top down traversal, Sa author[1,2] is

848 K. Saleem, Z. Bellahsene, and E. Hunt

already mapped to Sb writer [1,2], we perform the descendant node check on
nodes [2,2] and [4,4] with respect to writer[1,2]. Node [2,2] is a descendant of
[1,2], using Pr. 3, and node [4,4] is not a descendant of [1,2], thus author/name
is mapped to writer/name.

4 Our Approach

We assume that only schema trees are available as input. Our method accepts a
set of schema trees and outputs the mediated schema tree and the corresponding
mappings.

Def. 5 (Semantic Mediation)
INPUT: A set of schema trees SSet={S1,S2 . . . Su}.
OUTPUTS:

a) A mediated schema tree Sm, which is a composition of all distinct concepts in
SSet. Sm = Pu

i=1(Si), P (Si) = {C1 ρ C2 ρ . . . Cn} includes all distinct concepts
in Si (Def. 4). P is the composition function and ρ denotes the composition
operator.
b) A set of mappings M = {M1, M2, . . . Mw} from the concepts of input schema
trees to the concepts in the mediated schema.

The mediated schema tree Sm is a composition of all nodes representing dis-
tinct concepts in the set of schemas. During the integration process if a node is
not present in Sm, a new edge e′ is created in Sm and a node is added to it.

4.1 Assumptions

We make the following assumptions, valid in domain specific schema integration
(extended from [10]).
a) Schemas in the same domain contain the same domain concepts, but differ in
structure and concept naming.
b) We select the input schema with the highest number of nodes as the initial
mediated schema. Since each node represents a concept, this covers the maximum
number of concepts. This choice minimizes the addition of new concepts (nodes
not present in the mediated schema) to the mediated schema and improves
performance.
c) Only one type of matching between two labels is possible. For example, author
is a synonym of writer.
d) In one schema, different labels for the same concept are rarely present.
e) A node from the input schema is only matched to the set (cluster) of similarly
labeled nodes present in the mediated schema.

4.2 Example of Schema Integration

We developed an algorithm which works in three steps. First, we perform pre-
mapping. Schema trees are input to the system as a stream of XML and the

Performance Oriented Schema Matching 849

node number and parent for each node, node scope, schema size, and schema
depth are calculated. A listing of nodes and of distinct labels for each tree is
constructed.

Next, a linguistic matcher identifies semantically similar node labels. The user
can set the level of similarity of labels as A) Label String Equivalence, B) Label
Token Set Equivalence (using abbreviation table), or C) Label Synonym Token
Set Equivalence (synonym table). The matcher derives the meaning for each
individual token and combines these meanings to form a label concept. Similar
labels are clustered. Since each input node corresponds to its label object, this
intuitively forms clusters of similarly labeled nodes within the group of
schemas to be merged.

Table 1. Before Node Mapping

a. List of labels, ordered alphabetically

0 1 2 3 4 5 6 7 8

author book name name price pub title writer ROOT

b. Input Schema Nodes’ Matrix : Row 1 is Sa and Row 2 is Sb

1,2,0 0,3,-1 2,2,1 3,3,0

0,5,-1 2,2,1 4,4,3 3,4,0 5,5,0 1,2,0

c. Initial Mediated Schema, Sm, renumbered after adding ROOT
to Sb

1,6,0 3,3,2 5,5,4 4,5,1 6,6,1 2,3,1 0,6,-1

*Column entries show node scope and parent

Example 4.1: Consider labels “POShipDate” and “PurchaseOrderDeliverDate”.
In the abbreviation table PO stands for purchase order and in the synonym table
‘deliver’=‘ship’. This implies that the two labels are similar.

In the integration and mapping part, we first select the input schema tree
with the highest number of nodes and designate it as the initial mediated schema
(Section 4.1). Next, we take each schema in turn and merge it with the mediated
schema, following the binary ladder technique highlighted in [1]. This requires
matching, mapping and merging. Concepts from input schemas are mapped to
the mediated schema.

The algorithm traverses the input schema depth-first, mapping parents before
siblings. If a new concept is found, with no match in the mediated schema, a new
concept node is created and added to the mediated schema as the right most
child of the node in the mediated schema, to which the parent of current node is
mapped. This new node is used as the target node in the mapping (Def. 5). The
algorithm combines node label similarity and contextual positioning, calculated
using properties defined in Section 3.1. Our example uses the two schemas shown
in Fig. 1 where Sa and Sb are shown with information calculated during pre-
mapping. A list of labels created in this traversal is shown in Table 1a. Nodes 2

850 K. Saleem, Z. Bellahsene, and E. Hunt

Table 2. After Node Mapping

a. Labels List

0 1 2 3 4 5 6 7 8

author book name name price pub title writer ROOT

b. Mapping Matrix : Row 1 is Sa and Row 2 is Sb

1,2,0,7 0,3,-1,1 2,2,1,2 3,3,0,4
0,5,-1,1 2,2,1,2 4,4,3,3 3,4,0,5 5,5,0,6 1,2,0,7
c. Final Mediated Schema

1,7,0,
1.0,2.0

3,3,2,
1.2,2.2

5,5,4,
2.4

7,7,1,
1.3

4,5,1,
2.3

6,6,1,
2.5

2,3,1,
1.1,2.1

0,7,-1

*Column entries show node scope, parent and mapping

and 3, with the same label ‘name’ but different parents (author and publisher)
are shown to be disjoint. The last label is a new label, ROOT, created by our
algorithm.

Table 1b shows a matrix of size um, where u is the number of schemas and m
the total number of distinct labels in all schemas (the length of the label list).
A matrix row represents an input schema tree. Each non-null entry contains the
node scope and parent node number. Each node is placed in the column which
holds its label.

The larger schema tree Sb, see Fig. 1, is selected as the initial mediated schema
Sm. ROOT is added to Sm, and the nodes are renumbered to reflect this. A list
of size m (Table 1c) holds Sm, assuming the same column order as in Table 1b.

The node mapping algorithm takes the data structures in Table 1 as input, and
produces mappings shown in Table 2b, and the integrated schema in Table 2c.
In the process, the input schema Sa is mapped to mediated schema Sm. The
mapping is read as the column number (Table 2b mapping) of node in the
mediated schema. Saving mappings as column number gives us the flexibility to
add new nodes to Sm, without disturbing the previous mappings. Scope values of
some existing nodes are affected, cf. Table 1c and Table 2c, because of addition
of new nodes (identified by Pr. 5 or 6; scope values adjusted accordingly), but
column numbers of all previous nodes remain the same. Thus, intuitively, none
of the existing mappings are affected.

Node mapping for input schema tree Sa (Table 1b row 1) starts from the
label ‘book’ with scope [0,3]. As it is a root node, with only one similar node
‘book’ [1,6] in Sm, mapping 1 is added in column 1 in Sa row, shown in bold
in Table 2b, for node Sa[0, 3]. This is now recorded in the mediated schema,
see Table 2c, as 1.0 i.e., node 0 in Schema 1 i.e., Sa mapped to node 0 in Sm.
Next node to map is Sa.author[1, 2], similar to Sm.writer[2, 3]. Both nodes are
internal and the ancestor check returns true since parent nodes of both are al-
ready mapped. The resulting mapping for label 0 is 7. For node 2 with label
‘name’, there are two possibilities, nodes attached to label 2 (col. 2) and label 3

Performance Oriented Schema Matching 851

(col. 3). Descendant(name,writer) is true for node in column 2 and false for 3
by Pr. 3 (Example 3.2). Hence 2 is the correct map. The last node in Sa is
price[3,3]. There is no match in Sm, so a new node is added to Sm, as an entry
in the column with label ’price’ in the mediated schema list (Table 2c). This
node is created as the right most sibling of node in the mediated tree to which
the parent node of current input node is mapped, i.e. ‘book’. The scope and
parent node link are adjusted for the new node and its ancestors, and a mapping
is created from the input node to this newly created node.

Algorithm complexity: Given a set of input schemas S= {S1, S2, . . . Su}, we
select as the mediated schema the schema tree with the highest number of nodes,
max(N(Si)) where N(Si)returns the number of nodes in a schema. We match
each node of each input schema to the mediated schema. The number of input
schema nodes Nt is given by Nt =

∑u
i=1 N(Si). Therefore the complexity of

Node Mapper algorithm is O(NtN(Sm)). This is quadratic in the size of schema
set that is to be integrated. Our experiments confirm this complexity.

5 Experimental Evaluation

The experiments were performed on a PC, Pentium 4-M, 1.80 GHz, 768 MB
RAM, running Windows XP, and Java 1.5. Three sets of schemas from different
domains were used, with ISN, Integrated Schema Nodes, giving the schema size
of the largest integrated schema.

1. Books: 176 synthetic schemas; Avg./Max/Min nodes 8/14/5, ISN 23
2. OAGIS: 80 real schemas; Avg./Max/Min nodes 1047/3519/26, ISN 70191
3. XCBL: 44 real schemas; Avg./Max/Min nodes 1678/4578/4, ISN 4803

Performance was evaluated in three label similarity scenarios: A) Label
String Equivalence, B) Label Token Set Equivalence, and C) Label Synonym
Token Set Equivalence. Figures 2 and 3 demonstrate the performance of our

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

t
i
m
e
(
m
s
)

Schemas

Same trend: A,B and C

(a) Books schema integration, time
against schema count

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

t
i
m
e
(
s
)

Nodes (x 1000)

OAGIS Schemas
XCBL Schemas

(b) OAGIS / XCBL schema integration,
time against node count

Fig. 2. Small synthetic schemas are matched faster than complex real life schemas

852 K. Saleem, Z. Bellahsene, and E. Hunt

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80

t
i
m
e
(
s
)

Nodes (x 1000)

Similarity A
Similarity B
Similarity C

(a) Integration of XCBL Schemas

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90

t
i
m
e
(
s
)

Nodes (x 1000)

Similarity A
Similarity B
Similarity C

(b) Integration of OAGIS Schemas

Fig. 3. Influence of matchers A, B, C on schema integration time

method. Our experiments show that the execution time reflects the number of
schemas to be integrated, and appears to be at worst quadratic in the number
of nodes compared.

Fig. 2a shows a comparison of three kinds of matching: A, B, and C for
sets of 2, 4, 8, 16, 32, 64, 128, 176 Books schemas. There is no difference in the
performance of various matchers, which is possibly due to the fact that synthetic
schemas vary little in their labels. Fig. 2b shows time in seconds for Domains 2
and 3. Fig. 3a shows the time (s) against the number of nodes processed, for the
three similarity methods for XCBL. XCBL schemas are slower to match than
OAGIS schemas, see Fig. 3b. This is due to the higher average number of nodes
in XCLB schemas. It takes less than 600 seconds to match 80 OAGIS schemas,
while 44 XCLB schemas require more than 800 seconds.

Table 3. Quality Evaluation. A, B, C are the label similarity levels, and schemas are
at www.lirmm.fr/∼saleem/matching/schemas.

Domain PurchaseOrd Books OAGIS XCBL

Schema S1 Sm S1 Sm S1 Sm S1 Sm

Size 14 18 8 15 26 34 647 743

Precision A/B/C 0.29/0.36/1 0.5/0.5/1 0.77 0.96

Since there is no established schema integration benchmark for a large scale
scenario, including both schemas and mappings, it is impossible to carry out a
full quality comparison. We evaluate the quality of our solution by looking at
a random schema pair in the set and counting the number of correctly placed
nodes in the integrated schema, correctlyPlacedNodes/ allPlacedNodes, as our
algorithm will always add a node if it cannot find a match. We establish the pre-
cision measure by manual inspection of schemas, see Table 3 for results. Since
our method takes the larger schema as the initial mediated schema, the smaller
schema is integrated into the larger. Real domains schemas follow the same

Performance Oriented Schema Matching 853

namespaces, with no abbreviations and synonym applicability, as established
by manual inspection. Thus showing no variance in quality for the three la-
bel similarity cases. Synthetic domain schemas show fluctuation because of the
abbreviated and synonym labels incorporated manually to study the algorithm.

6 Conclusions

We have introduced a novel technique based on tree mining, for schema match-
ing, integrating and mapping of a large set of schemas. We have investigated
its scalability with respect to time performance, in the context of approximate
mapping. The experimental results demonstrate that our approach scales to
hundreds of schemas and thousands of nodes. The linguistic matching of node
labels uses tokenisation, abbreviations and synonyms. The matching strategy is
hybrid, and optimized for schemas in tree format. Our algorithm provides an
almost automated solution to the large scale mediation problem.

Our results point to significant future work. We are planning to investigate the
application of our approach in P2P architectures, and enhancements to linguistic
matching. Another issue for the future is a benchmark for schema mapping
evaluation in a large scale schema integration scenario. To further benefit from
tree mining, we are going to use it to identify co-relationships between sub-trees
within a forest of schema trees, which will help in identifying subsumptions and
overlaps, for the discovery of n:m complex mappings.

References

1. Batini, C., Lenzerini, M., Navathe, S.B.: A comparitive analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

2. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema
matching. SIGMOD Record 33(4), 38–43 (2004)

3. Do, H.-H., Rahm, E.: Matching large schemas: Approaches and evaluation. Infor-
mation Systems 32(6), 857–885 (2007)

4. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.Y.: Learning to
match ontologies on the semantic web. VLDB J. 12(4), 303–319 (2003)

5. He, B., Chang, K.C.-C., Han, J.: Discovering complex matchings across web query
interfaces: a correlation mining approach. In: KDD, pp. 148–157 (2004)

6. Jhingran, A.: Enterprise information mashups: Integrating information, simply -
keynote address. In: VLDB (2006)

7. Mork, P., Bernstein, P.A.: Adapting a generic match algorithm to align ontologies
of human anatomy. In: ICDE (2004)

8. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

9. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. J. Data
Semantics IV, 146–171 (2005)

10. Su, W., Wang, J., Lochovsky, F.: Holistic query interface matching using parallel
schema matching. In: ICDE (2006)

11. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta
Informaticae 65, 1–20 (2005)

Preference-Based Integration of Relational

Databases into a Description Logic

Olivier Curé1 and Florent Jochaud2

1 S3IS, Université Paris Est, Marne-la-Vallée, France
ocure@univ-mlv.fr

2 University of Bayreuth, Bayreuth, Germany
florent.jochaud@uni-bayreuth.de

Abstract. This paper aims to bridge the gap between legacy databases
and knowledge bases in the context of the Semantic Web. Such ap-
proaches may facilitate the design of ontologies and thus accelerate the
adoption of the next generation Web. We have implemented a mapping-
based system where sources are relational databases and the target is
a Description Logics based knowledge base. The cornerstone of this ap-
proach is the consideration that the Description Logics ABox is a view of
the relational database. In this solution, the target is materialized and a
global-as-view approach is adopted. In order to deal with possible cases
of inconsistencies, we support the setting of preferences over the views
of the mapping.

1 Introduction

The future of the Semantic Web partly depends on the availability of efficient
ontological engineering tools. In this paper, we concentrate on the following set
of ontological engineering’s tasks: creation of the ontology schema from schemas
of relational databases and automatic instantiation of the knowledge base from
tuples of relational databases.

In the context of practical and expressive ontologies, these tasks are considered
complex, time-consuming and financially expensive because they require a col-
laboration between knowledge engineers and domain experts. Thus approaches
aiming to facilitate the design of ontologies may be valuable for organizations
willing to implement Semantic Web applications.

The DataBase Ontology Mapping (DBOM) system we present processes a
declarative mapping to create and instantiate a knowledge base from multiple
data sources. This choice is motivated by our need to semantically enrich the
data contained in relational databases and fulfils a need to implement practical
and efficient inference enabled services which are based on application-dependent
ontologies. A materialized approach is adopted, meaning that our system com-
putes the extensions of the concepts and relationships in the target schema by
replicating the data at the sources. This materialization is motivated by the
fact that some sources may not be accessible on-demand at application runtime.
This computation is performed using a global-as-view (GAV) approach which

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 854–863, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Preference-Based Integration of Relational Databases 855

requires that the target schema is expressed in terms of the data sources [13].
In this work, we consider that data stored at the sources are always locally
consistent, meaning that they respect their set of integrity constraints.

Anyhow, the integration of these autonomous and consistent sources may
result in an inconsistent knowledge base. This is due to violations of integrity
constraints specified on the target schema. In the related domain of data integra-
tion, two approaches are proposed to deal with inconsistent data: (i) a procedural
approach which is based on domain-specific transformation and cleaning, (ii) a
declarative approach. In this last approach, information integration semantics
given in terms of repairs is usually proposed to solve inconsistency. In the con-
text of sound interpretation of the mapping, repairs are provided by means of
insertions and deletions [2] of tuples over the inconsistent target. In [16], the
author also allows tuple updates as a repair primitive.

Our method to deal with inconsistent data adopts a declarative approach
which exploits information on view preferences. In this solution, we consider
that all sources do not have the same level of reliability and we enable the
mapping designer to set confidence values over the views of the mapping. Using
these information at mapping processing time, there is a motivation to prefer
values coming from a view with respect to data retrieved from another view.

The system we propose tackles very expressive ontologies, those enabling the
expression of general logical constraints [9]. The implementation support the
serialization of the knowledge base resulting from the integration in the OWL
ontology language [6].

This paper is organized as follows. In Section 2, we introduce the DBOM sys-
tem with a comparison with data exchange and integration then we present the
syntax and semantics of the framework. This section also introduces a solution
to the impedance mismatch problem encountered in such integration environ-
ments. In Section 3, we outline our view preference approach. Section 4 presents
an implementation of the DBOM system and evaluates its usefulness in the con-
text of a concrete medical informatics application. Finally, section 5 concludes
and presents ongoing work on the DBOM framework.

2 Framework

In this section, we define a general framework for the DBOM system and contrast
this approach with the comparison of data exchange and integration provided in [7]:

– as in both data exchange and integration, the source schema is given and
the mapping is a set of formulas constructed by a human expert.

– as in data integration [13], the target schema, i.e. the intensional knowledge
of a Description Logic (DL), is constructed from the processing of the source
schema given a mapping.

– as in data exchange [11], the target instances are materialized, while they
are usually virtualized in the case of data integration.

The main contribution of this system is to enable the migration of data stored
in multiple database sources to a DL knowledge base [1]. This approach tackles

856 O. Curé and F. Jochaud

the fundamental aspect of impedance mismatch, i.e. database store values while
DL based ontologies represent objects. In this section, we present the syntax and
the semantics of the underlying framework, and a mapping-based solution that
allows specifying how to transform data into objects.

2.1 Syntax

We can define our system as follows: D = (S,K,M), where:

– S is a set of relational database source schemas, {S1, .., Sn}. A signature for
Si is (Ri, ICi) with Ri a set of relations and ICi a set of integrity constraints
that we assume are locally satisfied by Si.

– K is the (target) ontology schema formalized in an DL knowledge base.
Such a knowledge base generally comprises two components 〈T ,A〉 where
(i) T is called a TBox which contains intensional knowledge in the form
of a terminology, and (ii) A is called an ABox which contains extensional
knowledge that is specific to the individuals of the domain of discourse [1].

– M is the mapping between S and K. This mapping is represented as a set
of GAV assertions in which views, i.e. queries, expressed over elements of
S are put in correspondence to elements of the ontology K. Queries in the
mapping are conjunctive queries, i.e. conjunctive queries of the form

{x1, .., xn|∃y1, .., ymconj(x1, .., xn, y1, .., ym)}

where conj is a conjunction of atoms, whose predicate symbols are relation
names from S, x1, .., xn are free variables of the query, and n is the arity of
the query. We omit ∃y1, .., ym when clear from the context.

In order to understand the transformations involved in the resolution of the
impedance mismatch problem, it is important to introduce some notions on the
target ontology.

In a DL we are defining concepts and properties which can respectively be
considered as unary and binary predicates. Thus the representation of n-ary
relations is not directly possible and requires the reification of relationships [1].
This aspect is supported in our system but compel from the mapping designer
some extra modeling efforts.

We refer to ’members’ of the mapping as the set of concepts and properties
of the TBox. We distinguish between object properties which relate individuals
to individuals and datatype properties which relate individuals to typed values.

In our framework, we make the distinction between concrete and abstract
members. The meaning associated to these terms refers to the ability to in-
stantiate a member via the processing of a mapping file. The comprehension of
concrete and abstract members is relatively straightforward as it is equivalent
to the assumption made in object-oriented programming. Thus instances (indi-
viduals) can be created for a concrete concept and a concrete object property
can relate two existing individuals. These instantiations are undergone using
the answers retrieved from the processing of the conjunctive queries associated

Preference-Based Integration of Relational Databases 857

with each concrete member. Thus the head of mapping assertions are formed of
atomic concrete members. Abstract members cannot be explicitly instantiated
from processing the mapping since they are not allowed in the head of mapping
assertions. The objective of abstract members is to support member hierarchies
which are henerally represented as trees. It’s obvious from this presentation that
leaves in such trees must be defined as concrete memebers.

This framework’s mapping language allows specifying associations between
variables involved in the head of mapping assertions and user defined datatype
properties.

In the case of concrete concepts, each variable involved is mapped to a
datatype property where the domain of this property must correspond to the
given concrete concept or to one if its super concepts. The value retrieved from
the execution of the conjunctive query is then associated to the range of this
datatype property.

Finally, in the case of concrete object properties, the domain and the range
must correspond to individuals already existing in the ABox. This aspect requires
an ordering in the processing of the mapping: datatype properties are first cre-
ated, then concepts are designed and instantiated, finally object properties can
relate existing individuals. It is important to stress that this task ordering mod-
eling approach is generally adopted for ontology editors, e.g. Protg, and is thus
not considered as a constraint for end-users.

This aspect implies that ABox individuals can be accessed from values iden-
tifying source tuples, i.e. primary keys. Thus our system must support a form
of relation between the object identifiers of the ABox individuals and the tu-
ples from source relations. This aspect is dealt with a special property dbom:id
which identifies which are the datatype properties involved in a concept spec-
ification that are related by the mapping M to primary keys in relations
of S.

Example 1. Let D1 = (S1,K1,M1) be a DBOM integration system where S1

consists of a single source with three relations. Relation drug is of arity 3 and
contains information about drugs with their codes, names and prices. Relation
ephMRA, arity 2, contains codes and names of the Anatomical Classification,
i.e. a standard that represents a subjective method of grouping certain pharma-
ceutical products, proposed by the European Pharmaceutical Market Research
Association c© . Finally, relation ephDrug, of arity 2, proposes relationships be-
tween drug codes and codes of the Anatomical Classification.

The ontology schema is made of the following members. The concrete concepts
Drug and EphMRA. The datatype properties hasDrugCode, hasDrugName, has-
DrugPrice whose domains must be instances of the Drug concept and ranges are
respectively a drug code, a drug name and a drug price. The hasEphCode and
hasEphName are datatype properties with instances of the EphMRA concept as
domain and respectively EphMRA code and name as range. Finally, we need a
concrete object property, namely hasEphMRA, to relate instances of the Drug
concept to instances of the EphMRA concept.

858 O. Curé and F. Jochaud

The mapping M1 is defined by:

(1) Drug(x, y, z) ← drug(x, y, z)
(2) EphMRA(x, y) ← ephMRA(x, y)

(3) hasEphMRA(x, y) ← ephDrug(x, y)

This mapping is completed by the following:

– in assertion (1) of M1, the x,y and z of Drug(x, y, z) are related respec-
tively to hasDrugCode, hasDrugName and hasDrugPrice. The hasDrugCode
property is related to dbom:id.

– in assertion (2) of M1, the x and y of EphMRA(x, y) are related respectively
to hasEphCode and hasEphName. The hasEphCode property is related to
dbom:id.

– finally, in assertion (3) of M1, the x and y of hasEphMRA(x, y) correspond
respectively to a Drug individual identified by x and a EphMRA individual
identified by y.

2.2 Semantics

DL TBoxes and relational schemas are interpreted according to standard first-
order semantics. They distinguish the legal structures, i.e. structures that satisfy
all axioms, from the illegal structures, i.e. the structures that violate some of
them. Thus we can use a first-order semantics with the domain of interpretation
being a fixed denumerable set of elements Δ, and every such element is denoted
uniquely by a constant symbol in Γ . In this setting, constants in Γ act as standard
names [14].

In order to specify the semantics of D, we first have to consider a set of data
at the sources, and we need to specify which are the data that satisfy the target
schema with respect to such data at the sources. We call C a source model for
D.

Starting from this specification of a source model, we can define the informa-
tion content of the target K. From now on, any interpretation over Δ of the
symbols used in K is called a target interpretation for D.

Definition 1. Let D = S,K,M be a DBOM system, C be a source model for D,
a target interpretation B for D is a model for D with respect to C if the following
holds:

– B is a model of K, i.e. B |= K;
– B satifies the mapping M with respect to C.

The notion of B |= K requires some attention since schema statements in DL
are interpreted differently to similar statements in a relational database setting.
These differences can be explained studying the restriction and constraint no-
tions. Basically, a restriction restrains the number of models of a logical theory
and allow inference of additional information. This is the approach generally
adopted to reason with DLs and in particular in OWL. However, a constraint

Preference-Based Integration of Relational Databases 859

specifies conditions which may not be violated by an interpretation of the logical
theory. So constraints do not allow inference of additional information but can
be used to check the information with respect to certain conditions. This is the
approach usually adopted by databases.

Ideally, we would like to exploit both restrictions and constraints in order to
integrate consistently the sources in the knowledge base. So, in addition to the
DL checking whether B satisfies K, we need to adopt a database-like constraint
approach. In order to fulfill such an approach, we introduce the Unique Name
Assumption (UNA), i.e. requiring each object instance to be interpreted as a
different individual. After this constraint checking step, UNA is relaxed in order
to free DL knowledge bases from this restrictive aspect.

The introduction of UNA is suported by the built-in dbom:id property. This
property is considered as an object property and needs to satisfy the following
axioms:

(4) ∀x, y1, y2(¬dbom : id(x, y1) ∨ ¬dbom : id(x, y2) ∨ y1 = y2)
(5) ∀x, y1, y2(¬dbom : id(y1, x) ∨ ¬dbom : id(y2, x) ∨ y1 = y2)

These constraints state that the domain of an object property is identified by a
single range (4) and that a range identifies a single domain (5). The implementa-
tion of the DBOM system, the dbom:id property is defined in terms of cardinality
constraints of OWL properties: owl:functionalProperty, i.e. equivalent to (4) and
owl:inverseFunctionalProperty, i.e. equivalent to (5). Using this approach, we are
still able to design ontologies in the decidable fragment of OWL, namely OWL
DL.

The notion of B satisfying the mapping M with respect to C depends on
the interpretation of the mapping assertions. In the context of our solution, we
consider the GAV mappings to be sound, i.e. data that it is possible to retrieve
from the sources through the mapping are assumed to be a subset of the intended
data of the corresponding target schema [13]. In this case, there may be more
than one legal knowledge base that satisfies the mapping M with respect to C.

It is generally considered that DL knowledge bases can be understood as
incomplete databases [15]. And there is a general agreement that in the context
of incomplete databases, the ’correct’ answers are the certain answers, that is,
answers that occur in the intersection of all ’possible’ databases. We adopt this
notion for query answering in the DBOM system and use the results that the
evaluation of conjunctive queries on an arbitrarily chosen universal solution gives
precisely the set of certain answers and that universal solution are the only
solutions that have this property [7].

Example 2. We consider the D1 system from Example 1 and let C1 be a source
model for D1 such that the set of facts holding in C1 is as follows:

{drug(33316809,Nodex,1.69), ephMRA(R5D1,’Plain antitussives’),
ephDrug(3316809,’R5D1’)}

The representation of the ABox of K1 is now proposed as a graph:

860 O. Curé and F. Jochaud

Drug_3316809

dbom:id

NODEX Enfant 15 mg/10 ml

hasDrugName

1.69

hasPrice

EphMRA_R5D1

hasEphMRA

3316809

hasDrugCode

R5D1

hasEphCode

Plain Antitussives

hasEphName

Fig. 1. Graph representation of K1’s ABox

3 Enriching the Framework with Preferences over the
Views

According to the semantics proposed in Section 2, it may be the case that data
retrieved from the sources cannot satisfy both the target ontology schema and
the mapping. Example 3 underlines such a violation where data coming from
different sources are mutually inconsistent.

Example 3. Let D2 = (S2,K2,M2) be a DBOM system where S2 enriches S1

with a new relation drug’ of arity 4 and which contains drug codes, names, prices
and ephMRA codes. Let C2 be a source model for D2 such that the set of facts
holding in C2 is as follows:

{drug(3316809,Nodex,1.69), drug’(3316809,Nodex,2.19,R5D2),
ephMRA(R5D1,’Plain antitussives’), ephDrug(3316809,’R5D1’)}

The ontology schema K2 is identical to K1 and the mapping M2 is defined as:

(6) Drug(x, y, z) ← drug(x, y, z)
(7) Drug(x, y, z) ← drug′(x, y, z, w)

(8) EphMRA(x, y) ← ephMRA(x, y)
(9) hasEphMRA(x, y) ← ephDrug(x, y)

(10) hasEphMRA(x, y) ← drug′(x, v, w, y)

The processing of M2 violates the axioms associated with the dbom:id property
as a Drug individual (the Nodex drug) may be created from assertions (6) and
(7). In such a situation, we propose to correct inconsistencies using preferences
over views of the mapping M.

Preferences have some of their origins in decision theory where they support
complex, multifactorial decision processes [8]. Preferences have also motivated
researches in the field of databases starting with [12]. In [10,3], the authors
distinguish between quantitative and qualitative approaches to preferences. In
the quantitative approach, a preference is associated with an atomic scoring
function. This approach usually restricts the approach to total orderings of result

Preference-Based Integration of Relational Databases 861

tuples. The qualitative approach is more general than the quantitative as it
proposes partial ordering of results.

Definition 2. In the D system, a preference function is a function that maps
views of concrete ontology members to a score between 0 and 1. A score value of
0 is set by default and corresponds to indifference from the user.

We now present the reasons for a quantitative approach in the D system:

– it responds effectively to our need to correct inconsistencies when a given
individual, identified by a given key, may be generated from several map-
ping assertions. This is the case in D2 where the Nodex drug may be either
produced from assertion (6) or (7). The resulting individuals would be char-
acterized by a relation with EphMRA code R5D1 (respectively R5D2) and
with a price of 1.69 (respectively 2.19) euros.

– the task of setting preferences is only required for ontology members defined
by different source views. Thus the total order aspect of this quantitative
approach does not make the preference setting task more restrictive.

– in practice, the task of setting preferences to views of a given concrete mem-
bers may not be complex for a mapping designer. User responsible for the
design of mappings generally know the sources well and are able to tell which
source is more reliable to others.

Example 4. The mapping of Example 3, M2 can now be enriched with prefer-
ences:

(11) Drug(x, y, z) ← drug(x, y, z), pref=1
(12) Drug(x, y, z) ← drug′(x, y, z, w)

(13) EphMRA(x, y) ← ephMRA(x, y)
(14) hasEphMRA(x, y) ← ephDrug(x, y), pref=1

(15) hasEphMRA(x, y) ← drug′(x, v, w, y)

Given this mapping and its preferences, Drug individuals coming from the exe-
cution of assertion (11) are preferred to those of assertion (12). The same mecha-
nism is adopted for assertion (14) over assertion (15) for the hasEphMRA object
property. The preferences on assertions (12) and (15) are assumed to be 0 ac-
cording to the indifference default assumption. Finally, assertion (13) does not
need a preference value as it is the only assertion in M2 for the EphMRA con-
cept. Thus the processing of mapping D2 with source model C2 results in the
same graph as Example 1, namely Figure 1.

4 Implementation

In order to propose a user-friendly and efficient environment for the design of
schema mappings, we have implemented a Protégé plug-in [4] which enables via
interactions with relational database schemas and SQL queries (i) the creation
from scratch of an ontology and (ii) the enrichment of a given ontology. In this

862 O. Curé and F. Jochaud

Fig. 2. Protégé and the DBOM plug-in

context, the definition of a mapping corresponds to associate SQL queries to DL
concepts and roles (Figure 2) and to enrich these elements with assertions using
the standards OWL Protégé tabs, i.e. OWLClasses and Properties.

In this plug-in, the validation of a mapping schema implies the recording of
(i) the mapping file which is serialized in an XML file, (ii) the DL TBox which
is recorded using the Protégé API, and (iii) the DL ABox which is the result
of processing the mapping in a DBOM system. This plug-in is implemented in
Java and uses Hewlett-Packard’s Jena API.

We evaluated the DBOM system and its Protégé plug-in on a drug related
medical informatics application. Our approach enabled design and instantiation
of an OWL DL knowledge base of the drug domain which now supports inferences
on a self-medication application [5]. The readiness of the plug-in was appreciated
by all project members, i.e. computer scientists and health care professionals, and
enabled to integrate drug related data from more than ten sources (AFSAPPS,
EphMRA, Self, etc. . .).

5 Conclusion

In this paper, we have introduced and formalized a solution to enable the mi-
gration of data stored in multiple data sources to a DL knowledge base. Because
data from the sources may not be retrieved and shared on-demand at query
time, we have opted for a materialization of the migrated data.

Preference-Based Integration of Relational Databases 863

In order to deal with possible cases of inconsistencies, we support the setting
of preferences over the views of the mapping. This approach is particularly useful
when several sources are required to cover a domain, e.g. the french drug domain.

We believe that the approach presented in this work can be extended in several
ways. First, we can refine the notion of preference at the view level to preference
at the attribute level over the views. Using this approach of preferences, it will
be easier to design fine-grained ABoxes.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, Cambridge (2003)

2. Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases. In:
Chomicki, J., Saake, G., van der Meyden, R. (eds.) Logics for emerging appli-
cations of databases(Chapter in book), Springer, Heidelberg (2003)

3. Chomicki, J.: Preference Formulas in Relational Queries. ACM Trans. Database
System 28, 427–466 (2003)

4. Curé, O., Squelbut, R.: Integrating data into an OWL Knowledge Base via the
DBOM Protégé plug-in. In: Proc. of the 9th International Protégé conference
(2006)

5. Curé, O.: XIMSA: eXtended Interactive Multimedia System for Auto-medication
IEEE Computer-Based Medical System Symposium (CBMS), pp. 570–575 (2004)

6. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. 2004. W3C
Recommendation (February 10, 2004)

7. Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data exchange: semantics and query
answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 207–224. Springer, Heidelberg (2002)

8. Fishburn, P.C.: Utility Theory for Decision Making. Wiley, Chichester (1970)
9. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.

Springer, Heidelberg (2003)
10. Kieβling, W.: Foundations of Preferences in Database Systems. In: Proc. of the

28th International Conference on Very Large Data Bases (VLDB). pp. 311–322
(2002)

11. Kolaitis, P.: Schema mappings, data exchange, and metadata management. In:
Proc. ACM Symposium on Principles of Database Systems (PODS), pp. 61–75.
ACM Press, New York (2005)

12. Lacroix, M., Lavency, P.: Preferences: Putting More Knowledge into Queries. In:
Proc. 13th International Conference on Very Large Data Bases (VLDB). pp. 217–
225 (1987)

13. Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. ACM Sympo-
sium on Principles of Database Systems (PODS 02), pp. 233–246 (2002)

14. Levesque, H., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press, Cam-
bridge (2001)

15. Levy, A.Y.: Obtaining Complete Answers from Incomplete Databases. In: Proc.
VLDB’96. pp. 402–412 (1996)

16. Wijsen, j.: Condensed representation of database repairs for consistent query an-
swering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 378–393. Springer, Heidelberg (2002)

A Context-Based Approach for the Discovery of

Complex Matches Between Database Sources

Youssef Bououlid Idrissi and Julie Vachon

Department of Computer Science and Operational Research
University of Montreal, CP 6128, succ. Centre-Ville

Montreal, Quebec, H3C 3J7, Canada
{bououlii,vachon}@iro.umontreal.ca

http://www.iro.umontreal.ca

Abstract. The elaboration of semantic matching between hetero
geneous data sources is a fundamental step in the design of data sharing
applications. This task is tedious and often error prone if handled man-
ually. Therefore, many systems have been developed for its automation.
But, the majority of them focus on the problem of finding simple (one-
to-one) matching. This is likely due to the fact that complex (many-to-
many) matching raises a far more difficult problem since the search space
of concept combinations can be tremendously large. This article presents
Indigo, a system which can compute complex matching by taking into
account data sources’ context. First, it enriches data sources with com-
plex concepts extracted from their respective development artifacts. It
then computes a mapping between the two data sources thus enhanced.

Keywords: complex semanticmatching, contextanalysis,multi-strategy.

1 Introduction

Semantic matching1 consists in finding semantically meaningful relationships
across data stored in heterogeneous sources. When done manually, this task can
prove to be very tedious and error prone [4]. To date, many systems [1,5] have
addressed the automation of this stage. However, most solutions confine them-
selves to simple matching (one-to-one) (e.g. postal code → zip code) although
complex matching (many-to-many) (e.g. concat(street,city) → address) is fre-
quently required in practice. The little work addressing complex matching can
be explained by the greater complexity of finding complex matches than of dis-
covering simple ones. In fact, while the search space of matching candidates is
finite in the case of simple matching (n.b. it is indeed limited by the product of
the number of concepts in data sources), it can be extremely large in the case of
complex matching. Indeed, one can imagine an important number of operators
(concat, +, *, ...) to combine concepts of a data source, therefore giving rise to
many possible combinations. To cope with this challenging problem, this article

1 Also called semantic alignment, mapping or simply matching.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 864–873, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.iro.umontreal.ca

A Context-Based Approach for the Discovery of Complex Matches 865

introduces Indigo
2, a system that avoids searching such large spaces of possible

concept combinations. Rather, it implements an innovative solution, based on
the exploration of the data sources’ informational context, to identify semanti-
cally pertinent combinations worth to be matched. The informational context
of a data source is composed of all the available textual and formal artifacts
documenting, specifying, implementing this data source. It therefore conceals
precious supplementary information which can provide useful insights about the
semantics of data sources’ concepts.

1.1 Informational Context

Indigo distinguishes two main sets of documents in the informational context
(cf. [2] for details). The first set, called the descriptive context, gathers all the
available data source specification and documentation files produced during the
different development stages (e.g. requirement description). These are usually
written in some informal or semi-formal style. The second set is called the op-
erational context. It is composed of formal artifacts such as programs, forms
or XML files. In formal settings, significant combinations of concepts are more
easily located (e.g. they can be found in formulas, function declarations, etc.).
This is one of the reason why Indigo favors the exploration of the operational
context for the extraction of complex concepts.

1.2 Complex Concept Mining

Each complex concept extracted from the operational context is to be repre-
sented by a triplet <name, dataType, conceptComb> whose components respec-
tively denote the name of the complex concept, its data type and a combination
of concepts to which it is associated (e.g. <totalprice, float, price*(1+taxes)>).
To search for complex concepts, Indigo relies on a set of context analyzers each
specialized to work over a particular category of artifacts (e.g. programs, forms,
etc.). Each analyzer applies a set of heuristic extraction rules to mine complex
concepts. Once extracted, complex concepts are added to data sources as new
candidates for the matching phase. In Indigo, the enhancement of a data source
with information gathered from its context is called data source enrichment. In-

digo was used for the semantic matching of four database schemas taken from
four open-source e-commerce applications: Java Pet Store [9], eStore [12], Pet-
Market [10] and PetShopDNG [11]. In all cases, complete source code files were
freely available and could thus be used for our experiments.

The rest of the paper is organized as follows. Section 2 surveys recent work
on complex semantic matching. Section 3 describes the current implementation
of Indigo’s Context Analyzer and Mapper modules. Explanations focus on spe-
cific modules required for complex concept mining and matching. Experimental
results showing Indigo’s performance in computing complex matches are pre-
sented and commented in Section 4. Concluding remarks and comments on future
work are given in Section 5.
2 INteroperabilty and Data InteGratiOn.

866 Y. Bououlid Idrissi and J. Vachon

2 Related Work

To this day, most tools and approaches dealing with semantic matching have
solely addressed the ”one-to-one” mapping aspect of the problem. To the best
of our knowledge, the only work directly tackling complex matching is described
in [6], [7] and [8]. An overview of these respective approaches is given below.

In [6], authors advocate an approach which maps data sources to some in-
termediary handcrafted domain ontology in order to facilitate the discovery of
complex matches. This domain ontology defines generic complex concepts along
with their relationships (e.g. aggregation, generalization or specialization) to
other concepts. This approach globally performs well but requires the manual
development of a domain ontology for each specific application.

In [7], a framework called DCM is described which exploits co-occurrence
patterns across database query interfaces over the Internet to discover complex
semantic relationships. Even if it performs with good accuracy, DCM does not
provide still an efficient solution to the complex matching problem. In fact, many
complex combinations (e.g. total = (1 + taxeRate)∗unitPrice) have few chance
from being identified through co-occurrences in query interfaces.

Finally, authors in [8] presents the iMAP system which discovers complex
concepts by searching the space of all the possible concept combinations. To
make the search effective the system relies on several search modules, each one
exploring a subspace composed of a single type of combinations (e.g. textual or
arithmetic combinations subspaces). Besides, iMAP uses an iterative technique
called Beam Search in order to control the search for matching combinations.
Although supporting an interesting approach, iMAP still presents some limi-
tations. For instance, iMAP’s iterative Beam Search algorithm may prevents
relevant combinations from being found since it limits the maximal number of
computation iterations.

Many other works [1,5] have addressed the general semantic matching prob-
lem. Indigo belongs to the category of systems relying on multiple strategic
matchers [8]. It distinguishes itself by taking into account the informational
context of data sources in its alignment process and by proposing a particu-
larly flexible hierarchical matching architecture. Moreover, it can generate both
simple and complex matchings quite efficiently, with no need for specific domain
considerations. From this point of view, Indigo surpasses many limitations of ex-
isting matching systems. Nevertheless, the fact of totally relying on data sources’
context to find combinations gives Indigo some limitations. In fact, this makes
Indigo dependent of the data sources’ contexts availability in practice. In the
other hand, even when available, not always that contexts contain all relevant
combinations. What prevents Indigo from identifying all complex matches.

3 Indigo’s Architecture

To handle both context analysis and semantic matching, Indigo has an architec-
ture composed of two main modules: a Context Analyzer and a Mapper module.

A Context-Based Approach for the Discovery of Complex Matches 867

2DS 2C+

1CDS1 +

Context
analyzer

DS’
1

DS’
2

Mapper mapping

Data sources (DS) with their
associated contexts (C) Enriched data sources (DS)

i
i i

’

Fig. 1. Indigo’s matching process

Figure 1 shows the intervention of these two modules within Indigo’s general
matching process. The Context Analyzer module takes the data sources to be
matched along with their related contexts and proceeds to their enrichment be-
fore delivering them to the Mapper module for their effective matching.

3.1 Context Analyzer

The Context Analyzer comprises two main modules, each being specialized in
a specific type of concept extraction and enrichment. 1) The Concept name
collector [3] explores the descriptive context of a data source to find (simple)
concept names which can be related, by vicinity in a phrase for example, to
the ones found in the data source’s schema. 2) The Complex concept extractor
analyzes the operational context to extract complex concepts. In both cases,
the new concepts found are integrated to respective data sources to enrich the
semantics of schemas’ concepts. These two analyzer modules are supervised by a
head meta-analyzer which coordinates their respective tasks and is in charge of
data source enrichment. Figure 2a) shows the current architecture of our Context
Analyzer. Basic analyzers composing the Complex concept extractor are depicted
by white boxes. Indigo’s basic analyzers currently deal with forms, programs
and SQL requests.

Generator
Complex concept

Arithmetic
Parser

Concepts
Linker

Head
meta−analyzer

Concept name
collector

Complex concept
extractor

SQL
Analyzer

Program
Analyzer

Form
Analyzer

Name−based
Aligner

Whirl−based
Aligner

Content−based
Coordinator

Statistic−based
Aligner

Supervisor

Fig. 2. a) A Context Analyzer and b) a Mapper module

Each analyzing module implements some set of heuristic rules. These rules can
readily be modified or extended to answer the specific needs of the documents
being analyzed. All modules within the Context Analyzer are therefore extensible
and can be adapted to deal with different kinds of data sources’ contexts. The
sequel discusses the use of heuristic extraction rules as well as the implementation
of basic and meta analyzers involved in complex matching.

868 Y. Bououlid Idrissi and J. Vachon

Basic Analyzers. Basic analyzers are responsible for the effective mining of the
operational context. They rely on heuristic rules for the extraction of complex
concepts. An extraction rule has the following shape:

ruleName :: SP1||SP2...||SPn → extractionAction

The left part is a disjunction of syntactic patterns (noted SP) that basic an-
alyzers try to match3 when parsing a document. A SP is a regular expression
that can contain pattern variables name, type, exp1, exp2, ... expn. When a
basic analyzer recognizes one of the SPs appearing on the left-hand side of a
rule, pattern variables are assigned values (by pattern matching) and the cor-
responding right-hand side action of the rule is executed. This action builds a
complex concept < name, type, concept combinaison > using the pattern vari-
ables’ values. As an example, let’s consider the heuristics according to which
an accessor method within a class is likely to contain a relevant concept com-
bination in its return statement. This heuristics is actually implemented by our
Program analyzer using an extraction rule

– whose left-hand side contains a set of SPi (1 ≤ i ≤ n) recognizing accessor
methods (e.g. in Java: SP1 = {public type getname * return exp1}, or in
C#: SP2 = {public type name { get * return exp1}).

– whose right-hand side is a function returning a complex concept <name,
type, exp1> for the matched SPi.

get {
if (firstName.Length>0)

return firstName + ’ ’ + lastName;
else

return lastName;
}

}

public string fullName {

 return quantity * unitCost;
}

public double getTotalCost() {

Fig. 3. Part of a C# program of the eStore context and part of java program of the
PetStore context

Each basic analyzer applies its own set of heuristic extraction rules over each of
the artifacts it is assigned. Figure 3 shows two program extracts, one in Java and
the other in C#. When applied to these extracts, the heuristic rule presented
above produces these two complex concepts: <fullname, string, firstname+’
’+lastname> and <TotalCost, double, quantity∗unitCost>. The following para-
graphs give an overview of the heuristic rules implemented by each of our current
basic analyzers.

Program analyzer. As just said, a program analyzer is responsible for pars-
ing files containing source code. In addition to the rule about accessors and
update methods, this analyzer implements another heuristics concerning class

3 N.b. This kind of text matching is called ”pattern matching.”

A Context-Based Approach for the Discovery of Complex Matches 869

constructors. We agree that a constructor’s role, in a class C, generally consists
in building a composite object of type C (e.g. creditCard) using the components
given in parameter (e.g. cardNumber, expiryDate, cardType). The aggregation of
these parameters is therefore likely to form a complex concept for the concept
represented by C.

Form analyzer. A form analyzer is a module specialized in the discovery of
complex concepts emerging from forms. Its strategy consists in exploiting the
intuitive semantics associated to tables found in forms. As an example, let’s
consider part of a form used in the eStore application. It presents a tabular
structure composed of two columns. The first column contains the word Street
while the second column is composed of two input fields, respectively labeled
Address1Label and Address2Label, aligned one above the other. The form ana-
lyzer recognizes this typical tabular pattern. The concept appearing in the first
column is interpreted as a composite concept defined by the concatenation of
the two components appearing in the next column.

SQL analyzer. A SQL analyzer is specialized in the parsing of SQL requests.
Its extraction rules search SELECT statement queries for clauses containing ex-
pressions which are likely to be concept combinations, like in this case: SELECT
street, concat(address line 1, address line 2), FROM Person. If no
combination is found in a SELECT query, a new complex concept is never-
theless generated by simply concatenating all the concepts found in the clauses
composing this query.

Meta-Analyzers. Each meta-analyzer is in charge of a set of artifacts com-
posing the informational context. Its role essentially consists in classifying these
artifacts and assigning each of them to a relevant child. To do so, it applies
heuristics like checking file name extensions or parsing file internal structures.
Here follows a short description of meta-analyzers implemented in Indigo. Given
the scope of this paper, the Concept name collector is not be presented here since
it is not directly involved in complex matching.

Head meta-analyzer. The meta-analyzer module at the head of the Context
Analyzer is in charge of the Concept name collector and the Complex concept
extractor coordination. It enhances data sources with the simple and complex
concepts respectively delivered by these two modules. For complex concepts, the
enrichment step not only requires the name of the enriching concepts but also the
values4 associated to them. These values are assessed by querying the database
using SQL SELECT statements.

Complex concept extractor. The Complex concept extractor coordinates actions
of the three modules respectively specialized in the extraction of complex con-
cepts from programs, forms and SQL requests. In addition, it relies on an internal
module, called complex concept generator (shown on Fig.2), to perform the two
following tasks ensuring the consistency of data source enrichment:
4 Concepts are more likely to be similar when they share similar values.

870 Y. Bououlid Idrissi and J. Vachon

– Validation and harmonization: When a complex concept has a numeric type,
an arithmetic parser is used to analyze its concept combination expression.
If any problem is encountered during the parsing, the complex concept is
rejected. As for string complex concepts, their corresponding concept com-
bination is usually given as a list of concepts separated by commas or ’+’
operators. Each concept is checked to be a simple literal word or a program
constant. A concatenation expression, suiting the format of the data source
to be enriched, is then created from these concepts.

– Concept linkage: Concept names found in complex concepts provided by
basic analyzers must be replaced by corresponding concepts of the data
source. This conformity relation is checked using the JaroWinkler similarity
metric. A similarity threshold is arbitrarily fixed to a high value (e.g. fixed
to 0.85) to solely retain combinations of concepts which can each be matched
to some concept of the data source. As soon as a complex concept comprises
a concept name which can not be matched, it is rejected.

3.2 Mapper Module

The current architecture of our Mapper implementation is shown on Figure 2b).
In addition to the supervisor, it comprises three aligners and one coordinator
hierarchically organized. An overview of each module is given below.

Name-based aligner. A name-based aligner proposes matches between concepts
having similar names. Name similarity is measured using the JaroWinkler lexical
similarity metric [5].

Whirl-based aligner. Given a source concept s, the whirl-based aligner tries to
identify the target concept t whose instance values best matches the ones of s.
It uses an adapted version of a so-called WHIRL technique which is a sort of
nearest neighbor classification algorithm developed by Cohen and Hirsh [13].

Statistic-based aligner. The statistic-based aligner also compares concepts’ con-
tents. The content of a concept is represented by a normalized vector describing
seven characteristics: three data type status bits (string, numeric and date) and
four statistical information (minimum, maximum, average and variance values).
The similarity between two concepts is given by the euclidean distance separat-
ing their respective characteristic vectors.

Content-based coordinator. The content-based coordinator combines matches
proposed by its subordinate whirl-based and statistic-based aligners.

4 Experimental Results

Experiments were conducted over four open-source systems related to the do-
main of pet sale. Our main objective was to get a first evaluation of Indigo’s
performance with regards to complex concept mining and complex matching.

A Context-Based Approach for the Discovery of Complex Matches 871

4.1 Context Mining Performance

Two measures, respectively called cohesion and relevance, were defined to eval-
uate Indigo’s Context Analyzer performance.

– Cohesion. A complex concept is said to be cohesive if it presents a semanti-
cally sound combination of concepts. For instance, a complex concept which
is associated to concept combination concat(first name, unit price) can’t be
considered cohesive. Indeed, the concatenation of a person’s first name with
the unit price of a product does not convey any commonly accepted mean-
ing. The cohesion measure indicates the percentage of extracted complex
concepts which are cohesive.

– Relevance. A complex concept is relevant if it appears in the reference map-
ping. Given two data sources to be matched, the relevance measure thus
computes the proportion of complex concepts in the reference mapping that
were effectively mined by the Context Analyzer.

Table 1. Performance results of the Context Analyzer mining applications’ context for
complex concepts

complex extracted complex concepts Performance
Appli-
cation

tables concepts concepts total cohesive relevant cohesion relevance

PetStore 13 86 7 40 32 5 80% 71%

eStore 15 73 3 23 18 3 78% 100%

PetShop 5 41 2 8 7 2 87% 100%

PetMarket 11 71 3 11 8 2 73% 67%

total 44 271 15 82 65 12 79% 80%

To improve performances and eliminate noisy side effects, the Context An-
alyzer resorts to two filters. The first one (introduced in Section 3.1) consists
in keeping only the combinations for which all concepts have been successfully
linked to a data source with a similarity exceeding a predefined threshold. As
for the second filter, it simply rejects those excessively large combinations whose
number of concepts exceeds a certain threshold (n.b. lengthy combinations are
likely to lack cohesion). Nevertheless, it is worth noting that in the specific case of
concat expressions, large combinations can be separated into shorter ones. This
is done by grouping adjacent concept names that share a same prefix or suf-
fix. For instance, the following expression concat(street1, street2, zip, city, state,
country) can be divided into the two following ones concat(street1, street2) and
concat(zip, city, state, country). The reason for this separation is to retrieve a
larger number of cohesive complex concepts that would otherwise be eliminated
by the second filter. Table 1 shows the results of our experiments with com-
plex concept mining. The two filters’ thresholds were respectively fixed to 0.8
(similarity) and 5 (nb of concepts). Before the application of filters, we observed
that 277 complex concepts were initially extracted from the PetStore’s context

872 Y. Bououlid Idrissi and J. Vachon

which recorded 1123 documents. In contrast, 48 complex concepts were discov-
ered in the eStore application whose context contained only 72 documents. This
constitutes an interesting result in itself since it suggests that the efficiency of
complex concepts discovery may essentially depend, not on the quantity, but
on the relevance of the data source’s context artifacts. As indicated in Table 1,
when filters were applied, the Context Analyzer discovered a total of 82 complex
concepts among which 79% were cohesive. As for relevant complex concepts, 12
were discovered on a maximal total of 15, for a relevance evaluation of 80%. It is
important to underline the fact that our Context Analyzer was not designed for
the specific analysis of the given applications. Genericity and extensibility are
fundamental qualities of the Context Analyzer ’s architecture. Indeed analyzer
modules are designed to deal with a general ”category” of documents rather
than with a specific file format. For instance, the implementation proposes a
single Program analyzer supporting all C#, Java and coldfusion programs. With
only five heuristic extraction rules being applied, the Context Analyzer already
achieves good mining performances as shown by results in Table 1.

Table 2. Performance results for the mapping

global matching complex matching
prec1 rec1 f-m1 prec2 rec2 f-m2 prec rec f-m

PetStore/eStore 70% 56% 62% 87% 49% 63% 100% 100% 100%

PetStore/PetShop 67% 62% 64% 68% 66% 67% 100% 40% 57%

PetStore/PetMarket 54% 84% 66% 55% 86% 67% 100% 50% 67%

eStore/PetShop 83% 64% 73% 87% 68% 77% 100% 100% 100%

eStore/PetMarket 67% 69% 68% 68% 70% 69% 100% 100% 100%

PetShop/PetMarket 72% 79% 75% 76% 79% 78% 100% 100% 100%

Average 69% 69% 69% 73% 69% 70% 100% 82% 87%
N.b. prec: precision; rec: recall; f-m: f-measure; 1: without c.c. enrichment i.e.

simple matching only; 2: with c.c. enrichment i.e. simple and complex matching;

4.2 Complex Matching Evaluation

For global matching runs (i.e. computing both simple and complex matchings),
experiments were executed with and without taking into account the enrichment
of data sources with complex concepts. For complex matching runs, experiments
necessarily required data sources to be previously enriched with complex con-
cepts. Among the complex concepts that were mined, only cohesive ones were
used. The performance of each computed alignment was evaluated using the
f-measure. Table 2 shows that the Mapper module performed well with an av-
erage f-measure of 87% for the discovery of complex matches. We can see that
enrichment with complex concepts does not work against single concept match-
ing (prec1 ≤ prec2 → no loss due to undesirable noise effects). Our expectations
are that concept enrichment should contribute positively to ”global” semantic
matching. We therefore plan to extend enrichment to both single and complex
concepts and study its effect on single and complex matching.

A Context-Based Approach for the Discovery of Complex Matches 873

5 Conclusion

We proposed Indigo, a innovative solution for the discovery of complex matches
between database sources. Avoiding to search the unbounded space of possible
concept combinations, Indigo discovers complex concepts by searching through
data sources’ artifacts. Newly discovered complex concepts are added to data
sources as new matching candidates for complex matching. The use of Indigo

for the matching of four open-source e-commerce applications emphasizes the
pertinence of this approach. Experiments showed that Indigo could perform
very well on complex concept extraction by discovering 80% of relevant complex
concepts. Moreover, its efficiency for complex matching was stressed by an f-
measure of 87%.

References

1. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. VLDB Journal 10(4), 334–350 (2001)

2. Bououlid, I.Y., Vachon, J.: Context Analysis for Semantic Mapping of Data Sources
Using a Multi-Strategy Machine Learning Approach. In: Proc. of the International
Conf. on Enterprise Information Systems (ICEIS05), Miami, pp. 445–448 (2005)

3. Bououlid, I.Y., Vachon, J.: A Context-Based Approach for Linguistic Matching. In:
Proc. of the International Conf. on Software and Data Technologies (ICSOFT07),
Barcelona, Spain (2007)

4. Li, W.S., Clifton, C.: Semantic Integration in Heterogeneous Databases Using Neu-
ral Networks. In: Proc. of the 20th Conf. on Very Large Databases (VLDB), pp.
1–12 (1994)

5. Euzenat, J., et al.: State of the Art on Ontology Alignment. Part of a research
project funded by the IST Program of the Commission of the European Commu-
nities, project number IST-2004-507482. Knowledge Web Consortium (2004)

6. Xu, L., Embley, D.: Using domain ontologies to discover direct and indirect matches
for schema elements. In: Proc. of the Semantic Integration Workshop (2003)

7. He, B., Chang, K.C.-C., Han, J.: Discovering complex matchings across web query
interfaces: A correlation mining approach. In: Proc. of the SIGKDD conf. (2004)

8. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering
Complex Semantic Matches between Database Schemas. In: Proc. of the ACM
SIGMOD Conference on Management of Data, pp. 383–394. ACM Press, New
York (2004)

9. Sun Microsystems (2005),
http://java.sun.com/developer/releases/petstore/

10. Adobe (2007), http://www.adobe.com/devnet/blueprint/
11. DotNetGuru.org (2003), http://www.dotnetguru.org/modules.php
12. McUmber, R.: Developing pet store using rup and xde. Web Site (2003)
13. Cohen, W., Hirsh, H.: Joins that Generalize: Text Classification using Whirl. In:

Proc. of the Fourth Int. Conf. on Knowledge Discovery and Data Mining (1998)

http://java.sun.com/developer/releases/petstore/
http://www.adobe.com/devnet/blueprint/
http://www.dotnetguru.org/modules.php

Ontology Modularization for Knowledge

Selection: Experiments and Evaluations�

Mathieu d’Aquin1, Anne Schlicht2, Heiner Stuckenschmidt2, and Marta Sabou1

1 Knowledge Media Institute (KMi), The Open University, Milton Keynes, UK
{m.daquin, r.m.sabou}@open.ac.uk
2 University of Mannheim, Germany

{anne, heiner}@informatik.uni-mannheim.de

Abstract. Problems with large monolithical ontologies in terms of
reusability, scalability and maintenance have led to an increasing inter-
est in modularization techniques for ontologies. Currently, existing work
suffers from the fact that the notion of modularization is not as well un-
derstood in the context of ontologies as it is in software engineering. In
this paper, we experiment on applying state-of-the-art tools for ontology
modularization in the context of a concrete application: the automatic
selection of knowledge components to be used for Web page annotation
and semantic browsing. We conclude that, in a broader context, an eval-
uation framework is required to guide the choice of a modularization
tool, in accordance with the requirements of the considered application.

Keywords: Ontology modularization, partitioning, module extraction.

1 Introduction

Modularization is a crucial task to allow ontology reuse and exploitation on the
Semantic Web. The notion of modularization comes from Software Engineering
where it refers to a way of designing software in a clear, well structured way that
supports maintenance and reusability. From an ontology engineering perspective,
modularization should be considered as a way to structure ontologies, meaning
that the construction of a large ontology should be based on the combination
of self-contained, independent and reusable knowledge components. In reality,
even if they implicitly relate several sub-domains, most of the ontologies are not
structured in a modular way. Therefore, in order to facilitate the management
and the exploitation of such ontologies, ontology modularization techniques are
required to identify and extract significant modules in existing ontologies.

While there is a clear need for modularization, there are no well-defined and
broadly accepted definitions of modularity for ontologies. Several approaches
have been recently proposed to extract modules from ontologies, each of them
implementing its own intuition about what a module should contain and what
� This work is partially funded by the Open Knowledge (IST-FF6-027253) and NeOn

projects (IST-FF6-027595), and partially supported by the German Science Foun-
dation under contract STU 266/1 as part of the Emmy-Noether Program.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 874–883, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Ontology Modularization for Knowledge Selection 875

should be its qualities, generally without making this intuition explicit. This lack
of consensus and of clarity hinders the application of these techniques in concrete
scenarios, leading to difficulties in choosing the appropriate one. Moreover, to
our knowledge, no other study has focused on the evaluation and comparison of
ontology modularization techniques.

Our hypothesis is that there is no universal way to modularize an ontology and
that the choice of a particular technique should be guided by the requirements
of the considered application. We believe that modularization criteria should be
defined in terms of the applications for which the modules are catered. For this
reason, we detail in this paper some experiments conducted with several ontology
modularization tools on a particular application: the selection of relevant knowl-
edge components from online available ontologies. The goal is to characterize the
requirements of this particular application using criteria from the literature on
ontology modularization, and thus, to analyze the results of existing ontology
modularization techniques regarding these requirements. In this way, we aim at
better understanding the fundamental assumptions underlying the current mod-
ularization techniques. This work can be seen as a first step towards a broader
framework, guiding application developers in choosing the appropriate technique
and the designers of techniques in further developments.

The paper is structured as follows. Section 2 briefly describes the concrete
scenario in which we apply modularization techniques. Section 3 and Section 4
respectively overview ontology modularization techniques and evaluation criteria
that have been proposed in the literature. In Section 5 we evaluate, using the
considered criteria, the results of the application of modularization techniques
on our case-study. We conclude in Section 6 on the need for a comprehensive
evaluation framework for ontology modularizations.

2 A Case-Study for Modularization: The Knowledge
Selection Scenario

Knowledge selection has been described in [1] as the process of selecting the
relevant knowledge components from online available ontologies and has been
in particular applied to the Magpie application. Magpie [2] is a Semantic Web
browser, available as a browser plugin, in which instances of ontology classes are
identified in the current Web page and highlighted with the color associated to
each class. In our current work we are extending Magpie towards open seman-
tic browsing in which the employed ontologies are automatically selected and
combined from online ontologies. As such, the user is relieved from manually
choosing a suitable ontology every time he wishes to browse new content. Such
an extension relies on mechanisms that not only dynamically select appropriate
ontologies from the Web, but also extract from these ontologies the relevant and
useful parts to describe classes in the current Web page.

Our previous work and experiences in ontology selection [3] made it clear that
modularization may play a crucial role in complementing the current selection
techniques. Indeed, selection often returns large ontologies that are virtually

876 M. d’Aquin et al.

Fig. 1. The knowledge selection process and its use for semantic browsing with Magpie

useless for a tool such as Magpie which only visualises a relatively small number
of classes at a time. What is needed instead is that the selection process returns
a part (module) of the ontology that defines the relevant set of terms. These con-
siderations justify the need to extend selection techniques with modularization
capabilities. In Figure 1 we depict the three major generic steps of the knowledge
selection process that integrates ontology selection, modularization and merg-
ing. We focus in this paper on applying existing techniques for the second step
of this process: ontology modularization.

3 Modularization Techniques

We consider an ontology O as a set of axioms (subclass, equivalence, instantia-
tion, etc.) and the signature Sig(O) of an ontology O as the set of entity names
occurring in the axioms of O, i.e. its vocabulary.

In the following, we deal with several approaches for ontology modulariza-
tion, having different assumptions about the definition of an ontology module.
Therefore, we define an ontology module in a very general way as a part of
an ontology: a module Mi(O) of an ontology O is a set of axioms, such that
Sig(Mi(O)) ⊆ Sig(O).

Two different approaches have been considered for the modularization of ex-
isting ontologies: ontology partitioning, which divides an ontology into a set of
modules, and module extraction, which reduces an ontology to a module focusing
on a given set of elements.

3.1 Ontology Partitioning Approaches

The task of partitioning an ontology is the process of splitting up the set of
axioms into a set of modules {M1, · · · , Mk} such that each Mi is an ontology
and the union of all modules is semantically equivalent to the original ontology O.
There are several approaches for ontology partitioning that have been developed
for different purposes. We have chosen to consider only available techniques that
are sufficiently stable:

Ontology Modularization for Knowledge Selection 877

PATO refers to a standalone application described in [4]. The goal of this ap-
proach is to support maintenance and use of very large ontologies by provid-
ing the possibility to individually inspect smaller parts of the ontology. The
algorithm operates with a number of parameters that can be used to tune
the result to the requirements of a given application.

SWOOP refers to the partitioning functionality included in the SWOOP ontol-
ogy editor and described in [5]. This tool partitions an ontology into a set of
modules connected by ε-connections. It aims at preserving the completeness
of local reasoning within all created modules. This requirement is supposed
to make the approach suitable for supporting selective use and reuse since
every module can be exploited independently of the others.

3.2 Module Extraction Approaches

The task of module extraction consists in reducing an ontology to the sub-part,
the module, that covers a particular sub-vocabulary. This task has been called
segmentation in [6] and traversal view extraction in [7]. More precisely, given
an ontology O and a set SV ⊆ Sig(O) of terms from the ontology, a module
extraction mechanism returns a module MSV , supposed to be the relevant part
of O that covers the sub-vocabulary SV (Sig(MSV) ⊇ SV). Techniques for
module extraction often rely on the so-called traversal approach: starting from
the elements of the input sub-vocabulary, relations in the ontology are recursively
“traversed” to gather related elements to be included in the module.

Two module extraction tools are considered here:
KMi refers to a standalone application developed at the Knowledge Media In-

stitute (KMi) of the Open University, for the purpose of the knowledge
selection scenario, as described in [1]. The input sub-vocabulary can contain
either classes, properties, or individuals. The mechanism is fully automa-
tized, is designed to work with different kinds of ontologies (from simple
taxonomies to rich and complex OWL ontologies) and relies on inferences
during the modularization process.

Prompt refers to the module extraction feature of the Prompt toolkit, inte-
grated as a plugin of the Protégé ontology editor, as described in [7]. This
approach recursively follows the properties around a selected class of the
ontology, until a given distance is reached. The user can exclude certain
properties in order to adapt the result to the needs of the application.

It is worth mentioning that the technique described in [6] is also freely available,
but can only be used on the Galen ontology in its current state.

4 Evaluation Criteria for Modularization

In the previous section, we have briefly presented a number of different ap-
proaches for ontology partitioning and module extraction. In this section, we
take a closer look at different criteria for evaluating either the modules resulting
from the application of a modularization technique, or the system implementing
this technique.

878 M. d’Aquin et al.

4.1 Evaluating the Result of Modularization

In [8], the authors describe a set of criteria based on the structure of the modu-
larized ontology and that have been designed to trade-off maintainability as well
as efficiency of reasoning in a distributed system, using distributed modules.

Size. Despite its evident simplicity, the relative size of a module (number of
classes and properties) is among the most important indicators of the efficiency
of a modularization technique. Indeed, the size of a module has a strong influence
on its maintainability and on the robustness of the applications relying on it.

Redundancy. Allowing the modules of a partition to overlap is a common way
of improving efficiency and robustness. On the other hand, having to deal with
redundant information increases the maintenance effort.

Connectedness. The independence of a set of modules resulting from a partition-
ing technique can be estimated by looking at the degree of interconnectedness
of the generated modules. A modularized ontology can be depicted as a graph,
where the axioms are nodes and edges connect every two axioms that share a
symbol. The connectedness of a module is then evaluated on the basis of the
number of edges it shares with other modules.

Distance. It is worth to measure how the terms described in a module move
closer to each other compared to the original ontology, as an indication of the
simplification of the structure of the module. This intra-module distance is com-
puted by counting the number of relations in the shortest path from one entity
to the other. An inter-module distance, counting the number of modules that
have to be considered to relate two entities, can also be envisaged, as a way to
to characterize the communication effort caused by the partition of an ontology.

Several authors also defined criteria for evaluating ontology modules, in gen-
eral focusing on the logical and formal aspects of modularizations (see e.g., [9]).
Logical criteria are of particular importance when the modules resulting of the
modularization techniques are intended to be used in reasoning mechanisms, but
should not be emphasized in our case-study, which focuses on a human interpre-
tation of the module.

4.2 Evaluating the Modularization Tool

In [1] the authors focus on the use of modularization for a particular application.
This leads to the definition of several criteria, most of them characterizing the
adequacy of the design of a modularization tool with respect to constraints
introduced by the application.

Assumptions on the ontology. Most of the existing approaches rely on some
assumptions. For example, those described in [5] and [6] are explicitly made to
work on OWL ontologies, whereas [4] can be used either on RDF or OWL but
only exploits RDF features.

Ontology Modularization for Knowledge Selection 879

Level of user interaction. In many systems the required user entries are limited
to the inputs of the algorithm. In certain cases, some numerical parameters can
be required [4] or some additional procedures can be manually (de)activated [6].
The technique in [7] has been integrated in the Protégé ontology editor to sup-
port knowledge reuse during the building of a new ontology. In this case, modu-
larization is an interactive process where the user has the possibility to extend
the current module by choosing a new starting point for the traversal algorithm
among the boundary classes of the module.

Performance. Most of the papers concerning modularization techniques do not
give any indication about the performance of the employed method (with the
noticeable exception of [6]). Performance is a particularly important element
to be considered when using a modularization technique for the purpose of an
application. Different applications may have different requirements, depending
on whether the modularization is intended to be used dynamically, at run-time,
or as a “batch” process.

5 Experiments

In the scenario described in Section 2, modularization is integrated in a fully
automatic process, manipulating automatically selected online ontologies for the
purpose of annotation in Magpie. In this section, we simulate the process of
knowledge selection on two examples, using four different techniques, in order
to evaluate and compare their results1. The purpose is to characterize the re-
quirements of this particular scenario using the criteria defined in Section 4,
and to show how modularization techniques respond to the selected experiments
regarding these requirements.

As already described in [1], it is quite obvious that module extraction tech-
niques fit better in the considered scenario than partitioning tools. Indeed, we
want to obtain one module covering the set of keywords used for the selection of
the ontology and constituting a sub-vocabulary of this ontology. However, the re-
sult of partitioning techniques can also be used by selecting the set of generated
modules that cover the considered terms. The criteria are then evaluated on this
set of modules as grouped together by union. Furthermore, we primarily focus
on the criteria that appear to be relevant in our scenario: application related
criteria (Section 4.2), the size, and the intra-module distance (Section 4.1).

5.1 Considered Ontologies

We consider two examples, originally described in the context of ontology selec-
tion in [3], where the goal is to obtain an ontology module for the annotation
of news stories. We simulate the scenario described in Section 2 by manually

1 Actual results are available at http://webrum.uni-mannheim.de/math/lski/
Modularization

http://webrum.uni-mannheim.de/math/lski/Modularization
http://webrum.uni-mannheim.de/math/lski/Modularization

880 M. d’Aquin et al.

extracting relevant keywords in these stories, using ontology selection tools2 to
retrieve ontologies covering these terms, and then applying modularization tech-
niques on these ontologies (steps 1 and 2 in figure 1).

In the first example, we consider the case where we want to annotate the
news stories available on the KMi website3. We used the keywords Student,
Researcher, and University to select ontologies to be modularized, and obtain
three ontologies covering these terms:

ISWC: http://annotation.semanticweb.org/iswc/iswc.owl
KA: http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
Portal: http://www.aktors.org/ontology/portal

It is worth mentioning that this example is designed to be simple: we have chosen
a well covered domain and obtained three well defined OWL ontologies of small
sizes (33 to 169 classes).

The second example was used in [3] to illustrate the difficulties encountered by
ontology selection algorithms. Consequently, it also introduces more difficulties
for the modularization techniques, in particular because of the variety of the
retrieved ontologies in terms of size and quality. It is based on the following
news snippet:

“The Queen will be 80 on 21 April and she is celebrating her birthday with a
family dinner hosted by Prince Charles at Windsor Castle”4

Using the keywords Queen, Birthday and Dinner, we obtained the following
ontologies, covering (sometimes only partially) this set of terms:

OntoSem: http://morpheus.cs.umbc.edu/aks1/ontosem.owl
TAP: http://athena.ics.forth.gr:9090/RDF/VRP/Examples/tap.rdf
Mid-Level: http://reliant.teknowledge.com/DAML/Mid-level-ontology.

owl, covering only the terms Queen and Birthday

Compared to Example 1, the ontologies used in Example 2 are bigger (from 1835
classes in Mid-Level to 7596 in OntoSem). Moreover, they contain different
levels of descriptions. For example, OntoSem is a big, complex OWL ontology
containing a lot of properties (about 600), whereas TAP is simple RDFS tax-
onomy without any properties. In that sense, we use Example 1 to assess basic
characteristics of the modularization techniques and then, rely on Example 2 to
show how these characteristics are influenced by the properties of the ontologies.

5.2 Results for Example 1

Running the four modularization techniques on the three ontologies of the first
example allowed us to test how they behave on simple, but yet practical real
word examples.

2 in particular Watson (http://watson.kmi.open.ac.uk).
3 http://news.kmi.open.ac.uk/
4 http://news.billinge.com/1/hi/entertainment/4820796.stm

http://annotation.semanticweb.org/iswc/iswc.owl
http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
http://www.aktors.org/ontology/portal
http://morpheus.cs.umbc.edu/aks1/ontosem.owl
http://athena.ics.forth.gr:9090/RDF/VRP/Examples/tap.rdf
http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
http://watson.kmi.open.ac.uk
http://news.kmi.open.ac.uk/
http://news.billinge.com/1/hi/entertainment/4820796.stm

Ontology Modularization for Knowledge Selection 881

Concerning the level of user interaction, SWOOP is fully automatic and does
not need any parameters besides the input ontology. As a module extraction
tool, KMi requires, in addition to the source ontology, a set of terms from
the signature of the ontology, defining the sub-vocabulary to be covered by the
module. This sub-vocabulary corresponds to the initial terms used for selecting
the ontology: Researcher, Student and University. Pato has to be fine tuned with
several parameters, depending on the ontology and on the requirements of the
application. Here, it has been configured in such a way that modularizations in
which the considered terms are in the same module are preferred. Prompt is an
interactive mechanism, in which the user is involved in each step of the process.
In particular, the class to be covered and the property to traverse have to be
manually selected, requiring that the user has a good insight of the content of the
ontology, can easily navigate in it, and that he understands the modularization
mechanism. When using Prompt, we manually included the input terms and
tried to obtain an (intuitively) good module, without going too deep in the
configuration. Note that, since the system crashed at the early stage of the
process, we did not manage to obtain results for the KA ontology with Prompt.

Concerning performance, apart from Prompt for which this criteria is irrel-
evant, each tool has only taken a few seconds or less on these small ontologies.
Experiences in Example 2 should give us a better insight on this criteria and on
the way techniques behave on different and larger ontologies.

Fig. 2. Relative size of the resulting modules for the first example

Figure 2 shows the size of the resulting modules for each system in terms
of number of classes and properties. It can be easily remarked that SWOOP
generally generates very large modules, containing 100% of the classes for two of
the three ontologies, and an important proportion of the properties: in most of
the cases, SWOOP generates one module with almost the same content as the
original ontology. The tool developed in KMi is focused on generating modules
with a small number of classes (the smallest), so that the ontology hierarchy

882 M. d’Aquin et al.

would be easy to visualize. It nevertheless includes a large proportion of the
properties, in order to keep the definition of the included classes intact. Pato
is optimized to give an appropriate size. It generally operates an important
reduction of the size of the ontology.

The KMi tool relies on mechanisms that “take shortcuts” in the class hierar-
chy5 for reducing the size of the module. It is thus the only one that potentially
reduces the intra-module distance between the considered terms. For example,
in the Portal ontology, by eliminating an intermediary class between Researcher
and Person, KMi has reduced the distance between Researcher and Student,
while keeping a well formed structure for the module.

5.3 Results for Example 2

The second example concerns larger ontologies, with more heterogeneous levels
of description. For example, TAP contains around 5500 classes, but no property
or individual, whereas Mid-Level relies on almost 200 properties and is popu-
lated with more than 650 individuals for less than 2000 classes. These elements
obviously have an important impact on the performance of the modularization
techniques: in the worst cases (Pato and KMi on TAP), it takes several min-
utes to get a modularization and none of the tested techniques can be used at
run-time for such ontologies.

Moreover, some of the techniques are not designed to take into account such
big and heterogeneous ontologies. It is particularly hard for the user to handle
the process of module extraction in Prompt when having to deal with several
thousands of classes and hundreds of properties. We also did not manage to
partition the OntoSem ontology using Pato.

Finally, concerning the size of the resulting modules, the difference between
SWOOP and other techniques is even more significant in this example. Indeed,
because of the poor structure of the considered ontologies (restricted uses of
OWL constructs, few or insufficiently defined properties), KMi and Pato re-
sult in particularly small modules (less than 10 classes), whereas SWOOP still
includes most of the content of the ontology in a single module. Therefore, re-
garding the requirement about the assumption on the ontology, this shows that
techniques are highly influenced by the inherent properties of the ontology to be
modularized and that, in general, they assume a high level of description.

6 Conclusion and Discussion: Towards a Benchmark for
Modularization Techniques

There is currently an important growth in interest concerning modularization
techniques for ontologies, as more ontology designers and users become aware
of the difficulty of reusing, exploiting and maintaining big, monolithic ontolo-
gies. The considered notion of modularity comes from software engineering, but,
5 Instead of including all the super-classes of the included classes, it only considers

classes that relate these entities: their common super-classes.

Ontology Modularization for Knowledge Selection 883

unfortunately, it is not yet as well understood and used in the context of on-
tology design as it is for software development. Different techniques implicitly
rely on different assumptions about modularity in ontologies and these different
intuitions require to be made explicit.

This paper reports on preliminary steps towards the characterization of on-
tology modularization techniques. We reviewed existing modularization tools as
well as criteria for evaluating different aspects of a modularization, and used
them on a particular scenario: the automatic selection of knowledge components
for the annotation of Web pages. The main conclusion of these experiments is
that the evaluation of a modularization (technique) is a difficult and subjective
task that requires a formal, well described framework – a benchmark – taking
into account the requirements of applications. Such a framework would be useful
in two ways: first for application developers, it would provide a guide for choos-
ing the appropriate modularization technique, and second, for the developers
of modularization techniques, it would give directions in which techniques can
be improved with respect to particular scenarios. The definition of this eval-
uation framework requires to build an adequate, well understood dataset for
benchmarking and to improve the definition of the criteria for evaluation, in
particular to allow the expression of requirements concerning subjective notions
like the quality of the module.

References

1. d’Aquin, M., Sabou, M., Motta, E.: Modularization: a Key for the Dynamic Selection
of Relevant Knowledge Components. In: Proc. of the ISWC 2006 Workshop on
Modular Ontologies (2006)

2. Dzbor, M., Domingue, J., Motta, E.: Magpie - towards a semantic web browser.
In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
Springer, Heidelberg (2003)

3. Sabou, M., Lopez, V., Motta, E.: Ontology Selection on the Real Semantic Web:
How to Cover the Queens Birthday Dinner? In: Proc. of the European Knowledge
Acquisition Workshop (EKAW), Podebrady, Czech Republic (2006)

4. Stuckenschmidt, J., Klein, M.: Structure-Based Partitioning of Large Concept Hi-
erarchies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004.
LNCS, vol. 3298, Springer, Heidelberg (2004)

5. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of
OWL Ontologies Using E-Connections. In: Proc. of Description Logic Workshop
(DL) (2005)

6. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification and
Use. In: Proc. of the World Wide Web Conference (WWW) (2006)

7. Noy, N., Musen, M.: Specifying Ontology Views by Traversal. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer,
Heidelberg (2004)

8. Schlicht, A., Stuckenschmidt, H.: Towards Structural Criteria for Ontology Modu-
larization. In: Proc. of the ISWC 2006 Workshop on Modular Ontologies (2006)

9. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A Logical Framework for
Modularity of Ontologies. In: Proc. of the International Joint Conference on Artifi-
cial Intelligence, IJCAI (2007)

The Role of Knowledge in Design Problems

Zdenek Zdrahal

Knowledge Media Institute, The Open University, UK

Abstract. The paper presents design as an example of ill-structured
problems. Properties of ill-structured problems are discussed. French’s
model of design processes is analysed. The role of domain knowledge as
a means for structuring the problem space is explained. Design process
can be viewed as a sequence of problem re-representations gradually
reducing problem indeterminacy. The results are demonstrated on pilot
applications developed as a part of the Clockwork project.

1 Introduction

In this paper we discuss two issues related to knowledge sharing and reuse in
engineering design. First, we show why domain knowledge is an essential com-
ponent of problem solving in design. We will argue that knowledge provides the
necessary structure for problem spaces. Then we will interpret the process of de-
signing tasks as a sequence of problem re-representation where each subsequent
problem specification is better structured. The described topics motivated the
CEC funded Clockwork project whose objectives included the support for reuse
of design knowledge.

2 Design as an Ill-Structured Problem

In mid sixties, when studying planning tasks, Rittel and Webber [18] noticed
that most problems do not follow the linear ”waterfall” model consisting of
data analysis, problem specification and problem solving. In particular, problem
specification and problem solving are mutually intertwined - problem cannot
be completely specified without committing solution to the concrete problem
solving method and the problem solving method cannot be selected without
a complete problem specification. Similar characteristics were also observed in
other domains such as architecture, urban planning or design. The problematic
domains very often included social context. Solving this class of problems is
difficult because at least a conceptual or tentative solution must be assumed as
a part of problem specification. Rittel and Webber call these problems ”wicked”
to distinguish from standard problems which they call ”tame”. According to
Rittel and Webber [18] p.161, the class of wicked problems is characterised by
the following ten properties:

1. There is no definitive formulation of a wicked problem. The information
needed for understanding the problem and formulating its specification de-
pends on the idea of how to solve it.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 884–894, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Role of Knowledge in Design Problems 885

2. Wicked problems have no stopping rules. There is no criterion or test proving
that the solution has been found.

3. Solutions to wicked problems are not true-or-false, but good-or-bad. When
solving mathematical equations, the result is either correct or incorrect i.e.
true or false. Such a dichotomy does not apply to wicked problems. Solutions
could be good, bad, better, worse or perhaps only good enough.

4. There is no immediate and no ultimate test of a solution to a wicked problem.
Solutions may produce unexpected consequences that are not obvious when
the solution attempt is made. These even might not be immediate but they
would emerge sometime in the future.

5. Every solution to a wicked problem is a ”one-shot operation”. There is no
opportunity to undo already implemented solutions.

6. Wicked problems do not have an exhaustive set of potential solutions nor
is there a well-described set of permissible operations that may be included
into the problem solving plan.

7. Every wicked problem unique.
8. Every wicked problem can be considered as a symptom of another problem.

Wicked problems may create a causal chain.
9. The existence of a discrepancy representing a wicked problem can be ex-

plained in numerous ways. The explanation depends on the ”world view” of
the problem solver.

10. The wicked problem solver has no right to be wrong. This point is especially
important in social policy planning where the ultimate objective is not to
find the truth but to improve the current state of public affairs.

These characteristics of wicked problems were formulated for social policy plan-
ning, but similar properties were also identified in other areas including design
[2], [3]. For example, Schön [20], p.79 describes how the ”designer shapes the
situation and the situation ’talks back’”, or that problem ”naming, framing and,
if needed, re-framing” is a way of dealing with the lack of definitive problem
formulation.

For engineering design not all characteristics described above are equally im-
portant. The concept of ”wicked problem” emerged from studying problems
with social connotation where social criteria play important part of the prob-
lem domain. Planning city infrastructure, proposing solutions to the problems
of poverty, education, crime or health care are typical examples that manifest
wickedness. Conklin even explains that social complexity of design problems re-
lates to the ”measure” of their wickedness [3]. However, we claim that social
context does not have the same impact in every domain. While it is certainly
the key issue in policy planning, there are areas, where it is less important. This
becomes obvious when we try to apply the above mentioned characteristics in the
context of engineering design. When a planner tries to resolve a societal problem
it is usually a one-shot operation. The solution cannot be withdrawn because it
creates permanent or long lasting changes. Also, the solution must not be com-
pletely wrong because there is too much at stake. However, in engineering design
unsuccessful trials that fail to solve the problem frequently exist. Thomas Alva

886 Z. Zdrahal

Edison was a pioneer of designing by trial and error and yet he patented over
1000 original designs addressing problems that certainly satisfied multiple prop-
erties of wickedness. Trials and errors are acceptable if the situation is reversible
and return is not too expensive. The cost depends on the feedback loop through
which the solution is evaluated. It is probably impossible to completely rebuild
already constructed road system, because it would be too costly. It is certainly
impossible to correct a medical therapy if the patient has died. But it is easy
to redesign breaks for the bicycle, especially if the bicycle has not yet been put
on the market. Conklin [3] demonstrates the properties of wicked problems on
designing a new car with the aims of improving side-impact safety. In his exam-
ple, the success of a car is measured by the response of the market. When a new
model is launched, the customers will either accept or reject the product, but the
innovative project cannot be turned back and the preparation of manufacturing
technology cannot be undone. In this sense car design is a one-shot operation.
However, there is a number of counterexamples when manufacturers had to recall
hundreds of thousands of cars to correct design errors. The ”second shot” was
certainly very expensive, but it has been done. If the evaluation loop is short and
cheap, the problem solving allows proposing, evaluating and rejecting alterna-
tives. Returning to the car example, there are various legislations, national and
international regulations that constrain possible designs before they reach the
market, even before a prototype hits the road. Within these regulations, design
by educated trial and error is a common practice. Yet these design problems
retain the majority of characteristics of wickedness. Though design problems are
presented as unique, similarities with other problems play an important role.
How would otherwise designers develop their expertise if problems were always
the ”universe of one” [19]? It is well known that designers often acquire their
inspiration from already existing cases. Schön [20] argues that in professions,
unique problems are common, but they are often approached by adapting and
combining known solutions.

Simon analyses similar class of problems but without emphasising the social
context [21], [22]. He introduces the concepts of ill-structured and well-structured
problems with a meaning similar to wicked and tame problems. In analogy to
the way used by Alan Turing who formalised the intuitive concept of algorithm
in terms of Turing machine, Simon associated well-structured problems with
the General Problem Solver (GPS) [15]. This formalisation makes it possible to
introduce the concepts like state space, states, state transitions and structures.
Well-structured problems are defined by the following conditions (adapted from
[21]):

1. There is a definite criterion for testing proposed solutions
2. There is a problem space in which it is possible to represent the initial

problem state, the goal state and all other reachable states.
3. Attainable state transitions can be represented in a problem space.
4. Any knowledge that the problem solver can acquire can be represented in a

problem space

The Role of Knowledge in Design Problems 887

5. If the problem depends on input from the external world, then the state
transitions reflect accurately the laws of nature that govern the external
world.

6. All these conditions are practically computable.

The problems that do not satisfy one or more of these conditions are called ill-
structured. The correspondence with many of characteristics of wicked problems
is straightforward. It makes sense to consider the measure to which the real
problem satisfies these conditions. We can then position the problem on a scale
with ill-structured problems at one end and well-structured on the other one.

When solving a problem each method has associated preconditions of its appli-
cability. Since ill-structured problems are not fully specified these preconditions
are impossible to evaluate. The preconditions specify what kind of information
about the problem space is needed and, consequently what is the quality of the
solution delivered by the method. For example, solutions can be optimal glob-
ally, locally or only ”good enough”, methods can guarantee that if a solution
exists it will be found, they may search a large state space or progress directly
to the solution, they may convergence slowly or quickly. There are many other
measures that assess the quality of solution. In general, the more a priori in-
formation about the problem space is available, the better results are delivered
by the method [16]. If the problem is well structured, i.e. the problem space is
well described and the quality criterion is known, it is possible to apply ”strong”
problem solving methods, such as optimisation algorithms. However, since design
is an ill-structured problem, generally applicable strong problem solving meth-
ods do not exist. But why is design an ill-structured problem? Buchanan [2],
p.15 argues that the reason is that ”design has no specific subject matter of its
own apart from what the designer conceives it to be”. It means that designer has
to bring his/her domain knowledge to structure design tasks. This observation
has important consequences for knowledge management in design processes.

Imagine an engineering problem of designing a bridge over a river. The prob-
lem can be certainly regarded as ill-structured. Possible solutions include a beam
bridge, an arch bridge, a suspension bridge or perhaps even a pontoon bridge.
There are many other bridge types, each of them having its pros and cons. By
making the decision and selecting one type, the designer brings into the design
process the corresponding part of physics and provides structure for the problem
space. If the designer opts for a suspension bridge, he/she will have to express
the problem in terms of concepts and laws of theory of elasticity. If he/she de-
cides to construct a pontoon bridge, he/she will use theory of hydrostatics and
hydrodynamics. The progress in problem solving makes it possible to improve
the problem specification (e.g. in the case of the suspension bridge the task of
calculating the strength of cables is a part of the additional problem specifica-
tion). Problem solving is intertwined with problem specification as the problem
acquires structure and moves from ill-structured towards well-structured end of
the scale.

For solving wicked problems Kunz and Rittel [13] proposed the method known
as Issue Based Information Systems (IBIS), that allows the designers to uncover

888 Z. Zdrahal

conflicting criteria in the reasoning process, capture the argumentation, and ar-
rive at an acceptable solution. A number of variations of IBIS-based methods
focused on design problem solving are discussed in [14]. Though these methods
successfully capture design rationale, they provide only limited support to con-
verting the ill-structured design problem into a well-structured one because they
not offer any means for integrating new domain knowledge with the existing
problem specification. Mismatch of expectations and real benefits of IBIS-like
methods are analysed in [12].

3 Models of Design Processes

In engineering, various models of design processes have been proposed. Typi-
cally, design starts with a problem analysis and ends with a detailed specifica-
tion for the artefact. At the beginning, the problem is indefinite, its specification
is incomplete and therefore, the problem space is ill-structured. At the end the
problem space is already well-structured and the artefact is fully specified at the
required level of detail. In order to structure the problem space, new knowledge
need to be brought into the design process. The model of design process elabo-
rated by French [9] is frequently used in engineering applications. This model is
shown in figure 1 (a). French’s model divides the design process into a number
of distinct stages. They are: problem analysis, conceptual design, embodiment
of schemes and detailed design. In the first stage, the designer analyses and sets
the problem. The remaining three stages synthesize the solution. French admits
that this model is one of many possible, however since it captures well our in-
tuitive understanding of the design process, it has been adopted by many other
authors, e.g. [5], [11], [23], [8]. We argue that French’s model also well describes
how the designer gradually commits the solution to the selected engineering do-
main. This can be manifested by the increasing use of domain knowledge and
the decreasing indefiniteness of problem specification as the design process pro-
gresses through consecutive stages. This is highlighted in figure 1(b). Model in
figure 1(a) describes the design process as a sequence of steps with possible feed-
back (progress in vertical direction). However, each step is also a design process
on its own. These ”horizontal” processes are shown in figure 1(b). For example,
conceptual design is a process which produces a conceptual solution to the prob-
lem in terms of schemes or other conceptual objects. Similarly, embodiment of
schemes and detailing are design processes that provide the conceptual solution
with more detailed structures and elaborate final details.

Each stage produces a complete solution to the design problem, but the solu-
tions differ by the coarseness of detail due to different indeterminacy of problem
specification. This does not imply that the solution at the higher design stage
must be finalised before the lower stage starts. The most important decisions
are made in early stages. In final stages, the problem is already well-structured
and strong problem solving methods, such as optimisation procedures are likely
to be found. Conceptual design can be very creative but provides only limited
guidance for problem solving (Newell’s weak methods) because the problem is

The Role of Knowledge in Design Problems 889

Feedback

Statement
of problem

Analysis of
problem

Need

Selected
schemes

Working
drawings etc.

Embodiment of
schemes

Conceptual
design

Detailing

(a) (b)

Ill-structured
problem

Well-structured
problem

Introducing
domain
knowledge

Conceptual
design process

Embodiment
of schemes process

Detailed
design process

Fig. 1. (a)Model of design process according to French, (b) Introducing domain knowl-
edge into process

ill-structure and there is no commitment to a specific domain. Goel [11], p. 131
characterises conceptual design as follows: ” Generation and exploration of al-
ternatives is facilitated by the abstract nature of information being considered,
a low degree of commitment to generated ideas, the coarseness of detail and
a large number of lateral transformation. A lateral transformation is one where

890 Z. Zdrahal

movement is from one idea to a slightly different idea, rather than a more detailed
version of the same idea. Lateral transformations are necessary for widening the
problem space and the exploration and development of kernel ideas”. In general,
design decisions made during early design stages direct the solution towards
a specific domain and make the corresponding domain knowledge available for
the later design stages. This principle applies throughout the design process.
Domain knowledge available at each stage affects the repertoire of applicable
problem solving methods. Problem solving methods typically used in early de-
sign stages differ from those applicable later. In engineering practice, creativity
is often restricted to selecting and exploring a few most promising alternatives
using case-based or IBIS-like problem solving methods. This was reported by
Ball, Ormerod and Morley [1] who observed that designers solve new problems
by looking for analogies with old ones. Moreover, they showed how designers’
experience changes their reasoning processes: Experts develop and use more ab-
stract knowledge schemas while novices tend to draw the analogies from specific
cases. Cross [7] arrives at similar conclusions claiming that the experienced de-
signers tend to keep design ill-structured in order to have more opportunities for
creative thinking while novices quickly moves towards the first possible solution.
Goel [11] demonstrates that different parts of brain are specialised in solving dif-
ferent design stages. Right hemisphere is predominantly used for ill-structured
problems i.e. for conceptual design, while left hemisphere supports mental activ-
ities needed for solving well-structured problems, i.e. methods used in detailed
design.

4 Solving Design by Problem Re-representation

Design process based on French’s model can be viewed as problem re-
representation. First, a tentative conceptual model is built from the initial prob-
lem specification . The choice of conceptual objects and relations is based on de-
signer’s assumptions about the expected solution. Conceptual solution is further
elaborated by specifying the structure and components to be used for implement-
ing. A new set of assumptions is needed, now at a different level of abstraction. Fi-
nally, the parameters of selected components are specified. Their calculation may
require a few additional assumptions. In general, design decisions have the form
of assumptions.

Problem re-representation is also used in a compilation and linking of com-
puter programs. The algorithm represented by a source code, say in the C lan-
guage, is re-represented step by step until the absolute machine code is achieved.
However, there is a difference: when compiling a C program, all necessary infor-
mation is already contained in the source code. The problem is well-structured
from the very beginning and there is no need for supplying additional informa-
tion into the compilation/linking process.

In design, on the other hand, the problem is initially ill-structured. Each re-
representation step converts the results of the previous stage but require also
additional assumptions about the solution in next step. These assumptions add

The Role of Knowledge in Design Problems 891

new information into the design process. For example, when constructing a model
of car suspension, the designer may assume that the elasticity of the body can
be omitted. At the current stage of problem solving, this cannot be proved or
disproved but the design must make tentative decision, otherwise the process
cannot continue. Design decisions are based on formal and experiential knowl-
edge of the designer. Capturing designer’s most important and innovative deci-
sion and making them available in the future was one of the major objectives of
the Clockwork project described in the following section.

5 The Clockwork Project

Structuring design as problem re-representation was the basis of the CEC funded
project ”Creating Learning Organisations with Contextualised Knowledge-Rich
Work Artifacts” (Clockwork). The project objectives included the development
of methodology and support tools for sharing and reuse of design knowledge.
The support tools were integrated in a configurable web-based toolkit, called
the Clockwork Knowledge Manager (CKM). The main focus of the project was
on modelling and simulation models of dynamic systems and therefore, the first
pilot application was from this area. Since the development of simulation models
has all features of design, the Clockwork approach can be applied to other areas of
engineering design. This was tested by the second pilot application in the area of
designing industrial thermal technologies. Both pilot applications were developed
as instantiations of CKM. In Clockwork, design stages are called worlds. Each
world has associated world objects and relations specified in terms of domain
ontologies.

Clockwork methodology provides a number of extensions on top of French’s
model. For example, the world representation can be also used for stages and en-
vironments that are not part of the French’s model. Since it might be convenient
to collect post-design data about the designed artefact, the CKM application can
be extended by Production, Installation or Maintenance worlds. The collected
data may serve to inform future designs. Similarly, in modelling and simulation
applications, the task can be to simulate a real object. In CKM, all objects to
be simulated could be described in a Real world. Example of four worlds used
in the modelling and simulation application is shown in figure 2. In this appli-

Real world
Conceptual

world
Ideal model

world
Simulation code

world

Fig. 2. Four world model of modelling and simulation

cation the problem to be investigated by computer simulation is introduced in
Real world. For example, imagine that the task of designing a car suspension
that guarantees passenger comfort within certain speed range on standard types
of road. Though concepts like passenger comfort and road type are likely to

892 Z. Zdrahal

be defined by international, national or manufacturer’s norms, the problem is
clearly ill-defined. There is a number of possible conceptualisations of the prob-
lem. For example, the suspension system can be modelled using the concept of a
”quartercar” (model of a single wheel), quartercar models can be connected by
a set of rigid or elastic bodies, the whole suspension can be modelled using finite
elements etc. Each conceptual solution can be further elaborated, for example
models can be built using ideal physical models, bond graphs, etc. These will
be eventually converted into simulation code. Most important decisions for the
final outcome are the assumptions justifying conceptualisation and modelling
approaches. Re-representation from model world to simulation world usually
does not require any additional design-related assumptions because the problem
is already well structured. For this reason, simulation packages often allow the
user to build the model in a graphical environment and the simulation code is
uploaded automatically. CKM toolkit not only supports the integration of do-
main ontologies with the design process, but also capturing design decisions,
their assumptions and consequences at more detailed level. In order to min-
imise additional tedious work of designer, the Clockwork methodology assumes
that only important or non-trivial knowledge will be recorded. The Clockwork
therefore does not build a complete mapping between adjacent worlds. An ex-
ample of four world environment for modelling and simulation applications is
shown in figure 3. CKM provides two mechanisms for representing case specific
knowledge. Formal knowledge is represented by instances of ontology classes. In
Clockwork, these instances are called semantic indexes. The relations between
semantic indexes of adjacent worlds are parts of problem re-representation. In-
formal knowledge has the form of textual annotations and can be associated with
transitions between whole models or with individual semantic indexes. CKM in-

Components Ideal objects Simulation code

Conceptual Model Simulation

can-be-modelled-as
can-be-implemented-as

Worlds

Ontologies

Knowledge base
(semantic indexes)

is-modelled-as is-implemented-as

is-a

Conceptual
model

Annotation

Physical
model

is-a is-a

Annotation

Simulation model
(Simulink)

Informal
knowledge

Engineering
models

AnnotationAnnotation

Real

Problem types

is-a

Real world system

is-conceptualised-as

Fig. 3. Modelling and Simulation application

The Role of Knowledge in Design Problems 893

tegrates formal and informal knowledge with standard work representation such
as technical drawings, engineering diagrams, conceptual graphs or graphical en-
vironments. The application to thermal machinery design and production was
also developed by instantiating CKM. The configuration includes worlds shown
in figure 4. The design-related worlds follow from the French’s model. The post

 Post design Machine design

Conceptual
world

Embodiment of
schemes world Detailing

Product
world

Fig. 4. Product design and post design worlds

design worlds collect data related to the machine installation and maintenance.
The company design team uses these data for informing future design of ma-
chines with a similar specification.

6 Conclusions

Design is a human activity which aims at converting the current state of the
world into a new, preferred one. Since we usually do not specify in advance how
to reached the desirable outcome, the problem is ill-structured. Designers need
their expertise to overcome the problem of indeterminacy and to interpret the
problem. We have presented a methodology and a tool that supports knowl-
edge reuse and sharing between designers. This overview could not present the
problem in a full complexity. For example, we did not discuss the role of tacit
knowledge in design, see [4], [17] or sharing design knowledge in settings where
participants must collaborate but also compete on the same market (cautious
knowledge sharing). These issues were also addressed by the Clockwork project
The following persons significantly contributed to the Clockwork project: Paul
Mulholland of The Open University, Michael Valasek of the Czech Technical
University and Ansgar Bernardi of DFKI.

References

1. Ball, L.J., Ormerod, T.C., Morley, N.J.: Spontaneous analogising in engineering
design: a comparative analysis of experts and novices. Design Studies 25, 495–508
(2004)

2. Buchanan, R.: Wicked Problems in Design Thinking. Design Issues 8(2), 5–12
(1992)

3. Conklin, J.: Wicked Problems and Social Complexity. In: Book Conklin J. Dialogue
Mapping: Building Shared Understanding of Wicked Problems, John Wiley and
Sons Ltd, Chichester (2005)

894 Z. Zdrahal

4. Cook, S.D.N., Brown, J.S.: Bridging Epistemology: The Generative Dance Be-
tween Organizational Knowledge and Organizational Knowing. Organization Sci-
ence 10(4), 381–400 (1999)

5. Cross, N.: Engineering Design Methods. In: Strategies for Product Design, 2nd
edn., John Wiley & Sons, Chichester (1994)

6. Cross, N.: Descriptive model of creative design: application to an example. Design
Studies 18, 427–440 (1997)

7. Cross, N.: Expertise in design: an overview. Design Studies 25, 427–441 (2004)
8. Dym, C.L.: Engineering Design, A Synthesis of Views. Cambridge University Press,

Cambridge (1994)
9. French, M.J.: Engineering Design: The Conceptual Stage. Heinemann Educational

Books, London (1971)
10. Goel, V., Pirolli, P.: The Structure of Design Spaces. Cognitive Science 16, 395–429

(1992)
11. Goel, V.: Cognitive Role of Ill-Structured Representations in Preliminary Design.

In: Gero, J.S., Tversky, B. (eds.) Visual and Spatial Reasoning in Design, Key
Centre of Design Computing and Cognition, pp. 131–145. University of Sydney,
Sydney (1999)

12. Isenmann, S., Reuter, W.D.: IBIS - a convincing concept . . . but a lousy instrument?
In: Proceedings of the Conference on Designing interactive Systems: Processes,
Practices, Methods, and Techniques, pp. 163–172. ACM Press, New York (1997)

13. Kunz, W., Rittel, H.W.J.: Issues as Elements of Information Systems. Working
Paper WP131. July 1970, reprinted May 1979. Inst. Urban and Regional Develop-
ment., Univ. Calif., Berkeley (1970)

14. Louritas, P., Loucopoulos, P.: A Generic Model for Reflective Design. ACM Trans-
actions on Software Engineering and Methodology 9(2), 199–237 (2000)

15. Newell, A., Simon, H.A.: GPS, a program that simulates human thought. In: Com-
puters and Thought, pp. 279–293. MIT Press, Cambridge (1995)

16. Newell, A.: Artificial Intelligence and the Concept of Mind. In: Schank, R.C., Colby,
K.M. (eds.) Computer Models of Thought and Language, pp. 1–60. W.H. reeman
and Comp., San Francisco (1973)

17. Nonaka, I.: The Knowledge-Creating Company. In: Harvard Business Review on
Knowledge Management, pp. 21–45. Harvard Business School Press, Boston (1998)

18. Rittel, H.W.J., Webber, M.M.: Dilemmas in a General Theory of Planning. Policy
Sciences 4, 155–169 (1973)

19. Schön, D.A.: Designing: Rules, types and worlds. Design Studies. 9(3), 181–190
(1988)

20. Schön, D.A.: The Reflective Practitioner. Ashgate Publishing Ltd., Aldershot, Eng-
land (1991)

21. Simon, H.A.: The Structure of Ill Structured Problems. Artificial Intelligence 4,
181–201 (1973)

22. Simon, H.A.: The Science of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
23. Tansley, D.S.W., Hayball, C.C.: Knowledge-Based System Analysis and Design.

Prentice-Hall, Englewood Cliffs (1993)

e-Infrastructures

Wolfgang Gentzsch

D-Grid, RENCI, and Duke University

Abstract. In the last decades, the Internet and the World Wide Web
have evolved into a new infrastructure for science, business, and the
public. Driven by the need to better cope with recent trends and devel-
opments caused by globalization, complexity, and the grand challenges,
we are refining and enhancing this infrastructure with powerful new tools
for communication, collaboration, computation and the huge amounts of
resulting data and knowledge. Researchers and business people alike are
more and more able to easily access the tools, the data and the IT re-
sources they need to solve their applications and to increase knowledge,
via Grid and Service Oriented Architectures, and the technologies and
tools to build them. This presentation will highlight Grids, SOA, and
Web 2.0 and how they relate and complement, and the benefits they
bring to scientists, businesses, and our whole society, supported by a
number of use cases from research, industry, and public community.

1 Introduction

In the last decades, the Internet and the World Wide Web have evolved into
a new infrastructure for science, business, and the public. Driven by the need
to better cope with recent trends and developments caused by globalization,
complexity, and the grand challenges, recently, we are refining and enhancing
this infrastructure with powerful new tools for communication, collaboration,
computation and the huge amounts of resulting data and knowledge. Researchers
and business people alike are more and more able to remotely and easily access
the tools, the data and the IT resources they need to solve their applications
and to increase knowledge, via Grid and Service Oriented Architectures, and the
technologies and tools to build them. While the Web offers easy access to mostly
static information, the Grid adds another fundamental layer to the Internet, by
enabling direct access to and use of underlying resources, such as computers,
storage, scientific instruments and experiments, sensors, applications, data, and
middleware services. Based on widely accepted grid and web services standards,
resources communicate with each other and deliver results as services to the user.
These resources are part of a service-oriented architecture, called OGSA, the
Open Grid Services Architecture, [2]. For the past several years, early adopters
in research and industry have been building and operating prototypes of grids
for global communities, virtual organizations, and within enterprises.

R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 895–904, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

896 W. Gentzsch

2 Benefits of Grid Computing for Research and Industry

Grid infrastructures provide a wide spectrum of benefits, [3], [4]: transparent
access to and better utilization of resources; almost infinite compute and stor-
age capacity; flexibility, adaptability and automation through dynamic and con-
certed interoperation of networked resources [5]; cost reduction through utility
model; higher quality of products designed and developed via grid tools; shorter
time-to-market; and more. This grid revolution is already well underway in sci-
entific and engineering organizations with high demand of computing and data
processing, mostly as prototype grids, and a few already in full production, see
e.g. [6] - [14]. But also (and especially) for those research departments and busi-
nesses which cannot afford powerful supercomputing resources grid computing
is of great benefit.

An outstanding example for grid computing benefits in research is the data
collection and processing infrastructure for the high-energy physics experiment
at the European research center CERN in Geneva, the so-called Large Hadron
Collider, LHC, [15], which will be operational from early 2007. Over 5000 physi-
cists world-wide will analyze the collision events of the largest particle accelerator
in the world, resulting in petabytes of data per year, which will be filtered, sorted
and stored into digital repositories and accessed by scientists. This LHC Grid is
built in four tiers, with tier zero being the compute servers at CERN, tier one
the national research centers, tier two the servers in the local research centers
and universities, and finally the desktops of the researchers.

Besides the obvious benefits for the researchers, grid technology has great
benefits also for the industry, [16]. In an era of increasing dynamics, shrinking
distances, and global competition, those organizations are in an advantageous
position which have access either to natural or to highly specialized resources,
on demand, in an efficient and effective way. Countries like Germany for example
don’t have enough natural resources; thus, competition has to be strengthened
via specialization, e.g. an excellent education for everybody, use of highly modern
tools and machines, optimized development and production processes, and highly
efficient communication and sales processes. Here, grid technology can provide
great benefit. It enables engineers to access any IT resource (computer, software,
applications, data, etc) in an easy and efficient way, to simulate any process and
any product (and even the whole product life cycle) in virtual reality before it
is build, resulting in higher quality, increased functionality, and cost and risk
reduction. Grid technology helps to adjust an enterprise’s IT structures to real
business requirements (and not vice versa). For example, global companies will
be able to decompose their highly complex processes into modular components
of a workflow which can be distributed around the globe such that on-demand
access to suitable workforce and resources is assured, productivity increased,
and cost reduced. Application of grid technology in these processes, guarantees
seamless integration of and communication among all distributed components
and provides transparent and secure access to sensitive company information
and other proprietary assets, world-wide.

e-Infrastructures 897

3 Grid Business and Services

From a bird’s eye view, the business model for grid services will be similar to
those for electrical power, water, or telephony: our payments will be based on
widely agreed billing units which include cost for computers, storage, software,
applications, work, electrical power, and square footage for the equipment.

In the future, we will see many different grid-based services and an army of
new service providers. For example, providers offering compute cycles or storage,
such as Amazon’s Elastic Computing Cloud (EC2, [17]) or its Simple Storage
Service (S3, [18]). But also ’Application Service Providers’ offering a specific
application service to engineering firms, accessible via browser. At the end of
each month, we will receive an invoice from our favorite service provider, broken
down into the services which we received from the different providers, very similar
to our Telekom invoice today.

The Web will be the platform for many of our future grid-based businesses.
We will surf to the service provider’s Web portal, login and set up a personal
account. Service providers will offer any services, securely, on demand, with
highest quality, at reasonable cost, according to the Service Level Agreement
(SLA) negotiated with the customer.

Grid technology will also revolutionize society. Let’s look at education, for
example. On one hand, our knowledge is increasing exponentially - e.g. in bioin-
formatics it’s doubling every 12 months -, on the other hand, schools can’t keep
pace with this exponential development, especially in the natural sciences, [19].
Grid technologies will become the fundament for novel teaching and learning
tools such as virtual laboratories which enable children (and teachers) to in-
teractively experience the secrets of nature, engineering and society. This will
dramatically increase their motivation, creativity and knowledge.

All this will take a few more years to happen. Firstly, we have to ’grid-enable’
our data, our applications, our knowledge repositories. We need security tech-
nologies which guarantee that one’s identity can’t be stolen and that confidential
data can be stored in highly secure containers if needed. This requires close col-
laboration among computer scientists, researchers, engineers, and businesses.
Now that we share specific resources because it’s more efficient and fosters com-
munication and collaboration, we have to make sure that we only pay for what
WE use and that our computational results remain confidential. Good news is
that thousands of experts in research and industry are working very hard on
solving these problems, in hundreds of grid projects such as the ones presented
herein, and on Grid standards in the Open Grid Forum, OGF [20].

4 Case Study: The German D-Grid Initiative

In 2003, German scientists and scientific organizations started the D-Grid initia-
tive [21], jointly publishing a strategic paper in July 2003. This paper examined
the status and consequences of grid technology on scientific research in Germany
and recommended a long-term strategic grid research and development initia-
tive. This resulted in the German e-Science Initiative founded by the German

898 W. Gentzsch

Ministry for Research and Education (BMBF) in March 2004, together with a
call for proposals in the areas of Grid Computing, e-Learning, and Knowledge
Management. In November 2004, the BMBF presented the vision of a new qual-
ity of digital scientific infrastructure which will enables our globally connected
scientists to collaborate on an international basis; exchange information, docu-
ments and publications about their research work in real time; and guarantee
efficiency and stability even with huge amounts of data from measurements,
laboratories and computational results.

The e-Science Initiative and the first phase of D-Grid started on September
1, 2005. BMBF is funding over 100 German research organizations with 100
Million Euro over the next 5 years. For the first 3-year phase of D-Grid, finan-
cial support is approximately 25 Million Euro. The goal is to design, build and
operate a network of distributed, integrated and virtualized high-performance
resources and related services to enable the processing of large amounts of scien-
tific data and information. The Ministry for Research and Education is funding
the assembling, set-up and operation in several overlapping stages:

1. D-Grid 1, 2005-2008: IT services for scientists, designed and developed by
the ’early adopters’ of the computer science community. This global services
infrastructure will be tested and used by so-called Community Grids in the
areas of high-energy physics, astrophysics, medicine and life sciences, earth
sciences (e.g. climate), engineering sciences, and scientific libraries.

2. D-Grid 2, 2007-2009: IT services for scientists, industry, and business, in-
cluding new applications in chemistry, biology, drug design, economy, visu-
alization of data, and so on. Grid services providers will offer basic services
to these users.

D-Grid 3 (around 2008- 2010) will extend the grid infrastructure with a busi-
ness and a knowledge management layer, and adding several virtual competence
centers, encourage global service-oriented architectures in the industry, and use
this grid infrastructure for the benefit of our whole society, as discussed in chap-
ter 5.

D-Grid consists of the DGI Infrastructure project, [22], and (currently) the
following seven Community Grid projects:

– AstroGrid-D (Astronomy)
– C3-Grid (Earth Sciences)
– HEP Grid (High-Energy Physics)
– InGrid (Engineering)
– MediGrid (Medical Research)
– TextGrid (Scientific Libraries, Humanities)
– WISENT (Knowledge Network Energy Meteorology)

Short-term goal of D-Grid is to build a core grid infrastructure for the Ger-
man scientific community, until the end of 2006. Then, first test and benchmark
computations will be performed by the Community Grids, to provide technology
feedback to DGI. Then, climate researchers of the C3-Grid, for example, will be

e-Infrastructures 899

able to predict climate changes faster and more accurately than before, to inform
governments about potential environmental measures. Similarly, astrophysicists
will be able to access and use radio-telescopes and supercomputers remotely via
the grid, which they wouldn’t be able to access otherwise, resulting in novel
quality of research and the resulting data.

4.1 The D-Grid Infrastructure Project

Scientists in the D-Grid Infrastructure project DGI are developing and imple-
menting a set of basic grid middleware services which will be offered to the other
Community Grids. For example, services include access to large amounts of data
distributed in the grid, the management of virtual organizations, monitoring and
accounting. So far, a core-grid infrastructure has been built for the community
grids for testing, experimentation, and production. High-level services will be
developed which guarantee security, reliable data access and transfer, and fair-
use policies for computing resources. This core-grid infrastructure will then be
further developed into a reliable, generic, long-term production platform which
can be enhanced in a scalable and seamless way, such as the addition of new
resources and services, distributed applications and data, and automated “on
demand” provisioning of a support infrastructure.

An important aspect in every grid is security, especially with the industry ex-
pected to join soon, such as automotive and aerospace. Therefore, an important
DGI work package is “Authentication and Authorization” [23]. It’s obviously
important to know that a user is really the one she pretends to be, and that she
is authorized to access and use the requested resources and information. While
enterprise grids are mostly operating behind firewalls, global community grids
use security technology like VOMS, Virtual Organization Membership Service,
[24]. However, building and managing so-called Certificate Authorities is still a
very cumbersome activity to date.

The following D-Grid DGI infrastructure services are available for the current
and D-Grid 2 community projects, at the end of 2006:

– The core D-Grid infrastructure offers central grid services. New resources
can be easily integrated in the help-desk and monitoring system, allowing
central control of resources to guarantee sustainable grid operation.

– DGI offers several grid middleware packages (gLite, Globus und Unicore)
and data management systems (SRB, dCache und OGSA-DAI). A support
infrastructure helps new communities and “Virtual Organizations” (VOs)
with the installation and integration of new grid resources via a central
Information Portal (“Point of Information”). In addition, software tools for
managing VOs are offered, based on the VOMS and Shibboleth [25] systems.

– Monitoring und Accounting prototypes for distributed grid resources exist,
as well as an early concept for billing in D-Grid.

– DGI offers consulting for new Grid Communities in all technical aspects of
network and security, e.g. firewalls in grid environments, alternative network
protocols, and CERT (Computer Emergency Response Team).

900 W. Gentzsch

– DGI partners operate “Registration Authorities” to support simple applica-
tion of internationally accepted Grid Certificates from DFN (German Re-
search Network organization) and GridKA (Grid Project Karlsruhe). DGI
partners support new members to build their own “Registration Authori-
ties”.

– Core D-Grid is offering resources for testing, via middleware systems (gLite,
Globus and UNICORE). The Portal Framework Gridsphere serves as the
user interface. Within the D-Grid environment the dCache system takes
care of the administration of large amount of scientific data.

4.2 Community Grid Projects

– The High-Energy Physics (HEP, [25]) Grid community is developing applica-
tions and components for evaluating terabytes of data from large high-energy
physics experiments, including the Large Hadron Collider at CERN.

– ASTRO Grid [26] combines research institutions in astronomy and astro-
physics into a single, nationwide virtual organization for distributed collabo-
ration and integration of distributed astronomical data archives, instruments
and experiments.

– MEDI Grid [27] represents the medical and bio-informatics community in
Germany. It focuses on application scenarios in medical image processing,
bioinformatics, and clinical research, and their interaction.

– C3-Grid [28] for the Collaborative Climate Community has the goal to de-
velop a highly proficient grid-based research platform for the German earth-
system research community to efficiently access and analyze distributed,
high-volume scientific data from earth-system modeling and observation.

– For InGrid [29], the Industry applications grid project, a grid framework
will be developed to enable modeling, optimization, and simulation of engi-
neering applications from areas such as foundry technology, metal forming,
groundwater flows, turbine simulation, and fluid-structure interaction.

– The TextGrid project [30] is developing tools and standard interfaces for
publication software, modules for scientific text processing and editing, and
administration and access to distributed data and tools on the grid.

– WISENT [31] is developing tools and methods in the area of energy me-
teorology to accurately forecast energy usage to be matched with energy
provisioning on demand.

In the past, organizations strived to successfully collaborate within their own
communities. But in D-Grid, for the first time ever, all these different communi-
ties are working together on a single, inter-community grid middleware platform
to share computing resources, middleware tools, applications, and expertise. This
will result in an IT infrastructure which is interoperable with other international
grids, scalable and extensible for more community grids in the future, and avail-
able for all of our scientists for national and international collaboration.

e-Infrastructures 901

5 The Future: What Comes After the Grid Projects?

How will the Internet evolve under the influence of these new grid technologies?
It will certainly take another few years until we see the next-generation Internet
which allows access to compute resources and services as easily as the access to
billions of Web sites today. For this to happen we have to continue to improve
the new e-infrastructure in projects such as the ones mentioned herein, to fully
benefit from the availability of vast amount of resources and services in a trans-
parent way. In my interviews, I have collected a few thoughts on a potential
roadmap for research, industry and society to achieve this goal:

Research:

– Development of user-friendly and automated grid infrastructure building
blocks with standard interfaces to easily build local and special grids (e.g.
campus grids in universities) and global grids for international research
projects, to collaboratively use computers, storage, applications, and data
resources distributed in the Internet.

– Adaptation of application software for grid infrastructure and services, in
areas like physics, chemistry, biology, weather, climate, environment, bioin-
formatics, medicine, aero- and fluid mechanics, oil and gas, economy, finance,
and so on.

– Participation and contribution to standardization organizations, e.g. OGF
[20], OASIS [32], W3C [33], and to European organizations such as ESFRI
[34] and e-IRG [35].

– Development of training material and organization of training courses to
learn how to build, operate and use grid infrastructures.

– Encourage independent service providers of grid resource and applications,
develop operational and accounting models, utility computing, and service
level agreements.

– Integration of local, national, community grids into international grid infras-
tructures.

– Overcome mental, legal and regulatory barriers, via case studies, demonstra-
tors, and pilot projects.

Industry and Business:

– Development of new enterprise IT infrastructures based on OGSA (Open
Grid Services Architecture) and SOA (Service Oriented Architecture), with
SLOs (Service Level Objectives) and SLAs (Service Level Agreements) to
mapping business processes to resource and application usage in an enter-
prise.

– Global enterprise grids to network all resources of globally distributed sub-
sidiaries and branches, and for seamless integration of companies after merger
or acquisition.

– Close collaboration with research to efficiently transfer reliable global grid
technology to the industry.

902 W. Gentzsch

– Partner grids for close collaboration with business partners and suppliers,
to optimize distributed product development, complex workflows for multi-
disciplinary processes and applications, productivity and quality improve-
ment through global “Six Sigma” processes.

– Sensor Grids und Wireless Grids, to enable communication and interaction of
electronic devices e.g. for safety reasons in airplanes, cars, bridges, skyscrap-
ers, etc.

– Development of local and global training grids to support active and inter-
active, flexible and dynamic education of enterprise personnel.

Society:

– Development of grids for the masses, in areas such as healthcare (illness,
fitness, sensor-based monitoring of bodily functions), leisure (multi-player
games, digital entertainment, sports), education (life-long learning, school
grids, digital interactive laboratories), and work (Internet-based courses, on-
line training, global teamwork, collaboratories).

– Starting with pilot projects in these areas, partnering with end-users (con-
sumers), application service providers, and resource providers.

– Grid resources and services for education in schools, universities, and in
enterprises. Integration of grid resources and application simulations into
existing curricula to dramatically improve motivation and creativity of the
learners (and the teachers).

– Development of personal digital assistants including technology and service
infrastructure for the mass market.

– Integration of these new applications for the masses into user-friendly web
portals.

In the near future, on an enhanced Internet, all kinds of service providers will
offer their services for computing, data, applications, and many more. On an
enhanced World Wide Web, via secure Web Portals, we will access grid com-
ponents like Lego building blocks, which enable us to dynamically build grids
’on the fly’, according to our specific needs. We will rent or lease the resources
required and pay for what we use or on a subscription basis. We still might
have our own resources, to fulfill a certain basic need, or for highly proprietary
applications and data, which can be extended in a seamless way with resources
from service providers, available on the grid. But, as already said, this will still
take a few years.

As with any new infrastructure, development and deployment of the next
Internet generation will require vision and endurance. We have to work continu-
ously on strategic, long-term projects on a national or international scale, which
demand collaboration of research and industry on complex inter-disciplinary
projects, and which will enable and improve the tools of our scientists, busi-
ness people, and educators and strengthen our position in the international
competition.

e-Infrastructures 903

References

1. O’Reilly, T.: What Is Web 2.0, Design Patterns and Business Models for
the Next Generation of Software, http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html

2. OGSA Open Grid Services Architecture, http://www.globus.org/ogsa/
3. Foster, I., Kesselman, C.: The GRID: Blueprint for a new Computing Infras-

tructure, 1st edn. Morgan Kauffman Publishers, San Francisco (1999) 2nd (edn.)
2003

4. WS-RF Web Services Resource Framework, http://www.globus.org/wsrf/
5. Dini, P., Gentzsch, W., Potts, M., Clemm, A., Yousif, M., Polze, A.: Internet,

Grid, Self-Adaptability and Beyond: Are We Ready?. In: Proc. 2nd Intl. Work-
shop on Self-Adaptive & Autonomic Computing Systems, Zaragoza, Spain, Au-
gust 30- September 03 (2004), www.dcl.hpi.uni-potsdam.de/papers/papers/
134 SAACS Panel II v3.0.pdf

6. TeraGrid, www.teragrid.org
7. NAREGI Japanese national grid project, www.naregi.org/index e.html
8. APAC Australian Partnership for Advanced Computing, www.apac.edu.au
9. Website of CEC funded European grid projects, www.cordis.lu/ist/results

10. EGEE, Enabling Grids for e-Science, http://eu-egee.org/
11. DEISA, Distributed European Infrastructure for Supercomputing Applications,

www.deisa.org/index.php
12. Large Hadron Collider Computing Grid Project, LCG, http://lcg.web.cern.

ch/LCG/
13. UK e-Science Programme, www.rcuk.ac.uk/escience/
14. Gentzsch, W.: Grid Computing in Research and Business. In: International Su-

percomputing Conference, Heidelberg (2005),
www.isc2005.org/download/cp/gentzsch.pdf

15. LHC Large Hadron Collider, http://lhc-new-homepage.web.cern.ch
16. Gentzsch, W.: Enterprise Resource Management: Applications in Research and

Industry. In: Foster, I., Kesselman, C. (eds.) Grid II: Blueprint for a new com-
puting infrastructure, Morgan Kaufmann Publisher, San Francisco (2003)

17. Amazon Elastic Computing Cloud, www.amazon.com/gp/browse.html?node=
201590011

18. Amazon Simple Storage Service,
www.amazon.com/gp/browse.html?node=16427261

19. IAETE School grids panel, www.iaete.org/soapbox/summary.cfm
20. Open Grid Forum standardization organization, www.ogf.org
21. German D-Grid Initiative, https://www.d-grid.de/index.php?id=1\&L=1
22. D-Grid DGI Project, https://www.d-grid.de/index.php?id=61\&L=1
23. Authentifizierung im D-Grid (in German), www.d-grid.de/fileadmin/dgrid

document/Dokumente/vorschlagspapier-authz v2.pdf
24. Thesenpapier zum VO Management in D-Grid (in German), www.d-grid.de/

fileadmin/dgrid document/Dokumente/VOMS-Thesenpapier.pdf
25. HEP-Grid, www.d-grid.de/index.php?id=44
26. Astro-Grid, www.d-grid.de/index.php?id=45 , http://www.gac-grid.org/
27. Medi-Grid, www.d-grid.de/index.php?id=42, http://www.medigrid.de/
28. C3-Grid, www.d-grid.de/index.php?id=46, http://www.c3-grid.de/
29. InGrid, www.d-grid.de/index.php?id=43,

http://www.ingrid-info.de/index.php

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.globus.org/ogsa/
http://www.globus.org/wsrf/
file:www.dcl.hpi.uni-potsdam.de/papers/papers/134_SAACS_Panel_II_v3.0.pdf
file:www.dcl.hpi.uni-potsdam.de/papers/papers/134_SAACS_Panel_II_v3.0.pdf
www.teragrid.org
www.naregi.org/index_e.html
www.apac.edu.au
www.cordis.lu/ist/results
http:// eu-egee.org/
www.deisa.org/index.php
http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/
www.rcuk.ac.uk/escience/
www.isc2005.org/download/cp/gentzsch.pdf
http://lhc-new-homepage.web.cern.ch
file:www.amazon.com/gp/browse.html?node=201590011
file:www.amazon.com/gp/browse.html?node=201590011
www.amazon.com/gp/browse.html?node=16427261
www.iaete.org/soapbox/summary.cfm
www.ogf.org
https://www.d-grid.de/index.php?id=1&L=1
https://www.d-grid.de/index.php?id=61&L=1
www.d-grid.de/index.php?id=44
www.d-grid.de/index.php?id=45
http://www.gac-grid.org/
www.d-grid.de/index.php?id=42
http://www.medigrid.de/
www.d-grid.de/index.php?id=46
http://www.c3-grid.de/
www.d-grid.de/index.php?id=43
http://www.ingrid-info.de/index.php

904 W. Gentzsch

30. Text-Grid, www.d-grid.de/index.php?id=167, http://www.textgrid.de/
31. WISENT Energy Meteorology, http://www.offis.de/projekte/projekt e.php?

id=181&bereich=bi
32. OASIS: Organization for the Advancement of Structured Information Standards,

http://www.oasis-open.org/
33. W3C: The World Wide Web Consortium, http://www.w3.org/
34. ESFRI: European Strategy Forum on Research Infrastructures,

http://cordis.europa.eu/esfri/
35. e-IRG: e-Infrastructure Reflection Group, http://www.e-irg.org/

www.d-grid.de/index.php?id=167
http://www.textgrid.de/
http://www.offis.de/projekte/projekt_e.php?id=181&bereich=bi
http://www.offis.de/projekte/projekt_e.php?id=181&bereich=bi
http://www.oasis-open.org/
http://www.w3.org/
http://cordis.europa.eu/esfri/
http://www.e-irg.org/

Author Index

Adaikkalavan, Raman 369
Alonso, Miguel A. 529
Aly, Robin 98
Amagasa, Toshiyuki 298, 414
Anutariya, Chutiporn 720
Apostolou, Dimitris 213
Atay, Mustafa 603

Bača, Radim 1
Bao, Zhifeng 130
Bastien, Rance 740
Bayer, Rudolf 277
Belkhatir, Mohammed 392
Bellahsene, Zohra 844
Bellatreche, Ladjel 479
Berrabah, D. 593
Bertino, Elisa 434
Bhatnagar, Vasudha 629
Bhowmick, Sourav S. 617
Binder, Walter 172
Bonifati, Angela 539
Böttcher, Stefan 424
Boufarès, F. 593
Boukhalfa, Kamel 479
Bououlid Idrissi, Youssef 864
Brando, Carmen 254
Bressan, Stéphane 233, 660

Cabanac, Guillaume 202
Carneiro Filho, Heraldo J.A. 141
Casali, Alain 572
Chakravarthy, Sharma 369
Chang, Shi-Kuo 509
Charhad, Mbarek 392
Che, Dunren 87
Chebotko, Artem 603
Chen, Yangjun 243
Chevalier, Max 202
Choi, Byung-Uk 404
Chrisment, Claude 202
Christine, Froidevaux 740
Cicchetti, Rosine 572
Clifton, Chris 751
Constantinescu, Ion 172

Curé, Olivier 854
Cuzzocrea, Alfredo 539

d’Aquin, Mathieu 874
d’Orazio, Laurent 162
Denneulin, Yves 162
Deufemia, Vincenzo 509
Deveaux, Jean-Paul 109
Do, Tai T. 264, 445
dos Santos Mello, Ronaldo 13, 65
Draheim, Dirk 519
Duboisset, Magali 823

El-Mahgary, Sami 489
El Sayed, Ahmad 54
Elmongui, Hicham G. 434

Faltings, Boi 172
Farfán, Fernando 75
Fazzinga, Bettina 287
Fegaras, Leonidas 551
Flesca, Sergio 287
Fotouhi, Farshad 603
Fousteris, N. 23
Frédérique, Lisacek 740

Gao, Jun 562
Gentzsch, Wolfgang 895
Gergatsoulis, M. 23
Gómez-Rodŕıguez, Carlos 529
Goncalves, Marlene 254, 469
Gonçalves, Rodrigo 13
González, Vanessa 254
Gray, W. Alexander 772
Gu, Jie 339
Güneş, Salih 45
Guo, Hang 223

Hacid, Hakim 54
Hattori, Shun 790
He, Weimin 551
Helmer, Sven 98
Himsl, Melanie 519
Hose, Katja 308

906 Author Index

Hou, Wen-Chi 87
Hristidis, Vagelis 75
Hua, Kien A. 264, 445
Hunt, Ela 844
Hyvönen, Eero 680

Jabornig, Daniel 519
Jang, Min-Hee 834
Jelinek, Ivan 700
Jeong, Seungdo 404
Jiang, Wei 751
Jiang, Zhewei 87
Jin, Xiaoming 339
Jochaud, Florent 854
Jose, Joemon M. 380
Jouanot, Fabrice 162
Julien, Christine 202

Kambur, Dalen 182
Kang, Myoung-Ah 823
Kantere, Verena 689
Kaur, Sharanjit 629
Kille, Peter 772
Kim, Sang-Wook 404, 834
Kirchberg, Markus 319
Kitagawa, Hiroyuki 298, 414
Klampanos, Iraklis A. 380
Korytkowski, Przemys�law 710
Kottmann, Norbert 671
Krátký, Michal 1
Küng, Josef 519

Labbé, Cyril 162
Lakhal, Lotfi 572
Lee, Mong-Li 233
Leithner, Werner 519
Leonardi, Erwin 617
Levine, David 551
Li, Zhanhuai 151
Lim, Sungchae 834
Lin, Dan 434
Ling, Tok Wang 130
Liu, Fuyu 264, 445
Liu, Jun 499
Loukides, Grigorios 761
Lu, Shiyong 603
Lu, Yan Sheng 499
Luo, Cheng 87

Ma, Wei-Ying 811
Machado, Javam C. 141

Meersman, Robert 34
Mentzas, Gregoris 213
Moerkotte, Guido 98
Mohania, Mukesh 479
Murphy, John 182

Nakamura, Satoshi 801
Nedjar, Sébastien 572
Neumann, Thomas 98, 329

Ooi, Beng Chin 434
Ounelli, Habib 639

Papailiou, Niki 213
Pernici, Barbara 64
Philippi, Hans 459
Picariello, Antonio 730
Pinet, François 823
Polat, Kemal 45
Polese, Giuseppe 509
Prabhakar, Sunil 751
Pradhan, Sujeet 192
Prinzie, Anita 349
Pugliese, Andrea 287

Rangaswami, Raju 75
Rau-Chaplin, Andrew 109
Regner, Peter 519
Rezende Rodrigues, Khaue 65
Rinaldi, Antonio M. 730
Roantree, Mark 182
Roncancio, Claudia 162
Rugui, Yao 151
Ruotsalo, Tuukka 680

Sabou, Marta 874
Salakoski, Tapio 780
Saleem, Khalid 844
Sassi, Minyar 639
Sattler, Kai-Uwe 308
Schlicht, Anne 874
Schneider, Michel 823
Schult, Rene 650
Şekerci, Ramazan 45
Sellis, Timos 689
Shao, Jianhua 761
Shestakov, Denis 780
Sikora, Katarzyna 710
Snášel, Václav 1
Soisalon-Soininen, Eljas 489

Author Index 907

Sousa, Flávio R.C. 141
Speer, Jayson 319
Spycher, Samuel 172
Stavrakas, Y. 23
Steinmetz, Rita 424
Stuckenschmidt, Heiner 874
Studer, Thomas 671
Sun, Chong 499
Svihla, Martin 700

Tanaka, Katsumi 790, 801
Tang, Yan 34
Tezuka, Taro 790
Tineo, Leonid 469
Tok, Wee Hyong 233
Tosun, Ali Şaman 120
Touzi, Amel Grissa 639
Tsoumakos, Dimitrios 689
Tzitzikas, Yannis 582

Ungrangsi, Rachanee 720

Vacca, Mario 509
Vachon, Julie 864
Valentin, Olivier 162
Van den Poel, Dirk 349
Vilares, Jesús 529

Wang, Lee 811
Wang, Tengjiao 562

Watanabe, Yousuke 414
Welter, Danielle 772
Wen, Lianzi 298
Widjanarko, Klarinda G. 617
Wiesinger, Thomas 519
Wijaya, Derry Tanti 660
Wuwongse, Vilas 720

Xie, Xing 811
Xu, Juan 151
Xu, Liang 130

Yamada, Shinichi 414
Yamamoto, Takehiro 801
Yang, Dongqing 562
Yanlong, Wang 151
Yasukawa, Michiko 359
Yokoo, Hidetoshi 359
Yue, Lihua 811

Zdrahal, Zdenek 884
Zeh, Norbert 109
Zhang, Jun 223
Zhang, Mingwu 751
Zhang, Qi 811
Zhou, Chong 499
Zhou, Lizhu 223
Zhu, Qiang 87
Zighed, Djamel 54

	Title Page
	Preface
	Table of Contents
	On the Efficient Processing Regular Path Expressions of an Enormous Volume of XML Data
	Introduction
	Multi-dimensional Approach to Indexing XML Data
	A Model
	An Indexing Scheme
	An Implementation Scheme

	Efficient Processing of Regular Path Expressions
	A Model
	Processing a Simple Path Query
	Processing a Branch Query

	Experimental Results
	Conclusion
	References

	Improving XML Instances Comparison with Preprocessing Algorithms
	Introduction
	Approaches for XML Data Similarity Definition
	Related Work
	Limitations of the Approaches

	Preprocessing Algorithms
	Lexical Preparation
	Terms Uniformization
	Hierarchy Reestructuring
	Complex to Simple Element Transformation
	Complex Elements Compatibilization
	Algorithms Execution

	Algorithms Validation
	Scenarios
	Experiments

	Conclusion
	References

	Storing Multidimensional XML Documents in Relational Databases
	Introduction
	Preliminaries
	Mutidimensional XML
	Storing XML Data in Relational Databases

	Properties of MXML Documents
	A Graphical Model for MXML
	Properties of Contexts
	Reduction of MXML to XML

	Storing MXML in Relational Databases
	Naive Approach
	Limitations of the Naive Approach
	A Better Approach

	Discussion and Motivation for Future Work
	References

	On Constructing Semantic Decision Tables
	Introduction
	Background and Motivation
	Semantic Decision Table
	The Construction Method
	Establish Decision Lexons
	Construct Semantically Grounded Decision Rules

	Related Work
	Conclusion and Future Work
	References

	Artificial Immune Recognition System Based Classifier Ensemble on the Different Feature Subsets for Detecting the Cardiac Disorders from SPECT Images
	Introduction
	SPECT Images Dataset
	Acquiring of SPECT Images
	Diagnosis of Cardiac Disorders

	The Proposed Method
	Overview
	FastICA Algorithm: Dimensionality Reduction Process
	Artificial Immune Recognition System: Classification Process

	The Empirical Results
	Results and Discussion

	Conclusions and Future Work
	References

	A Multisource Context-Dependent Semantic Distance Between Concepts
	Introduction
	Semantic Similarity in Text
	Knowledge-Based Measures
	Corpus-Based Measures

	A Context-Dependent Similarity Measure
	Problems with Information Content Measures
	A New Context-Dependency Based Measure
	A Corpus-Based Combination Measure

	Evaluation and Results
	The Benchmark
	Results

	Conclusion and Future Work
	References

	Self-healing Information Systems
	A Faceted Taxonomy of Semantic Integrity Constraints for the XML Data Model*
	Introduction
	Related Work
	The Proposed Taxonomy
	Constraint Value
	Constraint Range
	Constraint Form
	Constraint Check Point
	Constraint Action
	Taxonomy Application

	Conclusion
	References

	Beyond Lazy XML Parsing
	Introduction
	2LP on Partitioned XML Documents
	Partitioning the XML File
	Experiments
	Related Work
	Conclusions
	References

	Efficient Processing of XML Twig Pattern: A Novel One-Phase Holistic Solution
	Introduction
	Backgrounds
	A One-Phase Holistic Twig Join Algorithm
	Notations
	Stack Structure
	Algorithm
	Analysis of Algorithm

	Experimental Results
	Experimental Set-Up
	Experimental Results

	Conclusion
	References

	Indexing Set-Valued Attributes with a Multi-level Extendible Hashing Scheme
	Introduction
	Related Work
	Preliminaries
	Querying Set-Valued Attributes
	Signature-Based Retrieval

	Multi-level Hashing
	General Description
	Lookups
	Insertions

	Adapting ML-Hashing to Set-Valued Queries
	Example
	Comparison of ML-Hashing with Regular Extendible Hashing

	Summary of Experimental Evaluation
	Conclusion
	References

	Adaptive Tuple Differential Coding
	Introduction
	The ATDC Algorithm
	Encoding Tuples
	Selection of Boundary Tuples

	Experimental Analysis
	ATDC vs. GZIP Compression
	ATDC vs. TDC Compression

	Conclusion
	References

	Space-Efficient Structures for Detecting Port Scans
	Introduction
	Related Work
	SystemModel
	Proposed Schemes
	PORT-ALERT
	PORT-NODE-ALERT
	PORT-NODE-TIME-ALERT

	Conclusion
	References

	A Dynamic Labeling Scheme Using Vectors
	Introduction
	Related Work
	Preliminaries
	VectorEncoding
	Encoding Delimiters
	Application of Vector Encoding Scheme

	Support Updating
	Updating in VContainment Scheme
	Analysis on Insertion

	Experiments and Evaluation
	Label Generation
	Uniform and Skewed Insertions
	Query Time

	Conclusion
	References

	A New Approach to Replication of XML Data
	Introduction
	RepliX
	Specifications
	Evaluation

	Related Work
	Conclusion
	References

	An Efficient Encoding and Labeling Scheme for Dynamic XML Data
	Introduction
	Related Works
	An Extended Lexicographical Order Encoding Based on Forbidden Code Segment
	Encoding Algorithm
	Code Size Analysis
	Application Scopes of FCS-ELO Codes

	Performance Study
	Performance Study on Static XML
	Performance Study on Frequent Updates

	Conclusion
	References

	Distributed Semantic Caching in Grid Middleware
	Introduction
	Distributed Semantic Caching
	Locality-Based Resolution
	Dual Cache
	Locality-Based Resolution in Dual Cache

	PerformanceAnalysis
	Testbed Configuration
	Experiments in a Grid

	RelatedWork
	Conclusion
	References

	Multiversion Concurrency Control for Multidimensional Index Structures
	Introduction
	Generalized Search Tree (GiST)
	Multiversion-GiST (MVGiST)
	Multiversion Concurrency Control
	Assumptions
	MVGiST Structure
	Supported Operations and Synchronisation Issues
	Read Tree Creation Strategies

	Evaluation
	Related Work
	Conclusion
	References

	Using an Object Reference Approach to Distributed Updates
	Introduction
	Related Research
	ORef Modelling Concepts and Architecture
	The ORef Model
	The ORef Architecture

	Object Pool Pairs Connectivity
	Processing Principles
	Materialisation
	Update Propagation
	Optimisation and Efficiency

	Implementation
	Conclusions
	References

	Towards a Novel Desktop Search Technique
	Introduction
	Challenges and Issues
	DataModel Issue
	Query Processing Issue

	Unified Data Model
	Basic Definitions

	Query Processing
	Query Optimization
	Optimal Filter

	Related Work
	Conclusions
	References

	An Original Usage-Based Metrics for Building a Unified View of Corporate Documents
	Introduction
	Context and Motivations
	Organizational Context
	Corporate Documents: A Quiescent Capital
	How to Unify Corporate Documents?

	An Original Usage-Based Unified Document View
	Modeling Documents Usage: the Multitree Data Structure
	Computing an Inter-Document Usage-Based Similarity
	Applying the Usage-Based Metrics: A Documents Unified View

	Conclusion and Future Works
	References

	Exploring Knowledge Management with a Social Semantic Desktop Architecture
	Introduction
	User Studies
	The IKOS Architecture
	Matching Requirements with IKOS
	Conclusions and Future Work
	References

	Classifying and Ranking: The First Step Towards Mining Inside Vertical Search Engines
	Introduction
	CPaper
	Instances Classification
	Instances Ranking
	PageRank
	ZRank

	Application
	Impact of Classifying
	Impact of Ranking

	Conclusion
	References

	Progressive High-Dimensional Similarity Join
	Introduction
	Related Work
	Non-progressive Distance Similarity Joins for High-Dimensional Data
	Progressive Joins and Progressive Similarity Joins

	Progressive Similarity Join on High-Dimensional Data
	Problem Definition
	Grid-Based Similarity Join
	Flushing Strategies

	Performance Analysis
	Uniform and Skewed Dataset
	Checkered Data
	Non-uniform Data Within Cells
	Real-Life Datasets

	Conclusion
	References

	Decomposing DAGs into Disjoint Chains
	Introduction
	Graph Stratification and Bipartite Graphs
	Stratification of DAGs
	Concepts of Bipartite Graphs

	Algorithm Description
	Correctness and Computational Complexities
	Conclusion
	References

	Evaluating Top-k Skyline Queries over Relational Databases
	Introduction
	Motivating Example
	Related Work
	Top-k Skyline
	Our Proposed Solutions for Top-k Skyline
	Experimental Study
	Conclusions and Future Work
	References

	A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks
	Introduction
	Related Work
	Preliminaries
	Proposed Solution
	Assumptions and System Overview
	Server Data Structure
	Moving Object Data Structure
	Initialization
	Message Processing
	An Example

	Performance Study
	Simulation Setup
	Simulation Results

	Conclusions
	References

	Information Life Cycle, Information Value and Data Management
	Preface
	Some Basic Facts on Data and Storage
	Usage of Data
	The FileCache and FileStore Architecture
	FileCache Architecture for Databases
	Integration with Information Lifecycle Management
	The Quest for Eternity and Perfect Personal Memories
	References

	Vague Queries on Peer-to-Peer XML Databases
	Introduction
	Vague Queries on P2P XML Databases
	The VXPeer System
	Evaluating Vague Queries
	Routing VXPeer Queries

	Experimental Results
	Related Work and Conclusions
	References

	Proximity Search of XML Data Using Ontology and XPath Edit Similarity
	Introduction
	Related Work
	The Proposed Scheme
	Tag Name Expansion Using Ontologies
	Proximity Matching of Path Expressions Based on Edit Similarity

	SystemOverview
	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions
	References

	Cooperative Data Management for XML Data
	Introduction
	Related Work
	Transaction and Cooperation Model
	Transaction Model
	Cooperation Model

	Transaction Protocol
	Operations and Lock Compatibility
	Tree Protocol
	XML Representation

	Conclusion
	References

	C-ARIES: A Multi-threaded Version of the ARIES Recovery Algorithm
	Introduction
	Contribution
	Outline

	ARIES
	C-ARIES: The Multi-threaded ARIES Algorithm
	Logging
	Fuzzy Checkpoint

	C-ARIES: Crash Recovery
	Data Structures
	Analysis Phase
	Redo Phase
	Undo Phase
	Crashes During Crash Recovery

	C-ARIES: Rollback During Normal Processing
	Sketch of Algorithms

	Conclusion
	References

	Optimizing Ranked Retrieval
	Introduction
	Related Work
	RankedQueries
	An Operator for Ranked Queries
	Equivalences for Ranked Queries
	Equivalences Are Not Enough
	Adding Soft $top~k$ Operators

	Operators
	Integration into the Query Optimizer
	Evaluation
	Comparison with Existing Approaches
	Larger Queries
	Sensitivity to Misestimations

	Conclusion
	References

	Similarity Search over Incomplete Symbolic Sequences
	Introduction
	Problem Description
	Distance Function for Complete Symbolic Sequence
	Distance Function for Incomplete Symbolic Sequence

	Proposed Approach
	Imputation Method
	Determine Positions of Missing Elements
	Usage in Similarity Search

	Extension to Real-Valued Sequence
	Experimental Evaluation
	Data Set
	Precision and Recall
	Tightness of Lower Bound and Upper Bound

	Conclusion
	References

	Random Multiclass Classification: Generalizing Random Forests to Random MNL and Random NB
	Introduction
	Methodology
	Random Forests (RF)
	Random MultiNomial Logit (RMNL)
	Random Na$\"{i}$ve Bayes (RNB)

	A CRM Cross-Sell Application
	Results
	Random Forests (RF)
	MultiNomial Logit (MNL) and Random MNL (RMNL)
	Naive Bayes (NB) and Random Naive Bayes (RNB)
	Support Vector Machines (SVM)
	Predictive Model Evaluation on Test Data
	Feature Importance

	Conclusion
	References

	Related Terms Clustering for Enhancing the Comprehensibility of Web Search Results
	Introduction
	Preliminaries and Definitions
	Query Logs and Related Terms
	Search Results and Document-Term Matrix
	Naive Clustering Methods and Their Problems

	The Method: Related Terms Clustering
	Vocabulary Selection
	Building the Cluster
	Web Application Prototype

	Evaluation
	Comparison of Clustering Quality
	Comparison of Clustering Comprehensibility

	Discussion
	Conclusion
	References

	Event Specification and Processing for Advanced Applications: Generalization and Formalization
	Introduction
	Background: Events and Temporal Semantics
	Primitive Events
	Composite Events

	Temporal Semantics Limitations
	Stream Data Processing
	Information Security

	Event Generalization
	Generalized Primitive Event
	Generalized Composite Event

	Event Registrar Graphs (ERG)
	Conclusions
	References

	An Evaluation of a Cluster-Based Architecture for Peer-to-Peer Information Retrieval
	Introduction
	Related Work
	A P2P IR Architecture
	Testbeds for Evaluating P2P IR

	Initial Evaluation
	Methodology and Parameters
	IR-Related Results

	Evaluating on an Optimal Testbed
	Characteristics and Conditions
	Evaluation Results
	Compensating for Distortion
	Adjusting Term-Weights on Large Testbeds

	Conclusions and Future Work
	References

	A Conceptual Framework for Automatic Text-Based Indexing and Retrieval in Digital Video Collections
	Introduction and Related Work
	A Strongly-Integrated Model and Its Representation Formalism
	The Visual Layer
	The Visual Semantics Facet
	The Signal Facet

	The Audio Layer
	Speaker Identification and Automatic Concept Detection
	A Conceptual Model for the Audio Layer

	Unification of CGs over Visual and Audio Layers
	Conclusion
	References

	Dimensionality Reduction in High-Dimensional Space for Multimedia Information Retrieval
	Introduction
	Related Work
	Lower-Bounding Function Using Cauchy-Schwartz Inequality
	Lower-Bounding Function Considering the Angle Component

	ProposedMethod
	Error Analysis
	Dimensionality Reduction Using Dimension Grouping
	Selection of a Reference Vector
	Database Construction and Query Processing
	Discussions

	Performance Evaluation
	Conclusions
	References

	Integrating a Stream Processing Engine and Databases for Persistent Streaming Data Management
	Introduction
	Example Scenario
	System Architecture
	Harmonica Query Language
	Syntax
	Examples
	Query Plan

	Feasibility Validation
	Definition
	Validation Algorithm
	Estimating Operator Costs
	Estimating the Maximum Writing Rate to DBMS
	Validation Example
	Experiment

	Related Work
	Conclusion
	References

	Data Management for Mobile Ajax Web 2.0 Applications
	Introduction
	Related Works

	Requirements to an Ajax Engine Working on Compressed XML
	The Solution: A DAG-Based DOM Model
	Server-Side Binarization of the XML Document
	Transferring a Binary DAG
	DOM Read Operations Implemented on a Binary DAG
	DOM Write Operations Implemented on a Binary DAG

	Evaluation and Results
	Summary and Conclusions
	References

	Data Management in RFID Applications
	Introduction
	Related Work
	RFID Data Modeling
	ER-Model and Query Types
	An Illustrative Example

	RFID Data Management
	Time-Line Approach
	Multi-table Approach

	Performance Study
	Conclusion
	References

	When Mobile Objects’ Energy Is Not So Tight: A New Perspective on Scalability Issues of Continuous Spatial Query Systems
	Introduction
	Communication System Architecture
	The Hybrid Wireless Network Architecture
	Adapting UCAN for Continuous Spatial Query Systems

	Models and Notations of the P2MRQ System
	System Assumptions
	Basic Notations
	Moving Query Model

	Data Structures and Algorithms of the P2MRQ System
	Data Structures
	Installing Queries
	Handling Query Objects that Change Their Velocity Vectors
	Handling Data Objects That Change Their Spatial Relationship with Nearby Queries
	Handling Mobile Objects That Change Their Grid Cells

	Performance Evaluation
	Simulation Study

	References
	Conclusion

	Sequence Alignment as a Database Technology Challenge
	Introduction
	Preliminaries
	Strings
	A Relational View on Q-Gram Indexing
	Profile HMM Matching

	Filtering
	The Monet Approach
	HMMER

	Experiments and Discussion
	Conclusions
	References

	Fuzzy Dominance Skyline Queries
	Introduction
	Skyline Operator
	Fuzzy Dominance Skyline
	Implementation Issue
	Performance Analysis
	Conclusions and Future Works
	References

	Pruning Search Space of Physical Database Design
	Introduction
	Similarity Between HP and BJIs: A Motivating Example

	Selecting HP and BJIs
	Horizontal Partitioning Selection Problem
	BJIs Selection Problem

	Pruning Search Space of BJIs Selection Using HP
	Greedy Algorithm for Generating BJIs

	Experimental Studies
	Conclusion
	References

	A Two-Phased Visual Query Interface for Relational Databases
	Introduction
	Basic Idea Behind OVI-2
	A Working Example of OVI-2
	Stage I: Specifying the Sub-concepts
	Stage I : Existential Quantification
	Stage II : Selecting the Attributes and Eliminating Unwanted Rows

	Implementation Issues
	User Comments
	Comparison with Other Approaches
	Conclusions
	References

	Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal
	Introduction
	Backgrounds and Related Work
	Haar Wavelet and Error Tree
	Wavelet-Based Data Reduction: Coefficient Thresholding
	Definition and Problem Formulation

	(\bar{X}_{1}{\it wavelet})opt Construction
	A Counterexample
	Theorem and Proof
	Construction Algorithm of Construction Algorithm of (\bar{X}_{1}{\it wavelet})opt

	Construction Algorithms of \bar{X}_{k}{\it wavelet}$
	Theorems and Proof
	Near Optimal Construction of (\bar{X}_{k}{\it wavelet}$)^{opt}$

	Experimental Evaluations
	Conclusions and Future Work
	References

	A Logic Framework to Support Database Refactoring
	Introduction
	Related Work
	Database Refactoring Through Epistemic Logic
	A Formalization of the Database Refactoring ProblemUsing Predicate Logic
	The Process of Database Refactoring
	Conclusions and Future Works
	References

	An Iterative Process for Adaptive Meta- and InstanceModeling
	Introduction
	Addressed Problem Areas
	A Concept for an Iterative Meta- and Instance Modeling Process
	A Concept for Iterative Meta- and Instance Modeling Within an Organizational Process
	MSP Meets ITIL Service Support

	A Platform for Iterative Meta- and Instance Modeling
	Related Work
	Further Work
	Conclusion
	References

	Compiling Declarative Specifications of Parsing Algorithms
	Introduction
	From Declarative Descriptions to Program Code
	Indexing
	Elements in Schemata

	Experimental Results
	Conclusions
	References

	Efficient Fragmentation of Large XML Documents
	Introduction
	SimpleX: Simple Top-Down Heuristics for Shredding an XML Document
	Structure Histograms
	Experimental Assessment
	Related Work
	Conclusions and Future Work
	References

	Locating and Ranking XML Documents Based on Content and Structure Synopses
	Introduction
	Query Specification and Document Indexing
	Query Processing
	Aggregated Ranking
	Extended TF*IDF Scoring
	Enhanced Scoring with Positional Weight
	Combined Scoring with Term Proximity

	Experimental Results
	Conclusion
	References

	MQTree Based Query Rewriting over Multiple XML Views
	Introduction
	Background Knowledge
	XPath Query
	XML Query Rewriting over Single XML View
	Problem Definition

	MQTree Based Query Rewriting over the Multiple XML Views
	The Candidate Query Rewriting Plans Generation over the MQTree
	The Validation of Candidate Rewriting Plan over MQTree

	Performance Study
	Experimental Setup
	Performance Study

	Related Work
	Conclusion
	References

	Convex Cube: Towards a Unified Structure for Multidimensional Databases
	Introduction and Motivations
	Cube Lattice Framework
	ConvexCubes
	Formalization of Existing Cubes
	Datacubes
	Others Cubes

	Conclusion
	References

	Dependency Management for the Preservation of Digital Information
	Introduction
	Formalizing Dependencies
	Intelligibility of Data Objects
	Intelligibility Gaps

	(Intelligibility-Aware) Interaction Schemes
	For Consuming (Delivering) Information
	For Providing (Ingesting) Information
	Complex Objects and Other Technicalities

	Concluding Remarks
	References

	Constraints Checking in UML Class Diagrams: SQL vs OCL
	Introduction
	Constraints
	Transformation Rules of Participation Constraints
	Checking PCs on Generalization/Specialization Associations
	Checking PCs on Binary Associations
	Recapitulative

	Conclusion
	References

	XML-to-SQL Query Mapping in the Presence of Multi-valued Schema Mappings and Recursive XML Schemas
	Introduction
	Related Work
	Motivation
	Preliminaries
	Schema-Based Query Mapping
	σ_p-Mapping
	Unfolded XML Schema Graph

	ID-Based Generic Query Mapping
	Experimental Study
	Conclusions and Future Work
	References

	Efficient Evaluation of Nearest Common Ancestor in XML Twig Queries Using Tree-Unaware RDBMS
	Introduction
	Framework and Contributions
	Relational Approaches for Twig Query Processing and Our Contributions
	Overview of SUCXENT++ Approach

	Evaluation of NCA-Twiglets
	DataModel and NCA-Twiglet
	NCA-TwigletMatching
	Query Translation Algorithm

	Performance Study
	Related Work
	Conclusions
	References

	Exclusive and Complete Clustering of Streams
	Introduction
	Our Approach
	Related Works

	ExCC Algorithm
	Grid Structure
	Speed of the Stream
	Grid Pruning
	Handling Data Drift and Outliers

	Clusters Generation
	Connectivity and Clustering
	Cluster Description
	Noise Detection

	Experimental Study
	4.1 Performance of On-Line Component of ExCC
	Clustering Quality Evaluation
	Testing for Complete Clustering

	Conclusion
	References

	Clustering Quality Evaluation Based on Fuzzy FCA
	Introduction
	Backgrounds
	Concept Lattices
	Conceptual Scaling

	The Quality Evaluation Process
	Analyze
	Visualization
	Quality Evaluation

	Conclusion
	References

	Comparing Clustering Algorithms and Their Influence on the Evolution of Labeled Clusters
	Introduction
	Related Work
	\ThemeFinder on an Accummulated Document Collection
	Experimenting with the ACM Archive
	Using \ThemeFinder at the Clustering Results

	Conclusions and Outlook
	References

	Journey to the Centre of the Star: Various Ways of Finding Star Centers in Star Clustering
	Introduction
	Background and Related Works
	Vector and Graph Clustering
	Star Clustering and Extended Star Clustering

	Finding Star Centers
	Markov Stationary Distributions
	Lower Bound, Average and Sum

	Experiments
	Performance of Off-Line Algorithms
	Order of Stars
	Performance of Off-Line Algorithms at Different Threshold (σ)
	Performance of Off-Line Extended Star Algorithms
	Performance of On-Line Algorithms

	Conclusion
	References

	Improving Semantic Query Answering
	Introduction
	DL to DB Mapping
	Evaluation
	Concluding Remarks
	References

	A Method for Determining Ontology-Based Semantic Relevance
	Introduction
	Knowledge Representation on the SemanticWeb
	Representation of Annotations
	Requirements for Annotation Relevance Calculation

	A Method for Determining Semantic Relevance of Annotations
	Implementation and Evaluation
	Dataset
	Test Setting
	Results
	Conclusions of Empirical Evaluation

	Conclusions
	References

	Semantic Grouping of Social Networks in P2P Database Settings
	Introduction
	Interest Group Creation
	Group Inference
	Schema Merging Algorithm

	Performance Evaluation
	Related Work
	Summary
	References

	Benchmarking RDF Production Tools
	Introduction
	METAmorphoses
	Experiment Overview
	Compared Systems
	Experiment Methodology
	Testing Dataset
	Testing Environment

	Experiments and Results
	Experiments with the Result Size
	Experiments with the Graph Pattern Complexity
	Experiments with the Query Condition Complexity

	Discussion on Results
	Related Work
	Conclusion
	References

	Creating Learning Objects and Learning Sequence on the Basis of Semantic Networks
	Introduction
	Developing Semantic Network of the Chosen Scope of Material
	Creating a Distance Learning Course
	Marking LO Out of the Semantic Network
	Learning Sequence Creation

	Example of Using the Method
	Conclusion
	References

	SQORE-Based Ontology Retrieval System
	Introduction
	Related Work
	SQORE: Semantic Query Based Ontology Retrieval
	An Example: Step by Step
	SQORE Prototype System
	Experiment
	Experimental Design
	Precision vs. Recall
	Rank Evaluations

	Conclusions and Future Work
	References

	Crawling the Web with OntoDir
	Introduction
	Related Works
	The System Architecture
	The Proposed Method
	Word Sense Disambiguation Step
	Topic Detection Step

	Experimental Results
	Conclusions
	References

	Extracting Sequential Nuggets of Knowledge
	Introduction
	BasicConcepts
	Definitions
	Interestingness Measures
	Postfix-Projection

	SNK Algorithm
	Specification and Pseudo-code
	Properties of SNK

	Example
	Related Work and Discussion
	References

	Identifying Rare Classes with Sparse Training Data
	Introduction
	Related Work
	Seeded k-Means vs. Classification Techniques
	Entropy-Based Semi-supervised Learning
	Conclusion / Future Work
	References

	Clustering-Based K-Anonymisation Algorithms
	Introduction
	Preliminaries
	Clustering-Based k-Anonymisation Methods
	Experimental Evaluation of Clustering Strategies
	Conclusions
	References

	Investigation of Semantic Similarity as a Tool for Comparative Genomics
	Introduction
	The Gene Ontology
	Semantic Similarity

	The Semantic Similarity Calculator
	Design and Implementation
	Testing

	Conclusions and Future Work
	References

	On Estimating the Scale of National Deep Web
	Introduction
	Related Work
	Estimation of Russian Deep Web Scale
	Random Sampling of IP Addresses
	Stratified Random Sampling of Hosts
	Subject Distribution of Web Databases

	Discussion
	Conclusion
	References

	Mining the Web for Appearance Description
	Introduction
	Related Work
	Visual Description Mining
	Visualness of Adjectives
	Object Identification by Photographs

	Extracting Appearance Descriptions for General Objects from Very Large Corpus of Documents
	Overview
	Dictionary of Visual Modifiers
	Collection of Components/Classes
	Ranking of V-C Pairs Using Sampled Documents
	Filtering of V-C Pairs Using the Whole Documents

	Experiment
	Conclusion and Future Work
	References

	Rerank-by-Example: Efficient Browsing of Web Search Results
	Introduction
	Edit-and-Propagate Operations for Reranking
	Reranking Methods
	Selection Keyword Method
	Extended Keyword Method

	Experiment
	Discussion

	Supporting Deletion and Emphasis by Using MultiTagCloud
	Method of Generating MultiTagCloud
	Example of System Output
	Effectiveness of MultiTagCloud

	Related Work
	Conclusion and Future Work
	References

	Computing Geographical Serving Area Based on Search Logs and Website Categorization
	Introduction
	Related Work
	Definitions
	Serving Area Detection
	Computing Serving Area by Analyzing User IP Locations
	Computing Serving Area by Analyzing Query Terms
	Computing Serving Area by Web Content Classification

	Experiments
	Gazetteers and Search Logs
	Results for Using User IP Locations
	Results for Using Query Terms
	Results for Web Content Classification

	Conclusion
	References

	A General Framework to Implement Topological Relations on Composite Regions
	Introduction
	Overview of 9IM
	Mapping Theorem
	Example of Implementation
	Conclusion and Perspectives
	References

	Active Adjustment: An Approach for Improving the Performance of the TPR-Tree
	Introduction
	Related Work
	TPR-Tree
	TPR$*^\-Tree

	The Proposed Method
	Motivation
	Basic Strategy

	Performance Evaluation
	Experimental Environment
	Results and Analyses

	Conclusions
	References

	Performance Oriented Schema Matching
	Introduction
	Related Work
	Preliminaries
	Scope Properties

	Our Approach
	Assumptions
	Example of Schema Integration

	Experimental Evaluation
	Conclusions
	References

	Preference-Based Integration of Relational Databases into a Description Logic
	Introduction
	Framework
	Syntax
	Semantics

	Enriching the Framework with Preferences over the Views
	Implementation
	Conclusion
	References

	A Context-Based Approach for the Discovery of Complex Matches Between Database Sources
	Introduction
	Informational Context
	Complex Concept Mining

	Related Work
	\mbox{\sc{Indigo}}'s Architecture
	$\Context Analyzer\
	Mapper Module

	Experimental Results
	Context Mining Performance
	Complex Matching Evaluation

	Conclusion
	References

	Ontology Modularization for Knowledge Selection: Experiments and Evaluations
	Introduction
	A Case-Study for Modularization: The Knowledge Selection Scenario
	Modularization Techniques
	Ontology Partitioning Approaches
	Module Extraction Approaches

	Evaluation Criteria for Modularization
	Evaluating the Result of Modularization
	Evaluating the Modularization Tool

	Experiments
	Considered Ontologies
	Results for Example 1
	Results for Example 2

	Conclusion and Discussion: Towards a Benchmark for Modularization Techniques
	References

	The Role of Knowledge in Design Problems
	Introduction
	Design as an Ill-Structured Problem
	Models of Design Processes
	Solving Design by Problem Re-representation
	TheClockworkProject
	Conclusions
	References

	e-Infrastructures
	Introduction
	Benefits of Grid Computing for Research and Industry
	Grid Business and Services
	Case Study: The German D-Grid Initiative
	The D-Grid Infrastructure Project
	Community Grid Projects

	The Future: What Comes After the Grid Projects?
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

