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Preface

These proceedings contain a selection of refereed papers presented at or related
to the Annual Workshop of the TYPES project (EU coordination action 510996),
which was held April 18–21, 2006 at the University of Nottingham, UK.

The topic of this workshop was formal reasoning and computer programming
based on type theory: languages and computerized tools for reasoning, and appli-
cations in several domains such as analysis of programming languages, certified
software, formalization of mathematics and mathematics education.

The workshop was attended by more than 100 researchers and included more
than 60 presentations. We also had the pleasure of three invited lectures, from
Bart Jacobs (University of Nijmegen), Hongwei Xi (Boston University) and Si-
mon Peyton Jones (Microsoft Research). Simon Peyton Jones spoke in a joint
session with the workshop on Trends in Functional Programming (TFP), which
was co-located with the TYPES conference.

From 29 submitted papers, 17 were selected after a reviewing process. The
final decisions were made by the editors.

This workshop followed a series of meetings of the TYPES working group
funded by the European Union (IST project 29001, ESPRIT Working Group
21900, ESPRIT BRA 6435). The proceedings of these workshop were published
in the LNCS series:

TYPES 1993 Nijmegen, The Netherlands, LNCS 806
TYPES 1994 B̊astad, Sweden, LNCS 996
TYPES 1995 Turin, Italy, LNCS 1158
TYPES 1996 Aussois, France, LNCS 1512
TYPES 1998 Kloster Irsee, Germany, LNCS 1657
TYPES 1999 Lökeborg, Sweden, LNCS 1956
TYPES 2000 Durham, UK, LNCS 2277
TYPES 2002 Berg en Dal, The Netherlands, LNCS 2646
TYPES 2003 Turin, Italy, LNCS 3085
TYPES 2004 Jouy-en-Josas, France, LNCS 3839

ESPRIT BRA 6453 was a continuation of ESPRIT Action 3245, Logical
Frameworks: Design, Implementation and Experiments. Proceedings for annual
meetings under that action were published by Cambridge University Press in the
books Logical Frameworks and Logical Environments, edited by Gérard Huet and
Gordon Plotkin.

We are grateful for the support of the School of Computer Science and Infor-
mation Technology at the University of Nottingham in organizing the meeting.
We should like to thank James Chapman, Wouter Swierstra and Peter Morris,
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who helped with the administration and coordination of the meeting. We are
also grateful to Peter Morris for help in the preparation of the volume.

March 2007 Thorsten Altenkirch
Conor McBride
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Weyl’s Predicative Classical Mathematics as a

Logic-Enriched Type Theory�

Robin Adams and Zhaohui Luo

Dept of Computer Science, Royal Holloway, Univ of London
{robin,zhaohui}@cs.rhul.ac.uk

Abstract. In Das Kontinuum, Weyl showed how a large body of clas-
sical mathematics could be developed on a purely predicative founda-
tion. We present a logic-enriched type theory that corresponds to Weyl’s
foundational system. A large part of the mathematics in Weyl’s book
— including Weyl’s definition of the cardinality of a set and several re-
sults from real analysis — has been formalised, using the proof assistant
Plastic that implements a logical framework. This case study shows how
type theory can be used to represent a non-constructive foundation for
mathematics.

Keywords: logic-enriched type theory, predicativism, formalisation.

1 Introduction

Type theories have proven themselves remarkably successful in the formalisation
of mathematical proofs. There are several features of type theory that are of
particular benefit in such formalisations, including the fact that each object
carries a type which gives information about that object, and the fact that the
type theory itself has an inbuilt notion of computation.

These applications of type theory have proven particularly successful for the
formalisation of intuitionistic, or constructive, proofs. The correspondence be-
tween terms of a type theory and intuitionistic proofs has been well studied. The
degree to which type theory can be used for the formalisation of other notions
of proof has been investigated to a much lesser degree.

There have been several formalisations of classical proofs by adapting a proof
checker intended for intuitionistic mathematics, say by adding the principle of
excluded middle as an axiom (such as [Gon05]). But the metatheoretic properties
of the type theory thus obtained, and to what degree that theory corresponds to
the practice of classical mathematics, are not well known. For the more exotic
schools of mathematics, such as predicativism, the situation is still worse.

We contend that the intuitions behind type theory apply outside of intuition-
istic mathematics, and that the advantages of type theory would prove beneficial
when applied to other forms of proof. It is equally natural in classical mathemat-
ics to divide mathematical objects into types, and it would be of as much benefit
� This work is partially supported by the UK EPSRC research grants GR/R84092 and

GR/R72259 and EU TYPES grant 510996.

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 R. Adams and Z. Luo

to take advantage of the information provided by an object’s type in a classical
proof. The notion of computation is an important part of classical mathematics.
When formally proving a property of a program, we may be perfectly satisfied
with a classical proof, which could well be shorter or easier to find.

We further contend that it is worth developing and studying type theories
specifically designed for non-constructive mathematical foundations. For this
purpose, the systems known as logic-enriched type theories (LTTs), proposed by
Aczel and Gambino [AG02, GA06], would seem to be particularly appropriate.

LTTs can be considered in a uniform type-theoretic framework that supports
formal reasoning with different logical foundations, as proposed in [Luo06]. In
particular, this may offer a uniform setting for studying and comparing differ-
ent mathematical foundations, in the way that predicate logic has in traditional
mathematical logic research. For example, when building a foundational system
for mathematics, we must decide whether the logic shall be classical or con-
structive and whether impredicative definitions are allowed, or only predicative.
Each of the four possible combinations of these options has been advocated as a
foundation for mathematics at some point in history. The four possibilities are:

– Impredicative classical mathematics. This is arguably the way in which
the vast majority of practising mathematicians work (although much of their
work can often also be done in the other settings). Zermelo-Fraenkel Set
Theory (ZF) is one such foundation.

– Impredicative constructive mathematics. Impredicative types theories
such as CC [CH88] and UTT [Luo94], or CIC [BC04] provide its foundations.

– Predicative classical mathematics. This was the approach taken by Weyl
in his influential monograph of 1918, Das Kontinuum [Wey18].

– Predicative constructive mathematics. Its foundations are provided,
for example, by Martin-Löf’s type theory. [NPS90, ML84].

Our type-theoretic framework provides a uniform setting for formalisation of
these different mathematical foundations.

In this paper, we present a case study in the type-theoretic framework: to
construct an LTT to represent a non-constructive approach to the foundation
of mathematics; namely the predicative, classical foundational system of math-
ematics developed by Weyl in his monograph Das Kontinuum [Wey18]. We de-
scribe a formalisation in that LTT of several of the results proven in the book.

Weyl presents in his book a programme for the development of mathematics on
a foundation that is predicative; that is, that avoids any definition which involves
a ‘vicious circle’, where an object is defined in terms of a collection of which it
is a member. The system presented in the book has attracted interest since,
inspiring for example the second-order system ACA0 [Fef00], which plays an
important role in the project of Reverse Mathematics [Sim99]. It is a prominent
example of a fully developed non-mainstream mathematical foundation, and so
a formalisation should be of quite some interest.

We begin this paper describing in Section 2 in detail the version of Weyl’s
foundational system we shall be using. We then proceed in Section 3 to de-
scribe a logic-enriched type theory within a modified version of the logical
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framework LF1 [Luo94]. We claim that this logic-enriched type theory faith-
fully corresponds to the system presented in Section 2. The formalisation it-
self was carried out in a modified version of the proof assistant Plastic [CL01],
an implementation of LF. We describe the results proven in the formalisa-
tion in Section 4. The source code for the formalisation is available online at
http://www.cs.rhul.ac.uk/~robin/weyl.

2 Weyl’s Predicative Foundations for Mathematics

Hermann Weyl (1885–1955) contributed to many branches of mathematics in
his lifetime. His greatest contribution to the foundations of mathematics was
the book Das Kontinuum [Wey18] in 1918, in which he presented a predicative
foundation which he showed was adequate for a large body of mathematics.

The concept of predicativity originated with Poincaré [Poi06], who advocated
the vicious circle principle: a definition of an object is illegitimate if it is defined
by reference to a totality that contains the object itself. Thus, we may not
quantify over all sets when defining a set (as with Russell’s famous ‘set of all
sets that do not contain themselves’); we may not quantify over all real numbers
when defining a real number (as with the least upper bound of a set of reals); and
so forth. A definition which involves such a quantification is called impredicative;
one which does not, predicative. The advocacy of the exclusion of impredicative
definitions has been given the name predicativism.

However much philosophical sympathy we may feel with predicativism, we
may worry that, since impredicative definitions are so common in mathematical
practice, their exclusion may require us to abandon too much of the mathemat-
ical corpus. Weyl’s book provides evidence that this is not necessarily the case.
In it, he shows how many results that are usually proven impredicatively can be
proven predicatively; and that, even for those results that cannot, one can often
prove predicatively a weaker result which in practice is just as useful. He does
this by laying out a predicative foundation for mathematics, and developing a
fairly large body of mathematics on this foundation.

A further discussion of the background to and content of Weyl’s monograph
can be found in Feferman [Fef98].

2.1 Weyl’s Foundational System

We shall now present the version of Weyl’s foundational system on which we
based the formalisation. It differs from the semi-formal system described in Das
Kontinuum in several details. In particular, we have extended Weyl’s system with
several features which are redundant in theory, but very convenient practically;
1 The logical framework LF here is the typed version of Martin-Löf’s logical frame-

work [NPS90]. It is different from the Edinburgh LF [HHP93]: besides the formal
differences, LF is intended to be used to specify computation rules and hence type
theories such as Martin-Löf’s type theory [NPS90] and UTT [Luo94]. A recent study
of logical frameworks can be found in [Ada04].



4 R. Adams and Z. Luo

these shall be described in the paragraphs headed ‘Extensions to Weyl’s system’
below. Our notation in this section also differs considerably from Weyl’s own.

Before turning to the formal details, we begin with a discussion of the intu-
itions behind Weyl’s system, which is constructed following these principles:

1. The natural numbers are accepted as a primitive concept.
2. Sets and relations can be introduced by two methods: explicit predicative

definitions, and definition by recursion over the natural numbers.
3. Statements about these objects are either true or false.

Regarding point 2, we are going to provide ourselves with the ability to define
sets by abstraction: given a formula φ[x] of the system, to form the set

S = {x | φ[x]} . (1)

In order to ensure that every such definition is predicative, we restrict which
quantifiers can occur in the formula φ[x] that can appear in (1): we may quantify
over natural numbers, but we may not quantify over sets or functions. In modern
terminology, we would say that φ[x] must contain only first-order quantifiers.

Weyl divides the universe of mathematical objects into collections which he
calls categories. These categories behave very similarly to the types of a modern
type theory. (This is no coincidence: Weyl was influenced by many of the ideas in
Russell’s theory of types when constructing his system.) For example, there shall
be the category of all natural numbers, and the category of all sets of natural
numbers. We give a full list of the categories present in the system below.

The categories are divided into basic categories, those that may be quantified
over in a definition of the form (1); and the ideal categories, those that may
not. The category of natural numbers shall be a basic category; categories of
sets and categories of functions shall be ideal categories. In modern terminology,
the basic categories contain first-order objects, while the ideal categories contain
second-, third- and higher-order objects.

He proceeds to divide the propositions of his system into the small2 proposi-
tions, those which involve quantification over basic categories only, and so may
occur in a definition of the form (1); and the large propositions, those which
involve quantification over one or more ideal category, and so may not.

In more detail, here is our version of Weyl’s foundational system.

Categories. There are a number of basic categories and a number of ideal cate-
gories, each of which has objects.

1. There are basic categories, including the basic category N of natural numbers.
2. Given any categories A1, . . . , Am and B1, . . . , Bn, we may form the ideal

category (A1×· · ·×Am)→ Set (B1 × · · · ×Bn) of functions of m arguments
that take objects of categories A1, . . . , Am, and return sets of n-tuples of

2 Weyl chose the German word finite, which in other contexts is usually translated
as ‘finite’; however, we agree with Pollard and Bole [Wey87] that this would be
misleading.
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objects of categories B1, . . . , Bn. The number m may be zero here; the
number n may not.

(These were the only categories of functions present in Das Kontinuum.
For the purposes of our formalisation, we have added categories of functions
A→ B for any categories A and B; see ‘Extensions’ below.)

For example, taking m = 0 and n = 1 allows us to form the category
Set (B), the category of all sets whose elements are of category B. Taking
m = 1 and n = 2 allows us to form the category A → Set (B × C), the
category of all functions which take an object from A and return a binary
relation between the categories B and C.

Propositions

1. There are a number of primitive relations that hold between the objects of
these categories:
– the relation ‘x is the successor of y’ (Sxy) between natural numbers;
– the relation ‘x = y’ between objects of any basic category;
– the relation 〈y1, . . . , yn〉 ∈ F (x1, . . . , xm) where F is of category (A1 ×
· · · ×Am)→ Set (B1 × · · · ×Bn), xi of category Ai and yi of Bi.

2. The small propositions are those that can be built up from the primitive
relations using the operations of substituting objects of the appropriate cat-
egory for variables, the propositional connectives ¬, ∧, ∨ and →, and the
universal and existential quantifications over the basic categories.

3. The propositions are those that can be built up from the primitive relations
using substitution of objects for variables, the propositional connectives and
quantification over any categories.

Objects

– Explicit Definition. Given any small proposition φ[x1, . . . , xm, y1, . . . , yn],
wemay introduceanobjectF of category (A1×· · ·×Am)→Set (B1 ×· · · ×Bn)
by declaring

F (x1, . . . , xm) = {〈y1, . . . , yn〉 | φ[x1, . . . , xm, y1, . . . , yn]} (2)

Making this declaration has the effect of introducing the axiom

∀x,y(y ∈ F (x) ↔ φ[x,y]) . (3)

Principle of Iteration. This principle allows us to define functions by
recursion over the natural numbers; given a function F from a category
S → S, we can form a function G of category S×N → S by setting G(X,n) =
Fn(X). G is thus formed by iterating the function F .

More formally, let S be a category of the form Set (B1 × · · · ×Bn). Given
an object F of category (A1 × · · · × Am × S) → S, we may introduce an
object G of category (A1 × · · · ×Am × S × N)→ S by declaring

G(x1, . . . , xm, X, 0) = X
G(x1, . . . , xm, X, k + 1) = F (x1, . . . , xm, G(x1, . . . , xm, X, k))

}
(4)
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where xi is affiliated with category Ai, X with S, and k with N.
Making these declarations has the effect of introducing the axiom

∀x,y(y ∈ G(x, X, 0)↔ y ∈ X) (5)

∀x,y, a, b(Sab→ (y ∈ G(x, X, b)↔ y ∈ F (x, G(x, X, a)))

Axioms. The theorems of Weyl’s system are those that can be derived via clas-
sical predicate logic from the following axioms:

1. The axioms for the equality relation on the basic categories.
2. Peano’s axioms for the natural numbers (including proof by induction).
3. The axioms (3) and (5) associated with any definitions (2) and (4) that have

been introduced.

We note that there is a one-to-one correspondence, up to the appropriate
equivalence relations, between the objects of category C = (A1 × · · · × Am) →
Set (B1 × · · · ×Bn); and the small propositions φ[x1, . . . , xm, y1, . . . , yn], with
distinguished free variables xi of category Ai and yi of category Bi. Given any
F of category C, the corresponding small proposition is y ∈ F (x). Conversely,
given any small proposition φ[x,y], the corresponding object F of category C is
the one introduced by the declaration F (x) = {y | φ[x,y]}.

Extensions to Weyl’s System. For the purposes of this formalisation, we
have added features which were not explicitly present in Weyl’s system, but
which can justifiably be seen as conservative extensions of the same. We shall
allow ourselves the following.

1. We shall introduce a categoryA×B of pairs of objects, one from the category
A and one from the category B. A × B shall be a basic category when A
and B are both basic, and ideal otherwise. This shall allow us, for example,
to talk directly about integers (which shall be pairs of natural numbers) and
rationals (which shall be pairs of integers).

2. We shall introduce a category A → B of functions from A to B for all
categories (not only the case where B has the form Set (· · ·)).
A → B shall always be an ideal category. For the system to be predica-
tive, quantification over functions must not be allowed in small propositions;
quantifying over A → N, for example, would provide an effective means of
quantifying over Set (A). (Recall that, classically, the power set of X and the
functions from X to a two-element set are in one-to-one correspondence.)

Weyl instead defined functions as particular sets of ordered pairs, and
showed in detail how addition of natural numbers can be constructed. For the
purposes of formalisation, it was much more convenient to provide ourselves
with these categories of functions, and the ability to define functions by
recursion, from the very beginning.

We shall permit ourselves to use a function symbol ‘s’ for successor, rather
than only the binary relation Sxy.
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We have diverged from Weyl’s system in two other, more minor, ways which
should be noted. We choose to start the natural numbers at 0, whereas Weyl
begins at 1; and, when we come to construct the real numbers, we follow the
sequence of constructions N −→ Z −→ Q −→ R rather than Weyl’s N −→
Q+ −→ Q −→ R.

3 Weyl’s Foundation as a Logic-Enriched Type Theory

What immediately strikes a modern eye reading Das Kontinuum is how simi-
lar the system presented there is to what we now know as a type theory; al-
most the only change needed is to replace the word ‘category’ with ‘type’. In
particular, Weyl’s system is very similar to a logic-enriched type theory (LTT
for short).

The concept of an LTT, an extension of the notion of type theory, was pro-
posed by Aczel and Gambino in their study of type-theoretic interpretations
of constructive set theory [AG02, GA06]. A type-theoretic framework, which
formulates LTTs in a logical framework, has been proposed in [Luo06] to sup-
port formal reasoning with different logical foundations. In particular, it ade-
quately supports classical inference with a notion of predicative set, as described
below.

An LTT consists of a type theory augmented with a separate, primitive mech-
anism for forming and proving propositions. We introduce a new syntactic class
of formulas, and new judgement forms for a formula being a well-formed propo-
sition, and for a proposition being provable from given hypotheses.

An LTT thus has two rigidly separated components or ‘worlds’: the datatype
world of terms and types, and the logical world of proofs and propositions,
for describing and reasoning about the datatype world3. In particular, we can
form propositions by quantification over a type; and prove propositions by
induction.

In this work, we shall also allow the datatype world to depend on the logical
world in just one way: by permitting the formation of sets. Given a proposition
φ[x], we shall allow the construction of the set {x | φ[x]} in the datatype world;
thus, a set shall be a term that depends on a proposition. (Note that these sets
are not themselves types.) This shall be the only way in which the datatype
world may depend on the logical world; in particular, no type may depend on a
proposition, and no type, term or proposition may depend on a proof.

We start by extending the logical framework LF with a kind Prop, standing for
the world of logical propositions. Then, we introduce a type for each category: a
construction in Prop for each method of forming propositions; a type universe U
of names of the basic categories; and a propositional universe prop of names of the
small propositions. Thus constructed, the LTT with predicative sets corresponds
extremely closely to Weyl’s foundational system.
3 This is very much in line with the idea that there should be a clear separation

between logical propositions and data types, as advocated in the development of
type theories ECC and UTT [Luo94].
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1. Rules of Deduction for Type and El

Γ valid

Γ � Type kind

Γ � A : Type

Γ � El (A) kind

Γ � A = B : Type

Γ � El (A) = El (B)

2. Rules of Deduction for Prop and Prf

Γ valid

Γ � Prop kind

Γ � P : Prop

Γ � Prf (P ) kind

Γ � P = Q : Prop

Γ � Prf (P ) = Prf (Q)

Fig. 1. Kinds Type and Prop in LF′

3.1 Logic-Enriched Type Theories in Logical Frameworks

There exist today many logical frameworks, designed as systems for representing
many different type theories. It requires only a small change to make a logical
framework capable of representing LTTs as well.

For this work, we have used the logical framework LF [Luo94], which is the
basis for the proof checker Plastic [CL01]. LF provides a kind Type and a kind
constructor El. To make LF capable of representing LTTs, we add a kind Prop
and a kind constructor Prf . We shall refer to this extended framework as LF′.

Recall that a logical framework, such as LF or LF′, is intended as a metalan-
guage for constructing various type theories, the object systems. The frameworks
consist of kinds and objects. The object systems are constructed in the frame-
work by representing their expressions by certain objects. An LTT consists of
terms and types (in the datatype world), and propositions and proofs (in the
logical world). We shall build an LTT in LF′ by representing:

– the types by the objects of kind Type;
– the terms of type A by the objects of kind El (A);
– the propositions by the objects of kind Prop;
– the proofs of the proposition φ by the objects of kind Prf (φ).

The rules of deduction for these new kinds Prop and Prf (· · ·) are given in
Figure 1, along with the rules those for Type and El, for comparison.

These new kinds allow us to form judgements of the following forms:

– Γ 
 φ : Prop, indicating that φ is a well-formed proposition;
– Γ 
 P : Prf (φ), indicating that P is a proof of the proposition φ;
– Γ, p1 : Prf (φ1) , . . . , pn : Prf (φn) 
 P : Prf (ψ), indicating that ψ is

derivable from the hypotheses φ1, . . . , φn, with the object P encoding the
derivation; this was denoted by Γ 
 φ1, . . . , φn ⇒ ψ in [AG02].

When formalizing a piece of mathematics using an LTT, the provable propo-
sitions are those φ for which Prf (φ) is inhabited. We state each theorem by
forming the appropriate object φ of kind Prop, and then show that it is provable
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by constructing an object P of kind Prf (φ). (Due to its novelty, we shall not
omit the constructor Prf in this paper.)

We also obtain judgements of the form Γ 
 φ = ψ : Prop. Judgements of
this last form express that φ and ψ are intensionally equal propositions — that
is, that ψ can be obtained from φ by a sequence of reductions and expansions
of subterms. This is not to be confused with logical equivalence; intensional
equality is a much stronger relation. The distinction is similar to that between
judgemental equality (convertibility) and propositional equality between terms.

We recall that a type theory is specified in LF by declaring a number of con-
stants with their kinds, and declaring several computation rules to hold between
objects of some kinds of LF. An LTT can be specified in LF′ by making the above
declarations for each constructor in its datatype component, and also declaring:

– for each logical constant (connective or quantifier) we wish to include, a
constant of kind (· · · )Prop;

– for each rule of deduction, a constant of kind (· · · )Prf (φ)
– some computation rules for propositions, of the form (· · · )(φ = ψ : Prop)

It was essential for this work that the logical framework we use be capable of
representing computation rules. A framework such as Twelf [PS99], for example,
would not be suitable for our purposes.

LTTs and Type Theories Compared. When using a type theory for formalisation,
we identify each proposition with a particular type, and show that a theorem is
provable by constructing a term of the corresponding type. The way we prove
propositions in an LTT by constructing an object of kind Prf (· · ·) is very sim-
ilar. However, there are two important differences to be noted:

– We have separated the datatypes from the propositions. This allows us to
add axioms without changing the datatype world. We can, for example, add
the axiom Pierce (Fig. 2) without thereby causing all the function types
((A→ B)→ A)→ A to be inhabited.

– We do not have any computation rules on proofs. Further, a proof cannot
occur inside a term, type or proposition. We are thus free to add any axioms
we like to the logic: we know that, by adding the axiom Pierce (say), we shall
not affect any of the properties of the reduction relation, such as decidability
of convertibility or strong normalisation.

3.2 Natural Numbers, Products, Functions and Predicate Logic

We can now proceed to construct a logic-enriched type theory that corresponds
to the foundational system Weyl presents in Das Kontinuum.

Our starting point is an LTT that contains, in its datatype component, a
type N of natural numbers, as well as non-dependent product and function types
A × B and A → B; and, in its logical component, classical predicate logic. We
present some of the declarations involved in its specification in Figure 2, namely
those involving natural numbers (including EN, which permits the definition of
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Natural Numbers

N : Type
0 : N

s : (N)N
EN : (C : (N)Type)(C0)((x : N)(Cx)C(sx))(n : N)Cn

IndN : (P : (N)Prop)(Prf (P0))((x : N)(Prf (Px))Prf (P (sx)))(n : N)Prf (Pn)

EN C a b 0 = a : El (C0)
EN C a b (sn) = b n (EN C a b n) : El (C(sn))

Implication

⊃ : (Prop)(Prop)Prop

⊃ I : (P : Prop)(Q : Prop)((Prf (P ))Prf (Q))Prf (⊃P Q)

⊃E : (P : Prop)(Q : Prop)(Prf (⊃P Q))(Prf (P ))Prf (Q)

Pierce’s Law

Pierce : (P : Prop)(Q : Prop)(((Prf (P ))Prf (Q))Prf (P ))Prf (P )

Fig. 2. Declaration of an LTT in LF′

functions by recursion, and IndN, which permits propositions to be proven by
induction) and implication. The other types and logical constants follow a similar
pattern. We also include a version of Pierce’s Law to ensure the logic is classical.

3.3 Type Universes and Propositional Universes

We have now introduced our collection of categories: they are the objects of kind
Type. We still however need to divide them into the basic and ideal categories.

The device we need to do this is one with which we are familiar: that of a
type universe. A type universe U (à la Tarski) is a type whose objects are names
of types. Intuitively, the types that have a name in U are often thought of as
the ‘small’ types, and those that do not (such as U itself) as the ‘large’ types.
Together with U , we introduce a constant T such that, for each name a : U ,
T (a) is the type named by a.

For our system, we provide ourselves with a universe whose objects are the
names of the basic categories. We thus need a universe U that contains a name
for N, and a method for constructing a name for A × B out of a name for A
and a name for B. This is done in Figure 3(1). We also introduce a relation of
equality for every basic category.

Now we need to divide our propositions into the small propositions and the
large propositions. To do so, we use the notion in the logical world which is
analagous to a type universe: a propositional universe.

We wish to introduce the collection prop of names of the small propositions;
that is, the propositions that only involve quantification over small types. It is
not immediately obvious where this collection should live.
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1. The Type Universe 2. The Propositional Universe

U : Type prop : Prop
T : (U)Type V : (prop)Prop

N̂ : U ⊥̂ : prop
×̂ : (U)(U)U ⊃̂ : (prop)(prop)prop

T (N̂) = N : Type ∀̂ : (a : U)((Ta)prop)prop
T (×̂a b) = ×(Ta) (Tb) : Type �̂ : (a : U)(Ta)(Ta)prop

V (⊥̂) = ⊥ : Prop
Propositional Equality V (⊃̂p q) = ⊃(V p) (V q) : Prop

V (∀̂a p) = ∀(Ta) [x : Ta]V (px) : Prop
� : (A : U)(TA)(TA)Prop V (�̂a s t) = �(Ta) s t

� I : (A : U)(a : TA) �A a a
� E : (A : U)(P : (TA)Prop)(a, b : TA)

(Prf (�A a b))(Prf (Pa))Prf (Pb)

Fig. 3. A Type Universe and a Propositional Universe

We choose to declare prop : Prop, instead of prop : Type. Now, it must be
admitted that prop is not conceptually a proposition; it does not assert any
relation to hold between any mathematical objects. However, it seems to make
little practical difference which choice is made. Choosing to place prop in Prop
provides a pleasing symmetry with U and Type, and prop seems to belong more
to the logical world than the datatype world. Until more foundational work on
LTTs has been done, we accept this compromise: prop is a ‘proposition’, each of
whose ‘proofs’ is a name of a small proposition4.

As with the type universe, when we introduce a propositional universe prop
we provide ourselves with a constant V such that, for each name p : prop, V (p)
is the proposition named by p. We also provide constants that reflect equality,
the propositional connectives, and quantification over the basic types. The dec-
larations are given in Figure 3(2). Note that the propositional universe provides
us with our first examples of computation rules for propositions.

We have built prop as a universe à la Tarski; that is, its objects are names
of small propositions. Plastic does not provide the necessary mechanism for
defining prop as a universe à la Russell, where its objects would be the small
propositions themselves. We suspect that the choice would make no practical
difference.

3.4 The Predicative Notion of Set

We now have all the machinery necessary to be able to introduce typed sets. For
any type A, we wish to introduce the type Set (A) consisting of all the sets that
4 Other alternatives would be to introduce a new top-kind to hold prop, or to make

prop itself a top-kind. We do not discuss these here.
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Set : (Type)Type
set : (A : Type)((A)prop)Set (A)
∈ : (A : Type)(A)(Set (A))prop

∈A a (set A P ) = Pa : prop

Fig. 4. The Predicative Notion of Set

can be formed, each of whose members is an object of type A. (Thus we do not
have any sets of mixed type.) We take a set to be introduced by a small predicate
over A; that is, an object of kind (A)prop, a function which takes objects of A
and returns (a name of) a small proposition.

We therefore make the declarations given in Figure 4:

– Given any type A, we can form the type Set (A). The terms of Set (A) are
all the sets that can be formed whose elements are terms of type A.

– Given a small proposition φ[x] with variable x of type A, we can form the
set {x : φ[x]}. Formally, given a name p[x] : prop of a small proposition, we
can form ‘setA ([x : A]p[x])’, which we shall write as {x : V (p[x])}.

– If a : A and X : Set (A), we can form the proposition ∈ AaX , which we
shall write as a ∈ X .

– Finally, we want to ensure that the elements of the set {x : φ[x]} are precisely
the terms a such that φ[a] is true. This is achieved by adding our second
example of a computation rule on propositions, the last line on Figure 4,
which we may read as: a ∈ {x : φ[x]} computes to φ[a].

As Set (A) is always to be an ideal category, we do not provide any means for
forming a name of Set (A) in U .

These sets are not themselves types; they are terms of type Set (· · ·). The
membership condition a ∈ A is a proposition, not a typing judgement. In par-
ticular, we distinguish between a type A and the set {x : A | �} of type Set (A).

A similar construction could be carried out in an LTT if we wished to work
in an impredicative setting, simply by replacing prop with Prop throughout
Figure 4. This would allow us to form the set {x : φ[x]} for any proposition φ[x].
(See [Luo06] for more details.) Thanks to the similarity of the two approaches,
much if not all of the work done in the predicative system could be reused in
the impredicative system. We shall return to this point in Section 4.2.

4 Formalisation in Plastic

We have formalised this work in a version of the proof assistant Plastic [CL01],
modified by Paul Callaghan to be an implementation of LF′. We have produced
a formalisation which includes all the definitions and proofs of several of the
results from Weyl’s book.
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In Plastic, all lines that are to be parsed begin with the character >; any line
that does not is a comment line. A constant c may be declared to have kind
(x1 : K1) · · · (xn : Kn)K by the input line

> [c[x1:K1] · · ·[xn:Kn] : K];

We can define the constant c to be the object [x1 : K1] · · · [xn : Kn]k of kind
(x1 : K1) · · · (xn : Kn)K by writing

> [c[x1:K1] · · · [xn:Kn] = k : K];

In both these lines, the kind indicator :K is optional, and is usually omitted.
We can make any argument implicit by replacing it with a ‘meta-variable’ ?,

indicating that we wish Plastic to infer its value.
These are the only features of the syntax that we shall use in this paper.

4.1 Results Proven

Cardinality of Sets. In Weyl’s system, we can define the predicate ‘the set X
has exactly n members’ in the following manner, which shows the power of the
principle of iteration.

Given a basic category A, define the function K : N → Set (Set (A)) by
recursion as follows. The intention is that K(n) is the set of all sets X : Set (A)
that have at least n members.

K(0) = {X | �}
K(n+ 1) = {X | ∃a(a ∈ X ∧X \ {a} ∈ K(n))}

In Plastic, this is done as follows:

> [at_least_set [tau : U] = E_Nat ([_ : Nat] Set (Set (T tau)))
> (full (Set (T tau)))
> [n : Nat] [Kn : Set (Set (T tau))] set (Set (T tau))
> [X : Set (T tau)] ex tau [a : T tau]
> and (in (T tau) a X) (in ? (setminus’ tau X a) Kn)];

We define the proposition ‘X has at least n members’ to be X ∈ K(n).

> [At_Least [tau : U] [X : Set (T tau)] [n : Nat]
> = In ? X (at_least_set tau n)];

For n a natural number, define the cardinal number n to be {x | x < n}.

> [card [n : Nat] = set Nat [x : Nat] lt x n];

Define the cardinality of a set A to be |A| = {n | A has at least sn members}.

> [cardinality [tau : U] [A : Set (T tau)]
> = set Nat [n : Nat] at_least tau A (succ n)];
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We can prove the following result:

The cardinality |X | of a set X is either {x | �} or n for some n.

We thus have two classes of cardinal numbers: n for finite sets, and {x | �}, which
we denote by ∞, for infinite sets. (There is thus only one infinite cardinality in
Das Kontinuum.) We define ‘X has exactly n members’ to be |X | ≈ sn, where
≈ denotes the following equivalence relation on sets:

X ≈ Y ≡ ∀x(x ∈ X ↔ x ∈ Y ) .

> [infty = full Nat];
> [Exactly [tau : U] [A : Set (T tau)] [n : Nat]
> = Seteq Nat (cardinality tau A) (card (succ n))];

With these definitions, we can prove results such as the following:

1. If A has at least n elements and m ≤ n, then A has at least m elements.
2. If A has exactly n elements, then m ≤ n iff A has at least m elements.
3. If A has exactly m elements, B has exactly n elements, and A and B are

disjoint, then A ∪B has exactly m+ n elements.

We have thus provided definitions of the concepts ‘having at least n members’
and ‘having exactly n members’ in such a way that the sets

{X | X has at least n members} and {X | X has exactly n members}

are definable predicatively. This would not be possible if we defined ‘X has
exactly n elements’ as the existence of a bijection between X and sn; we would
have to quantify over the ideal categoryA→ N. It also cannot be done as directly
in a predicative system of second order arithmetic such as ACA0 [Sim99].

Construction of the Reals. The set of real numbers is constructed by the
following process. We first define the type of integers Z, with a defined relation
of equality ≈Z. We then define a rational to be a pair of integers, the second of
which is non-zero. That is, for q : Z× Z, we define ‘q is rational’ by

〈x, y〉 is rational ≡ y �≈Z 0 .

We proceed to define equality of rationals q ≈Q q
′, addition, multiplication and

ordering on the rationals.
A real is a Dedekind cut of rationals; that is, an object R of the category

Set (Z× Z) that:

– is a domain of rationals; if q ∈ R and q ≈Q q
′, then q′ ∈ R;

– is closed downwards ; if q ∈ R, and q′ < q, then q′ ∈ R;
– has no maximal element; for every rational q ∈ R, there exists a rational
q′ ∈ R such that q < q′;
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– and is neither empty nor full; there exists a rational q such that q ∈ R, and
a rational q′ such that q′ /∈ R.

Equality of reals is defined to be extensional equality restricted to the rationals:

R ≈R S ≡ ∀q(q is rational→ (q ∈ R↔ q ∈ S))

We note that, in this formalisation, there was no way to define the collection
of rationals as a type, say as the ‘sigma-type’ ‘(Σq : Z × Z)q is rational’. This
is because our LTT offers no way to form a type from a type Z × Z and a
proposition ‘q is rational’.

Real Analysis. Weyl was keen to show that his predicative system was strong
enough to be used for mathematical work by demonstrating that, while several
traditional theorems cannot be proven within it, we can usually prove a version
of the theorem that is only slightly weaker.

For example, it seems not to be provable predicatively the least upper bound
principle: that every set A of real numbers bounded above has a least upper
bound l. Impredicatively, we would define l to be the union of A. This cannot
be done predicatively, as it involves quantification over real numbers. However,
we can prove the following two statements, one of which is usually enough for
any practical purpose:

1. Every set S of rational numbers bounded above has a unique (real) least
upper bound l. Take l = {q ∈ Q | (∃q′ ∈ S)q < q′}.

2. Every sequence r1, r2, . . . of real numbers bounded above has a unique least
upper bound l. Take l = {q ∈ Q | (∃n : N)q ∈ rn}.

These involve only quantification over the rationals and the natural numbers,
respectively. (We note that either of these is equivalent to the least upper bound
principle in an impredicative setting.)

The first is enough to prove the classical Intermediate Value Theorem:

If f : Set (Z× Z) → Set (Z× Z) is a continuous function from the reals
to the reals, and f(a) < v < f(b) for some reals a, b, v with a < b, then
there exists a real c such that a < c < b and f(c) = v.

Weyl proves this proposition by taking c to be the least upper bound of the set
of all rationals q such that a < q < b and f(q) < v. For the formalisation, it was
more convenient to define directly: c = {q ∈ Q | (∃q′ ∈ Q)q < q′ < b∧f(q′) < v}.

4.2 An Impredicative Development

As mentioned in Section 3.4, it would not be difficult to modify this formulation
to get a development of the same theorems in an impredicative system. All we
have to do is remove the distinction between large and small propositions.
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Recall that our propositional universe was introduced by the constructors in
Figure 3(2). In principle, we could simply replace these with

prop = Prop V = [x : Prop]Prop

⊥̂ = ⊥ ⊃̂ =⊃
∀̂ = [A : U ]∀(TA) �̂ =�

However, at present plastic becomes unstable when definitions are made at the
top-kind level such as prop = Prop.

Alternatively, we can add two impredicative quantifiers to prop, together with
their computation rules:

∀ : (A : Type)((A)prop)prop V (∀AP ) = ∀A([x : A]V (Px))

∃ : (A : Type)((A)prop)prop V (∃AP ) = ∃A([x : A]V (Px))

Now prop, which determines the collection of propositions over which sets can
be formed, covers the whole of Prop. We can form the set {x | φ[x]} for any
well-formed proposition φ[x]. However, all our old proof files still parse5. Once
this change has been made, we can go on to prove the statement that every set
of real numbers bounded above has a least upper bound.

It would be interesting to develop impredicative analysis in our setting, and
to study the reuse of proof development.

5 Conclusion

We have conducted a case study in Plastic of the use of a type-theoretic frame-
work to construct a logic-enriched type theory as the basis for a formalisation of
a non-constructive system of mathematical foundations, namely that presented
in Weyl’s Das Kontinuum. As a representation of Weyl’s work, it is arguably
better in some ways than such second-order systems as ACA0 [Fef00], since we
can form a definition of the cardinality of a set that is much closer to Weyl’s
own. The formalisation work required only a minor change to the existing log-
ical framework implemented in Plastic, allowing us to preserve all the features
of Plastic with which we were already familiar.

Future work includes comparison of the type-theoretic framework with other
systems such as ACA0. It would also be interesting to carry out the impredicative
development of analysis in our setting, reusing the predicative development.

It has been brought to our attention that logic-enriched type theories may
be closely related to the notion of the internal language of a topos. A precise
relationship between the two is to be further explored.

Acknowledgements. Thanks go to Paul Callaghan for his efforts in extending Plas-
tic, and Peter Aczel for his comments during his visit to Royal Holloway. Thanks
also go to the anonymous referees for very detailed and helpful comments.
5 The same effect could also be made by changing the construction of U , making it

equal to Type; or by making both these changes (to prop and U).
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Abstract. Proof assistants are complex applications whose develop-
ment has never been properly systematized or documented. This work is
a contribution in this direction, based on our experience with the devel-
opment of Matita: a new interactive theorem prover based—as Coq—on
the Calculus of Inductive Constructions (CIC). In particular, we analyze
its architecture focusing on the dependencies of its components, how they
implement the main functionalities, and their degree of reusability.

The work is a first attempt to provide a ground for a more direct
comparison between different systems and to highlight the common func-
tionalities, not only in view of reusability but also to encourage a more
systematic comparison of different softwares and architectural solutions.

1 Introduction

In contrast with automatic theorem provers, whose internal architecture is in
many cases well documented (see e.g. the detailed description of Vampire in [16]),
it is extremely difficult to find good system descriptions for their interactive coun-
terpart. Traditionally, the only component of the latter systems that is suitably
documented is the kernel, namely the part that is responsible for checking the
correctness of proofs. Considering that:

1. Most systems (claim to) satisfy the so called “De Bruijn criterion”, that is
the principle that the correctness of the whole application should depend on
the correctness of a sufficiently small (and thus reliable) kernel and

2. Interactive proving looks like a less ambitious task than fully automatic
proving (eventually, this is the feeling of an external observer)

one could easily wonder where the complexity of interactive provers comes from1.
Both points above are intentionally provocative. They are meant to emphasize
that: (1) the kernel is possibly the most crucial, but surely not the most impor-
tant component of interactive provers and (2) formal checking is just one of the
activities of interactive provers, and probably not the most relevant one.

Of course, interactivity should be understood as a powerful integration rather
than as a poor surrogate of automation: the user is supposed to interact when the
system fails alone. Interaction, of course, raises a number of additional themes
that are not present (or not so crucial) in automatic proving:
1 e.g.: Coq is about 166,000 lines of code, to be compared with 50,000 lines of Otter.

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 18–32, 2007.
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– library management (comprising both per-proof history and management of
incomplete proofs);

– development of a strong linguistic support to enhance the human-machine
communication of mathematical knowledge;

– development of user interfaces and interaction paradigms particularly suited
for this kind of applications.

While the latter point has received a renewed attention in recent years, as
testified by several workshops on the topic, little or no literature is available on
the two former topics, hindering a real progress in the field.

In order to encourage a more systematic comparison of different software and
architectural solutions we must first proceed to a more precise individuation of
issues, functionalities, and software components. This work is meant to be a
contribution in this direction. In particular we give in Section 2 a data-oriented
high-level description of our interactive theorem prover denominated “Matita”2.
We also try to identify the logic independent components to understand the
degree of coupling between the system architecture and its logical framework.
In Section 3 we provide an alternative presentation of the architecture, based on
the offered functionalities. Section 4 is an estimation of the complexity of the
components and of the amount of work required to implement them.

Although our architectural description comprises components that (at present)
are specific to our system (such as the large use of metadata for library indexing)
we believe that the overall design fits most of the existent interactive provers and
could be used as a ground for a deeper software comparison of these tools.

2 Data-Driven Architectural Analysis

Formulae and proofs are the main data handled by an interactive theorem prover.
Both have several possible representations according to the actions performed on
them. Each representation is associated with a data type, and the components
that constitute an interactive theorem prover can be classified according to the
representations they act on. In this section we analyze the architecture of Matita
according to this classification.

We also make the effort of identifying the components that are logic indepen-
dent or that can be made such abstracting over the data types used for formulae
and proofs. This study allows to quantify the efforts required in changing the un-
derlying logic of Matita for the sake of experimenting with new logic foundations
while preserving the technological achievements.

The proof and formulae representations used in Matita as well as its general
architecture have been influenced by some design commitments: (1) Matita is
heavily based on the Curry-Howard isomorphism. Execution of procedural and
declarative scripts produce proof terms (λ-terms) that are kept for later pro-
cessing. Even incomplete proofs are represented as λ-terms with typed linear
2 “matita” means “pencil” in Italian: a simple, well known, and widespread authoring

tool among mathematicians.
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Fig. 1. Matita components with thousands of lines of code (klocs)

placeholders for missing subproofs. (2) The whole library, made of definitions
and proof objects only, is searchable and browsable at any time. During brows-
ing proof objects are explained in pseudo-natural language. (3) Proof authoring
is performed editing either procedural or declarative scripts. Formulae are typed
using ambiguous mathematical notation. Overloading is not syntactically con-
strained nor avoided using polymorphism.
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According to the above commitments, in Matita we identified 5 term repre-
sentations: presentation terms (concrete syntax), content terms (abstract syntax
trees with overloaded notation), partially specified terms (λ-terms with place-
holders), completely specified terms (well typed λ-terms), metadata (approxi-
mations of λ-terms).

Figure 1 shows the components of Matita organized according to the term
representation they act on. For each component we show the functional depen-
dencies on other components and the number of lines of source code. Dark gray
components are either logic independent or can be made such by abstraction.
Dashed arrows denote abstractions over logic dependent components. A normal
arrow from a logic dependent component to a dark gray one is meant to be a
dependency over the component, once it has been instantiated to the logic of
the system.

We describe now each term representation together with the components of
Matita acting on them.

Completely Specified Terms. Formalizing mathematics is a complex and
onerous task and it is extremely important to develop large libraries of “trusted”
information to rely on. At this level, the information must be completely spec-
ified in a given logical framework in order to allow formal checking. In Matita
proof objects are terms of the Calculus of Inductive Constructions (CIC); terms
represent both formulae and proofs. The proof-checker, implemented in the ker-
nel component, is a CIC type-checker. Proof objects are saved in an XML format
that is shared with the Coq Proof Assistant so that independent verification is
possible.

Mathematical concepts (definitions and proof objects) are stored in a dis-
tributed library managed by the file manager, which acts as an abstraction layer
over the concept physical locations.

Concepts stored in the library are indexed for retrieval using metadata. We
conceived a logic independent metadata-set that can accommodate most logical
frameworks. The logic dependent indexing component extracts metadata from
mathematical concepts. The logic independent searching tools are described in
the next section.

Finally, the library manager component is responsible for maintaining the
coherence between related concepts (among them automatically generated lem-
mas) and between the different representations of them in the library (as com-
pletely specified terms and as metadata that approximate them).

The actual generation of lemmas is a logic dependent activity that is not
directly implemented by the library manager, that is kept logical independent:
the component provides hooks to register and invoke logic dependent lemma
generators, whose implementation is provided in a component that we describe
later and that acts on partially specified terms.

Metadata. An extensive library requires an effective and flexible search en-
gine to retrieve concepts. Examples of flexibility are provided by queries up
to instantiation or generalization of given formulae, combination of them with
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extra-logical constraints such as mathematical classification, and retrieval up to
minor differences in the matched formula such as permutation of the hypotheses
or logical equivalences. Effectiveness is required to exploit the search engine as
a first step in automatic tactics. For instance, a paramodulation based proce-
dure must first of all retrieve all the equalities in the distributed library that
are likely to be exploited in the proof search. Moreover, since search is mostly
logic independent, we would like to implement it on a generic representation of
formulae that supports all the previous operations.

In Matita we use relational metadata to represent both extra-logical data
and a syntactic approximation of a formula (e.g. the constant occurring in head
position in the conclusion, the set of constants occurring in the rest of the conclu-
sion and the same information for the hypotheses). The logic dependent indexing
component, already discussed, generates the syntactic approximation from com-
pletely specified terms. The metadata manager component stores the metadata
in a relational database for scalability and handles, for the library manager,
the insertion, removal and indexing of the metadata. The search engine com-
ponent [1] implements the approximated queries on the metadata that can be
refined later on, if required, by logic dependent components.

Partially Specified Terms. In partially specified terms, subterms can be omit-
ted replacing them with untyped linear placeholders or with typed metavariables
(in the style of [8,13]). The latter are Curry-Howard isomorphic to omitted sub-
proofs (conjectures still to be proved).

Completely specified terms are often highly redundant to keep the type-
checker simple. This redundant information may be omitted during user-machine
communication since it is likely to be automatically inferred by the system re-
placing conversion with unification [19] in the typing rules (that are relaxed to
type inference rules). The refiner component of Matita implements unification
and the type inference procedure, also inserting implicit coercions [3] to fix local
type-checking errors. Coercions are particularly useful in logical systems that
lack subtyping [10]. The already discussed library manager is also responsible
for the management of coercions, that are constants flagged in a special way.

Subproofs are never redundant and if omitted require tactics to instantiate
them with partial proofs that have simpler omitted subterms. Tactics are ap-
plied to omitted subterms until the proof object becomes completely specified
and can be passed to the library manager. Higher order tactics, usually called
tacticals and useful to create more complex tactics, are also implemented in
the tactics component. The current implementation in Matita is based on tiny-
cals [17], which supports a step-by-step execution of tacticals (usually seen as
“black boxes”) particularly useful for proof editing, debugging, and maintain-
ability. Tinycals are implemented in Matita in a small but not trivial component
that is completely abstracted on the representation of partial proofs.

The lemma generator component is responsible for the automatic generation of
derived concepts (or lemmas), triggered by the insertion of new concepts in the
library. The lemmas are generated automatically computing their statements and
thenproving thembymeans of tactics or bydirect construction of the proof objects.
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Content Level Terms. The language used to communicate proofs and espe-
cially formulae with the user must also exploit the comfortable and suggestive
degree of notational abuse and overloading so typical of the mathematical lan-
guage. Formalized mathematics cannot hide these ambiguities requiring terms
where each symbol has a very precise and definite meaning.

Content level terms provide the (abstract) syntactic structure of the human-
oriented (compact, overloaded) encoding. In the content component we provide
translations from partially specified terms to content level terms and the other
way around. The former translation, that loses information, must discriminate
between terms used to represent proofs and terms used to represent formulae.
Using techniques inspired by [6,7], the formers are translated to a content level
representation of proof steps that can in turn easily be rendered in natural
language. The representation adopted has greatly influenced the OMDoc [14]
proof format that is now isomorphic to it. Terms that represent formulae are
translated to MathML Content formulae [12].

The reverse translation for formulae consists in the removal of ambiguity by
fixing an interpretation for each ambiguous notation and overloaded symbol used
at the content level. The translation is obviously not unique and, if performed
locally on each source of ambiguity, leads to a large set of partially specified
terms, most of which ill-typed. To solve the problem the ambiguity manager
component implements an algorithm [18] that drives the translation by alter-
nating translation and refinement steps to prune out ill-typed terms as soon as
possible, keeping only the refinable ones. The component is logic independent
being completely abstracted over the logical system, the refinement function,
and the local translation from content to partially specified terms. The local
translation is implemented for occurrences of constants by means of call to the
search engine.

The translation from proofs at the content level to partially specified terms is
being implemented by means of special tactics following previous work [9,20] on
the implementation of declarative proof styles for procedural proof assistants.

Presentation Level Terms. Presentation level captures the formatting struc-
ture (layout, styles, etc.) of proof expressions and other mathematical entities.

An important difference between the content level language and the presen-
tation level language is that only the former is extensible. Indeed, the presenta-
tion level language has a finite vocabulary comprising standard layout schemata
(fractions, sub/superscripts, matrices, . . . ) and the usual mathematical symbols.

The finiteness of the presentation vocabulary allows its standardization. In
particular, for pretty printing of formulae we have adopted MathML Presenta-
tion [12], while editing is done using a TEX-like syntax. To visually represent
proofs it is enough to embed formulae in plain text enriched with formatting
boxes. Since the language of boxes is very simple, many similar specifications
exist and we have adopted our own, called BoxML (but we are eager to cooperate
for its standardization with other interested teams).

The notation manager component provides the translations from content level
terms to presentation level terms and the other way around. It also provides a
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language [15] to associate notation to content level terms, allowing the user to
extend the notation used in Matita. The notation manager is logic independent
since the content level already is.

The remaining components, mostly logic independent, implement in a modu-
lar way the user interface of Matita, that is heavily based on the modern GTK+
toolkit and on standard widgets such as GtkSourceView that implements a
programming oriented text editor and GtkMathView that implements ren-
dering of MathML Presentation formulae enabling contextual and controlled
interaction with the formula.

The graph browser is a GTK+ widget, based on Graphviz, to render de-
pendency graphs with the possibility of contextual interaction with them. It is
mainly used in Matita to explore the dependencies between concepts, but other
kind of graphs (e.g. the DAG formed by the declared coercions) are also shown.

The library browser is a GTK+ window that mimics a web browser, provid-
ing a centralized interface for all the searching and rendering functionalities of
Matita. It is used to hierarchically browse the library, to render proofs and defini-
tions in natural language, to query the search engine, and to inspect dependency
graphs embedding the graph browser.

The GUI is the graphical user interface of Matita, inspired by the pioneering
work on CtCoq [4] and by Proof General [2]. It differs from Proof General because
the sequents are rendered in high quality MathML notation, and because it
allows to open multiple library browser windows to interact with the library
during proof development.

The hypertextual browsing of the library and proof-by-pointing [5] are both
supported by semantic selection. Semantic selection is a technique that consists
in enriching the presentation level terms with pointers to the content level terms
and to the partially specified terms they correspond to. Highlight of formulae in
the widget is constrained to selection of meaningful expressions, i.e. expressions
that correspond to a lower level term, that is a content term or a partially or
fully specified term. Once the rendering of an upper level term is selected it is
possible for the application to retrieve the pointer to the lower level term. An
example of applications of semantic selection is semantic copy & paste: the user
can select an expression and paste it elsewhere preserving its semantics (i.e. the
partially specified term), possibly performing some semantic transformation over
it (e.g. renaming variables that would be captured or λ-lifting free variables).

Commands to the system can be given either visually (by means of buttons
and menus) or textually (the preferred way to input tactics since formulae occurs
as tactic arguments). The textual parser for the commands is implemented in the
vernacular component, that is obviously system (and partially logic) dependent.

To conclude the description of the components of Matita, the driver compo-
nent, which does not act directly on terms, is responsible for pulling together
the other components, for instance to parse a command (using the vernacular
component) and then triggering its execution (for instance calling the tactics
component if the command is a tactic).
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2.1 Relationship with Other Architectures

An interesting question is which components of Matita have counterparts in
systems based on different architectural choices. As an example we consider how
we would implement a system based on the following commitments: (1) The
architecture is LCF-like. Proof objects are not recorded. (2) The system library
is made of scripts. Proof concepts are indexed only after evaluation. (3) The
proof language is declarative. Ambiguities in formulae are handled by the type
system (e.g. type classes accounts for operator overloading).

Formulae are still represented as presentation, content, partially specified and
completely specified terms. Proofs, that are distinct from formulae, exists at
the presentation and content level, but do not have a counterpart as partially
or completely specified terms. Since only concepts in memory can be queried,
metadata are not required: formulae can be indexed using context trees or similar
efficient data structures that acts on completely specified formulae.

The following components in Figure 1 have similar counterparts. The file man-
ager to store environments obtained processing scripts to avoid re-execution. The
kernel, that checks definition and theorems, is still present but now it implements
the basic tactics, i.e. the tactics that implement reduction and conversion or that
correspond to the introduction and elimination rules of the logics. The index-
ing component is not required since in charge of extracting metadata that are
neglected. However, the metadata manager that used to index metadata is now
provided by the context tree manager that indexes the formulae. Logic inde-
pendence is lost unless the formulae are represented as sort of S-expressions,
reintroducing the equivalent of the metadata data type. The search engine and
the library manager are present since the corresponding functionalities (search-
ing and management of derived notions) are still required. All the components
that act on partially specified terms are present, even if basic tactics have been
moved to the kernel. The content component is simplified since the translation
(pretty printing) from completely specified terms to content level terms is point-
less due to the lack of proof objects. The ambiguity manager that acts on content
level formulae is removed or it is greatly simplified since type classes take care
of overloading. Finally, all the components that act on presentation level terms
are present and are likely to be reusable without major changes.

Of course the fact that many components have counterparts among the two set
of architectural choices is due to the coarseness of both the description and the
provided functionalities. This is wanted. In our opinion the issue of choosing the
granularity level of architectures so that smaller components of different systems
can be independently compared is non trivial, and was an issue we wanted to
address.

3 Functional Architectural Analysis and Reusability

A different classification—other than the data-driven one given in the previ-
ous section—of the components shown in Figure 1 is along the lines of the
offered functionalities. We grouped the components according to five (macro)
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functionalities, which are depicted in the vertical partition of Figures 2 and 3: vi-
sual interaction and browsing of a mathematical library (GUI column),
input/output (i.e. parsing and pretty-printing) of formulae and proofs (I/O
column), indexing and searching of concepts in a library (search column), man-
agement of a library of certified concepts (library column), and interactive devel-
opment of proofs by means of tactics and decision procedures (proof authoring
column).

Fig. 2. Logic independent components by functionalities

In the development history of Matita this classification has been useful for the
assignment of development tasks, since the knowledge required for implementing
different functionalities varies substantially.

For each functionality it is interesting to assess the degree of coupling of each
component with the logical framework. Having a clear separation between the
logic dependent components and the logic independent ones should be one of
the main guidelines for the development of interactive theorem provers, since it
helps to clarify the interface of each component. Moreover, the logic independent
functionalities are probably of interest to a broader community.

In Figure 2 we have isolated the logic independent components of Matita
(lower part), showing the dependencies among them (solid lines). Some of them
depend on “stubs” for logic dependent components, depicted in the upper part
of the figure.

The effort for re-targeting Matita to a different logic amounts to provide a new
implementation for the stubs. Figure 3 shows the current Matita implementation



Crafting a Proof Assistant 27

of CIC. In our case, the logic-dependent components are about 2/3 of the whole
code (also due to the peculiar complexity of CIC). However, the real point is
that the skills required for implementing the logic-dependent stubs are different
from those needed for implementing the logic-independent components, hence
potentially permitting to obtain in a reasonable time and with a limited man-
power effort a first prototype for early testing. In the next section we investigate
this point presenting a detailed timeline for the development of the system.

Fig. 3. Stubs implementation for CIC

A different problem is to understand if there are components that can be
reused in systems based on different architectural commitments. A well known
example of such a tool is the Proof General generic user interface. Having a
reusable user interface is a relatively simple task since not only the user interface
is logic independent, but it is also the most external component of a system.
We believe that some other logic independent components of Figure 1 could be
adapted to other architectures; for instance, components that deal with indexing
and searching are likely to be embeddable in any system with minor efforts. This
issue of reusability is one of the subject of our current research.

4 System Development

Figure 4 is an hypothetical Gantt-like diagram for the development of an inter-
active theorem prover with the same architectural commitments of Matita and
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a logic with comparable complexity. The order in which to develop the compo-
nents in the figure does not reflect the development history of Matita, where we
delayed a few activities, with major negative impacts on the whole schedule.

The duration of the activities in the diagram is an estimation of the time
that would be required now by an independent team to re-implement Matita
assuming only the knowledge derivable from the literature.

In any case, in the estimated duration of the activities we are considering the
time wasted for rapid prototyping: it is not reasonable in a research commu-
nity to expect the product to be developed for years without any intermediate
prototype to play with. For example, we suggest to implement first reduction
and typing in the kernel on completely specified terms before extending it to
accommodate metavariables (later on required for partially specified terms). This

Fig. 4. Gantt-like development schedule of an interactive theorem prover
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way the kernel of the type-checker can immediately be tested on a library of con-
cepts exported from another system, and different reduction and type-checking
algorithms can be compared leading to possibly interesting research results.

Activities related to logic independent components are marked as dashed in
the Gantt-like diagram. If those components are reused in the implementation
of the system, most functionalities but interactive proof authoring are made
available very early in the development. The bad news are that the overall time
required to develop the system will not change, being determined by the com-
plexity of the logic dependent components and their dependencies that limit
parallelism. Switching to a simpler logic can probably reduce in a significant
way the time required to implement the kernel and the refinement component;
however, it is likely to have a minor impact on the time required for tactics and
decision procedures. Instead changing the initial architectural commitments (e.g.
dropping proof objects and adopting an LCF-like kernel) is likely to change the
Gantt in a sensible way. The overall conclusion is that the development of an in-
teractive theorem prover is still a complex job that is unlikely to be substantially
simplified in the near future.

The activities of Figure 4 refine the components already presented to improve
parallel development and allow rapid prototyping. We describe now the main
refinements following the timeline when possible.

We suggest to start developing the kernel omitting support for terms con-
taining metavariables and to add it after the reduction and typing rules for
completely specified terms have been debugged. The support for metavariables
in the kernel should be kept minimal, only implementing typing rules and unfold-
ing of instantiated metavariables. The core functionalities on partially specified
terms, unification and refinement, are implemented in the refiner component
outside the kernel. Completely omitting support for metavariables from the ker-
nel is more compliant to the De Bruijn criterion. However, the kernel code for
minimal metavariable support is really simple and small, and its omission forces
an almost complete re-implementation of the kernel functionalities in the refiner
that is better avoided.

Context dependent terms are a necessity for passing to tactics arguments that
need to be interpreted (and disambiguated) in a context that is still unknown.
In Matita context dependent terms are defined as functions from contexts to
terms, but other systems adopt different representations.

Patterns are data structures to represent sequents with selected subterms.
They are used as tactic arguments to localize the effect of tactics. Patterns pose
a major problem to the design of textual user interfaces, that usually avoid them,
but are extremely natural in graphical user interface where they correspond to
visual selection (using the mouse) of subterms of the sequent.

A fixed built-in notation should be implemented immediately for debugging,
followed by the content component to map completely (or even partially) spec-
ified terms to content and the other way around. Partially specified terms gen-
erated by the reverse mapping cannot be processed any further until the refiner
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component is implemented. Similarly, the reverse mapping of ambiguous terms
is delayed until the ambiguity manager is available.

The rendering and extensible notation activities implement the notation man-
ager component. Initially the machinery to apply extensible notation during
rendering is implemented in the rendering activity. A user-friendly language to
extend at run time the notation is the subject of the second activity that is
better delayed until the interaction mode with the system become clear.

Handling of implicit coercions and localized terms in the refiner component
can be delayed until unification and a light version of refinement are imple-
mented. This way the implementation of tactics can start in advance. Localized
terms are data structures to represent partially specified terms obtained by for-
mulae given in input by the user. A refinement error on a localized term should
be reported to the user by highlighting (possibly visually) the ill-typed sub-
formula. Localized terms pose a serious problem since several operations such
as reduction or insertion of an implicit coercion change or loose the localization
information. Thus the refiner must be changed carefully to cope with the two
different representations of terms.

The basic user interface is an interface to the library that offers browsing,
searching and proof-checking, but no tactic based proof authoring. It can, how-
ever, already implement proof authoring by direct term manipulation that, once
refinement is implemented, can become as advanced as Alf is [11]. The advanced
user interface offers all the final features of the system, it can be script based
and it can present the desired interaction style (procedural versus declarative).

Finally, primitive tactics, that implement the inference rules of the logic, and
tacticals are requirements for the development of more advanced interactive
tactics and automation tactics, that can proceed in parallel.

5 Conclusions and Future Work

We feel the need for more direct comparisons between different interactive theo-
rem provers to highlight the common functionalities, not only in view of reusabil-
ity but also to encourage a more systematic comparison of different softwares
and architectural solutions. In this paper we have contributed by showing how
the architecture of a system (in our case Matita) can be analyzed by classifying
its software components along different axes: the representation of formulae and
proofs they act on and the macro functionalities they contribute to.

Moreover, we believe that an effort should be made to clearly split the logic
dependent components from those that are or can be made logic independent.
In addition to be able to clarify the interfaces of the components and their
dependencies, this division has immediate applications: having done this for
Matita we are now able to clearly estimate the efforts, both in time and in
lines of code, required to re-target the system to a different logic. This answers a
frequent question posed to us by members of the Types community, since Matita
presents technological innovations which are interesting for developers of systems
based on logical frameworks other than CIC.
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In particular, we have estimated that only one third of the code of Matita
(that is still more than 22,000 lines of code) is logic independent, which can
be explained by the complexity of the logical system. We have also estimated
that re-targeting Matita to a logic with the same complexity as the current one
would not require significantly less time than the first implementation (assuming
to have enough man power to develop concurrently all parallel tasks). However,
working prototypes including even advanced functionalities would be obtained
quite early in the development stage, with a positive impact at least on debug-
ging, dissemination, and system evaluation. To our knowledge, similar figures
have never been presented for other systems.

A more complex issue is the independence of software components from the
main architectural commitments, and consequently their degree of cross-system
reusability. We believe that several of the components of Matita have counter-
parts in systems based on different architectures, and that at least some of them
could be embedded in other systems after some modifications. This has already
been proven true by Proof General for the graphical user interface. However,
that is the easiest case, the graphical user interface being the most external
component with no dependencies on it.

Better understanding this issue is one of our current research guidelines, but it
requires an initial effort by the whole community to analyze the architectures of
several systems according to common criteria in order to identify the correspond-
ing components and to understand how they differ in the various architectures.
Our next contribution will consist in a description of the API of the components
presented here.
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Abstract. Deduction Modulo is a theoretical framework that allows the
introduction of computational steps in deductive systems. This approach
is well suited to automated theorem proving. We describe a proof-search
method based upon tableaux for Gentzen’s intuitionistic LJ extended
with rewrite rules on propositions and terms . We prove its completeness
with respect to Kripke structures. We then give a soundness proof with
respect to cut-free LJ modulo. This yields a constructive proof of seman-
tic cut elimination, which we use to characterize the relation between
tableaux methods and cut elimination in the intuitionistic case.

1 Introduction

The road to automated deduction has many pitfalls. Efficient treatment of
equality and equational theories is for instance a challenging area and prov-
ing (a + b) + ((c + d) + e) = a + ((b + c) + (d + e)) with the usual associa-
tivity and identity axioms can loop infinitely with an ineffective strategy. One
would like a deterministic and terminating method where one needs only check
whether the two terms are the same modulo the given axioms. We would rather
use computation (i.e. blind execution) instead of deduction (non-deterministic
search), thus transforming the associativity axiom into a term-rewriting rule.
Orienting equational theories using rewriting techniques is nothing unusual, but
propositional rewrite rules are hardly considered in the literature. It is useful
to allow them. One framework to handle such rewrite rules is deduction mod-
ulo [4]. The rewrite rule x ∗ y = 0 → x = 0 ∨ y = 0 is the oriented version
of the axiom ∀x ∀y (x ∗ y = 0 ⇔ (x = 0 ∨ y = 0)) and can be used to prove
∃z(a∗a = z ⇒ a = z) by automated deduction methods modulo [1, 4]. This rule
can not be easily turned into a term-rewriting rule.

Using rewrite rules instead of unoriented axioms is a natural speed up for
automated theorem provers, as it reduces the search space. However, deduction
modulo has other interesting consequences: propositional rewrite rules can be
used to restart a stuck deductive process such as P (a)→ ∀xP (x). Proofs modulo
only contain the important deductive steps — or those a human sees as important
— and no computational details, giving shorter, more readable proofs, which is
important in interactive theorem proving.
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Classical first-order logic modulo has first been studied in [4], Intuitionistic
logic is itself particularly interesting as it has the witness and the disjunction
properties, and is therefore adapted to constructive mathematics and computer
science, through the Curry-Howard isomorphism. Intuitionistic automated de-
duction procedures seem less studied, maybe because intuitionistic semantics is
harder to deal with. In particular, two main different semantics exist: Kripke
structures and Heyting algebras.

The focus of this paper is on obtaining a cut elimination theorem. Starting
with Gentzen’s result, this has turned out to be one of the most important
properties in the field of logic. Cut elimination in deduction modulo is a harder
problem because it is not valid in general for confluent and terminating rewrite
systems. The result is generally obtained using one of the following techniques:
a syntactic one, proving termination of a certain cut elimination process – its
modern variant uses proof terms [5] and the reducibility method; the other proves
the admissibility (or redundancy) of the cut rule by establishing the completeness
of the cut-free calculus with respect to some notion of model. Known since Beth
and Hintikka, the latter has been recently used by De Marco and Lipton [3]. Note
that the first constructive approach for this has been developed by Dragalin [7],
but it uses Heyting algebras.

This article shows the deep link between all these topics. First, we recall the
intuitionistic sequent calculus modulo of [10] (Sec. 2) and its semantics.

– We give a proof-search method for LJmod (Sec. 3). Such methods are often
based on tableaux when dealing with nonclassical logics. We here formu-
late a tableau method modulo rewrite rules on terms and propositions and
conditions on their use.

– We prove that this method enjoys the usual completeness property (Sec. 4).
We give a semantic proof using Kripke structures, and describe several con-
ditions on rewrite rules for which the completeness theorem holds. Adding
(propositional) rewrite rules makes this theorem harder to prove.

– Finally, we argue that our tableau method is sound with respect to cut-free
intuitionistic sequents modulo (Sec. 5). Soundness is usually proved semanti-
cally, as building a tableau can be viewed as a search for a countermodel. We
give a translation of tableaux proofs to single-conclusion sequent ones. Our
approach is more technical but yields benefits: it entails a constructive cut
elimination theorem and sheds light on the relation between intuitionistic
tableaux and cut-free sequent calculus. Our final result discusses the com-
putational content of such semantic cut-elimination methods and compares
it to proof normalization.

2 Intuitionistic Sequent Calculus Modulo

Figure 1 shows a representative sample of the rules and the transformation made
on the usual sequent inferences, reformulated to work on equivalent formulas
modulo a rewrite system (R) on terms and atomic propositions. The rewrite
relation is denoted→ and its reflexive symmetric transitive closure ≡R. The full
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calculus can be found in [10]. In this paper, R is supposed to be terminating and
confluent. When R is empty, we get back the usual LJ . A cut-free derivation of
a sequent is noted Γ 
∗R P . The semantics of these inference rules is a Kripke
semantics where negation is expressed in a positive way.

axiom if P ≡R Q
P �R Q

Γ �R P Γ, Q �R S ⇒-l if R ≡R (P ⇒ Q)
Γ, R �R S

Γ, P �R Q ⇒-r if R ≡R (P ⇒ Q)
Γ �R R

Γ, P �R S Γ �R Q
cut if P ≡R Q

Γ �R S

Fig. 1. Some rules of LJ modulo

Definition 1 (modified Kripke structures). A modified Kripke structure
(in short Kripke structure) K is a quadruple 〈K,≤, D,�〉 such that:

– K is a non-empty set (the worlds), partially ordered by ≤.
– D (the domain) is a monotonous function over K: if α ≤ β then Dα ⊆ Dβ.
– Predicate symbols are interpreted syntactically, which is enough for the scope

of this paper.
– To each function symbol f we associate a function: f̂ : K −→ Dn

α −→ Dα,
such that when α ≤ β, f̂(α)(a1, ..., an) = f̂(β)(a1, ..., an) on Dα. (f in β
extends f in α).

– The interpretation of a term t under a substitution σ, |t|ασ is defined by
induction on t as usual.

– � is a relation between worlds and interpreted predicates: α � P (a1, ..., an)
for ai ∈ Dα. We extend it as a relation between worlds and propositions,
under a substitution σ mapping variables to elements of Dα. It must satisfy:
1. atomic relation: let P (x1, ..., xn) be a predicate. We let α �σ P (t1, ..., tn)

iff α � P (|t1|ασ , ..., |tn|ασ).
2. Monotonicity on atoms: for any predicate P (x1, ..., xn), any worlds β ≥ α

and terms t1, ..., tn: α �σ P (t1, ..., tn) implies β �σ P (t1, ..., tn).
3. α �σ A ∨B iff α �σ A or α �σ B.
4. α �σ A ∧B iff α �σ A and α �σ B.
5. α �σ A⇒ B iff for any β ≥ α, β �σ A implies β �σ B.
6. α �σ ¬A iff for any β ≥ α, β �σ A implies β �σ ⊥ (denoted β �σ A).
7. α �σ ∃xA iff there exists an element a ∈ D(α) such that α �σ+〈a/x〉 A.
8. α �σ ∀xA iff for any β ≥ α, for any element a ∈ D(β), β �σ+〈a/x〉 A.
9. The explosion property: if β �σ ⊥ then for any α ∈ K, any proposition
P , any substitution θ, α � P . Such a Kripke structure is called improper.

10. Validity of R: for any world p ∈ K, formulas P ≡R Q, p � P iff p � Q.

The positive treatment of the negation is essential for constructivity: we do not
have to consider proper Kripke structures, so we avoid the use of König’s lemma
[16] to identify an infinite branch. Our definition is inspired by Veldman’s [17]
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and Friedman’s [16], but may be closer to Krivine’s classical one [11], as we add
only the improper Kripke structure to the usual definition.

Condition 10 is equivalent [9] to considering all instances of rewrite rules
P → A where P is atomic. For any world p ∈ K, we must have p � A iff p � P .

3 Intuitionistic Predicate Tableaux Modulo

Proof-search methods for deduction modulo have been developed using both
resolution [4] and tableaux [1] for first-order classical logic. We present here a
simple ground tableau method for intuitionistic deduction modulo. A tableau is
an attempt to define a model of the formulas at its root. Working with Kripke
structures forces us to build worlds, therefore a truth statement in a tableau will
be a truth statement in a particular world.

Any branch represents a possible model. A closed branch represents a con-
tradiction in the attempt to define a particular model (the one laying on this
branch), thus it is improper. If all the branches can be closed, the root formulas
should be provable (Sec. 5). The systematic tableau generation of Sec. 4 is a
systematic model search.
A↓ stands for the normalization of the formula A with respect to the rewrite

rules of R. We keep the basic expansion rules of [12] in Fig. 2, working on
statements representing signed forced formulas at some world p (identical Kripke
world, hence partially ordered by ≥). A statement Tp � P (resp. Fp � P )
should be read as the commitment to set P forced (resp. unforced) at world p.
P is unforced at world p means that if P is forced, then ⊥ should also be forced
(the Kripke structure we try to define is improper). Notice that we use the same
forcing symbol � when we deal with Kripke structures and that nothing is said
about the partial order ≥ on worlds. When the sign of a forcing statement is
irrelevant, B is a shortcut for “T or F”.

We extend intuitionistic tableaux to use term and propositional rewriting.
Expansion rules should be read as follows: when the premise formula is anywhere
in the considered path (i.e. not necessarily the leaf), the tableau tree can be
expanded with the consequence formula(s). Branch closure is the usual binary
closure: we close a branch if both Tp � P and Fq � P occurs on it for p ≤ q.
A tableau is closed and yields a refutation of the input formula when every
branch is closed. We choose to pre-normalize every formula with respect to the
rewrite system before entering the tableau construction. Therefore we need to
be careful when using any rule handling certain quantifiers. Each time a formula
is produce by the positive ∀ or the negative ∃ quantifier rule, we re-normalize
it. In the other two quantifier rules, we need not to normalize as the constant is
fresh also with respect to rewrite rules.

As we focus on the generation of a model, we define a systematic complete
search within our tableau modulo framework using the rules of Fig. 2.

Definition 2 (Systematic tableau generation). We introduce here the no-
tion of complete systematic tableau. We construct a tree representing an in-
tuitionistic variation of a Hintikka set (see for example [14] for a definition),
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satisfying Lem. 1. The construction is similar to those in [3, 12] therefore we
only sketch it here. Our set of worlds K is made of finite sequences of natural
numbers, ordered by the prefix ordering. For any world, we define by induction
a base set D(p):

– D(∅) is the language constructed over L0∪C∅, L0 is the ground terms of the
first-order language.

– If q is the concatenation of the sequence p and the natural number k (i.e.
p ∗ k), we define D(q) as the language constructed over D(p) ∪ Cq, where
we have countably many disjoint sets Cp of fresh constants for each finite
sequence p.

In each of those sets, we define an enumeration of the terms as well as an
enumeration of the pairs (p, t) where p ∈ K and t ∈ D(p). The tableau is then
constructed step by step by expanding each time the least unused node on it (any
unused node on the leftmost smallest branch); this node thus becomes used. Let
π the path from the root to this node. We detail some cases among the most
significant:

– If on the path π we have two contradictory statements, then close all the
branches containing this path.

– Tp � ∀xP (x): Let (q, t) be the least pair such that q ≥ p, t ∈ D(q), q
occurs on π, and the statement Tq � P (t)↓ does not appear on π. Attach at
each leaf of the branches having π as an initial segment the two statements
{Tq � P (t)↓, T p � ∀xP (x)}. We keep an unused copy of Tp � ∀xP (x) in
order to go on (later) in the enumeration of the terms and worlds.

– Fp � ∀xP (x). Let k be the least number such that p ∗ k does not occur on
any branch having π as initial segment. It is incomparable with any world,
except p. Let c ∈ Cq be a fresh constant. Attach at each leaf of the branches
extending π the statement Fq � P (c).

Tp � A ∨B

Tp � A | Tp � B

Fp � A ∧B

Fp � A | Fp � B

Tp � A ∧B

Tp � A, Tp � B

Fp � A ∨B

Fp � A, Fp � B

Tp � A ⇒ B

Fp′ � A | Tp′ � B
for any p′ ≥ p

Fp � A ⇒ B

Tp′ � A, Fp′ � B
for some new p′ ≥ p

Tp � ¬A

Fp′ � A
for any p′ ≥ p

Fp � ¬A

Tp′ � A
for some new p′ ≥ p

Tp � ∃xP (x)

Tp � P (c)
for some new c

Fp � ∃xP (x)

Fp � P (t)↓
for any t

Tp � ∀xP (x)

Tp′ � P (t)↓
for any p′ ≥ p

and any t

Fp � ∀xP (x)

Fp′ � P (c)
for some new p′ ≥ p

and some new c

Fig. 2. Rules for intuitionistic predicate tableaux modulo
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From Def. 1, we adopt the convention that on a closed branch, every statement
appears (since the Kripke structure will be improper). The tableau construction
of Def. 2 satisfies the following lemma:

Lemma 1. Let π be a branch of a fully expanded tableau, generated by Def. 2.
Then, on π:
• if Bp � P appears, then Bp � P↓ appears.
• if Tp � A ∧ B (resp. Fp � A ∨ B) appears, then Tp � A and Tp � B (resp.
Fp � A and Fp � B) appears.
• if Fp � A ∧ B (resp. Tp � A ∨ B) appears, then either Fp � A or Fp � B
(resp. Tp � A or Tp � B) appears.
• if Tp � ¬P (resp. Tp � A ⇒ B) and a world p′ ≥ p appear then Fp′ � P
(resp. Fp′ � A or Tp′ � B) appears
• if Fp � ¬P (resp. Fp � A⇒ B) appears then for some world p′ ≥ p, Tp′ � P
(resp. Tp′ � A and Fp′ � B) appears.
• if Fp � ∃xP (x) appears then for every t ∈ D(p), Fp � P (t)↓ appears.
• if Tp � ∃xP (x) appears then for some fresh constant c ∈ D(p), P (c) appears.
• if Fp � ∀xP (x) appears then for some world p′ ≥ p and some fresh constant
c ∈ D(p′), Tp′ � P (c) appears.
• if Tp � ∀xP (x) and a world p′ ≥ p appear on the branch, then for every term
t ∈ D(p′), Tp′ � P ([x := t])↓ appears.

Proof. We call τ =
⋃
τn the tableau generated by Def. 2. All nodes of τ are used,

and for the ∀ positive statements, any world q ≥ p and term of D(q) has been
enumerated. The convention we adopted ensures this also on a closed branch. ��

Remark: Lem. 1 defines the intuitionistic version of a Hintikka set (equivalently,
a Schütte semi-valuation). Noe that it may be inconsistent. •

4 Completeness

The extended liberality of LJmod rules entails a harder completeness proof, as
the constructed Kripke structure must also be a model of the rewrite rules.

Theorem 1 (Completeness of the tableau method). Let R be a rewrite
system verifying one of the conditions below, Γ be a set of propositions, P be a
proposition. If for any node α of any Kripke structure K, α � Γ implies α � P ,
then any branch of the complete systematic tableau for T ∅ � Γ, F∅ � P is closed.

From an (open) branch of the tableau, one usually defines a model according to
the statements on atoms, extending it “naturally” to compound formulas. But
we here must additionally ensure that the built Kripke structure validates the
rewrite rules. We detail such constructions in the following sections for large
classes of rewrite systems, and the completeness proofs associated.

Moreover, our proof differs from usual tableau completeness proofs in that we
do not consider open branches. Our approach is the following: given any branch
π of a completely developed tableau, we define a Kripke structure. We prove that
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it agrees with the statements on π and that it validates R. By hypothesis ∅ � Γ ,
∅ � P , whereas by construction (∅ � P ) ⇒ (∅ � ⊥). The Kripke structure is
then improper, and on π we shall meet Tp � ⊥ for some p. So π is closed.

4.1 An Order Condition

It is shown in [10] how to build a model for an order condition. We again give the
construction. Although the Kripke structure built is rather different, the proofs
are almost the same, so we do not give them.

Definition 3 (Order condition on rewrite systems). We consider rewrite
systems compatible with a well-founded order ≺ on formulas such that if P → Q
then Q ≺ P and if A is a subformula of B then A ≺ B.

Given a branch π, we define the Kripke structure K = 〈K,≤, D,�〉:
– K = {p : p is a sequence of integers}. ≤ is the prefix order (as in τ).
– D(p) is the set of closed terms appearing in all the forcing statements in-

volving some world q ≤ p.
– The forcing relation � is defined by induction on ≺. For normal atomic

formulas we let q � A iff Tp � A appears on the branch for some p ≤ q.
We extend � to non atomic formulas according to the definition of a Kripke
structure. There are three non standard cases: we let p � ¬P if for any q ≥ p
we do not have q � P . If A is a non-normal atom, we set p � A iff p � A↓.
At last, if Tp � ⊥ is on the branch, then we add q � P for every q and P .

This definition is well-founded as ≺ is well-founded. It obviously defines a
Kripke structure. We now prove a result that would not be needed with the
usual definition of Kripke structures:

Lemma 2. If the Kripke structure K is improper, then the branch π is closed.

Proof. p � ⊥ can hold for two reasons. First if the statement Tp � ⊥ appears:
the branch is closed. Second if we have both p � P and (p � P ) ⇒ (p � ⊥),
for some world p and formula P . This last statement can only be derived from
q � ¬P for some q ≤ p, but this statement never appears unless we already
know that p � ⊥ - since p � P .

The Kripke structure K agrees with the branch π: if Tp � A (resp. Fp � A)
appears on π, then p � A (resp. p � A). This is obvious for normal atoms, and
extended by induction on ≺. The case analysis is slightly different, since we now
interpret p � A as “if p � A then p � ⊥”. We detail some cases below.

– if Fp � P appears, with P a normal atom. p � P (i.e. p � P ⇒ p � ⊥)
holds, since p � A is defined in K only when π is closed.

– if Fp � ¬A appears, then from the tableau generation, the statement Tp∗k �
A appears on π, for some new p ∗ k – recall that if T q � ⊥ appears, then
every statement appears. By induction hypothesis, p∗k � A. If p � ¬A then
by monotonicity p ∗ k � ¬A, K is improper, hence p � ¬A.

Moreover, the Kripke structure is a model of the rewrite rules (by induction
on ≺). We then have: ∅ � Γ , ∅ � P , and K is a Kripke model of R.
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4.2 A Positivity Condition

We now focus on another (new) condition on propositional rewrite rules.

Definition 4 (Positivity condition on rewrite systems). A rewrite system
is positive if every rewrite rule P → Q, the negation normal form of Q does not
contain any negation (see also [9] for a longer equivalent inductive definition).

If the positivity condition holds, we first need to saturate the branch, in order to
decide the truth value of as many formulas as possible. We define a saturation
process by following the definition of a Kripke structure. We enumerate the
pairs (p, P ) where p ∈ K and P is a formula over the language D(p) and add
the following statements to the branch:

– Bp � P if Bp � P↓ appears.
– Tp � P (resp. Fp � P ) if Tq � P (resp. Fq � P ) appears for q ≤ p (resp.
q ≥ p). Truth propagates upwards and falsity downwards, from Def. 1. .

– Tp � P ∧Q (resp. Fp � P ∧Q) if Tp � P and Tp � Q (resp. either Fp � P
or Fp � Q) appear.

– Tp � ¬P (resp. Fp � ¬P ) if for any q ≥ p, Fq � P (resp. for some q ≥ p,
Tq � P ) appears.

– Tp � ∀xP (x) (resp. Fp � ∀xP (x)) if for any q ≥ p, any term t ∈ D(q),
Tq � P (t)↓ (resp. for some q ≥ p and some t ∈ D(q), Fq � P (t)↓) appears.

During this completion process, two opposite forcing statements Tp � P and
Fq � P for some q ≥ p appear only if the branch was already closed, and Lem. 1
remains valid.

Since the number of formulas having an interpretation increases at each it-
eration of this process, this operation has a least fixpoint that we take as the
branch in the rest of this section.

Lemma 3
• If Tp � P appears, then for any q ≥ p, Tq � P appears.
• If Fp � P appears, then for any q ≤ p, Fq � P appears.
• If P ≡R Q and Bp � P appears, then Bp � Q appears.
• The new branch is closed iff the original one is closed.
• The new branch verifies lemma 1

Proof. The completion process entails the two first claims and we have just
proved the two last ones. The third one stands because Bp � P appears only if
Bp � P↓ does (which is proved by induction on the size of P ). ��

This process is necessary to define a Kripke structure. We need to know as much
as possible about every formula. It is really absolutely necessary for Lem. 5.
This is the intuitionistic counterpart of Schütte’s partial valuation, since it sat-
isfies more than Lem. 1. Indeed, we satisfy equivalence between left and right
hand sides. For instance: Fp � ∀xP (x) appears iff for some world p′ ≥ p and
some fresh constant c ∈ D(p′), Tp′ � P (c)↓ appears. The only difference with
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usual partial valuations is that we could be in a degenerate case. However, the
valuation is not yet total (some formulas can be left uninterpreted), and we still
have no model. So we build the Kripke structure K = 〈K,≤, D,�〉 as in Sec. 4.1
except that the forcing relation � is defined by induction on the size of formu-
las. For every atomic predicate (over the language D(q)) we let q � A if Tq � A
appears on the branch. If Fp � A does not appear we also let p � A. We extend
this forcing relation to non atomic formulas as before. This model is trivially a
Kripke structure. We now prove that K agrees with the branch:

Lemma 4. If a statement Tp � P (resp.Fp � P ) appears on the branch, then
p � P (resp. p � P ) in the Kripke structure K.

Proof. By induction on the structure of P . The base case (atomic) is trivial from
the definition. Other cases are immediate as the branch satisfies Lem. 1. ��

As the Kripke structure agrees with the branch, ∅ � Γ and ∅ � P . We now
need to show that the Kripke structure is a model of R. We know (Lem. 4)
that if A → P and P ↓= A↓ appear in the branch as Bp � A↓, then all three
formulas (A,P, P↓) share the same forcing relation with p. But what if P↓ does
not appear? Recall then that the rewrite system is positive. Hence P is positive.
Let us prove the following lemma:

Lemma 5. Let P+ be a positive formula and Q− be a negative formula (i.e.
¬Q is positive) defined over D(p). If Bp � P+ (resp. Bp � Q−) does not appear
(whether B = T or B = F ) in the branch, then p � P+ (resp. p � Q−).

Proof. We suppose that no statement Tp � ⊥ appears in the branch, otherwise
Bp � R appears for any p and R. Therefore, in the (proper) Kripke structure
defined, p � P means in particular that we do not have p � P . We proceed by
induction on the structure of P and Q and detail only some key cases. If P is
an atom, even non normal, then it is positive, and in the constructed Kripke
structure, p � P .

If P+ = A+ ∨ B+, then since Tp � P+ does not appear, neither Tp � A
nor Tp � B appears. Otherwise Tp � P would have been set by the saturation
process. Similarly, either Fp � A or Fp � B does not appear. Suppose the first
statement does not appear, then we apply the induction hypothesis to A and get
that p � A, therefore p � P . Now if P− = A− ∨B−, we have the same results.
We have to prove p � A and p � B. There are two cases: if Fp � A appears,
conclude by Lemma 4 otherwise use the induction hypothesis.

If P = ∀xR+(x), let q ≥ p be a world and t ∈ D(q). Fp � P+ does not
appear, hence no statement Fq � R(t) appear (otherwise Fp � P would have
been set by the saturation process). If Tq � R(t) appears, q � R(t) by Lem. 4.
Otherwise q � R(t) by the induction hypothesis. Therefore, by the Kripke struc-
ture definition, p � ∀xR+(x). If Q = ∀xR−(x) then similarly there is at least
one world q ≥ p and one term t ∈ D(q) for which Tq � R(t) does not appear. If
Fq � R(t) appears, we apply Lem. 4, otherwise we use the induction hypothesis.
In both cases, q � R(t). Thus, by the Kripke structure definition, p � ∀xR−(x).
The other connectors are treated in exactly the same way. ��
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Now let A be an atom, p a world, and A → P . If A appears in a statement
Bp � A, then Bp � P (by Lem. 3) and by Lem. 4 A and P have the same
interpretation. Otherwise, since P is positive by hypothesis, p � P , and p � A
by definition. Either way, the rewrite rules are valid in K which is thus a model.

4.3 Mixing the Two Conditions

Consider two rewrite systemsR> andR+. Under the confluence and termination
of R = R> ∪R+ and the condition that R+ is right-normal for R>, we are able
to prove completeness of the tableau method:

Definition 5 (Right normality). Take two rewrite systems R′ and R. R′ is
right normal for R if, for any propositional rule l → r ∈ R′, all the instances of
atoms of r by R-normal substitutions σ are in normal form for R.

This condition has never been studied before. The model is built as follows: given
a branch, saturate it as in Sec. 4.2 and define the model by induction on the well-
founded order. We interpret non R+-normal atoms exactly as in Sec. 4.2. The
Kripke structure K agrees as before with the branch and is a model of R> Both
claims are proved by induction over the well-founded order >. Furthermore, K
is also a model of R+.

Lemma 6. Let P+ be a positive formula and Q− be a negative formula defined
over D(p). Suppose that all instances (by R-normal substitutions) of atoms from
P,Q are normal for R>.

If Bp � P+ (resp. Bp � Q−) does not appear (whether B = T or B = F ) in
the branch, then p � P+ (resp. p � Q−).

Proof. By induction on the formula structure, as in Lem. 5. Note that we cannot
apply the rewrite rules of R>. ��

We can then conclude that every P → Q ∈ R+ is valid in the Kripke structure.

4.4 On Computational Content

We exhibit a result that will be important in the discussion of the relations
between constructive semantic cut elimination and proof normalization. This
rewrite rule is already discussed in [10], in a nonconstructive setting. Consider
this rewrite system, where A is any atomic formula, and y � z stands for ∀x(y ∈
x⇒ z ∈ x):

R ∈ R→ ∀y(y � R⇒ (y ∈ R⇒ (A⇒ A))) (1)

Theorem 2. The tableau modulo method for this rewrite system is complete.

Proof. Given a branch, define the Kripke structure K as in Sec. 4.2: it agrees
with this branch (proved as in Sec. 4.2). If the Kripke structure is improper, it
means that the branch is closed. Moreover the rewrite rule 1 is valid. Indeed,
the formula R ∈ R⇔ ∀y(y � R⇒ (y ∈ R⇒ (A⇒ A))) is always forced at any
node of any Kripke structure (it is an intuitionistic tautology). This completeness
proof leads to a cut elimination theorem for this rewrite system. ��
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5 Soundness

We will now prove the soundness of the tableau method w.r.t. cut-free (single-
conclusion) LJmod. In classical logic, it is common knowledge that a ground
tableau proof corresponds to a cut-free proof of the sequent calculus. In the
intuitionistic case, it is not obvious since a tableau proof roughly corresponds
to a multi-succedent sequent proof [8, 20, 19], while a single-conclusion sequent
calculus has at most one right member. The soundness of intuitionistic tableaux
(and of multi-succedent calculi) is always proved with respect to semantics
[7, 8, 12, 19, 20]. [3] attempts a syntactic soundness proof but some details seem
rather erroneous (∨ case). For that, we first state some definitions, building upon
those of [3].

Definition 6. Let p be a world. We define the sets Tp(π) = {P | Tq � P ∈ π for
some q ≤ p} and Fp(π) = {P | Fp � P ∈ π}. Let

∨
S stand for the disjunction

of some elements of S. A path π is consistent if for any world p, any finite
disjunction

∨
Fp(π), Tp(π) �∗

R
∨
Fp(π).

Bp � A ∈ π means that this very statement appears on the path π. Tp(π)
contains all true formulas at any world below p, while Fp(π) contains the false
formulas only at world p. This is due to the Kripke structure definition: unforced
formulas at p can be forced in future worlds, whereas truth is a definitive com-
mitment. The major difference between Def. 6 and the one of [3] is the definition
of consistency of a path.

Forbidding the cut rule forces us to prove again associativity of ∨:

Lemma 7. Let A,B,C be formulas and Γ be a set of formulas. If we have a
proof θ of Γ 
∗R A∨(B∨C) then we can construct a proof θ′ of Γ 
∗R (A∨B)∨C.

Proof. The proof proceeds by induction on θ. The induction hypothesis needs a
strengthening: θ is a proof of Γ 
∗R Q where Q is one of A ∨ (B ∨ C) or B ∨ C.

If the last rule is axiom, then replace it by a proof of P 
∗R (A ∨B) ∨C. If it
is ∨-r, we get a proof θ′ of Γ 
∗R A, Γ 
∗R B, Γ 
∗R C or Γ 
∗R B ∨ C. In the
first three cases, plug two ∨-r rules for a proof of Γ 
∗R (A ∨B) ∨C. In the last
one, apply the induction hypothesis to θ′. R is confluent, so no other rule can
apply to Q [9]. Thus, otherwise, apply the induction hypothesis to the premise(s)
(unless Q becomes erased) and use the same rule to get Γ 
∗R (A ∨B) ∨ C. ��

The commutativity of ∨ is immediate (switching premises). Hence, we now note∨
S the disjunction of some subset of S, disregarding order and parentheses. We

can also weaken the conclusion, adding ∨-r rules to get the disjunction of the
whole S. The following lemma “strengthens” some rules of the sequent calculus,
allowing multiple right propositions. Such properties are trivial with the cut rule.
As we want a cut elimination theorem, we need more elaborate proofs.

Lemma 8. Let A,B,C be formulas and Γ1, Γ2 be sets of formulas. From proofs
of Γ1 
∗R A ∨ C and Γ2 
∗R B ∨ C (resp. Γ1 
∗R P (t) ∨ C, resp. Γ1, B 
∗R C
and Γ2 
∗R A ∨ C) we can construct a proof of Γ1, Γ2 
∗R (A ∧ B) ∨ C(resp.
Γ1 
∗R (∃xP (x)) ∨C, resp. Γ1, Γ2, A⇒ B 
∗R C ).
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Proof. We focus on the first part of the lemma. The other parts are proved
using the same pattern. We construct bottom-up from the two proofs π1 and π2

of Γ1 
∗R A∨C and Γ2 
∗R B ∨C a proof of the sequent Γ1, Γ2 
∗R (A ∧B) ∨C.
We also consider axiom rules applying only on atoms. This harmless restriction
of sequent calculus is standard and this also holds in deduction modulo [9].

The idea is simple: first include a copy of π1 using Γ1, then, at the leaves of
π1, when necessary, take a copy of π2 using Γ2 (unchanged by the first induction
on π1). Let us detail a bit. We construct a proof of Γ1, Γ2 
∗R (A ∧ B) ∨ C by
induction on π1. If the first rule is:

– a rule with Γ1 as an active formula, apply the induction hypothesis to the
premise(s) and then apply the same rule. For instance, for the ⇒-l rule:

π′1
Γ1, Q 
∗R A ∨C

π′′1
Γ1 
∗R P

Γ1, P ⇒ Q 
∗R A ∨ C

we apply the induction hypothesis to π′1, get a proof π′ of Γ1, Q, Γ2 
∗R
(A ∧B) ∨C, and we then apply the ⇒-l rule:

π′

Γ1, Q, Γ2 
∗R (A ∧B) ∨ C
π′′1 weakenings

Γ1, Γ2 
∗R P
Γ1, P ⇒ Q,Γ2 
∗R (A ∧B) ∨ C

– a right weakening (on A ∨ C). We instead weaken on (A ∧ B) ∨ C and add
left weakenings to introduce Γ2. We get a proof of Γ1, Γ2 
∗R (A ∧B) ∨ C.

– a ∨-r rule (V1). By assumption, we can not have axiom rule, since the consid-
ered proposition is not an atom. This case is the most interesting. We stop
the induction on π1 and initiate an induction on π2. As usual, we rename
the fresh constants of π2 in order for them to be fresh for Γ1. If the first rule
is:
• a left rule r. Apply r the the proof(s) obtained by induction hypothesis.
• a right weakening. Similar as in the induction on π1.
• a ∨-r rule (V2). There are two subcases. If the premise is a proof π′1 of
Γ1 
∗R C′ with C′ ≡R C, construct the following proof (ignoring π2):

π′1 weakenings
Γ1, Γ2 
∗R C′

∨-right
Γ1, Γ2 
∗R (A ∧B) ∨C

Otherwise the premise is a proof π′1 of Γ1 
∗R A′ with A′ ≡R A. If on π2

the premise is a proof Γ2 
∗R C′, we construct the above proof, switching
indexes 1 and 2. Otherwise, it is a proof of Γ2 
∗R B′ with B′ ≡R B, and
we construct the proof:

π′2 weakenings
Γ1, Γ2 
∗R B′

π′1 weakenings
Γ1, Γ2 
∗R A′

∧-r
Γ1, B

′ 
∗R (A ∧B)
∨-r

Γ1, Γ2 
∗R (A ∧B) ∨ C
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where B′ ≡R B, C′ ≡R C and B′ ∨C′ is the formula used in A2. It is a
disjunction because R is confluent and left members are atomic, so main
connectors of two equivalent compound formulas are the same ([10, 9]).

The treatment of ∃ needs only one induction, as does⇒: the sequent Γ1, B 
∗R
C contains no disjunction. ��

Note. This result has to be compared with the LB sequent calculus [20], where
the very same rules are allowed. However, soundness of LB is proved semantically.
Our result is a syntactic proof.

We will make use of Lem. 8 with Γ1 = Γ2 = Γ . Contracting then Γ1, Γ2 gives
us a proof of Γ 
∗R (A ∧ B) ∨ C. We are now ready to prove soundness of the
intuitionistic tableau construction with respect to cut-free sequent calculus.

Theorem 3 (Tableaux syntactic cut-free soundness). Let Γ be a set of
formulas and P be a formula. If Γ �∗

R P then there is a consistent path π in the
complete systematic tableau developement of T ∅ � Γ↓, F∅ � P↓.

Remark: The contrapositive of this theorem has exactly the same proof, com-
plicated by some uninteresting additional cases. •

Proof. We show that if π is a consistent branch in a partially developed tableau,
the method of Sec. 3 extends it (at some step) in at least one consistent path.

The root of the tableau is consistent: having Γ 
∗R P is the same as hav-
ing Γ ↓
∗R P ↓. This is a classical result of deduction modulo (see for instance
[4, 9, 10]). Now let Bp � P the least unused statement in the tableau develope-
ment appearing on π (and P is normal by construction). If Bp � P is:

– Tp � Q ∧ R, π is extended following the rules of figure 2 with Tp � Q
and Tp � R. If the new path is inconsistent, the added statement must be
involved, and we have a proof of Tp(π′) 
∗R Fp(π′) But Tp(π′) = Tp(π) ∪
{Q,R} and Fp(π′) = Fp(π). We apply ∧-l and obtain a proof of Tp(π), P 
∗R
Fp(π) contradicting P ∈ Tp(π).

– Fp � Q ∧ R, π is extended with two paths π0 and π1. If both new paths
are inconsistent, we get the two proofs Tp(π) 
∗R Q∨

∨
Fp(π) and Tp(π) 
∗R

R ∨
∨
Fp(π) with Tp(π) = Tp(π0) = Tp(π1), Fp(π0) = Fp(π) ∪ {Q} and

Fp(π1) = Fp(π) ∪ {R}. Potentially weakening (Lem. 7), we consider both
occurrences of

∨
Fp(π) to be equal and we apply Lem. 8 to get a proof of

Tp(π) 
∗R (Q ∧R) ∨
∨
Fp(π) i.e. a contradiction, since Q ∧R ∈ Fp(π)

– Tp � Q∨R. If both new paths are inconsistent, combine with ∨-l the proofs
Tp(π), Q 
∗R

∨
Fp(π) and Tp(π), R 
∗R

∨
Fp(π) to get a contradiction.

– Fp � Q ∨ R. If the new path is inconsistent, we have a proof of Tp(π) 
∗R
(Q ∨R) ∨

∨
Fp(π) (using Lem. 7). But Q ∨R ∈ Fp(π).

– Tp � Q ⇒ R, then if both new paths are inconsistent we have proofs
of Tp′(π0) 
∗R

∨
Fp′(π0) and Tp′(π1) 
∗R

∨
Fp′ (π1) since things changing

from π change at world p′. By definitions of Tp′ and Fp′ , we have proofs of
Tp′(π) 
∗R Q∨

∨
Fp′(π) and Tp′(π), R 
∗R

∨
Fp′(π) By Lem. 8 we get a proof

of Tp′(π), Q⇒ R 
∗R
∨
Fp′(π), which contradicts Q⇒ R ∈ Tp′(π).
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– Fp � Q⇒ R. If the new path is inconsistent, we have a proof θ of Tp′(π′) 
∗R∨
Fp′(π′). Since p′ is a new world, comparable only with the q ≤ p on π,

Tp′(π′) = Tp(π)∪{Q} and Fp′(π′) = {R}. Hence, we can apply the ⇒-r rule
to θ, and we obtain a proof of Tp(π) 
∗R Q ⇒ R, yielding the inconsistency
of π since Q⇒ R ∈ Fp(π).

It is extremely important to have no choice for Fp′(π′) but R. It is here
that the logic gets intuitionistic. Other tableaux methods (like [20]) have
also a special treatement of the ⇒ and ∀ connectors: we need a sequent with
only one member on the right side.

– ¬P behaves as P ⇒ ⊥. So both cases are consequences of the previous.
– Tp �∃xQ(x). If the new path is inconsistent, we have aproof of Tp(π),Q(c)
∗R∨

Fp(π). We apply the ∃-l rule as c is fresh, yielding the inconsistency of π.
– Fp �∃xQ(x). If the new path is inconsistent, we have a proof of Tp(π) 
∗R
Q(t)↓ ∨

∨
Fp(π). We transform this proof into a proof of Tp(π) 
∗R Q(t) ∨∨

Fp(π) since Q(t) ≡R Q(t) ↓. Then using lemma 8 we get a proof of:
Tp(π) 
∗R ∃xQ(x) ∨

∨
Fp(π), thereby contradicting the consistency of π.

– Tp � ∀xQ(x). If the new path is inconsistent, we have a proof of Tp′(π), Q(t)↓

∗R Fp′(π), then converted into a proof of Tp′(π), Q(t) 
∗R Fp′(π). Apply the
∀-l rule to get Tp′(π), ∀xQ(x) 
∗R Fp′(π), and the inconsistency of π.

– Fp � ∀xQ(x). If the new path is inconsistent, we must have a proof of
Tp′(π′) 
∗R Fp′(π′). As for Fp � Q⇒ R, p′ is a new world, comparable only
with p. So, we have in fact a proof of Tp(π) 
∗R Q(c). We apply the ∀-r rule,
since c is fresh. This yields the inconsistency of π. ��

We have established that a closed tableau is a cut-free proof of LJmod. This
result is new, even in LJ . The combination of the soundness theorem of sequent
calculus w.r.t. modified Kripke structures, Th. 1 and Th. 3 yields a constructive
semantic cut elimination theorem, holding for the conditions on rewrite rules
seen in Sec. 4:

Theorem 4 (Cut elimination for LJmod). If Γ 
R P then Γ 
∗R P .

6 Conclusion and Further Work

We have formulated a simple tableau procedure for intuitionistic logic modulo and
proved its completeness and syntactic soundness to show that the computational
content of the semantic cut elimination theorem actually is a tableau method.

The method itself could be much improved with a better handling of the
rewrite steps (normalizing possibly includes unnecessary steps). We could also
treat quantifiers differently : free-variable tableaux based upon [19, 20] or the
introduction of Skolem symbols (more tricky in intuitionistic logic, see [13, 18])
would indeed improve efficiency.

The rewrite system 1 of Sec. 4.4 does not possess the proof normalization
property (see [10]): any attempt to normalize the proof (with a cut on R ∈ R) of

R A⇒ A can only fail. We can semantically eliminate this cut, because we have
the semantic information that A ⇒ A is a tautology. The proof normalization
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method however does not. In this case, the semantic analysis is sharper, and it
shows the gap between the two methods. Finally, the link between semantic cut
elimination and normalization by evaluation methods as in [2], where a Kripke-
style framework is described, seems a promising field of investigation.
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Fast Reflexive Arithmetic Tactics

the Linear Case and Beyond
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Abstract. When goals fall in decidable logic fragments, users of proof-
assistants expect automation. However, despite the availability of deci-
sion procedures, automation does not come for free. The reason is that
decision procedures do not generate proof terms. In this paper, we show
how to design efficient and lightweight reflexive tactics for a hierarchy
of quantifier-free fragments of integer arithmetics. The tactics can cope
with a wide class of linear and non-linear goals. For each logic fragment,
off-the-shelf algorithms generate certificates of infeasibility that are then
validated by straightforward reflexive checkers proved correct inside the
proof-assistant. This approach has been prototyped using the Coq proof-
assistant. Preliminary experiments are promising as the tactics run fast
and produce small proof terms.

1 Introduction

In an ideal world, proof assistants would be theorem provers. They would be
fed with theorems and would either generate a proof of them (if one exists) or
reject them (if none exists). Unfortunately, in real life, theorems can be unde-
cidable Yet, theorems often fall in decidable fragments. For those, users of proof
assistants expect the proof process to be discharged to dedicated efficient deci-
sion procedures. However, using off-the-shelf provers is complicated by the fact
that they cannot be trusted. A decision procedure, that when given as input a
supposedly-so theorem, laconically answers back yes is useless. Proof assistants
only accept proofs which they can check by their own means.

Approaches to obtain proofs from decision procedures usually require a sub-
stantial engineering efforts and a deep understanding of the internals of the deci-
sion procedure. A common approach consists in instrumenting the procedure so
that it generates proof traces that are replayed in the proof-assistant. The Coq
omega tactic by Pierre Crégut ([9] chapter 17) is representative of this trend.
The tactics is a decision procedure for quantifier-free linear integer arithmetics.
It generates Coq proof terms from traces obtained from an instrumented version
of the Omega test [22]. Another approach, implemented by the Coq ring tac-
tics [13], is to prove correct the decision procedure inside the proof-assistant and
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use computational reflection. In this case, both the computational complexity
of the decision procedure and the complexity of proving it correct are limiting
factors.

In this paper, we adhere to the so-called sceptical approach advocated by
Harrison and Théry [16]. The key insight is to separate proof-search from proof-
checking. Proof search is delegated to fine-tuned external tools which produce
certificates to be checked by the proof-assistant. In this paper, we present the
design, in the Coq proof-assistant, of a tactics for a hierarchy of quantifier-free
fragments of integer arithmetics. The originality of the approach is that proof
witnesses, i.e., certificates, are computed by black-box off-the-shelf provers. The
soundness of a reflexive certificate checker is then proved correct inside the proof-
assistant. For the logic fragments we consider, checkers are considerably simpler
than provers. Hence, using a pair (untrusted prover, proved checker) is a very
lightweight and efficient implementation technique to make decision procedures
available to proof-assistants.

The contributions of this paper are both theoretical and practical. On the
theoretical side, we put the shed on mathematical theorems that provide infea-
sibility certificates for linear and non-linear fragments of integer arithmetics. On
the practical side, we show how to use these theorems to design powerful and
space-and-time efficient checkers for these certificates. The implementation has
been carried out for the Coq proof-assistant. Experiments show that our new
reflexive tactic for linear arithmetics outperforms state-of-the-art Coq tactics.

The rest of this paper is organised as follows. Section 2 recalls the principles
of reflection proofs. Section 3 presents the mathematical results on which our
certificate checkers are based on. Section 4 describe our implementation of these
checkers in the Coq proof-assistant. Section 5 compares to related work and
concludes.

2 Principle of Reflection Proofs

Reflection proofs are a feature of proof-assistants embedding a programming
language. (See Chapter 16 of the Coq’Art book [2] for a presentation of reflection
proofs in Coq.) In essence, this technique is reducing a proof to a computation.
Degenerated examples of this proof pattern are equality proofs of ground, i.e.,
variable free, arithmetic expressions. Suppose that we are given the proof goal

4 + 8 + 15 + 16 + 23 + 42 = 108

Its proof is quite simple: evaluate 4 + 8 + 15 + 16 + 23 + 42; check that the
result is indeed 108. Reflection proofs become more challenging when goals in-
volves variables. Consider, for instance, the following goal where x is universally
quantified:

4× x+ 8× x+ 15× x+ 16× x+ 23× x+ 42× x = 108× x

Because the expression contain variables, evaluation alone is unable to prove the
equality. The above goal requires a more elaborate reflection scheme.
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2.1 Prover-Based Reflection

Reflection proofs are set up by the following steps:

1. encode logical propositions into symbolic expressions F ;
2. provide an evaluation function �.� : Env → F → Prop that given an envi-

ronment binding variables and a symbolic expression returns a logical propo-
sition;

3. implement a semantically sound and computable function prover : F → bool
verifying ∀ef , prover(ef ) = true ⇒ ∀env , �ef �env .

A reflexive proof proceeds in the following way. First, we construct an envi-
ronment env binding variables. (Typically, variables in symbolic expressions are
indexes and environments map indexes to variables.) Then, the goal formula f
is replaced by �ef �env such that, by computation, �ef �env evaluates to f . As the
prover is sound, if prover(ef ) returns true, we conclude that f holds.

Example 1. Following the methodology described above, we show how goals of
the form c1 × x + . . . cn × x = c × x (where the cis are integer constants and x
is the only universally quantified variable) can be solved by reflection.

– Such formulae can be coded by pairs ([c1; . . . ; cn], c) ∈ F = Z
∗ × Z.

– The semantics function �.� is defined by �l, c�x
�
= listExpr(x, l) = c×x where

listExpr : Z× Z
∗ → Z is defined by

listExpr(x, [])
�
= 0

listExpr(x, [c])
�
= c× x

listExpr(x, c :: l)
�
= c× x+ listExpr(x, l)

– Given a pair (l, c), the prover computes the sum of the elements in l and
checks equality with the constant c.

prover(l, c)
�
= (fold + l 0) = c

To make decision procedure available to proof-assistants, the reflexive prover-
based approach is very appealing. It is conceptually simple and can be applied
to any textbook decision procedure. Moreover, besides soundness, it allows to
reason about the completeness of the prover. As a result, the end-user of the
proof-assistant gets maximum confidence. Upon success, the theorem holds; upon
failure, the theorem is wrong.

2.2 Checker-Based Reflection

On the one hand, provers efficiency is due to efficient data-structures, clever al-
gorithms and fine-tuned heuristics. On the other hand, manageable soundness
proofs usually hinge upon simple algorithms. In any case, reflection proofs re-
quire runtime efficiency. Obviously, these facts are difficult to reconcile. To obtain
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a good trade-off between computational efficiency and proof simplicity, we ad-
vocate implementing and proving correct certificate checkers instead of genuine
provers. Compared to provers, checkers take a certificate as an additional input
and verify the following property:

∀ef , (∃cert , checker(cert , ef ) = true)⇒ ∀env , �ef �env

The benefits are twofold : checkers are simpler and faster. Complexity theory as-
certains that checkers run faster than provers. In particular, contrary to all known
provers, checkers for NP-complete decision problems have polynomial complexity.
A reflexive proof of �ef �env now amounts to providing a certificate cert such that
checker(cert, t) evaluates to true. As they are checked inside a proof-assistant,
certificates can be generated by any untrusted optimised procedure.

Using certificates and reflexive checkers to design automated tactics is not a
new idea. For instance, proof traces generated by instrumented decision proce-
dures can be understood as certificates. In this case, reflexive checkers are trace
validators which verify the logical soundness of the proof steps recorded in the
trace. The Coq romega tactic [8] is representative of this trace-based approach:
traces generated by an instrumented version of the Omega test [22] act as cer-
tificates that are validated by a reflexive checker.The drawback of this method
is that instrumentation is an intrusive task and require to dig into the internals
of the decision procedure. In the following, we present conjunctive fragments
of integer arithmetics for which certificate generators are genuine off-the-shelf
provers. The advantage is immediate: provers are now black-boxes. Moreover,
the checkers are quite simple to implement and prove correct.

3 Certificates for Integer Arithmetics

In this part, we study a hierarchy of three quantifier-free fragments of integer
arithmetics. We describe certificates, off-the-shelf provers and certificate checkers
associated to them. We consider formulae that are conjunctions of inequalities
and we are interested in proving the unsatisfiability of these inequalities. For-
mally, formulae of interest have the form:

¬
(

k∧
i=1

ei(x1, . . . , xn) ≥ 0

)

where the eis are fragment-specific integer expressions and the xis are universally
quantified variables.

For each fragment, we shall prove a theorem of the following general form:

(∃cert,Cond(cert, e1, . . . , ek)) ⇒ ∀(x1, . . . , xn),¬
(

k∧
i=1

ei(x1, . . . , xn)

)

In essence, such a theorem establish that cert is a certificate of the infeasibil-
ity of the eis. We then show that certificates can be generated by off-the-shelf
algorithms and that Cond is decidable and can be efficiently implemented by a
checker algorithm.
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3.1 Potential Constraints

To begin with, consider potential constraints. These are constraints of the form
x − y + c ≥ 0. Deciding the infeasibility of conjunctions of such constraints
amounts to finding a cycle of negative weight in a graph such that a edge x c→ y
corresponds to a constraint x− y + c ≥ 0 [1,21]1.

Theorem 1

∃π∈ Path,
∧⎛⎝ isCycle(π)

weight(π) < 0
π ⊆ (

⋃k
i=1{xi1

ci→ xi2})

⎞
⎠⇒ ∀x1, . . . , xn,¬(

k∧
i=1

xi1−xi2 +ci ≥ 0)

Proof. Ad absurdum, we suppose that we have
∧k

i=1 xi1 − xi2 + ci ≥ 0 for some
x1, . . . , xn. If we sum the constraints over a cycle π, variables cancel and the
result is the total weight of the path

∑
x

c→y∈π
x− y+ c =

∑
x

c→y∈π
c. Moreover,

by hypothesis, we also have that
(∑

x
c→y∈π

x− y + c
)
≥ 0 (each element of the

sum being positive). We conclude that the total weight of cycles is necessarily
positive. It follows that the existence of a cycle of negative weight c yields a
contradiction. ��

As a result, a negative cycle is a certificate of infeasibility of a conjunction of
potential constraints.

Bellmann-Ford shortest path algorithm is a certificate generator which runs
in complexity O(n × k) where n is the number of nodes (or variables) and k is
the number of edges (or constraints). However, this algorithm does not find the
best certificate i.e., the negative cycle of shortest length. Certificates, i.e., graph
cycles, can be coded by a list of binary indexes – each of them identifying one of
the k constraints. The worst-case certificate is then a Hamiltonian circuit which
is a permutation of the k constraint indexes. Its asymptotic size is therefore
k × log(k):

size(i1, . . . , ik) =
k∑

j=1

log(ij) =
k∑

j=1

log(j) = log(Πk
j=1j) = log(k!) ∼ k × log(k)

Verifying a certificate consists in checking that:

1. indexes are bound to genuine expressions;
2. verify that expressions form a cycle;
3. compute the total weight of the cycle and check its negativity

This can be implemented in time linear in the size of the certificate.

1 As shown by Shostak [24], this graph-based approach generalises to constraints of
the form a× x− b× y + c ≥ 0.
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3.2 Linear Constraints

The linear fragment of arithmetics might be the most widely used. It consists of
formulae built over the following expressions:

Expr ::= c1 × x1 + . . .+ cn × xn + cn+1

A well-known result of linear programming is Farkas’s Lemma which states a
strong duality result.

Lemma 1 (Farkas’s Lemma (Variant)). Let A : Qm×n be a rational-valued
matrix and b : Qm be a rational-valued vector. Exactly one of the following
statement holds:

– ∃(y ∈ Qn), y ≥ 0̄, bt · y < 0, At · y = 0̄
– ∃(x ∈ Qm), A · x ≥ b

Over Z, Farkas’s Lemma is sufficient to provide infeasibility certificates for sys-
tems of inequalities.

Lemma 2 (Weakened Farkas’s Lemma (over Z)). Let A : Zm×n be a
integer-valued matrix and b : Zm be a integer-valued vector.

∃(y ∈ Z
n), y ≥ 0̄, bt · y < 0, At · y = 0̄ ⇒ ∀(x ∈ Z

n),¬A · x ≥ b

Proof. Ad absurdum, we suppose that we have A ·x ≥ b for some vector x. Since
y is a positive vector, we have that yt · (A · x) ≥ yt · b. However, yt · (A · x) =
(yt · A) · x = (At · y)t · x. Because At · y = 0, we conclude that 0 ≥ yt · b which
contradicts the hypothesis stating that yt · b is strictly negative. ��

Over Z, Farkas’s lemma is not complete. Incompleteness is a consequence of
the discreetness of Z : there are systems that have solutions over Q but not
over Z. A canonical example is the equation 2.x = 1. The unique solution is
the rational 1/2 which obviously is not an integer. Yet, the loss of completeness
is balanced by a gain in efficiency. Whereas deciding infeasibility of system of
integer constraints is NP-complete; the same problem can be solved over the
rationals in polynomial time.

Indeed, an infeasibility certificate is produced as the solution of the linear
program

min{yt · 1̄ | y ≥ 0̄, bt · y < 0, At · y = 0̄}

Note that linear programming also optimises the certificate. To get small cer-
tificates, we propose to minimise the sum of the elements of the solution vector.

Linear programs can be solved in polynomial time using interior point meth-
ods [17]. The Simplex method – despite its worst-case exponential complexity –
is nonetheless a practical competitive choice.

Linear programs are efficiently solved over the rationals. Nonetheless, an in-
teger certificate can be obtained from any rational certificate.
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Proposition 1 (Integer certificate). For any rational certificate of the form
certQ = [p1/q1; . . . ; pk/qk], an integer certificate is

certZ = [p′1; . . . ; p
′
k]

where p′i = pi × lcm/qi and lcm is the least common multiple of the qis.

Worst-case estimates of the size of the certificates are inherited from the theory
of integer and linear programming (see for instance [23]).

Theorem 2 (from [23] Corollary 10.2a). The bit size of the rational solution
of a linear program is at most 4d2(d+ 1)(σ + 1) where

– d is the dimension of the problem;
– σ is the number of bits of the biggest coefficient of the linear program.

Using Lemma 1 and Theorem 2, the next Corollary gives a coarse upper-bound
of the bit size of integer certificates.

Corollary 1 (Bit size of integer certificates). The bit size of integer cer-
tificates is bounded by 4k3(k + 1)(σ + 1)

Proof. Let certZ = [p′1; . . . ; p
′
k] be the certificate obtained from a rational cer-

tificate certQ = [p1/q1; . . . ; pk/qk].

| certZ | =
∑k

i=1 log(p
′
i)

=
∑k

i=1(log(pi)− log(qi)) +
∑k

i=1 log(lcm)
=
∑k

i=1(log(pi)− log(qi)) + k × log(lcm)

At worse, the qis are relatively prime and lcm = Πn
i=1qi.

| certZ |≤ k ×
k∑

i=1

log(qi) +
k∑

i=1

(log(pi)− log(qi))

As | certQ |=
∑k

i=1 log(pi) + log(qi), we have that | certZ |≤ k× | certQ |. By
Theorem 2, we conclude the proof and obtain the 4k3(k + 1)(σ + 1) bound. ��

Optimising certificates over the rationals is reasonable. Rational certificates are
produced in polynomial time. Moreover, the worst-case size of the integer cer-
tificates is kept reasonable.

Checking a certificate cert amounts to

1. checking the positiveness of the integers in cert;
2. computing the matrix-vector product At · cert and verifying that the result

is the null vector;
3. computing the scalar product bt · cert and verifying its strict negativity

Overall, this leads to a quadratic-time O(n× k) checker in the number of arith-
metic operations.
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3.3 Polynomial Constraints

For our last fragment, we consider unrestricted expressions built over variables,
integer constants, addition and multiplication.

e ∈ Expr ::= x | c | e1 + e2 | e1 × e2

As it reduces to solving diophantine equations, the logical fragment we consider
is not decidable over the integers. However, it is a result by Tarski [26] that
the first order logic 〈R,+, ∗, 0〉 is decidable. In the previous section, by lifting
our problem over the rationals, we traded incompleteness for efficiency. Here, we
trade incompleteness for decidability.

In 1974, Stengle generalises Hilbert’s nullstellenstaz to systems of polynomial
inequalities [25]. As a matter of fact, this provides a positivstellensatz, i.e., a
theorem of positivity, which states a necessary and sufficient condition for the
existence of a solution to systems of polynomial inequalities. Over the integers,
unlike Farkas’s lemma, Stengle’s positivstellensatz yields sound infeasibility cer-
tificates for conjunctions of polynomial inequalities.

Definition 1 (Cone). Let P ⊆ Z[x̄] be a finite set of polynomials. The cone of
P (Cone(P )) is the smallest set such that

1. ∀p ∈ P, p ∈ Cone(P )
2. ∀p1, p2 ∈ Cone(P ), p1 + p2 ∈ Cone(P )
3. ∀p1, p2 ∈ Cone(P ), p1 × p2 ∈ Cone(P )
4. ∀p ∈ Z[x̄], p2 ∈ Cone(P )

Theorem 3 states sufficient conditions for infeasibility certificates:

Theorem 3 (Weakened Positivstellensatz). Let P ⊆ Z[x1, . . . , xn] be a fi-
nite set of polynomials.

∃cert ∈ Cone(P ), cert ≡ −1⇒ ∀x1, . . . , xn,¬
∧
p∈P

p(x1, . . . , xn) ≥ 0

Proof. By adbsurdum, we suppose that we have
∧

p∈P p(x1, . . . , xn) ≥ 0 for some
x1,. . . , xn. By routine induction over the definition of a Cone, we prove that any
polynomial p ∈ Cone(P ) is such that p(x1, . . . , xn) is positive. This contradicts
the existence of the polynomial cert which uniformly evaluates to −1. ��

Certificate generators explore the cone to pick a certificate. Stengle’s result [25]
shows that only a restricted (though infinite) part of the cone needs to be con-
sidered. A certificate cert can be decomposed into a finite sum of products of
the following form:

cert ∈
∑
s∈2P

(
qs ×

∏
p∈s

p

)

where qs = p21 + . . .+ p2i is a sum of squares polynomial.
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As pointed out by Parrilo [20], a layered certificate search can be carried out
by increasing the formal degree of the certificate. For a given degree, finding a
certificate amounts to finding polynomials (of known degree) that are sums of
squares. This is a problem that can be solved efficiently (in polynomial time) by
recasting it as a semidefinite program [27]. The key insight is that a polynomial
q is a sum of square if and only if it can be written as

q =

⎛
⎝m1

. . .
mn

⎞
⎠

t

·Q ·

⎛
⎝m1

. . .
mn

⎞
⎠

for some positive semidefinite matrix Q and some vector (m1, . . . ,mn) of linearly
independent monomials.

An infeasibility certificates is a polynomial which belongs to the cone and is
equivalent to −1. Using a suitable encoding, cone membership can be tested in
linear time. Equivalence with −1 can be checked by putting the polynomial in
Horner’s normal form.

4 Implementation in the Coq Proof-Assistant

In this part, we present the design of the Coq reflexive tactics micromega2. This
tactics solves linear and non-linear goals using the certificates and certificate
generators described in Section 3. For the linear case, experiments show that
micromega outperforms the existing Coq (r)omega tactics both in term of proof-
term size and checking time.

4.1 Encoding of Formulae

As already mentioned in section 2.1, to set up a reflection proof, logical sentences
are encoded into syntactic terms. Arithmetic expressions are represented by the
following inductive type:

Inductive Expr : Set :=
| V (v:Var)
| C (c:Z)
| Mult (e1:Expr) (e2:Expr)
| Add (e1:Expr) (e2:Expr)
| UMinus (e:Expr).

The eval_expr function maps syntactic expressions to arithmetic expressions.
It is defined by structural induction over the structure of Expr.

Fixpoint eval_expr (env:Env) (p:Expr) {struct p}: Z :=
match p with
| V v ⇒ get_env env v

2 Micromega is available at http://www.irisa.fr/lande/fbesson.html

http://www.irisa.fr/lande/fbesson.html
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| C c ⇒ c
| Mult p q ⇒ (eval_expr env p) * (eval_expr env q)
| Add p q ⇒ (eval_expr env p) + (eval_expr env q)
| UMinus p ⇒ - (eval_expr env p)

end.

The environment binds variable identifiers to their integer value. For efficiency,
variables identifiers are binary indexes and environments are binary trees. As
a result, the function eval_expr runs in time linear in the size of the input
expression.

Formulae are lists of expressions Formulae := list Expr and are equipped
with an evaluation function eval : Env→Formulae→Prop

Fixpoint eval (env:Env)(f:Formulae){struct f}: Prop :=
match f with
| nil ⇒ False
| e::rf ⇒ (( eval_expr env e) ≥ 0)→ (eval env rf)

end.

The eval function generates formulae of the form e1(x1, . . . , xn) ≥ 0 → . . . →
ek(x1, . . . , xn) ≥ 0 → False. By simple propositional reasoning, such a formula
is equivalent to ¬

(∧k
i=1 ei(x1, . . . , xn) ≥ 0

)
which is exactly the logical fragment

studied in Section 3.

4.2 Proving the Infeasibility Criterion

At the core of our tactics are theorems which are reducing infeasibility of formu-
lae to the existence of certificates. In the following, we present our formalisation
of Stengle’s Positivstellensatz in Coq. The cone of a set of polynomials is defined
by an inductive predicate:

Inductive Cone (P: list Expr) : Expr → Prop :=
|IsGen : ∀ p, In p P→ Cone P p
|IsSquare: ∀ p, Cone P (Power p 2)
|IsMult : ∀ p q, Cone P p→ Cone P q→ Cone P (Mult p q)
|IsAdd : ∀ p q, Cone P p→ Cone P q→ Cone P (Add p q)
|IsPos : ∀ c, c ≥ 0→ Cone P (C c).

The fifth rule IsPos is redundant and absent from the formal definition of a
cone (Definition 1). Indeed, any positive integer can be decomposed into a sum
of square. It is added for convenience and to allow a simpler and faster decoding
of certificates.

We are then able to state (and prove) our weakened positivstellensatz.

Theorem positivstellensatz : ∀ (f:Formulae),
( ∃ (e:Expr),

Cone f e ∧
( ∀ env ’, eval_expr env ’ e = -1)) →

∀ env , eval env f.
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4.3 Checking Certificates

Given a certificate cert, we need an algorithm to check that

1. the certificate belongs to the cone Cone(f,cert);
2. the certificate always evaluate to −1;

If certificates were terms of type Expr, proving cone membership would be a
tricky task. This would be complicated and inefficient to reconstruct the cone
decomposition of the expression. To avoid this pitfall, by construction, our certifi-
cates always belong to the cone. To do that, the data-structure of the certificates
mimics the definition of the cone predicate:

Inductive Certificate : Set :=
| Cert_IsGen (n:nat)
| Cert_IsSquare (e:Expr)
| Cert_IsMult (e1:Expr) (e2:Expr)
| Cert_IsAdd (e1:Expr) (e2:Expr)
| Cert_IsZpos (p:positive)
| Cert_IsZ0.

Given the generators of a cone, i.e., a list of expressions, a certificate is decoded
into an expression:

Fixpoint decode
(P: list Expr) (c: Certificate) {struct c} : Expr :=
match c with
|Cert_IsGen n ⇒ nth n P (C 0)
|Cert_IsSquare p ⇒ Mult p p
|Cert_IsMult p q ⇒ Mult (decode P p)(decode P q)
|Cert_Add p q ⇒ Add (decode P p)( decode P q)
|Cert_IsZpos p ⇒ C (Zpos p)
|Cert_IsZ0 ⇒ C Z0
end.

This construction ensures that certificates are always mapped to expressions
that belong to the cone as stated by the following lemma.

Lemma cert_in_cone : ∀ P cert , Cone P (decode l cert).

Because our certificate encoding ensures cone membership, it remains to test
that a polynomial always evaluates to a negative constant. To do that, we
reuse the algorithm developed by the Coq ring tactics which normalises poly-
nomial expressions. In the end, our checker is implemented by the following
algorithm:

Let checker (c:Certificate) (P: list Expr) : bool :=
( polynomial_simplify (decode P c)) == -1
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4.4 Certificate Generation

In Section 3, we shed the light on three different arithmetic fragments, namely,
potential constraints (Section 3.1), linear constraints (Section 3.2) and polyno-
mial constraints (Section 3.3). Obviously, these logic fragments form a strict
hierarchy: polynomial constraints subsume linear and potential constraints. It
appears that this hierarchy is also apparent at the level of certificates: both
negative-weighted cycles and Farkas’s Lemma certificates can be interpreted as
Positivstellensatz certificates.

For linear goals, our certificates are produced by a handcrafted linear solver.
For non-linear goals, we are using the full-fledged semidefinite programming
solver Csdp [5] through its HOL Light interface [15]. Anyhow, whatever their
origin, certificates are translated into Positivstellensatz certificates.

4.5 Experiments

We have assessed the efficiency of micromega with respect to the existing Coq
tactic romega3. As mentioned earlier, the romega is a reflexive tactics which
solves linear goals by checking traces obtained from an instrumented version
of the Omega test. Our benchmarks are the smallest SMALLINT problems of
the Pseudo Boolean Evaluation 2005/2006 contest4. The number of variables is
ranging from 220 to 2800 while the number of constraints is ranging from 42
to 160. The benchmarks are run on a 2.4 Ghz Intel Xeon desktop with 4GB
of memory. The graph of Figure 1 presents the running time of the Coq type-
checking of the certificates generated by romega � and micromega �. For this
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Fig. 1. Evolution of the type-checking time

experiment, the certificates produced by micromega are always faster to check.
Moreover, micromega scales far better than romega. It is also worth noting than

3 Romega already outperforms the omega tactics.
4 http://www.cril.univ-artois.fr/PB06

http://www.cril.univ-artois.fr/PB06
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romega fails to complete the last two benchmarks. For the last benchmark, the
origin of the failure is not fully elucidated. For the penultimate one, a stack-
overflow exception is thrown while type-checking the certificate.

Figure 2 plots the size of compiled proof-terms (.vo files) generated by
romega � and micromega � together with the textual size of the problems •.
For small instances, the two tactics generate proof-terms of similar size. For big
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Fig. 2. Evolution of the size of proof-terms

instances, proof-terms of generated by micromega are smaller than those pro-
duced by romega. Moreover, their size is more closely correlated to the problem
size.

On the negative side, both tactics are using a huge amount of memory. (For the
biggest problems, the memory skyrockets up to 2.5 GB.) Further investigations
is needed to fully understand this behaviour.

5 Related Work and Conclusion

In this paper, we have identified logical fragments for which certificate genera-
tors are off-the-shelf decision procedures (or algorithms) and reflexive certificate
checkers are proved correct inside the proof-assistant. Using the same approach,
Grégoire et al., [14] check Pocklington certificates to get efficient reflexive Coq
proofs that a number is prime. In both cases, the checkers benefit from the
performance of the novel Coq virtual machine [12].

For Isabelle/HOL, recent works attest the efficiency of reflexive approaches.
Chaieb and Nipkow have proved correct Cooper’s decision procedure for Pres-
burger arithmetics [7]. To obtain fast reflexive proofs, the HOL program is com-
piled into ML code and run inside the HOL kernel. Most related to ours is the
work by Obua [19] which is using a reflexive checker to verify certificates gen-
erated by the Simplex. Our work extends this approach by considering more
general certificates, namely positivstellensatz certificates.
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To prove non-linear goals, Harrison mentions (chapter 9.2 of the HOL Light
tutorial [15]) his use of semidefinite programming. The difference with our ap-
proach is that the HOL Light checker needs not to be proved correct but is a
Caml program of type cert→ term→ thm. Dynamically, the HOL Light kernel
ensures that theorems can only be constructed using sound logical inferences.

As decision procedures get more and more sophisticated and fine-tuned, the
need for trustworthy checkers has surged. For instance, the state-of-the-art
zChaff SAT solver is now generating proof traces [29]. When proof traces ex-
ist, experiments show that they can be efficiently rerun inside a proof-assistant.
Using Isabelle/HOL, Weber [28] reruns zChaff traces to solve problems that Is-
abelle/HOL decision procedure could not cope with. Fontaine et al., [11] are
using a similar approach to solve quantifier-free formulae with uninterpreted
symbols by rerunning proof traces generated by the Harvey SMT prover [10].

In Proof Carrying Code [18], a piece of code is downloaded packed with a
checkable certificate – a proof accessing that it is not malicious. Certificate gen-
eration is done ahead-of-time while certificate checking is done at download
time. Previous work has shown how to bootstrap a PCC infrastructure using a
general-purpose proof-assistant like Coq [6,3,4]. In this context, the triples (cer-
tificate,checkers,prover) defined here could be used to efficiently check arithmetic
verification conditions arising from the analysis of programs.

Acknowledgements. Thanks are due to the anonymous referees for putting
this work into perspective and pointing out relevant related work.
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Abstract. The use of higher-order abstract syntax is an important ap-
proach for the representation of binding constructs in encodings of lan-
guages and logics in a logical framework. Formal meta-reasoning about
such object languages is a particular challenge. We present a mechanism
for such reasoning, formalized in Coq, inspired by the Hybrid tool in
Isabelle. At the base level, we define a de Bruijn representation of terms
with basic operations and a reasoning framework. At a higher level, we
can represent languages and reason about them using higher-order syn-
tax. We take advantage of Coq’s constructive logic by formulating many
definitions as Coq programs. We illustrate the method on two examples:
the untyped lambda calculus and quantified propositional logic. For each
language, we can define recursion and induction principles that work di-
rectly on the higher-order syntax.

1 Introduction

There are well-known challenges in reasoning within a logical framework about
languages encoded using higher-order syntax to represent binding constructs.
To illustrate, consider a simple example of an object language – the untyped λ-
calculus – encoded in a typed meta-language. We encode λ-terms, in higher-order
syntax, by a type term with constructors: abs of type (term → term)→ term and
app of type term → term → term. We represent binding by negative occurrences
of the defined type. (Here, the single negative occurrence is underlined.) The Coq
system [3,4] implements the Calculus of Inductive Constructions (CIC) [5,27]:
Like many other systems, it does not allow negative occurrences in constructors
of inductive types.

Our approach realizes higher-order syntax encodings of terms with an un-
derlying de Bruijn representation [6]. De Bruijn syntax has two advantages:
α-convertibility is just equality and there is no variable capture in substitution.
A main advantage of higher-order syntax is that it allows substitution by func-
tion application at the meta-level. We define higher-order syntax encodings on
top of the base level so that they expand to de Bruijn terms.
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We provide libraries of operations and lemmas to reason on the higher-order
syntax, hiding the details of the de Bruijn representation. This approach is in-
spired by the Hybrid system [1], implemented in Isabelle [18]. The general struc-
ture is the same, but our basic definitions and operators to build a higher level
on top of de Bruijn terms are quite different.

Coq’s constructive logic allows us to define operators as functions, rather than
relations as in Hybrid. This simplifies some of the reasoning and provides more
flexibility in specifying object languages. We obtain new induction principles to
reason directly on the higher-order syntax, as well as non-dependent recursion
principles to define programs on the higher-order syntax.

Our framework includes two parts. The first part is a general library of defini-
tions and lemmas used by any object language. It includes the definition of the
de Bruijn representation and of several recursive functions on de Bruijn terms,
e.g., substitution. The second part is a methodology to instantiate the library
to a particular object language. It includes definitions and lemmas that follow a
general pattern and can easily be adapted from one object language to the next.
An important result is the validation of induction and recursion principles on
the higher-order syntax of the language.

We illustrate our framework on two examples, the untyped λ-calculus (LC)
and quantified propositional logic (QPL); the same languages were implemented
in Hybrid [1]. For example, we give a Coq function computing the negation
normal form of formulas in QPL. This definition uses the recursion principle for
the higher-order syntax of QPL. The proof that it does indeed produce normal
forms is quite simple, making direct use of our induction principle for QPL. In
Hybrid, negation normal forms and many other definitions are given as relations
instead. In Coq, they are functions and our higher-order recursion principles
allow us to provide simpler, more direct proofs.

Section 2 presents the general part of our framework starting with the de
Bruijn syntax and Sect. 3 illustrates how we instantiate this general framework to
LC. Section 4 uses this instantiation to prove properties of this object language.
In Sect. 5, we apply our framework to QPL. In Sect. 6, we discuss related work,
and in Sect. 7, we conclude and discuss future work.

We formalized all the results in this paper in the proof assistant Coq. The files
of the formalization are available at: http://www.site.uottawa.ca/~afelty/
coq/types06 coq.html

2 De Bruijn Syntax

We describe the lowest level formalization of the syntax. We define a generic type
of expressions built on a parameter type of constants con. Expressions are built
from variables and constants through application and abstraction. There are two
kinds of variables, free and bound. Two types, var and bnd, both instantiated as
natural numbers, are used for indexing the two kinds.

http://www.site.uottawa.ca/~afelty/coq/types06_coq.html
http://www.site.uottawa.ca/~afelty/coq/types06_coq.html
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Bound variables are treated as de Bruijn indices: this notation eliminates
the need to specify the name of the abstracted variable. Thus, the abstraction
operator is a simple unary constructor. Expressions are an inductive type:

Inductive expr : Set :=
CON : con→ expr
VAR : var → expr
BND : bnd→ expr
APP : expr → expr → expr
ABS : expr → expr

This is the same definition used in Hybrid [1]. The idea is that the variable
(BND i) is bound by the i-th occurrence of ABS above it in the syntax tree. In
the following example, we underline all the variable occurrences bound by the
first ABS:

ABS (APP (ABS (APP (BND 1) (BND 0))) (BND 0)).

Written in the usual λ-calculus notation, this expression would be λx.(λy.x y)x.
There may occur BND variables with indices higher than the total number of

ABSs above them. These are called dangling variables. They should not occur in
correct terms, but we need to handle them in higher-order binding.

Substitution can be defined for both kinds of variables, but we need it only
for the BND variables (substitution of VAR variables can be obtained by first
swapping the variable with a fresh BND variable, as shown below, and then
substituting the latter).

If j is a de Bruijn index, we define the term e[j/x] (written as (bsubst e j x)
in the Coq code), obtained by substituting the dangling BND j variable with
x. This operation is slightly complicated by the fact that the identity of a
BND variable depends on how many ABSs are above it: Every time we go un-
der an ABS, we need to increment the index of the substituted variable and
of all the dangling variables in x. In ordinary λ-calculus notation we have
((λy.x y)x)[x/y] = (λy′.y y′) y.1 In de Bruijn syntax, we have, using BND 0 for
x and BND 1 for y:

(APP (ABS (APP (BND 1) (BND 0))) (BND 0))[0/BND 1]

= (APP (ABS (APP (BND 2) (BND 0))) (BND 1))

The two underlined occurrences of BND 1 and BND 0 on the left-hand side repre-
sent the same dangling variable, the one with index 0 at the top level. Similarly,
the two occurrences of BND 2 and BND 1 on the right-hand side represent the
same dangling variable, the one with index 1 at the top level.

1 Here, y has been renamed y′ to avoid capture. Using de Bruijn notation, there is
never any variable capture, since renaming is implicit in the syntax.
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Call x̂ (written as (bshift x) in the Coq code) the result of incrementing by
one all the dangling variables in x. We define:

(CON c)[j/x] = CON c
(VAR v)[j/x] = VAR v
(BND i)[j/x] = if j = i then x else BND i
(APP e1 e2)[j/x] = APP (e1[j/x]) (e2[j/x])
(ABS e)[j/x] = ABS (e[j + 1/x̂])

To define binding operators, we need to turn a free variable into a bound one.
If e is an expression, j a bound variable, and v a free variable, then we denote
by e[j↔ v] (written as (ebind v j e) in the Coq code) the result of swapping
BND j with VAR v in e, taking into account the change in indexing caused by
the occurrences of ABS:

(CON c)[j↔ v] = CON c
(VARw)[j↔ v] = if w = v then BND j else VARw
(BND i)[j↔ v] = if i = j then VAR v else BND i
(APP e1 e2)[j↔ v] = APP (e1[j↔ v]) (e2[j↔ v])
(ABS e)[j↔ v] = ABS (e[j + 1↔ v])

We can easily prove that the operation is its own inverse: e[j↔ v][j↔ v] = e.
Finally, the operation newvar e gives the index of the first free variable not

occurring in e. Because it is a new variable, if we replace any dangling BND
variable with it and then swap the two, we obtain the original term:

Lemma 1. For e : expr, j : bnd, and n = newvar e; e[j/(VARn)][j↔ n] = e.

3 Higher-Order Syntax: The Untyped λ-Calculus

The first object language that we try to encode is the untyped λ-calculus. Its
higher-order definition would be:

Inductive term : Set :=
abs : (term → term)→ term
app : term → term → term

This definition is not accepted by Coq, because of the negative occurrence of
term in the type of abs. However, we can simulate it on top of the de Bruijn
framework. Define lexpr to be the type of expressions obtained by instantiating
the type of constants con by the two element type LCcon = {app, abs}. Not
all expressions in lexpr represent valid λ-terms: app can be applied only to two
expressions and abs can be applied only to an abstraction. Therefore there are
just two correct forms for a λ-term, besides variables:

APP (APP (CON app) e1) e2 and APP (CON abs) (ABS e).2

2 Do not confuse APP and ABS with app and abs: the first are constructors for
expressions, the second are constants in the syntax of the λ-calculus.



Combining de Bruijn Indices and Higher-Order Abstract Syntax in Coq 67

This is easily captured by a boolean function on expressions:

termcheck : lexpr → B

termcheck (VAR v) = true
termcheck (BND i) = true
termcheck (APP (APP (CON app) e1) e2) = (termcheck e1) and (termcheck e2)
termcheck (APP (CON abs) (ABS e)) = termcheck e
termcheck = false

In constructive systems like Coq, a boolean function is not the same as a
predicate. However, it can be turned into a predicate Tcheck by (Tcheck e) =
Is true (termcheck e), where Is true true = True and Is true false = False3.

Well-formed λ-terms are those expressions satisfying Tcheck. They can be
defined in type theory by a record type4:

Record term := mk term
{ t expr : lexpr;
t check : Tcheck t expr}

The advantage of our definition of Tcheck is that its value is always True for
well-formed expressions. This implies that the t check component of a term must
always be I, the only proof of True. This ensures that terms are completely defined
by their t expr component:

Lemma 2 (term unicity). ∀t1, t2 : term, (t expr t1) = (t expr t2) → t1 = t2.

Now our aim is to define higher-order syntax for term. It is easy to define notation
for variables and application:

Var v = mk term (VAR v) I
Bind i = mk term (BND i) I
t1 @ t2 = mk term (APP (APP (CON app) (t expr t1)) (t expr t2))�

(The � symbol stands for a proof of Tcheck that can easily be constructed from
t check t1 and t check t2. In the rest of this paper, we often omit the details of
Tcheck proofs and use this symbol instead.)

The crucial problem is the definition of a higher-order notation for abstrac-
tion. Let f : term → term; we want to define a term (Funx, f x) representing
the λ-term (λx.f x). The underlying expression of this term must be an abstrac-
tion, i.e., it must be in the form (APP (CON abs) (ABS e)). The idea is that e
should be the result of replacing the metavariable x in f x by the bound vari-
able Bind 0. However, the simple solution of applying f to Bind 0 is incorrect:
Different occurrences of the metavariable should be replaced by different de
Bruijn indices, according to the number of abstractions above them. The solu-
tion is: First apply f to a new free variable Varn, and then replace VARn with
3 The values true and false are in B which is a member of Set, while True and False

are propositions, i.e., members of Prop.
4 Here, mk term is the constructor of term; t expr and t check are field names.
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BND 0 in the underlying expression. Formally: tbind f = t expr (f (Varn))[0↔n].
The proof tbind check f of (Tcheck (tbind f)) can be constructed from the proof
t check (f (Var n)). We can then define a term that we call the body of the func-
tion f : tbody f = mk term (tbind f) (tbind check f). Finally, we can define the
higher-order notation for λ-abstraction:

Funx, f x = mk term(APP (CON abs) (ABS (tbind (λx, f x))))�

We must clarify what it means for n to be a new variable for a function
f : term → term. In Coq, the function space term → term includes meta-terms
that do not encode terms of the object language LC, often called exotic terms
(see [7]). Functions that do encode terms are those that work uniformly on all
arguments. Since we do not require uniformity, (f x) may have a different set of
free variables for each argument x. It is in general not possible to find a variable
that is new for all the results. We could have, e.g., f x = Var (size x) where
(size x) is the total number of variables and constants occurring in x. Only if f
is uniform, e.g., if f x = (Var 1) @ (x @ (Var 0)), we can determine objectively
an authentic free variable, in this case n = 2. For the general case, we simply
define n to be a free variable for (f (Bind 0)). This definition gives an authentic
free variable when f is uniform.

To prove some results, we must require that functions are uniform, so we
must define this notion formally. Intuitively, uniformity means that all values
(f x) are defined by the same expression. We say that f is an abstraction if this
happens. We already defined the body of f , (tbody f). We now state that f is
an abstraction if, for every term x, (f x) is obtained by applying the body of f
to x. We define the result of applying a function body to an argument by the
use of the operation of substitution of bound variables.

If t = mk term et ht and x = mk term ex hx,
then tapp t x = mk term (et[0/ex])�

We can now link the higher-order abstraction operator Fun to the application
of the constant abs at the de Bruijn level in an exact sense.

Lemma 3. For all e : t expr and h : Tcheck e, we have

Funx, tapp (mk term e h)x = mk term (APP (CON abs) (ABS e))�

Proof. Unfold the definitions of Fun, tbind and tapp and then use Lemma 1.

The body of the application of a term is always the term itself. We define a
function to be an abstraction if it is equal to the application of its body.

Lemma 4. ∀t : term, t = tbody (tapp t)

Definition 1. Given a function f : term → term, we define its canonical form
as funt f = tapp (tbody f) : term → term. We say that f is an abstraction,
is abst f , if ∀x, f x = funt f x.
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Some definitions and results will hold only in the case that the function is
an abstraction. For example, if we want to formalize β-reduction, we should
add such a hypothesis: is abst f → ((Funx, f x) @ t) �β f t. This assump-
tion does not appear in informal reasoning, so we would like it to be auto-
matically provable. It would be relatively easy to define a tactic to dispose of
such hypotheses mechanically. A different solution is to use always the canonical
form in place of the bare function. In the case of β-reduction we would write:
((Funx, f x)@ t) �β (funt f) t. Note that if f happens to be an abstraction, then
(funt f) t and f t are convertible at the meta-level, so the two formulations are
equivalent and in the second one we are exempted from proving the uniformity
of f . In Sect. 4 we follow Hybrid in adopting the first definition, but using the
second one would be equally easy.

Coq provides an automatic induction principle on expressions. It would be
more convenient to have an induction principle tailored to the higher-order syn-
tax of terms. The first step in this direction is an induction principle on expres-
sions satisfying Tcheck:

Theorem 1 (Induction on well-formed expressions). Let P : lexpr → Prop
be a predicate on expressions such that the following hypotheses hold:

∀v : var, P (VAR v)
∀i : bnd, P (BND i)
∀e1, e2 : lexpr, P e1 → P e2 → P (APP (APP (CON app) e1) e2)
∀e : lexpr, P e→ P (APP (CON abs) (ABS e))

Then (P e) is true for every e : lexpr such that (Tcheck e) holds.

Proof. By induction on the structure of e. The assumptions provide us with
derivations of (P e) from the inductive hypotheses that P holds for all subterms
of e satisfying Tcheck, but only if e is in one of the four allowed forms. If e is in a
different form, the result is obtained by reductio ad absurdum from the assump-
tion (Tcheck e) = False . To apply the induction hypotheses to subterms, we need
a proof that Tcheck holds for them. This is easily derivable from (Tcheck e).

This induction principle was used to prove several results about terms. A fully
higher-order induction principle can be derived from it.

Theorem 2 (Induction on terms). Let P : term → Prop be a predicate on
terms such that the following hypotheses hold:

∀v : var, P (Var v)
∀i : bnd, P (Bind i)
∀t1, t2 : term, P t1 → P t2 → P (t1 @ t2)
∀f : term → term, P (tbody (λx, f x)) → P (Funx, f x)

Then (P t) is true for every t : term5.
5 The induction hypothesis is formulated for (tbody (λx, f x)) rather than for (tbody f)

because, in Coq, extensionally equal functions are not always provably equal, so we
may need to use their η-expansion.
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Proof. Since t must be in the form t = (mk term e h) where e : lexpr and h :
(Tcheck e), we apply Theorem 1. This requires solving two problems.

First, P is a predicate on terms, while Theorem 1 requires a predicate on
expressions. We define it by: P̄ e = ∀h : (Tcheck e), P (mk term e h).

Second, we have to prove the four assumptions about P̄ of Theorem 1. The first
three are easily derived from the corresponding assumptions in the statement
of this theorem. The fourth requires a little more work. We need to prove that
∀e : lexpr, P̄ e → P̄ (APP (CON abs) (ABS e)). Let then e be an expression and
assume (P̄ e) = ∀h : (Tcheck e), P (mk term e h) holds. The conclusion of the
statement is unfolded to:

∀h : (Tcheck e), P (mk term (APP (CON abs) (ABS e))h).

By Lemma 3, the above expression has a higher-order equivalent:

(mk term (APP (CON abs) (ABS e))h) = Funx, tapp (mk term e�)x.

By the fourth assumption in the statement, P holds for this term if it holds
for (tbody (λx, tapp (mk term e�)x)), which is (tbody (tapp (mk term e�))) by
extensionality of tbody. This follows from (P (mk term e�)) by Lemma 4, and
this last proposition holds by assumption, so we are done.

In Sect. 5 we give a similar induction principle for Quantified Propositional Logic
and explain its use on an example.

As stated earlier, although inspired by Hybrid [1], our basic definitions and
operators to build the higher-order level on top of de Bruijn terms are quite
different. For example, our higher-order notation for λ-abstraction (Funx, f x)
is defined only on well-formed terms. In Hybrid, the corresponding lambda is
defined on all expressions. A predicate is defined identifying all non-well-formed
terms, which are mapped to a default expression. Hybrid also defines an induc-
tion principle similar to our Theorem 1. Here we go a step further and show that
a fully higher-order induction principle can be derived from it (Theorem 2). In
Sect. 5, we also provide a non-dependent recursion principle (Theorem 4).

4 Lazy Evaluation of Untyped λ-Terms

Using the higher-order syntax from the previous section, we give a direct defini-
tion of lazy evaluation of closed λ-terms as an inductive relation:

Inductive ⇓ : term → term → Prop :=
∀f : term → term, (Funx, f x) ⇓ (Funx, f x)
∀e1, e2, v : term, ∀f : term → term,

is abst f → e1 ⇓ (Funx, f x) → (f e2) ⇓ v → (e1 @ e2) ⇓ v

Notice that in the second rule, expressing β-reduction, substitution is obtained
simply by higher-order application: (f e2).
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By a straightforward induction on this definition, we can prove that evaluation
is a functional relation. The uniformity hypothesis (is abst f) in the application
case is important (see Definition 1); without it, the property does not hold. In
particular, the proof uses the following lemma, which holds only for functions
which satisfy the is abst predicate:

Lemma 5 (Fun injectivity). Let f1, f2 : term → term such that is abst f1 and
is abst f2; if (Funx, f1 x) = (Funx, f2 x), then ∀x : term, (f1 x) = (f2 x).

Our main theorem follows by direct structural induction on the proof of the
evaluation relation.

Theorem 3 (Unique values). Let e, v1, v2 : term; if both e⇓v1 and e⇓v2 hold,
then v1 = v2.

5 Quantified Propositional Logic

Our second example of an object language, Quantified Propositional Logic (QPL),
is also inspired by the Hybrid system [1]. The informal higher-order syntax rep-
resentation of QPL would be the following:

Inductive formula : Set :=
Not : formula → formula
Imp : formula→ formula → formula
And : formula→ formula → formula
Or : formula → formula → formula
All : (formula → formula) → formula
Ex : (formula→ formula)→ formula

As for the case of LC, this definition is not acceptable in type theory because of
the negative occurrences of formula in the types of the two quantifiers.

As in Sect. 3, we instantiate the type of de Bruijn expressions with the type
of constants QPLcon = {not, imp, and,or, all, ex}. We call oo the type of ex-
pressions built on these constants.

Similarly to the definition of termcheck and Tcheck, we define a boolean func-
tion formulacheck and a predicate Fcheck to restrict the well-formed expressions
to those in one of the following forms:

VAR v APP (APP (CON and) e1) e2
BND i APP (APP (CONor) e1) e2
APP (CONnot) e APP (CON all) (ABS e)
APP (APP (CON imp) e1) e2 APP (CON ex) (ABS e)

Then the type of formulas can be defined by:

Record formula := mk formula
{ f expr : oo;
f check : Fcheck f expr}
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The higher-order syntax of QPL is defined similarly to that of LC:

Var v = mk formula (VAR v) I
Bind i = mk formula (BND i) I
Nota = mk formula (APP not (f expr a))�
a1 Imp a2 = mk formula (APP (APP imp (f expr a1)) (f expr a2))�
a1 And a2 = mk formula (APP (APPand (f expr a1)) (f expr a2))�
a1 Or a2 = mk formula (APP (APP or (f expr a1)) (f expr a2))�
Allx, f x = mk formula (APP (CON all) (ABS (fbind (λx, f x))))�
Exx, f x = mk formula (APP (CON ex) (ABS (fbind (λx, f x))))�

where fbind is defined exactly as tbind in Sect. 3. As in that case, fbind f satisfies
Fcheck, giving us the formula fbody f , the body of the function f . As before, the
canonical form funf f is the application of the body of f (following Definition 1).

For this example, we carry the encoding of higher-order syntax further by
defining a non-dependent recursion principle.

Theorem 4. For any type B, we can define a function of type formula → B by
recursively specifying its results on the higher-order form of formulas:

Hvar : var → B
Hbind : bnd → B
Hnot : formula → B → B
Himp : formula→ formula → B → B → B
Hand : formula→ formula → B → B → B
Hor : formula→ formula → B → B → B
Hall : (formula→ formula)→ B → B
Hex : (formula → formula)→ B → B

If f = form recHvar,Hbind,Hnot,Himp,Hand,Hor,Hall,Hex : formula → B is the function so
defined, then the following reduction equations hold:

f (Var v) = Hvar v f (a1 Imp a2) = Himp a1 a2 (f a1) (f a2)
f (Bind i) = Hbind i f (a1 And a2) = Handa1 a2 (f a1) (f a2)
f (Nota) = Hnota (f a) f (a1 Or a2) = Hor a1 a2 (f a1) (f a2)
f (Allx, f x) = Hall (funf (λx.f x)) (f (fbody (λx.f x)))
f (Exx, f x) = Hex (funf (λx.f x)) (f (fbody (λx.f x)))

Proof. Let a : formula; it must be of the form (mk formula e h). The definition
is by recursion on the structure of e. The assumptions give the inductive steps
when e is in one of the allowed forms. If e is in a different form, we can give an
arbitrary output, since h : (Fcheck e) = False is absurd.

For the allowed expressions, we transform e into its equivalent higher-order
form in the same manner as was done for λ-terms in the proof of Theorem 2.
The reduction equations follow from unfolding definitions.

As illustration, we use this recursion principle to define the negation normal form
of a formula. Intuitively, (nnf a) recursively moves negations inside connectives
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and quantifiers, eliminating double negations. For example, here are four of the
several possible cases:

nnf (Not (Nota)) = a
nnf (Not (a1 Imp a2)) = (nnf a1) And (nnf (Nota2))
nnf (Allx, f x) = Allx, fapp (nnf (fbody (λx, f x)))x
nnf (Not (Allx, f x)) = Exx, fapp (nnf (Not (fbody (λx, f x))))x

Notice, in particular, the way nnf is defined on quantifiers. It would be incorrect
to try to define it as nnf (Allx, f x) = Allx, (nnf (f x)), because this would imply
that in order to define nnf on (All x, x), it must already be recursively defined
on every x, in particular on x = (Allx, f x) itself. This definition is circular and
therefore incorrect. Instead, we recursively apply nnf only to the body of f and
then quantify over the application of the result.

To define nnf formally, we need to give its result simultaneously on a formula
a and its negation (Not a). Therefore, we define an auxiliary function nnf aux :
formula → formula× formula in such a way that nnf aux a = 〈nnf a, nnf (Nota)〉.
We apply form rec with B := formula× formula:

Hvar v = 〈Var v,Not (Var v)〉
Hbind i = 〈Bind i,Not (Bind i)〉
Hnot a 〈u, v〉 = 〈v, u〉
Himp a1 a2 〈u1, v1〉 〈u2, v2〉 = 〈v1 Or u2, u1 And v2〉
Hand a1 a2 〈u1, v1〉 〈u2, v2〉 = 〈u1 And u2, v1 Or v2〉
Hor a1 a2 〈u1, v1〉 〈u2, v2〉 = 〈u1 Or u2, v1 And v2〉
Hall f 〈u, v〉 = 〈(Allx, fapp u x), (Exx, fapp v x)〉
Hex f 〈u, v〉 = 〈(Exx, fappu x), (Allx, fapp v x)〉

and then define nnf a = π1 (nnf aux a). The arguments in the form 〈u, v〉 repre-
sent the result of the recursive calls on the formula and its negation. For exam-
ple, in the definition of Hnot, u represents (nnf a) and v represents (nnf (Nota)).
In the definition of Hall, u represents (nnf (fbody (λx, f x))) and v represents
nnf (Not (fbody (λx, f x))).

We also prove an induction principle on formulas, similar to Theorem 2.

Theorem 5 (Induction on formulas). Let P : formula → Prop be a predicate
on formulas such that the following hypotheses hold:

∀v : var, P (Var v)
∀i : bnd, P (Bind i)
∀a : formula, P a→ P (Nota)
∀a1, a2 : formula, P a1 → P a2 → P (a1 Imp a2)
∀a1, a2 : formula, P a1 → P a2 → P (a1 And a2)
∀a1, a2 : formula, P a1 → P a2 → P (a1 Or a2)
∀f : formula → formula, P (fbody (λx, f x)) → P (All x, f x)
∀f : formula → formula, P (fbody (λx, f x)) → P (Exx, f x)

Then (P a) is true for every a : formula.
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As an application of this principle, we defined an inductive predicate is Nnf
stating that a formula is in negation normal form, i.e., negation can occur only
on variables, and proved that the result of nnf is always in normal form.

6 Related Work

There is extensive literature on approaches to representing object languages
with higher-order syntax and reasoning about them within the same framework.
Pollack’s notes on the problem of reasoning about binding [22] give a high-level
summary of many of them. Some of them were used to solve the POPLmark
challenge problem set [2]. We mention a few here.

Several approaches have used Coq. These include the use of weak higher-order
abstract syntax [7,14]. In weak higher-order syntax, the problem of negative
occurrences in syntax encodings is handled by replacing them by a new type.
For example, the abs constructor for the untyped λ-terms introduced in Sect. 1
has type (var → term)→ term, where var is a type of variables. Some additional
operations are needed to encode and reason about this new type, which at times
is inconvenient. Miculan’s approach [14,15] introduces a “theory of contexts”
to handle this representation of variables, with extensive use of axioms whose
soundness must be justified independently.

McDowell and Miller [12] introduce a new logic specifically designed for rea-
soning with higher-order syntax. Their logic is intuitionistic and higher-order
with support for natural number induction and definitions. In general, higher-
order syntax mainly addresses encodings of term-level abstraction. More recent
work by Miller and Tiu [16] includes a new quantifier for this style of logic, which
provides an elegant way to handle abstractions at the level of proofs. Another
approach uses multi-level encodings [8,17]. This approach also aims to capture
more than term-level abstraction, and is inspired by the work of McDowell and
Miller but uses Coq and Isabelle, respectively.

Gabbay and Pitts [9] define a variant of classical set theory that includes
primitives for variable renaming and variable freshness, and a new “freshness
quantifier.” Using this set theory, it is possible to prove properties by structural
induction and also to define functions by recursion over syntax.

The Twelf system [21], which implements the Logical Framework (LF) has also
been used as a framework for reasoning using higher-order syntax. In particular
Schürmann [23] has developed a logic which extends LF with support for meta-
reasoning about object logics expressed in LF. The design of the component
for reasoning by induction does not include induction principles for higher-order
encodings. Instead, it is based on a realizability interpretation of proof terms.
The Twelf implementation of this approach includes powerful automated support
for inductive proofs.

Schürmann, Despeyroux, and Pfenning [24] develop a modal metatheory that
allows the formalization of higher-order abstract syntax with a primitive recursion
principle. They introduce a modal operator �. Intuitively, for every type A there
is a type �A of closed objects of type A. In addition to the regular function type
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A → B, there is a more restricted type A ⇒ B ≡ �A → B of uniform functions.
Functions used as arguments for higher-order constructors are of this kind. This al-
lows them to define a recursionprinciple that avoids the usual circularityproblems.
The system has not yet been extended to a framework with dependent types.

Schürmann et. al. have also worked on designing a new calculus for defining
recursive functions directly on higher-order syntax [25]. Built-in primitives are
provided for the reduction equations for the higher-order case, in contrast to
our approach where we define the recursion principle on top of the base level de
Bruijn encoding, and prove the reduction equations as lemmas.

Nogin et. al. [19] build a theory in MetaPRL that includes both a higher-order
syntax and a de Bruijn representation of terms, with a translation between the
two. Induction principles are defined at the de Bruijn level. Their basic library is
more extensive than ours; it provides syntactic infrastructure for reflective rea-
soning and variable-length bindings. Instantiating the basic theory and proving
properties about specific object logics is left as future work.

Solutions to the POPLmark challenge also include first-order approaches which
adopt de Bruijn representations, such as the one by Stump [26] that uses named
bound variables and indices for free variables, and solves part 1a of POPLmark.
Another earlier first-order approach by Melham avoids de Bruijn syntax alto-
gether and encodes abstractions using names paired with expressions [13]. Work-
ing at this level requires dealing with low-level details about α-conversion, free
and bound variables, substitution, etc. Gordon and Melham [11] generalize this
name-carrying syntax approach and develop a general theory of untyped λ-terms
up to α-conversion, including induction and recursion principles. They illustrate
that their theory can be used as a meta-language for representing object lan-
guages in such a way that the user is free from concerns of α-conversion. Nor-
rish [20] improves the recursion principles, allowing greater flexibility in defining
recursive functions on this syntax. Gordon [10] was able to take a step further
in improving the name-carrying syntax approach by defining this kind of syntax
in terms of an underlying de Bruijn notation. Gordon’s work was the starting
point for Hybrid [1], which kept the underlying de Bruijn notation, but used a
higher-order representation at the higher-level.

7 Conclusion

We have presented a new method for reasoning in Coq about object languages
represented using higher-order syntax. We have shown how to structure proof
development so that reasoning about object languages takes place at the level of
higher-order syntax, even though the underlying syntax uses de Bruijn notation.
An important advantage of our approach is the ability to define induction and
recursion principles directly on the higher-order syntax representation of terms.
Our examples illustrate the use of this framework for encoding object languages
and their properties in a manner that allows direct and simple reasoning.

Future work includes considering a wider variety of object languages and com-
pleting more extensive proofs. It also includes adapting the preliminary ideas
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from Hybrid [1] to show that our representation of the λ-calculus is an adequate
one. It is unlikely that these results will carry over directly to our constructive
setting, so further work will be required. We also plan to generalize the method-
ology to define object languages with binding and prove their higher-order recur-
sion and induction principles: the user should be able to define a new language
and reason about it using only higher-order syntax, without having to look at all
at the lower de Bruijn level. In a forthcoming article, we develop a higher-order
universal algebra in which the user can define a language by giving typing rules
for the constants. Higher-order terms and associated induction and recursion
principles are then automatically derived.
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Abstract. We give a decision procedure for the satisfiability of finite
sets of ground equations and disequations in the constructor theory : the
terms used may contain both uninterpreted and constructor function
symbols. Constructor function symbols are by definition injective and
terms built with distinct constructors are themselves distinct. This cor-
responds to properties of (co-)inductive type constructors in inductive
type theory. We do this in a framework where function symbols can
be partially applied and equations between functions are allowed. We
describe our algorithm as an extension of congruence-closure and give
correctness, completeness and termination arguments. We then proceed
to discuss its limits and extension possibilities by describing its imple-
mentation in the Coq proof assistant.

Among problems in equational reasoning, a crucial one is the word problem: does
a set of equations entail another one? In 1947, Post and Markov [15,7] showed
that this is undecidable. What is decidable is whether an equation between
closed terms is the consequence of a finite conjunction of equations between
closed terms. This problem is called congruence-closure and its decidability was
established by Nelson and Oppen [11], and Downey, Sethi, and Tarjan [6]. The
algorithms that are described have a quasi-linear complexity. Nelson and Oppen,
and also Shostak, described methods to extend the scope of this closed case with
some specific equational theories: lists, tuples . . .

In general, semi-decision procedures over equations use syntactic methods (re-
placement, rewriting . . . ). Hence the algorithm used for congruence-closure is an
exception since its principle is to directly build a set of term equivalence classes.
The link between congruence-closure and syntactic methods was established by
the concept of abstract congruence closure [2,1].

Because of its simplicity and efficiency, this algorithm makes a good candidate
for an implementation of a Coq tactic. Moreover, we wish to extend the decision
procedure in order to cover specific properties of constructors for inductive and
co-inductive types in Coq:

– Injectivity : C x1 . . . xn = C y1 . . . yn ⇒ x1 = y1 ∧ · · · ∧ xn = yn

– Discrimination : C x1 . . . xn �= Dy1 . . . yp
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The Coq proof assistant already contained, on the one hand, the injection and
discriminate tactics, that deal with immediate consequences of an equation
between constructor-based terms, and on the other hand the autorewrite tactic
that allows us to normalize a term with respect to a set of oriented equations.
Those tactics cannot cooperate with each other, which we could do by designing
a tactic for congruence-closure with the constructor theory.

In 2001, I [4] proved in Coq the correctness of the congruence-closure al-
gorithm and designed a tagging system for the data structure allowing us to
extract proofs of the equations. That method was implemented in the Coq sys-
tem in 2002 as a tactic named congruence. The proof production method used
there is similar to the one discovered and studied in detail by Nieuwenhuis and
Oliveras [12].

In 2003, I implemented an extended version of the congruence tactic that in-
cluded the constructor theory. No theoretical ground was given to support that
extension, so this is the purpose of this article. Our aim is thus to describe a de-
cision procedure that can decide the combination of the theories of constructors
and uninterpreted symbols, by extending the congruence-closure algorithm. This
is done by proving that the decision problem can be reduced to a finite set of
terms. Moreover, the higher-order logic of the Coq system advocates for solving
the problem for simply typed terms, allowing equations in functional types.

In this article, we will only manipulate closed terms (without variables), that
we will abusively call terms for clarity purposes. We will also talk about term
algebra instead of closed term algebra.

1 The Congruence Closure Problem

The language for the theory of equality uses a distinguished binary relation
symbol ≈, which is supposed to be well-sorted (i.e. ≈-related terms have the
same sort). Hence this polymorphic relation symbol is a notation for a set of
monomorphic predicates (≈s)s∈S where S is the set of sorts.

In order to define the congruence-closure problem, we will first explain what
a congruence is.

Definition 1 (Congruence). A well-sorted relation ≈ over a first-order term
algebra is called a congruence if, and only if, the following conditions hold :

1. ≈ is an equivalence relation, i.e. satisfies these three rules :

t ≈ t
refl

s ≈ t
t ≈ s

sym

s ≈ u u ≈ t
s ≈ t

trans

2. Any n-ary function symbol f in the signature is a ≈-morphism, i.e. it satis-
fies the following congruence rule :

s1 ≈ t1 . . . sn ≈ tn
f(s1, . . . , sn) ≈ f(t1, . . . , tn)

congrf



80 P. Corbineau

An interesting property is that congruence relations are stable under arbitrary
intersection, thus for any well-sorted binary relation R over a term algebra, there
is a unique minimal congruence ≈R such that R ⊆≈R: ≈R is the intersection of
all congruences coarser than R (there is at least one, which relates all terms of
the same sort).

The congruence-closure problem can be stated in two equivalent ways:

– Is the finite set of propositions {s1 ≈ t1, . . . , sn ≈ tn, u �≈ v} satisfiable in
the theory of equality ?

– Is there a congruence that satisfies both s1 ≈ t1, . . . , sn ≈ tn and u �≈ v ?

The problem can be generalized to any number of inequalities u �≈ v, the issue
being to determine if one among them contradicts the equations s ≈ t.

The equivalence between the two questions relies on two arguments: first, if
the set of propositions is satisfiable, by an interpretation I, then the ≈ relation
defined by s ≈ t ⇔ I(s) = I(t) is a congruence such that si ≈ ti for any i and
u �≈ v. Second, if we have a congruence ≈ such that si ≈ ti for any i and u �≈ v,
then we can build an interpretation mapping any term to its ≈ equivalence class.
The interpretation is well-defined since ≈ satisfies the congruence rule, and it
satisfies the equations and the inequality.

The key fact in the proof of congruence-closure decidability is : if T is the
set of terms and subterms appearing in the problem instance, then any proof
derivation of the equation u ≈ v from the axioms using the rules refl, sym,
trans and congr, can be turned into a proof where only terms in T are used.
From the dual point of view, any interpretation satisfying locally the set of
axioms can be extended to the set of all terms.

Nelson and Oppen [10,11] and Downey, Sethi, Tarjan [6], start from this prop-
erty to build algorithms representing equivalence classes by a forest of trees
(union-find structure), in order to obtain an optimal complexity.

1.1 Simply Typed Term Algebra

Here, we wish to deal with simply typed terms, so we will use an encoding
corresponding to curryfied terms. This representation allows to represent partial
function application. This is done by restricting our first-order signatures to a
small subset of simply typed signatures.

Definition 2 (Simply typed term). A simply typed term algebra is defined
by giving a signature (S, Σ) such that:

– S =
⋃

n∈N
Sn, where Sn+1 = Sn ∪ {s→s′|(s, s′) ∈ Sn × Sn} and S0 is a set

of base sorts α1, . . . , αn. The sorts in S \ S0 are called functional sorts.
– Σ contains only constants and a set of binary function symbols @s,s′ called

application symbols which take one argument s→s′, the second in s and
yields a result in s′.
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In practice, only a finite number of the sorts and application symbols will be
used since only a finite number of sorts will occur in a given problem. As
an abuse of notation, we will often omit the indices of application symbols,
and we will shorten @(@(f, x), y) as (f x y). Any first-order signature can be
turned into a simply typed signature by applying a curryfication mapping as
follows:

Definition 3 (Curryfied signature). Let (S, Σ) be a first-order signature.
The corresponding currified signature is (Ŝ, Σ̂), where Ŝ is the set of simple sorts
generated by using S as the set of base sorts, and Σ̂ contains, for each function
symbol f : (s1, . . . , sn)→s ∈ Σ, a constant symbol f̂ : s1→(. . .→(sn→s)), along
with the n application symbols required to apply f̂ : @s1,s2→...→s, . . . ,@sn,s.

From now on, we suppose the symbol → is right-associative and will omit un-
necessary brackets. Every term t with sort s in the first-order term algebra Σ
can be mapped to a curryfied term t̂ with the same sort in the term algebra
generated by Σ̂, by following the next example :

f : (s1, s2, s3)→s

�������������

�� �������������

a : s1 b : s2 c : s3

=⇒

@s3,s

����
��

��

���
��

��
��

@s2,s3→s

����
��

��

���
��

��
��

c

@s1,s2→s3→s

����
��
��

���
��

��
��

b

f a

The reverse statement, however, is only true for terms with a base sort — note
that many simply typed signatures are not curryfied signature, e.g. if they have
symbols with sort (N→N)→N — and this gives us a bijection between first-order
terms and curryfied terms.

Example 1. The first-order signature for Peano arithmetic has S0 = {N} as sorts
and the following symbols:

{0 : ()→N ;
S : (N)→N ;
+ : (N ,N)→N ;
× : (N ,N)→N}

The sorts used in the corresponding curryfied signature are

S = {N ; N→N ; N→N→N }
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and the set of curryfied symbols is :

{ 0̂ :N ;
Ŝ :N→N ;
+̂ :N→N→N ;
×̂ :N→N→N ;

@N ,N : (N→N ,N)→N ;
@N ,N→N : (N→N→N ,N)→N→N}

Please note that we can express functional equations in the curryfied signa-
ture, such as: @(+̂,@(Ŝ, 0̂)) ≈ Ŝ.

We might think that allowing to express more intermediate properties (higher-
order equations) in the curryfied framework would allow us to prove more prop-
erties in the theory of equality, but this is not the case:

Lemma 1 (Conservativity of curryfication). The curryfication is conser-
vative with respect to congruence-closure, i.e. any derivation of û ≈ v̂ from
ŝ1 ≈ t̂1, . . . , ŝn ≈ t̂n in the curryfied system can be turned into a derivation in
the first-order system. The converse also holds.

Proof. By explicit tree transformation, only termination is tricky. Please note
that by construction, curryfied terms are fully applied.

2 Extension to Constructor Theory

We now wish to extend the historical algorithm in order to deal with datatype
constructors. Those constructors are injective function symbols, similarly to tu-
ples constructors. They also have a discrimination property: two different con-
structors in the same sort produce distinct objects. These properties are built
into the system Coq’s type theory: they hold for constructors of both inductive
and co-inductive type.

We do not claim here that those two properties are sufficient to characterize
those constructors. For example, inductive type constructors also have acyclicity
properties in the style of Peano’s axiom about the successor function S, which
satisfies ∀x, x �≈ S x. These acyclicity properties have been studied in [14].

Other kinds of deductions can be based on the assumption that datatypes
are totally generated by their constructors: considering a finite type such as the
booleans, with two constant constructors T and F , we can deduce that the set of
propositions {g T ≈ a, g F ≈ a, g c �≈ a} in unsatisfiable. This kind of property
is not included in our notion of constructor theory, which would be closer to
Objective Caml [13] sum types when taking in account the possibility of raising
exceptions.

Definition 4 (Signature with constructors). A signature with constructors
is a simply typed signature with some distinguished constants called constructors.
A constructor with shape Cα

i : τ1→(. . .→(τn→α)) where alpha is a base sort is
called a n-ary constructor of the sort α.
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By convention, we will now use lowercase letters for regular function symbols and
uppercase letters for constructor symbols. The notation Cα

i will refer to some
constructor of the base sort α, with the convention that identical constructors
will always have identical indices. We now have to explain a congruence satisfying
the constructor theory.

Definition 5 (Constructor theory). A congruence ≈ satisfies the constructor
theory over the signature Σ if, and only if, the following conditions hold:
– ≈ satisfies all instances of the following injectivity rule :

Cα
i s1 . . . sn ≈ Cα

i t1 . . . tn

si ≈ ti
inji if

{
Cα

i s1 . . . sn : α
Cα

i t1 . . . tn : α

– For any pair of terms C s1 . . . sn and D t1 . . . tp in sort α, such that C and
D are distinct constructors, C s1 . . . sn �≈ D t1 . . . tp.

Since we allow equations between terms in any functional sort, we need to give
a semantic notion of constructor-generated term relatively to a congruence ≈.
We will call such terms inductive term.

Definition 6 (Inductive term). A term t is inductive with respect to ≈ if,
and only if, t ≈ C for some constructor C or t ≈ (fx) for some term x and
inductive term f .

We can immediately remark that if s is inductive w.r.t. ≈ and s ≈ t, then t is
also inductive. This allows us to use the notion of inductive equivalence class,
which contains (only) inductive terms.

The problem we now wish to solve is the satisfiability of a finite set E of
ground equations and inequalities of terms inside a constructor theory, which is
equivalent to finding a congruence satisfying both the constructor theory and E.

Similarly to basic congruence-closure, we can see that congruences satisfying
the injectivity of constructors are closed under arbitrary intersection. We can
conclude that there exists a smallest congruence satisfying the equations of a
given problem and the injectivity rule. If there is a congruence satisfying this
problem in the constructor theory, then this smallest congruence also does since
it satisfies less inequalities.

In order to use those facts to design our algorithm, we must check that we
are able to reduce the decision problem to a finite set of terms, as is done for the
congruence-closure problems. Unfortunately, the set of terms and subterms from
the problem is not sufficient to decide our problem, as shown by the following
example.

Example 2. Let α, β be two base sorts, f ,C two symbols in sort β→α, D in sort
α, b in sort β, among which C and D are (distinct) constructors of the sort α.
Then {C ≈ f ; f b ≈ D} is unsatisfiable, since it allows to prove that C b ≈ D,
but the proof uses the term C b which does not appear in the initial problem.

C ≈ f b ≈ b refl

C b ≈ f b congr@
f b ≈ D

C b ≈ D trans
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In order to cope with this, we define application-closed sets of terms. As we deal
with closed terms, a sort can be empty in a signature Σ. This is the case if no
closed term can be built from symbols in Σ, e.g. if Σ = {f : β→β} then β is an
empty sort. The following definition takes this remark into account.

Definition 7 (Application-closed set). A set T of simply typed terms with
constructors is application-closed with respect to the congruence ≈ if for each
inductive equivalence class C in T/≈ with a functional sort τ→τ ′, if the sort τ
is non-empty then there exist terms t ∈ C and u ∈ T such that (tu) ∈ T .

Now, we can define a local version of the constructor theory which uses a sec-
ondary relation �, in order to keep the term set considered as small as possible.
The � is just an asymmetric and external version of ≈ that allows its left-hand
side to be a term with a constructor in the head position that is not mentioned in
the problem. It is actually this local theory that will be decided by the algorithm.

Definition 8 (Local constructor theory). Let T be a subterm-closed set of
terms and ≈ a well-sorted relation on T . ≈ is said to be a local congruence on
T if it is an equivalence relation on T satisfying every instance of the congr@

rule where terms occuring are in T .
Furthermore, a local congruence ≈ satisfies locally the constructor theory if,

and only if, there exists a relation � satisfying the following rules :

Cα
i ≈ f

Cα
i � f

promotion

Cα
i t1 . . . tk � u u tk+1 ≈ v
Cα

i t1 . . . tk tk+1 � v
compose

Cα
i s1 . . . sn � u Cα

i t1 . . . tn � u

si ≈ ti
injection

and such that there is no term t ∈ T such that Cα
i s1 . . . sn � t and

Cα
j t1 . . . tp � t, where i �= j and n and p are the respective arities of Cα

i

and Cα
j .

The theorem for completeness of the original congruence-closure algorithm states
that any local congruence is the restriction of a congruence on all terms. Now
we have this similar local notion for constructor theory, that we use to formulate
the theorem that restricts our decision problem to a finite set of terms.

Theorem 1 (Finite set restriction). Let E be a finite set of equations and
inequalities and T be a subterm-closed set of terms containing all the terms
occuring in E.

Let ≈ be a local congruence on T satisfying E and satisfying locally the theory
of constructors, such that T is application-closed for ≈.

Then there exists a congruence ≈∗ over the whole term algebra, which, on the
one hand, satisfies E and the theory of constructors, and on the other hand, is
a conservative extension of ≈, i.e. for all terms u, v in T , u ≈∗ v ⇔ u ≈ v.
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Proof. In order to prove this, we explicitly construct a binary tree model for all
terms and define the relation≈∗ as relating terms having the same interpretation
in the model. We build this model so that ≈ is the restriction of ≈∗ to T .

Let S be the set of binary trees with leaves labelled by the set T/≈∪{eτ}τinS
where T/≈ is the set of equivalence classes modulo ≈ and and eτ is an arbitrary
object in sort τ , which will be the representation for unconstrained terms.

We also restrict S to contain only well-sorted trees, where every leaf and node
has a additional sort label, and for any node with sort τ , there is a sort τ ′ such
that the left son of the tree has sort τ ′→τ and the right son has sort τ ′. We also
require that eτ is labelled by the sort τ and that any equivalence class is labelled
by the sort of the terms it contains. Let Sτ be the subset of trees whose root has
sort τ .

The notation (s, t) stands for the well-sorted tree with s and t as (well-sorted)
subtrees. A tree is said to be inductive if it is an equivalence class containing an
inductive term (for ≈), or if it is not just a leaf.

We can then define the Appτ,τ ′ function from Sτ→τ ′ × Sτ to Sτ ′ as follows:
suppose we have a ∈ Sτ→τ ′ and b ∈ Sτ .

– if a = eτ→τ ′ , then Appτ,τ ′(eτ→τ ′ , b) = eτ ′

– if a is not a leaf then Appτ,τ ′(a, b) = (a, b)
– if a ∈ T/≈ then :

• if b ∈ T/≈ and there is ta ∈ a and tb ∈ b such that (ta tb) ∈ T , then
let c be the equivalence class of (ta tb), we put Appτ,τ ′(a, b) = c. This
definition is not ambiguous since ≈ is a congruence.

• otherwise
∗ if a is inductive, then Appτ,τ ′(a, b) = (a, b)
∗ else Appτ,τ ′(a, b) = eτ ′ .

Our interpretation domain is the set S. The interpretation of constants and
constructors is their equivalence class in T/≈: I(f) = f̄ , and we set I(@τ,τ ′) =
Appτ,τ ′. Then ≈∗ is defined by s ≈∗ t⇔ I(s) = I(t).

Now first, ≈∗ is a congruence relation since it is by construction an equivalence
relation, it is well-sorted since the Sτ sets are disjoint, and since
I(@(f, x)) = App(I(f), I(x)), ≈ satisfies the congruence rule.

Again by construction, terms in T are interpreted into their equivalence class
for ≈, so ≈∗ is conservative with respect to ≈, and satisfies E.

Then we show that ≈∗ satisfies the constructor theory, which is a bit technical,
and too long to be detailed here, see [5], Theorem 2.13, pages 42–45 for the full
proof. This concludes the proof. ��
Now that we have reduced our problem to a more manageable one, we will give
a description of the algorithm itself.

3 The Decision Algorithm

3.1 Description

We now give an algorithm to decide problems with ground equations and inequal-
ities and a constructor theory. This algorithm is very similar to the one in [6],
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except for the part concerning constructors. This algorithm is given by a set of
transition rules (read from top to bottom) between quintuples (T,E,M,U, S)
made of :
T : Set of Terms not up to date in the signature table and for marking
E: Set of unprocessed Equations (≈-constraints)
M: Set of unprocessed Marks (�-constraints)
U : Union-find structure (map from terms to equivalence classes)
S : Signature table

An equivalence class is a quadruple (r, L,R,C) made of:

r: the representative term for the class
L: Set of Left fathers of the class
R: Set of Right fathers of the class
C: Set of Constructor marks of the equivalence class, i.e. set of terms

�-related to terms in the class.

We write U(u) = (ū, L(u), R(u), C(u)) to simplify notation. A left (resp. right)
father of a class c is a term whose left (resp. right) subterm is in the class c.

The union-find structure is best described as a forest of trees in which all
nodes contain a term and point to their father node, and the roots contain an
additional class quadruple. The class searching operation is done by following the
path from a node to the root. The union(U, s, t) operation merges two equivalence
classes by making s̄ an immediate child of t̄, thus making t̄ the representative
term for all terms in the former class of s, the sets of left and right fathers are
then merged, but t̄ keeps its original set C.

The signature table acts as a cache. It maps a pair of representative terms
(ū, v̄) to a term whose left (resp. right) immediate subterms are in the class of u
(resp. v), if such a term is registered, and otherwise it yields ⊥. The suppr(S,R)
operation removes bindings to terms in R from the table.

We start with a set A of equations and disequalities. The set A↓ is the set of
terms and subterms occuring in A. The set A+ (resp. A−) is the set of pairs of
terms appearing in an equation (resp. inequality) in A.

The transition rules for the algorithm are given in Figure 1. The Init rule
builds the initial structure, where all terms are apart, all equations and all con-
structor marks are pending in E and M .

Three issues are possible for the algorithm: the Refute rule detects if an
inequality inA has been proved false, it answers that the problem is unsatisfiable.
The Conflict rule concludes the computation if two terms made of distinct fully
applied constructors are proven equal. If there is no constraint left to propagate
and none of the above rules apply, then the problem is declared satisfiable using
the Ok rule.

The Merge and no-Merge rules are used to deal with pending equality
constraints, the no-Merge rule avoids unnecessary operations. The Merge

rule has to expunge all outdated information from the tables: remove fathers of
merged terms from the signature table and put them in T to re-process them
later.



Deciding Equality in the Constructor Theory 87

initialization rule

Sat(A)?

T0, E, M, U, ∅
Init

8>>><
>>>:

T0 = {@(u, v) ∈ A↓}
E = A+

M = {(Cα
i , Cα

i )|Cα
i ∈ A↓}

U = u �→ (u, {@(u, v) ∈ A↓}, {@(v, u) ∈ A↓}, ∅)

conclusion rules

∅, ∅, ∅, U, S

SAT
Ok

n
∀(u, v) ∈ A−, ū �= v̄

T, E, M, U, S

NOSAT
Refute

n
∃(u, v) ∈ A−, ū = v̄

T, E, M ∪ {(t, Cα
i u)}, U, S

NOSAT
Conflict

8><
>:

Cα
i u : α (fully applied)

Cα
j v ∈ C(t)

i �= j

deduction rules

T, E ∪ {(s, t)}, M, U, S

T ∪ L(s) ∪R(s), E, M ∪ {(t, c)|c ∈ C(s)},
union(U, s, t), suppr(S, L(s) ∪R(s))

Merge

n
s̄ �= t̄

T, E ∪ {(s, t)}, M, U, S

T, E, M, U, S
no-Merge

n
s̄ = t̄

T, E, M ∪ {(t, Cα
i u)}, U, S

T, E ∪ {(u, v)}, M, U, S
Match

(
Cα

i u : α (fully applied)

Cα
i v ∈ C(t)

T, E, M ∪ {(t, Cα
i u)}, U, S

T ∪ L(t), E, M, U{C(t) ← C(t) ∪ Cα
i u}, S

Mark

8><
>:

Cα
i u : τ→τ ′ (partially applied)

or

C(t) = ∅

T ∪ {t}, E, M, U, S

T, E ∪ {(t, s)}, M ∪ {(t, F v)|F ∈ C}, U, S
Update1

8><
>:

t = @(u, v)

S(ū, v̄) = s

C(u) = C

T ∪ {t}, E, M, U, S

T, E, M ∪ {(t, F v)|F ∈ C}, U, S ∪ {(ū, v̄) �→ t}
Update2

8><
>:

t = @(u, v)

S(ū, v̄) = ⊥
C(u) = C

Fig. 1. Rules of our algorithm for the problem A

The Match and Mark rules allow to mark an equivalence class with the
inductive terms that belong to it. The Match rule propagates the consequences
of the injectivity rule to E. The Update1/2 rules are used to update the signature
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SAT (f a ≈ a, f(f a) �≈ a)?

{f a, f(f a)}, {(f a, a)}, ∅, ∅, ∅
Init

{f a, f(f a)}, ∅, ∅, {f a �→ a}, ∅
Merge

{f(f a)}, ∅, ∅, {f a �→ a}, {(f, a) �→ f a}
Update2

∅, {(f(f a), f a)}, ∅, {f a �→ a}, {(f, a) �→ f a}
Update1 S(f̄ , f a) = f a

∅, ∅, ∅,
j

f a �→ a
f(f a) �→ a

ff
, {(f, a) �→ f a}

Merge

NOSAT
Refute f(f a) = a = ā

Fig. 2. Satisfiability computation for {f a ≈ a, f(f a) �≈ a}

table, propagate the consequences of the congruence rule to E, and propagate
marks from subterms to their left fathers.

Example 3. This first example is a very simple one used to illustrate how the
signature table works. In the U set, the notation s "→ t stands for s̄ = t, and by
default ū = u. Similarly, C(t) = ∅ for all representative terms not mentioned.

Consider the signature S0 = {s}, Σ = {a : s, f : s→s} and the following
problem : {f a ≈ a, f(f a) �≈ a}. A possible execution of the algorithm is given
in Figure 2.

Example 4. In order to illustrate the use of marks for constructors on equivalence
classes, we now give an example with both injection and discrimination. Consider
the following signature :

S0 = {bool, box},
Σ = {g : bool→box, B : bool→box, T : bool, F : bool}

The satisfiability problem {B ≈ g, g T ≈ g F} is solved by our procedure in
Figure 3.

3.2 Properties

Theorem 2 (Termination). Any successive application of the rules of the al-
gorithm reaches SAT or NOSAT in a finite number of steps.

Proof. By checking the rules, we remark that there is a rule that we can apply in
every situation and we can check that the tuples decrease for the lexicographic
ordering made of:

1. the number of equivalence classes in the Union-Find structure.
2. the union T ∪M , ordered by the multiset extension of the size of term sorts,

considering that identical sorts are bigger in T than in M .
3. the size of E
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SAT (B ≈ g, g T ≈ g F )?

{g T, g F}, {(B, g), (g T, g F )}, {(T, T ), (F, F ), (B, B)}, ∅, ∅
Init

{g T, g F}, {(g T, g F )}, {(T, T ), (F, F ), (B, B)}, {B �→ g}, ∅
Merge

{g T, g F}, ∅, {(T, T ), (F, F ), (B, B)},
j

g T �→ g F
B �→ g

ff
, ∅

Merge

{g T, g F}, ∅, {(F, F ), (B, B)},
j

g T �→ g F C(T ) = {T}
B �→ g

ff
, ∅

Mark

{g T, g F}, ∅, {(B, B)},
j

g T �→ g F C(T ) = {T}
B �→ g C(F ) = {F}

ff
, ∅

Mark

{g T, g F}, ∅, ∅,

8<
:

g T �→ g F C(T ) = {T}
B �→ g C(F ) = {F}

C(g) = {B}

9=
; , ∅

Mark

{g F}, ∅, {(g T, B T )},

8<
:

g T �→ g F C(T ) = {T}
B �→ g C(F ) = {F}

C(g) = {B}

9=
; , ∅

Update2

{g F}, ∅, ∅,

8<
:

g T �→ g F C(T ) = {T}
B �→ g C(F ) = {F}

C(g F ) = {B T} C(g) = {B}

9=
; , ∅

Mark

∅, ∅, {(g F, B F )},

8<
:

g T �→ g F C(T ) = {T}
B �→ g C(F ) = {F}

C(g F ) = {B T} C(g) = {B}

9=
; , ∅

Update2

∅, {(F, T )}, ∅,

8<
:

g T �→ g F C(T ) = {T}
B �→ g C(F ) = {F}

C(g F ) = {B T} C(g) = {B}

9=
; , ∅

Match B F ≈ B T

{g F}, ∅, {(F, F )},

8<
:

g T �→ g F C(T ) = {T}
B �→ g C(g) = {B}
F �→ T C(g F ) = {B T}

9=
; , ∅

Merge

NOSAT
Conflict F ≈ T

Fig. 3. Computation for {B ≈ g, g T ≈ g F}

Theorem 3 (Correctness). The algorithm is correct, i.e. if it answersNOSAT
then the problem is unsatisfiable.

Proof. The proof is made by showing that the rules preserve key invariants and
that the side-conditions for final transitions ensure correctness. The detailed
proof can be found in [5], section 2.3.4, p. 51.

Completeness is proven in two steps: first, we prove that if the algorithm reaches
SAT then the equivalence relation induced by the union-find structures, to-
gether with the marking relation, gives a congruence that satisfies locally the
constructor theory.
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Lemma 2 (Local completeness). If the algorithm reaches SAT , then the
relation ≈ defined by u ≈ v ⇔ ū = v̄ is a local congruence in A↓ which satisfies
locally the constructor theory.

To establish global completeness, we need a hypothesis: the set A↓ has to be
application-closed for ≈. This is not true in general. However the algorithm can
be adapted to detect if this occurs, and we can try to add terms to our term set
in order to have the terms we want fully applied. The incompleteness detection
is done in the following way :

– Initially, every class has UNKNOWN status.
– When a class with UNKNOWN status is marked with a partially-applied

constructor, it goes to INCOMPLETE status.
– When an Update rule is applied to a term (f x) and the class of f has

INCOMPLETE status, it goes to COMPLETE status.
– When classes are merged, they get the most advanced status of the two

merged classes, considering COMPLETE most advanced, INCOMPLETE
less advanced and UNKNOWN least advanced.

That way, when the algorithm reaches SAT , the final set is application-closed
if, and only if, no class is left with INCOMPLETE status. This said, global
completeness can be stated as follows:

Theorem 4 (Completeness). Let A a non-empty finite set of axioms, if the
algorithm reaches SAT from A and the final set is application-closed for ≈, then
A is satisfiable.

Proof. By using the previous lemma together with Theorem 1.

If all sorts are inhabited, we can add to the final state of the algorithm the par-
tially applied inductive terms, applied to arbitrary terms in the correct sort. Once
this is done, a re-run of the algorithm from this state will yield an application-
closed set of terms. Thus there is no need to carry on this process more than
once. Nevertheless, the first run is necessary to determine how to complete the
set of terms.

4 The Congruence Tactic

A previous version of the algorithm has been implemented in the Coq proof
assistant (version 8.0). This version is incomplete but the upcoming version 8.1
will allow you to benefit from a corrected version. The congruence tactic extracts
equations and inequalities from the context and adds the negated conclusion if
it is an equality. Otherwise, we add to the problem the inequalities H �≈ C, H
which is a hypotheses which is not an equation and C the conclusion. We also
add H �≈ H ′ for every pair of hypotheses h : H and h′ : ¬H ′ where neither H
nor H ′ are equalities.
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Then the algorithm is executed with a fixed strategy. If the result is SAT it
fails to prove the goal. Otherwise it is instrumented to produce a constructive
proof of the equation that was proven to dissatisfy the problem. The method
used is similar to that explained in [4] and [9] and more recently in [12].

Moreover, the congruence tactic detects if the final set of terms is application-
closed and if not, it can complete it by adding extra terms with meaningless
constants, so that if the completed problem is unsatisfiable, the procedure can
ask the user for a replacement to these constants. We exemplify this with the
type of triples in the Coq system (type nat) :

Inductive Cube:Set :=
| Triple: nat -> nat -> nat -> Cube.

We now wish to prove :

Theorem incomplete : ∀ a b c d : nat,
Triple a = Triple b → Triple d c = Triple d b → a = c.

After having introduced the hypotheses by using the intros command, we are
able to extract the following set of equations :

{Triplea ≈ Tripleb, Tripled c ≈ Tripled b, a �≈ c}

The algorithm finds out that the set of equations is unsatisfiable, but the set of
terms had to be completed to become application-closed, so it fails to produce
the proof and explains it to the user :

Goal is solvable by congruence but some arguments are missing.
Try "congruence with (Triple a ?1 ?2) (Triple d c ?3)",
replacing metavariables by arbitrary terms.

The user may then give manually the additional terms to solve the goal :

congruence with (Triple a 0 0) (Triple d c 0).

5 Conclusion

The congruence tactic is a fast tactic which solves a precise problem, so it can be
used as a goal filter, to eliminate trivial subgoals. This is very useful when doing
multiple nested case-analysis of which most cases are failure cases for example
when doing the proofs for the reflexion schemes used in [3].

The work lacks both a proper complexity analysis and some benchmarks, but
since it is quite specific it is difficult to compare with other tools.

An obvious improvement would be to add λ-abstraction to the term algebra.
This would require us to keep track of all possible β-reductions. Then, it would
be interesting to see what can be done with dependently-typed terms, since the
conclusion of the congr@ rule is ill-typed in that case. An exploration of the
relation between heterogeneous equality [8] and standard homogeneous equality
is needed for closed terms. Whichever extension will be done will have to keep
to the original aim: design a specific procedure which can solve a problem or fail
to solve it very fast so it can be used widely.
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A Formalisation of a

Dependently Typed Language as an
Inductive-Recursive Family

Nils Anders Danielsson

Chalmers University of Technology

Abstract. It is demonstrated how a dependently typed lambda calculus
(a logical framework) can be formalised inside a language with inductive-
recursive families. The formalisation does not use raw terms; the well-
typed terms are defined directly. It is hence impossible to create ill-typed
terms.

As an example of programming with strong invariants, and to show
that the formalisation is usable, normalisation is proved. Moreover, this
proof seems to be the first formal account of normalisation by evaluation
for a dependently typed language.

1 Introduction

Programs can be verified in many different ways. One difference lies in how
invariants are handled. Consider a type checker, for instance. The typing rules
of the language being type checked are important invariants of the resulting
abstract syntax. In the external approach to handling invariants the type checker
works with raw terms. Only later, when verifying the soundness of the type
checker, is it necessary to verify that the resulting, supposedly well-typed terms
satisfy the invariants (typing rules). In the internal approach the typing rules
are instead represented directly in the abstract syntax data types, and soundness
thus follows automatically from the type of the type checking function, possibly
at the cost of extra work in the implementation. For complicated invariants the
internal approach requires strong forms of data types, such as inductive families
or generalised algebraic data types.

Various aspects of many different essentially simply typed programming lan-
guages have been formalised using the internal approach [CD97, AR99, Coq02,
XCC03, PL04, MM04, AC06, MW06, McBb]. Little work has been done on
formalising dependently typed languages using this approach, though; Dybjer’s
work [Dyb96] on formalising so-called categories with families, which can be seen
as the basic framework of dependent types, seems to be the only exception. The
present work attempts to fill this gap.

This paper describes a formalisation of the type system, and a proof of normal-
isation, for a dependently typed lambda calculus (basically the logical framework
of Martin-Löf’s monomorphic type theory [NPS90] with explicit substitutions).
Moreover, the proof of normalisation seems to be the first formal implementation
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of normalisation by evaluation [ML75, BS91] for a dependently typed language.
The ultimate goal of this work is to have a formalised implementation of the
core type checker for a full-scale implementation of type theory.

To summarise, the contributions of this work are as follows:

– A fully typed representation of a dependently typed language (Sect. 3).
– A proof of normalisation (Sect. 5). This proof seems to be the first account

of a formal implementation of normalisation by evaluation for a dependently
typed language.

– Everything is implemented and type checked in the proof checker AgdaLight
[Nor07]. The code can be downloaded from the author’s web page [Dan07].

2 Meta Language

Let us begin by introducing the meta language in which the formalisation has
been carried out, AgdaLight [Nor07], a prototype of a dependently typed pro-
gramming language. It is in many respects similar to Haskell, but, naturally,
deviates in some ways.

One difference is that AgdaLight lacks polymorphism, but has hidden argu-
ments, which in combination with dependent types compensate for this loss.
For instance, the ordinary list function map could be given the following type
signature:

map : {a, b : Set } → (a → b) → List a → List b

Here Set is the type of types from the first universe. Arguments within { . . .} are
hidden, and need not be given explicitly, if the type checker can infer their values
from the context in some way. If the hidden arguments cannot be inferred, then
they can be given explicitly by enclosing them within { . . .}:

map {Integer } {Bool } : (Integer → Bool ) → List Integer → List Bool

AgdaLight also has inductive-recursive families [DS06], illustrated by the fol-
lowing example (which is not recursive, just inductive). Data types are intro-
duced by listing the constructors and giving their types; natural numbers can
for instance be defined as follows:

data Nat : Set where
zero : Nat
suc : Nat → Nat

Vectors, lists of a given fixed length, may be more interesting:

data Vec (a : Set) : Nat → Set where
nil : Vec a zero
cons : {n : Nat } → a → Vec a n → Vec a (suc n)
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Note how the index (the natural number introduced after the last : in the defi-
nition of Vec) is allowed to vary between the constructors. Vec a is a family of
types, with one type for every index n.

To illustrate the kind of pattern matching AgdaLight allows for an inductive
family, let us define the tail function:

tail : {a : Set } → {n : Nat } → Vec a (suc n) → Vec a n
tail (cons x xs) = xs

We can and need only pattern match on cons , since the type of nil does not
match the type Vec a (suc n) given in the type signature for tail . As another
example, consider the definition of the append function:

(++) : Vec a n1 → Vec a n2 → Vec a (n1 + n2)
nil ++ ys = ys
cons x xs ++ ys = cons x (xs ++ ys)

In the nil case the variable n1 in the type signature is unified with zero, trans-
forming the result type into Vec a n2, allowing us to give ys as the right-hand
side. (This assumes that zero + n2 evaluates to n2.) The cons case can be ex-
plained in a similar way.

Note that the hidden arguments of (++) were not declared in its type signature.
This is not allowed by AgdaLight, but often done in the paper to reduce nota-
tional noise. Some other details of the formalisation are also ignored, to make
the paper easier to follow. The actual code can be downloaded for inspection
[Dan07].

Note also that some of the inductive-recursive families in this formalisation do
not quite meet the requirements of [DS06]; see Sects. 3.2 and 5.2. Furthermore
[DS06] only deals with functions defined using elimination rules. The functions
in this paper are defined using pattern matching and structural recursion.

AgdaLight currently lacks (working) facilities for checking that the code is
terminating and that all pattern matching definitions are exhaustive. However,
for the formalisation presented here this has been verified manually. Unless some
mistake has been made all data types are strictly positive (with the exception of
Val ; see Sect. 5.2), all definitions are exhaustive, and every function uses struc-
tural recursion of the kind accepted by the termination checker foetus [AA02].

3 Object Language

The object language that is formalised is a simple dependently typed lambda
calculus with explicit substitutions. Its type system is sketched in Fig. 1. The
labels on the rules correspond to constructors introduced in the formalisation.
Note that Γ ⇒ Δ is the type of substitutions taking terms with variables in
Γ to terms with variables in Δ, and that the symbol =� stands for βη-equality
between types. Some things are worth noting about the language:
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Contexts

(ε)
ε context

Γ context Γ � τ type
(�)

Γ, x : τ context

Types

(	)
Γ � 	 type

Γ � τ1 type Γ, x : τ1 � τ2 type
(Π)

Γ � Π(x : τ1) τ2 type
Γ � t : 	 (El)

Γ � El t type

Terms

(x , τ ) ∈ Γ
(var)

Γ � x : τ

Γ, x : τ1 � t : τ2
(λ)

Γ � λx : τ1.t : Π(x : τ1) τ2

Γ � t : τ ρ : Γ ⇒ Δ
(/�)

Δ � t ρ : τ ρ

Γ � t1 : Π(x : τ1) τ2 Γ � t2 : τ1
(@)

Γ � t1 t2 : τ2 [x �→ t2 ]

Γ � t : τ1 τ1 =� τ2
(::≡� )

Γ � t : τ2

Substitutions

Γ � t : τ (sub)
[x �→ t ] : Γ, x : τ ⇒ Γ

(wk)
wk x τ : Γ ⇒ Γ, x : τ

(id)
id Γ : Γ ⇒ Γ

ρ : Γ ⇒ Δ
(↑)

ρ ↑x τ : Γ, x : τ ⇒ Δ, x : τ ρ

ρ1 : Γ ⇒ Δ ρ2 : Δ⇒ X
(�)

ρ1 ρ2 : Γ ⇒ X

Fig. 1. Sketch of the type system that is formalised. If a rule mentions Γ � t : τ , then
it is implicitly assumed that Γ context and Γ � τ type ; similar assumptions apply to
the other judgements as well. All freshness side conditions have been omitted.

– It has explicit substitutions in the sense that the application of a substitution
to a term is an explicit construction in the language. However, the application
of a substitution to a type is an implicit operation.

– There does not seem to be a “standard” choice of basic substitutions. The
set chosen here is the following:
• [x "→ t ] is the substitution mapping x to t and every other variable to

itself.
• wk x τ extends the context with a new, unused variable.
• id Γ is the identity substitution on Γ .
• ρ ↑x τ is a lifting; variable x is mapped to itself, and the other variables

are mapped by ρ.
• ρ1 ρ2 is composition of substitutions.

– Heterogeneous equality is used. Two types can be equal (τ1 =� τ2) even
though their contexts are not definitionally equal in the meta-theory. Con-
texts of equal types are always provably equal in the object-theory, though
(see Sect. 3.6).

The following subsections describe the various parts of the formalisation: con-
texts, types, terms, variables, substitutions and equalities. Section 3.7 discusses
some of the design choices made. The table below summarises the types defined;
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the concept being defined, typical variable names used for elements of the type,
and the type name (fully applied):

Contexts Γ , Δ, X Ctxt
Types τ , σ Ty Γ
Terms t Γ 
 τ
Variables v Γ $ τ
Substitutions ρ Γ ⇒ Δ
Equalities eq Γ1 =Ctxt Γ2, τ1 =� τ2, . . .

Note that all the types in this section are part of the same mutually recursive
definition, together with the function (/) (see Sect. 3.2).

3.1 Contexts

Contexts are represented in a straight-forward way. The empty context is written
ε, and Γ � τ is the context Γ extended with the type τ . Variables are represented
using de Bruijn indices, so there is no need to mention variables here:

data Ctxt : Set where
ε : Ctxt
(�) : (Γ : Ctxt) → Ty Γ → Ctxt

Ty Γ is the type, introduced below, of object-language types with variables in Γ .

3.2 Types

The definition of the type family Ty of object-level types follows the type system
sketch in Fig. 1:

data Ty : Ctxt → Set where
� : {Γ : Ctxt } → Ty Γ
Π : (τ : Ty Γ ) → Ty (Γ � τ) → Ty Γ
El : Γ 
 � → Ty Γ

The type Γ 
 τ stands for terms of type τ with variables in Γ , so terms can only
be viewed as types if they have type �.

Note that types are indexed on the context to which their variables belong,
and similarly terms are indexed on both contexts and types (Γ 
 τ). The meta-
theory behind indexing a type by a type family defined in the same mutually
recursive definition has not been worked out properly yet. It is, however, crucial
to this formalisation.

Let us now define the function (/), which applies a substitution to a type
(note that postfix application is used). The type Γ ⇒ Δ stands for a substitution
which, when applied to something in context Γ (a type, for instance), transforms
this into something in context Δ:
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(/) : Ty Γ → Γ ⇒ Δ → Ty Δ
� / ρ = �
Π τ1 τ2 / ρ = Π (τ1 / ρ) (τ2 / ρ ↑ τ1)
El t / ρ = El (t /� ρ)

The constructor (/�) is the analogue of (/) for terms (see Sect. 3.3). The sub-
stitution transformer (↑) is used when going under binders; ρ ↑ τ1 behaves as ρ,
except that the new variable zero in the original context is mapped to the new
variable zero in the resulting context:

(↑) : (ρ : Γ ⇒ Δ) → (σ : Ty Γ ) → Γ � σ ⇒ Δ � (σ / ρ)

Substitutions are defined in Sect. 3.5.

3.3 Terms

The types Γ 
 τ and Γ $ τ stand for terms and variables, respectively, of type
τ in context Γ . Note that what is customarily written Γ 
 t : τ , like in Fig. 1, is
now written t :Γ 
 τ . There are five kinds of terms: variables (var ), abstractions
(λ), applications (@), casts (::≡� ) and substitution applications (/�):

data (
) : (Γ : Ctxt) → Ty Γ → Set where
var : Γ $ τ → Γ 
 τ
λ : Γ � τ1 
 τ2 → Γ 
 Π τ1 τ2
(@) : Γ 
 Π τ1 τ2 → (t2 : Γ 
 τ1) → Γ 
 τ2 / sub t2
(::≡� ) : Γ 
 τ1 → τ1 =� τ2 → Γ 
 τ2
(/�) : Γ 
 τ → (ρ : Γ ⇒ Δ) → Δ 
 τ / ρ

Notice the similarity to the rules in Fig. 1. The substitution sub t2 used in the
definition of (@) replaces vz with t2, and lowers the index of all other variables
by one:

sub : Γ 
 τ → Γ � τ ⇒ Γ

The conversion rule defined here (::≡� ) requires the two contexts to be defi-
nitionally equal in the meta-theory. A more general version of the rule would
lead to increased complexity when functions that pattern match on terms are
defined. However, we can prove a general version of the conversion rule, so no
generality is lost:

(::�) : Γ1 
 τ1 → τ1 =� τ2 → Γ2 
 τ2

In this formalisation, whenever a cast constructor named (::≡• ) is introduced
(where • can be 
 or $, for instance), a corresponding generalised variant (::•)
is always proved.

Before moving on to variables, note that all typing information is present in
a term, including casts (the conversion rule). Hence this type family actually
represents typing derivations.
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3.4 Variables

Variables are represented using de Bruijn indices (the notation ($) is taken from
[McBb]):

data ($) : (Γ : Ctxt) → Ty Γ → Set where
vz : {σ : Ty Γ } → Γ � σ $ σ/wk σ
vs : Γ $ τ → {σ : Ty Γ } → Γ � σ $ τ /wk σ
(::≡� ) : Γ $ τ1 → τ1 =� τ2 → Γ $ τ2

The rightmost variable in the context is denoted by vz (“variable zero”), and
vs v is the variable to the left of v . The substitution wk σ is a weakening, taking
something in context Γ to the context Γ � σ:

wk : (σ : Ty Γ ) → Γ ⇒ Γ � σ

The use of weakening is necessary since, for instance, σ is a type in Γ , whereas
vz creates a variable in Γ � σ.

The constructor (::≡� ) is a variant of the conversion rule for variables. It might
seem strange that the conversion rule is introduced twice, once for variables and
once for terms. However, note that var v ::≡� eq is a term and not a variable, so
if the conversion rule is needed to show that a variable has a certain type, then
(::≡� ) cannot be used.

3.5 Substitutions

Substitutions are defined as follows:

data (⇒) : Ctxt → Ctxt → Set where
sub : Γ 
 τ → Γ � τ ⇒ Γ
wk : (σ : Ty Γ ) → Γ ⇒ Γ � σ
(↑) : (ρ : Γ ⇒ Δ) → (σ : Ty Γ ) → Γ � σ ⇒ Δ � (σ / ρ)
id : Γ ⇒ Γ
(%) : Γ ⇒ Δ → Δ⇒ X → Γ ⇒ X

Single-term substitutions (sub), weakenings (wk ) and liftings (↑) have been in-
troduced above. The remaining constructors denote the identity substitution
(id) and composition of substitutions (%). The reasons for using this particular
definition of (⇒) are outlined in Sect. 3.7.

3.6 Equality

The following equalities are defined:

(=Ctxt) : Ctxt → Ctxt → Set
(=�) : Ty Γ1 → Ty Γ2 → Set
(=�) : Γ1 
 τ1 → Γ2 
 τ2 → Set
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(=�) : Γ1 $ τ1 → Γ2 $ τ2 → Set
(=⇒) : Γ1 ⇒ Δ1 → Γ2 ⇒ Δ2 → Set

As mentioned above heterogeneous equality is used. As a sanity check every
equality is associated with one or more lemmas like the following one, which
states that equal terms have equal types:

eq�eq� : {t1 : Γ1 
 τ1} → {t2 : Γ2 
 τ2} → t1 =� t2 → τ1 =� τ2

The context and type equalities are the obvious congruences. For instance,
type equality is defined as follows:

data (=�) : Ty Γ1 → Ty Γ2 → Set where
�Cong : Γ1 =Ctxt Γ2 → � {Γ1} =� � {Γ2}
ΠCong : τ11 =� τ12 → τ21 =� τ22 → Π τ11 τ21 =� Π τ12 τ22
ElCong : t1 =� t2 → El t1 =� El t2

In many presentations of type theory it is also postulated that type equality is
an equivalence relation. This introduces an unnecessary amount of constructors
into the data type; when proving something about a data type one typically
needs to pattern match on all its constructors. Instead I have chosen to prove
that every equality (except (=�)) is an equivalence relation:

refl� : τ =� τ
sym� : τ1 =� τ2 → τ2 =� τ1
trans� : τ1 =� τ2 → τ2 =� τ3 → τ1 =� τ3

(And so on for the other equalities.)
The semantics of a variable should not change if a cast is added, so the variable

equality is a little different. In order to still be able to prove that the relation is
an equivalence the following definition is used:

data (=�) : Γ1 $ τ1 → Γ2 $ τ2 → Set where
vzCong : σ1 =� σ2 → vz {σ1} =� vz {σ2}
vsCong : v1 =� v2 → σ1 =� σ2 → vs v1 {σ1} =� vs v2 {σ2}
castEq�

� : v1 =� v2 → v1 ::≡� eq =� v2

castEqr
� : v1 =� v2 → v1 =� v2 ::≡� eq

For substitutions extensional equality is used:

data (=⇒) (ρ1 : Γ1 ⇒ Δ1) (ρ2 : Γ2 ⇒ Δ2) : Set where
extEq : Γ1 =Ctxt Γ2 → Δ1 =Ctxt Δ2

→ (∀v1 v2. v1 =� v2 → var v1 /� ρ1 =� var v2 /� ρ2)
→ ρ1 =⇒ ρ2

Note that this data type contains negative occurrences of Ty , ($) and (=�),
which are defined in the same mutually recursive definition as (=⇒). In order to
keep this definition strictly positive a first-order variant of (=⇒) is used, which
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simulates the higher-order version by explicitly enumerating all the variables.
The first-order variant is later proved equivalent to the definition given here.

Term equality is handled in another way than the other equalities. The pres-
ence of the β and η laws makes it hard to prove that (=�) is an equivalence
relation, and hence this is postulated:

data (=�) : Γ1 
 τ1 → Γ2 
 τ2 → Set where
-- Equivalence.

refl� : (t : Γ 
 τ) → t =� t
sym� : t1 =� t2 → t2 =� t1
trans� : t1 =� t2 → t2 =� t3 → t1 =� t3

-- Congruence.
varCong : v1 =� v2 → var v1 =� var v2

λCong : t1 =� t2 → λ t1 =� λ t2
(@Cong) : t11 =� t12 → t21 =� t22 → t11@t21 =� t12@t22
(/�Cong) : t1 =� t2 → ρ1 =⇒ ρ2 → t1 /� ρ1 =� t2 /� ρ2

-- Cast, β and η equality.
castEq� : t ::≡� eq =� t
β : (λ t1)@t2 =� t1 /� sub t2
η : {t : Γ 
 Π τ1 τ2} → λ ((t /� wk τ1)@var vz ) =� t

-- Substitution application axioms.
. . .

The η law basically states that, if x is not free in t , and t is of function type,
then λx.t x = t . The first precondition on t is handled by explicitly weakening t ,
though.

The behaviour of (/�) also needs to be postulated. The abstraction and appli-
cation cases are structural; the id case returns the term unchanged, and the (%)
case is handled by applying the two substitutions one after the other; a variable
is weakened by applying vs to it; substituting t for variable zero results in t , and
otherwise the variable’s index is lowered by one; and finally lifted substitutions
need to be handled appropriately:

data (=�) : Γ1 
 τ1 → Γ2 
 τ2 → Set where
. . .

-- Substitution application axioms.
substLam : λ t /� ρ =� λ (t /� ρ ↑ τ1)
substApp : (t1@t2) /� ρ =� (t1 /� ρ)@(t2 /� ρ)
idVanishesTm : t /� id =� t
compSplitsTm : t /� (ρ1 % ρ2) =� t /� ρ1 /� ρ2
substWk : var v /� wk σ =� var (vs v)
substVzSub : var vz /� sub t =� t
substVsSub : var (vs v) /� sub t =� var v
substVzLift : var vz /� (ρ ↑ σ) =� var vz
substVsLift : var (vs v) /� (ρ ↑ σ) =� var v /� ρ /� wk (σ / ρ)
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3.7 Design Choices

Initially I tried to formalise a language with implicit substitutions, i.e. I tried to
implement (/�) as a function instead of as a constructor. This turned out to be
difficult, since when (/�) is defined as a function many substitution lemmas need
to be proved in the initial mutually recursive definition containing all the type
families above, and when the mutual dependencies become too complicated it is
hard to prove that the code is terminating.

As an example of why substitution lemmas are needed, take the axiom substApp
above. If substApp is considered as a pattern matching equation in the definition
of (/�), then it needs to be modified in order to type check:

(t1@t2) /� ρ = (t1 /� ρ)@(t2 /� ρ) ::≡� subCommutes�

Here subCommutes� states that, in certain situations, sub commutes with other
substitutions:

subCommutes� : τ / (ρ ↑ σ) / sub (t /� ρ) =� τ / sub t / ρ

Avoidance of substitution lemmas is also the reason for making the equalities
heterogeneous. It would be possible to enforce directly that, for instance, two
terms are only equal if their respective types are equal. It suffices to add the
type equality as an index to the term equality:

(=�) : {τ1 =� τ2} → Γ1 
 τ1 → Γ2 
 τ2 → Set

However, in this case substApp could not be defined without a lemma like
subCommutes�. Furthermore this definition of (=�) easily leads to a situa-
tion where two equality proofs need to be proved equal. These problems are
avoided by, instead of enforcing equality directly, proving that term equality
implies type equality (eq�eq�) and so on. These results also require lemmas like
subCommutes�, but the lemmas can be proved after the first, mutually recursive
definition.

The problems described above could be avoided in another way, by postulating
the substitution lemmas needed, i.e. adding them as type equality constructors.
This approach has not been pursued, as I have tried to minimise the amount of
“unnecessary” postulates and definitions.

The postulate substApp discussed above also provides motivation for defining
(/) as a function, even though (/�) is a constructor: if (/) were a constructor
then t1 /� ρ would not have a Π type as required by (@) (the type would be
Π τ1 τ2 / ρ), and hence a cast would be required in the definition of substApp. I
have not examined this approach in detail, but I suspect that it would be harder
to work with.

Another important design choice is the basic set of substitutions. The following
definition is a natural candidate for this set:

data (⇒̃) : Ctxt → Ctxt → Set where
∅ : ε ⇒̃ Δ
(�) : (ρ : Γ ⇒̃ Δ) → Δ 
 τ / ρ → Γ � τ ⇒̃ Δ
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This type family encodes simultaneous (parallel) substitutions; for every variable
in the original context a term in the resulting context is given. So far so good, but
the substitutions used in the type signatures above (sub and wk , for instance)
need to be implemented in terms of ∅ and (�), and these implementations seem
to require various substitution lemmas, again leading to the problems described
above.

Note that, even though (⇒̃) is not used to define what a substitution is, the
substitutions ∅ and (�) can be defined in terms of the other substitutions, and
they are used in Sect. 5.3 when value environments are defined.

4 Removing Explicit Substitutions

In Sect. 5 a normalisation proof for the lambda calculus introduced in Sect. 3
is presented. The normalisation function defined there requires terms without
explicit substitutions (“implicit terms”). This section defines a data type Tm−

representing such terms.
The type Tm− provides a view of the (
) terms (the “explicit terms”). Other

views will be introduced later, for instance normal forms (Sect. 5.1), and they
will all follow the general scheme employed by Tm−, with minor variations.

Implicit terms are indexed on explicit terms to which they are, in a sense,
βη-equal; the function tm−ToTm converts an implicit term to the corresponding
explicit term, and tm−ToTm t− =� t for every implicit term t− : Tm− t :

data Tm− : Γ 
 τ → Set where
var− : (v : Γ $ τ) → Tm− (var v)
λ− : Tm− t → Tm− (λ t)
(@−) : Tm− t1 → Tm− t2 → Tm− (t1@t2)
(::≡�− ) : Tm− t1 → t1 =� t2 → Tm− t2

tm−ToTm : {t : Γ 
 τ } → Tm− t → Γ 
 τ
tm−ToTm (var− v) = var v
tm−ToTm (λ− t−) = λ (tm−ToTm t−)
tm−ToTm (t−1 @− t−2 ) = (tm−ToTm t−1 )@ (tm−ToTm t−2 ) ::≡� . . .
tm−ToTm (t− ::≡�− eq) = tm−ToTm t− ::≡� eq�eq� eq

(The ellipsis stands for uninteresting code that has been omitted.)
It would be possible to index implicit terms on types instead. However, by

indexing on explicit terms soundness results are easily expressed in the types of
functions constructing implicit terms. For instance, the function tmToTm− which
converts explicit terms to implicit terms has the type (t :Γ 
 τ) → Tm− t , which
guarantees that the result is βη-equal to t . The key to making this work is the
cast constructor (::≡�− ), which makes it possible to include equality proofs in an
implicit term; without (::≡�− ) no implicit term could be indexed on t /� ρ, for
instance.

Explicit terms are converted to implicit terms using techniques similar to
those in [McBb]. Due to lack of space this conversion is not discussed further
here.
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5 Normalisation Proof

This section proves that every explicit term has a normal form. The proof uses
normalisation by evaluation (NBE). Type-based NBE proceeds as follows:

– First terms (in this case implicit terms) are evaluated by a function �·�
(Sect. 5.4), resulting in “values” (Sect. 5.2). Termination issues are avoided
by representing function types using the function space of the meta-language.

– Then these values are converted to normal forms by using two functions,
often called reify and reflect , defined by recursion on the (spines of the)
types of their arguments (Sect. 5.5).

5.1 Normal Forms

Let us begin by defining what a normal form is. Normal forms (actually long βη-
normal forms) and atomic forms are defined simultaneously. Both type families
are indexed on a βη-equivalent term, just like Tm− (see Sect. 4):

data Atom : Γ 
 τ → Set where
varAt : (v : Γ $ τ) → Atom (var v)
(@At ) : Atom t1 → NF t2 → Atom (t1@t2)
(::≡At ) : Atom t1 → t1 =� t2 → Atom t2

data NF : Γ 
 τ → Set where
atom�

NF : {t : Γ 
 �} → Atom t → NF t
atomEl

NF : {t : Γ 
 El t ′} → Atom t → NF t
λNF : NF t → NF (λ t)
(::≡NF ) : NF t1 → t1 =� t2 → NF t2

The two atomNF constructors ensure that the only normal forms of type Π τ1 τ2
are lambdas and casts; this is how long η-normality is ensured.

A consequence of the inclusion of the cast constructors (::≡At ) and (::≡NF ) is
that normal forms are not unique. However, the equality on normal and atomic
forms (congruence plus postulates stating that casts can be removed freely)
ensures that equality can be decided by erasing all casts and annotations and
then checking syntactic equality.

A normal form can be converted to a term in the obvious way, and the resulting
term is βη-equal to the index (cf. tm−ToTm in Sect. 4):

nfToTm : {t : Γ 
 τ } → NF t → Γ 
 τ
nfToTmEq : (nf : NF t) → nfToTm nf =� t

Similar functions are defined for atomic forms.
We also need to weaken normal and atomic forms. In fact, multiple weakenings

will be performed at once. In order to express these multi-weakenings context
extensions are introduced. The type Ctxt+ Γ stands for context extensions which
can be put “to the right of” the context Γ by using (++):
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data Ctxt+ (Γ : Ctxt) : Set where
ε+ : Ctxt+ Γ
(�+) : (Γ ′ : Ctxt+ Γ ) → Ty (Γ ++ Γ ′) → Ctxt+ Γ

(++) : (Γ : Ctxt) → Ctxt+ Γ → Ctxt
Γ ++ ε+ = Γ
Γ ++ (Γ ′ �+ τ) = (Γ ++ Γ ′) � τ

Now the following type signatures can be understood:

wk∗ : (Γ ′ : Ctxt+ Γ ) → Γ ⇒ Γ ++ Γ ′

wk∗
At : Atom t → (Γ ′ : Ctxt+ Γ ) → Atom (t /� wk∗ Γ ′)

5.2 Values

Values are represented using one constructor for each type constructor, plus a
case for casts (along the lines of previously introduced types indexed on terms).
Values of function type are represented using meta-language functions:

data Val : Γ 
 τ → Set where
(::Val ) : Val t1 → t1 =� t2 → Val t2
�Val : {t : Γ 
 �} → Atom t → Val t
ElVal : {t : Γ 
 El t ′} → Atom t → Val t
ΠVal : {t1 : Γ 
 Π τ1 τ2}

→ (f : (Γ ′ : Ctxt+ Γ )
→ {t2 : Γ ++ Γ ′ 
 τ1 / wk∗ Γ ′}
→ (v : Val t2)
→ Val ((t1 /� wk∗ Γ ′)@t2))

→ Val t1

The function f given to ΠVal {t1} essentially takes an argument value and eval-
uates t1 applied to this argument. For technical reasons, however, we need to be
able to weaken t1 (see reify in Sect. 5.5). This makes Val look suspiciously like
a Kripke model [MM91] (suitably generalised to a dependently typed setting);
this has not been verified in detail, though. The application operation of this
supposed model is defined as follows. Notice that the function component of
ΠVal is applied to an empty Ctxt+ here:

(@Val) : Val t1 → Val t2 → Val (t1@t2)
ΠVal f @Val v2 = f ε+ (v2 ::Val . . .) ::Val . . .
(v1 ::Val eq) @Val v2 = (v1 @Val (v2 ::Val . . .)) ::Val . . .

The transition function of the model weakens values:

wk�
Val : Val t → (Γ ′ : Ctxt+ Γ ) → Val (t /� wk∗ Γ ′)

Note that Val is not a positive data type, due to the negative occurrence of
Val inside of ΠVal , so this data type is not part of the treatment in [DS06]. In
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practise this should not be problematic, since the type index of that occurrence,
τ1 / wk∗ Γ ′, is smaller than the type index of ΠVal f , which is Π τ1 τ2. Here
we count just the spine of the type, ignoring the contents of El , so that τ and
τ / ρ have the same size, and two equal types also have the same size. In fact,
by supplying a spine argument explicitly it should not be difficult to define Val
as a structurally recursive function instead of as a data type.

5.3 Environments

The function �·�, defined in Sect. 5.4, makes use of environments, which are
basically substitutions containing values instead of terms:

data Env : Γ ⇒ Δ → Set where
∅Env : Env ∅
(�Env ) : Env ρ → Val t → Env (ρ � t)
(::≡Env ) : Env ρ1 → ρ1 =⇒ ρ2 → Env ρ2

Note that the substitutions ∅ and (�) from Sect. 3.7 are used as indices here.
It is straight-forward to define functions for looking up a variable in an envi-

ronment and weakening an environment:

lookup : (v : Γ $ τ) → Env ρ → Val (var v /� ρ)
wk�

Env : Env ρ → (Δ′ : Ctxt+ Δ) → Env (ρ % wk∗ Δ′)

5.4 Evaluating Terms

Now we can evaluate an implicit term, i.e. convert it to a value. The most
interesting case is λ− t−1 , where t−1 is evaluated in an extended, weakened envi-
ronment:

�·� : Tm− t → Env ρ → Val (t /� ρ)
�var− v�γ = lookup v γ
�t−1 @− t−2 �γ = (�t−1 �γ @Val �t−2 �γ) ::Val . . .
�t− ::≡�− eq�γ = �t−�γ ::Val . . .

�λ− t−1 �γ =
ΠVal (\Δ′ v2 → �t−1 �(wk �

Env γ Δ
′ �Env (v2 ::Val . . .)) ::Val . . . β . . .)

(The notation \x → . . . is lambda abstraction in the meta-language.) It would
probably be straightforward to evaluate explicit terms directly, without going
through implicit terms (cf. [Coq02]). Here I have chosen to separate these two
steps, though.

5.5 Reify and Reflect

Let us now define reify and reflect . These functions are implemented by recursion
over spines (see Sect. 5.2), in order to make them structurally recursive, but to
avoid clutter the spine arguments are not written out below.
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The interesting cases correspond to function types, forwhich reify and reflect use
each other recursively. Notice how reify applies the function component of ΠVal

to a singleton Ctxt+, to enable using the reflection of variable zero, which has a
weakened type; this is the reason for including weakening in the definition ofΠVal :

reify : (τ : Ty Γ ) → {t : Γ 
 τ } → Val t → NF t
reify (Π τ1 τ2) (ΠVal f ) =
λNF (reify (τ2 / / )

(f (ε+ �+ τ1) (reflect (τ1 / ) (varAt vz ) ::Val . . .)))
::NF . . . η . . .

reflect : (τ : Ty Γ ) → {t : Γ 
 τ } → Atom t → Val t
reflect (Π τ1 τ2) at = ΠVal (\Γ ′ v →

reflect (τ2 / / ) (wk∗
At at Γ ′ @At reify (τ1 / ) v))

Above underscores ( ) have been used instead of giving non-hidden arguments
which can be inferred automatically by the AgdaLight type checker, and some
simple and boring cases have been omitted to save space.

5.6 Normalisation

After having defined �·� and reify it is very easy to normalise a term. First
we build an identity environment by applying reflect to all the variables in the
context:

idEnv : (Γ : Ctxt) → Env (id Γ )

Then an explicit term can be normalised by converting it to an implicit term,
evaluating the result in the identity environment, and then reifying:

normalise : (t : Γ 
 τ) → NF t
normalise t = reify (�tmToTm− t�(idEnv ) ::Val . . .)

Since a normal form is indexed on an equivalent term it is easy to show that
normalise is sound:

normaliseEq : (t : Γ 
 τ) → nfToTm (normalise t) =� t
normaliseEq t = nfToTmEq (normalise t)

If this normalising function is to be really useful (as part of a type checker,
for instance) it should also be proved, for the normal form equality (=NF ), that
t1 =� t2 implies that normalise t1 =NF normalise t2. This is left for future
work, though.

6 Related Work

As stated in the introduction Dybjer’s formalisation of categories with fam-
ilies [Dyb96] seems to be the only prior example of a formalisation of a de-
pendently typed language done using the internal approach to handle the type
system invariants. Other formalisations of dependently typed languages, such as
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McKinna/Pollack [MP99] and Barras/Werner [BW97], have used the external
approach. There is also an example, due to Adams [Ada04], of a hybrid approach
which handles some invariants internally, but not the type system.

Normalisation by evaluation (NBE) seems to have been discovered indepen-
dently by Martin-Löf (for a version of his type theory) [ML75] and Berger and
Schwichtenberg (for simply typed lambda calculus) [BS91]. Martin-Löf has also
defined an NBE algorithm for his logical framework [ML04], and recently Dyb-
jer, Abel and Aehlig have done the same for Martin-Löf type theory with one
universe [AAD07].

NBE has been formalised, using the internal approach, by T. Coquand and
Dybjer, who treated a combinatory version of Gödel’s System T [CD97]. C. Co-
quand has formalised normalisation for a simply typed lambda calculus with
explicit substitutions, also using the internal approach [Coq02]. Her normali-
sation proof uses NBE and Kripke models, and in that respect it bears much
resemblance to this one. McBride has implemented NBE for the untyped lambda
calculus [McBa]. His implementation uses an internal approach (nested types in
Haskell) to ensure that terms are well-scoped, and that aspect of his code is
similar to mine.

My work seems to be the first formalised NBE algorithm for a dependently
typed language.

7 Discussion

I have presented a formalisation of a dependently typed lambda calculus, includ-
ing a proof of normalisation, using the internal approach to handle typing rules.
This formalisation demonstrates that, at least in this case, it is feasible to use the
internal approach when programming with invariants strong enough to encode the
typing rules of a dependently typed language. How this method compares to other
approaches is a more difficult question, which I do not attempt to answer here.
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LIX, École polytechnique, 91128 Palaiseau Cedex, France

Gilles.Dowek@polytechnique.edu
http://lix.polytechnique.fr/˜dowek/

Abstract. We extend the notion of Heyting algebra to a notion of truth
values algebra and prove that a theory is consistent if and only if it has
a B-valued model for some non trivial truth values algebra B. A theory
that has a B-valued model for all truth values algebras B is said to be
super-consistent. We prove that super-consistency is a model-theoretic
sufficient condition for strong normalization.

1 Introduction

Proving that a theory has the cut elimination property has some similarities
with proving that it has a model. These similarities appear, for instance, in the
model theoretic proofs of cut elimination, where cut elimination is obtained as
a corollary of a strengthening of the completeness theorem, expressing that if a
formula is valid in all models of a theory, then it has a cut free proof in this theory.
Such a method has been used, for instance, by Schütte, Kanger, Beth, Hintikka
and Smullyan. It has then been used by Tait [15], Prawitz [13], Takahashi [17]
and Andrews [1] to prove cut elimination for simple type theory. It has been
generalized, more recently, by De Marco and Lipton [2] to prove cut elimination
for an intuitionistic variant of simple type theory, by Hermant [8,10] to prove
cut elimination for classical and intuitionistic theories in deduction modulo and
by Okada [11] to prove cut elimination for intuitionistic linear logic.

An alternative method to prove cut elimination is to prove that all proofs
strongly normalize. Following Tait [16] and Girard [7], this is proved by assigning
a set of proofs, called a reducibility candidate, to each formula. Here also, the
proofs have some similarities with the construction of models, except that, in
these models, the truth values 0 and 1 are replaced by reducibility candidates.
This analogy has been exploited in a joint work with Werner [5], where we have
defined a notion of reducibility candidate valued models, called pre-models, and
proved that if a theory in deduction modulo has such a model, then it has the
strong normalization property.

The fact that both cut elimination proofs and strong normalization proofs
proceed by building models raises the problem of the difference between cut
elimination and strong normalization. It is well-known that strong normalization
implies cut elimination, but what about the converse? This problem can be
precisely stated in deduction modulo, where instead of using an ad hoc notion
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of cut for each theory of interest, we can formulate a general notion of cut for a
large class of theories, that subsumes the usual ad hoc notions. This problem has
been solved by Hermant [9] and surprisingly the answer is negative: there are
theories that have the cut elimination property, but not the strong normalization
property and even not the weak normalization property. Thus, although the
model theoretic cut elimination proofs and the strong normalization proofs both
proceed by building models, these methods apply to different theories.

In this paper, we focus on the model theoretic characterization of theories
in deduction modulo that have the strong normalization property. It has been
proved in [5] that a theory has the strong normalization property if it has a
reducibility candidate valued model. However, the usual model constructions
use very little of the properties of reducibility candidates. In particular, these
constructions seem to work independently of the chosen variant of the closure
conditions defining reducibility candidates. This suggests that this notion of
reducibility candidate valued model can be further generalized, by considering
an abstract notion of reducibility candidate.

Abstracting this way on the notion of reducibility candidate leads to intro-
duce a class of algebras, called truth values algebras, that also generalize Heyting
algebras. However there is an important difference between truth values algebras
and Heyting algebras: in a Heyting algebra valued model the formula P ⇔ Q is
valid if and only if the formulae P and Q have the same denotation. In particular,
all theorems have the same denotation. This is not necessarily the case in truth
values algebra valued models where two theorems may have different denotation.
Thus, truth values algebra valued models are more “intentional” than Heyting
algebra valued models. In particular, it is possible to distinguish in the model
between the computational equivalence of formulae (the congruence of deduction
modulo, or the definitional equality of Martin-Löf’s type theory) and the prov-
able equivalence: the denotations of two computationally equivalent formulae are
the same, but not necessarily those of two logically equivalent formulae. Thus,
independently of normalization, this generalization of Heyting algebras seems to
be of interest for the model theory of deduction modulo and type theory.

We shall first introduce the notion of truth values algebra and compare it
with the notion of Heyting algebra. Then, we shall consider plain predicate
logic, define a notion of model based on these truth values algebras and prove
a soundness and a completeness theorem for this notion of model. We shall
then show that this notion of model extends to deduction modulo. Finally, we
shall strengthen the notion of consistency into a notion of super-consistency and
prove that all super-consistent theories have the strong normalization property.
We refer to the long version of the paper for the proofs omitted in this abstract.

2 Truth Values Algebras

2.1 Definition

Definition 1 (Truth values algebra). Let B be a set, whose elements are
called truth values, B+ be a subset of B, whose elements are called positive truth
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values, A and E be subsets of ℘(B), �̃ and ⊥̃ be elements of B, ⇒̃, ∧̃, and ∨̃
be functions from B × B to B, ∀̃ be a function from A to B and ∃̃ be a function
from E to B. The structure B = 〈B,B+,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is said to be a
truth value algebra if the set B+ is closed by the intuitionistic deduction rules
i.e. if for all a, b, c in B, A in A and E in E,

1. if a ⇒̃ b ∈ B+ and a ∈ B+ then b ∈ B+,
2. a ⇒̃ b ⇒̃ a ∈ B+,
3. (a ⇒̃ b ⇒̃ c) ⇒̃ (a ⇒̃ b) ⇒̃ a ⇒̃ c ∈ B+,
4. �̃ ∈ B+,
5. ⊥̃ ⇒̃ a ∈ B+,
6. a ⇒̃ b ⇒̃ (a ∧̃ b) ∈ B+,
7. (a ∧̃ b) ⇒̃ a ∈ B+,
8. (a ∧̃ b) ⇒̃ b ∈ B+,
9. a ⇒̃ (a ∨̃ b) ∈ B+,

10. b ⇒̃ (a ∨̃ b) ∈ B+,
11. (a ∨̃ b) ⇒̃ (a ⇒̃ c) ⇒̃ (b ⇒̃ c) ⇒̃ c ∈ B+,
12. the set a ⇒̃ A = {a ⇒̃ e | e ∈ A} is in A and the set E ⇒̃ a = {e ⇒̃ a | e ∈

E} is in A,
13. if all elements of A are in B+ then ∀̃ A ∈ B+,
14. ∀̃ (a ⇒̃ A) ⇒̃ a ⇒̃ (∀̃ A) ∈ B+,
15. if a ∈ A, then (∀̃ A) ⇒̃ a ∈ B+,
16. if a ∈ E, then a ⇒̃ (∃̃ E) ∈ B+,
17. (∃̃ E) ⇒̃ ∀̃ (E ⇒̃ a) ⇒̃ a ∈ B+.

Definition 2 (Full). A truth values algebra is said to be full if A = E = ℘(B),
i.e. if ∀̃ A and ∃̃ A exist for all subsets A of B.

Definition 3 (Trivial). A truth values algebra is said to be trivial if B+ = B.

Example 1. Let B = {0, 1}. Let B+ = {1}, A = E = ℘(B), �̃ = 1, ⊥̃ = 0, ⇒̃,
∧̃, ∨̃ be the usual boolean operations, ∀̃ be the function mapping the sets {0}
and {0, 1} to 0 and ∅ and {1} to 1 and ∃̃ be the function mapping the sets ∅

and {0} to 0 and {1} and {0, 1} to 1. Then 〈B,B+,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is a
truth value algebra.

Example 2. Let B be an arbitrary set, B+ = B, A = E = ℘(B) and �̃, ⊥̃, ⇒̃,
∧̃, ∨̃, ∀̃ and ∃̃ be arbitrary operations. Then 〈B,B+,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is
a trivial truth value algebra.

2.2 Pseudo-heyting Algebras

In this section, we show that truth values algebras can alternatively be charac-
terized as pseudo-Heyting algebras.

Definition 4 (Pseudo-Heyting algebra)
Let B be a set, ≤ be a relation on B, A and E be subsets of ℘(B), �̃ and ⊥̃ be
elements of B, ⇒̃, ∧̃, and ∨̃ be functions from B ×B to B, ∀̃ be a function from
A to B and ∃̃ be a function from E to B, the structure B = 〈B,≤,A, E , �̃, ⊥̃, ⇒̃,
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∧̃, ∨̃, ∀̃, ∃̃〉 is said to be a pseudo-Heyting algebra if for all a, b, c in B, A in A
and E in E, (the relation ≤ is a pre-order)

– a ≤ a,
– if a ≤ b and b ≤ c then a ≤ c,

(�̃ and ⊥̃ are maximum and minimum elements (notice that these need not be
unique))

– a ≤ �̃,
– ⊥̃ ≤ a,

(a ∧̃ b is a greatest lower bound of a and b and and a ∨̃ b is a least upper bound
of a and b (again, these need not be unique))

– a ∧̃ b ≤ a,
– a ∧̃ b ≤ b,
– if c ≤ a and c ≤ b then c ≤ a ∧̃ b,
– a ≤ a ∨̃ b,
– b ≤ a ∨̃ b,
– if a ≤ c and b ≤ c then a ∨̃ b ≤ c,

(the set A and E have closure conditions)

– a ⇒̃ A and E ⇒̃ a are in A,

(∀̃ and ∃̃ are infinite greatest lower bound and least upper bound)

– if a ∈ A then ∀̃ A ≤ a,
– if for all a in A, b ≤ a then b ≤ ∀̃ A,
– if a ∈ E then a ≤ ∃̃ E,
– if for all a in E, a ≤ b then ∃̃ E ≤ b,

and

– a ≤ b ⇒̃ c if and only if a ∧̃ b ≤ c.

Proposition 1. Consider a truth values algebra 〈B,B+,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉
then the algebra 〈B,≤,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 where the relation ≤ is defined by
a ≤ b if and only if a ⇒̃ b ∈ B+ is a pseudo-Heyting algebra.

Conversely, consider a pseudo-Heyting algebra 〈B,≤,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉,
then the algebra 〈B,B+,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉, where B+ = {x | �̃ ≤ x} is a
truth values algebra.

Definition 5 (Heyting algebra). A pseudo-Heyting algebra is said to be a
Heyting algebra if the relation ≤ is antisymmetric

– x ≤ y ⇒ y ≤ x⇒ x = y.

Remark. If the pseudo-Heyting algebra 〈B,≤,A, E , �̃, ⊥̃, ⇒̃, ∧̃, ∨̃, ∀̃, ∃̃〉 is a Heyt-
ing algebra, then the set B+ = {x | �̃ ≤ x} is the singleton {�̃}. Indeed, if
a ∈ B+ then �̃ ≤ a and a ≤ �̃. Hence a = �̃.
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Definition 6. A function F from a truth value algebra B1 to a truth value
algebra B2 is said to be a morphism of truth values algebras if

– x ∈ B+
1 if and only if F (x) ∈ B+

2 ,
– if A ∈ A1 then F (A) ∈ A2, if E ∈ E1 then F (E) ∈ E2,
– F (�̃1) = �̃2, F (⊥̃1) = ⊥̃2, F (a ⇒̃1 b) = F (a) ⇒̃2 F (b), F (a ∧̃1 b) =
F (a) ∧̃2 F (b), F (a ∨̃1 b) = F (a) ∨̃2 F (b), F (∀̃1 A) = ∀̃2 F (A), F (∃̃1 E) =
∃̃2 F (E).

Morphisms of pseudo-Heyting algebras are defined in a similar way except that
the first condition is replaced by

– x ≤1 y if and only if F (x) ≤2 F (y).

Proposition 2. Let B be a pseudo-Heyting algebra, then there exists a pseudo-
Heyting algebra B/B+ that is a Heyting algebra and a morphism of pseudo-
Heyting algebras Φ from B to B/B+.

Remark. We have proved that, in the definition of Heyting algebras, the antisym-
metry is useless and can be dropped. The equivalence of truth values algebras
and pseudo-Heyting algebras shows that antisymmetry is the only property that
can be dropped and that truth values algebras are, in some sense, the best pos-
sible generalization of Heyting algebras, as we cannot require less than closure
by intuitionistic deduction rules.

2.3 Examples of Truth Values Algebras

We have seen that the algebra {0, 1} is a truth value algebra and more generally
that all Heyting algebras are truth values algebras. We give in this section two
examples of truth values algebras that are not Heyting algebras.

Example 3. The truth value algebra T1 is defined as follows. The set T1 is {0, I, 1}
and the set T +

1 is {I, 1}. The sets A and E are ℘(T1). The functions �̃, ⊥̃, ∧̃, ∨̃,
∀̃ and ∃̃ are the same as in the algebra {0, 1}, except that their value on I is the
same as their value on 1. For instance the table of the operation ∨̃ is

0 I 1
0 0 1 1
I 1 1 1
1 1 1 1

The function ⇒̃ is defined by the table

0 I 1
0 1 1 1
I 0 1 1
1 0 I I

Notice that as I ⇒̃ 1 and 1 ⇒̃ I are both in T +
1 we have I ≤ 1 and 1 ≤ I.

Hence the relation ≤ is not antisymmetric and the truth value algebra T1 is not
a Heyting algebra.
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Example 4. The truth value algebra T2 is similar to T1, except that the function
⇒̃ is defined by the table

0 I 1
0 1 1 I
I 0 1 I
1 0 1 I

2.4 Ordered Truth Values Algebras

We consider truth values algebras extended with an order relation & on B. This
order relation extends to sets of truth values in a trivial way: A & B if for all x
in A there exists a y in B such that x & y.

Definition 7 (Ordered truth values algebra). An ordered truth values al-
gebra is a truth values algebra together with a relation & on B such that

– & is an order relation,
– B+ is upward closed,
– �̃ is a maximal element, ⊥̃ a minimal element,
– ∧̃, ∨̃, ∀̃ and ∃̃ are monotonous, ⇒̃ is left anti-monotonous and right

monotonous.

Definition 8 (Complete ordered truth values algebra). A ordered truth
values algebra is said to be complete if every subset of B has a greatest lower
bound for &. Notice that this implies that every subset also has a least upper
bound. We write glb(a, b) and lub(a, b) the greatest lower bound and the least
upper bound of a and b for the order &.

Example 5. The algebra T1 ordered by 0 & I & 1 is complete.

Example 6. The algebra T2 cannot be extended to a complete ordered algebra.
Indeed the set {I, 1} would need to have a least upper bound. This least upper
bound cannot be 0 because T +

2 would then not be upward closed. If it were 1
then we would have I & 1 and thus 1 ⇒̃ I & 1 ⇒̃ 1, i.e. 1 & I. Thus the relation
& would not be antisymmetric. If it were I then we would have 1 & I and thus
1 ⇒̃ 1 & 1 ⇒̃ I, i.e. I & 1. Thus the relation & would not be antisymmetric.

Proposition 3. In a Heyting algebra, ≤ and & are extensionally equal, i.e.
a & b if and only if a ≤ b.

2.5 Completion

We now want to prove that for any truth value algebra B, there is another truth
value algebra BC that is full, ordered and complete and a morphism Φ from B
to BC . Notice that we do not require the morphism Φ to be injective.

There are two ways to prove this, the first is to use Proposition 2 in a first step
to build a truth value algebra B/B+ that is a Heyting algebra and a morphism for
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B to B/B+ and then apply in a second step MacNeille completion to the algebra
B/B+ to embed it into a full Heyting algebra. Together with its natural order,
this algebra is a full, ordered and complete truth value algebra. The second is
to apply MacNeille completion directly to B noticing that antisymmetry is not
used in MacNeille completion, except to prove the injectivity of the morphism.
The proof is detailed in the long version of the paper.

Example 7. The algebra T2 cannot be extended to a complete ordered algebra,
but it can be embedded with a non injective morphism in the full ordered and
complete algebra {0, 1}.

3 Predicate Logic

3.1 Models

Definition 9 (B-valued structure). Let L = 〈fi, Pj〉 be a language in predi-
cate logic and B be a truth values algebra, a B-valued structure for the language
L, M = 〈M,B, f̂i, P̂j〉 is a structure such that f̂i is a function from Mn to M
where n is the arity of the symbol fi and P̂j is a function from Mn to B where
n is the arity of the symbol Pi.

This definition extends trivially to many-sorted languages.

Definition 10 (Denotation). Let B be a truth values algebra, M be a B-valued
structure and φ be an assignment. The denotation �A�φ of a formula A in M is
defined as follows

– �x�φ = φ(x),
– �f(t1, ..., tn)�φ = f̂(�t1�φ, ..., �tn�φ),
– �P (t1, ..., tn)�φ = P̂ (�t1�φ, ..., �tn�φ),
– ���φ = �̃,
– �⊥�φ = ⊥̃,
– �A⇒ B�φ = �A�φ ⇒̃ �B�φ,
– �A ∧B�φ = �A�φ ∧̃ �B�φ,
– �A ∨B�φ = �A�φ ∨̃ �B�φ,
– �∀x A�φ = ∀̃ {�A�φ+〈x,e〉 | e ∈ M},
– �∃x A�φ = ∃̃ {�A�φ+〈x,e〉 | e ∈ M}.

Notice that the denotation of a formula containing quantifiers may be undefined,
but it is always defined if the truth value algebra is full.

Definition 11 (Model). A formula A is said to be valid in a B-valued structure
M, and the B-valued structure M is said to be a model of A, M |= A, if for all
assignments φ, �A�φ is defined and is a positive truth value.

The B-valued structure M is said to be a model of a theory T if it is a model
of all the axioms of T .
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3.2 Soundness and Completeness

As the notion of truth values algebra extends that of Heyting algebra, the com-
pleteness theorem for the notion of model introduced above is a simple corollary
of the completeness theorem for the notion of model based on Heyting algebras.
But, it has a simpler direct proof. It is well-known that completeness proofs for
boolean algebra valued models and Heyting algebra valued models are simpler
than for {0, 1}-valued models. For truth values algebra valued models, it is even
simpler. We want to prove that if A is valid in all models of T where it has
a denotation then T 
 A. To do so, we consider a theory T and we construct
a model of T such that the formulae valid in this model are the intuitionistic
theorems of T .

Definition 12 (Lindenbaum model). Let T be a theory in a language L. Let
S be an infinite set of constants and L′ = L∪S. Let M be the set of closed terms
of L′ and BT be the set of closed formulae of L′. Let B+

T be the set of elements A
of BT , such that the sequent T 
 A is provable. Let A = E be the set of subsets
of BT of the form {(t/x)A | t ∈ M} for some A. Notice that, in this case, the
formula A is unique.

The operations �̃, ⊥̃, ⇒̃, ∧̃ and ∨̃ are �, ⊥, ⇒, ∧ and ∨. The operations ∀̃
and ∃̃ are defined as follows

– ∀̃ {(t/x)A | t ∈M} = (∀x A),
– ∃̃ {(t/x)A | t ∈M} = (∃x A).

If f is a function symbol, we let f̂ be the function mapping t1, ..., tn to f(t1, ..., tn).
If P is a predicate symbol, we let P̂ be the function mapping t1, ..., tn to P (t1, ..., tn).

Proposition 4. The algebra BT is a truth values algebra.

Proposition 5 (Completeness). If A is valid in all the models of T where it
is defined, then T 
 A.

Using completion, we can strengthen this completeness theorem.

Proposition 6. If A is valid in all the models of T where the truth values
algebra is full, ordered and complete then T 
 A.

The converse is a simple induction over proof structure.

Proposition 7 (Soundness). If T 
 A then A is valid in all the models of T
where the truth value algebra is full, ordered and complete.

We finally get the following theorem.

Theorem 1. T 
 A if and only if A is valid in all the models of T where the
truth values algebra is full, ordered and complete.
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3.3 Consistency

Definition 13. A theory is said to be consistent if there exists a non provable
formula in this theory.

In the completeness theorem above, we did not assume the theory T to be
consistent. If it is not, then the algebra of the Lindenbaum model is trivial, i.e.
all truth values are positive and every formula is valid. But we have the following
theorem.

Proposition 8. The theory T is consistent if and only if it has a B-valued
model, for some non trivial full, ordered and complete truth values algebra B.

4 Deduction Modulo

4.1 Deduction Modulo

In Deduction modulo [3,5], a theory is defined by a set of axioms T and a
congruence ≡ defined by a confluent rewrite system rewriting terms to terms
and atomic formulae to formulae. The deduction rules are modified to take the
congruence ≡ into account. For instance, the modus ponens rule is not stated as
usual

Γ 
≡ A⇒ B Γ 
≡ A
Γ 
≡ B

but
Γ 
≡ C Γ 
≡ A

C ≡ A⇒ B
Γ 
≡ B

In deduction modulo, some proofs, in some theories, do not normalize. For
instance, in the theory formed with the rewrite rule P −→ (P ⇒ Q), the proof

axiom
P 
≡ P ⇒ Q

axiom
P 
≡ P ⇒-elim

P 
≡ Q ⇒-intro
≡ P ⇒ Q

axiom
P 
≡ P ⇒ Q

axiom
P 
≡ P ⇒-elim

P 
≡ Q⇒-intro
≡ P ⇒-elim
≡ Q

does not normalize and, moreover, the formula Q has no normal proof.
But, as we shall see, in some other theories, such as the theory formed with

the rewrite rule P −→ (Q⇒ P ), all proofs strongly normalize.
In deduction modulo, like in predicate logic, normal proofs of a sequent of the

form 
≡ A always end with an introduction rule. Thus, when a theory can be
expressed in deduction modulo with rewrite rules only, i.e. with no axioms, in
such a way that proofs modulo these rewrite rules strongly normalize, then the
theory is consistent, it has the disjunction property and the witness property,
various proof search methods for this theory are complete, ...

Many theories can be expressed this way in deduction modulo, in particular
arithmetic [6] and simple type theory [4] and the notion of cut of deduction
modulo subsumes the ad hoc notions of cut defined for these theories.
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4.2 Models

Definition 14 (Model). Let T ,≡ be a theory in deduction modulo. The B-
valued structure M is said to be a model of the theory T ,≡ if all axioms of T
are valid in M and for all terms or formulae A and B such that A ≡ B and
assignment φ, �A�φ and �B�φ are defined and �A�φ = �B�φ.

Example 8. Let B be an arbitrary truth value algebra, then the theory P −→
(Q⇒ R) has a B-valued model. We take P̂ = (�̃ ⇒̃ �̃) and Q̂ = R̂ = �̃.

Example 9. Let B be an arbitrary full, ordered and complete truth value algebra,
then the theory P −→ (Q ⇒ P ) has a B-valued model. The function a "→
(⊥̃ ⇒̃ a) is monotonous for the order & and this order is complete. Hence, it has
a fixed point b. We define a B-valued model of this theory by P̂ = b and Q̂ = ⊥̃.

In the same way, if B be an arbitrary full, ordered and complete truth value
algebra, then the theory P −→ (⊥ ⇒ P ) has a B-valued model.

Example 10. The theory P −→ (P ⇒ Q) has a {0, 1}-valued model (P̂ = Q̂ =
1), but no T1-valued model. Indeed there is no 0 in the line 0 of the table of the
function ⇒̃ of T1, no I in the line I and no 1 in the line 1.

4.3 Soundness and Completeness

To extend the completeness and the soundness theorem to deduction modulo, we
replace terms by classes of congruent terms and formulae by classes of congruent
formulae.

Definition 15 (Lindenbaum model). Let T ,≡ be a theory in a language L.
Let S be an infinite set of constants and L′ = L ∪ S. Let M be the set of ≡-
classes of closed terms of L′ and B be the set of ≡-classes of closed formulae
of L′. Let B+ be the set of elements of B containing a formula A such that the
sequent T 
≡ A is provable. Let A = E be the set of subsets of B of the form
{(t/x)A/ ≡ | t ∈M} for some A.

The operations �̃, ⊥̃, ⇒̃, ∧̃ and ∨̃ are �, ⊥, ⇒, ∧ and ∨ extended to ≡-
classes. To define the operations ∀̃ and ∃̃, we choose for each element a of A
and E a formula A such that a = {(t/x)A/ ≡ | t ∈M} and we let

– ∀̃ a = (∀x A),
– ∃̃ a = (∃x A).

If f is a function symbol, we let f̂ be the function mapping the classes of t1, ..., tn
to that of f(t1, ..., tn). If P is a predicate symbol, we let P̂ be the function mapping
the classes of t1, ..., tn to that of P (t1, ..., tn).

However, this introduces some additional complexity as we lose the property that
the class of formulae A is uniquely determined by the set of classes of formulae
{(t/x)A | t ∈ M}. Indeed, consider, for instance, the congruence generated by
the rewrite rule f(f(x)) −→ x. Then the formulae P (x) and P (f(x)) have the
same set of instances (the instance t in one formula corresponds to the instance
f(t) in the other). Thus, we need first the following definition and proposition.



120 G. Dowek

Definition 16. Two sets A and B of (classes of) formulae are said to be equiv-
alent modulo ≡ if for each formula P in A there exists a formula Q in B such
that P ⇔ Q is provable in deduction modulo ≡ and vice versa.

Proposition 9. Let ≡ be a congruence defined by a confluent rewrite system
rewriting terms to terms and atomic formulae to formulae. Let P and Q be two
formulae such that the sets {(t/x)P/ ≡ | t ∈ M} and {(t/x)Q/ ≡ | t ∈ M}
are equivalent modulo ≡, then (∀x P )⇒ (∀x Q) is provable in deduction modulo
the congruence ≡.

Proposition 10. The algebra B is a truth values algebra.

Proposition 11 (Completeness). If A is valid in all the models of T ,≡ where
it is defined, then T 
≡ A.

Using completion, we can strengthen this completeness theorem.

Proposition 12. If A is valid in all the models of T ,≡ where the truth values
algebra is full, ordered and complete then T 
≡ A.

The converse is a simple induction over proof structure.

Proposition 13 (Soundness). If T 
≡ A then A is valid in all the models of
T ,≡ where the truth value algebra is full, ordered and complete.

We finally get the following theorem.

Theorem 2. T 
≡ A if and only if A is valid in all the models of T ,≡ where
the truth values algebra is full, ordered and complete.

4.4 Consistency

Proposition 14. The theory T ,≡ is consistent if and only if it has a B-valued
model, for some non trivial full, ordered and complete truth values algebra B.

5 Super-Consistency

5.1 Definition

By Proposition 14, a theory is consistent if it has a B-valued model for some non
trivial full, ordered and complete truth values algebra. We now strengthen this
condition and require that the theory has a B-valued model for all full, ordered
and complete truth values algebras B.

Definition 17 (Super-consistent). A theory T ,≡ in deduction modulo is
super-consistent if it has a B-valued model for all full, ordered and complete
truth values algebras B.

Notice that, as there exists non trivial full, ordered and complete truth values
algebras (e.g. {0, 1}), super-consistent theories are consistent.
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5.2 Examples of Super-Consistent Theories

We have seen that the theories P −→ (Q ⇒ R) and P −→ (Q ⇒ P ) are
super-consistent, but that the theory P −→ (P ⇒ Q) is not. We give other
examples of super-consistent theory. In particular, we show that all the theo-
ries that have been proved to have the strong normalization property in [5,6]
i.e. arithmetic, simple type theory, the theories defined by a confluent, termi-
nating and quantifier free rewrite system, the theories defined by a confluent,
terminating and positive rewrite systems and the theories defined by a positive
rewrite systems such that each atomic formula has at most one one-step reduct
are super-consistent. In this abstract, we detail only the case of simple type
theory.

Definition 18 (Simple type theory). Simple type theory is a many-sorted
theory defined as follows. The sorts are inductively defined by ι and o are sorts
and if T and U are sorts then T → U is a sort. The language contains the
constants ST,U,V of sort (T → U → V ) → (T → U) → T → V , KT,U of sort
T → U → T , �̇ of sort o and ⊥̇ of sort o, ⇒̇, ∧̇ and ∨̇ of sort o → o → o, ∀̇T

and ∃̇T of sort (T → o) → o, the function symbols αT,U of rank 〈T → U, T, U〉
and the predicate symbol ε of rank 〈o〉. The rules are

α(α(α(ST,U,V , x), y), z) −→ α(α(x, z), α(y, z))
α(α(KT,U , x), y) −→ x

ε(�̇) −→ �
ε(⊥̇) −→ ⊥

ε(α(α(⇒̇, x), y)) −→ ε(x) ⇒ ε(y)
ε(α(α(∧̇, x), y)) −→ ε(x) ∧ ε(y)
ε(α(α(∨̇, x), y)) −→ ε(x) ∨ ε(y)

ε(α(∀̇, x)) −→ ∀y ε(α(x, y))
ε(α(∃̇, x)) −→ ∃y ε(α(x, y))

Proposition 15. Simple type theory is super-consistent.

Proof. Let B be a full truth values algebra. The model Mι = {0}, Mo = B,
MT→U = MMT

U , ŜT,U,V = a "→ (b "→ (c "→ a(c)(b(c)))), K̂T,U = a "→ (b "→ a),

α̂(a, b) = a(b), ε̂(a) = a, ˆ̇� = �̃, ˆ̇⊥ = ⊥̃, ˆ̇⇒ = ⇒̃, ˆ̇∧ = ∧̃, ˆ̇∨ = ∨̃, ˆ̇∀T =

a "→ ∀̃ (Range(a)), ˆ̇∃T = a "→ ∃̃ (Range(a)) where Range(a) is the range of the
function a, is a B-valued model of simple type theory.

5.3 Normalization

We have seen that the theory P −→ (P ⇒ Q), that does not have the strong nor-
malization property, is consistent but not super-consistent, i.e. it has B-valued



122 G. Dowek

models for some non trivial, full, ordered and complete truth values algebras B,
but not all. We prove now that, in contrast, all super-consistent theories have the
strong normalization property. To prove this, we build a particular full, ordered
and complete truth values algebra: the algebra of reducibility candidates.

We refer, for instance, to [5] for the definition of proof-terms, neutral proof-
terms and of proof-term reduction � and we define the following operations on
sets of proofs.

Definition 19

– The set �̃ is the set of strongly normalizing proof-terms.
– The set ⊥̃ is the set of strongly normalizing proof-terms.
– If a and b are two sets of proofs-terms, then a ⇒̃ b is the set of strongly

normalizing proof-terms π such that if π reduces to λα π1 then for every π′

in a, (π′/α)π1 is in b.
– If a and b are two sets of proof-terms, then then a ∧̃ b is the set of strongly

normalizing proof-terms π such that if π reduces to 〈π1, π2〉 then π1 is in a
and π2 is in b.

– If a and b are two sets of proof-terms, then a ∨̃ b is the set of strongly
normalizing proof-terms π such that if π reduces to i(π1) (resp. j(π2)) then
π1 (resp. π2) is in a (resp. b).

– If A is a set of sets of proof-terms, then ∀̃ A is the set of strongly normalizing
proof-terms π such that if π reduces to λx π1 then for every term t and every
element a of A, (t/x)π1 is in a.

– If A is a set of sets of proof-terms, then ∃̃ A is the set of strongly normalizing
proof-terms π such that if π reduces to 〈t, π1〉, there exists an element a of
A such that π1 is an element of a.

Definition 20 (Reducibility candidate). A set R of proof-terms is a re-
ducibility candidate if

– if π ∈ R, then π is strongly normalizable,
– if π ∈ R and π �∗ π′ then π′ ∈ R,
– if π is neutral and if for every π′ such that π �1 π′, π′ ∈ R then π ∈ R.

Proposition 16. The set of reducibility candidates is closed by the operations
of Definition 19.

Definition 21 (The algebra of reducibility candidates). The set B is the
set of reducibility candidates. The set B+ may be any set closed by intuitionistic
deduction rules, e.g. the set of all candidates. The sets A and E are ℘(B). The
operations are those of definition 19. The order & is inclusion.

Theorem 3 (Normalization). If the theory T ,≡ is super-consistent, then all
proofs strongly normalize in T ,≡.

Proof. Consider the full, ordered and complete truth values algebra B of re-
ducibility candidates. As it is super-consistent, the theory T ,≡ has a B-valued
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model. This model is a reducibility candidate valued model of ≡ [5], called pre-
models there. Hence all proofs strongly normalize in T ,≡.
An alternative would be to define the set of candidates directly as the small-
est set of sets of proofs closed by the operations of definition 19 and arbitrary
intersections, like [12].

Notice that the pre-order ≤ is trivial and thus not antisymmetric. Hence, the
truth values algebra of reducibility candidates is not a Heyting algebra. The fact
that the choice of the set B+ is immaterial is due to the fact that B+ matters
for the interpretation of axioms but not for that of the congruence and cut
elimination is a property of the congruence of a theory, not of its axioms.

6 Conclusion

We have generalized the notion of Heyting algebra into a notion of truth values
algebra and proved that a theory is consistent if and only if it has a B-valued
model for some non trivial full, ordered and complete truth values algebra B.
Unlike Heyting algebra valued models, truth values algebra valued models allow
to distinguish computational equivalence from provable equivalence.

When a theory has a B-valued model for all full, ordered and complete truth
values algebras, it is said to be super-consistent and all proofs strongly normalize
in this theory. Proving strong normalization by proving super-consistency is
easier than proving strong normalization directly. For instance the proof that
simple type theory is super-consistent (Proposition 15) takes only a few lines.
All the technicalities related to the notion of reducibility candidate are now
hidden in the proof that super-consistency implies strong normalization and are
not used in the proof that the theory of interest is super-consistent.

The notion of super-consistency is a model theoretic sufficient condition for
strong normalization. It remains to understand if it also a necessary condition
or if some theories have the strong normalization property without being super-
consistent. To prove that strong normalization implies super-consistency, we
might need to restrict further the notion of super-consistency. For instance, we
have already restricted it by considering only ordered and complete truth val-
ues algebras. Indeed, without such a completeness property, we could not use
the fixed point theorem to prove that the theory P −→ (⊥ ⇒ P ) had a B-
valued model for all B, and indeed, this theory does not have a T2-valued model.
Thus, the fact that the algebra of reducibility candidates, ordered by inclusion,
is complete seems to be an essential property that needs to be kept when ab-
stracting on reducibility candidates. It remains to understand if there are other
essential properties of candidates that need to be kept this way, so that strong
normalization may imply super-consistency.
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Abstract. We define a rank 1 polymorphic type system for nominal
terms, where typing environments type atoms, variables and function
symbols. The interaction between type assumptions for atoms and sub-
stitution for variables is subtle: substitution does not avoid capture and
so can move an atom into multiple different typing contexts. We give
typing rules such that principal types exist and are decidable for a fixed
typing environment. α-equivalent nominal terms have the same types; a
non-trivial result because nominal terms include explicit constructs for
renaming atoms. We investigate rule formats to guarantee subject reduc-
tion. Our system is in a convenient Curry-style, so the user has no need
to explicitly type abstracted atoms.

Keywords: binding, polymorphism, type inference, rewriting.

1 Introduction

Nominal terms are used to specify and reason about formal languages with bind-
ing, such as logics or programming languages. Consider denumerable sets of
atoms a, b, c, . . ., variables X,Y, Z, . . ., and term-formers or function sym-
bols f, g, . . .. Following previous work [10,21], nominal terms t are defined
by:

s, t ::= a | [a]t | ft | (t1, . . . , tn) | π·X π ::= Id | (a b) ◦ π

and called respectively atoms, abstractions, function applications, tuples,
and moderated variables (or just variables). We call π a permutation and
read (a b)·X as ‘swap a and b in X’. We say that permutations suspend
on variables. X is not a term but Id·X is and we usually write it just as X .
Similarly we omit the final Id in π, writing (a c)·X instead of ((a c) ◦ Id)·X .

For example, suppose term-formers lam and app. Then the nominal terms
lam[a]a and app(lam[a]a, a) represent λ-terms λx.x and (λx.x)x, and lam[a]X
and app(lam[a]X,X) represent λ-term ‘contexts’ λx.- and (λx.-)-. Note how X
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occurs under different abstractions. Substitution forX is grafting of syntax trees,
it does not avoid capture of atoms by abstractions; we may call it instantiation.

Nominal terms differ from other treatments of syntax-with-binding because
they support a capturing substitution, and the notation, although formal, is
close to standard informal practice; for example β-reduction may be represented
simply but explicitly as app(lam[a]X,Y ) → sub([a]X,Y ) where sub([a]X,Y ) is
a term which may be given the behaviour of ‘non-capturing substitution’ (once
we instantiate X and Y ) by rewrite rules [10,12].

Now consider static semantics, i.e. types like τ ::= N | τ → τ where we
read N as numbers and τ → τ as function types. Assigning types to terms
partitions the language into ‘numbers’, or ‘functions between numbers’, and so
on. Java [16], ML [9], and System F [15] demonstrate how this is commercially
useful and theoretically interesting.

Existing static semantics for nominal terms type atoms with a special type of
atoms A [21,20]. But when we write lam[a]X or lam[a]a, our intention is λx.- or
λx.x and we do not expect a to be forbidden from having any type other than A.
We can use explicit casting function symbols to inject A into other types; however
the a in lam[a]X still has type A, so we cannot infer more about a until X is in-
stantiated. This notion of typing can only usefully type terms without variables
and in the presence of polymorphism such strategies break down entirely.

We now present a Curry-style system with rank 1 polymorphism (ML-style
polymorphism or Hindley-Milner types [9]). Atoms can inhabit any type. We
can write lam[a]X , or fix[f ]X , or forall[a]X , or app(lam[a]X, lam[b]X), and
so on, and expect the type system to make sense of these terms, even though
these terms explicitly feature context holes representing unknown terms and
abstractions over those holes. Different occurrences of X may be under different
numbers of abstractions, and for different atoms. This means that, when we
instantiate X with t, the atoms in t may move into different type contexts and
so receive different types. At the same time, the entire type system is consistent
with a functional intuition, so X of type N manages to simultaneously behave
like an ‘unknown number’ and an ‘unknown term’.

We give syntax-directed typing rules and show that every typable term has a
principal type (one which subsumes all others in a suitable sense) in a given
environment. Type inference is decidable and types are compatible with α-
equivalence on nominal terms. We give a notion of typable rewrite rule such
that rewriting preserves types. In future, we plan to extend the system with
intersection types, to derive a system with principal typings (a type and a type
environment which subsume all others). With this system we will study normal-
isation of nominal terms.

2 Background

We continue the notation from the Introduction. Write V (t) for the variables in t
and A(t) for the atoms in t (e.g., a, b, c ∈ A([a][b](a c)·X), X ∈ V ([a][b](a c)·X)).
We define π·t, the permutation action of π on t, inductively by:
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Id·t ≡ t and ((a b) ◦ π)·t ≡ (a b)·(π·t), where

(a b)·a ≡ b (a b)·b ≡ a (a b)·c ≡ c (c �≡ a, b)
(a b)·(π·X) ≡ ((a b) ◦ π)·X (a b)·ft ≡ f(a b)·t

(a b)·[n]t ≡ [(a b)·n](a b)·t (a b)·(t1, . . . , tn) ≡ ((a b)·t1, . . . , (a b)·tn)

For example (a b)·lam[a](a, b,X) ≡ lam[b](b, a, (a b)·X).
Define t[X "→s], the (term-)substitution of X for s in t, by:

(ft)[X "→s] ≡ f(t[X "→s]) ([a]t)[X "→s] ≡ [a](t[X "→s]) (π·X)[X "→s] ≡ π·s
a[X "→s] ≡ a (t1, . . .)[X "→s] ≡ (t1[X "→s], . . .) (π·Y )[X "→s] ≡ π·Y (X �≡ Y )

Term-substitutions are defined by θ ::= Id | [X "→s]θ and have an action
given by tId ≡ t and t([X "→s]θ) ≡ (t[X "→s])θ. We write substitutions postfix,
and write ◦ for composition of substitutions: t(θ ◦ θ′) ≡ (tθ)θ′.

Nominal syntax represents systems with binding, closely following informal
notation. See [21,10,11] for examples and discussions of nominal terms and nom-
inal rewriting. It has the same applications as higher-order systems such as
Klop’s CRSs, Khasidashvili’s ERSs, and Nipkow’s HRSs [18,17,19]. Intuitively,
the distinctive features of nominal syntax are:

– X is an ‘unknown term’; the substitution action t[X "→s] which does not
avoid capture, makes this formal. Therefore X behaves differently from ‘free
variables’ of systems such as HRSs [19] or meta-variables of CRSs [18].

– [a]X denotes ‘X with a abstracted in X ’. We do not work modulo α-
equivalence and [a]X and [b]X are not equal in any sense; for example
([a]X)[X "→a] ≡ [a]a and ([b]X)[X "→a] ≡ [b]a, and we certainly expect from
the intuition ‘λx.x’ and ‘λx.y’ that [a]a and [b]a should not be equal. There-
fore atoms in nominal terms also behave differently from ‘bound variables’
of systems such as HRSs, ERSs and CRSs.

We call occurrences of a abstracted when they are in the scope of [a]-,
and otherwise we may call them unabstracted.

– (a b)·X represents ‘X with a and b swapped’. So π·[a]s ≡ [π·a]π·s, and
(a b)·[a][b]X ≡ [b][a](a b)·X . Therefore this permutation action is distinct
from De Bruijn’s transformers and other explicit substitutions, which avoid
capture as they distribute under abstractions, and which do not satisfy the
same simple algebraic laws [7].

We now come to some of the more technical machinery which gives nominal
terms their power.

We call a#t a freshness constraint, and s ≈α t an equality constraint. We
will use letters P,Q to range over constraints. We introduce a notion of derivation
as follows (below a, b denote two different atoms):
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a#b
a#s

a#fs

a#si (1 ≤ i ≤ n)
a#(s1, . . . , sn) a#[a]s

a#s

a#[b]s

π-1(a)#X

a#π·X

s≈αt

fs≈αft

a≈αa

s≈αt

[a]s≈α[a]t

s≈α(a b)·t a#t
[a]s≈α[b]t

ds(π, π′)#X

π·X≈απ
′·X

si≈αti (1 ≤ i ≤ n)
(s1, . . . , sn)≈α(t1, . . . , tn)

Here we write π-1 (the inverse of π) for the permutation obtained by revers-
ing the order of the list of swappings; for example ((a b) ◦ (c d))-1 = (c d) ◦
(a b). Here ds(π, π′) ≡

{
n
∣∣ π(n) �= π′(n)

}
is the difference set. For exam-

ple ds((a b), Id) = {a, b} so (a b)·X ≈α X follows from a#X and b#X . Also
[a]a ≈α [b]b and [a]c ≈α [b]c but not [a]c ≈α [a]a; this is what we would expect.

Write Δ,∇ for sets of freshness constraints of the form a#X and call these
freshness contexts. We write Pr for an arbitrary set of freshness and equality
constraints; we may call Pr a problem. Substitutions act on constraints and
problems in the natural way. Write Δ 
 P when a derivation of P exists using
elements of Δ as assumptions, and extend this notation elementwise to Δ 
 Pr
for deducibility of all P ∈ Pr (see [21,11] for algorithms to check constraints).
For example, Δ 
 ∇θ means that the constraints obtained by applying the
substitution θ to each term in ∇ can be derived fromΔ. We will use this notation
in the definition of matching in Section 4.1.

The following result is one of the main technical correctness properties of
nominal terms, and we should compare it with Theorem 8.

Theorem 1. If Δ 
 a#s and Δ 
 s ≈α t then Δ 
 a#t.
Proofs, and further properties of nominal terms, are in [21,12].

3 Typing

3.1 Types and Type Schemes

We consider denumerable sets of
– base data types (write a typical element δ), e.g. N is a base data type for

numbers;
– type variables (write a typical variable α);
– type-formers (write a typical element C), e.g. List is a type-former.

Definition 1. Types τ , type-schemes σ, and type-declarations (or arities)
ρ are defined by:

τ ::= δ | α | τ1 × . . .× τn | C τ | [τ ′]τ σ ::= ∀α.τ ρ ::= (τ ′)τ

α denotes any finite set of type variables (if empty we omit the ∀ entirely); we
call them bound in σ and call free any type variables mentioned in σ and not in
α. We write TV (τ) for the set of type variables in τ , and ≡ for equality modulo
α-equivalence for bound variables1.
1 We could express types too using nominal syntax. We use the standard informal

treatment because we focus on the term language in this paper.
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We call τ1 × . . . × τn a product and [τ ]τ ′ an abstraction type. We say that
C τ is a constructed type, and we associate a type declaration to each term-
former. For example, we can have succ : (N)N and 0 : ()N (we may write just
0 : N in this case).

Basic type substitution. τ [α"→τ ′] is the usual inductive replacement of τ ′ for
every α in τ ; base cases are α[α"→τ ] ≡ τ and α[β "→τ ] ≡ α. We extend the action
elementwise to arities ρ, for example ((τ)τ ′)[α"→τ ′′] ≡

(
τ [α"→τ ′′]

)
(τ ′[α"→τ ′′]),

and to type-schemes σ in the usual capture-avoiding manner. For example:

([α]α)[α"→τ ]≡[τ ]τ (∀β.[β]α)[α"→β]≡∀β′.[β′]β ((α×β)α)[α"→β]≡(β×β)β

Type substitutions. S, T , U are defined by S ::= Id | S[α"→τ ] where Id is
the identity substitution: τId ≡ τ by definition (we also use Id for the identity
substitution on terms, but the context will always indicate which one we need).
S has an action on types τ , schemes σ, and arities ρ, given by the action of Id
and by extending the basic action of the last paragraph. We write application
on the right as τS, and write composition of substitutions just as SS′, meaning
apply S then apply S′. The domain of a substitution S, denoted dom(S), is the
set of type variables α such that αS �= α.

Substitutions are partially ordered by instantiation. Write mgu(τ, τ ′) (most
general unifier) for a least element S such that τS ≡ τ ′S (if one exists). We
refer the reader to [1] for detailed definitions and algorithms for calculating mgu.

Write σ � τ when σ ≡ ∀α.τ ′ and τ ′S ≡ τ for some S which instantiates only
type variables in α. τ may contain other type variables; only bound type variables
in σ may be instantiated, for example ∀α.(α×β) � (β×β) but (α×β) �� (β×β).

Also write ρ � ρ′ when ρS ≡ ρ′ for some S. In effect all variables in arities
are bound, but since they are all bound we do not write the ∀. For example
(α× α)α � (β × β)β � (N× N)N.

The following useful technical result follows by an easy induction:

Lemma 2. If σ � τ then σ[α"→τ ′] � τ [α"→τ ′]. Also if ρ � ρ′ then ρ � ρ′[α"→τ ′].

3.2 Typing Judgements

A typing context Γ is a set of pairs (a : σ) or (X : σ) subject to the condition
that if (a : σ), (a : σ′) ∈ Γ then σ ≡ σ′, similarly for X .

We write Γ, a : σ for Γ updated with (a : σ), where this means either Γ ∪
{(a : σ)} or (Γ \ {(a : σ′)})∪ {(a : σ)} as well-formedness demands. Similarly we
write Γ,X : σ. For example, if Γ = a : α then Γ, a : β denotes the context
a : β. We say that a (or rather its association with a type) is overwritten in
Γ . We write ΓS for the typing context obtained by applying S to the types in
Γ . Similarly, π·Γ denotes the context obtained by applying π to the atoms in Γ .
TV (Γ ) denotes the set of type variables occurring free in Γ .

Definition 2. A typing judgement is a tuple Γ ;Δ 
 s : τ where Γ is a typing
context, Δ a freshness context, s a term and τ a type (when Δ is empty we omit
the separating ′;′).
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We inductively define derivable typing judgements as follows:

σ � τ

Γ, a : σ;Δ 
 a : τ

σ � τ Γ ;Δ 
 π·X : )
Γ,X : σ;Δ 
 π·X : τ

Γ, a : τ ;Δ 
 t : τ ′

Γ ;Δ 
 [a]t : [τ ]τ ′

Γ ;Δ 
 ti : τi (1 ≤ i ≤ n)
Γ ;Δ 
 (t1, . . . , tn) : τ1 × . . .× τn

Γ ;Δ 
 t : τ ′ f : ρ � (τ ′)τ

Γ ;Δ 
 ft : τ
Here Γ ;Δ 
 π·X : ) holds if, for any a such that π·a �= a, Δ 
 a#X or
a : σ, π·a : σ ∈ Γ for some σ. The condition f : ρ � (τ ′)τ is shorthand for
f : ρ and ρ � (τ ′)τ . The way we set things up, the arity of f is fixed and � is
independent of Γ . In the rule for abstractions the type environment is updated.

We may write ‘Γ ;Δ 
 s : τ ’ for ‘Γ ;Δ 
 s : τ is derivable’.
To understand the condition in the second rule, note that π·X represents an

unknown term in which π permutes atoms. Unlike non-nominal α-equivalence,
α-equivalence on nominal terms exists in the presence of unknowns X for which
substitution does not avoid capture, as ([a]X)[X "→s] = [a]s demonstrates and as

the rules
s ≈α (a b)·t a#t

[a]s ≈α [b]t
and

ds(π, π′)#X

π·X ≈α π′·X
show. Our typing system is designed

to be compatible with this relation and so must be sophisticated in its treatment
of permutations acting on unknowns. For concreteness take π = (a b) and any
term t. If Γ 
 t : τ then Γ 
 (a b)·t : τ should hold when at least one of the
following conditions is satisfied:

1. (a b)Γ = Γ so that Γ cannot ‘tell the difference between a and b in t’.
2. If a and b occur in t then they are abstracted, so that what Γ says about a

and b gets overwritten.

Given Γ , Δ and s, if there exists τ such that Γ ;Δ 
 s:τ is derivable, then we
say Γ ;Δ 
 s is typable. Otherwise say Γ ;Δ 
 s is untypable.

The following are examples of derivable typing judgements:

a : ∀α.α,X : β 
 (a,X) : α× β a : ∀α.α,X : β 
 (a,X) : β × β

 [a]a : [α]α a : β 
 [a]a : [α]α 
 [a]a : [ζ]ζ

a : α, b : α,X : τ 
 (a b)·X : τ X : τ ; a#X, b#X 
 (a b)·X : τ
X : τ, a : α, b : α 
 [a]((a b)·X, b) : [α](τ × α)

a : α, b : β 
 ( [a](a, b), [a][b](a, b), a, b, [a][a](a, b)) :
[α](α × β)× [α][β](α × β)× α× β× [α][α](α × β).

a : α, b : β 
 ( [a](a, b), [a][b](a, b), a, b, [a]([a](a, b), a)) :
[α1](α1 × β)× [α2][β2](α2 × β2)× α× β× [α3]([α4](α4 × β), α3).

The first line of examples just illustrates some basic typings, and the use of �.
The second line illustrates typing abstractions and how this overwrites in Γ .
The third line illustrates how permutations are typed. The last three illustrate
interactions between typing and (multiple) abstractions and free occurrences of
atoms. Note that a : α,X : τ �
 (a b)·X : τ and a : α,X : τ ; b#X �
 (a b)·X : τ .

Lemma 3. If Γ ;Δ 
 t : τ then Γ [α"→τ ′];Δ 
 t : τ [α"→τ ′].
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Proof. By induction on the derivation, using Lemma 2 for the side-conditions.

Lemma 4. If Γ ;Δ 
 t:τ and a,b:σ ∈ Γ for some σ, then (a b)·Γ ;Δ 
 (a b)·t:τ .

Proof. By induction on the type derivation: The case for atoms is trivial. In the
case of a variable, the side condition holds since a and b have the same type in
Γ . The other cases follow directly by induction.

3.3 Principal Types

Definition 3. A typing problem is a triple (Γ,Δ, s), written: Γ ;Δ 
 s:?. A
solution to Γ ;Δ 
 s :? is a pair (S, τ) of a type-substitution S and a type τ
such that ΓS;Δ 
 s:τ . We write S|Γ for the restriction of S to TV (Γ ).

For example, solutions to X :α, a:β, b:β 
 (a b)·X :? are (Id, α) and ([α"→N],N).
Note that a solution may instantiate type-variables in Γ .

Solutions have a natural ordering given by instantiation of substitutions:

(S, τ) ≤ (S′, τ ′) when ∃S′′.S′ ≡ SS′′ ∧ τ ′ ≡ τS′′;

we call (S′, τ ′) an instance of (S, τ) using S′′. A minimal element in a set of
solutions is called a principal solution. By our definitions there may be many
principal solutions; (Id, α) and (Id, β) are both principal for X : ∀α.α 
 X :?.
As in the case of most general unifiers, principal solutions for a typable Γ ;Δ 
 s
are unique modulo renamings of type-variables. In a moment we show that the
following algorithm calculates principal solutions:

Definition 4. The partial function pt(Γ ;Δ 
 s) is defined inductively by:

– pt(Γ, a:∀α.τ ;Δ 
 a) = (Id, τ), where α ∈ α are assumed fresh (not in Γ )
without loss of generality.

– pt(Γ,X :∀α.τ ;Δ 
 π·X) = (S, τS) (again α ∈ α are assumed fresh) provided
that for each a in π such that a �= π·a, we have Δ 
 a#X, or otherwise
a : σ, π·a : σ′ ∈ Γ for some σ, σ′ that are unifiable. The substitution S is the
mgu of those pairs, or Id if all such a are fresh for X.

– pt(Γ ;Δ 
 (t1, . . . , tn)) = (S1. . .Sn, φ1S2 . . . Sn × . . . × φn−1Sn × φn) where
pt(Γ ;Δ 
 t1)=(S1, φ1), pt(ΓS1;Δ 
 t2)=(S2, φ2), . . . , pt(ΓS1 . . . Sn−1;Δ 

tn) = (Sn, φn).

– pt(Γ ;Δ 
 ft) = (SS′, φS′) where pt(Γ ;Δ 
 t) = (S, τ), f : ρ ≡ (φ′)φ
where the type variables in ρ are chosen distinct from those in Γ and τ , and
S′ = mgu(τ, φ′).

– pt(Γ ;Δ 
 [a]s) = (S|Γ , [τ ′]τ) where pt(Γ, a:α;Δ 
 s) = (S, τ), α is chosen
fresh, αS = τ ′.

Here Γ, a:α denotes Γ with any type information about a overwritten to
a:α, as discussed in Subsection 3.2.

pt(Γ ;Δ 
 s) may be undefined; Theorem 5 proves that s is untypable in the
environment Γ ;Δ.
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The definition above generalises the Hindley-Milner system [9] for the λ-
calculus with arbitrary function symbols f , as is standard in typing algorithms
for rewrite systems [2], and with atoms and variables (representing ‘unknown
terms’) with suspended atoms-permutations.

The treatment of typing for atoms, abstraction and moderated variables is
new; for example if Γ = X : τ, a : α, b : α, then Γ 
 [a](a b)·X : [α]τ but not
Γ 
 [a](a b)·X : [β]τ . However, Γ 
 [a]X : [β]τ as expected.
pt(Γ ;Δ 
 s) gives a static semantics in the form of a most general type to

s, given a typing of atoms and variables mentioned in s, and information about
what atoms may be forbidden from occurring in some variables.

Theorem 5.
1. If pt(Γ ;Δ 
 s) is defined and equal to (S, τ) then ΓS;Δ 
 s : τ is derivable.
2. Let U be a substitution such that dom(U) ⊆ TV (Γ ). If ΓU ;Δ 
 s : μ is

derivable then pt(Γ ;Δ 
 s) is defined and (U, μ) is one of its instances.

That is: (1) “pt(Γ ;Δ 
 s) solves (Γ ;Δ 
 s:?)”, and (2) “any solution to (Γ ;Δ 

s:?) is an instance of pt(Γ ;Δ 
 s)”.

Proof. The first part is by a routine induction on the derivation of pt(Γ ;Δ 

s) = (S, τ) (using Lemma 3), which we omit. The second part is by induction
on the syntax of s:

– Suppose ΓU ;Δ 
 π·X : μ. Examining the typing rules, we see that X : ∀α.τ
∈ Γ andX : ∀α.τU ∈ ΓU , that ΓU ;Δ 
 π·X : ), and that μ = τUS for some
S acting only on α (U acts trivially on α because we assume α was chosen
fresh). Hence, for each a such that a �= π·a, we haveΔ 
 a#X , or, for some σ,
a : σ, π·a : σ ∈ ΓU , that is, a : σ1, π·a : σ2 ∈ Γ . Let V be the mgu of all such
pairs σ1, σ2, so U = V S′ (we take V = Id if there are no pairs to consider).
Thus, pt(Γ ;Δ 
 π·X) = (V, τV ). Therefore, (U, μ) = (V S′S, τV S′S).

– Suppose ΓU ;Δ 
 a : μ. Clearly a is typable in the context Γ ;Δ so (exam-
ining the typing rules) a : ∀α.τ must occur in Γ and pt(Γ ;Δ 
 a) = (Id, τ).
It is now not hard to satisfy ourselves that (Id, τ) is principal.

– Suppose ΓU ;Δ 
 [a]t:μ. This may happen if and only if μ ≡ [μ′]μ′′ and
(U [α "→ μ′], μ′′) solves Γ, a : α;Δ 
 t:?, where α is fresh for Γ . By inductive
hypothesis (U [α "→ μ′], μ′′) is an instance of (S, τ) = pt(Γ, a : α;Δ 
 t), that
is, there is a substitution Ua such that U [α "→ μ′] = SUa, μ′′ = τUa. By
definition, pt(Γ ;Δ 
 [a]t) = (S|Γ , [τ ′]τ) where τ ′ = αS. So (SUa)|Γ = U
and αSUa = μ′. Therefore (U, [μ′]μ′′) is an instance of (S|Γ , [αS]τ).

– The cases for (t1, . . . , tn) and ft are long, but routine.

Corollary 6. Γ ;Δ 
 s is typable if and only if pt(Γ ;Δ 
 s)=(Id, τ) for some τ .

3.4 α-Equivalence and Types

We now prove that α-equivalence respects types; so our static semantics correctly
handles swappings and variables X whose substitution can move atoms into new
abstracted (typing) contexts. We need some definitions: Given two type contexts
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Γ and Γ ′, write Γ, Γ ′ for that context obtained by updating Γ with typings in
Γ ′, overwriting the typings in Γ if necessary. For example if Γ = a : α and
Γ ′ = a : β, b : β then Γ, Γ ′ = a : β, b : β. If Γ and Γ ′ mention disjoint sets of
atoms and variables (we say they are disjoint) then Γ, Γ ′ is just a set union.

Lemma 7
1. If Γ ;Δ 
 s : τ then Γ, Γ ′;Δ 
 s : τ , provided that Γ ′ and Γ are disjoint.

Call this type weakening.
2. If Γ, a : τ ′;Δ 
 s : τ then Γ ;Δ 
 s : τ provided that Δ 
 a#s. Call this type

strengthening (for atoms).
3. If Γ,X : τ ′;Δ 
 s : τ then Γ ;Δ 
 s : τ provided X does not occur in s. Call

this type strengthening (for variables).

Proof. By induction on the derivation. For the second part, if a occurs in s under
an abstraction, then a : τ ′ is overwritten whenever a is used.

Theorem 8. Δ 
 s ≈α t and Γ ;Δ 
 s : τ imply Γ ;Δ 
 t : τ .

Proof. By induction on the size of (s, t). The form of t is rather restricted by
our assumption that Δ 
 s ≈α t — for example if s ≡ π·X then t ≡ π′·X for
some π′. We use this information without commment in the proof.

– Suppose Δ 
 a ≈α a and Γ ;Δ 
 a : τ . There is nothing to prove.
– Suppose Δ 
 [a]s ≈α [a]t and Γ ;Δ 
 [a]s : τ . Then Δ 
 s ≈α t, and
τ ≡ [τ ′]τ ′′, and Γ, a : τ ′;Δ 
 s : τ ′′. We use the inductive hypothesis to
deduce that Γ, a : τ ′;Δ 
 t : τ ′′ and concluce that Γ ;Δ 
 [a]t : [τ ′]τ ′′.

– Suppose Δ 
 [a]s ≈α [b]t and Γ ;Δ 
 [a]s : τ . Then by properties of
≈α [21, Theorem 2.11] we know Δ 
 s ≈α (a b)·t, a#t, (a b)·s ≈α t, b#s.
Also τ ≡ [τ ′]τ ′′ and Γ, a : τ ′;Δ 
 s : τ ′′. By Lemma 7 (Weakening) also
Γ, a : τ ′, b : τ ′;Δ 
 s : τ ′′. By equivariance (Lemma 4) (a b)·Γ, b : τ ′, a :
τ ′;Δ 
 (a b)·s : τ ′′. SinceΔ 
 (a b)·s ≈α t, by inductive hypothesis (a b)·Γ, b :
τ ′, a : τ ′;Δ 
 t : τ ′′.

Now note that (a b)·Γ, b : τ ′, a : τ ′ = Γ, b : τ ′, a : τ ′ (because any data Γ
has on a and b is overwritten). So Γ, b : τ ′, a : τ ′;Δ 
 t : τ ′′. We conclude
that Γ, b : τ ′, a : τ ′;Δ 
 [b]t : [τ ′]τ ′′. Since Δ 
 a#[b]t and Δ 
 b#[b]t by
Lemma 7 (strengthening for atoms) we have Γ ;Δ 
 [b]t : [τ ′]τ ′′.

– Suppose Δ 
 π·X ≈α π′·X and suppose Γ ;Δ 
 π·X : τ . Then Δ 

ds(π, π′)#X , and X : σ ∈ Γ , and σ � τ , and Γ ;Δ 
 π·X : ).
Δ 
 ds(π, π′)#X so Γ ;Δ 
 π′·X : ) and Γ ;Δ 
 π′·X : τ follows.

– The cases of ft and (t1, . . . , tn) follow easily.

Corollary 9. Δ 
 s ≈α t implies pt(Γ ;Δ 
 s) = pt(Γ ;Δ 
 t) modulo renam-
ings of type variables, for all Γ,Δ such that either side of the equality is defined.

4 Rewriting

We now consider how to make a notion of nominal rewriting (i.e., a theory of
general directed equalities on nominal terms [12]) interact correctly with our
type system. We start with some definitions taken from [12].
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A nominal rewrite rule R ≡ ∇ 
 l → r is a tuple of a freshness context ∇,
and terms l and r such that V (r,∇) ⊆ V (l). Write R(a b) for that rule obtained by
swapping a and b in R throughout. For example, if R ≡ b#X 
 [a]X → (b a)·X
then R(a b) ≡ a#X 
 [b]X → (a b)·X . Let RId ≡ R and R(a b)◦π = (R(a b))π .
Let R range over (possibly infinite) sets of rewrite rules. Call R equivariant
when if R ∈ R then R(a b) ∈ R for all distinct atoms a, b. A nominal rewrite
system is an equivariant set of nominal rewrite rules.

Say a term s has a position at X when it mentions X once, with the per-
mutation Id. We may call X a hole. Write s[s′] for s[X "→s′].2 We would usually
call s a ‘context’ but we have already used this word so we will avoid it. For
example, X and [a]X have positions at X , but (X,X) and (a b)·X do not. We
may make X nameless and write it just -.

Definition 5. Suppose pt(Φ;∇ 
 l) = (Id, τ) and suppose that Φ mentions no
type-schemes. All the recursive calls involved in calculating pt(Φ;∇ 
 l) have
the form pt(Φ,Φ′;∇ 
 l′) where l′ is a subterm of l and Φ′ contains only type
assumptions for atoms. We will call recursive calls of the form pt(Φ,Φ′;∇ 

π·X) = (S, τ ′) variable typings of Φ;∇ 
 l : τ .

Note that there is one variable typing for each occurrence of a variable in l, and
they are uniquely defined modulo renaming of type variables. Also, S may affect
Φ′ but not Φ since we assume that pt(Φ;∇ 
 l) = (Id, τ).

Definition 6. Let pt(Φ,Φ′;∇ 
 π·X) = (S, τ ′) be a variable typing of Φ;∇ 

l : τ , and let Φ′′ be the subset of Φ′ such that ∇ 
 A(Φ′\Φ′′)#π·X. We call
Φ,Φ′′S;∇ 
 π·X : τ ′ an essential typing of Φ;∇ 
 l : τ .

So the essential typings of a : α, b : α,X : τ 
 ((a b)·X, [a]X) : τ × [α′]τ are:

a : α, b : α,X : τ 
 (a b)·X : τ and b : α, a : α′, X : τ 
 X : τ .

The essential typings of a : α, b : α,X : τ ; a#X 
 ((a b)·X, [a]X) : τ × [α′]τ are:

b : α,X : τ 
 (a b)·X : τ and b : α,X : τ 
 X : τ .

We will talk about the typing at a position in a term; for example the
typing at Z in (Z, [a]X)[Z "→ (a b)·X ] in the first example above (with hole
named Z) is a : α, b : α,X : τ 
 (a b)·X : τ .

4.1 Matching Problems

Definition 7. A (typed) matching problem (Φ;∇ 
 l) ?≈ (Γ ;Δ 
 s) is a
pair of tuples (Φ and Γ are typing contexts, ∇ and Δ are freshness contexts, l
and s are terms) such that the variables and type-variables mentioned on the left-
hand side are disjoint from those mentioned in Γ,Δ, s, and such that Φ mentions
no atoms or type-schemes.
2 Here ‘positions’ are based on substitution and not paths in the abstract syntax tree

as in [10]. The equivalence is immediate since substitution is grafting.
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Below, l will be the left-hand side of a rule and s will be a term to reduce. The
condition that Φ mentions no atoms or type-schemes may seem strong, but is all
we need: we give applications in Section 4.3.

Intuitively, we want to make the term on the left-hand side of the matching
problem α-equivalent to the term on the right-hand side. Formally, a solution
to this matching problem, if it exists, is the least pair (S, θ) of a type- and term-
substitution (the ordering on substitutions extends to pairs component-wise)
such that:

1. Xθ ≡ X for X �∈ V (Φ,∇,l), αS ≡ α for α�∈TV (Φ)3, Δ 
 lθ≈αs and Δ 
 ∇θ.
2. pt(Φ;∇ 
 l) = (Id, τ), pt(Γ ;Δ 
 s) = (Id, τS), and for each Φ,Φ′;∇ 

π·X : φ′ an essential typing in Φ;∇ 
 l : τ , we have Γ, (Φ′S);Δ 
 (π·X)θ : φ′S.

The first condition defines a matching solution for untyped nominal terms
(see [21,12] for more details on untyped nominal matching algorithms). The last
condition enforces type consistency: the terms should have compatible types, and
the solution should instantiate the variables in a way that is compatible with
the typing assumptions. When the latter holds, we say that (S, θ) respects the
essential typings of Φ;∇ 
 l : τ in the context Γ ;Δ.

For example, (X :α 
 X) ?≈ (a:B 
 a) has solution ([α"→B], [X "→a]), whereas
(X :B 
 X) ?≈ (a:α 
 a) has no solution — α on the right is too general.

To see why we need to check θ in the second condition, consider the term
g(f T rue) where g : (α)N and f : (β)N, that is both functions are polymorphic,
and produce a result of type N. Then the untyped matching problem g(f X)) ?≈
g(f T rue) has a solution (Id, {X "→ True}), but the typed matching problem
(X : N 
 g(f X)) ?≈ (
 g(f T rue)) has none: {X "→ True} fails the last
condition sinceX is required to have type N but it is instantiated with a boolean.

4.2 Typed Rewriting

Definition 8. A (typed) rewrite rule R ≡ Φ;∇ 
 l → r : τ is a tuple of a
type context Φ which only types the variables in l and has no type-schemes (in
particular, Φ mentions no atoms), a freshness context ∇, and terms l and r such
that

1. V (r,∇, Φ) ⊆ V (l),
2. pt(Φ;∇ 
 l) = (Id, τ) and Φ;∇ 
 r : τ .
3. Essential typings of Φ;∇ 
 r : τ are also essential typings of Φ;∇ 
 l : τ .

The first condition is standard. The second condition says that l is typable
using Φ and ∇, and r is typable with a type at least as general. The third
condition ensures a consistency best explained by violating it: Let f : ([α]N)N,
then X : N 
 f([a]X) → X : N passes the first two conditions, but fails the
third because in the right-hand side we have an essential typing X : N 
 X : N

whereas in the left-hand side we have X : N, a : α 
 X : N. For comparison,
3 So in particular, by the side-conditions on variables being disjoint between left and

right of the problem, Xθ ≡ X for X∈V (Γ, Δ, s) and αS ≡ α for α ∈ TV (Γ ).
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X : N 
 g([a]X) → [a]X : [α]N with g : ([α]N)[α]N passes all three conditions
and is a valid rewrite rule, as well as X : N; a#X 
 f([a]X)→ X .

The rewrite relation is defined on terms-in-context: Take Γ ;Δ 
 s and Γ ;Δ 

t, and a rule R ≡ Φ;∇ 
 l → r : τ , such that V (R) ∩ V (Γ,Δ, s, t) = ∅, and
TV (R) ∩ TV (Γ ) = ∅ (renaming variables in R if necessary). Assume Γ ;Δ 
 s
is typable: pt(Γ ;Δ 
 s) = (Id, μ), s ≡ s′′[s′] and Γ ′;Δ 
 s′ : μ′ is the typing of
s′ at the corresponding position. We say that s rewrites with R to t in the
context Γ ;Δ and write Γ ;Δ 
 s R→ t when:

1. (Φ;∇ 
 l) ?≈ (Γ ′;Δ 
 s′) has solution (S, θ).
2. Δ 
 s′′[rθ] ≈α t.

These conditions are inherited from nominal rewriting [10,12] and extended
with types. Instantiation of X does not avoid capture, so an atom a introduced
by a substitution may appear under different abstractions in different parts of
a term. We must pay attention to the typing at the position of the variable in
the rewrite; essential typings do just this. For example if f : (τ1)τ , g : (τ)[α]τ
and R ≡ X : τ 
 gX → [a]X : [α]τ then pt(X : τ 
 gX) = (Id, [α]τ) and
X : τ 
 [a]X : [α]τ . R satisfies the first two conditions in the definition of typed
rule but fails the third: the only essential typing in the left-hand side is X : τ 

X : τ , whereas in the right-hand side we have X : τ, a : α 
 X : τ . Notice that
a : τ1 
 g(fa) : [α]τ and the typed matching problem (X : τ 
 gX) ?≈ (a : τ1 

g(fa)) has a solution (Id, {X "→ fa}). So, if we ignore the third condition in the
definition of typed rule, we have a rewriting step a : τ1 
 g(fa)→ [a](fa) which
does not preserve types: a : τ1 
 g(fa) : [α]τ but a : τ1 �
 [a](fa) : [α]τ .

We need a lemma to prove Subject Reduction (Theorem 11):

Lemma 10. Suppose that Φ;∇ 
 r : τ , where Φ types only variables in r (it
mentions no atoms) and has no type schemes. Let θ be a substitution instantiat-
ing all variables in r, and such that (S, θ) respects the essential typings of Φ;∇ 

r : τ in the context Γ,Δ, that is, for each essential typing Φ,Φ′;∇ 
 π·X : τ ′ of
Φ;∇ 
 r : τ , it is the case that Γ, Φ′S;Δ 
 (π·X)θ : τ ′S. Then Γ ;Δ 
 rθ : τS.

Theorem 11 (Subject Reduction). Let R ≡ Φ;∇ 
 l→ r : τ . If Γ ;Δ 
 s : μ
and Γ ;Δ 
 s R→ t then Γ ;Δ 
 t : μ.

Proof. It suffices to prove that if pt(Γ ;Δ 
 s) = (Id, ν) and Γ ;Δ 
 s R→ t then
Γ ;Δ 
 t : ν. Suppose Γ ;Δ 
 s R→ t. Then (using the notation in the definition
of matching and rewriting above) we know that:
1. s ≡ s′′[s′], Δ 
 lθ ≈α s

′, and Δ 
 ∇θ.
2. θ acts nontrivially only on the variables in R, not those in Γ,Δ, s.
3. Assuming Γ ′;Δ 
 s′ : ν′ is the typing of s′, then Γ ′, Φ′S;Δ 
 (π·X)θ : φ′S

for each essential typing Φ,Φ′;∇ 
 π·X : φ′ in Φ;∇ 
 l : τ (therefore also for
each essential typing in Φ;∇ 
 r : τ since they are a subset).

4. pt(Φ;∇ 
 l) = (Id, τ) and pt(Γ ′, Δ 
 s′) = (Id, τS) so there is some S′ such
that Γ ′S′ = Γ ′ and τSS′ = ν′.

5. Δ 
 s′′[rθ] ≈α t.
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By Theorem 8, from 3, 4 and 1 we deduce Γ ′;Δ 
 lθ : τSS′. Since pt(Φ;∇ 
 l) =
(Id, τ), by our assumptions on rewrite rules also Φ;∇ 
 r : τ , and by Lemma 3
also ΦSS′;∇ 
 r : τSS′. By Lemma 10, Γ ′;Δ 
 rθ : τS. Since Γ ′S′ = Γ ′, by
Lemma 3 also Γ ′;Δ 
 rθ : τSS′. Hence Γ ;Δ 
 s′′[rθ] : ν as required.

4.3 Examples

Untyped λ-calculus. Suppose a type Λ and term-formers lam : ([Λ]Λ)Λ, app :
(Λ×Λ)Λ, and sub : ([Λ]Λ×Λ)Λ, sugared to λ[a]s, s t, and s[a "→t]. Rewrite rules
satisfying the conditions in Definition 8 are:

X,Y :Λ 
 (λ[a]X)Y → X [a "→Y ]:Λ X, Y :Λ; a#X 
 X [a "→Y ]→ X :Λ
Y :Λ 
 a[a "→Y ]→ Y :Λ X, Y :Λ; b#Y 
 (λ[b]X)[a "→Y ]→ λ[b](X [a "→Y ]):Λ

X, Y, Z:Λ 
 (XY )[a "→Z]→ X [a "→Z]Y [a "→Z]:Λ

The freshness conditions are exactly what is needed so that no atom moves
across the scope of an abstraction (which might change its type). For instance,
in rule X,Y :Λ; a#X 
 X [a "→Y ]→ X :Λ, X is under an abstraction for a in the
left-hand side and not in the right-hand side, but we have a#X .

The typed λ-calculus Suppose a type-former ⇒ of arity 2 and term-formers
λ : ([α]β)(α ⇒ β), ◦ : (α ⇒ β × α)β, and σ : ([α]β × α)β. Sugar as in the
previous example, so, instead of σ([a]s, t) we write s[a "→t]. Then the following
rewrite rules satisfy the conditions in Definition 8:

X : α, Y : β; a#X 
 X [a "→Y ]→ X : α Y : γ 
 a[a "→Y ]→ Y : γ
X : α⇒ β, Y : α, Z : γ 
 (XY )[a "→Z]→ (X [a "→Z])(Y [a "→Z]) : β
X : β, Y : γ; b#Y 
 (λ[b]X)[a "→Y ]→ λ[b](X [a "→Y ]) : α⇒ β

For the β-reduction rule we mention two variants; they give the same rewrites:

X :[α]β, Y :α 
 (λX)Y → σ(X,Y ) : β X :β, Y :α 
 (λ[a]X)Y → σ([a]X,Y ) : β

Assume types B and N. Then B : B, N : N 
 ((λ[a]a)B, (λ[a]a)N) : B× N and

B : B, N : N 
 ((λ[a]a)B, (λ[a]a)N) → (B,N) : B× N.

λ[a]a takes different types just like λx.x in the Hindley-Milner type system;
pt(
 λ[a]a) = (Id, α ⇒ α). Our system will not type B : B, N : N 
 BN or
λ[a]aa — the system for the untyped λ-calculus above, types the second term.

Surjective pairing. Rewrites for surjective pairing cannot be implemented by a
compositional translation to λ-calculus terms [4]. Our system deals with rules
defining surjective pairing directly; assume fst : (α× β)α and snd : (α × β)β:

X : α, Y : β 
 fst(X,Y )→ X : α X : α, Y : β 
 snd(X,Y ) → Y : β
X : α× β 
 (fst(X), snd(X))→ X : α× β
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Higher-order logic. Extend the typed λ-calculus above with a type Prop and
term-formers � : Prop, ⊥ : Prop, = : (α × α)Prop, ∀ : ([α]Prop)Prop, ∧:
(Prop× Prop)Prop, and so on. Rewrite rules include:

X : α 
 X = X → � : Prop X : Prop; a#X 
 ∀[a]X → X : Prop
X, Y : Prop 
 ∀[a](X ∧ Y )→ ∀[a]X ∧ ∀[a]Y : Prop

Arithmetic. Extend further with a type N, term-formers 0 : N, succ : (N)N,
+ : (N× N)N and =: (α × α)Prop. Observe that λ[a]succ(a) has principal type
N ⇒ N whereas λ[a]0 has principal type α⇒ N. Likewise, ∀[a](a = 0) is typable
(with type Prop) whereas ∀[a](λ[a]succ(a) = 0) is not typable.

5 Conclusions and Future Work

We have defined a syntax-directed type inference algorithm for nominal terms.
It smoothly resolves the tension between the denotational intuition of a type
as a set, and the syntactic intuition of a variable in nominal terms as a term
which may mention atoms. The algorithm delivers principal types (our function
pt). The types produced resemble the Hindley-Milner polymorphic type system
for the λ-calculus, but are acting on nominal terms which include variables X
representing context holes as well as atoms a representing program variables,
and such that the same atom may occur in many different abstraction contexts
and thus may acquire different types in different parts of the term.

Theorem 8 proves our types compatible with the powerful notion of
α-equivalence inherited from nominal terms [21]. Theorem 11 shows that a
notion of typed nominal rewrite rule exists which guarantees preservation of
types.

Our system is in Curry style; type annotations on terms are not required. We
do rely on type declarations for function symbols (arities) and in future we may
investigate inferring the type of a function from its rewrite rules.

Type inference is well-studied for the λ-calculus and Curry-style systems also
exist for first-order rewriting systems [2] and algebraic λ-calculi (which combine
term rewriting and λ-calculus) [3]. We know of no type assignment system for
the standard higher-order rewriting formats (HRSs use a typed metalanguage,
and restrict rewrite rules to base types).

Our type system has only rank 1 polymorphism (type-variables are quantified,
if at all, only at the top level of the type). It should be possible to consider more
powerful systems, for instance using rank 2 polymorphic types, or intersection
types [6]. The latter have been successfully used to provide characterisations of
normalisation properties of λ-terms. Normalisation of nominal rewriting using
type systems is itself a subject for future work, and one of our long-term goals
in this work is to come closer to applying logical semantics such as intersection
types, to nominal rewriting.
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Abstract. It is well-known, due to the work of Girard and Coquand,
that adding polymorphic domains to higher order logic, HOL, or its type
theoretic variant λHOL, renders the logic inconsistent. This is known
as Girard’s paradox, see [4]. But there is also another presentation of
higher order logic, in its type theoretic variant called λPREDω, to which
polymorphic domains can be added safely, Both λHOL and λPREDω
are well-known type systems and in this paper we study why λHOL
with polymorphic domains is inconsistent and why nd λPREDω with
polymorphic domains remains consistent. We do this by describing a
simple model for the latter and we show why this can not be a model of
the first.

1 Introduction

We study extensions of higher order logic HOL in the context of typed lambda
calculi. It is known that extensions of higher order logic with polymorphic do-
mains are inconsistent. This was established by Girard [11] and later this result
was refined by Coquand [7] who showed that quantification over the collection
of all domains wasn’t needed to obtain the inconsistency. On the other hand,
there are systems like the Calculus of Constructions (CC, [6]), which are con-
sistent extensions of higher order logic in which we have polymorphic types. It
is not so easy to relate CC directly to HOL, because in CC there is no syn-
tactic distinction between domains and propositions (and therefore between set
objects and proof objects). In this paper we therefore study the addition of poly-
morphic types in the context of a system of higher order order logic, presented
as a (isomorphic) type theory following the Curry Howard formulas-as-types
isomorphism. See [14] for an overview of formulas-as-types.

We present two isomorphic type systems for higher order logic, λHOL and
λPREDω, and we show why in the first case, the addition of polymorphic
sets leads to inconsistency, and in the second case it does not. This is done
by describing a model for λHOL (and therefore for λPREDω), and to see
how that can be extended to a model for λPREDω+: higher order logic with
polymorphism.

The model construction that we use is a variation of models described in [16].
It uses sets of untyped terms as the interpretation of types and is closely related
to a saturated sets model. However, we will not make this connection precise.
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The main contribution of the paper is a clarification of the fact that λPREDω
with polymorphic sets is consistent. The clue is that the “standard” model for
higher order logic, where arrow types are interpreted as set theoretic function
spaces does not work anymore if one adds polymorphic types (Reynolds [15]
result), but that one can shift the interpretation of types one level lower, in-
terpreting the arrow type σ→τ as the collection of terms (from a combinatory
algebra) that map terms of σ to terms of τ . This is basically Tait’s [17] construc-
tion for saturated sets.

2 Higher Order Logic as a Pure Type System

2.1 Higher Order Predicate Logic

Definition 1. The language of HOL is defined as follows.

1. The set of domains, D is defined by

D ::= Base |Ω |D→D,

where Base represents the set of basic domains (we assume that there are
countably many basic domains) and Ω represents the domain of propositions.

2. For every σ ∈ D, the set of terms of domain σ, Termσ is inductively defined
as follows. (As usual we write t : σ to denote that t is a term of domain σ.)
(a) the constants cσ1 , c

σ
2 , . . . are in Termσ,

(b) the variables xσ
1 , x

σ
2 , . . . are in Termσ,

(c) if ϕ : Ω and xσ is a variable, then (∀xσ .ϕ) : Ω,
(d) if ϕ : Ω and ψ : Ω, then (ϕ ⇒ ψ) : Ω,
(e) if M : σ→τ and N : σ, then (MN) : τ ,
(f) if M : τ and xσ is a variable, then (λxσ .M) : σ→τ .

3. The set of terms of HOL, Term, is defined by Term := ∪σ∈DTermσ.
4. The set of formulas of HOL, form, is defined by form := TermΩ.

We adapt the well-known notions of free and bound variable, substitution,
β-reduction and β-conversion to the terms of this system. The λ-abstraction
is both used for defining functions of higher type, like λf (σ→σ)→σ.f(λxσ.x) :
(σ→σ)→σ→σ, and for comprehension. Comprehension is the axiom scheme
∃X∀x(Xx ↔ ϕ), where x is the sequence of free variables of the formula ϕ.
Comprehension holds, because we can always take X := λx.ϕ.

A predicate is represented as a function to Ω, following the idea (probably
due to Church; it appears in [3]) that a predicate can be seen as a function
that takes a value as input and returns a formula. So, a binary relation over
σ is represented as a term in the domain σ→(σ→Ω). (If R : σ→(σ→Ω) and
t, q : σ, then ((Rt)q) : Ω.) The logical connectives are just implication and
universal quantification. Due to the fact that we have higher order universal
quantification, we can constructively express all other quantifiers using just ⇒
and ∀.



142 H. Geuvers

We fix the usual notational conventions that outside brackets are omitted and
that in the domains we omit the brackets by letting them associate to the right,
so σ→σ→Ω denotes σ→(σ→Ω). In terms we omit brackets by associating them
to the left, so Rtq denotes (Rt)q.

The derivation rules of HOL are given in a natural deduction style.

Definition 2. The notion of provability, Γ 
 ϕ, for Γ a finite set of formulas
(terms of domain form) and ϕ a formula, is defined inductively as follows.

(axiom)
Γ 
 ϕ if ϕ ∈ Γ

(⇒ -introduction)
Γ ∪ ϕ 
 ψ
Γ 
 ϕ ⇒ ψ

(⇒ -elimination)
Γ 
 ϕ Γ 
 ϕ ⇒ ψ

Γ 
 ψ

(∀-introduction)
Γ 
 ϕ

Γ 
 ∀xσ.ϕ
if xσ /∈ FV(Γ )

(∀-elimination)
Γ 
 ∀xσ.ϕ

Γ 
 ϕ[t/xσ]
if t : σ

(conversion)
Γ 
 ϕ
Γ 
 ψ

if ϕ =β ψ

Remark 1. The rule (conversion) is an operationalization of the comprehension
axiom. The rule says that we don’t want to distinguish between β-equal propo-
sitions.

2.2 Extension with Polymorphic Domains

Extending higher order logic with polymorphic domains makes the system incon-
sistent. This extension amounts to the system U−. Allowing also quantification
over all domains yields the system U . Both systems were defined in [11] and it
was shown there that U is inconsistent, which became known as Girard’s para-
dox. Later it was shown by [7] and [13] that U− is also inconsistent. We now
define these systems.

Definition 3. The set of domains of U− DU is defined by

D ::= Base |VarD |Ω |D→D |ΠA.D

where VarD is a set of variables ranging over DU and A ∈ VarD.
For σ ∈ DU , the set of terms of domain σ in U−, TermU−

σ is inductively
defined as follows.
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1. if t : ΠA.τ and σ ∈ DU , then tσ : τ [σ/A]
2. if t : τ , then λA.t : ΠA.τ

The derivation rules for U− are the same as for HOL.
The system U is the extension of U−, where the terms are extended as follows.

3. if ϕ : Ω, then ∀A.ϕ : Ω

The additional derivation rules for U are:

(∀2-introduction)
Γ 
 ϕ
Γ 
 ∀A.ϕ

if A /∈ FV(Γ )

(∀2-elimination)
Γ 
 ∀A.ϕ

Γ 
 ϕ[σ/A]
if σ ∈ DU

The systems U and U− are inconsistent, which can be phrased as “higher or-
der logic with polymorphic domains is inconsistent”. However, the Calculus of
Constructions [6] contains both higher order logic and polymorphic domains
but it is still consistent. How to understand this paradoxical situation will be
explained in this paper, using a model of higher order logic, defined as a typed
λ calculus.

The Calculus of Constructions is a type theory where no distinction between
objects and proofs is made. The Curry-Howard formulas-as-types embedding
gives an embedding of higher order logic into CC, but it is not conservative.
However, CC is consistent and contains higher order logic, so it must be possible
to extend HOL with polymorphic domains in a consistent way. To see that, we
define PREDω, which is a variant of HOL and its extension PREDω+, which
is higher order logic with polymorphic domains.

Definition 4. The set of domains of PREDω Dω is defined by

Dw ::= Ds |Dp

Dp ::= Ω |D→Dp

Ds ::= B |D→Ds

The rules for terms and the derivation rules are the same as for HOL.
The system PREDω+ is the extension of PREDω, where the domains Ds

are as follows.
Ds ::= Base |VarD |D→Ds |ΠA.Ds

where VarD is a set of variables ranging over Ds and A ∈ VarD.
For σ ∈ D, the set of terms of type σ in PREDω+, TermPREDω+

σ is induc-
tively defined as follows.

1. if t : ΠA.τ and σ ∈ Ds, then tσ : τ [σ/A]
2. if t : τ and τ ∈ Ds, then λA.t : ΠA.τ

The derivation rules for PREDω+ are the same as for PREDω.
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It can be shown that PREDω is isomorphic to HOL. The system PREDω+

is in flavor very close to U−, both being extensions of HOL with polymorphic
domains. However, PREDω+ is consistent.

2.3 Pure Type Systems for Higher Order Logic

In type theory, one interprets formulas and proofs via the well-known ‘formulas-
as-types’ and ‘proofs-as-terms’ embedding, originally due to Curry, Howard and
de Bruijn. (See [12].) Under this interpretation, a formula is viewed as the type
of its proofs. It turns out that one can define a typed λ-calculus λHOL that
represents HOL in a very precise way, see [1] or [8]. In this section we briefly
introduce the general framework of Pure Type Systems or PTSs. The reason for
defining the class of PTSs is that many known systems are (or better: can be
seen as) PTSs. Here we will focus on higher order logic seen as a PTS.

Definition 5. For S a set (the set of sorts), A ⊂ S ×S (the set of axioms)and
R ⊂ S ×S ×S (the set of rules), the Pure Type System λ(S,A,R) is the typed
lambda calculus with the following deduction rules.

(sort) 
 s1 : s2 if (s1, s2) ∈ A

(var)
Γ 
 T : s

Γ, x:T 
 x : T
if x /∈ Γ

(weak)
Γ 
 T : s Γ 
M : U

Γ, x:T 
M : U
if x /∈ Γ

(Π)
Γ 
 T : s1 Γ, x:T 
 U : s2

Γ 
 Πx:T.U : s3
if (s1, s2, s3) ∈ R

(λ)
Γ, x:T 
M : U Γ 
 Πx:T.U : s

Γ 
 λx:T.M : Πx:T.U

(app)
Γ 
M : Πx:T.U Γ 
 N : T

Γ 
MN : U [N/x]

(convβ)
Γ 
M : T Γ 
 U : s

Γ 
M : U
T =β U

If s2 ≡ s3 in a triple (s1, s2, s3) ∈ R, we write (s1, s2) ∈ R. In the derivation
rules, the expressions are taken from the set of pseudo-terms T defined by

T ::= S | V | (ΠV :T .T ) | (λV :T .T ) | T T .

The pseudo-term T is legal if there is a context Γ and a pseudo-term U such
that Γ 
 T : U or Γ 
 U : T is derivable. The set of legal terms of λ(S,A,R) is
denoted by Term(λ(S,A,R)).
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By convention we write A→B for Πx:A.B if x /∈ FV(B).
In the following, we describe a PTS by just listing the sorts, the axioms and

the rules in a box. For higher order logic HOL this amounts to the following
λHOL.

λHOL
S �,	, Δ
A � : 	,	 : Δ
R (�, �), (	,	), (	, �)

The formulas-as-types interpretation from higher order predicate logic HOL
into λHOL maps a formula to a type and a derivation (in natural deduction) of
a formula ϕ to a typed λ-term (of the type associated with ϕ):

Σ

ψ

"→ [[Σ]] : ([ψ])

where ([−]) denotes the interpretation of formulas as types and [[−]] denotes
the interpretation of derivations as λ-terms. In a derivation, we use expressions
from the logical language (e.g. to instantiate the ∀), which may contain free
variables, constants and domains. In type theory, in order to make sure that all
terms are well-typed, the basic items (like variables and domains) have to be
declared explicitly in the context. Also, a derivation will in general contain non-
discharged assumptions (ϕ1, . . . , ϕn) that will appear as declarations of variables
(z1 : ϕ1, . . . , zn : ϕn) in the type theoretic context. So the general picture is this.

ϕ1 . . . ϕn

Σ

ψ

"→ ΓΣ , z1 : ϕ1, . . . , zn : ϕn 
 [[Σ]] : ([ψ]),

where ΓΣ is the context that declares all domains, constants and free variables
that occur in Σ.

The system λHOL is stratified in the sense that one can alternatively define
it “layer by layer”, starting from the terms of type Δ, then the terms of type
A where A : Δ etc. We introduce some naming and notation conventions for
λHOL. Some of these depend on properties of λHOL that we do not prove
here.

Remark 2

1. There is only one term of type Δ, and that is 	.
2. A term of type 	 is called a kind. Typical kind names are σ, τ, . . .. So a kind

is a term σ with Γ 
 σ : 	 for some Γ . All kinds are of the shape σ1→ . . .→�
or σ1→ . . .→A with A a variable of type 	.

3. A term of type a kind is called a constructor. Typical constructor names are
P,Q, . . .. So a constructor is a term P with Γ 
 P : σ, where σ is a kind (so
Γ 
 σ : 	) for some Γ . If σ = �, then we call P a type. Typical type names
are ϕ, ψ, . . .. So a type is a term ϕ with Γ 
 ϕ : � for some Γ .
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4. An object is a term of a type, so a p with Γ 
 p : ϕ where ϕ is a type, for
some Γ . Typical object names are p, q, . . ..

Calling the kinds σ conforms with the use of these names in HOL, where the
domains were called σ. A domain in HOL corresponds with a kind in λHOL.

Remark 3. There are three “ways” of introducing a variable in λHOL. For each
of these cases we take the variables from a specific subset of Var and we use
specific notations for these variables. So we assume Var to be the disjoint subset
of VarΔ, Var� and Var�. The three cases are:

1. A : 	; we take these variables, the kind variables, from VarΔ and we use A
as a typical name for such a variable.

2. α : σ with σ : 	; we take these variables, the constructor variables, from
Var� and we use α as a typical name for such a variable.

3. x : ϕ with ϕ : �; we take these variables, the object variables, from Var� and
we use x as a typical name for such a variable.

Here is a visual way of thinking of these classes of terms

Δ Δ
.. ..
	 	
.. ..

kinds σ � a special kind
.. ..

constructors P ϕ types (a special case of constructors)
..
p objects

The systems U− and U can easily be seen as a Pure Type System as follows.

Definition 6. The systems λU− and λU are defined by adding to λHOL re-
spectively the rule (Δ,	) and the rules (Δ,	) and (Δ, �).

Another way of looking at higher order logic is the system PREDω. This can
be turned into a PTS as follows (originally due to [2]).

λPREDω
S Set,Types,Prop,Typep

A Set : Types,Prop : Typep

R (Set, Set), (Set,Typep), (Typep,Typep), (Prop,Prop),
(Set,Prop), (Typep,Prop)

It can be formally shown that λHOL and λPREDω are isomorphic. We will
come to that in Lemma 1. We can also view λPREDω in a stratified way and
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we could have introduced it in that way. This would be very close to starting off
from the domains, then the terms and then the proofs, as we did for PREDω.

Types

..
Set Typep Typep

.. .. ..
sets σ K Prop kinds (Prop is a special kind)

.. .. ..
set objects t P ϕ constructors (a type is a special constr.)

..
p proof objects

We can also add polymorphic types to λPREDω, which amounts to the
system λPREDω+

Definition 7. The system λPREDω+ is defined by adding to λPREDω the
rule (Types, Set).

We introduce two other known type systems as PTSs: Fω of [11] and the Calculus
of Constructions, CC of [6].

Fω
S �,	
A � : 	
R (�, �), (	,	), (	, �)

CC
S �,	
A � : 	
R (�, �), (�,	), (	, �), (	,	)

In view of higher order predicate logic, one can understand CC as the system
obtained by smashing the sorts Prop and Set into one, �. Hence, higher order
predicate logic can be done inside the Calculus of Constructions. We describe
the map from λPREDω to CC in detail in Definition 9.

The system Fω is known to be consistent. As a consequence, λHOL is consis-
tent: if we map all kind variables to �, then the rules are preserved, so we have
an embedding of λHOL into Fω, where ⊥ (:= Πα : �.α) is mapped to itself. As
⊥ is not inhabited in Fω, it is not inhabited in λHOL.

One can sometimes relate results of two different systems by defining an em-
bedding between them. There is one very simple class of embeddings between
PTSs.

Definition 8. For T = λ(S,A,R) and T ′ = λ(S′,A′,R′) PTSs, a PTS-
morphism from T to T ′ is a mapping f : S → S′ that preserves the axioms
and rules. That is, for all s1, s2 ∈ S, if (s1, s2) ∈ A then (f(s1), f(s2)) ∈ A′ and
if (s1, s2, s3) ∈ R then (f(s1), f(s2), f(s3)) ∈ R′.

A PTS-morphism f from λ(S,A,R) to λ(S′,A′,R′) immediately extends to
a mapping f on pseudo-terms and contexts. Moreover, this mapping preserves
reduction in a faithful way: M →β N iff f(M)→β f(N). We have the following
property.
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Proposition 1. For T and T ′ PTSs and f a PTS-morphism from T to T ′, if
Γ 
M : A in T , then f(Γ ) 
 f(M) : f(A) in T ′.

Definition 9. The following is a PTS-morphism h from λPREDω (and also
from λPREDω+) into CC.

h(Prop) = � h(Set) = �,
h(Typep) = 	 h(Types) = 	

Not all PTSs are strongly normalizing. We have the following well-known
theorem.

Theorem 1. The Calculus of Constructions, CC, is strongly normalizing, and
therefore the following PTSs are all strongly normalizing as well: all subsystems
of CC; λPRED; λPREDω; λPREDω+.

The proof that CC is strongly normalizing can be found in [10], [9], [2]. As a
direct consequence we find that all sub-systems of CC are strongly normalizing
and also all systems T for which there is a PTS-morphism from T to CC,
including PREDω+, see Definition 9 (Note that a PTS-morphism preserves
infinite reduction paths.)

Well-known examples of PTSs that are not strongly normalizing are λU
and λU−.

As a matter of fact, we now have two formalizations of higher order predicate
logic as a PTS: λHOL and λPREDω. We employ the notion of PTS-morphism
to see that they are equivalent. From λPREDω to λHOL, consider the PTS-
morphism f given by

f(Prop) = � f(Set) = 	,
f(Typep) = 	 f(Types) = Δ.

One immediately verifies that f preserves A and R, hence we have

Γ 
λPREDω M : A =⇒ f(Γ ) 
λHOL f(M) : f(A).

The inverse of f can almost be described as a PTS-morphism, but not quite.
Define the PTS-morphism g from λPREDω to λHOL as follows.

g(�) = Prop g(	) = Set g(Δ) = Types

(In λHOL the sort Δ can not appear in a context nor in a term on the left
side of the ‘:’.) We extend g to derivable judgments of λHOL in the following
way.

g(Γ 
M : A) = g(Γ ) 
 g(M) : g(A), if A �= Typep,

g(Γ 
M : Typep) = g(Γ ) 
 g(M) : Set, if M ≡ · · ·→α, (α a variable),
g(Γ 
M : Typep) = g(Γ ) 
 g(M) : Typep, if M ≡ · · ·→Prop.

By easy induction one proves that g preserves derivations. Furthermore, f(g(Γ 

M : A)) = Γ 
M : A and g(f(Γ 
M : A)) = Γ 
M : A.
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Lemma 1. The systems λPREDω and λHOL are equivalent.

This equivalence implies that the system λHOL is strongly normalizing as well.
But we already knew that, because it is also a consequence of the embedding of
λHOL into Fω and the fact that Fω is strongly normalizing.

The connection between these typed λ-calculi for higher order logic is de-
scribed in Figure 1.

�������

�������

λPREDω ⊂ λPREDω+

λHOL ⊂ U− ⊂ U

CCh

h

f f

g

Fig. 1. Morphisms and inclusions between calculi for higer order logic

3 The Model Construction

3.1 Combinatory Algebras

To model the set of pseudo-terms of type theories we can use combinatory alge-
bras (ca), or variants of combinatory algebras, like partial combinatory algebras
(pca) or conditionally partial combinatory algebras (c-pca). We only list the im-
portant notions here.

Definition 10. Acombinatoryalgebra (ca) is a structure 〈A, ·,k, s,=A〉 satisfying

(k · x) · y =A x , ((s · x) · y) · z =A (x · z) · (y · z)

The application (·) is usually not written. The set of terms over A (notation
T (A)) is defined by T ::= Var |A | T T .

Every ca is combinatory complete, i.e., for every T ∈ T (A) with FV(T ) ⊂ {x},
there exists an f ∈ A such that

f · a =A T [a/x] ∀a ∈ A.

Such an element f will be denoted by λx.T in the sequel. It is well-known that
one can define λ as the standard abstraction λ∗ with the help of the combinators
k and s by induction on the structure of terms.

In the following we could restrict ourselves completely to the combinatory
algebra (Λ, ·, λxy.x, λxyz.xz(yz),=β), where Λ is the set of (open, untyped)
λ-terms and · denotes application, which we usually don’t write. But the con-
structions apply more generally to other combinatory algebras, as long as they
are weakly extensional, i.e. if the following holds

A |= ∀x(T1 = T2)→ λx.T1 = λx.T2.
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The combinatory algebra CL (combinatory logic) is not weakly extensional.
The combinatory algebra (Λ, ·, λxy.x, λxyz.xz(yz),=β) is weakly extensional, if
we take for λx.T just λx.T or the λ-abstraction definable by k and s. It is well-
known that if we take for Λ the set of closed lambda terms, the ca is not weakly
extensional. Another interesting example of a weakly extensional ca is Λ(C),
the set of open λC -terms (i.e. lambda-terms over some constant set C) modulo
βc-equality, where the c-equality rule is defined by cN =c c, λv.c =c c (for all
c ∈ C and N ∈ ΛC).

3.2 The Model for λHOL

The notion of λHOL-structure and the interpretation of the typable terms of
λHOL are explained informally in the next paragraphs.

The typable terms of λHOL are mapped into a (set-theoretical) hierarchical
structure (called λHOL-structure) according to their classification as objects,
types, constructors, or kinds. The kinds of λHOL are interpreted as sets from
a predicative structure N, so Typep is interpreted as N. Predicative structures
are closed under set-theoretical function space construction. The impredicative
universe Prop is interpreted as a collection P of subsets of the underlying ca. We
call this collection polystructure and its elements polysets. P itself is an element of
N and is closed under non-empty intersections and a function space construction
(to be defined). Constructors are interpreted as elements of

⋃
X∈N

X (
⋃

N in short).

Their interpretations are called poly-functionals. In particular, types are mapped
to polysets.

Definition 11. A polyset structure over the weakly extensional combinatory
algebra A is a collection P ⊆ ℘(A) such that

1. A ∈ P,
2. P is closed under arbitrary non-empty intersection

⋂
: if I �= ∅ and ∀i ∈

I(Xi ∈ P), then
⋂

i∈I Xi ∈ P.
3. P is closed under function space, i.e. if X,Y ∈ P, then X→0Y ∈ P, where
X→0Y is defined as

{a ∈ A | ∀t ∈ X(a · t ∈ Y )}.

The elements of a polyset structure are called polysets.

Example 1

1. We obtain the full polyset structure over the weca A if we take P = ℘(A).
2. The simple polyset structure over the weca A is obtained by taking P =
{∅,A}. It is easily verified that this is a polyset structure.

3. Given the weca Λ(C) as defined in the previous Section (so C is a set of
constants), we define the polyset structure generated from C by

P := {X ⊆ Λ(C) | X = ∅ ∨C ⊆ X}.
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4. Given the weca A and a set C ⊆ A such that ∀a, b ∈ A(a ·b ∈ C =⇒ a ∈ C,
we define the power polyset structure of C by

P := {X ⊆ A |X ⊆ C ∨X = A}.
5. The degenerate polyset structure is P := {A}, in which all types are inter-

preted as A, so in this structure there are no empty types.

The function space of a polyset structure will be used to interpret types of
the form ϕ→ψ, where both ϕ and ψ are types. The intersection will be used
to interpret types of the form Πα:σ.ϕ, where σ is a kind and ϕ is a type. To
interpret types we need a predicative structure.

Definition 12. For P a polyset structure, the predicative structure over P is
the collection of sets N defined inductively by

1. P ∈ N,
2. If X,Y ∈ P, then X→1Y ∈ N, where →1 denotes the set-theoretic function

space.

Definition 13. If A is a weakly extensional combinatory algebra, P a polyset
structure over A and N the predicative structure over P, then we call the tuple
〈A,P,N〉 a λHOL-model.

Remark 4. It is possible to vary on the notions of polystructure and predicative
structure by requiring closure under dependent function spaces (in P and/or N).
In that case we obtain models that can interpret dependent types. For details
we refer to [16].

We now define the interpretation function [[−]], which maps kinds to elements
of N, constructors to elements of

⋃
N (and types to elements of P, which is

a subset of
⋃

N) and objects to elements of the combinatory algebra A. All
these interpretations are parameterized by valuations, assigning values to the
free variables (declared in the context).

Definition 14. A variable valuation is a map from VarΔ ∪ Var� ∪ Var� to
N ∪

⋃
N ∪ A that consists of the union of an object variable valuation ρ0 :

Var� → A, a constructor variable valuation ρ1 : Var� →
⋃

N and a kind variable
valuation ρ2 : VarΔ → N.

Definition 15. For ρ a valuation of variables, we define the map ([−])ρ on the
set of well-typed objects as follows. (We leave the model implicit.)

([x])ρ := ρ(x),
([tq])ρ := ([t])ρ · ([q])ρ, if q is an object,
([tQ])ρ := ([t])ρ, if Q is a constructor,

([λx:ϕ.t])ρ := λv.([t])ρ(x:=v), if ϕ is a type,

([λα:σ.t])ρ := ([t])ρ, if σ is a kind.

Here, λv.([t])ρ(x:=v) is the element of the A that is known to exist due to combi-
natory completeness, see the discussion after Definition 10.
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Definition 16. For ρ a valuation of variables, we define the maps V(−)ρ and
[[−]]ρ respectively from kinds to N and from constructors to

⋃
N as follows. (We

leave the model implicit.)

V(�)ρ := P,

V(A)ρ := ρ(A), if A is a kind variable,
V(σ→τ)ρ := V(σ)ρ→1V(τ)ρ,

[[α]]ρ := ρ(α),

[[Πα:σ.ϕ]]ρ :=
⋂

a∈V(σ)ρ

[[ϕ]]ρ(α:=a), if σ is a kind,

[[ϕ→ψ]]ρ := [[ϕ]]ρ→0[[ψ]]ρ, if ϕ, ψ are a types,
[[PQ]]ρ := [[P ]]ρ([[Q]]ρ),

[[λα:σ.P ]]ρ := λλa ∈ V(σ)ρ.[[P ]]ρ(α:=a).

Definition 17. For Γ a λHOL-context, ρ a valuation of variables, we say that
ρ fulfills Γ , notation ρ |= Γ , if for all A ∈ VarΔ, x ∈ Var� and α ∈ Var�, A ∈
	 ∈ Γ ⇒ ρ(A) ∈ N, α : σ ∈ Γ ⇒ ρ(α) ∈ V(σ)ρ and x : ϕ ∈ Γ ⇒ ρ(x) ∈ [[ϕ]]ρ.

It is (implicit) in the definition that ρ |= Γ only if for all declarations x:ϕ ∈ Γ ,
[[ϕ]]ρ is defined (and similarly for α:σ ∈ Γ ).

Definition 18. The notion of truth in a λHOL-model, notation |=S and of
truth, notation |= are defined as follows. For Γ a context, t an object, ϕ a type,
P a constructor and σ a kind of λHOL,

Γ |=S t : ϕ if ∀ρ[ρ |= Γ ⇒ ([t])ρ ∈ [[ϕ]]ρ],

Γ |=S P : σ if ∀ρ[ρ |= Γ ⇒ [[P ]]ρ ∈ V(σ)ρ].

Quantifying over the class of all λHOL-models, we define, for M an object or
a constructor of λHOL,

Γ |= M : T if Γ |=S M : T for all λHOL-models S.

Soundness states that if a judgment Γ 
M : T is derivable, then it is true in all
models. It is proved by induction on the derivation in λHOL.

Theorem 2 (Soundness). For Γ a context, M an object or a constructor and
T a type or a kind of λHOL,

Γ 
M : T ⇒ Γ |= M : T.

Example 2. Let A be a weca.

1. The full λHOL-model over A is S = 〈A,P,N〉, where P is the full polyset
structure over A (as defined in Example 1).

2. The simple λHOL-model over A is S = 〈A,P,N〉, where P is the simple
polyset structure over A. (So P = {∅,A}.)
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3. The simple λHOL-model over the degenerate A is also called the proof-
irrelevance model or PI-model for λHOL. Here P = {0, 1}, withe 0 = ∅ and
1 is the one-element set.

4. For C a set of constants, the λHOL-model generated from C is defined by
S = 〈Λ(C),P,N〉, where P is the polyset structure generated from C.

4 Extending the Model Construction

4.1 Extensions of λHOL

The model for λHOL can be extended to other type theories. First of all we
remark that the rule (Δ, �) can easily be interpreted by putting

[[ΠA:	.ϕ]]ρ :=
⋂

W∈N

[[ϕ]]ρ(A:=W ).

This can be interpreted in any model, so the extension of λHOL with the
rule (Δ, �) is consistent.

The rule (Δ,	) makes λHOL inconsistent. This can be observed in the model,
because the only possible interpretation in N for ΠA:	.σ would be

V(ΠA:	.σ)ρ :=
⋂

W∈N

V(σ)ρ(A:=W ),

which would only make sense if N were also a polyset structure. (If N were set
theoretic, V(ΠA:	.σ)ρ would just be empty.) But this can only be achieved
by taking P := {A}, the degenerate polyset structure. (See Example 1.) then
N := {{A}}, which can be seen as a predicative structure and is then closed
under →1. In this model all types are interpreted as the non-empty set A, which
conforms with the fact that λU− is inconsistent.

4.2 λPREDω and Extensions

As λHOL is isomorphic to λPREDω, we also have a model for λPREDω. As
we want to vary on the type theory λPREDω, we make the model construction
for λPREDω precise here. As a model we just take the definition of λHOL-
model as given in Definition 13.

Definition 19. A valuation of variables is a map from VarTypes

∪ VarTypep

∪
VarSet ∪ VarProp to N ∪

⋃
N ∪ A that consists of the union of an valuation of

proof object variables ρ0 : VarProp → A, a valuation of constructor variables
ρ1a : VarTypep

→
⋃

N, a valuation of set object variables ρ1b : VarSet →
⋃

N and
a valuation of set variables ρ2 : VarTypes

→ N.

Definition 20. For ρ a valuation of variables, we define the map ([−])ρ on the
set of well-typed proof objects of λPREDω as follows. (We leave the model
implicit.)
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([x])ρ := ρ(x),
([tq])ρ := ([t])ρ · ([q])ρ, if q is a proof object,
([tQ])ρ := ([t])ρ, if Q is a constructor or a set object,

([λx:ϕ.t])ρ := λv.([t])ρ(x:=v), if ϕ is a type,

([λα:U.t])ρ := ([t])ρ, if U is a kind or a set.

Definition 21. For ρ a valuation of variables, we define the maps V(−)ρ and
[[−]]ρ respectively from kinds of λPREDω to N and from constructors and set
objects of λPREDω to

⋃
N as follows. (We leave the model implicit.)

V(Prop)ρ := P,

V(A)ρ := ρ(A), if A ∈ VarTypes

,

V(σ→τ )ρ := V(σ)ρ→1V(τ)ρ,

[[α]]ρ := ρ(α), if α ∈ VarTypep

∪VarSet,

[[Πα:U.ϕ]]ρ :=
⋂

a∈V(U)ρ

[[ϕ]]ρ(α:=a), if U is a kind or a set,

[[ϕ→ψ]]ρ := [[ϕ]]ρ→0[[ψ]]ρ, if ϕ, ψ are a types,
[[PQ]]ρ := [[P ]]ρ([[Q]]ρ), if Q is a constructor or a set object,

[[λα:U.P ]]ρ := λλa ∈ V(U)ρ.[[P ]]ρ(α:=a) if U is a kind or a set.

For Γ a λPREDω-context, ρ a valuation of variables, the notion of ρ fulfills Γ
(ρ |= Γ ), is the similar to the one for λHOL:

A : Set ∈ Γ ⇒ ρ(A) ∈ N, α : σ ∈ Γ ⇒ ρ(α) ∈ V(σ)ρ (for σ a set), α : K ∈ Γ ⇒
ρ(α) ∈ V(K)ρ (for K a kind) and x : ϕ ∈ Γ ⇒ ρ(x) ∈ [[ϕ]]ρ.

The notion of truth is the same as for λHOL models (Definition 18) and we
also have a soundness result, like Theorem 2.

To compare the situation fro λHOL and λPREDω, we can take a look at
the two figures 2 and 3. The first describes how the different “levels” of λHOL
and λPREDω are interpreted in the model. (Forget about the part of dashed
arrows for now.) The second describes how the function spaces are interpreted
in the model. Again omit the dashed arrows and the part that is not between
the two dashed lines on the right.

We now want to look at λPREDω+, the extension of λPREDω with poly-
morphic kinds (higher order logic with polymorphic domains). In this system
we have types of the form ΠA:Set.A→A : Set and the system is known to be
consistent. According to the λPREDω semantics, we would have to put

V(ΠA:Set.A→A)ρ ∈ N,

but then we would have to interpret the Π either as a set-theoretic dependent
function space (which is not possible for cardinality reasons) or as an intersection,
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Fig. 3. Interpretation of the different (dependent) function spaces

and then N would have to be a polyset structure as well. The latter would amount
to a model in which all types are interpreted as non-empty sets, which is not
what we want.

The solution is to “shift” the interpretation of the sort Set one level down,
interpreting Set as P and σ : Set as a polyset. Then the interpretation of
ΠA:Set.A→A will be as follows.

[[ΠA:Set.A→A]]ρ =
⋂

X∈P

X→0X ∈ P.

This amounts to the dashed arrows in the Figures 2 and 3. In order to define
this interpretation we have to extend the notions of polyset structure and pred-
icative structure a bit. As we now have dependent types at the polyset level, we
need a dependent function type in P. Moreover, we have type dependent functions
from polysets to predicative sets.

Remark 5. The model for λPREDω+ that we describe below could also be seen
as a model for CC – e.g. as described in [16] – that we turn into a λPREDω+

model via the embedding h of Definition 9. (See also Figure 1.) However CC does
not permit a definition in “levels”, because kinds can depend on (proof)objects
etc., and therefore CC-models are quite complicated. So we opt for a primitive
notion of λPREDω+-model, which is simpler.
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However, the idea of using a CC-model does clarify the difference between
λPREDω-models and λPREDω+-models: a λPREDω-model is basically a
λHOL-model via the embedding f , while a λPREDω+-model is a CC-model
via the embedding h.

Definition 22. A polyset structure for λPREDω+ is a polyset structure that
is moreover closed under dependent function spaces, (→p in Figure 3): if F :
X → P is a function such that t =A q ⇒ F (t) = F (q), then P also contains

∏
A(X,F ) := {f ∈ A | ∀n ∈ X(f · n ∈ F (n))}

For convenience
∏

A(X,F ) will be denoted by
∏

A x ∈ X.F (x). Like in type
theory, if F is a constant function on X , say F (x) = Y , then

∏
A(X,F ) is just

the function space X→0Y .

Definition 23. A predicative structure for λPREDω+ over P is a predicative
structure that is moreover closed under function spaces from P to N, (→2 in
Figure 3): if X ∈ P and K ∈ N, then the following is also in N

X→2K := {h | ∀t, q ∈ X, t =A q ⇒ h(t) = h(q) ∈ K}.

Note that the elements of X→2K are set-theoretic functions.
We now make the model construction for λPREDω+ precise. As a model we

just take the definition of λHOL-model, where the polyset structure and the
predicative structure are as in Definitions 22, 23. The interpretations will be
such that they conform with the dashed arrows in Figures 2 and 3.

Definition 24. A valuation of variables for λPREDω+ is a map from VarTypes

∪
VarTypep

∪VarSet∪VarProp to N∪
⋃

N∪A that consists of the union of an valuation
of proof object variables ρ0 : VarProp → A, a valuation of constructor variables
ρ1a : VarTypep

→
⋃

N, a valuation of set object variables ρ1b : VarSet → A and a
valuation of set variables ρ2 : VarTypes

→ P.

Definition 25. For ρ a valuation of variables for λPREDω+, we define the
map ([−])ρ on the set of well-typed proof objects and set objects of λPREDω as
follows.

([x])ρ := ρ(x), if x ∈ VarProp ∪VarSet,

([tq])ρ := ([t])ρ · ([q])ρ, if q is a proof object or set object,
([tQ])ρ := ([t])ρ, if Q is a constructor or a set,

([λx:U.t])ρ := λv.([t])ρ(x:=v), if U is a type or a set,

([λα:K.t])ρ := ([t])ρ, if K is a kind or Set.

Definition 26. For ρ a valuation of variables, we define the maps V(−)ρ and
[[−]]ρ respectively from kinds of λPREDω+ and {Set} to N and from constructors
and sets of λPREDω+ to

⋃
N as follows.
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V(Prop)ρ := P,

V(Set)ρ := P,

V(K1→K2)ρ := V(K1)ρ→1V(K2)ρ, if K1 is a kind,
V(σ→K)ρ := [[σ]]ρ→2V(K)ρ, if σ is a set,

[[A]]ρ := ρ(A), if A ∈ VarTypes

,

[[α]]ρ := ρ(α), if α ∈ VarTypep

,

[[ΠA:Set.σ]]ρ :=
⋂

X∈P

[[σ]]ρ(A:=X),

[[K→σ]]ρ := [[σ]]ρ, if K is a kind,

[[Πα:K.ϕ]]ρ :=
⋂

a∈V(K)ρ

[[ϕ]]ρ(α:=a), if K is a kind,

[[Πα:σ.ϕ]]ρ :=
∏
A

t ∈ [[σ]]ρ.[[ϕ]]ρ(α:=t), if σ is a set,

[[U→T ]]ρ := [[U ]]ρ→0[[T ]]ρ, if T, U are types or sets,
[[PQ]]ρ := [[P ]]ρ([[Q]]ρ), if Q is a constructor,
[[Pt]]ρ := [[P ]]ρ(([t])ρ), if t is a set object,

[[λα:K.P ]]ρ := λλa ∈ V(K)ρ.[[P ]]ρ(α:=a) if K is a kind,

[[λα:σ.P ]]ρ := λλa ∈ [[σ]]ρ.[[P ]]ρ(α:=a) if σ is a set.

Similar to λHOL and λPREDω there is a soundness result for λPREDω+,
saying that, if the valuation ρ fulfills the context Γ , then if Γ 
 P : K (K a
kind or Set), then [[P ]]ρ ∈ V(K)ρ and if Γ 
 t : T (T a type or a set), then
([t])ρ ∈ [[T ]]ρ.

As a consequence of the model construction, λPREDω+ is consistent, but
we already knew that (because of the embedding into CC). It is noteworthy
that the model for λPREDω+ is very different from the model for λPREDω.
This is no surprise, because we know from [15] that polymorphism is not set-
theoretic, so a λPREDω model does not extend to a λPREDω+ model in a
direct way.

To illustrate this further we consider the following λPREDω context

Γ := B : Set, E : B→Prop, ε : Prop→B, h : Πα:Prop.E(εα) ↔ α.

Here, ↔ denotes bi-implication: ϕ ↔ ψ := ϕ→ψ ∧ ψ→ϕ. This context was
considered by Coquand in [5] as a context of CC, so Γ := B : �,E : B→�, ε :
�→B, h : Πα:�E(εα) ↔ α. It was shown that Γ is inconsistent, because one can
embed λU− into it. Here we use Γ to show the difference between λPREDω
and λPREDω+.

Lemma 2. Γ is consistent in λPREDω.
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Proof. Take a model in which ∅ ∈ P and take the valuation ρ as follows: ρ(B) :=
P, ρ(E) = ρ(ε) is the identity, ρ(h) := 〈λx.x, λx.x〉, where 〈−,−〉 is the definable
pairing constructor. Then ρ |= Γ and [[Πα:Prop.α]]ρ = ∅, so Γ is consistent1.

Lemma 3. Γ is inconsistent in λPREDω+.

It is instructive to first look at the interpretation of Γ in a λPREDω+ model.
Suppose ρ(B) = B. Then V(B→Prop)ρ = B→2P and [[Prop→B]]ρ = B. So for
a valuation ρ to fulfill Γ , we need that ρ(ε) ∈ B and ρ(E) ∈ B→2P such that
ρ(E)ρ(ε) ↔ X for any X ∈ P. This is only possible if P = {A}, the degenerate
polyset structure in which all polysets are non-empty.

We now give the proof of the Lemma, which basically follows Coquand’s proof
in [5] (but Coquand’s proof is for CC).

Proof. We embed λU− into the context Γ of λPREDω+ as follows.

Δ := Types ΠA:	.σ := ΠA:Types.σ
	 := Set σ→τ := σ→τ
� := B Πα:σ.ϕ := ε(Πα:σ.Eϕ)

ϕ→ψ := ε(Eϕ→Eψ)

Now one can prove the following

Γ ′ 
λU− M : T ⇒ Γ, Γ ′ 
λPREDω+ M : T if T : 	, Δ
Γ ′ 
λU− M : T ⇒ ∃N [Γ, Γ ′ 
λPREDω+ N : ET ] if T : �

Therefore Γ 
 N : E(Πα: � .α) for some N . But E(Πα: � .α) = E(ε(Πα:B.Eα))
↔ Πα:B.Eα, so we have a term of Πα:B.Eα. Taking ε⊥ for α, we have E(ε⊥)
and therefore ⊥. ��
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of this paper.

References

1. Barendregt, H.: Lambda calculi with types. In: Gabbai, D.M., Abramski, S.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Oxford Univ.
Press, Oxford (1992)

2. Berardi, S.: Type dependence and constructive mathematics. PhD thesis, Mathe-
matical Institute, University of Torino, Italy (1990)

3. Church, A.: A formulation of the simple theory of types. JSL (1940)
4. Coquand, Th.: An analysis of Girard’s paradox. In: Logic in Computer Science,

pp. 227–236. IEEE, Los Alamitos (1986)

1 Another way to prove the consistency is by using the morphism f to map Γ to
λHOL and to observe that the context f(Γ ) can be instantiated inside λHOL by
taking B := 	. So f(Γ ) is consistent in λHOL and so Γ is consistent in λPREDω.



(In)consistency of Extensions of Higher Order Logic and Type Theory 159

5. Coquand, Th.: Metamathematical investigations of a Calculus of Constructions.
In: Odifreddi, P. (ed.) Logic and computer science, pp. 91–122. Academic Press,
London (1990)

6. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76, 96–120 (1988)

7. Coquand, Th.: A new paradox in type theory. In: Prawitz, D., Skyrms, B., West-
erst̊ahl, D. (eds.) Proc. 9th Int. Congress of Logic, Methodology and Phil. of Sci-
ence, Uppsala, Sweden, August 1991, vol. 134, pp. 555–570. North-Holland, Ams-
terdam (1994)

8. Geuvers, H.: Logics and Type Systems. PhD thesis, University of Nijmegen, Nether-
lands (1993)

9. Geuvers, H.: A short and flexible proof of strong normalization for the Calculus
of Constructions. In: Smith, J., Dybjer, P., Nordström, B. (eds.) TYPES 1994.
LNCS, vol. 996, pp. 14–38. Springer, Heidelberg (1995)

10. Geuvers, H., Nederhof, M.-J.: A modular proof of strong normalization for the
Calculus of Constructions. JoFP 1(2), 155–189 (1991)

11. Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures dans
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Abstract. We reconsider the well-known concept of Haskell-style type classes
within the logical framework of Isabelle. So far, axiomatic type classes in Isabelle
merely account for the logical aspect as predicates over types, while the opera-
tional part is only a convention based on raw overloading. Our more elaborate ap-
proach to constructive type classes provides a seamless integration with Isabelle
locales, which are able to manage both operations and logical properties uni-
formly. Thus we combine the convenience of type classes and the flexibility of
locales. Furthermore, we construct dictionary terms derived from notions of the
type system. This additional internal structure provides satisfactory foundations
of type classes, and supports further applications, such as code generation and
export of theories and theorems to environments without type classes.

1 Introduction

The well-known concept of type classes [18, 15, 6, 13, 10, 19] offers a useful structuring
mechanism for programs and proofs, which is more light-weight than a fully featured
module mechanism. Type classes are able to qualify types by associating operations
and logical properties. For example, class eq could provide an equivalence relation =
on type α, and class ord could extend eq by providing a strict order < etc.

Programming languages like Haskell merely handle the operational part [18, 15, 6].
In contrast, type classes in Isabelle [14, 12] directly represent the logical properties, but
the associated operations are treated as a mere convention imposed on the user.

Recent Isabelle add-ons have demanded more careful support of type classes, most
notably code generation from Isabelle/HOL to SML, or conversion of Isabelle/HOL
theories and theorems to other versions of HOL. Here the target language lacks direct
support for type classes, so the source representation in the Isabelle framework some-
how needs to accommodate this, using similar techniques as those performed by the
static analysis of Haskell.

How does this work exactly? Haskell is not a logical environment, and internal
program transformations are taken on faith without explicit deductions. In traditional
Isabelle type classes, the purely logical part could be directly embedded into the logic
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[19], although some justifications were only done on paper. The operational aspect,
which cannot be fully internalized into the logic, was explained by raw overloading.

Furthermore, the key disadvantage of raw type classes as “little theories” used to be
the lack of flexibility in the signature part: operations being represented by polymorphic
constants are fixed for any given type. On the other hand, in recent years the Isabelle
infrastructure for structured specifications and proofs has been greatly improved, thanks
to the Isar proof language [20, 21, 11] and locales [8, 1, 2]. We think it is time to
reconsider the existing type class concepts, and see how they can benefit from these
improvements without sacrificing their advantages.

The present work integrates Isabelle type classes and locales (by means of locale
interpretation), and provides more detailed explanations of type classes with operations
and logical propositions within the existing logical framework. Here we heavily re-use
a careful selection of existing concepts, putting them into a greater perspective. We
also reconstruct the essential relationship between the type system and its constructive
interpretation by producing dictionary terms for class operations. The resulting concept
of “constructive type classes” in Isabelle is both more convenient for the user, and more
satisfactory from the foundational viewpoint.

2 Example

We demonstrate common elements of structured specifications and abstract reasoning
with type classes by the algebraic hierarchy of semigroups and groups. Our background
theory is that of Isabelle/HOL [12], which uses fairly standard notation from mathemat-
ics and functional programming. We also refer to basic vernacular commands for defi-
nitions and statements, e.g. definition and lemma; proofs will be recorded using struc-
tured elements of Isabelle/Isar [20, 21, 11], notably proof/qed and fix/assume/show.

Our main concern are the new class and instance elements used below — they will
be explained in terms of existing Isabelle concepts later (§5). Here we merely present the
look-and-feel for end users, which is quite similar to Haskell’s class and instance
[6], but augmented by logical specifications and proofs.

2.1 Class Definition

Depending on an arbitrary type α, class semigroup introduces a binary operation ◦ that
is assumed to be associative:

class semigroup =
fixes mult :: α⇒ α⇒ α (infix ◦ 70)
assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

This class specification consists of two parts: the operational part names the class oper-
ation (fixes), the logical part specifies properties on them (assumes). The local fixes
and assumes are lifted to the theory toplevel, yielding the global operation mult ::
α::semigroup⇒ α⇒ α and the global theorem semigroup.assoc:

∧
x y z::α::semigroup.

(x ◦ y) ◦ z = x ◦ (y ◦ z).
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2.2 Class Instantiation

The concrete type int is made a semigroup instance by providing a suitable definition
for the class operation mult and a proof for the specification of assoc.

instance int :: semigroup
mult-int-def :

∧
i j :: int. i ◦ j ≡ i + j

proof
fix i j k :: int have (i + j) + k = i + (j + k) by simp
then show (i ◦ j) ◦ k = i ◦ (j ◦ k) unfolding mult-int-def .

qed

From now on, the type-checker will consider int as a semigroup automatically, i.e. any
general results are immediately available on concrete instances.

2.3 Subclasses

We define a subclass group by extending semigroup with additional operations neutral
and inverse, together with the usual left-neutral and left-inverse properties.

class group = semigroup +
fixes neutral :: α (1)

and inverse :: α⇒ α ((-−1) [1000] 999)
assumes left-neutral: 1 ◦ x = x

and left-inverse: x−1 ◦ x = 1

Again, type int is made an instance, by providing definitions for the operations and
proofs for the axioms of the additional group specification.

instance int :: group
neutral-int-def : 1 ≡ 0
inverse-int-def : i−1 ≡ − i

proof
fix i :: int have 0 + i = i by simp
then show 1 ◦ i = i unfolding mult-int-def and neutral-int-def .
have −i + i = 0 by simp
then show i−1 ◦ i = 1 unfolding mult-int-def and neutral-int-def and inverse-int-def .

qed

2.4 Abstract Reasoning

Abstract theories enable reasoning at a general level, while results are implicitly trans-
ferred to all instances. For example, we can now establish the left-cancel lemma for
groups, which states that the function (x ◦) is injective:

lemma (in group) left-cancel: x ◦ y = x ◦ z↔ y = z
proof

assume x ◦ y = x ◦ z
then have x−1 ◦ (x ◦ y) = x−1 ◦ (x ◦ z) by simp
then have (x−1 ◦ x) ◦ y = (x−1 ◦ x) ◦ z using assoc by simp
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then show y = z using left-neutral and left-inverse by simp
next

assume y = z
then show x ◦ y = x ◦ z by simp

qed

Here the “in group” target specification indicates that the result is recorded within that
context for later use. This local theorem is also lifted to the global one group.left-cancel:∧

x y z::α::group. x ◦ y = x ◦ z ↔ y = z. Since type int has been made an instance of
group before, we may refer to that fact as well:

∧
x y z::int. x ◦ y = x ◦ z↔ y = z.

3 Logical Foundations

We briefly review fundamental concepts of the Isabelle/Isar framework, from the Pure
logic to Isar proof contexts (structured proofs) and locales (structured specifications).

3.1 The Isabelle/Pure Framework

The Pure logic [14] is an intuitionistic fragment of higher-order logic. In type-theoretic
parlance, there are three levels of λ-calculus with corresponding arrows:⇒ for syntac-
tic function space (terms depending on terms),

∧
for universal quantification (proofs

depending on terms), and =⇒ for implication (proofs depending on proofs).
Types are formed as simple first-order structures, consisting of type variables α or

type constructor applications κ τ1 . . . τk (where κ has always k arguments).
Term syntax provides explicit abstraction λx :: α. b(x) and application t u, while

types are usually implicit thanks to type-inference; terms of type prop are called propo-
sitions. Logical statements are composed via

∧
x :: α. B(x) and A =⇒ B. Primitive

reasoning operates on judgments of the form Γ 
 ϕ, with standard introduction and
elimination rules for

∧
and =⇒ that refer to fixed parameters x and hypotheses A from

the context Γ . The corresponding proof terms are left implicit, although they could be
exploited separately [3].

The framework also provides definitional equality ≡ :: α ⇒ α⇒ prop, with αβη-
conversion rules. The internal conjunction & :: prop⇒ prop⇒ prop allows to represent
simultaneous statements with multiple conclusions.

Derivations are relative to a given theory Θ, which consists of declarations for type
constructors κ (constructor name with number of arguments), term constants c :: σ
(constant name with most general type scheme), and axioms 
 ϕ (proposition being
asserted). Theories are always closed by type-instantiation: arbitrary instances c :: τ of
c :: σ are well-formed; likewise for axiom schemes. Schematic polymorphism carries
over to term formation and derivations, i.e. it is admissible to derive any type instance
Γ 
 B(τ) from Γ 
 B(α), provided that α does not occur in the hypotheses of Γ .

3.2 Isar Proof Contexts

In judgments Γ 
 ϕ of the primitive framework, Γ essentially acts like a proof context.
Isar elaborates this idea towards a higher-level notion, with separate information for
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type-inference, term abbreviations, local facts, and generic hypotheses (parameterized
by specific discharge rules). For example, the context element assumes A introduces
a hypothesis with =⇒ introduction as discharge rule; notes a = b defines local facts;
defines x ≡ a and fixes x :: α introduce local terms.

Top-level theorem statements may refer directly to Isar context elements to establish
a conclusion within an enriched environment; the final result will be in discharged form.
For example, proofs of

∧
x. B x, and A =⇒ B, and B a can be written as follows:

lemma
fixes x
shows B x 〈proof 〉

lemma
assumes A
shows B 〈proof 〉

lemma
defines x ≡ a
shows B x 〈proof 〉

There are separate Isar commands to build contexts within a proof body, notably fix,
assume etc. These elements have essentially the same effect, only that the result lives
still within a local proof body rather than the target theory context. For example:

{
fix x
have B x 〈proof 〉

}

{
assume A
have B 〈proof 〉

}

{
def x ≡ a
have B x 〈proof 〉

}

Building on top of structured proof contexts, the Isar proof engine now merely im-
poses a certain policy for interpreting formal texts, in order to support structured proof
composition [21, Chapter 3]. The very same notion of contexts may be re-used a second
time for structured theory specifications, namely by Isabelle locales (see below).

3.3 Locales

Isabelle locales [8, 1] provide a powerful mechanism for managing local proof context
elements, most notably fixes and assumes. For example:

locale l =
fixes x
assumes A x

This defines both a predicate l x≡ A x (by abstracting the body of assumptions over the
fixed parameters), and provides some internal infrastructure for structured reasoning. In
particular, consequences of the locale specification may be proved at any time, e.g.:

lemma (in l)
shows b: B x 〈proof 〉

The result b: B x is available for further proofs within the same context. There is also a
global version l.b:

∧
x. l x =⇒ B x, with the context predicate being discharged.

Locale expressions provide means for high-level composition of complex proof con-
texts from basic principles (e.g. locale ring = abelian-group R + monoid R + . . .).
Expressions e are formed inductively as e = l (named locale), or e = e ′ x1 . . . xn (re-
naming of parameters), or e = e1 + e2 (merge). Locale merges result in general acyclic
graphs of sections of context elements — internally, the locale mechanism produces a
canonical order with implicitly shared sub-graphs.
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Locale interpretation is a separate mechanism for applying locale expressions in the
current theory or proof context [2]. After providing terms for the fixes and proving the
assumes, the corresponding instances of locale facts become available. For example:

interpretation m: l [a]
proof (rule l.intro)

show A a 〈proof 〉
qed

Here the previous locale fact l.b:
∧

x. l x =⇒ B x becomes m.b: B a. The link between
the interpreted context and the original locale acts like a dynamic subscription: any
new results emerging within l will be automatically propagated to the theory context by
means of the same interpretation. For example:

lemma (in l)
shows c: C x 〈proof 〉

This makes both l.c:
∧

x. l x =⇒ C x and m.c: C a available to the current theory.

4 Type Classes and Disciplined Overloading

Starting from well-known concepts of order-sorted algebra, we recount the existing
axiomatic type classes of Isabelle. Then we broaden the perspective towards explicit
construction of dictionary terms, which explain disciplined overloading constructively.

4.1 An Order-Sorted Algebra of Types

The well-known concepts of order-sorted algebra (e.g. [17]) have been transferred early
to the simply-typed framework of Isabelle [13, 10].

A type class c is an abstract entity that describes a collection of types. A sort s is a
symbolic intersection of finitely many classes, written as expression c1 ∩ . . . ∩ cm (note
that Isabelle uses the concrete syntax {c1, . . ., cm}). We assume that type variables are
decorated by explicit sort constraints αs, while plain α refers to a vacuous constraint of
the empty intersection of classes (the universal sort). An order-sorted algebra consists
of a set C of classes, together with an acyclic subclass relation <, and a collection of
type constructor arities κ :: (s1, . . ., sk)c (for constructor κ with k arguments). This
induces an inductive relation τ : c on types τ and classes c by the rules given below (on
sorts τ : c1 ∩ . . . ∩ cm is defined as τ : ci for all i = 1, . . ., m collectively).

τ : c1 c1 < c2

τ : c2
(classrel)

τ1 : s1 . . . τk : sk κ :: (s1, . . ., sk)c
κ τ1 . . . τk : c (constructor)

αc1 ∩ ... ∩ cm : ci
(variable)

We also define canonical subclass and subsort relations on top of this: c1 ⊆ c2 iff
∀α. α : c1 =⇒ α : c2 for classes, and s1 ⊆ s2 iff ∀α. α : s1 =⇒ α : s2 for sorts.
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Observe that class inclusion c1 ⊆ c2 is the reflexive-transitive closure of the original
relation c1 < c2. Proof: consequences α : c1 =⇒ α : c2 emerge exactly by zero or more
application of the classrel rule.

Moreover, sort inclusion s1 ⊆ s2 for s1 = c1 ∩ . . . ∩ cm and s2 = d1 ∩ . . . ∩ dn can
be characterized as ∀ j. ∃ i. ci ⊆ dj . Proof: c1 ∩ . . . ∩ cm ⊆ d1 ∩ . . . ∩ dn is equivalent
to α : c1 ∩ . . . ∩ cm =⇒ α : d1 ∩ . . . ∩ dn, i.e. (∀ i. α : ci) =⇒ (∀ j. α : dj), which is
equivalent to ∀ j. ∃ i. (α : ci =⇒ α : dj).

An order-sorted algebra is called coregular iff for all c ⊆ c ′, any κ :: (s1, . . ., sk)c
and κ :: (s′1, . . ., s′k)c ′ have related argument sorts ∀ i. si ⊆ s′i. Coregularity expresses
the key correspondence of the global class hierarchy with individual type constructor
arities. This achieves most general unification and principal type schemes [17, 13].

4.2 Axiomatic Type Classes in Isabelle

Axiomatic type classes [10, 19] are based on a purely logical interpretation of the order-
sorted algebra of types as predicates. Any closed propositionϕ(α) depending on exactly
one type variable can be understood as a predicate on types. The trick is to represent
predicate constants adequately in order to support type class definitions and abstract
reasoning over type classes. Following [19], any type class c ∈ C of the underlying
algebra is turned into a logical constant c-class :: α itself ⇒ prop, where α itself is an
uninterpreted type with constant TYPE :: α itself as canonical representative.1 Proposi-
tions of the form c-class (TYPE :: τ itself ) shall be written as (|τ : c|).

The existing axclass mechanism defines type classes via 
 (|α : c|) ≡ (|α : d1|) & . . .
& (|α : dn|) & A1(α) & . . .& Am(α), where d1, . . ., dn are super-classes and A1, . . ., Am

class axioms as intended by the user. From this the system derives an introduction rule

 (|α : d1|) =⇒ . . . (|α : dn|) =⇒ A1(α) =⇒ . . . Am(α) =⇒ (|α : c|) (for instantiation
proofs), explicit class inclusions 
 (|α : c|) =⇒ (|α : dj |) (added to the order-sorted type
algebra), and abstract lemmas 
 (|α : c|) =⇒ Ai(α) (also called “class axioms”). The
latter are represented compactly using sort constraints 
 Ai(αc). Isabelle inferences will
use order-sorted type-unification in order to produce well-sorted instantiations 
 Ai(τ)
on the fly — this implicit reasoning is the main convenience of type classes.

It is easy to see that the interpretation of class membership τ : c as (|τ : c|) is correct
in the sense that the notions of order-sorted type algebra approximate Pure derivations.
In particular, the inference system for τ : c represents the following rules for (|τ : c|)
(due to modus ponens and type instantiation):

(|τ : c1|) 
 (|α : c1|) =⇒ (|α : c2|)
(|τ : c2|)

(|τ1 : s1|) . . . (|τk : sk|) 
 (|α1 : s1|) =⇒ . . . (|αk : sk|) =⇒ (|κ α1 . . . αk : c|)
(|κ τ1 . . . τk|) : c

(|α : c1|), . . ., (|α : cm|) 
 (|α : ci|)

1 This type could be defined explicitly as datatype α itself = TYPE in ML / Haskell / HOL, but
Isabelle/Pure refrains from stating any specific properties.
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Here the rule conditions c1 < c2 and κ :: (s)c have been interpreted by schematic impli-
cations, and sort constraints of type variables have been turned into explicit hypotheses.

The general principle above is to interpret the inductive definition of τ : c, by giving
a constructive reading to its derivations. Thus inferences taking place during internal
type-checking operations are turned into proofs of the Pure framework.

In conclusion, we observe that axiomatic type classes are able to model the logical
part (assumes) of our class mechanism. The second half is proper management of class
operations (fixes) which will be based on a disciplined version of overloaded definitions.

4.3 Disciplined Overloading for Isabelle

Simple Definitions essentially introduce abbreviations in terms of basic principles, by
stating definitional equalities within the formal theory. A definitional theory extension
Θ ′ = Θ ∪ c :: σ ∪ 
 cσ ≡ t is well-formed iff c is a fresh constant name, t is a closed
term that does not mention c, and all type variables occurring in t also occur in σ.

The latter condition ensures ϑ(t) = ϑ ′(t) =⇒ ϑ(cσ) = ϑ ′(cσ) for arbitrary type
instantiations ϑ and ϑ ′, i.e. there is a one-to-one relationship between the LHS and
RHS. Due to substitution of≡, this means Γ 
 ϕ(ϑ(cσ)) iff Γ 
 ϕ(ϑ(t)) in Θ ′.

Moreover, Γ 
 ϕ(c) is derivable in Θ ′ iff Γ 
 ϕ(t) is derivable in Θ. Proof: (1)
assume Γ 
 ϕ(c); hence Γ 
 ϕ(t) in Θ ′ by definition. Let ψ = ϕ(t), which is a formula
of Θ and theorem of Θ ′. Show by induction over derivations that Γ ∪ ϑ1(cσ ≡ t), . . .,
ϑn(cσ ≡ t) 
 ψ in Θ, for some collection of type instantiations ϑ1, . . ., ϑn (stemming
from instances of the definitional axiom occurring in the proof trees). Finally discharge
these assumptions by reflexivity of ≡. (2) the other direction is trivial.

A definitional theory may be presented in an incremental fashion, where later defini-
tions refer to previously defined entities on the RHS. For example, define c1, then c2 in
terms of c1, then c3 in terms of c1, c2 etc. Formally, we introduce a dependency relation
between constant names: c → b iff constant b is mentioned on the RHS of the defini-
tion of c. Provided that → is well-founded, incremental definitions can be normalized
such that the RHSes only mention basic principles. Thus simple definitions determine
an immediate mapping from defined entities to basic principles.

Overloading (or “ad-hoc polymorphism”) means to specify constants depending on
the syntactic structure of their respective type instances. For example, 0 :: α could be
defined separately for 0nat, 0bool, 0β × γ (in terms of 0β and 0γ) etc. Unrestricted
overloading sacrifices most of the key syntactic properties sketched above.

Subsequently, we borrow some notation from System F [16], notably type schemes
∀α. σ(α) and type application f [τ ]. For example, the polymorphic identity function id
≡ λx. x can be given the most general type scheme ∀α. α⇒ α. System F also provides
explicit type abstractionΛα. t(α), although this will not be required here, because naive
polymorphism in the Pure framework is restricted to outermost constants (and axioms):
instead of id ≡ Λα. λx::α. x we write id [α] ≡ λx::α. x in applied form.

This quasi-polymorphic perspective allows an adequate view on constant declara-
tions and type instances as required for overloading. Any declaration c :: σ can be
turned into an explicit type scheme c :: ∀α. σ(α) by presenting the type variables α of
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the body σ in some canonical order. Type instances can now be written as c [τ ], where
τ emerges by matching against σ and putting the RHSes of the resulting substitution
[α1 "→ τ1, . . ., αn "→ τn] into the same canonical order.

Linear polymorphic declarations (n = 1) are an important special case of this. Here
c :: ∀α. σ(α) acts like a function that maps a type τ to a term c [τ ] of type σ(τ).

Restricted Overloading is a theory extension Θ ∪ c :: ∀α. σ(α) ∪ 
 c [τ ] ≡ t ∪ . . .
that introduces a fresh constant declaration c, followed by a collection of specifications

 c [τ ] ≡ t each, where t is a closed term, and all type variables of t also occur in τ . The
defining equations for c are further restricted to

c [κ α] ≡ . . . b [τ ] . . . d [αi] . . .

such that the type argument of the LHS is a constructor κ applied to distinct variables
α, and the RHS (after normalizations with respect to simple definitions) only mentions
further constants as follows:

1. arbitrary instances of constants named b, provided that c→ b holds according to a
given well-founded dependency relation on constant names;

2. argument projections on overloaded constants d [αi], selecting some αi from α.

Moreover the following global conditions have to be observed:

– There is at most one specification c [κ α] ≡ . . . for each type constructor κ.
– Overloaded specifications are upwards-complete: for any c1 →+ c2, the presence

of c1 [κ α] ≡ . . . implies the presence of c2 [κ α] ≡ . . ..

Note that the restriction of c → b is independent of actual type instances and essen-
tially decouples general interdependencies from overloading. For example, the specifi-
cation of c [nat] ≡ . . . b [bool] . . . and b [nat] ≡ . . . c [bool] . . . is ruled out, due to the
cycle c→ b→ c on constant names.

The following example illustrates restricted overloading of constants eq and ord for
types nat and ×:

eq :: ∀α. α⇒ α⇒ bool
eq [nat] ≡ λm n. m = n
eq [β × γ] ≡ λp q. eq [β] (fst p) (fst q) ∧ eq [γ] (snd p) (snd q)
ord :: ∀α. α⇒ α⇒ bool
ord [nat] ≡ λm n. m < n
ord [β × γ] ≡ λp q. ord [β] (fst p) (fst q) ∨

eq [β] (fst p) (fst q) ∧ ord [γ] (snd p) (snd q)

In general, restricted overloading and simple definitions may be presented incre-
mentally, with alternating dependencies of overloaded vs. non-overloaded constants.
The resulting theory still describes a mapping from defined entities to basic principles
— as sketched before for simple definitions alone. The key idea is to traverse the sys-
tem along the lexicographic product of the global dependency relation c → b and the
substructural order on types κ α→ αi, which is also well-founded.
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Overloading as order-sorted type-algebra is a slightly more abstract view on the
structure of interdependent overloaded specifications. After expanding all simple (non-
overloaded) definitions, the resulting algebra of overloading is achieved as follows.

Classes: Each overloaded operation is turned into a type class of the same name.2

Class relation: The global dependency relation → is restricted to overloaded con-
stants, i.e. c1 < c2 iff c1 →+ c2 on classes.

Constructor arities: The local dependencies of definitional equations are turned into
constructor arities, i.e. κ :: (s1, . . ., sk)c for each constructor κ and class c, where
si =

⋂
d such that d[αi] occurs on the RHS of some specification c ′ [κ α1 . . . αk]

≡ . . . for some c ′⊇ c.

Observe that this algebra is coregular by construction, because the argument sorts of
type arities account for the upwards-completion of definitions explicitly.

For example, the previous overloaded definitions of eq and ord result in the algebra
consisting of classes ord < eq with constructor arities nat :: eq, and× :: (eq, eq)eq, and
nat :: ord, and × :: (eq ∩ ord, eq ∩ ord)ord.

We now employ the order-sorted algebra to expand disciplined overloading: for any

 ϕ mentioning well-defined instances c [τ ] of overloaded constants, we produce 
 ϕ ′

that refers only to basic principles. In the first stage, we normalize by all definitional
equalities, which removes non-overloaded constants and reduces overloaded ones to
occurrences cα on type variables. In the second stage we construct dictionary terms.

A dictionary δ for class c is a collection of terms [t1, . . ., tn] that provide imple-
mentations for the class operations [c1, . . ., cn], for the collection of classes c ′ ⊇ c
presented in canonical order. The construction works by interpreting the derivation of
τ : c for each c [τ ] occurring in 
 ϕ. The base case refers to locally fixed dictionary
parameters pc :: σ(α) for each c [α] :: σ(α) in 
 ϕ. The type constructor case refers
to the collection " of RHSes of all specifications c ′ [κ α ≡ . . .] for c ′ ⊇ c, as in the
construction of type arities κ :: (s)c above. The notation {|δ : c|} means that δ contains
a dictionary term for c. We now get the following rules:

{|δ : c1|} c1 < c2

{|δ : c2|}
(classrel)

{|δ1 : s1|} . . . {|δk : sk|} κ :: (s1, . . ., sk)c
{|"(δ1, . . ., δk) : c|} (constructor)

{|[pc1 , . . ., pcm ] : ci|}
(variable)

For example, 
 P (ord [β × γ]) can be expanded to 
 P (λp q. ord1 (fst p) (fst q) ∨
eq1 (fst p) (fst q) ∧ ord2 (snd p) (snd q)), for new local variables eq1, eq2, ord1, ord2.

We see that disciplined overloading can be linked to the order-sorted type-algebra
quite naturally. The key benefit is that well-definedness of c [τ ] is reduced to well-
sortedness τ : c, while a constructive reading provides the dictionary expansion.

2 We essentially assume that each type class corresponds to exactly one operation of the same
name. Minor re-formulations will admit the more liberal scheme seen in practice (e.g. §2).
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Thus we have managed to make “ad-hoc polymorphism less ad-hoc”, although
by quite different means than the original Haskell type class system [18]. In more
general versions of type theory, the reconstruction of dictionary terms (for the oper-
ations) and proof terms (for the logical part) would have coincided anyway, but Pure
has two distinctive categories of formal entities that appear to the user as fixes and
assumes.

5 Integration

We are ready to integrate the concepts of §3 and §4 to explain our version of class
and instance. Essentially, we shall introduce (I) a locale that manages both the fixes
and assumes explicitly, (II) type class infrastructure that replaces the fixes by global
operations according to disciplined overloading, and (III) a formal link between the
locale and type class by locale interpretation. We illustrate this by the example
from §2.

5.1 Class Definition

(I) The syntax for class specifications is the same as for locale, restricted to exactly
one type variable α. Thus a class is literally made a locale of the same name. E.g.

locale semigroup =
fixes mult :: α⇒ α⇒ α (infix ◦ 70)
assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

(II) The same specification is turned into type class infrastructure as follows.

1. For all class operations (fixes) introduce global operations (consts) with the same
name and type. E.g.

consts
mult :: α⇒ α⇒ α (infix ◦ 70)

2. Introduce an axiomatic type class whose axioms are the class premises (assumes),
applied to the newly introduced consts. Since a locale definition already defines a
predicate corresponding to the body, we can use a compact representation. E.g.

axclass semigroup
axiom: semigroup (mult :: α⇒ α⇒ α)

3. Restrict subsequent uses of the global operations to the new type class. E.g.

constraints
mult :: α::semigroup⇒ α⇒ α

This is merely an extra-logical hint for type-inference, which ensures that occur-
rences of the operations will be well-defined.
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(III) Finally link the locale and type class infrastructure by means of locale interpre-
tation: the global operations (consts) are inserted for the local ones (fixes), and the
(already derived) class axiom is inserted for the locale premises (assumes). E.g.

interpretation semigroup [mult :: α::semigroup⇒ α⇒ α]
by (rule semigroup-class.axiom)

This reduces the generality of locale results by fixing the operations, but α remains free.

5.2 Class Instantiation

An instance provides term definitions and proofs on particular type patterns κ α. The
class operations are introduced by the existing primitive for overloaded definitions,
which is only used in the restricted sense of §4.3. E.g.

defs (overloaded)
mult-int-def : (i::int) ◦ j ≡ i + j

The actual instance proof uses the original axclass instantiation mechanism. E.g.

instance int :: semigroup — (existing version of axclass instance)
proof

fix i j k :: int have (i + j) + k = i + (j + k) by simp
then show (i ◦ j) ◦ k = i ◦ (j ◦ k) unfolding mult-int-def .

qed

5.3 Subclasses

(I) In order to derive a new class c from existing super-classes b1, . . ., bn we simply
produce parallel hierarchies of locales and type classes. For locales this means to import
the merge b1 + . . . + bn of the corresponding parent locales. E.g.

locale group = semigroup +
fixes neutral :: α (1)

and inverse :: α⇒ α ((-−1) [1000] 999)
assumes left-neutral: 1 ◦ x = x

and left-inverse: x−1 ◦ x = 1

(II) The type class setup is analogous; axclass treats super-classes as expected. E.g.

consts
neutral :: α (1)
inverse :: α⇒ α ((-−1) [1000] 999)

axclass group < semigroup
axiom: group mult neutral inverse

constraints
neutral :: α::group
inverse :: α::group⇒ α
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(III) The link between locale and class definition is again by interpretation. The implicit
import of results established in parent locales [2] works without further ado. E.g.

interpretation
group [mult :: α::group⇒ α⇒ α neutral :: α::group inverse :: α::group⇒ α]

by (rule group-class.axiom)

5.4 Abstract Reasoning

Nothing special needs to be done here — we benefit directly from the existing mecha-
nisms of locale lemmas. E.g. “lemma (in group) . . .” refers to the target locale group,
even if this happens to be related to a type class of the same name. Abstract reasoning
is performed in full generality at the locale level relative to fixes and assumes.

6 Conclusion

Stocktaking. The present approach to constructive type classes in Isabelle integrates
a fair amount of existing concepts into a coherent mechanism for the end-user, with-
out having to extend the underlying logical foundations. Apart from collecting existing
concepts, our main contribution is twofold: (1) explicit reconstruction of proofs and
dictionary terms, guided by constructive interpretation of order-sorted type algebras,
(2) relating locale and class concepts by means of interpretation.

The first aspect has foundational impact, the formal content of type classes
is explained more thoroughly in terms of basic principles. Moreover, applications that
build on the internal representations of theories and proofs may benefit from this addi-
tional structure (e.g. code generation for ML or proof export for other versions
of HOL).

The second aspect is very important for user-level reasoning with type classes within
the formal system. Our link to the locale mechanism [8, 1, 2] overcomes the former
restriction of axiomatic type-classes to a fixed “signature” of overloaded constants. Our
classes admit abstract reasoning in the general locale context, where operations are local
parameters; results are implicitly passed down to the actual type class thanks to locale
interpretation. Thus we essentially combine the best of both worlds.

Even more, several type classes can be linked to the same locale, using the additional
includes element to refer to a renamed locale specification: e.g. class abelian-group =
includes group add (infix + 60) assumes commute: . . . etc. General lemmas
established in group will then become available for both type classes group and
abelian-group.

The present work has resulted in clarification of various Isabelle internals3. In par-
ticular, the constructive interpretation of order-sorted type-algebra is now explicit in the
internal workings of axclass, so far some justifications have been only on paper [19].
There is now also a separation of constant declarations c :: ∀α. σ(α), and extra-logical
type-inference constraints c :: ∀α::c. σ(α).

3 See http://isabelle.in.tum.de/devel/ for a development snapshot.

http://isabelle.in.tum.de/devel/


Constructive Type Classes in Isabelle 173

Related work. Module systems (especially for theorem provers) provide a more gen-
eral perspective on our work. Roughly speaking, the huge amount of existing
approaches can be categorized as follows: (1) full / explicit module languages vs. (2)
restricted / implicit structuring mechanisms. ML functors [16] and Coq modules [4, 5]
represent the first kind, type classes in Haskell or Isabelle the second, more light-weight
one. Our work helps to bridge the gap between these two extremes, by enhancing the
basic type class concepts towards a more explicit notion of modules, thanks to the un-
derlying locale infrastructure.

Compared to a full-grown module system, locales do have some limitations: no truly
polymorphic parameters, no type-constructors as parameters. For example, a theory of
monads would be hard to formalize. However, explaining locales (and classes) in terms
of existing Isabelle/Pure concepts avoids tinkering with the logic itself.

Type classes have first appeared in Haskell [18, 15, 6], to make “ad-hoc polymor-
phism less ad-hoc”. The underlying ideas have later been rephrased as a problem of
Hindley-Milner type-checking within an order-sorted algebra of types [13], and inte-
grated into the Isabelle/Pure type-checker [10]. Isabelle type classes acquired their first
logical interpretation in [19]. Note that more recent extensions of the original Haskell
type classes (including constructor classes and multi-parameter classes [7]) are not
covered in this work, mostly due to fundamental limitations of the underlying logic.

Future Work. Our constructive combination of type classes and locales essentially or-
ganizes lemmas (proofs) that emerge in related contexts. This principle could be trans-
ferred to derived operations (terms). Recent experiments on “definition (in l)” for lo-
cales could be generalized to handle classes as well, by producing parallel definitions
internally that refer either to locale parameters (fixes) or overloaded operations (consts).

Further considerations need to be spent on instance definitions. So far this is limited
to simple definitions of Pure, but realistic applications demand more flexibility. The key
question is how to combine derived definitional mechanisms with class instantiations in
a modular fashion, without hardwiring one into the other. Then a package like [9] for
general recursive functions could be used to specify class operations.

Acknowledgment. Alexander Krauss and Tobias Nipkow have commented on draft
versions of this paper.
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Zermelo’s Well-Ordering Theorem in Type
Theory

Danko Ilik

DCS Master Programme, Chalmers University of Technology

Abstract. Taking a ‘set’ to be a type together with an equivalence
relation and adding an extensional choice axiom to the logical framework
(a restricted version of constructive type theory) it is shown that any ‘set’
can be well-ordered. Zermelo’s first proof from 1904 is followed, with a
simplification to avoid using comparability of well-orderings. The proof
has been formalised in the system AgdaLight.

1 Introduction

The well-ordering theorem is a proposition of set theory stating that any set
can be well-ordered. A set M is well-ordered if there is a binary relation < on
M which is a linear order and for which every non-empty subset of M has a
minimal element.

Georg Cantor, in the beginnings of his founding work on set theory, took this
as a fact and called it the well-ordering principle. Later, he made attempts to
prove it, thus suggesting that it should be regarded a theorem.

The first successful proof was displayed by Ernst Zermelo in a paper [1] pub-
lished in 1904. In this proof he had used a principle which was later called the
Axiom of Choice – he was the first to explicitly state this principle in a paper.
A big debate over it arose between mathematicians in the following years.

The theorem itself was also controversial, since, for example, it implied that
the set of real numbers could be well-ordered, though no such ordering was
known1. Although that situation was controversial, it was not contradictory,
since the principle of excluded middle allowed one to prove statements about
the existence of an object, without requiring one to exhibit a sample of the
object whose existence is proved.

The two mentioned principles, the one of excluded middle and the one of
choice, were subject of much discussion in the field of foundation of mathematics
during a large part of the 20th century, but in spite of that no one came to the
idea that they could be simply correlated, and in this way: the principle of choice
implies the principle of excluded middle. This was concluded for the first time
by Diaconescu in 1975 for topos theory [4]; later there followed proofs in various
other theories.
1 Later [2] it was even shown that such an ordering can not be defined. More precisely,

“there is no formula of ZF set theory which can be proved in ZFC to be a well-ordering
of the reals” [3] p.423.

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 175–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.1 Motivation for the Present Work

The goal of this work was to investigate whether it is possible to use type theory
strengthened by an extensional choice axiom (ExtAC), instead of set theory, to
prove the well-ordering theorem.

This addition allows us to derive the law of excluded middle (LEM). Thus,
every proposition is decidable (in a constructive sense). As subsets in type theory
are usually defined as propositional functions, we can equivalently define a subset
to be a function into N2, in which case the collection of subsets of a set, the
power-set, is a set, hence it is possible to quantify over it.

Having ExtAC also allows us to define the function γ from Zermelo’s proof,
which takes a nonempty subset into one of its elements. This, and it being very
clear and intuitive, makes Zermelo’s first proof from 1904 a good candidate to
follow. His second proof from 1908 [5], much like modern ones, use some set
theoretic machinery which clutters the intuition behind it.

2 The Framework

We will work in constructive type theory (CTT) as explained in [6,7]. The the-
ory we shall be concerned with will contain a base type Set and the constants
Π,Σ,N0, N1, N2 : Set, together with their introduction and elimination rules.
To these we will add the extensional axiom of choice and a constant T which
lifts boolean values to propositions, defined by pattern-matching:

T : N2 → Set
T 0 ≡ N0

T 1 ≡ N1

We also need a small set universe containing codes for N0 and N1, for defining
T and =2 (below) by pattern-matching and for having 0 �= 1.

2.1 Axioms of Choice

The benefit of using an intensional theory like CTT is that we can make more
distinctions, such as the one between intensional and extensional axioms of
choice.

The first of these (IntAC) can be proved in the type theory. It reads:

∀A,BSet. ∀RA→B→Set.
(
∀xA. ∃yB. R x y

)
→ ∃fA→B. ∀xA. R x fx (1)

This is not surprising, because in type theory a proof of
(
∀xA. ∃yB. R x y

)
is

exactly a function as the one required.
The second, the extensional axiom of choice (ExtAC), knows no justification

in type theory. It reads:
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∀A,BSet. ∀RA→B→Set. ∀ =A→A→Set
A . ∀ =B→B→Set

B .

(=A equivalence on A)→ (=B equivalence on B)→(
∀x, yA. x =A y → ∀zB. R x z → R y z

)
→(

∀x, yB. x =B y → ∀zA. R z x→ R z y
)
→(

∀xA. ∃yB. R x y
)
→

∃fA→B.
(
∀xA. R x fx

)
∧
(
∀a, bA. a =A b→ fa =B fb

)
(2)

In words, what is required here in addition is that the function f must respect
whatever equivalence relations may be defined on A and B, which the relation
R preserves. It is this ability that allows one to ‘smuggle in’ non-constructive
principles, by encoding them into an equivalence relation on which ExtAC is
applied.

2.2 Derivation of the Law of Excluded Middle

The possibility of deriving the law of excluded middle (LEM) from ExtAC is well
known. It has been carried out in various theories: topos theory [4], intuitionistic
set theory [8] and intensional type theory [9].

The proof here is closest to the one from [10], the difference being that we
use a (non-substitutive) equivalence relation, instead of the set Id. This relation,
=2, is defined only in terms of T and the elimination rules of N2; it is defined to
be N1 for two elements of N2 when they reduce to the same canonical element,
and N0 when they do not reduce to the same canonical element.

Now, let ExtAC be given and let P be a proposition (P : Set). Define a
relation R (R : Rel N2) as follows:

R a b ≡ a =2 b ∨ P

We show that there exists a function f : N2 → N2 such that P ↔ f0 =2 f1,
meaning P is decidable.

We will use (2); let us satisfy the hypotheses: for A,B take N2, for R take the
R defined above, for the equivalence on A take R again and for the equivalence
on B take =2. Clearly, R is an equivalence relation on N2.

By symmetry and transitivity of R, R is left-extensional for R itself. By tran-
sitivity of R and or-introduction, R is right-extensional for =2. By reflexivity of
R, for any x : N2 there exists a y : N2 such that R x y, namely x is such a y
itself.

Thus, we get the following consequence of (2):

∃fN2→N2 .
(
∀xN2 . R x fx

)
∧
(
∀a, bN2 . R a b→ fa =2 fb

)
(3)

From the definition of R we have P → R 0 1. From the right conjunct of (3)
we have R 0 1 → f0 =2 f1. Thus

P → f0 =2 f1 (4)
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To establish the other direction, first we prove ∀a, bN2 . fa =2 fb → R a b.
Let a, b be given and let fa =2 fb. From the fact that R is right-extensional for
=2 and the left conjunct of (3) we get R a fb. From the same conjunct and the
symmetry of R we get R fb b. From these and the transitivity of R we get R a b.

From the definition of R and decidability of =2 we get R 0 1 → P . From this
and the conclusion of the previous paragraph

f0 =2 f1→ P (5)

(4) and (5) establish the decidability of P.

3 The Theorem

We present the definition of an extensional set and its subsets and define opera-
tions on them. After further definitions of special kinds of subsets, we state the
well-ordering theorem in terms of those. The proof follows, divided into several
propositions which are numbered in the same way as their parallels in Zermelo’s
proof from 1904 – the difference being that our proof is more detailed.

3.1 Representation of Sets and Subsets

We introduce the notion of extensional set, Xet2. An extensional set is an object
of type Set, accompanied by a relation, accompanied by a proof that the relation
is an equivalence one. Two such objects are equal if their Set-objects are equal
and their relations are equal.

Xet type

All judgements 	 we make will be hypothetical, i.e. of the form

	 [X : Set][=X : X → X → Set][=X equivalence on X ]

but we will make this hypotheticalness implicit, in order to lighten the notation.
So, let an object (X,=X , equivX) : Xet be given.

We define

ext : (X → Set) → Set

ext f ≡ ∀a, bX . a =X b→ fa→ fb

Subsets of a Xet object will be the boolean functions onX that are extensional:

P : Set
P ≡ Σ (X → N2, ext ([U, x]T (Ux)))

2 As pointed out by one of the referees, this is just the known notion of setoid ; see
[11], for example.
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Inhabited, or non-empty, subsets are subsets that contain an element:

P ′ : Set nonempty : P → Set

P ′ ≡ Σ (P , nonempty) nonempty U ≡ ∃aX . T (U.1 a)

The suffix .n of U is a selector, which picks the n-th component of an object of
type Σ.

We also need some operations:

∈ : X → P → Set ∈′ : X → P ′ → Set
a ∈ U ≡ T (U.1 a) a ∈′ U ≡ a ∈ U.1

⊆ : P → P → Set = : P → P → Set

U ⊆ V ≡ ∀aX . a ∈ U → a ∈ V U = V ≡ U ⊆ V ∧ V ⊆ U

⊆′ : P ′ → P ′ → Set =′ : P ′ → P ′ → Set
U ⊆′ V ≡ U.1 ⊆ V.1 U =′ V ≡ U.1 = V.1

And some syntactic shortcuts:

∀a ∈ U. 	 ≡ ∀aX . a ∈ U → 	
∃a ∈ U. 	 ≡ ∃aX . a ∈ U ∧	

LEM allows us to create subsets which consist of elements of X which satisfy
a given extensional property; we will write this in a form of set comprehension:

{|} : ExtPred→ P
{x|P} ≡ (theSubset P.1, theExt P.1)

where x is a placeholder for the free variable in P.1 (we want to mirror set
theoretic notation), where ExtPred ≡ Σ (X → Set, ext) and where

theSubset : (X → Set) → (X → N2)

theSubset P ≡ IntAC X N2

(
[x, b] Tb↔

(
Px ∧ ∀yX . y =X x→ Py

))
(· · · )

theExt : (P : X → Set)→ ext ([x]T ((theSubset P )x))
theExt P ≡ (· · · )

To complete the proof of theSubset we need to prove ∀xX . ∃bN2 . Tb ↔(
Px ∧ ∀yX . y =X x→ Py

)
, but this is immediate if we apply LEM to the right

hand side of the equivalence – for b take 1 if it holds, 0 if it does not hold. The
right hand side of the equivalence also gives us theExt immediately.

All predicates we shall apply comprehension on will be extensional.
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Now, we have notation sufficient to mimic a set theoretic proof. We will just
define a few more operators:


 : P → P \ : P → P → P ∩ : P → P → P

U ≡ {x | x �∈ U} U \ V ≡{x | x ∈ U ∧ x �∈ V } U ∩ V ≡{x | x ∈ U ∧ x ∈ V }

{} : X → P ∪ : P → P → P ∅ : P
{a} ≡ {x | x =X a} U ∪ V ≡ {x | x ∈ U ∨ x ∈ V } ∅ ≡ {x | N0}

3.2 Statement of the Theorem

We will need to be able to quantify over relations, thus we need decidable re-
lations. We can lift a decidable relation into a normal one and vice-versa, since
every proposition is decidable.

DRel : Set Rel : Type
DRel ≡ X → X → N2 Rel ≡ X → X → Set

dRel : DRel→ Rel rRel : Rel → DRel
dRel D ≡ [a, b] T (D a b) rRel R ≡ · · ·

For the definition of rRel we use IntAC; for details see the formalisation.
Now, some classes of relations on subsets. When a relation is trichotomous,

transitive and linear:

trich : P → Rel → Set
trich U < ≡ ∀a, b ∈ U. (a < b↔ b �< a ∧ a �=X b) ∧ (a =X b↔ a �< b ∧ b �< a)

trans : P → Rel→ Set
trans U < ≡ ∀a, b, c ∈ U. a < b→ b < c→ a < c

linear : P → Rel→ Set
linear U < ≡ (trich U <) ∧ (trans U <)

We also need a property expressing that a subset has a minimal element:

hasLeast : P → Rel→ Set
hasLeast U < ≡ ∃a ∈ U. ∀b ∈ U. b �< a

And a property expressing that a subset is well-ordered:

wellOrdered : P → Rel→ Set

wellOrdered U < ≡ (linear U <) ∧
(
∀V P′

. V.1 ⊆ U → hasLeast V.1 <
)

We are ready to state
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Theorem 1 (Zermelo’s Well-Ordering). Any extensional set can be well-
ordered. (

∃RDRel. ∀UP . wellOrdered U (dRel R)
)

3.3 Proof

We will now proceed with the proof following the one from 1904, enumerating
the steps like it is done there. The key idea will be to use a choice function,
γ, in defining a well-ordering relation < in such a way that γ picks the <-least
element of any subset.

(2) The Function γ. There is a function which takes a non-empty subset of
X and gives an element of X which is contained in the subset. This function is
extensional in respect to =′,=X . Formally:

∃γP′→X .
(
∀UP′

. γU ∈′ U
)
∧
(
∀U, V P′

. U =′ V → γU =X γV
)

Proof. We will use the extensional axiom of choice. Put P ′ for A, X for B,
(x ∈′ U) for R, =′ for =A and =X for =B. It is easy to see that =′ is an
equivalence relation, and =X is such by hypothesis. To get the desired function,
we need only prove the following three things:

– ∀U, V P′
. U =′ V → ∀zX . z ∈′ U → z ∈′ V . This we get immediately from

the definition of =′.
– ∀x, yX . x =X y → ∀WP′

. x ∈′ W → y ∈′ W . This is immediate from the
extensionality of subsets.

– ∀UP′
. ∃yX . y ∈′ U . This follows from the non-emptiness of U .

(3) γ-Sets. An initial segment of a subset, for a given element of X and a
relation, is the subset of all those elements which are in relation with the given
one. Formally:

IS : P → X → Rel→ P
IS U a < ≡ {x | x ∈ U ∧ x < a}

A subset is called a γ-set, for a given relation, if it is well-ordered by the
relation and if for any element a therein, γ takes the complement of the initial
segment for a, into a itself. Formally:

GS : P → Rel→ Set
GS U < ≡ (wellOrdered U <)∧(
∀a ∈ U. ∀nenonempty�(IS U a<). a =X γ

((

 (IS U a <)

)
, ne
))
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(4) Example Subsets of X Which Are γ-Sets. Suppose X is inhabited,
X ≡ {x | N1} is a subset containing all elements of X , ne : nonemptyX and take
the following subset:

M ′ : P m1 : X
M ′ ≡ {x | x =X m1} m1 ≡ γ (X , ne)

Define the ordering:

<1: Rel
x <1 y ≡ N0

It is easy to check that <1 makes M ′ a γ-set. Similarly, the subset {x | x =X

m1 ∨ x =X m2}, where m2 ≡ γ(X \ {m1}, ne′) and ne′ : nonempty(X \ {m1}),
is a γ-set.

(5) If M1, M2 Are Different γ-Sets, Then One Is an Initial Segment
of the Other. Formally:

∀M1,M
P
2 . ∀ <1, <

Rel
2 . GS M1 <1 ∧ GS M2 <2 →

(M1 =M2) ∨ (∃x1 ∈M1. S1x1 =M2) ∨ (∃x2 ∈M2. S2x2 = M1)

where

S� ≡ [x]IS M� x <�

In the original paper, as well as modern papers like [12], this step is proven by
using the comparability of well-orderings, which grants that there is an order-
preserving injection from one of M1,M2 into the other. Then one proceeds to
prove that this injection must be the identity. As the comparability is not easier
to prove than the well-ordering theorem itself, we provide a direct proof using
well-founded induction.

Proof. LetM1, <1,M2, <2 be given and let them be γ-sets. We need the following
lemma:

Lemma 1. An initial segment of M1 is an initial segment of M2 or is M2; or
a smaller initial segment of M1 is M2.

∀x ∈ M1. (x ∈ M2 ∧ S1x = S2x) ∨ (∃x1 ∈ S1x. S1x1 = M2) ∨ (S1x = M2)

Proof. M1 is well-ordered, thus we can use well-founded induction on it3: for
P : X → Set, we have that (∀x ∈M1. (∀y ∈M1. y <1 x→ Py) → Px) → ∀x ∈
3 Suppose that a subset U is well-ordered and not well-founded, take the minimal

element t of U for which P does not hold, and derive a contradiction. All the details
are in the formalisation.
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M1. Px. For P we take the expression in the scope of the universal quantifier
from the formulation of the lemma.

Let x ∈ M1 be given. We use the classical tautology (for R,A,B,C : X →
Set):

(∀xX . Rx→ Ax ∨Bx ∨ Cx) →
(∀xX .Rx→ Ax) ∨ (∃xX .Rx ∧Bx) ∨ (∃xX .Rx ∧ Cx) (6)

on the induction hypothesis, and get these 3 cases:

1. ∀y ∈ M1. y <1 x → (y ∈ M2 ∧ S1y = S2y). Thus, S1x ⊆ M2. We look into
the following two cases:
(a) S1x = M2.
(b) S1x �= M2. S1x ⊆M2. Let t be the least element of the subset M2 \ S1x

for <2. We will show that S1x = S2t:
– Let a ∈ S1x. Then a ∈ M2 and we need to show that a <2 t. If
a �<2 t, then t <2 a or a =X t. a =X t is not possible as t �∈ S1x
by definition. If t <2 a, t ∈ S2a and by the induction hypothesis
S2a = S1a ⊆ S1x $ t, again a contradiction with the definition of t.
So, a ∈ S2t.

– Let b ∈ S2t. If b �∈ S1x, then b ∈M2\S1x and then, since t is minimal,
it must be that b �<2 t, a contradiction with b ∈ S2t. So, b ∈ S1x.

We have that S1x = S2t. From S1, S2 being initial segments of the γ-sets
M1,M2, x =X γ(
(S1x)) =X γ(
(S2t)) =X t. Thus, S1x = S2x.

2. ∃y ∈ M1. y <1 x ∧ (∃x1 ∈ S1y. S1x1 = M2). Let such y, x1 be given. Then
x1 ∈ S1x, so we get the 2nd disjunct of Px.

3. ∃y ∈M1. y <1 x∧ (S1y =M2). Taking y for x1, we immediately get the 2nd
disjunct of Px.

We use tautology (6) again, now on the lemma itself and thus get 3 cases:

1. ∀x ∈M1. x ∈M2 ∧ S1x = S2x. Define the following subsets:

S ≡ {y | ∃z ∈M1. y ∈ S1z}
T1 ≡M1 \ S
T2 ≡M2 \ S

S is the subsets of all elements of M1 which belong to some initial segment
of M1. T1, T2 contain the remaining elements. From the hypothesis we have
M1 ⊆M2 and S ⊆M2. We will distinguish on the emptiness of T1, T2:
(a) T1 = ∅. As S ⊆M1 and ∅ = M1 \ S, M1 = S.

i. T2 = ∅. As S ⊆M1 ⊆M2 and ∅ = M2 \ S, M2 = S = M1.
ii. T2 �= ∅. Let t be the least element of T2 for <2. We want to show

that S2t = S = M1:
– if a ∈ S2t, a <2 t, so a �∈ T2, because t is the minimal of T2. As
a ∈M2 and a �∈ T2, a ∈ S.
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– let a ∈ S; then a �∈ T2. Does a ∈ M2 and a <2 t? a ∈ M1 ⊆ M2.
Let a �<2 t:
• if t <2 a, then t ∈ S as, from the hypothesis, S1a = S2a; but,
t �∈ S by definition.

• if a =X t, a ∈ T2, a contradiction.
Thus, a <2 t and a ∈ S2t.

(b) T1 �= ∅. We show that T1 can contain only one element: let t1, t2 ∈ T1

and, without loss of generality, let t1 <1 t2; then t1 ∈ S1t2, thus t1 ∈ S,
thus t1 �∈ T1, which is a contradiction. So, T1 has exactly one element;
call it t.
From M1 ⊆M2 and the definitions of T1, T2, T1 ⊆ T2 and t ∈ T2.
i. T2 = {t}. Then M2 = S ∪ T2 = S ∪ T1 =M1.
ii. T2 �= {t}. Let t′ be the least element of the subset T2 \ {t}. Then
t <2 t

′: if t′ =X t, then t ∈ T2 \ {t}, a contradiction; if t′ <2 t, by the
main hypothesis S1t = S2t, so t′ ∈ S1t and t ∈ S, a contradiction.
Thus, t <2 t

′ and we have that t is the minimal of T2 for <2. Using
this, like in case (a.ii) we get S = S2t and M1 = S ∪ {t} = S2t∪ {t}.
We show that M1 = S2t

′:
– if x ∈M1, then x ∈ S2t or x =X t. If x ∈ S2t, then x <2 t <2 t

′,
thus x ∈ S2t

′. If x =X t, then x <2 t
′, thus x ∈ S2t

′.
– if x ∈ S2t

′, then x <2 t
′. We look at the 3 cases:

• x =X t. Then x ∈ T1 ⊆M1.
• x <2 t. Then x ∈ S2t =M1.
• t <2 x. Then t <2 x <2 t

′, so t′ is not the minimal element of
T2 \ {t}.

2. ∃x ∈ M1. ∃x1 ∈ M1. x1 <1 x ∧ S1x1 = M2. Thus, M2 is an initial segment
of M1. QED

3. ∃x ∈M1. S1x = M2. Again, M2 is an initial segment of M1. QED

(6) A Consequence. If two γ-sets have an element a in common, then their
initial segments for a are the same. Formally:

∀M1,M
P
2 . ∀ <1, <

Rel
2 . GS M1 <1 ∧ GS M2 <2 →

∀a ∈M1 ∩M2 → (S1a = S2a)

Proof. We can use (5) to decide which of the γ-sets is an initial segment of the
other. The required follows from the definition of initial segment.

(7) X Is Well-Ordered. Define the following relation on X :

a < b ≡ ∃MP
a . ∃DDRel

a . GS Ma (dRel Da) ∧ a ∈Ma∧
∀MP

b . ∀DDRel
b . GS Mb (dRel Db)→ b ∈Mb →

∃β.β ∈Mb ∧ IS Mb β (dRel Db) = Ma
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This relates two elements of X , if they are γ-elements and a γ-set containing the
first element is an initial segment of a γ-set containing the other.

Call x : X a γ-element if there exists a γ-set, for the relation <, which
contains it:

GE : X → Set

GE x ≡ ∃MP
γ . x ∈Mγ ∧GS Mγ <

Let Lγ be the subset of all γ-elements:

Lγ : P
Lγ ≡ {x | GE x}

To establish that X is well-ordered, in the following 5 lemmas, we show that
Lγ is well-ordered and that X ⊆ Lγ. Recall that X is a subset containing all
elements of X .

(7-I) < Is Trichotomous on Lγ . First, we lighten the notation by writing
Ma ≺ Mb when Ma is an initial segment of Mb, and by omitting the relations,
which are always quantified together with their corresponding γ-sets.

– Let a, b ∈ Lγ and a < b. Then there exist a γ-set Ma containing a, such that
for any Mb containing γ-set of b, Ma ≺Mb.

If a =X b, then Ma is a containing γ-set of b as well, and we have
Ma ≺Ma, which is not possible.

If b < a, then there exists Lb $ b s.t. for every La $ a, Lb ≺ La. If we
put Lb in place of Mb and Ma in place of La, we get both Lb ≺ Ma and
Ma ≺ Lb, which is not possible.

– Let a, b ∈ Lγ and b �< a and a �=X b. From b �< a we have ∀Lb. ∃La. Lb �≺ La.
We will use the fact that b is a γ-element, to extract a containing Wb, which
is a γ-set for <. We get that there exists a gamma set La $ a such that
Wb �≺ La. From step (5) we have that Wb = La or La ≺ Wb. In any case,
a ∈ Wb and we can use the hypotheses and the trichotomy of < on Wb to
complete the proof.

(7-II) < Is Linear. We need to show that < is transitive. Let a, b, c ∈ Lγ and
a < b, b < c. From ∃Ma. ∀Mb. Ma ≺ Mb and ∃Mb. ∀Mc. Mb ≺ Mc, we have
∃Ma. ∀Mc. Ma ≺Mc, i.e. a < c.

(7-III) < Well-Orders Lγ . Let L′ ⊆ Lγ , L
′ �= ∅. Pick a ∈ L′ and define

L′′ ≡ {x | (x ∈ IS L′ a <)∨ (x =X a)}. If M ′ is a witnessing γ-set of a, then (by
step (6)) L′′ ⊆M ′. Since L′′ is not empty (it has at least a) and is a subset of a
well-ordered M ′, L′′ has a minimal element, which (because of the definition of
L′′) must be a minimal of L′ as well.
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(7-IV) Lγ Is a γ-Set. Let a ∈ Lγ , Ma be its witnessing γ-set for <; let
B ≡ IS Ma a < and let A ≡ IS Lγ a <. We will show that A = B; from this will
follow that γ(
A) =X γ(
B) =X a.

– Let x ∈ A. Then x < a, so there is a containing γ-set Mx, such that Mx ≺
Ma. So, x ∈Ma and x < a, thus x ∈ B.

– Let x ∈ B. Then it is a γ-element, since it belongs to Ma, so x ∈ A.

(7-V) X ⊆ Lγ . If the Set X is not inhabited, then X = ∅ and trivially X ⊆ Lγ .
If the Set X is inhabited, then let x ∈ X and let x �∈ Lγ . Then, x ∈ 
Lγ, thus

this complement is not empty, ne : nonempty
Lγ, and we can define

m : X
m ≡ γ(
Lγ, ne)

Now, the relation < makes m larger than all elements in the subset:

L′ : P
L′ ≡ {x | (x ∈ Lγ) ∨ (x =X m)}

It is not hard, but it takes some work to check that L′ is a γ-set for < (for
details, see the formalisation). Since m ∈ L′, m is a γ-element, thus it must be
thatm ∈ Lγ , which is a contradiction. So, indeed, X ⊆ Lγ , and X is well-ordered.

4 Formalisation

The presented proof served as a sketch for a formalisation [13] that was checked
using AgdaLight [14], a version of the Agda [15] proof checker for constructive
type theory.

In Agda a proof term is not constructed by using tactics, but is directly given.
We use nested let-expressions and explicit type annotations to give structure to
the proofs. This style of writing comes close to the requirements of Leslie Lam-
port’s proof style[16]. We hope to have produced a readable formalised document.

Further work of the formalisation is possible, especially in respect to handling
more systematically subsets created by set comprehension.

5 Related Work

In [17], Peter Aczel has shown how to interpret full Zermelo-Fraenkel set theory
in constructive type theory + LEM. The type theory used is a standard one
(with W), thus stronger than the one we use.

In [18], Per Martin-Löf shows that in type theory, the extensional axiom of
choice is equivalent to Zermelo’s axiom of choice. As a consequence of the work
from Peter Aczel, full ZFC can be interpreted in constructive type theory +
ExtAC.
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Abstract. We expose a formalism that allows the expression of any
theory with one or more axiom schemes using a finite number of ax-
ioms. These axioms have the property of being easily orientable into
rewrite rules. This allows us to give finite first-order axiomatizations of
arithmetic and real fields theory, and a presentation of arithmetic in de-
duction modulo that has a finite number of rewrite rules. Overall, this
formalization relies on a weak calculus of explicit substitutions to provide
a simple and finite framework.

1 Introduction

In mathematics, some theories — such as arithmetic or set theory — are often
expressed using an infinite number of axioms. This is achieved through the use
of one or more axiom schemes, i.e. sets of axioms, often described within the
meta-theory. For instance the induction scheme in arithmetic can be expressed
as: for any proposition P ,

P (0)⇒ ∀y, (P (y)⇒ P (S(y))) ⇒ ∀z, P (z).

This scheme, parametrized by the schematic variable P that takes values in the
set of formulas of arithmetic, generates an infinite number of axioms.

The use of these axiom schemes can be avoided though, by introducing a new
sort of objects, classes (which we will distinguish from other objects by using
uppercase letters), and a membership symbol ∈. Using classes as representatives
for propositions, the induction scheme is re-written as a single axiom:

∀E, (0 ∈ E ⇒ ∀y, (y ∈ E ⇒ S(y) ∈ E)⇒ ∀z, z ∈ E).

However, in order for classes to soundly emulate propositions, one needs to guar-
antee that any proposition has an associated class. This is assured by the com-
prehension axiom scheme, which states: for any proposition P that is well formed
in the original language,

∃E, ∀x, (x ∈ E ⇔ P ).

This extension of arithmetic is conservative, meaning that any formula that is
provable in the theory of arithmetic plus classes, involving symbols of arithmetic
only, was already provable in arithmetic. Also note that some axiom schemes
might have propositions with two free variables or more, and that to deal with

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 188–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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this in the most general way, one needs not only classes of objects but classes
of n-tuples of objects. Therefore, one could for instance introduce a sort of lists,
list constructors and adapt the symbol ∈ and the comprehension axiom scheme
to this new structure.

In the end, however, the theory would still have an axiom scheme that gener-
ates an infinite number of axioms.

This is not a zero-sum game, though. Previous works [1–5] have shown that, in
the case of set theory, it is possible to reduce the comprehension axiom scheme
to a finite number of axioms. However we believe that the notion of class is
independent of set theory and can be extended to express any theory containing
axiom schemes in a finite first-order axiomatization. Moreover, unlike in the
previous systems, we will see that the axioms in the theory of classes can easily
be oriented as rewrite rules.

This work is part of a long term project investigating the possibility to base
proof checkers on weaker frameworks, such as first-order logic. The maturity of
these frameworks make them very secure centerpieces of formal tools in general,
and proof checkers in particular; some designs (e.g. [6, 7]) have already taken
advantage of them. It is essential in this project to implement strong theories,
such as arithmetic, real fields or set theory, with a finite number of axioms.
The main contribution of this paper is a systematic way of conducting these
implementations, using a theory of classes.

2 A Theory with the Comprehension Scheme

We consider a language L in first-order predicate logic with equality, and we
call Σ its finite signature. Let T be an intuitionistic theory of this language that
has one or more axiom schemes, i.e. axioms of the form:

s(P (t11, . . . , t
1
n), . . . , P (tp1, . . . , t

p
n)),

where n and p are natural numbers depending on each scheme, s is a p-ary
first-order formula, the tij are terms of L and P is a schematic formula variable.
Remark that, although the axiom schemes in this paper only have one schematic
variable P , the generalization of our results to a system with arbitrary axiom
schemes is straightforward.

Definition 1 (L cs). Let L cs be a many-sorted language with three sort symbols:
the sort of objects X, lists L, and classes C. In L cs, Σ is finitely extended into a
signature Σcs with a predicate symbol ∈ of rank (L,C) and two function symbols:

nil : L
:: : (X,L)L.

Notation 1. We use 〈x1, . . . , xn〉 as syntactic sugar for the term x1 :: . . . ::xn ::
nil .
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Definition 2 (T cs). Define T cs as the theory of the language L cs derived from
T by adding the comprehension scheme:

∃E : C, ∀x1, . . . ,∀xn : X, (〈x1, . . . , xn〉 ∈ E ⇔ P ) (T cs
1 )

where P is built with the symbols of L , and may contain some of the xi as free
variables. Axiom schemes are replaced by axioms:

∀E : C, s(〈t11, . . . , t1n〉 ∈ E, . . . , 〈t
p
1, . . . , t

p
n〉 ∈ E). (T cs

2 )

Example 1. Following the translation of Definition 2, the induction axiom scheme:

P (0)⇒ ∀y, (P (y) ⇒ P (S(y)))⇒ ∀z, P (z)

is replaced by the following axiom scheme and axiom:

∃E : C, ∀x1, . . . ,∀xn : X, (〈x1, . . . , xn〉 ∈ E ⇔ P )
∀E : C, 〈0〉 ∈ E ⇒ ∀y, (〈y〉 ∈ E ⇒ 〈S(y)〉 ∈ E)⇒ ∀z, 〈z〉 ∈ E.

Proposition 1. T cs is an extension of T .

Proof. We need to show that in T cs, for any P ,

s(P (t11, . . . , t
1
n), . . . , P (tp1, . . . , t

p
n)).

is provable. This is immediate, by (T cs
1 ) and (T cs

2 ). ��

We have now all ingredients to move towards our goal, finding a finite axioma-
tization of the comprehension scheme.

3 Finite Class Theory

3.1 Setting and Notations

Definition 3 (L ws). We extend L cs with the function symbols:

1 : X ∅ : C
S : (X)X ∩,∪,⊃ : (C,C)C
·[·] : (X,L)X P,C : (C)C.

To each predicate symbol p is associated a function symbol ṗ of similar arity,
which constructs elements of sort C. We call L ws this language, and Σws its
finite signature.

Definition 4 (T ws). Let T ws be the theory of the language L ws formed with the
following axioms for explicit substitutions:

∀x : X, x[nil ] = x (T ws
1 )

∀# : L, ∀x : X, 1[x ::#] = x (T ws
2 )

∀# : L, ∀x, y : X, S(y)[x ::#] = y[l] (T ws
3 )

∀# : L, ∀x1, . . . , xn : X, f(x1, . . . , xn)[#] = f(x1[#], . . . , xn[#]) (T ws
4 )
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and the axioms for proposition encoding:

∀# : L, ∀x1, . . . , xn : X, # ∈ ṗ(x1, . . . , xm)⇔ p(x1[#], . . . , xm[#]) (T ws
5 )

∀A,B : C, ∀# : L, # ∈ A ∩B ⇔ # ∈ A ∧ # ∈ B (T ws
6 )

∀A,B : C, ∀# : L, # ∈ A ∪B ⇔ # ∈ A ∨ # ∈ B (T ws
7 )

∀A,B : C, ∀# : L, # ∈ A ⊃ B ⇔ # ∈ A⇒ # ∈ B (T ws
8 )

∀# : L, # ∈ ∅ ⇔ ⊥ (T ws
9 )

∀A : C, ∀# : L, # ∈ P(A)⇔ ∃x, x ::# ∈ A (T ws
10 )

∀A : C, ∀# : L, # ∈ C (A) ⇔ ∀x, x ::# ∈ A. (T ws
11 )
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(b) Cylindrification

Fig. 1. Two-dimensional operators

A couple of remarks on this formalization:

– The symbols 1 and S in L ws are constructors of de Bruijn indices. It is
important for them to be given the sort X , because the symbol S will need
to be applied to non-substitutable variables of X to lift them out of the
substitution’s reach1.

– This axiom system features a weak calculus of explicit substitutions [9]: the
substitutions are propagated over the elements of the language via the sym-
bols ∈ and ·[·], and no lift is introduced by the P or C binders (axioms (T ws

10 )
and (T ws

11 )).
– Axiom scheme (T ws

4 ) (resp. (T ws
5 )) represents a finite number of first-order

axioms, as there is one such axiom for each function (resp. predicate) symbol
of arity n (resp. m) in the language L ws (which as a finite extension of L cs

is finite).
1 This operation is called pre-cooking in [8].
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– The P and C operators are respectively called projection and cylindrification
in Algebra. Figure 1 illustrates the semantics of these combinators in a two-
dimensional space.

From now on in this paper, we will spare the type of variables in quantifiers
when no ambiguities hold.

3.2 Expressiveness

We want to associate to each proposition a characteristic class, constructed with
the symbols exposed in Definition 3.

Example 2. Assume given a predicate symbol < and the associate characteristic
set constructor <̇. Using infix notations and the decimal representations 2 and
3 for the Peano numbers S(1) and S(S(1)), the class of objects x such that
∃y, ∃z, (x < z ∧ z < y) is written PP(3<̇1 ∩ 1<̇2). Indeed,

〈x〉 ∈PP(3<̇1 ∩ 1<̇2)
⇔ ∃y, ∃z, (〈z, y, x〉 ∈ 3<̇1 ∩ 1<̇2)
⇔ ∃y, ∃z, (〈z, y, x〉 ∈ 3<̇1 ∧ 〈z, y, x〉 ∈ 1<̇2)
⇔ ∃y, ∃z, (x < z ∧ z < y).

We first need a little lemma to prove that the term substitution axioms are
complete:

Lemma 1. For all term u and variables x1, . . . , xn of L , there exists a term
t of L ws in which none of the xi appear, such that u = t[x1 :: . . . :: xn :: nil ] is
provable in T ws.

Proof. We proceed inductively on the structure of u.

– If u is one of the xi, then we take Si−1(1) for t and by using axioms (T ws
2 )

and (T ws
3 ), xi = Si−1(1)[x1 :: . . . ::xn ::nil ] is provable.

– If u is a variable y different from the xi, we take t = Sn(y), and by ax-
ioms (T ws

1 ), (T ws
2 ) and (T ws

3 ) we can prove y = Sn(y)[x1 :: . . . ::xn ::nil ].
– Finally, if u is a term f(u1, . . . , um), then by induction hypothesis there

exist t1, . . . , tm such that for any 0 < i ≤ m, ui = ti[x1 :: . . . :: xn :: nil ].
Axiom (T ws

4 ) allows to conclude f(u1, . . . , um) = f(t1, . . . , tm)[x1 :: . . . ::xn ::
nil ]. ��

We now show that the comprehension axiom scheme holds in our formalism.
Translated in our framework, the scheme states:

Proposition 2. For any formula P built with the symbols of L , the formula:

∃E, ∀x1, . . . ,∀xn, (〈x1, . . . , xn〉 ∈ E ⇔ P )

is provable in T ws.
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Proof. We show by induction on the structure of P that for any formula P there
exists a term E of sort C such that, for all x1, . . . , xn of sort X , 〈x1, . . . , xn〉 ∈
E ⇔ P .

If P is an atomic proposition p(u1, . . . , um), where p is a predicate symbol
and u1, . . . , un are terms, Lemma 1 allows us to equate this proposition to
p(t1[l], . . . , tm[l]) where l = 〈x1, . . . , xn〉. Then by Axiom (T ws

5 ), E is ṗ(t1,. . . ,tm).
For the propositional connectors, using Axioms (T ws

6 ) to (T ws
9 ), we prove

that:

– if P = P ′ ∧ P ′′ then we can take E = EP ′ ∩EP ′′ ,
– if P = P ′ ∨ P ′′ then we can take E = EP ′ ∪EP ′′ ,
– if P = ⊥ then we can take E = ∅,
– if P = P ′ ⇒ P ′′ then we can take E = EP ′ ⊃ EP ′′ ,

where, by induction hypothesis, EP ′ and EP ′′ are the classes characterized by,
respectively, the formulas P ′ and P ′′.

For the case P = ∃y,A, the bi-dimensional illustration of Fig. 1a provides the
intuition: the class such that there exists a value y for which A holds — and EA

is characterized — is its projection P(EA). Indeed, we can derive:

〈x1, . . . , xn〉 ∈ E ⇔ 〈x1, . . . , xn〉 ∈P(EA)
⇔ ∃y, 〈y, x1, . . . , xn〉 ∈ EA by axiom (T ws

10 )
⇔ ∃y,A .

Similarly for the universal quantifier: if P = ∀y,A then E = C (EA). ��

Remark that while our theory T ws is intuitionistic, this proof unfolds just as
well in a classical setting. In this case, we can additionally discard the ∪, ∩ and
C symbols and related axioms, and to use the De Morgan equivalences to carry
out the proof.

Because this entails that T ws is an extension of T cs, and that T cs is an exten-
sion of T , we have:

Proposition 3 (Extension). T ws is an extension of T .

This property assures that the formalism we proposed is expressive enough,
however it should not be too strong: we should not be able to prove propositions
that were not provable by using axiom schemes.

Proposition 4 (Conservativity). T ws is a conservative extension of T .

Proof. We prove this proposition by showing that for each model M of T there
is a model of T ws validating the same T -built formulas.

Let M be a model of T , and consider the structure M′ defined as follows:

– �X�M
′
is the set of functions fromMω toM, whereMω is the set of infinite

lists of elements of M.
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– For any n-ary function symbol f of L , �f�M
′
, is the function:

a1 "→ . . . "→ an "→ u "→ �f�M(a1(u), . . . , an(u))

where ∀i, ai ∈ �X�M
′
and u ∈ Mω.

– The denotation of a predicate symbol p of L in M′ is the function map-
ping elements a1, . . . , an of �X�M

′
to 1 if and only if for all infinite lists u,

�p�M(a1(u), . . . , an(u)) = 1.

Note that the denotation of a formula P of L in M′ is entirely known when
given �X�M

′
and the denotation of the symbols of L .

Upon such a basis, we can define denotations for the symbols of L ws:

– We say that a set e of sequences of elements of �X�M
′

is definable if and
only if there exists a formula P in L such that the sequence a1, . . . , an is a
member of e if and only if �P �M

′

a1/x1,...,an/xn
= 1.

– �L�M
′
is the set of finite sequences of elements of �X�M

′
, and �C�M

′
is the

set of definable subsets of �L�M
′
.

– �1�M
′

is the function that to each infinite list associates its first element,
and �S�M

′
maps a function f to a function g such that g(u1, u2, . . .) =

f(u2, u3, . . .).
– The denotation of t[#] is the element of �X�M

′
that associates to any list

u = u1, u2, . . . the term �t�M
′
(b1(u), . . . , bn(u), u1, u2, . . .) where the finite

sequence b1, . . . , bn is the denotation of #.
– �ṗ�M

′
is the set of sequences defined by the corresponding predicate symbol

p.
– The denotation of the rest of the symbols of L ws is self-evident: ∩ is set

intersection, ∈ is set membership, etc.

Remark that this definition of definability and the denotation of the symbols of
L ws make the following sentence a tautology: if e is the set of sequences defined
by a proposition P then for all a1, . . . , an,

�〈x1, . . . , xn〉 ∈ E�M
′

a1/x1,...,an/xn,e/E = �P �M
′

a1/x1,...,an/xn
. (�)

Indeed, both are interpreted as 1 when a1, . . . , an is a member of e.
To prove that M′ is a model of T ws, we check that it validates axioms (T ws

1 )
to (T ws

11 ). We also check that the translation we did of the original axiom schemes
(e.g. the induction scheme of Example 1) is also valid in M′. Let

s(P (t11, . . . , t
1
n1

), . . . , P (tp1, . . . , t
p
np

))

be an axiom scheme of T , and

∀E, s(〈t11, . . . , t1n1
〉 ∈ E, . . . , 〈tp1, . . . , tpnp

〉 ∈ E)

its translation in T ws. We prove that for any definable set e and sequence
a1, . . . , an,

�s(〈t11, . . . , t1n1
〉 ∈ E, . . . , 〈tp1, . . . , tpnp

〉 ∈ E)�M
′

a1/x1,...,an/xn,e/E = 1.
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Assume e is defined by the proposition Q of L . Since the particular scheme
instance s(Q(t11, . . . , t

1
n1

), . . . , Q(tp1, . . . , t
p
np

)) is valid in M,

�s(Q(t11, . . . , t
1
n1

), . . . , Q(tp1, . . . , t
p
np

))�M
′

a1/x1,...,an/xn

= �s(Q(t11, . . . , t
1
n1

), . . . , Q(tp1, . . . , t
p
np

))�Ma1/x1,...,an/xn

= 1 ,

and all we need to do is to prove:

�s(〈t11, . . . , t1n1
〉 ∈ E, . . . , 〈tp1, . . . , tpnp

〉 ∈ E)�M
′

a1/x1,...,an/xn,e/E

= �s(Q(t11, . . . , t
1
n1

), . . . , Q(tp1, . . . , t
p
np

))�M
′

a1/x1,...,an/xn
.

But this is simply a consequence of (�). Hence M′ is a model of T ws.
Finally, a formula of the language of L has, obviously, the same denotation

in M and in M′. Thus we can conclude the conservativity of T ws over T . ��
This last proof holds in classical logic. However it can be extended to an in-
tuitionistic proof by using Heyting algebra based models instead of classical
models.

4 Applications

The result of Propositions 3 and 4 can be applied to any theory that uses axiom
schemes. For instance, Zermelo’s set theory accepts a conservative extension,
built by applying these propositions to the traditional formulation of the theory.
The same holds for the binary replacement axiom scheme of Zermelo-Fraenkel’s
theory, or the three schemes that result from Dowek and Miquel’s encoding of
set theory in a theory of pointed graphs [10]. We detail two examples: arithmetic
and real analysis.

4.1 A Finite Theory of Arithmetic

In the following, we will explore Heyting’s arithmetic. While our formalism ap-
plies to the original formulation of the theory, HA, we consider here a slightly
more elaborate presentation of the theory where the universe of discourse is not
restricted to natural numbers. This theory, called HAN , was presented in [11] by
Dowek and Werner.

Definition 5 (HAN). The theory HAN of arithmetic is defined in first-order
logic using the symbols 0, Succ, +, ×, Pred, =, Null and N . It consists of the
axioms:

N(0) ∀x,(N(x) ⇒ N(Succ(x)))
Pred(0) = 0 ∀x,(Pred(Succ(x)) = x)
Null(0) ∀x,(¬Null (S(x)))

∀y,(0 + y = y) ∀x, ∀y,(Succ(x) + y = Succ(x+ y))
∀y,(0 × y = 0) ∀y,(Succ(x)× y = x× y + y)
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and the axioms and schemes for equality and induction:

∀x, (x = x)
∀x, ∀y, (x = y ⇒ P (x) ⇒ P (y))

P (0/x)⇒ ∀y, (P (y/x)⇒ P (Succ(y)/x))⇒ ∀n, (N(n) ⇒ P (n/x)).

In [11], the authors define a translation | · | between the languages of HA and
HAN , and prove:

Proposition 5. HAN is a conservative extension of HA in the sense that if A
is a closed proposition formed in the language of HA then A is provable in HA
if and only if |A| is provable in HAN .

Finitizing the presentation of these axiom schemes is achieved by introducing
lists and classes and a set of axioms that allows one to express comprehension,
as per Sect. 3.

Definition 6 (HAws
N ). Define HAws

N as an extension of HAN , composed of the
ranked signature:

0, 1 : X S,Succ,Pred : (X)X
+,× : (X,X)X = : (X,X)

N,Null : (X) ·[·] : (X,L)X
∅ : C P,C : (C)C

∩,∪,⊃ : (C,C)C ∈ : (L,C).

axioms (T ws
1 ) to (T ws

11 ), the axioms of arithmetic:

N(0) ∀x,(N(x) ⇒ N(Succ(x)))
Pred(0) = 0 ∀x,(Pred(Succ(x)) = x)
Null(0) ∀x,(¬Null (Succ(x)))

∀y,(0 + y = y) ∀x, ∀y,(Succ(x) + y = Succ(x+ y))
∀y,(0 × y = 0) ∀y,(Succ(x)× y = x× y + y)

the equality and induction axioms:

∀x, (x = x)
∀x, ∀y, (x = y ⇒ ∀A, (〈x〉 ∈ A⇒ 〈y〉 ∈ A))

∀n, ∀A, (〈0〉 ∈ A⇒ ∀y, (〈y〉 ∈ A⇒ 〈Succ(y)〉 ∈ A)⇒ ∀n, (N(n) ⇒ 〈n〉 ∈ A)).

In particular, axiom (T ws
4 ) has four instances (Succ, Pred , + and ×) and ax-

iom (T ws
5 ) three (=, N and Null), for a total of 29 axioms.

Remark that there are two sets of integer constructors in HAws
N : the native

arithmetic integers, build with 0 and Succ; and the de Bruijn indices formed by
the symbols 1 and S.

Propositions 3 and 4 applied to HAN , composed with Proposition 5, allow us
to state:
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Proposition 6. HAws
N is as a conservative extension of HA.

We can define a slight variant of HAws
N by replacing the class induction axiom

and Leibniz’s equality axiom by the equivalences:

∀x, ∀y, (x = y ⇔ ∀A, (〈x〉 ∈ A⇒ 〈y〉 ∈ A))
∀n, (N(n)⇔ ∀A, (〈0〉 ∈ A⇒ ∀y, (〈y〉 ∈ A⇒ 〈Succ(y)〉 ∈ A) ⇒ ∀n, 〈n〉 ∈ A)).

And we can drop the three axioms ∀x, (x=x), N(0) and ∀x, (N(x)⇒N(Succ(x)))
that have become superfluous.

Definition 7 (HA+). Let HA+ be this shortened theory.

Lemma 2. HA+ is equivalent to HAws
N , and counts 26 axioms instead of 29.

4.2 Arithmetic as a Theory Modulo

A theory modulo [12] is a theory in which formulas are identified modulo a
congruence, defined as a rewriting system. In particular, the theory of arithmetic
has been expressed in such a framework [11], but this formalization had an
infinite number of rewrite rules. The goal of this section is to show how the
result of Section 3 allows a finite formulation of arithmetic modulo.

Definition 8 (HAmod). The language of the theory HAmod is the same as the
theory HA+. The congruence ≡R associated with this theory is given by the
rewrite system R of Fig. 2.

The system is split between rules dealing with substitutions, rules for arithmetic
operations and rules defining relations (equality, etc.). This formalism counts a
total of 26 rules, which is reduced to 22 or 23 in classical logic using the fact
that all the connectors and quantifiers can be defined from 2 or 3 primitive
ones.

4.3 Application to Real Fields

Real numbers or their approximation are used in exact arithmetic, programming
languages, computer algebra and formal systems. The following formalization is
quite common [13], and is used e.g. in the proof assistant Coq to implement the
theory of real numbers.

Definition 9 (IRcs). The language of the theory of real numbers IRcs is formed
by the symbols 0, 1, +, ×, the opposite −, inverse 1/·, the symbol -·. that maps
real numbers to natural numbers, and the predicates < and =. We note ≤ the
disjunction of the two aforementioned predicates. The axioms follow:
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Substitutions rules

t[nil ] → t (HAmod
1 )

1[t ::�]→ t (HAmod
2 )

S(n)[t ::�]→ n[�] (HAmod
3 )

Succ(t)[�]→ Succ(t[�]) (HAmod
4 )

Pred(t)[�]→ Pred(t[�]) (HAmod
5 )

(t1 + t2)[�]→ t1[�] + t2[�] (HAmod
6 )

(t1 × t2)[�]→ t1[�]× t2[�] (HAmod
7 )

Arithmetic rules

Pred(0)→ 0 (HAmod
8 )

Pred(Succ(x))→ x (HAmod
9 )

0 + y → y (HAmod
10 )

0× y → 0 (HAmod
11 )

Succ(x) + y → Succ(x + y) (HAmod
12 )

Succ(x)× y → x× y + y (HAmod
13 )

Proposition rules

� ∈ ˙Null(t)→ Null(t[�]) (HAmod
14 )

� ∈ =̇(t1, t2) → t1[�] = t2[�] (HAmod
15 )

� ∈ Ṅ(t)→ N(t[�]) (HAmod
16 )

x = y → ∀A, (〈x〉 ∈ A ⇒ 〈y〉 ∈ A)) (HAmod
17 )

N(n)→ ∀A, (〈0〉 ∈ A ⇒ ∀y, (〈y〉 ∈ A ⇒ 〈Succ(y)〉 ∈ A)⇒ 〈n〉 ∈ A) (HAmod
18 )

Null(0) → � (HAmod
19 )

Null(Succ(x))→ ⊥ (HAmod
20 )

� ∈ A ∩ B → � ∈ A ∧ � ∈ B (HAmod
21 )

� ∈ A ∪ B → � ∈ A ∨ � ∈ B (HAmod
22 )

� ∈ A ⊃ B → � ∈ A ⇒ � ∈ B (HAmod
23 )

� ∈ ∅ → ⊥ (HAmod
24 )

� ∈P(A)→ ∃n, n ::� ∈ A (HAmod
25 )

� ∈ C (A)→ ∀n, n ::� ∈ A . (HAmod
26 )

Fig. 2. Rewrite system R for arithmetic
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(1 = 0)⇒ ⊥ (IR1)
∀x, ∀y, x+ y = y + x (IR2)
∀x, ∀y, ∀z, (x+ y) + z = x+ (y + z) (IR3)
∀x, x+ (−x) = 0 (IR4)
∀x, x+ 0 = x (IR5)
∀x, ∀y, x× y = y × x (IR6)
∀x, ∀y, ∀z, (x× y)× z = x× (y × z) (IR7)
∀x, ((x = 0)⇒ ⊥)⇒ (1/x)× x = 1 (IR8)
∀x, 1× x = x (IR9)
∀x, ∀y, ∀z, x× (y + z) = x× y + x× z (IR10)
∀x, ∀y, (x < y) ∨ (x = y) ∨ (y < x) (IR11)
∀x, ∀y, x < y ⇒ y < x⇒ ⊥ (IR12)
∀x, ∀y, ∀z, x < y ⇒ y < z ⇒ x < z (IR13)
∀x, ∀y, ∀z, y < z ⇒ x+ y < x+ z (IR14)
∀x, ∀y, ∀z, 0 < x⇒ y < z ⇒ x× y < x× z (IR15)
∀x, x < -x. ∧ (-x.+ (−x) ≤ 1). (IR16)

One way of formulating the completeness theorem of real fields is to use classes
and bounds. Thus we consider classes of reals, manipulated using the nil , :: and
∈ symbols, and the comprehension axiom scheme:

∀E, ∀x1, . . . , xn, (〈x1, . . . , xn〉 ∈ E ⇔ P ). (IR17)

The last four axioms of this theory follow: the first three define the semantics
of the predicate symbols isUB(·, ·), bounded(·) and isLUB(·, ·); the fourth is the
completeness axiom.

∀E, ∀m, (∀x, 〈x〉 ∈ E ⇒ x ≤ m)⇔ isUB(E,m) (IR18)
∀E, (∃m, isUB(E,m))⇔ bounded(E)) (IR19)

∀E, ∀m, (isUB(E,m) ∧ (∀b, isUB(E, b) ⇒ m ≤ b)) ⇔ isLUB(E,m) (IR20)
∀E, (bounded(E) ⇒ (∃x, 〈x〉 ∈ E)⇔ (∃m, isLUB(E,m))). (IR21)

Following the result of Sect. 3, we give a conservative finite first-order presenta-
tion of this theory.

Definition 10 (IRws). Define IRws as an extension of IRcs, formed with the
ranked signature:
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0, 1 : X S,−, 1/· : (X)X
+,× : (X,X)X <,= : (X,X)
-·. : (X)X ·[·] : (X,L)X
∅ : C P,C : (C)C

∩,∪,⊃ : (C,C)C ∈ : (L,C).

axioms (T ws
1 ) to (T ws

11 ), the axioms (IR1) to (IR16) and (IR18) to (IR21).

In particular, axiom (T ws
4 ) has six instances (S, −, 1/·, +, × and -·.) and ax-

iom (T ws
5 ) two (= and <), for a total of 37 axioms. Propositions 3 and 4 applied

to IR allow us to state:

Proposition 7. IRws is as a conservative extension of IRcs.

Remark that in the ranked signature of IRws, -·. has the rank (X)X , which is too
general. This is because there is no notion of natural numbers in the formalism
of Definition 10. This can be rectified by introducing the appropriate sort X ′,
and the language and theory of natural arithmetic as in the previous section;
then writing -·. : (X)X ′. However a more lightweight way of solving this issue is
to emulate natural numbers within the sort of real numbers X . Indeed, we can
define N as the smallest class of real numbers that satisfy the conjunction of the
formulas:

0 ∈ N ∀x : IR, x ∈ N ⇒ x+ 1 ∈ N.

Now the signature of -·. would still read (X)X , however the semantics of the
operator would restrict its values to elements of the class N .

5 Related Work

The work we present in the previous sections is related to von Neumann, Bernays
and Gödel’s formalism for set theory (NBG) [4] that rehabilitated the notion of
class used by 19th century mathematicians [14]. However it improves on a couple
of points:

– Classes and the NBG approach have largely been associated to set the-
ory [14]. We generalize it to any theory that has axiom schemes.

– By clarifying the classes/set distinction, not only is the system simplified,
but we also allow a more structured hierarchy of objects. In T ws the sorts
X , L and C are clearly separate entities, while in NBG the sorts of objects
and classes are indistinctly embedded into one another.

– Using lists and explicit substitutions to instantiate predicate free variables
also greatly clarifies the argument-passing process, and allows us to bypass a
couple of permutation axioms. Also, because we use native lists we are spared
the tedious process of re-encoding them using sets, as is done in NBG.
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– There is no easy way to orient NBG’s permutation axioms to generate a well-
behaved rewrite system. On the contrary, and as illustrated in Section 4.2,
the rules (T ws

1 ) to (T ws
11 ) are easily orientable.

What is more, our formalism applied to Zermelo’s set theory would use 15 ax-
ioms (in the classical case) vs. 14 for NBG, thus we feel it allows for a more
understandable presentation of set theory without being overly bloated.

Vaillant [5] gives a presentation of set theory using explicit substitutions (in
the form of the λσ-calculus) to manipulate classes. The axiomatization we pro-
pose differs from it in the following ways:

– While Vaillant’s paper, following NBG, was focused on set theory, our
method applies to any theory with one or more axiom schemes.

– We have shown that a weak substitution calculus is strong enough to allow
the complete manipulation of substitutions in this type of framework. This
allows us to greatly reduce both the language’s signature (neither lift, shift
nor compose operators) and the number of axioms in our presentation.

If a comparison of the size of the two formalizations could reinforce the reader’s
opinion that our system is lighter, consider that Vaillant’s intuitionistic theory
uses a total of 42 axioms, while ours would only require 18 and still express
full-blown Zermelo set theory. These axiom numbers comparisons might seem
pointless without any experimental data, thus irrelevant in the scope of au-
tomated reasoning. However one should note that this work is destined to be
implemented in proof assitants, where the low number of axioms, in particular
for variable substitution, will allow for faster and less tedious computational
steps.

Finally, while Megill’s work on a finite formal predicate calculus [15] also uses
a form reification, its approach is more invasive than the ones presented above,
as the whole logical system (including inference rules) is finitized. This would
make this solution hard to implement in a existing, general purpose prover.

6 Conclusion

We have exposed a generic formalization of theories with axiom schemes, which
has the property of being finite. This was achieved through the use of classes
and the recourse to weak explicit substitutions to cope straightforwardly with
variable instantiation. This operating protocol was applied to give a finite axiom-
atization of the theories of arithmetic and of real fields, and a finite formalization
of the former in deduction modulo.

Comparing to other methods such as von Neumann, Bernays and Gödel’s or
Vaillant’s, it appears this way of formalizing theories using axiom schemes has
links with both works. The use of a weak calculus allows us to keep a reduced
number of axioms, and provides an intuitive, direct mechanism for substitutions
— all of which are highly desirable properties in a proof checking environment.

Such a result easily fits into the trend set by the previous works done to
formalize arithmetic and set theory into computer proof assistants [16–18, 10].
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Moreover, the fact that our axioms are easily orientable is a major asset when
dealing with theories in deduction modulo, which is a rapidly growing research
topic showing strong potential. An implementation of the theory of real numbers
into the first-order proof manager Fellowship [6] using this technique is currently
underway. We will then be able to tell if this attempt at a better understanding
of class theory leads to simpler real-world implementations.
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Abstract. In this article we present a method for formally proving
the correctness of the lazy algorithms for computing homographic and
quadratic transformations — of which field operations are special cases—
on a representation of real numbers by coinductive streams. The algo-
rithms work on coinductive stream of Möbius maps and form the basis
of Edalat–Potts exact real arithmetic. We build upon our earlier work
of formalising the homographic and quadratic algorithms in constructive
type theory via general corecursion. Based on the notion of cofixed point
equations for general corecursive definitions we prove by coinduction the
correctness of the algorithms. We use the machinery of the Coq proof as-
sistant for coinductive types to present the formalisation. The material
in this article is fully formalised in the Coq proof assistant.

1 Introduction

Exact real numbers constitute one of the prime examples of infinite objects in
computer science. The ubiquity and theoretical importance of real numbers as
well as recent safety-critical applications of exact arithmetic makes them an im-
portant candidate for applying various approaches to formal verification. Among
such approaches, one that is tailor-made for infinite objects is the coinductive
reasoning. A careful coinductive formalisation of real numbers has double advan-
tage: (1) it provides a certified packet of exact arithmetic; (2) it gives valuable
insight into various notions of coinductive proof principles that can contribute
to the area of formal verification for infinite objects.

Coinductive reasoning is dual to the usual approach of using algebraic and
inductive data types both for computation and reasoning and can be studied
from set theoretical [1], category theoretical [20] or type theoretical [9] point of
view. In all these settings the coinductive structure of real numbers is usually
expressible as streams which have a simple and well-understood shape. Although
there are other coinductive objects (e.g. expression trees [24]) modelling exact
real numbers, the stream approach has proven to be expressible enough for most
computational purposes. In this approach a real number r is represented by a
� Research supported by the Netherlands Organisation for Scientific Research (NWO).
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stream of nested intervals whose intersection is the singleton {r}. This approach
has always been the basis of representing real numbers, as the usual decimal
representation is an instance of this representation with digits denoting interval-
contracting maps. Because of this, much work has been done in the study and
implementation of various algorithms for specific stream based representations
such as continued fraction arithmetic [29]. On top of these, Edalat and Potts
[12, 27, 11] present the general framework of representations by linear fractional
transformations that covers all representations of real numbers that are based on
streams of nested intervals. In particular Edalat–Potts normalisation algorithm
is a unified algorithm for computing all elementary functions on real numbers.

The present work is part of the ongoing project of the author for formalising
and verifying Edalat-Potts normalisation algorithm and builds upon our earlier
work [24, 22]. We use constructive type theory extended with coinductive types
to implement and formalise the homographic and quadratic algorithms which
form the basis of the Edalat–Potts algorithm. These two algorithms suffice for
equipping the stream representations of real numbers with a field structure and
thus are important in themselves both from a theoretical and a practical point
of view.

We use the machinery of Coq proof assistant for coinductive types to present
the formalisation. We start by presenting the notion of ‘coinductive proof’ in
type theory of Coq in Section 2. In Section 3 we present the homographic and
quadratic algorithms as Haskell -like specifications and in Sections 3.1–3.2 we
sketch the way they were formalised in [22]. In Section 4 we introduce a coin-
ductive predicate for stream representations that will be used in the coinductive
proof of correctness. In Section 5 we present the coinductive proof of correctness
of homographic and quadratic algorithms. In Section 6 we conclude the article
by presenting some directions for further research. Throughout the article we use
a syntax loosely based on Coq syntax, adapted for presenting in an article. In
particular we use the uncurried version of the functions when they are presented
in mathematical formulae. A complete Coq formalisation of the material in this
paper can be found in [23].

Related Work. The stream representation of exact real numbers have been re-
cently formalised in a coinductive setting by Ciaffaglione and Di Gianantonio [7],
Bertot [5], Hou [19] and Gibbons [16]. Ciaffaglione and Di Gianantonio use Coq
proof assistant to formalise a representation of real numbers in [−1, 1] as ternary
streams and to prove that they form a complete Archimedean ordered field.
Bertot — using Coq as well— formalises a ternary representation of [0, 1] using
affine maps and formalises affine operations (multiplying by scalars), addition,
multiplication and infinite sums. Hou studies two coinductive representations of
signed ternary digits and Cauchy sequences considered as streams, proves their
equivalence using set-theoretic coinduction and defines the addition via the av-
erage function. Gibbons, as an application of his notion of metamorphism, shows
how one can transform various stream representations of real numbers and use
the same algorithms for different representations.
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Our work, while related, is different from all of the above, in that we for-
malise two powerful algorithms that give us all field operations on real num-
bers, including division which seems to be the most difficult one in the other
approaches. Furthermore due to the expressiveness of Edalat–Potts framework,
the algorithms that we formalise are in principal independent of any specific rep-
resentation. For presentation purposes we use a specific representation, but our
correctness proof can be adapted for other representations. This is because the
correctness proofs have several layers and only one aspect of them is dependent
upon the metric properties of the used representation. The coinductive aspect
of our work is related to the above works. For example we follow Bertot’s and
Hou’s idea of using a coinductive predicate to link real numbers and the streams
representing them [3, 5, 19]. From a type theoretic point of view the notion of
cofixed point equations has a central rôle in our development distinguishing it
further from the above works.

In other related work, in [26] real numbers have been studied as final coalgebra
leading to a classification of their order structure. In [13] the unit interval is
constructed as an initial algebra and the Cauchy completeness is defined by
uniqueness of a morphism from a coalgebra to an algebra. The big picture that we
are working on, i.e., the formalisation of Edalat–Potts normalisation algorithm
is related to the works in [25, 14] that reconcile the coalgebraic structure of real
numbers with algebraic operations on them.

2 Type Theoretic Coinduction

The Coq proof assistant [8] is an implementation of the Calculus of Inductive
Constructions (CIC) extended with coinductive types. This is an extension of
Martin-Löf intensional type theory. Coinductive types were added to Coq by
Giménez [17]. Their implementation follows the same philosophy as that of in-
ductive types in CIC, namely there is a general scheme that allows for formation
of coinductive types if their constructors are given, and if these constructors sat-
isfy a strict positivity condition. For example, the type of streams of elements
of a set A can be defined using1 its constructor Cons as

CoInductive Streams (A : Set) : Set :=
| Cons : A → Streams A → Streams A.

After a coinductive type is defined one can introduce its inhabitants and
functions into it. Such definitions are given by a cofixed point operator cofix .
This is an operator similar to the fixed point operator for structural recursion.
This operator, when given a well-typed definition that satisfies a guardedness
condition, will introduce an inhabitant of the coinductive type. Assuming that I
is a coinductive type, when defining a function f : T −→ I this condition requires

1 Note that, as it is the case with algebraic and inductive data types, the type Stream
and its constructor Cons are defined simultaneously.
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each occurrence of f in the body of f after reduction, to be an argument of one
of the constructors of I. This condition is due to Giménez [17] and is based on
earlier work of Coquand [9]. Finally there is a reduction (in fact expansion) rule
corresponding to the cofix operator that allows the expansion of a cofixed point
only when a case analysis of the cofixed point is done.

Like other syntactic criteria, the guardedness condition of Coq is too restrictive
a requirement to allow for formalisation of all productive functions2, and thus
one has to adhere to advanced type-theoretic methods to bypass this condition.
This is similar to the application of dependent inductive types for formalising
general recursion using structural recursion [10, 6]. For coinductive types this has
led to the method of general corecursion for filter-like functions [4]. In Section 3.1
we sketch the general corecursion technique that we used in [22] for formalising
homographic and quadratic algorithm in Coq.

The cofix operator and its expansion rule together with the guardedness
condition constitute the machinery of Coq for coinductive types. This means
that there is no separate tool for proofs by coinduction. This is in contrast to
the set-theoretic greatest fixed point semantics for coinduction where for each
coinductive object a coinduction proof principle is present which is inherent in
the monotonicity of the set operator [1]. Instead in the type theoretic approach,
where proofs are objects too, we use the cofix operator to directly build the
coinduction proof as a proof object. This means that whenever we want to prove
by coinduction, our goal should be a coinductive type. If necessary, specialised
coinductive predicates should be created for formalising a coinduction proof.
This additional predicates are in most cases straightforward reformulation of the
corresponding set-theoretic proof principle (cf. the extensional equality∼= below).
However, sometimes special care has to be taken to overcome the restrictions
put forward by guardedness condition (cf. rep in Section 4). As a result, Coq’s
direct approach to coinduction makes the coinduction proofs easier than their
set-theoretic counterparts as long the guardedness condition does not get in
the way.

For proving equalities by coinduction, coalgebraic and set-theoretic settings
rely on the notion of bisimulation [1, 20]. In the case of streams, a bisimulation
is a binary relation R satisfying the property that

R(α, β) =⇒ hd(α) = hd(β) ∧R(tl(α), tl(β)).

Then one can prove that two streams are equal if they satisfy a bisimulation
relation. The coinduction proof principle thus consists of finding a suitable
bisimulation.

To translate this proof principle into type theoretic coinduction note that
bisimulation relation leads to the extensional equality, which in the intensional
type theories, such as CIC, is quite distinct from the built-in notion of equality.
In fact each extensional equality should be defined and added to the type system.
On the other hand, recall that we can only prove by coinduction in Coq if the
2 Productive functions are those functions on infinite objects that produce provably

infinite output.
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goal of the proof has a coinductive type. This leads us to the following definition
for a coinductive extensional equality on streams which we denote by ∼=.

CoInductive ∼= : Aω → Aω → Prop :=
| ∼=c : ∀(α1 α2 : Aω), hd α1 = hd α2 → tl α1

∼= tl α2 → α1
∼=α2.

(Here Aω denotes the type of streams of elements of A). Note that the sole
constructor of ∼= has the shape of a bisimulation relation. The proof that this is
an equivalence relation can be found in the standard library of Coq [8]. Moreover,
Giménez shows that this is a bisimulation equivalence relation and derives the
usual principle of coinduction [17, § 4.2]. In the present work we use ∼= relation
in our coinductive correctness proofs.

3 Homographic and Quadratic Algorithms

The homographic and quadratic algorithms are similar to Gosper’s algorithm [18]
for addition and multiplication on continued fractions and form the basis of
Edalat–Potts approach to lazy exact real arithmetic [12, 27].

Here we use a representation which is much simpler than the continued frac-
tions and is redundant enough to ensure the productivity. There is nothing spe-
cial about this representation apart from the fact that the proof of its redundancy
is easy to formalise. A treatment of the general case where we abstract away both
the digit set and the compact subinterval of [−∞,+∞] can be found in [21, § 5].
Thus, for presentational purposes, we consider a fixed representation for [−1, 1]
containing 3 digits, each of which a Möbius map. Möbius maps are maps of the
form

x "−→ ax+ b
cx+ d

,

where a, b, c, d ∈ Z. A Möbius map is refining if it maps the closed interval [−1, 1]
into itself. Möbius maps are usually denoted by the matrix of their coefficients.

For our representation, we consider the set DIG = {L,R,M } and denote
the set of streams of elements of DIG by DIGω. We interpret each digit by a
refining Möbius map as follows3.

L =
[

1 −1
1 3

]
, R =

[
1 1
−1 3

]
, M = [ 1 0

0 3 ] .

The fact that DIGω is a representation for [−1, 1] is easily derivable form the
properties of the Stern–Brocot representation [21, § 5.7] (see also Section .4).

The homographic algorithm is the algorithm that given a Möbius map μ and
a stream α ∈ DIGω representing rα, outputs a stream γ that represents rγ such
that μ(rα) = rγ . In order to present the homographic algorithm we need an
emission condition Incl(μ, d) for a digit d and μ which checks the inclusion of
intervals μ([−1, 1]) ⊆ d([−1, 1]). Note that since the endpoints of these intervals
3 In fact these are the conjugates (under the conjugacy map S(x) = x−1

x+1 ) of the
Stern–Brocot representation for [0, +∞] presented in [21, § 5.7].
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are rational the emission condition is a decidable predicate. This enables us to
state the homographic algorithm:

homographic μ (x : xs) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L : homographic (L−1 ◦μ) (x : xs) if Incl(μ,L),
R : homographic (R−1 ◦μ) (x : xs) else if Incl(μ,R),
M : homographic (M−1 ◦μ) (x : xs) else if Incl(μ,M),
homographic μ ◦x xs otherwise.

Here d−1 and ◦ denote the usual matrix inversion and matrix product. The first
three branches (resp. the last branch) are called absorption steps (resp. emission
step). Note that due to the redundancy of the representation, the case distinction
need not be mutually exclusive, but this does not affect the outcome.

The intuition behind the algorithm is that we start by considering an infinite
product of Möbius maps, of which all but the first one are digits. We start
pushing μ towards infinity by absorbing digits (hence obtaining a new refining
Möbius map) and emitting digits whenever the emission condition holds, i.e.,
whenever the range of Möbius map applied to the interval [−1, 1] fits inside the
range of a digit.

μ ◦ d0 ◦ d1 ◦ · · · � d ◦(d−1 ◦μ) ◦ d0 ◦ d1 ◦ · · · if Incl(μ, d).

For a more formal semantics for the algorithm see the semantical proof of cor-
rectness that is given in [21, § 5.6].

To compute field operations we consider the quadratic map which is a map

ξ(x, y) :=
axy + bx+ cy + d
exy + fx+ gy + h

,

with a, b, c, d, e, f, g ∈ Z and can be denoted by its 2×2×2 tensor of coefficients.
A refining quadratic map is a quadratic map ξ such that ξ([−1, 1], [−1, 1]) ⊆
[−1, 1].

The quadratic algorithm is an algorithm that given a quadratic map ξ and two
streams α, β ∈ DIGω representing rα and rβ , outputs a stream γ that represents
rγ such that ξ(rα, rβ) = rγ . Here too we need a decidable emission condition
Incl(ξ, d) that checks the inclusion of intervals ξ([−1, 1], [−1, 1]) ⊆ d([−1, 1])
for each digit d. By d ◦ ξ we denote the composition of a Möbius map d and a
quadratic map ξ (note that the outcome is again a quadratic map). Moreover we
use ξ •1 d and ξ •2 d to denote the two different ways of composing a quadratic
map and a Möbius map by considering the Möbius map as its first (resp. second)
argument. With this notation we can present the quadratic algorithm:

quadratic ξ (x : xs) (y : ys) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L : quadratic (L−1 ◦ ξ) (x : xs) (y : ys) if Incl(ξ,L),
R : quadratic (R−1 ◦ ξ) (x : xs) (y : ys) else if Incl(ξ,R),
M : quadratic (M−1 ◦ ξ) (x : xs) (y : ys) else if Incl(ξ,M),
quadratic (ξ •1 x •2 y) xs ys otherwise.
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The intuition behind this algorithm is similar to the homographic algorithm.
The homographic algorithm can be used to compute the unary field operations
of opposite and inverse, while the quadratic algorithm can be used for binary
field operations of addition and multiplication (e.g. taking ξ := [ 1 0 0 0

0 0 0 1 ] it gives
the multiplication).

Note that here we are concerned with the real numbers in [−1, 1]. Transferring
the computation to the whole real line is quite straightforward (e.g. by first
moving to [0,+∞] via the inverse of the conjugacy map and then adding a
redundant sign bit as done in [27]).

3.1 General Corecursive Version

The algorithms of previous section do not satisfy guardedness condition. In ear-
lier work [22] we showed how to formalise homographic and quadratic using a
general corecursion technique to bypass the guardedness condition. Some of the
elements of that technique are needed for the correctness proofs, therefore we
briefly sketch the technique.

Let M (resp. T) be objects denoting the set of Möbius maps (resp. quadratic
maps)4. For homographic algorithm we are seeking to define a function h : M×
DIGω −→ DIGω . But h is a partial function and might not be productive at
every point. So instead of defining h we shall define a map

h̄ : Π(μ : M)(α : DIGω). Ph μ α −→ DIGω (1)

where (Ph μ α) is a predicate (i.e., a term of type Prop) with the intended
meaning that the specification of homographic algorithm is productive when
applied to μ and α. In other words it specifies the domain of the partial
function h.

The definition of Ph is based on the modulus of productivity. This modulus is
a recursive function mh : M×DIGω −→ DIG×M×DIGω with the intended
meaning that mh(μ, α) = 〈d, 〈μ′, α′〉〉 if and only if

homographic μ α � d : homographic μ′ α′,

where ‘�’ denotes multiple reduction steps after which d is output (so after
output of d there are no more digits absorbed in μ′). We would like this to be
a function with recursive calls on α, but this is not possible. The reason is that
α has a coinductive type while in the structural recursion one needs an element
of an inductive type. Hence we use the inductive domain predicate method for
general recursion [10, 6] to define an inductively defined predicate Eh(μ, α) with
the intended meaning that μ and α are in the domain ofmh which in turn means
that the homographic algorithm should emit at least one digit when applied to
μ and α.

The definition of above terms are given in Appendix and the Coq version can
be found in [23]. Finally we can formalise the homographic algorithm as the

4 They can be considered as Z
4 and Z

8.
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function h̄ in (1) that accommodates the proof of its own productivity as one of
its arguments. Here CoFixpoint denotes that we are using the cofix operator
to build a term (πij denotes the projections of j-tuples, for Ph Eh and mh Ph

see Appendix).

CoFixpoint h̄ (μ : M) (α : DIGω) (p : Ph μ α) : DIGω :=
Cons π13(mh μ α (Ph Eh μ α p))

(h̄ π23(mh μ α (Ph Eh μ α p))
π33(mh μ α (Ph Eh μ α p))
(mh Ph μ α (Ph Eh μ α p) p)).

For the quadratic algorithm a similar procedure is followed and results in the
following formalised version. These definition are explained in [22].

CoFixpoint q̄ (ξ : T) (α β : DIGω) (p : Pq ξ α β) : DIGω :=
Cons π14(mq ξ α β (Pq Eq ξ α β p))

(q̄ π24(mq ξ α β (Pq Eq ξ α β p))
π34(mq ξ α β (Pq Eq ξ α β p))
π44(mq ξ α β (Pq Eq ξ α β p))
(mq Pq ξ α β (Pq Eq ξ α β p) p)).

3.2 Cofixed Point Equations

In the inductive domain predicate approach to general recursion [6], to formalise
a general recursive function f first a function f is defined and then it is proven
that it satisfies the fixed point equation of f . This fixed point equations are
stated using the inductive (Leibniz ) equality of Coq.

In our general corecursive technique, we follow a similar path but we use the
coinductive equality ∼= of Section 2. I.e., we prove that h̄ satisfies the Haskell -like
specification of previous section for homographic 5 modulo ∼=. Here is the lemma
stating the equation corresponding to the first branch of homographic:

Lemma h̄L : ∀(μ : M)(α : DIGω)(p :Ph μ α), Incl(μ, L) →
∀(p′ :Ph (L−1 ◦μ) α), h̄ μ α p ∼= Cons L (h̄ (L−1 ◦μ) α p′).

We call this a cofixed point equation of the homographic algorithm, a notion
that is applicable to any function on streams6. The lemma can be proven using
type theoretic coinduction and its proof is based on a result (also provable by
coinduction) which we call the extensional proof irrelevance of h̄ (See [22]). For
the proof of the above lemma as well as remaining equations see [23, 22].
5 Of course the additional proof obligation p : (Ph μ α) prevents us from obtaining

the exact specification; but since this proof obligation is a term living in the Prop
universe of Coq , it has no computational content.

6 It is possible to define this notion for any coinductive type that corresponds to
polynomial functors. One only needs to define a coinductive equivalence relation for
each such type. But this is out of the scope of the present work.
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4 Representation

To prove that the algorithms are correct, first we should prove that every stream
in DIGω represents a real number in [−1, 1]. This means that there exists a total7

map ρ from DIGω to [−1, 1] such that for all f0f1 · · · ∈ DIGω we have

{ ρ(f0f1 . . . ) } =
∞⋂

i=1

f0 ◦ . . . fi([−1, 1]) .

This can be proven by coinduction, but one needs to define a coinductive predi-
cate that captures the existence of ρ. This leads to the following definition for a
binary predicate rep : DIGω × [−1, 1] −→ Prop with the intended meaning that
rep(α, r) holds if ρ(α) = {r}.

CoInductive rep : DIGω → R → Prop :=
| repL : ∀ (α β : DIGω) (r : R), −1≤r≤1→

rep α r → β ∼= Cons L α → rep β (r − 1)/(r + 3)
| repR : ∀ (α β : DIGω) (r : R), −1≤r≤1→

rep α r → β ∼= Cons R α → rep β (r + 1)/(−r + 3)
| repM : ∀ (α β : DIGω) (r : R), −1≤r≤1→

rep α r → β ∼= Cons M α → rep β r/3.

The constructors of this coinductive predicate spell out the effect of each
digit and as such depend on the choice of the digits. However, they can be easily
adapted or generalised for working with other digit sets. The predicate is similar
to the predicate represents of Bertot [3, 5] and (to a lesser extent to the pred-
icate ∼′ of Hou [19]) but has a notable difference: the clause β∼= Cons d α that
is added to each constructor. The purpose of this clause is to facilitate the use
of cofixed point equations. Without this clause rep would still have the intended
metric semantics in terms of ρ, but it would not be usable in the coinductive
proof of correctness of next section. The reason is due to the guardedness condi-
tion of Coq: even without the ∼= clause in the constructors of rep we could prove
by coinduction that

X : ∀αβr, rep(α, r) → α∼=β → rep(β, r), (2)

which is the basic property of rep that should have been enough for the cor-
rectness proof. But upon rewriting (2) in the course of coinductive proof Δ of
correctness we would violate the guardedness condition. This would happen be-
cause we would have supplied a recursive occurrence of the coinductive proof Δ
which is guarded as X (repd Δ) (where repd is a constructor of rep). This is
not allowed because X is itself a cofixed point whose expansion takes the coin-
ductive proof Δ as an argument in its recursive occurrence in a way that the

7 In fact DIGω is a representation which means ρ is also surjective. This is easily
provable [21, § 5] but is not needed in the correctness proofs for our algorithms.
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guardedness condition is rejected. Using cofixed point equations instead of (2)
we will not land in this situation. Thus we have decided to add the ∼= clause
which will eliminate the need to (2) and instead use the cofixed point equations
in the correctness proofs.

Note that (2) is still a correct statement and can be used in other situations.
In fact we can use it to prove that the inverse of constructors of rep hold, e.g.:

∀αr, rep(Cons L α, r) → rep(α, 3r + 1).

The inversion lemma in turn are used in proving the link between a stream
and its future tails. Let αn (resp. α|n) denote the n + 1-st digit of α (resp. the
stream obtained by dropping the first n digits of α). Then we can prove by
induction on n and using the inversion lemmas that

∀αr, rep(α, r) → rep(α|n, α−1
n−1 ◦ . . . α−1

0 (r)). (3)

To show that rep satisfies its metric property we have to define a function [[ ]]
that evaluates a stream and obtains the real number which is represented by it
(cf. real value in [5]). In fact this function calculates the limit of converging
sequence of shrinking intervals that is obtained by successive application of the
digits starting from the base interval. To be able to define [[ ]] we should show this
converging property. This proof is directly dependent on the metric properties
of the specific digit set that we have chosen. Setting diam([a, b]) = b− a we have
to show that

max{ diam
(
d0 ◦ d1 ◦ . . . dk−1([−1, 1])

)
|di ∈ DIG } ≤ 2

k + 1
.

This is provable by induction on k [21, Corollary 5.7.9] and it entails that the
diameters of the intervals form a Cauchy sequence, and so do their endpoints.
Hence if we define lk(α) (resp. uk(α)) to be the lower bound (resp. upper bound)
of the interval α0 ◦α1 ◦ . . . αk−1([−1, 1]) we can define8

[[α]] = lim
i→∞

li(α).

We can prove (by induction on k) that

∀αkr, rep(α, r) → r ∈ [lk(α), uk(α)];

and hence
∀αkr, rep(α, r) → r ∈ [−1, 1]. (4)

Furthermore using the properties of limit we can prove

[[Cons d α]] = d([[α]]), (5)
[[α]] ∈ [−1, 1]. (6)

8 Note that we could have equivalently used the upper bounds.
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Thus we can prove the following by an easy coinduction on the structure of rep.

∀α, rep(α, [[α]]). (7)

Finally we can prove the main properties of rep

∀αr, [[α]] = r → rep(α, r); (8)
∀αr, rep(α, r) → [[α]] = r. (9)

The proof of (8) follows from (7) and (6) while (9) needs in addition some
properties of the limit.

Hence we have shown that rep satisfies its intended metric property with
respect to the map ρ defined in the beginning of this section. We conclude the
section by pointing out what rep does not entail. The most important aspect is
that our representation DIGω is an admissible representation, i.e., it contains
enough redundancy so that the usual computable functions are computable with
respect to this representation [21, Corollary 5.7.10]. However, the ∼= equality does
not know anything about this redundancy and it distinguishes the two streams
representing the same real number. Therefore for two different representations
α1, α2 of a real number r, there are two different proofs rep(α1, r) and rep(α2, r)
that do not have any syntactic relation with each other. This, of course, is not
an issue for our application of rep in the correctness proofs of the next section.

5 Coinductive Correctness

As it is the case with all algorithms, ‘to prove the correctness’ of the homographic
and quadratic algorithms can point to different concepts:

(i) To prove that the algorithms satisfy their Haskell -like specification.
(ii) To prove that the algorithms turn the set DIGω to a field and behave as

Möbius and quadratic maps on this field.
(iii) To prove that the algorithms correspond to Möbius and quadratic maps on

[−1, 1].

Concept (i) tantamounts to proving the cofixed point equations and was car-
ried out in [22]. Concept (ii) requires that we focus on the field operations (via
specific tensors for +,×) and prove that they satisfy the field axioms. Concept
(iii) requires the use of a model of real numbers and indicates that we will project
the algorithm to functions on this standard model. It is clear that (iii) is much
less work, as we only have to prove the correspondence of the algorithms once
and can reduce every question on DIGω to a question on the standard model of
R. This way we do not have to prove one-by-one all the field axioms for DIGω.

We already used the standard model R in the definition of rep, and we are
going to prove the correctness in the sense of (iii). We base our correctness
proofs on the coinductive predicate rep and we prove that for functions h̄ and q̄
of Section 3.1 we have

∀μαpr, rep(α, r) → rep(h̄(μ, α, p), μ(r)); (10)
∀ξαβpr1r2, rep(α, r1) → rep(α, r2) → rep(q̄(ξ, α, β, p), ξ(r1, r2)). (11)
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It is clear that once we have proven these, applying the Properties (8)–(9) of
rep, we can derive

∀μαpr, [[α]] = r → [[h̄(μ, α, p)]] = μ(r);
∀ξαβpr1r2, [[α]] = r1 → [[β]] = r2 → [[q̄(ξ, α, β, p)]] = ξ(r1, r2).

In the remainder of this paper we show how to prove (10) and (11).

5.1 Homographic Algorithm

We want to prove (10), that means in addition to μ, α and r we are also given a
proof obligation p :Ph μ α that ensures the productivity of h̄(μ) at α. We use p to
obtain some auxilliary tools that we will need in the proof of (10). We will also use
the terms that were used in the general corecursion technique (see Section 3.1 and
Appendix). First we need a function δh : Π(μ : M)(α : DIGω).Eh(μ, α) −→ N

that counts the number of absorption steps before the first (eventually) com-
ing emission step. Note the resembelence with the definition of the modulus of
productivity mh.

Fixpoint δh (μ : M)(α : DIGω)(t :Eh μ α){struct t} : N:=
match Incldec(μ, L) with
| left _⇒ 0
| right tl⇒
match Incldec(μ, R) with
| left _⇒ 0
| right tr⇒
match Incldec(μ, M) with
| left _⇒ 0
| right tm⇒1+δh (μ ◦(hd α)) (tl α) (Ehab inv μ α tl tr tm t)
end

end
end.

Here Fixpoint (resp. struct) are Coq keywords to denote a recursive defini-
tion (resp. recursive argument of structural recursive calls). First of all note that
we use ⊕ : Prop×Prop −→ Set to transfer the proposition Incl to a boolean sum
— with left and right its coprojections— on which we can pattern match9.
Second, note that the function is defined using general recursion, otherwise its
recursive argument would have a coinductive type which is not allowed in struc-
tural recursion. We will also need to prove the proof irrelevance of δh (i.e., its
value is independent of t), its fixed point equation and its relationship with mh.
We state the latter:

9 This is a consequence of the characteristic property of CIC that does not allow
one to obtain computationally informative elements (e.g. natural numbers) by case
analysis on propositions (e.g. Incl).
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Lemma δh mh : ∀(μ : M)(α : DIGω)(t :Eh μ α) (n : N),
δh μ α t=n → ∃d : DIG, mh μ α t = 〈d, 〈d−1◦μ◦α0◦ . . . ◦αn−1, α|n〉〉.

Then we need to prove that if the value of δ is n then after n steps emission
will occur, i.e., the emission condition will be satisfied:

Lemma δh Incldec : ∀(μ : M)(α : DIGω)(t :Eh μ α) (n : N),
δh μ α t = n → Incl(μ◦α0◦ . . . ◦αn−1, L) ∧ π13(mh μ α t) = L ⊕

Incl(μ◦α0◦ . . . ◦αn−1, R) ∧ π13(mh μ α t) = R ⊕
Incl(μ◦α0◦ . . . ◦αn−1, M) ∧ π13(mh μ α t) = M.

Both lemmas above are proven by induction on n. All this machinery is used in
proving the following lemma which describes the observable (hence the use of ∼=)
situation of the homographic algorithm at the moment of emission. It explicitly
mentions the new input Möbius map passed to the homographic algorithm, the
emission condition and the necessary proof obligation.

Lemma hem : ∀(μ : M)(α : DIGω)(p :Ph μ α), ∃n : N ∃d : DIG,
Ph (d−1◦μ◦α0◦ . . . ◦αn−1) α|n ∧
Incl(μ◦α0◦ . . . ◦αn−1, d) ∧
∀ p′, h μ α p ∼= Cons d (h (d−1◦μ◦α0◦ . . . ◦αn−1) α|n p′).

Finally we need a property of refining Möbius maps whose proof is immedi-
ate [11], but we state it explicitly to highlight its use.

Lemma 1. If μ is refining and Incl(μ, d) then d−1 ◦μ is refining.

Now we have the necessary tools for proving the correctness of the homographic
algorithm:

Theorem 1. Let μ ∈ M, α ∈ DIGω, r ∈ R and p : Ph μ α. If rep(α, r) then
rep(h̄(μ, α, p), μ(r)).

Proof. By Lemma hem above there exist n, d and p′ such that

Incl(μ◦α0◦ . . . ◦αn−1, d), (12)

h(μ, α, p)∼= Cons d h(d−1◦μ◦α0◦ . . . ◦αn−1, α|n, p′). (13)

By Property (3) of rep (Section 4) we have

rep(α|n, α−1
n−1 ◦ . . . α−1

0 (r)).

Whence by coinduction applied to

μ0 := d−1◦μ◦α0◦ . . . ◦αn−1,

α0 := α|n p0 := p′,

r0 := α−1
n−1◦ . . . α−1

0 (r);
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we obtain

rep
(
h(d−1◦μ◦α0◦ . . . ◦αn−1, α|n, p′), d−1◦μ◦α0◦ . . . ◦αn−1◦α−1

n−1◦ . . . α−1
0 (r)

)
(14)

Let r1 := μ0◦α−1
n−1◦ . . . α−1

0 (r). According to Lemma 1, from (12) it follows
that μ0 is refining. Note that by Properties (4) and (3) of rep we have

α−1
n−1◦ . . . α−1

0 (r) ∈ [−1, 1];

and thus according to the refining property r1 ∈ [−1, 1].
From here and (14), according to the statement of the constructor repd of rep

applied to r1 and

α1 := h(d−1◦μ◦α0◦ . . . ◦αn−1, α|n, p′),
β1 := h(μ, α, p);

we obtain

rep
(
h̄(μ, α, p), d(d−1◦μ◦α0◦ . . . ◦αn−1◦α−1

n−1◦ . . . α−1
0 (r))

)
; (15)

(note that (13) satisfies the ∼= clause in repd).
Finally, by simple rewriting and cancelling out the inverse matrices in (15) we

obtain the conclusion:

rep
(
h̄(μ, α, p), d(d−1◦μ◦α0◦ . . . ◦αn−1◦α−1

n−1◦ . . . α−1
0 (r))

)
= rep(h̄(μ, α, p), d◦d−1◦μ◦α0◦ . . . ◦αn−1◦α−1

n−1◦ . . . α−1
0 (r))

= rep(h̄(μ, α, p), μ(r)).

��
Analysing the above process we observe that there are two kind of proofs that
constitute two different aspect of the algorithm: a metric (or topological) layer
which is dependent on the representation, and a type theoretic layer which is
based on the coinductive structure of rep and ∼=. Currently, a complete Coq
formalisation of all the above definitions and lemmas for the chosen digit set
is available in [23]. In future work we plan to make this formalisation more
modular by formalising a theory of admissible digit sets. However, even after
developing such a theory the type theoretic layer of the proofs (including the
above coinductive proof) need not be changed as it is independent of the chosen
digit set.

5.2 Quadratic Algorithm

The procedure for the correctness of the quadratic algorithm is quite similar to
the case of homographic algorithm, only the proof itself is more meticulous. First
we define a function δq : Π(ξ : T)(α, β : DIGω).Eq(ξ, α, β) −→ N that outputs
the number of steps to the next emission step. We can prove the properties
similar to those of δh.

The main auxiliary lemma in this case is the following.
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Lemma qem : ∀(ξ : T)(α β : DIGω)(p :Pq ξ α β), ∃n : N ∃d : DIG,
P1 (d−1◦ξ〈α0◦ . . . ◦αn−1, β0◦ . . . ◦βn−1〉) α|n β|n ∧
Incl(ξ〈α0◦ . . . ◦αn−1, β0◦ . . . ◦βn−1〉, d) ∧
∀ p′, q ξ α β p ∼=

Cons d (q (d−1◦ξ〈α0◦ . . . ◦αn−1, β0◦ . . . ◦βn−1〉) α|n β|n p′).

Note that ξ〈α0◦ . . . ◦αn−1, β0◦ . . . ◦βn−1〉 denotes the new tensor after n ab-
sorption steps, i.e., after n applications of •1 and •2.

We also need a result on refining tensors which is immediately provable from
the definition of refining and Incl.

Lemma 2. If ξ is refining and Incl(ξ, d) then d−1 ◦ ξ is a refining tensor.

From these we can prove the correctness of quadratic algorithm. In particular we
do not need any additional property of rep apart from those that were used for
the homographic algorithm. The proof is quite similar to the proof of Theorem 1
and is formalised in Coq [23], and so we do not mention the proof here.

Theorem 2. Let ξ ∈ T, α, β ∈ DIGω, r1, r2 ∈ R and p : Pa μ α β. If rep(α, r1)
and rep(β, r2) then rep(q̄(ξ, α, β, p), ξ(r1, r2)).

Note that the proofs assume the existence of a productivity predicate Ph (resp.
Pq). Deriving this property depends on the specific metric properties of each
tensor and Möbius map. This is natural because homographic and quadratic
algorithms are partial functions. It is known that the algorithms are productive
for refining Möbius maps and tensors [27]. Our future work is to derive this result
for our inductive productivity predicates Ph and Pq.

6 Conclusions and Further Work

We have shown the correctness of homographic and quadratic algorithms on
a stream representation of real numbers in [−1, 1]. Following the general set-
up of [21, § 5] the method is easily extensible to any admissible digit set for
any compact proper subinterval of the extended real numbers [−∞,+∞]. Our
correctness proofs use an inductive productivity predicate and a coinductive
predicate rep that relates DIGω and [−1, 1]. We have built on top of the earlier
work [22] on using the coinductive machinery of Coq proof assistant to formalise
functions on infinite objects and coinductive proofs. In particular we base our
treatment of coinductive functions on their cofixed point equations. These exploit
the inherent infinite nature of streams by adhering to ∼= which is a bisimulation
relation and is more suitable than the the inductive (Leibniz) equality. The
coinductive arguments themselves are independent of Coq and can be formalised
in any proof assistant that accommodates coinductive types.

There are two direction perceivable for future work. The more immediate
future work would be to continue the Coq formalisation of the algorithms, by
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developing a fully modular framework that axiomatises the properties of repre-
sentations and refining maps that are needed for the formalisation. Each specific
representation would then be portable into our formalisation if a suitable in-
terface is satisfied. This will pave the way for applying our formalisation to
more efficient representations such as the one used by Bertot [5] or Edalat–
Potts [12]. The big picture would be to continue working on the formalisation
of the Edalat–Potts normalisation algorithm. This would require a further de-
velopment of our general corecursion technique to deal with nested corecursive
functions and would require a notion similar to induction–recursion. Recent work
by Setzer on combining induction–recursion and general recursion seems to open
new possibilities for our work in this directions [28].

Acknowledgements. The author wishes to thank the anonymous referees for
their useful comments.
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[25] Pavlović, D., Escardó, M.H.: Calculus in coinductive form. In: Proceedings of the
13th Annual IEEE Symposium on Logic in Computer Science, pp. 408–417 (1998)
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A Coq Terms Needed for Formalisation of the General
Corecursive Version of Homographic Algorithm

Inductive Eh : M → DIGω → Prop :=
|EhL : ∀(μ : M)(α : DIGω), Incl(μ, L) → Eh μ α
|EhR : ∀(μ : M)(α : DIGω), Incl(μ, R) → Eh μ α
|EhM : ∀(μ : M)(α : DIGω), Incl(μ, M) → Eh μ α
|Ehab : ∀(μ : M)(α : DIGω),¬Incl(μ, L) → ¬Incl(μ, R) → ¬Incl(μ, M) →

Eh (μ ◦(hd α)) (tl α) → Eh μ α.

Lemma Incldec : ∀ (μ : M) (d : DIG), Incl(μ, d) ⊕ ¬Incl(μ, d).
Lemma Ehab inv: ∀(μ : M)(α : DIGω),

¬Incl(μ, L) → ¬Incl(μ, R) → ¬Incl(μ, M) → Eh μ α →
Eh (μ ◦(hd α)) (tl α).

Fixpoint mh(μ : M)(α : DIGω)(t : Eh μ α){struct t} : DIG*(M*DIGω):=
match Incldec(μ, L) with
| left _⇒ 〈L, 〈L−1 ◦μ, α〉〉
| right tl⇒

match Incldec(μ, R) with
| left _⇒ 〈R, 〈R−1 ◦μ, α〉〉
| right tr⇒

match Incldec(μ, M) with
| left _⇒ 〈M, 〈M−1 ◦μ, α〉〉
| right tm⇒ mh (μ ◦(hd α)) (tl α) (Ehab inv μ α tl tr tm t)
end

end
end.

Inductive Ψh : N→ M → DIGω → Prop :=
|Ψh0 : ∀(μ : M)(α : DIGω), Eh μ α → Ψh 0 μ α
|ΨhS : ∀(n : N)(μ : M) (α : DIGω) (t : Eh μ α),

Ψh n (π23(mh μ α t)) (π33(mh μ α t)) → Ψh (S n) μ α.

Inductive Ph : M → DIGω → Prop :=
|Phab : ∀(μ : M)(α : DIGω),(∀(n : N), Ψh (S n) μ α) → Ph μ α.

(* Proofs of the following lemmas are based on the inverses of the
constructors of Ψh and the proof irrelevance of mh *)

Lemma Ph Eh : ∀(μ : M)(α : DIGω), Ph μ α → Eh μ α.
Lemma mh Ph : ∀(μ : M)(α : DIGω)(t : Eh μ α),
let μ′:=π23(mh μ α t) in

let α′:=π33(mh μ α t) in Ph μ α → Ph μ′ α′.
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Abstract. This paper presents a system of cost derivation for higher-
order and polymorphic functional programs based on a notion of sized
types and exploiting a type-and-effect system approach. The paper gives
an operational semantics of cost for a simple strict functional language
in terms of λ-calculus β-reduction steps and introduces type rules des-
cribing cost effects. The type system is based on intersection types. The
use of discrete polymorphism (intersection types) instead of the usual
parametric polymorphism approach improves the analysis and solves,
in many cases, the “size aliasing problem” that has been identified as
a limitation on previous type-and-effect approaches. Finally we provide
a proof of the soundness of our effect system with respect to the cost
semantics.

1 Introduction

Obtaining good-quality information concerning runtime costs (whether space or
time) is important to many systems engineering activities, including compiler or
database optimization, parallel computing, and real-time systems. Many of these
activities require predictive information, acquired automatically at compile-time.

This paper defines a type-and-effect system [23] based on intersection types
to derive costs of programs for a simple strict, polymorphic and higher-order
functional language. We use a modern type-and-effect system [23], in which a
rank-2 intersection type system [10] is extended by “effects” describing the cost
of evaluating individual language constructs in terms of λ-calculus β-reduction
steps. The meaning of these effects is given by a formal operational semantics.

We have previously described a type-and-effect system allowing the derivation
of upper bounds on program costs [25]. One problem that can arise with this and
other similar analyses based on the standard Hindley-Milner [22], is that of size
aliasing [25], whereby a single polymorphic type variable may capture different
cost properties but the same type. In extreme cases, this leads to complete loss
of cost information.
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Intersection types originate in the works of Barendregt, Coppo and Dezani
[7,4]. These systems are capable of typing terms where sharing of variables with
non-unifiable types may cause non-typification in other type systems.

Type inference for Intersection Type Systems is undecidable in general [7,24].
However there are decidable restrictions which are useful for type assignment in
programming languages [28,11,8,29,19,20,5,10,12]. Since our primary motivation
is the automatic derivation of cost information, it is crucial to maintain decida-
bility, and we have therefore chosen to use rank-2 intersection types. We show
in this paper that such a system solves the size aliasing problem in many cases.
Moreover, the system is capable of deriving cost information in other situations
where the classical approach will fail. In order to show the correctness of our
analysis, we provide a soundness proof for our type system with respect to our
cost semantics. We also provide a number of worked examples covering import-
ant features, including polymorphism and higher-orderness, and demonstrating
our solution to size aliasing.

In this paper some theorems are presented without detailed proofs. Complete
proofs of every theorem can be found in an extended version [27].

This paper is structured as follows: in the following section we discuss the
related work. After that, in Section 3, we introduce the language and the type-
and-effect system used in our approach. In Section 4 we show examples of cost
derivations, illustrating some advantages of using intersection type systems. Cor-
rectness of the system with respect to the cost semantics is found in Section 5
and we conclude in Section 6.

2 Related Work

Type-and-effect systems [23] are a well-known technique for automatic program
analysis. They have a number of advantages over earlier techniques, including
avoiding the need for the construction of specialised inference engines that may
be required by abstract interpretation approaches, for example, providing com-
positional analyses, simplifying fixpoint determination, and simplifying the con-
struction of soundness proofs through analogy with similar and well-understood
proofs for the underlying type system. The work we describe here extends our
own earlier work on cost analysis [25] which used a type-and-effect system based
on Hindley-Milner types to expose constraints on sized types [18] for higher-
order, recursive functional programs, to provide improved quality of analysis in
some important cases.

While intersection types have previously been used in abstract interpretation
and type-based analysis [13,2], as far as we are aware our work is the first to use
intersection types and effects for cost analysis.

Other formally-based cost analysis systems related to the one we describe here
include that of Reistad and Gifford [26] which analyses costs for Lisp expressi-
ons; Grobauer’s work on extracting cost recurrences for Dependent ML [16];
and Chin and Khoo’s work on calculating sized types [6]. Reistad and Gifford’s
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system handles higher-order functions through “latent costs” as we have done
here, and is partially based on the “time system” by Dornic et al. [14]. Grobauer’s
system [16] also has some similarities to ours: size-annotated types are used to
capture size information. The primary difference from our work is that Depen-
dent ML is first-order rather than higher-order. Finally, Chin and Khoo [6] des-
cribe a type-inference based algorithm for computing size information expressed
in terms of Presburger formulae, for a higher-order, strict, functional language
with lists, tuples and general non-recursive data constructors.

In all these systems, size aliasing is present when dealing with higher-order
functions. In the work presented we show that a system with a higher degree of
polymorphism, based on intersection types, avoids size aliasing in many cases.

3 Language and Type System

In this section we introduce L, a very simple functional language, which is in-
tended solely as a vehicle to explore static analysis for cost determination. L is
strict, polymorphic, and higher-order, with lists as its only compound data type.
We first define the syntax and operational semantics of L, before discussing the
construction of our rank-2 intersecton type-and-effect cost model.

3.1 Language Syntax

Given a countable set of variables x ∈ Var, natural numbers n ∈ N, and primitive
operations op1 ∈ Prim1, op2 ∈ Prim2, the terms of L are inductively defined
by the following grammar:

e ::= x | n | true | false | [ ] | e1::e2
| op1(e) | op2(e1, e2) | λx.e | e1 e2
| if e1 then e2 else e3

Note that function definitions are Curried (i.e. abstract a single argument at
a time) and function application is binary. Constructors and primitive operati-
ons are both saturated, i.e. they are restricted to the correct number of argu-
ments; partial applications can be obtained for these forms, if required, using
λ-abstractions. The two sets Prim1 and Prim2 of unary and binary primitive
operations include arithmetic on naturals and lists projections. Discussion of
these operations is deferred to Section 3.5.

We require the usual notational conventions on variables: the expression ‘λx.e’
is a binder for x; the scope of this binder is the sub-expression e. An occurrence
of a variable that is in the scope of a binder is said to be bound, otherwise it is
free. An expression where all variable occurrences are bound is closed. We will
follow the notation, terminology and conventions presented by Barendregt in [3].
Finally, the notation e[e′/x] represents the expression that results from replacing
all free occurrences of x in e by e′.
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3.2 Language Semantics

We use a call-by-value operational semantics for L1. We first define a subset of
L expressions considered to be result values for computations:

ew ::= n | true | false | [ ] | ew1 ::ew2 | λx.e

The semantics of L is given by a single-step reduction relation e→ e′. Figure 1
depicts the top level reduction rules; these define a pre-relation ‘⇀’ that is then
extended to the full single-step reduction ‘→’ by a suitable use of evaluation con-
texts defined below (as in [15]) so as to propagate evaluation of sub-expressions
in call-by-value order. Note that since reductions are not performed under λs,
result values (ew) are weak normal forms in the underlying λ-calculus.

Definition 1. Evaluation contexts E take the form

E ::= [ ] | E e | ew E
| if E then e1 else e2
| op1(E) | op2(E, e) | op2(ew, E)

Note that E is a context with exactly one hole in it, and that this hole is not
inside the scope of any identifier. We write E[e] for the expression that has the
hole in E replaced by e, and similarly E[E′] for the evaluation context that
comes from replacing the hole in E by E′.

Definition 2. The reduction relation → is defined by E[e] → E[e′] provided
e ⇀ e′ holds according to Figure 1.

We write ‘e �→’ to mean ¬∃e′ : e → e′. We require two preliminary results
concerning the reduction semantics:

Lemma 1. If ew is a value, then ew �→.

Proof: By case-analysis of the rules in Figure 1 we conclude that ew �⇀; the
result for → then follows by simple induction on the structure of the evaluation
context. 	

Lemma 2. → is deterministic, i.e. if e→ e′ and e→ e′′, then e′ = e′′.

Proof: ⇀ is deterministic because at most one rule of Figure 1 can apply at
each step and it is determined by the structure of e; the result for → follows
from an induction on the structure of the evaluation context. 	
1 While it would be interesting to also explore call-by-need, and we are, in fact, in-

vestigating a new cost model and analyses for call-by-need functional programs, the
complexity of the semantics is considerably greater than that presented here. In this
paper, we have therefore opted for the simpler and better understood cost model
associated with call-by-value.
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[beta⇀] (λx.e) ew ⇀ e[ew/x]

[if1⇀] if true then e1 else e2 ⇀ e1

[if2⇀] if false then e1 else e2 ⇀ e2

[add⇀] add(n, m) ⇀ n′, where n′ = n + m

[pred⇀] pred(n) ⇀ n′, where n′ = max(0, n− 1)

[eq1⇀] eq(n, m) ⇀ true, if n = m

[eq2⇀] eq(n, m) ⇀ false, if n �= m

[head⇀] head(ew1 ::ew2) ⇀ ew1

[tail⇀] tail(ew1 ::ew2) ⇀ ew2

[null1⇀] null([ ]) ⇀ true

[null2⇀] null(ew1 ::ew2) ⇀ false

Fig. 1. Top-level reduction relation for L

3.3 Cost Syntax

The size and cost values for L-terms are elements of the set N = {0, 1, 2 . . . , ω}
of natural numbers together with a top element ω. The usual ordering ≤ on
naturals extends to N by taking x ≤ ω for all x ∈ N. Assuming a countable set
ZVar of cost variables, the set ZExp of cost expressions is generated by the
following grammar:

l ∈ ZVar

n ∈ N

z ::= l | n | z1 + z2.

We designate the set of cost variables occurring in an expression z by ZV(z).
We can now define our cost model for L.

Definition 3 (Cost model). Let e be a closed L-expression; If e→∗ e′ and e′ �→
(where →∗ is the reflexive transitive closure of →) then the cost of reduction of
e is the number of [beta⇀] reductions2 in e →∗ e′ (this number is well defined
because of Lemma 2).

If the reduction from e diverges, i.e. there is an infinite sequence (en)n≥0 such
that e0 = e and for all n ≥ 0, en → en+1, then the cost of reduction is ω
(standing for infinite cost).

Note that e′ �→ does not imply e′ must be a value; it can also be an erroneous
reduction sequence, for example, head([ ]) �→. This means we cost both confluent
and erroneous reduction sequences with finite cost and divergence with infinite
cost3.

2 Although other metrics could have been used (see [9] for example), we have chosen
to count β-reductions for simplicity.

3 Our intuition is that in an implementation, erroneous reduction sequences will induce
termination, perhaps through an exception.
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3.4 Sized Types

L uses a notion of sized types [18] applied to rank 2 intersection types [10] where
types for naturals and lists have a superscript specifying an upper bound for its
size and function types have a latent cost [26] attached to the function arrow.
This latent cost is an upper bound on the cost of evaluating the function body.

Definition 4. Given a countable set TVar of type variables, the set of simple
sized types (T0), ranged over by u, and the set of rank 2 sized intersection types
(T2), ranged over by v, are defined inductively by the following grammar:

α ∈ TVar
z ∈ ZExp

u ::= α | Bool | Natz | Listzu | u1
z→u2 .

v ::= u | u1∧. . .∧un
z→v .

The constructor ∧ binds more tightly than→ and we consider ∧ to be associative,
commutative, and idempotent.

Since sizes are attached to types and these may be embedded within other
types, it is possible to describe the sizes of the elements of a structure as well
as the structure itself, e.g.: List5

(
Nat10

)
denotes a list whose length is at most 5

with natural numbers not greater than 10 as elements.

3.5 Type System

Figure 2 and Figure 3 show the sized type system that derives judgements of
the form,

A 
 e : v & z

which can be informally read as “under type assumptions A, the expression e
admits type v and z is an upper bound for the cost of e”. A type environment A
is a set of type assumptions of the form x : u1∧. . .∧un, where n ≥ 1, such that
every identifier x can occur at most once in A. The expression dom(A) denotes
the domain of A, which is the set of identifiers found in A. We write A1, A2 for
the environment A1 ∪A2 where it is assumed that dom(A1)∩dom(A2) = ∅, and
A, x : t as short for A, {x : t}. Given two type environments A1 and A2 we write
A1∧A2 to denote the type environment

{x : (u1∧. . .∧un)∧(u′1∧. . .∧u′m) | x : u1∧. . .∧un ∈ A1 and

x : u′1∧. . .∧u′m ∈ A2}∪
{x : u1∧. . .∧un ∈ A1 | x /∈ dom(A2)}∪
{x : u′1∧. . .∧u′m ∈ A2 | x /∈ dom(A1)}

The system represents a straightforward extension of Damiani’s rules for the
λ-core of his language [10] and for consistency uses the same notation for types.
Note that:
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[Var∧2st]
{x : u} � x : u & 0

n ∈ N

[Nat∧2st]
∅ � n : Natn & 0

b ∈ {true, false}
[Bool∧2st]

∅ � b : Bool & 0

x ∈ FV(e) A, x : u1∧...∧un � e : v & z
[Abs∧2st]

A � λx.e : u1∧...∧un
z→v & 0

x /∈ FV(e) u ∈ T0 A � e : v & z
[AbsVac∧2st]

A � λx.e : u
z→v & 0

A0 � e1 : u1∧...∧un
z3→v & z1 (∀i ∈ {1, ..., n}) Ai � e2 : ui & z2

[App∧2st]
A0∧A1∧...∧An � e1 e2 : v & 1+z1+z2+z3

A0 � e0 : Bool & z0 A1 � e1 : u & z A2 � e2 : u & z
[If∧2st]

A0∧A1∧A2 � if e0 then e1 else e2 : u & z0+z

A1 � e : v & z A2 ≤1 A1
[Weak∧2st]

A2 � e : v & z

A � e : v1 & z v1 ≤2 v2
[SubT∧2st]

A � e : v2 & z

A � e : v & z1 z1 ≤ z2
[SubE∧2st]

A � e : v & z2

Fig. 2. Typing rules for the core L expressions

– The three non-structural rules [Weak∧2st], [SubT∧2st] and [SubE∧2st] allow
weakening, subtyping and subeffecting, respectively and make use of the sub-
typing relations, �, ≤1 and ≤2, defined in Figure 4. We write A1 ≤1 A2 to
mean that dom(A1) = dom(A2) and for every assumption x : u′1∧. . .∧u′m ∈ A2

there is an assumption x : u1∧. . .∧un ∈ A1 such that u1∧. . .∧un ≤1 u
′
1∧. . .∧u′m.

The subtype system is not structural, for example, u1 � u2 does not imply
that Listz1u1 � Listz2u2 (since there is no relationship between the size of a
structure and the elements of that structure).

– We have two rules for typing an abstraction λx.e, [Abs∧2st] and [AbsVac∧2st],
corresponding respectively to the two cases x ∈ FV(e) and x /∈ FV(e). In
both rules, the cost of evaluating the body of a lambda abstraction is the
latent cost of the function type; the cost for the actual abstraction is zero.

– In the [App∧2st] rule we add the latent cost of the function to the costs of
obtaining the function and argument, plus a constant 1 to count the cost
of the β-reduction (this is the only rule where a positive cost is added).
Note that this rule allows using different typing for each expected type of
the argument, but each typing may require subeffecting to ensure the same
cost z2.
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u ∈ T0
[Nil∧2st]

∅ � [ ] : List0u & 0

A1 � e1 : u & z1 A2 � e2 : Listzu & z2
[Cons∧2st]

A1∧A2 � e1::e2 : List1+zu & z1+z2

A1 � e1 : Natz1 & z′
1 A2 � e2 : Natz2 & z′

2
[Add∧2st]

A1∧A2 � add(e1, e2) : Natz1+z2 & z′
1+z′

2

A � e : Natz & z′

[Pred∧2st]
A � pred(e) : Natz−1 & z′

A1 � e1 : Natz1 & z′
1 A2 � e2 : Natz2 & z′

2
[Eq∧2st]

A1∧A2 � eq(e1, e2) : Bool & z′
1+z′

2

A � e : Listzu & z′

[Head∧2st]
A � head(e) : u & z′

A � e : Listzu & z′

[Tail∧2st]
A � tail(e) : Listz−1u & z′

A � e : Listzu & z′

[Null∧2st]
A � null(e) : Bool & z′

Fig. 3. Typing rules for natural and list primitives

u � u′

[simple≤2
]

u ≤2 u′

u′
1∧...∧u′

m ≤1 u1∧...∧un v ≤2 v′ z ≤ z′

[rank2≤2 ]

u1∧...∧un
z→v ≤2 u′

1∧...∧u′
m

z′
→v′

n ≥ m ∃i1, ..., im∈{1, ..., n} : ui1 � u′
1, ..., uim � u′

m
[rank1≤1 ]

u1∧...∧un ≤1 u′
1∧...∧u′

m

u = u′

[reflex� ]
u � u′

z ≤ z′

[nat� ]
Natz � Natz′

z ≤ z′ u � u′

[list� ]
Listzu � Listz′

u′

u′
1 � u1 u2 � u′

2 z ≤ z′

[abs� ]

u1
z→u2 � u′

1
z′
→u′

2

Fig. 4. Subtyping relations � , ≤1 and ≤2
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– In the rule for [If∧2st] we require that both branches admit the same type
and cost, which may require using the [Weak∧2st], [SubT∧2st] and [SubE∧2st]
rules for one or both branches.

4 Examples

The next examples show a possible derivation for a selected expression, using
the rules of Figure 2 and Figure 3.

The examples take advantage of the underlying rank-2 intersection type sys-
tem and either were not possible to type or had a less precise type if our type
system was based on a standard Hindley-Milner one.

Example 1: Conditionals

The example depicted in Figure 5 illustrates the use of conditionals combined
with polymorphism.

Note that function f must be able to handle arguments of type Nat and Bool and
since f was not explicitly declared polymorphic in “λf p.if p then f 1 else f true”
the whole expression cannot be typed by a standard Hindley-Milner type system.

Example 2: Size Aliasing

Consider expression “λf x.f (f x)”, representing function twice (a function that
applies its first argument twice to its second argument), and expression
“λy.add(y, 1)”, representing function succ (a function that given a natural num-
ber returns its successor). One way to represent the type of function succ using
sized types is Natn→Natn+1; meaning succ is a function that takes an element
of {m ∈ N | 0 ≤ m ≤ n} and returns an element of {m ∈ N | 0 ≤ m ≤ n+1}.

We should expect “(λf x.f (f x)) (λy.add(y, 1))” (i.e, twice succ) to represent
a function that given a natural number, y, returns the successor of the successor
of y, i.e, y+2. Therefore we should also expect the sized type of twice applied to
succ to be Natn→Natn+2 and in fact we can derive such type using our system
(as shown in Figure 6), but if we had based our type system on a standard
Hindley-Milner type system, then the best type for twice succ would have been
Natω → Natω (where ω represents some unbounded natural) which although
correct, is not precise.

The reason for this loss of precision is that the Hindley-Milner type for the
first argument of twice is α→α and at some point we would need to unify α→α
with Natn→Natn+1, the sized type of succ. From this unification we would obtain
the constraint n = n+1, which can only be solved in N if n = ω.

5 Correctness

5.1 Semantic Correctness

In order to prove semantic correctness for our analysis we first state a few
preliminary results.
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(3.2)

{
true ∈ {true, false}

[Bool∧2st]
∅ � true : Bool & 0

(3.1)

{
[Var∧2st]

{f : Bool
z1→α1} � f : Bool

z1→α1 & 0

(3.1) (3.2)
[App∧2st]{f : Bool

z1→α1} � f true : α1 & 1+z1

}
(3)

(2.2)

{
1 ∈ N

[Nat∧2st]
∅ � 1 : Nat1 & 0

(2.1)

{
[Var∧2st]

{f : Nat1
z1→α1} � f : Nat1

z1→α1 & 0

(2.1) (2.2)
[App∧2st]{f : Nat1

z1→α1} � f 1 : α1 & 1+z1

}
(2)

[Var∧2st]
{p : Bool} � p : Bool & 0

}
(1)

(1) (2) (3)
[If∧2st]

{f : (Nat1
z1→α1)∧(Bool

z1→α1), p : Bool} �
if p then f 1 else f true : α1 & 1+z1

[Abs∧2st]
{f : (Nat1

z1→α1)∧(Bool
z1→α1)} �

λp.if p then f 1 else f true : Bool
1+z1→ α1 & 0

[Abs∧2st]
∅ � λf p.if p then f 1 else f true : (Nat1

z1→α1)∧(Bool
z1→α1)

0→Bool
1+z1→ α1 & 0

Fig. 5. A type derivation for ‘λf p.if p then f 1 else f true’

Proposition 1. In any valid judgement A 
 e : v & z we have dom(A) = FV(e)

Proposition 2. Suppose A1, A
′
1, A2, A

′
2 are type environments such that A1 ≤1

A′
1 and A2 ≤1 A

′
2. Then A1∧A2 ≤1 A

′
1∧A′

2.

Proposition 3. Suppose A1, ..., An, where n ≥ 1, are type environments such
that dom(A1)= ...=dom(An). Then A1∧...∧An ≤1 Ai1∧...∧Aim , for all subset
{i1, ..., im} of {1, ..., n}, m ≥ 1.

Proposition 4. Suppose A1, A
′
1, A2, A

′
2 are type environments such that A′

2 ⊆
A2 and A′

1 = {x : t ∈ A2 | x ∈ dom(A1)}. Then A1∧A′
1∧A′

2 ⊆ A1∧A2 and
A1∧A′

1∧A′
2 ≤1 A1∧A′

2.

To prove the subject reduction property for the top-level reduction relation, ⇀,
we also need the next two lemmas.
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(3.2)
{

[Nat∧2st]
∅ � 1 : Nat1 & 0

(3.1)

{
[Var∧2st]

{y : Natn+1} � y : Natn+1 & 0

(3.1) (3.2)
[Add∧2st]

{y : Natn+1} � add(y, 1) : Natn+2 & 0
[Abs∧2st]

∅ � λy.add(y, 1) : Natn+1 0→Natn+2 & 0

⎫⎪⎪⎬
⎪⎪⎭

(3)

[Var∧2st]
{y : Natn} � y : Natn & 0

[Nat∧2st]
∅ � 1 : Nat1 & 0

[Add∧2st]
{y : Natn} � add(y, 1) : Natn+1 & 0

[Abs∧2st]
∅ � λy.add(y, 1) : Natn 0→Natn+1 & 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

(1.2.2)

{
[Var∧2st]

{x : Natn} � x : Natn & 0

(1.2.1)

{
[Var∧2st]

{f : Natn 0→Natn+1} � f : Natn 0→Natn+1 & 0

(1.2)

{
(1.2.1) (1.2.2)

[App∧2st]{f : Natn 0→Natn+1, x : Natn} � f x : Natn+1 & 1

(1.1)

{
[Var∧2st]

{f : Natn+1 0→Natn+2} � f : Natn+1 0→Natn+2 & 0

(1.1) (1.2)
[App∧2st]

{f : (Natn 0→Natn+1)∧(Natn+1 0→Natn+2), x : Natn}
� f (f x) : Natn+2 & 2

[Abs∧2st]
{f : (Natn 0→Natn+1)∧(Natn+1 0→Natn+2)} �

λx.f (f x) : Natn 2→Natn+2 & 0
[Abs∧2st]

∅�λf x.f (f x) : (Natn 0→Natn+1)∧(Natn+1 0→Natn+2)
0→Natn 2→Natn+2&0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

(1) (2) (3)
[App∧2st]∅ � (λf x.f (f x)) (λy.add(y, 1)) : Natn 2→Natn+2 & 1

Fig. 6. A type derivation for ‘(λf x.f (f x)) (λy.add(y, 1))’

Our first lemma states that if a value admits a type, then it admits zero cost:

Lemma 3. Let ew be a value; if A 
 ew : v & z then A 
 ew : v & 0.

Proof: By induction on the structure of ew combined with case-analysis on the
the rules of Figure 2 and Figure 3 (by analogy with [1]). 	
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Our second lemma states that we can replace a variable in a typing context by
an expression of the correct type provided the expression has zero cost:

Lemma 4. If A, y : u′1∧...∧u′m 
 e : v & z and (∀j ∈ {1, ...,m}) A′
j 
 e′ : u′j & 0

then A∧A′
1∧...∧A′

m 
 e[e′/y] : v & z.

Proof: By induction on the length of the type derivation tree (see [27]). 	
Our first semantic correctness result is a subject reduction property stating that
types are maintained by single-step reductions. The first theorem deals with
top-level reductions only.

Theorem 1 (Subject reduction for ⇀). If e ⇀ e′ and A 
 e : v & z, then also
A′ 
 e′ : v & z where A′ ⊆ A.

Proof: By induction in the inference tree for A 
 e : v & z and by case analysis
on the last rule applied (see [27]). 	
We now lift the subject reduction result to reductions occurring in an arbitrary
evaluation context. In order to do so, we first present some auxiliary results on
inference trees.

The following definition allow us to be precise about what it means for a
judgement to occur “at the address indicated by the hole in E” and at the same
time we shall record the “depth” of the judgement in order to facilitate proofs
by induction.

Definition 5. Consider judgements jdg′ = A′ 
 e′ : v′ & z′, jdg = A 
 e :
v & z and some evaluation context E.

We say that jdg′ occurs at E with depth 0 in the inference tree for jdg if
E = [ ] and jdg′ = jdg (implying that e = E[e′]).

We say that jdg′ occurs at E with depth 1 in the inference tree for jdg if
e = E[e′] and the last rule applied in the inference tree for jdg is either

– [Weak∧2st], [SubT∧2st] or [SubE∧2st], with jdg′ as the leftmost premise and
E = [ ]; or

– [App∧2st] with jdg′ as the leftmost premise and E of the form [ ] e2; or
–

A0 
 ew1 : u1∧...∧uj−1∧v′∧uj+1∧...∧un
z3→v & z1

A′ 
 e′ : v′ & z′

(∀i ∈ {1, ..., j−1, j+1, ..., n}) Ai 
 e′ : ui & z2
[App∧2st]

A 
 e : v & z

, j ∈ {1, ..., n}

where v′ = uj ∈ T0, A′ = Aj , z′ = z2, A = A0∧A1∧...∧An, z = 1+z1+z2+z3
and E has the form ew1 [ ] implying e = ew1 e

′; or
– [If∧2st], with jdg′ as the leftmost premise and E of the form

if [ ] then e1 else e2; or
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– [Pred∧2st], [Head∧2st], [Tail∧2st] or [Null∧2st], with jdg′ as premise and E of
the form op1([ ]), where op1 is the corresponding unary operation; or

– [Add∧2st] or [Eq∧2st], with jdg′ as the leftmost premise and E of the form
op2([ ], e2), where op2 is the corresponding binary operation; or

– [Add∧2st] or [Eq∧2st], with jdg′ as the rightmost premise and E of the form
op2(ew1 , [ ]), where op2 is the corresponding binary operation.

We say that jdg′ occurs at E with depth d > 1 in the inference tree for jdg
if there exists d1, d2 < d with d1 + d2 = d, evaluation contexts E1, E2 with
E2[E1] = E, and judgement jdg′′, such that jdg′ occurs at E1 with depth d1 in
the inference tree for jdg′′, and jdg′′ occurs at E2 with depth d2 in the inference
tree for jdg.

Lemma 5. Given a judgement jdg = (A 
 E[e] : v & z), there exists (at least
one) judgement jdg′ of the form A′ 
 e : v′ & z′ such that jdg′ occurs at
evaluation context E in the inference tree for jdg.

Proof: By analogy with the proof in [1], p.197–198. 	

Lemma 6. Suppose that the judgement jdg′ = (A′ 
 e : v′ & z′) occurs at E
in the inference tree of judgement jdg = (A 
 E[e] : v & z). If er is such that
A′

1 
 er : v′ & z′, where A′
1 ⊆ A′, then also A1 
 E[er] : v & z, where A1 ⊆ A.

Proof: By induction in the depth d at which jdg′ occurs at E in the inference
tree for jdg (see [27]). 	
We can now state and prove the subject reduction for the single step reduction
relation →:

Theorem 2 (Subject reduction for →). If e1 → e2 and A1 
 e1 : v & z, then
A2 
 e2 : v & z where A2 ⊆ A1.

Proof: From Definition 2 we assume the existence of some E, e′1, e
′
2 such that

e1 = E[e′1], e2 = E[e′2] and e′1 ⇀ e′2. By Lemma 5 there exists A′
1, v′ and z′ such

that A′
1 
 e′1 : v′ & z′ occurs at E in the inference tree of A1 
 E[e′1] : v & z.

Theorem 1 then gives A′
2 
 e′2 : v′ & z′ where A′

2 ⊆ A′
1 and by Lemma 6 we

obtain A2 
 E[e′2] : v & z where A2 ⊆ A1 which is as desired since e2 = E[e′2]. 	
Note that subject redution normally does not hold in a rank-2 intersection type
system with two rules for abstraction. However, our subject reduction result can
be seen as a weak subject reduction, since, according to our semantics, reductions
are not performed under λs.

5.2 Correctness of the Cost Analysis

We now prove the correctness of the cost analysis by relating the effect derived in
the type judgement to the number of β-reductions in the operational semantics.
We revisit Theorems 1 and 2 and show that the cost decreases by one for each
β-redex.
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Lemma 7. If A 
 (λx.e) ew : v & z, then there exists z′ such that 1+z′ ≤ z and
A′ 
 e[ew/x] : v & z′ where A′ ⊆ A.

Proof: Examining the case [beta⇀] in the proof of Theorem 1 we had z =
1+z1+z2+z3, A = A2∧A′

1∧...∧A′
n with A1∧A′

p1
∧...∧A′

pm

 e[ew/x] : v1 & z′3

and z′3 ≤ z3. Taking z′ = z′3 yields 1+z′ ≤ 1+z3 ≤ z as required. 	

Lemma 8. If e → e′ is a β-reduction and A 
 e : v & z then there exists z′

such that 1+z′ ≤ z and A′ 
 e′ : v & z′ where A′ ⊆ A.

Proof: By lifting Lemma 7 to → (analogous to the proof of Theorem 2). 	

Theorem 3 (Correctness of cost analysis). Consider a L-expression e for which
we derive a type judgement A 
 e : v & z with a finite cost (z < ω). Then z is
an upper bound on the number of β-reductions in the evaluation of e.

Proof: Using Lemma 8 (see [27]). 	

6 Conclusions and Further Work

In this paper we have presented a type-and-effect system [23] using intersec-
tion types to derive the costs of programs written in a simple higher-order and
polymorphic functional language.

The main novelty of our approach is the use of intersection types to construct
a cost analysis using a cost model built on a formal notion of sized type. We have
shown both how our approach can be used to improve the quality of analysis,
and to overcome the size aliasing problem in certain prototypical cases. Size
aliasing is an instance of a general problem in analyses built using type-and-
effect systems, where these are based on a simple Hindley-Milner polymorphism,
and we anticipate that the approach described here is also applicable to domains
other than cost analysis.

Since our main objective in this work was to study size aliasing and deter-
mine whether quality improvements could be made in cost analysis, we have
focused on the higher-order polymorphic aspects of L. One important omission
is treatment of recursion. We are currently in the process of extending L with a
fixpoint operator analogously to the approach used in Vasconcelos’ forthcoming
PhD thesis, extending the type-and-effect system and completing the associa-
ted proofs. We do not, however, anticipate any major technical problems arising
from this work. While it may seem that size and time analysis are orthogonal in
our system, note that the system is ready to include built-in functions relating
size with time (e.g. a function with type Natn n→Natn).

Our work is undertaken in the context of a strict, purely functional language,
producing cost information in the form of data structure sizes. We are exten-
ding this work in a number of ways. Firstly, we are studying extensions of this
work to a call-by-need semantics, based on extending Launchbury’s semantics
for graph reduction [21] with appropriate cost information; and secondly, we
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are investigating more realistic metrics in the form of stack and heap memory
allocations, and in terms of concrete time costs. Finally, although this work is
restricted to a purely functional programming notation, recent work by Hofmann
and Jost [17] has shown that it is possible to incorporate both assignment and
some object-oriented features into a similar cost framework. We anticipate also
exploring these directions in due course.
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sozeau@lri.fr

Abstract. We propose a new language for writing programs with de-
pendent types on top of the Coq proof assistant. This language permits
to establish a phase distinction between writing and proving algorithms
in the Coq environment. Concretely, this means allowing to write al-
gorithms as easily as in a practical functional programming language
whilst giving them as rich a specification as desired and proving that
the code meets the specification using the whole Coq proof apparatus.
This is achieved by extending conversion to an equivalence which re-
lates types and subsets based on them, a technique originating from the
“Predicate subtyping” feature of PVS and following mathematical con-
vention. The typing judgements can be translated to the Calculus of
(Co-)Inductive Constructions (Cic) by means of an interpretation which
inserts coercions at the appropriate places. These coercions can con-
tain existential variables representing the propositional parts of the final
term, corresponding to proof obligations (or PVS type-checking condi-
tions). A prototype implementation of this process is integrated with the
Coq environment.

1 Introduction

There are many means to program in the Coq environment [1]. One can write
programs as in ML and prove properties about them separately, losing the pos-
sibility of using dependent types in specifications, or give a rich type expressing
them as a goal and use the proof tactics to solve it, producing a corresponding
program by the Curry-Howard isomorphism but having much less control on its
algorithmic essence. It is however difficult to mix the two methods (writing code
and proving interactively) using a rich specification. Indeed, when using simple
terms and types (ML) or even complex terms and types (Coq), we can have
decidable type-checking. However, when using simple terms to represent inhab-
itants of complex types, we immediately get undecidability of type-checking, as
the terms do not give enough information. Consider for example the function
tail which returns the tail of a non-empty list. In ML:

let tail = function hd :: tl -> tl | [] -> assert(false)

This function is partial, its domain is reduced to non-empty lists. In Coq, we
would rather write the following:

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 237–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Definition tail (l : list A) : option (list A) :=
match l with hd :: tl => Some tl | [] => None end.

The option type is the usual way to encode partiality in Coq. However we
would more naturally constrain the argument l to non-empty lists to be more
faithful to the original ML code, and also attach a property to the result to
express more precisely what tail does:

Definition tail (l : list A) : (l <> []) ->
{ l’ : list A | exists a, a :: l’ = l }.

Now the definition’s body requires some heavy plumbing of the code which is
not affordable when programming. Moreover, the user is forced to give a proof
term justifying that l <> [] when calling the function. We propose a solution
to overcome these difficulties, based on the Predicate subtyping [2] technique
of PVS [3]. It is separated into two phases. First, we have a weak, decidable
type-checking procedure which does not require proofs to be present in the code
when constructing objects of a subset type. In our new language Russell, the
following is a well-typed term:

Program Definition tail ( l : list A | l <> [] ) :
{ l’ : list A | exists a, a :: l’ = l } :=
match l with hd :: tl -> tl | [] -> [] end.

The specification shows that we are defining a partial function and enforces a
relation between input and output, using a dependent type, yet the code remains
as simple as the ML definition. This is only possible because we do not require
the user to write proofs in the code. After type-checking, there is an automatic
elaboration into partial Coq terms, which collects obligations the user has to
prove. In our example, the proof assistant will ask the user to prove that:

1. The list tl has the property exists a, a :: tl = hd :: tl, and
2. In the context where l is a non-empty list and l = [], the list [] has the

property exists a, a :: [] = [] (which should be obvious as the context
is contradictory).

This solution also provides facilities to express properties with a more mathe-
matical flavour using subsets, bridging a gap between mathematical convention
and type theory.

The Program tactic by C. Parent [4] had the same goal as ours but a differ-
ent method for achieving it. It was strongly linked to the extraction mechanism
included in Coq, both theoretically and practically. Sketching the mechanism,
she defined a weakened extraction operation on Cic terms which could be in-
verted because it left enough information in the extracted term to rebuild a
partial proof. The mechanism, while general and theoretically well thought out,
required some heuristics and did not integrate smoothly with the Coq environ-
ment. In particular it lacked the pervasiveness our method has, being applicable
in a wide variety of situations in the proof assistant environment.
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Instead of trying to find a general method for synthesizing proofs from pro-
grams in the Calculus of (Co-)Inductive Constructions, we have integrated a
method which permits to link strong specifications and purely algorithmical
code. This method, known as Predicate subtyping in the PVS system, has been
used with great success and fits naturally with how we write specifications using
the subset type [5]. The main contribution of this paper is to show how the Pred-
icate subtyping method can be adapted in a proof assistant with proof terms,
which formally justifies the extension in the first place.

The remaining of the article is organised as follows: in section 2 we present
a type system based on Cic, which integrates subset “subtyping”, and prove
decidability of type-checking. Then, we show how it relates to Cic by means of
translations between judgements of the two systems in section 3. Next we present
a prototype implementation in section 4, and finally we give our conclusions on
this work and discuss future directions in section 5.

2 Russell

The name of our language is an homage to the mathematician Bertrand Russell
who discovered the famous paradox of set theory with the unrestricted compre-
hension axiom. In this theory, it is possible to construct the set X = {x | x /∈ x}
whose definition is circular. Clearly, if X ∈ X then X /∈ X and if X /∈ X then
X ∈ X , hence we have an inconsistency. Russell was one of the pioneers of type
theory when he devised a set theory with a restricted comprehension axiom that
permitted to create subsets only from already defined subsets, forbidding the
definition of X .

In Coq, the distinction between informative and propositional parts of a term
is formalised by the Set/Prop sorts. In Russell, we have special support for
propositions appearing in subset types. By delimiting the use of propositions,
we can separate code from proof.

This idea is already present in mathematics. When you have an element of
subset {x ∈ S | P}, you can freely forget about the property P and use any
operation which is defined on S. Conversely, when you want to use an operation
defined on a subset, say f : {x : N | P} → X , you usually prove first that
you apply it only to elements having the desired property. For example (f 2)
is a correct application only if (P [2/x]) is provable. In the context of formal
development of programs, such a workflow is not entirely satisfactory because it
forces one to create objects and prove properties about them at the same time.
In Coq, we are forced to apply f to an object (elt nat λx : nat.P 2 p) where
p is a proof of (P [2/x]) (Figure 1 presents the definition of the subset type in
Coq). We would like to be able to prove that our usage of partial functions is
correct only after the program is written. Subsets are particularly well-suited in
this respect because they separate the objects we want to manipulate and their
associated properties. Similar treatments of subsets as a construct to separate
informative and propositional parts of an object include the work by Nordström
et al. [5] and subset types in NuPRL [6].
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Γ � A : Set Γ, x : A � P : Prop
Subset

Γ � { x : A | P } : Set

Γ � a : A Γ � p : P [a/x] Γ � { x : A | P } : Set
Element

Γ � elt A (λx : A.P ) a p : { x : A | P }

Γ � t : { x : A | P }
Subset-σ1

Γ � σ1 t : A

Γ � t : { x : A | P }
Subset-σ2

Γ � σ2 t : P [σ1 t/x]

Fig. 1. Subset type in Cic

2.1 From Predicate Subtyping to Subset Equivalence

The Predicate subtyping mechanism [2] is an extension of the PVS type system
which internalises this idea. Concretely, this means that the following rules are
derivable in PVS:

Γ 
 t : {x : T | P}
Γ 
 t : T

Γ 
 t : T Γ 
 P [t/x]
Γ 
 t : {x : T | P}

The first one formalises the fact that an object of a subset based on T is an
object of type T . The second one permits using an object of type T as an object of
type {x : T | P}, but it generates a type-checking condition Γ 
 P [t/x] which will
need to be discharged later. Effectively, the typing algorithm of PVS collects the
conditions that must be satisfied for the term to be accepted as a valid definition.
However, the acceptance criteria can be rather large in PVS. By design, when
proving in PVS, the trusted code base (TCB hereafter) is the entire system,
not only the typing system but also the various decision procedures and tactics
used to build proofs automatically or interactively. It is nonetheless a widely
used proof assistant and the predicate subtyping feature has apparently helped
to build a consequent library of certified code. On the other hand, Coq has a
small TCB and greater expressiveness but less automation and methodology to
build certified programs. We capitalise on the PVS success to make Coq more
usable for this kind of tasks, and as we will see, it will have other benefits.

2.2 A Weaker Type System

To formalise this idea in Coq, we simply weaken the type system so that it
doesn’t require the terms to contain the proof components for objects of sub-
set types. This permits to have a simple language for code while retaining the
richness of Coq’s specification language. Once we have a derivation in this new
type system, we can translate it to a partial Coq derivation, where the missing
parts are represented by metavariables. It can then be completed by instantiating
these holes with actual proofs.



Subset Coercions in Coq 241

Wf-Empty � [] wf
Γ � A : s

Wf-Var s ∈ S ∧ x /∈ Γ� Γ, x : A wf

� Γ wf x : A ∈ Γ
Var

Γ � x : A
� Γ wf

Axiom (s1, s2) ∈ A
Γ � s1 : s2

Γ � T : s1 Γ, x : T � U : s2
Prod

Γ � Πx : T.U : s2

Γ � Πx : T.U : s Γ, x : T �M : U
Abs

Γ � λx : T.M : Πx : T.U

Γ � f : Πx : V.W Γ � u : V
App

Γ � (fu) : W [u/x]

Γ � T : s Γ, x : T � U : s
Sum s ∈ {Prop, Set}

Γ � Σx : T.U : s

Γ � Σx : T.U : s Γ � t : T Γ � u : U [t/x]
Pair

Γ � (t, u)Σx:T.U : Σx : T.U

Γ � t : Σx : T.U
Pi-1

Γ � π1 t : T
Γ � t : Σx : T.U

Pi-2
Γ � π2 t : U [π1 t/x]

Γ � t : U Γ � U ≡βπ T : s
Conv

Γ � t : T

Fig. 2. Cic typing judgement

Γ � t : U Γ � U � T : s
Coerce

Γ � t : T

Γ � U : Set Γ, x : U � P : Prop
Subset

Γ � { x : U | P } : Set

Fig. 3. Russell new rules

Type system. Russell’s type system is based on the Calculus of Inductive
Constructions (figure 2) [7], with sigma types but without universes. This re-
striction may be removed in future work, but causes no problem for our main
purpose which is programming. We omit inductive constructs here, as they can
be considered as constants and leave their treatment as future work. The judge-
ment Γ 
 t : T means t is a well-typed term of type T in environment Γ .

Following the presentation as a Pure Type System, the set of sorts S is defined
as {Set, Prop, Type}. As usual, we let s, si for i ∈ N range over sorts. The
axioms are A = {(Set, Type), (Prop, Type)} and the set of rules R is defined
by the functional relation ∀s1s2, (s1, s2, s2) ∈ R. We allow products Πx : A.B
where A : Prop and B : Set but the user is encouraged to encode them as
Πx : { : unit | A}.B (with unit the type containing a single element tt) to
benefit from the subtyping mechanism which we will define later.

The reduction rules of this system are the standard β and π for projections.
We denote by x↓ the weak head normal form of x. We use a standard judgemental
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equality Γ 
 T ≡βπ U : s meaning T, U are well-typed, convertible terms of sort
s in context Γ .

We allow to form dependent sums Σx : U.V (Sum, Pair, Pi-1, Pi-2 rules)
only when U, V : Set or U, V : Prop. The first sum represents dependent pairs,
useful when defining functions returning a tuple, the latter represents dependent
pairs of propositions, which is most often used as conjunction of propositions.
The dependent pair with U : Set and V : Prop is the subset type which we
distinguish (rule Subset). The last possible pair U : Prop, V : Set is forbidden
because it corresponds to a pair where the last component, which is informa-
tive, may depend on a particular proof of the proposition U . This is quite con-
trary to the mantra “Computations do not depend on proofs” which governs our
programming language. If there is no dependence then the components can be
swapped.

In Russell, the conversion rule Conv is replaced by a new subsumption rule
Coerce (figure 3 on the previous page) which will implement the subset equiv-
alence. The judgement Γ 
 T �U : s means T is equivalent to U in environment
Γ , both sorted with s. The essence of our equivalence is to identify subset types
if they have equivalent supports, hence we have the following property:

Proposition 1 (Subset erasure and consistency). If we erase subset types
from Russell terms and rules, leaving only the supports, we get a valid Cic

term and derivation, hence ⊥ is not provable in Russell.

Proof. By erasing subsets in Russell rules, the Subset rule becomes admissible
and the Coerce rule becomes Conv. By eliminating the subset type in a term
we get a valid Cic term. Hence to each Russell derivation corresponds a Cic

derivation.

Equivalence. We have renamed the technique from Predicate subtyping to sub-
set equivalence because we have a symmetric relation, contrary to usual subtyp-
ing relations. It also conveys the idea that it can include the usual βπ-conversion
directly in the judgement. The judgement Γ 
 T � U : s (figure 4 on the facing
page) reads T is equivalent to U in environment Γ , both being sorted by s.

The rule �-Conv integrates βπ-conversion in the judgement. We use a judge-
mental equality here, which will be refined by the usual conversion relation later.
The �-Trans rule ensures that our judgement builds an equivalence and has
proper modularity. It is trivial to check that we have symmetry given the sym-
metry of the definitional equality. The next two rules (�-Prod and �-Sum) do
context closure for dependent products and sums. It is remarkable that we use
contravariance for domains in the �-Prod rule, not restricting to invariance as
in PVS. It is accessory here, as we could have used covariance and still get the
same judgements because we have symmetry. However, it will become important
when we create coercions (see figure 8 on page 247).

The really interesting rules are �-Subset and �-Proof. The first one allows
to use an object of a subset type as an object of its support type. The later
allows (maybe abusively) to consider an object of any type as an object of any
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Γ � T ≡βπ U : s
�-Conv

Γ � T � U : s

Γ � S � T : s Γ � T � U : s
�-Trans

Γ � S � U : s

Γ � U � T : s1 Γ, x : U � V � W : s2
�-Prod

Γ � Πx : T.V � Πx : U.W : s2

Γ � T � U : s Γ, x : T � V � W : s
�-Sum s ∈ {Set, Prop}

Γ � Σx : T.V � Σy : U.W : s

Γ � U � V : Set Γ, x : U � P : Prop
�-Subset

Γ � { x : U | P }� V : Set

Γ � U � V : Set Γ, x : V � P : Prop
�-Proof

Γ � U � { x : V | P } : Set

Fig. 4. Russell conversion

subset based on this type. We must check that the property P is well-formed,
but we do not care about its provability.

Properties. We have proved some of the metatheory for this system in Coq

[8]. We have assumed that it is strongly normalising (SN) but we have proved
subject reduction (SR) for it: if Γ 
 t : T and t→βπ t

′ then Γ 
 t′ : T (our proof
of SR does not depend on SN). Gang Chen [9] has studied various type systems
from the λ-cube extended by subtyping or coercive subtyping [10], including the
Calculus of Constructions, and proved such results as SN and SR for them. It
requires a very careful analysis of the system to avoid cycles in the proof due to
the presence of dependent types and conversion. However we preferred to adapt
the method of Robin Adams [11] to prove SR, because Gang Chen’s method
seemed very tied to the peculiarities of the system he studied.

So, apart from strong normalisation, we have shown all the usual structural
and metatheoretic properties of a dependent programming language, like weak-
ening, thinning and substitution, stability by context coercion, etc. We stop here
on the subject of theoretical properties of this first system, as it gives no new
insights for our purpose and we will focus more on the algorithmic system’s
properties. Besides, the details of the formalisation and the proof fall outside
the scope of this paper.

Algorithmic Typing

We use a standard transformation to get an algorithm from our typing rules,
removing the conversion (or subsumption) rule (here Coerce) and integrating
it to the premises of the other rules. Our algorithmic judgement Γ 
• t : T
(figure 5 on the following page) reads: t has type T in environment Γ . We
need to introduce the notion of support for subset types in order to define our
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Γ �• f : T μ•(T ) = Πx : V.W Γ �• u : U Γ �• U �• V : s
App

Γ �• (fu) : W [u/x]

Γ �• Σx : T.U : s

Γ �• t : T ′ Γ �• T ′
�• T : s

Γ �• u : U ′ Γ �• U ′
�• U [t/x] : s

Pair
Γ �• (t, u)Σx:T.U : Σx : T.U

Γ �• t : S μ•(S) = Σx : T.U
Pi-1

Γ �• π1 t : T

Γ �• t : S μ•(S) = Σx : T.U
Pi-2

Γ �• π2 t : U [π1 t/x]

Fig. 5. Russell algorithmic typing, new rules

algorithmic system. Indeed, when typing an application, we need to ensure that
the object we apply can be seen as an object of a product type modulo the
equivalence.

μ•(x) ⇒ μ•(U) if x↓ = { x : U | P }
μ•(x) ⇒ x otherwise

Fig. 6. μ•() definition

The next thing to do is to construct a decidable judgement for equivalence
given two types. We denote it by Γ 
• T �• U : s (figure 7). In our case, we
have to check that definitional equality is decidable, which is the case as we can
replace the judgemental equality with the usual untyped convertibility ≡βπ (we
proved Γ 
 T ≡βπ U : s ⇔ T ≡βπ U ∧ Γ 
 T, U : s), which is decidable on
well typed terms. We also need to eliminate the transitivity rule which is not
syntax-directed. That is the purpose of the following theorem:

Theorem 1 (Admissibility of transitivity). If Γ 
• T �• U : s and Γ 
•
U �• V : s, then Γ 
• T �• V : s.

Proof. By induction on the sum of the depths of the two derivations.

Finally, we need to restrict the application of the �-Conv rule when no other
rules apply and the two types are in head normal form. We can then prove:

Theorem 2 (Decidability of algorithmic typing). ∃T, Γ 
• t : T , Γ 
• t :
T and Γ 
• T �• U : s are decidable problems.

Proof. Rules are syntax-directed.

We denote by typeΓ (t) the function which returns the type of term t in context
Γ such that Γ 
• t : typeΓ (t), when it exists.

As usual, we have the following correspondence between the two systems:

Theorem 3 (Soundness). If Γ 
• t : T then Γ 
 t : T . If Γ 
• T �• U : s
then Γ 
 T � U : s.
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T ≡βπ U Γ �• T, U : s
�-Conv T = T ↓ ∧ T �= Π,Σ, {|} ∧ U = U↓

Γ �• T �• U : s

Γ �• T ↓
�• U↓ : s Γ �• T, U : s

�-↓ T �= T ↓ ∨ U �= U↓
Γ �• T �• U : s

Γ �• U �• T : s1 Γ, x : U �• V �• W : s2
�-Prod

Γ �• Πx : T.V �• Πx : U.W : s2

Γ �• T �• U : s Γ, x : T �• V �• W : s
�-Sum s ∈ {Set, Prop}

Γ �• Σx : T.V �• Σx : U.W : s

Γ �• T �• U : Set
�-Proof T = T ↓

Γ �• T �• { x : U | P } : Set

Γ �• U �• T : Set
�-Subset

Γ �• { x : U | P }�• T : Set

Fig. 7. Russell algorithmic equivalence

Theorem 4 (Completeness). If Γ 
 t : T then there exists T ′, s so that
Γ 
• t : T ′ and Γ 
• T ′ �• T : s. If Γ 
 T � U : s then Γ 
• T �• U : s.

Finally, we can state the desired property of our typing system:

Corollary 1 (Decidability of declarative typing). Γ 
 t : T is decidable.

2.3 From Cic to Russell

We have presented a calculus based on Cic with a stronger equivalence but with
restricted typing rules. We will now see how Russell and Cic relate formally.
We can build a forgetful map from terms of Cic to Russell (interpreting in-
ductives as constants). It bears relation to the ε extraction function defined by
Werner in [12]. Essentially, Russell terms do not contain or manipulate logical
information attached to objects of subset types, hence we must forget about it
when translating.

We define the forgetful map ()◦ from Cic terms to Russell terms plus a
distinguished object ⊥ as an homomorphism on terms except for the following
cases:

(σ1 t)◦ = t◦

(elt T P t p)◦ = t◦

(σ2 t)◦ = ⊥

Definition 1 (Definedness). ()◦ is defined on t if t◦ does not contain ⊥.

We can now prove the following:

Theorem 5 (Forgetful map correctness). If Γ 
CCI t : T then Γ ◦ 
 t◦ : T ◦

if ()◦ is defined on Γ, t and T .
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Practically, this means we can use almost all existing definitions in the Coq

environment. This map is involutive and the identity on Russell terms as they
do not contain the constructor elt or subset projections. Moreover, this erasure
function will be defined on all Coq terms elaborated from Russell. Indeed, the
second projection of a subset element will only appear in the second component
of a subset element. Otherwise, we would have used the projection directly in the
Russell term, where it does not exist. In fact, as we can derive the judgement
0 : { x : N | x �= 0 } in Russell, allowing the second projection would permit to
derive 0 �= 0, an inconsistency. Hence we left only the subset type forming rule
(figure 3 on page 241) in Russell, while the introduction and first projection
of subset elements are internalized by the coercion judgement.

3 From Russell to Cic?

We now build an interpretation �t�Γ of Russell terms t in environment Γ into
Cic terms. We will check at the end that it respects the ()◦ operator in the sense
that if t is well-typed in Γ then �t�◦Γ = t.

Our interpretation will build a full-fledged Cic term from its algorithmic
skeleton and a rich type written in Russell. Obviously, we cannot infer proof
terms where they are needed in Cic, but we can build a partial term, leaving
typed holes where proofs are needed. Hence we add a rule to build existential
variables (or metavariables) in the target calculus (
? denotes the new system’s
typing judgement):

Γ 
? P : Prop
Γ 
??P : P

We restrict it to objects of type Prop because we consider that the informative
part of the algorithm has been entirely given in the original term.

We are ready to build the interpretation, which should have the following
property:

Theorem 6 (Interpretation correctness). If Γ 
• t : T then �Γ � 
? �t�Γ :
�T �Γ .

The proof of this proposition is the main technical contribution of this work, it
also represented the main difficulty. The remainder of this section is organised
as follows: first we define the explicit coercion derivation algorithm which will
permit to put proof obligations in the terms, then we define the interpretation
of terms which is mutually recursive with the previous algorithm. Finally we
present a proof sketch of the aforementioned theorem.

3.1 Explicit Coercions

The derivation of explicit coercions (figure 8 on the facing page) is based on
the algorithmic equivalence derivations. The side-conditions of the rules have
not changed, so we omit them for better readability. The judgement Γ 
CCI
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c : T �• U : s builds a coercion c from �T �Γ to �U�Γ in context �Γ �. We use
the Russell types to drive the derivation but the resulting object c will be a
well-typed Coq term (lemma 1). We denote coerceΓ T U the function which
builds c given Γ , T and U .

T ≡βπ U
�-Conv

Γ �CCI • : T �• U : s

Γ �CCI c : T ↓
�• U↓ : s

�-↓
Γ �CCI c : T �• U : s

Γ �CCI c1 : U �• T : s1 Γ, x : U �CCI c2 : V �• W : s2
�-Prod

Γ �CCI λx : �U�Γ .c2[• (c1[x])] : Πx : T.V �• Πx : U.W : s2

Γ �CCI c1 : T �• U : s Γ, x : T �CCI c2 : V �• W : s
�-Sum

Γ �CCI (c1[π1 •], c2[π2 •][π1 •/x])�Σx:U.W�Γ
: Σx : T.V �• Σx : U.W : s

Γ �CCI c : U �• T : Set Γ �• { x : U | P } : Set
�-Subset

Γ �CCI c[σ1 •] : { x : U | P }�• T : Set

Γ �CCI c : T �• U : Set Γ �• { x : U | P } : Set
�-Proof

Γ �CCI elt c ?�P �Γ,x:U [c/x] : T �• { x : U | P } : Set

Fig. 8. Coercion derivation

Coercions are formalised as multi-holes evaluation contexts, with • the deno-
tation of a hole. We define the instantiation C[x] of a context C by a term x
as simultaneous substitution of x for every • in C. Hence if C is an evaluation
context and x a term, C[x] is a term (i.e., it cannot contain •). The holes will
denote the object to which the coercion is applied.

As conversion will be preserved by the interpretation ��, the rule �-Conv

derives an empty coercion, as the target system will be able to derive itself that
�T �Γ ≡ �U�Γ . Similarly for �-↓, we rely on the target system’s conversion rule
so that the coercion c of codomain �U↓�Γ can be seen as an object of type �U�Γ .

Next, we have the rules for products and sums, which compose coercions.
In the �-Prod rule, we first coerce the argument to an object of type �T �Γ .
Then we apply it to the coerced function, resulting in an object • (c1[x]) of type
�V �Γ,x:T [c1[x]/x]. We will see later that this type is equivalent to �V �Γ,x:U , so
we can apply the second coercion and get an object of type �W �Γ . There is a
little twist when coercing the second component of a dependent sum. Indeed,
we must simultaneously substitute the first projection of the coerced sum in the
second coercion which was typed in environment Γ, x : T and also instantiate
the coercion with the second component. Clearly, the • of the former shouldn’t
be instantiated with the later, so we must first instantiate c2 and then substitute
π1 • for x (x cannot appear in π2 t where t : Σx : T.V ).

Now for the original part, the �-Subset rule simply inserts a projection be-
fore applying the inductively defined coercion on the support of the subset. On
the other hand, �-Proof creates an object of a subset using its sole constructor
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elt (with type parameters omitted for brevity). The object part is given by the
coercion to the support of the target subset while the proof part is promised
using a metavariable of type �P �Γ,x:U [c/x] which we will turn later into a proof
obligation.

3.2 Interpretation of Terms

The interpretation of terms from Russell to Cic? (figure 9) is a straightforward
recursive traversal of algorithmic typing derivations. In other, more practical
words, we can do interpretation of terms simultaneously with typing in our
implementation, just like for the existing coercion system of Coq. We describe

�x�Γ = x
�s�Γ = s s ∈ {Set, Prop, Type}
�Πx : T.U�Γ = Πx : �T �Γ .�U�Γ,x:T

�{ x : U | P }�Γ = { x : �U�Γ | �P �Γ,x:U }
�Σx : T.U�Γ = Σx : �T �Γ .�U�Γ,x:T

�λx : τ.v�Γ = (λx : �τ�Γ .�v�Γ,x:τ )

�f u�Γ = let F = typeΓ (f) and U = typeΓ (u) in
let (Πx : V.W ) = μ•(F ) in
let π = coerceΓ F (Πx : V.W ) in
let c = coerceΓ U V in
(π[�f�Γ ]) (c[�u�Γ ])

�(t, u)Σx:T.U�Γ = let T ′ = typeΓ (t) in
let ct = coerceΓ T ′ T in
let U ′ = typeΓ (u) in
let cu = coerceΓ U ′ U [t/x] in
(ct[�t�Γ ], cu[�u�Γ ])�Σx:T.U�Γ

�πi t�Γ = let T = typeΓ (t) in i ∈ {1, 2}
let Σx : V.W = μ•(T ) in
let c = coerceΓ T (Σx : V.W ) in
πi c[�t�Γ ]

Fig. 9. Interpretation of terms

the case of application here; others are similar. First we get the Russell types
F and U of the function f and argument u by calling the typing function on
both terms. Then we must ensure that F can indeed be seen as a product
using the μ•() operator. We can build the coercion between F and this product
and between U and its domain. We finally instantiate these coercions by their
corresponding interpreted objects and return their application. Well-typedness
of a term in Russell is a sufficient condition for �t� to be defined.
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3.3 A Little More Expressiveness

One may wonder how can we interpret Russell terms into a system with only
βπ-equivalence and still be a simple extension of Cic. Indeed, consider the fol-
lowing example. Suppose we have two types A,B with coercions: c : A �• B
and d : B �• A. Additionally, let P : A → Prop with introduction terms
p : Πx : A,P x and q : Πx : B,P x. Consider the following well-typed Rus-

sell term p x =P x q x in context Γ = x : A. By interpretation into Cic, we
have �P �Γ = P , �p�Γ = p and �q�Γ = q : Πx : B,P d[x]. Now the interpre-
tation of the equality gives: p x =P x �q x�Γ where �q x�Γ ≡ q c[x]. The right
hand side has type P d[c[x]] which must be convertible with P x for the whole
term to be well-typed. This indicates that coercions must be unique (so that
d ◦ c ≡ idA ≡ •), which implies that we have to include η conversion in the
definitional equality. For example if A = Πx : X.Y and B = Πx : X ′.Y ′ with
X = X ′ and Y = Y ′, we have d ◦ c = λx : X.• x ◦ λx : X ′.• x = λx : X.• x
which must be definitionally equal to •. Similarly, we must add η rules for all
introduction terms of our language to ensure uniqueness of coercions. It is an
important property of our system, as it corresponds in practice to the deter-
minism of proof-obligations generation. The complete equational theory of Cic?

is given in figure 10. It includes η, surjective pairing for dependent sums and
subsets (ρ) and proof-irrelevance for the second component of subset objects (τ)
and is sufficient to ensure uniqueness of coercions. Benjamin Werner has studied
the addition of proof-irrelevance (rule σ) in the Calculus of Constructions [12].
It is not a trivial extension and it has far-reaching consequences on the model
of the calculus [13]. We direct the reader to these papers for further information
on the subject.

(β) (λx : X.e) v ≡ e[v/x]
(πi) πi (e1, e2)T ≡ ei

(σi) σi (elt E P e1 e2) ≡ ei

(η) (λx : X.e x) ≡ e if x /∈ FV (e)
(ρ) (π1 e, π2 e)Σx:X.Y ≡ e if e : Σx : X.Y
(τ ) elt E P (σ1 e) (σ2 e) ≡ e if e : { x : E | P }
(σ) elt E P t p ≡ elt E P t′ p′ if t ≡ t′

Fig. 10. Equational theory of Cic?

3.4 Properties

The correctness proof of the translation is very involved, so we will only sketch
it here. A report [14] is available (in French) and a mechanically checked proof
is under development.

We first prove reflexivity, symmetry and transitivity of the coercion deriva-
tion algorithm, which extends previous proofs for the algorithmic system with
properties on the generated coercions. Then we show substitutivity of the inter-
pretation: if Γ, x : U,Δ 
 t : T then �t[u/x]�Γ,Δ[u/x] = �t�Γ,x:U,Δ[�u�Γ /x]. We
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extend the notion of coercion to contexts next and show stability of judgements
under context coercion. It is then possible to prove a lemma about commuta-
tivity of substitutions with the interpretation and coercions. Then we get an
important corollary: if Γ 
 u : U , Γ 
CCI c : U�•V : s and Γ, x : V 
 T : s then
�T [u/x]�Γ ≡ �T �Γ,x:V [c[�u�Γ ]/x]. Essentially, it shows that coercions inserted by
the interpretation depend only on the context and hence could be added later
using substitution instead. This allows us to show that equivalence is conserved
by interpretation and the following lemma:

Lemma 1 (Coercion derivation correctness). If Γ 
CCI c : T �•U : s then
�Γ � 
CCI λx : �T �Γ .c[x] : �T �Γ → �U�Γ .

Finally we can show that our interpretation is correct (theorem 6).

4 Implementation

This mechanism has been implemented in Coq and tested on simple examples
(some are available on the author’s website, including safe list operations and
a head normal form definition). We actually generate coercions simultaneously
with typing in the implementation, which is sound thanks to the previous proofs.
Our typing is a clone of Coq’s original typing algorithm, so we benefit from
all the features of Coq including implicit variables, notations and the existing
coercion system. The prototype also contains support for strucural and well-
founded Fixpoint definitions. The type-checker transforms pattern-matching so
that an equality between the matched term and the pattern is present in the
typing context of each branch and it allows the user to put explicit holes in the
term, for example:

Program Definition tail ( l : list A | l <> [] ) : list A :=
match l with hd :: tl -> tl | [] -> False_rec (list A) _ end.

In the second branch we have l = [] and l �= [], hence we can prove ⊥ and derive
an object of type list A.

It must be stressed that we do not lose any information when generating
obligations as we have the whole term context at hand, avoiding the complicated
proof obligation generation of PVS [3]. Here we would have l : { l : list A |
l �= [] }, Heql : σ1 l = []. We have tactics that clean the goal and context
(deconstructing subsets and simplifying to present l : list A,H : l �= [], Heql :
l = [] to the user) but it does not match the usability of PVS yet.

5 Conclusion

We have developed a new language for writing programs in the Coq proof as-
sistant which allows the user to specify complex programs while keeping the
corresponding code simple. It is a first step towards interpretation of ML code
into Coq to build certified programs. While the system and its accompanying
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proofs may seem complex, the implementation is short, simple and has been
tested with success on simple examples. This work is also a second proof of the
meaningfulness of the Predicate Subtyping feature of PVS and may help build
a common interface for the two provers.

5.1 Related Work

Other efforts to build certified programs using type theory include Cayenne

[15] and Epigram [16]. Cayenne offers dependent types and general recur-
sion at the expense of a non-terminating type checker; it can be thought of as
a testbed for developing languages with dependent types but is not so much
aimed at building certified programs. Epigram ought to become a complete
programming language with dependent types at its heart. Instead of using a
phase distinction to separate coding and proving, Epigram is based on an in-
teractive, 2-dimensional editing process where code and proofs are written in-
crementally to get a complete program. Using type annotations and with the
help of the editor for structuring, one is able to write programs with precise
specifications. However it is not obvious if it could be made usable by program-
mers because of the paradigm change and scaling issues, time will tell which
approach is more beneficial for writing and reasonning about dependently typed
programs. The DML language [17] is more akin to comparison with our solution.
It provides a way to use a restricted set of dependent types in ML programs,
carefully chosen so as to keep type-checking decidable with the help of an au-
tomatic prover. Our method should subsume this one as it is perfectly possible
to integrate automatic proof tools with Coq to discharge the generated obliga-
tions. There exists many more systems like Xi’s Applied Type Systems and Tim
Sheard’s Omega language which explore the design space of dependently typed
languages.

5.2 Further Work

Much has to be done to smoothly integrate Russell into Coq. The treatment
of existential variables of Coq has to be improved, the type inference algorithm
needs some tuning to become more similar to ML and an integration of proof-
irrelevance in the kernel, while rarely needed in practice, is necessary to have
a robust system. We also hope to extend this mechanism of proof-obligations
generation to other constructs, notably (co-)inductive types. Finally, we intend
to use this system as a basis for interpretation of more general ML programs in
Coq, using a monadic translation or some kind of effects to reflect imperative
constructs like exceptions and references.
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of this paper. We thank the anonymous referees for their insightful comments.
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Abstract. In previous work we have proposed a distributed security
logic for authorizing code. To gain assurance about the correctness of
the implementation of our system, we now present a series of security
logics of increasing expressive power leading up to our logic. We encode
each logic in Coq, develop an algorithm for deciding queries, and prove
properties about the algorithm in Coq. By using Coq’s automatic extrac-
tion mechanism, we are able to gain a high assurance about the resulting
reference monitor implementations. Following this strategy yields refer-
ence monitors fully certified at the source code level for Datalog, Binder,
Binder with a general extension mechanism, and a logic that combines
Binder and the calculus of co-inductive constructions.

1 Introduction

The reference monitor in a computer security system with access control decides
which requests to allow. Every access the system handles will go through the ref-
erence monitor, so ensuring its correctness is of paramount importance. Since the
original requirements for access control systems were developed in the 1970s [1]
it has been recognized that verifying the reference monitor is an important part
of designing a secure access control system.

The most pressing access control problem today is knowing when code is
safe to execute. Code may be provided through mechanisms such as applets,
plug-ins, and on-line patches. Standard protection mechanisms such as digital
signatures help determine where code comes from, but cannot answer the ques-
tion of whether the code is malicious or not. A signature from someone I do not
know and trust is meaningless. Proof-carrying code [18] answers this problem by
requiring that code producers provide proofs of correctness for their code. Re-
cipients of the code check the proof and know the code is safe without needing to
trust the code provider. However, proofs are not always possible or appropriate.

Previously we have proposed a distributed security logic, BCiC, for autho-
rizing proof-carrying code [26,25]. Our logic extends Binder [8] with the ability
to reason about proofs and program properties. The logic allows fine-grained
combinations of proofs and digital signatures. We implemented a prototype of
the logic for testing purposes, but after discovering subtle, hard to exercise er-
rors in the implementation we decided that a more high-assurance approach was

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 253–268, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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needed. If one cannot trust the implementation of the logic, it is worthless as
the basis of a secure system.

In this paper we present a series of security logics of increasing expressive
power leading up to BCiC. We encode each logic in Coq, develop an algorithm
for deciding queries, then prove properties about the algorithm. Using Coq’s
automatic program extraction mechanism we extract working implementations
of the decision algorithms which satisfy the properties. This strategy yields a
series of reference monitors fully certified at the source level for Datalog, Binder,
Binder with a general purpose extension mechanism, and BCiC, which combines
Binder and the calculus of co-inductive constructions.

1.1 Related Work

BCiC is a continuation of research into proof-carrying code [18]. Techniques
such as typed assembly language [17] and foundational proof-carrying code [2]
are the base for generating the proofs about code that BCiC uses, but a system
for generating and checking proofs is not by itself an access control system for
untrusted code. BCiC is an access control logic that incorporates proofs as a
way of trusting code, together with a mechanism for reasoning about statements
made by other principals as an alternate way code might be trusted. The goal
of BCiC is to extend the idea of proof-carrying code and incorporate it into an
access control framework.

There is a long line of work that has been put into designing and imple-
menting secure reference monitors, and consequently many different techniques
have been applied to the problem. The earliest approaches involved writing de-
tailed specifications of the desired behavior of the reference monitor, then prov-
ing properties by hand about the specification. The reference monitor would
then be implemented to closely follow the specification. Stanford’s provably se-
cure operating system follows this approach [19]. This method has the following
disadvantages:

– The implementation may not correctly follow the specification.
– Proofs about the specification may contain errors.
– The properties that are proved might not ensure correctness.

Gutmann argues that formal reasoning is the wrong tool for increasing trust
in security applications [9]. He cites numerous examples where code that was
“formally proved correct” failed. He develops a methodology based on dynamic
program assertions and informal reasoning that is designed to be easily under-
stood by parties not acquainted with the code. We agree that formal methods
are not a panacea, but we do believe that they have an important role to play
in the development of correct software. With the advent of effective and reliable
tools such as Coq [23] machine checkable formal proofs about code are becoming
not only possible but practical.

One technique that has proven especially effective at producing correct code
is program extraction. By the Curry-Howard isomorphism, proofs and programs
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are isomorphic. Program extraction uses the isomorphism to automatically con-
vert correct proofs into correct programs. Program extraction in Coq has many
advantages, such as:

– The implementation comes directly from the proof.
– The proofs are all machine-checked.
– Coq is expressive enough to encode full correctness properties.

Extraction for Coq was developed by Paulin-Mohring [21] then further refined
by Letouzey [14]. Coq and its extraction mechanism have been used to generate
certified algorithms for many problems such as a compiler back-end [13], binary
decision diagrams, unification, and binary search trees. These and other examples
are available at the Coq user contributions page1.

Our work is an example of using Coq extraction to produce certified code
from mathematical proofs. It is also an example of a system that uses proofs
in its operation. Even for access control applications that do not need proofs,
the reference monitors we develop along the way are useful as general purpose
access control models and are a reasonable starting point for developing other
customized extensions for applications that require them.

Another example of a certified reference monitor is DHARMA [6]. DHARMA
is a formally verified reference monitor for a distributed delegation logic. It was
verified in PVS [20] then automatically extracted into Lisp code. Our work differs
in several ways. First, the logic of DHARMA is based on access control lists and
bounded delegation. Our base logic, Datalog, is more general purpose and less
specific to one type of access control (e.g., one cannot define new predicates in a
DHARMA policy). Our final logic also allows access control policies to include
references to proofs and properties of code, which DHARMA does not attempt
to do.

There are many authorization policy languages that have been designed for
different authorization tasks. Binder is part of a family of authorization logics
based on Datalog with varying features and decidability properties. Other exam-
ples include SD3 [12], Delegation Logic [15], and RT [16]. BCiC extends Binder
with the ability to reason about proofs in the calculus of co-inductive construc-
tions in such a way that there is still a reasonably simple decision procedure for
the logic. There are many ways to extend Datalog and remain decidable; Jaffar
and Maher have a survey of methods based on constraint solving [11]. SecPAL [4]
is a recent example of an authorization logic based on Datalog with constraints.

Proof-carrying authentication [3] is a method of doing authentication inspired
by proof-carrying code. In proof-carrying authentication the authentication pol-
icy is described using predicates defined in Twelf [22]. Requests for access to
resources come paired with an explicit proof that the access should be granted
according to the policy. These proofs are necessary because the policy logic is
undecidable. We choose instead to work with decidable logics. Even when we in-
corporate the calculus of co-inductive constructions in our logic, we add restric-
tions to the terms that may be constructed in order to keep the logic decidable.
1 http://coq.inria.fr/contribs/extraction-eng.html
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Decidable logics have the advantage that the reference monitor is both sound
and complete. For proof-carrying authentication, the reference monitor is only
sound. Because the requester must construct a proof that their request should
be granted, they must know the entire policy of the granter. This requirement
limits the applicability of the logic. Decidable logics have no such restriction.

1.2 Organization

We start by describing Datalog, Binder, and BCiC in Section 2. We show how
access control works in these logics and present small example policies for mo-
tivation. Next in Section 3 we discuss how the logics were formalized in Coq,
what we proved about them, and some of the properties of the automatically
extracted code. We conclude in Section 4 by considering the work that remains
to be done.

2 The Logics

2.1 Datalog

Datalog is Horn logic with all function symbols of arity 0, i.e. constants only [24].
A Datalog program contains facts and rules of inference. For the case of access
control, we call Datalog programs policies. Queries run against the policy and
either succeed or fail. Datalog is similar to Prolog, but unlike Prolog it does not
have negation, function symbols, or any meta-logical constructs such as cut.

The syntax of Datalog terms, atomic formulas, and formulas is as follows:

t ::= term:
c constant
x variable

a ::= atomic formula:
p(t1, . . . , tn) predicate

f ::= formula:
a :- a1, . . . , an clause

In addition we place a restriction on clauses that no variable appears in a unless
it appears somewhere in a1, . . . , an. This is a standard restriction that simplifies
the analysis of the logic without restricting expressivity [24].

A policy is a list of formulas, and a query against a policy is a ground atomic
formula. When a query q succeeds against a policy r we will write r 
 q, or
q is derivable from r. Let s be a substitution over atomic formulas that maps
variables to constants. Then r 
 q is defined by the single rule:

(a :- a1, . . . , an) ∈ r
r 
 s(ai) for i = 1, . . . , n

r 
 s(a)
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Datalog is a suitable match for many access control policies because it is
relatively simple but expressive enough to capture concepts such as categories,
roles, and subgroup inclusion.

Consider a University computer center with administrators who wish to con-
trol which programs may be executed by different users in order to protect the
integrity of the center. The administrators categorize users into a hierarchy of
groups, then give each group permission to execute various programs. Datalog
facts in the policy specify which group each user belongs to, and Datalog clauses
denote the subgroup relationships.

student(nathan).
student(avik).
faculty(martı́n).
admin(jordan).
user(X) :- student(X).
user(X) :- faculty(X).
user(X) :- admin(X).
mayrun(X, matlab) :- user(X).
mayrun(X, netconfig) :- admin(X).

Fig. 1. Example Datalog policy for a university computer center

To decide if person p should be allowed to run program g, the reference mon-
itor must decide if mayrun(p, g) is derivable from the policy in Figure 1. This
is not an entirely trivial decision. There are no restrictions on policies, so the
subgroup relationships could describe a complicated directed graph with cycles.
Deciding which groups someone belongs to is deciding graph reachability.

2.2 Binder

Binder differs syntactically from Datalog only in atomic formulas:

a ::= atomic formula:
p(t1, . . . , tn) bare predicate
t says p(t1, . . . , tn) quoted predicate

Derivations in Binder are defined by the same rule as for Datalog.
Binder adds the notion of importing and exporting facts from one context to

another. This allows policies to define mechanisms for distributed authentication
and authorization. The general idea is that if Alice has a policy with the fact f ,
then this fact will be exported from Alice’s policy using public-key encryption
and then imported into another context as Alicepk says f , where Alicepk is a
constant that represents Alice’s public key. For more details and examples see
the original paper on Binder [8].
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Notice that says cannot be nested arbitrarily deep. This means that if Alice
signs a statement f and Bob receives that statement and passes it along to
Carol, Carol can only know that Alice signed f and/or that Bob signed f . Carol
can never know that Bob knows that Alice signed f . The restriction on nesting
is natural for access control applications and also convenient because it makes
demonstrating decidability easier.

Continuing our computer center example, we can now write the distributed
policy shown in Figure 2 for deciding who may run which applications.

trusted(rootkey).
trusted(X) :- Y says trusted(X), trusted(Y).
registrar(X) :- Y says registrar(X), trusted(Y).
admin(X) :- Y says admin(X), trusted(Y).
student(X) :- Y says student(X), registrar(Y).
user(X) :- student(X).
user(X) :- admin(X).
mayrun(X, matlab) :- user(X).
mayrun(X, labtools) :- user(X), Y says mayrun(X, labtools), admin(Y).

Fig. 2. Example of a distributed authorization policy in Binder

The first rule of Figure 2 defines a trusted root key from which all other
trust derives. The trusted root key signs other keys which are then also trusted.
The rule trusted(X) :- Y says trusted(X), trusted(Y) allows unbounded
delegation of trust. Trusted keys determine who is the registrar, and the registrar
determines who is a student. Students are users, and users may run matlab.
For labtools, the person must be a user and an administrator must explicitly
authorize them.

2.3 BCiC

BCiC is an extension of Binder [8] with terms from the Calculus of (co)Inductive
Constructions [7, 5]. The motivation is that instead of merely relying on signed
statements and rules in a distributed access control policy, policies may depend
on explicit proofs about programs. In BCiC a policy can allow the execution of
a program if it is asserted to be safe by a trusted authority or the code producer
provides a proof of its safety.

In order to prove decidability of BCiC we present a slightly simplified ver-
sion of BCiC here as compared to our original description [25]. We discuss the
differences in more detail in Section 3.4.

The syntax of BCiC adds CiC terms paired with their signature as an option
for terms.
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t ::= term:
c constant
x variable
(s, o) CiC signature and term

CiC terms can represent objects, types, kinds, theorems and proofs in the
standard way.

In addition to bare predicates and predicates quoted with says, in BCiC we
have the sat predicate. The atom sat(s, p, (s′, t)) means that in CiC signature s
property p holds for the CiC term t and that s′ ⊆ s. The notation s′ ⊆ s means
that signature s′ is a sub-signature of s; every definition contained in s′ is also
contained in s. BCiC atomic formulas have the syntax:

a ::= atomic formula:
p(t1, . . . , tn) predicate
t says p(t1, . . . , tn) quoted predicate
sat(s, p, t) proof
t says sat(s, p, t) quoted proof

In addition to the Datalog derivation rule, BCiC has a rule for deriving sat
statements. The notation s 
CiC o : T means that in CiC signature s, the object
o has type or kind T .

s 
CiC p : T → Prop s′ 
CiC o : T
s 
CiC T : Set s′ ⊆ s
∃π ∈ r . s 
CiC π : (p o)
r 
 sat(s, p, (s′, o))

The restrictions s 
CiC T : Set and s′ 
CiC o : T also ensure that s and s′

are well-formed signatures. Note that the proof object π is restricted to being
in r, the policy. This restriction means that BCiC only considers proofs that
have been imported into the policy. If a proof does not exist in the policy, it
has no effect on the logic. Without this restriction BCiC would be hopelessly
undecidable. Trying to decide when proof terms exist in CiC is equivalent to
trying to automatically prove arbitrarily difficult mathematical theorems.

Proofs are represented in our framework as explicit terms mentioned some-
where in the policy. If Alice is the code producer and she proves that her code o
has property p, she will have a term π of type p o. She introduces this term by
exporting the statement proof((s, π)).

We now extend the previous example to BCiC. The computer center admin-
istration just got access to a new supercomputer. For performance reasons the
operating system cannot provide effective memory protection between programs.
If one program crashes, it can interfere with all the results being calculated by
other users. In addition, programs can dynamically declare how much processing
power they need and the department will be billed accordingly. Because of these
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trusted(rootkey).
trusted(X) :- Y says trusted(X), trusted(Y).
mayrunonsupercomputer(X, Y) :- user(X), safe(Y), economical(Y).
safe(X) :- Y says safe(X), trusted(Y).
economical(X) :- Y says economical(X), trusted(Y).
safe(X) :- sat(S_safety, memsafe, X).
economical(X) :- sat(S_economy, cheap, X).

Fig. 3. An example BCiC policy for a supercomputer

factors, the administrators require all programs that run on the supercomputer
be memory safe and not request an inordinate amount of processing power with-
out prior authorization. To enforce these requirements they construct the policy
in Figure 3.

The signature S safety defines the assembly language syntax for the super-
computer along with the predicate memsafe which guarantees memory safety.
The signature S economy defines the assembly language syntax and a very sim-
ple proposition cheap that states programs must begin by allocating a reason-
able amount of processing power and then may never reallocate more. To run
their programs on the supercomputer, principals must be authorized users and
either a trusted principal must vouch that the program is safe and economi-
cal, or someone must produce a proof that the program satisfies memsafe and
cheap.

3 Formalization in Coq

The goals of formalizing BCiC in Coq were twofold. First, by formalizing the
logic in Coq we were able to prove decidability of the logic with a high degree of
confidence that the proof was correct. Second, we could then use Coq’s automatic
program extraction to extract a certified decision procedure from the proof. Our
strategy was to start with pure Datalog and prove that it is decidable. From there
we modified the proof to apply to Binder. To formalize full BCiC we first created
an extension mechanism for Binder and proved decidability, then instantiated
the extension appropriately to make the extended Binder be equivalent to BCiC.
An advantage of this approach is that we can instantiate the same extension
mechanism with a variety of other logics without rewriting all the proofs. For
example, we can instantiate the extension with LF [10] instead of CiC and the
proofs about extended Binder still hold.

3.1 Datalog and Binder

Formalizing Datalog and Binder in Coq was relatively straightforward. Here is
the definition of Binder, using natural numbers to name constants, variables,
predicates, and principals.
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Inductive term : Set :=
| const : nat -> term
| var : nat -> term.

Inductive atomic : Set :=
| bare : nat -> list term -> atomic
| says : nat -> nat -> list term -> atomic.

Inductive form : Set :=
| clause : atomic -> list atomic -> form.

After defining substitutions, the semantics of derivations for both Datalog and
Binder is defined by:

Inductive der : list form -> atomic -> Prop :=
| modus_ponens :
forall (LF : list form)(F : form)(S : substitution),
In F LF ->
forallelts

(fun x => der LF (multisubs_atomic S x)) (body F) ->
der LF (multisubs_atomic S (head F)).

The main theorem we prove about Datalog and Binder is that derivability is
decidable, which is stated:

Theorem der_dec:
forall (LF : list form)(A : atomic),
no_head_vars_form_list LF ->
{der LF A} + {~ der LF A}.

The condition no head vars form list LF expresses the restriction that vari-
ables that appear in the heads of clauses in the policy must also appear in the
body of the clause.

The notation {A}+{B} indicate the sumbool operator, which has kind Prop →
Prop → Set. An object of type {A}+{B} is either a proof of A or a proof of B.
We use {A}+{B} instead of A∨B because of the way program extraction behaves.
During program extraction, elements of a proof of kind Prop are erased, while
elements of kind Set are not.The expression A∨B has kind Prop → Prop → Prop,
so if our theorem were stated using it, program extraction would yield an empty
program. The expression {A}+{B} has kind Set rather than Prop, which means
that it will not be ignored during program extraction. The contents of the left
and right arguments, however, are in Prop, so they will be ignored. What this
means is that extracting from the proof of this theorem will yield an algorithm
that when given a policy and a goal, will return left or right as its decision.
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The extracted algorithm will not remember the proof about why its answer is
correct as it computes, avoiding unnecessary runtime overhead.

It is well-known that Datalog is decidable [24]. Our proof starts by considering
all the possible atomic formulas p(t1, . . . , tn) that could be derived using the
derivation rule from a given policy r.

Lemma 1. If r 
 p(t1, . . . , tn), then the predicate p and arity n appear in r.

Proof. Every derivable atomic formula must be of the form s(p(t1, . . . , tn)) where
p(t1, . . . , tn) :- a1, . . . , an ∈ r. Substitutions do not change predicates or arities,
so the lemma follows. 	

Lemma 2. If p(t1, . . . , tn) has no variables and r 
 p(t1, . . . , tn), then the terms
t1, . . . , tn all appear in r.

Proof. The proof is by induction over derivations and uses the fact that variables
may not appear in the heads of clauses of the policy without appearing in the
body of the clause. 	

These lemmas together imply that there is a finite universe of ground atomic
formulas A such that ∀a . (r 
 a =⇒ a ∈ A). In our formalization, we de-
fine a function to calculate A and prove that every derivation must be included
in it.

The next step is to decide which elements of A are in fact derivable. In
Coq we define an extension function extend : list form → list atomic →
list atomic that when given a policy and a set of derivable ground atomic
formulas, returns the new ground atomic formulas that are derivable in one
step from the inputs. We prove that extend is sound and complete with re-
spect to Datalog derivations. The soundness and completeness lemmas are
encoded as:

Lemma sound :
forall (F : form)(LF : list form)(A : atomic)(LA : list atomic),
In F LF -> ground_atomic_list LA = true ->
In A (extend F LA) -> forallelts (der LF) LA ->
der LF A.

Lemma complete :
forall (F : form)(LF : list form)(LA : list atomic)

(s : substitution),
no_head_vars_form_list LF -> ground_atomic_list LA = true ->
In F LF ->
forallelts (fun x => In (multisubs_atomic s x) LA) (body F) ->
In (multisubs_atomic s (head F)) (extend F LA).
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The function extend is monotonically increasing and bounded by A, so it
must have a fixed point. The fixed point θ of extend is exactly the set of
ground atomic formulas that are derivable from r. Soundness shows that ele-
ments in θ are derivable, and completeness shows that every derivable element
is in θ.

Binder is decidable in almost the same way as Datalog is. The proof follows
the Datalog proof almost exactly except for extra cases in atomic formulas which
are trivial.

3.2 Encoding BCiC

Instead of directly encoding BCiC with a deep embedding of CiC into Coq and
then trying to prove theorems, we instead formalized a general extension mech-
anism for Binder. Given an extension set, the extended version of Binder allows
terms to refer to extended objects.

t ::= term:
c constant
x variable
e extended term

The extension mechanism adds an generic extension predicate to atomic for-
mulas. The ext predicate is indexed by natural numbers to allow multiple pred-
icates over the same extension set.

a ::= atomic formula:
p(t1, . . . , tn) bare predicate
t says p(t1, . . . , tn) quoted predicate
ext(n, t) extension
t says ext(n, t) quoted extension

The extension mechanism takes an extension set extset, a proof that equality
is decidable over extset, a proposition extder over the extension set, a func-
tion extset that extracts all the relevant extended terms from a policy, and a
proof that extder is decidable for all possible results of extset. Given these
arguments, we prove that the extended version of Binder is decidable. By prov-
ing properties about Binder with the extension mechanism, we can instantiate
the extension mechanism in different ways without re-proving anything about
Binder. Each instantiation of the extension mechanism only requires creating a
decision procedure for the extension type. We will encode BCiC by instantiating
the extension mechanism with CiC terms.

For the extension mechanism, we take the extension set and other auxiliary
proofs to be parameters of the extension. We do this in Coq by using struc-
tured environments. For example, the following code fragment shows how the
extension set extset and a decision procedure for equality between elements of
extset is defined.
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Section ExtendedBinder.
Variable extset : Set.
Variable eq_extset_dec :
forall (E1 E2 : extset), {E1 = E2}+{E1 <> E2}.

.

. (proofs)

.
End ExtendedBinder.

The rules for derivation in extended Binder are:

Inductive der : list form -> atomic -> Prop :=
| modus_ponens :
forall (LF : list form)(F : form)(S : substitution),
In F LF ->
forallelts

(fun x => der LF (multisubs_atomic S x)) (body F) ->
der LF (multisubs_atomic S (head F)).

| extension_der :
forall (LF : list form)(n : nat)(e : extset),
In E (extset LF) ->
extder n E ->
der LF (ext n (extconst E)).

Besides proving the decidability of extended Binder, we prove a small re-
sult about conservativity. An extension is conservative if extder n E must be
true when ext(n, E) is derivable from a policy. For policies without ext(n,
E) in the heads of clauses, we prove all extensions are conservative. Of course
if a policy is allowed to conclude ext(n, E) then the theorem would not hold.
For the case of BCiC, conservativity means that by mixing Binder and CiC we
do not somehow make the proof logic of CiC inconsistent and able to prove
anything.

3.3 CiC as an Extension

To create BCiC we instantiate the extension mechanism. The extension set is
defined to be tuples consisting of a CiC signature and a CiC term. Given a
BCiC policy r we can extract all the signatures and CiC terms that appear in
r. Combining these elements in all possible ways gives us extset.

To define extder, the proposition over the extension set, we examine all the
signatures that appear in r and find all possible propositions defined by the
signatures. There will be a finite number of signature-proposition pairs; label
them with natural numbers and call the function γ. Using this labeling, the nth
extension proposition extder n (s’, o) is defined to mean that s′ ⊆ s and
∃π ∈ r . s 
CiC π : (p o) where γ(n) = (s, p). Deciding when the proposition
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extder n (s’, o) is true involves examining all the CiC terms in extset r
and making a call to Coq to see if they have the correct type. It also involves
checking for signature inclusion, which is easy.

In our formalization of BCiC, we do not formalize CiC itself. Instead we as-
sume there is an external type of CiC terms and signatures, an external typing
judgement over CiC terms, an external proof that the typing judgement is de-
cidable, and a function that extracts all the identifiers from a signature. Our
instantiation of the Binder extension uses these external types and functions to
model BCiC. During program extraction, places where these external items are
used are converted to function calls of undefined names. The intention is that
these calls are really calls to Coq in the implementation. Our current implemen-
tation of BCiC instantiates these datatypes and functions as hand-coded OCaml
routines that communicate directly with Coq running as a subprocess through
Unix named pipes. It should also be possible to include the logical type-checking
core of Coq directly in the implementation but we have not done so.

3.4 Limitations of the Encoding

The version of BCiC presented here is slightly simplified from our original presen-
tation [25]. The previous version allowed arbitrary CiC terms and propositions
intermixed with Binder variables at any position. To argue that a reasonably
complete algorithm for that version of BCiC existed, we imposed a restriction on
the CiC terms and Binder variables that could appear in them, then proved that
repeated applications and instantiations of these terms yielded a finite universe.

In this paper we restrict the intermixing of CiC terms and Binder variables
even more. We do not allow Binder variables to appear anywhere inside of CiC
terms, we only allow Binder variables to instantiate to CiC terms. An example of
a policy that is allowed in the previous version of BCiC and is disallowed in the
current version is a policy that a program is safe if it is linked with a dynamic
module that somehow enforces the safety condition.

The policy might say safe(Q) :- sat(link dynchecker P Q). The predi-
cate link takes three arguments, two programs that are to be linked together
and the resulting output program. This policy is not directly expressible in the
version of BCiC so far presented because the P and Q Binder variables appear
inside the CiC term link dynchecker P Q. To encode these types of policies
requires modifying the extension mechanism to accept multiple arguments. The
policy would then be encoded as safe(Q) :- ext3(link, dynchecker, P, Q).
We do not see any theoretical difficulty with adding these extensions, but have
not yet done so in our formal development.

3.5 Alternate Encodings

There are many possible ways to encode BCiC in Coq. An attractive option is
to somehow encode the CiC part of BCiC using Coq directly. For example, we
can imagine encoding BCiC terms as follows:
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Inductive term : Type :=
| constant : nat -> term
| cicterm : forall (T : Type), T -> term.

We give term kind Type instead of Set because Coq requires definitions contain-
ing Type to be of kind Type. This definition can encode CiC objects of any type.
It seems as though it can encode its own type, but if this is attempted Coq will
give a reassuring universe inconsistency error.

The problem with this encoding is that program extraction is impossible. El-
ements of kind Type are removed during program extraction, so no extracted
program with terms defined in this way will be able to reason about CiC terms.
Another problem with this encoding is that the CiC signature to use cannot
be controlled. Choosing which signature to use for proofs is critically important
when transmitting proofs between untrusted parties.

3.6 Extracted Code

The specification of Datalog took 82 lines of Coq, Binder took 85 lines, and BCiC
took 137 lines. Proving decidability took 6654 lines for Datalog, 7470 lines for
Binder, and 9394 lines for BCiC. The extracted algorithms were small; Datalog
was 387 lines of OCaml code, of which 50 were redundant definitions of standard
data structures. Binder extracted to 487 lines, and BCiC extracted to 626 lines
of OCaml.

The extracted code was not particularly tuned for efficiency but neither was it
grossly inefficient. Because the extend function is repeatedly evaluated to reach a
fixed point during the decision procedure, the efficiency of extend largely deter-
mines the efficiency of the overall algorithm. We wrote the definition of extend
by hand and then refined it as the proof development proceeded. During extrac-
tion, this version of extend is translated directly from Coq syntax to OCaml.

Our version of extend is inefficient in some ways. For example it checks for
duplicate entries by linearly traversing a list rather than using a hash table.
In other ways it is efficient; it matches clauses against ground atomic formulas
using a simple unification algorithm and keeps track of variable bindings. A less
efficient (but still correct) algorithm could expand every clause into the set of all
possible ground instances of the clause before matching, yielding an exponential
slowdown. Such an algorithm would have much simpler proofs but would be
unacceptably slow. Although we have not done a formal analysis of the perfor-
mance of our extracted code, our prototype implementation has performed well
for all the security policy examples we have tried.

4 Conclusion

By using Coq’s automatic program extraction we were able to generate certified
reference monitors for a series of logics useful for access control. In the end we
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developed a decision procedure for Datalog, Binder, and a slightly limited ver-
sion of BCiC, our proposed security logic for authorizing proof-carrying code.
All the proof scripts are available online at the author’s homepage2.

There still remains work to be done bridging the gap between our formalized
version of BCiC and our original specification of the logic. We are in the process
of proving decidability for an encoding of BCiC that allows signatures to appear
alone in terms and allows Binder variables to appear inside CiC terms. More
generally, we are in the process of integrating the automatically extracted ML
code with the rest of our framework to make a finished application that deals
with network communication and cryptography, along with logical inference.
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