

Lecture Notes in Computer Science 4356
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Eli Biham Amr M. Youssef (Eds.)

Selected Areas
in Cryptography

13th International Workshop, SAC 2006
Montreal, Canada, August 17-18, 2006
Revised Selected Papers

13

Volume Editors

Eli Biham
Technion - Israel Institute of Technology
Computer Science Department
Haifa 32000, Israel
E-mail: biham@cs.technion.ac.il

Amr M. Youssef
Concordia University
Concordia Institute for Information Systems Engineering
1425 René Lévesque Blvd. West, Montreal, Quebec, H3G 1M8, Canada
E-mail: youssef@ciise.concordia.ca

Library of Congress Control Number: 2007935809

CR Subject Classification (1998): E.3, D.4.6, K.6.5, F.2.1-2, C.2, H.4.3

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-74461-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74461-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12111787 06/3180 5 4 3 2 1 0

Preface

These are the proceedings of SAC 2006, the thirteenth annual workshop on Se-
lected Areas in Cryptography. The workshop was sponsored by the Concordia In-
stitute for Information Systems Engineering, in cooperation with the IACR, the
International Association of Cryptologic Research, www.iacr.org. This year’s
themes for SAC were:

1. Design and analysis of symmetric key cryptosystems
2. Primitives for symmetric key cryptography, including block and stream ci-

phers, hash functions, and MAC algorithms
3. Efficient implementations of symmetric and public key algorithms
4. Side-channel analysis (DPA, DFA, Cache analysis, etc.)

A total of 25 papers were accepted for presentation at the workshop, out
of 86 papers submitted (of which one was withdrawn by the authors shortly
after the submission deadline). These proceedings contain revised versions of
the accepted papers. In addition two invited talks were given: Adi Shamir gave
the Stafford Tavares Lecture, entitled “A Top View of Side Channels”. The
second invited talk was given by Serge Vaudenay entitled “When Stream Cipher
Analysis Meets Public-Key Cryptography” (his paper on this topic is enclosed
in these proceedings).

The reviewing process was a challenging task, and many good submissions
had to be rejected. Each paper was reviewed by at least three members of the
Program Committee, and papers co-authored by a member of the Program Com-
mittee were reviewed by at least five (other) members. The reviews were then
followed by deep discussions on the papers, which contributed a lot to the quality
of the final selection. In most cases, extensive comments were sent to the au-
thors. A total of about 300 reviews were written by the committee and external
reviewers for the 86 papers, of which 92 reviews were made by 65 external re-
viewers. Over 240 discussion comments were made by committee members (with
up to 30 comments per member). Several papers had deep discussions with 17–19
discussion comments each. In addition, the Co-chairs wrote over 200 additional
discussion comments.

It was a pleasure for us to work with the Program Committee, whose members
worked very hard during the review process. We are also very grateful to the
external referees, who contributed with their special expertise to the selection
process. Their work is highly appreciated.

The submission and review process was done using an electronic submission
and review software written by Thomas Baignères and Matthieu Finiasz. Thomas
and Matthieu also modified and improved their system especially for SAC 2006,
with many new features. Their response was very quick and timely, and in many
cases features were added or changes were made within less than an hour. We
wish to thank them very much for all this work.

VI Preface

We would also like to acknowledge Sheryl Tablan and Sheila Anderson for
their great help in the local organization.

Finally, but most importantly, we would like to thank all the authors from all
over the world who submitted papers to the workshop, and to all the participants
at the workshop.

October 2006 Eli Biham
Amr Youssef

SAC 2006
August 17–18, 2006, Montréal, Canada

Sponsored by the

Concordia Institute for Information Systems Engineering

In cooperation with the

International Association of Cryptologic Research (IACR)

Workshop Co-chairs

Eli Biham, Computer Science Department, Technion – Israel
Institute of Technology, Technion City, Haifa 32000, Israel

Amr M. Youssef, Concordia Institute for Information Systems
Engineering, Concordia University, 1425 René Lévesque Blvd.

West, Montréal, Quebec, H3G 1T7, Canada

Program Committee

Carlisle Adams . University of Ottawa, Canada
Alex Biryukov . University of Luxembourg, Luxembourg
Nicolas Courtois . Axalto, France
Orr Dunkelman . Technion, Israel
Helena Handschuh . Spansion, EMEA, France
Thomas Johansson . Lund, Sweden
Antoine Joux Université de Versailles St-Quentin-en-Yvelines, France
Pascal Junod . Nagravision, Switzerland
Lars Knudsen . DTU, Denmark
Stefan Lucks . University of Mannheim, Germany
Bart Preneel . Katholieke Universiteit Leuven, Belgium
Matt Robshaw . France Telecom, France
Doug Stinson . University of Waterloo, Canada
Stafford Tavares . Queen’s University, Canada
Eran Tromer . Weizmann Institute of Science, Israel
Xiaoyun Wang Tsinghua University and Shandong University, China
Michael Wiener . Cryptographic Clarity, Canada

VIII Organization

External Referees

Frederik Armknecht
Thomas Baignères
Elad Barkan
Lejla Batina
Aurélie Bauer
Come Berbain
Johannes Bloemer
Colin Boyd
Anne Canteaut
Rafi Chen
Carlos Cid
Jeremy Clark
Scott Contini
Ivan Damgaard
Blandine Debraize
H̊akan Englund
Aleks Essex
Matthieu Finiasz
Ewan Fleischmann
Guillaume Fumaroli
Henri Gilbert
Martin Hell

Matt Henricksen
Jonathan J. Hoch
Tetsu Iwata
Ulrich Kühn
Nathan Keller
Matthias Krause
Simon Künzli
Tanja Lange
Joe Lano
Stefan Mangard
Alexander Maximov
Alexander May
Alfred Menezes
Nele Mentens
Brad Metz
Marine Minier
Jean Monnerat
James Muir
Sean Murphy
Mridul Nandi
Gregory Neven
Dag Arne Osvik

Pascal Paillier
Souradyuti Paul
Jan Pelzl
Gilles Piret
Axel Poschmann
Soren S. Thomsen
Kazuo Sakiyama
Kai Schramm
Jean-Pierre Seifert
Nigel Smart
Heiko Stamer
François-Xavier Standaert
Dirk Stegemann
Emin Tatli
Nicolas Theriault
Boaz Tsaban
Ingrid Verbauwhede
Frederik Vercauteren
Charlotte Vikkelsoe
Christopher Wolf
Robert Zuccherato

Table of Contents

Block Cipher Cryptanalysis

Improved DST Cryptanalysis of IDEA . 1
Eyüp Serdar Ayaz and Ali Aydın Selçuk

Improved Related-Key Impossible Differential Attacks on
Reduced-Round AES-192 . 15

Wentao Zhang, Wenling Wu, Lei Zhang, and Dengguo Feng

Related-Key Rectangle Attack on the Full SHACAL-1 28
Orr Dunkelman, Nathan Keller, and Jongsung Kim

Stream Cipher Cryptanalysis I

Cryptanalysis of Achterbahn-Version 2 . 45
Martin Hell and Thomas Johansson

Cryptanalysis of the Stream Cipher ABC v2 . 56
Hongjun Wu and Bart Preneel

Block and Stream Ciphers

The Design of a Stream Cipher LEX . 67
Alex Biryukov

Dial C for Cipher . 76
Thomas Baignères and Matthieu Finiasz

Improved Security Analysis of XEX and LRW Modes 96
Kazuhiko Minematsu

Side-Channel Attacks

Extended Hidden Number Problem and Its Cryptanalytic
Applications . 114

Martin Hlaváč and Tomáš Rosa

Changing the Odds Against Masked Logic . 134
Kris Tiri and Patrick Schaumont

Advances on Access-Driven Cache Attacks on AES 147
Michael Neve and Jean-Pierre Seifert

X Table of Contents

Blind Differential Cryptanalysis for Enhanced Power Attacks 163
Helena Handschuh and Bart Preneel

Efficient Implementations I

Efficient Implementations of Multivariate Quadratic Systems 174
Côme Berbain, Olivier Billet, and Henri Gilbert

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery
Multiplication . 188

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Delaying and Merging Operations in Scalar Multiplication: Applications
to Curve-Based Cryptosystems . 203

Roberto Maria Avanzi

Stream Cipher Cryptanalysis II

On the Problem of Finding Linear Approximations and Cryptanalysis
of Pomaranch Version 2 . 220

Martin Hell and Thomas Johansson

Multi-pass Fast Correlation Attack on Stream Ciphers 234
Bin Zhang and Dengguo Feng

Crossword Puzzle Attack on NLS . 249
Joo Yeon Cho and Josef Pieprzyk

Invited Talk

When Stream Cipher Analysis Meets Public-Key Cryptography 266
Matthieu Finiasz and Serge Vaudenay

Efficient Implementations II

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 285
Roberto Maria Avanzi, Clemens Heuberger, and Helmut Prodinger

Pairing Calculation on Supersingular Genus 2 Curves 302
Colm Ó hÉigeartaigh and Michael Scott

Efficient Divisor Class Halving on Genus Two Curves 317
Peter Birkner

Message Authentication Codes

Message Authentication on 64-Bit Architectures . 327
Ted Krovetz

Table of Contents XI

Some Notes on the Security of the Timed Efficient Stream Loss-Tolerant
Authentication Scheme . 342

Goce Jakimoski

Hash Functions

Constructing an Ideal Hash Function from Weak Ideal Compression
Functions . 358

Moses Liskov

Provably Good Codes for Hash Function Design . 376
Charanjit S. Jutla and Anindya C. Patthak

Author Index . 395

Improved DST Cryptanalysis of IDEA

Eyüp Serdar Ayaz and Ali Aydın Selçuk

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
{serdara,selcuk}@cs.bilkent.edu.tr

Abstract. In this paper, we show how the Demirci-Selcuk-Ture attack,
which is currently the deepest penetrating attack on the IDEA block
cipher, can be improved significantly in performance. The improvements
presented reduce the attack’s plaintext, memory, precomputation time,
and key search time complexities. These improvements also make a prac-
tical implementation of the attack on reduced versions of IDEA possible,
enabling the first experimental verifications of the DST attack.

1 Introduction

International Data Encryption Algorithm (IDEA) is one of the most popular
block ciphers today, commonly used in popular software applications such as
PGP. IDEA is known to be extremely secure too: Despite its relatively long
history and numerous attempts to analyze it [1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 15],
most known attacks on IDEA, which is an 8.5-round cipher, apply to no more
than the cipher reduced to 4 rounds. The most effective attack currently known
is due to Demirci, Selçuk, and Türe (DST) [7], which is a chosen plaintext attack
effective on IDEA up to 5 rounds.

In this paper, we study the ways of enhancing the DST attack and improving
its performance. The improvements discussed include shortening the variable
part of the plaintexts, reducing the sieving set size, and utilizing previously un-
used elimination power of the sieving set. The improvements result in a reduction
in the plaintext, memory, precomputation time, and key search time complexi-
ties of the attack and show that the DST attack can be conducted significantly
more efficiently than it was originally thought.

The rest of this paper is organized as follows: In Section 2, we briefly describe
the IDEA block cipher. In Section 3, we give an overview of the DST attack. In
Section 4, we present several key observations on the DST attack and how to
optimize the attack accordingly. In Section 5, we analyze the success probability
of the attack according to these optimizations. In Section 6, we present our
experimental results and compare them with our theoretical expectations. In
Section 7, we calculate the total complexity of the revised attack. Finally in
Section 8, we conclude with an overall assessment of the work presented.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 E.S. Ayaz and A.A. Selçuk

p q

u t

P4P3P2P1

C4C3C2C1

K4

K6

K5

K1 K2 K3

MA
box

Fig. 1. One round of IDEA

1.1 Notation

We use the following notation in this paper: For modular addition and modular
subtraction we use the symbols � and � respectively. Bitwise exclusive-or (XOR)
is denoted by ⊕ and the IDEA multiplication is denoted by �. The plaintext
is shown as (P1, P2, P3, P4) which is a concatenation of four 16-bit subblocks.
Similarly the ciphertext is shown as (C1, C2, C3, C4). The superscripts in paren-
thesis denote the round numbers. There are six round-key subblocks for each
round which are denoted by K1,K2,K3,K4,K5,K6. The inputs of the MA-box
are denoted by p and q and the outputs are denoted by u and t.

The least significant bit of a variable x is denoted by lsb(x), the ith least
significant bit is denoted by lsbi(x), and the least significant i bits are denoted
by lsbsi(x). Similarly, the most-significant counterparts of these operators are
respectively denoted by msb(x), msbi(x), and msbsi(x). Concatenation of two
variables x, y is denoted by (x|y). Finally, an inclusive bit interval between the
mth and nth bits of a round-key subblock K

(i)
j is denoted by K

(i)
j [m. . . n].

2 IDEA Block Cipher

The IDEA block cipher is a modified version of the PES block cipher [11, 12].
IDEA has 64-bit blocks and takes 128-bit keys. The blocks are divided into
four 16-bit words and all the operations are on these words. Three different
“incompatible” group operations are performed on these words: Bitwise XOR,
modular addition, and the IDEA multiplication, which is multiplication modulo
216 + 1 where 0 represents 216.

Improved DST Cryptanalysis of IDEA 3

There are two parts in an IDEA round. The first is the transformation part:

T : (P1, P2, P3, P4) → (P1 � K1, P2 � K2, P3 � K3, P4 � K4).

In the second part, two inputs of the MA-box are calculated as p = (P1 �
K1) ⊕ (P3 � K3) and q = (P2 � K2) ⊕ (P4 � K4). The outputs of the MA-box
are t = ((p � K5) � q) � K6 and u = (p � K5) � t. After these calculations t
is XORed with the first and third output of the transformation part and u is
XORed with the second and fourth. Finally, the ciphertext is formed by taking
the outer blocks directly and exchanging the inner blocks.

C1 = (P1 � K1) ⊕ t,

C2 = (P3 � K3) ⊕ t,

C3 = (P2 � K2) ⊕ u,

C4 = (P4 � K4) ⊕ u.

IDEA consists of eight full rounds and an additional half round, which consists
of one transformation part.

The key schedule creates 16-bit round subkeys from a 128-bit master key by
taking 16 bits for a subkey and shifting the master key 25 bits after every 8th
round key.

Decryption can be done using the encryption algorithm with the multiplicative
and additive inverses of the round key subblocks in the transformation part and
the same key subblocks in the MA-box.

3 The DST Attack

In this section, we give a brief overview of the DST attack with the relevant
properties of the IDEA cipher.

3.1 Some Properties of IDEA

The following are some key observations of Demirci et al. [7] on the IDEA cipher
which are fundamental to the DST attack. Proofs can be found in the original
paper [7].

Theorem 1. Let P = {(P1, P2, P3, P4)} be a set of 256 plaintexts such that

– P1, P3, lsbs8(P2) are fixed,
– msbs8(P2) takes all possible values over 0, 1, . . . , 255,
– P4 varies according to P2 such that q = (P2 � K

(1)
2) ⊕ (P4 � K

(1)
4) is fixed.

For p(2) denoting the first input of the MA-box in the second round, the following
properties will hold in the encryption of the set P:

– lsbs8(p(2)) is fixed,
– msbs8(p(2)) takes all possible values over 0, 1, . . . , 255.

4 E.S. Ayaz and A.A. Selçuk

Moreover, the p(2) values, when ordered according to the plaintext’s msbs8(P2)
beginning with msbs8(P2) = 0, will be of the form

(y0|z), (y1|z), . . . , (y255|z)

for some fixed, 8-bit z, and yi = (((i�a)⊕ b)� c)⊕d, for 0 ≤ i ≤ 255 and fixed,
8-bit a, b, c, d.

Theorem 2. In the encryption of the plaintext set P defined in Theorem 1,
lsb(K(2)

5 � p(2)) equals either lsb(C(2)
2 ⊕ C

(2)
3) or lsb(C(2)

2 ⊕ C
(2)
3) ⊕ 1 for all the

256 plaintexts in P.

Lemma 1. In the IDEA round function, the following property is satisfied:

lsb(t ⊕ u) = lsb(p � K5).

Corollary 1. lsb(C(i)
2 ⊕ C

(i)
3 ⊕ (K(i)

5 � (C(i)
1 ⊕ C

(i)
2))) = lsb(C(i−1)

2 ⊕ C
(i−1)
3 ⊕

K
(i)
2 ⊕ K

(i)
3).

Corollary 2. lsb(C(i)
2 ⊕ C

(i)
3 ⊕ (K(i)

5 � (C(i)
1 ⊕ C

(i)
2))) ⊕ (K(i−1)

5 � (C(i−1)
1 ⊕

C
(i−1)
2))) = lsb(C(i−2)

2 ⊕ C
(i−2)
3 ⊕ K

(i)
2 ⊕ K

(i)
3 ⊕ K

(i−1)
2 ⊕ K

(i−1)
3).

3.2 Attack on 3-Round IDEA

The DST attack starts with a precomputation phase where a “sieving set” is
prepared which consists of 256 elements of 256-bit strings

S = {f(a, b, c, d, z,K
(2)
5) : 0 ≤ a, b, c, d, z < 28, 0 ≤ K

(2)
5 < 216}.

computed bitwise as

f(a, b, c, d, z,K
(2)
5)[i] = lsb(K(2)

5 � (yi|z))

for 0 ≤ i < 255, where yi = (((i � a) ⊕ b) � c) ⊕ d.
Once preparation of the sieving set is completed, the main phase of the attack

follows. Below is a description of the basic attack on the 3-round IDEA:

1. The attacker takes a chosen plaintext set R = {(P1, P2, P3, P4)}, where P1,
P3, and lsbs8(P2) are fixed at an arbitrary value, and msbs8(P2) and P4 take
all possible values. All elements of R are encrypted with the 3-round IDEA.

2. For each value of K
(1)
2 and K

(1)
4 , take a subset P of 256 plaintexts from R

such that msbs8(P2) varies from 0 to 255 and P4 is chosen to make (P2 �
K

(1)
2) ⊕ (P4 � K

(1)
4) constant.

3. For each value of K
(3)
5 , a 256-bit string is formed by computing

lsb(C(3)
2 ⊕ C

(3)
3 ⊕ (K(3)

5 � (C(3)
1 ⊕ C

(3)
2)))

for each of the plaintexts inP , ordered bymsbs8(P2). If the current (K(1)
2 ,K

(1)
4 ,

K
(3)
5) triple is correct, this 256-bit string must be found in the sieving set. If it

cannot be found, the key triple is eliminated.

Improved DST Cryptanalysis of IDEA 5

4. If many key candidates survive this test, steps 1–3 can be repeated with a
different plaintext set R until a single triple remains. We call one execution
of steps 1–3 an elimination round.

This attack finds K
(1)
2 , K

(1)
4 , K

(3)
5 directly by exhaustive search. We can also

find K
(2)
5 indirectly by storing the corresponding K

(2)
5 value along with each

sieving set entry and returning its value in case of a sieving set hit.

3.3 Attack on 3.5-Round IDEA

The 3.5-round attack works similar to the 3-round attack. To find lsb(C(3)
2 ⊕

C
(3)
3 ⊕ (K(3)

5 � (C(3)
1 ⊕ C

(3)
2))) we encrypt P with 3.5-round IDEA and decrypt

C
(3.5)
1 and C

(3.5)
2 for a half-round by exhaustive search on K

(4)
1 and K

(4)
2 . It

is not necessary to find C
(3)
3 since C

(3)
2 ⊕ C

(3)
3 is equal to C

(3.5)
2 ⊕ C

(3.5)
3 or

C
(3.5)
2 ⊕ C

(3.5)
3 ⊕ 1 for all 256 ciphertexts.

3.4 Attacks on Higher Number of Rounds

The attack on higher-round IDEA versions utilizes Corollary 2 to find lsb(C(2)
2 ⊕

C3(2)) or its complement by computing lsb(C(4)
2 ⊕C

(4)
3 ⊕(K(4)

5 �(C(4)
1 ⊕C

(4)
2)))⊕

(K(3)
5 � (C(3)

1 ⊕ C
(3)
2)).

In the 4-round attack, it is necessary to try exhaustively all possible values
of K

(4)
1 , K

(4)
2 , K

(4)
5 , and K

(4)
6 to find C

(3)
1 ⊕ C

(3)
2 . For the 4.5-round attack, we

need to search over K
(5)
1 , K

(5)
2 , K

(5)
3 , K

(5)
4 to obtain the 4th round outputs. For

the 5-round attack, K
(5)
5 , and K

(5)
6 are also searched.

3.5 Complexity of the DST Attack

In these attacks, the space complexity and precomputation time are independent
of the number of rounds while the key search time varies depending on the
number of rounds attacked.

Memory required for the attack is determined by the size of the sieving set,
which consists of 256 elements of 256-bit strings.

Precomputation time is the time that is needed to prepare the sieving set. We
need to calculate the f function once for each bit of the sieving set. There are
256 elements of 256-bit strings, therefore the precomputation time complexity is
264 f computations.

Complexity of the main phase of the attack, the key search time, is different
in the 3-, 3.5-, 4-, 4.5- and 5-round attacks depending on the number of key
bits searched. In each of these attacks, a lookup string is computed over 256
ciphertexts for each key candidate, contributing a complexity factor of 28. In
the 3-round attack, the key searched is 34 bits, making the key search time
complexity 242 partial decryptions. The 3.5-round attack searches 32 more bits,
making the time complexity 274. The 4-round attack needs 16 more key bits

6 E.S. Ayaz and A.A. Selçuk

which raises the time complexity to 290. We search 114 key bits for the 4.5-round
attack and 119 bits for the 5-round attack, with the complexities of 2122 and 2127

partial decryptions respectively.

4 The Improved DST Attack

In this section we describe the improvements we have made on the DST attack
which reduce the precomputation time, key search time, space, and plaintext
complexities of the attack.

4.1 Shortening the Variable Parts

The original DST attack partitioned P2 into 8-bit fixed and 8-bit variable parts,
where the variable part took all possible 28 values over the chosen plaintext set P .
One can observe that in fact it is not necessary to have a balanced partition of P2

and the attack works just as fine with an imbalanced partition. Accordingly, one
can obtain significant savings in the attack by reducing the size of the variable
part. For v denoting the number of most significant bits in the variable part of
P2, the sieving set for the attack becomes,

S = {f(a, b, c, d, z,K
(2)
5) : 0 ≤ a, b, c, d < 2v, 0 ≤ z < 216−v, 0 ≤ K

(2)
5 < 216}.

Note that shortening the variable part of P2 narrows the sieving set both ver-
tically and horizontally. With a v-bit variable part, the sieving set entries will
be 2v bits each instead of 256 bits. Furthermore, the number of entries in the
sieving set will be reduced by a factor of 23(8−v). This change also decreases the
key search time by 28−v, since for each candidate key, we encrypt 2v plaintexts
to form the bit string to be searched in the sieving set instead of 256. We will see
in Section 5 that having five variable bits is enough for an effective elimination.
Therefore by an imbalanced partition of P2, we obtain an improvement by a
factor of 29 in precomputation time, 23 in key search time and 212 in space.

4.2 Size of the Sieving Set

Another reduction in the size of the sieving set comes from the identical entries
yielded by different (a, b, c, d) quadruples, i.e., the collisions. In the DST attack
all the elements of the sieving set were thought to be distinct [7]. We have
found that actually a significant number of collisions exist among the sieving set
entries. Some of these collisions were found analytically and some were observed
empirically. The analytical findings were obtained according to the yi values:

Definition 1. We call two (a, b, c, d) quadruples, 0 ≤ a, b, c, d < 2v, equivalent
if they give the same yi = (((i � a) ⊕ b) � c) ⊕ d value for all 0 ≤ i < 2v.

Lemma 2. For any quadruple (a, b, c, d), complementing the most significant bit
of any two or four of a, b, c, d yields an equivalent quadruple.

Improved DST Cryptanalysis of IDEA 7

Proof. We are working in modulo 2v, so there is no carry bit for addition on the
most significant bit. This means changing the most significant bit of a variable
in the addition operation changes only the most significant bit of the result.
Exclusive-or has the same effect on all bits. So, in an expression of addition and
exclusive-or operations, changing one of the variables’ most significant bit flips
the most significant bit of the result. Changing the most significant bit of an
even number of the variables leaves the result unchanged. ��

This property gives
(
4
0

)
+
(
4
2

)
+
(
4
4

)
= 8 equivalent (a, b, c, d) quadruples. Another

equivalence is related to the complement operation:

Lemma 3. (a, b, c, d) is equivalent to (a, b, c � 1, d) for 0 ≤ a, b, c, d < 2v.

Proof.

(((i � a) ⊕ b) � c � 1) ⊕ d = (((i � a) ⊕ b) � c � 1) ⊕ d

= ((2v − 1 − ((i � a) ⊕ b)) � (2v − c)) ⊕ d

= (2v+1 − 1 − (((i � a) ⊕ b) � c)) ⊕ d

= (((i � a) ⊕ b) � c) ⊕ d

= (((i � a) ⊕ b) � c) ⊕ d ��

This relation can be applied to the 8 equivalent quadruples found in Lemma 1
yielding 16 equivalent quadruples.

The third equivalence is related to the second most significant bit:

Lemma 4. (a, b, c, d) is equivalent to (a � 2v−2, b, c � 2v−2, d) if msb2(b) = 1,
and to (a � 2v−2, b, c � 2v−2, d) if msb2(b) = 0.

Proof. Assume msb2(b) = 1 and consider ((((i � a) � 2v−2) ⊕ b) � 2v−2) � c.
Obviously msb2((i � (a � 2v−2)) ⊕ b) = msb2(i � a). As for the most significant
two bits, if there is a carry in the outer addition of (i � a) � 2v−2, there will
also be a carry on the outmost addition of (((i � a) � 2v−2) ⊕ b) � 2v−2 since
msb2(b) = 1. Similarly, if there is no carry in the outer addition of (i�a)�2v−2,
there will also be no carry on the outmost addition of (((i � a) � 2v−2) ⊕ b) �
2v−2. So the most significant bit of the result is not changed. The second most
significant bit is complemented twice, so it also remains same. Hence in both
cases ((i � (a � 2v−2)) ⊕ b) � (c � 2v−2) = ((i � a) ⊕ b) � c.

Now, assume msb2(b) = 0 and consider ((((i � a) � 2v−2) ⊕ b) � 2v−2) � c.
Obviously msb2((i � (a � 2v−2)) ⊕ b) = msb2(i � a). As for the most significant
two bits, if there is a carry in the outer addition of (i�a)�2v−2, then there will be
no carry on the outmost addition of (((i�a)�2v−2)⊕b)�2v−2 since msb2(b) = 0.
Similarly, if there is no carry in the outer addition of (i�a)�2v−2, then there will
be a carry on the outmost addition of (((i � a) � 2v−2)⊕ b) � 2v−2. So the most
significant bit of the result is changed in the operation ((((i � a) � 2v−2) ⊕ b) �
2v−2). Adding 2v−1 will neutralize this, so the most significant bit of the result
will remain the same. The second most significant bit is complemented twice, so
it will be unchanged. Hence in both cases ((i�(a�2v−2))⊕b)�(c�2v−2 �2v−1)
= ((i � (a � 2v−2)) ⊕ b) � (c � 2v−2) = ((i � a) ⊕ b) � c. ��

8 E.S. Ayaz and A.A. Selçuk

When Lemma 4 is applied to all 16 equivalent quadruples, the size of the equiv-
alence class is doubled, yielding 32 equivalent quadruples.

If we discard the two most significant bits of a and one most significant bit
of b, c, d, we will find exactly one of these 32 equivalent quadruples, since the
equivalent quadruples take all possible values over these five bits. Therefore,
in the sieving set formation phase we do not have to search all combinations of
(a, b, c, d); conducting the search on lsbsv−2(a), lsbsv−1(b), lsbsv−1(c), lsbsv−1(d)
suffices. This reduction decreases both the precomputation time and the sieving
set size by a factor of 25.

The collisions we dealt with in this section are exclusively based on equivalent
(a, b, c, d) quadruples. As the experimental results in Section 6 show, there are
other collisions as well and the actual collision rate can safely be assumed to be
26 or higher.

4.3 Indirect Elimination Power from the Sieving Set

The effectiveness of the DST attack can be improved significantly by using pre-
viously unutilized elimination power from the sieving set. When a lookup string
is matched with a sieving set entry, we can do a further correctness test on the
key by checking whether the key values used in obtaining the set entry matched
are consistent with the round keys used in obtaining the lookup string.

First, we can check the K
(2)
5 found in a sieving set hit for consistency with the

keys used in the partial decryption. The 3-round attack searches K
(1)
2 [17 . . . 32],

K
(1)
4 [49 . . . 64], K

(3)
5 [51 . . . 66], which intersects with K

(2)
5 [58 . . . 73] on 9 bits over

[58 . . .66]. If we store the values of these nine bits of K
(2)
5 for each sieving set

entry and compare them to the corresponding bits of the key candidate used
in the partial decryption in case of a hit, a wrong key’s chances of passing the
sieving test will be reduced by a factor of 29.

The keys found in further round attacks—K
(4)
1 , K

(4)
2 for 3.5-round attack,

K
(4)
5 , K

(4)
6 for 4-round attack, K

(5)
1 , K

(5)
2 , K

(5)
3 , K

(5)
4 for 4.5-round attack and

K
(5)
5 , K

(5)
6 —do not bring us any more bits intersecting with K

(2)
5 .

The seven bits of K
(2)
5 that do not intersect with the searched round keys can

be utilized to deduce the corresponding seven bits of the master key. Moreover,
in attacks that use multiple elimination rounds, a check on these bits can be
carried out to test the consistency of the sieving set hits across different elimi-
nation rounds. Either way, these seven bits can be used to reduce the set of key
candidates by a factor of 27 per elimination round.

A similar consistency check can be applied also on the a values of the sieving
set entries. Note that the 32 equivalent quadruples found in Section 4.2 have
the same lsbsv−2(a) value. Hence, in case of a sieving set hit, the a value of the
sieving set entry matched can be compared on the v − 2 low order bits to the a
value of the partial decryption,

a = msbsv(K
(1)
2) + carry(lsbs16−v(P2) � lsbs16−v(K(1)

2)),

Improved DST Cryptanalysis of IDEA 9

which is fixed and known over the plaintext set P . This extension brings an extra
elimination power of 2v−2 to the attack while costing v − 2 bits of storage per
sieving set entry.

A similar check can be carried out over the c values. The 32 equivalent quadru-
ples are equal to ±c mod 2v−2 over lsbsv−2(c) while msbs2(c) takes all possi-
ble four values. Moreover, for every value of c there are two possible values of
msbsv(K

(2)
3) since

c = msbsv(K
(2)
3) +

carry(((lsbs16−v(P2) � lsbs16−v(K(1)
2)) ⊕ lsbs16−v(u(1))) � lsbs16−v(K

(2)
3))

where the carry bit is an unknown. The key bits msbsv(K
(2)
3) are covered com-

pletely by K
(1)
2 for v ≤ 7 which is the case in our attacks. Therefore, by conduct-

ing a consistency check between the key candidate tried and the c value of the
sieving set entry matched, we can reduce the number of keys by an additional
factor of 2v−4. As in the case of a, this check on c costs an extra v − 2 bits of
storage per sieving set entry.

5 The Success Probability

As discussed in Section 4, we have found the actual size of the sieving set to be
about 26 times smaller than what was thought previously, due to the collisions
among the set entries. Hence, with a v-bit variable part of P2, the expected size
of the sieving set is about 226+3v. When a wrong key is checked against the
sieving set, the probability of two random 2v-bit strings matching by chance is
2−2v

. With the indirect elimination power from K
(2)
5 , lsbsv−2(a), and lsbsv−2(c),

the probability of a random match between the lookup string and a particular
sieving set entry is further reduced to 2−(2v+2v+3). Hence, the probability of a
wrong key’s passing the test (i.e., matching at least one entry in the sieving set)
is now reduced to

1 −
(

1 − 1
22v+2v+3

)(226+3v)

≈ 2−2v+v+23

for a given v. Accordingly, v = 5 is the smallest value of v that gives a non-
negligible elimination power, where a wrong key’s probability of passing the test
is 2−4. This probability drops substantially by increasing v: For v = 6, it becomes
2−33; for v = 7 it is 2−95, and for v = 8 it is 2−221.

The probability of elimination discussed above is for attacks with one elim-
ination round (i.e., one pass of Steps 1–3 of the attack algorithm). In attacks
that use several elimination rounds, a consistency check on K

(2)
5 [67 . . .73] is also

possible in the elimination rounds after the first one. In this case, the probability
of a wrong key’s having a consistent match with a sieving set entry is further

10 E.S. Ayaz and A.A. Selçuk

Table 1. The actual sieving set sizes for 32-bit IDEA (w = 8) with v = 5. Each

column shows the results for a particular combination of LS, K
(2)
5 , a, c, included in

the set entries. As more information is included, the collision rate approaches to the
theoretical expectation given in the last column.

LS LS, K
(2)
5 LS, K

(2)
5 , a LS, K

(2)
5 , a, c 22w+3v−6

v = 5 222.3 223.6 224.5 224.7 225

reduced to 2−(2v+2v+10). Hence, the probability of a wrong key’s passing such
an elimination round is

1 −
(

1 − 1
22v+2v+10

)(226+3v)

≈ 2−2v+v+16.

The probability of a wrong key’s passing an elimination test with r rounds is
therefore

2(−2v+v+23)+(r−1)(−2v+v+16) = 2r(−2v+v+16)+7.

To successfully conclude an attack, we will need to run as many elimination
rounds as needed to reduce the number of surviving key candidates to one. In
the 3-round attack, 34 key bits are searched giving 234 candidates in total. For
v = 5, the probability of a wrong key’s not being eliminated after r iterations is
2−11r+7. Hence, four elimination rounds would suffice to eliminate virtually all
wrong keys while keeping v = 5 in the 3-round attack. Similarly, two elimination
rounds would suffice for v = 6 and one elimination round for v = 7.

6 Experimental Results

The improvements obtained have made a practical implementation of the DST
attack possible on reduced versions of IDEA. We tested the attack on IDEA
reduced to 3 rounds with a block size of 32 bits (i.e., word size w = 8). The
key size is reduced accordingly to 64 bits; the key schedule rotates the master
key 11 bits after every 8th subkey produced. The attack is tested with v = 5,
since v ≥ 6 is still beyond our limits of feasibility, and v ≤ 4 does not produce
a meaningful attack as the lookup string length, 2v, is too short to give any
significant elimination.

First we tested the size of the sieving set in comparison to our theoretical
expectation 22w+3v−6. The results, summarized in Table 1, show that the actual
sieving set size is somewhat further smaller than our expectation due to unac-
counted collisions, by a factor of 8 to 1.5, depending on the amount of extra
information included—K

(2)
5 , a,or c.1

1 Tests were carried out for other combinations of K
(2)
5 , a, and c not listed in Table 1 as

well. Due to space limitations, only the most essential ones are listed here, according
to their order of significance.

Improved DST Cryptanalysis of IDEA 11

Table 2. The experimental results for the DST attack with v = 5. The results in the
table are the ratio of wrong keys passing the sieving set test uneliminated, obtained
over 1000 runs of the attack, each containing 218 keys tested. The theoretical results
are the calculations in Section 5 according to the actual sieving set sizes in Table 1.

LS LS, K
(2)
5 LS, K

(2)
5 , a LS,K

(2)
5 , a, c

Theoretical 2−9.7 2−13.4 2−15.5 2−16.3

Empirical 2−9.6 2−12.3 2−13.2 2−13.9

We implemented the DST attack with v = 5 to see its actual success. Ta-
ble 2 summarizes the result of these tests, where the wrong keys are eliminated
according to the lookup string (LS), K

(2)
5 , a, and c; and the ratio of the unelim-

inated ones are listed. The test results are compared to the theoretical results
calculated in Section 5.

An analysis of the experimental results reveals several key points. First and
foremost, the DST attack works as expected. Especially when only LS is used in
elimination, the expected and the actual results are almost identical. When K

(2)
5 ,

a, and c are also included in the process, the power of the attack is significantly
boosted. There appears to be a slight deviation from the expectations however,
which probably results from some subtle correlations involved. Accordingly, there
may be a few wrong keys left at the end of the attack, which can easily be removed
by an extra elimination round or by exhaustive search.

7 Complexity of the Attack

The optimizations discussed in this paper provide significant reductions in the
space, precomputation time, and key search time complexities of the DST attack.
Space complexity of the attack is mainly the size of the sieving set. Each sieving
set entry contains a 2v-bit lookup string. Additionally we need to store the K

(2)
5 ,

lsbsv−2(a), and lsbsv−2(c) values to have the extra elimination power, which costs
us an extra 12+2v bits per entry. The number of entries in the set is about 23v+26.
Thus the overall space requirement of the sieving set is 23v+26 · (2v + 2v + 12)
bits. In terms of the IDEA block size, this is less than 241 IDEA blocks for v = 5.

Precomputation time complexity is the time required to calculate the sieving
set. We need to compute the f function 2v times for each sieving set entry.
The number of entries calculated for the sieving set is 23v+32−5 since the most
significant bits of a, b, c, d and the second most significant bit of a need not to be
searched. Hence the precomputation time complexity is 24v+27 f computations
which is roughly equivalent to 24v+26 IDEA rounds. The precomputation time
is the dominant time complexity only for the 3-round attack.

Key search time complexity depends on both the number of rounds attacked
and the number of variable bits in P2. For each candidate key set, we take 2v

values of msbsv(P2) and calculate the lookup string by partial decryptions. This
procedure may need to be repeated several times if the attack requires multiple
elimination rounds.

12 E.S. Ayaz and A.A. Selçuk

Table 3. A comparison of the complexities of the basic DST attack and the optimized
version. The space complexity figures are in terms of one IDEA block (64 bits). The
unit of precomputation time complexity is one computation of the f function. The key
search complexities are compared in terms of the number of partial decryptions to be
executed. The optimized attack figures are given for v = 5, 6, 7 which yield the best
results.

DST v = 5 v = 6 v = 7

Space complexity 258 241 245 249

Precomputation 264 247 251 255

Key search, 3-round 242 239 240 241

3.5-round 274 271 272 273

4-round 290 287 288 289

4.5-round 2122 2119 2120 2121

5-round 2127 2124 2125 2126

Table 4. Plaintext complexities of the DST attack for different v. The improvements
over the original attack (v = 8) in this respect, although non-trivial, is relatively less
significant compared to the other improvements.

Attack v = 5 v = 6 v = 7 v = 8

3-round 223 222 223 224

3.5-round 223.6 223 223 224

4-round 224 223 223 224

4.5-round 224.6 223.6 223 224

5-round 224.6 223.6 223 224

The effect of multiple elimination rounds on the attack’s complexity is two
fold. First, a different plaintext set R would be needed for each elimination
round, making the total plaintext complexity of the attack r·216+v for r denoting
the number of elimination rounds to be applied. Second, the complexity of the
key search phase would increase due to multiple repetitions of the elimination
procedure. However, this increase can be expected to be relatively marginal,
since the extra elimination rounds will be applied only to the keys that have
passed the previous tests. Given that each elimination round will remove the
vast majority of the wrong keys, the additional time complexity from the extra
elimination rounds will be negligible.

The space and time complexities of the optimized DST attack in comparison
to the basic attack are summarized in Table 3; the plaintext complexities are
given in Table 4.

8 Conclusion

In this paper, we described several improvements on the DST attack [7] on
IDEA and showed how the attack can be made significantly more efficient. The

Improved DST Cryptanalysis of IDEA 13

improvements reduce the plaintext, memory, precomputation, and the time com-
plexity of the attack. The new attack becomes the most efficient attack on all
these four accounts on the 4.5- and 5-round IDEA, and the most efficient in
plaintext complexity on the 4-round cipher along with [10].

With the current improvements, a practical implementation of the attack has
also become feasible and we provided the first experimental verifications of the
DST attack.

An even more significant improvement on the DST attack would be to extend
it beyond 5 rounds of IDEA. Unfortunately, the round keys that need to be tried
exhaustively in the partial decryption phase covers all the 128 key bits in the
5.5-round or higher round versions of the attack. Hence, no matter how much
improvement is achieved on the core section of the attack, the overall attack
cannot be made perform faster than exhaustive search on 5.5 or more rounds.
We leave it as an open research problem to make the fundamental ideas of the
DST attack work effectively on 5.5 or more rounds of the IDEA cipher.

Acknowledgments

We would like to thank Hüseyin Demirci for several helpful suggestions and
comments on this paper.

References

[1] Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

[2] Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: NewWeak-Key Classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

[3] Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA (extended
abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13.
Springer, Heidelberg (1997)

[4] Daemen, J., Govaerts, R., Vandewalle, J.: Cryptanalysis of 2.5 round of IDEA
(extended abstract), Technical Report ESAC-COSIC Technical Report 93/1, De-
partment Of Electrical Engineering, Katholieke Universiteit Leuven (March 1993)

[5] Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys of IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

[6] Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg
(2003)

[7] Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the
IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 117–129. Springer, Heidelberg (2004)

[8] Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

[9] Hawkes, P., O’Connor, L.: On Applying Linear Cryptanalysis to IDEA. In: Kim,
K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 105–115.
Springer, Heidelberg (1996)

14 E.S. Ayaz and A.A. Selçuk

[10] Junod, P.: New attacks against reduced-round versions of IDEA. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidel-
berg (2005)

[11] Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

[12] Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

[13] Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)

[14] Nakahara Jr., J., Barreto, P.S.L.M., Preneel, B., Vandewalle, J., Kim, H.Y.:
Square Attacks Against Reduced-Round PES and IDEA Block Ciphers. In: 23rd
Symposium on Information Theory in the Benelux. Louvain-la-Neuve, pp. 187–
195 (2002)

[15] Nakahara, J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci attack on
reduced-round versions of IDEA and MESH block ciphers. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer,
Heidelberg (2004)

Improved Related-Key Impossible Differential

Attacks on Reduced-Round AES-192

Wentao Zhang1, Wenling Wu2, Lei Zhang2, and Dengguo Feng2

1 State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

zhangwt@gucas.ac.cn
2 State Key Laboratory of Information Security,

Institute of Software, Chinese Academy of Sciences, Beijing 100080, P.R. China
{wwl,zhanglei1015,feng}@is.iscas.ac.cn

Abstract. In this paper, we present several new related-key impossible
differential attacks on 7- and 8-round AES-192, following the work of Eli
Biham et al. [6] and Jakimoski et al. [10]. We choose another relation
of the related keys, start attacks from the very beginning(instead of the
third round in [6]) so that the data and time complexities are improved
largely, and only two related keys are needed instead of 32 in the attacks
of [6]. Furthermore, we point out and correct an error in [6] when they
attacked 8-round AES-192, then present our revised attacks. Finally, we
give a new related-key differential attack on 7-round AES-192, which
mainly uses a property of MixColumns operation of AES.

Keywords: AES, cryptanalysis, related-key differentials, impossible
differentials.

1 Introduction

AES [12] supports 128-bit block size with three different key lengths (128,192,and
256 bits). Because of its importance, it’s very necessary to constantly reevaluate
the security of AES under various cryptanalytic techniques. In this paper, we
study the security of 192-bit key version of AES(AES-192) against the related-
key impossible differential attack.

Related-key attacks [2] allow an attacker to obtain plaintext-ciphertext pairs
by using related(but unknown) keys. The attacker first searches for possible weak-
nesses of the encryption and key schedule algorithms, then choose appropriate re-
lation between keys and make two encryptions using the related keys expecting
to derive the unknown key information. Differential cryptanalysis [1] analyzes the
evolvement of the difference between a pair of plaintexts in the following round
outputs in an iterated cipher. Related-key differential attack [11] combines the
above two cryptanalytic techniques together, and it studies the development of
differences in two encryptions under two related keys. Furthermore, impossible dif-
ferential attacks [3] use differentials that hold with probability 0(or non-existing
differentials) to eliminate wrong key material and leave the right key candidate. In
this case, the combined attack is called related-key impossible differential attack.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 15–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 W. Zhang et al.

There are several impossible differential attacks on AES [4,7,8]. The best
impossible differential attack on AES-192 is on 7 rounds [7].

If we view the expanded keys as a sequence of words, then the key schedule of
AES-192 applies a non-linear transformation once every six words, whereas the
key schedules of AES-128 and AES-256 apply non-linear transformations once ev-
ery four words. This property brings better and longer related-key differentials of
AES-192, so directly make AES-192 more susceptible to related-key attacks than
AES-128 and AES-256. In the last few years, the security of AES-192 against
related-key attacks has drawn much attention from cryptology researchers
[5,6,9,10]. In [10], Jakimoski et al. presented related-key impossible differential at-
tacks on 7- and 8-round AES-192. Following the work of [10], Biham et al.[6] gave
several new related-key impossible differential attacks also on 7- and 8-round AES-
192, which substantially improved the data and time complexity of those in [10].
Both in [5] and [9], the security of AES-192 against the related-key boomerang at-
tack were studied. The best known related-key attack on AES-192 hitherto is due
to Biham et al.[5], and it is applicable to a 9-round variant of AES-192.

Table 1. Comparison of Some Previous Attacks with Our New Attacks

Source Number of Data Time Number of Attack
Rounds Complexity Complexity Keys Type

Ref.[5] 9 286 RK-CP 2125 256 RK Rectangle

Ref.[7] 7 292CP 2186 1 Imp.Diff

Ref.[10] 7 2111RK-CP 2116 2 RK Imp.Diff

8 288RK-CP 2183 2

Ref.[6] 7 256RK-CP 294 32

8 268.5RK-CP ∗2184 32 RK Imp.Diff
8 292RK-CP ∗2159 32
8 2116RK-CP ∗2134 32

This paper 7 252RK-CP 280 2

8 264.5RK-CP 2177 2 RK Imp.Diff
8 288RK-CP 2153 2
8 2112RK-CP 2136 2

This paper 7 237RK-CP 2145 2 RK Diff

RK – Related-key, CP – Chosen plaintext,
Time complexity is measured in encryption units.

In this paper, we present several new related-key impossible differential at-
tacks, following the work of [6] and [10]. In [6], the authors expressed: “We note
that due to the special structure of the key schedule, the best round to start the
attack with is round 2 of the original AES”. However, we can choose another key
difference of the two related keys, and start the attacks from the very beginning,
so greatly improve the data and time complexities of their attacks, and only two

Improved Related-Key Impossible Differential Attacks 17

related keys are needed instead of 32 in [6]. Furthermore, we point out an error in
[6] when they attacked 8-round AES-192, and then present our attacks. Lastly,
we present a new related-key differential attack on 7-round AES-192, which can
be regarded as a byproduct during the preparation of this paper, and it utilizes
another property, ie., the specific property of Mixcolumns operation of AES.

Amongst our results, we reduce the data complexity of our attack by a factor
of 24 and time complexity by a factor of 214 compared with that in [6] for 7-round
AES-192. The results are also improved in various degrees for several attacks on
8-round AES-192. Finally, a new related-key differential attack on 7-round AES-
192 is presented, it needs more time, but the data complexity is reduced greatly.
In all the attacks, only two related keys are needed. We summarize our results
along with some previously known ones against AES-192 in Table 1. Note that
there is an error in [6](which will be explained later), so the evaluated time
complexities on 8 rounds are not right in [6], we mark them with “∗”.

Here is the outline of this paper. In Section 2, we give a brief description of
AES. In Section 3, we choose another key difference of the two related keys, and
present the corresponding subkeys difference of AES-192. Then a new 5.5-round
related-key impossible differential is gained. Using this impossible differential,
Section 4 presents an attack on 7-round AES-192; Section 5 firstly describes an
error in [6], then presents three variants of our attacks on 8-round AES-192.
Section 6 presents a new related-key differential attack on 7-round AES-192.
Finally, Section 7 summarizes this paper.

2 Description of AES

The AES algorithm encrypts or decrypts data blocks of 128 bits by using keys
of 128, 192 or 256 bits. The 128-bit plaintexts and the intermediate state are
treated as byte matrices of size 4×4. Each round is composed of four operations:

• SubBytes(SB): applyinging the S-box on each byte.
• ShiftRows(SR): cyclically shifting each row (the i ’th row is shifted by i bytes

to the left, i = 0, 1, 2, 3).
• MixColumns(MC): multiplication of each column by a constant 4×4 matrix

M over the field GF (28), where M is
⎛

⎜
⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎠

And the inverse of M is
⎛

⎜
⎜
⎝

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎞

⎟
⎟
⎠

• AddRoundKey(ARK): XORing the state and a 128-bit subkey.

18 W. Zhang et al.

The MixColumns operation is omitted in the last round, and an additional Ad-
dRoundKey operation is performed before the first round. We also assume that the
MixColumns operation is omitted in the last round of the reduced-round variants.

The number of rounds is dependent on the key size, 10 rounds for 128-bit
keys, 12 for 192-bit keys and 14 for 256-bit keys.

The key schedule of AES-192 takes the 192-bit secret key and expands it to
thirteen 128-bit subkeys. The expanded key is a linear array of 4-byte words and
is denoted by G[4 × 13]. Firstly, the 192-bit secret key is divided into 6 words
G[0], G[1] . . .G[5]. Then, perform the following:

For i = 6, . . . 51, do
If (i ≡ 0 mod 6), then G[i] = G[i − 6] ⊕ SB(G[i − 1] ≪ 8) ⊕ RCON [i/6]
Else G[i] = G[i − 6] ⊕ G[i − 1]

where RCON [·] is an array of predetermined constants, ≪ denotes rotation of
a word to the left by 8 bits.

2.1 Notations

In the rest of this paper, we will use the following notations: xI
i denotes the

input of the i’th round, while xS
i , xR

i , xM
i and xO

i respectively denote the inter-
mediate values after the application of SubBytes, ShiftRows, MixColumns and
AddRoundKey operations of the i’th round. Obviously, xO

i−1 = xI
i holds.

Let ki denote the subkey in the i’th round, and the initial whitening subkey is
k0. In some cases, the order of the MixColumns and the AddRoundKey operation
in the same round is changed, which is done by replacing the subkey ki with an
equivalent subkey wi, where wi = MC−1(ki).

Let (xi)Col(l) denote the l’th column of xi, where l = 0, 1, 2, 3. And (xi)j

the j’th byte of xi(j = 0, 1, . . .15), here Column(0) includes byte 0,1,2 and 3,
Column(1) includes byte 4,5,6 and 7, etc.

3 A 5.5-Round Related-Key Impossible Differential of
AES-192

We choose a new difference between two related keys as follows:

((a, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)).

Hence, the subkey differences in the first 8 rounds are as presented in Table 2,
which will be used in our attacks later.

Throughout the attacks in our paper, we assume that the subkey differences
are as presented in Table 2. A 5.5-round related-key impossible differential can
be built like in [6] and [10]. Firstly, a 4.5-round related-key differential with
probability 1 in the forward direction, then a 1-round related-key differential
with probability 1 in the reverse direction, where the intermediate differences
contradict each other. The 5.5-round related-key impossible differential is:

ΔxM
1 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)) 5.5-round−−−−−−−→

ΔxO
6 = ((?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?), (0, 0, 0, b))

Improved Related-Key Impossible Differential Attacks 19

Table 2. Subkey Differences Required for the Attacks in this paper

Round(i) Δki,Col(0) Δki,Col(1) Δki,Col(2) Δki,Col(3)

0 (a, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0)
1 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
2 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
3 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
4 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
5 (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
6 (a, 0, 0, b) (0, 0, 0, b) (a, 0, 0, b) (0, 0, 0, b)
7 (a, 0, 0, b) (0, 0, 0, b) (a, 0, c, b) (a, 0, c, 0)
8 (0, 0, c, b) (0, 0, c, 0) (a, 0, c, b) (a, 0, c, 0)

a, b and c are non-zero byte differences.

The above differential holds with probability 0, where a and b are non-zero
values, “?” denotes any value.

The first 4.5-round differential is obtained as follows: the input difference ΔxM
1

is canceled by the subkey difference of the first round. The zero difference ΔxI
2

is preserved through all the operations until the AddRoundKey operation of the
third round, as the subkey difference of the second round is zero. Thus, we can get
ΔxI

4 = Δk3 = ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)), where only one byte
is active. Then the next three operations in the fourth round will convert the ac-
tive byte to a complete column of active bytes, and after the AddRoundKey oper-
ation with k4, we will get ΔxO

4 = ((N,N,N,N), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)),
where N denotes a non-zero byte(possibly distinct). Applying the SubBytes
and ShiftRows operations of the 5’th round, ΔxO

4 will evolve into ΔxR
5 =

((N, 0, 0, 0), (0, 0, 0, N),(N, 0, N, 0), (N,N, 0, 0)), where only one byte is active
both in Column 0 and Column 1. Hence, ΔxM

5 = ((N,N,N,N), (N,N,N,N),
(?, ?, ?, ?), (?, ?, ?, ?)). Finally, after the key addition with k5, we can get ΔxO

5 =
((?, N,N,N), (?, N,N,N), (?, ?, ?, ?), (?, ?, ?, ?)).

The second differential ends after the 6’th round with output difference ΔxO
6 =

((?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?), (0, 0, 0, b)). When rolling back this difference
through the AddRoundKey and MixColumn operations, we get the difference in
the last column of ΔxR

6 is zero. Hence, ΔxI
6 = ((?, 0, ?, ?), (?, ?, 0, ?), (?, ?, ?, 0),

(0, ?, ?, ?)). It’s obvious that ΔxI
6 = ΔxO

5 with probability 1. However, we can see
that (ΔxO

5)1 is a non-zero byte in the first 4.5-round differential, while (ΔxI
6)1

is a zero byte in the second differential, this is a contradiction.
Using the above 5.5-round impossible differential, we can start our attacks

from the very beginning. Hence, compared with the attacks in [6], there is no
unknown bytes in the key difference, whereas one unknown byte in the key
difference in [6]. Therefore, our attacks can proceed with one less byte guessing,
which makes the time complexity reduced at least by a factor of 27. Moreover,
only two related keys are needed, which makes the data complexity reduced by
a factor of 24 immediately.

20 W. Zhang et al.

4 A 7-Round Related-Key Impossible Differential Attack

Using the above impossible differential, we can attack a 7-round variant of
AES-192.

At first, we assume that the values of a, b, c are all known, ie., we have two
related keys K1 and K2 with the required subkey differences listed in Table 2.
We will deal with the conditions on the related keys to achieve these subkey
differences at the end of this section.

The attack procedure is quite similar to that in [6]. However, the attack com-
plexity will be reduced significantly.

4.1 The Attack Procedure

Precomputation: For all the 264 possible pairs of values of the last two columns
of xM

1 (ie.,(xM
1)Col(2) and (xM

1)Col(3)) both with difference (a, 0, 0, 0) , compute
the 8 byte values in bytes 1, 2, 6, 7, 8, 11, 12, and 13 of plaintext P . Store the
pairs of 8-byte values in a hash table Hp indexed by the XOR differences in these
bytes.

The algorithm is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such that for each plain-
text pair P1 ∈ S1 and P2 ∈ S2, P1 ⊕ P2 = ((a, ?, ?, 0), (0, 0, ?, ?), (?, 0, 0, ?),
(?, ?, 0, 0)), where ? denotes any byte value.

2. Ask for the encryption of the pool S1 under K1, and of the pool S2 under K2.
Denote the ciphertexts of the pool S1 by T1, and the encrypted ciphertexts
of the pool S2 by T2.

3. For all ciphertexts C2 ∈ T2, compute C∗
2 = C2⊕((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0,

0), (a, 0, 0, 0)).
4. Insert all the ciphertexts C1 ∈ T1 and the values {C∗

2 |C2 ∈ T2} into a hash
table indexed by bytes 6,9,and 12.

5. Guess the value of the subkey byte (k7)3 and perform the followings:

(a) Initialize a list A of the 264 possible values of the bytes 1, 2, 6, 7, 8, 11,
12, and 13 of k0.

(b) Decrypt the byte (xO
7)3 in all the ciphertexts to get the intermediate

values before the subkey addition in the 6’th round.
(c) For every pair C1, C

∗
2 in the same bin of the hash table, check whether

the corresponding intermediate values calculated in Step 5(b) are equal.
If no, discard the pair.

(d) For every remaining pair C1, C
∗
2 , consider the corresponding plaintext

pair and compute P1 ⊕P2 in the eight bytes 1, 2, 6, 7, 8, 11, 12, and 13.
Denote the resulting value by P ′.

(e) If the bin P ′ in Hp is nonempty, access this bin. For each pair (x, y) in
that bin remove from the list A the values P1 ⊕ x and P1 ⊕ y, where P1

is restricted to eight bytes (plaintext bytes 1, 2, 6, 7, 8, 11, 12, and 13).
(f) If A is not empty, output the values in A along with the guess of (k7)3.

Improved Related-Key Impossible Differential Attacks 21

4.2 Analysis of the Attack Complexity

From the two pools of m plaintexts each, m2 possible ciphertexts pairs (C1, C
∗
2)

can be derived. After the filtering in step 4, there remains about 2−24m2 pairs
in each bin of the hash table. In Step 5, we have an additional 8-bit filtering
for every possible value of (k7)3 separately, so about 2−32m2 pairs will remain
for a given subkey guess of (k7)3. Each pair deletes one subkey candidate on
average, and there are 264 subkey candidates in all, so the expected number of
remaining subkeys is 264(1 − 1/264)m′

in step 5(f). If m′ = 270, the expected
number is about e−20 = 2−28.85, and we can expect that only the right subkey
will remain. Hence, we get the value of 64 + 8 = 72 subkey bits. In order to
derive m′ = 270, we need m = 251 chosen plaintexts in each of the two pools. So
the data complexity of the attack is 252 chosen plaintexts.

The time complexity is dominated by Step 5(e). In this step, m′ = 270 pairs
are analyzed, leading to one memory access on average to Hp and one mem-
ory access to A. This step is repeated 28 times (once for one guess of (k7)3).
Therefore, the time complexity is 279 memory accesses, which is equivalent to
about 273 encryptions. The precomputation requires about 262 encryptions and
the required memory is about 269 bytes.

In the above attack, we assumed that the values of a, b and c are known.
Here,the value a can be chosen by the attacker. The value b is the result of
application of SubBytes operation, so there are 127 possible values of b given the
value of a. And the attack can proceed without knowing the value of c. Hence,we
only need to repeat the attack for all the possible values of b. Therefore,the total
time complexity is multiplied by 27, the data and memory complexity remain
unchanged.

To sum up, the total complexity of the above attack is as follows: The data
complexity is 252 chosen plaintexts, the time complexity is 280 encryptions, and
the required memory is 269 bytes.

5 Three 8-Round Related-Key Impossible Differential
Attacks

In this section, we point out an error in [6] when they attacked 8-round AES-192.
Then, present our own attacks.

5.1 An Error in the 8-Round Attacks of [6]

In Section 4 of [6], the authors presented three variant attacks on 8-round AES-
192. In the first version, 13 key bytes are guessed: bytes 0,2,3,5,6,7,8,9,10,12,13
and 15 of k9, and byte 11 of w8(ie., (w8)3,2 in [6]). For peeling off the last round,
only those ciphertext pairs which have zero difference (before the subkey addi-
tion with k9) in the remaining four bytes 1,4,11 and 14 are treated. Then rolling
back through the ShiftRows and SubBytes operations, difference in the four bytes
of Column 1 are all zero, ie.,(ΔxI

9)Col(1) = (0, 0, 0, 0). This property still holds

22 W. Zhang et al.

8w 8w 8w 8w0

0

 0

0

SR

SB

MC

 0

0

0

0

ARK

v4

v5

v6

v7

8w

In byte 4, one is zero and the other is
non-zero. Contradiction!

0

0

0

b

SB

SR

 0

0

 0

Fig. 1. An Error in Ref.[6]

when applying the MixColumns operation in round 8. Then applying the subkey
addition with w8 in round 8, difference in the four bytes of Column 1 will equal
to the corresponding byte of Δw8. Especially, we can get (ΔxR

8)4 = (Δw8)4.
Note that (Δw8)4 is determined by (Δk8)Col(1) which have one non-zero byte
and three zero bytes, thus applying the inverse operation of MixColumns to
(Δk8)Col(1), we can deduce that (ΔxR

8)4=(Δw8)4 is a non-zero byte. Then we
can conclude that (ΔxI

8)4 is a non-zero byte immediately.
However, when applying the impossible differential from round 2 to round

7 in [6], the attacker must filter a certain amount of plaintext pairs to satisfy
the requirement of the differential, especially (ΔxI

8)4 = (ΔxO
7)4 equals to zero.

This is a contradiction, which is emphasized in Figure 1, in which the first pane
denotes the intermediate state before the subkey addition with k9, the last pane
denotes the input state of round 8, and the other panes denote the intermediate
state between them. For simplicity, let v4, v5, v6, v7 denote byte 4,5,6,7 of w8

respectively. Here, we will use xW
8 to denote the intermediate value after the

application of AddRoundKey operation with w8 in round 8. From the above
analysis, in order to correctly use the 5.5-round differential, we must filter a
certain amount of pairs which satisfy that (ΔxW

8)4=(Δw8)4 to make (ΔxI
8)4 = 0.

Then, after the Mixcolumns operation in round 8, this byte has relation with all
the four bytes in Column 1. Thus, it seems that four more key bytes of k9 should
be guessed in order to calculate the byte difference (ΔxW

8)4 from ciphertext
pairs. However, we can deal with this problem by guessing only one more key
byte, and treat only ciphertext pairs that have zero difference in the other three
bytes.

Improved Related-Key Impossible Differential Attacks 23

For the second and third version of the attacks on 8-round AES-192 in [6],
there exists similar errors. And we will adopt the same technique to reduce the
amount of key bytes guess.

In the following, we will present our attacks on 8-round AES-192.

5.2 Our Attacks on 8-Round AES-192

In the following, we will give three variants of attacks on 8-round AES-192, which
are all based on the 7-round attack in Section 4. As in [6], the main difference
between them is a data-time trade-off. In all the 8-round attacks, we guess part
of the last round subkey k8, peel off the last round and apply the 7-round attack.
In order to reduce the amount of key material guess, we also change the order
of the MixColumns and the AddRoundKey operations in the 7’th round, this is
done by replacing the subkey k7 with an equivalent subkey w7. And we use xW

7 to
denote the intermediate value after the application of AddRoundKey operation
with w7 in the 7’th round.

If a pair of ciphertexts satisfy the condition that (ΔxO
6)Col(3) = (0, 0, 0, b),

then after the SubBytes and ShiftRows operations of the 7’th round, bytes 6,9
and 12 of ΔxR

7 must be zero. Next, applying the key addition with w7, we can
get (ΔxW

7)6 = (Δw7)6,(ΔxW
7)9 = (Δw7)9, and (ΔxW

7)12 = (Δw7)12.
In order to satisfy the above conditions and guess less subkey material, we

treat only ciphertext pairs that have certain properties. Take for example, to
make (ΔxW

7)6 = (Δw7)6, we only choose ciphertext pairs that satisfy
(ΔxO

7)Col(1) = (z4, 0, 0, 0), where z4 is uniquely determined by (Δw7)6 to make
the above condition hold, ie., MC−1(z4, 0, 0, 0) = (?, ?, (Δw7)6, ?). Similarly, we
can decide the values of bytes z8(or z11) and z12, which make (ΔxW

7)9 = (Δw7)9
and (ΔxW

7)12 = (Δw7)12 respectively.
The attack can be performed in one out of three possible ways.

The First Attack. Guess bytes 0,1,2,4,5,7,8,10,11,12,13,14, and 15 of k8, par-
tially decrypt these bytes in the last round. These subkeybytes allowus to partially
decrypt the last round in Columns 0,1 and 2. And we only treat ciphertext pairs
that have zero difference in the remaining 3 bytes(before the key addition with k8,
the same below). This condition allows us to use 2−24 of the possible ciphertext
pairs. Then the difference ΔxI

8 is known, we first check whether the difference in
byte 12 equals to z12. This filtering is done using a 8-bit condition, which makes
the remaining ciphertext pairs satisfy the condition that byte 12 in ΔxO

6 is zero.
Next, applying the inverse of MixColumns operation to Column 1 and Column 2
of ΔxI

8, calculate byte 6 and 9 of ΔxW
7 and check whether they are equal to (w7)6

and (w7)9 respectively. This filtering thus makes bytes 13 and 14 of ΔxO
6 equal

to zero too, and uses a 16-bit condition. Then, guess byte 3 of w7 and continue
partial decryption to find out whether (ΔxO

6)15 = b holds, which is done using a
8-bit condition. After this filtering, the remaining ciphertext pairs can be used to
discard wrong subkey guesses like in the 7-round attack.

24 W. Zhang et al.

In this variant of the attack, we guess a total of 112 subkey bits. And a portion
of 2−24−8−16−8 = 2−56 of the pairs can be used in the attack to discard the wrong
subkey guesses.

Here we can use the differential properties of the key schedule algorithm. The
value of b can be determined by a and (k5)12 = (k8)4 ⊕ (k8)12, the value of c can
be determined by b and (k7)7 = (k8)11 ⊕ (k8)15.

About 263.5 plaintexts in each pool are needed to derive about 263.5+63.5−56 =
271 data pairs for every guess of the 112-bit key material guess in the last two
rounds. Each pair discards one possible value for the eight bytes guess of sub-
key k0 on average. Therefore, the probability that some wrong subkey guess
remains is at most 264e−128 ≈ 2−120, and the expected number of subkey sug-
gestions is approximately 2−1202112 = 2−8. Hence, with a high probability only
the right value will remain. The data complexity of this attack is about 264.5

chosen plaintexts. The time complexity is about 271 × 2112/26 = 2177 and the
required memory is about 269 bytes.

The Second Attack. Guess bytes 0,1,4,7,10,11,12,13,14, and 15 of k8. And
treat only ciphertext pairs that have zero difference in the remaining 6 bytes.
This condition allows us to use only 2−48 of the possible ciphertext pairs. Then
the difference ΔxI

8 is known, we first check whether the difference in bytes 11 and
12 are z11 and z12 respectively. This filtering is done using a 16-bit condition,
which makes the remaining ciphertext pairs satisfy the conditon that bytes 12
and 13 in ΔxO

6 are all zero. Next, calculate the difference in byte 6 of ΔxW
7 and

check whether it equals to (w7)6. This filtering uses a 8-bit condition, and makes
the remaining pairs also satisfy that byte 14 of ΔxO

6 equals to zero. Then, guess
byte 3 of w7 and continue partial decryption to find out whether (ΔxO

6)15 = b
holds. This is done using a 8-bit condition. After this filtering, the remaining
ciphertext pairs can be used to discard wrong subkey guesses.

In this variant of the attack, we guess a total of 88 subkey bits. But only a
portion of 2−80 of the pairs can be used in the attack to discard wrong subkey
guesses.

As in the first attack, the value of b and c can also be determined by a and
subkey guess of k8.

Choose a pool of 264 plaintexts which differ only at the eight bytes 1, 2, 6,
7, 8, 11, 12 and 13, and having all possible values in these bytes. Choose two
such pools S1 and S2, such that for each plaintext pair P1 ∈ S1 and P2 ∈ S2,
P1 ⊕P2 = ((a, ?, ?, 0), (0, 0, ?, ?), (?, 0, 0, ?), (?, ?, 0, 0)). Encrypt S1 and S2 under
the two related keys each. Then, we can derive 264×264 = 2128 pairs of plaintexts
using 265 chosen plaintexts, call such two pools a structure.

About 223 structures are needed to get about 271 data pairs which can be
used to delete wrong subkey guesses. Hence, the data complexity of this attack
is about 288 chosen plaintexts. The time complexity is about 271×288/26 = 2153.

The Third Attack. Guess bytes 0,7,10,13,4,8, and 12 of k8, partially decrypt
these bytes in the last round. And treat only ciphertext pairs that have zero
difference in the remaining 9 bytes. This condition allows us to use only 2−72

Improved Related-Key Impossible Differential Attacks 25

of the possible ciphertext pairs. Then the difference ΔxI
8 is known, we check

whether the difference in bytes 4,8 and 12 are z4, z8 and z12 respectively. This
filtering is done using a 24-bit condition. Thus, the remaining ciphertext pairs
all satisfy that bytes 12,13,14 in ΔxO

6 are all zero. Then, guess byte 3 of w7 and
continue partial decryption to find out whether (ΔxO

6)15 = b holds. This is done
using a 8-bit condition. After this filtering, the remaining ciphertext pairs can
be used to discard wrong subkey guesses.

In this attack variant, we guess only 64 subkey bits. But only a portion of
2−104 of the pairs can be used in the attack. This leads to a relatively high data
complexity, but to a lower time complexity.

The value of b can be determined by a and subkey guess of k8. Hence, we only
need to repeat the attack for all the 127 possible values of c.

About 247 structures are needed to get about 271 data pairs which can be used
to delete wrong subkey guesses. Hence, the data complexity of this attack is about
2112 chosen plaintexts. The time complexity is about 27 × 271 × 264/26 = 2136.

6 A New Related-Key Differential Attack on 7-Round
AES-192

In this section, we present a new related-key differential attack on 7-round AES-
192, which mainly uses the specific property of Mixcolumns operation of AES.

The subkey differences are also as presented in Table 2, and we will change the
order of the MixColumns and the AddRoundKey operations in the 6’th round.
Submit two plaintexts P1 and P2 for encryption under the two related keys re-
spectively. Similar to the analysis in Section 3, ifΔxM

1 = ((0, 0, 0, 0), (0, 0, 0, 0),
(a, 0, 0, 0), (a, 0, 0, 0)), then we can conclude that ΔxR

5 must have the form of
((N, 0, 0, 0), (0, 0, 0, N),(N, 0, N, 0), (N,N, 0, 0)), where only one byte is active
both in Column 0 and Column 1. Considering Column 1, we have (ΔxR

5)Col(1) =
(0, 0, 0, N), then after the following MixColumns operation, we can get that
(ΔxM

5)4 =(ΔxM
5)5 holds with probability 1 because of the specific MixColumns

operation of AES.
In order to calculate the values of bytes 4 and 5 in ΔxM

5 , we need to guess 10
subkey bytes: bytes 0,1,4,7,10,11,13, and 14 of k7, and bytes 1,4 of w6.

The attack procedure has many similarities to the above attacks, including
the precomputation, the initial plaintexts selection and encryption, and the ini-
tialization of the list A. The difference only consists in the filtering condition
of data. For each guess of the 10 key bytes, we will calculate the two values of
(xM

5)4 and (xM
5)5 for each plaintext, then check whether (ΔxM

5)4 =(ΔxM
5)5 for

each data pairs. If not, we can use it to delete the corresponding key guess from
A as in the above attacks.

From the two pools of m plaintexts each, m2 possible ciphertext pairs can be
derived. For every possible guess of the 10 key bytes, about m′ = (1 − 2−8)m2

pairs can be used to delete the wrong subkey guesses of k0. Each pair deletes
one subkey candidate on average, so the probability that some wrong subkey

26 W. Zhang et al.

guess remains is at most 264(1 − 1/264)m′
. If m′ = 271, the expected number is

about 2−120, and we can expect that only the right subkey will remain. Hence,
we get the value of 80 + 64 = 144 subkey bits. In order to derive m′ = 271,
we need about m = 236 chosen plaintexts in each of the two pools. So the data
complexity of the attack is about 237 chosen plaintexts.

The time complexity is about 271 × 280/26 = 2145. And the required memory
is also about 269 bytes.

Here, b can be calculated from a and (k5)12=(k7)0 ⊕ (k7)4, and c can be
calculated from b and (k7)7.

To sum up, the total complexity of the above attack is as follows: The data
complexity is 237 chosen plaintexts, the time complexity is 2145 encryptions, and
the required memory is 269 bytes.

Compared with the 7-round attack in Section 4, the data complexity is de-
creased, but the time complexity is increased greatly. Nevertheless, the attack
uses another different point of AES, ie., the specific property of the MixColumns
operation.

7 Summary

Up to now, better results are achieved against reduced-round AES-192 using
related-key cryptanalysis in contrast to other non-related-key cryptanalysis ap-
proaches. This fact reflects some weaknesses of the key schedule algorithm of
AES-192.

In this paper, we improved the attack results presented in [6] and [10] through
choosing a new difference of the related keys. Furthermore, we detected an error
in [6] when they attacked 8-round AES-192, then presented our revised attacks.
The new chosen related-key difference made our attack start from the very be-
ginning instead of the third round as in [6]. Hence, the number of unknown
bytes in the subkey differences become less, which makes the attack complexity
improved largely in this paper. The comparison of our attack results and those
in [6] and [10] can be found in Table 1.

We also present a new related-key differential attack on 7-round AES-192,
which mainly utilizes the property of MixColumns operation, but it is a pity
that we can’t extend the attack to 8-round at present, we wish that this point
may be used in further attacks on AES.

Acknowledgment

We would like to thank anonymous referees for their helpful comments and
suggestions. The research presented in this paper is supported by the National
Natural Science Foundation of China(No.60373047, 90604036); and the National
Basic Research 973 Program of China No.2004CB318004.

Improved Related-Key Impossible Differential Attacks 27

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23.
Springer, Heidelberg (1999)

4. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael, in Official
public comment for Round 2 of the AES development effort (2000) Available at
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

6. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860,
pp. 21–33. Springer, Heidelberg (2006)

7. Phan, R.C.-W.: Impossible Differential Cryptanalysis of 7-round Advanced En-
cryption Standard (AES). Information Processing Letters 91(1), 33–38 (2004)

8. Cheon, J.H., Kim, M., Kim, K., Lee, J.-Y., Kang, S.: Improved Impossible Dif-
ferential Cryptanalysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

9. Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks
on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

10. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

11. Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

12. National Institute of Standards and Technology. Advanced Encryption Standard
(AES), FIPS Publication 197 (November 26, 2001) Available at
http://csrc.nist.gov/encryption/aes

http:// csrc.nist.gov/ encryption/ aes/ round2/ conf3/ aes3papers.html
http://csrc.nist.gov/encryption/aes

Related-Key Rectangle Attack on the Full

SHACAL-1

Orr Dunkelman1,�, Nathan Keller2,��, and Jongsung Kim3,4,���

1 Computer Science Department, Technion.
Haifa 32000, Israel

orrd@cs.technion.ac.il
2 Einstein Institute of Mathematics, Hebrew University.

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

3 ESAT/SCD-COSIC, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

Kim.Jongsung@esat.kuleuven.be
4 Center for Information Security Technologies(CIST), Korea University

Anam Dong, Sungbuk Gu, Seoul, Korea
joshep@cist.korea.ac.kr

Abstract. SHACAL-1 is a 160-bit block cipher with variable key length
of up to 512-bit key based on the hash function SHA-1. It was submitted
to the NESSIE project and was accepted as a finalist for the 2nd phase
of the evaluation.

In this paper we devise the first known attack on the full 80-round
SHACAL-1 faster than exhaustive key search. The related-key differ-
entials used in the attack are based on transformation of the collision-
producing differentials of SHA-1 presented by Wang et al.

1 Introduction

In 1993, NIST has issued a standard hash function called Secure Hash Algorithm
(FIPS-180) [25]. Later this version was named SHA-0, as NIST published a small
tweak to this standard called SHA-1 in 1995. Both SHA-0 and SHA-1 are based
on padding the message and dividing it to blocks of 512 bits, and then iteratively
compressing those blocks into a 160-bit digest. Recently, NIST has published
three more standard hash functions as part of FIPS-180: SHA-256, SHA-384
and SHA-512. Each of the new hash functions has a digest size corresponding

� The author was supported by the Clore scholarship programme and by the Israel
MOD Research and Technology Unit.

�� The author was supported by the Adams fellowship.
��� This author was financed by a Ph.D grant of the Katholieke Universiteit Leuven

and by the Korea Research Foundation Grant funded by the Korean Government
(MOEHRD) (KRF-2005-213-D00077) and supported by theConcerted ResearchAc-
tion (GOA) Ambiorics 2005/11 of the Flemish Government and by the European
Commission through the ISTProgramme under Contract IST2002507932 ECRYPT.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 28–44, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Related-Key Rectangle Attack on the Full SHACAL-1 29

to its number, i.e., SHA-256 has a 256-bit digest, etc. After the publication of
these hash functions, NIST has issued another hash function SHA-224 that has
a digest size of 224 bits.

Both SHA-0 and SHA-1 were subjected to a great deal of analysis [11]. In the
last two years there was a major progress in the attacks on both of the hash
functions. This progress included finding a collision in SHA-0, and devising an
algorithm that can find a collision in SHA-1 in less than 263 SHA-1 applica-
tions [3,4,30,32,28]. The new techniques are based on finding good differentials
of the compressing function of SHA-1 and combining them with some novel
plaintext modification techniques.

It was suggested to use the compression function of SHA-1 as a block cipher
[13]. Later this suggestion was named SHACAL-1 and submitted to the NESSIE
project [14]. SHACAL-1 is a 160-bit block cipher with variable key length (0–512
bits) and 80 rounds based on the compression function of SHA-1. The cipher, was
selected as a NESSIE finalist, but was not selected for the NESSIE portfolio [22].

Due to the structure of SHACAL-1, differentials of SHA-1 correspond to
related-key differentials of SHACAL-1. Hence, it seems natural that some of the
techniques used in the new attacks on SHA-1 can be converted into a related-
key attack on SHACAL-1. We show that this is indeed the case. The differen-
tials found in the attacks devised in [30] can be converted into high probability
related-key differentials of SHACAL-1.

After transforming the collision producing differentials into related-key dif-
ferentials, we use them in a related-key rectangle attack [8,15,18]. The resulting
attack succeeds to attack the full 80-round SHACAL-1 using four related-keys
faster than exhaustive key search.

The related-key rectangle technique was used in previously published attacks
on SHACAL-1 [15,18] and was by far the most successful technique to attack the
cipher. The best previously known attack on the cipher based on this technique
was applicable up to 70 rounds of SHACAL-1. Our results extend these previously
known results by using improved differentials and improved attack techniques.

We note that the best known attack on SHACAL-1 that does not use related-
keys is a rectangle attack on 49-round SHACAL-1 [7]. A comparison of the known
attacks along with our new results on SHACAL-1 is presented in Table 1.

This paper is organized as follows: In Section 2 we describe the block cipher
SHACAL-1. In Section 3 we describe the previously known results on SHACAL-
1 and the relevant results on SHA-1. In Section 4 we give a short description
of the related-key rectangle attack. In Section 5 we present the new attacks on
the full SHACAL-1. Section 6 explores the differences between our attacks on
SHACAL-1 and other works on SHA-1. The appendix contains the differentials
used in the attack. Finally, Section 7 summarizes the paper.

2 Description of SHACAL-1

SHACAL-1 [14] is a 160-bit block cipher supporting variable key lengths (0–512
bits). It is based on the compression function of the hash function SHA-1 [25].

30 O. Dunkelman, N. Keller, and J. Kim

Table 1. Summary of Our Results and Previously Known Results on SHACAL-1

Attack & Source Number of Rounds Complexity
Keys Rounds Data Time

Differential [20] 1 41 0–40 2141 CP 2491

Amplified Boomerang [20] 1 47 0–46 2158.5 CP 2508.4

Rectangle [7] 1 47 0–46 2151.9 CP 2482.6

Rectangle [7] 1 49 29–77 2151.9 CC 2508.5

Related-Key Rectangle [18] 2 59 0–58 2149.7 RK-CP 2498.3

Related-Key Rectangle [15] 4 70 0–69 2151.8 RK-CP 2500.1

Related-Key Rectangle (Section 5.2) 4 80 0–79 2159.8 RK-CP 2420.0

Related-Key Rectangle (Section 5.2) 4 80 0–79 2153.8 RK-CP 2501.2

Complexity is measured in encryption units.
CP — Chosen Plaintexts, CC — Chosen Ciphertexts, RK — Related-Key.

The cipher has 80 rounds (also referred as steps) grouped into four types of 20
rounds each.1

The 160-bit plaintext is divided into five 32-bit words – A,B,C,D and E.
We denote by Xi the value of word X before the ith round, i.e., the plaintext
P is divided into A0, B0, C0, D0 and E0, and the ciphertext is composed of
A80, B80, C80, D80 and E80.

In each round the words are updated according to the following rule:

Ai+1 = Wi + ROTL5(Ai) + fi(Bi, Ci, Di) + Ei + Ki

Bi+1 = Ai

Ci+1 = ROTL30(Bi)
Di+1 = Ci

Ei+1 = Di

where + denotes addition modulo 232, ROTLj(X) represents rotation to the
left by j bits, Wi is the round subkey, and Ki is the round constant.2 There are
three different functions fi, selected according to the round number:

fi(X,Y, Z) = fif = (X&Y)|(¬X&Z) 0 ≤ i ≤ 19
fi(X,Y, Z) = fxor = (X ⊕ Y ⊕ Z) 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X,Y, Z) = fmaj = ((X&Y)|(X&Z)|(Y &Z)) 40 ≤ i ≤ 59

In [14] it is strongly advised to use keys of at least 128 bits, even though
shorter keys are supported. The first step in the key schedule algorithm is to
pad the supplied key into a 512-bit key. Then, the 512-bit key is expanded
into eighty 32-bit subkeys (or a total of 2560 bits of subkey material). The

1 To avoid confusion, we adopt the common notations for rounds. In [14] the notation
step stands for round, where round is used for a group of 20 steps.

2 This time we adopt the notations of [14], and alert the reader of the somewhat
confusing notations.

Related-Key Rectangle Attack on the Full SHACAL-1 31

expansion is done in a linear manner using a linear feedback shift register (over
GF (232)).

The key schedule is as follows: Let M0, . . . ,M15 be the 16 key words (32
bits each). Then the round subkeys W0, . . . ,W79 are computed by the following
algorithm:

Wi =
{

Mi 0 ≤ i ≤ 15
(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) 1 16 ≤ i ≤ 79.

3 Previous Results

A preliminary differential and linear analysis of the properties of the compression
function of SHA-1 as a block cipher is presented in [13]. The found differentials
are relatively short (10 rounds) and have probabilities varying between 2−13 and
2−26 (depending on the round functions).

In [26] these differentials are improved, and 20-round differentials with prob-
ability 2−41 are presented. In [20] another set of differentials of SHACAL-1 is
presented, including a 30-round differential with probability 2−130.

In [24] an algorithm for identifying whether two SHACAL-1 encryptions use a
pair of related keys is presented. The attack is based on finding slid pairs. Once a
slid pair is encountered, the attacker can determine whether the two encryptions
have related keys. The attack requires about 296 encryptions under each of the
two keys to find a slid pair.

In [20] a 21-round differential for rounds 0–20 and a 15-round differential for
rounds 21–35 are combined to devise an amplified boomerang distinguisher [16]
for 36-roundSHACAL-1. This distinguisher is used to attack 39-roundSHACAL-1
using 2158.5 chosen plaintexts and about 2250.8 39-round SHACAL-1 encryptions.
The attack is based on guessing (or trying) the subkeys of the three additional
rounds, and then checking whether the distinguisher succeeds. This approach is
further extended to attack 47-round SHACAL-1 before exhaustive key search be-
comes faster than this attack. Another attack presented in [20] is a differential
attack on 41-round SHACAL-1. The success of these attacks was questioned and
resolved in [7].

Besides resolving the problems with previous attacks, in [7] a rectangle at-
tack on 49-round SHACAL-1 is presented. The attack requires 2151.9 chosen
plaintexts, and has a running time equivalent to 2508.5 49-round SHACAL-1
encryptions.

In [18] a related-key rectangle attack with two keys is presented against 59-
round SHACAL-1. This attack has a data complexity of 2149.7 related-key chosen
plaintexts and has a time complexity of 2498.3 59-round SHACAL-1 encryp-
tions. This attack is improved in [15] to a related-key rectangle attack with four
keys on 70-round SHACAL-1. The improved attack has a data complexity of
2151.8 related-key chosen plaintexts, and a time complexity of 2500.1 70-round
SHACAL-1 encryptions.

32 O. Dunkelman, N. Keller, and J. Kim

4 Related-Key Boomerang and Related-Key Rectangle
Attacks

In this section we briefly describe the related-key rectangle attack. First, we
outline the boomerang and the rectangle attacks and describe related-key dif-
ferentials. Then, we describe the combination that forms into the related-key
rectangle attack.

4.1 The Rectangle Attack

The rectangle attack [5] is an improved variant of the amplified boomerang
attack [16] that has evolved from the boomerang attack presented in [27]. We
first describe the boomerang attack, and then show the transformation into
amplified boomerang/rectangle attacks.

The main idea behind the boomerang attack is to use two short differentials
with high probabilities instead of one long differential with a low probability.
We assume that a block cipher E :{0, 1}n×{0, 1}k→{0, 1}n can be described as
a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β with
probability p, and for E1 there exists a differential γ → δ with probability q.

The distinguisher is based on the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1 ⊕P2 = α
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first characteristic (α → β) for E0 with respect
to the pairs (P1, P2) and (P3, P4), and uses the second characteristic (γ → δ) for
E1 with respect to the pairs (C1, C3) and (C2, C4).

For a random permutation the probability that the last condition is satisfied
is 2−n. For E, the probability that the pair (P1, P2) is a right pair with respect to
the first differential (α → β) is p. The probability that both pairs (C1, C3) and
(C2, C4) are right pairs with respect to the second differential is q2. If all these
are right pairs, then E−1

1 (C3) ⊕ E−1
1 (C4) = β = E0(P3) ⊕ E0(P4). Thus, with

probability p, P3 ⊕ P4 = α. The total probability of this quartet of plaintexts
and ciphertexts to satisfy the boomerang conditions is (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Therefore, a right quartet for E is encountered with probability
no less than (p̂q̂)2, where:

p̂ =
√∑

β

Pr 2[α → β], and q̂ =
√∑

γ

Pr 2[γ → δ].

The complete analysis is given in [27,5,6].

Related-Key Rectangle Attack on the Full SHACAL-1 33

As the boomerang attack requires adaptive chosen plaintexts and ciphertexts,
many of the techniques that were developed for using distinguishers in key re-
covery attacks can not be combined with the boomerang attack. This led to
the introduction of chosen plaintext variants of the boomerang attack called the
amplified boomerang attack [16] and the rectangle attack [5]. The transformation
of the boomerang attack into a chosen plaintext attack is quite standard, and is
achieved by birthday-paradox arguments. The key idea behind the transforma-
tion is to encrypt many plaintext pairs with input difference α, and to look for
quartets that conform to the requirements of the boomerang process.

The rectangle (or the amplified boomerang) process is as follows:

– Ask for the encryption of many pairs of plaintexts (P, P ⊕ α).
– Search two pairs of plaintexts (P1, P2), (P3, P4), and their corresponding ci-

phertexts (C1, C2) and (C3, C4), respectively, satisfying:
• P1 ⊕ P2 = P3 ⊕ P4 = α
• C1 ⊕ C3 = C2 ⊕ C4 = δ

Given the same decomposition of E as before, and the same basic differentials,
the analysis in [5] shows that out of N plaintext pairs, the number of right
quartets is expected to be N22−np̂2q̂2. We note, that the main reduction in
the probability follows from the fact that unlike the boomerang attack, in the
rectangle attack the event E0(P1) ⊕ E0(P3) = γ occurs with probability 2−n

even when all the differentials hold.

4.2 Related-Key Differentials

Related-key differentials [17] were used for cryptanalysis several times in the
past. Recall, that a regular differential deals with some plaintext difference ΔP
and a ciphertext difference ΔC such that

Pr P,K [EK(P) ⊕ EK(P ⊕ ΔP) = ΔC]

is high enough (or zero [2]).
A related-key differential is a triplet of a plaintext difference ΔP , a ciphertext

difference ΔC, and a key difference ΔK, such that

Pr P,K [EK(P) ⊕ EK⊕ΔK(P ⊕ ΔP) = ΔC]

is useful (high enough or zero).

4.3 Related-Key Rectangle Attack

The related-key rectangle attack was introduced in [18,15], and independently
in [8].

Let us assume that we have a related-key differential α → β of E0 under a key
difference ΔKab with probability p. Assume also that we have another related-
key differential γ → δ for E1 under a key difference ΔKac with probability q.

The related-key rectangle process involves four different unknown (but re-
lated) keys — Ka, Kb = Ka ⊕ΔKab, Kc = Ka ⊕ΔKac, and Kd = Ka ⊕ΔKab ⊕
ΔKac. The attack is performed by the following algorithm:

34 O. Dunkelman, N. Keller, and J. Kim

α α

β β

γ

γ

δ

δ

Ε

Ε1

0

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

K dK b

K a

Pa

bX
dX

ΔK ab

ΔK ac

K c

K d

K b = K a
= K a
= K a

ΔK ab

ΔK ac

ΔK ab ΔK ac

C c

C b C d

cX

K c

aC

aX

PdPb

Pc

Fig. 1. A Related-Key Rectangle Quartet

– Choose N plaintext pairs (Pa, Pb = Pa ⊕ α) at random and ask for the
encryption of Pa under Ka and of Pb under Kb. Denote the set of these pairs
by S.

– Choose N plaintext pairs (Pc, Pd = Pc ⊕ α) at random and ask for the
encryption of Pc under Kc and Pd under Kd. Denote the set of these pairs
by T .

– Search a pair of plaintexts (Pa, Pb) ∈ S and a pair of plaintexts (Pc, Pd) ∈
T , and their corresponding ciphertexts (Ca, Cb) and (Cc, Cd), respectively,
satisfying:
• Pa ⊕ Pb = Pc ⊕ Pd = α
• Ca ⊕ Cc = Cb ⊕ Cd = δ

See Figure 1 for an outline of such a quartet.
The attack can use many differentials for E0 and E1 simultaneously (just like

in a regular rectangle attack) as long as all related-key differentials used in E0

have the same key difference ΔKab and the same input difference α and as long
as all related-key differentials used in E1 have the same key difference ΔKac and
the same output difference δ.

The analysis of the related-key rectangle attack is similar to the one of the
rectangle attack. Starting with N plaintext pairs in S and N plaintext pairs
in T , we expect to find N22−n(p̂q̂)2 right quartets in S × T . For a random
permutation the number of “right quartets” is about N22−2n, so as long as
p̂q̂ > 2−n/2 we can use the related-key rectangle attack to distinguish between

Related-Key Rectangle Attack on the Full SHACAL-1 35

a random permutation and the attacked cipher. This distinguisher can be later
used for a key recovery attack.

We note that a related-key boomerang attack can be constructed similarly
to the related-key rectangle attack. The full analysis can be found in [8]. The
related-key boomerang and rectangle techniques were used to attack reduced
round variants of AES, IDEA, SHACAL-1, and SHACAL-2 and the full KASUMI
and COCONUT98 [8,9,15,19,18].

In the case of SHACAL-1, the key schedule algorithm is linear. Therefore,
given a key difference, all subkey differences are known, and can be easily used
in the related-key model.

5 Related-Key Rectangle Attack on the Full SHACAL-1

Our attack on SHACAL-1 is based on a 69-round related-key distinguisher. In
the attack on the full SHACAL-1, we try all the possible subkeys of the remaining
11 rounds, and decrypt all the ciphertexts. Then, the 69-round distinguisher is
applied. We improve the time complexity of the attack by partially decrypting
only 8 rounds, and then use the early abort approach to reduce the number of
values that are decrypted through the remaining three more rounds, before the
attack is applied. It is expected that for the right guess of the subkey of the last
11 rounds, the distinguisher would be more successful than for a wrong guess.
Thus, we can use this distinguisher to identify (to some extent) the right subkey.

5.1 69-Round Related-Key Distinguisher

We decompose 69-round SHACAL-1 into two sub-ciphers: E0 that contains the
first 34 rounds of SHACAL-1 (rounds 0–33), and E1 that contains the remaining
35 rounds (rounds 34–68).

We have transformed the collision producing differentials of SHA-1 presented
in [30] into related-key differentials for each of the two sub-ciphers. The first
related-key differential (for E0) has probability 2−41, and by fixing two bits of
the plaintexts and using several differentials simultaneously for E0 we obtain
p̂ = 2−38.5. The second related-key differential (for E1) has probability 2−39,
and by using several differentials simultaneously for E1 we obtain q̂ = 2−38.3.
The differentials are presented in Appendix A.

Combining these two differentials together leads to a 69-round related-key
rectangle distinguisher with probability 2−80 · p̂q̂ = 2−156.8, i.e., given N related-
key chosen plaintext pairs, we expect N2 · 2−160 · (p̂q̂)2 right quartets. Hence,
given 2157.8 related-key chosen plaintext pairs, we expect four right rectangle
quartets, while for a random cipher only 2−4.4 are expected.

5.2 The Key Recovery Attack

The basic approach for a key recovery attack is to guess the subkey of the last
11 rounds, partially decrypt all ciphertexts, and apply the distinguisher for the

36 O. Dunkelman, N. Keller, and J. Kim

remaining 69 rounds. Such an approach can be improved using the fact that in
every round, only a small part of the intermediate value is substantially changed,
while most of the value is only shifted. The attack is based on the early abort
technique which is widely used [11,12]. In this technique, once a pair/quartet
does not satisfy the required differences/properties it is excluded from further
analysis.

In the description of the attack algorithm we use the following notations: XA

denotes the value of word A in X . Similarly, YD,E denotes words D and E of
Y , etc. Let ΔXi denote the difference in word X before round i, i.e., ΔA70 is
the difference in word A before round 70, and after round 69. Also, let ei be the
32-bit word composed of 31 0’s and 1 in the ith place. We use ei,j to denote
ei ⊕ ej and ei,j,k = ei,j ⊕ ek, etc. We also denote the set of possible values of
ΔA70 given that the second differential is satisfied by S′.

We observe that even if we partially decrypt only 8 rounds, we still have a
filtering condition on the quartets: Since ΔD72 = ROTL30(ΔA69) and ΔE72 =
ROTL30(ΔB69), we can check whether the difference in these words corresponds
to the output difference in words A and B of the second differential. In addition,
we observe that we can extend the second differential by a truncated differential
of one additional round. There are only 324 = 28.3 possible ΔA70 values in S′,
hence, there are only 324 possible values for ΔC72 in case the second differential
holds.

Using these observations, we can get a filtering of 64 + 23.7 = 87.7 bits for
every pair in the end of round 71, or a filtering of 175.4 bits in total. Since the
attack starts with 2315.6 quartets, we expect that 2140.3 quartets pass the filtering
for any given subkey guess of rounds 72–79. We then guess the subkey of round
71 and compute ΔE71 that is equal to ΔC69 if the differential holds to obtain
an additional 64-bit filtering on the remaining quartets. After this filtering only
276.3 quartets remain for each subkey guess. Then we continue by guessing the
subkeys of rounds 70 and 69. As a result, the time complexity of the attack drops
rapidly, while the data complexity remains unchanged.

The algorithm of the attack is as follows:

1. Data Collection Phase
(a) Ask for the encryption of 2157.8 pairs of plaintexts (Pa, Pb), where Pb =

Pa⊕α, where Pa and Pb satisfy the restrictions described in Appendix A,
and where Pa is encrypted under Ka and Pb is encrypted under Kb.

(b) Ask for the encryption of 2157.8 pairs of plaintexts (Pc, Pd), where Pc =
Pd⊕α, where Pc and Pd satisfy the restrictions described in Appendix A,
and where Pc is encrypted under Kc and Pd is encrypted under Kd.

2. Partial Decryption
(a) For each guess of the subkey of rounds 72–79:

i. Partially decrypt all ciphertexts (under the corresponding keys).
ii. Find all pairs of partially decrypted ciphertexts (Ca, Cc), such that

CaC,D,E ⊕ CcC,D,E ∈ S, where Ca is encrypted under Ka, Cc

Related-Key Rectangle Attack on the Full SHACAL-1 37

is encrypted under Kc and S = {(x, y, z) : ROTL30(x) ∈ S′,
ROTL30(y) = δA = 0, ROTL30(z) = δB = e2}.

iii. For each such pair (Ca, Cc), let Pa and Pc be the corresponding
plaintexts. Let Pb = Pa ⊕ α and Pd = Pc ⊕ α, and let Cb and Cd be
the corresponding ciphertexts, respectively.

iv. If CbC,D,E ⊕CdC,D,E ∈ S pass the quartet (Pa, Pb, Pc, Pd) for a further
analysis.

(b) Partial Decryption of Round 71: For each guess of the subkey of
round 71:
i. Partially decrypt all the remaining quartets (under the correspond-

ing keys) and denote the resulting intermediate values by (C′
a, C

′
b,

C′
c, C

′
d).

ii. For each of the remaining quartets, check whether C′
aE

⊕C′
cE

= δC =
0 and discard all the quartets that do not satisfy the equation.

iii. For each of the remaining quartets, check whether C′
bE

⊕C′
dE

= δC =
0 and discard all the quartets that do not satisfy the equation.

(c) Partial Decryption of Round 70: For each guess of the subkey of
round 70:
i. Partially decrypt all the remaining quartets (under the correspond-

ing keys) and denote the resulting intermediate values by (C′′
a , C′′

b ,
C′′

c , C′′
d).

ii. For each of the remaining quartets, check whether C′′
aE

⊕C′′
cE

= δD =
0 and discard all the quartets that do not satisfy the equation.

iii. For each of the remaining quartets, check whether C′
bE

⊕C′
dE

= δD =
0 and discard all the quartets that do not satisfy the equation.

(d) Partial Decryption of Round 69: For each guess of the subkey of
round 69:
i. Partially decrypt all the remaining quartets (under the correspond-

ing keys) and denote the resulting intermediate values by (C′′′
a , C′′′

b ,
C′′′

c , C′′′
d).

ii. For each of the remaining quartets, check whether C′′′
aE

⊕C′′′
cE

= δE =
e1 and discard all the quartets that do not satisfy the equation.

iii. For each of the remaining quartets, check whether C′′′
bE

⊕C′′′
dE

= δE =
e1 and discard all the quartets that do not satisfy the equation.

iv. Pass all the remaining quartets to further analysis.
(e) Further Analysis: If for this subkey guess only one quartet is suggested

(or no quartets are suggested) discard the subkey guess. If the subkey is
not discarded, exhaustively search all possible values for the remaining
160 subkey bits for the correct key.

5.3 Analysis of the Key Recovery Attack

The time complexity of Step 1 is 2159.8 encryptions. The time complexity of
Step 2(a) is 8

80 · 2256 · 2159.8 = 2412.5 SHACAL-1 encryptions. Steps 2(b)–2(e)

38 O. Dunkelman, N. Keller, and J. Kim

are repeated for each subkey guess, i.e., 2256 times. For a given subkey guess,
Step 2(b) consists of 2141.3 · 232 partial decryptions of one SHACAL-1 round.
This is equivalent to 2141.3 · 232 · 1

80 = 2167.0 full SHACAL-1 encryptions. Thus,
the total time complexity of Step 2(b) is about 2256 · 2167.0 = 2423.0 SHACAL-1
encryptions.

There is an improvement of the time complexity by a factor of 8 based on the
observation that the difference in the most significant bit is not affected by the
actual key value. Thus, it is possible to guess in Step 2(a) the entire subkey of
rounds 74–79, and all but most significant bits of the subkeys of rounds 72–73.
This does not affect the ability to compute the difference in the most significant
bits of the words D72 and E72. Similarly, in Step 2(b) is is sufficient to guess the
31 least significant bits of K71 in order to find the difference in the three words:
C71, D71, and E71.

In Step 2(c) there is again no need to guess the entire subkey to deduce the
difference in the most significant bit. However, in order for the partial decryption
to be done correctly, the real value of the B70 has to be computed. Thus, in this
step we guess the most significant bit of K73 along with the 31 least significant
bits of K70. The same is done also in Step 2(d), where the most significant bit of
K72 is guessed along with the 31 least significant bits of K69. We note that the
improved variant guess 11 · 32 − 3 = 349 subkey bits during the entire attack.

The time complexities of the other steps are relatively smaller. Hence, the total
data complexity of the attack is 2159.8 related-key chosen plaintexts encrypted
under four keys, and the time complexity is 2420.0 SHACAL-1 encryptions. The
memory requirement of the attack is about 2159.8 memory blocks of 320 bits,
required for storing the large amount of data.

We note that a different approach may be used in our attack. We can re-
move the last three rounds of the second differential to increase its probability
by a factor of 26, resulting in a 66-round related-key rectangle distinguisher
with probability 2−80 · p̂ · q̂ = 2−150.8. The resultant distinguisher requires 2151.8

related-key chosen plaintext pairs (Pa, Pb) and (Pc, Pd) each to produce four
right plaintext quartets (while for a random cipher about 2−16.4 quartets that
satisfy the rectangle conditions are expected). Then, we apply partial decryp-
tions of rounds 69-79, 68, 67 and 66 in Steps 2(a), 2(b), 2(c) and 2(d), respec-
tively, and then run the final exhaustive search for the remaining 64-bit keys in
Step 2(e).

The time complexity of Step 2(a) in this case is 2152.8+352 · (11/80) = 2501.9

SHACAL-1 encryptions. In this attack we can derive the set S in Step 2-(a)
for the filtering of quartets, which has 270.8 elements, and thus the number of
remaining quartets after this step is about (2151.9 · 2−160+70.8)2 = 2125.2. It fol-
lows that Step 2(b) takes about 2126.2 · 2352+32 · (1/80) = 2503.9 SHACAL-1
encryptions. Compared to Steps 2(a) and 2(b), the followed steps have quite
small time complexities. Hence, this full-round attack on SHACAL-1 works with
a data complexity of 2153.8 related-key chosen plaintexts encrypted under four
related keys and with a time complexity of 2501.9 + 2503.9 = 2504.2 SHACAL-1

Related-Key Rectangle Attack on the Full SHACAL-1 39

encryptions. Again, a factor 8 in the time complexity can be improved using the
observation about the most significant bits, i.e., the attack’s time complexity is
2501.2 SHACAL-1 encryptions.

6 Differences Between Attacking SHA-1 and SHACAL-1

While it may seem that any attack on SHA-1 can be easily transformed into an
attack on SHACAL-1, and vice versa, this is not exactly the case. Investigating
the recent attacks on SHA-1 in [3,4,30], it seems that these attacks heavily
rely on the fact that the attacker can control some of the bits that enter the
nonlinear operations. This way, the collision-producing differentials have much
higher probability than the respective related-key differentials we use. We can
impose conditions on the keys (increasing the probabilities of the related-key
differentials), but then our attack would be applicable only for such keys, i.e., a
weak key class.

Another difference between the attacks on SHA-1 and our attack is the fact
that the collision attacks can iteratively fix the values they use, i.e., using message
modification techniques or neutral bits. This enables the collision producing
attacks to use shorter differential than ours (as these attacks actually start the
probabilistic process in a much later step).

There is another difference between the two cases. While in the case of encryp-
tion (SHACAL-1), we have to deal with each block of message independently,
collision attacks on the hash function can use multiple blocks. For example, the
attacker can treat messages that detoured the differential in a very late step,
by respective changes to the second block of the message. This fact allows the
collision search to use shorter differentials (this time from the end point), thus,
increasing the success probability.

Another problem our attack faces is the dual representation of XOR and
additive differentials. As we have less control on the encryption process than
the collision attacks have on the compression process, it is less useful for us to
consider the differentials using the dual representation. Again, for exploiting the
advantage of the additive differentials in the related-key differentials, we must
fix some of the key bits, resulting again in a weak key class.

7 Summary and Conclusions

In this paper we converted the differentials of the compression function of SHA-1
presented by Wang et al. to related-key differentials of the block cipher SHACAL-
1. Then we used the related-key rectangle technique to devise the first known
attack on the full 80-round SHACAL-1.

We also discussed the possibility of converting other techniques used in the
attacks on SHA-1 to attack SHACAL-1, and concluded that such conversion will
result in an attack applicable only to a weak key class of SHACAL-1.

40 O. Dunkelman, N. Keller, and J. Kim

Our attack improves by far the previously known results, that were able to at-
tack up to 70 rounds of the cipher, and demonstrates the power of the related-key
rectangle technique. However, the result is still highly theoretical and a practi-
cal attack on the full SHACAL-1 seems out of reach at this stage. We note that
keys shorter than 420 bits can still be considered secure, as for these keys the time
complexity of our attack is greater than exhaustive key search.

References

1. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

5. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

6. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle
Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

7. Biham, E., Dunkelman, O., Keller, N.: Rectangle Attacks on 49-Round SHACAL-1.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 22–35. Springer, Heidelberg
(2003)

8. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

9. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

10. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

11. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

12. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

13. Handschuh, H., Knudsen, L.R., Robshaw, M.J.: Analysis of SHA-1 in Encryption
Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer,
Heidelberg (2001)

14. Handschuh, H., Naccache, D.: SHACAL. In: preproceedings of NESSIE first work-
shop, Leuven (2000)

15. Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks
on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

Related-Key Rectangle Attack on the Full SHACAL-1 41

16. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

17. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

18. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack
— Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

19. Kim, J., Kim, G., Lee, S., Lim, J., Song, J.: Related-Key Attacks on Reduced
Rounds of SHACAL-2. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 175–189. Springer, Heidelberg (2004)

20. Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified Boomerang
Attack against Reduced-Round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002.
LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002)

21. NESSIE – New European Schemes for Signatures, Integrity and Encryption,
http://www.nessie.eu.org/nessie

22. NESSIE, Portfolio of recommended cryptographic primitives
23. NESSIE, Performance of Optimized Implementations of the NESSIE Primitives,

NES/DOC/TEC/WP6/D21/2
24. Saarinen, M.-J.O.: Cryptanalysis of Block Ciphers Based on SHA-1 and MD5. In:

Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 36–44. Springer, Heidelberg
(2003)

25. National, U.S.: Bureau of Standards, Secure Hash Standard, Federal Information
Processing Standards Publications No. 180-2 (2002)

26. Bogeart, E.V.D., Rijmen, V.: Differential Analysis of SHACAL, NESSIE internal
report NES/DOC/KUL/WP3/009/a (2001)

27. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

28. Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. In: Cryptographic Hash
Workshop, NIST, Gaithersburg (2005)

29. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

30. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

31. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

32. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

A Related-Key Differentials of SHACAL-1

In this appendix we describe the differentials used for our related-key rectangle
attacks on SHACAL-1. These differentials are based on the collision producing
differentials presented in [30].

http://www.nessie.eu.org/nessie

42 O. Dunkelman, N. Keller, and J. Kim

Table 2. Related-Key Differential for Rounds 0–33 of SHACAL-1

Round (i) ΔK ΔAi ΔBi ΔCi ΔDi ΔEi Probability

Input 0 e1 0 0 e31 e31 e31 2−1

1† e6 e1 0 0 e31 e31 2−2

2† e1,31 0 e1 0 0 e31 2−2

3 e31 0 0 e31 0 0 2−1

4 e1,31 0 0 0 e31 0 2−2

5 e6,31 e1 0 0 0 e31 2−1

6 0 0 e1 0 0 0 2−2

7 e6,31 e1 0 e31 0 0 2−2

8 e31 0 e1 0 e31 0 2−3

9 e6 e1 0 e31 0 e31 2−2

10 e31 0 e1 0 e31 0 2−3

11 e6 e1 0 e31 0 e31 2−2

12 e1,31 0 e1 0 e31 0 2−3

13 0 0 0 e31 0 e31 2−1

14 e31 0 0 0 e31 0 2−1

15 e31 0 0 0 0 e31 1
16 0 0 0 0 0 0 1
17 0 0 0 0 0 0 1
18 0 0 0 0 0 0 1
19 0 0 0 0 0 0 1
20 0 0 0 0 0 0 1
21 0 0 0 0 0 0 1
22 0 0 0 0 0 0 1
23 0 0 0 0 0 0 1
24 0 0 0 0 0 0 1
25 0 0 0 0 0 0 1
26 e2 0 0 0 0 0 2−1

27 e7 e2 0 0 0 0 2−1

28 e2 0 e2 0 0 0 2−1

29 e0,3 0 0 e0 0 0 2−2

30 e0,8 e3 0 0 e0 0 2−2

31 e0,3 0 e3 0 0 e0 2−2

32 e1,4 0 0 e1 0 0 2−2

33 e1,9 e4 0 0 e1 0 2−2

Output (34) 0 e4 0 0 e1
† — The probability of this round can be improved by a factor of 2.
Differences are presented before the round, i.e., ΔA0 is the input difference.

The first related-key differential is for rounds 0–33 and is presented in Table 2.
The probability of the differential is 2−41. This probability can be increased by
a factor of 4 by fixing the equivalent to two bits in each of the plaintexts of the
pair. If we set the most significant bit of A to be zero, the probability of the
second round of the differential is increased by a factor of 2. By setting bit 3 of
A to differ from bit 3 of B, the probability of the third round of the differential
is also increased by a factor of 2.

Related-Key Rectangle Attack on the Full SHACAL-1 43

Table 3. Related-Key Differential for Rounds 34–68 of SHACAL-1

Round (i) ΔK ΔAi ΔBi ΔCi ΔDi ΔEi Probability

Input 34 e1,30 0 e1 e31 0 e30,31 2−2

35 e1 0 0 e31 e31 0 2−1

36 e6 e1 0 0 e31 e31 2−1

37 e1,31 0 e1 0 0 e31 2−1

38 e31 0 0 e31 0 0 1
39 e1,31 0 0 0 e31 0 2−1

40 e6,31 e1 0 0 0 e31 2−1

41 0 0 e1 0 0 0 2−2

42 e6,31 e1 0 e31 0 0 2−2

43 e31 0 e1 0 e31 0 2−3

44 e6 e1 0 e31 0 e31 2−2

45 e31 0 e1 0 e31 0 2−3

46 e6 e1 0 e31 0 e31 2−2

47 e1,31 0 e1 0 e31 0 2−3

48 0 0 0 e31 0 e31 2−1

49 e31 0 0 0 e31 0 2−1

50 e31 0 0 0 0 e31 1
51 0 0 0 0 0 0 1
52 0 0 0 0 0 0 1
53 0 0 0 0 0 0 1
54 0 0 0 0 0 0 1
55 0 0 0 0 0 0 1
56 0 0 0 0 0 0 1
57 0 0 0 0 0 0 1
58 0 0 0 0 0 0 1
59 0 0 0 0 0 0 1
60 0 0 0 0 0 0 1
61 e2 0 0 0 0 0 2−1

62 e7 e2 0 0 0 0 2−1

63 e2 0 e2 0 0 0 2−1

64 e0,3 0 0 e0 0 0 2−2

65 e0,8 e3 0 0 e0 0 2−2

66 e0,3 0 e3 0 0 e0 2−2

67 e1,4 0 0 e1 0 0 2−2

68 e1,9 e4 0 0 e1 0 2−2

Output 69 0 e4 0 0 e1

Differences are presented before the round, i.e., ΔA34 is the input difference.

We use the notation ei to represent the 32-bit word composed of 31 0’s and 1
in the ith place. We use ei,j to denote ei ⊕ ej and ei,j,k = ei,j ⊕ ek, etc.

Due to the nature of the rectangle attack, we can improve the probability by
counting over several differentials. We have counted over differentials which have
the same first 33 rounds as the differential presented in Table 2. The resulting
probability is p̂ = 2−38.5 (when fixing the respective bits of the plaintext).

44 O. Dunkelman, N. Keller, and J. Kim

The second related-key differential for rounds 34–68 is presented in Table 3.
This differential is also based on the collision producing differentials of [30]. The
probability of this differential is 2−39.

Again, due to the nature of the rectangle attack, we can improve the probabil-
ity by counting over several differentials. We count over various similar charac-
teristics, by changing the first round of this differential. The resulting probability
is q̂ = 2−38.3.

Cryptanalysis of Achterbahn-Version 2

Martin Hell and Thomas Johansson

Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin,thomas}@it.lth.se

Abstract. Achterbahn is one of the stream cipher proposals in the eS-
TREAM project. After the first version had been successfully cryptana-
lyzed, the second version, denoted Achterbahn-Version 2, was proposed.
This paper demonstrates an attack on this second version. In the attack,
a quadratic approximation of the output function is considered. The at-
tack uses less keystream bits than the upper limit given by the designers
and the computational complexity is significantly less than exhaustive
key search.

Keywords: Achterbahn, cryptanalysis, stream ciphers, key recovery
attack.

1 Introduction

The Achterbahn stream cipher is one of many candidates submitted to the eS-
TREAM [1] project. It is to be considered as a hardware efficient cipher, using a
key size of 80 bits. There have been some successful attacks on Achterbahn [6,5].
As a response to these attacks, the cipher was updated to a more secure version,
denoted Achterbahn-Version 2 [4]. Recently, eSTREAM moved into the second
phase of the evaluation process and based on the design of Achterbahn-Version 2,
the cipher qualified as one of the phase 2 ciphers. After receiving a preliminary
version of this paper, the designers tweaked the cipher one more time and the
version that is to be considered for the second phase of eSTREAM is the third
version, denoted Achterbahn-128/80. This third version will not be considered
in this paper.

The design of Achterbahn is based on the idea of a nonlinear combiner, but
using nonlinear feedback shift registers instead of registers with linear feedback.
When Achterbahn was tweaked, the designers focused on improving the cipher
such that approximations of the output function was not a threat. In this pa-
per, we show that the tweak was not enough, it is still possible to attack the
cipher using approximations of the output function. This is the first attack on
Achterbahn-Version 2.

The paper is outlined as follows. Section 2 will discuss some background the-
ory. Section 3 gives a description of the Achterbahn stream cipher. In Section 4
we give the previous results on Achterbahn that are important to our analysis,
which is then given in Section 5. Section 6 will conclude the paper.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 45–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

46 M. Hell and T. Johansson

S

NLFSR

NLFSR

NLFSR

Fig. 1. Overview of the Achterbahn design idea

2 Preliminaries

In this paper we will repeatedly refer to the bias of an approximation. The bias
ε of an approximation A of a Boolean function P is usually defined in one of two
ways.

1. Pr(P = A) = 1/2 + ε. In this case, when n independent bits are xored the
bias of the sum is given by 2n−1εn.

2. Pr(P = A) = 1/2(1+ ε). In this case, when n independent bits are xored the
bias of the sum is given by εn. This bias is also commonly referred to as the
imbalance.

The bias in the first case will always be half of the bias in the second case.
Nevertheless, it is common to approximate the number of keystream bits needed
in a distinguisher as

samples needed =
1
ε2

(1)

regardless which definition of the bias that has been used. The error probability of
the distinguisher decreases exponentially with a constant factor multiplied with
the number of samples given in (1). Following the notation used in all previous
papers on Achterbahn, we will adopt the second case in this paper. Thus, ε =
2Pr(P = A) − 1. Obviously, the sign of ε is irrelevant in the theoretical analysis.
In the following, when P equals A with probability α, we will write this as P

α= A.

3 Description of Achterbahn

The Achterbahn stream cipher was first proposed in [2] and later tweaked in [4].
This section will describe both versions of Achterbahn.

Achterbahn supports a key of size 80 bits. The size of the IV is variable and
all multiples of 8 between 0 and 64 bits are supported. The cipher consists of a
set of nonlinear feedback shift registers and an output function, see Fig. 1. All
registers are primitive, which in this context means that the period of register
Ri is 2Ni − 1, where Ni is the length of register Ri. We denote this period by Ti.
Hence,

Ti = 2Ni − 1, ∀i.

Cryptanalysis of Achterbahn-Version 2 47

The output function is a Boolean function that takes one input bit from each
shift register and outputs a keystream bit. The input bit to the Boolean function
from register Ri at time t will be denoted xi(t) and if the time instance t is fixed
the simplified notation xi will sometimes be used.

Achterbahn comes in two variants, denoted reduced Achterbahn and full
Achterbahn. In reduced Achterbahn the input bit to the Boolean function from
shift register Ri is simply the output bit of Ri. In full Achterbahn the bit used
in the Boolean function is a key dependent linear combination of a few bits in
Ri. Achterbahn-Version 1 uses 8 shift registers. Their size ranges from 22 to 31
bits. The keystream bit, denoted z, is produced by the Boolean function

R(x1, . . . , x8) = x1 + x2 + x3 + x4 + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8.

Achterbahn-Version 2 uses two extra shift registers, hence, it consists of 10 non-
linear feedback shift registers of size ranging from 19 to 32 bits. Their sizes
are N = 19, 22, 23, 25, 26, 27, 28, 29, 31 and 32. The Boolean output function in
Achterbahn-Version 2 is much larger than the function used in Version 1. It is
defined as

S(x1, . . . , x10) = x1 + x2 + x3 + x9 + G(x4, x5, x6, x7, x10)
+(x8 + x9)(G(x4, x5, x6, x7, x10) + H(x1, x2, x3, x4, x5, x6, x7, x10)),

where

G(x4, x5, x6, x7, x10) = x4(x5 ∨ x10) + x5(x6 ∨ x7) + x6(x4 ∨ x10)
+x7(x4 ∨ x6) + x10(x5 ∨ x7)

and

H(x1, x2, x3, x4, x5, x6, x7, x10) = x2 + x5 + x7 + x10 + (x3 + x4)x6

+(x1 + x2)(x3x6 + x6(x4 + x5)).

The function S has resiliency 5 and nonlinearity 448. This means that any biased
linear or nonlinear approximation has to consider at least 6 variables.

3.1 Initialization

The initialization of Achterbahn is simple. It is divided into 5 or 6 steps depend-
ing on if the reduced or the full variant is used. These steps are the following.

1. All registers Ri are loaded in parallel with the first Ni bits of the key.
2. The registers are updated and the remaining key bits are xored with the

input to the registers.
3. The registers are updated and the IV bits are xored with the input to the

registers.
4. The least significant bit of each NLFSR is set to 1. This prevents the NLFSRs

to be initialized with all zeros.

48 M. Hell and T. Johansson

5. Warm up phase. The registers are clocked such that the total number of
clocks for each register in the initialization phase is 112 + |IV |, where |IV |
is the chosen length of the IV.

6. A key and IV dependent vector is prepared, defining which of the positions in
the registers that are to be xored to form the input to the Boolean combining
function. (This step is only used in the full variant of Achterbahn.)

Because of step 4 above, the entropy of the content of register Ri at the beginning
of step 5 is only Ni − 1. No secrets (key bits) are used in phase 5 and thus,
exhaustively searching register Ri requires 2Ni−1 tries. Note that in previous
papers on Achterbahn the entropy loss in step 4 has not been taken into account
and when we discuss the previous analysis the factor 2Ni will be used as was
done in the original papers.

4 Previous Analysis of Achterbahn

There are several papers analyzing the Achterbahn stream cipher. In this section
we take a closer look at them and give the results that are relevant to the new
attack given in Section 5.

4.1 Analysis of Achterbahn-Version 1

Achterbahn-Version 1 was first cryptanalyzed in [5], taking advantage of weak-
nesses found in the Boolean output function. The designers answered by giving
two alternative combining functions R′ and R′′ in [3]. In [6], which is an ex-
tended and published version of [5], the authors show that the cipher is weak
even if the new combining functions are used. An important observation in [5] is
the following. Assume that x5 = x6 = 0 in R(x1, . . . , x8). Then R(x1, . . . , x8) is
a purely linear function. The linear complexity of the resulting function l(t) =
x1(t)⊕x2(t)⊕x3(t)⊕x4(t) is then bounded by the sum of the linear complexities
of the registers R1, R2, R3 and R4, which is approximately 226. Hence assuming
that x5 = x6 = 0, there are parity checks involving at most 226 consecutive
bits. This parity check equation could be found by noting that l(t) ⊕ l(t + Ti)
does not depend on the variable xi. Doing this for i = 1, 2, 3 and 4, a parity
check equation involving 16 terms within a time interval of 226.75 keystream
bits can be found. By knowing for which initial states of R5 and R6 these 16
terms will be zero, i.e., when the parity check was valid with probability 1,
the key could be recovered.

The method of finding a parity check was nicely refined and generalized in [4].
They note that the sequence generated by Ri has characteristic polynomial xTi −1.
Furthermore,

g(x) = (xT1 − 1)(xT2 − 1)(xT3 − 1)(xT4 − 1)

is a characteristic polynomial of l(t). Even if all variables do not appear linearly
in the ANF of a Boolean function, a sparse parity check can easily be found. For

Cryptanalysis of Achterbahn-Version 2 49

instance, the sequence producedby the functionF (t)=x1(t)x2(t)⊕x1(t)x2(t)x3(t)
has characteristic polynomial

g(x) = (xT1T2 − 1)(xT1T2T3 − 1),

giving a parity check equation involving only 4 terms.
In [6], the authors also demonstrated that it is possible to break Achter-

bahn by considering biased linear approximations of the output function. The
approximation

z(t) α= x1(t) ⊕ x2(t) ⊕ x3(t) ⊕ x4(t) ⊕ x6(t)

holds with probability α = 0.75, i.e., it has a bias ε = 0.5. Since there are 32
terms in the corresponding parity check equation, the total bias is 2−32 and
a distinguishing attack using 264 bits exists. Furthermore, they note that by
guessing the state of register R1, the parity check will only involve 16 terms
and the distinguisher will only need 232 bits. Additionally, the computational
complexity will increase by a factor of 223. Now the attack is a key recovery
attack with computational complexity 255 using 232 bits of keystream. This is
the best known attack on reduced Achterbahn. The same attack is possible on
the full version, but the computational complexity is then 261 instead.

4.2 Analysis of Achterbahn-Version 2

In [4], the designers of Achterbahn demonstrate that the attacks mentioned
above will not work when applied to Version 2. This is mostly due to the fact
that the combining function S(x1, . . . , x10) is 5-resilient, thus any biased linear
approximation has at least 6 terms and the corresponding parity check will have
64 terms. By guessing the state of the first two registers, the number of terms
in the parity check will be 16, but even then the computational complexity and
the keystream needed will be far above exhaustive key search.

Further, the designers also considered quadratic and cubic approximations of
S(x1, . . . , x10). In this section we give a description of the cubic case since the
result of this analysis gives a very important prerequisite for Achterbahn-Version
2. Our attack will use a quadratic approximation. The cubic approximation that
is considered to be most threatening is given by

C(x1, . . . , x10) = x4 + x6x9 + x1x2x3.

This approximation will agree with S(x1, . . . , x10) with probability

63
128

=
1
2

(
1 − 1

64

)
,

implying that ε = 2−6. We can guess the content of register R4 with N4 = 25.
The characteristic polynomial of the sequence generated by the two nonlinear
terms is

g(x) = (xT6T9 − 1)(xT1T2T3 − 1).

50 M. Hell and T. Johansson

This will give a parity check equation with 4 terms and bias ε4 = (2−6)4 = 2−24

assuming that the variables are independent. The distance between the first and
the last bit in the parity check is T1T2T3 +T6T9 ≈ 264 bits. The time complexity
of this attack is 2482N4 = 273. This is less than exhaustive key search and
consequently the designers restrict the frame length of Achterbahn-Version 2 to
263 bits.

Note that the previously described attack is impossible when the keystream
length is limited to 263 since then we cannot create any biased samples at all.
In most distinguishing attacks on stream ciphers, you can usually create biased
samples even if the keystream length is limited, it is just the case that you cannot
collect enough samples to detect the bias for sure.

5 Cryptanalysis of Achterbahn-Version 2

Since there is an attack requiring approximately 264 keystream bits, and the
frame length is restricted to 263 bits, a new attack has to require less than 263

keystream bits in order to be regarded as successful. A danger of restricting
the amount of keystream to some number due to the existence of an attack is
that someone might find an improvement of the attack. This would render the
cipher insecure. In this section we demonstrate exactly that. A straightforward
approach of our attack is given first and in Section 5.4 an improved variant is
given, reducing the computational complexity significantly.

5.1 Attack on the Reduced Variant

The complexities given in this subsection will be based on the reduced variant of
the cipher, i.e., the input to the Boolean combining function will be the rightmost
bit in each NLFSR.

The attack will consider the quadratic approximation

Q(x1, . . . , x10) = x1 + x2 + x3x8 + x4x6.

This approximation will agree with S with probability

33
64

=
1
2

(
1 +

1
32

)
,

implying that ε = 2−5. Denote the sequence produced by Q by z′(t). Using this
approximation, we can use the characteristic polynomial

g(x) = (xT3T8 − 1)(xT4T6 − 1).

which gives a parity check equation involving 4 terms. Looking at the sequence
generated by Achterbahn-Version 2, we know that if we consider the sequence

d(t) = z(t) ⊕ z(t + T3T8) ⊕ z(t + T4T6) ⊕ z(t + T3T8 + T4T6) (2)

Cryptanalysis of Achterbahn-Version 2 51

then d(t) will not depend on the quadratic terms in Q(x1, . . . , x10). Under the
assumption that the 4 keystream bits in (2) are independent, the bias of (2) is
ε4 = 2−20. If these keystream bits are not independent the bias will be larger,
so we are considering a worst case scenario. The dependency of the keystream
bits will be further examined in a separate paper. Hence, with probability α =
1/2(1 + 2−20), the sequence d(t) will equal

d(t) α= z′(t) ⊕ z′(t + T3T8) ⊕ z′(t + T4T6) ⊕ z′(t + T3T8 + T4T6)
= x1(t) ⊕ x2(t) ⊕ x1(t + T3T8) ⊕ x2(t + T3T8) ⊕ x1(t + T4T6)

⊕x2(t + T4T6) ⊕ x1(t + T3T8 + T4T6) ⊕ x2(t + T3T8 + T4T6).

At this point we can guess the initial state of the registers R1 and R2 as sug-
gested in [4], where they used another approximation. The length of these two
registers is N1 = 19 and N2 = 22 respectively. The amount of keystream needed
to distinguish the output sequence from random is 240 so the computational
complexity would be 218+21+40 = 279, which is the same as the expected com-
plexity in an exhaustive search. The distance between the bits in the sum is
T3T8 + T4T6 ≈ 253 so this would be the amount of keystream needed.

Instead of taking this approach we note that the length of register R1 is
N1 = 19, hence,

x1(t) = x1(t + T1) = x1(t + 219 − 1).

Thus, for all keystream bits, distance T1 = 219 − 1 bits apart, x1 will always
contribute with the same value to the output function. Consequently, instead of
taking the sequence d(t) for t = 0 . . . 240 − 1 we can instead take the sequence
d′(t) = d(t(219 − 1)) for t = 0 . . . 240 − 1, i.e., jump forward T1 steps for each
sample. Hence,

d′(t) = z(tT1) ⊕ z(tT1 + T3T8) ⊕ z(tT1 + T4T6) ⊕ z(tT1 + T3T8 + T4T6)
α= x2(tT1) ⊕ x2(tT1 + T3T8) ⊕ x2(tT1 + T4T6)

⊕x2(tT1 + T3T8 + T4T6) ⊕ γ(t),

where

γ(t) = x1(tT1) ⊕ x1(tT1 + T3T8) ⊕ x1(tT1 + T4T6) ⊕ x1(tT1 + T3T8 + T4T6)

is a constant. If the value of γ(t) = 0, then the probability α = 1/2(1+ 2−20). If
the value γ(t) = 1 then α = 1/2(1 − 2−20). In any case, the number of samples
needed to detect the bias is 240. The total amount of keystream required in this
approach will increase with a factor of 2T1 , i.e.,

keystream bits needed = 253 + 219240 = 259.02.

This value is less than the maximum length of a frame. The computational
complexity will be 240221 = 261, since now we only need to guess R2 with
N1 = 22, requiring 221 guesses. This will give us the initial state of register R2

after step 4 in the initialization process.

52 M. Hell and T. Johansson

5.2 Recovering the Key

When one state is known, finding the actual key used can be done using a meet-
in-the-middle attack and a time/memory tradeoff approach. First, R2 is clocked
backwards until we reach the state that ended the introduction of the key. We
denote this state Δ. Then the key is divided into two parts, k1 and k2 bits each
and k2 = 80 − k1. We guess the first k1 bits of the key and clock the register
until after the introduction of this part. All possible 2k1 states are saved in a
table. Then the last k2 bits of the key are guessed, and the state Δ is clocked
backwards k2 times reversing the introduction of the key. Any intersection of the
two states reached, gives a possible key candidate. Since R2 has size N2 = 22
we expect the number of intersections to be 2802−22 = 258, i.e., less than the
complexity of finding the state of R2. The step of finding the intersections will
require memory 2k1 and time 2k1 + 2k2 . Appropriate values can be e.g., k1 = 30
and k2 = 50. The total computational complexity of the attack would then be
261 + 258 = 261.17.

5.3 Attack on the Full Variant

The full Achterbahn-Version 2 uses a key dependent linear combination of the
shift register bits as input to the Boolean combining function. To the best of our
knowledge, there is no specification of Version 2 that explicitly gives the amount
of bits in each register that is used in the linear combination. However, in the
analysis given in [4, Sect. 3.3], the designers imply that for the registers R1, R2

and R3, 3 register bits are used in each. In our attack we are only interested in
the amount of bits used from R1 and R2 so this information is sufficient. The
consequence is that, when attacking the full variant, an extra factor of 23 has to
be multiplied when finding the state register R2.

5.4 Improving the Computational Complexity

In the previous subsection, a simple approach for the attack was given resulting
in computational complexity 261.17 and 259.02 keystream bits for the reduced
variant. The computational complexity of the attack can be significantly reduced
using the fact that the period of the registers are very short. In this subsection
we go through each step in the attack and give the computational complexity
in each step. It is assumed that the cryptanalyst observes a sequence of 259.02

keystream bits.

– Produce d’(t). From the observed keystream sequence, the sequence d′(t)
of length 240 is computed. This will have computational complexity 242 since
each bit in d′(t) is the sum of 4 bits in the keystream. The amount of memory
required to save this sequence is 240 bits, i.e., 237 bytes.

– Build a table from d’(t). The straightforward approach when d′(t) is
available is to compare the bits in d′(t) with the bits produced by

x2(tT1) ⊕ x2(tT1 + T3T8) ⊕ x2(tT1 + T4T6) ⊕ x2(tT1 + T3T8 + T4T6),

Cryptanalysis of Achterbahn-Version 2 53

Position in d’(t) # Zeros # Ones

0 + iT2

1 + iT2

2 + iT2

...

T2 − 1 + iT2

Fig. 2. Store the number of ones and zeros in a table

0 ≤ t < 240, for all possible initial states of R2. Indeed, this would require
a computational complexity of 261 as given in Section 5.1. To speed up the
exhaustive search of register R2 we note that

x2(t) = x2(t mod T2).

This means that all d′(t + iT2), ∀i, will be compared with the same value.
In order to take advantage of this, we suggest to build a table with the bits
in d′(t). We go through d′(t) and count the number of zeros and ones in
d′(0+ iT2), d′(1+ iT2), d′(2+ iT2), etc. These numbers are stored in a table,
see Fig 2. This step will have computational complexity 240 and requires
about 222 words of memory.

– Recover R2. When the state of register R2 is to be recovered the table in
Fig 2 is used. For each possible initial state of R2 the sum of the four bits

x2(tT1) ⊕ x2(tT1 + T3T8) ⊕ x2(tT1 + T4T6) ⊕ x2(tT1 + T3T8 + T4T6), (3)

0 ≤ t < T2, is found. Note that all positions are taken modulo T2. The
number of occurrences in the precomputed table is then added together
where the column used is the value of the sum (3). The bias will be detected
for the correct initial state of R2. Because of the precomputed table, this
step will now only have computational complexity T2221 = 243 instead of
261. For full Achterbahn-Version 2, this complexity will be increased to 246.

– Recover the key. To recover the key, the meet-in-the-middle approach
given in section 5.1 can be used. In that case 258 keys will be candidates as
correct key which is much higher than the computational complexity to find
the state of R2. To reduce this number, we first find the state of R1. This
is easy now since R2 is known. A similar table can be produced from the
sequence d(t) and the initial state of R1 is found with complexity T1218 = 237.
When both R1 and R2 are known the expected number of key candidates
decreases to 280−22−19 = 239. All these key candidates can be tested without
this step being a computational bottleneck.

It is interesting to note that once we have received 259.02 keystream bits, the
maximum computational step is only 243 and 246 for the reduced and full variants
respectively. This is due to the fact that we only use a fraction of the received
keystream and that we can take advantage of the fact that the registers have

54 M. Hell and T. Johansson

short period. It is debatable if we can claim that the computational complexity
of the attack much lower than the required amount of keystream since producing
and receiving the keystream will require at least 259.02 clockings of the cipher.
On the other hand, if we are given a randomly accessible memory with 259.02

keystream bits, then the key is found with much fewer computational steps since
not all bits on the memory will be accessed. This could be a possible scenario
in the case of future DVD formats with extremely high resolution, though the
access time would probably be a bottleneck in that case. Anyway, we will be
conservative in our claims and consider the computational complexity to be the
same as the amount of keystream needed, i.e., 259.02. Consequently, the attack
on full and reduced Achterbahn-Version 2 will have the same complexity.

5.5 On the Problem of Finding the Initial State of R2

When we try to recover the initial state of R2 we assume that it is enough to
consider 1/ε2 bits in order to detect the bias and thus identifying the correct
initial state. In total 221 different candidate states are tested and while it is
true that the bias will be detected for the correct initial state it is very likely
that several other states will report a detected bias. This will happen because
we can assume that the sum of the positions in the precomputed table will be
distributed according to a normal distribution with expected value 239. In our
case, this is not really a problem. The correct initial state can still be found using
only 259.02 bits and 240 samples to detect the bias. For all states that report a
bias, we can do the same thing again, shifting the sequence d′(t) one step. This
will give 240 new samples and we can check which of the remaining states will
report a detected bias. The total amount of keystream needed in our attack will
be increased by only 1 bit and the extra amount of computations will be about
240, the complexity of building a new table. Since our claimed complexity is
259.02 we can do this procedure many times if necessary without exceeding the
claimed computational complexity.

6 Conclusion

Achterbahn-Version 2 was designed to resist approximations of the output func-
tions, linear approximations as well as quadratic and cubic approximations. Due
to a cubic approximation, the amount of keystream that is allowed to be gener-
ated is limited to 263. In this paper we have shown that it is still possible to find
an attack using a quadratic approximation. The amount of keystream needed
in the attack is below the given limit. Instead of guessing both R1 and R2, as
was done in a previous analysis, we guess only one of the registers. The attack
on Achterbahn-Version 2 has computational complexity slightly more than 259

and needs slightly more than 259 keystream bits. After receiving the keystream
bits the computational step is very fast due to the fact that we do not use all
keystream bits and that the periods of the registers are very short. The complex-
ities will be the same for both the full and the reduced variants of the cipher.

Cryptanalysis of Achterbahn-Version 2 55

Acknowledgement

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the author’s views, is
provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk
and liability.

References

1. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/

2. Gammel, B.M., Göttfert, R., Kniffler, O.: The Achterbahn stream cipher. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/002 (2005),
http://www.ecrypt.eu.org/stream

3. Gammel, B.M., Göttfert, R., Kniffler, O.: Improved Boolean combining functions
for Achterbahn. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/072
(2005), http://www.ecrypt.eu.org/stream

4. Gammel, B.M., Göttfert, R., Kniffler, O.: Status of Achterbahn and tweaks. The
State of the Art of Stream Ciphers. In: Workshop Record, SASC 2006, Leuven,
Belgium (February 2006)

5. Johansson, T., Meier, W., Müller, F.: Cryptanalysis of Achterbahn. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/064 (2005),
http://www.ecrypt.eu.org/stream

6. Johansson, T., Meier, W., Müller, F.: Cryptanalysis of Achterbahn. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, Springer, Heidelberg (2006)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Cryptanalysis of the Stream Cipher ABC v2�

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. ABC v2 is a software-efficient stream cipher with 128-bit key.
In this paper, we apply a fast correlation attack to break ABC v2 with
weak keys. There are about 296 weak keys in ABC v2. The complexity
to identify a weak key and to recover the internal state of a weak key is
low: identifying one weak key from about 232 random keys requires 6460
keystream bytes and 213.5 operations for each random key. Recovering
the internal state of a weak key requires about 219.5 keystream bytes and
232.8 operations. A similar attack can be applied to break ABC v1 with
much lower complexity than the previous attack on ABC v1.

Keywords: Fast correlation attack, key-dependent S-box, stream cipher,
ABC v2.

1 Introduction

ABC [1] is a stream cipher submitted to the ECRYPT eStream project. It is one
of the fastest submissions with encryption speed about 3.5 cycles/byte on the
Intel Pentium 4 microprocessor.

ABC v1 was broken by Berbain and Gilbert [3] (later by Khazaei [8]). Their
divide-and-conquer attack on ABC exploits the short length (63 bits) of the LFSR
in the component A and the non-randomness in the component C: all the possi-
ble initial values of the LFSR get tested, and the correct value results in the bi-
ased binary stream that matches the non-random output from the component C.
The component C is a key-dependent 32-bit-to-32-bit S-box. Vaudenay [12], Mur-
phy and Robshaw [11] have stated that the key-dependent S-boxes may be weak.
Berbain and Gilbert’s attack on ABC v1 deals with the weak keys that are related
to the non-bijective S-box. This type of weak key exists with probability close to
1. Recovering the internal state of a weak key requires about 295 operations and
234 keystream bytes.

In order to resist these attacks, the ABC designers introduced ABC v2 with
the improved components A and B. In ABC v2 [2], the length of the LFSR is
127 bits instead of the 63 bits in ABC v1. The increased LFSR length makes
it impossible to test all the states of the LFSR, thus the attack on ABC v1
� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 56–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cryptanalysis of the Stream Cipher ABC v2 57

can no longer be applied to ABC v2. However ABC v2 is still insecure due to
the low weight of the LFSR and the non-randomness in the component C (the
component C in ABC v1 is the same as in ABC v2).

In this paper, we find a new type of weak key that exists with probability 2−32.
This new type of weak key results in a heavily biased output of the component C.
Due to the low weight of the LFSR and the strong correlation resulting from the
component C, a fast correlation attack can be applied to recover the LFSR. After
recovering the LFSR, the internal state of the cipher can be recovered easily. The
identification of a weak key from 232 random keys requires 6460 keystream bytes
from each key, and 213.5 instructions for each keystream. Recovering the internal
state of a weak key requires about 227.5 keystream bytes and 235.7 instructions.
Both the ABC v1 and ABC v2 are vulnerable to this attack.

This paper is organized as follows. In Sect. 2, we illustrate the ABC v2. In
Sect. 3, we define the weak keys and show how to identify them. Section 4
recovers the internal state of a weak key. Section 5 concludes this paper.

2 The Stream Cipher ABC v2

The stream cipher ABC v2 consists of three components – A, B and C, as shown
in Fig. 1. The component A is a regularly clocked LFSR, the component B is
a finite state machine (FSM), and the component C is a key-dependent S-box.
ABC v1 has the same structure as ABC v2 except that the LFSR in ABC v1
is 63-bit, and the FSM in ABC v1 has less elements than that in ABC v2. The
component C in ABC v1 is the same as that in ABC v2.

The component A is based on a linear feedback shift register with primi-
tive polynomial g(x) = x127 + x63 + 1. Denote the register in component A as
(z3, z2, z1, z0), where each zi is a 32-bit number. Note that this 128-bit register
itself is not a linear feedback shift register. Its initial value depends on the key
and IV. At each step of ABC v2, 32 bits of this 128-bit register get updated:

ζ = (z2 ⊕ (z1 << 31) ⊕ (z0 >> 1)) mod 232

z0 = z1 , z1 = z2 , z2 = z3 , z3 = ζ ,

where << and >> indicates left shift and right shift, respectively.
The component B is specified as B(x) = ((x ⊕ d0) + d1) ⊕ d2 mod 232, where

x is the 32-bit input, d0, d1 and d2 are key and IV dependent 32-bit numbers,
d0 ≡ 0 mod 4, d1 ≡ 1 mod 4, d2 ≡ 0 mod 4. The x is updated as x = B(x)+ z3.

The component C is specified as C(x) = S(x) >>> 16, where >>> indicates
rotation, x is the 32-bit input, S(x) = e +

∑31
i=0(ei × x[i]), where x[i] denotes

the ith least significant bit of x, and e and ei are key dependent 32-bit random
numbers, except that e31 ≡ 216 mod 217. Note that e and ei are not related to
the initialization vector.

Each 32-bit keystream word is given as y = C(x) + z0.

58 H. Wu and B. Preneel

Fig. 1. Keystream generation of ABC v2 [2]

The details of the initialization of ABC v2 are not described here. We are
only interested in the generation of the key-dependent S-box in the component
C. The above specifications of the component C are sufficient for the illustration
of the attacks presented in this paper.

3 The Weak Keys of ABC v2

In Sect. 3.1, we introduce some observation related to the bias of carry bits.
Section 3.2 defines the ABC v2 weak keys and gives an attack to identify them.

3.1 The Large Bias of Carry Bits

Carry bits are always biased even if the two addends are random. The bias of the
carry bit at the n-th least significant bit position is 1

2 +2−n−1 (n ≥ 1). However,
this bias is very small for large n. In the following, we look for the large bias of
carry bits when the addends are not random.

Cryptanalysis of the Stream Cipher ABC v2 59

Table 1. The probability of c1 ⊕ c2 ⊕ c3 = 0 (denote the probability as 1
2 + ε)

n ε n ε

1 0.125 5 0.071441650390625

2 0.078125 6 0.071430206298828125

3 0.072265625 7 0.071428775787353515625

4 0.071533203125 8 0.071428596973419189453125

Lemma 1. Denote u and v as two random and independent n-bit integers. Let
cn = (u + v) >> n, where cn denotes the carry bit at the nth least significant
bit position. Denote the most significant bit of u as un−1. Then Pr(cn ⊕ un−1 =
0) = 3

4 .

Proof. cn = (un−1 · vn−1) ⊕ ((un−1 ⊕ vn−1) · cn−1). If cn−1 = 0, then cn ⊕
un−1 = un−1 · vn−1, where vn−1 denotes the inverse of vn−1. If cn−1 = 1, then
cn ⊕ un−1 = un−1 · vn−1. Thus Pr(cn ⊕ un−1 = 0) = 3

4 .

Lemma 1 implies the following bias.

Theorem 1. Denote ai, bi (1 ≤ i ≤ 3) as n-bit integers. Denote ci (1 ≤ i ≤ 3) as
binary values satisfying ci = (ai + bi) >> n. Let a1, a2, b1, b2 and b3 be random
and independent, but a3 = a1 ⊕ a2. Then c1 ⊕ c2 ⊕ c3 is biased. For n = 16,
Pr(c1 ⊕ c2 ⊕ c3 = 0) ≈ 0.5714.

If we apply Lemma 1 directly, we obtain that Pr(c1 ⊕ c2 ⊕ c3 = 0) = 1
2 + 1

16 =
0.5625. (The un−1’s in Lemma 1 are eliminated since they are linearly related in
Theorem 1.) The small difference between these two biases (0.5714 and 0.5625)
is due to the fact that a3 is not an independent random number.

We illustrate the validity of Theorem 1 with numerical analysis. For small n,
we try all the values of a1, a2, b1, b2 and b3 and obtain the following table.
From Table 1, we see that the bias ε converges to 0.0714 as the value of n in-
creases. For n = 16, we performed 232 tests, and the bias is about 0.071424. For
n = 32, the bias is about 0.071434 with 232 tests. The experimental results show
that Theorem 1 is valid. Recently, the complete proof of Theorem 1 is given in
[16]. It was shown that Pr(c1 ⊕ c2 ⊕ c3 = 0) = 4

7 + 3
7 × 1

8n , which confirms the
correctness of Theorem 1.

Remarks. In Theorem 1, if a1, a2, a3, b1, b2 and b3 are all random and inde-
pendent, then Pr(c1 ⊕ c2 ⊕ c3 = 0) = 1

2 +2−3n−1, which is very small for n = 16.
This small bias cannot be exploited to break ABC v2.

3.2 Identifying the Weak Keys

We start the attack with analyzing the linear feedback shift register used in
ABC v2. The register (z3, z2, z1, z0) is updated according to the primitive poly-
nomial g(x) = x127 + x63 + 1. Note that each time the 127-bit LFSR advances

60 H. Wu and B. Preneel

32 steps. To find a linear relation of the 32-bit words, we take the 25th power of
g(x), and obtain

g25
(x) = x127×32 + x63×32 + 1 . (1)

Denote the z0 at the i-th step as zi
0, and denote the jth significant bit of zi

0 as
zi
0,j. Since each time 32 bits get updated, the distance between zi

0,j and zi+k
0,j is

|32 · (k − i)|. According to (1), we obtain the following linear recurrence

zi
0 ⊕ zi+63

0 ⊕ zi+127
0 = 0 . (2)

The weak keys of ABC v2 are related to the S(x) in the component C. S(x)
is defined as S(x) = e +

∑31
i=0(ei × x[i]), where e and ei are key dependent 32-

bit random numbers, except that e31 ≡ 216 mod 217. If the least significant
bits of e and ei (0 ≤ i < 32) are all 0, then the least significant bit of
S(x) is always 0, and we consider the key as weak key. Note that the
least significant bit of e31 is always 0. Thus a randomly chosen key is weak with
probability 2−32.

In the following, we describe how to identify the weak keys. Denote the 32-bit
keystream word at the ith step as yi, the jth significant bit of yi as yi,j . And
denote xi as the input to function S at the i-th step. Then yi = (S(xi) >>>
16)+ zi

0. Let ci,j denote the carry bit at the j-th least significant bit position of
(S(xi) >>> 16) + zi

0, i.e., ci,j = (((S(xi) >>> 16) mod 2j) + (zi
0 mod 2j)) >> j.

Assume that ((S(xi) >>> 16) mod 216 is random. According to Theorem 1 and
(2), we obtain

Pr(ci,16 ⊕ ci+63,16 ⊕ ci+127,16 = 0) =
1
2

+ 0.0714 . (3)

Due to the rotation of S(xi), we know that

yi,16 = S(xi)0 ⊕ zi
0,16 ⊕ ci,16 , (4)

where S(xi)0 denotes the least significant bit of S(xi). Note that S(xi)0 is always
0 for a weak key. From (2) and (4), we obtain

yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = ci,16 ⊕ ci+63,16 ⊕ ci+127,16 . (5)

From (3) and (5), yi,16 is biased as

Pr(yi,16 ⊕ yi+63,16 ⊕ yi+127,16 = 0) =
1
2

+ 0.0714 . (6)

We use (6) to identify the weak keys. Approximate the binomial distribution
with the normal distribution. Denote the total number of samples as N , the
mean as μ, and the standard deviation as σ. For the binomial distribution,
p = 1

2 , μ = Np and σ =
√

Np(1 − p). For (6), p′ = 1
2 + 0.0714, μ′ = Np′ and

σ′ =
√

Np′(1 − p′). For the normal distribution, the cumulative distribution
function gives value 1 − 2−39.5 at 7σ, and value 0.023 at −2σ. If the following
relation holds

u′ − u ≥ 7σ + 2σ′ , (7)

Cryptanalysis of the Stream Cipher ABC v2 61

then on average, each strong key is wrongly identified as weak key (false positive)
with probability 2−39.5, and each weak key is not identified as weak key (false
negative) with probability 0.023. It means that the weak keys can be successfully
identified since one weak key exists among 232 keys. Solving (7), the amount of
samples required is N = 3954. For each sample, we only need to perform two
XORs and one addition. With 3594+127 = 4081 outputs from each key, we can
successfully identify the weak keys of ABC v2.

The number of outputs can be reduced if we consider the 2ith power of g(x)
for i = 5, 6, 7, 8. With 1615 outputs, we can obtain 3956 samples. Thus the
keystream required in the identification of the weak keys can be reduced to 1615
outputs.

The identification of a weak key implies directly a distinguishing attack on
ABC v2. If there are 232 keystreams generated from 232 random keys, and each
key produces 1615 outputs, then the keystream can be distinguished from ran-
dom with high probability. In order to find one weak key, the total amount of
keystream required are 232 × 1615 × 4 = 244.7 bytes, and the amount of compu-
tations required are 232 × 3956 × 2 ≈ 245 XORs and 244 additions.

Experiment 1. We use the original ABC v2 source code provided by the
ABC v2 designers in the experiment. After testing 234 random keys, we ob-
tain five weak keys, and one of them is (fe 39 b5 c7 e6 69 5b 44 00 00 00 00 00
00 00 00). From this weak key we generate 230 outputs, and the bias defined in
(6) is 0.5714573. The experimental results confirm that the probability that a
randomly chosen key is weak is about 2−32, and the bias of a weak key keystream
is large.

4 Recovering the Internal State

Once a weak key is identified, we proceed to recover the internal state resulting
from the weak key. In Sect. 4.1, we apply the fast correlation attack to recover
the LFSR. The components B and C are recovered in Sect. 4.2. The complexity
of the attack is given in Sect. 4.3. Section 4.4 applies the attack to ABC v1.

4.1 Recovering the Initial Value of the LFSR

The initial value of the LFSR is recovered by exploiting the strong correlation
between the LFSR and the keystream. From Lemma 1, we get

Pr(zi
0,15 ⊕ ci,16 = 0) =

3
4

. (8)

From (8) and (4), we obtain the following correlation:

Pr(zi
0,16 ⊕ zi

0,15 ⊕ yi,16 = 0) =
3
4

. (9)

The strong correlation in (9) indicates that the cipher is very weak.

62 H. Wu and B. Preneel

The fast correlation attack Algorithm A of Meier and Staffelbach [9] can be
applied to recover the LFSR. There are some advanced fast correlation attacks
[10,6,7], but the original attack given by Meier and Staffelbach is sufficient here
since we are dealing with a strong correlation and a two-tap LFSR.

We now apply the fast correlation attack Algorithm A [9] to recover the LFSR.
Let p = 3

4 , ui = zi
0,16 ⊕ zi

0,15, and wi = yi,16. By squaring the polynomial (1)
iteratively, we obtain a number of linear relations for every ui:

ui ⊕ ui+63·2j ⊕ ui+127·2j = 0 (j ≥ 0). (10)

From (9) and (10), we obtain

s = Pr(wi ⊕ wi+63·2j ⊕ wi+127·2j = 0 | ui = wi) = p2 + (1 − p)2 , (11)

where each value of j indicates one relation for wi (also for wi+63·2j and wi+127·2j).
On average there are m relations for wi as

m = m(N, k, t) = (t + 1) · log2(
N

2k
) , (12)

where N is the number of outputs, k = 127 (the length of the LFSR), t = 2
(taps) for ABC v2. The probability that wi satisfies at least h of the m relations
equals

Q(h) =
m∑

i=h

(
m

i

)
· (p · si · (1 − s)m−i + (1 − p) · (1 − s)i · sm−i) . (13)

If ui = wi, then the probability that wi satisfies h of these m relations is equal
to

R(h) =
m∑

i=h

(
m

i

)
· p · sh · (1 − s)m−h . (14)

According to [9], N · Q(h) is the number of ui’s being predicted in the attack,
and N · R(h) is the number of ui’s being correctly predicted.

For N = 4500, there are on average about 12 relations for each wi. For
h = 11, 98.50 bits can be predicted with 98.32 bits being predicted correctly. For
h = 10, 384.99 bits can be predicted with 383.21 bits being predicted correctly.
To predict 127 bits, we can predict 98.50 bits for h = 11, then predict 127-98.50
= 28.50 bits using the wi’s satisfying only 10 relations. Then in average there
are 98.32+ 28.50× 383.21−98.31

384.99−98.50 = 126.66 bits being predicted correctly. It shows
that 127 ui’s can be determined with about 0.34 wrong bits. Then the LFSR
can be recovered by solving 127 linear equations.

We carry out an experiment to verify the above analysis. In order to reduce
the programming complexity, we consider only the wi’s with 12 relations, thus we
use 8000 outputs in the experiment. Using more outputs to recover the LFSR
has no effect on the overall attack since recovering the component B requires
about 217.5 outputs, as shown in Sect. 4.2.

Cryptanalysis of the Stream Cipher ABC v2 63

Experiment 2. From the weak key (fe 39 b5 c7 e6 69 5b 44 00 00 00 00 00 00
00 00), we generate 8000 outputs, but consider only those 8000 − 2 · 2 12

3 · 127 =
3936 wi’s with 12 relations. We repeat the experiments 256 times with different
IVs. For h = 11, 104.66 bits can be predicted with 104.35 bits being predicted
correctly. For the wi’s satisfying only 10 relations, 278.37 bits can be predicted
with 276.08 bits being predicted correctly. To predict 127 bits, 127 − 104.66 =
22.34 wi’s satisfying only 10 relations should be used. Among the 127 predicted
bits, 104.35 + 22.34 × 276.08

278.37 = 126.51 bits are correct.

4.2 Recovering the Components B and C

After recovering the LFSR, we proceed to recover the component B. In the
previous attack on ABC v1 [3], about 277 operations are required to recover the
components B and C. That complexity is too high. We give here a very simple
method to recover the components B and C with about 233.3 operations.

In ABC v2, there are four secret terms in the component B: x, d0, d1, and d2,
where d0, d1 and d2 are static, x is updated as

xi = (((xi−1 ⊕ d0) + d1) ⊕ d2) + zi
3 mod 232. (15)

Note that the higher significant bits never affect the less significant bits. It allows
us to recover x, d0, d1, and d2 bit-by-bit.

Since the initial value of the LFSR is known, the value of each zi
0 can be

computed, thus we know the value of each S(xi). In average, the probability that
xi = xj is about 2−32. For a weak key, the least significant bit of S(xi) is always
0, and the probability that S(xi) = S(xj) is about 2−32 + (1 − 2−32) · 2−31 ≈
2−32+2−31. Given 217.5 outputs, there are about

(
217.5

2

)
×(2−32+2−31) ≈ 12 cases

that S(xi) = S(xj) (i �= j). And there are about
(
217.5

2

)
× 2−32 ≈ 4 cases that

xi = xj among those 12 cases. Choose four cases from those 12 cases randomly,
the probability that xiu = xju for 0 ≤ u < 4 is (4

12)4 = 1
81 (here (iu, ju) indicates

one of those 12 pairs (i, j) satisfying S(xi) = S(xj) (i �= j)).
The value of each zi

3 in (15) is already known. When we solve the four equa-
tions xiu = xju (0 ≤ u < 4) to recover x, d0, d1, and d2, we obtain the four
unknown terms bit-by-bit from the least significant bit to the most significant
bit. The four most significant bits cannot be determined exactly, but the four
least significant bits can be determined exactly since only the least significant
bit of x is unknown. (We mention here during this bit-by-bit approach, the four
bits at each bit position may not be determined exactly, and further filtering is
required in the consequent computations.) On average, we expect that solving
each set of four equations gives about 8 possible values of x, d0, d1, and d2.
Also note that each set of four equations holds true with probability 1

81 , we have
about 81 × 8 = 648 possible solutions for x, d0, d1, and d2.

After recovering the component B, we know the input and output of each
S(xi), so the component C can be recovered by solving 32 linear equations. This
process is repeated 648 times since there are about 648 possible solutions of x,
d0, d1, and d2. The exact B and C can be determined by generating some outputs
and comparing them to the keystream.

64 H. Wu and B. Preneel

4.3 The Complexity of the Attack

According to the experiment, recovering the LFSR requires about 8000 outputs.
For each wi, testing 12 relations requires about 12·2

3 = 8 XORs and 12 additions.
After predicting 127 ui’s, each ui should be expressed in terms of the initial state
of the LFSR. It is almost equivalent to running the LFSR 8000·32 steps, with the
LFSR being initialized with only one non-zero bit z0

1,31. Advancing the LFSR 32
steps requires 2 XORs and 2 shifts. Solving a set of 127 binary linear equations
requires about 2·1273

3 · 1
32 ≈ 42675 operations on the 32-bit microprocessor. So

about 217.8 operations are required to recover the LFSR.
Recovering the component B requires about 217.5 outputs and solving 81 sets

of equations. Each set of equations can be solved bit-by-bit, and it requires about
32 · 24 · 217.5 = 226.5 operations. Recovering the component C requires solving
648 sets of equations. Each set of equations consists of 32 linear equations with
binary coefficients, and solving it is almost equivalent to inverting a 32×32 binary
matrix which requires about 2·323

3 · 1
32 ≈ 683 operations. So 81 ·226.5 +648 ·683 =

232.8 operations are required to recover the components B and C.
Recovering the internal state of a weak key requires 217.5 outputs and 217.8 +

232.8 = 232.8 operations in total.

4.4 The Attack on ABC v1

The previous attack on ABC v1 deals with a general type of weak keys [3], but
the complexity is too high (295 operations). The above attack can be slighty
modified and applied to break ABC v1 (with the weak keys defined in Sect. 3)
with much lower complexity. We outline the attack on ABC v1 below.

The LFSR in ABC v1 is 63 bits. The shorter LFSR results in more relations
for the same amount of keystream. Identifying a weak key requires 1465 outputs
from each key instead of the 1615 outputs required in the attack on ABC v2. In
theory, recovering the LFSR with the fast correlation attack requires 2500 out-
puts instead of the 4500 outputs required in the attack on ABC v2. The compo-
nent B in ABC v1 has only three secret variables. Recovering the component B
requires 217.3 outputs, with the complexity reduced to 230.1 operations, smaller
than the 232.8 operations required to recover the component B of ABC v2. In
total the attack to recover the internal state of ABC v1 with a weak key requires
217.3 outputs and 230.1 operations.

5 Conclusion

Due to the large amount of weak keys and the serious impact of each weak key,
ABC v1 and ABC v2 are practically insecure.

In order to resist the attack presented in this paper, a straightforward solu-
tion is to ensure that at least one of the least significant bits of the 33 elements
in the component B should be nonzero. However, ABC v2 with such improve-
ment is still insecure. A new type of weak keys with all the two less (but not least)

Cryptanalysis of the Stream Cipher ABC v2 65

significant bits being 0 still exists. After eliminating all the similar weak keys,
the linear relation in (2) can still be applied to exploit the non-randomness in
the outputs of the component C to launch a distinguishing attack. ABC v3 is the
latest version of ABC, and it eliminates the weak keys described in this paper.
However, a recent attack exploiting the non-randomness in the outputs of the
component C is still able to identify a new weak key with about 260 outputs
[15]. It seems difficult to improve the ABC cipher due to the risky design that
the 32-bit-to-32-bit S-box is generated from only 33 key-dependent elements.

We recommend updating the secret S-box of ABC v2 frequently during the
keystream generation process. In ABC v2, the key-dependent S-box is fixed. For
block cipher design, the S-box has to remain unchanged, but such restriction
is not applicable to stream cipher. Suppose that the size of the key-dependent
S-box of a stream cipher is large (it is risky to use the small randomly generated
key-dependent S-box). We can update the S-box frequently, such as updating at
least one element of the S-Box at each step (in a cyclic way to ensure that all
the elements of the S-box get updated) with enough random information in an
unpredictable way. When a weak S-box appears, only a small number of outputs
are generated from it before the weak S-box disappears, and it becomes extremely
difficult for an attacker to collect enough outputs to analyze a weak S-box. Thus
an attacker has to deal with the average property of the S-box, instead of dealing
with the weakest S-box. For example, the eSTREAM submissions HC-256 [13],
HC-128 [14], Py [4] and Pypy [5] use the frequently updated large S-boxes to
reduce the effect resulting from the weak S-boxes. The security of ABC stream
cipher can be improved in this way, but its performance will be affected.

Acknowledgements. The authors would like to thank the anonymous reviewers
of SAC 2006 for their helpful comments. Thanks also go to Adi Shamir and others
for their comments on the security of updating a key-dependent S-box at the
SAC 2006 conference.

References

1. Anashin, V., Bogdanov, A., Kizhvatov, I.: ABC: A New Fast Flexible Stream Ci-
pher. Available at http://www.ecrypt.eu.org/stream/ciphers/abc/abc.pdf

2. Anashin, V., Bogdanov, A., Kizhvatov, I.: Security and Implementation Properties
of ABC v.2. SASC 2006 - Stream Ciphers Revisited, pp. 278–292, (2006), Available
at http://www.ecrypt.eu.org/stream/papersdir/2006/026.pdf

3. Berbain, C., Gilbert, H.: Cryptanalysis of ABC. Available at
http://www.ecrypt.eu.org/stream/papersdir/048.pdf

4. Biham, E., Seberry, J.: Py: A Fast and Secure Stream Cipher Using Rolling Arrays.
Available at http://www.ecrypt.eu.org/stream/p2ciphers/py/py p2.ps

5. Biham, E., Seberry, J.: Pypy: Another Version of Py. Available at
http://www.ecrypt.eu.org/stream/p2ciphers/py/pypy p2.ps

6. Chepyzhov, V.V., Johansson, T., Smeets, B.: A Simple Algorithm for Fast Correla-
tion Attacks on Stream Ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 181–195. Springer, Heidelberg (2001)

http://www.ecrypt.eu.org/stream/ciphers/abc/abc.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/026.pdf
http://www. ecrypt.eu.org/stream/papersdir/048.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/py/py_p2.ps
http://www. ecrypt.eu.org/stream/p2ciphers/py/pypy_p2.ps

66 H. Wu and B. Preneel

7. Johansson, T., Jönsson, F.: Fast Correlation Attacks through Reconstruction of
Linear Polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
300–315. Springer, Heidelberg (2000)

8. Khazaei, S.: Divide and Conquer Attack on ABC Stream Cipher. Available at
http://www.ecrypt.eu.org/stream/papersdir/052.pdf

9. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Stream Ciphers. Journal
of Cryptology 1(3), 159–176 (1989)

10. Mihaljević, M., Fossorier, M.P.C., Imai, H.: A Low-Complexity and High-
Performance Algorithm for Fast Correlation Attack. In: Schneier, B. (ed.) FSE
2000. LNCS, vol. 1978, pp. 196–212. Springer, Heidelberg (2001)

11. Murphy, S., Robshaw, M.J.B.: Key-dependent S-boxes and differential cryptanal-
ysis. Designs, Codes, and Cryptography 27(3), 229–255 (2002)

12. Vaudenay, S.: On the Weak Keys of Blowfish. In: Gollmann, D. (ed.) Fast Software
Encryption. LNCS, vol. 1039, pp. 27–32. Springer, Heidelberg (1996)

13. Wu, H.: A New Stream Cipher HC-256. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 226–244. Springer, Heidelberg (2004), Full version available
at http://eprint.iacr.org/2004/092.pdf

14. Wu, H.: The Stream Cipher HC-128. Available at
http://www.ecrypt.eu.org/stream/p2ciphers/hc256/hc128 p2.pdf

15. Zhang, H., Li, L., Wang, X.: Fast Correlation Attack on Stream Cipher ABC v3
(2006), Available at
http://www.ecrypt.eu.org/stream/papersdir/2006/049.pdf

16. Zhang, H., Wang, S., Wang, X.: The Probability Advantages of Two Linear Ex-
pressions in Symmetric Ciphers (2006), Available at
http://www.ecrypt.eu.org/stream/papersdir/2006/046.pdf

http://www.ecrypt.eu.org/stream/papersdir/052.pdf
http://eprint.iacr.org/2004/092.pdf
http://www.ecrypt.eu.org/ stream/p2ciphers/hc256/hc128_p2.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/049.pdf
http://www.ecrypt.eu.org/ stream/papersdir/2006/046.pdf

The Design of a Stream Cipher LEX

Alex Biryukov

University of Luxembourg, FDEF,
Campus Limpertsberg, 162 A, Avenue de la Faiencerie

L-1511 Luxembourg, Luxembourg
alex.biryukov@uni.lu

Abstract. In this paper we define a notion of leak extraction from a
block cipher. We demonstrate this new concept on an example of AES.
A result is LEX: a simple AES-based stream cipher which is at least 2.5
times faster than AES both in software and in hardware.

1 Introduction

In this paper we suggest a simple notion of a leak extraction from a block cipher.
The idea is to extract parts of the internal state at certain rounds and give them
as the output key stream (possibly after passing an additional filter function).
This idea applies to any block cipher but a careful study by cryptanalyst is
required in each particular case in order to decide which parts of the internal
state may be given as output and at what frequency. This mainly depends on
the strength of the cipher’s round function and on the strength of the cipher’s
key-schedule. For example, ciphers with good diffusion might allow to output
larger parts of the internal state at each round than ciphers with weak diffusion.

In this paper we describe our idea on an example of 128/192/256 bit key
AES. Similar approach may be applied to the other block-ciphers, for exam-
ple to Serpent. Interesting lessons learnt from LEX so far are that: LEX setup
and resynchronization which are just a single AES key-setup and a single AES
encryption are much faster than for most of the other stream ciphers (see per-
formance evaluation of eSTREAM candidates [8]). This is due to the fact that
many stream ciphers aimed at fast encryption speed have a huge state which
takes very long time to initialize. Also, the state of the stream ciphers has to be
at least double of the keysize in order to avoid tradeoff attacks, but on the other
hand it does not have to be more than that. Moreover unlike in a typical stream
cipher, where all state changes with time, in LEX as much as half of the state
does not need to be changed or may evolve only very slowly.

2 Description of LEX

In this section we describe a 128-bit key stream cipher LEX (which stands for
Leak EXtraction, and is pronounced “leks”). In what follows we assume that the
reader is familiar with the Advanced Encryption Standard Algorithm (AES) [7].

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 67–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 A. Biryukov

IV AES

K K K

AES AES AES
128−bit

128−bit

K

Output stream

320−bit 320−bit 320−bit

128−bit 128−bit 128−bit

Fig. 1. Initialization and stream generation

The design is simple and is using AES in a natural way: at each AES round we
output certain four bytes from the intermediate state. The AES with all three
different key lengths (128, 192, 256) can be used. The difference with AES is
that the attacker never sees the full 128-bit ciphertext but only portions of the
intermediate state. Similar principle can be applied to any other block-cipher.

In Fig. 1 we show how the cipher is initialized and chained1. First a standard
AES key-schedule for some secret 128-bit key K is performed. Then a given
128-bit IV is encrypted by a single AES invocation: S = AESK(IV). The 128-
bit result S together with the secret key K constitute a 256-bit secret state of
the stream cipher.2 S is changed by a round function of AES every round and
K is kept unchanged (or in a more secure variant is changing every 500 AES
encryptions).

The most crucial part of this design is the exact location of the four bytes of
the internal state that are given as output as well as the frequency of outputs
(every round, every second round, etc.). So far we suggest to use the bytes
b0,0, b2,0, b0,2, b2,2 at every odd round and the bytes b0,1, b2,1, b0,3, b2,3 at every
even round. We note that the order of bytes is not relevant for the security but is
relevant for the fast software implementation. The order of bytes as given above
allows to extract a 32-bit value from two 32-bit row variables t0, t2 in just four
operations (that can be pipelined):

out32 = ((t0&0xFF00FF) << 8) ⊕ (t2&0xFF00FF),

while each round of AES uses about 40 operations. Here ti is a row of four bytes:
ti = (bi,0, bi,1, bi,2, bi,3). So far we do not propose to use any filter function and
output the bytes as they are. The choice of the output byte locations (see also
Fig. 2) is motivated by the following: both sets constitute an invariant subset of
1 There is a small caveat: we use full AES to encrypt the IV, but we use AES with
slightly modified last round for the stream generation, as will be explained further
in this section.

2 In fact the K part is expanded by the key-schedule into ten 128-bit subkeys.

The Design of a Stream Cipher LEX 69

b
0,0

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

b
0,0

b
1,0

b b b b

bb

b

b b
0,1 0,3

1,1
b

0,0
b

1,3

2,1 2,3

3,0 3,1 3,2 3,3

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,2

b
2,0

b
2,2

bb

Odd rounds Even rounds

Fig. 2. The positions of the leak in the even and in the odd rounds

the ShiftRowsoperation (the first row is not shifted and the third is rotated by two
bytes). By alternating the two subsets in even and odd rounds we ensure that the
attacker does not see input and output bytes that are related by a single SubBytes
and a single MixColumn. This choice ensures that the attacker will have to analyze
two consecutive rounds. The two rounds of AES have full diffusion thus limiting
divide-and-conquer capabilities of the attacker. Note also that in AES the 10th
round differs from the rest, there is no MixColumn and there is a XOR of the last
(11th) subkey. In LEX there is no need to make the 10th round different from any
other round. Any LEX encryption round consists of:

Round(State, i)
{ SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State, ExpandedKey[i mod N_r]);

}

Here Nr is the number of rounds and is equal to 10 for 128-bit key AES. The
full T iterations of LEX would then look like:

LEX(State, SecretKey)
{
AESKeyExpansion(SecretKey, ExpandedKey);
State = AESEncrypt(IV, ExpandedKey);
AddroundKey(State, ExpandedKey[0]);
for (i=1; i < T; i++){
Round(State, i);
Output[i] = LeakExtract(State, i mod 2);

}
}

It is advisable to change the SecretKey at least every 232 IV setups, and to
change the IV every T = 500 iterations.

70 A. Biryukov

Note also that IV setup is performed by full AES encryption and the subtle
difference in the last round of AES and absence of such difference in encryption
rounds of LEX is crucial to break similarity which otherwise could be exploited
by slide attacks [5, 11] (see Section 3.8 for a discussion).

The speed of this cipher is more than 2.5 times faster than 128-bit key AES,
3 times faster than 192-bit key AES, and 3.5 times faster than 256-bit key AES.
So far there are no weaknesses known to the designers as well as there are no
hidden weaknesses inserted by the designers.

3 Analysis of LEX

In this section we analyze resistance of LEX to various attacks.

3.1 Period of the Output Sequence

The way we use AES is essentially an Output Feedback Mode (OFB), in which
instead of using the ciphertexts as a key-stream we use the leaks from the inter-
mediate rounds as a key-stream. The output stream will eventually cycle when
we traverse the full cycle of the AES-generated permutation. If one assumes
that AES is indistinguishable from a random permutation for any fixed key, one
would expect the cycle size to be of the order O(2128) since the probability of
falling into one of the short cycles is negligible3.

If the output stream is produced by following a cycle of a random permutation
it is easily distinguished from random after observing absence of 128-bit collisions
in a stream of 264 outputs. In our case since we output only part of the state at
each round, the mapping from internal state to the output is not 1-1 and thus
such collisions would occur.

3.2 Tradeoff Attacks

For a stream cipher to be secure against time-memory and time-memory-data
tradeoff attacks [1, 9, 4] the following conditions are necessary: |K| = |IV | =
|State|/2. This ensures that the best tradeoff attack has complexity roughly
the same as the exhaustive key-search. The IV’s may be public, but it is very
important that full-entropy IV’s are used to avoid tradeoff-resynchronization at-
tacks [3, 10]. In the case of LEX |K| = |IV | = |Block| = 128 bits, where Block
denotes an intermediate state of the plaintext block during the encryption. In-
ternal state is the pair (IV,K) at the start and (Block,Key) during the stream
generation, and thus |K|+ |IV | = |K|+ |S| = 256 bits which is enough to avoid
the tradeoff attacks. Note that if one uses LEX construction with larger key vari-
ants of AES this might be a ”problem”. For example for 192-bit key AES the
state would consist of 128-bit internal variable and the 192-bit key. This would

3 A random permutation over n-bit integers typically consists of only about O(n)
cycles, the largest of them spanning about 62% of the space.

The Design of a Stream Cipher LEX 71

allow to apply a time-memory-data tradeoff attack with roughly 2160 stream,
memory and time. For 256-bit key AES it would be 2192 stream, memory and
time. Such attack is absolutely impractical but may be viewed as a certificational
weakness.

3.3 Algebraic Attacks

Algebraic attack on stream ciphers [6] is a recent and a very powerful type of
attack. Applicability of these to LEX is to be carefully investigated. If one could
write a non-linear equation in terms of the outputs and the key – that could
lead to an attack. Re-keying every 500 AES encryptions may help to avoid such
attacks by limiting the number of samples the attacker might obtain while target-
ing a specific subkey. We expect that after the re-keying the system of non-linear
equations collected by the attacker would become obsolete. Shifting from AES
key-schedule to a more robust one might be another precaution against these at-
tacks. Note also that unlike in LFSR-based stream ciphers we expect that there
do not exist simple relations that connect internal variables at distances of 10 or
more steps. Such relations if they would exist would be useful in cryptanalysis
of AES itself.

3.4 Differential, Linear or Multiset Resynchronization Attacks

If mixing of IV and the key is weak the cipher might be prone to chosen or known
IV attacks similar to the chosen plaintext attacks on the block-ciphers. However
in our case this mixing is performed via a single AES encryption. Since AES
is designed to withstand such differential, linear or multiset attacks we believe
that such attacks pose no problem for our scheme either.

3.5 Potential Weakness – AES Key-Schedule

There is a simple way to overcome weaknesses in AES key-schedule (which is
almost linear) and which might be crucial for our construction. One might use
ten consecutive encryptions of the IV as subkeys, prior to starting the encryption.
This method will however loose in key agility, since key-schedule time will be 11
AES encryptions instead of one. If better key-agility is required a faster dedicated
key-schedule may be designed.

If bulk encryption is required then it might be advisable to replace the static
key with a slowly time-varying key. One possibility would be to perform an addi-
tional 10 AES encryptions every 500 AES encryptions and to use the 10 results
as subkeys. This method is quite efficient in software but might not be suitable
for small hardware due to the requirement to store 1280 bits (160 bytes) of the
subkeys. The overhead of such key-change is only 2% slowdown, while it might
stop potential attacks which require more than 500 samples gathered for a spe-
cific subkey. An alternative more gate-efficient solution would be to perform a
single AES encryption every 100 steps without revealing the intermediate values

72 A. Biryukov

and use the result as a new 128-bit key. Then use the keyschedule of AES to
generate the subkeys. Note, that previously by iterating AES with the same key
we explored a single cycle of AES, which was likely to be of length O(2128) due
to the cipher being a permutation of 2128 values. However by doing intermediate
key-changes we are now in a random mapping scenario. Since state size of our
random mapping is 256 bits (key + internal state), one would expect to get into
a “short cycle” in about O(2128) steps, which is the same as in the previous case
and poses no security problem.

3.6 No Weak Keys

Since there are no weak keys known for the underlying AES cipher we believe that
weak keys pose no problem for this design either. This is especially important
since we suggest frequent rekeying to make the design more robust against other
cryptanalytic attacks.

3.7 Dedicated Attacks

An obvious line of attack would be to concentrate on every 10th round, since it
reuses the same subkey, and thus if the attacker guesses parts of this subkey he
still can reuse this information 10t, t = 1, 2, . . . rounds later. Note however that
unlike in LFSR or LFSM based stream ciphers the other parts of the intermediate
state have hopelessly changed in a complex non-linear manner and any guesses
spent for those are wasted (unless there is some weakness in a full 10-round AES).

3.8 The Slide Attack

In [11] a slide attack [5] on resynchronization mechanism of LEX (as it was
described for the eSTREAM project) is shown. The attack requires the ability
to perform 261 resynchronizations and uses 275 bytes of output stream data
produced under a single key and different IVs, which need to be stored and
sorted in 275 bytes of memory. This attack is comparable in complexity to time-
memory-key tradeoff attacks which are applicable to any block cipher in popular
modes of operation like ECB, CBC (time-memory-data complexity of O(264) for
any 128-bit cipher) [2, 3]4 This attack thus does not make LEX weaker than
128-bit key AES.

However the observation leading to the attack is of interest since it can be
easily generalized and would apply to any leak-extraction cipher in which resyn-
chronization and encryption are performed by the same function. The idea of the

4 One may argue that attack on a single key is more interesting than the tradeoff
attack that breaks one key out of 264. Firstly we think that it is subjective and
depends on the appliation. Secondly, if we limit the amount of stream produced per
key to 232 as is typical for many other stream-ciphers, this argument will not be
valid any more. The slide attack will have 296 complexity and will need to try the
same amount of keys as the tradeoff attack – 264, before it succeeds.

The Design of a Stream Cipher LEX 73

attack is simple: iterations of LEX explore a cycle of the size about 2128 starting
from IV. Random IV selections would sample random points on this cycle. If the
IV setup is performed by the same function as the subsequent stream generation
then one may pick an IV which is equal to the block-state just after the IV setup
of another sample. This causes the attacker to know the full block input of the
cipher and the result of the leak one round later, which clearly leaks lots of in-
formation about the secret subkey of that round. In order to find such colliding
block-states the attacker needs at least 265 block samples stored and sorted in
memory. The attack assumes the ability to perform about 264 resynchronizations
for the same key.

A natural way to increase resistance against the attack would be to require a
change of keys every 232 IV’s. There would still remain a chance of 2−64 to find
colliding block-states in a collection of 232 IV samples. However the complexity of
the attack would increase to 296 and the attacker would need to try the attack
for 264 different keys – the same number as in the tradeoff attack. Such high
complexity should be a sufficient protection for most of the practical purposes.
In addition, in order to completely get rid of the sliding property one should use
two different functions for the resynchronization and the encryption. Moreover
even a small difference between the two would suffice. For example, if one uses the
full AES with the XOR of the last subkey for the IV setup and AES without the
XOR of this subkey for the encryption – this is enough to break the similarities
used by sliding.

4 Implementation

As one may observe from software performance test done by ECRYPT [8], LEX
holds to its promise and runs 2.5 times faster than 128-bit key AES. We expect
that the same holds for hardware implementations. It is also somewhat pleasantly
surprising thatLEX is one of the fastest ciphers out of the 32 candidates on many of
the platforms: 6th on Intel Pentium M, 1700MHz; 4th on Intel Pentium 4, 2.40GHz;
6th on AMD Athlon 64 3000+, 1.80GHz; 7th on PowerPC G4 533MHz; 6th on
Alpha EV5.6, 400MHz; 5th on HP 9000/785, 875MHz; 5th on UltraSPARC-III,
750MHz). It is also one of the best in terms of agility of the key-setup, the IV-setup,
and the combined Internet packet metric IMIX. LEX is thus very well suited for
the short packet exchanges typical for the Internet environment.

Since LEX could reuse existing AES implementations it might provide a sim-
ple and cheap speedup option in addition to the already existing base AES
encryption. For example, if one uses a fast software AES implementation which
runs at 14-15 clocks per byte we may expect LEX to be running at about 5-6
clocks per byte. The same leak extraction principle naturally applies to 192 and
256-bit AES resulting in LEX-192 and LEX-256. LEX-192 should be 3 times
faster than AES-192, and LEX-256 is 3.5 times faster than AES-256. Note that
unlike in AES the speed penalty for using larger key versions is much smaller in
LEX (a slight slowdown for a longer keyschedule and resynchronization but not
for the stream generation).

74 A. Biryukov

5 Strong Points of the Design

Here we list some benefits of using this design:

– AES hardware/software implementations can be reused with few simple
modifications. The implementors may use all their favorite AES implemen-
tation tricks.

– The cipher is at least 2.5 times faster than AES. In order to get an idea
of the speed of LEX divide cycles-per-byte performance figures of AES by
a factor 2.5. The speed of key and IV setup is equal to the speed of AES
keyschedule followed by a single AES encryption. In hardware the area and
gate count figures are essentially those of the AES.

– Unlike in the AES the key-setup for encryption and decryption in LEX are
the same.

– The cipher may be used as a speedup alternative to the existing AES imple-
mentation and with only minor changes to the existing software or hardware.

– Security analysis benefits from existing literature on AES.
– The speed/cost ratio of the design is even better than for the AES and

thus it makes this design attractive for both fast software and fast hardware
implementations. The design will also perform reasonably well in restricted
resource environments.

– Since this design comes with explicit specification of IV size and resynchro-
nization mechanism it is secure against time-memory-data tradeoff attacks.
This is not the case for the AES in ECB mode or for the AES with IV’s
shorter than 128-bits.

– Side-channel attack countermeasures developed for the AES will be useful
for this design as well.

6 Summary

In this paper we have suggested a new concept of conversion of block ciphers
into stream ciphers via leak extraction. As an example of this approach we have
described efficient extensions of AES into the world of stream ciphers, which
we called LEX. We expect that (if no serious weaknesses would be found) LEX
may provide a very useful speedup option to the existing base implementations
of AES. We hope that there are no attacks on this design faster than O(2128)
steps. The design is rather bold and of course requires further study.

Acknowledgment

This paper is a result of several inspiring discussions with Adi Shamir. We would
like to thank Christophe De Cannière, Joseph Lano, Ingrid Verbauwhede and
other cosix for the exchange of views on the stream cipher design. We also
would like to thank anonymous reviewers for comments that helped to improve
this paper.

The Design of a Stream Cipher LEX 75

References

[1] Babbage, S.: Improved “exhaustive search” attacks on stream ciphers. In: ECOS
95 (European Convention on Security and Detection), no. 408 in IEE Conference
Publication (May 1995)

[2] Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228

steps. Information Processing Letters 84, 117–124 (2002)
[3] Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-offs

with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
Springer, Heidelberg (2006)

[4] Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

[5] Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

[6] Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRPYT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

[7] Daemen, J., Rijmen, V.: The design of Rijndael: AES — The Advanced Encryp-
tion Standard. Springer, Heidelberg (2002)

[8] eSTREAM. eSTREAM Optimized Code HOWTO, (2005),
http://www.ecrypt.eu.org/stream/perf/

[9] Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

[10] Hong, J., Sarkar, P.: Rediscovery of time memory tradeoffs (2005),
http://eprint.iacr.org/2005/090

[11] Wu, H., Preneel, B.: Attacking the IV Setup of Stream Cipher LEX. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, Springer, Heidelberg (2006)

http://www.ecrypt.eu.org/stream/perf/
http://eprint.iacr.org/2005/090

Dial C for Cipher

Le chiffrement était presque parfait�

Thomas Baignères�� and Matthieu Finiasz

EPFL
CH-1015 Lausanne – Switzerland

http://lasecwww.epfl.ch

Abstract. We introduce C, a practical provably secure block cipher
with a slow key schedule. C is based on the same structure as AES but
uses independent random substitution boxes instead of a fixed one. Its
key schedule is based on the Blum-Blum-Shub pseudo-random generator,
which allows us to prove that all obtained security results are still valid
when taking into account the dependencies between the round keys. C is
provably secure against several general classes of attacks. Strong evidence
is given that it resists an even wider variety of attacks. We also propose
a variant of C with simpler substitution boxes which is suitable for most
applications, and for which security proofs still hold.

Keywords: Block Cipher, provable security, AES, Blum-Blum-Shub
generator, decorrelation.

1 Introduction

When designing a public key cryptosystem, proving tight security results often
requires to rely on hard problems such as factoring or discrete logarithm compu-
tation which, by nature, require to manipulate complex objects. When designing
block ciphers, speed requirements do not allow to do so. As a consequence, secu-
rity arguments often rely on heuristic assumptions which, in some cases, might
prove wrong. At SAC 2005, Baignères and Vaudenay [5] showed that replacing
the substitution boxes of AES by independent perfectly random permutations is
enough to prove that 4 rounds are enough to resist linear and differential crypt-
analysis and that 10 rounds are enough to resist any iterated attack of order 1.
Here, we use the exact same construction, improve some results, and plug in a
key schedule based on a provably secure pseudo-random generator. We propose
to use the Blum-Blum-Shub pseudo-random generator [15, 16] as its security is
well established (even for practical parameters), although any provably secure
generator (like for example QUAD [7] or any fast construction based on Goldre-
ich and Levin’s hard-core predicate [26]) could be used, possibly leading to faster

� Refering to the famous movie by Alfred Hitchcock Dial M for Murder [28], this is
how the title of this article should be translated to French.

�� Supported by the Swiss National Science Foundation, 200021-107982/1.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 76–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dial C for Cipher 77

implementations. We obtain C, a block cipher with a slow key schedule, but as
fast as AES when it comes to encryption/decryption and provably secure against
most common attacks: linear and differential cryptanalysis, iterated attacks of
order 1, impossible differentials and presumably algebraic attacks, slide attacks,
boomerang attack, and, to a certain extent, saturation attacks. Note that all
the security results we obtain take into account the key schedule. To the best of
our knowledge, all current iterated block cipher constructions consider in their
“security proofs” that the round keys are statistically independent, which is not
true in practice as they all derive from the same key.

We start this article with a detailed description of C and of its key schedule.
Ensues a review of all security results on C, starting with those which are proven,
and going on with some results which, though not proven, seem quite reason-
able. We then present a way of considerably speeding up the key schedule while
preserving all security results and finish with implementation considerations.

2 The Block Cipher C

In this paper, a perfectly random permutation denotes a random permutation
uniformly distributed among all possible permutations. Consequently, when re-
ferring to a random permutation, nothing is assumed about its distribution.

2.1 High Overview

The block cipher C : {0, 1}128 → {0, 1}128 is an iterated block cipher. It is
made of a succession of rounds, all identical in their structure. Each round is
parameterized by a round-key which is derived from the main 128 bits secret key
using a so-called key schedule algorithm. The structure of each round is made of
a (non-linear) substitution layer followed by a (linear) permutation layer. The
non-linear part of the round mixes the key bits with the text bits in order to
bring confusion (in the sense of [43]). The linear part dissipates the eventual
redundancy, bringing diffusion. Such an iterated block cipher is often referred
to as a substitution-permutation network (SPN). Several modern block ciphers
(such as AES [21] or SAFER [36]) follow this structure. In what follows, we
successively detail the SPN of C and its key schedule algorithm.

2.2 The Substitution-Permutation Network

In a nutshell, C follows the same SPN as AES [21], except that there is no round
key addition, that the fixed substitution box is replaced by independent perfectly
random permutations, and that the last round of C only includes the non-linear
transformation. This construction exactly corresponds to the one studied in [5].

C is made of r = 10 independent rounds R(1), . . . ,R(r) : {0, 1}128 → {0, 1}128,
so that C = R(r) ◦ · · · ◦ R(1). A r round version of C will either be denoted by

78 T. Baignères and M. Finiasz

C[r] or simply by C when the number of rounds is clear from the context. Each
round considers the 128 bit text input as a four by four array of bytes seen as
elements of the finite field GF(q) where q = 28. Consequently, if a ∈ {0, 1}128

denotes some input of the round transformation, we will denote a� (resp. ai,j)
the
-th (resp. the (i + 4j)-th) byte of a for 0 ≤
 ≤ 15 (resp. 0 ≤ i, j ≤ 3) and
call such an input a state. Except for the last one, each round R(i) successively
applies a non-linear transformation S(i) followed by a linear transformation L so
that R(i) = L ◦ S(i) for i = 1, . . . , r − 1. The last round R(r) excludes the linear
transformation, i.e., R(r) = S(r).

The non-linear transformation S(i) is a set of 16 independent and perfectly
random permutations1 of GF(q). Denoting S(i) = {S(i)

0 , . . . ,S(i)
15 } the 16 permu-

tations of round i and a, b ∈ {0, 1}128 the input and the output of S(i) respec-
tively, we have b = S(i)(a) ⇔ b� = S(i)

� (a�) for 0 ≤
 ≤ 15. Depending on the
level of security/performance one wants to achieve, the round permutations can
be de-randomized (see Section 5).

The linear transformation L does not depend on the round number. It first
applies a rotation to the left on each row of the input state (considered as a four
by four array), over four different offsets. A linear transformation is then applied
to each column of the resulting state. More precisely, if a, b denote the input and
the output of L respectively, we have (considering indices modulo 4)

⎛

⎜
⎜
⎝

b0,j

b1,j

b2,j

b3,j

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎠ ×

⎛

⎜
⎜
⎝

a0,j

a1,j+1

a2,j+2

a3,j+3

⎞

⎟
⎟
⎠ .

2.3 The Key-Schedule Algorithm

Generating a perfectly random permutation of {0, 1}8. As there are 28!
possible permutations of {0, 1}8, it is possible to define a one to one mapping
between [0 ; 28! − 1] and the set of permutations of {0, 1}8. The mapping we
choose is described in Table 1. We simply need to derive pseudo-random integers
in [0 ; 28! − 1] from the 128 bit secret key. As each of the ten rounds involves 16
permutations, we need 160 such integers, representing a total of 160·

⌈
log2(2

8!)
⌉

=
269440 pseudo-random bits.

1 Note that a random 8 bit permutation is usually more biased than the substitution
box of AES [42, 52]. However this bias is key-dependent and thus does not rep-
resent a threat. Biases on the AES box are independent of the key and thus can
help to distinguish (reduced rounds of) AES from the perfect cipher when the key
is unknown. Exploiting the strong bias of the substitution boxes of C requires to
know the location of this bias, which is impossible without the knowledge of the
permutation that was used (i.e., of the key). For instance the maximum ELP of the
transformation made of a random key addition followed by the AES substitution
box is 2−6 whereas the perfectly random substitution boxes we use have a maximum
ELP of 1/(q − 1) ≈ 2−8. Intuitively, a cipher cannot become weaker when replacing
an (arbitrary) random permutation by a perfectly random permutation.

Dial C for Cipher 79

Table 1. Defining a one to one mapping from integers between 0 and 28! onto the set
of permutations of {0, 1}8

Input: An integer 0 ≤ κ < 28!
Output: A table π of size 256 such that π[0], . . . , π[255] ∈ {0, . . . , 255} is a
permutation of {0, 1}8 uniquely defined by κ
External Procedure: EucDiv(a,b) returns the quotient and remainder of the
Euclidean division of a by b.

0: q ← κ, π[0] ← 0, π[1] ← 1 , . . . , π[255] ← 255
1: for m = 256 down to 1
2: (q, r) ← EucDiv(q, m)
3: Swap the values of π at positions r and m
4: end for

Deriving an extended key from the secret key

Definition 1. An extended key of C[r] is a set of 16 · r integers in [0 ; 28! − 1].

In order to derive an extended key from the 128 secret key, we need to generate
16 · r pseudo-random integers of [0 ; 28!− 1]. We propose to use the Blum-Blum-
Shub pseudo-random number generator [16].

Definition 2. A prime p is a strong-prime if (p − 1)/2 is prime. A prime p is
a strong-strong-prime if both p and (p − 1)/2 are strong-primes.

Let p and q be two (fixed) 1024-bit strong-strong-prime numbers2, and let n =
p · q. Considering the secret key k as a 128 bit integer, let {xi ∈ Z∗

n : i =
−1, 0, 1, 2, . . .} be the sequence defined by

{
x−1 = k · 2894 + 21023 and
xi = x2

i−1 mod n for i ≥ 0.

Let BBS = a1b1a2b2 . . . be the pseudo-random bit string where ai, bi ∈ {0, 1}
respectively denote the least and most significant3 bits of xi. We will use BBS
to generate the 160 integers we need.

Dividing the BBS sequence into �log2(28!)�-bit substrings, we can obtain
pseudo-random integers in [0 ; 2�log2(2

8!)� − 1], thus sometimes larger than 28!. A
naive approach to deal with those too large integers is to discard the substrings
leading to such integers, thus having to generate �log2(2

8!)� more bits each time
this happens. This strategy requires the generation of 160 · 2�log2(28!)�/28! ≈
270 134 pseudo-random bits in average. More efficient approaches exits (e.g.,
discarding only a few bits instead of a whole block), but the improvement in
terms of efficiency is not worth the loss in terms of clarity.
2 Note that strong-strong-primes are always congruent to 3 modulo 4, i.e., are Blum
integers. We use strong-strong primes to ensure that the generator will have a long
period. See sections 3.5 and 6 for more details.

3 The most significant bit corresponds to being larger or smaller than (n − 1)/2.

80 T. Baignères and M. Finiasz

Table 2. Exact value of maxa �=0,b ELP
C(a, b) (and maxa �=0,b EDPC(a, b)) for various

number of rounds

2 rounds 3 rounds 4 rounds 5 rounds 6 rounds 7 rounds 8 rounds 9 rounds

2−33.98 2−55.96 2−127.91 2−127.91 2−127.99 2−127.99 2−128.00 2−128.00

3 Security Results: What Is Known for Sure

3.1 C Is Resistant to Linear and Differential Cryptanalysis

Linear Cryptanalysis (LC) [38, 37,45], aims at uncovering correlations between
linear combinations of plaintext and ciphertext bits. It is known that the data
complexity of LC is inversely proportional to the linear probability (LP) [17,39].
For given input/output masks a, b ∈ {0, 1}128 on C, LPC(a, b) =

(
2 Pr[a • X =

b•C(X)]−1
)
2, where the probability is taken over the uniformly distributed input

X ∈ {0, 1}128 and where • denotes a scalar product. LPC(a, b) is a function of
the random variable C (the randomness coming from the key). The block cipher
is considered to be provably secure against LC if, for all input/output masks
a, b ∈ {0, 1}128, the expected value ELPC(a, b) of the linear probability LPC(a, b)
(the mean being taken over all possible instances of the block cipher, that is,
over all possible keys) is close to the one of the perfect cipher C∗, i.e., close to
1/(q16 − 1) in our case.

Nyberg showed in [41] that the ELP of an iterated block cipher can be ex-
pressed as a sum of linear characteristics, which means in our case that for any
input/output masks c0, cr ∈ {0, 1}128,

ELPC[r](c0, cr) =
∑

c1,..,cr−1

r∏

i=1

ELPRi(ci−1, ci) ≥ max
c1,..,cr−1

r∏

i=1

ELPRi(ci−1, ci) (1)

where the sum is taken over all possible input/output masks on the individ-
ual rounds of C. Choosing a specific characteristic (i.e., a sequence of masks
c1, . . . , cr−1), it is possible to lower bound the value of ELPC[r](a, b). This is
usually enough to attack the block cipher: a lower bound on the ELP gives an
upper bound on the number of samples needed to perform the attack. However,
such a bound is not enough to prove the security of the system, as the cumulative
effect of linear hulls (the set of all intermediate masks for given input/output
masks) may lead to an attack much more efficient than expected4. In security
proofs of block ciphers, it is often considered without any formal justification
that one characteristic is overwhelming, so that the sum in (1) is of same order
than the max. In our case, for any input/output masks a, b ∈ {0, 1}128, the ex-
act value of ELPC(a, b) can be made arbitrarily close to the ELP of the perfect
cipher by taking a sufficient number of rounds. It is also possible to compute
4 Most block cipher designers choose to compensate for possible hull effects by adding
an arbitrary number of rounds. This is the case for AES [21], Camellia [2], CAST256
[1], Crypton [34], CS-Cipher [44], FOX [30] and many others.

Dial C for Cipher 81

the exact value of the ELP (see Table 2), and thus determine the exact minimal
number of rounds required to resist LC. See [5] for a proof of these results.

Differential Cryptanalysis (DC) [11,12] looks for input/output difference pairs
occurring with non-negligible probability for the block cipher. The efficiency of
DC is inversely proportional to the differential probability defined by DPC(a, b) =
Pr[C(X ⊕ a) = C(X) ⊕ b] for any input/output differences a, b ∈ {0, 1}128 and
uniformly distributed X ∈ {0, 1}128. Similarly to LC, the block cipher is consid-
ered to be secure against DC if for all (a, b) pairs, the expected value EDPC(a, b)
of DPC(a, b) is close to that of the perfect cipher C∗, i.e., to 1/(q16 − 1) in our
case.

The development we propose for LC applies similarly for DC. Indeed, in the
case of Markov ciphers [32], an equation identical to (1) can be written for the
EDP coefficients. The concept of linear hulls translates into the one of differen-
tials. Again, security proofs tend to approximate the differentials using a single
differential characteristic. In our case, the EDP can be made arbitrarily close
to the optimal value. It is possible to compute the exact value of the EDP (see
Table 2), and thus to determine the exact minimal number of rounds to resist
DC. See [5] for a proof of these results.

Theorem 3. Considering C on r rounds and any non-zero a, b ∈ {0, 1}128 (ei-
ther considered as input/output masks or as input/output differences), we have

ELPC[r](a, b) −−−−→
r→∞ ELPC∗

(a, b) and EDPC[r](a, b) −−−−→
r→∞ EDPC∗

(a, b),

where ELPC∗
(a, b) = EDPC∗

(a, b) = (q16 −1)−1. Moreover, four rounds of C are
enough to prove its security against linear (resp. differential) cryptanalysis as
maxa
=0,b ELPC[4](a, b) = maxa
=0,b EDPC[4](a, b) = 2−127.91.

3.2 C Is Resistant to Impossible Differentials

Impossible Differentials [8] attacks are a variation of DC. They consist in finding
pairs of input/output differences such that for any instance c of C we have
DPc(a, b) = 0. In other words, an input difference of a can never (i.e., for any
input and any key) lead to an output difference of b. In the case of C we can
prove that five rounds are enough to have no impossible differential5, i.e., given
any input/output masks a and b, there exists an instance c of C[5] (i.e., a key
defining 80 permutations) such that DPc(a, b) �= 0.

Definition 4. Let a ∈ {0, 1}128 be an arbitrary state. The support of a is a four
by four binary array with 1’s at the non-zero positions of a and 0 elsewhere. It
is denoted supp(a). The weight of the support is denoted w(supp(a)) or simply
w(a), and is the Hamming weight of the support. A state is said to be of full
support when its weight is equal to 16.

5 There exists an impossible differential on 4 rounds of AES leading to an attack on
6 rounds [18].

82 T. Baignères and M. Finiasz

Lemma 5. Let a, b ∈ {0, 1}128 be any two differences of full support. One sub-
stitution layer S is enough to ensure that there exists an instance s of S such
that DPs(a, b) �= 0.

Proof. Considering the two plaintexts 0 and a, we can define the 16 substitution
boxes s0, . . . , s15 of one round such that si(0) = 0 and si(ai) = bi. As both ai

and bi are non-zero (a and b are of full support), both conditions can be verified
without being inconsistent with the fact that si is a permutation. ��

Lemma 6. Let a ∈ {0, 1}128 be a non-zero difference of arbitrary support. Con-
sidering two full rounds of C (i.e., C = L(2)◦S(2)◦L(1)◦S(1)), there exists a differ-
ence b ∈ {0, 1}128 of full support and an instance c of C such that DPc(a, b) �= 0.

Proof (sketch). For simplicity reasons, we restrict ourselves to the case where
the support of a is of weight 1. Without loss of generality, assume a0 �= 0 while
ai = 0 for i = 1, . . . , 15. We consider the two plaintexts to be 0 and a. Letting
S(1)

i (0) = 0 for all i, we have L(1) ◦S(1)(0) = 0. By carefully choosing S(1)
0 (a0), we

can make sure that L(1) ◦ S(1)(a) has a support of weight 4 (on the first columns
of the four by four array). Proceeding in the same manner in the second round,
we can make sure that C(0) = 0 and b = C(a) is of full support. ��

Consider any two differences a, b ∈ {0, 1}128 and a five round version of C =
S(5) ◦ L(4) ◦ S(4) ◦ L(3) ◦ S(3) ◦ L(2) ◦ S(2) ◦ L(1) ◦ S(1). From Lemma 6, there
exists an instance cstart of the first two rounds L(2) ◦ S(2) ◦ L(1) ◦ S(1) and a
difference d of full support such that DPcstart(a, d) �= 0. Starting from the end,
there exists an instance cend of S(5) ◦ L(4) ◦ S(4) ◦ L(3) and a difference e of full
support such that DPc−1

end(b, e) �= 0, so that DPcend(e, b) �= 0. From Lemma 5,
there exists an instance cmid of S(3) such that DPcmid(d, e) �= 0. Consequently,
DPcend◦cmid◦cstart(a, b) �= 0.

Property 7 (Provable security of C against Impossible Differentials).
Five rounds of C are enough to ensure that no impossible differential exists.

3.3 C Is Resistant to 2-Limited Adaptive Distinguishers

In the Luby-Rackoff model [35], an adversary has an unbounded computational
power and is only limited by its number of queries to an oracle O implementing
a random permutation. Let A be an adversary in this model. The goal of A is
to guess whether O is implementing an instance drawn uniformly among the
permutations defined by the block cipher C or among all possible permutations,
knowing that these two events are equiprobable and that one of them is eventu-
ally true. Denoting C∗ a perfectly random permutation on {0, 1}128 (i.e., C∗ is
the perfect cipher), the ability of the adversary to succeed is measured by means
of its advantage.

Definition 8. The advantage of an adversary A of distinguishing two random
permutations P0 and P1 is defined by

AdvA(P0, P1) = Pr
[
A(P0) = 0

]
− Pr

[
A(P1) = 0

]
.

Dial C for Cipher 83

In this model, the most powerful adversary performs a d-limited adaptive attack,
where d denotes the number of oracle queries. Theorem 14 in [5] gives a loose
bound against 2-limited adaptive distinguishers. Using the decorrelation theory,
we manage to obtain the exact value of the advantage of the best distinguisher.

ADash ofDecorrelationTheory. We briefly recall the results from the decorre-
lation theory on which our proofs are based. For the sake of simplicity, we
restrict to block ciphers defined on {0, 1}128. Given a block cipher B, the d-wise
distribution matrix [B]d is a 2128d×2128d matrix defined by [B]d(x1,...,xd),(y1,...,yd) =
PrB[B(x1) = y1, . . . , B(xd) = yd]. Theorem 10 in [47] tells us that the advantage
of the best d-limited non-adaptive distinguisher is given by

AdvAna(B,C∗) =
1
2
|||[B]d − [C∗]d|||∞

=
1
2

max
x1

· · ·max
xd

∑

y1

· · ·
∑

yd

∣
∣∣[B]d(x1,...,xd),(y1,...,yd) − [C∗]d(x1,...,xd),(y1,...,yd)

∣
∣∣ .

Similarly, Theorem 11 in [47] gives the advantage of the best d-limited adaptive
distinguisher

AdvA(B,C∗) =
1
2
‖[B]d − [C∗]d‖a

=
1
2

max
x1

∑

y1

· · ·max
xd

∑

yd

∣
∣
∣[B]d(x1,...,xd),(y1,...,yd) − [C∗]d(x1,...,xd),(y1,...,yd)

∣
∣
∣ .

Finally, if A and B are two independent random permutations, [A ◦ B]d =
[A]d × [B]d. For an iterated block cipher with r independent rounds, it is thus
enough to compute the distribution matrix of one round and to raise it to the
power r.

Computing [C]2. C is built as a succession of independent substitution and
linear layers S(r) ◦L◦S(r−1) ◦· · ·◦L◦S(1). Therefore, as all the substitution layers
have the same distribution matrix [S]2, the distribution matrix of C is given by
[C]2 = [S]2 × [L]2 × [S]2 × · · · × [L]2 × [S]2.

Let q = 28 be the size of the field. For a perfectly random substitution box
S we have Pr[S(u) = v ∩ S(u′) = v′] = q−1 if u = u′ and v = v′, Pr[S(u) =
v ∩ S(u′) = v′] = q−1(q − 1)−1 if u �= u′ and v �= v′, and 0 otherwise. As the 16
substitution boxes of S are independent, we obtain

[S]2(x,x′),(y,y′) = 1supp(x⊕x′)=supp(y⊕y′)q
−16(q − 1)−w(x⊕x′),

where we recall that w(x ⊕ x′) denotes the Hamming weight of the support
of x ⊕ x′. We note that [S]2 only depends on the respective supports of the
input and output differences. We will use this property to dramatically reduce
the size of the matrices we have to manipulate. Denoting SP the 2256 × 216

matrix such that SP(u,u′),γ = 1supp(u⊕u′)=γ and PS the 216 × 2256 matrix such
that PSγ,(u,u′) = 1supp(u⊕u′)=γ q−16(q − 1)−w(γ), we obtain PS × SP = Id and

84 T. Baignères and M. Finiasz

SP × PS = [S]2. As the last round of C misses the linear operation, we deduce
that [C]2 = SP × L

r−1 × PS, where L = PS × [L]2 × SP is a 216 × 216 matrix
indexed by supports. Noting that [L]2(x,x′),(y,y′) = 1L(x)=y1L(x′)=y′ and using the
fact that L is linear, it is possible to expand the expression of L and obtain
Lγ,γ′ = (q − 1)−w(γ)

∑
u 1supp(u)=γ1supp(L(u))=γ′ . The matrix L happens to be

precisely the one used in the expression of the expected linear probability of C

given in Theorem 6 in [5]. With our notations, the theorem states that for all
support γ, γ′ and any states u, u′ of respective support γ and γ′, we can write
(L

r−1
)γ,γ′ = (q − 1)w(γ′)ELPC[r](u, u′), where ELPC[r](u, u′) is the expected

linear probability on r rounds of C given an input (resp. output) mask u (resp.
u′). Because ELPC obviously only depends on the supports γ and γ′ of u and
u′, we will denote it from now on ELPC(γ, γ′). From this, we easily obtain the
following property.

Property 9. Let q = 28 and let ELPC(γ, γ′) be the expected linear probability
of r > 1 rounds of C given an input (resp. output) mask of support γ (resp.
γ′). The 2-wise distribution matrix of r rounds of C is such that [C]2(x,x′),(y,y′) =
q−16 ELPC(supp(x ⊕ x′), supp(y ⊕ y′)).

Computing AdvA and AdvAna . The expression we just obtained for [C]2

leads to the following expression for ‖[C]2 − [C∗]2‖a:

max
x

∑

y

max
x′

∑

y′

∣
∣
∣q−16ELPC(supp(x ⊕ x′), supp(y ⊕ y′)) − [C∗]2(x,x′),(y,y′)

∣
∣
∣ .

In the case where x = x′, the inner sum of the previous equation is 0 as
q−16ELPC(0, 0) = [C∗]2(x,x),(y,y) = q−16 and as ELPC(0, γ′) = [C∗]2(x,x),(y,y′) = 0
when γ′ = supp(y ⊕ y′) and y′ �= y. We obtain

‖[C]2 − [C∗]2‖a = 1
q16 max

x

∑

y

max
γ
=0

∑

γ′
=0

∣∣
∣ELPC(γ, γ′) − 1

q16−1

∣∣
∣
∑

y′
=y

1supp(y⊕y′)=γ′

= max
γ
=0

∑

γ′
=0

∣
∣∣ELPC(γ, γ′) − 1

q16−1

∣
∣∣ (q − 1)w(γ′).

Using similar techniques, one can derive the exact same expression for |||[C]2 −
[C∗]2|||∞. This implies that, when limited to two queries, an adaptive distin-
guisher against C is not more powerful than a non-adaptive one. This is not
surprising as the first query does not leak any information. A single substitution
layer S is enough to have such a result.

Theorem 10. The respective advantages of the best 2-limited non-adaptive dis-
tinguisher Ana and of the best 2-limited adaptive distinguisher A against r > 1
rounds of C are such that AdvA(C,C∗) = AdvAna(C,C∗) and (taking the sum
over all non-zero supports)

AdvA(C,C∗) = 1
2 max

γ

∑

γ′
=0

∣
∣ELPC(γ, γ′) − ELPC∗

(γ, γ′)
∣
∣(q − 1)w(γ′).

Dial C for Cipher 85

Table 3. Exact values of the advantage of the best 2-limited adaptive distinguisher
for several number of rounds r compared to the bounds given in [5]

r 2 3 4 5 6 7 8 9 10 11 12

Bound 294.0 272.0 2−4.0 2−4.0 2−24.2 2−46.7 2−72.4 2−95.9 2−142.8 - -

Exact 1 2−4.0 2−23.4 2−45.8 2−71.0 2−126.3 2−141.3 2−163.1 2−185.5 2−210.8 2−238.9

Practical computations can take into account the fact that ELPC(γ, γ′) actually
only depends on the 4 weights of the diagonals of γ and on those of the columns
of γ′ (from Theorem 12 in [5], see Appendix A). Results of our practical compu-
tations are reported in Table 3 (together with the corresponding upper bounds
obtained in [5]). Finally, we can obtain the following corollary from Theorem 3
and Theorem 10.

Corollary 11. The advantage of the best 2-limited adaptative distinguisher A
against C[r] tends towards 0 as r increases, i.e., AdvA(C[r],C∗) −−−−→

r→∞ 0.

3.4 C Is Resistant to Iterated Attacks of Order 1

Iterated attacks of order 1 [47, 46] are very similar to LC except that the bit
of information retrieved from each plaintext/cipher pair does not necessarily
have to be derived in a linear way. Such attacks have proven to be sometimes
much more powerful than linear cryptanalysis6. According to Theorem 18 in [47],
proving resistance against 2d-limited adaptive distinguishers is enough to prove
resistance to iterated attacks of order d. We can deduce that C is immune to
any iterated attack of order 1.

Property 12 (Provable Security of C against iterated attacks of order
1). Seven rounds of C are sufficient to obtain provable security against iterated
attacks of order 1.

3.5 All Substitution Boxes of C Are Indistinguishable from
Independent Perfectly Random Permutations

A pseudo-random bit generator is said to be cryptographically secure if no
polynomial-time statistical test can distinguish an output sequence of this gener-
ator from a perfectly random bit string with a significant advantage [51]. Such a
generator can always be distinguished if the length of the bit string is longer than
the generator’s period. We need to prove that the Blum-Blum-Shub generator
we use has a period long enough to generate a complete extended key.

We know from the original paper [15] that the period of the xi’s sequence of
the BBS generator divides λ(λ(n)) (where λ denotes the Carmichael function) if

6 See for example [4, pg. 9], where an example of a biased source is given. Although
impossible to distinguish from a true random source with a linear distinguisher, this
source is easily broken by a non-linear distinguisher.

86 T. Baignères and M. Finiasz

both p and q are strong-primes and both p and q are Blum integers. Obviously,
the period of the bit string output by BBS divides the period of the xi’s. By
making sure that λ(λ(n)) does not contain small factors, we can prove that this
length will be large enough. This can be done by choosing strong-strong-primes p
and q. In such a case we can write p = 2p1+1 = 4p2+3 and q = 2q1+1 = 4q2+3,
and obtain λ(λ(n)) = λ(lcm(2 p1, 2 q1)) = λ(2 p1 q1) = lcm(2 p2, 2 q2) = 2 p2 q2.
Therefore, if the period of the bit string is not 2, it is necessarily long enough to
generate a complete extended key as min(p2, q2) � 300 000.

It is known that the original Blum-Blum-Shub pseudo-random bit generator is
cryptographically secure [16, 15]. Vazirani and Vazirani showed that outputting
both the least and most significant bits of the quadratic residues produced by
the generator is also cryptographically secure [48,49].

Definition 13. Let s0 and s1 be two bit strings, such that s0 is obtained using
the BBS pseudo-random generator and s1 is perfectly random. The advantage of
an adversary A trying to distinguish s0 from s1 is given by

AdvBBS
A = Pr

[
A(s0) = 0

]
− Pr

[
A(s1) = 0

]
.

Assuming that the problem of deciding the quadratic residuosity modulo n is
hard (an assumption we will refer to as the quadratic residuosity assumption
[27]), we know that AdvBBS

A can be made arbitrarily small by increasing the
value of n. The key schedule of C relies on the BBS generator and makes sure
that the mapping from the set of 2128 keys to the set of possible seeds of the
pseudo-random generator is injective. Therefore, the pseudo-random sequence
produced by the key schedule of C is indistinguishable from a perfectly random
binary sequence of the same length. The method we use to convert this binary
sequence into substitution boxes makes sure that for an unbiased sequence one
obtains an unbiased set of substitution boxes. By choosing a suitable n, the
substitution boxes of C can thus be made indistinguishable from independent
perfectly random permutations.

3.6 The Keyed C Is Not Less Secure Than C

Definition 14. Let k0 and k1 be two extended keys of C, such that k0 is obtained
through the key schedule seeded by a perfectly random 128 bit key and k1 is
perfectly random. The advantage of an adversary A trying to distinguish k0 from
k1 is given by

Advkey
A = Pr

[
A(k0) = 0

]
− Pr

[
A(k1) = 0

]
.

Property 15. Let k0 and k1 be two extended keys as in Definition 14 and s0

and s1 be two bit strings as in Definition 13. An adversary A able to distinguish
k0 from k1 with probability p can distinguish s0 from s1 with probability p′ ≥ p,
i.e., Advkey

A ≤ AdvBBS
A .

Proof. Given sb (b ∈ {0, 1}), the adversary can derive an acceptable extended
key kb. From this, the adversary has an advantage Advkey

A of guessing the correct
value of b and thus obtains a distinguisher on BBS with advantage Advkey

A . ��

Dial C for Cipher 87

The strongest notion of security for a block cipher is its indistinguishability
from a perfectly random permutation C∗. Proving the security of C against a
distinguishing attack performed by A consists in upper bounding AdvA(C,C∗).

Let k0 and k1 be two random extended keys of C picked as in Definition 14,
defining two random instances of C denoted Ckey and Crand respectively. Obvi-
ously, distinguishing Ckey from Crand is harder than distinguishing k0 from k1, so
that AdvA(Ckey,Crand) ≤ Advkey

A .
Assume there exists a distinguishing attack on Ckey that does not work on Crand

such that, for an adversary A using it, AdvA(Ckey,C∗) ≥ 2 · AdvA(Crand,C∗).
From the triangular inequality we have AdvA(Ckey,C∗) − AdvA(Crand,C∗) ≤
AdvA(Ckey,Crand) so that AdvA(Ckey,C∗) ≤ 2 · AdvA(Ckey,Crand) ≤ 2 · Advkey

A .
In conclusion, using Property 15, any distinguishing attack twice as efficient

on Ckey than on Crand gives an advantage which is bounded by 2 ·AdvBBS
A . Under

the quadratic residuosity assumption, such an attack cannot be efficient.
Although the quadratic residuosity problem is not equivalent to the problem

of factoring p ·q, the best known attacks require it. The exact cost of this factor-
ization is not obvious. For a given symmetric key size, there are several estimates
for an equivalent asymmetric key size [31]. According to the NIST recommen-
dations, a 2048 bit modulus is equivalent to a 112 bit symmetric key [24].

Property 16 (Provable security of Ckey). Under the quadratic residuosity
assumption, C used with the key schedule described in Section 2.3 is as secure
as C used with independent perfectly random substitution boxes.

3.7 The Keyed C Has No Equivalent Keys

Two block cipher keys are said to be equivalent when they define the same
permutation. It is easy to build equivalent extended keys for C (when not using
the key schedule). Consider an extended key k1 defining a set of 160 substitution
boxes such that the first 32 are the identity. We consider a second extended
key k2 defining another set of substitution boxes such that the last 128 are
identical to that defined by k1 and such that the first 16 boxes simply xor a
constant a ∈ {0, 1}128 to the plaintext, the remaining boxes (in the second
layer) correcting the influence of a by xoring L(a) to its input. Although they
are different, k1 and k2 define the same permutation. Such a property could be
a threat to the security of C. If too many such extended keys were equivalent,
it could be possible to find equivalent 128 bit keys for Ckey. We can prove that
the probability that two 128 bit equivalent keys exist is negligible.

The probability that two equivalent 128 bit keys exist depends on the number
of equivalence classes among the extended keys. Considering a one round version
of C, it can be seen that no equivalent extended keys exist. Consequently, there
are at least (28!)16 ≈ 226944 equivalence classes. Adding rounds (thus increasing
the extended key size) cannot decrease this number of classes. Assuming that
the key schedule based on BBS uniformly distributes the extended keys obtained

88 T. Baignères and M. Finiasz

from the 128 bit keys among these classes, the probability that two keys fall into
the same class can be upper bounded by

1 − e−(2128)2/(2∗226944) ≈ 2−26689.

Property 17 (Ckey has no Equivalent Keys). The probability that two 128
bit keys lead to the same instance of C is upper bounded by 2−26689.

4 Security Results: What We Believe to Be True

4.1 C Is (Not That) Resistant to Saturation Attacks

Saturation attacks [20] are chosen-plaintext attacks on byte-oriented ciphers.
An attack on four rounds of AES can be performed [22] by choosing a set of 28

plaintexts equal on all but one byte. After 3 rounds of AES, the xor of all the
corresponding ciphertexts is 0. This makes it easy to guess the key of the fourth
round, as all round key bytes can be guessed independently.

In our case, the property on the third round output still holds. Nevertheless,
it only allows to exclude 255 out of 256 keys for each substitution box. This was
enough for AES, but in our case an adversary would still be left with 255! valid
substitution boxes, so that a more subtle approach is needed.

In [13], Biryukov and Shamir present an attack on SASAS, a generic con-
struction with three rounds of random key-dependent substitution boxes linked
by random key-dependent affine layers. Following their approach, the saturation
attacks on the AES can be adapted to C but with a non-negligible cost. In this
approach, an exhaustive search on 8 bits (as necessary with the AES) is replaced
by a linear algebra step which requires 224 operations. The additional workload
is thus of the order of 216. This overhead implies that any attack with a com-
plexity higher than 2112 becomes infeasible. In particular the saturation attacks
on 7 rounds of the AES [23] should not apply to C.

We believe that saturation-like attacks are the biggest threat for reduced
rounds versions of C. Chances that such attacks apply to 10 rounds are however
very low.

4.2 C Is Resistant to a Wide Variety of Attacks

Algebraic attacks consist in rewriting the whole block cipher as a system of al-
gebraic equations. The solutions of this system correspond to valid plaintext,
ciphertext, and key triples. Algebraic attack attempts on AES take advantage
of the simple algebraic structure of the substitution box [19]. In our case, sub-
stitution boxes can by no means be described by simple algebraic forms, and
thus, algebraic attacks will necessarily be much more complex against C than
against AES. We do believe that they will be more expensive than exhaustive
key search.

Slide attacks [14] exploit a correlation between the different round keys of a
cipher. These attacks apply for example against ciphers with weak key schedules

Dial C for Cipher 89

or against block ciphers with key-dependent substitution boxes and periodic key
schedules. C uses independent perfectly random substitution boxes, so that all
rounds are independent from each other. Slide attacks cannot apply here.

The boomerang attack [50] is a special type of differential cryptanalysis. It
needs to find a differential characteristic on half the rounds of the cipher. Four
rounds of C being sufficient to be provably secure against DC, 10 rounds are nec-
essarily sufficient to resist the boomerang attack. Similarly, neither differential-
linear cryptanalysis [33, 10] nor the rectangle attack [9] apply to C.

5 Reducing the Extended Key Size

The main drawback in the design of C is the huge amount of pseudo-random
bits required for the key schedule. Having to generate hundreds of thousands of
bits with the Blum-Blum-Shub generator is unacceptable for many applications.
We propose here an adaptation of C, enjoying the same security proofs, but
requiring much less pseudo-random bits.

Using Order 2 Decorrelated Substitutions Boxes. As stated in [5], the
bounds on the LP and DP obtained when replacing the substitution boxes of
the AES by independent perfectly random permutations remain exactly the same
if one uses independent order 2 decorrelated substitution boxes instead. This is
also the case concerning resistance against 2-limited adaptive distinguishers and,
as a consequence, resistance against iterated attacks of order 1.

Suppose we have a family D2 of order 2 decorrelated substitution boxes. Using
the Blum-Blum-Shub generator and the same method as for the standard C key
schedule, we can generate a set of 160 substitution boxes from D2 indistinguish-
able from 160 randomly chosen D2 boxes. Again, it is possible to prove that any
attack on a keyed C using substitution boxes in D2 requires to be able to dis-
tinguish the output of the Blum-Blum-Shub generator from a perfectly random
binary stream.

Hence, apart from the resistance to impossible differentials, all proven security
arguments of C remain untouched when using boxes of D2. However, each time
the key schedule required log2 256! bits from the Blum-Blum-Shub generator, it
only requires log2 |D2| now.

A ⊕ B
X

: a Good Family of Order 2 Decorrelated Substitution Boxes.
From what we have just seen, whatever the family D2 we use, security results
will still hold. For optimal efficiency, we need to select the smallest possible such
family. It was shown in [3] that any family of the form D2 =

{
X �→ A⊕B ·S(X);

A,B ∈ {0, 1}8, B �= 0
}

where S is any fixed permutation of GF(28) (and where
· represents a product in GF(28)) is decorrelated at order 2.

We propose to use the family D2 =
{
X �→ A ⊕ B

X ;A,B ∈ {0, 1}8, B �= 0
}
.

This family contains 216 elements and the substitution boxes can be chosen
uniformly in D2 from 16 bits of the Blum-Blum-Shub generator. The first 8 bits
define A, the last 8 define B. So, the whole key schedule for ten rounds of C only
requires 2 560 pseudo-random bits and should be about 100 times faster than

90 T. Baignères and M. Finiasz

an unmodified C with perfectly random permutations. One may believe that
this construction is very similar to that of the AES (assuming that the round
keys are independent and perfectly random). Nevertheless, deriving the AES
construction from ours requires to set B = 1. The family obtained in this case
is no longer decorrelated at order 2, so that, unfortunately, none of the security
results we obtained for C directly applies to the AES.

Security Considerations. Even if this might not be the case for any order 2
decorrelated family of substitution boxes, it is interesting to note that C built
on the family D2 we chose is also resistant to impossible differentials. As for
perfectly random permutations, lemmas 5 and 6 can both be proven for boxes
of the form A ⊕ B

X .
None of the security results we obtained requires using perfectly random per-

mutations and substitution boxes of the form A ⊕ B
X are enough. We believe

that achieving the same security level with perfectly random permutations is
possible with fewer rounds. More precisely, it may be possible to obtain a trade-
off between the number of rounds and the level of decorrelation of the random
substitution boxes. Fewer rounds lead to fast encryption/decryption procedures
but require a higher level of decorrelation. In this case, more pseudo-random bits
are necessary to generate each substitution box, and this may lead to a (very)
slow key schedule. The best choice depends on the application.

6 Implementation and Performances

Implementation. As seen in Section 2.3, before being able to use the Blum-
Blum-Shub generator, one needs to generate two strong-strong-primes p and q,
which is not an easy operation: it has a complexity of O((log p)6). For primes
of length 1024, this takes one million times more operations than generating a
prime of the same size. Some optimizations exist to improve the constant factor
in the prime number generation [29] and can become very useful for strong-
strong-prime numbers.

When implementing C, the same optimizations as for AES are possible. In
particular, one round of C can be turned into 16 table look-ups and 12 xors.
Basically, the output can be split in four 32 bits blocks, each of which only
depends on four bytes of the input. However, all the tables of C are different
from each other. This is the only reason why encrypting/decrypting with C

could be slower than with AES. Considering standard 32-bits computers, this
has little influence in practice as the 160 tables still fit in the cache of the CPU.
The required memory is 160 · 256 · 4 = 160kBytes. This however becomes an
issue when implementing C on a smartcard (but who wants to implement Blum-
Blum-Shub on a smartcard anyway?) or on a CPU with 128 kBytes of cache.

We programmed C in C using GMP [25] for the key schedule operations. On
a 3.0 GHz Pentium D, we obtain encryption/decryption speeds of 500 Mbits/s.
Generating the 160 substitution boxes from the 128 bit secret key takes 2.5s
when using perfectly random permutations and 25ms when using the A ⊕ B

X
construction. Note that to decrypt, it is also necessary to invert the substitution

Dial C for Cipher 91

boxes. This takes a negligible time compared to the generation of the extended
key, which is the most expensive step of the key schedule.

Applications. Given the timings we obtained, it appears that using C for en-
cryption purpose is practical, in particular with the shortened key schedule. Of
course, a key schedule of 25ms is much slower than most existing key sched-
ules but is still acceptable in a large majority of applications. This can become
negligible when the amount of data to encrypt becomes large.

The 2.5s obtained for the “most secure” version using perfectly random sub-
stitution boxes is suitable for only a few very specific applications. However, we
believe that in the case where a very high security level is required, this price is
not that high. This might not be an issue in certain cases when the key schedule
is run in parallel with some other slow operation, like for hard disk drive encryp-
tion (for which the key schedule is performed only once during a boot sequence
which already takes several seconds).

In some other circumstances however, C is not usable at all. For example,
when using it as a compression function in a Merkle-Damg̊ard construction, as
one key schedule has to be performed for each block (hashing a 1 MByte message
would take more than one day).

Further Improvements. It is known that outputting α(n) = O(log log n)
bits at each iteration of the Blum-Blum-Shub generator is cryptographically se-
cure [49]. However, for a modulus n of given bit length, no explicit range for α(n)
was ever given in the literature [40]. Finding such a constant could considerably
improve the speed of the key schedule of C.

Another possible improvement to the key schedule would be to rely on some
other cryptographically secure pseudo-random generator. The pseudo-random
generator on which the stream cipher QUAD [7, 6] is based may be a good can-
didate: it offers provable security results and achieves speeds up to 5.7Mbits/s.
Using such a construction would certainly improve the key schedule time by an
important factor, so that the “most secure” version of C might compare to the
current version using derandomized substitution boxes.

7 Conclusion

We have introduced C, a block cipher provably secure against a wide range of
attacks. It is as fast as AES for encryption on a standard workstation. Provable
security requires a cryptographically secure key schedule. Consequently, the key
schedule of C is too slow for some applications.

As far as we know, C is the first practical block cipher to provide tight security
proofs that do take into account the key schedule. It is proven that C resists:
linear cryptanalysis (taking into account the possible cumulative effects of a lin-
ear hull), differential cryptanalysis (similarly considering cumulative effects of
differentials), 2-limited adaptive distinguishers, iterated attacks of order 1, and

92 T. Baignères and M. Finiasz

impossible differentials. We also give strong evidence that it also resists: algebraic
attacks, slide attacks, the boomerang attack, the rectangle attack, differential-
linear cryptanalysis, and, to some extent, saturation attacks. From our point of
view, the most significant improvement that could be made on C would be to
give a bound on the advantage of the best d-limited adversary for d > 2.

“Mind you, even I didn’t think of that one... extraordinary.”
Chief Insp. Hubbard

References

1. Adams, C., Heys, H.M., Tavares, S.E., Wiener, M.: CAST256: a submission for
the advanced encryption standard. In: First AES Candidate Conference (AES1)
(1998)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

3. Aoki, K., Vaudenay, S.: On the use of GF-inversion as a cryptographic primitive.
In: Matsui, M., Zuccherato, R. (eds.) SAC 2003. LNCS, vol. 3006, pp. 234–247.
Springer, Heidelberg (2004)

4. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

5. Baignères, T., Vaudenay, S.: Proving the security of AES substitution-permutation
network. In: Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol. 3897, pp. 65–
81. Springer, Heidelberg (2006)

6. Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate
quadratic systems. In: Biham, E., Youssef, A.M. (eds.) Selected Areas in Cryp-
tography SAC’06. LNCS, Springer, Heidelberg (to appear)

7. Berbain, C., Gilbert, H., Patarin, J.: QUAD: a practical stream cipher with prov-
able security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
109–128. Springer, Heidelberg (2006)

8. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

9. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the Ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001)

10. Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002)

11. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4, 3–72 (1991)

12. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems (ex-
tended abstract). In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 2–21. Springer, Heidelberg (1991)

Dial C for Cipher 93

13. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

14. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

15. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators. In: Chaum, D., Rivest, R.L., Sherman, A. (eds.) Advances in Cryptology -
Crypto’82, Plemum, pp. 61–78 (1983)

16. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing 15(2), 364–383 (1986)

17. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

18. Cheon, J.H., Kim, M.J., Kim, K., Lee, J.-Y., Kang, S.W.: Improved impossible
differential cryptanalysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

19. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

20. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher SQUARE. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

21. Daemen, J., Rijmen, V.: AES proposal: Rijndael. NIST AES Proposal (1998)
22. Daemen, J., Rijmen, V.: The Design of Rijndael. In: ISC 2002, Springer, Heidelberg

(2002)
23. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,

D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

24. Gehrmann, C., Näslund, M.: Ecrypt yearly report on algorithms and keysizes, 2005.
Technical report, Ecrypt (2006)

25. GMP. GNU Multiple Precision arithmetic library, http://www.swox.com/gmp
26. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:

Proceedings of the twenty-first annual ACM symposium on Theory of computing
- STOC’89, pp. 25–32. ACM Press, New York (1989)

27. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

28. Hitchcock, A.: Dial M for Murder (1954), http://www.imdb.com/title/tt0046912
29. Joye, M., Paillier, P., Vaudenay, S.: Efficient generation of prime numbers. In:

Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 340–354. Springer,
Heidelberg (2000)

30. Junod, P., Vaudenay, S.: FOX: a new family of block ciphers. In: Handschuh, H.,
Hasan, A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004)

31. Keylength.com., http://www.keylength.com
32. Lai, X., Massey, J., Murphy, S.: Markov ciphers and differential cryptanalysis.

In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

33. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

34. Lim, C.H.: A revised version of CRYPTON: CRYPTON V1.0. In: Knudsen, L.
(ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)

http://www.swox.com/gmp
http://www.imdb.com/title/tt0046912
http://www.keylength.com

94 T. Baignères and M. Finiasz

35. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988)

36. Massey, J.: SAFER-K64: a byte-oriented block-ciphering algorithm. In: Anderson,
R.J. (ed.) FSE’93. LNCS, vol. 809, pp. 1–17. Springer, Heidelberg (1994)

37. Matsui, M.: The first experimental cryptanalysis of the Data Encryption Stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

38. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

39. Matsui, M.: New structure of block ciphers with provable security against differ-
ential and linear cryptanalysis. In: Gollmann, D. (ed.) FSE’96. LNCS, vol. 1039,
pp. 205–218. Springer, Heidelberg (1996)

40. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of applied cryptography.
The CRC Press series on discrete mathematics and its applications. CRC Press
(1997)

41. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

42. O’Connor, L.: Properties of linear approximation tables. In: Preneel, B. (ed.) Fast
Software Encryption. LNCS, vol. 1008, pp. 131–136. Springer, Heidelberg (1995)

43. Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical
Journal 28(4), 656–715 (1993), Re-edited in Claude Elwood Shannon - Collected
Papers. IEEE Press, New York (1993)

44. Stern, J., Vaudenay, S.: CS-Cipher. In: Vaudenay, S. (ed.) FSE 1998. LNCS,
vol. 1372, pp. 189–204. Springer, Heidelberg (1998)

45. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer,
Heidelberg (1992)

46. Vaudenay, S.: Resistance against general iterated attacks. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 255–271. Springer, Heidelberg (1999)

47. Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of Cryp-
tology 16(4), 249–286 (2003)

48. Vazirani, U., Vazirani, V.: Efficient and secure pseudo-random number generation.
In: Blakely, G., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 193–202.
Springer, Heidelberg (1985)

49. Vazirani, U., Vazirani, V.: Efficient and secure pseudo-random number generation
(extended abstract). In: Proceedings of FOCS’84, pp. 458–463. IEEE, Los Alamitos
(1985)

50. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

51. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
Proceedings of FOCS’82, pp. 80–91 (1982)

52. Youssef, A.M., Tavares, S.E.: Resistance of balanced S-boxes to linear and differ-
ential cryptanalysis. Information Processing Letters 56, 249–252 (1995)

A Further Reducing the Matrix Size

From Theorem 12 in [5], we know that ELPC(γ, γ′) actually only depends on
the weights of the diagonals of γ and of the columns of γ′. Respectively denoting

Dial C for Cipher 95

ν = (ν0, ν1, ν2, ν3) and μ = (μ0, μ1, μ2, μ3) those two sets of 4 weights, we obtain
from Theorem 10 that

2 AdvA = max
γ

∑

γ′
=0

∣
∣
∣ELPC(γ, γ′) − ELPC∗

(γ, γ′)
∣
∣
∣ (q − 1)w(γ′)

= max
ν

∑

μ
=0

∣
∣
∣ELPC(ν, μ) − ELPC∗

(ν, μ)
∣
∣
∣ (q − 1)w(μ)B[μ],

where B[μ] =
(

4
μ0

)(
4

μ1

)(
4

μ2

)(
4

μ3

)
denotes the number of distinct supports having

a column weight pattern equal to μ. Consequently, the final computation can be
reduced to computations on 625 × 625 matrices.

Improved Security Analysis of XEX and LRW

Modes

Kazuhiko Minematsu

NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki 211-8666, Japan
k-minematsu@ah.jp.nec.com

Abstract. We study block cipher modes that turn a block cipher into a
tweakable block cipher, which accepts an auxiliary variable called tweak
in addition to the key and message. Liskov et al. first showed such a mode
using two keys, where one is the block cipher’s key and the other is used
for some non-cryptographic function. Later, Rogaway proposed the XEX
mode to reduce these two keys to one key. In this paper, we propose a
generalization of the Liskov et al.’s scheme with a concrete security proof.
Using this, we provide an improved security proof of the XEX and some
improvements to the LRW-AES, which is a straightforward AES-based
instantiation of Liskov et al.’s scheme proposed by the IEEE Security in
Storage Workgroup.

1 Introduction

Tweakable block ciphers are block ciphers that accept a variable called tweak in
addition to the key and message. They were formally defined by Liskov, Rivest,
and Wagner [10]. In their definition, a tweak is used to provide variability: any
two different tweaks give two instances of an ordinary (i.e., not tweakable) block
cipher. Formally, tweakable block ciphers are defined as a function Ẽ : M ×
K×T → M, where (M,K, T) denotes (message space, key space, tweak space).
For any two tweak values, T �= T ′, the outputs of ẼK,T should appear to be
independent of outputs of ẼK,T ′ even if T and T ′ are public but K is secret.
Liskov et al. showed that a standard block cipher could be easily converted into
a tweakable one by using a mode of operation similar to DESX [9]. They also
pointed out that tweakable block ciphers are key components to build advanced
modes such as authenticated encryption modes. Their proposal, which we call
the LRW mode, is as follows. For plaintext M with tweak T , the ciphertext is
C = EK(M ⊕ Δ(T)) ⊕ Δ(T), where Δ is a keyed function of T called the offset
function. They proved that the LRW mode was provably secure if the key of
Δ, denoted by KΔ, was independent of K, and Δ was ε-almost XOR universal
(ε-AXU) for sufficiently small ε (see Def. 2). The security considered here is the
indistinguishability from the ideal tweakable block cipher using any combination
of chosen-plaintext attack (CPA) and chosen-ciphertext attack (CCA) for chosen
tweaks. A tweakable block cipher with this property is called a strong tweakable
block cipher.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 96–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Security Analysis of XEX and LRW Modes 97

The LRW mode needs two independent keys. However, what would happen
if KΔ is not independent of the block cipher key, K? For example, is it safe to
use EK(constant) as (a part of) KΔ? In this paper, we study this problem. Our
main contribution is a general construction of strong tweakable block ciphers
with a concrete security proof. Our scheme has basically the same structure as
that of the LRW mode, but we allow Δ to invoke EK and/or another function
which is possibly independently keyed of K. Using our scheme, we provide some
improvements to the previous modes. The first target is the XEX mode [19], an
one-key tweakable block cipher similar to the LRW mode. Here, ‘one-key’ means
that the key of the mode is the block cipher key, and only one block cipher key
scheduling is needed. XEX mode has a parameter, and in the initial definition
of XEX, it was claimed that it was strongly secure if its parameter provided
“unique representations” [18]. However, providing unique representations is not
a sufficient condition. XEX having a bad parameter is vulnerable to a very sim-
ple attack even if it provides unique representations (see [19] and Sect. 4.1 of this
paper). The published version of XEX fixed this problem [19]. Our generalized
construction clearly explains why this fix works well (which is only briefly men-
tioned in [19]) and provides a security proof of the fixed XEX, which improves
the one shown in [19].

Our second target is the LRW-AES, which is a straightforward instantiation
of LRW mode using AES [23]. It has been discussed by the IEEE security in
storage working group (SISWG) as a standard mode for storage encryption.
The offset function of LRW-AES uses multiplication in GF(2128), where a tweak
is multiplied by the 128-bit key independent of the block cipher’s key. Using our
scheme, we demonstrate how to reduce two keys of the LRW-AES to one key
without increasing the computational cost or reducing the allowed tweak set.
The underlying idea is similar (but not identical) to one applied to XEX. We
also present an alternative mode of AES using the 4-round AES as the offset
function. That is, the mode is essentially AES-based and no dedicated AXU
function is needed. XEX mode of AES has this property too; however, it allows
only incremental update of a tweak. In contrast, our proposal enables us to
update a tweak arbitrarily at the cost of 4-round AES invocation. We provide
an experimental implementation of our AES-based mode and demonstrate that
ours is much more efficient than the reference LRW-AES implementation.

2 Preliminaries

2.1 Notation

Σn denotes {0, 1}n. If a random variable X is uniformly distributed over a
set X , we write X ∈u X . An n-bit block uniform random function (URF),
denoted by R, is a random variable uniformly distributed over {f : Σn → Σn}.
Similarly, a random variable distributed over all n-bit permutations is an n-bit
block uniform random permutation (URP) and is denoted by P. A tweakable n-
bit URP with the tweak space T is defined by the set of |T | independent URPs
(i.e., an independent n-bit URP is used for each tweak in T) and is denoted

98 K. Minematsu

by P̃. If FK : X → Y is a keyed function, then FK is a random variable (not
necessarily uniformly) distributed over {f : X → Y}. If its key, K, is uniform
over K, we have Pr(FK(x) = y) = {k ∈ K : f(k, x) = y}/|K| for some function
f : K × X → Y. If K is fixed to k ∈ K, Fk denotes a function f(k, ∗). If K is
clear from the context, we will omit the subscript K and write F : X → Y.
Elements of GF(2n). We express the elements of field GF(2n) by the n-bit
coefficient vectors of the polynomials in the field. We alternatively represent n-
bit coefficient vectors by integers 0, 1, . . . , 2n − 1. For example, 5 corresponds to
the coefficient vector (00 . . . 0101) (which corresponds to the polynomial x2 + 1)
and 1 corresponds to (00 . . .01), i.e., the identity element.

2.2 Security Notion

Definition 1. Let F and G be two keyed n-bit block functions. Let us assume
that the oracle has implemented H, which is identical to one of F or G. An
adversary, A, guesses if H is F or G using CPA. The maximum CPA-advantage
in distinguishing F from G is defined as

AdvcpaF,G(q, τ) def= max
A:(q,τ)-CPA

∣
∣Pr(AF = 1) − Pr(AG = 1)

∣
∣, (1)

where AF = 1 denotes that A’s guess is 1, which indicates one of F or G, and
(q, τ)-CPA denotes a CPA that uses q queries with time complexity τ (see [1] for
a detailed description of τ). If the attacks have unlimited computational power,
we write AdvcpaF,G(q).

Let EK be an n-bit block cipher and let ẼK be an n-bit tweakable block cipher
with tweak space T . For any x ∈ Σn, t ∈ T , and w ∈ {0, 1}, we define:

E±
K(x,w) def=

{
EK(x) if w = 0
E−1

K (x) if w = 1,
Ẽ±

K(x, t, w) def=

{
ẼK(x, t) if w = 0
Ẽ−1

K (x, t) if w = 1,

where E−1
K denotes the inversion of EK . The securities of EK and ẼK are mea-

sured by

AdvsprpEK
(q, τ) def= AdvccaEK ,P(q, τ) def= Advcpa

E±
K ,P±(q, τ), and (2)

Advs̃prp
ẼK

(q, τ) def= Advc̃ca
ẼK ,P̃

(q, τ) def= Advcpa
Ẽ±

K ,P̃
±(q, τ), (3)

where P (P̃) is an n-bit URP (tweakable URP with tweak space T). A keyed
permutation that can not be efficiently distinguished from URP (i.e., CPA-
advantage is negligibly small for any practical (q, τ)) is called a pseudorandom
permutation (PRP) [3]. A PRP with a negligibly small Chosen ciphertext at-
tack (CCA)-advantage (i.e., AdvsprpEK

(q, τ)) is a strong PRP (SPRP). We focus
on modes that turn an n-bit SPRP into an n-bit strong tweakable block cipher,
which has negligibly small C̃CA-advantage, i.e., Advs̃prp

ẼK
(q, τ), for any practical

(q, τ).

Improved Security Analysis of XEX and LRW Modes 99

3 Previous Tweakable Block Cipher Modes

3.1 General DESX-Like Mode

All modes dealt within this paper including our proposals have the form defined
as

ẼK,KΔ(T,M) = EK(M ⊕ Δ(T)) ⊕ Δ(T), (4)

where T ∈ T is a tweak and M ∈ Σn is a plaintext. Here, EK is n-bit block and
Δ : T → Σn is a keyed function of tweak and called an offset function. Its key
is denoted by KΔ. Δ can invoke EK and/or another function which is fixed or
independently keyed of K. Thus KΔ is not always independent of K.

3.2 LRW Mode

Liskov et al.’s scheme, which we call the LRW mode, uses the offset function
Δ, where its key KΔ is independent of the block cipher key, K. To prove its
security, we need the notion of an ε-almost XOR universal hash function, which
is as follows.

Definition 2. Let FK : X → Σn be a keyed function with K ∈u K. If Pr(FK(x)⊕
FK(x′) = c) ≤ ε for any x �= x′ and c ∈ Σn, then FK is an ε-almost XOR
universal (ε-AXU) hash function.

The following theorem proves the security of LRW mode. The proof is in Ap-
pendix B.

Theorem 1. Let ẼK,KΔ be the LRW mode using the offset function Δ, where
its key is KΔ ∈u KΔ and tweak T ∈ T (see Eq. (4)). If Δ is ε-AXU (for input
T) and KΔ is independent of the block cipher key K, then Advs̃prp

ẼK,KΔ

(q, τ) ≤
AdvsprpEK

(q, τ ′) + εq2, where τ ′ = τ + O(q).

This is better than the result of Liskov et al. (theorem 2 of [10]), as they showed
3εq2 instead of εq2. A straightforward instantiation of the LRW is to define
Δ(T) = KΔ · T , where KΔ ∈u Σn and T ∈ Σn, and · denotes multiplication in
GF(2n). This apparently has bias ε = 1/2n. The mode of AES with this offset
function has been considered by the IEEE SISWG under the name LRW-AES.

3.3 XEX Mode

XEX mode was proposed by Rogaway [19]. It was designed to be a strong tweak-
able block cipher. According to the definition of XEX, a base is an element
of Σn \ {0}, and a set Id

1
def= I1 × I2 × · · · × Id is called an index set, where

Ii ⊆ {0, 1, . . . , 2n − 1} for all i. A pair of a list of bases α1, . . . , αd and an index
set Id

1 is a parameter setting of XEX.
A XEX mode with a parameter setting ((α1, . . . , αd), Id

1) has the tweak space
Id
1 × Σn. Let (i1, . . . , id, N) ∈ Id

1 × Σn. The offset function of XEX is defined as:

Δ(i1, . . . , id, N) = αi1
1 · αi2

2 · · · · · αid

d · V, where V = EK(N). (5)

100 K. Minematsu

Here, multiplications are done in GF(2n). Since Δ uses EK as the source of ran-
domness, XEX mode is one-key and needs only one block cipher key scheduling.
XEX mode is highly efficient: if we want to increment a tweak (i.e., increment
one of ij w/o changing other indexes), then it is done with one bitshift and
one XOR operation. This technique is called the powering-up construction and
has been adopted by other modes [5,6]. Consequently, XEX mode requires no
special functions other than the block cipher. Although we can not change a
tweak arbitrarily, we can still increment a tweak (with respect to one of ij) with
negligibly small cost.

4 Construction of Strong Tweakable Block Cipher

4.1 A Bug in the Initial XEX and an Attack Against OCB1

A parameter setting of the XEX is said to provide unique representations if it
contains no collisions, i.e.,

∏d
j=1 α

ij

j �=
∏d

j=1 α
i′
j

j for any (i1, . . . , id), (i′1, . . . , i
′
d)

such that (i1, . . . , id) �= (i′1, . . . , i
′
d). The following example is a parameter setting

providing unique representations shown by Rogaway [18].

Example 1. α1 = 2, α2 = 3 and I1 = {0, 1, . . . , 2n/2}, I2 = {0, 1}.

In the initial definition of XEX [18], it was claimed that XEX was a strong
tweakable block cipher if its parameter setting provided unique representations.
However, this claim turned out to be false, as pointed out by [19]. In general,
XEX is broken if its parameter setting allows an index vector, (i1, . . . , id), such
that αi1

1 · · · · αid

d = 1. We call it a “reduced-to-1” index vector. For example, the
parameter setting described in Ex. 1 allows the following attack [19].

1. Ask the oracle to decrypt C1 = 0 with tweak T1 = (0, 0, N) for some N , and
obtain a plaintext M1 = E−1

K (EK(N)) ⊕ EK(N) = N ⊕ EK(N). Compute
EK(N) = M1 ⊕ N .

2. Then, the encryption of M2 = 2 · (M1 ⊕ N) ⊕ N with tweak T2 = (1, 0, N),
which is denoted by C2, is predictable from EK(N): C2 = EK(N)⊕2·EK(N).

On The Security of OCB1. The above attack can be used as an attack
against OCB1 [18,19], which is an improvement to the famous OCB mode pro-
posed by Rogaway [17]. He proved that (a generalized form of) OCB1 could use
any tweakable block cipher as its component, and that it was a secure AE mode
if the underlying tweakable block cipher was strong, i.e., C̃CA-secure. It would
be natural to wonder if one can attack against OCB1 using the XEX with a
bad parameter setting (i.e., one containing a ”reduced-to-1” index vector). We
show this holds true1, if the inverse of XEX, denoted by XEX−1, is used to
instantiate OCB1. For instance, let us use the parameter setting of Ex. 1. Then,
XEX−1 gives the ciphertext C = E−1

K (M ⊕ Δ(i1, i2, N)) ⊕ Δ(i1, i2, N) where

1 The OCB1 defined in [18] and [19] are slightly different, however, our attack can be
applied to both versions.

Improved Security Analysis of XEX and LRW Modes 101

Δ(i1, i2, N) = 2i13i2EK(N). Although this implementation was not mentioned
in [19], it was as efficient as the XEX-based one. Moreover, using XEX−1 would
be preferable to using XEX in some situations. For example, it would be desir-
able to use XEX−1 if EK is faster2 than E−1

K and fast operation of the receiver
(rather than the sender) is required. Our attack is presented in Appendix C.

4.2 The Security of Fixed XEX

The attack presented in the previous section crucially depends on the existence
of reduced-to-1 index vector. Thus it would be natural to think of the idea of
removing reduced-to-1 index vector from the allowed tweak set. Here, we prove
that this simple fix is theoretically fine.

Theorem 2. Let XEX[EK] be the XEX mode of EK with a parameter setting
providing unique representations and containing no “reduced-to-1” index vector.
Then, we have Advs̃prpXEX[EK](q, τ) ≤ AdvsprpEK

(2q, τ ′) + 4.5q2

2n , where τ ′ = τ + O(q).

For example, we can fix the parameter setting of Ex. 1 by removing (i1, i2) =
(0, 0). If n = 128, the fixed XEX is secure if q 263. The same fix has already
been proposed in [19]. However, our proof improves the one shown in [19], which
proved 9.5q2

2n instead of 4.5q2

2n . The proof of Theorem 2 will be provided in Sect. 4.3.
One of our purposes is to provide a clear and comprehensive explanation why
this fix works well.

4.3 The Proof of Theorem 2

Tools for the Proof. Since we will uses a methodology developed by Mau-
rer [11], we briefly describe his notations. Consider event ai defined for i in-
put/output pairs (and possibly internal variables) of a keyed function, F . Here,
we omit the description of key throughout. Let ai be the negation of ai. We
assume ai is monotone; i.e., ai never occurs if ai−1 occurs. For instance, ai is
monotone if it indicates that all i outputs are distinct. An infinite sequence of
monotone events A = a0a1 . . . is called a monotone event sequence (MES). Here,
a0 denotes some tautological event. Note that A ∧ B = (a0 ∧ b0)(a1 ∧ b1) . . . is
a MES if A = a0a1 . . . and B = b0b1 . . . are both MESs. For any sequence of
random variables, X1, X2, . . . , let X i denote (X1, . . . , Xi). After this, dist(X i)
will denote an event where X1, X2, . . . , Xi are distinct. If dist(X i, Y j) holds true,
then we have no collision among {X1, . . . , Xi, Y1, . . . , Yj}.

Let MESs A and B be defined for two keyed functions, F : X → Y and
G : X → Y, respectively. Let Xi ∈ X and Yi ∈ Y be the i-th input and output.
Let PF be the probability space defined by F . For example, PF

Yi|XiY i−1(yi, xi)
means Pr[Yi = yi|X i = xi, Y i−1 = yi−1] where Yj = F (Xj) for j ≥ 1. If
PF

Yi|XiY i−1(yi, xi) = PG
Yi|XiY i−1(yi, xi) for all possible (yi, xi), then we write

2 For instance, some AES software implementations, including the reference code [22],
have this property.

102 K. Minematsu

PF
Yi|XiY i−1 = PG

Yi|XiY i−1 . Inequalities such as PF
Yi|XiY i−1 ≤ PG

Yi|XiY i−1 are simi-
larly defined.

Definition 3. We write FA ≡ GB if PF
Yiai|XiY i−1ai−1

= PG
Yibi|XiY i−1bi−1

holds
for all i ≥ 1, which means PF

Yiai|XiY i−1ai−1
(yi, xi) = PG

Yibi|XiY i−1bi−1
(yi, xi)

holds for all possible (yi, xi) such that both PF
ai−1|Xi−1Y i−1(yi−1, xi−1) and

PG
bi−1|Xi−1Y i−1(yi−1, xi−1) are positive.

Definition 4. We write F |A ≡ G|B if PF
Yi|XiY i−1ai

(yi, xi)= PG
Yi|XiY i−1bi

(yi, xi)
holds for all possible (yi, xi) and all i ≥ 1.

Note that if FA ≡ GB, then F |A ≡ G|B (but not vice versa).

Definition 5. For MES A defined for F , ν(F, aq) denotes the maximal proba-
bility of aq for any (q,∞)-CPA that interacts with F .

Note that, for any tweakable block cipher ẼK, ν(Ẽ±
K , aq) is themaximalprobability

of aq for any C̃CA-attacker, i.e., CPA/CCA for chosen tweaks. For simplicity, itwill
be abbreviated to ν(ẼK , aq). These equivalences are crucial to the information-
theoretic security proof. For example, the following theorem holds true.

Theorem 3. (Theorem 1 (i) of [11]) Let A and B be MESs defined for F and
G. If FA ≡ GB or F |A ≡ G, then AdvcpaF,G(q) ≤ ν(F, aq).

We will use some of Maurer’s results including Theorem 3 to make simple and
intuitive proofs3. For completeness, these results are cited in Appendix A.

General Scheme and Its Security Proof. We proceed as follows. First, we
describe a general scheme (which has the form of Eq. (4)) for a tweakable block
cipher. Then, we prove that it is a strong tweakable block cipher if its offset
function satisfies certain conditions. As the fixed XEX satisfies these conditions,
we immediately obtain Theorem 2 as a corollary.

For any two keyed n-bit block functions EK and GK′ , let TW[EK , GK′] be
an n-bit block tweakable block cipher with tweak space T = (L, Σn) for some
finite set L. Here EK must be invertible. Its offset function is defined as

Δ(T) = (FK′′ (L,GK′(N))), where T = (L,N) ∈ L × Σn. (6)

Here, FK′′ is a keyed function : L × Σn → Σn with key K ′′ ∈u K′′ (see Fig. 1).
The key of the offset function is (K ′,K ′′). We assume that K and K ′ are not
necessarily independent (e.g., GK′ = EK is possible). We also assume that K ′′

is independent of (K,K ′) or a constant k′′ (i.e., FK′′ can be a fixed function
Fk′′). The ranges of keys can be different. What we want to do is to clarify the
3 Maurer’s methodology [11] can only be applied to information-theoretic settings. In
most cases information-theoretic proofs can be easily converted into computational
ones, but this is not always the case [12,16]. However, we do not encounter such
difficulties in this paper. His methodology can also be applied to random systems, i.e.,
stateful probabilistic functions. However, none of our proposals require underlying
functions to be stateful.

Improved Security Analysis of XEX and LRW Modes 103

Fig. 1. General scheme for a tweakable block cipher

sufficient condition for FK′′ to make TW[EK , EK] provably secure. As a first
step, we have

Advs̃prpTW[P,P](q) = Advc̃ca
TW[P,P],P̃

(q) ≤ Advc̃caTW[P,P],TW[P,R](q) + Advs̃prpTW[P,R](q), (7)

which follows from the triangle inequality. Here, P and R are the n-bit URP
and URF, and P̃ is the n-bit tweakable URP with tweak space T . Note that
P and R in TW[P,R] are independent, however, two Ps in TW[P,P] denote the
same function. We start by analyzing Advc̃caTW[P,P],TW[P,R](q) in Eq. (7), which is
the main technical part. We need some definitions before the analysis. For any
TW[EK , GK′], let Mi (Ci) denote the i-th plaintext (ciphertext). In addition,
let Ti = (Li, Ni) be the i-th tweak. We define internal variables of TW[EK , GK′]
such as Vi

def= GK′(Ni) and V̂i
def= FK′′(Li, Vi). Moreover, we have Si

def= Mi ⊕ V̂i

and Ui
def= Ci ⊕ V̂i.

The following lemma tells us what probability we have to analyze.

Lemma 1. Let aq be dist(Sq, uni(N q)), where uni(N q) consists of all distinct
elements among N q. I.e., aq means that all elements in {S1, . . . , Sq, N1, . . . , Nq}
are distinct except for the collisions between Nis. Similarly, let bq denote
dist(U q, uni(V q)). Here, if uni(N q) = (Ni1 , . . . , Niθ

) for some {i1, . . . , iθ} ⊆
{1, . . . , q}, then uni(V q) = (Vi1 , . . . , Viθ

). Then, we have

Advc̃caTW[P,P],TW[P,R](q) ≤ ν(TW[P,R], aq ∧ bq). (8)

Proof. Let us consider the following probabilistic functions: Σn×{0, 1, 2} → Σn.

PP(x,w) =

{
P(x) if w = 0 or 2,
P−1(x) if w = 1,

PR(x,w) =

⎧
⎪⎨

⎪⎩

P(x) if w = 0,
P−1(x) if w = 1,
R(x) if w = 2.

Here, P and R are independent n-bit URP and URF. Observe that there exists
a procedure, F, such that TW[P,P] (TW[P,R]) is equivalent to F[PP] (F[PR]).
Consider the game of distinguishing PP from PR using CPA (note that this game
is quite easy to win). For PP and PR, let (Xi,Wi) ∈ Σn × {0, 1, 2} be the i-th
query, and Yi ∈ Σn be the i-th output. For convenience, we allow adversaries
to make colliding queries having Wi = 2 such as (X1, 2) and (X2, 2) where
X1 = X2. Let I = {i ∈ {1, . . . , q} : Wi ∈ {0, 2}}. Let a′

q be the event that all

104 K. Minematsu

Xis with i ∈ I are distinct, except for the trivial collisions (i.e., Xi = Xj such
that Wi = Wj = 2 and i �= j). Similarly, b′q denotes the event that all Yis with
i ∈ I are distinct, except for the trivial collisions. Note that a′

q is equivalent to
b′q in PP, but not in PR. Then, for two MESs A′ = a′

0a
′
1 . . . and B′ = b′0b

′
1 . . . ,

PP|A′ ∧ B′ ≡ PP|A′ ≡ PR|A′ ∧ B′ (9)

holds. Let Zq be the q-th transcript (Xq,W q, Y q). Then, we obtain

PPR
a′

qb′
q|Zq−1Xqwqa′

q−1b′
q−1

≤ PPP
a′

q|Zq−1Xqwqa′
q−1

(10)

since the r.h.s. of Eq. (10) is always 0 or 1 and if it is 0, then the l.h.s. is also 0
(recall that Eq. (10) means that the inequality holds for all possible arguments).
From Eqs. (9) and (10) and Lemma 3, there is an MES defined for PP, C′, such
that

PPA′∧B′∧C′
≡ PPA′∧C′

≡ PRA′∧B′
(11)

holds true. It is easy to see that A′∧B′ is equivalent to A∧B where A = a0a1 . . .
and B = b0b1 . . . are defined for TW[P,P] and TW[P,R]. From this fact, and
Eq. (11), and Lemma 4, we obtain

TW[P,P]A∧B∧C ≡ TW[P,R]A∧B, for some MES C defined for TW[P,P]. (12)

Combining Eq. (12) and Theorem 3 proves the lemma. ��

Next, we have to evaluate the r.h.s. of Eq. (8). Our result is the following.

Lemma 2. Let γ, ε, and ρ be given such that FK′′ satisfies the following three
conditions when V, V ′ ∈u Σn and V is independent of V ′.

1. maxl∈Σn,c∈Σn Pr(FK′′(l, V) = c) ≤ γ (here, probability is defined by K ′′ ∈u

K′′ and V ∈u Σn).
2. maxl,l′∈L,l
=l′,c∈Σn Pr(FK′′ (l, V) ⊕ FK′′(l′, V) = c) ≤ ε and

maxl,l′∈L,c∈Σn Pr(FK′′(l, V) ⊕ FK′′(l′, V ′) = c) ≤ ε.
3. maxl∈L,c∈Σn Pr(FK′′ (l, V) ⊕ V = c) ≤ ρ.

Then we have

ν(TW[P,R], aq ∧ bq) ≤
(

γ + ε + ρ +
1

2n+1

)
q2. (13)

Proof. Let P̃ be the n-bit tweakable URP with tweak space T = L×Σn. All vari-
ables and events defined for TW[P,R] are similarly defined for P̃ by using dummy
functions. For example, Si = FK′′(L,R(N)) ⊕ Mi and aq = dist(Sq, uni(N q)).
Note that dist(Sq) and dist(U q) are equivalent in TW[P,R], but not in P̃. Let
Zq be the q-th transcript (M q, Cq, T q), and Xq be the q-th query (i.e., Xq is
(Mq, Tq) or (Cq, Tq)), and Yq be the q-th answer from the oracle, which is Mq or
Cq. Let KΔ be the key of Δ, which determines the instance of (R, FK′′). From
the assumption, KΔ is uniformly distributed over KΔ

def= {f : Σn → Σn} × K′′

and independent of P.

Improved Security Analysis of XEX and LRW Modes 105

Then, it is easy to verify that P
TW[P,R]
Yq |Zq−1XqaqbqKΔ

= P P̃
Yq|Zq−1XqaqbqKΔ

and

P
TW[P,R]
KΔ|Zq−1Xqaqbq

= P P̃
KΔ|Zq−1Xqaqbq

hold. Therefore, we have

P
TW[P,R]
Yq|Zq−1Xqaqbq

=
∑

KΔ

P
TW[P,R]
Yq |Zq−1XqaqbqKΔ

· PTW[P,R]
KΔ|Zq−1Xqaqbq

(14)

=
∑

KΔ

P P̃
Yq |Zq−1XqaqbqKΔ

· P P̃
KΔ|Zq−1Xqaqbq

= P P̃
Yq |Zq−1Xqaqbq

, (15)

where summations are taken for all δ ∈ KΔ. This indicates the following condi-
tional equivalence.

TW[P,R]|A ∧ B ≡ P̃|A ∧ B. (16)

Then, we determine if

P P̃
aqbq|Zq−1Xqaq−1bq−1KΔ

≤ P
TW[P,R]
aqbq |Zq−1Xqaq−1bq−1KΔ

(17)

holds. We first analyze the r.h.s. of Eq. (17). Let us assume the variables in
the condition are fixed such as (Zq−1, Xq,KΔ) = (zq−1, xq, δ) and the q-th
query is a chosen-plaintext query. Then, all variables except Uq are uniquely
determined. Therefore, whether a+

q
def= aq ∧ dist(U q−1, uni(V q)) holds or not

is a function of (Zq−1, Xq,KΔ). If a+
q holds, then Uq is uniform over Ω

def=
Σn \ {U1 . . . , Uq−1}, and aq ∧ bq occurs if Uq ∈ Ω \ {V1, . . . , Vq−1}. Note that
{U1 . . . , Uq−1} ∩ {V1, . . . , Vq} = ∅ if a+

q holds. From these observations, we have

P
TW[P,R]
aqbq|Zq−1Xqaq−1bq−1KΔ

=

{
0 if a+

q does not hold,

1 − θ
2n−(q−1) otherwise ,

(18)

where θ denotes the number of unique elements among {V1, . . . , Vq}. How about
the l.h.s. of Eq. (17)? The occurrence of a+

q is a function of (Zq−1, Xq,KΔ) as
well as the r.h.s. However, the distribution of Uq is different. Let Ψ be a set
of indexes defined by Ψ = {i ∈ {1, . . . , q − 1} : Tq = Ti} and let |Ψ | be ψ. If
a+

q holds, Uq is uniform over Ω′ def= Σn \ {Ui : i ∈ Ψ} and aq ∧ bq occurs if
Uq ∈ Ω′ \ {{V1, . . . , Vq} ∪ {Ui : i ∈ Ψ c}}. Therefore, we have

P P̃
aqbq|Zq−1Xqaq−1bq−1KΔ

=

{
0 if a+

q does not hold,

1 − θ+q−ψ−1
2n−ψ otherwise .

(19)

Note that 0 ≤ ψ ≤ q − 1 and 1 ≤ θ ≤ q. Thus, when q ≤ 2n − θ + 1 we obtain

θ + q − ψ − 1
2n − ψ

− θ

2n − (q − 1)
=

(q − ψ − 1) · (2n − (q − 1) − θ)
(2n − ψ) · (2n − (q − 1))

≥ 0. (20)

Since θ ≤ q, Eq. (20) holds unless q > 2n−1 + 0.5. The same analysis holds when
the q-th query is a chosen-ciphertext query. Therefore, Eq. (17) holds if q ≤ 2n−1.

106 K. Minematsu

It is almost trivial to see that P
TW[P,R]
KΔ|Zq−1Xqaq−1bq−1

= P P̃
KΔ|Zq−1Xqaq−1bq−1

. By
combining this and Eqs. (17), we have

P P̃
aqbq|Zq−1Xqaq−1bq−1

≤ P
TW[P,R]
aqbq|Zq−1Xqaq−1bq−1

, if q ≤ 2n−1. (21)

From this inequality, and Eq. (16), and Lemma 3, TW[P,R]A∧B∧C ≡ P̃
A∧B

holds
for some MES C = c0c1 . . . , if q ≤ 2n−1. Therefore, using Lemma 5, we obtain

ν(TW[P,R], aq ∧ bq) ≤ ν(TW[P,R], aq ∧ bq ∧ cq) = ν(P̃, aq ∧ bq), if q ≤ 2n−1.

Note that any adversary’s strategy against P̃ must be independent of R and FK′′ ,
as they do not affect the input or output of P̃. Therefore, evaluating ν(P̃, aq ∧ bq)
is quite easy: we only have to consider non-adaptive strategies. Let P P̃ denote
the probability space defined by P̃ and some fixed q inputs. Then, the second
condition of Lemma 2 implies that P P̃(Si = Sj) ≤ ε and P P̃(Ui = Uj) ≤ ε if
i �= j. Moreover, we have P P̃(Si = Nj) = P P̃(V̂i = Nj ⊕ Mi) ≤ γ for any i, j,
and P P̃(Ui = Vj) = P P̃(V̂i = Ci ⊕ Vj) ≤ ρ for any i, j (more precisely, it is at
most ρ if Ni = Nj and 1/2n otherwise). Therefore, if q ≤ 2n−1, we have

ν(P̃, aq ∧ bq) ≤ P P̃(dist(Sq)) + P P̃(dist(U q)) + P P̃(Si = Nj for some i, j ≤ q)

+ P P̃(Ui = Vj for some i, j ≤ q) + P P̃(Vi = Vj for some i, j ≤ q, i �= j)

≤ 2
(

q

2

)
ε + q2γ + q2ρ +

(
q

2

)
2−n ≤ q2(ε + γ + ρ + 2−n−1). (22)

This upper bound reaches 1 if q ∼ 2n/2, thus the condition q ≤ 2n−1 is redundant.
This concludes the proof. ��

Note that the second condition of Lemma 2 implies that the offset function is
ε-AXU for input T = (L,N) ∈ L × Σn. By combining Eq. (7) and Lemmas 1, 2
and Theorem 1, the security of TW[P,P] is proved in the following theorem.

Theorem 4. If the assumption of Lemma 2 holds true for FK′′ , we have

Advs̃prpTW[P,P](q) ≤
(

2ε + γ + ρ +
1

2n+1

)
q2. (23)

The proof of Theorem 2. From Theorem 4, we can easily see that the fol-
lowing offset function enables a simple one-key tweakable block cipher.

Corollary 1. Let TW[P,P] use the offset function defined as Δ(T) = L·EK(N),
where T = (L,N) ∈ (Σn \ {0, 1}) × Σn. Then, we have Advs̃prpTW[P,P](q) ≤ 4.5q2

2n .
Moreover, for any block cipher EK ,

Advs̃prpTW[EK,EK](q, τ) ≤ AdvsprpEK
(2q, τ ′) +

4.5q2

2n
, where τ ′ = τ + O(q).

Improved Security Analysis of XEX and LRW Modes 107

Proof. Note that L · V , L · V ⊕ L′ · V , and L · V ⊕ V are permutations of V
for any L,L′ ∈ Σn \ {0, 1} such that L �= L′. This indicates ε = γ = ρ = 1/2n

and thus Theorem 4 proves the first claim. The second claim follows from the
first and the standard conversion from the information-theoretic setting to the
computational setting. ��

Recall that an output of XEX’s offset function is
∏d

j=1 α
ij

j · EK(N), where

a tweak is (i1, . . . , id, N). In the fixed XEX,
∏d

j=1 α
ij

j �=
∏d

j=1 α
i′
j

j whenever

(i1, . . . , id) �= (i′1, . . . , i
′
d), and

∏d
j=1 α

ij

j never be 0 or 1 (in GF(2n)). Therefore,
Theorem 2 is immediately obtained from Corollary 1.

Applications of Theorem 4. Theorem 4 provides not only the improved proof
of XEX, but also useful tools for the design of strong tweakable block cipher. For
example, consider the LRW mode based on a dedicated AXU hash function such as
MMH or NMH (see e.g., [2]). Then, Theorem 4 tells us what properties are needed
(in addition to the AXU property) if we want to substitute (a part of) the key
of LRW’s offset function with an encryption of the block cipher. This is achieved
by our generalized construction. In particular, for the offset function of the form
Δ(L,N) = g(L ⊕ EK(N)) where g is a fixed n-bit permutation, the conditions of
Lemma 2 become simpler: since g(l⊕V) and g(l⊕V)⊕g(l′⊕V ′) are permutations
of V , γ and the second ε in the second condition are naturally 1/2n. The remaining
conditions can be interpreted such that g is differentially ε-uniform [15] and is a
(2nρ−1)-almost orthomorphism [21] (equivalently, a permutation with maximum
self-differential probability ρ [13], where self-differential means the differential be-
tween the input and output). An example of such a permutation is the inversion on
GF(2n), inv(∗), where inv(x) = x−1 if x �= 0, and inv(0) = 0. If g is the inversion
on GF(2n), ε = 4/2n holds from [15], and a simple analysis proves that ρ = 3/2n.
Consequently, the mode with the offset function Δ(L,N) = inv(L ⊕ EK(N)) is
provably secure and has the bound (2ε+γ+ρ+0.5) q2

2n = 12.5q2

2n . This demonstrates
that strong tweakable ciphers with arbitrary tweak update are possible from per-
mutations with gooddifferential and self-differential property.We will use this idea
in the next section.

5 Improving LRW-AES

Theorem 4 also gives some improvements to the LRW-AES described in Sect. 3.2.
Here, we propose two improvements.

LRW-AES-Sqr: One-Key LRW-AES having 2n
tweak values. As men-

tioned, LRW-AES is the mode for AES that provides a strong tweakable block
cipher using Δ(T) = KΔ · T , where T ∈ Σn and KΔ ∈u Σn is independent of
the key of the AES. Although the original LRW-AES needs two keys, Corollary
1 provides some ways to reduce these two keys to the one AES key. The simplest
fix is the same as one used for the XEX: let KΔ = EK(0) and T ∈ Σn \ {0, 1}.
However, the resulting mode is not strictly compatible with LRW-AES because

108 K. Minematsu

of the reduced tweak set. However, we still have several options to achieve one-
key LRW-AES having 2n tweak values. An efficient one among these options
is to use squaring, which is as follows. We first generate V = EK(0) in the
preprocessing. For tweak T ∈ Σn, the offset function is defined as:

Δ(T) =

⎧
⎪⎨

⎪⎩

V 2 if T = 0,
a · V 2 if T = 1,
T · V otherwise.

(24)

Here, a is a fixed element of Σn \ {0, 1}. This requires only one AES encryption
in the preprocessing, and the cost for updating a tweak (i.e., the cost for com-
puting Δ(T)) is almost the same as that of the original LRW-AES, namely one
GF multiplication. To be precise, the computation of a · V 2 requires two mul-
tiplications; however the cost for multiplication by constant a can be negligibly
small with the powering-up construction. The security of this scheme, which we
call LRW-AES-Sqr, is proved as follows.

Theorem 5. Advs̃prpLRW-AES-Sqr(q, τ) ≤ AdvsprpAESK
(q + 1, τ ′) + 7.5q2

2128 , where τ ′ =
τ + O(q).

Proof. We apply Lemma 2 to the offset function in Eq. (24). Since squaring
in a field with characteristic two is a permutation, both V 2 and a · V 2 are
permutations of V . Also, T · V with T �∈ {0, 1} is a permutation. Thus we have
γ = 1/2n. Every sum of two offset values (i.e., T ·V ⊕T ′ ·V , V 2⊕a·V 2, V 2⊕T ·V ,
and a · V 2 ⊕ T · V for any T, T ′ ∈ Σn \ {0, 1} with T �= T ′) is a quadratic or
linear function of V , but can not be reduced to a constant since a �∈ {0, 1}. As
a function with degree d has at most d solutions, every sum has bias of at most
2/2n, which means ε = 2/2n. Moreover, both V 2 ⊕ V and a · V 2 ⊕ V have bias
2/2n, and T ·V ⊕V with T �∈ {0, 1} has bias 1/2n. Therefore we have ρ = 2/2n.
Note that AES is invoked q + 1 times in LRW-AES-Sqr. Combining these facts
and Theorem 4 proves the theorem. ��
LRW-AES-4r: LRW-AES without multiplication. Both LRW-AES and
LRW-AES-Sqr require GF multiplication in order to be able to update a tweak
arbitrarily. Here, we provide an interesting alternative to the multiplication: the
reduced-round of AES. This idea is basically the same as the recent proposal
of AES-based message authentication codes [13]. More precisely, what we use is
the 4-round AES, denoted by AES(4)

Ksub
, where Ksub ∈u (Σ128)3 consists of the

round keys for the last three rounds. The first round key is set to 0. We first
generate V = AESK(0) and Ksub ∈u (Σ128)3. For tweak T ∈ Σ128, we use the
offset function such as Δ(T) = AES(4)

Ksub
(T ⊕ V). This scheme, which we call

LRW-AES-4r is essentially AES-based while the cost for updating a tweak is
less than an AES encryption. XEX mode also has this property (if we fix N to
some constant), but a tweak can be updated only in an incremental order.

Security of LRW-AES-4r. The differential and linear properties of the AES
and its reduced-round version have been extensively studied. Particularly,

Improved Security Analysis of XEX and LRW Modes 109

Table 1. Mean speed of LRW-AES and our improvements for random 220 messages
and tweaks on a PC (Pentium III (Coppermine), 1 GHz, 16KB L1 cache). Alg 1 and
2 denote the multiplication algorithms specified in [23]. Preprocessing includes key
schedulings for both AES and its inverse, and precomputation for multiplication, and
one AES encryption: V = AESK(0).

Mode Preproc (cycles) Enc (cycle/byte) Dec (cycle/byte)

LRW-AES (alg 1) 1248 234 241
LRW-AES (alg 2) 289506 155 161
LRW-AES-Sqr (alg 1) 1696 235 241
LRW-AES-Sqr (alg 2) 289966 155 161
LRW-AES-4r 1653 39 45

Keliher proved that the maximum expected differential probability of AES(4)
Ksub

was at most 2−113 [8], if Ksub ∈u (Σ128)3. This means that AES(4)
Ksub

(T ⊕ V) is
2−113-AXU, when (Ksub, V) is the key and T is the input.

The security of LRW-AES-4r is proved as follows.

Theorem 6. Advs̃prpLRW-AES-4r(q, τ) ≤ AdvsprpAESK
(q+1, τ ′)+ (216+2.5)q2

2128 , where τ ′ =
τ + O(q).

Proof. We have ε < 2−113 = 215/2128 from [8]. Moreover, we have γ = 1/2128.
Note that the output of AES(4)

Ksub
is completely random and independent of the

input, as each round key is XORed to the intermediate message and uniformly
distributed. This indicates ρ = 1/2128. ��

We have to mention that LRW-AES-4r is not an ideal substitute for the LRW-
AES. The security of the LRW-AES-4r is moderately degraded compared with
the original LRW-AES. That is, LRW-AES-4r has 112/2 = 56-bit security (i.e.,
q must be much smaller than 256), while the original LRW-AES has 63-bit
security. This means that the lifetime of key should be slightly shortened. In
addition, the key of the LRW-AES-4r is longer (512 bits) than that of the
LRW-AES (256 bits), though both require only one AES key scheduling. We
implemented our proposals and the original LRW-AES in software. Our im-
plementation was based on the reference AES code [22]. We used two naive
algorithms for multiplication in GF(2128) that were specified in the document of
LRW-AES [23]. The performance of LRW-AES-4r is quite remarkable, as Table 1
shows.

Acknowledgments

We would like to thank Peng Wang for pointing out the reference on XEX. We
also thank Etsuko Tsujihara for the implementation and anonymous reviewers
for very useful comments.

110 K. Minematsu

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science, FOCS ’97, pp. 394–403 (1997)

2. Black, J.: Message Authentication Code. PhD dissertation (2000)
3. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.

Springer, Heidelberg
4. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.)

CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)
5. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Okamoto, T. (ed.)

CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)
6. Iwata, T., Kurosawa, K.: On the Universal Hash Functions in Luby-Rackoff Cipher.

In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 226–236. Springer,
Heidelberg (2003)

7. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

8. Keliher, L., Sui, J.: Exact Maximum Expected Differential and Linear Proba-
bility for 2-Round Advanced Encryption Standard (AES). IACR ePrint Archive
(2005)/321

9. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996)

10. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

11. Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

12. Maurer, U., Pietrzak, K.: Composition of Random Systems: When TwoWeak Make
One Strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer,
Heidelberg (2004)

13. Minematsu, K., Tsunoo, Y.: Provably Secure MACs From Differentially-uniform
Permutations and AES-based Implementations. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, Springer, Heidelberg (2006)

14. Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. Journal of Cryptology 12(1), 29–66 (1999)

15. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

16. Pietrzak, K.: Composition Does Not Imply Adaptive Security. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)

17. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security ACM CCS’01, pp. 196–205 (2001)

18. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC (the early version of [19]),
http://www.cs.ucdavis.edu/∼rogaway/papers/offsets.pdf

19. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

20. Wegman, M., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. Journal of Computer and System Sciences 22, 265–279 (1981)

http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

Improved Security Analysis of XEX and LRW Modes 111

21. Vaudenay, S.: On the Lai-Massey Scheme. In: Lam, K.-Y., Okamoto, E., Xing, C.
(eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 9–19. Springer, Heidelberg (1999)

22. http://homes.esat.kuleuven.be/∼rijmen/rijndael/rijndael-fst-3.0.zip
23. Draft Proposal for Tweakable Narrow-block Encryption (2004),

http://www.siswg.org/docs/LRW-AES-10-19-2004.pdf

A Theorems and Lemmas Proved by Maurer [11]

Let us now describe some of Maurer’s results [11] other than Theorem 3. They
were used in our analysis.

Lemma 3. (Lemma 1 (iv) of [11]) Let MESs A and B be defined for F and G.
Moreover, let Xi and Yi denote the i-th input and output of F (or G), respec-
tively. Assume F |A ≡ G|B. If PF

ai|XiY i−1ai−1
≤ PG

bi|XiY i−1bi−1
for i ≥ 1, which

means PF
ai|XiY i−1ai−1

(xi, yi−1) ≤ PG
bi|XiY i−1bi−1

(xi, yi−1) holds for all (xi, yi−1)
such that PF

ai−1|Xi−1Y i−1(xi−1, yi−1) and PG
bi−1|Xi−1Y i−1(xi−1, yi−1) are positive,

then there exists an MES C defined for G such that FA ≡ GB∧C.

Lemma 4. (Lemma 4 (ii) of [11]) Let F and G be two compatible keyed func-
tions, and F be the function of F and G (i.e., F[F] is a function that internally
invokes F , possibly several times, to process its inputs). Here, F can be proba-
bilistic, and if so, we assume F is independent of F or G. If FA ≡ GB holds
for some MESs A and B, we have F[F]A

′ ≡ F[G]B
′
. Here, MES A′ = a′

0a
′
1 . . .

is defined such that a′
i denotes A-event is satisfied for the time period i. For

example, if F[F] always invoke F c times for any input, then a′
i = aci. B′ is

defined in the same way.

Lemma 5. (Lemma 6 (ii) of [11]) If FA ≡ GB, then ν(F, aq) = ν(G, bq).

Lemma 6. (Lemma 6 (iii) of [11]) ν(F, aq ∧ bq) ≤ ν(F, aq) + ν(F, bq).

B Proof of Theorem 1

The structure of the proof is almost the same as the proofs of Lemmas 1 and
2. Let Ẽ denote the LRW mode using the offset function Δ, and P̃ denote the
URP compatible (i.e., the block size and tweak space are the same as those of
Ẽ) with Ẽ. Let Mi and Ci be the i-th plaintext and ciphertext, and let Ti be
the i-th tweak. Let Si be the i-th input to EK , i.e., Si = Δ(Ti) ⊕ Mi. Similarly,
we define Ui = Δ(Ti) ⊕ Ci. Note that these variables can be defined for both Ẽ

and P̃. We use two MESs A = a0a1 . . . and B = b0b1 . . . where ai
def= dist(Si)

and bi
def= dist(U i). An analysis similar to that used in the proof of Lemma 2

provides that the equivalences Ẽ|A ≡ P̃|A∧B and ẼA∧C ≡ P̃
A∧B

hold for some
MES C = c0c1 . . . defined for Ẽ. Thus we have

Advs̃prp
Ẽ

(q) = Advc̃ca
Ẽ,P̃

(q) ≤ ν(P̃, aq ∧ bq) ≤ ν(P̃, aq) + ν(P̃, bq), (25)

http://homes.esat.kuleuven.be/~rijmen/rijndael/rijndael-fst-3.0.zip
http://www.siswg.org/docs/LRW-AES-10-19-2004.pdf

112 K. Minematsu

where the first inequality follows from ẼA∧C ≡ P̃
A∧B

and Theorem 3, and the
last follows from Lemma 6. It is almost trivial to see that any adaptive strategy
against P̃ to invoke aq or bq is no better than the best non-adaptive strategy.
Therefore, we have

ν(P̃, aq) ≤ max
mq,tq

P P̃(Si = Sj for some 1 ≤ i < j ≤ q|M q = mq, T q = tq) ≤ εq2/2,

where P P̃ denotes the probability space defined by P̃ and the maximum is taken
for all q plaintexts and tweaks satisfying (mi, ti) �= (mj , tj) for any i �= j.
The second inequality follows from the assumption on Δ. Similarly, we obtain
ν(P̃, bq) ≤ εq2/2, and thus, ν(P̃, aq) + ν(P̃, bq) ≤ εq2. This concludes the proof.

C An Attack Against OCB1 Using Flawed XEX−1

OCB1 [18] is an authenticated encryption mode for any finite-length message. A
ciphertext consists of a nonce, and an encryption of a message, and an authen-
tication tag, which we simply call a tag. The OCB1 defined in [18] and [19] are
slightly different, but our attack is applicable to both. For simplicity, we only
describe a version of OCB1 defined in [18] for a message of length cn bits for
some positive integer c. We also assume that the tag is n-bit. Let the message M
be (M [0], . . . ,M [c−1]), where each M [i] ∈ Σn. Let ẼK be an n-bit block strong
tweakable block cipher having the tweak space {0, 1, . . . , 2n/2}×{0, 1}×Σn. To
encrypt M with nonce N ∈ Σn, we first let C[i] = ẼK(M [i], (i, 0, N)), where
the second argument of ẼK is a tweak, for i = 0, . . . , c − 2. The last block,
M [c − 1], is encrypted such as C[c − 1] = M [c − 1] ⊕ ẼK(v, (c − 1, 0, N)), where
v denotes the bit length of the last block, which is assumed to be n, in some
deterministic encoding. Then, we compute the sum of all message blocks, namely
sum = M [0] ⊕ M [1] ⊕ · · · ⊕ M [c − 1]. The tag is tag = ẼK(sum, (c − 1, 1, N)),
and the ciphertext C is (N,C[0], . . . , C[c − 1], tag). To decrypt it, we compute
M̂ [i] = Ẽ−1

K (C[i], (i, 0, N)) for 1 ≤ i ≤ c − 2. For Cc−1, we have M̂ [c − 1] =
Cc−1 ⊕ ẼK(v, (c − 1, 0, N)) and ŝum = M̂ [0] ⊕ M̂ [1] ⊕ · · · ⊕ M̂ [c − 1]. Then, we
check if ẼK(ŝum, (c − 1, 1, N)) and tag are the same. If they are the same, we
say the ciphertext is authenticated, and otherwise it is faked.

XEX−1 gives ciphertext C = E−1
K (M ⊕ Δ(i1, i2, N)) ⊕ Δ(i1, i2, N) where

Δ(i1, i2, N) equals 2i13i2EK(N) for all (i1, i2) ∈ {0, 1, . . . , 2n/2} × {0, 1}. Recall
that this provides unique representations but does not exclude a reduced-to-1
index vector. Our attack is against the tag-generation part and is based on the
information of two ciphertexts. We assume the nonce is set to N at the beginning
of the attack.

1. Ask the oracle (who implemented the XEX−1-based OCB1) to encrypt a 2n-
bit message, M1 = (M1[0],M1[1]) = (0,m), for some m ∈ Σn and receive the
ciphertext C1 = (N,C1[0], C1[1], tag1), where C1[0] = ẼK(M1[0], (0, 0, N)) =
EK(N) ⊕ N and C1[1] = m ⊕ E−1

K (v ⊕ 2 · EK(N)) ⊕ 2 · EK(N). The tag is
tag1 = E−1

K (m ⊕ 2 · 3 · EK(N)) ⊕ 2 · 3 · EK(N).

Improved Security Analysis of XEX and LRW Modes 113

2. Ask the oracle to encrypt M2 = (M2[0],M2[1]) = (0,m′) for some m′ ∈
Σn,m′ �= m and receive the ciphertext C2 = (N ′, C2[0], C2[1], tag2), where
C2[0] = ẼK(M2[0], (0, 0, N ′)) = EK(N ′) ⊕ N ′ and N ′ �= N . We do not use
C2[1] and tag2.

3. Then, issue the faked ciphertext C′ = (N,C′[0], C′[1], tag′). Here, C′[0] =
C1[0]⊕N ⊕N ′, and C′[1] = C1[0]⊕C1[1]⊕C2[0]⊕N ⊕N ′, and tag′ = tag1.

The above faked ciphertext will be always accepted as authentic by the oracle,
since the decrypted message will be:

M̂ ′[0] = EK(C′[0] ⊕ EK(N)) ⊕ EK(N) = EK(N) ⊕ EK(N ′) (26)

M̂ ′[1] = C′[1] ⊕ E−1
K (v ⊕ 2 · EK(N)) ⊕ 2 · EK(N) = EK(N) ⊕ EK(N ′) ⊕ m.

(27)

These equations indicate that ŝum′ = M̂ ′[0]⊕M̂ ′[1] = m, and therefore, we have
tag′ = tag1.

Extended Hidden Number Problem and Its

Cryptanalytic Applications

Martin Hlaváč1 and Tomáš Rosa1,2,�

1 Department of Algebra, Charles University in Prague,
Sokolovská 83, 186 75 Prague 8, Czech Republic

2 eBanka, a.s., Václavské Náměst́ı 43, 110 00 Prague 1, Czech Republic
hlavm1am@artax.karlin.mff.cuni.cz, trosa@ebanka.cz

Abstract. Since its formulation in 1996, the Hidden Number Problem
(HNP) plays an important role in both cryptography and cryptanalysis.
It has a strong connection with proving security of Diffie-Hellman and
related schemes as well as breaking certain implementations of DSA-like
signature schemes. We formulate an extended version of HNP (EHNP)
and present a polynomial time algorithm for solving its instances. Our
extension improves usability of HNP for solving real cryptanalytic prob-
lems significantly. The techniques elaborated here can be used for crypto-
graphic strength proving, as well. We then present a practically feasible
side channel attack on certain implementations of DSA (e.g. OpenSSL),
which emphasizes the security risk caused by a side channel hidden in
the design of Pentium 4 HTT processor for applications like SSH. During
experimental simulations, having observed as few as 6 authentications to
the server, an attacker was able to disclose the server’s private key.

Keywords: side channel analysis, cache analysis, DSA implementation,
hyper-threading, sliding window, lattice.

1 Introduction

In 1996, Boneh and Venkatesan studied the following problem: Fix p and n.
Having given (ki, MSBn(xgki modp)) for 1 ≤ i ≤ d, where g is a generator
of Z∗

p, MSBn(y) satisfies |y − MSBn(y)| < p
2n+1 and d is a polynomial function

of log p, find xmod p. The particular unknown value of x was called a hidden
number and the whole problem was named a Hidden Number Problem (HNP).
HNP plays an important role in proving security of most significant bits in
Diffie-Hellman key agreement and related schemes [7]. In 1999, Nguyen showed
a connection between solving HNP and breaking flawed implementations of DSA
[13] attacked sooner by Howgrave-Graham and Smart [10]. It was then extended
together with Shparlinski in [14]. Their formulation of HNP followed from [7]
with a modification allowing them to disclose the private DSA key provided that
they know a sufficiently long block of bits of each nonce for several signatures
(cf. DSA description in §5.1). The limitation of the method in [14] was that
� The second author was partly supported by the institutional grant MSM 0021620839.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 114–133, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extended Hidden Number Problem and Its Cryptanalytic Applications 115

these known bits had to be consecutively placed on the position of either most
or least significant bits or they had to occupy a block of bits somewhere in the
middle of each nonce. An idea was given on how to overcome this restriction,
based on a multidimensional diophantine approximation. Deeper investigation
of it then showed that it leads to an unnecessary information loss (cf. remark
on §3 below). Furthermore, the method was unaware of direct partial informa-
tion an attacker may have on the private key itself. A practical cryptanalytic
problem may arise, where these factors are limiting. Interestingly, the limiting
focus on most significant bits also persisted in other variants derived from the
original HNP [21], [6]. In this article, we show an extension of HNP (EHNP)
together with a probabilistic algorithm for solving its instances in polynomial
time, which relaxes the strict conditions on the form of partial information in
HNP significantly. It then allows us to develop, for instance, a successful real-
istic side channel attack on certain implementations of DSA presented in §5.
We consider the EHNP elaboration and the attack presented of independent
merit, since we believe that the method presented here can be used as a gen-
eral tool for solving many other cryptanalytic problems leading to instances
of EHNP. Besides (EC)DSA and its variants, we can mention Diffie-Hellman
and related schemes such as El Gamal public key encryption, Shamir message
passing scheme, and Okamoto conference key sharing studied originally in [7].
Using EHNP allows an analyst to exploit partial information in an “individual
bits”-like manner, which is very important with regard to popular side channel
attacks. EHNP also allows us to study cryptographic security of individual bits
of secrets in these schemes. One can, for instance, extend the results on most
significant bits given in [7] to other bits or blocks of bits, as well. It is also
possible to implant the ideas elaborated here into other variants of HNP, such
as [21], [6]. The practical attack presented, on the other hand, illustrates the
significant vulnerability that general widespread applications like SSH server
[19] can acquire when using the Pentium 4 HTT processor [11] as a hosting
platform.

The rest of the paper is organized as follows: In §2, we review elementary
properties of lattices that we use to solve EHNP. We note that instead of a
set of diophantine inequalities, we view HNP and its extensions as a special
kind of a set of linear congruences of truncated variables. In this way, we get
a particular case of the general one studied in [8] (cf. also [4]) which, however,
leads to a far easier solution. This idea itself is not new (cf. [16]). However, we
show how to exploit it to rigorously prove solvability of (E)HNP without relying
on the transforming approximation suggested in [14]. Especially, we exploit the
fact that there is a variable (the hidden number) that appears (with a nonzero
coefficient) in each congruence from the set.

In §3, we illustrate an evolution of EHNP starting from the approach of [14].
We recall the results of [14] being important for us here in a form of theorems.
To stay focused on algorithmic part of the connection in between EHNP and
lattices, we omit otherwise very interesting elaboration of distribution conditions

116 M. Hlaváč and T. Rosa

relaxation from the theorems. We slightly generalize the method used there to
exploit the partial information in the middle of each nonce. We define HNP-2H
problem and show how it reduces to HNP to demonstrate the idea of [14] on
how to use the information spread across individual bits. Informally speaking,
the authors suggested using certain kind of diophantine approximation to con-
vert these problems to HNP. With such an approach, however, the amount of
information needed per nonce grows with a multiple of the number of unknown
bit blocks (as already mentioned in [14] and [16]). Contrary to this approach, the
EHNP solving method presented here is compact, which means that it does not
rely on the conversion causing the unnecessary information loss. In this sense,
our method is similar to the one presented by Howgrave-Graham and Smart
in [10] which, however, contains a lot of heuristic assumptions in comparison
with the results presented here. We hope the whole elaboration in §3 is a useful
guideline for a cryptanalyst deciding which method to choose by the kind and
amount of information she has.

In §4, we define EHNP, present a lattice-based algorithm for searching can-
didate solution in polynomial time, and investigate correctness of that solution.
To give an illustrative presentation of our ideas, we use certain bounds for lat-
tice problems employed that are not very tight. Actually, we rely only on the
well known algorithms of Lenstra, Lenstra, Lovász [12], and Babai [3]. Even with
these conservative results, we are able to derive practically acceptable bounds for
the EHNP solving algorithm. As being widely understood in the area of lattice
problems [9], in practice, however, we may reasonably assume that the algo-
rithms (or their equivalents, cf. §2) will behave much better than what would be
guaranteed even by more strict bounds for more matured techniques. Therefore,
we suggest an experimental verification of the EHNP instance solvability for a
particular cryptanalytic problem, even when it seems to be beyond the estimates
guaranteed formally.

In §5, we present a practical side channel attack on certain implementations
of DSA (including the OpenSSL one) when running on the Pentium 4 HTT
platform [11]. Besides being of an independent merit, it serves as an example of
using EHNP approach in a real cryptanalytic case. Finally, we conclude in §6.

2 Preliminaries

The main tool of our approach is a lattice. We define a (full rank) lattice L in
Qd as the set of lattice vectors

{
d∑

i=1

αibi |αi ∈ Z

}

, (1)

where b1, . . . ,bd ∈ Qd are linearly independent and are called basis vectors of
lattice L. The matrix whose rows are the basis vectors is called basis matrix
of lattice L. There is an algorithmic problem connected with the lattices called
Approximate Closest Vector Problem (ACVP). Given d linearly independent

Extended Hidden Number Problem and Its Cryptanalytic Applications 117

basis vectors b1, . . . ,bd ∈ Qd together with v ∈ Qd, the task is to find a lat-
tice vector W ∈ L satisfying ‖v − W‖ ≤ f(d)minA∈L ‖v − A‖. The coefficient
f(d) is called the approximation factor. The problem is known to be NP-hard for
f(d) = 1 for any norm [9]. In practical cryptanalytic cases, however, a weaker ap-
proximation still suffices. In particular, we will expect there exists a polynomial
time algorithm solving ACVP with f(d) = 2

d
4 , which was the basic assumption

in [7], [14] (cf. Babai algorithm in [3]). We can get such an algorithm by using
various number-theoretic libraries such as NTL [20]. Furthermore, an attacker
will probably choose some of the most recent methods like [15]. Note that Al-
gorithm 1 adapts “automatically” for such modification and the estimates of
Theorem 5 can be adjusted very easily by a change of the parameter κD (cf. the
elaboration in §4 for its precise definition).

To simplify the notation later, it is useful to define symbol |a|N = mink∈Z |a−
kN | where N ∈ N and a ∈ Z. It is easy to see that

1. |a + b|N = 0 ⇔ a ≡ −b (modN)
2. |a + b|N ≤ |a|N + |b|N
3. |ab|N ≤ |a|N |b|N
4. |a|N = min{amodN, N − (amodN)}
5. |a|N ≤ |a|

for all a, b ∈ Z.
As N is a prime throughout the whole paper, ZN is regarded as the finite

field ZN (+, ·, 0, 1). Unless stated otherwise, the elements of ZN are represented
as integers from the set {0, . . . , N − 1}.

3 On the Way from HNP to EHNP

Definition 1 (Hidden Number Problem). Let N be a prime and let x,
x ∈ ZN be a particular unknown integer that satisfies d congruences

αix + ρiki ≡ βi (modN), 1 ≤ i ≤ d,

where αi, αi �≡ 0 (modN), ρi and βi, 1 ≤ i ≤ d are known values. The unknown
integers ki satisfy 0 ≤ ki < 2μ, 1 ≤ i ≤ d, where μ is a known rational constant.
The Hidden Number Problem (HNP) is to find x.

Theorem 1 (Solving HNP). There exists an algorithm running in polynomial
time that solves HNP instance, where αi and ρi, 1 ≤ i ≤ d are uniformly and
independently distributed on 〈1, N − 1〉, with the probability of success

P > 1 − 2dμ

(N − 1)d−1

(
1 + 2

d+1
4 (1 + d)

1
2

)d

.

Proof. Based on rephrasing the results from [14].

118 M. Hlaváč and T. Rosa

Definition 2 (HNP with Two Holes). Let N be a prime and let x, x ∈ ZN

be a particular unknown integer that satisfies d congruences

αix + ρi,1ki,1 + ρi,2ki,2 ≡ βi (modN), 1 ≤ i ≤ d, (2)

where αi, αi �≡ 0 (modN), ρi,1, ρi,2 and βi, 1 ≤ i ≤ d are known values.
The unknown integers ki,1 and ki,2 satisfy 0 ≤ ki,1 < 2μ1 and 0 ≤ ki,2 < 2μ2 ,
1 ≤ i ≤ d, where μ1 and μ2 are known rational constants. The Hidden Number
Problem with Two Holes (HNP-2H) is to find x.

Theorem 2 (Dirichlet, [9]). Let α ∈ R and 0 < ε ≤ 1 be given values. Then
there exist p, q ∈ Z such that

1 ≤ q ≤ 1
ε

and
∣
∣
∣∣α − p

q

∣
∣
∣∣ <

ε

q
.

Corollary 1. Let us be given A,N ∈ Z and B ∈ R satisfying B ≥ 1 and N > 0.
Then there exists λ, λ ∈ Z such that

1 ≤ λ ≤ B and |λA|N <
N

B
.

Proof. Theorem 2 states there exist p, q ∈ Z such that
∣
∣
∣AN − p

q

∣
∣
∣ < 1

Bq and 1 ≤
q ≤ B. So |qA|N ≤ |qA − Np| < N

B . Setting λ = q finishes the proof. ��

Remark 1. Note that λ promised by Corollary 1 can be easily found in polyno-
mial time using a technique based on the continued fractions expansion (cf. [9],
[14]).

Theorem 3 (Solving HNP-2H using Dirichlet’s approximation). There
exists an algorithm running in polynomial time that solves HNP-2H, where αi, ρi,1,
and ρi,2, 1 ≤ i ≤ d are uniformly and independently distributed on 〈1, N − 1〉, with
the probability of success

P > 1 − (N2μ1+μ2)
d
2

(N − 1)d−1

(
4 + 2

d+9
4 (1 + d)

1
2

)d

.

Proof. Let Ai = (ρi,1)−1ρi,2 modN , γi = ki,1 + Aiki,2, α′
i = (ρi,1)−1αi modN

and β′
i = (ρi,1)−1βi modN , 1 ≤ i ≤ d. The congruences (2) in Definition 2

become
α′

ix + γi ≡ β′
i (modN), 1 ≤ i ≤ d. (3)

Given any B ∈ R, B ≥ 1, we can find non-zero integers λi,B satisfying |λi,BAi| <
N
B and 1 ≤ λi,B ≤ B for 1 ≤ i ≤ d. It holds

|λi,Bγi|N = |λi,Bki,1+λi,BAiki,2|N ≤ |λi,B |Nki,1+|λi,BAi|Nki,2 < B2μ1+
N

B
2μ2 .

The choice Bmin = N
1
2 2

μ2−μ1
2 minimizes the upper bound B2μ1 + N

B 2μ2 .

Extended Hidden Number Problem and Its Cryptanalytic Applications 119

We convert HNP-2H to HNP by setting k′
i =

(
λi,Bminγi + !N 1

2 2
μ1+μ2+2

2 "
)

modN , k′
i < N

1
2 2

μ1+μ2+4
2 . After several modifications of (3), we obtain congru-

ences in one unknown variable k′
i per congruence, i.e.

(λi,Bminα′
i)x + λi,Bminγi ≡ λi,Bminβ′

i (modN),

(λi,Bminα′
i)x + k′

i ≡ λi,Bminβ′
i +
⌊
N

1
2 2

μ1+μ2+2
2

⌋
(modN),

α′′
i x + k′

i ≡ β′′
i (modN), 1 ≤ i ≤ d

defining an instance of HNP. Let μ′ ∈ Q be such that k′
i < 2μ′ ≤ N

1
2 2

μ1+μ2+4
2 . By

Theorem 1, such a problem can be solved in polynomial time with the probability

P > 1 − 2dμ′

(N − 1)d−1

(
1 + 2

d+1
4 (1 + d)

1
2

)d

≥ 1 − N
d
2 2

(μ1+μ2+4)d
2

(N − 1)d−1

(
1 + 2

d+1
4 (1 + d)

1
2

)d

=

= 1 − (N2μ1+μ2)
d
2

(N − 1)d−1
22d
(
1 + 2

d+1
4 (1 + d)

1
2

)d

= 1 − (N2μ1+μ2)
d
2

(N − 1)d−1

(
4 + 2

d+9
4 (1 + d)

1
2

)d

.

��
It is correct to interpret Theorem 3 as saying that we need roughly twice as many
information bits to solve HNP-2H compared to the plain HNP case [16]. This
is caused by the transforming approximation and it is generally independent
on the technique used to solve the transformed HNP. If we continue further
this way to define HNP with more ”holes” (HNP-xH), we will need to use a
multidimensional transforming approximation based e.g. on the scope of the
multidimensional Dirichlet’s theorem and lattice reduction techniques [9]. What
we obtain is then a conjecture stated in [16] that we need at least x-times as many
information bits to solve HNP-xH compared to the plain HNP case. However,
using the algorithmic and mainly the proving strategies described bellow, it
turns out that such a conjecture does not hold generally. We can see it, for
instance, by normalizing the probability estimations given above and bellow
under the assumption that we have an access to an oracle solving the Closest
Vector Problem with an arbitrary precision for the maximum norm. We omit
this demonstration here, since it is beyond the scope of the paper. Therefore, the
conjecture of [16] is not a property of HNP itself, it is a property of a particular
method for solving HNP instead. On the other hand, this is not the only one
selection criterion. As is demonstrated bellow, our method does not suffer from
the expensive transforming approximation, but, on the other hand, it is more
sensitive to the approximation factor of the particular algorithm used for solving
the Approximate Closest Vector Problem.

Theorem 4 (Solving HNP-2H as a special case of EHNP). There exists
an algorithm running in polynomial time that solves HNP-2H, where αi, ρi,1,
and ρi,2, 1 ≤ i ≤ d are uniformly and independently distributed on 〈1, N − 1〉,
with the probability of success

P > 1 − 2(μ1+μ2)d

Nd−1

(
1 + 2

3d+1
4 (1 + 2d)

1
2

)2d+1

.

120 M. Hlaváč and T. Rosa

b
it
s
g
a
in
ed

p
er

co
n
g
ru
en

ce
(1
6
0

−
	μ

1

−

	μ
2

)

d (number of congruences) EHNP

Dirichlet’s approximation

Fig. 1. Dirichlet’s approximation vs. EHNP algorithm solving HNP-2H

Proof. The algorithm arises from the solution of EHNP defined and solved in
the following section, which HNP-2H is a special case of.

Figure 1 shows a comparison of HNP-2H solving using Dirichlet’s approximation
and EHNP for 160 bits long modulus N . The graph lines connect the boundary
points corresponding to probably solvable combinations of the number of bits
gained per congruence and the number of congruences (e.g. signatures of DSA).
The EHNP approach is provably preferable in cases with high amount of informa-
tion available for only few congruences. These are the cases arising, for instance,
in fault side channel attacks, where the device may get burnt soon, however,
revealing a huge amount of information before being irreversibly damaged. In
practice, we may expect a broader preference of EHNP, since the approximation
factor will be probably much better than the estimate we used.

4 Extended Hidden Number Problem

Definition 3 (Extended Hidden Number Problem). Let N be a prime
and let x, x ∈ ZN , be a particular unknown integer such that

x = x̄ +
m∑

j=1

2πjxj , (4)

Extended Hidden Number Problem and Its Cryptanalytic Applications 121

where the integers x̄ and πj, 1 ≤ j ≤ m are known. The unknown integers
xj satisfy 0 ≤ xj < 2νj , where νj are known rational constants 1 ≤ j ≤ m.
Furthermore, let us be given d congruences

αi

m∑

j=1

2πjxj +
li∑

j=1

ρi,jki,j ≡ βi − αix̄ (modN), 1 ≤ i ≤ d, (5)

where αi, αi �≡ 0 (modN), 1 ≤ i ≤ d, πj, 1 ≤ j ≤ m, ρi,j , 1 ≤ i ≤ d,
1 ≤ j ≤ li and βi, 1 ≤ i ≤ d are known values. The unknown integers ki,j

satisfy 0 ≤ ki,j < 2μi,j , where μi,j are known, 1 ≤ i ≤ d, 1 ≤ j ≤ li. We define
τ =

∑m
j=1 νj, ξi =

∑li
j=1 μi,j, 1 ≤ i ≤ d and ξ =

∑d
i=1 ξi.

The Extended Hidden Number Problem (EHNP) is to find (the hidden number)
x and its instance is represented by

(
x̄, N, {πj , νj}m

j=1 ,
{
αi, {ρi,j, μi,j}li

j=1, βi

}d

i=1

)
. (6)

Definition 4 (Lattice L(I, δ) and its basis matrix). For δ > 0 and a given
instance I = IEHNP of the EHNP we define L(I, δ) as the lattice spanned by
the rows of the matrix

B = B(I, δ) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

N · Id ∅ ∅

A X ∅

ρT
1

. . . ∅ K
ρT

d

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

∈ QD×D,

where we define integers L =
∑d

i=1 li and D = d + m + L, vectors

ρi = (ρi,1, . . . , ρi,li) ∈ Zli , 1 ≤ i ≤ d

and matrices

A = (aj,i)1≤i≤d,1≤j≤m ∈ Zm×d, where aj,i = αi2πj

X = diag
(

δ

2ν1
, . . . ,

δ

2νm

)
∈ Qm×m

K = diag
(

δ

2μ1,1
, . . . ,

δ

2μ1,l1
,

δ

2μ2,1
, . . . ,

δ

2μ2,l2
, . . . ,

δ

2μd,1
. . . ,

δ

2μd,ld

)
∈ QL×L.

Lemma 1 (Short vectors in L). Let I be an instance of the EHNP, where
αi, 1 ≤ i ≤ d and ρi,j, 1 ≤ i ≤ d, 1 ≤ j ≤ li are uniformly and independently

122 M. Hlaváč and T. Rosa

Algorithm 1. Finding a solution candidate for EHNP
Input: Instance I of EHNP
Output: Solution candidate z ∈ ZN

1: κD ← 2
D
4 (m+L)

1
2 +1

2
2: Choose δ such that 0 < κDδ < 1
3: v ←

(
(β1 − α1x̄)modN, . . . , (βd − αdx̄)mod N, δ

2 , . . . , δ
2

)

4: find W ∈ L = L(I, δ), W = (W1, . . . , WD) such that ‖W − v‖ ≤
2

D
4 minB∈L ‖v − B‖ //in polynomial time (§2)

5: for j = 1 to m do
6: x′

j ← Wd+j2νj

δ
//x′

j ∈ Z
7: end for
8: z ← x̄ +

∑m
j=1 2

πj x′
j modN

9: return z

distributed on 〈1, N − 1〉. Let δ, κD ∈ Q be such that 0 < δ, 0 < κD and κDδ < 1.
Then with the probability

P > 1 − (2κD)L+m 2τ+ξ

Nd
(7)

for each vector Δ ∈ L = L(I, δ) with coordinates c = (e1, . . . , ed, y1, . . ., ym,
t1,1, . . . , t1,l1 , . . ., . . . , td,1, . . . , td,ld) w.r.t. basis B = B(I, δ) (i. e. Δ = cB),
satisfying ‖Δ‖∞ < κDδ

(i) there exists (a witness index) w, 1 ≤ w ≤ d such that

tw,j ≡ 0 (modN), 1 ≤ j ≤ lw, (8)

(ii)
∑m

j=1 2πjyj ≡ 0 (modN) holds,

(iii)
∑li

j=1 ρi,jti,j ≡ 0 (modN), 1 ≤ i ≤ d holds.

Proof. To be found in Appendix.

Theorem 5 (Correctness of the algorithm solving EHNP). Let x be the
solution of EHNP specified by the instance I = IEHNP where N is prime, αi,
1 ≤ i ≤ d and ρi,j, 1 ≤ i ≤ d, 1 ≤ j ≤ li are uniformly and independently
distributed on 〈1, N − 1〉. Then with the probability

P > 1 − (2κD)L+m 2τ+ξ

Nd
, (9)

where κD = 2
D
4 (m+L)

1
2 +1

2 , Algorithm 1 returns the correct particular solution of
instance I.

Extended Hidden Number Problem and Its Cryptanalytic Applications 123

Proof. Let δ ∈ Q be such that 0 < κDδ < 1. By Definition 3 there exists vector
h = (c1, . . . , cd, x1, . . . , xm, k1,1, . . . , k1,l1 , . . . , . . . , kd,1, . . . , kd,ld) ∈ ZD such
that

ciN + αi

m∑

j=1

2πjxj +
li∑

j=1

ρi,jki,j = βi − αix̄, 1 ≤ i ≤ d, (10)

0 ≤ xj < 2νj , 1 ≤ j ≤ m, (11)
0 ≤ ki,j < 2μi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ li (12)

hold. Let B = B(I, δ) be the matrix defined in Definition 4 and let

H = hB ∈ L, L = L(I, δ),

v = ((β1 − α1x̄)modN, . . . , (βd − αdx̄)modN,
δ

2
, . . . ,

δ

2
) ∈ ZD.

Since the vector H − v is equal to
(
0, . . . , 0, δ x1

2ν1 − δ
2 , . . . , δ xm

2νm − δ
2 , δ

k1,1
2μ1,1 − δ

2 , . . . , δ
k1,l1
2

μ1,l1
− δ

2 , . . . ,

. . . , δ
kd,1

2μd,1 − δ
2 , . . . , δ

kd,ld

2
μd,ld

− δ
2

)
,

and the bounds (11), (12) hold, we can write

‖v − H‖∞ <
δ

2
.

A lattice vector W found in step 4 of the algorithm satisfies

‖v − W‖ ≤ 2
D
4 min

A∈L
‖v − A‖ ≤ 2

D
4 ‖v − H‖ <

2
D
4 δ(m + L)

1
2

2
. (13)

Let Δ = H − W ∈ L. Since ‖a‖∞ ≤ ‖a‖ for all a ∈ ZD, by triangle inequality
we have

‖Δ‖∞ ≤ ‖H − v‖∞ + ‖v − W‖ <
δ

2
+

2
D
4 δ(m + L)

1
2

2
= κDδ. (14)

Let w, γ be the coordinate vectors of W, Δ, respectively, w.r.t. basis B and

w = (c′1, . . . , c
′
d, x

′
1, . . . , x

′
m, k′

1,1, . . . , k
′
1,l1 , . . . , . . . , k

′
d,1, . . . , k

′
d,ld)

γ = (e1, . . . , ed, y1, . . . , ym, t1,1, . . . , t1,l1 , . . . , . . . , td,1, . . . , td,ld)

and z = x̄ +
∑m

j=1 2πjx′
j be the candidate returned by Algorithm 1. Since B is

nonsingular, γ = h−w. Then with the probability greater than 1− (2κD)L+m2τ+ξ

Nd ,
guaranteed by Lemma 1, it holds

x − z ≡

⎛

⎝x̄ +
m∑

j=1

2πjxj

⎞

⎠−

⎛

⎝x̄ +
m∑

j=1

2πjx′
j

⎞

⎠ ≡

≡
m∑

j=1

2πj(xj − x′
j) ≡

m∑

j=1

2πjyj ≡ 0 (modN).

Finally, since x, z ∈ ZN , we have x = z. ��

124 M. Hlaváč and T. Rosa

The distribution conditions in Theorem 5 can be, in a particular cryptanalytic
case, further relaxed using techniques like in [14]. For verification of the attack
in §5, however, we decided to use an experimental approach instead.

5 Real Scenario - Digital Signature Algorithm

5.1 DSA Key Disclosure Problem

Let us briefly recall the Digital Signature Algorithm (DSA) [1]. The public pa-
rameters are specified by triplet (p, q, g), where p and q are prime numbers
satisfying q|p−1 and g ∈ Z∗

p is a generator of the subgroup of order q in Z∗
p. The

second revision of [1] requires 21023 < p < 21024 and 2159 < q < 2160. The private
key x ∈ Zq is chosen uniformly at random from Zq and the corresponding public
key y ∈ Zp is computed as y = gx mod p. The couple (x, y) is called the DSA
key pair.

To create a signature (r, s) of a message m ∈ {0, 1}∗, the owner of the private
key x first generates a random number k ∈ Z∗

q , which is usually referred to as
a nonce (number used once). Then she computes r =

(
gk mod p

)
mod q and

s = k−1(h(m) + xr)mod q, where h is the hash function SHA-1 (see [2]) and
k−1k ≡ 1 (mod q).

To verify the signature pair (r, s) of a message m, having checked that 0 <
r < q and 0 < s < q, one computes w = s−1 mod q, u1 = h(m)w mod q, u2 =
rw mod q and v = (gu1yu2 mod p) mod q. She accepts the message signature if
and only if v = r.

Definition 5 (DSA-KDP problem). Let (p, q, g) be public DSA parameters
and (x, y) DSA key pair. Let

ri =
(
gki mod p

)
mod q, 1 ≤ i ≤ d (15)

si = k−1
i (h(mi) + xri) mod q, 1 ≤ i ≤ d (16)

be known signature pairs of known hashed messages h(mi). Suppose an additional
information about the private key x and the nonces ki is known, as well, i.e.

x = x̄ +
m∑

j=1

2πjxj , 0 ≤ xj < 2νj , 1 ≤ j ≤ m (17)

ki = k̄i +
li∑

j=1

2λi,jki,j , 0 ≤ ki,j < 2μi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ li, (18)

where x̄, {πj , νj}m
j=1,

{
k̄i, {λi,j , μi,j}li

j=1

}d

i=1
are known integers satisfying

x̄ ∈ Zq, k̄i ∈ Zq, 1 ≤ i ≤ d

2πj ∈ Zq, 1 ≤ j ≤ m, 2λi,j ∈ Zq, 1 ≤ i ≤ d, 1 ≤ j ≤ li

2νj ∈ Zq, 1 ≤ j ≤ m, 2μi,j ∈ Zq, 1 ≤ i ≤ d, 1 ≤ j ≤ li

Extended Hidden Number Problem and Its Cryptanalytic Applications 125

DSA key disclosure problem (DSA-KDP) is to find the private key x and its
instance IDSA is represented by

(
x̄, q, {ri, si, h(mi)}d

i=1, {πj , νj}m
j=1,

{
k̄i, {λi,j , μi,j}li

j=1

}d

i=1

)
.

Lemma 2 (Transition from DSA-KDP to EHNP). Let x be the particular
solution of the DSA-KDP problem specified by the instance IDSA. Let

N = q,

αi = ri, 1 ≤ i ≤ d

ρi,j =
(
−si2λi,j

)
modN, 1 ≤ i ≤ d, 1 ≤ j ≤ li,

βi =
(
sik̄i − h(mi)

)
modN, 1 ≤ i ≤ d.

Then x can be found as the solution of EHNP specified by the instance
(

x̄, N, {πj , νj}m
j=1 ,

{
αi, {ρi,j, μi,j}li

j=1, βi

}d

i=1

)
. (19)

Proof. The lemma follows directly when (17) and (18) are substituted into (16)
in Definition 5. ��

5.2 Hyper-threading Technology

In [18], the author explores a side channel hidden in certain processors design
employing the Hyper-Threading Technology (HTT). The processors affected are
Intel Pentium 4, Mobile Pentium 4 and Xeon.

The size of L1 cache memory in hyper-threaded Pentium 4 is 8 KB (or 16
KB)1. It is divided into 32 cache address classes consisting of 4 (or 8) cache lines
of 64 bytes. When a memory line is requested by a process, the processor first
checks whether the line is already loaded in L1 cache in the corresponding cache
class. In case it is, we say a cache hit occurs, contrary to a cache miss when the
line has to be loaded to L1 cache. Therefore, a cache miss takes a much longer
time than a cache hit and that can be recognized by the process.

A hyper-threaded Pentium 4 multiplexes two independent instruction streams
over one set of execution resources creating two virtual processing cores that
share certain physical resources, namely the L1 cache memory. This is an archi-
tectural design that leaves the Confinement Problem [5] unsolved leading to a
vital side channel. To the operating system, this platform appears as two logi-
cal CPUs, thus it can schedule two processes to be run at the same time. One
process cannot read the data of the other process, however, it can determine
whether the process running on the second virtual core used certain line of the
L1 cache or not by measuring the amount of time it takes to repeatedly read
several data blocks from the same cache address class.

In this way, we get a side information which can be used to discriminate
between two different operations performed by the process being spied [17], [18].
1 Depending on actual type.

126 M. Hlaváč and T. Rosa

When the two operations are different enough with respect to the memory access
they induce, we can easily identify them basing on a different “footprint” left in
the access time measurements (cf. Figure 2).

In [18], this side information was used to break an implementation of RSA
scheme. Here, we show that by using the EHNP approach described before, we
can break certain implementation of DSA algorithm, as well. In practice, this
attack threatens, for instance, applications like SSH [19], when the server runs on
an unsecured HTT platform and uses DSA for the server authentication. When
the attacker logs on the server, she can run the spy process on one processor
core, while she opens another SSH session with the server, hoping that it will
run on the second core. In this way, she gains the side information about DSA
signature computation when the server authenticates itself for the newly opened
connection. Collecting several such measurements, she can get enough informa-
tion to be able to solve the associated EHNP. From here, she gets the server’s
private key allowing her to impersonate the server.

5.3 Sliding Window Exponentiation

An OpenSSL-based SSH server uses the sliding window (SW) exponentiation al-
gorithm (cf. Algorithm 2)2 in the process of DSA authentication when computing
r = gk modp. Two operations to be discriminated on the HTT platform by the
aforesaid technique are squaring (S) and multiplication (M). Being able to iden-
tify the SW algorithm execution, the attacker obtains a sequence S ∈ {S,M}∗.

To convert S to an information suitable for EHNP, one sets k′ = 0 as the
first approximation of the nonce k. Then, she takes the next operation from S
and multiplies k′ by 2 if the operation is S or adds 1 and adds a new “hole” for
M . Finally, the holes of zero length are filtered out from the output sequence.
This procedure, described by Algorithm 3, outputs the decomposition k = k′ +∑l

j=1 2λjkj , 0 ≤ kj < 2μj . On average case, the algorithm provides us with
78 known bits separated by 31 holes for the exponent size of 160 bits with the
sliding window length set to 4 (to match its definition in OpenSSL 0.9.7e).

In Figure 2, we can see the execution of SW algorithm from the spy process view-
point. The rows, each representing one of 32 memory classes in L1 cache, change
color from white standing for a very fast read operation, to black for slow data
reloads. To emphasize the different footprints, the extra top row displays the aver-
age gray level for the selected cache classes (in our case 24th, 25th and 26th class).
This row allows us to identify squaring and multiplication operations easily.

5.4 Practical Experiments

Algorithm 1 was implemented in C++ employing Shoup’s NTL library [20].
Several experiments were run for different number of signatures d. Each exper-
iment consisted of 10 instances of DSA-KDP with random public parameters,
2 Valid for the versions up to 0.9.7g. As from version 0.9.7h, OpenSSL uses fixed
window modular exponentiation by default for RSA, DSA, and DH private key
operations to prevent cache timing attacks.

Extended Hidden Number Problem and Its Cryptanalytic Applications 127

Algorithm 2. Sliding window (SW) exponentiation; s is the SW length
Input: g, e = (etet−1 . . . e0)2, et = 1, s ≥ 1
Output: ge

1: g1 ← g, g2 ← g2

2: for i = 1 to 2s−1 − 1 do
3: g2i+1 ← g2i−1g2

4: end for
5: A ← 1, i ← t
6: while i ≥ 0 do
7: if ei = 0 then
8: A ← A2 //squaring
9: i ← i − 1
10: else
11: find longest string (eiei−1 . . . el) such that i − l + 1 ≤ s and el = 1

12: A ← A2i−l+1
g(eiei−1...el)2 //i − l + 1 squarings, 1 multiplication

13: i ← l − 1
14: end if
15: end while
16: return A

L
1
cl
a
ss
es

Latency scans

�0

31

Fig. 2. SW exponentiation observed through the side channel of L1 cache

random key pair and the signature pairs for d random messages. The results
of the experiments are displayed in Figures 3 and 4. The computing platform
employed was running GNU/Linux Debian on AMD Opteron 844. We used the
side channel emulation in these computations. Its real existence and usability
was successfully verified by technical experiments with an SSH server powered
by OpenSSL 0.9.7e on an unprotected Pentium 4 HTT platform, as well.

The bases were reduced by LLL reduction with delta = 0.99 (LLL XD(),
marked “LLL”). If such reduction did not lead to the key disclosure, stronger
Block Korkin-Zolotarev reduction with Givens rotations (G BKZ XD(), marked
“BKZ”) was employed with delta = 0.99, BlockSize = 40 and Prune = 15.

We ran several experiments with random DSA-KDP instances with the size
of DSA prime q set to 256 bits (which is the highest size allowed by the draft

128 M. Hlaváč and T. Rosa

Algorithm 3. Conversion of sequence from {S,M}∗ to the decomposition of k;
s is the SW length; (N is the upper bound on k)
Input: S ∈ {S, M}∗, s ≥ 1, (N > 1)

Output: k̄, l, {λj , μj}l
j=1

1: k̄ ← 0, L ← 0, Λ0 ← 1, w0 ← s − 1 //L, Λ, and w are internal only
2: A ← first(S)
3: repeat
4: if A = S then
5: k̄ ← 2k̄
6: for j = 0 to L do
7: Λj ← Λj + 1 //shift existing holes
8: end for
9: else
10: k̄ ← k̄ + 1
11: L ← L + 1, ΛL ← 1
12: wL ← min(s − 1, ΛL−1 + wL−1 − s − 1) //new, possibly empty, hole
13: end if
14: until A ← next(S)
15: if N is defined and Λ1 + w1 > 	log2 N
 then
16: w1 = 	log2 N
 − Λ1 //adjust the first hole
17: end if
18: l ← 0
19: for j = 1 to L do
20: if wj > 0 then
21: l ← l + 1, λl ← Λj , μl ← wj //keep the nonempty holes
22: end if
23: end for

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

ti
m
e
[1
0
3
s]

d

LLL

BKZ

0

2

4

6

8

10

0 5 10 15 20 25

h
it

ra
te

d

LLL

BKZ

Fig. 3. The hit rate and the average duration of EHNP algorithm solving 10 random
instances of DSA-KDP, each derived from a simulated side channel leakages during the
signing operation with 	log2 q
 = 160

Extended Hidden Number Problem and Its Cryptanalytic Applications 129

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 25 30 35 40 45

ti
m
e
[1
0
3
s]

d

LLL

0

2

4

6

8

10

20 25 30 35 40 45

h
it

ra
te

d

LLL

Fig. 4. Hit rate and the average duration of EHNP algorithm solving 10 random in-
stances of DSA-KDP, each derived from a simulated side channel leakages during the
signing operation with 	log2 q
 = 256. Blocks of known bits shorter than 5 in length
are ignored (to reduce running time)

of Third revision of FIPS 186). The dimension of lattices associated is higher
resulting in longer running time, however, as shown in Figure 4, the private key
can be extracted for these instances, as well.

6 Conclusion

The Hidden Number Problem (HNP) was originally presented as a tool for prov-
ing cryptographic security of Diffie-Hellman and related schemes [7]. It was then
shown in [13] and [14] that HNP can be used for solving cryptanalytic problems
arising around DSA, as well. However, it still retained certain properties that
limited its suitability for real cryptanalytic attacks. In this article, we showed
how to overcome these limitations by formulation of the Extended Hidden Num-
ber Problem (EHNP) that covers significantly broader area of practical cases.
Algorithm for solving EHNP together with its formal analysis were presented.
We employed EHNP to develop a practically feasible side channel attack on
the OpenSSL implementation of DSA. This part of the paper is of independent
merit showing an inherent insecurity of the Pentium 4 HTT processor platform
for applications like SSH. For instance, having observed only 6 authentications to
the OpenSSL-powered SSH server, an attacker was able to disclose the server’s
private key.

Acknowledgment

The authors would like to thank Colin Percival for kindly providing them the
source code for his experiments and the anonymous referees for their valuable

130 M. Hlaváč and T. Rosa

comments. The first author thanks Jozef Juŕıček for helpful discussions covering
several topics in probability theory. The second author appreciates eBanka a.s.
supporting these research activities.

References

1. Digital signature standard. National Institute of Standards and Technology, Wash-
ington (Note: Federal Information Processing Standard 186-2) (2000), URL:
http://csrc.nist.gov/publications/fips/

2. Secure hash standard. National Institute of Standards and Technology, Wash-
ington (Note: Federal Information Processing Standard 180-2) (2002), URL:
http://csrc.nist.gov/publications/fips/

3. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. In:
Mehlhorn, K. (ed.) STACS 85. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg
(1984)

4. Bellare, M., Goldwasser, S., Micciancio, D.: ”Pseudo-Random” number genera-
tion within cryptographic algorithms: The DDS case. In: Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)

5. Bishop, M.: Computer Security: Art and Science. Addison-Wesley, Reading (2003)
6. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-

ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36–51.
Springer, Heidelberg (2001)

7. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

8. Frieze, A.M., Hastad, J., Kannan, R., Lagarias, J.C., Shamir, A.: Reconstructing
truncated integer variables satisfying linear congruences. SIAM Journal of Com-
puting 17(2), 262–280 (1988)

9. Groetschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, 2nd edn. Springer, Heidelberg (1993)

10. Howgrave-Graham, N.-A., Smart, N.P.: Lattice attacks on digital signature
schemes. Design, Codes and Cryptography 23, 283–290 (2001)

11. Intel Corporation. Intel(R) Pentium(R) 4 Processor supporting Hyper-Threading
Technology. URL:
http://www.intel.com/products/processor/pentium4/index.htm

12. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Ann. 261, 513–534 (1982)

13. Nguyen, P.Q.: The dark side of the hidden number problem: Lattice attacks on
DSA. In: Proc. of the Workshop on Cryptography and Computational Number
Theory (CCNT ’99), Basel, CH, pp. 321–330. Birkhäuser (2001)

14. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology 15(3), 151–176 (2002)

15. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

16. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

17. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/publications/fips/
http://www.intel.com/products/processor/pentium4/index.htm

Extended Hidden Number Problem and Its Cryptanalytic Applications 131

18. Percival, C.: Cache missing for fun and profit (2005), URL:
http://www.daemonology.net/papers/htt.pdf

19. OpenBSD project members. OpenSSH Suite. URL:
http://www.openssh.com/

20. Shoup, V.: NTL: A Library for doing Number Theory. URL:
http://www.shoup.net/ntl/

21. Shparlinski, I., Winterhof, A.: A hidden number problem in small subgroups. Math-
ematics of Computation 74(252), 2073–2080 (2005)

Appendix

Lemma 3 (Short solutions). Given prime N and s ∈ ZN , let ρ1, . . . , ρl be
uniformly and independently distributed on ZN . Then the probability that the
congruence

l∑

j=1

ρjxj ≡ s (modN) (20)

has a “short” non-trivial solution (t1, . . . , tl) ∈ (ZN)l satisfying |tj |N < Tj ,
1 ≤ j ≤ l is lower than

2l
∏l

j=1 Tj

N
. (21)

Proof. Let t = (t1, . . . , tl) be a non-zero l-tuple in (ZN)l with tk �= 0. There
exist exactly N l−1 l-tuples

(ρ1, . . . , ρl) =

⎛

⎝ρ1, . . . , ρk−1, (tk)−1

⎛

⎝s −
l∑

j=1,j
=k

ρjtj

⎞

⎠ modN, ρk+1, . . . , ρl

⎞

⎠

such that t is a solution of (20). Consequently, there exist no more than

N l−1

⎛

⎝

⎛

⎝
l∏

j=1

(2Tj − 1)

⎞

⎠− 1

⎞

⎠ < N l−12l
l∏

j=1

Tj

l-tuples (ρ1, . . . , ρl) such that “short” non-trivial solution of (20) exists. Since
N l is total number of all l-tuples on ZN , the lemma follows. ��

Proof (of Lemma 1 on Short vectors in L). Let Δ ∈ L be such that ‖Δ‖∞ <
κDδ < 1. Then
∣
∣
∣
∣∣
∣
eiN + αi

d∑

j=1

2πjyj +
li∑

j=1

ρi,jti,j

∣
∣
∣
∣∣
∣
= |Δi| < 1, 1 ≤ i ≤ d (22)

∣
∣
∣
∣

δ

2νj
yj

∣
∣
∣
∣ = |Δd+j | < κDδ, 1 ≤ j ≤ m(23)

∣
∣∣
∣

δ

2μi,j
ti,j

∣
∣∣
∣ =
∣∣
∣Δd+m+j+

∑ i−1
u=1 lu

∣∣
∣ < κDδ,

1 ≤ i ≤ d
1 ≤ j ≤ li

(24)

http://www.daemonology.net/papers/htt.pdf
http://www.openssh.com/
http://www.shoup.net/ntl/

132 M. Hlaváč and T. Rosa

respectively implying
∣
∣
∣
∣∣
∣
αi

d∑

j=1

2πjyj +
li∑

j=1

ρi,jti,j

∣
∣
∣
∣∣
∣
N

= 0, 1 ≤ i ≤ d (25)

|yj | < κD2νj , 1 ≤ j ≤ m (26)
|ti,j | < κD2μi,j , 1 ≤ i ≤ d, 1 ≤ j ≤ li, (27)

since the expression on the left-hand side of (22) is an integer. Furthermore, (25)
is equivalent to the congruence

li∑

j=1

ρi,jti,j ≡ −αi

d∑

j=1

2πjyj (modN), 1 ≤ i ≤ d. (28)

To prove (i), we have to show the probability PF that for all i, 1 ≤ i ≤ d
there exists j, 1 ≤ j ≤ li such that ti,j �≡ 0(modN) is bounded above as
PF < (2κD)L+m2τ+ξ

Nd . Regarding the algorithmic viewpoint of the whole paper,
it is worth emphasizing the following probability elaboration is focused on the
event that an “unwanted” vector does exist in the lattice at all, rather than
investigating the properties of a particular vector chosen. The algorithmic inter-
pretation is then that, obviously, the particular vector computed cannot have
the properties that no such vector in the lattice L(I, δ) has.

Fix an m-tuple (y1, . . . , ym) ∈ Zm and define Ri = −αi

∑d
j=1 2πjyj modN .

The substitution to congruence (28) gives

li∑

j=1

ρi,jti,j ≡ Ri (modN), 1 ≤ i ≤ d. (29)

Lemma 3 states non-trivial solution of (29) satisfying the bounds (27) exists
with the probability

pi(y1, . . . , ym) <
2li
∏li

j=1 κD2μi,j

N
=

(2κD)li 2ξi

N
. (30)

For a fixed m-tuple (y1, . . . , ym), the probability that (29) and (27) can be
non-trivially satisfied for all i, 1 ≤ i ≤ d is

p(y1, . . . , ym) ≤
d∏

i=1

pi(y1, . . . , ym) <

d∏

i=1

(2κD)li 2ξi

N
=

(2κD)L 2ξ

Nd
. (31)

There is no more than
∏m

j=1 2κD2νj = (2κD)m2τ m-tuples (y1, . . . , ym) that
satisfy (26), therefore

PF ≤
∑

y = (y1, . . . , ym)
y satisfies (26)

p(y1, . . . , ym) <
(2κD)L+m 2τ+ξ

Nd
. (32)

Extended Hidden Number Problem and Its Cryptanalytic Applications 133

To prove the congruence (ii) holds, it suffices to substitute tw,j ≡ 0 (modN),
1 ≤ j ≤ lw from (i) to (28), i.e.

m∑

j=1

2πjyj ≡ −(αw)−1
lw∑

j=1

ρw,jtw,j ≡ 0 (modN), (33)

since (αw)−1 modN exists, because αw �≡ 0modN and N is a prime.
Finally, substituting (ii) to the congruence (28), i.e.

li∑

j=1

ρi,jti,j ≡ −αi

m∑

j=1

2πjyj ≡ 0 (modN), (34)

finishes the proof of (iii). ��

Changing the Odds Against Masked Logic

Kris Tiri1 and Patrick Schaumont2

1 Trusted Platform Laboratory, Intel Corporation, USA
kris.tiri@intel.com

2 ECE Department, Virginia Tech, USA
schaum@vt.edu

Abstract. Random switching logic (RSL) has been proposed as an ef-
ficient countermeasure to mitigate power analysis. The logic style equal-
izes the output transition probabilities using a random mask-bit. This
manuscript, however, will show a successful attack against RSL. The sin-
gle mask-bit can only add one bit of entropy to the information content of
the overall power consumption variations and can very easily be deduced
from the power consumption. Once the mask-bit is known, the a poste-
riori probabilities of the output transitions are not equal anymore and a
power analysis can be mounted. A threshold filter suffices to remove the
additional bit of information.

1 Introduction

Side-channel attacks (SCAs) do not attack the mathematical properties of an
encryption algorithm. Instead, they use information that is leaked by the device
on which the algorithm has been implemented. Variations in power consumption,
but also in time delay and electromagnetic radiation, have all successfully been
exploited. In [7] for instance, a power analysis extracts the full 128-bit key of an
ASIC AES implementation in less then three minutes.

A SCA works as follows: it compares an estimation of the side-channel leak-
age with a measurement of the side-channel leakage. In a power-based SCA,
measured power traces are compared with power consumption estimations. The
correct key is found by identifying the best match between the measurements
and the possible estimations. Furthermore, by limiting the side-channel leakage
estimation to only a small piece of the algorithm, the computational complexity
is reduced compared to a brute-force attack. A single AES secret key byte can
be found by estimating the power consumption of only a single state register
byte.

Countless SCA mitigations have been put forward. In case of a power analysis,
they range from decoupling the power supply or adding noise generators to
masking data bearing signals or using custom logic cells. In [5],[6], Suzuki et al.
combine the two ideas of masking data bearing signals and using custom logic
cells into random switching logic (RSL). RSL unites the advantage of the former
of being a theoretically proven countermeasure and the advantage of the latter
of being an algorithmic independent countermeasure.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 134–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Changing the Odds Against Masked Logic 135

Yet as shown in [2],[3], theoretically proven mitigations do not always hold in
practice. In this manuscript, we will successfully attack random switching logic.
In fact, we will show that RSL only improves the power analysis resistance by a
factor of two.

Masking decorrelates the data from the power consumption. It equalizes the
transition probabilities of the data bearing signals. If all signal transitions, i.e.
0 to 0, 0 to 1, 1 to 0 and 1 to 1, are equally likely and independent of the state
of the circuit, a power analysis will be unsuccessful. In RSL, each and every
signal is masked by xor-ing the output of all logic gates with a random mask-bit
and consequently the output transition, and thus the power consumption, of the
logic gate is independent of the state of the gate.

Masking is only effective if the mask-bit itself remains secret. If the value of
this bit can somehow be derived from the measurements, the output transitions
are not equally likely anymore. Therefore, knowledge of the mask-bit value will
re-enable a normal power analysis.

A single mask-bit can only impact the power consumption in a binary fashion.
Even though all signal transitions are equally likely, the transition probability
of a gate output is higher if the mask-bit changes. Indeed, the mask-bit can be
seen as a data signal distributed to all gates. A change of its value will have
an effect on all of the gates. It will result in a proportionally larger number of
output transitions than when its value would remain constant. By filtering out
the high power peaks, caused by these additional output transitions, we keep
the events in which the mask-bit remains constant, thus in which the masking
operation was actually absent.

The main contributions of this paper are that we point out that a single
mask-bit only adds one bit of entropy, which is not sufficient to protect against
a power analysis and that we show how to successfully attack random switching
logic. Additionally, compared with [3], we show that masking at the gate level
can also be attacked when glitches are not present.

The remainder of this paper is organized as follows. The next section presents
the information theory model of masking. It first introduces masking, probability
and entropy and then applies it to RSL. In section 3, an experiment is setup in
which, based of the findings of section 2, a test circuit implemented in RSL is
successfully attacked. Finally a conclusion will be formulated.

2 Changing the Odds Using a Posteriori Probabilities

The power consumption of a CMOS circuit is dependent on circuit and archi-
tecture characteristics such as capacitance, supply voltage, leakage current and
clock frequency. In addition, it is also dependent on signal activity. In the follow-
ing, we will focus on the impact of this signal activity on information leakage.
We will define some information theory concepts, and in particular analyze the
entropy of masked signals. Using these concepts we will describe our proposed
attack on RSL, which is discussed in the second subsection.

136 K. Tiri and P. Schaumont

0 1

a 01

a 10

a 11a 00

11111

10110

01001

00000

.

.

.

.

aaA

aaA

aaA

aaA

=
=
=
=

Fig. 1. Markov Model for signal a

2.1 Conditional Transition Probability and Entropy of Random
Digital Signals

The dynamic power consumption of digital circuits is characterized in terms of
the switching activity of the signals in the design. One defines the activity factor
pt of a signal a as the probability for a power-consuming transition per clock
cycle of that signal [1]. A clock signal has pt = 1. In static CMOS logic, glitch-
free data signals have a pt smaller than 0.5. Often the activity factor is expressed
as a percentage, and typical digital circuits show activity factors of 5% to 15%
[9]. This means that a signal will show a power-consuming transition (i.e. 0→1
for CMOS) during 5% to 15% of the clock cycles.

For a signal a, we denote the probability of a zero as a0 and of a one as a1.

101 1)0(,)1(aaaPaaP −===== (1)

We now establish a relation between pt and the probability characteristics of
a. We denote the absolute probability that a will make a transition from 0 to 1
as A01. By our choice of pt, it must be that A01= pt. We can now derive other
relevant probabilities based on the probability a0 and the activity factor pt.

We will make use of a Markov model as illustrated in figure 1. In a Markov
model, the random signal a is characterized in terms of its transition proba-
bilities over a number of clock cycles. For each possible transition there is a
corresponding probability defined as aij . For example, a01 is the probability
that a becomes 1 under the condition that one clock cycle earlier it has the
value 0. An important observation is that the conditional transition probabili-
ties aij are bigger than absolute transition probabilities Aij . In other words, the
knowledge of the value of a influences our knowledge on the transitions made by
a. This leads to the concept of a posteriori probability: the transition probability
when the value of a is known.

The long-term probabilities of the signal being zero (a0) or one (a1) are deter-
mined by the Markov chain in (2). This leads to the conclusion that random signals
have an equal amount of up-going and down-going edges: A01 = A10= pt.

1001101010

01

0

1

0

1

0010

0111

..

1

AAaaaa

aaa

a

a

a

a

aa

aa

iii

==
=Σ=Σ=Σ

=

(2)

Changing the Odds Against Masked Logic 137

H(A)

pt0 1

1

2

Fig. 2. Transition Entropy

Entropy expresses the information content of a signal. For an event E with
probability q, the entropy is equal to H (E) = - q . log2(q). A random signal
thus has a single bit of entropy:

1½)(½.log½)(.log½)()()(2210 =−−=+= aHaHaH (3)

The entropy of the transitions of a is:

)(log)(log)(

)(log)()(log)(

)()()()()(

2121

0202

11100100

tttt

tttt

pppapa

papappAH

AHAHAHAHAH

−−−−
−−−−=

+++=

(4)

When a0 = a1 = 0.5, the entropy of the transitions is between 1 and 2 bit,
depending on the value of pt.

)1)1()(log1()1)((log)(22½10
−−−−−−=

== ttttaa
ppppAH

(5)

For pt = 0.5, H (A) reaches a maximum of 2 bits, as shown in figure 2. For
other values in 0 < pt < 1, H (A) is never smaller than 1 bit, even though H (A) is
derived from a single-bit random signal. Indeed, H (A) is the result of observing
two bits from a random stream. When these bits are uncorrelated (i.e. when the
pt = 0.5), we receive two bits of information per observation.

We now examine the transfer of information through logic gates using the
above concepts. Consider first a simple xor gate, with two signals at the input,

qra

0 0 0
0 1 1
1 0 1
1 1 0

0 1

a=0 & r=0
a=1 & r=1

a=0 & r=1
a=1 & r=0

Q01

a

r

q

Q10

Q11Q00

Fig. 3. Markov chain for an xor gate with inputs r and a

138 K. Tiri and P. Schaumont

one called r and another one called a. We will characterize the properties of the
output signal q in terms of these two input signals.

The transition probabilities of q can be expressed in terms of the transition
probabilities of r and a. For example, the transition probability Q01 requires a
and r to change from equal to different value. There are four combinations that
have this effect, which results in Q01 having four terms.

0101101011110000,00

1101001001110100,10

1001011000111100,11

0001111010110100,01

RARARARAQ

RARARARAQ

RARARARAQ

RARARARAQ

xor

xor

xor

xor

+++=
+++=
+++=
+++=

(6)

If r is an uncorrelated random signal (i.e. R01 = R10 = R11 = R00 = 0.25),
then q will be an uncorrelated random signal as well. As a result, the entropy
H (Qxor) will be two bit, the same as H (R). Only the xor gate has this property;
an xor gate does not loose information and allows the signal a to be restored if
signal r is known. In contrast, and and or gates destroy information, and their
H (Q) will be less than 2 bit. For example, assume an and gate with two input
signals a and r, each with activity 50%, then it can be shown that

16/1,16/3,16/9 ,11,10,01,00 ==== andandandand QQQQ (7)

which leads to an entropy of H (Qand) = 1.66 bit.
In the next section, we will apply the ideas of conditional probabilities and

entropy to the observation of the power consumption of RSL gates. This will
show that an apparently random signal can still have non-random a posteriori
probabilities.

2.2 Random Switching Logic

The RSL nor and nand gates are defined as follows [5]:

ryxyxeznand

ryxyxeznor

rsl

rsl

).(.:

).(.:

+++=

+++=

with
baqbaq

rqzrbyrax

rslrsl nandnor
.,

,,

=+=

⊕=⊕=⊕=

(8)

Signal r is the random mask-bit, which equalizes the transition probability
according to formula 6. Signal e is an enable signal, which suppresses transient
hazards. It prevents glitches which have been shown to make a power analysis on
masked gates possible [2]. The signal only enables the gate when input signals
x, y and r are stable. For this purpose, signal e must meet stringent requirements

Changing the Odds Against Masked Logic 139

such that for each gate its arrival time is later than the arrival times of the
output of already enabled gates. For the rest of this manuscript, we will assume
that the enable signal e is one and that glitches do not occur. Please note that
for the experimental results, a cycle accurate simulator is used which does not
simulate glitches.

In a design implemented with RSL, only the global input signals are explicitly
masked. The internal nets are masked because of the RSL gates. A gate expects
masked inputs and produces a masked output, which serves as the masked input
of the next gate. Note that to implement this functionality, r is still distributed
to and used by all gates.

The signal r modifies the functionality of the RSL gates as follows. When r
equals zero, we can derive that:

yxnand

yxnor

rrsl

rrsl

.
0

0

=

+=

=

=

(9)

and when r equals one:

yxnand

yxnor

rrsl

rrsl

+=

=

=

=

1

1
.

(10)

Whenever the mask-bit value changes, each gate that previously functioned as
a nand gate, modifies its functionality to a nor gate and vice versa. A design
implemented with RSL will thus switch between two dual configurations, which
will require energy in addition to the energy for calculating the design’s output.

Table 1 presents the transition probabilities Z ij of an RSL nand gate in func-
tion of the random mask-bit transition. The table has been calculated with the
unmasked signals a and b having a typical activity factor of 10%. The summa-
tion per transition event of z shows that all transitions are equally likely (i.e. Z 01

= Z 10 = Z 11 = Z 00 = 0.25). This is the basis for the power analysis resistance
of RSL.

The table, however, also shows that the a prosteriori probabilities are not
equally likely. For instance, if the mask-bit remains at one, with high probability
the output z will remain at zero. Indeed, when r is one, the RSL nand gate
functions as a nor gate, for which it is sufficient that one input is one to have a
zero output.

Table 1 shows that when the mask-bit r remains constant, it is very likely
that the output z remains constant (Z 11 + Z 00 >> Z 01 + Z 10 for r0−0 and
r1−1) while when the mask-bit changes, it is very likely that the output changes
(Z 01 + Z 10 >> Z 11 + Z 00 for r0−1 and r1−0). There will thus be a large
difference in power consumption between the two events. This will be easy to
filter out, no matter what kind of design has been implemented. For example,
if a typical design has a 10% activity factor, it means that the probability of
a power transition of q would be 10% (pt = Q01 = Q10 = 0.1) and it means
also that the non-switching probability is 80% (Q00 = Q11 = 0.4). Now when r

140 K. Tiri and P. Schaumont

Table 1. Transition Probabilities of an RSL nand gate with A01 = 0.1, B01 = 0.1

r z 0 0 1 0 0 1 1 1

0 0 0.0400 0.0225 0.0225 0.1650
1 0 0.0225 0.0400 0.1650 0.0225
0 1 0.0225 0.1650 0.0400 0.0225
1 1 0.1650 0.0225 0.0225 0.0400

 0.2500 0.2500 0.2500 0.2500

Table 2. A posteriori transition probabilities of RSL nand gate

r z 0 0 1 0 0 1 1 1

0 0 0.0400 0.0225 0.0225 0.1650
1 1 0.1650 0.0225 0.0225 0.0400

2 0.4100 0.0900 0.0900 0.4100

switches, these two groups are exchanged, and the circuit gets an activity factor
of 40%.

Table 2 shows the transition probabilities after the constant mask-bit tran-
sitions have been selected. The a posteriori transition probabilities of the RSL
nand gate are not equally likely anymore. They are asymmetric (Z 00 = Z 11 =
0.41 �= Z 10 = Z 01= 0.09) and a power analysis should be possible.

3 Experimental Results

3.1 Power Measurements

The power measurements are simulated with toggle counts. A toggle count re-
ports how many signals have a switching event in a clock cycle. By restricting
the toggle count to positive signal transitions, they report the power consuming
transitions. This is a first order approximation of the power consumption. More
accurate power consumption measurements can be obtained by using weight fac-
tors based on the estimated capacitance attached to the switching nets. For our
purpose, raw un-weighted toggle counts are sufficient. If an implementation is
not DPA proof with raw toggle counts it will not be DPA resistant with a more
accurate model either. Please note that the inverse would not be true.

We obtained the toggle counts from our test circuit by simulation with the
GEZEL cycle-based simulator (http://rijndael.ece.vt.edu/gezel2). This
simulator supports two modes of toggle counting. In one mode, it obtains toggle
counts from a test circuit for all intermediate nets as a function of time. In a
second mode, it obtains toggle counts per net over all clock cycles. These counts
are obtained by evaluating the Hamming distance of all signal transitions. The

Changing the Odds Against Masked Logic 141

1. $option "profile_toggle_upedge_cycles" // count 0->1 transitions
2.
3. ipblock rng(out q : ns(32)) {
4. iptype "rngblock";
5. }
6.
7. dp rsl_nand(in blank : ns(1); // masking bit
8. in a, b : ns(1); // inputs
9. out q : ns(1)) { // output
10. always {
11. q = ~((a & b) | ((a | b) & blank));
12. }
13. }

Fig. 4. Circuit input description for GEZEL cycle-based simulator

partial netlist, shown in figure 4, illustrates a circuit input description for this
cycle-based simulator.

Line 1 instructs the simulator to count up-going transitions in the circuit and
to report the result per clock cycle.

Lines 3-5 create a random generator module by means of the ipblock con-
struct. These ipblock are user-defined simulation primitives. They are described
in C++, and are easy to add to the simulator. The advantage of such user-defined
primitives for this application is that they do not contribute to the toggle count.
Instead, ipblock primitives are black-box descriptions.

Lines 7-13 show the example model of an RSL-nand gate. This gate will be
evaluated once per clock cycle during the simulation. The GEZEL simulator
uses a pure cycle-based algorithm and does not simulate glitches. Besides the
modeling of combinational logic, GEZEL also supports sequential logic, control
modeling, and structural hierarchy. GEZEL also has a code generation backend
to convert circuit descriptions into C++ as well as into synthesizable VHDL.
The conversion into C++ is useful to generate ipblock descriptions automatically
from existing circuit descriptions.

3.2 Device Under Test Setup

Figure 5 shows the block diagram of the test circuit implemented in RSL. The
test circuit consists of the AES substitution followed by the key addition. This
is a sufficient subset of the AES algorithm on which a SCA can be mounted.
Furthermore, a side-channel attack on AES will in general find the 128-bit secret
key byte per byte by estimating the side-channel leakage of exactly the circuit
shown in figure 5.

The masking is done as follows. The random mask-bit r is inserted at the input,
by xor-ing the input in and an 8-bit repetition of r. Likewise, the mask is inserted
at the other input key and extracted at the output out. Additionally, the signal r
is fed to the RSL gates forming the substitution box and the key addition.

142 K. Tiri and P. Schaumont

in out

key

r

sbox

RSL

Fig. 5. RSL test circuit: AES sbox and key addition

The power measurements, i.e. the toggle counts, are restricted to the substi-
tution box and the key addition. The switching of the registers storing signals
r, in, and out, and the switching of the xor-gates masking signals in, key and
out are not included in the power measurements. Only the toggle counts of the
logic gates within the dotted line of figure 5 are reported. This has been done to
exclude any side-channel leakage of unmasked signals from the measurements.

Additionally, even though the mask-bit r is a global signal distributed to all
RSL gates it has only weight one. It has the same contribution into the toggle
count as a local signal confined between two adjacent gates. In reality, signal r
behaves as a clock signal, which typically consumes a large fraction –30% to 40%
according to [5]– of the total system power. The signal r, by itself, will thus cause
a large power spike when switching. The observability of a mask-bit transition
only increases with more accurate weight factors especially given that the signal
r is distributed to all logic gates, 871 in our test circuit, while the clock is only
distributed to the registers and latches, 18 in our test circuit.

The following power analysis has been carried out. The toggle count measure-
ments are correlated with the number of changing bits between two subsequent
values of the signal in. The number of changing bits serves as the attacker’s
estimate of the power consumption. The values of in are calculated from the
signal out, which is known, and a guess on the signal key. The guess that results
in the highest correlation coefficient is the correct secret key. Please note the
power estimation is based on in and not on the actual state of the circuit in⊕r.

3.3 Power Based SCA Results

The outcome of the power analysis is shown in figure 6. The results are based
on 100,000 toggle count acquisitions, which is more than enough to disclose any
side-channel leakage if present. In [7], less than 10,000 measurement acquisitions
were required to extract the key in an actual measurement setup suffering from
measurement errors and power dissipation of peripheral elements on the die.

The figure shows that the measurements and the estimations of all key hy-
potheses are uncorrelated. The correlation coefficients are very small and similar

Changing the Odds Against Masked Logic 143

-0.008

-0.004

 0

 0.004

 0.008

 0 50 100 150 200 250

co
rr

. c
oe

f.

key guess

secret key

Fig. 6. Power side-channel analysis using 100,000 acquisitions

in size. Not one hypothesis really stands out and the attack did not expose the
secret key. Based on these results, one could indeed conclude that RSL is suc-
cessful in mitigating a power analysis.

The mask-bit value, however, can be derived from a simple power analysis.
Figure 7, which shows the toggle count transient together with the value of the
mask-bit for 100 clock cycles, confirms the derivations of section 2.2. The toggle
count is higher than average whenever the mask-bit changes and smaller than
average whenever the mask-bit remains constant.

The separation between the high and the low toggle counts corresponding to
a switching and a non-switching mask-bit respectively is even more apparent in
the toggle count histogram shown in figure 8. The figure shows that the single
mask-bit only impacts the power consumption in a binary fashion. The entropy
of the probability density function derived from the toggle count histogram of
the test circuit fed with a constant mask-bit and a random mask-bit is 6.24 and
7.24 respectively. The single mask-bit adds exactly one bit of entropy to the
information content of the overall power consumption variations.

Note that the toggle count values correspond closely with what would be
obtained based on the transition probabilities of table 1. Based on the table,
the test circuit, which consists of 388 nand gates and 483 nor gates, would have
a toggle count of 380 whenever the mask-bit changes and a toggle count of 80
whenever the mask-bit remains constant.

The toggle count numbers also confirm that gate level masking is an expen-
sive operation. Recall that whenever the mask-bit changes, the configuration
switches to its dual mode. Each gate that previously functioned as a nand gate,
changes it functionality to a nor gate and vice versa. About 4 times the normal
toggle count is required to switch between both configurations. The un-weighted

144 K. Tiri and P. Schaumont

 0

 200

 400
to

gg
le

 c
ou

nt

 0

 1

0 20 40 60 80 100

m
as

k
va

lu
e

time - [clock cycle]

Fig. 7. Toggle count (top); and random mask-bit (bottom) transient

 0

 2

 4

 6

 8

 10

 12

-100 0 100 200 300 400 500 600

bi
n

co
un

t -
 [K

]

toggle count

r1 1

r0 0
r1 0

r0 1

Fig. 8. Toggle count histogram based on 100,000 acquisitions

toggle count power model, which essentially neglects the power dissipation of
the global masking signal r and the global enable signal e, estimates the average
power consumption of RSL to be 2.5 times the power consumption of a regular
implementation.

A threshold filter, which filters out the large toggle counts, retains the events
of interest while at same time throws away the unwanted events. The operation

Changing the Odds Against Masked Logic 145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250

co
rr

. c
oe

f.

key guess

secret key

Fig. 9. Power side-channel analysis after threshold filtering operation on 100,000
acquisitions

only keeps the events in which the mask-bit remains constant, thus in which the
masking operation was absent. The remaining toggle counts can come from the
test circuit in a stable nand-nor configuration or from the test circuit in a stable
nor-nand configuration. The fact that these are two different configurations is
not important. It is sufficient for the power analysis that both have a power
consumption profile proportional to the Hamming distance of two subsequent
states. They do not need to have exactly the same power consumption profile.

The outcome of the power analysis after a threshold filter has removed the
samples with a toggle count larger than 250 is shown in figure 9. The power
analysis successfully exposes the secret key. In fact, 100 acquisitions (yielding
approximately 50 samples after the filter) are sufficient to disclose the correct
secret key. These experimental results show that RSL is not an efficient coun-
termeasure to mitigate power analysis.

4 Conclusions

Masking is only effective if the mask-bits remain secret. Once the mask-bits are
known, the output transitions are not random anymore. A single mask-bit can
only impact the power consumption in a binary fashion. For RSL, the mask-
bit can easily be derived from the power measurements. A switching mask-bit
causes the energy consumption of a typical design to increase four-fold. Once
the low energy counts have been separated from the high energy counts, random
switching logic can successfully be attacked.

146 K. Tiri and P. Schaumont

References

1. Chandrakasan, A., Sheng, S., Brodersen, R.: Low Power CMOS Design. IEEE Jour-
nal of Solid-State Circuits (JSSC) 27(4), 473–484 (1992)

2. Mangard, S., Popp, T., Gammel, B.: Side-Channel Leakage of Masked CMOS Gates.
In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

3. Peeters, E., Standaert, F., Donckers, N., Quisquater, J.: Improved Higher Order
Side-Channel Attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

4. Moyer, B.: Low-power design for embedded processors. Proceedings of the
IEEE 89(11), 1576–1587 (2001)

5. Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure
against DPA based on Transition Probability. Cryptology ePrint Archive, Report
2004/346 (2004)

6. Suzuki, D., Saeki, M., Ichikawa, T.: DPA Leakage Models for CMOS Logic Circuits.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 366–382. Springer,
Heidelberg (2005)

7. Tiri, K., Hwang, D., Hodjat, A., Lai, B., Yang, S., Schaumont, P., Verbauwhede, I.:
Prototype IC with WDDL and Differential Routing - DPA Resistance Assessment.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer,
Heidelberg (2005)

8. Weste, N., Harris, D.: Principles of CMOS VLSI Design, 3rd edn. Addison-Wesley,
Reading (2005)

Advances on Access-Driven Cache Attacks on

AES�

Michael Neve1 and Jean-Pierre Seifert2,3

1 Intel Corporation, CTG STL Trusted Platform Laboratory,
2111 NE 25th Avenue, Hillsboro Oregon 97124, USA

michael.neve.de.mevergnies@intel.com
2 Applied Security Research Group

The Center for Computational Mathematics and Scientific Computation
Faculty of Science and Science Education

University of Haifa
Haifa 31905, Israel

3 Institute for Computer Science
University of Innsbruck
6020 Innsbruck, Austria

jeanpierreseifert@yahoo.com

Abstract. An access-driven attack is a class of cache-based side chan-
nel analysis. Like the time-driven attack, the cache’s timings are under
inspection as a source of information leakage. Access-driven attacks scru-
tinize the cache behavior with a finer granularity, rather than evaluating
the overall execution time. Access-driven attacks leverage the ability to
detect whether a cache line has been evicted, or not, as the primary
mechanism for mounting an attack. In this paper we focus on the case of
AES and we show that the vast majority of processors suffer from this
cache-based vulnerability. Our best results are indeed performed on a
processor without the multi-threading capabilities — in contrast to pre-
vious works in this area that had suggested that multi-threading actually
improved, or even made possible, this class of attack.

Despite some technical difficulties required to mount such attacks, our
work shows that access-driven cache-based attacks are becoming easier
to understand and analyze. Also, when such attacks are mounted against
systems performing AES, only a very limited number of encryptions are
required to recover the whole key with a high probability of success, due
to our last round analysis from the ciphertext.

1 Introduction

Side channels have been studied for many years in the context of smart cards
and embedded systems. Recently some researches demonstrated that micropro-
cessors are also vulnerable to side channels [2, 13, 14, 17], by showing that the

� This work has first been presented during the rump session of Crypto 05 by
E. Brickell.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 147–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 M. Neve and J.-P. Seifert

cache mechanism induces a variability in the execution time due to the different
memory accesses. This represents a threat for cryptographic software, since the
cache accesses are dependent on the inputs of the software, namely the plain-
text and the key. Hence, the analysis of the execution time provides information
about the key.

The cache has been mentioned earlier as a potential vulnerability regarding
covert channels [6,9,19] and side channels [7,8]. Tsunoo et al. demonstrated in [17]
the first practical results on DES. They also mentioned results on AES but did not
provide further details. In [2], Bernstein showed results of side channel analysis
against AES, based on the first round. [10] and [11,12,13] independently provided
an analysis of the second round of AES. These attacks belong to the class of time-
driven cache-based attacks as they analyze the overall execution time.

Moreover [11,12,13] detailed also techniques to perform access-driven attacks
on AES, where a process spies on another one using the cache accesses. [14] used
a similar technique against RSA implementations. [3] recently provided software
mitigation strategies for AES that reduce the cache leakage.

In this paper, we detail a new and very efficient access-driven cache-based side
channel attack. We focus on 128-bit AES implementations that uses four 1KB
precomputed SBox tables (such as OpenSSL [1]) and we show that an analysis
of the ciphertexts can lead to the recovery of the entire secret key.

Previous attacks [14,12,11,13] exploited the hardware-assisted multi-threading
capability of some microprocessors, cf. [15], in order to run a spy process quasi
parallel to a crypto process. However, today most processors are single-threaded,
therefore, this paper investigates and demonstrates that one can successfully per-
form such attacks also on this common class of processors.

In practical cases, many processes are quasi-parallel executed at the same
time as our crypto and spy processes. Those other processes generate noise in
the measurements of the spy process. In this paper however, we are interested
in deriving expected numbers of measurements necessary to disclose the full key
with perfect measurements, i.e. without noise. Nevertheless, we will discuss the
consequence of noise on our strategies. Moreover, we will also elaborate on the
number of snapshots that the spy process can take per encryption. In addition
we will discuss the impact of the measurement resolution upon the quality of
the attack.

The present paper is organized as follows. The next Section briefly recalls
some facts about AES and cache-based side-chanel attacks. In Section 3, we
detail how access-driven attacks can be mounted on single-threaded processors
and we demonstrate our practical success by showing a snapshot of a cache
activity on such a processor. In common implementations of AES the last round
uses a separate SBox table from the other rounds. We show in Section 3 how this
information can be combined with the ciphertexts in order to deduce the key. In
Section 4 we compute the expected number of cache lines accessed during the
last round. We discuss the different cases of attack resolution in Section 5, and
two different analysis methods are described in Section 6. Finally we provide our
conclusions in Section 7.

Advances on Access-Driven Cache Attacks on AES 149

2 Definitions and Preliminaries

AES. AES is a popular and commonly used block cipher. We only recall here
the particular features of AES that we use in this paper. Refer to [4] for full
details. AES operates in a succession of identical rounds, where four operations
are performed on the state (i.e. the temporary value): an SBox permutation
SubBytes, a byte transposition ShiftRows, a collumn by column permutation
MixColumn and a sub key addition AddRoundKey. The last round however is
slightly different since the MixColumn operation is skipped.

The key schedule ExpandedKey derives the sub keys K(i) from the secret key
k. The non-linearity is given by the mean of SubBytes. ExpandedKey is invertible
and, in the case of 128-bit AES, it is possible to derive the secret key from any
single sub key. We will use this property in our attack.

Efficient software implementations take advantage of precomputed SBox ta-
bles to reach high performances. In OpenSSL for example there are five 1KB
tables (T0, T1, T2, T3, T4) necessary for the encryption part. All rounds but the
last one use 4 of them (T0 to T3) whereas the last round and the key schedule
use the special fifth one (T4).

Cache-Based Side Channel Attacks. Access-driven side channels consider
that two (or more) processes are executed quasi-parallel on the processor. One
process (called here the crypto process) is performing a cryptographic function
(i.e. AES in this case) involving a secret key. As aforementioned, precomputed
values are involved in the execution of the crypto process and their accesses are
done through the memory hierarchy. On each data request, the cache checks
whether it holds the data, or not. If it does, a cache-hit occurs and the data is
immediately transmitted to the processor. Otherwise, a cache-miss occurs and
the data must be fetched from a higher memory level, with a longer access time.

A second process, called a spy process, spies on the cache accesses of the
crypto process. It continuously loads a table S of the size of the cache. From
time to time, the crypto process is executed and it inevitably evicts some parts
of S by accessing particular data. Therefore, the next time that the spy process
is executed, the access time of each part of S (i.e. the time necessary to reload
a given part of S) indicates which part has been evicted by the crypto process
during the last execution of the crypto process.

Thus, the cache is leaking information about the crypto process’s memory ac-
cesses. Since the software implementation is known, an attacker can infer partial
knowledge of the secret key. It is however worth underlining the fact that the spy
process cannot diretly access the data of the crypto process; it only observes the
cache activity generated by the crypto process and deduces (partial) information
from this activity.

3 Exploiting OS Scheduling Instead of Simultaneous
Multithreading

Recall that previously described attacks [12, 11, 13, 14] take advantage of the
multi-threading capacity of certain processors. It allows them to have two

150 M. Neve and J.-P. Seifert

processes running quasi parallel on the same processor, as if there were two logi-
cal processors [15,16]. In this manner some logical elements are shared, while the
quasi parallelism enables one process to spy on the other through the use of the
shared logic elements. The cache architecture is one such example of a shared
element. Although hardware-assisted multi-threading seems to be mandatory at
first sight, we show in the rest of this section that it is not.

Although single-threaded processors run threads/processes serially, the OS
manages to execute several programs also in a quasi parallel way, only at a
coarser resolution, cf. [16]. The OS basically decomposes an application into
a series of short threads that are ordered with other application threads. The
processor’s resources are thus temporally shared according to the OS’s ascribed
prioritization.

In order to transfer the (hardware-assisted) multi-threaded processor attacks
from [12, 11, 13, 14] to single-threaded processors, one has to leave the comfort
of hardware-assistance and exploit subtle OS particularities — which may vary
from OS to OS. While this seems quite possible for attacks such as [14], the
very fast execution time of AES seems to require the aforementioned hardware-
assistance in order to efficiently switch between the spy and the crypto process.
Indeed, the objective is to ensure is that the crypto thread runs only for a small
amount of time between any two runs of the spy thread, or in other words we
are able to implement the following strategy:

spy: Continuously watches the cache usage of the parallel crypto thread.
crypto: Runs only for a small amount of time between any two runs of spy.

Interestingly enough, the basic idea is already pointed out in one of the funda-
mental papers on cache-based side channel attacks, cf. Hu [6], and can adapted
to today’s OS to stretch the AES execution time over several OS quantums,
cf. [6, 16]. According to cf. [6], the so called preemptive scheduling property,
cf. [16], “. . . allows a process to control when it yields the CPU to another pro-
cess without waiting until the end of the quantum.” Therefore, using the Linux
command sleep instead of the VAX security kernel command WAIT and the fol-
lowing repetitive spy process paradigm we are able to achieve an implementation
of the above attack strategy:

– Watch the cache usage.
– Spend most of the OS quantum.
– Yield the CPU to another process via an appropriate sleep near to the quan-

tum end.

This paradigm uses the fact that the OS will reschedule the (very short) re-
maining quantum part to the crypto thread which will be able to execute a few
instructions, after which the OS will quickly reschedule to the spy thread, allow-
ing him to spy on the recently used memory accesses. As the above paradigm
and all its subtle implementation details heavily depend on the underlying OS,
CPU type and frequency, etc. we will not deepen further this technical details
here.

Advances on Access-Driven Cache Attacks on AES 151

Figure 1 shows the successful implementation of the above strategy and was
actually created by observing an unmodified AES implementation through the
cache accesses. In this Figure, there are 80 columns. Each column represents a
single cache line. The 80 columns are divided into five tables of 16 cache lines,
each table representing an SBox (starting with T0 at the left and continuing to
T4 at the right). Each row in this figure indicates a different measuring time
(the uppermost being the first measurement). Each point in a row displays the
activity of the particular cache line that it represents. The brighter the point, the
longer the time it takes to access an element in the cache line. It is important to
understand that we get no information about the order of the accesses within one
measurement. By using this kind of picture, an attacker can follow the activity
of one or more specific cache lines. We obtained similar patterns on another OS
and we believe that any multitasking OS could lead to the same access results.

Figure 1 depicts 4 successive AES encryptions. In this particular example,
each encryption is repeated 5 times. The time resolution enables us to perform
a few measurements per encryption. However, we do not have any distinction
between the AES rounds. We only know that they are interrupted several times
by the spy program at some points during the encryption.

SBox T4
1 plays a particular role here, as it is invoked only on the last round.

Therefore, the SBox T4 accesses indicate the end of an encryption, and all lines
within the SBox T4 accesses are then linked to a single encryption.

4 Analysis of the Last Round

Previously cited attacks use the information about the first or the first and
second rounds of one encryption2. However, we focus here on the accesses of the
last round. Indeed, if the time resolution of the spy process enables us to see the
accesses of one encryption, SBox T4 will also appear clearly.

The ciphertext is now under investigation in order to take advantage of the
last round accesses. Recall from our introduction, the last round of AES is par-
ticularly of interest in the sense that the MixColumns operation is never applied.
And for that particular reason, OpenSSL uses SBox T4, especially for the last
round. With c := EAES(p, k) being the ciphertext, we have the following rela-
tions linking c and the last round:

c = K(10) ⊕ ShiftRows[SubBytes[x(9)]],

where x(9) is the initial state of round 10 (i.e. the output of round 9 and input
to round 10). Since round 10 uses SBox T4, we denote the actual access to T4

by [SBox T4 outputs]. The relation becomes:

c = K(10) ⊕ [SBox T4 outputs].

1 Recall that T4 has a size of 1KB and therefore it is represented by the last set of 16
points in each row, with 64-byte cache lines.

2 But the accesses contain the cache activity of all rounds and the analysis of the first
round(s) is disturbed by the access of the other rounds.

152 M. Neve and J.-P. Seifert

Fig. 1. Evolution of the cache versus time, displaying several AES encryptions. Each
horizontal line represents the state of the cache lines (represented by a point) at a given
time. The brighter, the longer the time to access its corresponding cache line.

Therefore, we derive a relation defining K(10):

K(10) = c ⊕ [SBox T4 outputs],

from which it is easy to deduce the value of k from K(10) — see our brief recall
of AES in section 2.

However, [SBox T4 outputs] represents the result of all the accesses of the last
round, i.e. for all bytes of the T4 input x(9). Moreover, the cache accesses only
point out the accessed cache lines, but not the individual elements in those lines.
Although the next section will give more details on the last points, we refer the
reader to Handy [5] for a thorough review of cache architectures.

Advances on Access-Driven Cache Attacks on AES 153

Table 1. Expected number of cache lines of SBox T4 accessed in t last rounds for t > 1
and m = 16

t 2 3 4 5 6 7 > 7

E(P (t · 16)) 13.97 15.28 15.74 15.91 15.97 15.99 ≈ 16

5 Average Number of Accesses for the Last Round

Let us first introduce some notations. Let δ = 2o be the cache line size (in
byte) and m = 2l be the number of cache lines of SBox T4. Let also p(b) be the
probability that one specific cache line is accessed in b T4 accesses, and P (b) its
corresponding random variable. Likewise, pn(b) the probability that one specific
cache line is not accessed during b T4 accesses, and Pn(b) its corresponding
random variable. Also, let us assume that the accesses to T4 are independent
and uniformly distributed. We now want to compute the expected number of
different cache accesses into T4. Using that p(1) = 1/m, or pn(1) = 1− 1/m and
the last assumption yields

pn(16) =
(

1 − 1
m

)16

.

Therefore, the expected number of cache lines not accessed in a last round is
given by

E(Pn(16)) = 16 ·
(

1 − 1
m

)16

.

In the case of caches with 64 bytes per cache line (i.e. δ = m = 16), we get
E(Pn(16)) = 5.70 and thus E(P (16)) = 10.30 as the expected number of cache
lines accessed during a last round.

6 Resolution

On Figure 1, the T4 accesses are all visible within a few vertical lines. Let the
resolution factor t be defined as

t :=
of ciphertexts

of measurements
,

which yields the following different resolution cases:

– low resolution: One measurement covers t encryptions (with t > 1) and
therefore several last round accesses are overlaid. Then E(P (t · 16)) = 16 ·
(1− 1/m)t·16. Table 1 shows that E(P (t · 16)) rapidly gets close to its limits.

– one line resolution: The frequency of measurements isolates one last round
per measurement, i.e. t = 1. We already computed this case. Then E(P (16))
equals 10.30 for m = 16.

154 M. Neve and J.-P. Seifert

– high resolution: There are several measurements (1/t) occurring during the
last round, i.e. t < 1. The observation of the evolution of the accesses gives
a notion of the order in which the accesses have taken place and therefore
narrows down the possible accesses per byte.

For now, we consider one line resolution to detail the analysis of the accesses.
We return to this in Section 8 and discuss the impact of the resolution in the
analysis’s results.

7 Non-elimination and Elimination Methods

We detail here how to deduce the secret key from cache accesses of SBox T4 and
the ciphertexts.

The first method is directly inferred from the relation obtained above:

K(10) = c ⊕ [SBox T4 outputs].

This states that K(10) is computed with the ciphertext c and some SBox out-
puts resulting from the SBox T4 accesses. Each access to a particular line outputs
one out of 16 values and we try to discover which one it is, from many cipher-
text/accesses pairs. This finally leads to the value of K(10), when applied in a
byte-wise fashion.

The second method is based on the inverse relation:

K(10) �= c ⊕ ¬[SBox T4 outputs],

where ¬[SBox T4 outputs] refers to the non-accessed cache lines. The relation
simply means that the bytes obtained by the addition of c and the non-accessed
cache lines can be discarded as candidates for K(10). This method, as we are
about to see, requires less ciphertext/accesses pairs than the first one.

Let us call those methods respectively Non-elimination and Elimination meth-
ods, since they share the same philosophy as Tsunoo’s methods [18]. Let us further
suppose that we have a large number of clear measurements of the cache accesses
over the last round and the corresponding ciphertexts. We will now detail each
method individually.

7.1 Non-elimination Method

This method is separated into three steps. All three steps must be applied for
all of the 16 bytes of the key. Suppose we attack byte i, 0 ≤ i ≤ 15.

1. Selection of the ciphertext : The ciphertext/accesses pairs are sorted accord-
ing to the value of byte i of the ciphertext. Since the key is constant, it is
clear that if the ith byte of different ciphertexts have the same value, all the
accesses corresponding to those ciphertexts must contain an access to one
common cache line3.

3 Since the ciphertexts can be considered random, the other bytes will have random
accesses to T4. We seek the constant access among the random ones.

Advances on Access-Driven Cache Attacks on AES 155

Fig. 2. Cache line accesses for ciphertexts with a constant value for byte i. The dark
boxes represent accessed cache lines.

Consider for example Figure 2 as the accesses for a constant value of byte
i (say x 00).

2. Discovery of the correct access : The access corresponding to the value of
byte i is found by taking the unique access present on every encryption (cfr.
Figure 3 where byte i = x 00 is found to be linked to cache line 2. We define
in this case false positives as the wrong candidates present along with the
correct candidate: e.g. the number of false positives on this example is
– 10 on encryption 1,
– 6 on encryption 2,
– 5 on encryption 3,
– 3 on encryptions 4 and 5,
– 1 on encryption 6 and further
– 0 on encryption 7 and further.

The probability of a false positive accessed for k successive encryptions is(
1 − ((m − 1)/m)15

)k and this gives less than 4 percents when k = 7.
3. Application of the difference: The bitwise difference of the selected values

of byte i must also link two elements in the corresponding access of T4.
Operation (2) showed that byte i = x 00 is linked to cache line 2. Let us
assume that the same operation was being executed on a different value
of byte i (e.g. x 01) and the corresponding cache line was 5. Therefore the
bitwise difference of the values for byte i is x 00 ⊕ x 01 = x 01 = 1. Hence
we only need to find, in the cache lines 2 and 5, output values presenting the
same difference. The two lines are shown below:

...
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
...
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
...

156 M. Neve and J.-P. Seifert

Fig. 3. Highlight of the constant access. The dark boxes represent accessed cache lines
and the black boxes show the evolution of the possible candidates.

The only pair having a bitwise difference of 1 are x fd and x fc, when byte i
is equal to respectively x 00 and x 01. Therefore, the byte of K(10) corre-
sponding to byte i has a value of x fd ⊕ x 00 = x fc ⊕ x 01 = x fd. In the
unlikely event of more than one match, the operation (2) must be repeated
to establish other bitwise differences.

The expected number of pairs to find the correct key byte is

∞∑

n=2

pfp(n) · N(n) ≈ 186,

with pfp(n) and N(n) respectively being the probability of having a false positive
after n pairs and the average number of pairs necessary to get two values re-
peated. The other bytes of K(10) are found the same way, by considering another
byte number.

7.2 Elimination Method

Here, all bytes can be treated at the same time. We consider the case of byte i
for the sake of clarity; it is straightforward to apply the method to the other
ones. Let V be the set of all possible key byte values. Initially, V is composed of
all 256 values a byte can take: V = {j : 0 ≤ j ≤ 255|j}. At the end, we want
that V = {k(10)

i }. Consider for example that the ciphertext’s byte i ci equals
x 2c and the corresponding accesses are the ones displayed in Figure 4.

The accessed cache lines are

1 2 3 5 6 7 9 10 12 14 15

Advances on Access-Driven Cache Attacks on AES 157

Fig. 4. Example of accessed cache lines. The dark boxes represent accessed cache lines.

and the non-accessed ones are

0 4 8 11 13.

This method focuses on the latter list of cache lines. Let Ã represent this
subset of the cache lines and nÃ be the number of elements of Ã:

Ã = {0, 4, 8, 11, 13}, nÃ =
∣
∣
∣Ã
∣
∣
∣ = 5.

By the elimination relation, K(10) �= c ⊕ ¬[T4 outputs], each non-accessed
cache line enables us to remove all key candidates corresponding to this access.
In our example, this means that for the first element of Ã we have:

K
(10)
i �= c ⊕ [cache line 0]

�= x 2c⊕ x{63,7c,77,7b,f2,6b,6f,c5,30,01,67,2b,fe,d7,ab,76}
�= x{4f,50,5b,57,de,47,43,e9,1c,2d,4b,07,d2,fb,87,5a}
= Ve,

where x ... and x{. . . } represent hexadecimal values. All values of Ve can then
be eliminated from V :

V ← {j : 0 ≤ j ≤ 255}\Ve

Then we go to the next element of Ã (i.e. cache line 4) and apply the same
technique. The cache line bytes are

x{09,83,2c,1a,1b,6e,5a,a0,52,3b,d6,b3,29,e3,2f,84}

added with x 2c gives new candidates to eliminate. Then V is updated as:

V ← V\{25,af,00,36,37,42,76,8c,7e,17,fa,9f,05,cf,03,a8}.

This is then repeated for the three other cache lines in Ã.
For one given ciphertext/accesses pair, each cache line ends up eliminating

16 different values from the byte candidates: the ciphertext byte is constant and
the SBox outputs are all different from each other. In our example 80 candidates
have been eliminated with the pair under consideration. Then, another cipher-
text/access pair is analyzed and the same technique is applied with the non-
accessed cache lines of that pair. The ciphertext’s byte i and the non-accessed
cache lines are probably different from the previous analyzed pair. Therefore the

158 M. Neve and J.-P. Seifert

5 10 15 20 25 30 35 40 45 50
0

100

200

of pairs

w

ro
ng

 c
an

di
da

te
s

Fig. 5. Experimental verification of the reduction formula, yielding the number of
wrong key candidates per pairs. The continuous line is the theoretical formula and the
stars are the simulated data.

subset of wrong candidates deduced from this pair should only present a few
collisions with the one of previous pairs.

However, there will be more and more collisions as the number of wrong key can-
didates becomes closer to one. Consider for example the following table showing
the reduction of the number of wrong key candidates, for a practical case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|V| 255 175 119 77 55 33 21 15 6 6 2 2 2 1 1 0

Then other pairs are analyzed until there is only one key byte remaining4. It
is important to note that this method allows to work on all the bytes, at the
same time. In this case, we need 16 subsets (one per byte) keeping the count of
all candidates:

V0, . . . ,V15.

Let us first compute the number of pairs needed to distinguish the right
key candidate, for one byte. We can now define s, the number of candidates
eliminated by the analysis of one ciphertext/access pair. At the beginning, we
have 255 wrong candidates. With the first pair, we eliminate s of them and
the number of wrong candidates is 255-s. However, starting at the second pair,
collisions can occur. Therefore, we approximate the number of remaining wrong
key candidates after n pairs by 255 · (1 − s/255)n. This formula is validated by
simulation with s = 16 (see Figure 5).

We then apply the formula with the expected number of non-accessed cache
lines (i.e. 5.70, for 64-byte cache lines). Hence, substituting s = 5.70 · 16 into
255 · (1 − s/255)n we get the following results5 (cfr. Table 2).

After approximatively 14 pairs, the number of wrong candidates for one byte
should be close to 0. This shows that less than 20 ciphertext/accesses pairs are

4 Note that one can stop anytime and run an exhaustive search on the remaining key
byte candidates.

5 The data differ from the ones in the practical case because there are 5 non-accessed
cache lines whereas 5.70 are considered in Table 2.

Advances on Access-Driven Cache Attacks on AES 159

Table 2. Theoretical results of wrong key candidates, per pair ciphertext/accesses, for
m = 5.70 · 16

pairs |V| # pairs |V|
0 255 8 7
1 164 9 5
2 105 10 3
3 68 11 2
4 43 12 1
5 28 13 0.8
6 18 14 0.5
7 12 15 0.3

needed to recover the whole K(10) subkey and therefore also the secret key k.
This method gives a much better performance than the non-elimination one.

8 Practical Considerations

Let us now re-elaborate the question of the measurement resolution.

– Low resolution: Table 1 highlighted that the expected number of accessed
cache lines rapidly approaches to 16, when the number of encryptions be-
tween two measurements increases. However, even if the leakage gets smaller,
every ciphertext/accesses pair with at least one non-accessed cache line car-
ries information. Moreover, low resolution implies multiple ciphertexts for a
single cache information (i.e. one line combines all the accesses correspond-
ing to the ciphertexts). In this case the analysis must integrate the different
possible ciphertext values and statistically derive the most likely key bytes.

– One line resolution: As detailed above, 5.70 cache lines are not accessed. The
analysis does not need to deal neither with the multiple ciphertexts issue nor
with the order inside the accesses.

– High resolution: Both methods are still possible. But the leakage also gives
some information about the order of the accesses. One can then increase the
performances of the analysis and therefore reduce the number of required
pairs, by correlation of the byte accesses in the AES program and the ac-
cesses visible in the measurements. For t ≤ 1/16, one can clearly identify the
byte accesses. Two to three pairs only makes it possible to find the correct
candidates for all key bytes6.

Finally, we considered in this paper that the cache accesses were exempted
of any measurements noise. However practical attacks must deal with noise in
the measurements. Consider for example Figure 1 which presents vertical stripes
and a diagonal line in the upper half. The presence of noise in the measurements

6 The elimination and non-elimination methods then presents the same performances.

160 M. Neve and J.-P. Seifert

Fig. 6. Different resolutions for access-driven cache-based attacks. The resolution factor
t defines the ratio # of ciphertexts / # of measurements.

increases the number of accessed cache lines. However, the techniques that we
detailed here can still be exploited, by taking into account the noise7.

We gave above the minimum expected number of measurements to perform
the attacks for t = 1. As this boundary is precious and has been practically con-
firmed it should used to evaluate the efficiency and security of current software
implementations which are hardened by corresponding countermeasures.

9 Summary

In this paper, we detailed advances on recent processor-oriented side channels.
Our contribution is two-fold: we detailled a software method to achieve snap-
shots of cache accesses on single-threaded processors and we showed that the
analysis of the last round of AES enables the full disclosure of an 128-bit AES
key with less than 20 encryptions. Where previous studies focused exclusively
on a minority of processors, we investigated the access-driven cache-based at-
tacks on single-threaded processors. We explained our strategy and why it is
solely depending on software engineering. Moreover, we chose the challenging
case of AES: its short execution time (compared to RSA’s) demonstrates the
fine granularity of our cache accesses’ snapshots. Our software strategy can eas-
ily be adapted and combined with previously reported access-driven attacks
on any single-threaded processor. Moreover, on common implementations the
last round is performed with the help of a special precomputed table. Through
this feature, we achieved to infer more information than with other strategies.
We gave expected numbers of measurements, depending on the granularity and

7 Also, the location of the vertical stripes is variable between different runs of the
setup.

Advances on Access-Driven Cache Attacks on AES 161

noise of the access-driven measurements. This contribution sets new boundaries
for countermeasures against cache-based attacks. For example, some software
mitigations proposed to apply masking techniques and to renew the mask every
256 encryptions. We showed in this paper that this number might have to be
reconsidered.

Acknowledgment

We would like to thank the anonymous reviewers for their useful comments and
also for this sentence ”Figure 1 should be framed on the wall in front of every
crypto software programmer”.

References

1. Openssl: the open-source toolkit for ssl / tls. Available online at http://www.
openssl.org/

2. Bernstein, D.J.: Cache-timing attacks on AES (2004), Available onlineat
http://cr.yp.to/papers.html#cachetiming

3. Brickell, E., Graunke, G., Neve, M., Seifert, J.-P.: Software mitigations to hedge
aes against cache-based software side channel vulnerabilities. Cryptology ePrint
Archive, Report, 2006/052 (2006), Available online at http://eprint.iacr.org/

4. Daemen, J., Rijmen, V.: The design of Rijndael, AES - The Advanced Encryption
Standard. In: Information Security and Cryptology, Springer, Heidelberg (2001)

5. Handy, J.: The cache memory book (2nd ed.): the authoritative reference on cache
design. Academic Press, Inc., Orlando, FL, USA (1998)

6. Hu, W.-M.: Lattice scheduling and covert channels. In: Proceedings of the IEEE
Symposium on Security and Privacy, vol. 25, pp. 52–61 (1992)

7. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2/3) (2000)

8. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

9. Lampson, B.W.: A note on the confinement problem. Communications of the
ACM 16(10), 613–615 (1973)

10. Neve, M., Seifert, J.-P., Wang, Z.: A refined look at Bernstein’s AES side-channel
analysis. In: Proceedings of AsiaCCS 2006 (2006)

11. Osvik, D.A., Shamir, A., Tromer, E.: Cache atacks and countermeasures: the
case of AES (extended version) (2005), Available online at http://www.wisdom.
weizmann.ac.il/ tromer/

12. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of aes. Cryptology ePrint Archive, Report, 2005/271, (2005) Available online at
http://eprint.iacr.org/2005/271.pdf

13. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of aes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

14. Percival, C.: Cache missing for fun and profit (2005), Available online at
http://www.daemonology.net/hyperthreading-considered-harmful/

http://www.openssl.org/
http://www.openssl.org/
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/
http://www.wisdom.weizmann.ac.il/~tromer/
http://www.wisdom.weizmann.ac.il/~tromer/
http://eprint.iacr.org/2005/271.pdf
http://www.daemonology.net/hyperthreading-considered-harmful/

162 M. Neve and J.-P. Seifert

15. Shen, J., Lipasti, M.: Modern Processor Design: Fundamentals of Superscalar Pro-
cessors. McGraw-Hill, New York (2005)

16. Silberschatz, A., Gagne, G., Galvin, P.B.: Operating system concepts, 7th edn.
John Wiley and Sons, Inc., USA (2005)

17. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of des
implemented on computers with cache. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

18. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of block
ciphers implemented on computers with cache. In: Proceedings of International
Symposium on Information Theory and Its Applications, pp. 803–806 (2002)

19. Wray, J.C.: An analysis of covert timing channels. Journal of Computer Security
1(3-4), 219–232 (1992)

Blind Differential Cryptanalysis

for Enhanced Power Attacks

Helena Handschuh1 and Bart Preneel2

1 Spansion,
7 Avenue Georges Pompidou,

92593 Levallois-Perret Cedex, France
helena.handschuh@spansion.com

2 Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT/COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
bart.preneel@esat.kuleuven.be

Abstract. At FSE 2003 and 2004, Akkar and Goubin presented several
masking methods to protect iterated block ciphers such as DES against
Differential Power Analysis and higher-order variations thereof. The un-
derlying idea is to randomize the first few and last few rounds of the
cipher with independent masks at each round until all intermediate val-
ues depend on a large number of secret key bits, thereby disabling power
attacks on subsequent inner rounds. We show how to combine differen-
tial cryptanalysis applied to the first few rounds of the cipher with power
attacks to extract the secret key from intermediate unmasked (unknown)
values, even when these already depend on all secret key bits. We thus
invalidate the widely believed claim that it is sufficient to protect the
outer rounds of an iterated block cipher against side-channel attacks.

Keywords: differential cryptanalysis, power analysis, side channel at-
tacks, Hamming weights, combined cryptanalysis, blind cryptanalysis.

1 Introduction

In 1998, Kocher et al. introduced Differential Power Attacks on block ciphers
and digital signature algorithms [10]. These attacks allow to recover secrets used
in cryptographic computations even if these are executed inside tamper-resistant
devices such as smart cards. Kocher noted that these devices leak information
which is directly correlated to the secret data being manipulated inside the de-
vice. The information may be recovered for example by measuring the power
consumption of the device and the correlation of its variation with the secret
data. Differential Power Analysis exploits the fact that computing a given out-
put bit of a non-linear S-box requires different power consumption when this bit
is set to zero or to one; correlation analysis extends this by correlating the power
consumption with the key dependent power consumption predicted by a model.
Since 1998, these techniques have been generalized to other side-channels such as
timing information, electro-magnetic radiation, and even sound waves; research

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 163–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

164 H. Handschuh and B. Preneel

has also focused on how to protect tamper-resistant computations against these
attacks. Countermeasures are applied at the hardware, software and protocol
level. At the hardware level, power consumption scramblers and ad-hoc noise in-
troduction via random execution delays or random operation execution are the
preferred methods. At the software level, the most useful technique against first
order differential attacks are randomization techniques. In essence, the interme-
diate values are blinded using some randomized masks in order to decorrelate
them from the actual values which would reveal information to the opponent.
These techniques include random masking methods, randomized exponentia-
tion techniques, and randomized execution paths or integer representation. At
the protocol level, fast key refreshing has been a useful countermeasure. For
further references on side channel attacks and countermeasures, see for exam-
ple [13,5,9,23,8,20].

Some of these methods have since been shown to be vulnerable to higher order
differential attacks (see Messerges [14]) in which an opponent can measure infor-
mation at different places in a single power consumption curve. Kunz-Jacques et
al. [11] have shown how to improve higher order attacks on DES by combining
them with the Davies-Murphy attack. For block ciphers, new masking methods
have been proposed in which an independent random mask is applied at each
round, thus preventing an attacker to take advantage of the repeating mask in a
higher-order differential attack. However, these protection methods require very
large quantities of volatile memory and pre-computation time, which is typically
cost-prohibitive in secure embedded devices. Therefore only a few rounds are
eventually masked against power analysis attacks and the inner rounds of the
cipher are left unmasked (see Akkar et al. [3,2]). In their paper on cache-based
attacks, Osvik et al. [18] independently suggested that differential attacks could
be used to bypass protection in the outer rounds, but no details are provided.

Our Contribution. In this paper we show how to attack secure implementa-
tions of iterated block ciphers which apply reduced-round masking methods to
protect their secret keys against side-channel attacks such as power attacks. We
are able to mount key recovery attacks based on differential cryptanalysis tech-
niques [4] and power traces providing only the Hamming weight of the internal
variables used throughout the computation. Compared to differential cryptanal-
ysis, the main difference is that our technique is blind in the sense that we do not
see the actual values at the output of the differential path since the path stops
somewhere in the middle rounds of the cipher, but can only derive them from
their measured Hamming weight. As an example we explain how the technique
works on the Unified Masking Method applied to the DES.

Organization of the Paper. Section 2 explains the unique masking method
and its extensions which formed the inspiration of this attack. In Sect. 3 we
explain our blind differential attack for the specific case of DES with the outer
four rounds masked. In Sect. 4 we present our simulation results. Section 5
discusses improvements and generalizations and Sect. 6 concludes the paper.

Blind Differential Cryptanalysis for Enhanced Power Attacks 165

2 Extended Unique Masking Method

The Unique Masking Method (UMM) described below was proposed by Akkar
and Goubin [3] and applies to Feistel ciphers such as DES [15] and Substitution
Permutation Networks such as AES [16]. We use here the first type as an exam-
ple. In Feistel ciphers, the plaintext M is split into two halves L0 and R0 such
that M = L0||R0 and a round function f is applied to the right half of its input
before the result is exored to the left half. Next, both halves are swapped and
the procedure iterates for r rounds:

Li+1 := Ri and Ri+1 := Li ⊕ f(Ri) 0 ≤ i ≤ r − 1 .

The ciphertext is equal to C = Rr||Lr (in the last round, the halves are not
swapped). The DES round function comprises a key addition operation, followed
by an expansion operation E and substitution through a layer of 8 tables or S-
boxes S (each mapping 6 bits to 4 bits); next a bit-level permutation P is applied
to the result. UMM proposes to mask the outer rounds of a Feistel block cipher such
as DES with different independent masks at each round for at least four rounds
in order to decorrelate the calculations from the actual intermediate data. In or-
der to achieve this, the S-boxes S are replaced with different S-boxes, the input
and output of which are masked with random data. Since these S-boxes are the
only non-linear part of the cipher, new S-boxes need to be generated dynamically
at each execution of the algorithm to account for the different input and output
translations introduced by the random masks. UMM uses two sets of S-boxes.

Let S1 and S2 denote the following two new functions based on the original
DES S-boxes S, where α represents the 32-bit input and output mask used
during one execution of the algorithm:

{
∀x ∈ {0, 1}48, S1(x) = S(x ⊕ E(α))
∀x ∈ {0, 1}48, S2(x) = S(x) ⊕ P−1(α) .

These two new functions are logically combined such that one output mask
synchronizes with the input mask of the next round automatically as shown
in Fig. 1. Akkar et al. show in [2] that their initial UMM method does not
achieve the desired goal as the second round output remains unmasked. Therefore
they propose to use a third independent set of S-boxes S3 such that ∀x ∈
{0, 1}48, S3(x ⊕ E(α)) = S(x) ⊕ P−1(α) and completely mask all intermediate
data up to the fourth round of DES as shown in Fig. 2. A different value for
α should be used at each execution of the algorithm. This scheme uses S3 in
both round 2 and 3; one could avoid this by introducing an additional mask
β and by defining S′

3 that transforms a mask α into a mask β and S′′
3 that

does the opposite. Since these masking techniques require the generation of an
independent translated S-box for each round, which represents a large cost in
terms of volatile memory (256 bytes of RAM each), only four rounds are masked
until each intermediate data bit depends on all the key bits of the block cipher.
By combining Power Attacks with Differential Cryptanalysis, we will show that
this scheme is still not secure even if four or more independent S-box layers are
chosen in each run of the algorithm.

166 H. Handschuh and B. Preneel

�

�

�

�

�

�

⊕

⊕

⊕

��������������

��������������

��������������

��������������

fS2

fS1

fS2

mask = 0mask = α

mask = αmask = 0

mask = 0mask = α

unmasked plaintext

unmasked intermediate rounds

Fig. 1. Example application of Akkar and Goubin’s initial masked f -function chaining
method with three masked rounds [3]

3 Mounting a Blind Differential Attack on 4-Round DES

Differential attacks as first described by Biham and Shamir [4] are chosen plaintext
attacks in which an adversary chooses pairs of plaintexts with given differences
and tries to deduce information from the corresponding pairs of ciphertexts. With
a certain probability, a given plaintext difference follows a pre-determined path
throughout the encryption operations and results in a given ciphertext difference.
An input pair that results in the correct intermediate and output differences is
called a right pair. When the adversary finds a right pair, he can deduce infor-
mation on the last round key from the pre-determined differential path. For more
details we refer the reader to the original paper describing this technique [4]. We
apply differential cryptanalysis to four-round DES using Biham’s original four-
round differential characteristics. The innovation in our attack is that we cannot
observe the differences directly in the ciphertext pair at the output of the cipher as
these differences only appear in internal rounds of the encryption process. There-
fore we call our method ‘blind differential cryptanalysis.’

3.1 Enhanced Power Attacks

Now Power Attacks come into play. In power attacks, a generally admitted model
is that the adversary can measure side-channel information which leaks a linear
function of the individual data bits, for example the Hamming weight of the data
(see for example [1,6,7] for a discussion of this model). In this setting, we can

Blind Differential Cryptanalysis for Enhanced Power Attacks 167

�

�

�

�

�

�

�

�

⊕

⊕

⊕

⊕

��������������

��������������

��������������

��������������

��������������

��������������

fS2

fS3

fS3

fS2

mask = 0mask = α

mask = αmask = α

mask = αmask = α

mask = 0mask = α

unmasked plaintext

unmasked intermediate rounds

Fig. 2. Example application of Akkar, Bévan and Goubin’s improved masked f -
function chaining method with four masked rounds [2]

combine the expected value of the difference at round four of the DES and the
Hamming weight observations of the power attack. In our four-round differential
represented in Fig. 3, several difference bytes are equal to zero, meaning that
the corresponding data bytes are equal. This in turn implies that the Hamming
weights are equal. Note that the converse is not necessarily true. Thus, our power
measurements will both enable us to see when two bytes are potentially equal
and will provide a large number of false alarms at the same time, since equal
Hamming weights do not imply equal data bytes. However, filtering out the
pairs which do reveal the same Hamming weight on the required data bytes, we
can now apply our blind differential key recovery attack to recover part of the
secret key of the fourth round. Note that a collision technique (i.e., searching for
identical values and thus Hamming weights) has been used by Schramm et al.
to improve power analysis attacks [21]. Ledig et al. [12] showed that this attack
can be further enhanced by exploiting the slow increase of Hamming distances
in the rounds following a collision. However, in our attack we explicitly make
use of right pairs for arbitrary characteristics and we show how the key can be
recovered even if no collisions occur at all.

168 H. Handschuh and B. Preneel

f

f

f

f

�

�

�

�

�

�

�

�

⊕

⊕

⊕

⊕

���������������

���������������

���������������

���������������

���������������

���������������

a′ =04 00 00 00a′′=40 08 00 00

b′ =00 54 00 00b′′=04 00 00 00

c′ =00 00 00 00c′′=00 00 00 00

d′ =00 54 00 00d′′=04 00 00 00

P ′ = 40 5C 00 00 04 00 00 00

C′ = 04 00 00 00 00 54 00 00 p ≈ 3.8 · 10−4

p = 10/64 × 16/64

p = 1

p = 10/64 × 16/64

p = 1/4

Fig. 3. Biham and Shamir’s 4-round differential characteristic for DES and the asso-
ciated probabilities [4]

3.2 Blind Key Recovery

Once we have filtered out the right pairs using equal Hamming weights on the
6-bit S-box inputs, we need to find a technique which allows to recover the secret
key bits involved in this round without knowing the actual intermediate values.
Recall that we also have access to the absolute value of the Hamming weight of
the data before key addition. For every DES S-box it is easy to construct the
difference distribution table of DES and to determine which input pairs yield
the right output difference. These actual input values will now be used in the
following way.

Consider an active S-box in the fourth round, that is, an S-box with a non-
zero input difference δ and output difference Δ. Denote the 6-bit input of the
fourth round corresponding to this S-box by xi, the 6-bit key by k, the 6-bit
input of the S-box by yi and the 4-bit output of the S-box by zi. Clearly one has
yi = xi ⊕ k. In classical differential cryptanalysis applied to a Feistel cipher, one
finds a number of right pairs and then deduces candidate values for k from the

Blind Differential Cryptanalysis for Enhanced Power Attacks 169

values (yi, y
′
i) that correspond to the characteristic and from the known values

of (xi, x
′
i) (note that xi ⊕ x′

i = yi ⊕ y′
i = δ). Ohta and Matsui [17] and Preneel

et al. [19] have extended this attack to the case where not all bits of the xi

and yi are known in order to attack CBC-MAC and the CFB mode of DES (or
reduced-round variants of DES).

In our new attack only the Hamming weights of the intermediate plaintexts
(xi, x

′
i) are known. At first sight it seems rather easy to deduce candidate values

for k by generating all the 6-bit values with the correct Hamming weight and
eliminating those which are not compatible with the characteristic. The remain-
ing candidate intermediate plaintexts then suggest several values for the key k;
by considering multiple right pairs, the correct value of k should appear. Un-
fortunately this attack does not work, since all or almost all 64 key values are
suggested by each right pair. Therefore we have developed a new approach.

Consider the set Y = {(yi, y
′
i) | yi ⊕ y′

i = δ and zi ⊕ z′i = Δ}. Consider a fixed
value of k. Define the set Xk as follows:

Xk = {(xi, x
′
i) = (yi ⊕ k, y′

i ⊕ k) | (yi, y
′
i) ∈ Y } .

This set can be partitioned according to the value (hwt(xi), hwt(x′
i)). Note that

due to the constraint xi⊕x′
i = δ not all combinations of these integers can occur.

It is easy to see the following cases:

hwt(δ) = 1: then hwt(xi) = hwt(x′
i) ± 1

hwt(δ) = 2: then hwt(xi) = hwt(x′
i) ± 2 or hwt(xi) = hwt(x′

i)
hwt(δ) = 3: then hwt(xi) = hwt(x′

i) ± 1 or hwt(xi) = hwt(x′
i) ± 3

We now define the Hamming weight profile PPk of the key k as follows:

PPk[i, j] = |{(xi, x
′
i) | (xi, x

′
i) ∈ Xk and hwt(xi) = i, hwt(x′

i) = j}| ,

or in words: PPk[i, j] is the number of input pairs to an active S-box for which
the round inputs have Hamming weight i and j respectively.

The attack proceeds as follows:

1. Collect a sufficient number of right pairs; note that since our filtering mech-
anism based on Hammming weights is not perfect, not all the retained pairs
will be right pairs.

2. Compute an estimate for the Hamming weight profile P̂Pk[i, j] based on the
measurements.

3. Perform a matching between the observed profile and the profiles of all the
values for k. We propose the use of a mean square error (MSE) as a matching
criterion

MSEk∗ =
∑

[i,j]

(
PPk∗[i, j] − P̂Pk[i, j]

)2

.

The idea of the attack is that for the correct value of k the Euclidean distance
between the two profiles will be very small (and typically smaller than that
for other keys).

170 H. Handschuh and B. Preneel

Note that due to the symmetry property, we have that PPk[i, j] = PPk⊕δ[i, j],
hence we cannot distinguish between k and k ⊕ δ.

Overall, a few dozen right pairs and the corresponding power measurements
provide enough information about the Hamming weights of intermediate data
before the S-boxes to recover two candidates for the secret 6-bit key. Note how-
ever that this technique only allows to recover key elements corresponding to the
active S-boxes. Therefore we need to use several different four-round character-
istics to recover all 6-bit elements of the secret key. Fortunately, there are many
four-round characteristics available for differential cryptanalysis of DES, and we
do not have to use only the best one in our attack. Once sufficient key bits have
been obtained, the remaining bits can be recovered by exhaustive search.

4 Simulations

We have performed some experiments in software on a PC to validate the analysis
in Sect. 3. We assume that we can measure Hamming weights in a reliable way,
that is, our simulated measurements are noise free. This assumption may not
hold in practice, in particular if additional noise is added as a countermeasure.
However, we believe that our methods are sufficiently robust to also work (with
an increased number of measurements) under noisy conditions.

The probability p of the characteristic we use is 3.8 · 10−4 (see Fig. 3); it
has two active S-boxes. We use the Hamming weights of the left half output of
the fourth round (which is also the input to the next round) to filter out right
pairs. There are seven passive S-boxes in the fifth round which allows to almost
uniquely identify right pairs as being those which follow the differential path.
A very rough estimate shows that the probability pf to obtain equal Hamming
weights on seven 6-bit elements in the pair is approximately 3 · 10−5; it can be
computed as follows:

pf = (p∗)7 with p∗ =
1

212
·

6∑

i=0

(
6
i

)2

.

This filtering function has roughly the same probability of success as regular
differential filters, and as noted in Sect. 3.1, we can guarantee that all right
pairs are correctly identified, and few false alarms appear. A right pair in the
sense of differential cryptanalysis will automatically yield a right pair in the
sense of Hamming weights. The Hamming weight difference for a wrong pair is
not uniformly distributed – it is more likely to be equal to that of a right pair. In
our simulations we have noted that our Hamming weight filter is about a factor
of two worse than the above rough estimate, but this is still more than sufficient
for the attack to work. As an example, for about 214 random plaintext pairs,
we obtain 3 right pairs for differential cryptanalysis and one false alarm. For 220

random plaintext pairs, we obtain 408 right pairs for differential cryptanalysis
and 69 false alarms, i.e., about 15%; note that the rough estimate suggests
3 · 10−5/3.8 · 10−4 ≈ 7.8%.

Blind Differential Cryptanalysis for Enhanced Power Attacks 171

Next, for every possible 6-bit key entering S-box S3 in the fourth round, we
computed the Hamming weight profile of the key according to the difference
distribution table for that S-box. There are 10 differential pairs which follow
our characteristic for S-box S3, and thus the profile distributes these 10 possible
input pairs according to the key value as described in the previous section. Note
that the profiles only depend on the S-box (namely its difference distribution
table and the associated differential pairs) and the key value.

Now taking our real data, we try to match the observed distribution of Ham-
ming weight profiles at the input of S-box S3 in round four with the theoretical
profiles we have using a mean square error matching criterion. With 3 right pairs
and one false alarm, the right key ends up in second position. However there are
many indistinguishable keys at this stage. With as few as 26 right pairs and
4 false alarms (derived from 216 plaintext pairs) the right key ends up in first
position and there are only 2 (indistinguishable) keys left. Thus a 20-30 right
pairs suffice to recover the 6-bit key element corresponding to S-box S3. Note
that if four keys survive at this stage, the overall attack only requires a small
extra exhaustive search step. The experiments have been repeated for several
keys, with similar or better results.

Now that we recover a few candidates for the first 6-bit key element, we con-
tinue with the adjacent S-box S4. Next we change our differential characteristic
to get different active S-boxes in round four and recover the whole key piece by
piece.

Since the probability of the four-round differential is about p ≈ 3.8 · 10−4 and
there are approximately 15% false alarms, the whole attack requires O(1/p) ≈
30 000 plaintext pairs with their associated power traces and Hamming weight
measurements. Blind differential cryptanalysis completely bypasses any type of
random data masking on the four first rounds. The computational complexity
of the attack is negligible; it requires only a few seconds on a regular PC.

5 Improvements and Generalizations

So far we have only explained a rather straightforward approach and we have
illustrated it with an example as a proof of concept. There are several ways
in which our attack can be further optimized and improved. First, some keys
are clearly easier to recover than others; we need to analyze this phenomenon
in more detail in order to assess the entropy reduction of the key that can be
obtained. Second we can optimize the differential characteristics for this type
of attack – the example we have used is a good characteristic for a regular
differential attack, but it is plausible that we can find characteristics that are
better suited for a blind differential attack. Third, the attack could be expanded
to taking into account measurement noise and other side channel leakage models
(such as leakage of the Hamming weight transitions in the registers). Finally, the
attack is independent of the masking technique and only builds on the difference
distribution tables of the cipher as well as the Hamming weight profiles of the
differential pairs for a given key. Hence it is clear that it can be extended to other

172 H. Handschuh and B. Preneel

Feistel ciphers (including 2-key and 3-key triple-DES) but also to substitution
permutation network ciphers such as the AES.

The technique we describe applies to four or more initial masked rounds, as
long as high probability characteristics can be found for this reduced number
of rounds of the cipher. Since for all modern block ciphers, resistance against
differential cryptanalysis is achieved only after sufficiently many rounds, inde-
pendent masks should be applied to just as many internal rounds. Power attacks
provide enough information about Hamming weights of the intermediate val-
ues to put external round-masking techniques at risk when side-channel analysis
is combined with differential cryptanalysis. Note that our attacks simply start
measuring side-channel information on the first unmasked internal round. Again
we stress that our techniques are completely independent from the underlying
masking technique and apply to any block cipher for which well-chosen reduced-
round differentials with high probability and with several colliding bytes can be
found.

6 Conclusion

We have introduced the notion of blind differential cryptanalysis where an at-
tacker uses internal differentials to by-pass outer round masking against power
attacks. This technique retrieves the secret key of the target block cipher given
only Hamming weight measurements on selected internal values. We therefore in-
validate the widely claimed belief that only outer rounds need be protected from
power attacks. Our method easily generalizes to different block cipher structures
and requires a reasonable amount of plaintext-ciphertext pairs and power mea-
surements. We believe other powerful combinations of side-channel attacks and
traditional cryptanalysis will provide for interesting future developments in the
area of secure embedded tokens.

Acknowledgements. We would like to thank the anonymous referees for the con-
structive comments.

References

1. Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power Analysis, What Is Now
Possible.... In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–
502. Springer, Heidelberg (2000)

2. Akkar, M.-L., Bevan, R., Goubin, L.: Two Power Analysis Attacks against One-
Mask Methods. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
332–347. Springer, Heidelberg (2004)

3. Akkar, M.-L., Goubin, L.: A Generic Protection against High-Order Differential
Power Analysis.. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205.
Springer, Heidelberg (2003)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

Blind Differential Cryptanalysis for Enhanced Power Attacks 173

5. Koç, Ç.K., Naccache, D., Paar, C. (eds.): CHES 2001. LNCS, vol. 2162. Springer,
Heidelberg (2001)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener [24], pp. 398–412

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication”
Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

8. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidel-
berg (2004)

9. Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.): CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener [24], pp.
388–397

11. Kunz-Jacques, S., Muller, F., Valette, F.: The Davies-Murphy Power Attack. In:
Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 451–467. Springer, Hei-
delberg (2004)

12. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye and
Quisquater [8], pp. 176–190

13. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

14. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

15. National Institute of Standards and Technology (NIST) FIPS Publication 46-3:
Data Encryption Standard (1999)

16. National Institute of Standards and Technology (NIST). FIPS Publication 197:
Advanced Encryption Standard (AES) (2001)

17. Ohta, K., Matsui, M.: Differential Attack on Message Authentication Codes. In:
Stinson [22], pp. 200–211

18. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

19. Preneel, B., Nuttin, M., Rijmen, V., Buelens, J.: Cryptanalysis of the CFB Mode
of the DES with a Reduced Number of Rounds. In: Stinson [22], pp. 212–223

20. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005)

21. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye and Quisquater [8], pp.
163–175

22. Stinson, D.R. (ed.): CRYPTO 1993. LNCS, vol. 773. Springer, Heidelberg (1994)
23. Walter, C.D., Koç, Ç.K., Paar, C. (eds.): CHES 2003. LNCS, vol. 2779. Springer,

Heidelberg (2003)
24. Wiener, M.J. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

Efficient Implementations

of
Multivariate Quadratic Systems�

Côme Berbain, Olivier Billet, and Henri Gilbert

France Télécom R&D
38–40, rue du Général Leclerc

92794 Issy les Moulineaux Cedex 9 — France
forname.lastname@orange-ftgroup.com

Abstract. This work investigates several methods to achieve efficient
software implementations of systems of multivariate quadratic equations.
Such systems of equations appear in several multivariate cryptosystems
such as the signature schemes sflash, Rainbow, the encryption scheme
pmi

+, or the stream cipher quad. We describe various implementation
strategies. These strategies were combined to implement the public com-
putations of three asymmetric schemes as well as the stream cipher quad.
We conducted extensive benchmarks on our implementations which are
exposed in the final section of this paper. The obtained figures support
the claim that when some care is taken, multivariate schemes can be
efficiently implemented in software.

Keywords: multivariate systems, quadratic equations, efficient software
implementation.

1 Introduction

Multivariate cryptography is a quickly expanding research branch of cryptology.
Its development, initiated by the seminal work of T. Matsutomo and H. Imai
[7,10,11] and J. Patarin [13,14,15], was mainly motivated by the search for al-
ternatives to arithmetic asymmetric cryptosystems such as RSA. Multivariate
cryptography exploits the intractability of solving a multivariate system of low
degree equations (typically quadratic equations) over a small finite field. Many
multivariate asymmetric schemes for encryption, signature, or authentication
have been proposed over the past years and a restricted number of them (e.g.
the sflash and uov signature schemes [1,8]) have successfully resisted crypt-
analysis so far.

The development of multivariate cryptography has recently taken another
path with the proposal of a symmetric multivariate algorithm, the stream cipher
� The work described in this paper has been supported by the French Ministry of
Research RNRT X-CRYPT project and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 174–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Implementations of Multivariate Quadratic Systems 175

quad [2]. This cipher takes advantage of the specific characteristics of multivari-
ate systems of equations in order to provide some provable security properties
(an extremely unusual feature in the context of symmetric cryptography) at the
expense of a moderate performance penalty.

What renders multivariate cryptography attractive from an implementation
point of view is that intractable multivariate problems can be extremely com-
pact. Consequently, the performance of multivariate schemes’ implementations is
often intermediate between the typical performance of asymmetric schemes and
the typical performance of symmetric schemes. But efficient implementations of
multivariate schemes have not been systematically investigated so far, and there
is a lack of figures to serve as reference when comparing multivariate schemes to
other systems in terms of practicality. In the case of the asymmetric multivariate
signature scheme sflash for instance, considerable optimization efforts [1] were
made to produce a highly efficient implementation of the secret key computa-
tions and to establish that unlike RSA, the sflash signature algorithm can be
efficiently embedded in 8-bit smart cards without coprocessor. However there
was no effort to optimize the public key computations which are typically done
on a server. Another example where optimization takes place on the secret’s
holder side and does not relate to any public computations is the study of public
key generation presented in [17].

The main issue one is faced when implementing multivariate schemes in soft-
ware is to achieve an efficient computation of (at least apparently) random sys-
tems of quadratic equations over a small finite field GF(q). This issue arises for
instance in software implementations of the public computations in the setting
of asymmetric schemes (for signature verification, encryption, or entity authen-
tication purposes), or for the implementation of symmetric schemes (like in the
case of the stream cipher quad). Efficient implementations of such multivariate
quadratic systems of equations without using any specific structure will thus
benefit all multivariate schemes as it is not tight to any particular cryptosystem.

This paper is organized as follows. Section 2 describes several methods that
can be used to efficiently implement such generic systems. We discuss the spe-
cial cases of GF(2), GF(24), and GF(28) which are in practice the most suitable
ground fields in most multivariate cryptosystems, and focus on parameter sizes
(like the number of unknowns and the number of polynomials in the system) di-
rectly arising from real cryptosystems outlined in Section 3. Section 4 exhibits a
comprehensive set of benchmarks showing the performance of our various C ansi

implementations of asymmetric schemes like sflash, pmi
+, and Rainbow pub-

lic keys as well as quad’s internal system of equations. We finally draw our
conclusions.

2 Implementation Strategies

This section describes various strategies we investigated in order to efficiently
implement the computation of quadratic systems in several cases of crypto-
graphic significance. We specify along these descriptions which strategy seems

176 C. Berbain, O. Billet, and H. Gilbert

best suited for a particular setting. The computation of any multivariate system
of m quadratic equations in n unknowns over a finite field GF(2p) can obviously
be split into two phases: generating the value of each of the degree two monomi-
als, and actually computing the value of the output polynomials. While for both
steps there are rather academic ways to perform the computations, they have
to be tuned to the context of use. All the algorithms described hereafter have
the same asymptotic complexity, namely O(n2) to generate the monomials and
O(mn2) to compute the polynomials. However because we target real crypto-
graphic schemes, the values of m and n lie in some range and as we show in the
following it is possible to achieve big speedups. This is especially true when, as is
the case in our practical cryptographic examples, the values of n and m are the
same order of magnitude as the machine word size w. Moreover, fine tuning the
implementation in order to take into account the available amount of L2 cache
plays an essential role in the overall efficiency.

2.1 Generating All Monomials

There are many ways to compute the values of all degree two monomials for
a given set of n variables over a finite field GF(2p). However, their respective
efficiency highly depends on the ground field size. We hereafter focus on the
natural cases p ∈ {1, 4, 8}.

The Näıve Way. The most näıve way to compute a set of monomials is ob-
viously to consider every pair (xi, xj) of variables in turn and to generate the
corresponding monomial xixj . This method is efficient provided one has direct
access to each variable, which is the case for instance when working over GF(28).
On the opposite, when binary variables are packed in big words, the overhead
of accessing the variables is prohibitive.

Rotations. Another intuitive way which may seem particularly attractive in the
case of a binary ground field (since the total number of operations is reduced by
a factor of the machine word size) is to consider the set of variables as a vector
of machine words and to perform w multiplications in parallel using bitwise ands
between cyclically rotated versions of this vector. However this is not the most
efficient strategy over GF(2) as is shown in the sequel.

Bitslice Multiplications. This strategy can be rather efficient in the case
of intermediate ground fields such as GF(24) provided we implement a bitslice
multiplication to replace the bitwise multiplications of the binary case. Such
a bitslice implementation is described for instance in [9]. It basically requires
storing the set of n variables over GF(24) in p vectors of size �n/w� words and
performing the computations on these vectors directly, hence avoiding bit level
manipulations. (In the existing cryptographic schemes, the number n of variables
is about the size w of a machine word, and so the vectors typically consist of a
small number of machine words.)

Efficient Implementations of Multivariate Quadratic Systems 177

x = (x1, . . . , xn)

x1x1 · · · xixj · · · xnxn

P1(x)

P2(x)

Pm(x)

x = (x1, . . . , xn)

x1x1 · · · xixj · · · xnxn

P1(x)

P2(x)

Pm(x)

Fig. 1. Left: blocking with bitslice is too slow. Right: using lookup tables.

2.2 Computing the Polynomials

Once all monomials have been generated, one has to compute the value of every
polynomial of the equation system. Recall that we are considering polynomials
of the special form:

Pk(x1, . . . , xn) =
∑

1≤i≤j≤n

αk
i,jxixj +

∑

1≤l≤n

βk
l xl + γk.

Given the value of every monomial, a straightforward computation of any
polynomial would require n(n + 1)/2 field multiplications between coefficients
and monomials and the same amount of additions in order to accumulate the
result. In this section, we show how to do this more efficiently depending on the
context.

Blocking is not Enough. A natural way of implementing the computation
of the polynomials is to perform a kind of matrix/vector product, where vector
entries holds the value of the monomials and matrix rows represent the value of
the polynomials’ coefficients just as shown on the left side of Fig. 1. However,
even when multiplications are implemented in a bitsliced fashion, this method
appears to be rather slow in practice.

Lookup Tables and Field Multiplications. To compute the value of the
polynomials one basically has to multiply each monomial with the corresponding
coefficient in each polynomial. Of course, such a multiplication is costly and it
is worth trying to avoid it; a standard way to do this is by implementing lookup
tables. In our case, this strategy amounts to precomputing the contribution of
a monomial to all polynomials simultaneously, thus saving a factor of m in the
number of table lookups. This requires a lookup table with 2p − 1 entries of
m/w machine words for all of the n(n + 1)/2 monomials. (There is no need to
store the contribution of zero, and hence there are 2p − 1 entries.)

Obviously, the memory required to store all these lookup tables is of cru-
cial importance since they have to fit the processor’s cache. In the special case
of GF(24) with n = 40 and m = 80 for instance, the amount of space required

178 C. Berbain, O. Billet, and H. Gilbert

is 492 K bytes, which fits the L2 cache of most processors. On the opposite, in
the special case of GF(28) with n = 20 and m = 40 the required space now is
strictly more than 2 M bytes and will not fit any L2 cache.

To solve this issue, it is possible to split the contribution of any monomial to
the polynomials into two parts. This method may be thought of as analogous to
extension towers representation of finite fields. Basically, the idea is to perform
the multiplication x×α as xlow×α0⊕xup ×α1 where xlow and xup are respectively
the p/2 less significant bits and the p/2 most significant bits and α0 and α1 are
values of GF(2p) derived from the value of the coefficient α. This very simple
trick dramatically decreases the size of the lookup tables: they have 2p/2 − 1 en-
tries instead of 2p − 1. For instance, the previous example with GF(28), n = 20
and m = 40 now requires 252 K bytes of storage which thus fit most of current
processors’ L2 cache. A drawback of this technique is that the implementation
becomes vulnerable to side channel attacks like cache attack [12].

2.3 The Special Case of GF(2)

There are several benefits of working in the boolean setting. Obvious remarks are
that multiplications are readily handled by bitwise ands and that since x2

i = xi,
we only have to handle homogeneous monomials of degree two. Less obviously,
the fact that a monomial now has probability 3

4 to be zero leads to the optimiza-
tion described in the first paragraph of this section.

Generating only the Non Zero Monomials. On the average, any variable
has probability 1

2 being zero. Hence any monomial of degree two is zero with
probability 3

4 . We can take advantage of this simple fact by first computing
the list of indices of non-zero variables, and then generating all pairs of such
indices. The number of pairs of non-zero monomials being n(n + 1)/8 on the
average, this significantly decreases the number of lookups to the tables storing
the contribution of those monomials to the polynomials and also decreases the
overhead during the accumulation process. Moreover, there is no need to extract
data at the bit level since all the required information can be discovered with
the help of tiny auxiliary lookup tables.

A Differential Trick. To push the previous advantage one step further, the
following property appears to be very useful. Every multivariate quadratic poly-
nomial Q has the property that for any x = (x1, . . . , xn) and any δ = (δ1, . . . , δn),
Q(x) ⊕ Q(x ⊕ δ) = Lδ(x), where Lδ(x) is linear with respect to x for any fixed
value of δ. We now show how this fact can be used to amplify the cost saving
achieved in the previous paragraph. Indeed, in order to compute a system S(x)
of multivariate quadratic equations, we first precompute the corresponding lin-
ear system Lη in x corresponding to the specific η = (1, . . . , 1). For instance, the
k-th row of Lη is given by:

Pk(x) ⊕ Pk(x ⊕ η) =
∑

1≤i≤j≤n

αk
i,j (xi ⊕ xj ⊕ 1) + cst.

Efficient Implementations of Multivariate Quadratic Systems 179

Then, depending on the weight of x, we either perform the computation of S(x)
by evaluating S(x) in case the Hamming weight of x is lower or equal to n

2 , or
we actually compute the mathematically equivalent function S(x ⊕ η) ⊕ Lη(x)
in case the Hamming weight of x is bigger than n

2 .
This differential trick can be pushed a little bit further with the use of an

error correcting code. Considering a binary linear code, it is possible to compute
S(x) with S(x⊕ η)⊕Lη(x), where x⊕ η has a hamming weight lower than some
value d determined by the code. However the counterpart is that we have to
store for each of the code word a linear system and for each x we have to find
the closest code word. For a small d, the number of code words becomes large
and the memory required becomes prohibitive.

3 Some Multivariate Cryptosystems

We briefly describe in this section the multivariate schemes we implemented and
for which we made extensive benchmarks on a variety of architectures.

3.1 QUAD Stream Cipher

The stream cipher quad is a practical stream cipher with some provable security
which was introduced [2] by C. Berbain, H. Gilbert, and J. Patarin. The security
proof reduces the distinguishability of the keystream generated by quad to the
hard problem of solving randomly generated quadratic systems over finite field
GF(2).

x

Sin(x) Sout(x)

The keystream generation makes use of two
systems Sin and Sout of multivariate quadratic
equations both sharing the same n unknowns
over GF(q), as is described by the figure on
the left. The first system Sin is used to update
the internal state and thus contains n equations,
whereas the second system Sout produces the
keystream and contains m−n equations. As ex-
plained in [2], the quadratic systems Sin and Sout,

though randomly generated, are both publicly known.
We will restrict our study to the conservative case m = 2n, that is both

systems Sin and Sout contain n quadratic equations in the n bits of the internal
state. Given an n-bit internal state x = (x1, . . . , xn), the generation amounts to
iterating the following steps:

– compute
(
Sin(x), Sout(x)

)
=
(
Q1(x), . . . , Q2n(x)

)
, from the internal state x;

– output the sequence Sout(x) =
(
Qn+1(x), . . . , Q2n(x)

)
of n keystream bits;

– update the internal state x with the sequence Sin(x) =
(
Q1(x), . . . , Qn(x)

)
.

The parameters recommended by the authors are m = 2n and n = 160
over field GF(2). We made implementations for this parameters and over fields

180 C. Berbain, O. Billet, and H. Gilbert

GF(24) and GF(28). This allows us to study the impact of changing the size
of the field over the performances. However there is no security arguments over
fields larger than GF(2), since the security proof of [2] is only done over GF(2).
In particular over GF(28) the number of variables becomes two small to provides
a security of 280.

3.2 SFLASH Signature Scheme

The signature scheme sflash proposed in [1] (sometime referred to as sflash v2)
was selected as a finalist of the NESSIE project and has resisted attacks so far. It
is build around the C∗ scheme of T. Matsutomo and H. Imai [7] with K = GF(27)
as ground field, but where some of the public equations have been removed. The
secret key consists of two invertible linear transformations L1 and L2 defined
over K37 together with an isomorphism ϕ : K37 → L, where L is an extension of
degree 37 of K defined by L = K[y]/(y37 + y12 + y10 + y2 + 1).

The verification algorithm recognizes σ = (σ1, . . . , σ37) as the signature of a
message μ = (μ1, . . . , μ26) if and only if equation

μ = L2

(
ϕ−1
[
ϕ
[
L1(σ)

]12811+1
])

holds. Since the exponentiation x �→ x12811+1 is K-quadratic, the public key
which gives the values of μ1, . . . , μ26 in terms of the variables σ1, . . . , σ37 is
nothing but a system of 26 multivariate quadratic equations in 37 unknowns
over the finite field GF(27).

3.3 Rainbow Signature Scheme

Rainbow is a signature scheme proposed in [5] which is intended to rival sflash.
However from a security point of view, Rainbow has been recently broken [3]. The
public key of Rainbow consists of a set of 27 multivariate quadratic polynomi-
als F̄1, . . . , F̄27 in 33 unknowns over the finite field GF(28). The general problem
of solving such a set of multivariate polynomials being hard, those polynomials
are constructed in a special way using the uov construction several times in an
embedded manner to build a trapdoor.

The Rainbow signature scheme has four uov layers and parameters v1 = 6,
v2 = 12, v3 = 17, v4 = 22, and v5 = 33. Each layer k is made of a as a set Pk of
polynomials of the special form:

∑

1≤j≤vk<i≤vk+1

αi,j xixj +
∑

1≤i,j≤vk

βi,j xixj +
∑

1≤i≤vk+1

γi xi + δ.

Such polynomials are Oil and Vinegar polynomials since no monomial of de-
gree two has both variables coming from the set Ok = {xvk+1, xvk+2, . . . , xvk+1},
whereas there are monomials of degree two where both variables come from the

Efficient Implementations of Multivariate Quadratic Systems 181

set Vk = {x1, . . . , xvk
}. Hence, variables from the set Ok are called oil variables

of layer k, and variables from the set Vk are called vinegar variables of layer k.
The first layer of Rainbow is made of 6 polynomials randomly chosen from P1,

the second layer is made of 5 polynomials randomly chosen from P2, the third
layer is made of 5 polynomials randomly chosen from P3, and the last layer is
made of 11 polynomials randomly chosen from P4. So the resulting internal map
of Rainbow is:

F : GF(28)33 −→ GF(28)27,
(x1, . . . , x33) �−→

(
F1(x1, . . . , x33), . . . , F27(x1, . . . , x33)).

Once again, the public key F̄ is obtained by applying to F a randomly chosen
change of variables L1 of GF(28)33 as well as a bijective linear output mixing L2

of GF(28)27, eventually obtaining the multivariate quadratic system:

F̄(z1, . . . , z33) = L2 ◦ F ◦ L1(z1, . . . , z33).

3.4 PMI+ Encryption Scheme

The PMI+ [4] is a doubly perturbed C∗ scheme. As with C∗, there is an exponen-
tiation F : x �→ x24+1 defined over a finite field GF(284), and two invertible linear
transformations L1 and L2 respectively defined over GF(284) and GF(298). Let
us denote by (f1, . . . , f84) the binary component of the quadratic system in the
84 binary unknowns defined by F .

Additionally, randomly chose 14 quadratic polynomials q1, . . . , q14 in the
84 unknowns x1, . . . , x84 defined over GF(2) and a linear application Z of
rank 6 from the 84 unknowns to six binary variables z1, . . . , z6. Also randomly
chose 98 quadratic polynomials ρ1, . . . , ρ98 in 6 binary unknowns.

The public key is given by the expansion of the following composition:

L2 ◦ (f1 + ρ1 ◦ Z, . . . f84 + ρ84 ◦ Z, . . . q1 + ρ85 ◦ Z, . . . q14 + ρ1 ◦ Z) ◦ L1,

which is a multivariate quadratic system of 98 equations in 84 unknowns defined
over GF(2).

4 Implementations and Performance Results

This section exposes the benchmarks we conducted on our various implementa-
tions of the multivariate cryptosystems presented in the previous section. These
benchmarks were done on several computer architectures. We used a modified
version of the eSTREAM Testing Framework made by C. de Cannière [6] to
evaluate the performance of our implementations when compiled with different
compilers and compiling options. We mostly used compilers gcc-4, gcc-3.4,
gcc-3.3, and gcc-2.95, although we also used Intel’s icc compiler where

182 C. Berbain, O. Billet, and H. Gilbert

supported. The following lists our set of machines together with a description of
the processor installed:

name vendor processor frequency L2 cache
M1 Intel Pentium 4 2505 MHz 512 kB
M2 Intel Pentium M 1862 MHz 2048 kB
M3 Intel Xeon 2784 MHz 512 kB
M4 AMD Opteron 2197 MHz 1024 kB
M5 AMD AMD64 1790 MHz 512 kB
M6 AMD Athlon XP 2162 MHz 512 kB
M7 Power PC G3 900 MHz 512 kB

All our implementations are written in ansi C. Of course it is possible to im-
prove the efficiency of these implementations by writing assembly code. However
using generic code makes it possible to compare the different architectures and
to evaluate cache effects.

For all versions of quad and pmi
+, speed figures are given in cycles/byte and

in Mbits/second, since these are ciphers. For the sflash and Rainbow signature
schemes, speed is given in cycles/byte and we also give the overall time needed
to verify the signature.

4.1 Practical Implementations of quad over GF(2)

Our fastest implementation over GF(2) uses two techniques described in the pre-
vious sections: we generate only the non-zero monomials and use the differential
trick. Notice that since we implement a quadratic system of 320 polynomials in
160 unknowns the total amount of storage required is about 518 K bytes so it
explains the penalty on machines with 512 K bytes L2 cache.

Table 1. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

32 bit 7057 3746 4600 2930 3205 4866 4983

64 bit 2081 2636

Table 2. Speed in Mbits/second

version M1 M2 M3 M4 M5 M6 M7

32 bit 2.83 3.98 4.84 6.00 4.47 3.55 1.44

64 bit 8.45 5.43

4.2 Practical Implementations of quad over GF(24)

We made five different implementations of quad defined over GF(24) with
40 unknowns and 80 polynomials. Each of these variants uses the technique of

Efficient Implementations of Multivariate Quadratic Systems 183

Table 3. Speed in cycles/byte

monomials tables version M1 M2 M3 M4 M5 M6 M7

näıve 2 luts 32 bit 2526 2364 2604 2134 2149 2576 1010
näıve 2 luts 64 bit 1617 1732

näıve 1 lut 32 bit 2390 1395 1704 1157 1190 1546 1419

näıve 1 lut 64 bit 994 1639

rotation 2 luts 32 bit 3468 2360 3452 2111 2154 2471 977
rotation 2 luts 64 bit 921 1335

rotation 1 lut 32 bit 2858 1357 2014 1139 1192 1514 1435

rotation 1 lut 64 bit 921 1359

bitslice 4 luts 32 bit 1906 1204 1849 1003 990 1257 874
bitslice 4 luts 64 bit 745 885

Table 4. Speed in Mbits/second

monomials tables version M1 M2 M3 M4 M5 M6 M7

näıve 2 luts 32 bit 7.93 6.30 8.55 8.24 6.66 6.71 7.13

näıve 2 luts 64 bit 10.87 8.27

näıve 1 lut 32 bit 8.38 10.68 13.07 15.19 12.03 11.19 5.07

näıve 1 lut 64 bit 17.68 8.74

rotation 2 luts 32 bit 5.78 6.31 6.45 8.33 6.65 7.00 7.37

rotation 2 luts 64 bit 19.08 10.73

rotation 1 lut 32 bit 7.01 10.98 11.06 15.43 12.01 11.42 5.02

rotation 1 lut 64 bit 19.08 10.54

bitslice 4 luts 32 bit 10.51 12.37 12.05 17.52 14.46 13.76 18.24

bitslice 4 luts 64 bit 23.59 16.18

precomputing the contribution each monomial to all polynomials described be-
fore but with either one, two, or four tables. Implementations also have distinct
monomial generation strategies.

The storage required by the coefficients of the system is about 32 K bytes.
Using only one lookup table, we need to store 24 − 1 times 32 K bytes, that
is 492 K bytes. This value is quite close to the amount of L2 cache on some
machines and thus we also implemented a version with two lookup tables. Using
two lookup tables requires storing 22 − 1 times 32 K bytes that is about 197 K
bytes. Experimental results show that using one table is always better except on
the Power PC.

For the first two implementations, we chose to generate the monomials the
näıve way, and used either one or two lookup tables. For the third and fourth
implementations, we used the rotation technique, and either one or two lookup
tables. The last implementation, which is the fastest, uses bitslice multiplica-
tion to generate the monomials and four lookup tables of 32 K bytes, which
corresponds to the contribution of each of the four bits of any monomial.

184 C. Berbain, O. Billet, and H. Gilbert

4.3 Practical Implementations of quad over GF(28)

We implemented two variants. Both of them share the monomial/coefficient
multiplication precomputation technique. Since the coefficient set can definitely
not be stored 255 times (it would require more than 2 M bytes), we store two
lookup tables of size 25 K bytes instead.

In the first variant, we use variables rotation to generate the monomials, while
in the second variant we use the näıve way to generate the monomials. Since all
variables are 8-bit values, we have direct access to them which explains the fact
that the näıve technique is competitive.

Table 5. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 862 618 883 530 560 699 770

Naive 64 bit 417 464

Rotation 32 bit 978 704 983 603 622 775 493
Rotation 64 bit 497 546

Table 6. Speed in Mbits/second

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 23.25 24.10 25.22 33.16 25.57 24.74 9.35

Naive 64 bit 42.15 30.86

Rotation 32 bit 20.49 21.16 22.66 29.14 23.02 22.31 14.60

Rotation 64 bit 35.36 26.23

Thus, on processor M4, our implementation of quad over GF(28) achieves a
throughput of 4.15 M bytes per second on the 32-bit platform and 5.27 M bytes
per second on the 64-bit platform.

4.4 Practical Implementations of sflash

As described in the previous section, verifying an sflash signature can be thought
of as evaluating a randomly chosen system of 26 quadratic polynomials in 37 un-
knowns over the finite field GF(27). We implemented two variants: the first one
uses the näıve technique to generate the monomials, while the second one uses the
rotation technique. Both of them use the precomputation of the contribution of

Table 7. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 934 954 1046 807 848 1072 448
Naive 64 bit 253 253

Rotation 32 bit 1126 863 1124 726 756 981 452
Rotation 64 bit 266 270

Efficient Implementations of Multivariate Quadratic Systems 185

Table 8. Time to verify a signature in μs

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 13.79 18.94 13.89 13.58 17.51 18.35 18.41

Naive 64 bit 4.25 5.22

Rotation 32 bit 16.63 17.14 14.93 12.22 15.64 16.78 18.57

Rotation 64 bit 4.47 5.58

the monomials to the polynomials with the help of two lookup tables. The speed
measurements are obtained by verifying many signatures for the same public key.

The following table also give the overall time required to verify an sflash

signature on the different processors:
It may be of interest to compare those figures with the openssl implementa-

tion of RSA-1024 and RSA-2048 signature verification. On processor M1, those
implementation respectively require 2.15 ms and 3.80 ms to verify a signature.
Our implementation of sflash on the same computer is about 150 times faster
than RSA-1024.

4.5 Practical Implementations of Rainbow

Just as with sflash, verifying a Rainbow signature can be thought of as eval-
uating a randomly chosen system of 27 quadratic polynomials in 33 unknowns
defined over the ground field GF(28). Our implementation follows the same
strategy as the fastest implementation of quad over GF(28). The speed mea-
surements are obtained by verifying many signatures for the same public key. We
also give the overall time needed to verify a signature on the different processors.

Table 9. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 1016 882 1068 719 750 989 479
Naive 64 bit 262 259

Table 10. Time to verify a signature in μs

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 13.37 15.63 12.66 10.79 13.82 15.10 17.57

Naive 64 bit 3.93 4.77

4.6 Practical Implementations of pmi
+

The multivariate quadratic system underlying pmi
+ is made of 98 polynomials

in 84 unknowns over GF(2). Our implementation uses the same techniques as
quad’s implementation over GF(2), but since the numbers of variables and of
polynomials are much smaller, the implementation is much faster. Additionally,
the system only requires 100 K bytes of storage, so that there is no cache effect.

186 C. Berbain, O. Billet, and H. Gilbert

Table 11. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

32 bit 1443 1259 1440 909 921 1180 589
64 bit 768 821

Table 12. Speed in Mbits/second

version M1 M2 M3 M4 M5 M6 M7

32 bit 13.89 11.83 15.47 19.34 15.55 14.66 12.22

64 bit 22.89 17.44

5 Conclusion

In this paper we presented several methods for efficiently implementing mul-
tivariate quadratic systems of equations. We applied these techniques to im-
plement several multivariate cryptosystems: sflash, Rainbow, pmi

+, and the
stream cipher quad. Our implementations were run on a large variety of archi-
tectures and appear to be quite efficient. A critical parameter when it comes
to optimizations is the size of L2 cache available. Consequently, new processors
with larger L2 cache leave more room for further improvement.

References

1. Akkar, M.-L., Courtois, N.T., Goubin, L., Duteuil, R.: A Fast and Secure Imple-
mentation of SFLASH. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
267–278. Springer, Heidelberg (2002)

2. Berbain, C., Gilbert, H., Patarin, J.: QUAD: a Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
Springer, Heidelberg (2006)

3. Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, Springer, Heidelberg (2006)

4. Ding, J., Gower, J.E.: Inoculating multivariate schemes against differential at-
tacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 290–301. Springer, Heidelberg (2006)

5. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature
Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

6. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932 Ac-
cessed September 29, 2005 (2005), Available at http://www.ecrypt.eu.org/
stream/

7. Imai, H., Matsumoto, T.: Algebraic Methods for Constructing Asymmetric Cryp-
tosystems. In: Calmet, J. (ed.) Algebraic Algorithms and Error-Correcting Codes.
LNCS, vol. 229, pp. 108–119. Springer, Heidelberg (1986)

8. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

Efficient Implementations of Multivariate Quadratic Systems 187

9. Matsui, M.: How Far Can We Go on the x64 Processors? In: Robshaw, M. (ed.)
FSE 2006. LNCS, vol. 4047, Springer, Heidelberg (2006)

10. Matsumoto, T., Imai, H.: A Class of Asymmetric Cryptosystems Based on Polyno-
mials over Finite Rings. In: IEEE International Symposium on Information Theory,
pp. 131–132 (1983)

11. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

12. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of aes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

13. Patarin, J.: Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp.
248–261. Springer, Heidelberg (1995)

14. Patarin, J.: Asymmetric Cryptography with a Hidden Monomial. In: Koblitz, N.
(ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg (1996)

15. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

16. Patarin, J., Goubin, L., Courtois, N.T.: C*-+ and HM: Variations Around Two
Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)

17. Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: High-Speed Signatures on a Low-Cost
Smart Card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
p. 371. Springer, Heidelberg (2004)

Unbridle the Bit-Length of a

Crypto-coprocessor with Montgomery
Multiplication

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Hitachi, Ltd., Systems Development Laboratory, Kawasaki, Japan
{m-yoshi,ka-okeya,camille}@sdl.hitachi.co.jp

Abstract. We present a novel approach for computing 2n-bit Mont-
gomery multiplications with n-bit hardware Montgomery multipliers.
Smartcards are usually equipped with such hardware Montgomery
multipliers; however, due to progresses in factoring algorithms, the rec-
ommended bit length of public-key schemes such as RSA is steadily
increasing, making the hardware quickly obsolete. Thanks to our double-
size technique, one can re-use the existing hardware while keeping pace
with the latest security requirements. Unlike the other double-size tech-
niques which rely on classical n-bit modular multipliers, our idea is
tailored to take advantage of n-bit Montgomery multipliers. Thus, our
technique increases the perenniality of existing products without com-
promises in terms of security.

Keywords: Montgomery multiplication, RSA, crypto-coprocessor,
smartcard.

1 Introduction

The algorithm proposed by Montgomery to calculate modular multiplications
[6], usually referred to as “Montgomery multiplication” technique, is exten-
sively used in practical implementations of public-key cryptosystems such as
RSA [10]. In particular, Montgomery multiplications are not affected by delays
which are commonly introduced by carries in other strategies for computing
modular multiplications. As a consequence, Montgomery’s approach is very ef-
fective for high-performance hardware implementations of modular multiplica-
tions. Low-end devices such as smartcards can benefit from crypto-coprocessors
implementing Montgomery multiplications [7], which can drastically reduce the
time necessary to encrypt and decrypt data, or sign and verify signatures. But
such hardware accelerators suffer from an important restriction: their operand
size is limited [8]. Now, because of progresses in integer factorization [11], official
security institutions are slowly but surely moving their recommendation from
1024-bit to 2048-bit key sizes for RSA; unfortunately, the latter bit length is not
supported by many crypto-coprocessors.

This problem has motivated many studies for developing double-size modu-
lar multiplication techniques using single-size hardware multipliers. On the one

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 188–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 189

hand, thanks to the Chinese Remainder Theorem, private computations (decryp-
tion or signature generation) require only single-size multiplications for comput-
ing a double-size decryption or signature generation [9]. On the other hand, in
the case of public computations, the Chinese Remainder Theorem is of no help,
and double-size modular multiplications are needed.

Paillier initiated the work on double-size multiplications [8], and showed how
to efficiently compute a kn-bit classical modular multiplication with n-bit classi-
cal modular multiplication units. Later, Fischer et al. optimized Paillier’s scheme
for the 2n-bit case [2]. Finally, Chevallier-Mames et al., also concentrating on
the case of 2n-bit multiplications, showed further improvements in the general
case and when the modulus has a special form [1]. We note a recurring problem
in these techniques: they are based on classical modular multipliers, and as such,
do not concern about taking high-performance of Montgomery multipliers which
usually equip smartcards. This is a serious limitation of these techniques, which
cannot fully take advantage of the available hardware.

In this paper, we propose a technique for computing 2n-bit Montgomery mul-
tiplications with n-bit Montgomery multiplication units. Firstly, we define the
notion of quotients of n-bit Montgomery multiplications; indeed, such quotients
are necessary to calculate 2n-bit Montgomery remainders. We consider two types
of settings, and in each case, propose efficient solutions to compute the quotients.
In the first settings, we assume that we have to re-use an existing n-bit Mont-
gomery multiplier, and that we cannot modify it. In this case, we show how to
emulate the calculation of the quotient in software with two calls to the n-bit
Montgomery multiplier. In the second settings, the modification of the hard-
ware Montgomery multiplier is allowed, but still restricted to n-bit operands.
We explain how to modify the circuitry with minimal changes in order to cal-
culate the quotients along with their remainders. In addition to Montgomery
quotients, our double-size technique also requires a new representation of 2n-bit
integers, tailored for a better use of Montgomery multipliers. Indeed, to satisfy
the requirements of the Montgomery multipliers, the moduli must be odd and
greater than 2n−1. Our representation does not only achieve this, but also allows
an efficient conversion from/to the standard binary representation of integers.

As a result, thanks to our double-size technique, one can compute 2n-size
Montgomery multiplications with available n-bit hardware Montgomery multi-
pliers, allowing the current generation of crypto-coprocessor to survive the shift
towards higher security and longer key lengths.

The rest of this paper is organized as follows. In Section 2, we review pre-
vious double-size technique based on classical modular multiplications [2,1]. In
Section 3, we introduce the Montgomery multiplications and put their limita-
tions in evidence. In Section 4, we explain our idea for computing 2n-bit Mont-
gomery multiplications with n-bit Montgomery multipliers. Since our technique
requires the n-bit quotients of the Montgomery multiplications, in Section 5 we
introduce two approaches to calculate these quotients; the first is well-suited
for software implementations, and the second is for hardware implementations.

190 M. Yoshino, K. Okeya, and C. Vuillaume

Section 6 shows experimental results and introduces some practical issues. Fi-
nally, we conclude with Section 7.

Notation
We let n denote the operand-size of Montgomery/classical modular multiplica-
tion units. We also let capital letters: A, B, N and M denote 2n-bit integers,
and small letters denote the others, such as n-bit integers.

2 Known Double Size Techniques

Low-end devices such as smartcards are equipped with crypto-coprocessors to
calculate modular multiplications; however, such hardware accelerators have a
strict restriction: their operand size is limited. Recently, because of progresses in
integer factorization [11], official security institutions are changing their recom-
mended key-length for RSA from 1024-bit to 2048-bit. Now, this problem has
motivated many studies for developing double-size modular multiplication using
single-size hardware multipliers and only public information [3].

Paillier first initiated the work on double size-multiplications [8], and showed
how to compute a kn-bit classical modular multiplication with n-bit classical
modular multiplication units and public information. Later, Fischer et al. [2]
optimized Paillier et al.’s scheme for the 2n-bit case. Finally, Chevallier-Mames
et al. [1] showed further improvements in the case of 2n-bit multiplications, too.

This section introducesworks about schemes ofFischer et al. and notChevallier-
Mames et al., because in Section 4 we will propose our double size technique which
modifies Fischer et al.’s one.

2.1 Fischer et al.’s Schemes

In this subsection, we introduce the work of Fischer et al. [2]: how to compute
double-size classical modular multiplication with single-size classical modular
multiplication units. Their double-size technique requires not only remainders
but also quotients of n-bit multiplication to build a 2n-bit remainder.

The equation xy − qcw = rc shows the relation between the product of two
integers x and y, the modulus w, the quotient qc and the remainder rc in the
case of classical modular multiplications. The basic idea of classical modular
multiplications is to subtract the modulus w from the most significant bit of
product xy, qc times until the product becomes less than modulus w; thus,
digits of the product are eliminated from left to right.

Fischer et al. assumed that the instruction MultModDiv is available, where
MultModDiv computes the remainder and the quotient of n-bit classical modular
multiplications. For n-bit positive integers x, y and w, MultModDiv(x, y, w) =
(qc, rc) with qc = !(xy)/w" and rc = xy (mod w).

The MultModDiv instruction is a natural extension of the classical modu-
lar multiplication. If the classical modular multiplications is implemented in
hardware, the MultModDiv instruction can be emulated with two calls to the
multiplier, or by changing the hardware of the multiplier only a little.

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 191

Algorithm 1. Fischer et al.’s algorithm

Input: A = a12
n + a0, B = b12

n + b0, N = n12
n + n0 with 0 ≤ A, B < N , 22n−1 <

N < 22n;
Output: AB (mod N);

1. (q1, r1) = MultModDiv(b1, 2
n, n1)

2. (q2, r2) = MultModDiv(q1, n0, 2
n)

3. (q3, r3) = MultModDiv(a1, r1 − q2 + b0, n1)
4. (q4, r4) = MultModDiv(a0, b1, n1)
5. (q5, r5) = MultModDiv(q3 + q4, n0, 2

n)
6. (q6, r6) = MultModDiv(a1, r2, 2

n)
7. (q7, r7) = MultModDiv(a0, b0, 2

n)
8. Return (r3 + r4 − q5 − q6 + q7)2

n + (r7 − r6 − r5)

We introduce an algorithm proposed by Fischer et al. to compute 2n-bit classi-
cal modular multiplication (AB mod N). Given 2n-bit integers A, B, N , where
0 ≤ A, B < N . First, every 2n-bit integers are divided into n-bit integers that can
be handled by the MultModDiv instruction. A = a12n + a0, B = b12n + b0, N =
n12n+n0. The equation n12n ≡ −n0 (mod N) holds thanks to the above trans-
formation. Their proposed algorithm derives from the equation n12n ≡ −n0

(mod N), and is described in Algorithm 1.

3 Montgomery Multiplications

Montgomery multiplications, which are based on a technique to calculate mod-
ular multiplication proposed by Montgomery [6], are widely used in practical
implementations of public-key cryptosystems, such as RSA. Montgomery multi-
plications are very suitable for high-performance hardware implementations of
modular multiplications, which are typically one of the most expensive oper-
ations in public-key cryptosystems. Most low-end devices such as smart cards
have crypto-coprocessors implementing Montgomery multiplications to encrypt
and decrypt data, or sign and verify signatures.

In this section, we introduce Montgomery multiplications and describe the
problems that occur when one tries to extend known double size technique to
n-bit Montgomery multipliers.

3.1 Montgomery Multiplication Algorithm

The basic idea of Montgomery multiplications is to replace expensive divisions
by cheaper multiplications and additions in computations. For n-bit integers x,
y, w, 0 ≤ x, y < w, and gcd(w, m)=1, the Montgomery multiplication algorithm
outputs the remainder r, r := xym−1 (mod w) where m is called Montgomery
constant and m−1 is the inverse of m modulo w. The value m = 2n is widely

192 M. Yoshino, K. Okeya, and C. Vuillaume

Algorithm 2. Montgomery multiplication algorithm

Input: x, y, w with 0 ≤ x, y < w, m = 2n, gcd(w, m) = 1 and w′ = −w−1 mod 2;
Output: r;

1. r ← 0
2. For i from 0 to (n − 1) do the following:

(a) ui ← (r0 + xiy0)w
′ mod 2

(b) r ← (r + 2ri + uiw)/2
3. If r ≥ w then r ← r − w
4. Return r

x =
y =

x ・y =

000 000000 000

X

= ui ・ w

= ui+1 ・ w

= ui+2 ・ w

+
+

+
+ = ui+3 ・ w

x ・ y ・ m-1 (mod w)

Fig. 1. Basic Idea of Montgomery Multiplication

used in practice because reduction modulo m and division by m are both in-
trinsically fast operations [5]. Thus the Montgomery algorithm is faster than
classical modular multiplication.

Figure 1 illustrates the principle of Montgomery multiplications. Unlike clas-
sical modular multiplication techniques, Montgomery multiplications add the
modulus w to the product xy from the least significant bit (that is, from right
to left), and save the remainder r in the most significant side.

3.2 Problems of Previous Techniques

The schemes proposed by Fischer et al. [2] and Chevallier-Mames et al. [1] show
how to compute a 2n-bit classical modular multiplication with n-bit classical
modular multiplication units. But their schemes cannot take advantage of high-
performance Montgomery multipliers for the two following reasons:

Problem 1: Quotient
Their double-size techniques require not only n-bit remainders but also n-bit
quotients of multiplications to construct 2n-bit remainders. However, there is no
notion of quotient of Montgomery multiplications.

Problem 2: Modulus
The moduli of Montgomery multipliers must be odd because they are restricted
to be coprime to Montgomery constants. However, their double-size techniques

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 193

allow even moduli. For example, in Algorithm 1, they set upper n-bit value n1

as modulus, but n1 can be even.

4 New Double Size Techniques

We propose a new scheme for computing 2n-bit Montgomery multiplications
with the existing coprocessors. On the one hand, Montgomery multiplications
are widely implemented on coprocessors for public-key cryptosystems, and pro-
duce high-performance hardware modular multiplications for encrypting and
decrypting data, or signing and verifying signatures. On the other hand, there is
no scheme to compute a double-size Montgomery multiplication efficiently with
such coprocessors.

4.1 Instruction for Remainders

First, we define the instruction for computing the remainder of Montgomery
multiplications in Definition 1.

Definition 1. For numbers, 0 ≤ x, y < min{w, 2n}, 2n−1 < w < 2n+1, m = 2n,
gcd(m,w) = 1, the MultMon instruction is defined as
r = MultMon(x, y, w) with r := xym−1 (mod w).

4.2 Instruction for Quotients

As the schemes of Fischer et al. [2] and Chevallier-Mames et al. [1] require
quotients of n-bit classic modular multiplications, our scheme also requires quo-
tients of n-bit Montgomery multiplications to construct 2n-bit remainder. How-
ever, there is no definition of quotients of Montgomery multiplications. To solve
this problem, we extend the notion of quotients to the case of Montgomery
multiplications.

The remainder calculated by Montgomery multiplications is different from the
remainder calculated by classical modular multiplications. Indeed, from Defini-
tion 1, the following equation holds; xy ≡ rm (mod w), where m = 2n. The
above equation means that there is some integer q satisfying: xy− qw = rm. We
call this integer q the quotient of the Montgomery multiplication.

Now, we define the instruction to calculate the quotient and the remainder of
the Montgomery multiplication in Definition 2.

Definition 2. For numbers, 0 ≤ x, y < min{w, 2n}, 2n−1 < w < 2n+1, m = 2n,
gcd(m,w)=1, theMultMonDiv instruction is defined as (q, r)=MultMonDiv(x, y, w)
with r := xym−1 (mod w) and q satisfies the equation; xy = qw + rm.

In Section 5, we will show an algorithm to implement the MultMonDiv instruction
and establish its correctness.

194 M. Yoshino, K. Okeya, and C. Vuillaume

Algorithm 3. Modified Fischer et al.’s Algorithm

Input: A = a1z + a0m, B = b1z + b0m, N = n1z + n0m,with M = 22n;
Output: ABM−1 (mod N);

1. (q1, r1) = MultMonDiv(b1, z, n1)
2. (q2, r2) = MultMonDiv(q1, n0, z)
3. (q3, r3) = MultMonDiv(a1, r1 − q2 + b0, n1)
4. (q4, r4) = MultMonDiv(a0, b1, n1)
5. (q5, r5) = MultMonDiv(q3 + q4, n0, z)
6. (q6, r6) = MultMonDiv(a1, r2, z)
7. (q7, r7) = MultMonDiv(a0, b0, z)
8. Return (r3 + r4 − q5 − q6 + q7)z + (r7 − r6 − r5)m

4.3 Representation of 2n-Bit Integers

We define a new representation to divide a 2n-bit integer into two n-bit integers
for n-bit Montgomery multipliers.

Definition 3. For numbers, 0 ≤ A,B < N , 22n−1 < N < 22n, 2n−1 < z < 2n,
z is odd, m = 2n and gcd(m, z) = 1, the representation is defined as N =
n1z + n0m, A = a1z + a0m, B = b1z + b0m.

The product n0m is always even. Therefore z and n1 must be odd, whenever N
is odd.

4.4 Modified Fischer et al.’s Algorithm

Thanks to Definition 3, we extend schemes of Fischer et al. to the case of Mont-
gomery multiplication in Algorithm 3, which only uses odd moduli n1 and z.
Since n-bit Montgomery multiplications output the n-bit remainder: xym−1

(mod w) where 0 ≤ x, y < w, 2n−1 < w < 2n and m = 2n, our algorithm out-
puts the 2n-bit remainder of the Montgomery multiplication: ABM−1 (mod N)
where 0 ≤ A,B < N , 22n−1 < N < 22n and M = 22n.

Theorem 1. Algorithm 3 computes ABM (−1) (mod N) calling length
n-MultMonDiv instruction, provided that 0 ≤ A,B < N < 22n and M = 22n.

We show the proof of Theorem 1 in Appendix A.

5 Implementations for Quotients

In Section 4, we defined the quotient of Montgomery multiplications; in fact,
this quotient is necessary to compute 2n-bit Montgomery multiplications. We
consider two types of settings, and in each case, show efficient algorithms to
calculate the quotients. In the first settings, we assume that we have to re-use
an existing n-bit Montgomery multiplier in software, and cannot modify it. Thus,

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 195

Algorithm 4. MultMonDiv instruction calling the MultMon instruction

Input: x, y, w with 0 ≤ x, y < w, 2n−1 < w < 2n, m = 2n and gcd(w, m) = 1;
Output: q, r;

1. r ←MultMon(x, y, w)
2. r′ ←MultMon(x, y,w + 2n)
3. tmp ← xy − rw + r′(w + 2n) (mod 22)
4. If tmp > 2, then tmp ← tmp − 22.
5. q ← tmp × (w + 2n) + r′ − r
6. Return (q, r)

we assume a pure software implementation of our double-size technique. Section
5.1 shows how to emulate the calculation of the quotient with two calls to the n-
bit Montgomery multiplier. In the second settings, modifications of the hardware
Montgomery multiplier are allowed, but still restricted to n-bit operands. Section
5.2 explains how to modify the circuitry with minimal changes.

5.1 Software Approach: Calling Montgomery Multipliers

In this subsection, we introduce Algorithm 4, which emulates the calculation of
quotients with two calls to the n-bit Montgomery multiplier.

Theorem 2. Algorithm 4 computes MultMonDiv(x, y, w) instruction calling
length (n + 1)-MultMon instruction twice, provided that 0 ≤ x, y < w, 2n−1 <
w < 2n, m = 2n and gcd(m, w) = 1.

Appendix B shows the proof of Theorem 2.

5.2 Hardware Approach: Changing Montgomery Multipliers

This subsection shows that the implementation of the MultMon instruction can
be changed in order to directly compute the MultMonDiv instruction. In fact,
since the MultMon instruction already has information of the quotient, Algorithm
5 has little changes compared to the MultMon instruction, which is the standard
technique proposed by Montgomery [6]. We just insert Step 2.(c) to calculate
the quotient and output the quotient along with the remainder in Step 4.

6 Experimental Results

6.1 Validation

We implemented 2048-bitMontgomery multiplications and exponentiations on an
emulator for smartcards using our proposed technique. Its coprocessor can only
handle 1024-bit operands for Montgomery multiplications. Therefore, unlike the
assumption in Theorem 2, we make a more strict assumption for getting the
quotients: the bit-length of the modulus is exactly twice as much as the operands

196 M. Yoshino, K. Okeya, and C. Vuillaume

Algorithm 5. MultMonDiv instruction with modified MultMon instruction

Input: x, y, w with 0 ≤ x, y < w, m = 2n, gcd(w, m) = 1 and w′ = −w(−1) mod 2;
Output: q, r;

1. q ← 0 and r ← 0
2. For i from 0 to (n − 1) do the following:

(a) ui ← (r0 + xiy0)w
′ mod 2

(b) q ← q + ui2
i

(c) r ← (r + 2ri + uiw)/2
3. If r ≥ w then r ← r − w
4. Return (q, r)

size of the coprocessor. We show another algorithm in Appendix C for implement-
ing the MultMonDiv instruction with this more strict condition which we faced.

6.2 Practical Implementation Issues

Representations of 2n-bit Integers
We implemented our technique with w set as (2n−1) for two reasons. One reason
is that w should be odd because of the requirements of Montgomery multipli-
cations, and that w is 2n−1 < w < 2n because of the assumptions in Theorem
2. The other is that the conversion to such representation is easy. We show
how to get the representation of 2n-bit moduli for Montgomery multiplications.
N = n′

12
n + n′

0 = n1(2n − 1) + n02n. Then, we can calculate n1 and n0 easily
for Montgomery multiplications. n1 := 2n − n′

0 and n0 := n′
1 − n1 + 1.

Condition on the Modulus
Unfortunately, it is not easy to achieve the assumption of Theorem 2, namely
that the modulus must be greater than 2n−1. For example, if w is (2n − 1),
0 < n1 < 2n; n1 can be smaller than 2n−1. One choice is to modify Algorithm 3
slightly. When the value of n1 is 0 < n1 < 2n−1, (m − n1) can be applied to Al-
gorithm 3 as modulus instead of n1 to satisfy the assumption. We can compute
the quotient and the remainder of the modulus n1 from the modulus (m − n1)
with the following equations. xy = q(m − w) + rm = (−q)w + (q + r)m.

Handling of Input Value
The input value in Algorithm 3 may break the assumption (0 < x, y < 2n) of The-
orem 2. Since the Montgomery remainder only is affected by this problem, it could
be solved by the following fact: if xy ·m(−1) (mod w) = r, then (x+im)(y+jm) ·
m(−1) (mod w) = r + jx + iy + ijm holds, where i and j are small integers.

Reduction of the intermediate output
It often happens that the value of the intermediate output q and r are not
reduced. In this case, we have a strategy to compute new integers q′ and r′

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 197

z(=2n-1) m(=2n) m(=2n) z(=2n-1)

m(=2n)

m(=2n)

m(=2n)

m(=2n)

R

Q

case A

case Bcase C

case D

Fig. 2. Reduction for a quotient and a remainder

satisfying the following equation with two vectors; (z, −m) and (n0 −z, n1 +m).
(q′, r′) = (q, r)+ i(z, −m)+ j(n0 −z, n1 +m), where i and j are small integers.
If one set z as 2n − 1 and m as 2n, the vector (z,−m) is independent of the
other (n0 − z, n1 + m): The direction of the vector is that −m/z ≈ −1 and
0 ≤ (n1 + m)/(n0 − z) ≤ 3/4.

Figure 2 shows works of our strategy to reduce q and r to |q| < m and |r| < m
respectively, where m ≤ |q| ≤ m + z, m ≤ |r| ≤ m + z, m = 2n and z = 2n − 1.

There are four cases to reduce q and r.

Case A: 0 ≤ q, r and, m ≤ q ≤ z + m or m ≤ r ≤ z + m.
Compute (q, r) ← (q − (n0 − z), r − (n1 + m)), then return (q, r) or go
to case A or D.

Case B: 0 ≤ q, r and, m ≤ q ≤ z + m or −(z + m) ≤ r ≤ −m.
Compute (q, r) ← (q − m, r + z), then return (q, r).

Case C: q, r < 0 and, −(z + m) ≤ q ≤ −m or −(z + m) ≤ r ≤ −m.
Compute (q, r) ← (q + (n0 − z), r + (n1 + m)), then return (q, r) or go
to case B or C.

Case D: 0 ≤ q, r and, −(z + m) ≤ q ≤ −m or m ≤ r ≤ z + m.
Compute (q, r) ← (q + m, r − z), then return (q, r).

In fact, q and r are always in fixed range; −3·2n < q < 5·2n and −2·2n < r < 2n,
because of the equation in Algorithm 3; q = r3 + r4 − q5 − q6 + q7 and r =
−r5 − r6 + r7 with −2n < qi < 2n and 0 ≤ ri < 2n. Therefore, it might happen
that q and r are outside the area defined by case A to D. However, we can easily
extend our technique to such cases.

7 Conclusion

We proposed a novel technique for 2n-bit Montgomery multiplications, provided
that n-bit Montgomery multiplications are available. We defined the quotient
of Montgomery multiplications for 2n-bit Montgomery multiplications. Since
Montgomery multiplications have already been implemented on many platforms,
we proposed one technique to emulate the calculation of Montgomery quotients

198 M. Yoshino, K. Okeya, and C. Vuillaume

Table 1. Calculation of a quotient of Montgomery Multiplications

Calls case 1 : do not change case 2 : change
(average) MultMon instruction MultMon instruction

modulus 0 < w < 2n−1 2n−1 < w < 2n 0 < w < 2n−1 2n−1 < w < 2n

Addition/Subtraction 7.5 5.5 0 2
MultMon instruction 2 2 0 0

MultMonDiv instruction 0 0 1 1

Table 2. Average calls of a 2n-bit Montgomery Multiplications and an n-bit one

Bitlength n 2n

Calls(average) – case 1 case 2

Addition/Subtraction 0 50.5 12
MultMoninstruction 1 14 0

MultMonDivinstruction 0 0 7

with the available Montgomery multiplications unit. In addition, we proposed
another approach where the implementation of the Montgomery multiplications
unit is changed in order to directly calculate the quotient. The approach of calling
available units takes two instructions, and the approach changing the units has
roughly the same cost as one instruction.

As a result, our proposed techniques calculate 2n-bit Montgomery multipli-
cations by calling the crypto-coprocessor implementing n-bit Montgomery mul-
tiplications only, or the instruction for computing remainders and quotients of
n-bit Montgomery multiplications.

This paper concentrates on the way to compute double-size Montgomery mul-
tiplications with a single-size crypto-coprocessor. Therefore, although the scheme
of Chevallier-Mames et al. requires less calls to the multiplier than Fischer et
al.’s one, we extended the scheme of Fischer et al., which allows to make our
scheme simple: our proposed representation of 2n-bit integers can avoid using
even moduli for Montgomery multipliers. A further direction of this research
is to optimize computational costs of 2n-bit Montgomery multiplications, for
example by using Chevallier-Mames et al. technique.

References

1. Chevallier-Mames, B., Joye, M., Paillier, P.: Faster Double-Size Modular Multipli-
cation From Euclidean Multipliers. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 214–227. Springer, Heidelberg (2003)

2. Fischer, W., Seifert, J.P.: Increasing the bitlength of crypto-coprocessors. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
71–81. Springer, Heidelberg (2003)

3. Handschuh, H., Paillier, P.: Smart card crypto-coprocessors for public-key cryptog-
raphy. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820,
pp. 372–379. Springer, Heidelberg (2000)

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 199

4. Koc, C.: Montgomery reduction with even modulus. IEE Proceedings Computer
and Digital Techniques 141(5), 314–316 (1994)

5. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

6. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

7. Naccache, D., M’Räıhi, D.: Arithmetic co-processors for public-key cryptography:
The state of the art. In: CARDIS, pp. 18–20 (1996)

8. Paillier, P.: Low-cost double-size modular exponentiation or how to stretch your
cryptoprocessor. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
223–234. Springer, Heidelberg (1999)

9. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for rsa public-key
cryptosystem. Electronics Letters 18(21), 905–907 (1982)

10. Rivest, R.L., Shamir, A., Adelman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

11. RSA Laboratories: RSA challenges, http://www.rsasecurity.com/rsalabs/

A Modified Fischer et al.’s Algorithm

We will prove theorem 1 in Section 2.1 to be correct, which an output of Al-
gorithm 1 is indeed congruent to ABM (−1) modulo N , where 0 ≤ A,B <
N , 22n−1 < N < 22n and M = 22n.

Proof. Firstly, 2n-bit integers A,B,N are decomposed on the following equation;

A = a1z + a0m, B = b1z + b0m, N = n1z + n0m

where z is odd, 2n−1 ≤ z < 2n and m = 2n. Then, we continue to be the
following.

AB = (a1z + a0m)(b1z + b0m)
= a1b1zz + a1b0zm + a0b1zm + a0b0mm

= a1(q1n1 + r1m)z + a1b0zm + a0b1zm + a0b0mm

= a1r1zm − a1q1n0m + a1b0zm + a0b1zm + a0b0mm

= a1r1zm − a1(q2z + r2m)m + a1b0zm + a0b1zm + a0b0mm

= a1(r1 − q2 + b1)zm − a1r2mm + a0b1zm + a0b0mm

= (q3n1 + r3m)zm − a1r2mm + a0b1zm + a0b0mm

= (q3n1 + r3m)zm − a1r2mm + (q4n1z + r4m)zm + a0b0mm

= (r3 + r4)zmm − a1r2mm − (q3 + q4)mm + a0b0mm

= (r3 + r4)zmm − a1r2mm − (q5z + r5m)mm + a0b0mm

= (r3 + r4)zmm − (q6z + r6m)mm − (q5z + r5m)mm + a0b0mm

= (r3 + r4)zmm − (q6z + r6m)mm − (q5z + r5m)mm + (q7z + r7m)mm

= (r3 + r4 − q5 − q6 + q7)zmm − (r5 + r6 − r7)mmm

= {(r3 + r4 − q5 − q6 + q7)z − (r5 + r6 − r7)m}m2 ��

http://www.rsasecurity.com/rsalabs/

200 M. Yoshino, K. Okeya, and C. Vuillaume

B Proof of Theorem 2

To show the proof of Theorem 2 telling correctness of Algorithm 4, we prove the
following Lemmas 1, 2 and 3, step by step. Lemma 1 states the ranges of the
quotient.

Lemma 1. If 0 ≤ x, y < min{w, 2n}, 2n−1 < w < 2n+1, m = 2n, r is provided
by MultMon(x, y, w) and q satisfies the equation; xy = qw+rm, then −2n < q <
2n+1 holds.

Proof. If w is in the range of 2n−1 < w < 2n+1, then we have qw = xy− rm and
−w2n < xy − rm < 22n. Since the minimum value of w is greater than 2n−1,
Lemma 1 holds. ��

Lemma 2 states ranges of difference between two different quotients of Mont-
gomery multiplications. Whenever Lemma 1 holds, Lemma 2 also holds.

Lemma 2. If 0 ≤ x, y < w, 2n−1 < w < 2n, m = 2n, gcd(w, m) = 1 , r is
provided by MultMon(x,y,w), r′ is provided by MultMon(x,y,w + 2n), q satisfies
the equation; xy = qw + rm and q′ satisfies the equation; xy = q′(w +2n)+ r′m,
then when we set δ as {xy+rw−r′(w+2n) (mod 22)}, either q′−q = δ2n or q′−
q = (δ − 22)2n holds.

Proof. From Lemma 1, −2n+1 ≤ q′ − q ≤ 2n+1. Moreover, noticing that (w +
2n)−1 − w−1 = 2n (mod 2n+2), we get:

q′ − q = xy((w + 2n)−1 − w−1) − r′m(w + 2n)−1 + rmw−1

≡ xy2n − r′(w + 2n)−1m + rw−1m (mod 2n+2)
= {xy − r′(w + 2n)−1 + rw−1} × 2n

Furthermore, (w + 2n)−1 = w−1 = w (mod 22), so we have:

q′ − q ≡ {xy − r′(w + 2n) + rw (mod 22)} × 2n (mod 2n+2)

If (xy − r′(w + 2n) + rw) < 2 (mod 22), then

q′ − q = {xy − rw + r′(w + 2n) (mod 22)} × 2n.

Otherwise, we have:

q′−q = {{xy+rw−r′(w+2n) (mod 22)}−22}×2n. ��

Finally, based on Lemma 2, Lemma 1 shows the equation for getting the quotient
of Montgomery multiplications.

Lemma 3. If 0 ≤ x, y < w, 2n−1 < w < 2n, m = 2n, gcd(w, m) = 1, r is
provided by MultMon(x,y,w), r′ is provided by MultMon(x,y,w + 2n), q satisfies
the equation; xy = qw + rm and q′ satisfies the equation; xy = q′(w +2n)+ r′m,
then when we set δ as {xy + rw− r′(w +2n) (mod 22)}, either q = δ(w +2n)+
r′ − r or q = (δ − 22)(w + 2n) + r′ − r holds.

Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Mult. 201

Proof. By hypothesis, qw+rm = q′(w+2n)+r′m. Therefore q2n = (q−q′)(w+
2n) + (r − r′)m holds. From lemma 2, we have:

either q2n = δ2n(w + 2n) + (r′ − r)m, or
q2n = (δ − 22)2n(w + 2n) + (r′ − r)m. ��

The proof of Theorem 2 follows from Lemma 3.

C Approach for Quotients of Montgomery Multiplications
Based on Limited Memories of a Coprocessor

Lemma 2 and Lemma 3 assume r′ = MultMon(x, y, w + 2n) and q′ that satisfy
xy = q′(w + 2n) + r′m. But it is possible that the MultMon instruction cannot
treat the modulus (w + 2n) when it is implemented in hardware with just n-
bit memory, or when there are restrictions for the size of the modulus. For
this case, we use (w ± 2n−2) rather than (w + 2n). In this case, one can prove
lemmas and theorems similar to that from Section 5. We show algorithms to
calculate the quotient of Montgomery multiplications instead of Algorithm 4,

Algorithm 6. Implementation of MultMonDiv Limited version1

Input: x, y,w with 0 ≤ x, y < w, 2n−1+2n−2 < w < 2n and m = 2n with gcd(w, m) =
1;
Output: q,r;

1. r ←MultMon(x, y, w)
2. r′ ←MultMon(x, y,w − 2n−2)
3. tmp ← xy + rw − r′(w − 2n−2) (mod 24)
4. if tmp ≥ 23 then tmp ← tmp − 24.
5. q ← tmp × (w − 2n−2) + 4(r′ − r)
6. Return (q, r)

Algorithm 7. Implementation of MultMonDiv Limited version2

Input: x, y, w with 0 ≤ x, y < w, 2n−1 < w < 2n−1 + 2n−2 and m =
2n with gcd(w, m) = 1;
Output: q,r;

1. r ←MultMon(x, y, w)
2. r′ ←MultMon(x, y,w + 2n−2)
3. tmp ← xy − rw + r′(w + 2n−2) (mod 24)
4. if tmp ≥ 23 then tmp ← tmp − 24.
5. q ← tmp × (w + 2n−2) + 4(r − r′)
6. Return (q, r)

202 M. Yoshino, K. Okeya, and C. Vuillaume

only when coprocessors have limited memories, whose bit-lengths are just n bits.
Our proposed algorithms are divided into Algorithm 6 and Algorithm 7, because
we treat (2n−1 < w < 2n−1 + 2n−2) and (2n−1 + 2n−2 < w < 2n) separately.

Firstly, we show Algorithm 6, where w is 2n−1 < w < 2n−1 + 2n−2.
Secondly, we show Algorithm 7, where w is 2n−1 + 2n−2 < w < 2n.

Delaying and Merging Operations in Scalar
Multiplication: Applications to Curve-Based

Cryptosystems

Roberto Maria Avanzi1,�

Faculty of Mathematics and Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

roberto.avanzi@ruhr-uni-bochum.de

Abstract. In this paper we introduce scalar multiplication algorithms
for several classes of elliptic and hyperelliptic curves. The methods are
variations on Yao’s scalar multiplication algorithm where independent
group operations are shown in an explicit way. We can thus merge several
group operations and reduce the number of field operations by means of
Montgomery’s trick. The results are that scalar multiplication on elliptic
curves in even characteristic based on point halving can be improved by
at least 10% and the performance of Koblitz curves by 25% to 32%.

1 Introduction

This paper describes efficient methods for scalar multiplication on elliptic curves
(EC) and hyperelliptic curves (HEC). We provide replacements for techniques
such as: double–and–add, halve–and–add [18,25], and methods based on the
Frobenius operation [19,26,27].

Our scenario is the following: the base point is variable, and memory usage
is not an issue (such as on personal computers). We are not concerned with
minimizing memory usage: we consider the cases where we do not significantly
change it, and where we can use as much memory as we want. The techniques
developed here are applicable to a wide range of groups, that satisfy the following
assumptions:

1. The group (G,+, 0) is an algebraic variety, with explicit formulae for an
addition, which uses field inversion, and for a second operation which is a
group automorphism.

2. The speed of field inversion relative to field multiplication is in a quite com-
mon range for software implementations, i.e. from 6 to 30.

3. The group automorphism φ satisfies the following properties:
(a) φ is identified with an element (also denoted by φ) of a number ring R,

identified with a subring of the automorphism ring of G.

� Supported by the European Commission through the IST Programme under Con-
tract IST-2002-507932 ECRYPT.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 203–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

204 R.M. Avanzi

(b) We can represent each rational integer n to the the “base of φ” using a
suitable digit set D ⊂ Z[φ] ⊂ R in the form

n ≡
�∑

i=0

niφ
i mod % , (1)

where ni ∈ D and % is a (possibly trivial) ideal of R of elements acting
like the identity on the group. Relation (1) implies that

n · P =
�∑

i=0

niφ
i(P) . (2)

Important examples of group–automorphism pairs (G,φ) are

1. φ is the doubling of an element of G, i.e. φ(P) = 2 · P for all P ∈ G. We
identify φ with the numer 2. Typical examples are EC and HEC [16].

2. Halving in a subgroup G of an EC in even characteristic, i.e. for a given
P ∈ G computing Q ∈ G such that 2Q = P . The group G must have odd
order N and φ is identified with 1/2 modulo N .

3. The Frobenius operation on a Koblitz curve [19] E over a degree m extension
of F2. The map φ is the Frobenius endomorphism (usually denoted by τ),
φm operates trivially on the points of E, and % is the ideal generated by
(φm−1)/(φ−1). Here φ is identified with τ := μ+

√−7
2 where μ = ±1 depends

on the curve.
4. φ is the multiplication by a small constant p, where G is the rational point

group of an EC over Fpm . Such curves have been proposed for pairing based
systems [6,13,15].

Our starting point is the observation that Yao’s scalar multiplication algo-
rithm [28] contains group operations that are independent from each other. If
the implementation of these operations makes use of field inversions, these can be
merged using a trick by Montgomery. This trick has been already used to merge
group operations in the context of scalar multiplication. These improvements
have been restricted to: simultaneous scalar products; improving the precom-
putation stage [12]; devising formulae to compute expressions of the form 3P ,
4P , 2P + Q etc. on elliptic curves using only one inversion [7] and thus re-
duce the number of inversions required in a slightly modified Horner scheme;
and when the base point is fixed [22]. The present paper is the first application
of Montgomery’s trick to the main loop of Yao’s algorithm for a single scalar
multiplication with a variable base point.

Our techniques can improve the performance of scalar multiplication on EC
using point halving, as well as on Koblitz curves. The improvements in these
cases can often reach and exceed 10% and 30% respectively. On the other hand,
the methods do not seem to bring savings to EC and HEC scalar multiplication
based on point doubling.

The paper is organised as follows. In § 2 we describe the classical Φ-and-add
and Yao’s scalar multiplication methods. Our techniques are introduced in § 3,

Delaying and Merging Operations in Scalar Multiplication 205

and analysed in § 4. § 5 is devoted to further refinements and practical usage
of our methods, including operation counts in some settings of cryptographic
relevance. Finally, in § 6 we conclude.

2 Scalar Multiplication Techniques

As in the introduction let (G,+, 0) be a group, with a composition operation +
called addition and neutral element 0, endowed with a group automorphism φ
enjoying the property that scalars can be written “to the base of φ” as in (1).
Examples of such groups have already been mentioned. Some examples of recod-
ings for the scalar n are: the binary and radix-r representation of integers; the
Non Adjacent Form (NAF) [24]; the GNAF [8]; sliding window expansions [11,2]
and their τ -adic counterparts [26,27]; and fractional windows [23].

2.1 Φ-and-Add Scalar Multiplication

Algorithm 1 describes several scalar multiplication techniques commonly known
also as Horner schemes.

Let (G,φ) satify the requirements set in the introduction. Before proceeding
we need some notation.

Notation 1. The digit set D can be of the form D = {0} ∪ D+ with 0 �∈ D+ or
D = {0} ∪ D+ ∪ (−D+) with D+ ∩ (−D+) = ∅.

The set D+ is called set of positive digits, the digits in −D+ are the negative
digits. For d ∈ D define the sign of a digit as follows: Sign(d) = 0 if d = 0,
Sign(d) = 1 if d ∈ D+, and Sign(d) = −1 if d ∈ −D+. If d ∈ D+ or d = 0 then
put |d| = d, otherwise (if d ∈ −D+) put |d| = −d. This is the absolute value of
a digit.

Note that we consider two cases according to the fact whether computing −P
from P is a computationally expensive or negligible operation. The situation
where D = {0} ∪ D+ ∪ (−D+) occurs when in the group G the computation
of the inverse takes negligible time. In what follows we shall only consider this
situation as it is the most common one in our context. The other case is just a
simple adaptation.

In Steps 5 and 6, ni · P is taken from the table computed in Step 1.

2.2 Yao’s Method

Algorithm 2 is a straigthforward modification of Yao’s [28] algorithm obtained
upon replacing doublings with φ and distinguishing between “positive” and “neg-
ative” digits.

Observe that we are adding to registers corresponding to the various digits,
instead of adding from a table indexed by them, and at the end we have to re-
combine the result.

Algorithm 2 is less used than Algorithm 1 as it is considered slower: First of all,
a careful observation of the steps required, including replacing the first addition
to registers initially set to zero with assignments, shows that (for example in

206 R.M. Avanzi

Algorithm 1. φ-and-add method for scalar multiplication

INPUT: An element P of a group G endowed with an addition + and an automorphism φ, and
integer n recoded as n ≈

∑�
i=0 niφ

i according to the notation of (1), and the ni from a digit set
D as per Notation 1.

OUTPUT: The element n · P ∈ G.

1. Precompute d · P for all the digits d ∈ D+ and store them in a table

2. Q ← 0 ∈ G

3. for i = � downto 0 do

4. Q ← φ(Q)

5. if ni ∈ D+ then Q ← Q + ni · P

6. if ni ∈ −D+ then Q ← Q − (−ni) · P

7. return y

the case Φ = 2) Algorithms 1 and 2 take the same number of group operations.
Furthermore, the choice of the representation for the group elements plays a big
role in determining the performance: For EC [12] and genus 2 HEC [20] one can
represent the elements using different coordinate systems, and there are formulae
that add elements given in different coordinate systems with output in another
system: In Algorithm 1 we choose a coordinate system with fast and inversion-
free doubling for Q, and keep the elements d · P in affine coordinates to add
them to Q faster. A similar strategy has not been investigated for Algorithm 1
yet. Hence, Yao’s method can even be less efficient than the Horner scheme.

We call the computation of
∑

d∈D+ dXd the final accumulation step. If D+ =
{1, 3, 5, . . . , t} with t odd, then we can compute

∑
d∈D+ dXd as two time the

sum of the terms Xt, Xt + Xt−2, Xt + Xt−2 + Xt−4, . . ., Xt + Xt−2 + · · · + X3,
to which we add Xt + Xt−2 + · · · + X3 + X1. Each of the partial summands
is computed by a successive group addition. The total number of operations is
t−1 group additions and one doubling. If t = 2w−1 −1 this amounts to 2w−1 −2
group additions and one doubling.

Algorithm 2. Yao’s scalar multiplication algorithm

INPUT: An element P of a group G and integer n recoded as n ≈
∑�

i=0 niφ
i according to the

notation of (1), with ni ∈ D as per Notation 1.

OUTPUT: The element n · P ∈ G.

1. Create a table of accumulator registers Xd ← 0 ∈ G for all d ∈ D+

2. Q ← P

3. for i = 0 to � do

4. if ni ∈ D+ then Xni ← Xni + Q

5. if ni ∈ −D+ then X−ni ← X−ni − Q

6. Q ← φ(Q) [if (i �= �)]

7. return
∑

d∈D+ d · Xd

Delaying and Merging Operations in Scalar Multiplication 207

3 Delaying Group Additions to Collect Field Inversions

3.1 First Approach: Conservative Memory Usage

In Steps 4 and 5 of Yao’s algorithm at successive iterations of the main loop,
the group additions are in fact independent from each other until a digit (or
its opposite) is encountered again. In fact, the value of Q depends only on the
previous value of Q and thus only on P , and not on the other computations
of the algorithms; hence, as long as we add independently computed points
to different registers (i.e. these additions are associated to digits with absolute
values different from each other), these additions can be performed in any order.
We want to perform these group additions simultaneously using Montgomery’s
trick of simultaneous inversions. A realization of this idea is given as Algorithm 3.

Instead of performing the addition right away as in Algorithm 2, we first
store information which is sufficient to keep track of the operations to be done,
i.e. the value of Q to be added and the register that it has to be added to.
To do this we keep a table (Aj , dj) ∈ G × D+, called the queue, containing
up to q pairs, where Aj is the element (a value taken by the variable Q) to
be added to the dj-th element of the sequence of accumulator registers {Xd}.
We also implement a routine called FLUSH that finally performs the delayed,
independent, group additions Xdj ← Xdj + Aj for j = 1, 2, ..., k in parallel,
where k is the number of pairs currently in the queue. Such a routine is invoked
in the following cases: when a digit equal to a digit already in the queue (or its
opposite) is encountered, when the queue itself contains q different elements and
cannot accept any further pairs (Aj , dj), or at the end of the algorithm, before
performing the final accumulation step. As a consequence, there is no need for
a value of q larger than the size of the digit set, i.e. q ≤ #D.

Note that the first addition to an accumulator register is in fact just an as-
signment. This is explicitly reflected in the algorithm itself (Step 7).

3.2 Second Approach: Using More Memory

Algorithm 4 first computes all the φi(P) with ni �= 0, i.e. those that get added
to or subtracted from the accumulator registers. Then it tries to collect them in
groups as large as possible where each element corresponds to a different digit
value. In fact, the absolute values of non zero digit which are consecutive in
a given integer recoding usually do not form a complete set of positive digits.
But, if we first compute all the φi(P), we do not need to group the additions
in the same order the corresponding digits appear in the recoding. The hope
here is to be able to collect groups of as many as #D+ additions together. As
§§ 4.2 and 5.3 will show, this will result in a gain over the previous approach.
As in Algorithm 3 the first additions to accumulator registers are replaced by
assignments.

Remark 1. Counters for the number of digits that still do not have the used bit
set, as well as #D+ many similar counters for the digits equal to each d ∈ D+,
can be kept to speed up implementation of the tests in Steps 11 and 14. The
last values found for the minimal i’s in Step 15 can also be kept for each positive

208 R.M. Avanzi

Algorithm 3. Scalar multiplication with delayed group operations

INPUT: An element P of a group G and integer n recoded as n ≈
∑�

i=0 niφ
i according to the

notation of (1), with ni ∈ D as per Notation 1, a parameter q.

OUTPUT: The element n · P ∈ G.

1. Create a table of accumulator registers Xd ← 0G for all d ∈ D+

2. Create a table (called the queue) (Ak, dk) for 1 ≤ k ≤ q

3. Q ← P

4. for i = 0 to � do

5. if ni �= 0 do

6. if X|ni| = 0G then [First addition to register]

7. X|ni| ← Sign(ni)Q

8. else [Otherwise, accumulate additions to be merged]

9. if |ni| = dj for some j with 1 ≤ j ≤ q then FLUSH, k ← 0

10. if ni ∈ D+ then k ← k + 1, (Ak, dk) ← (Q, ni)

11. if ni ∈ −D+ then k ← k + 1, (Ak, dk) ← (−Q,−ni)

12. if k = q then FLUSH, k ← 0

13. Q ← φ(Q) [if (i �= �)]

14. if k �= 0 then FLUSH

15. return
∑

d∈D+ d · Xd

digit, to avoid scanning the whole recoding each time. These counters permit to
keep to total time spent scanning the recoding and building the queues linear in
the recoding length, and negligible with respect to the group operations.

4 Performance Analysis

4.1 Analysis of the Conservative Memory Method (Algorithm 3)

Our analysis is based on the analysis of the birthday paradox.
Let Es be the expected number of elements in the queue of length q before

we find a colliding digit, i.e. a digit equal, up to sign, to one already met after
the last time the queue was flushed.

We adopt a urn-and-balls model: In an urn there are r balls, each inscribed
with one of the positive digits. We repeatedly draw one ball at random from the
urn, remember the result of the draw and replace the ball in the urn. As soon
as when we draw a ball which we have already drawn, or after we have drawn q
different balls, we stop, and record the number s of draws. We want to find the
expected value Es of s.

We assume that in our representations all nonzero digits occur with equal
probability. This is in fact the case in sliding or fixed windows methods (non
fractional), both binary and τ -adic, or generic radix p representations.

The expected value Es is equal to
∑q

j=0 pj where pj is the probability there is
no match between balls after j draws. It is also clear that p1 = 1, p2 =

(
1 − 1

r

)

Delaying and Merging Operations in Scalar Multiplication 209

Algorithm 4. Scalar multiplication with delayed group operations, second method

INPUT: An element P of a group G and integer n recoded as n ≈
∑�

i=0 niφ
i according to the

notation of (1), with ni ∈ D as per Notation 1, a parameter q.

OUTPUT: The element n · P ∈ G.

1. Create a table of accumulator registers Xd ← 0 ∈ G for all d ∈ D+

2. Create a table (called the queue) (Ak, dk) for 1 ≤ k ≤ #D+

3. Create a usage boolean table used[i] for 0 ≤ i ≤ �

4. Q ← P

5. for i = 0 to � do

6. if ni �= 0 then

7. store Q(i) := Q (= φi(P)), used[i] ← false

8. else

9. used[i] ← true

10. Q ← φ(Q)

11. while (∃ i : used[i] = false) do

12. k ← 0

13. for all d ∈ D+ do

14. if (∃ i : (used[i] = false and |ni| = d)) then

15. Let i be minimal among those with used[i] = false and |ni| = d

16. if X|ni| = 0G then

17. X|ni| ← Sign(ni)Q(i) (= Sign(ni)φ
i(P)

)

18. else

19. if ni ∈ D+ then

20. k ← k + 1, (Ak, dk) ← (Q(i), d)
(
= (φi(P), d)

)

21. if ni ∈ −D+ then

22. k ← k + 1, (Ak, dk) ← (−Q(i), d)
(
= (−φi(P), d)

)

23. used[i] ← true

24. FLUSH, k ← 0

25. return
∑

d∈D+ d · Xd

and in general pj =
(
1 − 1

r

)(
1 − 2

r

)
· · ·
(
1 − j−1

r

)
. Therefore Es = s(r, q) =

1 +
∑q

j=2

∏j−1
k=1

(
1 − k

r

)
where r = 2w−2 in the sliding window case.

The following table collects the expected values of s for different positive digit
set sizes in sliding window methods. The last column contains the maximal value
of Es, achieved for q ≥ r.

r \ q 2 3 4 5 6 8 asym.
2 1.500 1.500
4 1.750 2.125 2.219 2.219
8 1.875 2.531 2.941 3.146 3.223 3.245 3.245
16 1.938 2.758 3.424 3.924 4.268 4.603 4.704
32 1.969 2.877 3.700 4.420 5.028 5.907 6.774

210 R.M. Avanzi

4.2 Analysis of the Large Memory Method (Algorithm 4)

This case is more complicated than the previous one.
Suppose that a given recording n ≡

∑�
i=0 niφ

i has k non zero digits, and that
there are r nonnegative integers a1 ≥ a2 ≥ . . . ≥ ar, r = D+, adding up to k,
with the following property: we can write D+ = {d1, d2, . . . , dr} such that for
1 ≤ i ≤ r the digit di appears exactly ai times in the recoding.

Algorithm 4 will then build ar queues of r elements (therefore merging r
inversions in one, with 3(r − 1) additional multiplications, ar times – if the
addition formula requires only one inversion), ar−1 −ar queues of r−1 elements
(therefore merging r−1 inversions ar−1−ar times), . . ., will perform a2−a3 pairs
of additions simultaneously (merging each time two inversions in one inversion
and 3 multiplications), and at the end perform a1 − a2 single additions. The
final number of blocks will then be ar + (ar−1 − ar) + (ar−2 − ar−1) + · · · +
(a2 − a3) + (a1 − a2) = a1. If there is just one field inversion per group addition,
the final number of inversions and multiplications replacing the k − 1 inversions
coming from group additions in the original scalar multiplication is a1 inversions
and 3(k − a1) multiplications1. This quantity depends only on a1, which is the
maximum of the ai (and on k). We are thus interested in the expected value of
a1. The computation of this value is not easy and there are asymptotic estimates
for this kind of “occupancy of boxes” problem, see for example [17, Ch. II, 6].
However, this does not solve our question for small values of the parameters r
and k. We now describe approaches more suitable to direct computation.

First, we drop the assumption that a1 ≥ a2 ≥ . . . ≥ ar, but keep that the
nonnegative integers ai add up to k. Write a := [a1, a2, ..., ar] and |a| = a1 +
a2 + . . . + ar. Instead of a1 we are now interested in max(a) := max(a1, ..., ar).
The expected value of max(a) is

1
rk

∑

a∈Nr
0 : |a|=k

(
k

a

)
max(a) (3)

where
(
k
a

)
is the multinomial coefficient

(
k

a1 a2 ··· ar

)
= k!

a1!a2!···ar! . Expression
(3) can be easily evaluated by a simple computer program, but the number of
summands increases very quickly and soon gets out of control. The best way to
estimate the expected value of max(a) is then by averaging the value obtained
on a few million random recodings, i.e. by a Monte Carlo method. This can be
done by a second, short computer program. We first considered “small” values
of r and k, that could be handled by our computer using (3), then and we chose
the number of experiments for the second computer program so that the two
outcomes agreed to at least 4 decimal places; then, we computed other expected
values for max(a) using only the second program.

In the next table we display the results for some values of
 and r = 2w−2,
where k is given as the closest integer to �

w+1 − r – in other words we are using

1 If there are t inversions per groups addition, we replace t(k − 1) inversions by ta1

inversions and 3t(k−a1) multiplications. This case may occur in some circumstances
if a formula with more inversions is less expensive than a formula with less inversions
but a much larger number of multiplications.

Delaying and Merging Operations in Scalar Multiplication 211

width-w signed sliding window methods (binary or τ -adic) and take into account
the fact that the first addition to each accumulator register is just an assignment.
We provide the expected queue length Eq = k/E max(a), too.

w = 3 (r = 2) w = 4 (r = 4) w = 5 (r = 8) w = 6 (r = 16) w = 7 (r = 32)
�

k E max(a) Eq k E max(a) Eq k E max(a) Eq k E max(a) Eq k E max(a) Eq

160 38 21.443 1.772 28 9.806 2.856 19 4.764 3.989 7 1.905 3.675 4 1.181 3.386
192 46 25.691 1.791 35 11.877 2.947 24 5.662 4.239 12 2.575 4.660 8 1.665 4.806
240 58 32.025 1.811 44 14.497 3.035 32 7.047 4.541 18 3.320 5.422 14 2.247 6.231
256 62 34.129 1.817 48 15.649 3.067 35 7.554 4.663 21 3.657 5.742 16 2.392 6.688
320 78 42.512 1.835 60 19.071 3.146 45 9.207 4.888 30 4.625 6.486 24 2.990 8.026
512 126 67.469 1.868 98 29.681 3.302 75 13.944 5.378 57 7.244 7.869 48 4.515 10.632

Note that when using the minimum of a in place of the maximum in all the
computations we just described we get the expected number of “full” queues, i.e.
those of length r. The computations show that with overwhelming probability
there is always at least one such queue.

5 Practical Aspects

5.1 Optimizing the Precomputation and Accumulation Steps

One potential performance problem with scalar multiplication methods derived
from Yao’s is the final accumulation step, i.e. the computation of

∑
d∈D+ Xd,

especially for larger window sizes.

5.1.1 Precomputations
For the precomputation phase for φ-and-add methods there is a very efficient
method by Cohen (see [12]). In general we have a total of 2w−2−1 group additions
and 1 group doubling fused in w − 1 groups, in other words requiring just w − 1
inversions. It has been described originally for EC with doubling, but can be
used also with halving, and HEC.

Other coordinate systems for the precomputations can be chosen, but only
if inversion is extremely expensive; for example using affine coordinates in the
precomputation phase with Cohen’s approach is the best choice if I < 33.9M
with a key length of 192 bits.

Another classical precomputation strategy requires just 2 inversions. We first
compute 2P in affine coordinates and then get 3P = P + 2P, . . . , (2n + 1)P =
(2n−1)P+2P each as a mixed coordinate addition (Jacobian coordinates for odd
characteristic EC and Lopez-Dahab coordinates for even characteristic EC). To
get back the precomputations in affine coordinates, all Z-coordinates are inverted
together by Montgomery’s trick.

For our values of the I/M ratio Cohen’s method is almost consistently the
best precomputation strategy.

212 R.M. Avanzi

5.1.2 Accumulation
We present a technique that applies to the final accumulation step of Yao’s
algorithm. Since the digit set for doubling and halving based methods for EC and
HEC is the same, we give a unitary treatment. Before proceeding we introduce
some notation.

Notation 2. M, resp. I, S denote field multiplication, resp. inversion, squaring.
A and D mean group addition and doubling. A[i], resp. D[i], denote i ≥ 1

simultaneous group additions, resp. doublings.
For any two integers a, b we can write Xa,b = Xa + Xb. By X[a .. b] we under-

stand the sum Xa + Xa+2 + . . .+ Xb for a < b and a, b odd. The length of a sum
of the form X[a .. b] is the number of summands Xi it contains.

Let NA, resp ND, NG be the number of As, Ds and groups of operations in an
algorithm. Under the assumption that A and D both contain just one inversion,
the operation count will be

NA(A− I) + ND(D− I) + NGI + 3(NA + ND − NG)M . (4)

(The case where A and D contain more inversions is left to the reader.)
Here and in what follows t = 2w−1. The standard approach consists in com-

puting Xt−1, Xt−3,t−1 = Xt−3 + Xt−1, X[t−5 .. t−1] = Xt−5 + Xt−3 + Xt−1,...,
X[1 .. t−1] = X1 +X3 + . . .+Xt−1 by successive additions, add all these sums but
the last one together, double the result and add it to the last sum. This requires
2w−1 − 1 group operations (one is a doubling).

If w = 3 then there are just two registers, X1 and X3 and the computation
of X1 + 3X3 is done by first computing X1 + X3 and 2X3 at the same time,
merging one addition and one doubling, followed by another addition. For EC
this takes 2I + 12M + 3S (and one more S if the characteristic is odd). Using
different coordinate systems we can first compute X1 +X3 and 2X3 in Jacobian
coordinates then add the results and convert them into affine coordinates. This
takes 1I+ 21M+ 11S in odd characteristic and 1I+ 23M+ 5S in characteristic 2.
The first method is faster for EC in odd characteristic if I < 11M and I < 12M
in characteristic 2.

For all w ≥ 4 we present a simple strategy by which we can compute the
final expression with 3 ·2w−2 −w group operations (one is a doubling), by fusing
them in 3w−5 groups. On the other hand, the classic approach requires 2w−1−1
group additions (one is a doubling).

We first compute X1,3, X5,7, . . ., Xt−3,t−1 (additions of adjacent elements in
the list X1, X3, . . . , Xt−1) by means of one A[2w−3], then X[1 .. 7], X[9 .. 15], . . .,
X[(t−7) .. (t−1)] (quadruplets of adjacent elements) by one A[2w−4], and so on until
we get the length 2w−2 sum X[1 .. (t−1)] by one A.

The second phase of our strategy consists in calculating the sums X[i .. (t−1)]

for all odd i with 3 ≤ i ≤ t − 3.
The last sum which we just computed involves 2w−2 summands Xi. All the

partial sums which we still require and whose length is a multiple of 2w−3

(namely, X[1 .. (t−1)] and X[(t/2+1) .. (t−1)]) are already known.

Delaying and Merging Operations in Scalar Multiplication 213

We first get the sums of a number of terms which is multiple of 2w−4: the first
one, the last and in general all those whose length is a power of two are already
known. One sum is to be computed (cost: one A).

Then we compute the 3 = 22 − 1 sums of length multiple of 2w−5 with one
A[3]. The next step is to compute the 7 = 23 −1 sums of length multiple of 2w−6

with one A[7]. We proceed this way until we compute the last 2w−3 − 1 sums of
an odd number of elements with an A[2w−3 − 1].

As an example, to get X[3 .. (t−1)] we first need to add X[(t/4+1) .. (t/2−1)] to
X[(t/2+1) .. (t−1)], to get X[(t/4+1) .. (t−1)], then we add X[(t/8+1) .. (t/4−1)] to this
sum, X[(t/18+1) .. (t/8−1)], and so on, until we just add X3 to X[5 .. (t−1)]. All partial
summands X[i .. (t−1)] for all odd i with 3 ≤ i ≤ t−1 are obtained this way, with
the sums of addends X[a .. b] of the same length done in parallel.

The last phase consists in adding all the sums X[i .. (t−1)] for all odd i with
3 ≤ i ≤ t− 1 together. This can be done in a binary tree fashion, by A[2w−3 − 1]
(note that X[1 .. (t−1)] is not added), A[2w−4], A[2w−5], . . ., A[2], A, this sum is
then doubled and added to X[1 .. (t−1)].

It is easy to see that the total operation count is 3 · 2w−2 − w additions (of
which one is in fact a doubling), fused in 3w − 5 groups: the latter number,
multiplied by the number of M per group operation (usually 1), is the number
of I effectively computed. This number is usually much lower than 2w−1 − 1 for
the classical approach.

For 4 ≤ w ≤ 6 it is easy to devise faster ad-hoc groupings of operations (pos-
sibly using mixed coordinates). For 3 ≤ w ≤ 8 the groupings and the operation
counts for EC are given in the following table. We also provide the ratio I/M,
over which our method is faster than the classical approach.

Classic Example: Elliptic Curves

w
approach Our method(s) Field operation counts Thresholds

Ops. Ops. Groups Classic approach Our method(s) odd
char.

even
char.

3 3 3
–

2
– 3I + 6M + 3{+1}S 2I + 9M + 3{+1}S

1I + 21{+2}M + 11{+2}S
3
9.50

3
9.50

4 7 9 6 7I + 14M + 7{+1}S 6I + 27M + 9{+1}S 13.50 13.40
5 15 20 8 15I + 30M + 15{+1}S 8I + 76M + 20{+1}S 6.93 6.71
6 31 40 12 31I + 62M + 31{+1}S 12I + 164M + 40{+1}S 5.60 5.46
7 63 89 16 63I + 126M + 63{+1}S 16I + 397M + 89{+1}S 6.04 5.88
8 127 184 19 127I + 254M + 127{+1}S 19I + 863M + 184{+1}S 5.90 5.74

Note: {+1} means “add 1” in odd characteristic.

5.2 Operation Counts

We consider here the cost of different scalar multiplication algorithms on (hy-
per)elliptic curves. Our references are [10, §§ 13.2, 13.3, 15.1] and [5].

5.2.1 Binary Elliptic Curves with Point Doubling
Let us review the costs for a scalar multiplication (including precomputation)
with the double-and-add method. Operation counts are from [10, §§ 13.2, 13.3].

214 R.M. Avanzi

Let n =
∑�

i=0 ni2i be the scalar, and w the window width. Put
1 =
 −
(w − 1)/2 and K = 1/2 − 1/(w + 1). On average
1 + K doublings and v =
(
1 − K)/(w + 1) additions are used. If only affine coordinates A are used, then
an auxiliary system A′ is introduced, v doublings use a special form (2A′ = A′)
that requires only M + 2S, whereas the remaining ones (of the form 2A′ = A)
cost I + M + S. The additions require the ability of adding two points in A
with a result in A′, and cost 2I + 3M + S. In the main loop we need about
(
1 +K)(I+M+S)+ w+1

�1−K (3M+2S) to compute n ·P . If we do not use inversions,
we perform the computation using López-Dahab coordinates, and the cost is (
1+
K)(4M+4S+M2)+ w+1

�1−K (8M+5S+M2)+(I+2M) where M2 denotes multiplication
by a fixed value. Note that there is a final conversion to affine coordinates. The
precomputation phase is done as described in § 5.1.1.

With our algorithms we perform
1+K doublings and v̂ := v−2w−2 additions
(recall that the first time a digit appears, a group addition is replaced by an
assignment). The additions come in v̂/Es groups of merged additions, and the
concrete values of Es are taken from the tables in the previous section.

Both in the Conservative Memory algorithm (§ 3.1) and in the Large Memory
algorithm (§ 3.2) we perform the doublings in the coordinate system that has
fastest doublings, i.e. López-Dahab’s (LD) and then convert the v points that
get added (or written) to the accumulator registers to A. The conversions are
done in parallel (with some obvious modifications to the algorithms): in the
Conservative Memory algorithm only Es points at a time are converted, and in
the Large Memory algorithm all the v points are converted simultaneously. The
cost of the main loop is about

(�1+K)(4M+4S+M2)+
(v

Es
(I+ 3(Es − 1)M) + 2v M

)
+

(
v̂

Es
(I+ 3(Es − 1)M) + v̂(2M+ S)

)

in the Conservative Memory algorithm and

(�1 +K)(4M+4S+ M2) + (I+ 3(v − 1)M+ 2v M) +

(
v̂

Es
(I+ 3(Es − 1)M) + v̂(2M+ S)

)

in the Large Memory algorithm. The cost of the final accumulation step is given
in § 5.1.

5.2.2 Using Point Halving on Elliptic Curves
Let n,
, w,
1, v as above. We use here point halving, which consists, given a point
P , in finding a point Q such that 2Q = P . It is denoted by H. Operation counts
are essentially as before, where halvings replace doublings in the main loops,
but the precomputation and the final accumulation stages retain the doubling.
Only affine coordinates are used, following [18,25]. According to [14], halving is
about twice as fast as a doubling. The classic halve-and-add method costs then
(
1 + K)H + v A in the main loop, the precomputations being as in § 5.2.1.

5.2.3 Elliptic Koblitz Curves
The reasoning is the same as in the previous Subsections, where doubling and
halving are here replaced by Frobenius operations. As in § 5.2.1 we will de-
termine operation counts when affine coordinates are used as well as with LD

Delaying and Merging Operations in Scalar Multiplication 215

coordinates. The recoding used is a windowed τ -adic recoding using the digit
set by Solinas [26,27]. Precomputation and final accumulation steps have to be
adapted to the new context of τ -adic digit sets, essentially ad-hoc for each w:
the difference in the operations counts are just a few Frobenius operations.

5.2.4 Elliptic Curves in Odd Characteristic
In odd characteristic the situation is entirely similar to that of binary Elliptic
curves where point doubling is used. The details are similar and are thus omitted.

The coordinate systems used for the Horner scheme are: affine only, and a
mixed coordinate approach involving precomputed points in A and intermediate
computations done using Jacobian (J) and Jacobian modified (J m) coordinates.

In our algorithms we perform the doublings in J m, since they have the fastest
doubling, and then convert the required results to A.

5.2.5 Higher Genus Curves
We consider here curves of genus 2 and 3 in even characteristic with the formulae
of [21] in genus 2 and those of [5] for genus 3. For genus 2 a group addition, resp.
doubling, costs I+ 22M+3S, resp. I+6M+5S. For genus 3 these operations cost
I + 47.7M + 6S, resp. I + 9.3M + 11S. Apart from the operation counts for the
group operations, the computations are performed as in the EC case with affine
coordinates.

5.3 Comparisons and Results

Here we collect the operation counts relative to a field multiplication for sev-
eral types of groups at different security levels. We compare the classical tech-
niques (Algorithm 1), denoted by the label “Classic” with our algorithms, and
for Koblitz curves also with the methods in [4]. CMA stands for Conserva-
tive Memory Algorithm (Algorithm 3) and LMA for Large Memory Algorithm
(Algorithm 4). In some cases the “Classic” column contains two subcolumns: The
one labeled A refers to computations entirely done in affine coordinates, whereas
LD, resp. J m refers to the usage of López-Dahab, resp. Jacobian modified co-
ordinates. The relative costs of the field operations in the even characteristic
are taken from the implementations reported [3,5]. For the ratios in the odd
characteristic case we refer to [1]: for example for fields of 160, 192 and 256 bits
we have I/M ratios around 30. The bit size of the groups in the table for HEC is
approximative, and the field of definition is given, too.

The table for elliptic Koblitz Curves contains more comparisons to put the
results of this paper in a broader perspective. Firstly, some curves whose size is
outside the scope of this paper are considered: the sizes are those of the curves
K-163, K-233, K-283, K-409 and K-571 as standardised by NIST [29]. Secondly,
as already mentioned we compare also with two algorithms from [4] – for the
details we refer the reader to the cited paper.

Clearly, we get mixed results. In some circumstances the new algorithms per-
form significantly better than the previous ones, in other cases the performance
is similar, or worse. The Large Memory algorithm performs better than the
Conservative Memory approach, but the differences are often quite small.

216 R.M. Avanzi

Elliptic Curves in Even Characteristic
Elliptic Curve, Doubling Elliptic Curve, Halving

bits Classic
A LD CMA LMA Classic CMA LMA

163 1840.17 1144.70 1254.79 1213.14 853.57 773.61 768.22
199 2532.87 1383.57 1537.93 1474.85 989.05 870.29 859.46
233 3131.90 1583.06 1756.22 1699.34 1174.77 1022.08 1002.11

Elliptic Koblitz Curves
Classic This paper From [4]

bits A LD CMA LMA Alg. 3 Alg. 4
163 390.77 406.55 305.75 300.35 359.59 376.40
233 601.41 523.13 427.69 407.71 610.61 500.23
283 1040.88 605.06 639.28 568.96 928.49 585.94
409 3122.46 832.23 1266.51 1144.68 2719.01 801.94
571 7633.01 1311.20 2746.00 2428.36 6340.55 1058.10

Elliptic Curves in Odd Char.

bits Classic
A J m CMA LMA

160 6378.20 1422.42 1825.50 1528.52
192 7472.86 1670.41 2099.27 1787.72
256 9794.09 2166.41 2623.72 2321.92

Hyperelliptic Curves in Even Characteristic
Genus 2 Genus 3bits Field Classic CMA LMA Field Classic CMA LMA

160 F83 2877.14 2883.70 2882.04 F53 4394.68 4437.62 4435.47
192 F97 3300.71 3291.20 3287.44 F67 5219.82 5252.92 5248.99
256 F127 4146.97 4138.74 4133.97 F89 6531.11 6578.93 6575.54

For EC scalar multiplication with point doubling, a lot of research went into
refined coordinate systems (that can dispense with inversions), and this explains
why our approach, that is based for the most part on “good old” affine coordi-
nates that require inversions, does not win. For HEC in even characteristic, that
also profit from very refined doubling formulae, the situation is similar.

Halving and Frobenius methods profit the most because they use relatively
many inversions that can be effectively reduced by our techniques. Savings of
10% to 15% (for halving methods) to 25-32% (for Frobenius methods) are not
uncommon. In particular, for generic binary EC, halving brings noteworthy
speedups, our methods being as much as 30 to 40% faster than the mixed co-
ordinates implementation of the Horner scheme. We also confirm Schroeppel’s
claims that a scalar multiplication based on halving is usually (at least) twice
as fast than one based on doubling in affine coordinates.

Delaying and Merging Operations in Scalar Multiplication 217

For Koblitz curves, the methods from [4] are already faster than classical
methods for small curves, yet slower than ours for the sizes that are in the
scope of the present paper. For larger sizes, the CMA and LMA methods lose
ground and become slower than classic methods (starting from the 409 bit level).
However, the inversion-free sublinear Algorithm 4 from [4], quickly reveals itself
as the fastest scalar multiplication method for Koblitz curves of at least 409
bits, with speedups reaching 24% with respect to the mixed coordinates τ -adic
Horner scheme for 571 bit curves.

6 Conclusions

In this paper we showed that Yao’s algorithm presents an intrinsic parallelism
that permits us to merge some of the group operations it performs. Two variants
of this method are given: one adopts a strategy of augmenting memory usage in a
conservative way, and is given as Algorithm 3; the second method, Algorithm 4,
uses more memory but is also more efficient.

A simple analysis has been done. This is then used to estimate the costs of
scalar multiplications for different groups used in cryptographic applications:
EC over odd and even characteristic fields (in this case we also chose parameters
that are presented in standards and have been considered by several authors for
performance improvements), using various scalar multiplication techniques, as
well as low genus HEC.

The techniques presented here can significantly improve the performance for
EC cryptosystems in even characteristic when point halving is used, as well as
Koblitz curve Cryptosystems. The gains in these cases can be estimated in the
10-15%, resp. 25-32% range with common timing ratios of field operations with
respect to the field multiplication.

Acknowledgements. Part of this paper was written while visiting the De-
partment of Mathematical Sciences, Stellenbosch University. I wish to express
my gratitude to this institution for its hospitality. I am grateful to Johann
Großschädl, Clemens Heuberger, Helmut Prodinger, Francesco Sica, Douglas
Stabila and Nicolas Thériault for interesting discussions and remarks.

Disclaimer. The information in this document reflects only the author’s views,
is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

References

1. Avanzi, R.M.: Aspects of hyperelliptic curves over large prime fields in software im-
plementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 148–162. Springer, Heidelberg (2004)

2. Avanzi, R.M.: A Note on the Signed Sliding Window Integer Recoding and its
Left-to-Right Analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 130–143. Springer, Heidelberg (2004)

218 R.M. Avanzi

3. Avanzi, R.M., Ciet, M., Sica, F.: Faster Scalar Multiplication on Koblitz Curves
combining Point Halving with the Frobenius Endomorphism. In: Bao, F., Deng,
R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 28–40. Springer, Heidelberg
(2004)

4. Avanzi, R.M., Heuberger, C., Prodinger, H.: On Redundant τ -adic Expansions and
Non-Adjacent Digit Sets. LNCS. vol. 4356, pp. 285–301, Springer, Heidelberg (to
appear)

5. Avanzi, R.M., Thériault, N., Wang, Z.: Rethinking Low Genus Hy-
perelliptic Jacobian Arithmetic over Binary Fields: Interplay of Field
Arithmetic and Explicit Formulae. CACR report 2006-07, Available at
http://www.cacr.math.uwaterloo.ca/tech reports.html

6. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based
Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

7. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multipli-
cations in Elliptic Curve Cryptography. Designs Codes and Cryptography 39(2),
189–206 (2006)

8. Clark, W.E., Liang, J.J.: On arithmetic weight for a general radix representation
of integers. IEEE Transactions on Information Theory IT- 19, 823–826 (1973)

9. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in
Math. 138, Springer, Heidleberg, 1993, Third corrected printing (1996)

10. Cohen, H., Frey, G. (eds.): The Handbook of Elliptic and Hyperelliptic Curve
Cryptography. CRC Press, Boca Raton (2005)

11. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation. In: Han, Y.,
Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 282–290. Springer, Heidelberg
(1997)

12. Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Us-
ing Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

13. Duursma, I., Lee, H-S.: Tate Pairing Implementation for Hyperelliptic Curves y2 =
xp −x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

14. Fong, K., Hankerson, D., López, J., Menezes, A.: Field Inversion and Point Halving
Revisited. IEEE Trans. Computers 53(8), 1047–1059 (2004)

15. Galbraith, S., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker,
C., Kohel, D.R. (eds.) Algorithmic Number Theory. LNCS, vol. 2369, pp. 324–337.
Springer, Heidelberg (2002)

16. Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptology 1, 139–150 (1989)
17. Kolchin, V.F., Sevast’yanov, B.A., Chistyakov, V.P.: Random Allocations. V.H.

Winston and Sons, Washington DC (1978)
18. Knudsen, E.W.: Elliptic Scalar Multiplication Using Point Halving. In: Lam, K.-Y.,

Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

19. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

20. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra
Engrg. Comm. Comput. 15(5), 295–328 (2005)

21. Lange, T., Stevens, M.: Efficient doubling for genus two curves over binary fields.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 170–181.
Springer, Berlin (2004)

http://www.cacr.math.uwaterloo.ca/tech_reports.html

Delaying and Merging Operations in Scalar Multiplication 219

22. Mishra, P.K., Sarkar, P.: Application of Montgomery’s Trick to Scalar Multipli-
cation for Elliptic and Hyperelliptic Curves Using a Fixed Base Point. In: Bao,
F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 41–54. Springer,
Heidelberg (2004)

23. Möller, B.: Algorithms for Multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

24. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)
25. Schroeppel, R.: Elliptic curve point ambiguity resolution apparatus and method.

International Application Number PCT/US00/31014, filed (November 9, 2000)
26. Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves.

In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer,
Heidelberg (1997)

27. Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Codes and Cryptogra-
phy 19(2/3), 125–179 (2000)

28. Yao, A.C.: On the evaluation of powers. SIAM J. Comp. 5, 100–103 (1976)
29. National Institute of Standards and Technology. Digital Signature Standard. FIPS

Publication 186-2 (February 2000)

On the Problem of Finding Linear

Approximations and Cryptanalysis of
Pomaranch Version 2�

Martin Hell and Thomas Johansson

Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin,thomas}@it.lth.se

Abstract. We give a simple algorithm that can find biased linear ap-
proximations of nonlinear building blocks. The algorithm is useful if the
building block is relatively small and exhaustive search is possible. In-
stead of searching all possible linear relations individually, we show how
the most biased relation can be found in just a few steps. As an exam-
ple we show how we can find a biased relation in the output bits of the
stream cipher Pomaranch Version 2, a tweaked variant of Pomaranch,
resulting in both distinguishing and key recovery attacks. These attacks
will break both the 128-bit variant and the 80-bit variant of the cipher
with complexity faster than exhaustive key search.

Keywords: cryptanalysis, linear approximation, Pomaranch, stream
ciphers.

1 Introduction

Finding a biased linear approximation of some output bits of a stream cipher
can be devastating for the security of the cipher. If the bias of the approxima-
tion is sufficiently strong a distinguishing attack can be mounted. In some cases
this distinguishing attack can be modified into a key recovery attack which will
succeed with computational complexity much lower than exhaustive key search.
The process of finding the best approximation usually requires considerable ef-
fort from the cryptanalyst. It can be the case that the cipher design does not
allow for a comprehensive theoretic analysis and thus a possible biased linear
approximation is not found, though it exists. In this paper we suggest a method
that finds a linear approximation without considering theoretical aspects of the
building blocks of a cipher. The algorithm is suitable if the cipher consists of
small building blocks and if the blocks are difficult to analyze theoretically. As
� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 220–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Problem of Finding Linear Approximations 221

an example we show how to find a linear approximation in the output bits of
the cipher Pomaranch Version 2.

Pomaranch [4] is one of the candidates in the eSTREAM [3] project. It is
designed to be efficient both in hardware and software. It is one of the ciphers
that has been moved to the second phase in the hardware category in the eS-
TREAM project. The cipher is an interesting construction since it introduces a
new approach to the design of LFSR based stream ciphers. One common way to
introduce nonlinearity into the linearly generated LFSR sequence is to clock the
LFSR in an irregular way. Doing this will result in a decimated sequence and
the number of bits discarded between consecutive output bits is unknown to an
attacker. However, this will introduce some problems. First, an output buffer is
needed since the keystream bits will not be produced regularly. Second, for the
same reason, the construction is likely to be vulnerable to timing and power at-
tacks. In Pomaranch, the LFSRs are based on a new idea, called jump registers.
In each update of the LFSRs, the next state is one of two possible states. Which
one it jumps to is key dependent and thus unknown to the attacker. The main
advantage is that the update of the ciphers behaves like irregular clocking but
the problems involved in irregular clocking are avoided.

Two attacks have been proposed on the first version of Pomaranch. The first
attack is a chosen IV attack [1] which succeeds because not all IV bits are diffused
into the whole state in the initialization phase. The second attack [8] is a correla-
tion attack on the keystream generation of Pomaranch. This attack uses a biased
linear relation in the output bits to mount a key recovery attack. Consequently,
because of these two attacks, Pomaranchhad to be tweaked. This was done and the
tweaked version, referred to as Pomaranch Version 2, was proposed in [5] and [7].
Pomaranch has a key size of 128 bits but since hardware dedicated ciphers are
required to support 80 bit keys in the eSTREAM project, a reduced variant was
also proposed, supporting 80 bit security level. By using the proposed algorithm
we show that the changes made in the tweaked version were not enough. It is still
possible to find a linear relation in the output bits that is biased enough to allow
distinguishing and key recovery attacks. These attacks are the first on Pomaranch
Version 2 and they will break both the 128-bit variant and the 80-bit variant of
the cipher with complexity faster than exhaustive key search.

This paper is outlined as follows. Section 2 gives some background theory
concerning the problem of binary hypothesis testing. In Section 3 we consider
the case of letting a binary linear approximation be written as a binary vector.
Section 4 presents an algorithm that finds a linear approximation in certain cases.
A practical example is given in Section 5, in which the attack on Pomaranch
Version 2 is described. In Section 6 some simulation results are given and in
Section 7 we look at a new version of Pomaranch which was designed with our
attacks in mind. Finally, the paper is concluded in Section 8.

1.1 Notation

Throughout the paper, random variables X,Y, . . . are denoted by capital letters
and their domains are denoted by X ,Y, The realizations of random variables

222 M. Hell and T. Johansson

x ∈ X , y ∈ Y, . . . are denoted by small letters. A distribution is denoted by D.
The probability function of a random variable X following the distribution D is
denoted by PrD[x] and sometimes as just D[x].

2 Hypothesis Testing and Distinguishers

In this section we give some background theory and consider the general problem
of binary hypothesis testing and distinguishers. For a more thorough treatment of
hypothesis testing we refer to [2]. This is a very important concept in cryptology.
A distinguisher is a mathematical tool, based on a binary hypothesis tests, which
is used very frequently in cryptanalysis. The distinguisher is used not only in
distinguishing attacks but it is also often used in key recovery attacks.

In a binary hypothesis test we observe a collection of independent and identi-
cally distributed data. Denote the distribution of the observed data by Dobs. Fur-
ther, we have two known distributions, D0 and D1. We want to decide whether
the observed distribution is actually the distribution D0 (the null hypothesis
H0) or the distribution D1 (the alternate hypothesis H1), knowing that one of
them is the true distribution. More formally, we define a decision rule which is
a function δ : X → {0, 1} such that

δ =

{
0, Dobs = D0,

1, Dobs = D1.

The function δ makes a decision for each x ∈ X . The decision rule divides the
domain X into two regions denoted A and Ac. A is called the acceptance region
of δ and corresponds to the decision to accept the null hypothesis.

There are two types of errors associated with a binary hypothesis test. We can
reject the null hypothesis when it is in fact true, i.e., δ : X → 1 when Dobs = D0.
This is called a type I error, or false alarm and the probability of this error is
denoted α. The other alternative is that we accept the null hypothesis when the
alternate hypothesis is true, i.e., δ : X → 0 when Dobs = D1. This is called a
type II error, or miss. The probability of this error is denoted by β.

In a binary hypothesis test there are several things that have to be considered.
Two important things are how to perform the test in an optimal way and how
many samples we need in order to have certain error probabilities, α and β. How
to perform the optimal test is given by the Neyman-Pearson lemma.

Lemma 1 (Neyman-Pearson). Let X1, X2, . . . , Xm be drawn i.i.d. according
to mass function Dobs. Consider the decision problem corresponding to the hy-
potheses Dobs = D0 vs. Dobs = D1. For T ≥ 0 define a region

Am(T) =
{

P0(x1, x2, . . . , xm)
P1(x1, x2, . . . , xm)

> T

}
.

Let αm = Dm
0 (Ac

m(T)) and βm = Dm
1 (Am(T)) be the error probabilities corre-

sponding to the decision region Am. Let Bm be any other decision region with
associated error probabilities α∗ and β∗. If α∗ ≤ α, then β∗ ≥ β.

On the Problem of Finding Linear Approximations 223

In order to show how the error probabilities are related to the distributions
and the number of samples we first define the relative entropy between two
distributions.

Definition 1. The relative entropy between two probability mass functions
PrD0 [x] and PrD1 [x] over the same domain X is defined as

D (PrD0 [x]‖PrD1 [x]) =
∑

x∈X
PrD0 [x] log

PrD0 [x]
PrD1 [x]

.

In literature the relative entropy is sometimes also referred to as information
divergence or Kullback-Leibler distance. For convenience and ease of reading,
in the following we write the relative entropy as D(D0‖D1) or D(D0[x]‖D1[x]).
Note that in general D(D0‖D1) �= D(D1‖D0).

No general expression for the error probabilities α and β exists. Hence, we
know how to perform the optimal test, but we do not know the performance of
the test. However, there exist asymptotic expressions for the error probabilities,
i.e., expressions that hold when the number of samples is large. The relative
entropy is related to the asymptotic error probabilities through Stein’s lemma.
Stein’s lemma states that if we fix the error probability α < ε then

β = 2−nD(D0‖D1).

The value of α does not affect the exponential rate at which β decreases and
according to Stein’s lemma, this situation always occurs. Thus, the number of
samples needed in a binary hypothesis test is a constant times the inverse of the
relative entropy between the two distributions.

In order to have an asymptotic expression that minimizes the overall prob-
ability of error Pe = π1α + π2β, where πi are the a priori probabilities of the
distributions, the Chernoff information, C(D0, D1), can be used. The error prob-
ability can then be written as

Pe = 2−nC(D0,D1),

where

C(D0, D1) = − min
0≤λ≤1

log

(
∑

x

Prλ
D0

[x]Pr1−λ
D1

[x]

)

.

The Chernoff information between two distributions is often hard to find since
we have to minimize over λ. A common way of avoiding this is to pick a value of
λ, e.g., λ = 0.5. This will give a lower bound for the Chernoff information and
thus an upper bound for the error probability. In this paper we will only consider
the relative entropy between the distributions and the number of samples needed
will be computed as

Samples needed =
1

D(D0‖D1)
.

A larger relative entropy means fewer samples for a successful distinguisher.

224 M. Hell and T. Johansson

3 Vectorial Representation of a Linear Approximation

In this section we consider the advantage of representing a biased linear relation
as a vector instead of as a binary relation. We give two propositions which will
lead us to a simple algorithm that helps us to find biased linear relations. Both
propositions follow from basic information theory.

Proposition 1. Let the vector (zt1 , zt2 , . . . , ztm) follow the size 2m distribution
D0. Let z = zt1 ⊕ zt2 ⊕ . . . ⊕ ztm follow the marginal distribution D′

0. Then

D (D0[x]‖D1[x]) ≥ D (D′
0[x]‖D′

1[x])

for some size 2m distribution D1 with corresponding marginal distribution D′
1.

Proof. Denote by a
(e)
i (0 ≤ i < 2m−1) the probabilities of the vectors in D0 with

even Hamming weight and correspondingly by a
(o)
i (0 ≤ i < 2m−1) the prob-

abilities of the vectors with odd Hamming weight. Similarly, the probabilities
of the vectors in distribution D1 will be denoted b

(e)
i and b

(o)
i (0 ≤ i < 2m−1)

respectively. Hence, we want to show that

∑

i

a
(e)
i log

a
(e)
i

b
(e)
i

+
∑

i

a
(o)
i log

a
(o)
i

b
(o)
i

≥
(
∑

i

a
(e)
i

)

log

∑
i a

(e)
i

∑
i b

(e)
i

+

(
∑

i

a
(o)
i

)

log

∑
i a

(o)
i

∑
i b

(o)
i

. (1)

Let E{·} denote the expected value. Jensen’s inequality states that for a strictly
convex function f and random variable X it holds that

E{f(X)} ≥ f(E{X}),

with equality if and only if X is a constant. We use the fact that t log t is a strictly
convex function and introduce αi = Pr(t log t = ti). If we consider only the first
term on the left hand side and right hand side of (1) and putting ti = a

(e)
i /b

(e)
i

we can write
∑

i

αi
a
(e)
i

b
(e)
i

log
a
(e)
i

b
(e)
i

≥
(
∑

i

αi
a
(e)
i

b
(e)
i

)

log
∑

i

αi
a
(e)
i

b
(e)
i

.

This will hold for any choice of αi as long as αi ≥ 0 and
∑

i αi = 1. Hence we
can put αi = b

(e)
i /
∑

i b
(e)
i and it follows that

∑

i

a
(e)
i log

a
(e)
i

b
(e)
i

≥
(
∑

i

a
(e)
i

)

log
∑

i a
(e)
i∑

i b
(e)
i

.

Doing the same thing for the second terms in (1) will end the proof. ��

Proposition 1 implies that we can never lose anything by considering a linear
approximation as a binary vector. Moreover, if the distribution of the vectors is
such that for all vectors with even Hamming weight the probability is the same
and for all vectors with odd Hamming weight the probability is the same, then
there is no additional gain in using vectorial representation. We continue the
analysis of vectorial representation with the following proposition.

On the Problem of Finding Linear Approximations 225

Proposition 2. Assume that we have a binary vectorial distribution of size 2m

denoted D0 and the size 2m uniform distribution D1. Adding a variable to the
length m vector that is statistically independent with all other variables will not
affect the relative entropy between two distributions. Furthermore, adding a vari-
able that is correlated with other variables will increase the relative entropy.

Proof. Let x = (x0, x1, . . . , xm−1). Using the chain rule for relative entropy we
write

D (D0[x, xm] ‖ D1[x, xm]) =

D (D0[x] ‖ D1[x]) + D (D0[xm|x] ‖ D1[xm|x])

where the last term is zero if and only if PrD0 [xm|x] = 1/2, xm ∈ {0, 1}. ��

In the next section we show how these results can be used to find biased linear
approximations of nonlinear blocks.

4 Finding a Biased Linear Approximation

In this section the theory developed in Section 3 is used to find biased linear
approximations. If we have a linear approximation xt1 ⊕xt2 ⊕ . . .⊕xtμ and add a
variable, xtμ+1 , that is uniformly distributed and statistically independent with
the other variables, the distribution of the resulting approximation is uniform
and the approximation is useless. It can not be used in a distinguisher. This is
the idea behind a common design principle in stream ciphers, i.e., masking the
output with some variable that is assumed to be uniformly distributed. Then the
output is guaranteed to be uniform. If we instead write the approximation as a
vector, (xt1 , xt2 , . . . , xtμ), then, according to Proposition 2, it does not matter
how many uniformly distributed and independent variables we add to the vector.
As long as all variables from the approximation are present, the relative entropy
will never decrease and the vector can be used in a distinguisher.

Consider a cipher containing a relatively small building block B. If the distri-
bution of the output bits, or the distribution of a linear equation of some output
bits, can be found, then it is easy to search through all linear relations in order
to determine which is most biased. However, as the amount of output bits to be
considered increases, the number of possible equations increases exponentially.
Considering m consecutive output bits there are 2m possible equations. If no
biased equation is found among these equations, one more output bit has to be
considered and an additional 2m equations has to be checked. If checking one
equation requires 2k computation steps, checking all equations involving m bits
will require a computational complexity of 2k+m. Instead, by considering the
output bits as a vector, the computational complexity will be limited to 2k. On
the other hand, the memory complexity will be 2m since the distribution of a
length m vector needs to be kept in memory.

Assume that the building block B has a biased linear relation involving
some of the output bits x0, x1, . . . , xm−1 with a significantly larger bias than

226 M. Hell and T. Johansson

any linear relation involving less than m consecutive output bits. Let xm =
(x0, x1, . . . , xm−1). Then

D (D0[xm] ‖ D1[xm]) � D (D0[xm−1] ‖ D1[xm−1]) . (2)

Hence, we can start with the vector x1 = (x0) and add one extra variable at a
time. If, at step m, considering the vector xm = (x0, x1, . . . , xm−1), the relative
entropy between the distribution of xm and the uniform distribution increases
significantly, we know that there is a biased linear relation involving at least the
bits x0 and xm−1. In order to find the other bits in the biased linear relation we
consider the vector x(i)

m which we define as the vector xm with the variable Xi

removed. If

D
(
D0[x(i)

m] ‖ D1[x(i)
m]
)

≈ D (D0[xm] ‖ D1[xm]) (3)

then the variable Xi is not present in the linear approximation. Note that we
do not use equality in (3) since the variable i can be present in some biased
linear relation but still not in the most biased relation. We are only interested
in the most biased relation and if the variable Xi is present in this relation the
decrease in relative entropy will be significant, not just approximate. Of course
we can continue increasing the length of the vector, hoping to find even better
linear approximations.

5 Application to the Stream Cipher Pomaranch Version 2

In this section we show how we can use the algorithm described in Section 4
to find a heavily biased linear relation in the stream cipher Pomaranch Version
2. We also show that the existence of this linear relation makes it possible to
mount both distinguishing and key recovery attacks on the cipher.

5.1 Description of Pomaranch

The attack described in this paper is independent of the initialization procedure.
Because of this, only the keystream generation of Pomaranch will be described
here. For a more detailed description of Pomaranch we refer to [5]. The 128-bit
variant of Pomaranch is based on 9 jump registers, denoted Ri (1 ≤ i ≤ 9), see
Fig 1.

All registers are identical and of length 14. Half of the register cells are normal
delay shift cells and half are feedback cells. The current operation of each cell
(shift or feedback) is determined by a jump control bit, JC. Each clock, every
jump register is updated in one of two ways. The state is multiplied by the
transition matrix A (JC = 0), or it is multiplied by A + I (JC = 1). The
state of the registers R1 to R8 are filtered through a key dependent function,
fKi , producing outputs c1 to c8. The key is divided into 8 parts of 16 bits each
and part i is used in fKi . The jump control for register i, denoted JCi, is then
calculated as

JCi = c1 ⊕ . . . ⊕ ci−1, (i = 2, . . . , 9).

On the Problem of Finding Linear Approximations 227

JC1(t)JC2(t)JC3(t)JC8(t)JC9(t)

z(t)

R1R2R3R8R9

Fig. 1. Overview of Pomaranch (128-bit variant)

The jump control for the first register, JC1 is always set to 0. The keystream
at time t, denoted z(t), is taken as the binary xor of all 9 bits at position 13,
denoted ri(t), in the registers. The 80-bit version is identical to the 128 bit
version except that the number of registers is 6 instead of 9.

The design of the second version of Pomaranch is similar to the first version.
The differences are the transition matrix A and the choice of taps taken to the
function fKi . Also the IV setup has been changed in order to resist the chosen
IV attack in [1].

5.2 Previous Attack on Pomaranch Version 1

The size of the registers is only 14. This suggests that it might be possible to
mount a divide-and-conquer kind of attack on the cipher. Since the registers
are updated linearly each new output bit will be linearly dependent on the
initial state bits. Hence, for any given JC-sequence of length 14 there will be
a linear relation in 15 output bits that will always hold, i.e., there is an array

 = (
0,
1, . . . ,
14),
i ∈ {0, 1} such that

∑14
i=0
ir(t + i) = 0. It was shown

in [8] that these relations are not evenly distributed among all possible 214 JC-
sequences of length 14. Hence, assuming that the JC-sequence is purely random,
there will be linear relations in the output bits that are biased. The short register
length allows for exhaustive search among all relations and the most biased
relation could easily be found.

5.3 New Attack on Pomaranch Version 2

In this section we show that it is still possible, using our proposed algorithm,
to find linear relations in the output bits that can be used in an attack. In [7]
a theoretical analysis was done based on the attack in [8]. Let C(x) be the
characteristic polynomial of A. Then for a given jump control sequence we have
the equality

L∑

i=0

ix
i−ki(x + 1)ki = C(x),

228 M. Hell and T. Johansson

for all 214 − 1 initial states
for all 2i−1 possible JC-sequences

clock the jump register i − 1 times
Dist[(z0, . . . , zi−1)]++

end for
end for

Fig. 2. Algorithm to find the distribution for i consequtive output bits. The actual
implementation can be recursive to make it faster.

where ki is the binary weight of the vector (JC(t), . . . , JC(t+ i−1)). Using this
equality a straightforward O(L) approach to find the values of
i was described,
giving the linear relation for this particular jump control sequence. Hence the
most common linear relation among the 2L sequences was found in O(L2L). The
problem with this analysis is that it only considers relations of length L+1. The
same analysis is not applicable to relations involving bits further apart since the
characteristic polynomial of A is of degree L. Consequently, the design param-
eters for Pomaranch Version 2 are optimized for the cipher to resist correlation
attacks based on relations of length L + 1 and it successfully does so.

Unfortunately it is not enough to only consider these relations. It is possible
that there are relations involving bits further apart that are more biased than
any relation involving only bits L + 1 positions apart. The algorithm proposed
in Section 4 seems very suitable for Pomaranch. The shift registers are of length
14 which is easy to search exhaustively. Moreover, all registers are identical.
Register R1 will have JC1(t) = 0, ∀t and will thus behave like a regularly
clocked shift register with primitive feedback polynomial. Hence, the register
R1 will not be considered using our algorithm. Instead, it will be exhaustively
searched. Registers Ri (2 ≤ i ≤ 9) will have JCi determined by a key dependent
function. Since these registers are identical, finding a biased linear approximation
in the output bits of one register means that all other registers (except R1) will
have this biased approximation. In order to find a good approximation, we look
at vectors of consecutive output bits. When calculating the bias of these vectors,
the following three assumptions will be used:

1. All states of the registers will have the same probability, except the all-zero
state which has probability 0.

2. All JC-sequences will have the same probability.
3. All jump sequences, JCi (2 ≤ i ≤ 9), are independent.

Since the shift registers are of length 14, the first vector length we check is 15.
The algorithm used to find the distribution for i consequtive output bits are given
in Figure 2. The output of Pomaranch is given as the XOR of the output bits of
the registers. Hence, we need to find the bias of the xor of all 8 distributions. For k

On the Problem of Finding Linear Approximations 229

Table 1. Relative entropy between output vectors and the random distribution

Vector Length D(D0‖D1)

15 2−111.914

16 2−108.603

17 2−107.671

18 2−107.108

19 2−75.849

20 2−74.849

21 2−74.264

22 2−73.849

23 2−73.527

Table 2. Relative entropy when bit i is excluded from the vector x19

i x
(i)
19 i x

(i)
19

1 2−75.851 10 2−75.849

2 2−105.383 11 2−75.849

3 2−75.849 12 2−75.849

4 2−75.849 13 2−75.849

5 2−76.077 14 2−75.849

6 2−105.264 15 2−75.849

7 2−75.849 16 2−75.849

8 2−75.849 17 2−76.849

9 2−75.849

distributions, this can easily be done in O(k22n) time, where n is the size in bits
for each random variable. This can be a bottleneck if the vectors are very large.
A much more efficient algorithm for finding the distribution of a sum of random
variables was given in [9]. They show that the distribution for Pr(X1⊕X2⊕. . .⊕
Xk) can be found in O(kn2n) time where all Xi are n-bit random variables. This
algorithm was adopted in our implementation. The relative entropies between
the vectors of length 15 to 23 and the random distribution have been given in
Table 1.

We see that D(D0‖D1) increases significantly when the vector reaches length
19. The fact that D(D0‖D1) is much higher for xi (i ≥ 19) tells us that there
might exist a heavily biased linear approximation involving the bits x0, x18 and
zero or more bits xi (1 ≤ i ≤ 17). To find the particular linear approximation that
allows us to attack the cipher we look at D

(
D0[x

(i)
19] ‖ D1[x

(i)
19]
)
, as suggested

by our proposed algorithm. The result is given in Table 2.

230 M. Hell and T. Johansson

We see that when X2 or X6 are removed, the relative entropy is almost as
when x18 was considered. This implies that the heavily biased linear relation is

z(t) ⊕ z(t + 2) ⊕ z(t + 6) ⊕ z(t + 18) = 0. (4)

It is possible that the figures in Table 2 stems from the fact that the vector
(z(t), z(t + 2), z(t + 6), z(t + 18)) is heavily biased but the xor of the variables
has a much smaller bias or even no bias at all. However, checking the relative
entropy between (4) and random, which is 2−77.080, confirms that the figures in
Table 2 stems from the biased linear relation. In any cipher, constructed using
jump registers together with some other function, this relation would have been
an important part of linear cryptanalysis. In the specific case of Pomaranch,
which uses the output bits from the jump registers immediately in the output
function it is even better to consider the total vector of as many bits as possible,
since this will give us more information. Though, most of this information stems
immediately from this relation. The discovery of the biased linear relation given
by our algorithm may help the designers to get additional theoretical knowledge
about the design principle of the Pomaranch family of stream ciphers.

5.4 Distinguishing and Key Recovery Attacks

In this section we give the details and complexities of the attacks on Pomaranch
Version 2. Using output vectors of length 23, which is the largest vectors we
were able to find the distribution for, the relative entropy D(D0[x23]‖D1[x23]) =
2−73.527. The amount of keystream needed in order to distinguish these distribu-
tions is about 1/D(D0[x23]‖D1[x23]) = 273.527. Note that the output of register
R1, which always has its jump control sequence JC1(t) = 0 ∀t, is not considered
in these distributions. Instead the starting state of this register is guessed in the
attack. This will add a factor of 214 to the computational complexity. Hence,
a distinguishing attack on Pomaranch Version 2 can be mounted using 273.527

keystream bits and a computational complexity of 273.527214 = 287.527.
This proposed distinguisher can be turned into a key recovery attack by guess-

ing 16 bits of the key at a time. By mounting the distinguishing attack we will
obtain the state of register R1. In the next step we guess the 16 key bits used in
the function fK1 and the 14 bit state of register R2. The stream generated by
the other 7 registers now have relative entropy 2−63.897 compared to the random
distribution. The computational complexity for finding the 16 bits of the key will
be 263.897230 = 293.897. Finding the remaining bits will have lower complexity
since the bias will increase as we know more register states while we still have to
guess 30 bits each time. Hence the key recovery attack will succeed with 273.527

keystream bits and computational complexity 293.897. The 80-bit hardware ori-
ented variant of Pomaranch Version 2 has the same structure as the 128-bit
variant with the exception that only 6 registers are used. The corresponding
distinguishing attack on the 80-bit version will require 244.587 bits of keystream
and a computational complexity of 258.587. The key recovery attack will require

On the Problem of Finding Linear Approximations 231

Table 3. Complexities of the attacks proposed in this paper

Attack Complexities

Type of
Variant

Amount of Computational
Attack keystream needed Complexity

Distinguishing 80 bits 244.587 258.587

Attack 128 bits 273.527 287.527

Key recovery 80 bits 244.587 264.882

Attack 128 bits 273.527 293.897

244.587 keystream bits and has a computational complexity of 264.882. Table 3
summarizes all proposed attacks on Pomaranch Version 2 and the corresponding
complexities.

6 Simulation Results

When the distribution for the output vectors was theoretically calculated, we
assumed that the initial states had the same probability, that all jump control
sequences had the same probability and that all jump control sequences JCi

(2 ≤ i ≤ 9) were independent. To verify these assumptions, the real distribution
was simulated for scaled down variants of the cipher. An interesting question
here is the amount of samples that is needed in the simulation. Let the simulated
distribution of the output from the jump registers be denoted D∗

0 . As before,
the theoretical distribution using the assumptions above is denoted D0 and the
uniform distribution is denoted D1. The size of the distributions is denoted |X |.
We use the following theorem taken from [2].

Theorem 1. Let X1, X2, . . . , Xn be independent and identically distributed ac-
cording to D0. Then

Pr{D(D∗
0‖D0) > ε} ≤ 2−n(ε−|X | log(n+1)

n). (5)

If D(D0‖D1) = μ, then ε ≤ μ/2. To reach the amount of samples where the
error probability in (5) is less than or equal to 1, n should satisfy

n

(
μ/2 − |X | log(n + 1)

n

)
≥ 0 ⇒ n

log(n + 1)
≥ 2|X |

μ
. (6)

It is clear that the amount of samples needed increases exponentially with the
vector length and in order to be able to simulate more than one register, we
chose to simulate the distribution for the linear relation (4) instead of vectors.
(Note that in the hypothesis test used in the cryptanalysis, this is not the case.
The amount of samples needed then is still in the order of 1/D(D0‖D1). Stein’s
lemma is still applicable.) We found the distribution for 1, 2 and 3 registers.

232 M. Hell and T. Johansson

Table 4. Simulated values for the distributions

Jump Registers D(D0‖D1)

Used Theoretical Simulated

1 2−10.05 2−9.82

2 2−19.62 2−19.36

3 2−29.20 2−29.27

Using a random key, register R1 was fed with the all zero JC-sequence. The
output was taken as the xor of the output of the other registers, i.e. R2, R2 ⊕R3

and R2 ⊕R3 ⊕R4 respectively. In all cases, the amount of samples used was 239

which, according to (6), should be enough. The simulated values for the relative
entropy can be found in Table 4. From the simulated values, we conclude that the
assumptions made in the calculation of the theoretical distributions are valid at
least up to 3 registers. From this it should be safe to assume that the theoretical
distributions are valid also up to 8 registers. Thus, the theoretical distributions
can be used in the hypothesis test.

7 Pomaranch Version 3

Following the results given in a preliminary version of this paper, the designers
of Pomaranch proposed a new, improved version of Pomaranch, denoted Po-
maranch Version 3 [6]. Before we conclude, we briefly look at the design of this
version and see how our results apply to it.

The overall design is kept almost the same but there are a few important
changes. First, the length of the registers is increased to 18 instead of 14 as in
Version 2. Second, there are two different register types used. Register type 1 is
used in the odd numbered jump registers and type 2 is used in the even numbered
registers. The two types differ in both feedback polynomials and selection of
S-cells and F-cells. A third change is that, in the 80-bit variant, the xor of the
outputs from registers 1 to 5 is replaced with a nonlinear function G. The output
of G is then xored with the output of register 6 to form the keystream.

Considering binary linear relations in the output bits of the registers, even if a
highly biased relation is found it is very likely that this relation will be different
for the two types of registers. Combining these two relations in order to get a
biased sum of keystream bits will result in an extremely small bias. A second
option is to find the same biased linear relation in both registers. However, what
is highly biased in one register might have a small bias in the other. By instead
considering binary vectors as have been done in this paper, the fact that there are
two different types of registers is not a problem. The same variables will be used
in vectors from both types of registers and the information from the most biased
linear relation will be in each vector. Though, for the attack to be successful, it
is still required that the vectors have a high bias. We have computed the bias
of output vectors of different lengths for 8 registers, 4 of each type, and it is

On the Problem of Finding Linear Approximations 233

clear that the resulting bias is too low. The approach which proved to be very
successful on Pomaranch Version 2 will not be successful on Version 3 and we
can conclude that Pomaranch Version 3 is immune to the attack described in
this paper.

8 Conclusion

We proposed a new simple algorithm that can be helpful in finding linear approx-
imations of a nonlinear block. The algorithm is suitable for small blocks that can
be exhaustively searched. As an example we demonstrate how to find a heavily
biased linear approximation for the stream cipher Pomaranch Version 2. The
linear approximation gives us information that can be used in a distinguishing
or a key recovery attack. In the specific case of Pomaranch, we could get even
more information by considering the full vector of output bits instead of just
the linear relation provided by our algorithm. In a different setting, the linear
relation might be used as a part of the cryptanalysis, possibly involving more
building blocks. The linear relation provided by our algorithm might help get-
ting a better theoretical understanding of the design principles of the Pomaranch
family of stream ciphers. This further theoretical analysis is left as future work.

References

1. Cid, C., Gilbert, H., Johansson, T.: Cryptanalysis of Pomaranch. IEE Proceedings -
Information Security 153(2), 51–53 (2006)

2. Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley series in Telecom-
munication. Wiley (1991)

3. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/

4. Jansen, C.J.A, Helleseth, T., Kholosha, A.: Cascade jump controlled sequence gen-
erator (CJCSG). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/022

5. Jansen, C.J.A., Helleseth, T., Kholosha, A.: Cascade jump controlled sequence gen-
erator and Pomaranch stream cipher (version 2). eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/006 (2006), http://www.ecrypt.eu.org/stream

6. Jansen, C.J.A, Helleseth, T., Kholosha, A.: Cascade jump controlled sequence gener-
ator and Pomaranch stream cipher (version 3). eSTREAM, ECRYPT Stream Cipher
Project (2006), http://www.ecrypt.eu.org/stream

7. Jansen, C.J.A., Helleseth, T., Kholosha, A.: Pomaranch - design and analysis of a
family of stream ciphers. In: The State of the Art of Stream Ciphers, Workshop
Record, SASC 2006, Leuven, Belgium (February 2006)

8. Khazaei, S.: Cryptanalysis of pomaranch (CJCSG). eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/065 (2005), http://www.ecrypt.eu.org/stream

9. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic applications. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
313–332. Springer, Heidelberg (2005)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Multi-pass Fast Correlation Attack on

Stream Ciphers�

Bin Zhang and Dengguo Feng

State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences,

Beijing 100080, P.R. China
martin zhangbin@yahoo.com.cn

Abstract. Fast correlation attacks are one of the most important at-
tacks against stream ciphers. Previous results on this topic mainly regard
the initial state of the involved linear feedback shift register as a whole
and only use one sort of parity-checks to decode the corresponding linear
code. In this paper we propose a new kind of attack, called multi-pass fast
correlation attack, on stream ciphers. This kind of attack can make good
use of different kinds of parity-checks without increasing the asymptotic
complexity and restore the initial state part-by-part. It has no restriction
on the weight of the underlying linear feedback shift register and both
theoretical analysis and simulation results show that it is more efficient
than all the previously known fast correlation attacks.

Keywords: Stream cipher, Fast correlation attack, Linear feedback shift
register (LFSR), Parity-check.

1 Introduction

Stream ciphers are an important class of encryption algorithms. They are widely
used in many applications and a deliberately designed stream cipher is often
more efficient than a block cipher in software and/or in hardware. However, the
security of stream ciphers has not been widely and deeply studied as what have
been done for block ciphers. It is helpful to launch new attacks on stream ciphers
since the security of a cipher can only be measured by attacks.

So far, several kinds of attacks have been developed against stream ciphers,
e.g. (fast) correlation attacks [2,3,4,10,11,14,16,17,19,21,23,24,26], (fast) alge-
braic attacks [1,6,7]. A popular and powerful approach to attack stream ciphers
is to exploit different kinds of correlations between the keystream and some
subset of the involved LFSRs. In a known plaintext scenario, these correlations
can be used to restore the secret keys, usually the initial states of some LF-
SRs, from the keystream. The original idea was proposed by Siegenthaler [26]
in 1984. Since then, many improvements have been made, producing more and
� Supported by the National Natural Science Foundation of China (Grant No.
90604036, 60603018, 60373047) and the National Grand Fundamental Research 973
program of China (Grant No. 2004CB318004).

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 234–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-pass Fast Correlation Attack on Stream Ciphers 235

 0 0

 1 1

ia
p−1
p−1

p

p

iz
LFSR

BSC

Fig. 1. Model for a fast correlation attack

more powerful fast correlation attacks [2,3,4,14,16,17,21,23,24] on LFSR-based
stream ciphers. Not only the nonlinear combination generators but also the non-
linear filter generators, irregularly clocked generators [29], and many variations
[5,18] are vulnerable to such a attack under proper conditions. In most articles,
the corresponding cryptanalysis problem is viewed as a decoding problem as
shown in Figure 1. In such a model, the output keystream {zi} is regarded as a
noisy version of the LFSR sequence {ai} and the nonlinearity introduced either
by nonlinear boolean function or by other methods is represented as a binary
symmetric channel (BSC) with crossover probability 1 − p = 0.5 − ε (ε > 0). In
theory, any decoding algorithm can be applied to recover the initial state of the
target LFSR, or to restore the original LFSR sequence.

Common fast correlation attacks are classified into iterative algorithms and
one-pass algorithms. In an iterative attack, each zi is associated with a priori
probability p = 0.5 + ε, which is updated using parity-checks. These soft-values
are used to modify zi until the BSC noise is removed. In a one-pass attack, the
parity-checks are used to directly select some correct bits of {ai} from {zi}. If
the number of these selected bits is larger than the length of the LFSR, then the
initial state can be reconstructed by simple linear algebra. As a summary, the
above two approaches all aim at recovering the initial state at one time, though
they follow different rules. In fact, all the known fast correlation attacks except
that in [3] regard the initial state of the underlying LFSR as a whole, while
the attack in [3] is just a preliminary attempt which is less efficient than some
attacks targeting the whole initial state [2,4,23,24].

In this paper, we propose new techniques to mount a fast correlation attack on
stream ciphers, resulting in a new kind of attack called multi-pass fast correlation
attack. Oppositely to the above two approaches, we combine the divide-and-
conquer idea with fast correlation attack. More precisely, we first determine some
bits of the initial state in one pass, then find out some other bits in a second pass
conditioned on both the keystream and the known bits. Following this routine,
we hope to recover the whole initial state step-by-step. In addition, we propose
the concept of parity-check schedule to cooperate with the multi-pass attack, i.e.
we deploy different kinds of parity-check equations originating from the same
idea in different passes. The overall asymptotic complexity of the parity-check
schedule is not increased by constructing more than one kind of parity-checks.
The theoretical analysis shows that our attack can deal with large LFSRs with
correlations very close to 0.5. Comparisons with other known fast correlation

236 B. Zhang and D. Feng

attacks reveal that our algorithm achieves the best trade-off between keystream
length, success probability, and complexities (time, memory and preprocessing).
Experimental results confirm the high efficiency of the new attack.

The rest of this paper is organized as follows. A detailed description of the
multi-pass fast correlation attack is given in Section 2 together with theoretical
analysis. In Section 3, simulation results and comparisons with the best two
[24,4] fast correlation attacks are provided. Finally, some conclusions are given
in Section 4.

2 Multi-pass Fast Correlation Attack

We first present a outline of the proposed multi-pass fast correlation attack,
then a description of the attack is given in detail with theoretical analysis. A
potential application of our algorithm beyond the model shown in Figure 1 is
also presented at the end of this section.

2.1 Outline of Multi-pass Fast Correlation Attack

The basic idea of the attack presented here is to launch a divide-and-conquer
attack to restore the initial state. We divide the initial state (a0, a1, · · · , aL−1)
of the target LFSR into several parts and plan to recover them one-by-one, as
shown in (1).

(a0, · · · , ak(1)−1︸ ︷︷ ︸
k(1)

, ak(1) , · · · , ak(1)+k(2)−1︸ ︷︷ ︸
k(2)

, ak(1)+k(2) , · · ·
︸ ︷︷ ︸

...

, · · · , aL−1) (1)

We first recover the first part (k(1)-bit length) of the initial state, then proceed
to determine the second part (k(2)-bit length) conditioned on both the first part
and the keystream. In this way, we can get an efficient attack without the heavy
preprocessing as required by previous attacks for efficient decoding.

Preprocessing Stage. As other fast correlation attacks, we need to pre-compute
the parity-checks required by the real time processing stage. In the preprocess-
ing stage of a multi-pass fast correlation attack, we construct various parity-check
equations, as shown below.

ai1 ⊕ ai2 ⊕ · · · ⊕ ait1
=

k(1)−1∑

i=0

x
(1)
i ai ⇀ first pass

aj1 ⊕ aj2 ⊕ · · · ⊕ ajt2
⊕

k(1)−1∑

i=0

x
′(1)
i ai =

k(1)+k(2)−1∑

i=k(1)

x
(2)
i ai ⇀ second pass

...

al1 ⊕ al2 ⊕ · · · ⊕ altm
⊕

δ−1∑

i=0

yiai =
δ+k(m)−1∑

i=δ

x
(m)
i ai,⇀ mth pass

Multi-pass Fast Correlation Attack on Stream Ciphers 237

where δ =
∑m−1

i=1 k(i) (m ≥ 2), ti ≤ t1 (for 2 ≤ i ≤ m) and
∑δ−1

i=0 yiai is a known
linear combination of the recovered bits. In the first pass of the processing stage,
we use parity-checks of the form ai1 ⊕ ai2 ⊕ · · ·⊕ ait1

⊕
∑k(1)−1

i=0 x
(1)
i ai = 0, while

in the second pass, aj1 ⊕aj2 ⊕· · ·⊕ajt2
⊕
∑k(1)−1

i=0 x
′(1)
i ai⊕

∑k(1)+k(2)−1
i=k(1) x

(2)
i ai = 0

is applied, and so on.

Definition 1. We call such a application schedule of different parity-check equa-
tions in different passes of the attack a parity-check schedule.

For p < 0.55 in Figure 1, we only use parity-check equations with ti ≤ 4, oth-
erwise the folded noise will drop so close to 0.5 that an efficient decoding is
impossible. For N keystream bits, if ti ≤ 3, we use the traditional square-root
time-memory tradeoff to construct the above equations, the time and memory
complexity are O(N �(ti−1)/2�log2N) and O(N �(ti−1)/2�), respectively. If ti = 4,
we adopt the general match-and-sort algorithm in [4] to get these equations
(though the usage and meaning of these parity-checks are different in [4]). The
time complexity is O(N2log2N) and the memory complexity is O(N). To prepare
all the parity-checks involved in the parity-check schedule, we have to add the
complexity of constructing parity-checks for each pass together. Compared with
the complexity of preparing one sort of parity-checks, the overall complexity of
a parity-check schedule is increased only by a small factor m. In most cases of
our algorithm, the number of parity-checks involved in pass i + 1 is much less
than that involved in pass i, thus the asymptotic complexity of the parity-check
schedule is not increased.

Processing Stage. This stage consists of several passes. In each pass, we ex-
haustively search over the current segment of the initial state and evaluate the
parity-checks to record those possible values passing the test as candidates of
the corresponding bits. If the current pass is not the last one, we should pass
these candidates to the next pass. The bits remain unknown after all the passes
can be recovered by an exhaustive search at a small scale and a correlation check
procedure.

2.2 Attack Details and Theoretical Analysis

Let f(x) of degree L be the feedback polynomial of the LFSR modelled in Figure
1 and P (ai = zi) = p = 1

2 + ε, ε > 0. From the initial state (a0, a1, · · · , aL−1),
we have (a0, · · · , aL−1, aL, · · · , aN−1) = (a0, a1, · · · , aL−1) · G, where N is the
length of sequence {ai} under consideration and G is a L×N matrix over GF (2):

G =

⎛

⎜
⎜
⎜
⎝

g1
0 g1

1 · · · g1
N−1

g2
0 g2

1 · · · g2
N−1

...
... · · ·

...
gL
0 gL

1 · · · gL
N−1

⎞

⎟
⎟
⎟
⎠

.

Thus each ai is a linear combination of (a0, a1, · · · , aL−1). We regard the col-
umn vector gi = (g1

i , g
2
i , · · · , gL

i)T as a random vector, then there are Ω(1) =

238 B. Zhang and D. Feng

(
N
t1

)
/2L−k(1)

t1-tuple column vectors (gi1 , gi2 , . . . , git1
) satisfying gi1 ⊕ gi2 ⊕· · ·⊕

git1
= (x(1)

0 , x
(1)
1 , · · · , x

(1)

k(1)−1
, 0, · · · , 0)T , where ⊕ is bitwise xor and (x(1)

0 , x
(1)
1 ,

· · · , x
(1)

k(1)−1
) is a k(1)-dimension vector with k(1) < L. For each such t1-tuple,

we have ai1 ⊕ ai2 ⊕ · · · ⊕ ait1
=
∑k(1)−1

j=0 x
(1)
j aj . We rewrite it as:

zi1 ⊕ zi2 ⊕ · · · ⊕ zit1
=

k(1)−1∑

j=0

x
(1)
j aj ⊕

t1∑

j=1

eij , (2)

where ej = aj ⊕ zj(j = i1, · · · , it1) is the corresponding random noise variable
with distribution P (ej = 0) = 1

2 +ε. The basic distinguisher in pass one is that if
we exhaustively search all the possible values of (a0, a1, · · · , ak(1)−1), then from
(2), we have

zi1 ⊕ zi2 ⊕ · · · ⊕ zit1
⊕

k(1)−1∑

j=0

x
(1)
j a′

j =
k(1)−1∑

j=0

x
(1)
j · (aj ⊕ a′

j) ⊕
t1∑

j=1

eij , (3)

where (a′
0, a

′
1, · · · , a′

k(1)−1
) is the guessed value. Let Δ(i1, · · · , it1) =

∑k(1)−1
j=0 x

(1)
j

·(aj⊕a′
j)⊕
∑t1

j=1 eij , it is obvious that if (a0, a1, · · · , ak(1)−1) is correctly guessed,
we have Δ(i1, · · · , it1) =

∑t1
j=1 eij . All the ej’s are independent random vari-

ables, thus from the piling-up lemma [20],

q(1) = P (
t1∑

j=1

eij = 0) =
1
2

+ 2t1−1εt1 (4)

holds. If (a0, a1, · · · , ak(1)−1) is wrongly guessed, Δ(i1, · · · , it1) =
∑

j:aj⊕a′
j=1

x
(1)
j ⊕

∑t1
j=1 eij . Since x

(1)
j is the xor of t1 independent uniform distributed vari-

ables, we have P (xj = 0) = P (xj = 1) = 0.5. Hence, when (a0, a1, · · · , ak(1)−1)
is wrongly guessed, Δ(i1, · · · , it1) have the distribution P (Δ = 0) = 0.5, which
is quite different from that in (4). For Ω(1) such equations as (3) built from
all the t1-tuples (gi1 , gi2 , . . . , git1

), if (a0, a1, · · · , ak(1)−1) is correctly guessed,
∑Ω(1)

i=1 (Δ(i1, · · · , it1) ⊕ 1) should follow the binomial distribution (Ω(1), q(1)).
Otherwise, this sum should have the binomial distribution (Ω(1), 1

2), which can
be used to filter out the wrong guesses of (a0, a1, · · · , ak(1)−1).

To fulfill the above observations, we need to substitute zi into the parity-
check equations and evaluate them to count the number of the vanishing Δs.
The straightforward method has a time complexity of O(2k(1)

k(1)Ω(1)), which
causes an inefficient attack. Instead we proceed as follows. First regroup Ω(1)

parity-check equations according to the pattern of (x(1)
0 , x

(1)
1 , · · · , x

(1)

k(1)−1
) and

define

h(x(1)
0 , x

(1)
1 , · · · , x

(1)

k(1)−1
) =

∑

(x
(1)
0 ,x

(1)
1 ,··· ,x(1)

k(1)−1
)

(−1)zi1⊕zi2⊕···⊕zit1

Multi-pass Fast Correlation Attack on Stream Ciphers 239

for all the (x(1)
0 , x

(1)
1 , · · · , x

(1)

k(1)−1
) patterns appearing in the Ω(1) parity-check

equations. If a pattern of (x(1)
0 , x

(1)
1 , · · · , x

(1)

k(1)−1
) does not appear in all the

Ω(1) equations, we define h(x(1)
0 , x

(1)
1 , · · · , x

(1)

k(1)−1
) = 0 at that point. Thus we

have a well-defined function h : GF (2)k → R. Consider the Walsh transform of
h(x(1)

0 , x
(1)
1 , · · · , x

(1)

k(1)−1
), i.e.

H(ω) =
∑

x∈GF (2)k(1)

h(x)(−1)ω·x (5)

=
∑

Ω(1)

(−1)zi1⊕zi2⊕···⊕zit1
⊕∑k(1)−1

j=0 ωjx
(1)
j = Ω

(1)
0 − Ω

(1)
1 ,

where ω = (ω0, ω1, · · · , ωk(1)−1), x = (x(1)
0 , x

(1)
1 , · · · , x

(1)

k(1)−1
), Ω

(1)
0 and Ω

(1)
1 are

the number of 0 and 1, respectively. Note that if ω = (a0, a1, · · · , ak(1)−1), we
have

Ω(1)∑

j=1

(Δ(i1, · · · , it1) ⊕ 1) =
H(ω) + Ω(1)

2
. (6)

Hence, for each guessed value (a′
0, a

′
1, · · · , a′

k(1)−1
), we only need to compute one

value of h’s Walsh transform to get the number of vanishing Δs. There are 2k(1)

such guesses, which means that we need to compute all the 2k(1)
values of h’s

Walsh transform. Thanks to the fast Walsh transform (FWT) [13,28], this can
be done efficiently (at one time) in O(2k(1)

k(1)) time with O(2k(1)
) memory. The

preparation of h takes O(Ω(1)) time, thus the total time complexity of this step
is O(Ω(1)+2k(1)

k(1)). Compared with the time complexity of the former method,
O(2k(1)

k(1)Ω(1)), this is a large improvement.
Instead of taking the guess with the largest H(ω), we put a threshold value

T (1) of H(ω) when we make a decision, i.e. we accept all the guesses that satisfy
(H(ω) + Ω(1))/2 ≥ T (1) at the first pass. The probability that the right guess
could pass this test is (here we use the normal distribution approximation):

P
(1)
1 =

Ω(1)
∑

i=T (1)

(
Ω(1)

i

)
(q(1))i(1 − q(1))Ω(1)−i →

∫ Ω(1)+0.5

T (1)

1√
2πσ

e−
(x−μ)2

2σ2 dx, (7)

and the probability that a wrong guess would pass the test is

P
(1)
2 =

Ω(1)
∑

i=T (1)

(
Ω(1)

i

)
(
1
2
)Ω(1) →

∫ Ω(1)+0.5

T (1)

1√
2πσ′ e

− (x−μ′)2
2σ′2 dx, (8)

where T (1) is the threshold to be determined according to various attack require-
ments specified below. In (7), μ = Ω(1) ·q(1) and σ =

√
Ω(1)q(1)(1 − q(1)) are the

240 B. Zhang and D. Feng

mean and the standard deviation, respectively, while in (8), μ′ = Ω(1) · 1
2 and

σ′ = 1
2

√
Ω(1) are the mean and the standard deviation in the random wrong guess

case. If the guess (a′
0, a

′
1, · · · , a′

k(1)−1
) leads to H(a′

0, a
′
1, · · · , a′

k(1)−1
) ≥ T (1), we

accept it into the next pass, otherwise we filter it out right now. It is naturally
expected that P

(1)
1 is very close to 1 so that the right guess could pass the test

with high probability and P
(1)
2 is very small so that all the wrong guesses could

be frustrated, or at least reduced to a large extent.
The introduction of the threshold T (1) provides large flexibility when we ac-

tually construct a fast correlation attack. Here we list four useful cases.

Case 1. P
(1)
1 > 0.99 and P

(1)
2 < 2−k(1)

. The right guess will almost certainly
be accepted and none of the wrong guesses could pass the test, i.e. we already
restored k(1) bits of the initial state.
Case 2. P

(1)
1 > 0.99 and P

(1)
2 ≈ 2−k

(1)
1 with k

(1)
1 < k(1). The right guess will

pass the test with high probability together with some wrong guesses, i.e. we
have a small list of candidates of the k(1) considered bits.
Case 3. P

(1)
1 < 0.99 and P

(1)
2 < 2−k(1)

. None of the wrong guesses could pass
the test, while the right guess will go through the test with some probability, i.e.
we will get no candidate in some tests. In this case, we have to repeat the whole
attack several times to get a high success rate.
Case 4. P

(1)
1 < 0.99 and P

(1)
2 ≈ 2−k

(1)
1 with k

(1)
1 < k(1). We will always get

some candidates in this case, though some may be wrong. In this case, we will
finally get a list of candidates of the initial state, which are to be checked by
correlation match.

These four cases can be applied according to different attack conditions and
requirements. If Case 1 can work, then we just choose T (1) such that we have
already recovered k(1) bits. If P

(1)
1 > 0.99 and P

(1)
2 < 2−k(1)

cannot be satisfied
at the same time, then other cases are also helpful, e.g. if Case 2 can work,
then we have already reduced the possible values of the k(1) bits to some extent,
while we have large flexibility to construct parity-check equations used in the
next pass. In this case, we can reduce the keystream length used in the next pass
without a compromise of the magnitude of parity-check equations.

Once we finished the first pass, we enter the second pass to determine the
next k(2) bits of the initial state conditioned on both the keystream and the
recovered information. From the parity-check schedule specified in Section 2.1,
the distinguisher becomes

Δ(j1, · · · , jit2
) = zj1 ⊕ zj2 ⊕ · · · ⊕ zjt2

⊕
k(1)−1∑

i=0

x
′(1)
i ai ⊕

k(1)+k(2)−1∑

j=k(1)

x
(2)
j a′

j (9)

=
k(1)+k(2)−1∑

j=k(1)

x
(2)
j (aj ⊕ a′

j) ⊕
t2∑

j=1

eij ,

Multi-pass Fast Correlation Attack on Stream Ciphers 241

where
∑k(1)−1

i=0 x
′(1)
i ai is a known parameter and (a′

k(1) , · · · , a′
k(1)+k(2)−1

) is the

guessed value of the next k(2) bits. There are Ω(2) =
(
N2
t2

)
/2L−k(1)−k(2)

parity-
check equations used in the second pass, where N2 ≤ N is the keystream length
involved in the second pass. The distinguisher works in the same way as that in
the first pass, i.e. we exhaustively substitute each (a′

k(1) , · · · , a′
k(1)+k(2)−1

) into
Ω(2) parity-check equations and evaluate them to count the number of vanishing
Δs. If the guess is correct,

∑Ω(2)

i=1 (Δ(j1, · · · , jt2) ⊕ 1) should follow the binomial
distribution (Ω(2), q(2) = 0.5 + 2t2−1εt2), otherwise it has binomial distribution
(Ω(2), 0.5). In this way, we can filter out the wrong guesses. As in the first pass,
we define

h(2)(x(2)

k(1) , · · · , x
(2)

k(1)+k(2)−1
) =

∑

(x
(2)

k(1) ,··· ,x(2)

k(1)+k(2)−1
)

(−1)zj1⊕···⊕zjt2
⊕∑k(1)−1

i=0 x
′(1)
i ai

according to the pattern of (x(2)

k(1) , · · · , x
(2)

k(1)+k(2)−1
). If a pattern of (x(2)

k(1) , · · ·
, x

(2)

k(1)+k(2)−1
) does not appear in the Ω(2) parity-check equations, let h(2) = 0

at that point. As before, we use the fast Walsh transform of h(2) to compute all
the
∑Ω(2)

i=1 (Δ(j1, · · · , jt2) ⊕ 1) = (H(2)(ω) + Ω(2))/2 at one time, where H(2) is
the Walsh transform of h(2) and ω = (a′

k(1) , · · · , a′
k(1)+k(2)−1

).

The time and memory complexity of the second pass are O(2k(2)
k(2) + Ω(2))

and O(2k(2)
), respectively. As in pass one, we put another threshold value T (2) to

make a decision, i.e. if one guessed value a′
k(1) , · · · , a′

k(1)+k(2)−1
leads to (H(2)(a′

k(1)

, · · · , a′
k(1)+k(2)−1

) + Ω(2))/2 ≥ T (2), we accept it into the third pass. Otherwise
discard it. In order to get an efficient attack, in the second pass as well as in the
consequent passes, we only let Case 1 (P (i)

1 > 0.99 andP
(i)
2 < 2−k(i)

for 2 ≤ i ≤ m)
occur, i.e. we ignore all the wrong guesses in the passes from pass two.

So far, we have recovered k(1) + k(2) bits of the initial state. If the number of
the unknown bits is still so large that the complexity of exhaustively searching
over these unknown bits and the correlation check step dominates/doubles the
overall complexity, we should arrange more passes to reduce the complexity.
In our experiments, we usually have three or four passes to get a satisfactory
low-complexity attack.

The entire description of the precessing stage of a multi-pass fast correlation
attack is given below.

– Parameter: m, t1, · · · , tm, k(1), · · · , k(m), p
– Input: keystream {zi}N−1

i=0 , feedback polynomial f(x)
– Processing:

1. for i = 1, · · · ,m do
Define h(i)(x(i)

k(i−1) , · · · , x
(i)

k(i−1)+k(i)−1
) =

∑
(x

(i)

k(i−1) ,··· ,x(i)

k(i−1)+k(i)−1
)
(−1)zj1⊕···⊕zjti

⊕∑k(i−1)−1
i=0 y′

iai , where h(1) = h

and for i = 1, y′
i = 0 for 0 ≤ i ≤ k(0)

242 B. Zhang and D. Feng

apply FWT to compute
∑Ω(i)

j=1 (Δ⊕1) for all the 2k(i)
possible guesses of

the current k(i)-bit division, where Ω(i) =
(
Ni

ti

)
/2L−∑ i

j=1 k(j)
and Ni ≤ N

is the keystream length used in pass i

if
∑Ω(i)

j=1 (Δ ⊕ 1) ≥ T (i) then
accept the corresponding guess into pass i + 1
else discard it
end if
if no guess is selected then
break the loop and restart the algorithm
end if
end for

2. if
∑m

i=1 k(i) < L then
exhaustively search over the L −

∑m
i=1 k(i) bits and check each value by

running the LFSR and computing the correlation between {zi} and the
generated sequence
end if

– Output: the initial state (a0, a1, · · · , aL−1) or a small list of candidates

The time complexity of the processing stage consists of the complexity of each
pass and the correlation check procedure if some bits were left unrecovered after
pass m. If all the candidates cannot pass the correlation test, we should run
the whole algorithm several times (usually three or four times in practice) to
get the correct initial state. The memory complexity of the processing stage
is O(max1≤i≤m max(Ω(i) , 2k(i)

)), while the time complexity (with success rate
higher than 99%) varies according to the four different cases listed before.

Case 1. The time complexity is O(
∑m

i=1(Ω
(i) + 2k(i)

k(i)) + 2L−∑m
i=1 k(i)

(1
ε2)).

Case 2. The time complexity is O(Ω(1) + 2k(1)
k(1) + 2k(1)−k

(1)
1 · (

∑m
i=2(Ω

(i) +
2k(i)

k(i)) + 2L−∑m
i=1 k(i)

(1
ε2))).

Case 3. The time complexity is O(α(
∑m

i=1(Ω
(i) +2k(i)

k(i))+2L−∑m
i=1 k(i)

(1
ε2))),

where α is the smallest integer satisfying (1 − P
(1)
1)α < 0.01.

Case 4. The time complexity is O(α(Ω(1) + 2k(1)
k(1) + 2k(1)−k

(1)
1 · (

∑m
i=2(Ω

(i) +
2k(i)

k(i)) + 2L−∑m
i=1 k(i)

(1
ε2)))), where α is the smallest integer satisfying (1 −

P
(1)
1)α < 0.01.

Remarks. It is interesting to see that our algorithm has the same time complex-
ity, O(Ω(i) + 2k(i)

k(i)), in each pass as that of decoding a linear [Ω(i), k(i)] code
by the method proposed in [19]. However, It is much worth noticing that our
approach is quite different from that in [19]. In [19], this decoding was done by a
minimum distance rule, whereas we follow the distinguishers built according to
the parity-check schedule and the basic observations of our attack have nothing

Multi-pass Fast Correlation Attack on Stream Ciphers 243

to do with the codeword distance. As can be seen above, our method is more
advanced which offers large flexibility. This can be seen from two aspects. First,
we can achieve arbitrary success probability from 0 to 1, which is a useful prop-
erty to reduce the required keystream length to a realistic range. Second, we can
freely apply the four cases listed above to deal with various attack conditions.
For example, if Case 2 occurs, we still can use the parity-check equations in the
second pass, though we do not know the exact value of the first k(1) bits (instead
we only reduced the possible values of these bits in the past pass).

2.3 A Potential Application Beyond Figure 1

All the above results are based on the model shown in Figure 1. As can be seen
below, this is not always necessary. We can loose the model as follows, i.e. we
have a sequence of variables s0, s1, · · · , sn−1 ∈ GF (2) such that the following
equations hold.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s0 = u
(0)
0 a0 ⊕ u

(0)
1 a1 ⊕ · · · ⊕ u

(0)
m−1am−1 ⊕ e0

s1 = u
(1)
0 a0 ⊕ u

(1)
1 a1 ⊕ · · · ⊕ u

(1)
m−1am−1 ⊕ e1

· · · · · · · · · · · ·
sn−1 = u

(n−1)
0 a0 ⊕ u

(n−1)
1 a1 ⊕ · · · ⊕ u

(n−1)
m−1 am−1 ⊕ en−1

,

where the coefficients u
(i)
j (0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1) are known parameters

and ei (0 ≤ i ≤ n − 1) are independent random variables with distribution
P (ei = 0) = 0.5 + εi (εi > 0). We do not care how we derive the above linear
system, our aim is to recover the m variables a0, a1, · · · , am−1 from the above
linear system. Note that the model shown in Figure 1 is just a special case of
the above problem, where the coefficients are derived from the generator matrix
G.

To solve the above problem, we can follow a similar multi-pass routine. More
precisely, we first pre-compute a system of parity-checks from the coefficient ma-
trix (u(i)

j)n×m as that in Section 2.1. Once we get the actual values of s0, s1, · · · ,
sn−1, we proceed as a multi-pass fast correlation attack to determine the m
variables a0, a1, · · · , am−1 part-by-part. It is worth noting that the above lin-
ear system exists for a variety of stream ciphers, e.g. summation generator [9],
one-level bluetooth E0 [12]. In these cases, each ai (0 ≤ i ≤ m − 1) corre-
sponds to an unknown bit of the initial states of the underlying LFSRs and each
si (0 ≤ i ≤ n − 1) is some linear combination of the keystream bits. It is our
future work to investigate the possibility of applying our method to these stream
ciphers.

3 Experimental Results and Comparisons

To check the actual performance of our algorithm, we made experiments on a
Pentium 4 processor. To facilitate the comparisons with the best known results

244 B. Zhang and D. Feng

Table 1. Comparisons with the two best attacks previously known with success rate
higher than 99%. The LFSR polynomial is 1 + x + x3 + x5 + x9 + x11 + x12 + x17 +
x19 + x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40.

Attack Noise Keystream Time Memory Pre-computation

[24] 0.469 218.61 O(242) O(216) O(229)
[24] 0.490 218.46 O(255) O(225) O(229)
[4] 0.469 216.29 O(231) O(225) O(237)
[4] 0.490 216.29 O(240) O(235) O(237)

Ours 0.469 222 O(224) O(223) O(227)
Ours 0.490 224 O(229) O(229) O(229)

Table 2. Comparisons with the two best attacks previously known with success rate
close to 1 against a random chosen LFSR of length 89

Attack Noise Keystream Time Memory Pre-computation

[24] 0.469 238 O(252) O(218) O(245)
[4] 0.469 228 O(244) O(225) O(261)

Ours 0.469 232 O(232) O(231) O(237)

in other articles, we use the standard feedback polynomial of the LFSR involved
in many articles.

Due to the fact that some important attack parameters are not specified
in [24], the memory/pre-computation complexities of the attack in [24] listed
in Table 1 and 2 are only roughly derived only according to the formulae in
[24]. Table 1 shows that multi-pass fast correlation attack provides a better
tradeoff between keystream length, success probability and attack complexity.
We implemented the attack on the standard 40-bit LFSR with noise 0.469 in C
language on a Pentium 4 processor. The parameters are chosen as follows: m = 2,
t1 = t2 = 2, N1 = N = 222, N2 = 215 and k(1) = 20, k(2) = 13. 7 bits were left
to be restored by an exhaustive search of complexity O(217). The preprocessing
stage (it has time complexity O(227) and memory complexity O(222)) lasts for a
few hours, while the decoding stage takes several minutes to output the result.
Compared with the preprocessing time complexity O(237) in [4], which takes a
few days to finish the pre-computation, the gain is obvious. Besides, the memory
usage in the decoding part is only O(223) and the success probability is higher
than 99%, which make our attack more realistic. Table 1 also lists the theoretical
result for the same LFSR with noise 0.49, the corresponding attack parameters
are m = 2, t1 = t2 = 2, N1 = N = 224, N2 = 218 and k(1) = 22, k(2) = 11. We
leave 7 bits to be recovered by an exhaustive search of complexity O(220). The
time and memory complexity for the preprocessing stage are O(229) and O(224),
respectively. Compared with the preprocessing complexity O(237) in [4], the gain
is rather large. The memory complexity of the processing stage is O(229) and
the success rate is higher than 99%.

Multi-pass Fast Correlation Attack on Stream Ciphers 245

Table 3. Theoretical result of a multi-pass fast correlation attack with success rate
close to 1 against a random chosen LFSR of length 103

Attack Noise Keystream Time Memory Pre-computation

Ours 0.469 236 O(234) O(231) O(241)

Table 4. Theoretical result of a multi-pass fast correlation attack with success rate
close to 1 against a random chosen LFSR of length 61 with noise 0.499

Attack Noise Keystream Time Memory Pre-computation

Ours 0.499 231 O(234) O(229) O(236)

Table 2 yields the theoretical result for a 89-bit LFSR with noise 0.469. The
time complexity of our attack is very impressive and multi-pass fast correlation
attack makes good use of the keystream. The attack parameters are m = 3,
t1 = 3, t2 = t3 = 2, N1 = N = 232, N2 = N1, N3 = 220 and k(1) = k(2) =
26, k(3) = 24. We need another 13-bit exhaustive search of complexity O(223) to
recover the left 13 bits. The time and memory complexity for the preprocessing
stage are O(237) and O(232), respectively. Compared with the preprocessing
complexity O(261) in [4], our attack is more realistic. The memory usage of the
decoding stage is O(231) and the success probability is higher than 99%.

Table 3 gives the theoretical result of a multi-pass fast correlation attack
against an arbitrary weight LFSR of length 103. The parameters for our algo-
rithm are m = 4, t1 = t2 = 3, t3 = t4 = 2, N1 = N = 236, N2 = N3 = 229, N4 =
217 and k(1) = 29, k(2) = 21, k(3) = 26, k(4) = 25. We leave 2 bits to be recovered
by an exhaustive search of complexity O(212). The time and memory complex-
ity for the preprocessing stage are O(241) and O(236), respectively. The memory
complexity of the decoding stage is O(231) and the attack has a success rate
higher than 99%.

Table 4 gives the theoretical result of a multi-pass fast correlation attack
against an arbitrary weight LFSR of length 61 with noise 0.499. The parameters
are m = 3, t1 = t2 = t3 = 2, N1 = N = 231, N2 = 225, N3 = 219 and k(1) =
29, k(2) = 12, k(3) = 11. We leave 9 bits to be recovered by an exhaustive search of
complexity O(229). The time and memory complexity for the preprocessing stage
are O(236) and O(231), respectively. The memory complexity of the decoding
stage is O(229) and the success rate is higher than 99%. This example shows that
our algorithm can deal with moderately large LFSRs with smaller correlations
than all the previously reported results. This extends the application scope of
fast correlation attacks.

From the above examples, we can see that multi-pass fast correlation attack
has at least the following advantages over the past relevant attacks:

– significantly smaller processing time complexity with similar memory com-
plexity, i.e. it has some uniform property in the complexity aspect.

246 B. Zhang and D. Feng

– significantly smaller preprocessing time complexity without a compromise of
the real attack complexity.

– theoretical analyzibility and flexibility.

These features guarantee that multi-pass fast correlation attack can provide a
better tradeoff between keystream length, success probability and attack com-
plexities. The impressively low complexity of this kind of attack mainly comes
from the divide-and-conquer idea and the valid application of the keystream of
realistic length. Besides, the attack proposed here also provides a general frame-
work for mounting a fast correlation attack on LFSR-based stream ciphers. If
we can determine the initial state segments by some method faster than that
presented here, then we can get an improved multi-pass attack.

4 Conclusions

In this paper, we presented new approaches to launch a fast correlation attack
on stream ciphers. The new attack enables us to analyze larger LFSRs with
smaller correlations and has better trade-off between keystream length, success
probability and attack complexity. Besides, we show that the new method has
some potential application of efficiently solving linear systems with noisy output
derived from certain stream ciphers.

References

1. Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg
(2003)

2. Canteaut, A., Trabbia, M.: Improved Fast Correlation Attacks using parity-check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

3. Chepyzhov, V.V., Johansson, T., Smeets, B.: A Simple Algorithm for Fast Correla-
tion Attacks on Stream Ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 181–195. Springer, Heidelberg (2001)

4. Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of
View. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

5. Clark, A., Dawson, E., Fuller, J., Golić, J., et al.: The LILI-128 Keystream Gener-
ator. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 22–39.
Springer, Heidelberg (2001)

6. Courtois, N.T., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, pp. 345–359. Springer, Heidelberg (2003)

7. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Hei-
delberg (2003)

Multi-pass Fast Correlation Attack on Stream Ciphers 247

8. Golić, J.D.: Computation of low-weight parity-check polynomials. Electronic Let-
ters 32(21), 1981–1982 (1996)

9. Golić, J.D., Salmasizadeh, M. (ed.): Dawson, Fast correlation attacks on the sum-
mation generator, Journal of Cryptology, Springer-Verlag, vol. 13, pp. 245–262
(2000)

10. Golić, J.D.: Iterative optimum symbol-by-symbol decoding and fast correlation
attack. IEEE Trans. Inform. Theory 47, 3040–3049 (2001)

11. Golić, J.D., Hawkes, P.: Vetorial appraoch to fast correlation attacks. Designs,
Codes and Cryptography 35, 5–19 (2005)

12. Golić, J.D.: Linear cryptanalysis of bluetooth stream cipher. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 238-255, pp. 51–74. Springer, Hei-
delberg (2002)

13. Karpovsky, M.: Finite Orthogonal Series in the Design of Diginal Devices. John
Wiley and Sons, New York (1976)

14. Johansson, T., Jösson, F.: Fast Correlation Attacks based on turbo code techniques.
In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 181–197. Springer,
Heidelberg (1999)

15. Johansson, T.: Reduced complexity correlation attacks on two clock-controlled
generators. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
342–357. Springer, Heidelberg (1998)

16. Johansson, T., Jösson, F.: Improved Fast Correlation Attacks on Stream Ciphers
via Convolutional Codes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 347–362. Springer, Heidelberg (1999)

17. Johansson, T., Jösson, F.: Fast Correlation Attacks through reconstruction of linear
polynomals. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 300–315.
Springer, Heidelberg (2000)

18. Johansson, T., Jösson, F.: A Fast Correlation Attack on LILI-128. Information
Processing Letters 81, 127–132 (2002)

19. Lu, Y., Vaudenay, S.: Faster Correlation Attack on Bluetooth Keystream Generator
E0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 407–425. Springer,
Heidelberg (2004)

20. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

21. Meier, W., Staffelbach, O.: Fast Correlation Attacks on certain stream ciphers.
Journal of Cryptology 159–176 (1989)

22. Menezes, A.J., Van Orschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC, Boca Raton (1996)

23. Mihaljević, M., Fossorier, M.P.C., Imai, H.: A Low-complexity and High-
performance Algorithm for Fast Correlation Attack. In: Schneier, B. (ed.) FSE
2000. LNCS, vol. 1978, pp. 196–212. Springer, Heidelberg (2001)

24. Mihaljević, M., Fossorier, M.P.C., Imai, H.: Fast Correlation Attack Algorithm
with listing decoding and an application. In: Matsui, M. (ed.) FSE 2001. LNCS,
vol. 2355, pp. 208–222. Springer, Heidelberg (2002)

25. Molland, H., Helleseth, T.: An Improved Correlation Attack Against Irregular
Clocked and Filtered Keystream Generators. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 373–389. Springer, Heidelberg (2004)

26. Siegenthaler, T.: Decrypting a Class of Stream Ciphers using ciphertext only. IEEE
Transactions on Computer C-34, 81–85 (1985)

248 B. Zhang and D. Feng

27. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

28. Yarlagadda, R.K., Hershey, J.E.: Hadamard Matrix Analysis and Synthesis with
Applications to Communications and Signal/Image Processing, pp. 17–22. Kluwer
Academic, Dordrecht (1997)

29. Zhang, B., Wu, H., Feng, D., Bao, F.: A Fast Correlation attack on the shrinking
generator. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 72–86.
Springer, Heidelberg (2005)

Crossword Puzzle Attack on NLS

Joo Yeon Cho and Josef Pieprzyk

Centre for Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University,

NSW, Australia, 2109
{jcho,josef}@ics.mq.edu.au

Abstract. NLS is one of the stream ciphers submitted to the eSTREAM
project. We present a distinguishing attack on NLS by Crossword Puz-
zle (CP) attack method which is introduced in this paper. We build
the distinguisher by using linear approximations of both the non-linear
feedback shift register (NFSR) and the nonlinear filter function (NLF).
Since the bias of the distinguisher depends on the Konst value, which
is a key-dependent word, we present the graph showing how the bias
of distinguisher vary with Konst. In result, we estimate the bias of the
distinguisher to be around O(2−30). Therefore, we claim that NLS is dis-
tinguishable from truly random cipher after observing O(260) keystream
words. The experiments also show that our distinguishing attack is suc-
cessful on 90.3% of Konst among 232 possible values. We extend the
CP attack to NLSv2 which is a tweaked version of NLS. In result, we
build a distinguisher which has the bias of around 2−48. Even though
this attack is below the eSTREAM criteria (2−40), the security margin
of NLSv2 seems to be too low.

Keywords: Distinguishing Attacks, Crossword Puzzle Attack, Stream
Ciphers, Linear Approximations, eSTREAM, Modular Addition, NLS,
NLSv2.

1 Introduction

The European Network of Excellence in Cryptology (ECRYPT) launched a
stream cipher project called eSTREAM [1] whose aim is to come up with a
collection of stream ciphers that can be recommended to industry and govern-
ment institutions as secure and efficient cryptographic primitives. It is also likely
that some or perhaps all recommended stream ciphers may be considered as de
facto industry standards. It is interesting to see a variety of different approaches
used by the designers of the stream ciphers submitted to the eSTREAM call. A
traditional approach for building stream ciphers is to use a linear feedback shift
register (LFSR) as the main engine of the cipher. The outputs of the registers
are taken and put into a nonlinear filter that produces the output stream that
is added to the stream of plaintext.

One of the new trends in the design of stream ciphers is to replace LFSR by
a nonlinear feedback shift register (NFSR). From the ciphers submitted to the

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 249–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

250 J.Y. Cho and J. Pieprzyk

eSTREAM call, there are several ciphers that use the structure based on NFSR.
Amongst them the NLS cipher follows this design approach [4]. The designers of
the NLS cipher are Philip Hawkes, Gregory Rose, Michael Paddon and Miriam
Wiggers de Vries from Qualcomm Australia.

The paper studies the NLS cipher and its resistance against distinguishing
attacks using linear approximation. 1 Typically, distinguishing attacks do not
allow to recover any secret element of the cipher such as the cryptographic key
or the secret initial state of the NFSR but instead they permit to tell apart the
cipher from the truly random cipher. In this sense these attacks are relatively
weak. However, the existence of a distinguishing attack is considered as an early
warning sign of possible major security flaws.

In our analysis, we derive linear approximations for both NFSR and the non-
linear filter (NLF). The main challenge has been to combine the obtained linear
approximations in a such way that the internal state bits of NFSR have been
eliminated leaving the observable output bits only. Our attack can be seen as a
variant of the linear distinguishing attack, and we call it ”Crossword Puzzle”
attack (or shortly CP attack). The name is aligned with the intuition behind
the attack in which the state bits of approximations vanish by combining them
twice, horizontally and vertically.

Our approach is an extension of the linear distinguishing attack with linear
masking (shortly, linear masking method) that was introduced by Coppersmith,
Halevi, and Jutla in [3]. Note that the linear masking method was applied for
the traditional stream ciphers based on LFSR so it is not directly applicable for
the ciphers with NFSR.

The work is structured as follows. Section 2 presents a framework of CP attack.
Section 3 briefly describes the NLS cipher. In Section 4, we study best linear
approximations for both NFSR and NLF. A simplified NLS cipher is defined in
Section 5 and we show how to design a distinguisher for it. Our distinguisher
for the original NLS cipher is examined in Section 6 and an improvement using
multiple distinguishers is in Section 7. In Section 8, CP attack is applied to
NLSv2 which is a tweaked version of NLS. Section 9 concludes our work.

2 Framework of Crossword Puzzle (CP) Attack

In the CP attack, we construct a distinguisher based on linear approximations
of both the non-linear feedback shift register (NFSR) and the non-linear filter
(NLF). The attack is general and is applicable to the class of stream ciphers that
combine a NFSR with nonlinear filters as long as there are “good enough” linear
approximations. The roles of the two non-linear components are as follows.

– NFSR transforms the current state si into the next state si+1 in a non-linear
way using the appropriate function NF1, i.e. si+1 := NF1(si) where s0 is
the initial state and i = 0, 1, 2,

– NLF produces an output zi from the current state si through a non-linear
function NF2, i.e. zi := NF2(si).

1 This is an extended version of [2].

Crossword Puzzle Attack on NLS 251

l1(si1) = u1(si1) + u2(si1) + · · · + un(si1) = si1+1

l1(si2) = u1(si2) + u2(si2) + · · · + un(si2) = si2+1

· · · · · ·
l1(sim) = u1(sim) + u2(sim) + · · · + un(sim) = sim+1

||

l3(zj1)

||

l3(zj2)

||

l3(zjn)

||

zjn+1

Fig. 1. An example of crossword puzzling

Let us define a bias ε of an approximation as p = 1
2 (1 + ε), |ε| > 0 where p is

the probability of the approximation.2 The CP attack consists of the following
steps (note that the operation + is a binary (XOR) addition).

1. Find a linear approximation of the non-linear state transition function NF1
used by NFSR : l1(si) = si+1 with bias of ε1.

2. Find a linear approximation of the non-linear function NF2 applied by NLF
: l2(sj) + l3(zj) = 0 with bias of ε2.

3. Obtain two sets of clocks I and J such that
∑

i∈I(l1(si)+si+1)=
∑

j∈J l2(sj).

4. Build a distinguisher by computing
∑

i∈I

(l1(si) + si+1) +
∑

j∈J

(l2(sj) + l3(zj)) =
∑

j∈J

l3(zj) = 0

which has bias of ε
|I|
1 · ε|J|

2 .

For the CP attack, it is an important task to find the approximations in Step
1 and Step 2 which have the relation required in Step 3. We describe a basic
framework for achieving this task.

Given l1(si) = si+1 from NFSR, we divide l1 into n linear sub-functions
u1, . . . , un. Then,

l1(si) = u1(si) + u2(si) + · · · + un(si) = si+1 (1)

Suppose we set up a system of m approximations of l1 on the clocks i = i1, . . . , im
as in Figure 1.

Now, we seek a linear approximation of NLF which has a form of l2(sj) =
l3(zj) such that l2(sj) corresponds to each column of m approximations of l1. If
there exist a set of such approximations which covers all columns of m approxi-
mations as Figure 1, then, those are

l2(sjt) =
m∑

k=1

ut(sik) = l3(zjt), t = 1, . . . , n (2)

and
∑m

k=1 sik+1 = zjn+1 . Note that Approximation (2) corresponds each col-
umn of Approximation in Figure 1.
2 This definition is useful for computing the bias of multiple approximations when
the piling-up lemma [6] is applied. If we have n independent approximations, the
probability of n approximations becomes 1

2 (1 + εn).

252 J.Y. Cho and J. Pieprzyk

By composing (or ”Cross Puzzling”) Approximations (1) and (2) in such a
way that all the states vanish (as each state occurs twice), we compute a linear
approximation

n∑

i=1

l3(zji) = zjn+1 (3)

that is true with a non-zero bias. Clearly, Approximation (3) defines our distin-
guisher.

Discussion. There are more issues in regard to the bias of the distinguisher.
Firstly, we assume that all approximations are independent. However, this may
not be true since terms in the approximations could be related. The precise value
of the bias can be computed by analysis of conditional probabilities of random
variables of states involved in the approximations.

Secondly, when we set up a system of m approximations, we may choose
different forms of approximations instead of a single approximation l1(si) that
is used m times. In general, it is of interest to find approximations for both
NFSR and NLF in order to maximize the bias of the distinguisher.

Note that the CP attack is reducible to the linear masking method [3] when
the NFSR is replaced by a linear feedback shift register (LFSR) with ε1 = 1.

3 Brief Description of NLS Stream Cipher

The NLS keystream generator uses NFSR whose outputs are given to the non-
linear filter NLF that produces output keystream bits. Note that we concentrate
on the cipher itself and ignore its message integrity function as irrelevant to our
analysis. For details of the cipher, the reader is referred to [4].

NLS has two components: NFSR and NLF that are synchronised by a clock.
The state of NFSR at time t is denoted by σt = (rt[0], . . . , rt[16]) where rt[i] is
a 32-bit word. The state is determined by 17 words (or equivalently 544 bits).
The transition from the state σt to the state σt+1 is defined as follows:

1. rt+1[i] = rt[i + 1] for i = 0, . . . , 15;
2. rt+1[16] = f((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst) ⊕ rt[4];
3. if t = 0 (modulo f16), rt+1[2] = rt+1[2] + t;

where f16 is 65537 and + is the addition modulo 232. The Konst value is
a 32-bit key-dependent constant. The function f : {0, 1}32 → {0, 1}32 is con-
structed using an S-box with 8-bit input and 32-bit output and defined as
f(ω) = S-box(ω(H)) ⊕ ω where ω(H) is the most significant 8 bits of 32-bit
word ω. Refer to Figure 2. Each output keystream word νt of NLF is obtained
as

νt = NLF (σt) = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst). (4)

The cipher uses 32-bit words to ensure a fast keystream generation.

Crossword Puzzle Attack on NLS 253

rt[0] ≪ 19 rt[15] ≪ 9

Konst

ω

ω

ω(H)

ω(H) : most sig. byte of ω

� �
�

S-Box
031

� ��α

�rt[4]
�

�
rt+1[16]

Fig. 2. The f function

4 Analysis of NFSR and NLF

Unlike a LFSR that applies a connection polynomial, the NFSR uses a much
more complex nonlinear transition function f that mixes the XOR addition
(linear) with the addition modulo 232 (nonlinear). According to the structure of
the non-linear shift register, the following equation holds for the least significant
bit. Let us denote αt to be a 32-bit output of the S-box that defines the transition
function f . Then, we observe that the following equation holds for the least
significant bit.

αt,(0) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (5)

where αt,(0) and x(i) stand for the i-th bits of the 32-bit words αt and x, respec-
tively. (This notation will be used throughout the paper.)

To make our analysis simpler we assume initially that Konst is zero. This
assumption is later dropped (i.e. Konst is non-zero) when we discuss our distin-
guishing attack on the NLS stream cipher.

4.1 Linear Approximations of αt,(0)

Recall that αt is the 32-bit output taken from the S-box and αt,(0) is its least
significant bit. The input to the S-box comes from the eight most significant bits
of the addition ((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst). Assuming that Konst
is zero, the input to S-box is (rt[0]′ + rt[15]′), where rt[0]′ = rt[0] ≪ 19 and
rt[15]′ = rt[15] ≪ 9. Thus, αt,(0) is completely determined by the contents of
two registers rt[0]′ and rt[15]′. Observe that the input of the S-box is affected by
the eight most significant bits of the two registers rt[0]′ (we denote the 8 most
significant bits of the register by rt[0]′(H)) and rt[15]′ (the 8 most significant bits

254 J.Y. Cho and J. Pieprzyk

Table 1. Linear approximations for αt,(0) when Konst = 0

linear approximations of αt,(0) bias

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt15 1/2(1 + 0.048828)

rt[0](10) ⊕ rt[0](6) ⊕ rt[0](5) ⊕ rt[15](20) ⊕ rt[15](16) 1/2(1 + 0.048828)

rt[0](12) ⊕ rt[15](22) 1/2(1 − 0.045410)

rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) 1/2(1 − 0.020020)

of the register are denoted by rt[15]′(H)) and by the carry bit c generated by the
addition of two 24 least significant bits of rt[0]′ and rt[15]′. Therefore

the input of the S-box = rt[0]′(H)
+ rt[15]′(H)

+ c.

Now we would like to find the best linear approximation for αt,(0). We build the
truth table with 217 rows and 216 columns. Each row corresponds to the unique
collection of input variables (8 bits of rt[0]′(H), 8 bits of rt[15]′(H), and a single bit
for c). Each column relates to the unique linear combination of bits from rt[0]′(H)

and rt[15]′(H). Table 1 displays a collection of best linear approximations that are
going to be used in our distinguishing attack. In particular, we see that the third
approximation of Table 1 has high bias with only two terms. This seems to be
caused by the fact that rt[0](12) ⊕ rt[15](22) is the only input to the MSB of in-
put of the S-box that is not diffused to other order bits. Note that rt[0]′(H) =
(rt[0] ≪ 19)(H) = (rt[0](12), . . . , rt[0](5)) and rt[15]′(H) = (rt[15] ≪ 9)(H) =
(rt[15](22), . . . , rt15). Note also that none of the approximations contains the
carry bit c, in other words, the approximations do not depend on c.

4.2 Linear Approximations for NFSR

Having a linear approximation of αt,(0), it is easy to obtain a linear approxima-
tion for NFSR. For example, let us choose the first approximation from Table 1.
Then, we have the following linear equation:

αt,(0) = rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt15 (6)

with the bias 0.048828 = 2−4.36. Now we combine Equations (5) and (6) and as
the result we have the following approximation for NFSR

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt15
⊕rt[0](13) ⊕ rt[15](23) ⊕ Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (7)

with the bias of 2−4.36.

4.3 Linear Approximations of Modular Addition

Let us take a look at the modular addition + . We know that the least significant
bits are linear so the following equation holds

(r[x] + r[y])(0) = r[x](0) ⊕ r[y](0). (8)

Crossword Puzzle Attack on NLS 255

All consecutive bits i > 0 of + are nonlinear. Consider the function
(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1). We observe that the function has a linear
approximation as follows

(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) = r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) (9)

that has the bias of 2−1.
In a similar way, we also observe that the function (r[x] + r[y])(i) ⊕

(r[x] + r[y])(i−1) ⊕ (r[x] + r[y])(i−2) ⊕ (r[x] + r[y])(i−3) has the following ap-
proximation. For i > 2,

(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) ⊕ (r[x] + r[y])(i−2) ⊕ (r[x] + r[y])(i−3) =
r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) ⊕ r[x](i−2) ⊕ r[y](i−2) ⊕ r[x](i−3) ⊕ r[y](i−3)

(10)

that has the bias of 2−2.

4.4 Linear Approximation for NLF

Recall that Equation (4) defines the output keystream generated by NLF. By
Equation (8), we obtain the relation for the least significant bits of NLF that
takes the following form

νt,(0) = (rt0 ⊕ rt[16](0)) ⊕ (rt[1](0) ⊕ rt[13](0)) ⊕ (rt[6](0) ⊕ Konst(0)). (11)

This relation holds with probability one.
For 2 ≤ i ≤ 31 and using Equation (9), we can argue that NLF function has

linear approximations of the following form:

νt,(i) ⊕ νt,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕ (rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1))
⊕ (rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1))

(12)

with the bias of (2−1)2 = 2−2 under the condition that Konst = 0.
Also applying Approximation (10), for i > 2, we get the following expression

νt,(i) ⊕νt,(i−1) ⊕ νt,(i−2) ⊕ νt,(i−3) =
(rt[0](i) ⊕ rt[0](i−1) ⊕ rt[0](i−2) ⊕ rt[0](i−3) ⊕ rt[16](i) ⊕ rt[16](i−1)

⊕rt[16](i−2) ⊕ rt[16](i−3)) ⊕ (rt[1](i) ⊕ rt[1](i−1) ⊕ rt[1](i−2) ⊕ rt[1](i−3)

⊕rt[13](i) ⊕ rt[13](i−1) ⊕ rt[13](i−2) ⊕ rt[13](i−3)) ⊕ (rt[6](i) ⊕ rt[6](i−1)

⊕rt[6](i−2) ⊕ rt[6](i−3) ⊕ Konst(i) ⊕ Konst(i−1) ⊕ Konst(i−2) ⊕ Konst(i−3))
(13)

that has the bias of (2−2)2 = 2−4 when Konst = 0.
For non-zero Konst, the bias of Approximations (12) and (13) will be studied

in Section 6.2.

5 CP Attack on a Simplified NLS

In this Section we present the CP attack on a simplified NLS. This is a prelim-
inary stage of our attack in which we apply the initial idea of crossword puzzle

256 J.Y. Cho and J. Pieprzyk

attack that will be later developed and generalized. We assume that the struc-
ture of NFSR is unchanged but the structure of NLF is modified by replacing
the addition + by ⊕. Thus, Equation (4) that describes the keystream becomes

μt = (rt[0] ⊕ rt[16]) ⊕ (rt[1] ⊕ rt[13]) ⊕ (rt[6] ⊕ Konst). (14)

This linear function is valid for 32-bit words so it can be equivalently re-written
as a system of 32 equations each equation valid for the particular ith bit. Hence,
for 0 ≤ i ≤ 31, we can write

μt,(i) = (rt[0](i) ⊕ rt[16](i)) ⊕ (rt[1](i) ⊕ rt[13](i)) ⊕ (rt[6](i) ⊕ Konst(i)). (15)

To build a distinguisher we combine approximations of NFSR given by Equa-
tion (7) with linear equations defined by Equation (15). For the clocks t, t + 1,
t + 6, t + 13, and t + 16, consider the following approximations of NFSR

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ · · · ⊕ rt+1[16](0) = 0
rt+1[0](10) ⊕ rt+1[0](6) ⊕ rt+1[15](20) ⊕ · · · ⊕ rt+2[16](0) = 0
rt+6[0](10) ⊕ rt+6[0](6) ⊕ rt+6[15](20) ⊕ · · · ⊕ rt+7[16](0) = 0
rt+13[0](10) ⊕ rt+13[0](6) ⊕ rt+13[15](20) ⊕ · · · ⊕ rt+14[16](0) = 0
rt+16[0](10) ⊕ rt+16[0](6) ⊕ rt+16[15](20) ⊕ · · · ⊕ rt+17[16](0) = 0

(16)

Since rt+p[0] = rt[p], we can rewrite the above system of equations (16) equiva-
lently as follows:

rt[0](10) ⊕ rt[0](6) ⊕ rt+15[0](20) ⊕ · · · ⊕ rt+170 = 0
rt[1](10) ⊕ rt[1](6) ⊕ rt+15[1](20) ⊕ · · · ⊕ rt+17[1](0) = 0
rt[6](10) ⊕ rt6 ⊕ rt+15[6](20) ⊕ · · · ⊕ rt+17[6](0) = 0
rt[13](10) ⊕ rt[13](6) ⊕ rt+15[13](20) ⊕ · · · ⊕ rt+17[13](0) = 0
rt[16](10) ⊕ rt[16](6) ⊕ rt+15[16](20) ⊕ · · · ⊕ rt+17[16](0) = 0

(17)

Consider the columns of the above system of equations. Each column describes
a single bit output of the filter (see Equation (15)), therefore the system (17)
gives the following approximation:

μt,(10) ⊕ μt,(6) ⊕ μt+15,(20) ⊕ μt+15,(16) ⊕ μt+15,(15) ⊕ μt,(13)

⊕μt+15,(23) ⊕ μt+4,(0) ⊕ μt+17,(0) = K
(18)

where K = Konst(10) ⊕ Konst(6) ⊕ Konst(20) ⊕ Konst(16) ⊕ Konst(15)
⊕ Konst(13) ⊕ Konst(23). Note that the bit K is constant (zero or one) during
the session. Therefore, the bias of Approximation (18) is (2−4.36)5 = 2−21.8.

6 The CP Attack on NLS

In this section, we describe the CP attack on the real NLS. The main idea is to
find the best combination of approximations for both NFSR and NLF, while the
state bits of the shift register vanish and the bias of the resulting approximation
is as big as possible. We study the case for Konst = 0 at first and then, extend
our attack to the case for Konst �= 0. Since NLS allows only a non-zero most
significant byte of Konst, the second case corresponds to the real NLS.

Crossword Puzzle Attack on NLS 257

6.1 Case for Konst = 0

The linear approximations of αt,(0) are given in Table 1. For the most effective
distinguisher, we choose this time the third approximation from the table which
is

αt,(0) = rt[0](12) ⊕ rt[15](22) (19)

and the bias of this approximation is 0.045410 = 2−4.46. By combining Equations
(5) and (19), we have the following approximation

rt[0](12) ⊕ rt[15](22) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (20)

that has the same bias.
Let us now divide (20) into two parts : the least significant bits and the other

bits, so we get

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)

(21)

Clearly, l1(rt) ⊕ l2(rt) = 0 with the bias 2−4.46. Since l1(rt) has only the least
significant bit variables, we apply (11) which is true with the probability one.
Then, we obtain

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l1(rt+1) = rt+1[4](0) ⊕ rt+2[16](0)
l1(rt+6) = rt+6[4](0) ⊕ rt+7[16](0)
l1(rt+13) = rt+13[4](0) ⊕ rt+14[16](0)
l1(rt+16) = rt+16[4](0) ⊕ rt+17[16](0)

(22)

If we add up all approximations of (22), then, by applying Equation (11), we
can write

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16) = νt+4,(0) ⊕ νt+17,(0) (23)

Now, we focus on l2(rt) where the bit positions are 12, 13, 22, and 23, then,

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)
l2(rt+1) = rt+1[0](12) ⊕ rt+1[0](13) ⊕ rt+1[15](22) ⊕ rt+1[15](23)
l2(rt+6) = rt+6[0](12) ⊕ rt+6[0](13) ⊕ rt+6[15](22) ⊕ rt+6[15](23)
l2(rt+13) = rt+13[0](12) ⊕ rt+13[0](13) ⊕ rt+13[15](22) ⊕ rt+13[15](23)
l2(rt+16) = rt+16[0](12) ⊕ rt+16[0](13) ⊕ rt+16[15](22) ⊕ rt+16[15](23)

(24)

Since rt+p[0] = rt[p], the above approximations can be presented as follows.

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt+15[0](22) ⊕ rt+15[0](23)
l2(rt+1) = rt[1](12) ⊕ rt[1](13) ⊕ rt+15[1](22) ⊕ rt+15[1](23)
l2(rt+6) = rt[6](12) ⊕ rt[6](13) ⊕ rt+15[6](22) ⊕ rt+15[6](23)
l2(rt+13) = rt[13](12) ⊕ rt13 ⊕ rt+15[13](22) ⊕ rt+15[13](23)
l2(rt+16) = rt[16](12) ⊕ rt[16](13) ⊕ rt+15[16](22) ⊕ rt+15[16](23)

(25)

258 J.Y. Cho and J. Pieprzyk

Recall the approximation (12) of NLF. If we combine (25) with (12), then we
have the following approximation.

l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16) =
νt,(12) ⊕ νt,(13) ⊕ νt+15,(22) ⊕ νt+15,(23)

(26)

By combining the approximations (23) and (26), we obtain the final approxi-
mation that defines our distinguisher, i.e.

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16)
⊕l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16)
= νt,(12) ⊕ νt,(13) ⊕ νt+15,(22) ⊕ νt+15,(23) ⊕ νt+4,(0) ⊕ νt+17,(0)

= 0

(27)

The second part of the approximation can be computed from the output
keystream that is observable to the adversary. As we use Approximation (20)
five times and Approximation (12) twice, the bias of the approximation (27) is
(2−4.46)5 · (2−2)2 = 2−26.3.

6.2 Case for Konst �= 0

Since the word Konst occurs in NFSR and NLF as a parameter, the biases of
linear approximations of both αt,(0) and NLF vary with Konst. If we divide
Konst into two parts as Konst = (Konst(H),Konst(L)) where Konst(H) =
(Konst(31), . . . ,Konst(24)), and Konst(L) = (Konst(23), . . . ,Konst(0)), then,
linear approximations of αt,(0) mainly depend on Konst(H) and those of NLF
depend on Konst(L).

Biases of αt,(0) with non-zero Konst(H). Since the most significant 8 bits of
Konst mainly contribute to the form of the bit αt,(0), the bias of Approximation
(19) fluctuates according to the 8-bit Konst(H). This relation is illustrated in
Figure 3.

From this figure, we can see that the bias of Approximation (19) becomes the
smallest when Konst(H) is around 51 and 179 and the biggest when Konst(H)

is around 127 and 255. The average bias of (19) with Konst(H) is 2−5.19.

Biases of NLF with Konst(L). Figure 4 displays the bias variation of Ap-
proximation (12) according to Konst(L) at i = 13. Note that the graph shows
the bias distribution from 14 LSBs of Konst(L) (that is, 214) since the bits
Konst(23), . . . ,Konst(14) do not effect the bias for i = 13. We do not display the
graph of Approximation (12) at i = 23 because the graph is similar to Figure 4
with the slope changed as we consider 24 bits of Konst(L) only. On the average,
the bias of (12) is 2−3 for any i > 0.

6.3 Bias of the Distinguisher

Let us denote the bias of Approximation (19) for NFSR by ε1, the bias of Ap-
proximation (12) for NLF at i = 13 and i = 23 by ε2,13 and ε2,23 respectively.

Crossword Puzzle Attack on NLS 259

50 100 150 200 250
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Konst
(H)

B
ia

s

Biases of α
(0)

 with Konst
(H)

α
(0)

=r[0]
(12)

⊕ r[15]
(22)

α
(0)

=r[0]
(12)

⊕ r[0]
(12)

⊕r[0]
(12)

⊕ r[15]
(22)

Fig. 3. Variation of biases of two αt,(0) approximations with Konst(H)

2000 4000 6000 8000 10000 12000 14000 16000
0

0.05

0.1

0.15

0.2

0.25

Konst
(L)

B
ia

s

Biases of NLF with Konst
(L)

 at i=13

ν
(13)

⊕ ν
(12)

ν
(13)

⊕ ν
(12)

 ⊕ ν
(11)

 ⊕ ν
(10)

Fig. 4. Variation of biases of NLF with Konst(L) at i = 13

Note that all biases are Konst-dependent values. Since the Konst is generated
by randomization process at the initialization stage, it is reasonable assumption
that all the Konst values are equiprobable.

Hence, the bias of the distinguisher ε can be calculated as follows.

ε = 2−32
232−1∑

k=0

(ε51 · ε2,13 · ε2,23|Konst = k)

See Appendix A for detail algorithm to compute the bias with a low complex-
ity. Experiments shows that the bias of distinguisher appears to be 2−30.

260 J.Y. Cho and J. Pieprzyk

24 26 28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The threshold of bias (exponent base 2 of inversed bias. e.g. 40 means 2−40)

P
or

tio
n

of
 K

on
st

Distinguisher (27)
Distinguisher (31)
Best between Distinguisher (27) and (31)

Fig. 5. The success rate of attack

6.4 The Success Rate of Distinguishing Attack

Since the specification of the NLS cipher allows the adversary to observe up
to 280 keystream words per one key/nonce pair, we assume that our attack is
successful if the bias of distinguisher satisfies the following condition:

ε51 · ε2,13 · ε2,23 > 2−40. (28)

The experiments show that the bias of Distinguisher (27) satisfies the condi-
tion (28) on around 85.9% of Konst. See Figure 5.

7 Improving Distinguishing Attack by Multiple
Distinguishers

In this section, we present multiple distinguishing attack for the purpose of re-
ducing the portion of Konst for which our attack fails. multiple approximations
of α(0). Since the NLS produces 32-bit keystream word per a clock, the actual
volume of data required for the attack with multiple distinguishers is not in-
creased even though more computation is required.

The motivation for multiple distinguishers is the fact that Approximation (19)
is not always best for a distinguisher for all the possible values of Konst. For
instance, the bias of the distinguisher based on Approximation (19) is very small
for some values of Konst(H) (e.g. Konst(H) = 51 or 179). In order to address
this problem, we choose the fourth approximation from Table 1. Then, we have

αt,(0) = rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) (29)

which has the smallest bias when Konst(H) is around 41, 139 and 169 whereas
the biggest when Konst(H) is around 57 and 185. The average bias of (29) is
2−6.2 when only absolute values are taken (see Figure 3).

Crossword Puzzle Attack on NLS 261

Using this approximation, we build an approximation of NFSR as follows
rt[0](10) ⊕ rt[0](11) ⊕ rt[0](12) ⊕ rt[0](13) ⊕ rt[15](20) ⊕ rt[15](21) ⊕ rt[15](22) ⊕ rt[15](23)
⊕Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0.

(30)

Then, we can construct a new distinguisher by combining Approximation (13)
on NLF. We omit the detail process due to the similarity of Distinguisher (27).
In result, we have the following new distinguisher

νt,(10) ⊕ νt,(11) ⊕ νt,(12) ⊕ νt,(13) ⊕ νt+15,(20) ⊕ νt+15,(21) ⊕ νt+15,(22) ⊕ νt+15,(23)

⊕νt+4,(0) ⊕ νt+17,(0) = 0.
(31)

The bias of Distinguisher (31) can be calculated with a similar way to Section
6.3. In result, the bias of distinguisher appears to be 2−27.8 · 2−10 = 2−37.8.

By observing two distinguishers together and selecting always the better bias
among them, we improve the success rate of the distinguishing attack. The ex-
periments show that the combined bias for Distinguishers (27) and (31) satisfies
the condition (28) for around 90.3% of Konst (see Figure 5).

8 The CP Attack on NLSv2

NLSv2 is a tweaked version of NLS [5]. The major difference from NLS is that
Konst is set to the output of the non-linear filter at every 65537 clock of the
NFSR. This output is not used in the keystream.

Since Approximation (19) is biased positively or negatively according to Konst
(see Figure 3), the sign of the bias of distinguisher (27) also varies with Konst
value. Since the distinguisher (27) uses Approximation (20) five times, randomly
changed Konst could reduce the bias of distinguisher on the average.

However, this tweak version does not seem to have enough security margin
against the CP attack. If a distinguisher uses the ”even” number of linear approx-
imations for NFSR then, the bias of the distinguisher becomes always positive
irrespective of the sign of Approximation (27).

The smallest even number of approximations we found is eight, which is ob-
tained by the addition of two consecutive outputs of NLF. Then, we apply the
CP attack to NLSv2 with eight approximations of NFSR where the state posi-
tions are determined by two consecutive outputs of NLF. For detail approach to
the CP attack against NLSv2, see Appendix B.

In summary, we estimate the bias of distinguisher by the similar way to Section
6.3. Experiments using the algorithm in Appendix A show that the bias is around
2−37.6 · 2−10.4 = 2−48. Note that the bias of the distinguisher is always positive
since ε81 = (−ε1)

8 > 0.

9 Conclusion

We presented a distinguishing attack on the NLS cipher using Crossword Puzzle
attack. The bias of our distinguisher appears to be 2−30 so the NLS cipher is

262 J.Y. Cho and J. Pieprzyk

distinguishable from a random function by observing 260 keystream words. Even
though there is a fraction of the Konst values which requires the data complexity
bigger than 280, we show that it is possible for attacker to reduce this fraction of
Konst substantially by combining multiple distinguishers which have biases of
less than 2−40. We also have constructed a distinguisher for the tweaked version
of the cipher called NLSv2. Although the distinguisher does not break the cipher,
it shows that the security margin is too small to guarantee the claimed security
level for the near future.

Acknowledgment. We are very grateful to Philip Hawkes and anonymous
referees of SASC 2006 and SAC 2006 for their invaluable comments. The second
author acknowledges the support received from Australian Research Council
(projects DP0451484 and DP0663452).

References

1. eSTREAM project. http://www.ecrypt.eu.org/stream/
2. Cho, J.Y., Pieprzyk, J.: Linear distinguishing attack on NLS. In: SASC 2006 work-

shop (2006)
3. Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of stream ciphers with linear

masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532. Springer,
Heidelberg (2002)

4. Hawkes, P., Paddon, M., Rose, G., de Vries, M.W.: Primitive specification for NLS
(April 2005), http://www.ecrypt.eu.org/stream/nls.html

5. Hawkes, P., Paddon, M., Rose, G., de Vries, M.W.: Primitive specification for NLSv2
(March 2006), http://www.ecrypt.eu.org/stream/nls.html

6. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

A Low Complexity Algorithm for the Bias of
Distinguisher

According to Section 6.2, the bias of the distinguisher (27) can be computed
using the following algorithm. Note that Konst is expressed in hexadecimal.

1. Set Konst = 01000000h (Note that non-zero Konst(H) is allowed in NLS.)
2. Find the bias ε1 of Approximation (19) for NFSR.
3. Find the bias ε2 of Approximation (12) for NLF.
4. Compute and store the bias ε of the distinguisher (27) by ε = ε51 · ε22.
5. Increase Konst by 1 and repeat Step 2,3 and 4 until Konst = ffffffffh.
6. Compute the estimation of ε.

In order to reduce the complexity of computing the estimation of ε, we assume
that ε1 is affected by only Konst(H), not by Konst(L) in Step 2. Then, ε1 and

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/nls.html
http://www.ecrypt.eu.org/stream/nls.html

Crossword Puzzle Attack on NLS 263

ε2 can be computed independently. Therefore, the above algorithm is amended
as follows.

1. Set Konst(H) = 01h
2. Find the bias ε1 of Approximation (19) and store ε∗1 = ε51.
3. Increase Konst(H) by 1 and repeat Step 2 until Konst(H) = ffh.
4. Set Konst(L) = 000000h
5. Find two biases of Approximation (12) at i = 13 and i = 23, which is called

ε2,13 and ε2,23 respectively.
6. Store ε∗2 by calculating ε2 = ε2,13 · ε2,23.
7. Increase Konst(L) by 1 and repeat Step 5 and 6 until Konst(L) =00ffffffh.
8. Compute the estimation of the bias of distinguisher (27) under the assump-

tion that Konst is equiprobable.

B The CP Attack on NLSv2

NLSv2 is a tweaked version of NLS [5]. We apply the CP attack to NLSv2 with
eight approximations of NFSR where the state positions are determined by two
consecutive outputs of NLF.

B.1 Linear Approximations of NLSv2

Suppose we have two consecutive outputs of NLF as follows.

νt,(i) ⊕ νt,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕ (rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1))
⊕ (rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1))

νt+1,(i) ⊕ νt+1,(i−1) = (rt+1[0](i) ⊕ rt+1[16](i) ⊕ rt+1[0](i−1) ⊕ rt+1[16](i−1))
⊕ (rt+1[1](i) ⊕ rt+1[13](i) ⊕ rt+1[1](i−1) ⊕ rt+1[13](i−1))
⊕ (rt+1[6](i) ⊕ Konst(i) ⊕ rt+1[6](i−1) ⊕ Konst(i−1))
= (rt[1](i) ⊕ rt[17](i) ⊕ rt[1](i−1) ⊕ rt[17](i−1))
⊕ (rt[2](i) ⊕ rt[14](i) ⊕ rt[2](i−1) ⊕ rt[14](i−1))
⊕ (rt[7](i) ⊕ Konst(i) ⊕ rt[7](i−1) ⊕ Konst(i−1))

(32)
By adding up two approximations, we have

νt,(i) ⊕ νt,(i−1) ⊕ νt+1,(i) ⊕ νt+1,(i−1) =
= (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))

⊕ (rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1))
⊕ (rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1))
⊕ (rt[1](i) ⊕ rt[17](i) ⊕ rt[1](i−1) ⊕ rt[17](i−1))
⊕ (rt[2](i) ⊕ rt[14](i) ⊕ rt[2](i−1) ⊕ rt[14](i−1))
⊕ (rt[7](i) ⊕ Konst(i) ⊕ rt[7](i−1) ⊕ Konst(i−1))

= (rt[0](i) ⊕ rt[0](i−1)) ⊕ (rt[2](i) ⊕ rt[2](i−1))
⊕ (rt[6](i) ⊕ rt[6](i−1)) ⊕ (rt[7](i) ⊕ rt[7](i−1))
⊕ (rt[13](i) ⊕ rt[13](i−1)) ⊕ (rt[14](i) ⊕ rt[14](i−1))
⊕ (rt[16](i) ⊕ rt[16](i−1)) ⊕ (rt[17](i) ⊕ rt[17](i−1))

(33)

264 J.Y. Cho and J. Pieprzyk

The experiment shows that Approximation (33) has bias of around 2−5.2.
Since rt[1](i) ⊕ rt[1](i−1) and Konst(i) ⊕ Konst(i−1) are canceled out, the bias
of (33) is higher than the multiplication of bias of two approximation in (32).
Hence, we use (33) for the approximation of NLF where the state position are
0, 2, 6, 7, 13, 14, 16, 17. Note that the bias of (33) is still dependent on the value
of Konst.

According to these state positions, the least significant bits have the following
relation.
νt,(0)⊕νt+1,(0) = rt0⊕rt[2](0)⊕rt[6](0)⊕rt[7](0)⊕rt[13](0)⊕rt[14](0)⊕rt[16](0)⊕rt[17](0)

(34)

This relation also holds with probability one.

B.2 Building Distinguisher

This section is similar to Section 6 except that the eight (instead of five) ap-
proximations from the state position 0, 2, 6, 7, 13, 14, 16, 17 are used for the CP
attack.

Let us recall Approximation (21). For the least significant bits, we can write

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l1(rt+2) = rt+2[4](0) ⊕ rt+3[16](0)
l1(rt+6) = rt+6[4](0) ⊕ rt+7[16](0)
l1(rt+7) = rt+7[4](0) ⊕ rt+8[16](0)
l1(rt+13) = rt+13[4](0) ⊕ rt+14[16](0)
l1(rt+14) = rt+14[4](0) ⊕ rt+15[16](0)
l1(rt+16) = rt+16[4](0) ⊕ rt+17[16](0)
l1(rt+17) = rt+17[4](0) ⊕ rt+18[16](0)

(35)

If we add up all approximations of (35), then, by applying Equation (34), we
obtain
l1(rt) ⊕ l1(rt+2) ⊕ l1(rt+6) ⊕ l1(rt+7) ⊕ l1(rt+13) ⊕ l1(rt+14) ⊕ l1(rt+16) ⊕ l1(rt+17) =
νt+4,(0) ⊕ νt+5,(0) ⊕ νt+17,(0) ⊕ νt+18,(0)

(36)

If we focus on l2(rt) where the bit positions are 12, 13, 22, and 23, then,

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)
l2(rt+2) = rt+2[0](12) ⊕ rt+2[0](13) ⊕ rt+2[15](22) ⊕ rt+2[15](23)
l2(rt+6) = rt+6[0](12) ⊕ rt+6[0](13) ⊕ rt+6[15](22) ⊕ rt+6[15](23)
l2(rt+7) = rt+7[0](12) ⊕ rt+7[0](13) ⊕ rt+7[15](22) ⊕ rt+7[15](23)
l2(rt+13) = rt+13[0](12) ⊕ rt+13[0](13) ⊕ rt+13[15](22) ⊕ rt+13[15](23)
l2(rt+14) = rt+14[0](12) ⊕ rt+14[0](13) ⊕ rt+14[15](22) ⊕ rt+14[15](23)
l2(rt+16) = rt+16[0](12) ⊕ rt+16[0](13) ⊕ rt+16[15](22) ⊕ rt+16[15](23)
l2(rt+17) = rt+17[0](12) ⊕ rt+17[0](13) ⊕ rt+17[15](22) ⊕ rt+17[15](23)

(37)

Crossword Puzzle Attack on NLS 265

Since rt+p[0] = rt[p], the above approximations can be presented as follows.

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt+15[0](22) ⊕ rt+15[0](23)
l2(rt+2) = rt[2](12) ⊕ rt[2](13) ⊕ rt+15[2](22) ⊕ rt+15[2](23)
l2(rt+6) = rt[6](12) ⊕ rt[6](13) ⊕ rt+15[6](22) ⊕ rt+15[6](23)
l2(rt+7) = rt[7](12) ⊕ rt[7](13) ⊕ rt+15[7](22) ⊕ rt+15[7](23)
l2(rt+13) = rt[13](12) ⊕ rt13 ⊕ rt+15[13](22) ⊕ rt+15[13](23)
l2(rt+14) = rt[14](12) ⊕ rt[14](13) ⊕ rt+15[14](22) ⊕ rt+15[14](23)
l2(rt+16) = rt[16](12) ⊕ rt[16](13) ⊕ rt+15[16](22) ⊕ rt+15[16](23)
l2(rt+17) = rt[17](12) ⊕ rt[17](13) ⊕ rt+15[17](22) ⊕ rt+15[17](23)

(38)

If we combine (38) with (33), then we have the following approximation.
l2(rt) ⊕ l2(rt+2) ⊕ l2(rt+6) ⊕ l2(rt+7) ⊕ l2(rt+13) ⊕ l2(rt+14) ⊕ l2(rt+16) ⊕ l2(rt+17) =
νt,(12) ⊕ νt,(13) ⊕ νt+1,(12) ⊕ νt+1,(13) ⊕ νt+15,(22) ⊕ νt+15,(23) ⊕ νt+16,(22) ⊕ νt+16,(23)

(39)

By combining the approximations (36) and (39), we obtain the final approxi-
mation that defines our distinguisher, i.e.

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16)
⊕l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16)

= νt+4,(0) ⊕ νt+5,(0) ⊕ νt+17,(0) ⊕ νt+18,(0) ⊕ νt,(12) ⊕ νt,(13)

⊕νt+1,(12) ⊕ νt+1,(13) ⊕ νt+15,(22) ⊕ νt+15,(23) ⊕ νt+16,(22) ⊕ νt+16,(23)

= 0

(40)

The second part of the approximation is observable to the adversary.

The bias of the distinguisher. We compute the bias of Approximation (40)
with a similar way to Section 6.3. Let us denote ε1 as the bias of Approximation
(20) for NFSR, the bias of Approximation (33) for NLF at i = 13 and i = 23 by
ε3,13 and ε3,23 respectively.

Then, the bias of the distinguisher ε can be calculated as follows.

ε = 2−32
232−1∑

k=0

(ε81 · ε3,13 · ε3,23|Konst = k)

Experiment shows that the bias of Approximation (40) is around 2−48.

When Stream Cipher Analysis Meets

Public-Key Cryptography

Matthieu Finiasz and Serge Vaudenay

EPFL
CH-1015 Lausanne – Switzerland

http://lasecwww.epfl.ch/

Abstract. Inspired by fast correlation attacks on stream ciphers, we
present a stream cipher-like construction for a public-key cryptosystem
whose security relies on two problems: finding a low-weight multiple of a
given polynomial and a Hidden Correlation problem. We obtain a weakly
secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher,
Hardware Oriented). Using the Fujisaki-Okamoto construction, we can
build an hybrid cryptosystem, TCHon-FO, resistant against adaptive cho-
sen ciphertext attacks.

1 Introduction

Many of nowadays cryptosystems rely on the problem of factoring numbers.
With the RSA [24] cryptosystem, the key recovery problem is equivalent to
factoring a modulus into prime numbers. The message recovery problem is an
ad-hoc problem, assumed to be hard, but potentially easier than factoring. To
setup the cryptosystem we first generate secret prime numbers and then multiply
them together to get the public key. Although the hardness of the factoring
problem is an important open problem, it is known to be easy by using quantum
computers [26].

With polynomials, the factoring problem is essentially easy. However, the
problem of finding a multiple with low degree and weight is presumably hard.
This problem occurs in correlation attacks on stream ciphers, and no polynomial
time algorithm exists to solve it. Therefore, we can setup a new trapdoor system
by first generating a secret low-weight polynomial and then looking for a suitable
factor to produce a public key. We thus derive a new cryptosystem consisting
simply of the XOR of two LFSRs with a random noise source. One LFSR is
used to encode the data, the other contains the trapdoor. It is only used to
hide the data, and the noise source provides non-linearity. The ciphertext is
the result of this XOR. The key recovery problem is equivalent to finding a
low-weight multiple of a given polynomial. The message recovery problem is an
ad-hoc problem, potentially easier but still (assumed to be) hard: the Hidden
Correlation (HC) problem. It further may remain a hard problem with quantum
computers.

We think that analyzing this cryptosystem would be important in any case
because this would either provide us with a secure post-quantum cryptosystem

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 266–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

When Stream Cipher Analysis Meets Public-Key Cryptography 267

(if not an efficient pre-quantum one), or with new improvements for existing
correlation attacks against stream ciphers. We aim at making the first step in
this direction.

In this paper we review existing algorithms for finding low-weight multiples of
a given polynomial and for the decoding of a noisy LFSR. This provides heuristics
to select parameters for TCHo, a one-way public-key encryption scheme. It can
encrypt small blocks of up to 30 bits into ciphertexts of a few thousand bits.
TCHon encrypts n such blocks independently. The stream-cipher-like structure
of our construction makes it most suitable for hardware implementation: an
ASIC of a few thousand gates (equipped with a randomness generator) at 4MHz
should be able to encrypt a block in less than 4ms.

We believe TCHo could also fit on a passive RFID tag. Providing public-key
encryption to RFID tags leads to new opportunities to solve privacy/security
issues in RFID protocols. Current protocols with readers connected to a single
server [1,23] are based on symmetric cryptography and either compromise pri-
vacy or induce an important overhead complexity on the reader side. Public-key
cryptography is the simplest (and most reliable) solution to solve these issues,
however, no public-key encryption primitive can fit on an RFID tag. TCHo could
possibly be the first construction to achieve this.

We have implemented the TCHo construction in C++ using NTL [27]. Key
generation is pretty slow (about 4 minutes) as it requires to factorize polynomials
with huge degrees. Encryption takes a fraction of a second in software, but this
time is not significant for hardware implementation: LFSRs are not well suited
for use with a CPU. Finally, our decryption implementation takes a few seconds.

Previous work. Quite a lot of work has been done trying to attack various stream
ciphers like constructions. The first attacks were the (fast) correlation attack,
invented by Siegenthaler [28] and improved by Meier and Staffelbach [20]. The
main idea is to isolate one linear feedback shift-registers (LFSR) inside a stream
cipher and approximate the rest of the construction by another large LFSR with
some noise, then try to recover the initialization of the first LFSR and get a part
of the key. Many improvements and applications to specific constructions have
been made [4,5,13,14,15,18,21]. This work was inspired by a preliminary attack
on Bluetooth E0 [17,19]. Some of the most efficient techniques are compared in
Section 2.2.

A key problem in most of these techniques is the possibility to find low-weight
multiples of a given polynomial. The best techniques rely either on exhaustive
search or on decoding techniques [3,4,22,30]. Section 2.1 of this article is devoted
to this problem.

More recently, algebraic attacks have been applied to break some construc-
tions [6,7,8,10,11]. These attack can be very efficient but, even if some bounds
have been proven [7,9], predicting their efficiency is quite a difficult problem.
Throughout this article we will neglect this category of attacks as they are not
well suited for large randomized constructions like ours.

The concept of trapdoor in a stream cipher was already brought up by Camion,
Mihaljevic and Imai [2]. They showed that using specific retroaction polynomials

268 M. Finiasz and S. Vaudenay

in LFSRs, some bits of the output stream could depend on only some bits of
the initialization, making it possible to speed up the recovery process for con-
structions which otherwise seemed perfectly sound. This can be well suited to
kleptographic attack but it seems hard to build a public-key cryptosystem this
way.

In Section 2, we define new computational problems and provide heuristics to
solve them. This suggests some parameters ranges in which they can be reason-
ably assumed to be hard on average. Then we define a raw encryption scheme
in Section 3 and prove that it is one-way under chosen plaintext attacks.

2 New Computational Problems

In this section, we formalize some computational problems which will be used
and review existing algorithms to solve them. We focus on exact complexities
as opposed to asymptotic ones. For this, we use two constants ceasy and chard

to indicate that a complexity below 2ceasy operations is essentially easy in prac-
tice and efficient, and that a complexity over 2chard is intractable in practice. In
practice, we can take ceasy = 30 and chard = 80.

Throughout this paper, we will define the bias of a source as bias(S) = P (S =
0) − P (S = 1). This bias is hence taken between −1 and 1 and is null when the
source is unbiased. In our system, we will only consider positive biases, that is,
sources which produce more 0’s than 1’s.

2.1 The Low-Weight Polynomial Multiple Problem

As opposed to integers, factoring polynomials is essentially easy. But when it
comes to finding low-weight polynomial multiples, the problem becomes harder
(at least, it is not known to be easy). Here, we will only focus on polynomials
over F2.

Problem 1 (Low-Weight Polynomial Multiple). We consider the following prob-
lem on average over the random selection of an instance P , issued by a given
instance generator Gen. We say that the problem is hard for Gen if solving it
requires more than 2chard complexity on average. We consider two kinds of gen-
erator. Let Gen1 be a generator which selects a random primitive polynomial
P of degree dP . Let Gen2 be a generator which selects a random polynomial K
of degree dK and weight w until it has a primitive factor P , produced as the
output, whose degree dP is in a given interval [dmin, dmax].

Parameters: a weight w, two degrees dP < dK

Instance: a binary polynomial P of degree dP

Problem: find a multiple of P with degree at most dK and weight at
most w

The Gen1 generator simulates which P we can meet when we do stream cipher
cryptanalysis. The Gen2 generator simulates which P we can meet when we
construct a public-key cryptosystem.

When Stream Cipher Analysis Meets Public-Key Cryptography 269

Note that if P is irreducible, if x has order n ≤ dK in the group (F2[x]/P (x))∗,
and if w ≥ 2, then K = xn + 1 solves the problem. Taking P primitive ensures
that the order n = 2dP − 1 is maximal. Also, for values of w greater than the
Hamming weight of P , then P itself solves the problem. However, for dK and w
small, the problem is believed to be hard. There are several strategies to solve
it. Heuristically, if P is generated by Gen1, the average number of solutions with
nonzero constant term is

Nsol = 2−dP

w−1∑

i=0

(
dK

i

)
≈ 2−dP

(
dK

w − 1

)
. (1)

When using Gen2, the average number of solutions becomes 1 + Nsol.

Strategy 1 – The birthday paradox. This strategy consists in building two
lists of polynomials which are sums respectively of 0 or 1 and of a polynomial
with weight w−1

2 and null constant term, all reduced modulo P . Once this is
done, one simply looks for collisions. The lists have a size of L =

(
dK

(w−1)/2

)

and the complexity is O (L(log(L) + dP)) . This strategy is always faster
than exhaustive search, but requires a lot of memory.

Strategy 2 – Wagner’s generalized birthday paradox. When the number
of solutions becomes large enough (of order O

(
2dP /3

)
), techniques based on

Wagner’s generalized birthday paradox [30] can become more efficient. This
algorithm is not fit for finding all possible polynomials (or the hidden one
from Gen2) but can find one solution among many. If there exists a ≥ 2
such that

(
dK

(w−1)/2a

)
≥ 2dP /(a+1), then one solution can be found with a

complexity O
(
2a2dP /(a+1)

)
.

For instance, when dK ≥ 2dP /(1+log2(w−1)), we can use a = log2(w − 1)
and find a multiple within O ((w − 1)dK). Clearly, such a low complexity
cannot be reached for any w ≤ dP when dK ≤ 2dP /(1+log2(dP−1)).

Strategy 3 – Syndrome decoding. Solving the problem can be done using a
syndrome decoding algorithm. Compute the matrix of all the xi mod P (x)
for i from 1 to dK and then find a low-weight word in the preimages of 1 of
this matrix. When a single solution exists, this has a cost of:

O
(
Poly (dK)

(
dK

dP

)w−1
)

, (2)

where Poly (dK) is a polynomial of degree 2 or 3 in dK (see [16] for example).
We neglect this polynomial part as improved algorithm like [3] can compen-
sate it. This complexity holds when there is a unique multiple polynomial
of degree dK and weight ≤ w. When there are more solutions this cost is
approximately divided by Nsol.

Strategy 4 – Exhaustive search. When looking for multiples of degree just
above dP , an exhaustive search on Q such that K = P × Q can be faster.
The complexity of finding all multiples is O

(
Poly (dK) 2dK−dP

)
.

270 M. Finiasz and S. Vaudenay

The best algorithm for finding low-weight multiples depends on both the
parameters and our objective (whether we want to find a single, many, or all
solutions). When a single solution exists, the best choice is Strategy 3. This
leads us to the following assumption

Assumption 2 (Low-Weight Polynomial Multiple). When w log2
dK

dP
≥

chard and
(

dK

w−1

)
≤ 2dP , the low-weight polynomial multiple problem is hard on

average for Gen1. When w log2
dK

dmin
≥ chard and

(
dK

w−1

)
≤ 2dmin, the low-weight

polynomial multiple problem is hard on average for Gen2.

2.2 The Noisy LFSR Decoding Problem

A binary linear code of length
 is a vector subspace of {0, 1}�. Elements are
codewords. We consider the problem of decoding noisy strings, i.e. decoding the
XOR of a codeword together with the output of a random source Sγ with bias
γ. This source represents the error produced by a binary symmetric channel. In
what follows we concentrate on codes which consist of all possible
-bit strings
which can be output from an LFSR LP with a fixed retroaction polynomial P
of degree dP , i.e. sequences Z = (z1, . . . , z�) such that (zt, . . . , zt+dP) • P = 0 for
t = 1, . . . ,
 − dP (where • denotes a scalar product, which means we consider
P as a binary (dP + 1)-tuple). We formalize the decoding problem of the noisy
LFSR channel as follows.

Problem 3 (Noisy LFSR Decoding). We consider the following problem on av-
erage over the random selection of P , X , and the biased noise. We say that the
problem is hard if getting a single bit of X (that is, decoding X with probability
higher than 21−dP) requires over 2chard complexity on average.

Parameters: a length
, a polynomial P of degree dP , a bias γ
Noisy LFSR channel: given a uniformly distributed random seed X

of length dP , generate Y , the XOR of the output of length
 of LP

initialized with X and a random noise generated by Sγ

Problem: given Y , recover X

When γ is so close to 1 that errors are unlikely (e.g. 1−γ
−1), the problem
can easily be solved with high probability of success by Gaussian elimination.
When γ is so small that we cannot even distinguish Sγ from an unbiased source
(e.g. γ
−

1
2), the problem is impossible to solve with relevant probability of

success. In what follows we may assume that the channel transmits less data
than its capacity1 C(γ) = 1 +

(
1
2 + γ

2

)
log2

(
1
2 + γ

2

)
+
(

1
2 − γ

2

)
log2

(
1
2 − γ

2

)
, i.e.

dP

� ≤ C(γ). Thus, with unbounded computational power, decoding is possible.
However, this is not always the case in only O (2chard) operations.

Three main classes of algorithms exist to solve this problem: those based on
information set decoding, those trying to perform maximum likelihood (noted

1 When γ is small, we have C(γ) ≈ γ2

2 log 2 (with less than 1% error for γ ≤ 1
4).

When Stream Cipher Analysis Meets Public-Key Cryptography 271

ML hereafter) decoding, and those based on iterative decoding techniques. Note
that by simply guessing the noise weight, the problem reduces to a permuted
kernel problem [25].

Information Set Decoding. consists in picking dP bits at random among the

 output bits and perform a Gaussian elimination on the corresponding columns
of the generator matrix of the LFSR. Decoding succeeds if there are no error
among the selected bits, namely with probability

(
1
2 + γ

2

)dP . By iterating this
simple algorithm enough time to get the correct decoding we can decode within
a complexity roughly

(
1
2 + γ

2

)−dP (improved decoding algorithms like [3] make
it possible to neglect the cost of the Gaussian elimination). When the bias γ is
too small, namely for γ ≤ 21−chard/dP − 1, this requires over 2chard iterations.

The converse approach consisting in trying to guess the error bits could seem
interesting when the level of noise is low (γ close to 1), but it is never more
efficient than Information Set Decoding.

Maximum Likelihood Decoding. consists in trying to find the most likely
X , given the
-bit output stream we have. As the source Sγ is memoryless with
a positive bias, the maximum likelihood corresponds to the X generating the
closest (in terms of Hamming distance) codeword to Y .

This gives us a basic ML decoding algorithm: try all the possible initializations
for LP and sort them according to their distance to Y . This is however very costly
(about O

(
2dP

)
) and can be slightly improved to O

(
2dP dP

)
by using a Walsh

transform as done in [19]. This method is successful if the solution is on top of the
list. This is the case only if we try to transmit less data than the channel capacity.

For dP ≤ ceasy and 1
4 ≥ γ ≥

√
dP

� 2 log 2 (the 1
4 is here to ensure that the ap-

proximation is valid), we can thus efficiently solve the problem. On the contrary,
decoding can be impossible for two different reasons: either the noise is too high
(that is, the bias is too small) and we sent more data than the channel capacity
(for instance, if γ ≤ 1.18
−

1
2 , the channel cannot transmit more than one bit of

information, which means Y cannot contain more than one bit of information on
X), or the cost of the maximum likelihood decoding algorithm is too high.

First case – If we send more data than the capacity of the channel we will not be
able to recover X completely, but we can still get some information on it. This
would not be sufficient to solve a decoding problem, but this is already enough
to threaten a cryptographic construction.

The difference between the distance of Y to any incorrect codeword and the
distance to the correct one can be approximated to a normal law of expected
value −γ �

2 and variance �
2 so the expected rank of the correct X in the maximum

likelihood list is approximately 1 + (2dP − 1)ϕ
(−γ

2

√

)

where

ϕ(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt.

The amount of information one can get on X depends directly on this rank.

272 M. Finiasz and S. Vaudenay

Second case – If the complexity of the ML decoding algorithm is too high, we
can try too improve it. More subtle algorithms exist to recover the initialization
of LP : they cannot decode as much noise as the basic algorithm but can have a
significantly lower complexity. The basic idea is that instead of decoding in the
full code it is possible to decode only in a subcode and then extend the decoding
to the rest of the code. For example, one could write the generator matrix of the
code defined by P and only consider columns ending with dP −k zeros: this way
one would have to decode in a code of dimension k (instead of dP) but with less
bits, that is a length
.2−(dP−k) on average. When γ is small, the right X tops
the ML list if k

�.2−(dP −k) ≤ γ2

2 log 2 . In general, it takes time 2kϕ
(
−γ

2

√

2−(dP−k)

)

to find the right k bits of X .
This improvement makes it possible to recover the initialization of an LFSR

at a lower cost, provided enough output bits are available. This approach can
still be improved: if too few output bits are available, we can compute new ones
from those we have. If we write all the output bits which are the XOR of d

different bits, starting from
 bits we can obtain
(

�
d

)
(�d

d! bits instead of
, but
with a noise of bias γd instead of γ. This means that, for any value of d (the
size of the combinations we consider) and k (the dimension of the subcode we
obtain) we can decode if:

kd!

d · 2−(dP−k)

≤ γ2d

2 log 2
. (3)

In general, even if the previous bound is not reached, the correct X has rank:

2kϕ

(
−γd

2

√
�d

d! 2
−(dP−k)

)
.

The complexity of the decoding is then the sum of the three following steps:

– Computing the combinations: O
(

�d

d! × k
)

– Decoding (with a Walsh Transform): O
(
k2k
)
.

– Finding the right codeword in the ML list: O
(

2kϕ

(
−γd

2

√
�d

d! 2
−(dP−k)

))

If one cannot pay more than O (chard2chard) complexity, we must have k ≤ chard

and d roughly less than chard
log 2
log � so that �d

d! ≤ 2chard . The rank in the ML list is

2kϕ(−t) where t ≤ γd

2 2chard− dP
2 . For dP ≥ 2chard we have t ≤ 1

2 . So the rank is
higher than 2kϕ(− 1

2) ≥ 0.3 · 2k. So, this algorithm yields less than one bit of
information of X .

Iterative Decoding. techniques are less efficient in terms of error correction,
but can be applied to longer LFSRs. The idea is to find low-weight multiples of
P which form some parity check equations, and use them to decode as in a Low
Density Parity Check (LDPC) code.

When Stream Cipher Analysis Meets Public-Key Cryptography 273

As stated in [4], iterative decoding using parity check equations of weight d ≥ 4
(that is multiples of P of weight d), succeeds if it is possible to find enough of
these parity check equations for the iterative process to converge. Decoding is
thus possible if:

 ≥ 2αd(γ)+
dP
d−1 with αd(γ) = 1

d−1 log2

[
(d − 1)! 1

C(γd−2)

]
. (4)

From this, we can see that whatever the parameters of the system, there
exists a d which makes iterative decoding possible. This means that for the
smallest d satisfying this equation, there should be about just enough parity
check equations: finding them requires to find nearly all multiples of P of weight
d and degree less than
. Among the techniques described in Section 2.1, the
Strategy 1 based on the birthday paradox is the most efficient. It has a cost:

Cparity =
(

 − 1⌈
d−1
2

⌉
)

⇔ log2 (Cparity) (d−1
2 log2
 − log2

(
d−1
2 !
)
. (5)

The cost for the decoding is then negligible compared to this cost. This means
that if one cannot pay more than 2chard to decode, one can only decode if 2chard ≥
Cparity. Mixing Equations (4) and (5) we see that one can decode only if:

chard ≥ 1
2

[
log2(d − 1)! − log2 C(γd−2) + dP

]
− log2

(
d−1
2 !
)
.

Roughly, we get the same constraint: if dP ≥ 2chard, decoding is not possible.

Property 4 (Noisy LFSR Decoding). The noisy LFSR decoding problem
can efficiently be solved when dP ≤ ceasy and 1

4 ≥ γ ≥
√

dP
	 2 log 2. For γ ≤

1.18
−
1
2 , Y contains less than 1 bit of information of X, that is, the mutual

information between X and Y is smaller than 1.

Assumption 5 (Noisy LFSR Decoding). The noisy LFSR decoding is hard
on average when P is generated by Gen1 (as specified in Problem 1) and when
dP ≥ 2chard and γ ≤ 21−chard/dP − 1. When dmin ≥ 2chard, γ ≤ 21−chard/dmin − 1, P
is generated by Gen2, and w and dK are such that the Low-Weight Polynomial
Multiple is hard, the noisy LFSR decoding is hard as well.

2.3 The Hidden Correlation Problem

We combine the previous problems into Hidden Correlation (HC) problem.

Problem 6 (Hidden Correlation).

Parameters: a length
, two relatively prime2 polynomials P and Q of
degree dP and dQ respectively, a bias γ

2 When P and Q have a common factor, the decoding problem is ambiguous so we
exclude those cases. As we will see later, we will always choose distinct primitive
polynomials P and Q so they never have a common factor.

274 M. Finiasz and S. Vaudenay

HC channel: given a uniformly distributed random seed X of length
dQ, generate Y , the XOR of the output of length
 of LQ initialized
with X , the output of LP initialized at random, and a random noise
generated by Sγ (both random sources being independent)

Problem: given Y , recover X

As for the noisy LFSR decoding problem, we say that the problem is hard
if no algorithm that outputs the correct X with probability higher than 21−chard

and average complexity less than 2chard exists.
This problem is meant to be used given an oracle that solves the noisy LFSR

decoding problem with parameters (
′, Q, γ′) where
′ =
 − dK for some degree
dK and γ′ = γw for some weight w. There are three main strategies to solve it:

1. consider LP ⊕ LQ as a single LFSR LP×Q, recover its initializations and
deduce the initializations of both LP and LQ from it, thus recovering X .
Achieving this requires to be able to solve the noisy LFSR decoding problem
with parameters (
, P × Q, γ).

2. suppress the output of LP in Y and decode X with a shorter output and
a higher noise level. One should first find a polynomial K, multiple of P of
degree dK and weight w (note that choosing K = P is also possible). Then
multiply Y by K to suppress the influence of LP and try to solve the noisy
LFSR decoding problem with parameters (
 − dK , Q, γw).
As discussed in Section 2.1, the problem of finding K can be hard. The key
idea of our construction is that this K can be a trapdoor.

3. suppress the output of LQ in Y and recover the initialization of LP (with
a shorter output and a higher noise level). Once this is done, recovering X
consists in decoding in LQ ⊕ Sγ only, with the full output
 and the same
bias γ: the oracle can do this. We can use the same method as above and
find a multiple K of Q. In the end, we need to solve the noisy LFSR problem
with parameters (
 − dK , P, γw).

By taking P random of degree dP ≥ 2chard and γ ≤ 21−chard/dP −1 we know from
Assumption 5 that the decoding problem for LP ⊕Sγ is intractable. This renders
strategies 1 and 3 impossible.

To build a public-key cryptosystem on this problem, we need to find param-
eters which render strategy 2 computationally infeasible, and at the same time
let us have a trapdoor polynomial K making it possible to solve it. We do this
by proving an upper bound on the information one can get on X using strategy
2 in the favorable case where we can compute all multiples of low weight (except
the hidden one), and bounded by the maximum number of iterations (2chard) we
can manage. The number of possibles multiples of weight w and degree dK ≤

(except the hidden K) is given by equation (1).

For each multiple K ′ of P of weight i it is possible to suppress the influence of
LP and recover a little bit of information on X . This information Ii is bounded
by Ii ≤
C(γi).

By ignoring the cost of finding a multiple of weight i we upper bound the
cost of recovering the Ii bits of information by O (
i), the cost of computing

When Stream Cipher Analysis Meets Public-Key Cryptography 275

Y ′ = Y • K ′. Then an adversary can use all possible multiples of a given weight,
as long as there are less than 1

�i2
chard such multiples. For large values of i, when

there are more multiples of P , he is limited to exactly 1
�i2

chard multiples. The
total information one can get is at most:

I =
∞∑

i=2

C(γi)min

((
�
i

)

2dP
,
2chard

i

)

.

We can consider that this attack is not a threat if I ≤ 1 (which means that after
using about 2chard polynomials, an adversary gets less than 1 bit of information on
X). This bound is not tight since we neglected the cost of finding the multiples.

Assumption 7 (Hidden Correlation Problem). When dP ≥ 2chard, γ ≤
21−chard/dP − 1, and I ≤ 1, the Hidden Correlation problem is hard on average
when P is generated by Gen1 as specified in Problem 1. When dmin ≥ 2chard,
γ ≤ 21−chard/dmin − 1, I ≤ 1 (with dP replaced by dmin), P is generated by Gen2,
and w and dK are such that the Low-Weight Polynomial Multiple is hard, the
hidden correlation problem is hard as well.

3 TCHo Encryption

3.1 Specifications

This construction depends on a number of domain parameters. These are:

– a bias γ ∈ [0, 1] (we only consider positive biases here),
– two integers dmin and dmax bounding the degree of P : dP ∈ [dmin, dmax].
– two integers dQ and dK : the degrees of polynomials Q and K,
– a primitive polynomial Q of degree dQ

– an integer w corresponding to the weight of the polynomial K,
– an integer
 which is the length of the produced stream.

As we will see later in Table 1, suitable parameters might look like:

γ = 0.98, dP ∈ [6 000, 6 600], dQ = 20, dK = 11 560, w = 99,
 = 13 080.

Key generation. The public key is a primitive polynomial P . The private key is
a low-weight multiple K of P .

To generate such a key pair one will first pick a random binary polynomial K
coprime with Q of given weight w and degree dK . Then one factors this polyno-
mial and checks if it has a primitive factor of suitable degree dP ∈ [dmin, dmax].
If such a factor exists one uses it as the public key P and a key pair was found,
otherwise one picks another random polynomial K, factors it, etc. The complex-
ity of this step is detailed in Appendix A. With the above parameters, this takes
a little more than 4 minutes using NTL [27] on a 1.5GHz Pentium 4.

276 M. Finiasz and S. Vaudenay

R1 �

X �

R2 �

LQ
� ⊕

�

Sγ

� Y

�

LP

Fig. 1. Encryption

Encryption. The core of the system is a stream-cipher-like construction, built
as the XOR of two LFSRs LP and LQ (with respective retroaction polynomials
P and Q) and a biased random source Sγ where 0 ≤ γ ≤ 1 represents the bias
of this source.

The word X of dQ bits to be encrypted is used to initialize LQ. LP is ran-
domly initialized with a string R1. R2 denotes the random coins for Sγ . We
assume that R1 and R2 are independent. The ciphertext is the binary stream
Y of length
 equal to the XOR of the streams generated by LP , LQ and Sγ

(see Fig. 1). We denote Y = TCHoP (X ;R) for R = (R1, R2). The cost of an
encryption is O ((dP + dQ + εγ) ×
), where εγ represents the cost of generating
one random bit with bias γ. A dedicated hardware of O (dP + dQ + εγ) gates
(typically, a few thousand gates) runs in time O (
) (typically, a few thousand
clock cycles).

Decryption. To decrypt, one first uses the private key K to suppress the influence
of LP . For i = 1, . . . ,
−dK , compute Y ′

i = (Yi, Yi+1, . . . , Yi+dK)•K. This results
in a new cipher Y ′ of length
 − dK equal to the XOR of a stream generated by
LQ and a source of bias γw. The complexity is O (dK ·
).

From Property 4 we know that if
 − dK ≥ 2dQ log 2
γ2w (and γw ≤ 1

4) we can
recover the initialization of LQ (thus X) using an ML decoding algorithm. Us-
ing a Walsh transform, this decryption costs O

(
dQ 2dQ

)
operations. Finally,

X is recovered by solving a linear equation in time O
(
d3

K

)
. Overall decryp-

tion complexity is thus O
(
dK
 + dQ2dQ + d3

K

)
. Decoding is feasible for dQ ≤

ceasy. However, that decryption is non-deterministic: there is a probability that
Sγ generates too much noise and that decryption returns an incorrect result.
Bounds on this failure rate are hard to estimate as the linear code correspond-
ing to a truncated LFSR is not as easy to study as for a full length LFSR.
However, during all our tests, no decodings ever failed or returned the
wrong plaintext. The bound used in Section 3.2 for parameter selection, taken
from information theory, seems to be sufficient to have a negligible decryption
failure rate.

When Stream Cipher Analysis Meets Public-Key Cryptography 277

Table 1. Some suitable parameters for TCHo

chard dQ dP γ w dK � I key gen. cost3

80 20 500 − 600 0.4 6 6 200 000 8 000 000 2−1.7 ∼ 256.5

1 000 − 1 100 0.74 13 78 350 148 000 2−1.9 ∼ 242.5

3 000 − 3 500 0.93 35 17 100 21 600 2−17 ∼ 236.5

6 000 − 6 600 0.98 99 11 560 13 080 2−1.1 ∼ 236

6 000 − 6 060 0.98 99 10 620 12 140 2−4 ∼ 239

30 1 000 − 1 500 0.7 11 232 000 339 000 2−7 ∼ 244.5

6 000 − 6 600 0.979 93 12 150 14 150 2−2.1 ∼ 236

90 20 7 000 − 7 700 0.98 105 13 950 15 900 2−2.1 ∼ 236.5

30 7 000 − 7 700 0.98 99 14 460 16 750 2−0.1 ∼ 236.5

128 20 10 000 − 11 000 0.977 108 25 050 29 300 2−5.8 ∼ 238.5

30 10 000 − 11 000 0.977 102 26 300 31 100 2−2.9 ∼ 238.5

Encrypting larger blocks. To encrypt n blocks X1, . . . , Xn we define TCHon, the
concatenation of n independent instances of TCHo (thus able to encrypt n · ceasy

bits of data), by using independent random coins R1, . . . , Rn:

TCHon
P (X1, . . . , Xn;R1, . . . , Rn) =

[
Y1, . . . , Yn

]
, where Yi = TCHoP (Xi;Ri).

3.2 Parameters Selection

We review here all the constraints on the system parameters in order for a legiti-
mate decryption to be possible and for an attack by a computationally bounded
adversary (bounded by O (2chard) operations) to be impossible. As constraints
need to be satisfied for any dP ∈ [dmin, dmax], in the following equations, dP was
replaced either by dmin or by dmax depending on the type of inequality.

– legitimate decryption is possible if:
−dK ≥ 2dQ log 2
γ2w , γw ≤ 1

4 , and dQ ≤ ceasy

(see Section 2.3).
– recovering K is impossible if the conditions of Assumption 2 are verified,

that is: w log2
dK

dmax
> chard and

(
dK

w−1

)
≤ 2dmin.

– without K, decryption is equivalent to solving an instance of the HC prob-
lem. From Assumption 7 we know this is impossible if:

dmin ≥ 2chard, γ ≤ 21− chard
dmin − 1, and I =

∞∑

i=2

C(γi)min

((
�
i

)

2dmin
,
2chard

i

)

≤ 1.

We are looking for parameters which satisfy all the inequalities stated above. One
should first choose dQ ≤ ceasy and dmin ≥ 2chard, and deduce the largest possible
γ = 21−chard/dmin − 1. Then find a w for which
 = (
 − dK) + dK ≥ 2dQ log 2

γ2w +

dmax2
chard

w is small enough and deduce the minimum dK and
. Once parameters
3 This is the cost of generating a key when using an algorithm based on linear algebra.
See Appendix A for details.

278 M. Finiasz and S. Vaudenay

are obtained one can just check whether I ≤ 1 or not and maybe reduce γ
accordingly. Table 1 gives a few sets of parameters satisfying these inequalities.
As one can notice, no small value of dP appear in the tables. This is mainly
because parameters which would otherwise be suitable for all the constraints
always lead to a value of I too large. This however is not a problem as the
optimal values (in terms of encryption/decryption complexity and transmission
rate) seem to appear for larger values of dP .

3.3 Security

Key Recovery. The key generation algorithm we use corresponds exactly to
the Gen2 generator of Assumption 2. If the conditions of this assumption are
respected, the key recovery problem is exactly the problem of solving a hard
instance of the low-weight polynomial multiple problem. For suitable parameters,
key recovery should thus be computationally impossible.

Message Recovery. requires to solve the hidden correlation problem. Solving
this problem is hard in general, thus with suitable parameters the encryption can
be seen as a one-way function. In order to use the Fujisaki-Okamoto construction
we need to prove that this encryption is (t, ε)-secure in the sense of One-Way
Encryption (OWE) and Γ -uniform (see Appendix B for definitions).

Theorem 8. Under Assumptions 2, 5, and 7, TCHo is (2chard , 2

2dQ
)-OWE-CPA-

secure.

Proof. We have chosen parameters such that, for any value of P and K, an
adversary spending less than O (2chard) time always gets less than 1 bit of infor-
mation on the plaintext X using a chosen plaintext attack (CPA). Therefore, he
always has a probability lower than 2

2dQ
of guessing the correct X . ��

Theorem 9. The TCHo encryption scheme is
(

1
2 + γ

2

)�-uniform.

Proof. We need to upper bound the probability (on the random coins R1 and R2

introduced in Section 3.1) that a given plaintext is mapped to a given ciphertext.
As we only consider positive biases, for a given initialization of LP the most likely
ciphertexts correspond to the random coins R2 giving Sγ = 0. This happens with
probability

(
1
2 + γ

2

)�. When taking the average on the possible initializations of
LP (on all the possible random coins R1) this probability can only decrease. ��

Semantic Security. Deciding whether Y encrypts X under TCHoP or is ran-
dom is equivalent to deciding whether a binary string is an output form a noisy
LFSR channel with parameters
, P, γ or is random. This may be a hard problem
as well. This question may deserve further work.

Malleability. Obviously, from Y = TCHoP

(
X ; (R1, R2)

)
, an adversary can

forge a new ciphertext Y ′ = TCHoP

(
X ⊕ δ; (R1 ⊕ ρ,R2)

)
without even knowing

X , R1 or R2. Hence, raw TCHo is clearly not OWE-CCA-secure, just like the
raw RSA cryptosystem.

When Stream Cipher Analysis Meets Public-Key Cryptography 279

Extension to TCHon. Let TCHon
P (X1, . . . , Xn;R1, . . . , Rn) =

[
Y1, . . . , Yn

]
.

An adversary A knows Y1, . . . , Yn and P and wants to recover X1, . . . , Xn. We
know that spending less than 2chard time, Yi cannot give A more than 1 bit
of information on Xi. The other Yj cannot help as A can generate as many
couples (Xj , Yj) as he wants by himself (he knows P and nothing else is required
for encryption) and this will not give him any information on Xi. As the Xi

are independent, if A tries to guess the values of X1, . . . Xn simultaneously he
will not have a better probability of success than if he tries to guess them one
after the other: his probability of success will be less or equal to

(
2

2dQ

)n

. The

concatenation TCHon is thus (2chard , 2n

2dQn)-OWE-CPA-secure.
Concerning Γ -uniformity, the results also extend well for TCHon. For the

concatenation we have:

Γ (X1, . . . , Xn, Y1, . . . , Yn) = Pr [h ←R COINS : ∀i, Yi = Epk(Xi;h)] .

As before, the best probability will be obtained if Sγ = 0 for each of the n inde-
pendent encryptions. This happens with probability

(
1
2 + γ

2

)�n and thus TCHon is
(

1
2 + γ

2

)�n-uniform. We deduce that we can build, in the random oracle model, an
IND-CCA secure hybrid cryptosystem TCHon-FO based on TCHon and an FG-
secure symmetric encryption, by using the Fujisaki-Okamoto construction [12].

4 Conclusion

We presented the first public-key cryptosystem which resembles a stream cipher.
Stream ciphers are usually very efficient when it comes to low-cost hardware
implementation, so implementation may be quite competitive on these platforms.
Software implementations are pretty fast as well. One issue with our construction
might be the need for a huge amount of random coins, but hardware entropy
accumulators may supply them efficiently. The main drawback is currently the
overhead size and the decryption complexity. Although quite reasonable, future
work will decrease it. One option would consist in replacing LQ by a better
binary code. As suggested by Willi Meier, repetition codes seem to offer a very
good decryption complexity and can be available for higher dimensions.

TCHo is currently a prototype. Our concept might still have to be improved be-
fore becoming a real product, but TCHo is definitely a first step in a new direction
for public-key cryptography. We encourage analysis of TCHo since it will either
demonstrate its security or lead to improvements on stream cipher attacks.

References

1. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based RFID protocol.
In: PerSec 2005 (2005)

2. Camion, P., Mihaljević, M.J., Imai, H.: Two alerts for design of certain stream
ciphers: Trapped LFSR and weak resilient function over GF(q). In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 196–213. Springer, Heidelberg
(2003)

280 M. Finiasz and S. Vaudenay

3. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in
a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378
(1998)

4. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

5. Chepyshov, V.V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation
attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
181–195. Springer, Heidelberg (2001)

6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

7. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, pp. 345–359. Springer, Heidelberg (2003)

8. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

9. Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for crypto-
graphically significant boolean functions. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)

10. Faugère, J.-C.: A new efficient algorithm for computing gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

11. Faugère, J.-C.: A new efficient algorithm for computing gröbner bases without
reduction to zero (F5). In: ISSAC 2002, Lille, France, July 2002, pp. 75–83. ACM,
New York (2002)

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

13. Johansson, T., Jönsson, F.: Fast correlation attacks based on turbo code techniques.
In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 181–197. Springer,
Heidelberg (1999)

14. Johansson, T., Jönsson, F.: Improved fast correlation attacks on stream ciphers
via convolutional codes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 347–362. Springer, Heidelberg (1999)

15. Johansson, T., Jönsson, F.: Fast correlation attacks through reconstruction of linear
polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 300–315.
Springer, Heidelberg (2000)

16. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

17. Lu, Y.: Applied Stream Ciphers in Mobile Communications. Phd thesis num. 3491,
EPFL (2006), http://library.epfl.ch/theses/?nr=3491

18. Lu, Y., Meier, W., Vaudenay, S.: The conditional correlation attack: A practical at-
tack on bluetooth encryption. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 97–117. Springer, Heidelberg (2005)

19. Lu, Y., Vaudenay, S.: Faster correlation attack on bluetooth keystream generator
E0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 407–425. Springer,
Heidelberg (2004)

http://library.epfl.ch/theses/?nr=3491

When Stream Cipher Analysis Meets Public-Key Cryptography 281

20. Meier, W., Staffelbach, O.: Fast correltaion attacks on stream ciphers. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg
(1988)

21. Mihaljevic, M.J., Fossorier, M.P.C., Imai, H.: A low-complexity and high-
performance algorithm for the fast correlation attack. In: Schneier, B. (ed.) FSE
2000. LNCS, vol. 1978, pp. 196–212. Springer, Heidelberg (2001)

22. Molland, H., Mathiassen, J.E., Helleseth, T.: Improved fast correlation attack us-
ing low rate codes. In: Paterson, K.G. (ed.) Cryptography and Coding. LNCS,
vol. 2898, pp. 67–81. Springer, Heidelberg (2003)

23. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices,
and architectures. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) CCS 2004,
pp. 210–219. ACM Press, New York (2004)

24. Rivest, R.L, Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

25. Shamir, A.: An efficient identification scheme based on permuted kernels (extended
abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609.
Springer, Heidelberg (1990)

26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

27. Shoup, V.: NTL: A library for doing number theory. Available online from
http://www.shoup.net/ntl/

28. Siegenthaler, T.: Cryptanalysts representation of nonlinearly filtered ML-
sequences. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 103–110.
Springer, Heidelberg (1986)

29. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

30. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

A Key Generation

Average number of trials. The cost of a key generation depends directly on
the number of trials required before finding a suitable key pair. Here we try
to evaluate the probability that a random low-weight binary polynomial has a
primitive factor of degree dP .

It is known that, asymptotically, the number of irreducible binary polynomials
of degree d is equivalent to 2d

d . If we call P one of these irreducible polynomials, a
random binary polynomial K of degree dK > d is divisible by P (and has P in his
factorization) if K ≡ 0 mod P . The probability this happens is 2−d. Taking into
account this probability and the number of irreducible polynomials, we obtain
the probability that K has an irreducible factor of degree d is approximately 1

d .
Given that P is irreducible, the probability that it is primitive is the probability
that the logarithm of x in (F2[x]/P (x))∗ is coprime with 2d − 1. The probability
that two random numbers are coprime relates to Buffon’s needle problem and is
6

π2 . Given that 2d − 1 is odd for sure, the probability that P is primitive given
that it is irreducible can be heuristically approximated to 8

π2 ≈ 81%.
This is true asymptotically for random polynomials. In our case we only con-

sider polynomials K of low weight. For this particular case we have no proof

http://www.shoup.net/ntl/

282 M. Finiasz and S. Vaudenay

that the same result still holds4. However, experimental statistics tend to prove
that this approximation is still very accurate for low-weight polynomials. The
average number of trials is thus approximately π2

8 dP .

Factoring algorithm. Concerning the algorithm to be used for the factorization,
the choice is very wide. The straightforward method would be to use a generic
factoring algorithm like Berlekamp’s or Cantor-Zassenhaus (see Chapter 14 of
[29] for more details on polynomial factorization). However, when dealing with
high degree polynomials, methods based on linear algebra tend to use a lot of
memory and degrees above 216 are too high for standard computers. Moreover, in
our case, a complete factorization is not required: it is enough to check whether
our polynomial has an irreducible factor of degree dP , and this can be done quite
efficiently.

The polynomial X2d

+ X is the product of all binary irreducible polynomials
whose degrees divide d. Checking if K has a factor of degree dP reduces to the
computation of gcd(X2dP + X,K). If this gcd has a degree less than dP one can
be sure that K has no suitable factors, otherwise one simply needs to factor this
“low degree” polynomial using whatever algorithm.

Computing this gcd is much faster than a complete factorization for high
degree K and a small dP . The computation of X2dP + X mod K using suc-
cessive squarings can however be quite long when dP increases, thus, the best
solution depends on the system parameters. Using Berlekamp’s factoring algo-
rithm the complexity of the factoring is O

(
dK

2.4
)

(where 2.4 is the cost for
linear algebra) and using the gcd-based algorithm it is O

(
dP dK

2
)
. Taking into

account the number of iterations for a key generation we obtain O
(
dP dK

2.4
)

and O
(
dP

2 dK
2
)
. Cantor-Zassenhaus gives O

(
dP d2

K log dK log log dK

)
, which is

the best complexity, but with a very large constant term.

Using degree ranges. The number of attempts required for the key genera-
tion to find a polynomial with degree dP ∈ [dmin, dmax] is divided by δ =
dmax − dmin + 1. If we use a general factoring algorithm, this directly divides
the key generation complexity by δ but if we use the gcd method, the time
used to compute X2dP + X mod K does not change and we have to com-
pute δ gcds. In both cases this improves the key generation complexity, but
for large values of δ, the gcd method becomes very slow. Using Berlekamp’s
algorithm the complexity becomes O

(
1
δ dP dK

2.4
)
, with Cantor-Zassenhaus it

is O
(

1
δ dP dK

2 log dK log log dK

)
, and for the gcd-based technique it becomes

O
(

dP

δ (dP + δ)dK
2
)
.

For small values of δ the best choice is the gcd-based technique, but for larger
δ generic factoring algorithms are faster. If dK is large, Cantor-Zassenhaus is the
best algorithm.
4 In our construction we only considers polynomials K with a non null constant term,
which are therefore not divisible by X. If one chooses them with an odd weight they
will never be divisible by X + 1 and will never have an irreducible factor of degree
1. Some similar properties might also hold for other degrees!

When Stream Cipher Analysis Meets Public-Key Cryptography 283

Primitivity testing. In general, checking whether an arbitrary polynomial is
primitive is hard. However, we only need here to probabilistically filter out ran-
dom polynomials which are not primitive. This is essentially easy. A probabilistic
method for finding a generator of Z∗

p can be adapted to checking whether a poly-
nomial is primitive. One simply need to find all divisors pi of 2dP − 1 smaller
than a given λ, and check if the order of X in

(
GF (2)[X]/P (X)

)∗ divides 2dP −1
pi

.
If this is the case for none of the pi, P is primitive with probability 1 − λ−1.

So, with complexity O
(
Poly (dP)

√
λ
)

it is possible to reduce the risk that

his algorithm accepts a non-primitive polynomial to O
(
λ−1
)
. It is thus possi-

ble to reach error rates as low as 2−40 with a cost negligible compared to the
factorization step.

B Definitions

We report here definitions taken from the article by Fujisaki and Okamoto [12].

Definition 10 (Asymmetric Encryption). An asymmetric encryption sche-
me Π is a triple of algorithms K, E and D, associated with two finite sets,
COINS(k) (a set of random coins) and MSPC(k) (a message space), for k ∈ N.

– K, the key generation algorithm, is a probabilistic algorithm which on input
1k (k ∈ N) outputs a pair of keys, (pk, sk) ← K(1k).

– E, the encryption algorithm, is a probabilistic algorithm that takes a key pk,
an message x ∈ MSPC and a string r ←R COINS(k), where ←R represents a
random affectation, and produces a ciphertext y = Epk(x; r).

– D, the decryption algorithm, is a deterministic algorithm that takes a key sk
and a ciphertext y and returns a message x ← Dsk(y).

It is required that, for any k ∈ N, if (pk, sk) ← K(1k), x ∈ MSPC, and y ← Epk(x),
then Dsk(y) = x.

Definition 11 (OWE). Let Π = (K, E ,D, COINS, MSPC) be an asymmetric en-
cryption scheme. Let A be an adversary knowing y and pk and trying to recover
x. We say that Π is (t, ε)-OWE-secure if, for any A running in at most time t
and for any x ∈ MSPC:

Pr
[
(pk, sk) ← K(1k); y ← Epk(x) : A(pk, y) = Dsk(y)

]
≤ ε.

In other words, the probability among all the possible key pairs for A of recovering
x from its encrypted value is bounded by ε.

Definition 12 (Γ -uniformity). Let Π = (K, E ,D, COINS, MSPC) be an asym-
metric encryption scheme. For given (pk, sk) ← K(1k), x ∈ MSPC and y ∈
{0, 1}∗, define

Γ (x, y) = Pr [h ←R COINS : y = Epk(x;h)] .

We say that Π is Γ -uniform, if, for any (pk, sk) ← K(1k), any x ∈ MSPC and
any y ∈ {0, 1}∗, Γ (x, y) ≤ Γ .

284 M. Finiasz and S. Vaudenay

Definition 13 (Find-Guess-security). Let Π = (E ,D, KSPC, MSPC) be a sym-
metric encryption scheme where KSPC is the key space and MSPC is the message
space. Let A be an adversary. We say Π is (t, ε)-FG-secure if, for any A running
in at most time t:
∣
∣
∣2 · Pr

[
a ←R KSPC; (x0, x1) ← A; b ←R {0, 1};

y = Ea(xb) : A(x0, x1, y) = b
]
− 1
∣
∣
∣ ≤ ε.

This means that an adversary choosing x0 and x1 cannot decide which of them
corresponds to a given ciphertext y = Ea(xb) with probability more than 1

2 + ε
2 .

Definition 14 (IND-CCA-security). Let Π = (K, E ,D, COINS, MSPC) be an
asymmetric encryption scheme and let A be an adversary having access to a
decryption oracle Dsk. We say that Π is (t, qD, ε)-IND-CCA-secure if for any
A running in at most time t and asking at most qD queries to the decryption
oracle:
∣
∣
∣2 · Pr

[
(pk, sk) ← K(1k); (x0, x1) ← ADsk ; b ←R {0, 1};

y = Epk(xb) : ADsk(x0, x1, y) = b
]
− 1
∣
∣∣ ≤ ε.

This means that an adversary choosing x0 and x1 cannot decide which of them
corresponds to a given ciphertext y = Epk(xb) with probability more than 1

2 + ε
2 . In

the random oracle model, Esk might also use some random oracles for encryption.
We then get a similar definition of IND-CCA security by bounding the number
of queries to these random oracles.

On Redundant τ -Adic Expansions and
Non-adjacent Digit Sets

Roberto Maria Avanzi1,�, Clemens Heuberger2,��, and Helmut Prodinger3,���

1 Faculty of Mathematics and Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

roberto.avanzi AT ruhr-uni-bochum.de
2 Institut für Mathematik B, Technische Universität Graz, Austria

clemens.heuberger AT tugraz.at
3 Department of Mathematics, University of Stellenbosch, South Africa

hproding AT sun.ac.za

Abstract. This paper studies τ -adic expansions of scalars, which are
important in the design of scalar multiplication algorithms on Koblitz
Curves, and are less understood than their binary counterparts.

At Crypto ’97 Solinas introduced the width-w τ -adic non-adjacent
form for use with Koblitz curves. It is an expansion of integers z =��

i=0 ziτ
i, where τ is a quadratic integer depending on the curve, such

that zi �= 0 implies zw+i−1 = . . . = zi+1 = 0, like the sliding window
binary recodings of integers. We show that the digit sets described by
Solinas, formed by elements of minimal norm in their residue classes, are
uniquely determined. However, unlike for binary representations, syntac-
tic constraints do not necessarily imply minimality of weight.

Digit sets that permit recoding of all inputs are characterized, thus
extending the line of research begun by Muir and Stinson at SAC 2003
to Koblitz Curves.

Two new useful digit sets are introduced: one set makes precompu-
tations easier, the second set is suitable for low-memory applications,
generalising an approach started by Avanzi, Ciet, and Sica at PKC 2004
and continued by several authors since. Results by Solinas, and by Blake,
Murty, and Xu are generalized.

Termination, optimality, and cryptographic applications are consid-
ered. We show how to perform a “windowed” scalar multiplication on
Koblitz curves without doing precomputations first, thus reducing mem-
ory storage dependent on the base point to just one point.

� Supported by the European Commission through the IST Programme under Con-
tract IST-2002-507932 ECRYPT.

�� Supported by the Austrian Science Foundation FWF, project S9606, that is part
of the Austrian National Research Network “Analytic Combinatorics and Proba-
bilistic Number Theory.”

��� Supported by the NRF grant 2053748 of the South African National Research
Foundation and by the Center of Experimental Mathematics of the University of
Stellenbosch.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 285–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

286 R.M. Avanzi, C. Heuberger, and H. Prodinger

1 Introduction

Elliptic curves (EC) [15,17] are now a well established cryptographic primitive.
The performance of an EC cryptosystem depends on the efficiency of the funda-
mental operation, the scalar multiplication, i.e. the computation of the multiple
sP of a point P by an integer s. Among all EC, Koblitz curves [16], defined by
the equation

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} (1)

over the finite field F2n , permit particularly efficient implementation of scalar
multiplication. Key to their good performance is the Frobenius endomorphism
τ , i.e. the map induced on Ea(F2n) by the Frobenius automorphism of the field
extension F2n/F2, that maps field elements to their squares.

Set μ = (−1)1−a. It is known [24, Section 4.1] that τ permutes the points
P ∈ Ea(F2n), and (τ2 + 2)P = μτ(P). Identify τ with a root of

τ2 − μτ + 2 = 0 . (2)

If we write an integer z as
∑�

i=0 ziτ
i, where the digits zi belong to a suitably

defined digit set D, then we can compute zP as
∑�

i=0 ziτ
i(P) via a Horner

scheme. The resulting method [16,23,24] is called a “τ -and-add” method since it
replaces the doubling with a Frobenius operation in the classic double-and-add
scalar multiplication algorithm. Since a Frobenius operation is much faster than
a group doubling, scalar multiplication on Koblitz curves is a very fast operation.

The elements dP for all d ∈ D are computed before the Horner scheme.
Larger digit sets usually correspond to representations

∑�
i=0 ziτ

i with fewer
non-zero coefficients i.e. to Horner schemes with fewer group additions. Optimal
performance is attained upon balancing digit set size and number of non-zero
coefficients.

Solinas [23,24] considers the residue classes in Z[τ] modulo τw which are
coprime to τ , and forms a digit set comprising the zero and an element of minimal
norm from each residue class coprime to τ . We prove (Theorem 2) that such
elements are unique, hence this digit set is uniquely determined. It has cardinality
1 + 2w−1. Solinas’ recoding enjoys the width-w non-adjacent property

zi �= 0 implies zw+i−1 = . . . = zi+1 = 0 , (3)

and is called the τ -adic width-w non-adjacent form (or τ -w-NAF for short).
Every integer admits a unique τ -w-NAF.

We call a digit set allowing to recode all integers satisfying property (3) a
(width-w) non-adjacent digit set, or w-NADS for short. Theorem 1 is a criterion
for establishing whether a given digit set is a w-NADS, which is very different in
substance from the criterion of Blake, Murty, and Xu [8]. The characterisation
of digit sets which allow recoding with a non-adjacency condition is a line of
research started by Muir and Stinson in [18] and continued, for example by
Heuberger and Prodinger in [11].

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 287

Our criterion is applied to digit sets introduced and studied in §§ 2.3 and 2.4.
We can prove under which conditions the first set is a w-NADS (Theorem 3),
and give precise estimates of the length of the recoding (Theorem 4). The second
digit set corresponds, in a suitable sense, to “repeated point halvings” (cf. The-
orem 5) and is used to design a width-w scalar multiplication algorithm without
precomputations. Among the other results in Section 2 are the facts that the
τ -adic w-NAF as defined by Solinas is not optimal, and that it is not possible to
compute minimal expansions by a deterministic finite automaton. In Section 3
we discuss the relevance of our results for cryptographic applications and per-
formance. We conclude in Section 4. Due to space constraints, most proofs have
been omitted. They will be given in the extended version of the paper.

2 Digit Sets

Let μ ∈ {±1}, τ be a root of equation (2) and τ̄ the complex conjugate of τ .
Note that 2/τ = τ̄ = μ − τ = −μ(1 + τ2). We consider expansions to the base
of τ of integers in Z[τ]. It is well known that Z[τ], which is the ring of algebraic
integers of Q(

√
−7), is a unique factorization domain.

Definition 1. Let D be a (finite) subset of Z[τ] containing 0 and w � 1 be an
integer. A D-expansion of z ∈ Z[τ] is a sequence ε = (εj)j�0 ∈ DN0 such that

1. Only a finite number of the digits εj is nonzero.
2. value(ε) :=

∑
j�0 εjτ

j = z, i.e., ε is indeed an expansion of z.

The Hamming weight of ε is the number of nonzero digits εj. The length of ε
is defined as

length(ε) := 1 + max{j : εj �= 0} .

A D-expansion of z is a D-w-Non-Adjacent-Form (D-w-NAF) of z, if

3. Each block (εj+w−1, . . . , εj) of w consecutive digits contains at most one
nonzero digit εk, j � k � j + w − 1.

A {0,±1}-2-NAF is also called a τ -NAF.
The set D is called a w-Non-Adjacent-Digit-Set (w-NADS), if each z ∈ Z[τ]

has a D-w-NAF.

Typically, D will have cardinality 1 + 2w−1, but we do not require this in the
definition. One of our aims is to investigate which D are w-NADS, and we shall
usually restrict ourselves to digit sets formed by adjoining the 0 to a reduced
residue system modulo τw, which is defined as usual:

Definition 2. Let w � 1 a natural number. A reduced residue system D′ for
the number ring Z[τ] modulo τw is a set of representatives for the congruence
classes of Z[τ] modulo τw that are coprime to τ .

For a digit set D for Z[τ] formed by 0 together with a reduced residue system,
Algorithm 1 either recodes an integer z ∈ Z[τ] to the base of τ , or enters in a
infinite loop for some inputs when D is not a NADS.

288 R.M. Avanzi, C. Heuberger, and H. Prodinger

Algorithm 1. General windowed integer recoding

INPUT: An element z from Z[τ], a natural number w � 1 and a reduced residue system D′ for the
number ring R modulo τw.

OUTPUT: A representation z =
��−1

j=0 zjτ
j of length � of the integer z with the property that if

zj �= 0 then zj+i = 0 for 1 � i < w.

1. j ← 0, u ← z

2. while u �= 0 do

3. if τ | u then

4. zj ← 0 [Output 0]

5. else

6. Let zj ∈ D′ s.t. zj ≡ z (mod τw) [Output zj]

7. u ← u − zj , u ← u/τ , j ← j + 1

8. � ← j

9. return ({zj}�−1
j=0, �)

Example 1. A digit set obtained by adjoining the zero to a reduced residue
system is not necessarily a NADS. This fact has been observed in the binary
case in [18]. If we take w = 1 and the digit set {0, 1 − τ} (here the reduced
residue set modulo τ = τ1 comprises the single element 1 − τ) we see that the
element 1 has an expansion (1 − τ) + (1 − τ)τ + (1 − τ)τ2 + (1 − τ)τ3 + · · · .
Algorithm 1 does not terminate in this case.

2.1 Algorithmic Characterization

As already mentioned, one aim of this paper is to investigate which digit sets
D are in fact w-NADS. For concrete D and w, this question can be decided
algorithmically:

Theorem 1. Let D be a finite subset of Z[τ] containing 0 and w � 1 be an
integer. Let

M :=

⌊
max{N(d) : d ∈ D}

(2w/2 − 1)2

⌋

,

where N(z) denotes the norm of z, i.e., N(a + bτ) = (a + bτ)(a + bτ̄) = a2 +
μab + 2b2 for a, b ∈ Z.

Consider the directed graph G = (V,A) defined by its set of vertices

V := {0} ∪ {z ∈ Z[τ] : N(z) � M , τ � z}

and set of arcs

A := {(y, z) ∈ V 2 : There exist d ∈ D \ {0}, and v � w s.t. z = τvy + d} .

Then D is a w-NADS iff the following conditions are both satisfied.

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 289

0 1 τ

τ + 1

−τ − 2

−τ − 1

−2

−1

2

−τ

1 − τ

τ + 2 τ − 1

0 1 0

1

0

1

0

1

0

0

1

0 1

Fig. 1. Directed Graph G for μ = −1, w = 1, D = {0, 1}. The arcs are labeled with

(v, d) as in the definition of the graph, i.e. y
(v,d)−→ z means that z = τvy + d.

1. The set D contains a reduced residue system modulo τw.
2. In G = (V,A), each vertex z ∈ V is reachable from 0.

If D is a w-NADS and D \ {0} is a reduced residue system modulo τw, then
each z ∈ Z[τ] has a unique D-w-NAF.

We now make some remarks and discuss two well-known examples.

Remark 1. A number a + τb ∈ Z[τ] is relatively prime to τ iff a is odd. This
follows from the fact that τ is a prime element in Z[τ] and that τ divides a
rational integer iff the latter is even.

Example 2. Let w = 1 and D = {0, 1}. By Remark 1, there is only one residue
class prime to τ . In this case M = 5, so V = {0,±1,±1± τ}. The corresponding
directed graph in the case μ = −1 is shown in Figure 1. The case μ = 1 is similar.

We see that all 7 states are reachable from 0. Thus, {0, 1} is a 1-NADS. This
is equivalent to saying that τ is the base of a canonical number system in Z[τ]
in the sense of [13], and is a particular case of results from [12].

Remark 2. Example 2 implies that there are exactly 2w residue classes modulo
τw; a complete residue system is:

{∑w−1
j=0 εjτ

j with εj ∈ {0, 1} for 0 � j <

w
}
. There are 2w−1 residue classes coprime to τw, a reduced residue system is:{

1 +
∑w−1

j=1 εjτ
j with εj ∈ {0, 1} for 1 � j < w

}
.

Example 3. Let w = 2 and D = {0,±1}. Using Remark 2, it is easily seen that
{±1} is a reduced residue system modulo τ2. In this case, M = 1, the graph G
consists of the three states V = {0,±1} only, and those are obviously reachable
from 0. Thus {0,±1} is a 2-NADS. This has been proved by Solinas [23,24].

290 R.M. Avanzi, C. Heuberger, and H. Prodinger

Example 4. Let us consider the digit set D = {0} ∪ {±1,±3,. . .,±(2w−1 − 1)}.
The odd digits form a reduced residue system modulo τw , since τw divides a
rational integer if and only if 2w divides it (note that τ and τ̄ are coprime
primes in Z[τ]). However, this digit set is not a w-NADS for all w. For instance,
for w = 6, the number 1 −μτ has no D-6-NAF. Using Theorem 1, we can verify
that for w ∈ {2, 3, 4, 5, 7, 8, 9, 10}, this set D is a w-NADS.

2.2 Representatives of Minimal Norm

Theorem 2. Let τ , w � 2 be as above, and D a digit set consisting of 0 together
with one element of minimal norm from each odd residue class modulo τw.

The digit set D is uniquely determined. In other words, in each odd residue
class modulo τw there exists a unique element of minimal norm.

In [5,6] it has been shown that the τ -NAF has minimal weight among all the
τ -adic expansions with digit set {0,±1}. Since the digit set D = {0,±1 ± τ̄}
is also Solinas’ set for w = 3, in the same paper it is in fact shown that a D-
w-NAF with this digit set is a D-expansion of minimal weight. For the radix 2
the analogous result is known to be true for all positive w [1,19]. So one might
conjecture that the same holds for our choice of τ . But, the following example
shows that this is not the case:

Example 5. Consider μ = −1, w = 4, and the set D of minimal norm represen-
tatives modulo τw . We have D = {0,±1,±1 ± τ,±(3 + τ)} and

value(1, 0, 0, 0,−1 − τ, 0, 0, 0, 1 − τ) = −9 = value(−3 − τ, 0, 0,−1) .

The first expansion is the D-w-NAF and has Hamming weight 3. The second
expansion does not satisfy the w-NAF condition, has Hamming weight 2 and is
even shorter than the first expansion.

Even worse, we exhibit chaotic behaviour in the following sense: for every integer
k > 0, a pair of numbers can be found which are congruent modulo τk, but
whose optimal D-expansions differ even at the least significant position. Thus
it is impossible to compute an optimal D-expansion of z by a deterministic
transducer automaton or an online algorithm.

Proposition 1. Let w = 4, and D = {0,±1,±1 ± τ,±(3 − μτ)} (all signs are
independent) be the set of minimal norm representatives modulo τw. For every
nonnegative integer
, we define

z� := value
(

0, 0, 0, 0, μ − τ, (0, 0, 0,−3μ + τ)(�), 0, 0, 0, 0, 1 − μτ, 0, 0, 0,−1
)
,

z′� := value
(
−μ, 0, 0, 0, μ − τ, (0, 0, 0,−3μ + τ)(�), 0, 0, 0, 0, 1 − μτ, 0, 0, 0,−1

)
,

(4)

where (0, 0, 0,−3μ + τ)(�) means that this four-digit block is repeated
 times.
Then z� ≡ z′� (mod τ4�+13). All D-optimal expansions of z� are given by

(
(0, 0, 0, 3 − μτ)(�2), 0, 0, μ − τ, (0, 0, 0,−3μ + τ)(�1), 0, 0, 0, 0, 1 − μτ, 0, 0, 0,−1

)
,

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 291

where
1 and
2 are nonnegative integers summing up to
. There is only one
D-optimal expansion of z′�, it is given by

(
(0, 0, 0,−3 + μτ)(�+1), 0, 0, 0, 0,−3μ + τ, 0, 0, 1 + μτ

)
.

Note that the D-optimal expansion of z′� has Hamming weight
 + 3, whereas
the D-w-NAF of z′� given in (4) has Hamming weight
 + 4. The proof is based
on the search of shortest paths in an auxiliary automaton.

2.3 Syntactic Sufficient Conditions

The aim of this section is to prove sufficient conditions for families of sets D to be
a w-NADS at the level of digits of the τ -NAF. In contrast to Theorem 1, where
a decision can be made for any concrete set D, we will now focus on families of
such sets. Blake, Murty, and Xu [8] gave sufficient conditions based on the norm
of the numbers involved.

Proposition 2. Let w � 1 and ε, ε′ two τ-NAFs. Then value(ε) ≡ value(ε′)
(mod τw) if and only if

εj = ε′j for 0 � j � w − 2 and |εw−1| = |ε′w−1| . (5)

Definition 3. Let w be a positive integer and D be a subset of

{ 0 } ∪ { value(ε) : ε is a τ-NAF of length at most w with ε0 �= 0 }

consisting of 0 and a reduced residue system modulo τw. Then D is called a set
of short τ -NAF representatives for τw.

By Proposition 2, an example for a set of short τ -NAF representatives is

D = { 0 } ∪
{

value(ε) : ε is a τ -NAF of length at most w

with ε0 �= 0 and εw−1 ∈ {0, ε0}
}

.
(6)

All other sets of short τ -NAF representatives are obtained by changing the
signs of εw−1 without changing ε0 in some of the ε. It is easy to check that the
cardinality of D is indeed 1 + 2w−1.

The main result of this section is the following theorem, which states that in
almost all cases, a set of short τ -NAF representatives is a w-NADS:

Theorem 3. Let w be a positive integer and D a set of short τ-NAF represen-
tatives. Then D is a w-NADS iff it is not in the following table

w μ D Remark
3 −1 {1,−1,−τ2 + 1,−τ2 − 1} (−τ − 1)

(
1 − τ3

)
= −τ2 + 1

3 −1 {1,−1,−τ2 + 1, τ2 − 1} (−τ − 1)
(
1 − τ3

)
= −τ2 + 1

3 −1 {1,−1, τ2 + 1, τ2 − 1} (τ + 1)
(
1 − τ3

)
= τ2 − 1

3 1 {1,−1,−τ2 + 1, τ2 − 1} (−τ + 1)
(
1 − τ6

)
=
(
−τ2 + 1

)
τ3 + τ2 − 1

(the “Remark” column contains an example of an element which cannot be rep-
resented). In particular, if w � 4, then D is always a w-NADS.

292 R.M. Avanzi, C. Heuberger, and H. Prodinger

The following result is concerned with the lengths of recodings that make use of
the set of short τ -NAF representatives.

Theorem 4. Let w � 2 be a positive integer, D a set of short τ-NAF represen-
tatives, and ε a D-w-NAF of some z ∈ Z[τ].

Then the length of ε can be bounded by

2 log2 |z| − w − 0.18829 < length(ε) < 2 log2 |z| + 7.08685 , if w � 4 , (7)
2 log2 |z| − 2.61267 < length(ε) < 2 log2 |z| + 5.01498 , if w = 3 , (8)
2 log2 |z| − 0.54627 < length(ε) < 2 log2 |z| + 3.51559 , if w = 2 . (9)

Note that (9) is Solinas’ [24] Equation (53).

2.4 Point Halving

For any given point P , point halving [14,22] consists in computing a point Q
such that 2Q = P . This operation applies to all elliptic curves over binary fields.
Its evaluation is (at least two times) faster than that of a doubling and a halve-
and-add scalar multiplication algorithm based on halving instead of doubling
can be devised. This method is not useful for Koblitz curves because halving is
slower than a Frobenius operation.

In [3] it is proposed to insert a halving in the “τ -and-add” method to speed
up Koblitz curve scalar multiplication. This approach brings a non-negligible
speedup and was refined in [5,6], where the insertion of a halving was interpreted
as a digit set extension as follows: Inserting a halving in the scalar multiplication
is equivalent to adding ±τ̄ to the digit set {0,±1}. Note that, by Theorem 3, D =
{0,±1,±τ̄} is the only 3-NADS of short τ -NAF representatives. In particular
D′ = {±1,±τ̄} is a reduced residue system modulo τ3.

The next two theorems state that more powers of τ̄ still produce reduced
residue systems D′, which in some cases give rise to w-NADS.

Theorem 5. Let w � 2. Then D′ := {±τ̄k : 0 � k < 2w−2} is a reduced residue
system modulo τw.

Theorem 6. Let D := {0}∪ {±τ̄k : 0 � k < 2w−2}. If w ∈ {2, 3, 4, 5, 6} then D
is a w-NADS. If w ∈ {7, 8, 9, 10, 11, 12} then D is not a w-NADS.

Sketch of the Proof of Theorem 6. For every pair (w, μ) with w � 6 the conditions
of Theorem 1 have been verified by heavy symbolic computations.

For 7 � w � 12 and both values of μ the graph G contains loops that are not
reachable from 0. In other words, there are elements in Z[τ] that have periodic
expansions. For example, if w = 7 and μ = 1 we have

−9 + 34 τ =
τ̄27 − τ̄6τ7

1 − τ16
= τ̄27 − τ̄6τ7 + τ̄27τ16 − τ̄6τ23 + τ̄27τ32 − · · ·

and the number 371 − 20 τ has for all w with 8 � w � 12 (also with μ = 1)
periodic expansion (τ̄41 − τ̄5τ12)(1 − τ24)−1. ��

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 293

2.5 Comparing the Digit Sets

So far, three digit sets have been studied: the minimal norm representatives,
short NAF representatives, and powers of τ̄ . It is a natural question to ask what
are the relations between these sets when they are w-NADS.

The minimal norm representatives are exactly the powers of τ̄ for w � 4. For
the same range of w, all digits of these digit sets have a τ -NAF of length at most
w, which implies that they are also digit sets of short NAF representatives.

If symmetry is required, i.e., if d is a digit, then −d must also be a digit, by
Theorem 3 there is only one w-NADS of short NAF representatives for w � 3:
it coincides with the digit sets of minimal norm representatives and powers of τ̄ .
For w = 4, however, there is a symmetric w-NADS of short NAF representatives
distinct from the other two digit sets. For w � 5, the three concepts are different:
the lengths of the τ -NAFs of the powers of τ̄ grow exponentially in w, and the
lengths of some minimal norm representatives exceed w slightly (at most by 2).

The table below summarizes the above considerations and provides further in-
formation.“MNR” stands for the minimal norm representatives digit set, whereas
“Pτ̄” stands for the powers of τ̄ . The last two rows show the maximum length
of the τ -NAFs of the digits.

w 2 3 4 5 6
MNR=Pτ̄ True True True False False

Max τ -NAF length MNR 1 3 4 6 8
Max τ -NAF length Pτ̄ 1 3 4 8 17

3 Applications

All digit sets seen so far can be used in a τ -and-add scalar multiplication, where
we first precompute dP for all d ∈ D \ {0} and then we evaluate the scheme∑

ziτ
i(P); in fact, only a half of the precomputations usually suffice since in all

cases that we explicitly described the non-zero elements of the digit set come in
pairs of elements of opposite sign.

The digit set from § 2.3 simplifies the precomputation phase. The digit set
from § 2.4 allows us to perform precomputations very quickly or to get rid of
them completely. In the next two subsections we shall consider these facts in
detail. In § 3.3 we explain how to use digit sets which are not w-NADS when
they contain a subset that is a k-NADS for smaller k.

3.1 Using the Short-NAF Digit Set

Let us consider here the digit set D defined in (6). With respect to Solinas’ set it
has the advantage of being syntactically defined. If a computer has to work with
different curves, different scalar sizes and thus with different optimal choices for
the window size, the representatives in Solinas’ set must be recomputed – or
they must be retrieved from a set of tables. In some cases, the time to compute
representatives of minimal norm may have to be subsumed in the total scalar

294 R.M. Avanzi, C. Heuberger, and H. Prodinger

multiplication time. This is not the case with our set. This flexibility is also
particularly important for computer algebra systems.

The scalar is first recoded as a τ -NAF, and the elements of D are associated to
NAFs of length at most w with non-vanishing least significant digit, and thus to
certain odd integers in the interval [−aw, aw] where aw = 2w+1−2(−1)w

3 −1. These
integers can be used to index the elements in the precomputation table. We need
only to precompute the multiples of the base point by “positive” short NAFs
(i.e. with most significant digit equal to 1) – and the corresponding integers
are the odd integers in the interval [0, aw−1] together with the integers ≡ 1
(mod 4) in [aw−1 + 2, aw]. The indices in the table are then obtained by easy
compression. The precomputed elements for the scalar multiplication loop can
thus be retrieved upon direct reading the τ -NAF, of which we need only to
compute the least w significant places. If the least and the w-th least significant
digits of this segment of the τ -NAF are both non-zero and have different signs,
a carry is generated: Thus, the computation of the τ -NAF should be interleaved
with the parsing for short NAFs.

3.2 τ -Adic Scalar Multiplication with Repeated Halvings

Let w � 2 be an integer and D the digit set defined in § 2.4. Let P be a point on
an elliptic curve and Qj := τ j(2−jP) for 0 � j < 2w−2 and R := Q2w−2−1. To
compute zP , we have to compute yR for y := τ̄2w−2−1z. Computing a D-w-NAF
of y, this can be done by using the points Qj , 0 � j < 2w−2 as precomputations.

Now, a point halving on an elliptic curve is much faster than a point doubling,
and a point addition is not faster than a doubling. Now, with, say, Solinas’ set
or the short τ -NAF representatives the precomputations always involve at least
one addition per digit set element. With our set we require a halving per digit
set element. Hence, our approach with the points Qj and halvings is already
faster than traditional ones.

But we can do even better, especially if normal bases are used to represent
the field F2n . Algorithm 2 computes zP using an expansion y =

∑�
i=0 yiτ

i of
the integer y := τ̄2w−2−1z where the digits yi belong to the digit set introduced
in Theorem 5, i.e. D := {0} ∪ {±τ̄k : 0 � k < 2w−2}.

To explain how it works we introduce some notation. Write yi = εiτ̄
ki with

εi ∈ {0,±1}. We also define

y(k) =
∑

i : 0�i��, yi=±τ̄k

εiτ
i .

Now y =
∑2w−2−1

k=0 y(k)τ̄k and therefore

zP = τ̄−(2w−2−1)yP =

(
2w−2−1∑

m=0

y(m)τ̄m

)

τ̄−(2w−2−1)P

=
2w−2−1∑

m=0

y(m)τ̄m−(2w−2−1)P =
2w−2−1∑

m=0

(τ

2

)2w−2−1−m

(y(m))P .

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 295

Algorithm 2. τ -adic Scalar Multiplication with Repeated Halvings

INPUT: A Koblitz curve Ea, a point P of odd order on it, and a scalar z.

OUTPUT: zP

1. y ← τ̄ 2w−2−1z

Write y =
��

i=0 yiτ
i where yi ∈ D := {0} ∪ ±{τ̄k : 0 � k < 2w−2}

Write yi = εiτ̄
ki with εi ∈ {0, ±1}

2. �k ← max
�
{−1} ∪ {i : yi = ±τ̄k for some k}

�

3. X ← 0

4. for k = 0 to 2w−2 − 1 do

5. if k > 0 then X ← τn−�kX , X ← 1
2X

6. for i = �k to 0 do

7. X ← τX

8. if yi = ±τ̄k then X ← X + εiP

9. return (X)

The last expression is evaluated by a Horner scheme in τ
2 , i.e. by repeated ap-

plications of τ and a point halving, interleaved with additions of y(0)P , y(1)P ,
etc. The elements y(k)P are computed by a τ -and-add loop as usual. To save
a memory register, instead of computing y(k)P and then adding it to a partial
evaluation of the Horner scheme, we apply τ to the negative of the length of
y(k) (which is 1 +
k) to the intermediate result X and perform the τ -and-add
loop to evaluate y(k)P starting with this X instead of a “clean” zero. In Step 5
there is an optimization already present in [3]: n is added to the exponent (since
n ≈
k and τn acts like the identity on the curve) and the operation is also
partially fused to the subsequent τ

2 . At the end of the internal loop the relation

X =
∑k

m=0

(
τ
2

)k−m
y(m)P holds, thus proving the correctness.

Apart from the input, we only need to store the additional variable X and the
recoding of the scalar. The multiplication of z by τ̄2w−2−1 is an easy operation,
and the negative powers of τ can be easily eliminated by multiplying by a suitable
power of τn which operates trivially on the points of the curve. Reduction of
this scalar by (τn − 1)/(τ − 1) following [23,24] is also necessary.

An issue with Algorithm 2 is that the number of Frobenius operations may
increase exponentially with w, since the internal loop is repeated up to 2w−2

times. This is not a problem if a normal basis is used to represent the field, but
may induce a performance penalty with a polynomial basis. A similar problem
was faced by the authors of [20], and they solved it adapting an idea from [21].
The idea consists in keeping a copy R of the point P in normal basis repre-
sentation. Instead of computing y(k)P by a Horner scheme in τ , the summands
εiτ

iP are just added together. The power of the Frobenius is applied to R before
converting the result back to a polynomial basis representation and accumulat-
ing it. According to [10] a basis conversion takes about the same time as one
polynomial basis multiplication, and the two conversion routines require each a
matrix that occupies O(n2) bits of memory.

296 R.M. Avanzi, C. Heuberger, and H. Prodinger

Algorithm 3. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Re-
peated Halvings, for Fast Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: zP

1. y ← τ̄ 2w−2−1z

Write y =
��

i=0 yiτ
i where yi ∈ D := {0} ∪ ±{τ̄k : 0 � k < 2w−2}

Write yi = εiτ̄
ki with εi ∈ {0, ±1}

2. R ← normal basis(P)

3. Q ← 0

4. for k = 0 to 2w−2 − 1

5. if k > 0 then Q ← τQ, Q ← 1
2Q

6. for i = 0 to �

7. if yi = ±τ̄k then Q ← Q + εipolynomial basis(τ iR)

8. return Q

Algorithm 4. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Re-
peated Doublings, for Slow Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: zP

1. Write z =
��

i=0 ziτ
i where zi ∈ D := {0} ∪ ±{τ̄k : 0 � k < 2w−2}

Write zi = εiτ̄
ki with εi ∈ {0, ±1}

2. R ← normal basis(P) [Keep in affine coordinates]

3. Q ← 0 [Q is in Lopez-Dahab coodinates]

4. for k = 2w−2 − 1 to 0

5. if k > 0 then Q ← τ−1Q, Q ← 2Q
�
τ−1 is three square roots

�

6. for i = 0 to �

7. if zi = ±τ̄k then Q ← Q + εipolynomial basis(τ iR) [Mixed coord.]

8. return Q [Convert to affine coordinates]

Algorithm 3 is a realisation of this approach. It is suited in the context where a
polynomial basis is used for a field and the cost of an inversion is not prohibitive.
The routines normal basis and polynomial basis convert the coordinates of the
points between polynomial and normal bases.

Algorithm 4 is the version for fields with a slow inversion (such as large fields).
It uses inversion-free coordinate systems and, since no halving formula is known
for such coordinates, a doubling is used instead of a halving. This is not a
problem, since using Projective or López-Dahab coordinates (see [9, § 15.1]) a
doubling followed by an application of τ−1 (which amounts to three square root
extractions) is about twice as fast as a mixed-coordinate addition preceded by a
basis conversion, hence the situation is advantageous as the previous one. This
also dispenses us with the need of using an auxiliary scalar y.

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 297

Algorithm 5. Windowed Integer Recoding With Termination Guarantee

INPUT: An element z from Z[τ], a natural number w � 1 and a set of reduced residue systems
D′

k ⊂ D′
k+1 ⊂ . . . ⊂ D′

w modulo τk, τk+1, . . ., τw respectively, (1 � k < w) where D′
k ∪ {0}

is a k-NADS.

OUTPUT: A representation z =
��−1

j=0 zjτ
j of length �.

1. j ← 0, u ← z, v ← w

2. while u �= 0 do

3. if τ | u then

4. zj ← 0

5. else

6. Let zj ∈ D′
v s.t. zj ≡ u (mod τv)

7. if (|zj | � |u|(2v/2 − 1) And v > k) then decrease v and retry:

8. v ← v − 1, go to Step 6

9. u ← u − zj , u ← u/τ , j ← j + 1

10. � ← j

11. return ({zj}�−1
j=0, �)

Although the digit set D introduced in Theorem 5 is not a w-NADS for all
w, in the next subsection we show how to save the situation.

3.3 Stepping Down Window Size

Let Dw be a family of digit sets, parametrized by an integer w, which are w-
NADS for some small values of w, but not in general, and such that Dv−1 ⊂ Dv

for all v. Then, Algorithm 1 may enter a loop for a few inputs. This can be
caused by the appearance of “large” digits towards the end of the main loop
of the recoding algorithm. Then the norm of the variable u gets too small in
comparison to the chosen digit, and |u| �

∣
∣∣u−zj

τw

∣
∣∣ � |u|+|zj|

2w/2 . For most other in-
puts the algorithm terminated and delivers the expected low density. How can
we save it? One possibility is to decrease w for the rest of the computation,
so that the corresponding digit set is a NADS. We call this operation stepping
down. The resulting recoding may have a slightly higher weight, but the algo-
rithm is guaranteed to terminate. One possible implementation is presented as
Algorithm 5.

Solinas can prove that his τ -adic w-NAF terminates because his digits are
representants of minimal norm, and have norm bounded by 4

72w. The presence
of digits of non-minimal norm is a necessary but not sufficient condition for non-
termination. In fact, the digit sets from Example 4 and from § 2.4 are w-NADS
with some digits of norm larger than 2w.

Remark 3. The digit set from Example 4, the syntactically defined set of § 2.3
and the set of Theorem 5 all have the property that each set is contained in the
sets with larger w – hence Algorithm 5 can be used.

298 R.M. Avanzi, C. Heuberger, and H. Prodinger

Remark 4. Checking an absolute value (or a norm) in Algorithm 5, Step 7 is
expensive. Hence we need an alternative strategy. Let Mw be defined as M in
Theorem 1 for the digit set we are considering, with parameter w. Consider
an easy function that is bounded by the norm: for example, if z = a + bτ ,
λ(z) = max{�|a + μ

2 b|�2, 2�|μ
4 a + b|�2}. It is easy to check that λ(z) � N(z) and

that λ(z) = 0 iff z = 0. Therefore, if �log2(Mv)� � !log2(λ(z))" we step down
to a new value of v with �log2(Mv)� < !log2(λ(z))". These checks are quickly
computed only by using the bit lengths of a and b and performing additions, sub-
tractions and bit shifts (but no expensive multiplication). The values �log2(Mv)�
are precomputed in an easy way.

Remark 5. In our experiments, the recodings done with the different digit sets
have similar length, the average density is 1/(w+1) (see also § 3.4), and stepping
down only marginally increases the weight. Thus, the new digit sets bring their
advantages with de facto no performance penalty.

3.4 A Performance Remark

Algorithms 2, 3 and 4 compute scalar multiplications by performing 2w−2 − 1
“faster” operation blocks and (roughly) n/(w + 1) “slower” operation blocks. In
Algorithm 2 (with normal bases) the two block types are given by a halving,
resp. an addition. In Algorithm 3 (resp. 4) these two block types are given by
a Frobenius operation plus a halving (resp. by an inverse Frobenius plus a dou-
bling), and by a basis conversion followed by an addition (for both algorithms).
In all cases we can see that computing the first block takes α times the time for
the second block, where α � 1/2.

We now determine asymptotically optimal values for w in these algorithms
in terms of n, where n is assumed to be large. This will lead to large values w,
such that the digit set from § 2.4 is probably not a w-NADS. We will therefore
have to use Algorithm 5 (or a variant of it). For the sake of simplicity, we do
not decrease v step by step depending on the norm of |zj|, but we use v = w for
j < L and v = 6 for j � L, where the parameter L will be chosen below.

Let z be a random integer in Z[τ] with |z| � |τ |n. Here “random” means
that for every positive integer m, every residue class modulo τm is equally likely.
Let y =

∑L−1
j=0 zjτ

j where the zj are calculated by Algorithm 5. Then y ≡ z

(mod τL) and |y| � |τ |2w−2−1+L−1(1 + |τ |−w)−1. Thus |(z − y)/τL| � |τ |n−L +
|τ |2w−2−2. The choice

L = n − 2w−2 + 2

implies that |(z − y)/τL| � 2|τ |n−L. The expected length of the D6-6-NAF of
(z − y)/τL is n − L + O(1). Here, D6 = {0} ∪ {±τ̄k : 0 � k < 16}. We conclude
that the expected Hamming weight of the expansion returned by Algorithm 5 is

L

w + 1
+

n − L

7
+ O(1) .

Here, we use the well-known fact that a v-NAF of length m has expected Ham-
ming weight m/(v + 1) + O(1).

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 299

Algorithm 2 performs 2w−2 − 1 point halvings, the number of additions being
given by the Hamming weight of the expansion. With α as above, the total costs
of the curve operations (measured in additions) is

α2w−2 +
L

w + 1
+

n − L

7
+ O(1) = 2w−2

(
α +

1
7

)
+

n − 2w−2

w + 1
+ O(1) .

Balancing the two main terms gives

ŵ =
1

log 2
W

(
7 · 2

21α+10
7α+1 log 2

7α + 1
n

)

− 7α + 8
7α + 1

·

where W is the main branch of Lambert’s W function. Asymptotically, this is
ŵ = log2 n − log2 log2 n + 2 − log2

(
α + 1

7

)
+ O

(
log log n

log n

)
. Thus we choose

w =
⌊
log2 n − log2 log2 n + 2 − log2

(
α +

1
7

)⌋

and see that the expected number of curve additions asymptotically equals

n

log2 n

(
1 + c + O

(
log log n

log n

))
(10)

with 1
2 < c = 2−{log2 n−log2 log2 n+2−log2(α+ 1

7)} � 1.
For Algorithms 3 and 4, the unit in the cost (10) is given by the cost of a

group addition and a base conversion – the latter being comparable to a field
multiplication. We thus have the following result:

Theorem 7. Algorithms 2, 3 and 4 are sublinear scalar multiplication algo-
rithms on Koblitz Curves with constant input-dependent memory consumption.

Note that here sublinear refers to the number of group operations, and “constant
memory consumption” refers to the number of registers required for temporary
variables – each one taking of course O(n) bits. Usual windowed methods with pre-
computations have, of course, similar time complexity but use storage for 2w−2−1
points [23,24] and thus O(n2w) = O(n2/ log n) bits of memory. Algorithms 3 and 4
need O(n2) bits of field-dependent (but not point-dependent) data for base con-
version (as in [21,20]) that can be stored statically (such as in ROM).

For the same values of w, our algorithms perform better than techniques
storing precomputations. The precomputation stage with Solinas’ digit set takes
one addition and some Frobenius operations per precomputation. Using the digit
set from § 2.4 these additions can be replaced with cheaper operations (halvings
or doublings depending on the coordinate system), whereas in Algorithms 3
and 4 the cost of the basis conversion associated to each addition in the main
loop is relatively small. In all cases, the increase in recoding weight is marginal.
A more precise performance evaluation (including small values of n and w) lies
beyond the scope of this paper; however, in [2] some simple operation counts
and comparisons with other methods can be found. The method in [7] is also
sublinear, but its applicability still has to be assessed – the authors warn that
the involved constants may be quite large. See [4] for another approach.

300 R.M. Avanzi, C. Heuberger, and H. Prodinger

4 Conclusions

The paper at hand presents several new results about τ -adic recodings.
Digit sets allowing a w-NAF to be computed for all inputs are characterised.

We study digit sets with interesting properties for Koblitz curves.
We prove that Solinas’ digit set, characterised by the property that the el-

ements have minimal norm, is uniquely determined. We show, by means of an
example, that the non adjacency property does not imply minimality of weight,
and enunciate a result implying that optimal expansions cannot be computed
by a deterministic finite automaton.

In § 2.3 we introduce a new digit set characterised by syntactic properties. Its
usage is described in § 3.1.

The digit set introduced in § 2.4 together with Algorithms 2, 3 and 4 permit to
perform a “windowed” τ -adic scalar multiplication without requiring storage for
precomputed points. This is potentially useful for implementation on restricted
devices. Our methods can perform better than previous methods that make use
of precomputations. Some operation counts (based on the performance of real-
world implementations of finite field arithmetic) comparing our algorithms with
other methods can be found in [2]. Better performance assessments are part of
future work.

Acknowledgements. This paper was partly written during a joint visit of
the first two authors to the Department of Mathematical Sciences, Stellenbosch
University, and during a visit (supported by the FWF project S9606) of the
first author to the Institut für Mathematik B, Technische Universität Graz. The
authors thank these institutions for their hospitality.

Disclaimer. The information in this document reflects only the authors’ views,
is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

References

1. Avanzi, R.M.: A Note on the Signed Sliding Window Integer Recoding and its
Left-to-Right Analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 130–143. Springer, Heidelberg (2004)

2. Avanzi, R.M.: Delaying and Merging Operations in Scalar Multiplication: Appli-
cations to Curve-Based Cryptosystems. In: Biham, E., Youssef, A.M. (eds.) SAC
2006. LNCS. vol. 4356, pp. 203–219, Springer, Heidelberg

3. Avanzi, R.M., Ciet, M., Sica, F.: Faster ScalarMultiplication onKoblitz Curves com-
bining PointHalvingwith theFrobeniusEndomorphism. In: Bao, F., Deng,R., Zhou,
J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 28–40. Springer, Heidelberg (2004)

4. Avanzi, R.M., Dimitrov, V., Doche, C., Sica, F.: Extending Scalar Multiplica-
tion using Double Bases. In: ASIACRYPT 2006, LNCS. vol. 4284, pp. 130–144,
Springer, Heidelberg (2006)

On Redundant τ -Adic Expansions and Non-adjacent Digit Sets 301

5. Avanzi, R.M., Heuberger, C., Prodinger, H.: Minimality of the Hamming Weight of
the τ -NAF for Koblitz Curves and Improved Combination with Point Halving. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 332–344. Springer,
Heidelberg (2006)

6. Avanzi, R.M., Heuberger, C., Prodinger, H.: Scalar Multiplication on Koblitz
Curves Using the Frobenius Endomorphism and its Combination with Point Halv-
ing: Extensions and Mathematical Analysis. Algorithmica 46, 249–270 (2006)

7. Avanzi, R.M., Sica, F.: Scalar Multiplication on Koblitz Curves Using Double
Bases. Cryptology ePrint Archive. In: VIETCRYPT 2006, LNCS. vol. 4341, pp.
131–146, Springer, Heidelberg (2006)

8. Blake, I.F., Murty, V.K., Xu, G.: A note on window τ -NAF algorithm. Information
Processing Letters 95, 496–502 (2005)

9. Cohen, H., Frey, G. (eds.): The Handbook of Elliptic and Hyperelliptic Curve
Cryptography. CRC Press, Boca Raton (2005)

10. Coron, J.-S., M’Räıhi, D., Tymen, C.: Fast generation of pairs (k, [k]p) for Koblitz
elliptic curves. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 151–164. Springer, Heidelberg (2001)

11. Heuberger, C., Prodinger, H.: Analysis of Alternative Digit Sets for Nonadjacent
Representations. Monatshefte für Mathematik, pp. 219–248 (2006)

12. Kátai, I., Kovács, B.: Canonical number systems in imaginary quadratic fields.
Acta Math. Hungar. 37, 159–164 (1981)

13. Kátai, I., Szabó, J.: Canonical Number Systems for Complex Integers. Acta Scien-
tiarum Mathematicarum 1975, 255–260

14. Knudsen, E.W.: Elliptic Scalar Multiplication Using Point Halving. In: Lam, K.-Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

15. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)
16. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.

(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
17. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
18. Muir, J.A., Stinson, D.R.: Alternative digit sets for nonadjacent representations.

In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 306–319.
Springer, Heidelberg (2004)

19. Muir, J.A., Stinson, D.R.: Minimality and other properties of the width-w nonad-
jacent form. Math. Comp. 75, 369–384 (2006)

20. Okeya, K., Takagi, T., Vuillaume, C.: Short Memory Scalar Multiplication on
Koblitz Curves. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 91–105. Springer, Heidelberg (2005)

21. Park, D.J., Sim, S.G., Lee, P.J.: Fast scalar multiplication method using change-of-
basis matrix to prevent power analysis attacks on Koblitz curves. In: Chae, K.-J.,
Yung, M. (eds.) Information Security Applications. LNCS, vol. 2908, pp. 474–488.
Springer, Heidelberg (2004)

22. Schroeppel, R.: Elliptic curve point ambiguity resolution apparatus and method.
International Application Number PCT/US00/31014 (filed 9 November, 2000)

23. Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer,
Heidelberg (1997)

24. Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryp-
tography 19(2/3), 125–179 (2000)

Pairing Calculation on Supersingular Genus 2

Curves

Colm Ó hÉigeartaigh and Michael Scott

School of Computing, Dublin City University.
Ballymun, Dublin 9, Ireland

{coheigeartaigh,mike}@computing.dcu.ie

Abstract. In this paper we describe how to efficiently implement pairing
calculation on supersingular genus 2 curves over prime fields.We find that,
contrary to the results reported in [8], pairing calculation on supersingular
genus 2 curves over prime fields is efficient and a viable candidate for the
practical implementation of pairing-based cryptosystems. We also show
how to eliminate divisions in an efficient manner when computing the Tate
pairing, assuming an even embedding degree, and how this algorithm is
useful for curves of genus greater than one.

Keywords: Tate pairing, hyperelliptic curves, pairing computation.

1 Introduction

Following a seminal paper by Boneh and Franklin [5] in 2001, there has been
an explosion of interest in the exploitation of the properties of bilinear pairings
on elliptic curves for cryptographic protocols. Naturally, there has also been
much focus on the efficient implementation of pairings. Victor Miller gave the
first algorithm [20,21] for computing a bilinear pairing, specifically the Weil
pairing. However in practice the Tate pairing is used, as it is computationally
less expensive.

In an important paper, Barreto et al. [2] gave criteria under which divisions in
Miller’s algorithm can be eliminated entirely. According to [25], this reduces the
calculation time by almost 50%. Other papers which describe important improve-
ments to computing the Tate pairing on elliptic curves are [12] and [3]. Numerous
papers describe the actual implementational details, for example see [26].

Although the vast majority of work has been done using elliptic curves, an
increasing amount of attention is being focused on computing pairings using
hyperelliptic curves of genus 2. Choie and Lee [8] investigate the implementation
of the Tate pairing on supersingular genus 2 curves of embedding degree 4, over
large prime fields. Barreto et. al. [1] describe an efficient implementation of the
Tate pairing using the eta pairing construct on supersingular genus 2 curves, over
fields of characteristic 2. The significance of this paper is that it not only shows
that pairing computation is comparable on genus 2 curves to elliptic curves, but
that it can in fact be even faster.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 302–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Pairing Calculation on Supersingular Genus 2 Curves 303

In this paper, we first of all give an improvement to Miller’s algorithm for
calculating the Tate pairing for arbitrary curves of even embedding degree. This
algorithm is more efficient than the GHS algorithm [12], but not as efficient as
the denominator elimination technique of Barreto et. al [2] in the general case.
However, we show that the new algorithm is more efficient than the denominator
elimination algorithm for special cases using curves of genus greater than one.

We then report an efficient implementation of the Tate pairing on genus 2
curves over prime fields. We detail various enhancements to Miller’s algorithm
that are in the literature, explaining how to apply them to the genus 2 case using
prime fields for the first time. We give more efficient formulae for computing the
functions required in Miller’s algorithm for the genus 2 case than that reported
in [8], the saving being a squaring and a multiplication in each iteration. Fi-
nally, we report timings for computing the Tate pairing, that establishes new
benchmarks for pairing implemention on genus 2 curves over large prime fields.

This paper is organised as follows. Section 2 gives an overview of the Tate
pairing and Miller’s Algorithm. Section 3 details an algorithm for computing the
Tate pairing, assuming an even embedding degree, without using the two-variable
approach of [12]. Section 4 shows how to apply various techniques from the
literature for speeding up pairing computation to the specific genus 2 case over
prime fields. Section 5 gives experimental results, and we draw our conclusions
in section 6.

Section 3 was partly presented in a short paper on the ePrint archive (see [15]),
and was presented in the rump session at the ECC 2005 conference. We note
that some of the ideas in this section were derived independently in Kobayashi
et al. [17].

2 The Tate Pairing

We say that a subgroup of the degree zero divisor class group of a hyperelliptic
curve C defined over a finite field Fp has embedding degree k, if the order r of
the subgroup divides pk − 1, but does not divide pi − 1 for any 0 < i < k.
The Tate pairing maps the discrete logarithm in the subgroup to the discrete
logarithm in the finite field Fpk , which is the basis of the Frey-Rück attack [11].

Using the notation above, let r be a prime number which is coprime to p. Let
G = JC(Fpk) be the Jacobian Variety of C over Fpk , which is isomorphic to the
degree zero divisor class group, and let G[r] be the r-torsion group and G/rG
the quotient group. Then the Tate pairing is defined as;

〈·, ·〉r : G[r] × G/rG → F∗
pk/(F∗

pk)r

We follow Galbraith et al. [12] in defining the first argument over the smaller
field Fp instead of Fpk . This greatly improves computational efficiency, as all
the coefficients of the functions in Miller’s Algorithm will then also be defined
over the field Fp. To allow for an efficient implementation of the extension field
arithmetic, we also assume that the embedding degree k is even. The Tate pairing

304 C. Ó hÉigeartaigh and M. Scott

as detailed above is only defined up to r-th powers. As a unique value is required
for cryptographic purposes, we define the reduced pairing;

〈D1, D2〉(p
k−1)/r

r .

The Tate pairing is both well-defined and non-degenerate. However its most
important property is bilinearity. We define bilinearity for any integer n as,
〈[n]P,Q〉 ≡ 〈P, [n]Q〉 ≡ 〈P,Q〉n (modulo rth powers). The Tate pairing can be
computed using an algorithm due to Miller [20,21], as described in Algorithm 1
for an arbitrary hyperelliptic curve. This algorithm is basically the usual ”dou-
ble and add” algorithm combined with an evaluation of certain intermediate
functions (see chapter 9 of [4] for more details).

In Algorithm 1 the divisions are postponed until the end of the loop, to avoid
performing a division each loop iteration. To do this we use two variables in the
loop, to effectively replace a division with a squaring each loop iteration, which
is considerably less expensive to compute. This is an idea given by Galbraith et.
al. [12]. However as we shall see in the next section, when the embedding degree
is even, this optimisation is unnecessary.

After the main loop, the final exponentiation of (pk − 1)/r is performed to
obtain a unique value over Fpk . It is this unique value which can then be used for
cryptographic purposes. It is well known that if arithmetic in Fpk is implemented
using quadratic extensions, an element in this field can be exponentiated to the
power of pk/2 using a simple conjugation in Fpk over Fpk/2 . Conjugation in the
quadratic extension is denoted by x = (a− bi) for an element x = (a+ bi) ∈ Fpk .

Taking advantage of this, it is standard to efficiently compute the final ex-
ponentiation as f = f/f followed by f = f (pk/2+1)/φk(p) and f = f (φk(p)/r),
where φd(x) is the dth cyclotomic polynomial. The final f = f (φk(p)/r) exponen-
tiation can be computed efficiently using either Lucas Sequences [28,29] or the
multi-exponentiation approach [16,14].

An important improvement on Miller’s Algorithm as detailed above was given
in [2] for elliptic curves. If the x-coordinate of the image point Q is defined over a
subfield of Fpk , then the denominator, or the fd variable in algorithm 1, will also
be defined over a subfield of Fpk . This is because the denominator function relies
solely on the evaluation at the x-coordinate of Q each iteration. As any value
defined over a subfield of Fpk will be annihilated by the final exponentiation of
(pk/2 − 1), the fd variable can be removed from algorithm 2 completely.

Some distortion maps naturally map the x-coordinate of a point to a subfield
of Fpk . When this is not the case, a simple transformation of the point as detailed
in the next section will have the desired effect. However, as will be seen, this
approach is problematic for curves of genus greater than one.

3 Eliminating Divisions in Miller’s Algorithm

In this section, we show how the denominator elimination technique is problem-
atic with curves of genus greater than one, assuming that a suitable distortion

Pairing Calculation on Supersingular Genus 2 Curves 305

Algorithm 1. Miller’s algorithm to compute the Tate pairing, as per Galbraith
et al. [12]
Input: P ∈ JC(Fp), Q ∈ JC(Fpk) where P has order r.

Output: 〈P, Q〉(q
k−1)/r

r

1: fc ← 1, fd ← 1
2: T ← P
3: for i ← �log2(r)� − 1 downto 0 do
4: � Compute T ′ = [2]T − div(c/d)
5: T ← [2]T
6: fc ← f2

c · c(Q)
7: fd ← f2

d · d(Q)
8: if ri = 1 then
9: � Compute T ′ = T + P − div(c/d)
10: T ← T + P
11: fc ← fc · c(Q)
12: fd ← fd · d(Q)
13: end if
14: end for
15: f ← fc/fd

16: f ← ((f/f)(p
k/2+1)/φk(p))(φk(p)/r) = f (pk−1)/r

17: return f

map does not exist. We then present a more efficient algorithm for computing
the Tate pairing over quadratic extension fields than is given in algorithm 1,
which overcomes the problems associated with denominator elimination in cer-
tain contexts.

As seen in the previous section, another approach is required to get the denomi-
nator elimination technique to work, when no distortion map exists that maps the
x-coordinate of a point from the ground field to a subfield of the field Fpk . Instead
we must use an idea given in a paper by Barreto et. al. [3]. To apply denominator
elimination in this case, generate a ”distorted point” Q over Fpk and get a trace-
zero point with: R = Q − Qpk/2

. The point R will have an x-coordinate defined
over a subfield, and so the denominator elimination technique can be used.

However, this technique is problematic when the genus is greater than one, as
it increases the weight of the image divisor. For example, if we are evaluating at
a degenerate divisor in the genus 2 setting, which consists of a single point on the
support, then the above mapping will result in a more general divisor with two
points. This will not happen using elliptic curves, as each class in the divisor class
group can be represented by a divisor with a single point in the support. So in the
genus 2 setting, instead of evaluating the functions in Miller’s algorithm at a single
point, they must be evaluated at two points to use the denominator elimination
technique. This drastically reduces the efficiency of denominator elimination.

We now present an alternative way to proceed, by introducing a new variant
of Miller’s algorithm, assuming that the embedding degree of the curve is even,

306 C. Ó hÉigeartaigh and M. Scott

Table 1. Complexity of function calculation per iteration in Miller’s Algorithm

case description complexity

1 Original Approach 1I, 2M, 1S
2 Two-variable Approach 2M, 2S
3 Algorithm 2 2M, 1S
4 Denominator Elimination 1M, 1S

as is almost always the case for practical implementations. The finite field Fpk is
then typically represented as a quadratic extension of Fpk/2 . It is well known that
for an element x = (a + bi) ∈ Fpk , then (1

x)pk/2−1 = (x)pk/2−1. This effectively
replaces an expensive operation with one that is free to compute.

This technique is exploited by Scott [27] when computing the Weil pairing.
Scott proposes exponentiating the pairing value to the power of pk/2 − 1, which
means that the inversion in the Miller loop can be replaced with a conjugation.
However, no one has observed that it is possible to use this idea when computing
the Tate pairing, without any extra computation being involved. When comput-
ing the Tate pairing, the final exponentiation to obtain a unique rth root of unity
includes the factor (pk/2 − 1), as (pk − 1)/r = (pk/2 − 1)(pk/2 + 1)/r. So as the
output of the loop is implicitly raised to the power of (pk/2 − 1), there is no
need of the strategy of using two variables to eliminate divisions, as a division in
the main loop can be replaced by a multiplication and a conjugation. The new
algorithm is described in Algorithm 2.

As the variable fd is eliminated from the pairing calculation, the saving is a
squaring over Fpk each iteration of the loop compared to the GHS approach. This
is still not as efficient as performing denominator elimination, which would save
a multiplication over this again each iteration. However, when computing the
Tate pairing with curves of genus greater than one, and using a distortion map
that does not allow denominator elimination directly, algorithm 2 is a slightly
more efficient algorithm.

The reason for this is that the denominator elimination algorithm consists
of two evaluations at the line function each iteration (or one evaluation of a
more complicated form if Mumford representation (see Cantor [6]) is used). Al-
gorithm 2 consists of one evaluation at the line function, and one evaluation
at the vertical line function, which requires less computation to evaluate than
the line function. Algorithm 2 is also less restrictive than using denominator
elimination, as it places no conditions on the form of the image divisor. Table 1
illustrates the complexity of the different algorithms in more detail.

4 Implementing the Pairing

In this section, various techniques that allow for an efficient implementation
of the Tate pairing using supersingular genus 2 curves over prime fields are
described. Timings are given in section 5.

Pairing Calculation on Supersingular Genus 2 Curves 307

Algorithm 2. An improved algorithm for computing the Tate Pairing
Input: P ∈ JC(Fp), Q ∈ JC(Fpk) where P has order r.

Output: 〈P, Q〉(q
k−1)/r

r

1: f ← 1
2: T ← P
3: for i ← �log2(r)� − 1 downto 0 do
4: � Compute T ′ = [2]T − div(c/d)
5: T ← [2]T
6: f ← f2 · c(Q) · d(Q)
7: if ri = 1 then
8: � Compute T ′ = T + P − div(c/d)
9: T ← T + P
10: f ← f · c(Q) · d(Q)
11: end if
12: end for
13: f ← ((f/f)(p

k/2+1)/φk(p))(φk(p)/r) = f (pk−1)/r

14: return f

4.1 The Curve

Following [7] and [8], we implement the Tate pairing on the supersingular genus 2
curve;

H : y2 = x5 + a, a ∈ F∗
p, p ≡ 2, 3 mod 5

In practice, we take a = 1 for convenience. The other supersingular genus 2 curve
defined over a prime field with a low embedding degree that was given in [7], is
unsuitable for cryptography as it is isogenous to a product of elliptic curves.

The order of the Jacobian of this curve is #JC(Fp) = p2 + 1, and hence the
embedding degree of the curve is 4. The distortion map that maps points on the
curve defined over the field Fp to the larger field Fp4 is given as;

φ(x, y) = (ζ5x, y)

where ζ5 is a primitive 5th root of unity defined over Fp4 . Note that ζ5 maps the
x-coordinate to Fp4 , and hence does not give denominator elimination directly.
Choie and Lee give explicit formulae [8] for calculating the functions required
for the genus 2 Tate pairing, which are derived from Lange’s explicit genus 2
formulae [18] and Miyamoto et al.’s formulae [22].

Doubling a divisor is by far the most important part of the group arithmetic for
pairings, under the assumption that we are using a prime-order subgroup which
has an order of low Hamming Weight. In [8] the given cost of doubling a general
divisor (in the overwhelmingly common case) and extracting the functions re-
quired for Miller’s algorithm is 1 inversion, 23 multiplications and 5 squarings over
Fp. However, we save a squaring and a multiplication over this. In table 6 of the
appendix, we give the formulae for doubling a general divisor as per [8], with these

308 C. Ó hÉigeartaigh and M. Scott

Table 2. Comparison of the cost of doubling in JH

doubling l(x)

[22] 1I, 23M, 4S 3M
[18] 1I, 22M, 5S 3M
[8] 1I, 23M, 5S no cost
our work 1I, 22M, 4S no cost

optimisations built in (the multiplication is saved in step 8). Note our assumption
that, as the characteristic of the field is odd, the h polynomial is zero, where the h
polynomial comes from the definition of the curve as y2 + h(x)y = f(x). Table 2
summarises the computational cost of doubling a general divisor.

We believe that the formulae in table 6 are optimal, as they have the same
computational cost as simply doubling a divisor as given in [18], ie. calculating
the functions required for Miller’s algorithm is for free.

4.2 Prime-Order Subgroup

We use the conventions suggested by Lenstra and Verheul [19] and used by
Scott [27], to define the levels of security required. For a more thorough com-
parison of security levels we refer the reader to Galbraith et al. [13]. Here the
security levels are defined as (160/1024), (192/2048) and (224/4096), where the
first number in each term is the group size, and the second number is the size of
the field Fpk . As our embedding degree is k = 4, we are required to work with
finite fields Fp, where p ∼ 256, 512 and 1024-bits.

When considering what group size to use there are two options, either to use a
prime-order subgroup or the full order of the Jacobian. The latter has the advan-
tage that the order of the Jacobian often has a small Hamming weight, and the
final exponentiation can be far less expensive. However, if we choose the order of
the prime-order subgroup such that it has a low Hamming weight, and if it is far
smaller than the order of the Jacobian, then the former method is better.

Rather than using a random prime-order subgroup, we choose a special prime
of low Hamming Weight known as a Solinas prime [30]. These primes require
only two additions in Miller’s algorithm. As Duursma and Lee noted [9], the
final addition can be skipped assuming that denominator elimination is applied.
See section 5 for further details on the parameters used.

4.3 Finite Field Representation

The best way to represent elements of the field Fp4 is to represent them as a
quadratic extension of Fp2 , which is in turn a quadratic extension of Fp, as op-
posed to representing Fp4 as a quartic extension of Fp. If the prime p is congruent
to 5 mod 8, then the irreducible polynomial x2 +2 can be used to represent the
quadratic extension field Fp2 . So, assuming that β = −2 is a quadratic non-
residue, we represent elements of the field Fp2 as (a + b

√
β), where a, b ∈ Fp,

Pairing Calculation on Supersingular Genus 2 Curves 309

and we represent elements of the field Fp4 as (c + d 4
√

β), where c, d ∈ Fp2 . An
advantage of using a prime p ≡ 5 mod 8 is the resulting simple formula for
modular square roots, as required for generating points on the curve.

Using our representation, a multiplication of two elements in Fp2 is computed
using the Karatsuba method as

(a + b
√

β)(x + y
√

β) = (ax − 2by + (ay + bx)
√

β)

= (ax − 2by + ((a + b)(x + y) − ax − by)
√

β)

which takes 3M , where M is a multiplication over Fp. Similarly, a multiplication
of two elements in Fp4 takes 9M . Squaring an element in Fp2 is computed as

(a + b
√

β)2 = (a2 − 2b2 + 2ab
√

β)

= ((a + b)(a − 2b) + ab + 2ab
√

β)

which takes 2M - slightly cheaper than a general multiplication in Fp2 . Similarly,
squaring an element in Fp4 takes 6M , which is considerably cheaper than the 9M
required for a general multiplication in Fp4 . We also note that our method for
squaring an element in Fp4 is cheaper than the 8M given by Choie and Lee [8].

4.4 Using Degenerate Divisors

Duursma and Lee [9] introduced the notion of working with a degenerate divisor
for pairing applications with curves of genus greater than 1. In the genus 2
context, we will define a degenerate divisor as a divisor with only one point
in its support, rather than the more general two. There is no advantage to be
gained in using a degenerate divisor as the first argument to Miller’s algorithm,
as with the first doubling the divisor will turn into a more general divisor with
two points on the support, unless one takes advantage of an automorphism that
keeps the divisor in its special shape (eg. see [1]).

However, as we are evaluating the second divisor at a function, we achieve
a speedup by evaluating at a degenerate divisor (ie. a single point). Evaluat-
ing at a more general divisor requires evaluation at two points, or else using
the divisor’s Mumford representation. Pairing-based cryptosystems, such as the
Identity-Based Encryption scheme of Boneh and Franklin [5], can be easily mod-
ified to take advantage of the form of degenerate divisors to speed up the en-
cryption process. However, in this case the decryption process involves pairing
two general divisors, so it is important to give timings for both cases. Frey and
Lange [10] discuss in more detail in which cases the second argument to Miller’s
algorithm can be chosen to be a degenerate divisor.

4.5 Evaluating Functions

Each iteration of the loop requires the evaluation of the function fc = y1 −
((x1ζ5)3s1 + (x1ζ5)2l2 + (x1ζ5)l1 + l0), where s1, l0, l1, l2 are from Cantor’s al-
gorithm, ζ5 is a primitive 5th root of unity defined over Fp4 and x1 is the x-
coordinate of the point at which we are evaluating. As (x1ζ5)3, (x1ζ5)2 and

310 C. Ó hÉigeartaigh and M. Scott

(x1ζ5) can be precomputed, this leaves 12 multiplications over Fp to be com-
puted each time the function is evaluated. However, a multiplication may be
saved by examining relations between various powerings of the 5th root of unity.

If ζn is a primitive nth root of unity in a field K, then its conjugates over
the prime subfield K0 of K are also primitive nth roots of unity [23]. Also, ζa

n

is a primitive nth root of unity if and only if a and n are coprime. In our case,
the third power of a 5th primitive root of unity over Fp4 is related to the second
power by conjugation: ζ3

5 = ζ2
5

So instead of evaluating an equation of the form a+bζ5 +cζ2
5 +dζ3

5 , where b =
−x1l1, c = −x2

1l2 and d = −x3
1s1, let ζ2

5 = (m+n 4
√

β) where m,n ∈ Fp2 . Then we
can compute a+bζ5+cζ2

5 +dζ3
5 as a+bζ5+((c+d)m, (c−d)n). Computing c and d

takes only two multiplications over Fp (with a precomputation of 1 squaring and
1 multiplication). Computing (c+d)m and (c−d)n takes 4 multiplications, with
a precomputation of 6 multiplications. Computing bζ5 takes 4 multiplications,
with a precomputation of 4 multiplications. Thus the total multiplication count
in evaluating the function is 10 multiplications, a saving of two multiplications,
with a precomputation of 11 multiplications and 1 squaring.

Evaluating the image point at the vertical line functions takes 8 multiplica-
tions over Fp, assuming a precomputation of 6 multiplications. So the total cost
of evaluating a point at the functions is 18 multiplications over Fp per iteration,
with a precomputation of 1 squaring and 17 multiplications.

4.6 Using Denominator Elimination

As detailed in section 3, it is more efficient to use Algorithm 2 than denominator
elimination, assuming a distortion map that does not give denominator elimi-
nation directly, and that the image divisor is a degenerate divisor. However, it
is possible to reduce the performance gap by using customized multiplication
routines, as detailed in this section.

Given a point Q = (x, y) ∈ Fp4 , the transformation R = Q−Qp2
gives a divisor

R suitable for use with denominator elimination. Writing this as R = (x, y) +
(x,−y) avoids using Cantor’s algorithm over Fp4 and keeps the two points on the
support of the divisor separate. A benefit of this approach is that the function
calculated in the main doubling loop, fc = y1−((x1ζ5)3s1+(x1ζ5)2l2+(x1ζ5)l1−
l0), can be reused for the calculation of the required function for the second point.

Let the function fc = ((a+b
√

β)+(c+d
√

β) 4
√

β) for the first point (x, y). Then,
for the second point (x,−y), the function fc = ((a−2y+b

√
β)−(c+d

√
β) 4

√
β). So

the calculation of the second function is effectively for free, as it simply involves
two subtractions and a conjugation using the function generated by the first
point. However, we still have to multiply the two functions together.

In each iteration of the loop, the function fc is evaluated twice, ie. at the
two points. As seen above, the two functions are closely related. It is possible to
exploit these relations to speed-up the calculation. So instead of calculating each
function separately and multiplying them separately by the overall accumulating
variable, we multiply the functions fc1 and fc2 together first, before multiplying
the result with the accumulating function.

Pairing Calculation on Supersingular Genus 2 Curves 311

Normally, multiplying two general elements in Fp4 can be done with only 9
multiplications over Fp, using the Karatsuba technique. For the functions fc1 =
(a + b 4

√
β) and fc2 = (c − b 4

√
β), where a, b, c ∈ Fp2 , the fc1fc2 multiplication is

unrolled as;

(a + b 4
√

β)(c − b 4
√

β) = ac − b2
√

β + b(c − a) 4
√

β

Note that here (c − a) ∈ Fp. We can also take advantage of the form of the ac
multiplication, where;

ac = (e + f
√

β)(g + f
√

β) = eg − 2f2 + f(e + g)
√

β

So the total cost is 2M + S for the ac multiplication, plus 2M + 2M for the
overall multiplication, which results in 6M +S instead of the general 9M . When
this technique is implemented, we find that although the denominator elimi-
nation method is theoretically slightly faster, the performance of denominator
elimination and Algorithm 2 is roughly the same, for the genus 2 case under con-
sideration. However, we suggest that Algorithm 2 is a more natural algorithm to
use in practice, as it is does not require constructing customised multiplication
routines, such as those given in this section.

4.7 Lucas Exponentiation

As detailed in algorithm 1, the final exponentiation is split into two parts. The
first part can be computed with a conjugation and division, and then Lucas
exponentiation, as detailed in the paper by Scott and Barreto [28], is used for the
(p2+1)/r exponentiation. It is also possible to write the (p2+1)/r exponentiation
to the base p, and take advantage of the Frobenius endomorphism [16]. However,
according to Granger et al. [14], it is faster to use the Lucas sequence approach
for curves of low embedding degree.

4.8 Coding Issues

We use MIRACL [24] to provide the cryptographic primitives needed. In partic-
ular, we make use of special assembly-language routines that MIRACL provides,
which can be used when working with moduli with a fixed number of bits. All of
the implementation was written in C/C++ and timed on a Pentium IV, 2.8 Ghz.

4.9 Theoretical Analysis

Here we analyse the theoretical cost of computing the Tate pairing. Firstly, we
reproduce Choie and Lee’s analysis, for the sake of comparison. They estimate
the cost of computing the Tate pairing (minus the final exponentiation) as

log2(r)(TD + Tc + Td + 2Tsk + 2Tmk) + 0.5log2(r)(TA + Tc + Td + 2Tmk)

where TD is the cost of doubling a general divisor, TA is the cost of adding two
general divisors, Tc and Td the cost of evaluating at the rational functions c and

312 C. Ó hÉigeartaigh and M. Scott

d, and Tsk and Tmk the cost of squaring and multiplying respectively in Fpk .
Note that the authors assume that there will be r/2 additions to be performed,
as they employ a random subgroup order with no special conditions.

Let S be a squaring over Fp and let M be a multiplication over Fp. Choie
and Lee then define TD = 1I + 23M + 5S and TA = 1I + 23M + 2S, using their
explicit formulae for calculating the group law, and Tc+Td as 22M +5S, with an
initial precompution of 8M +3S. Finally, they define Tsk = 8M and Tmk = 9M .
The total cost then of computing 〈P,Q〉r given by Choie and Lee, assuming a
subgroup order of size log2(r) ≈ 160, is 240I + 17688M + 2163S.

We now give the theoretical cost of computing 〈P,Q〉r using the optimisations
given in this paper. Namely, using a more efficient variant of Miller’s algorithm,
using a subgroup order of low Hamming weight, using more efficient formulae to
calculate the group law, evaluating at a degenerate divisor, and implementing
finite field arithmetic more efficiently. The cost of computing the Tate pairing in
our case is (again without computing the final exponentiation)

log2(r)(TD + Tc + Td + Tsk + 2Tmk) + 2(TA + Tc + Td + 2Tmk)

where TA and Tmk are the same as given by Choie and Lee, TD = 1I + 22M +
4S, Tc + Td = 18M with a precomputation of 17M + 1S, and Tsk = 6M .
Therefore, the total cost using our optimisations comes to 162I+10375M+645S,
a substantial improvement.

5 Experimental Results

In this section, we give experimental results for computing the Tate pairing using
the techniques detailed in this paper for the supersingular genus 2 curve defined
over Fp, as defined in section 4.1. We will use the three different levels of security
defined earlier for testing, namely (160/1024), (192/2048) and (224/4096).

The only condition on our prime-subgroup order r is that it be congruent to 5
mod 8. r, and not r2, must divide the order of the Jacobian, p2 +1. The prime p
must be congruent to 5 mod 8, and also congruent to 2 or 3 mod 5, for reasons
stated earlier. The parameters used are detailed in appendix A.

Table 3 details the timings for the implementation of the Tate pairing for the
(160/1024) security level, table 4 is for the (192/2048) case, and table 5 is for the
(224/4096) case. There are four cases in each table. The first is evaluating using a
single point. The second case is evaluating at the more general two points, which
is the case when the divisor is the sum of two rational points. The third case uses
Mumford representation, instead of keeping the points separate. This case has the
advantage that it also handles the case when the points on the divisor are defined
over a larger field. All these cases use algorithm 2. The fourth cases are timings
that are reported in [27] using elliptic curves, with the equivalent level of security.

In the Choie and Lee paper [8], they give implementations of the pairing
that range between 500 and 600 ms on a Pentium IV 2 Ghz for a (160/1024) bit
security level. However, as seen in table 3, our timings far outperform this. These
timings indicate that genus 2 pairings over prime fields are valid candidates for

Pairing Calculation on Supersingular Genus 2 Curves 313

Table 3. Running times - (160/1024) security level

case description pairing time (ms)

1 evaluating at degenerate divisor 16
2 evaluating at general divisor 20.7
3 evaluating using Mumford rep 20.45
4 elliptic curve timing [27] 8.9

Table 4. Running times - (192/2048) security level

case description pairing time (ms)

1 evaluating at degenerate divisor 49
2 evaluating at general divisor 62
3 evaluating using Mumford rep 61
4 elliptic curve timing [27] 20.5

Table 5. Running times - (224/4096) security level

case description pairing time (ms)

1 evaluating at degenerate divisor 183
2 evaluating at general divisor 232
3 evaluating using Mumford rep 229
4 evaluating at degenerate divisor (denom elim) 175

practical implementations. However, as can be seen from the tables, the elliptic
cases are roughly twice as fast as the genus 2 timings. This is what we would
expect, due to the more complicated group law in the genus 2 case.

6 Conclusion

We have introduced a new variant of Miller’s algorithm to compute the Tate
pairing for curves of even embedding degree, by showing how divisions can always
be eliminated. This algorithm is not as fast as using denominator elimination in
the general case, but can be faster when working with curves of genus greater
than one and distortion maps of a certain form.

We have implemented the Tate pairing on supersingular genus 2 curves over
prime fields, detailed various optimisations, and showed how genus 2 curves over
prime fields are valid candidates for pairing implementation. In particular, our
timings are the fastest reported in the literature to date by a considerable margin.

Acknowledgements

We would like to thank Steven Galbraith and Caroline Sheedy for comments on
this paper, and Noel McCullagh for pointing out an error in a previous draft.
We would also like to thank the anonymous referees for their comments.

314 C. Ó hÉigeartaigh and M. Scott

References

1. Barreto, P.S.L.M., Galbraith, S.D., Ó hÉigeartaigh, C., Scott, M.: Pairing com-
putation on supersingular abelian varieties. Cryptology ePrint Archive, Report,
2004/375 (2004), Available from http://eprint.iacr.org/2004/375

2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)

4. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in elliptic curve cryptography.
Cambridge (2005)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

6. Cantor, D.G.: Computing in the jacobian of a hyperelliptic curve. Mathematics of
Computation 48(177), 95–101 (1987)

7. Choie, Y., Jeong, E., Lee, E.: Supersingular hyperelliptic curves of genus 2 over
finite fields. Journal of Applied Mathematics and Computation 163(2), 565–576
(2005)

8. Choie, Y., Lee, E.: Implementation of tate pairing on hyperelliptic curves of genus 2.
In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 97–111. Springer,
Heidelberg (2004)

9. Duursma, I., Lee, H.-S.: Tate pairing implementation for hyperelliptic curves y2 =
xp −x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

10. Frey, G., Lange, T.: Fast bilinear maps from the tate-lichtenbaum pairing on hy-
perelliptic curves. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number
Theory VII. LNCS, vol. 4076, pp. 466–479. Springer, Heidelberg (2006)

11. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete log-
arithm problem in the divisor class group of curves. Mathematics of Computa-
tion 62(206), 865–874 (1994)

12. Galbraith, S., Harrison, K., Soldera, D.: Implementing the tate pairing. In: Fieker,
C., Kohel, D.R. (eds.) Algorithmic Number Theory Symposium – ANTS V. LNCS,
vol. 2369, pp. 324–337. Springer, Heidelberg (2002)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Cryptol-
ogy ePrint Archive, Report 2006/165 (2006), http://eprint.iacr.org/2006/165

14. Granger, R., Page, D., Smart, N.P.: High security pairing-based cryptography re-
visited. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory Sym-
posium – ANTS VII. LNCS, vol. 4076, pp. 480–494. Springer, Heidelberg (2006)

15. Ó hÉigeartaigh, C.: Speeding up pairing computation (2005),
http://eprint.iacr.org/2005/293

16. Hu, L., Dong, J-W., Pei, D-Y.: Implementation of cryptosystems based on tate
pairing. Journal of Computer Science and Technology 20(2), 264–269 (2005)

17. Kobayashi, T., Aoki, K., Imai, H.: Efficient algorithms for tate pairing. IEICE
Transactions Fundamentals, E89-A(1) (January 2006)

18. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable
Algebra in Engineering, Communication and Computing 15(5), 295–328 (2005)

http://eprint.iacr.org/2004/375
http://eprint.iacr.org/2006/165
http://eprint.iacr.org/2005/293

Pairing Calculation on Supersingular Genus 2 Curves 315

19. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology 14(4), 255–293 (2001)

20. Miller, V.S.: Short programs for functions on curves. Unpublished manuscript
(1986), http://crypto.stanford.edu/miller/miller.pdf

21. Miller, V.S.: The weil pairing and its efficient calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

22. Miyamoto, Y., Doi, H., Matsuo, K., Chao, J., Tsuji, S.: A fast addition algorithm
of genus two hyperelliptic curve. In: Symposium on Cryptography and Information
Security – SCIS 2002, pp. 497–502.

23. Ribenboim, P.: Classical Theory of Algebraic Numbers. Springer, Heidelberg (2001)
24. Scott, M.: Miracl (multiprecision integer and rational arithmetic c/c++ library).

Available from http://indigo.ie/∼mscott/
25. Scott, M.: Faster identity based encryption. Electronics Letters 40(14), 861 (2004)
26. Scott, M.: Computing the tate pairing. In: Menezes, A.J. (ed.) CT-RSA 2005.

LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)
27. Scott, M.: Scaling security in pairing-based protocols. Cryptology ePrint Archive,

Report, 2005/139 (2005), http://eprint.iacr.org/2005/139
28. Scott, M., Barreto, P.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004.

LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)
29. Smith, P., Skinner, C.: A public-key cryptosystem and a digital signature system

based on the lucas function analogue to discrete logarithms. In: Safavi-Naini, R.,
Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 357–364. Springer,
Heidelberg (1995)

30. Solinas, J.: Generalized mersenne numbers. Technical Report CORR 99-39, Uni-
versity of Waterloo (1999), Available from http://www.cacr.math.uwaterloo.ca/
techreports/1999/corr99-39.pdf

A Curve Parameters

Here we give the subgroup and prime field parameters that were used for the
different security levels;

r = 2159 + 217 + 1
p = 63324531451181148200275171731203125718855624493339065310878459331886717065893

192/2048 security level:

r = 2191 + 22 + 1
p = 89284651228083788426899503684145515482879124715345625109737480602016411174689
53363599067244027908076232256944699958875614648564192943960634648749730387013

224/4096 security level:

r = 2223 + 213 + 1
p = 15572288413151584018732355885170470078314521100905501866179797721305996406660
92216915248013505987797528664804210783695074492197917546846433974048512730952
93761493705843127836052457915167872334351960770506641541305942224943595487772
602516676106413200532581353024750990143717859982402535061826066311255496083453

http://crypto.stanford.edu/miller/miller.pdf
http://indigo.ie/~mscott/
http://eprint.iacr.org/2005/139
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.pdf
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.pdf

316 C. Ó hÉigeartaigh and M. Scott

B Doubling Formulae

Table 6. Formulae for doubling when deg u1 = 2, gcd(u1, 2v1) = 1)

Input D1 = [u1, v1] where u1 = x2 + u11x + u10, v1 = v11x + v10, f = x5 + a
Output D3 = [u3, v3], l(x) such that D3 + div((y − l)/u3) = 2D1.

Step Expression Cost
1 Compute ṽ1 ≡ (2v1)(mod u1) = ˜v11x + ˜v10

˜v11 = 2v11, ˜v10 = 2v10

2 Compute r = res(u1, ṽ1) 2S + 3M
w0 = v2

11, w1 = u2
11, w2 = 4w0, w3 = u11 ˜v11,

r = u10w2 + ˜v10(˜v10 − w3)

3 Compute almost inverse of inv′ = r(2v1)
−1(mod u1)

inv′
1 = − ˜v11, inv′

0 = ˜v10 − w3

4 Compute k′ =
F−v2

1
u1

(mod u1) = k′
1x + k′

0 1M

w3 = w1, w4 = 2u10, k
′
1 = 2w1 + w3 − w4

k′
0 = u11(2w4 − w3) − w0

5 Compute s′ = k′inv′(mod u1) 5M
w0 = k′

0inv′
0, w1 = k′

1inv′
1

s′
1 = ˜v10k

′
1 − ˜v11k

′
0, s

′
0 = w0 − u10w1

If s′
1 = 0 then goto step 6′.

6 Compute s = s1x + s0 and s−1
1 1I, 1S, 5M

w1 = (rs′
1)

−1, w2 = s′
1w1, w3 = r2w1,

s1 = s′
1w2, s0 = s′

0w2

7 Compute l(x) = su1 + v1 = s1x
3 + l2x

2 + l1x + l0 3M
l2 = s1u11 + s0, l0 = s0u10 + v10

l1 = (s1 + s0)(u11 + u10) − s1u11 − s0u10 + v11

8 Compute u′ = monic(F−l2

u2
1

) = x2 + u31x + u30 1S + 2M

u30 = w3(2v11 + w3(2u11 + s2
0)

u31 = 2s0 − w3

9 Compute v3 = −l(mod u3) = v31x + v30 3M
w1 = u31, u31 = w3u31, w3 = l2 − w1, w3 = u30w2

v31 = (u31 + u30)(w2 + s1) − w3 − w1 − l1, v30 = w3 − l0
1I, 4S, 22M

6’ Compute l(x) = s0u1 + v1 1I + 3M
inv = 1/r, s0 = s′

0inv, l1 = s0u11 + v11, l0 = s0u10 + v10

7’ Compute u3 = monic(F−l2

u2
1

) = x + u30 1S

u30 = −2u11 − s2
0

8’ Compute v3 = −l(mod u3) = v30 2M
v30 = u30(l1 − u30s0) − l0

1I, 3S, 14M

Efficient Divisor Class Halving on

Genus Two Curves

Peter Birkner

Department of Mathematics, Technical University of Denmark (DTU)
Matematiktorvet, Building 303, DK-2800 Kongens Lyngby, Denmark

peter@mat.dtu.dk

Abstract. Efficient halving of divisor classes offers the possibility to
improve scalar multiplication on hyperelliptic curves and is also a step
towards giving hyperelliptic curve cryptosystems all the features that
elliptic curve systems have. We present a halving algorithm for divisor
classes of genus 2 curves over finite fields of characteristic 2. We derive
explicit halving formulae from a doubling algorithm by reversing this
process. A family of binary curves, that are not known to be weak, is
covered by the proposed algorithm. Compared to previous known halving
algorithms, we achieve a noticeable speed-up for this family of curves.

Keywords: hyperelliptic curve, divisor class halving, binary fields.

1 Introduction

Since hyperelliptic curve cryptosystems (HECC) gain similar attention as their
elliptic counterparts, it is very interesting to investigate, whether ideas and meth-
ods can be transferred from the elliptic to the hyperelliptic case. The most
important operation used by elliptic curve cryptosystems (ECC) is scalar multi-
plication which is composed of point addition and doubling (when using an
double-and-add algorithm) or point addition and halving (when using an half-
and-add algorithm [7,11]). These operations are well investigated and it is likely
that the present formulae are the most efficient ones. For HECC explicit formu-
lae for addition, doubling and hence scalar multiplication of divisor classes are
also known [1,8].

Efficient halving of divisor classes offers the possibility to improve scalar multi-
plication on hyperelliptic curves and is also a step towards giving HECC all the fea-
tures that ECC have. Halving a divisor class of a hyperelliptic curve is the reverse
operation to doubling, i. e. given a divisor class D one computes another divisor
class E such that 2E = D or written in slightly informal notation: 1

2D = E.
In this paper we present an efficient divisor class halving algorithm for hyper-

elliptic curves of genus 2 over finite fields of characteristic 2. Covering a large
family of curves, that are of cryptographic interest, the complexity of our algo-
rithm (1I, 8M, 5SR, 2S, 1HT, 1TR)1 is only less higher than the complexity of
1 To describe the complexity of an algorithm we use the following abbreviations:
I – Inversion, M – Multiplication, S – Squaring, SR – Square Root, TR – Trace,
HT – Half Trace.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 317–326, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 P. Birkner

the fastest doubling algorithm (1I, 5M, 6S) for divisor classes [9]. The proposed
halving method is based on explicit doubling formulae [9] that we use to develop
the halving formulae.

The first divisor class halving algorithm for binary curves was proposed by
Kitamura, Katagi and Takagi [5,6]. To our knowledge this is the only result on
halving of divisor classes so far. Their method covers the general case as well as
some exceptional cases which do occur with very low probability. In the general
case their complexity is 1I, 18M, 2SR, 2S, 2HT, 2TR in the best case and 1I,
21M, 3SR, 2S, 2HT, 2TR in the worst case.

The special class of curves considered in Appendix D of [6] is covered by our
study. However, instead of having a one-parameter family our curves has two
free parameters. In the worst case our complexity is 1I, 8M, 5SR, 2S, 1HT, 1TR
which is significantly faster even than their formulae.

The remainder of this paper is structured as follows: In the next section we
recall some important notions and make a classification of genus 2 curves. In
Section 3 we show how we developed the halving formulae by reversing the
doubling formulae. The following section contains the actual halving algorithm.

2 Basic Notations and Preliminaries

In this section we briefly recall the definitions of hyperelliptic curves, divisor
class groups and the Mumford representation. We also make a classification of
hyperelliptic curves over finite fields of characteristic 2 because we focus on a
family of curves in this paper. Within the halving algorithm we need to solve a
quadratic equation in a finite field of even characteristic. So we will explain how
to compute solutions for this at the end of this section.

A comprehensive source for the mathematics of finite fields is [10]. For back-
ground on hyperelliptic curves we refer the interested reader to [1], from which
the following definitions and notations are taken.

Definition 1 (Hyperelliptic curve). Let K be a field and let K be the alge-
braic closure of K. A curve C, given by an equation of the form

C : y2 + h(x)y = f(x), (1)

where h ∈ K[x] is a polynomial of degree at most g and f ∈ K[x] is a monic
polynomial of degree 2g + 1, is called a hyperelliptic curve of genus g over K if
no point on the curve over K satisfies both partial derivatives 2y + h = 0 and
f ′ − h′y = 0.

The last condition ensures that the curve is nonsingular. In this paper we con-
centrate on hyperelliptic curves of genus 2 over finite fields of characteristic 2.
In this case we need a non-zero polynomial h in the curve equation as will be
shown now according to [1, p. 309].

Assuming h = 0, the partial derivative for y is equal to zero and the one for x
is equal to f ′(x) = 0, which has 2g roots in K. Let x1 be one of them. Then we

Efficient Divisor Class Halving on Genus Two Curves 319

can find an element y1 ∈ K such that f(x1) = y2
1 which leads to a singular point

P = (x1, y1) satisfying the curve equation and both partial derivatives. Hence,
there is no hyperelliptic curve with h = 0 over a field of characteristic 2.

Definition 2 (Divisor class group). Let C be a hyperelliptic curve of genus
g over a field K. The group of degree zero divisors of C is denoted by Div0

C .
The quotient group of Div0

C by the group of principal divisors of C is called the
divisor class group of C and is denoted by Pic0

C . It is also called the Picard group
of C.

Theorem 1 (Mumford). Let C be a hyperelliptic curve of genus g over an
arbitrary field K. Each nontrivial divisor class of C over K can be represented
by a unique pair of polynomials u, v ∈ K[x], where

1. u is monic,
2. deg v < deg u ≤ g,
3. u | v2 + vh − f .

Our proposed halving algorithm in Section 4 expects the input divisor class
to be in Mumford representation and works directly on the coefficients of the
polynomials u and v. The resulting divisor class is also given in the Mumford
form.

2.1 Classification of Genus Two Curves

In this paper we deal with hyperelliptic curves of genus 2 over F2d . To avoid
Weil descent attacks [4] one usually restricts to prime degree field extensions for
cryptographic applications. So in the following we particularly assume d to be
odd.

The genus 2 curves over F2d can be sorted into three different categories
depending on the 2-rank of the divisor class group of the curve (see [3]). All
points P in the support of a divisor class of order 2 satisfy P = ι(P), where
ι is the hyperelliptic involution. If P = (x, y) is not the point at infinity, its
coordinates must satisfy y = h(x) + y. So, x is a root of h(x) and we have that
the degree of h equals the 2-rank of Pic0

C . In this paper we focus on curves whose
divisor class group has 2-rank equal to one, i. e. in the curve equation we have
deg h = 1. In [2,1] these curves are called curves of Type II. Over a field F2d

with d odd, one can perform the following transformations

x �→ μ2x′ + λ and y �→ μ5y′ + μ4αx′2 + μ2βx′ + γ,

where μ is such that μ3 = h1, λ = h0h
−1
1 , α =

√
λ + f4, β a root of x2 + h1x +

f2 + f3λ + εh2
1 with ε = Tr

(
(f2 + f3λ)h−2

1

)
and γ = (λ2f3 + λ4 + f1)h−1

1 , to
obtain a unique representative of each isomorphism class given by

C : y2 + xy = x5 + f3x
3 + f2x

2 + f0, (2)

where f2 ∈ F2 and f0, f3 ∈ F2d [1, Proposition 14.37]. So, for the remainder of
this paper we consider (2) as a Type II curve.

320 P. Birkner

Since f2 ∈ F2, we have 2 · 2d · 2d = 22d+1 different choices for the right-hand
side of (2), i. e. Type II covers (up to isomorphism) 22d+1 different curves of
genus 2 where our halving algorithm can be applied.

2.2 Quadratic Equations in F2d

In the halving algorithm we need to solve a quadratic equation in F2d . Provided
a solution exists, we can use a simple formula to compute it.

Consider the quadratic equation X2 + aX + b = 0 over the finite field F2d . By
substituting X by X/a, one gets the simpler equation

T 2 + T = c, with c = b/a2, (3)

which has a solution in the field F2d if and only if the trace of c is equal to zero
[1, Section 11.2.6]. If d is odd, then a solution of (3) is given by

t =
(d−3)/2∑

i=0

c22i+1
. (4)

When t is one solution of the quadratic equation (3), then t+1 is the other one.
See [1, Section 11.2.6] for details.

2.3 Choice of the Field Representation

Like in the doubling formulae we have to compute inversions, multiplications and
squarings to halve a divisor class. Additionally we need to be able to efficiently
compute square roots, traces and half-traces. In order to speed these operations
up, one can use a normal basis representation. Having this we can compute the
square of a field element simply by shifting the representing vector. Computing
a square root works the same way but shifting to the opposite direction. Because
traces and half-traces are sums of powers of squares, they can be calculated very
efficiently, too. In a hardware implementation, multiplications and inversions in
the field can be hard-coded in order to get best performance.

Software libraries like NTL work with a polynomial basis representation and
do not provide efficient square root computations in characteristic two. So, we
implemented our own square root function for the finite field F283 and present
some timings for field operations. We used the Number Theory Library (NTL
5.4) together with the GNU Multiple Precision Arithmetic Library (GMP 4.2.1)
and the GNU Compiler Collection (GCC 4.0.1) on an Apple MacBook with a
2,0 GHz Intel Dual Core CPU to compute the benchmarks. The multiplication,
inversion and squaring functions are taken from NTL, the square root function
is our own implementation for that particular finite field. We measured the time
for 100,000 operations each.

Efficient Divisor Class Halving on Genus Two Curves 321

Table 1. Timings of field operations in F283

Operation Time [sec.] # of Multiplications

M 0.065966 1.00

I 0.52136 7.90

SR 0.3775 5.72

S 0.045714 0.69

3 From Doubling to Halving

In this section we derive the halving formulae from the doubling formulae. There-
fore, we present first how to double a divisor class given in Mumford representa-
tion using explicit formulae. Then we explain how we found the halving formulae
by reversing the doubling algorithm.

In the entire section we assume C to be a Type II hyperelliptic curve of
genus 2 over F2d , where d is odd, given by equation (2). In the following we
also need to assume that the group order of Pic0

C(F2d) is 2r, where r is odd.2

For cryptographic applications one wants to work in a cyclic subgroup of prime
order l. So we denote the order l-subgroup of Pic0

C(F2d) by S. Note, however,
that the following considerations also hold muta mutandis in the subgroup of
order r.

3.1 Doubling of Divisor Classes

Let E = [x2 + u′
1x + u′

0, v′1x + v′0] be a divisor class in the order l-subgroup
S of Pic0

C(F2d). Because l is prime, there exists no proper subgroup of S and
hence it is cyclic. So, each divisor class contained in S is the double of another
divisor class in the same subgroup, i. e. each divisor class in S can be doubled
and hence also be halved. In [5] the elements of this subgroup are called proper
divisor classes.

We can compute the doubled divisor class D = 2E = [x2 +u1x+u0, v1x+v0]
using Lange and Steven’s explicit formulae (see [9]):

u1 =

(
u′

0
2

f0 + v′0
2

)2

, (5)

u0 =

(
(
u′

1
2 + f3

)
(

u′
0
2

f0 + v′0
2

)

+ u′
1

)2

+

(
u′

0
2

f0 + v′0
2

)

, (6)

v0 =

(
u′

0
2

f0 + v′0
2 + u′

1
2 + f3

)

u0 + u′
0
2
, (7)

2 This ensures that there is no element of order 4.

322 P. Birkner

v1 =

(
u′

0
2

f0 + v′0
2 + u′

1
2 + f3

)(
u′

1
2 + f3

)(u′
0
2

f0 + v′0
2

)

+

(
u′

0
2

f0 + v′0
2

)

u1 + f2 + v′1
2
. (8)

Notice that we are considering a curve of form (2), i. e. h(x) = x. Hence, the
coefficient h1 occurring in Lange and Steven’s formulae equals one and does not
appear here.

3.2 Halving of Divisor Classes

Now, we turn around and compute the half of a divisor class by applying the
doubling formulae in reverse order. Given a divisor class D = [x2+u1x+u0, v1x+
v0], we show how to compute a divisor class E = [x2 + u′

1x + u′
0, v′1x + v′0] such

that D = 2E. Therefore, we need again to say that D must be contained in the
order l-subgroup S of Pic0

C(F2d) in order to ensure that the double and the half
of each divisor class does exist in this particular subgroup.

Taking
√

u1 from (5), we can write u0 using (6) as

u0 =
(
(u′

1
2 + f3)

√
u1 + u′

1

)2

+
√

u1. (9)

Now, using the fact that we are in characteristic 2 we can expand the quadratic
expression and arrange the terms such that we get a quartic equation in u′

1 on
the right-hand side:

u0 = u′
1
4
u1 + u′

1
2 +
(
f2
3 u1 +

√
u1

)
. (10)

Substituting U = u′
1
2 yields a quadratic equation in the variable U :

U2u1 + U = u0 + f2
3 u1 +

√
u1. (11)

Multiplying both sides by u1 and substituting T = U · u1 afterwards yields a
quadratic equation T 2 + T = c where c = u1u0 + f2

3 u2
1 + u1

√
u1 like (3).

Because D is an element of the subgroup S, there exists an element E ∈ S
with D = 2E. So u1, u0, v1 and v0 can be written as in (5), (6), (7) and (8).
Hence, we know that there exists a solution of T 2 +T = c (because this equation
holds if and only if (6) holds). Due to Section 2.2 this implies that the trace of
c is equal to zero. We also know that there exist two solutions t and t + 1 which
can be computed using (4). After adjusting these two solutions by dividing by u1

we have two solutions of (11). Re-substituting u′
1 =

√
t/u1 or u′

1 =
√

(t + 1)/u1

respectively yields two possible values for u′
1 in (10). We will show how to figure

out which of these two solutions is the right one at the end of this section. For
now let us suppose that we already know the correct u′

1.
Taking v0 from (7) and writing again u′

0
2

f0+v′
0
2 as

√
u1, we obtain:

v0 =
(√

u1 + u′
1
2 + f3

)
u0 + u′

0
2
, (12)

Efficient Divisor Class Halving on Genus Two Curves 323

which leads us to a new expression for u′
0 using the already known value u′

1:

u′
0 =

√
v0 +

(√
u1 + u′

1
2 + f3

)
u0. (13)

Now we are able to compute v′0 using u′
0 and (5):

v′0 =

√
u′

0
2

√
u1

+ f0. (14)

The last step is to compute v′1 using (8):

v′1 =
√

v1 +
√

u1

(
(
√

u1 + u′
1
2 + f3)(u′

1
2 + f3) + u1

)
+ f2. (15)

Let us now come back to figuring out which of the two solutions of the quadratic
equation T 2 + T = c is the right one. In order to do that, we use the first
solution t and continue computing the halved divisor class as explained above.
If this choice was correct, then the halved divisor class is a proper one, i. e. it is
contained in the subgroup S. So we have to check this. As we have seen above,
the trace of c = u2

1

(
u0
u1

+ f2
3 +

√
u1

u1

)
= u1

(
u0 + u1f

2
3 +

√
u1

)
is zero if and only

if the divisor class is contained in S. We now check if the obtained divisor class
can be halved, i. e. whether Tr

(
u′

1(u
′
0 + u′

1f
2
3 +

√
u′

1)
)

= 0. If this holds, then
the first solution t was correct and we have computed the correct halved divisor
class. If the trace is not zero, we use the other solution t + 1 of the quadratic
equation. So the trace serves as a criteria to determine the right solution of (11).
Note, that this test involves computing u′

1 and u′
0. So it should be performed as

soon as they are computed. If the other solution turns out to be the correct one,
we have to redo the computation of u′

1 and u′
0 using t + 1 instead of t.

After computing u′
1, u

′
0, v

′
1 and v′0 we can write the halved divisor class in

Mumford representation: E = [x2 + u′
1x + u′

0, v′1x + v′0].

3.3 The Case u1 = 0

The formulae presented in the previous section hold in the generic case, i. e. if
both the input and output have u and v of full degree and no zero coefficients.
To complete the above study we now consider how to compute the half of a
divisor class with u1 = 0.

The other cases appear with very low probability and do not belong to the
main algorithm. Implementers going for an implementation of all possible cases
should consult [9] and [8] for a complete case study.

We now consider the divisor class D = [x2 + u0, v1x + v0], where u1 equals
zero. From equation (5) follows directly u′

0 = 0. Using this and equation (6) we
get u0 = u′2

1 and hence, u′
1 =

√
u0. This shrinks (8) to v1 = f2 + v′21 and we

have v′1 =
√

v1 + f2. Having u′
0 = 0, one can see that the four equations (5), (6),

(7) and (8) do not depend on v′0 any longer, so this value becomes arbitrary. So,
(14) should not be performed.

324 P. Birkner

The complete procedure explained above leads to the actual halving algorithm
presented in the next section.

4 The Divisor Class Halving Algorithm

We present an efficient divisor class halving algorithm for genus 2 curves of Type
II (cf. Section 2.1) over F2d , where d is odd, based on the formulae derived in the
previous section. We do not follow the steps literally but change them to allow
more efficient computations.

We shortly repeat the prerequisites: The curve parameters must be chosen such
that the order of Pic0

C(F2d) is equal to 2r for an odd number r. The input divisor
class must be contained in the order l-subgroup of Pic0

C(F2d), where l is prime.

Algorithm 1. Divisor Class Halving (HLV)

Input: Divisor class D = [u, v], where u = x2 + u1x + u0, v = v1x + v0 and the
pre-computed values f2

3 ,
√

f0

Output: Halved divisor class E = [u′, v′] such that D = 2E

1: q1 ← √
u1, q2 ← 1/q1, q3 ← q2

2 , q4 ← u0q3, q5 ← √
q2 � 1I, 1M, 2SR, 1S

2: q6 ← √
q4, c ← u1(q6 + q5 + f3) � 1SR, 1M

3: t′ ←
(d−3)/2∑

i=0
c2(2i+1)

� 1HT

4: u′
1 ← t′q2, t ← u′2

1 , s1 ← v0 + (q1 + t + f3)u0 � 2M, 1S
5: u′

0 ← √
s1, b ← Trace(u′

1(u
′
0 + t + f3)) � 1M, 1SR, 1TR

6: if b = 0 then

7: v′
0 ← q5u

′
0 +

√
f0 � 1M

8: else
9: t ← t + q3, u′

1 ← u′
1 + q2

10: u′
0 ← u′

0 + q6, v′
0 ← q5u

′
0 +

√
f0 � 1M

11: end if

12: v′
1 ←

√
v1 + q1

(
(q1 + t + f3)(t + f3) + u1

)
+ f2 � 2M, 1SR

13: return [x2 + u′
1x + u′

0, v′
1x + v′

0] � Total: 1I, 8M, 5SR, 2S, 1HT, 1TR

We now explain the steps of the algorithm according to the formulae derived
in the previous section.

Some expressions in the halving formulae do occur more than once. To avoid
recomputations, we replace them by q1, . . . , q6 in Step 1 and 2. To solve the
quadratic equation (11) we have to compute u1(u0 + u1f

2
3 +

√
u1). What we

actually do in the algorithm is computing u1(q6 + f3 + q5) which is the square
root of u1(u0 + u1f

2
3 +

√
u1) and use that Tr(a2) = Tr(a) for any a ∈ F2d . The

reason for this is that we can save 1SR since u′
1 is root of the (via multiplication

by q2) adjusted solution t′. In Step 3 the solution of the quadratic equation
is computed as in (4) and then adjusted in Step 4. In Step 5 the value u′

0 is
computed according to (13).

Efficient Divisor Class Halving on Genus Two Curves 325

According to the explanation at the end of the previous section, we now have
to compute the trace of u′

1(u
′
0 +

√
u′

1 + u′
1f

2
3) in order to perform the check

whether we calculated the right solution of the quadratic equation or not. To
reduce the number of operations we compute the trace of u′

1(u
′
0 + t+f3) instead.

Doing this saves 1M, 1SR and 1S. To see that these two traces are equal, we
point out that Tr(u′

1

√
u′

1) = Tr(u′
1t), Tr(u′

1
2
f2
3) = Tr(u′

1f3) and that the trace
is a linear map.

In Steps 6 to 11 we compute v′0 depending on the trace b. If this trace is equal
to zero, we continue by computing v′0 using (14). For b = 1 we use t′ + 1 instead
of t′ in Step 3. Hence, we have to adjust x by adding q3, u′

1 by adding q2 and u′
0

by adding q6 in Steps 9 and 10. After that we can compute v′0 in the same way
as in Step 7.

The last thing to do is computing v′1 using (15) in Step 12. Finally the algo-
rithm returns the desired halved divisor class in Mumford representation. The
steps, considered so far, have a total complexity of 1I, 8M, 5SR, 2S, 1HT, 1TR
in both cases b = 1 and b = 0.

5 Conclusion and Outlook

In this paper we presented an efficient halving algorithm for divisor classes of
a family of hyperelliptic curves of genus 2 over binary fields. Compared to the
previous result by Kitamura, Katagi and Takagi [5,6] we gained a notable speed-
up for this family (see Table 2).

In Appendix D of [6] the authors consider curves of form

y2 + xy = x5 + f1x + f0.

The transformation y �→ ỹ + f1 maps to the isomorphic curve ỹ2 +xỹ = x5 + f̃0,
which is a Type II curve. This equation shows that their family of curves has only
one parameter that can be chosen freely while our family achieves full generality
for Type II curves needing far less operations (cf. Table 2).

We would like to point out that we can improve the efficiency of our algorithm
as well as that of doubling by leaving out the computation of v1 in a Montgomery
like scalar multiplication, since the new values u0, u1 and v0 do not depend on
it. We are investigating the required addition formulae.

Table 2. Complexity of halving algorithms in worst case

Type II curve Special curve
(see Section 2.1) (see [6], Appendix D)

y2 + xy = x5 + f3x3 + f2x2 + f0 y2 + xy = x5 + f0
Kitamura, Katagi, Takagi [5,6] 1I, 15M, 3SR, 3S, 2HT, 2TR 1I, 12M, 5SR, 2S, 1HT, 1TR

This work 1I, 8M, 5SR, 2S, 1HT, 1TR 1I, 8M, 5SR, 2S, 1HT, 1TR

326 P. Birkner

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: The Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press,
Boca Raton (2005)

2. Byramjee, B., Duqesne, S.: Classification of genus 2 curves over F2n and optimiza-
tion of their arithmetic. Cryptology ePrint Archive of IACR, Report 2004/107
(2004)

3. Choie, Y., Yun, D.K.: Isomorphism Classes of Hyperelliptic Curves of Genus 2
over Fq. In: Information Security and Privacy – ACISP 2002. LNCS, vol. 2384, pp.
190–202. Springer, Heidelberg (2002)

4. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. Journal of Cryptology 15(1), 19–46 (2002)

5. Kitamura, I., Katagi, M., Takagi, T.: A Complete Divisor Class Halving Algorithm
for Hyperelliptic Curve Cryptosystems of Genus Two (for a full version see [6]). In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 146–157.
Springer, Heidelberg (2005)

6. Kitamura, I., Katagi, M., Takagi, T.: A Complete Divisor Class Halving Algorithm
for Hyperelliptic Curve Cryptosystems of Genus Two. Cryptology ePrint Archive
of IACR, Report 2004/255 (2005)

7. Knudsen, E.W.: Elliptic Scalar Multiplication Using Point Halving. In: Lam, K.-Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

8. Lange, T.: Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. Applicable
Algebra in Engineering, Communication and Computing 15(5), 295–328 (2005)

9. Lange, T., Stevens, M.: Efficient Doubling for Genus Two Curves over Binary
Fields. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
170–181. Springer, Heidelberg (2004)

10. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Addison-Wesley, Reading (1983)

11. Schroeppel, R.: Elliptic curve point halving wins big. In: 2nd Midwest Arithmetical
Geometry in Cryptography Workshop, Urbana, November 2000, Illinois (2000)

Message Authentication on 64-Bit Architectures

Ted Krovetz

Department of Computer Science
California State University, Sacramento CA 95819 USA

Abstract. This paper introduces VMAC, a message authentication al-
gorithm (MAC) optimized for high performance in software on 64-bit
architectures. On the Athlon 64 processor, VMAC authenticates 2KB
cache-resident messages at a cost of about 0.5 CPU cycles per message
byte (cpb) — significantly faster than other recent MAC schemes such
as UMAC (1.0 cpb) and Poly1305 (3.1 cpb). VMAC is a MAC in the
Wegman-Carter style, employing a “universal” hash function VHASH,
which is fully developed in this paper. VHASH employs a three-stage
hashing strategy, and each stage is developed with the goal of optimal
performance in 64-bit environments.

Keywords: Message authentication, universal hashing, architectural
optimization.

I personally believe there are two main architectures out
there: Power and x86-64 [both of which are 64-bit architectures].

— Linus Torvalds, 2005.

1 Introduction

Over the years, as design and manufacturing techniques have improved, and
demand for memory addressability has increased, register lengths have become
longer. The recent adoption of 64-bit register architectures for mainstream pro-
cessors from IBM, Intel and Advanced Micro Devices is a natural evolution in
this process. It is reasonable to believe that, just as 32-bit processors did before
them, 64-bit processors will become dominant not only in servers but also in
desktops and laptops.

Many algorithms, especially in domains where high performance is desirable,
are designed with optimizations tailored for particular architectures. Changing
architectures while keeping the same designs can easily lead to suboptimal per-
formance. This is the case with high-speed message authentication and the move
from 32-bit to 64-bit architectures. The fastest reported software-optimized mes-
sage authentication algorithms (or MACs) are all designed to run well on 32-bit
architectures [5,6,9]. While these MACs generally work equally well on both
32- and 64-bit architectures — because the newer architectures support older
instructions at full speed — they are not designed to take advantage of new

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 327–341, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

328 T. Krovetz

 0.5

 1

 2

 4

 8

 16

 32

 64
 32 64 128 256 512 1024 2048

S
pe

ed
 (

cy
cl

es
/b

yt
e)

Message Length (bytes)

VMAC
UMAC-64

VMAC-128
UMAC-128

Poly1305
HMAC-SHA1

Fig. 1. Efficiency on the Athlon 64 processor of the hash functions underlying recent
MACs, measured in CPU cycles per byte of message hashed. VMAC and UMAC-64
produce 64-bits while the others produce 128 (or 160 for SHA-1).

capabilities found in 64-bit processors. As an example consider UMAC, which
was designed specifically for optimal performance on 32-bit architectures [5]. On
an Athlon 64 processor, UMAC achieves peak speeds of about 1.1 CPU cycles
per byte of message authenticated (cpb) when it is restricted to using 32-bit
operands, but improves only slightly to 1.0 cpb when allowed full use of 64-bit
operands.

This paper presents VMAC, the fastest reported MAC on contemporary 64-
bit processors, achieving peak speeds of 0.5 cpb on the Athlon 64 (and as low as
0.3 cpb if one allows larger internal keys, see Figure 4). This compares favorably
with other MACs. Figure 1 shows the performance of the internal hash functions
of recent high-speed MAC’s.1 (Hash speeds determine a MAC’s relative speed
because all modern MACs hash their messages first.) Although the main goal of
the VMAC design effort is high speed on 64-bit processors, VMAC is careful to
avoid some of the perceived deficiencies of recent high-speed MACs, particularly
by limiting use of internal hash key (VMAC uses 160 bytes) and avoidance
of data-dependant side-channel attacks. VMAC has the desirable properties of
being provably secure, parallelizable, and patent-free.

1 Timings in this paper are generated using gcc 4.0 with optimization level -O4 (or
-fast if available) and appropriate -march or -mcpu settings. The bulk of perfor-
mance claims are based on an AMD Athlon 64 “Manchester” (family 15, model
43, stepping 1, L2 cache 512K). Other architectures are reported in Section 3.6. All
data 16-byte aligned and in cache. UMAC and Poly1305 timings are made from code
obtained at their author’s websites. SHA timings are as reported by OpenSSL.

Message Authentication on 64-Bit Architectures 329

Message Authentication. Message authentication is used when parties wish
to communicate with assurance that received messages come from the claimed
sender without alteration. All of the fastest MACs follow principles developed by
Wegman and Carter [3,5,6,7,9,14]. The basic Wegman-Carter message authenti-
cation paradigm is for the sender first to hash the message with a hash function
known only to himself and the receiver. The sender then applies some crypto-
graphic function (usually encryption) to the resulting hash value, which produces
a message tag that is sent along with the message to the receiver. The receiver
can then repeat the process, verifying that the received tag is valid for the re-
ceived message. In a correctly designed MAC, only those knowing the secret hash
function and cryptographic keys have a reasonable chance of creating a valid tag
for any new message. If, however, an adversary is able to produce a valid tag for
a new message without knowing the hash function and cryptographic keys, then
a forgery has occurred. Due to their ephemeral nature, communication sessions
usually need only be secure against forgery during the lifetime of the session.
If an adversary cannot forge with a probability of more than about 1/260 per
attempt, then the MAC is likely suitable for most communications where at-
tackers are not allowed an excessive number of forgery attempts. VMAC and
UMAC are flexible in their security levels. They are able to produce 64-bit tags
with forgery probabilities close to 1/260 twice as fast as versions of VMAC and
UMAC which produce 128-bit tags (which have forgery probabilities closer to
1/2100). Most other MAC schemes, including the ones used for comparison in
this paper, are not designed for such flexibility. As a result, when making speed
comparisons with VMAC’s 64-bit tags, other schemes, producing longer tags,
are unavoidable disadvantaged.

The key to speed in a Wegman-Carter MAC is the hash function used. Au-
thentication speeds are determined by the sum of the (length-dependent) time it
takes to hash the message being authenticated plus the (constant) time it takes
to cryptographically produce the tag, so this paper focuses on the hash func-
tion used in VMAC, known as VHASH. This is reasonable because any speed
improvements in the cryptographic part of a Wegman-Carter MAC could be
applied equally to all such schemes, so improvements relative to other Wegman-
Carter MACs will come almost entirely from improvements in hashing.

Notable recent examples of fast hash functions suitable for Wegman-Carter
message authentication (and peak speeds reported for Intel Pentium 4 processors
by their authors) are hash127 (around 4.4 cpb), hash1305 (3.4 cpb), Badger (2.2
cpb) and UMAC (1.0 cpb). The speeds of all of these favorably compare with
popular non-Wegman-Carter MACs such as HMAC-SHA1 and CBC-AES-MAC,
both of which require more than 10 cpb.

Universal hashing. The hash function used in a Wegman-Carter MAC must
be chosen from a universal hash function family. A hash-function family H is a
collection of hash functions, each h ∈ H having domain A and finite codomain B.
A hash-function family H is ε-almost universal (ε-AU) if the probability is no
more than ε that any two distinct inputs m,m′ hash to the same output when
hashed by a randomly selected member of H . A small value for ε indicates that

330 T. Krovetz

an adversary is unlikely to be able to choose a pair of inputs that hash to the
same output, as long as the hash function is chosen randomly. A stronger notion
bounds an adversary’s ability to guess differences between hash outputs. A hash-
function family H is ε-almost delta universal (ε-AΔU) if the probability is no
more than ε that h(m) − h(m′) = d for any two distinct inputs m,m′ and any
chosen constant d when hashed by a randomly selected member h of H . There
are stronger notions of universal hashing defined by Wegman, Carter and Stinson
[7,13,14], but ε-AΔU is adequate for message authentication, and is achieved by
VHASH.

2 Three-Stage Hashing

VHASH uses a three-stage hashing strategy where each hash stage is made of
a discrete hash function with a particular purpose. The first stage rapidly com-
presses by a fixed ratio the message to be hashed, thus reducing the data to
be processed by later (slower) stages. The second stage hashes the newly com-
pressed message to a fixed length, and the third stage distills the security of the
second-stage output into a smaller number of bits. In this section, we investigate
appropriate primitive hash functions for each stage and develop them for 64-bit
architectures. In the next section, VHASH is assembled from the functions de-
scribed here and analyzed for the purposes of message authentication. The first
MAC to employ a three-stage strategy was UMAC [5,11].

2.1 Stage 1 – Acceleration

The goal of the first stage is to act as an accelerant for later hash stages by
compressing, at a constant ratio, long inputs into shorter ones at very high speed.
VHASH uses the NH hash family for this purpose, breaking the VHASH input
into b-bit blocks (the final block may be shorter) and using NH to hash each into
128 bits. The hashed blocks are then concatenated into a string shorter than the
original VHASH input. When b is set at 1,024 bits (as we later recommend), the
compression is 8:1 for messages whose length is a multiple of 1,024.

NH was originally designed as a parameterized hash function [5]. Given posi-
tive integer parameters n and w and a key K of length nw bits, then NH can hash
any string M that is a multiple of 2w bits in length but not longer than nw bits.
First M and K are broken into w-bit blocks M1,M2, . . . ,M� and K1,K2, . . .Kn

where
 = |M |/w. Then, each block is interpreted as a w-bit unsigned binary
integer m1,m2, . . . ,m� and k1, k2, . . . kn. Finally, the hash result is computed as

NH[n,w](K,M)=
�/2∑

i=1

((m2i−1+k2i−1 mod 2w)×(m2i+k2i mod 2w)) mod 22w .

NH is a hash family, and choosing a random function from the hash family
is done by choosing a random nw-bit key K. NH is known to be (2−w)-AΔU
over messages of the same length (ie, M and M ′ are distinct, but |M | = |M ′|),

Message Authentication on 64-Bit Architectures 331

and small modifications to the original proof show that NH is (2−w)-AΔU over
messages that are any multiple of 2w bits in length (but still no longer than nw
bits). In the context of VHASH, w = 64 and nw = b is suggested 1,024.

Characteristics. The chief advantage of NH is extreme speed. Every opera-
tion is done naturally and efficiently on contemporary processors if w is chosen
appropriately. On 64-bit processors with good support for multiplying 64-bit
quantities into a 128-bit result, defining w = 64 results in very high speeds.

On a 64-bit architecture, NH performance when w = 64 is about four times
better than when w = 32. If one’s goal is a (2−64)-AU guarantee over messages
of length 128j bits, then NH[n,w] achieves this goal using j multiplications when
w = 64, but requires 4j multiplications when w = 32. To see this, consider how
one would achieve a (2−64)-AU guarantee when w = 32. Each NH hashing of the
message would require 2j multiplications and produce a hash value with a (2−32)-
AU guarantee. This would have to be done twice, under separate keys, to achieve
the (2−64)-AU goal, whereas only j 64-bit multiplications are needed to achieve
the same guarantee on a 64-bit architecture. This is borne out experimentally.
Two passes with w = 32 takes about 2 cpb while a single pass with w = 64
requires only around 0.5 cpb on the Athlon 64.

One of the design goals for VHASH is achieving a balance between perfor-
mance and internal key requirement. As can be seen in Figure 4, increasing
the NH key length in VHASH increases VHASH performance for long messages
greatly at first, but performance increases drop-off at around 128–256 bytes. We
recommend 128 bytes for the NH hash key for applications which are not ex-
tremely memory constrained. This choice harnesses most of the potential speed
gains of NH with fairly low key requirement.

2.2 Stage 2 – Fix Length

The first stage produces an output proportional in length to the original input,
which means that to achieve a fixed length, further hashing is necessary. Re-
cent research into various polynomial-based hash functions have yielded hash
functions appropriate for the task with good speed and universality guaran-
tees [1,3,11,12]. Section 3 will address domain reconciliation necessary between
stage-one outputs and stage-two inputs.

A simple and efficient method to hash a string M is to fix prime number p
and break M into fixed-length blocks M1,M2,M3, . . . ,M� in such a way that
when the blocks are interpreted as unsigned integers m1,m2,m3, . . . ,m�, each
is less than p (for example, by making each block !log2 p" bits). Then, choosing
an integer key 0 ≤ k < p defines the hash output as

hk(M) = m1k
� + m2k

�−1 + · · · + m�k
1 mod p .

Two different messages M,M ′ of the same block length
 differ by constant d
when hashed by this function if

hk(M)−hk(M ′) = (m1−m′
1)k

� +(m2−m′
2)k

�−1+ · · ·+(m�−m′
�)k

1 mod p = d .

332 T. Krovetz

Because M �= M ′, at least one of the coefficients in this polynomial is non-zero.
This being a polynomial of degree at most
, there are at most
 values for k
which cause hk(M)−hk(M ′)−d (mod p) to evaluate to zero. If we define a hash
family H = {hk | 0 ≤ k < p}, then H is an ε-AΔU hash family for ε =
/p.

Characteristics. With care, polynomial hashing can be made to perform well.
Horner’s Rule suggests rephrasing hk(M) as ((· · · ((m1k + m2)k + m3)k · · ·)k +
m�)k mod p , which allows hk(M) to be computed as a sequence of
 multiplica-
tions and additions modulo p [10]. Those multiplications and additions modulo
p can be made efficient by choosing a convenient p and restricting the choice of
k to a convenient set.

By choosing p to be of the form p = 2a−b for some small b, reductions modulo
p can be done efficiently in a lazy manner. Each time a value c becomes at least
2a, it can be rewritten as the (modulo p) equivalent c − 2a + b. For example
p = 261 −1 is prime. This means that, in a 64-bit register, a value c greater than
p but less than 264 can be reduced by computing c = (c div 261)+ (c mod 261).
This equality simply recognizes that c = x261+y for some x and 0 ≤ y < 261, and
replaces 261 with the equivalent (modulo p) value 1. The div and mod operations
extract x and y, and can be computed efficiently using bitwise operations. This
process is “lazy” for two reasons. First, numbers can be allowed to get as large
as desired before performing a reduction as long as values do not exceed the
register’s capacity. Second, a reduction to the range 0, . . . , p− 1 is not necessary
until a final result is needed. So, when this method is followed to perform an
intermediate reduction, the result need not be in the range 0, . . . , p−1. This puts
off expensive range checks until the very end of the polynomial hash. Particularly
useful primes on a 64-bit architecture are 2127 − 1 and 261 − 1.

Another source of inefficiencies is register carries during addition. Whenever
a number is too large to be represented in a single CPU register, the number
is generally split into multiple registers, and arithmetic on the larger number is
accomplished by some sequence of smaller operations. For example, if we rewrite
128-bit values j and k as j = w264 + x and k = y264 + z where 0 ≤ x, z < 264,
then jk = wy2128 + (wz + xy)264 + xz. This means that to compute jk, we can
put the top 64-bits of j and k into 64-bit registers w and y, and their low 64-
bits into x and z. The result jk is then assembled by appropriately multiplying,
shifting and adding wy, wz, xy and xz.

Consider the case where a polynomial is being evaluated modulo prime p =
2127−1 using Horner’s Rule with lazy modulo reduction whenever an intermedi-
ate value exceeds 128-bits. Each step in the Horner’s Rule evaluation is a multi-
plication and addition of the form jk+m mod p, with k,m < p and j < 2128. As
just seen, say that j and k are 128-values spread into registers w, x, y and z so
that jk = wy2128+(wz+xy)264+xz (mod p). Because 2128 = 2 (mod p), this can
be rewritten jk = ((wz +xy) mod 264)264 +(2(((wz +xy) div 264)+wy)+xz)
(mod p). If j and k are unrestricted, then every addition could result in a carry
beyond 128-bits. These carries must be accumulated and dealt with, which could
be inefficient. Ideally this computation of jk would involve no carries beyond
128-bits, allowing a more efficient computation.

Message Authentication on 64-Bit Architectures 333

Eliminating carries can be done by restricting k. The polynomial hash de-
scribed in this section is (
/p)-AΔU when hashing
-block messages and choos-
ing k from 0, . . . , p − 1. This is due to the fact that there are at most
 values
in the range 0, . . . , p − 1 that cause hk(M) − hk(M ′) − d (mod p) to evaluate
to zero. If k is chosen from some subset A ⊆ {0, . . . , p − 1} instead, there would
still be at most
 values that cause hk(M) − hk(M ′) − d (mod p) to evaluate
to zero, but because |A| ≤ p, the probability of randomly choosing one of them
increases to at most
/|A|. This means A can be chosen judiciously to exclude
keys which cause excessive carries. In the case of evaluating polynomials modulo
p = 2127−1, restricting k to elements of A = {y264+z | 0 ≤ y < 262, 0 ≤ z < 263}
eliminates all but one possible carry beyond 128-bits when computing jk on a
64-bit architecture for any 0 ≤ j < 2128.

Experimentally, we have found that long sequences of cache-resident message
blocks, each already less than 2127 − 1, can be hashed at a rate of 1.7 cpb on
the Athlon 64 when k is chosen as described to avoid excessive carries. When
hashing sequences of values less than 261 −1 over modulus 261 −1, allowing k to
be any value less than 261 − 1, messages can be hashed at 1.3 cpb on the Athlon
64. It should be noted that hashing an arbitrary string would not be nearly as
fast due to the need of breaking the string into appropriate blocks (within the
modulus).

2.3 Stage 3 – Distillation

When NH is defined for w = 64 and the Polynomial hash is defined over prime
modulus p = 2127 − 1, as is the case in VHASH, the resulting universality
guarantee of the first two stages composed can be no better than (2−64)-AΔU
(more on this in Section 3) and yet the output requires 127 bits. To reduce
the disparity between the number of bits needed for the hash output and the
universality guarantee, one final hash is used to hash the fixed length stage-two
output into fewer bits.

Another well known provably universal hashing function is the inner product
over a prime modulus [8]. Again, let p be a prime and let M be broken into
fixed-length blocks M1,M2,M3, . . . ,M� in such a way that when the blocks are
interpreted as unsigned integers m1,m2,m3, . . . ,m�, each is less than p. Then,
choosing a vector k = (k1, k2, . . . , k�) with 0 ≤ ki < p for all 1 ≤ i ≤
 defines
the hash output as

hk(M) = m1k1 + m2k3 + · · ·m�k� mod p .

For any two different messages M,M ′ of the same block length
 and integer
0 ≤ d < p, when k is chosen at random, the probability that

hk(M) − hk(M ′) = (m1 − m′
1)k1 + (m2 − m′

2)k2 + · · · + (m� − m′
�)k� mod p = d

is exactly 1/p. It follows that inner product hashing over a prime modulus forms
an ε-AΔU hash family for ε = 1/p.

334 T. Krovetz

VHASH[b](M, K, k, k1, k2)
Inputs:

M , a string of any length
K, a string of length b bits, where b = 128i for some integer i > 1
k, an element of {w296 + x264 + y232 + z | w, x, y, z ∈ Z230}
k1, k2, integers in the range 0 . . . 261 − 2, inclusive

Output:
h, an integer in the range 0 . . . 261 − 2, inclusive

Algorithm:
1. n = max(|M |/b
, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for 1 ≤ i < n.
3. �i = |Mi| for each 1 ≤ i ≤ n
4. Let Mn = Mn||0j where j ≥ 0 is the smallest integer so

that |Mn| + j mod 128 = 0
5. Byte-reverse each 64-bit word in Mi for each 1 ≤ i ≤ n
6. ai = (NH[b/64, 64](K, Mi) mod 2126) + (�i mod b)264 for each 1 ≤ i ≤ n
7. p = kn+1 + a1k

n + a2k
n−1 + · · · + ank1 mod (2127 − 1)

8. p1 = (p div 264) mod 260

9. p2 = p mod 260

10. h = p1k1 + p2k2 mod (261 − 1)

Fig. 2. The hash family VHASH is ε-AΔU , when K, k, k1, k2 are chosen randomly from
their domains, where ε = 2−59.9 + (�/b)2−107

Characteristics. Inner-product hashing requires at least as much key as mes-
sage being hashed. This makes it unsuitable for long messages. But, for short
messages, implementations can be efficient using strategies already discussed for
polynomial hashing. In particular, lazy modular reduction and choosing a prime
modulus of the form p = 2a − b where b is small, results in good performance.
For example, when p = 261 − 1, j < 264 and k < p, the product jk (mod p)
can be efficiently computed as (jk div 264)23 + (jk mod 264) because 264 = 23

(mod p). This is exactly the computation done by VHASH in its third stage.

3 VHASH Definition

With these component hash functions as building blocks and the three-stage
hash function as a model, a hash function suitable for authenticating arbitrary
messages and optimized for 64-bit architectures can be presented. For any b
which is a positive multiple of 128, Figure 2 specifies the hash family VHASH[b]
where choosing a random function h from the family is achieved by choosing
K, k, k1 and k2 uniformly at random from their domains and letting h(·) =
VHASH(·,K, k, k1, k2).

Message Authentication on 64-Bit Architectures 335

Theorem 1. Let b be any positive multiple of 128 and let
 be any positive
integer, then VHASH[b] is ε-AΔU over all binary strings up to length
 bits
where ε = 2−59.9 + (
/b)2−107.

The theorem will be proven over a sequence of lemmas later in this section. With
this result, VHASH can easily be embedded in a Wegman-Carter MAC which
we call VMAC. Here we summarize its construction. (It will be fully specified
in a separate document.) Let p = 261 − 1 and N be some nonce space. Then
for functions f : N → Zp and h ∈ VHASH[b], tag generation under VMAC
is defined as VMACTagGenf,h(m,n) = h(m) + f(n) mod p for message m and
nonce n. We define the security of a nonce-based MAC scheme, such as VMAC,
that uses tag-generation function TagGen(m,n) as follows. Assume an adversary
knows any sequence of triples (m1, n1, t1) . . . (mq, nq, tq) where each ni is unique
and ti = TagGen(mi, ni) for each 1 ≤ i ≤ q. The MAC scheme is α-secure
if the adversary cannot produce (m,n, t) with probability exceeding α where
(m,n) �= (mi, ni) for any i and t = TagGen(m,n). The following theorem follows
from the theory of Wegman-Carter MACs.

Proposition 2. Let
 be a positive integer, p = 261 − 1 and N be some non-
empty set. Let b be a positive multiple of 128. Let VMACTagGenf,h(m,n) =
h(m) + f(n) mod p for randomly chosen functions f : N → Zp and h ∈
VHASH[b]. Then, VMACTagGenf,h is a (2−59.9 + (
/b)2−107)-secure over mes-
sages upto
 bits in length.

3.1 VHASH Analysis

The hash functions seen so far have interfaces that are incompatible with one an-
other without some adaptation. For example, NH produces outputs with values
up to 2128−1, whereas the polynomial hash only accepts sequences of values less
than 2127 −1. Similarly, the polynomial hash produces a value less than 2127 −1,
but the inner-product expects a sequence of values less than 261 − 1. To address
these problems, a lemma is introduced which allows out-of-range values to be
brought into range with a manageable increase to the probabilities involved.
Length issues must also be resolved. As presented, each hash function seen so
far has a universality guarantee when hashing messages of equal length. These
must be extended to provide universality guarantees over all lengths. Each stage
of VHASH will now be analyzed for universality guarantee and interface.

3.2 First: A Lemma

The primary tool used to fix the problem that one hash function produces values
that are outside of the domain of a second hash function is the following lemma
which says that if we routinely zero any fixed bit-position of the outputs of an ε-
AΔU hash function, the resulting hash function is still AΔU but with a reduced
universality guarantee.

336 T. Krovetz

VHASH-128[b](M, K1, K2, k)
Inputs:

M , a string of any length
K1, K2, strings of length b bits, where b = 128i for some integer i > 1
k, an element of {w296 + x264 + y232 + z | w, x, y, z ∈ Z230}

Output:
h, an integer in the range 0 . . . 2127 − 2, inclusive

Algorithm:
1. n = max(|M |/b
, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for 1 ≤ i < n.
3. �i = |Mi| for each 1 ≤ i ≤ n
4. Let Mn = Mn||0j where j ≥ 0 is the smallest integer so

that |Mn| + j mod 128 = 0
5. Byte-reverse each 64-bit word in Mi for each 1 ≤ i ≤ n
6. ai = (NH[b/64, 64](K1, Mi) mod 2126) + (�i mod b)264 for each 1 ≤ i ≤ n
7. bi = NH[b/64, 64](K2, Mi) mod 2126 for each 1 ≤ i ≤ n
8. h = k2n+1 + a1k

2n + b1k
2n−1 + a2k

2n−2 + b2k
2n−3 + · · ·

+ank2 + bnk1 mod (2127 − 1)

Fig. 3. The hash family VHASH-128 is ε-AΔU , when K1, K2, k1, k2 are chosen ran-
domly from their domains, where ε = (�/b)2−118

Definitions. When x is a non-negative integer, let xi be 1 if the binary repre-
sentation of x has a 1 in the position of weight 2i and 0 otherwise. Let Zeroi(x)
be the function that returns x if xi = 0 and returns x−2i if xi = 1 (ie, it returns
x with the 2i position zeroed). Zn is the set {0, 1, 2, . . . , n − 1}. When s is a
string, |s| is its bitlength.

Lemma 3. Let H = {h : A → Zn} be an ε-AΔU hash family (where the
operation is addition modulo n) and Hi = {Zeroi ◦ h |h ∈ H}, then Hi is (3ε)-
AΔU for every i.

Proof. Let a �= b be elements of A, and d and d′ be elements of Zn. Because H
is ε-AΔU , we know that Pr[h(a) − h(b) = d] ≤ ε when h is chosen randomly
from H , but what is the probability Pr[h′(a) − h′(b) = d′] when h′ is chosen
randomly from Hi? Let h be chosen randomly, and let h′ = Zeroi ◦ h for some
0 ≤ i < lg n. Define x = h(a) and y = h(b). There are four possible combinations
for the values of xi and yi: (xi, yi) could equal (0, 0), (0, 1), (1, 0) or (1, 1). We
look at each case.

When xi = yi, then h′(a) − h′(b) = d′ if and only if h(a) − h(b) = d′. Using
conditional probability we can bound the likelihood of this scenario as Pr[h(a)−
h(b) = d′ and xi = yi] = Pr[h(a)−h(b) = d′] ·Pr[xi = yi |h(a)−h(b) = d′] ≤ ε ·1.
Similarly, if (xi, yi) is (0, 1) or (1, 0) then h′(a)−h′(b) = d′ if and only if h(a)−h(b)

Message Authentication on 64-Bit Architectures 337

is d′ + 2i or d′ − 2i, respectively, each of which is similarly bounded by ε · 1.
These three cases being the only ones in which h′(a) − h′(b) = d′, H ′ must be
3ε-AΔU . ��

Note that a similar result is not possible for ε-AU hash families. Zeroing a bit of
an ε-AU hash family can eliminate all guarantees. The identity function fI(x) =
x is 0-AU, but if you zero the last bit of the output (ie, define h = Zero0 ◦ fI),
then h(s||0) and h(s||1) always collide for every s.

3.3 Stage 1 – NH

The goal of the first hashing phase (Lines 1–6 of Figure 2) is to hash arbitrary
messages into much shorter representations (albeit proportional in length to their
originals) in such a way that two distinct arbitrary-length messages have a low
probability of hashing to the same result (so that inputs to the next hash phase
are unlikely to be the same). Letting b be any positive multiple of 128, Lines 1–6
of Figure 2 defines a hash family utilizing NH. The domain of the hash family
is binary strings of any length. The codomain is vectors of integers from Z2126 .
Randomly choosing a function from the hash family is achieved by choosing a
random b-bit string K. Lines 1–6 work as follows. Given string M , break M
into n = �|M |/b� blocks M1,M2, . . . ,Mn so that each of the first n− 1 blocks is
length b and Mn is whatever is left over (Lines 1–2). If M was the empty string,
then n is set to 1. Each of the blocks M1, . . . ,Mn−1 is guaranteed to be in the
domain of NH. Block Mn may not be a multiple of 128, and so not in the domain
of NH which is only defined for inputs with length divisible by 2w. Appending
the fewest number of zero bits needed to make it so will bring Mn into the
domain of NH (Line 4). The blocks are then each hashed independently by NH,
the two most significant bits of the results are zeroed (Line 6), and the result has
the modulo-b pre-zero-padding length of its corresponding block added. Finally,.
The n resulting values form a vector which is the hash function’s output.

Lemma 4. Let b be any positive multiple of 128. Lines 1–6 of Figure 2 define
a (9/264)-AU hash family over binary strings of arbitrary length.

Proof. Let b be a positive multiple of 128, K be a uniformly distributed b-
bit string, and M �= M ′ arbitrary binary strings. Let M = M1, . . . ,Mm and
M ′ = M ′

1, . . . ,M
′
n be broken into blocks and let
i and
′i represent the length

of Mi and M ′
i as described in Lines 1–3 of Figure 2. Let Mm and M ′

n be zero
extended to the nearest multiple of 128 bits, if needed, as described in Line
4. The byte-reversal of Line 5 has no effect on whether Mi = M ′

i for any i.
What is the probability that identical vectors are produced by evaluating Line
6 on M1, . . . ,Mm and M ′

1, . . . ,M
′
n? If n �= m, the probability of collision is zero

because the vectors produced will be different lengths. There are two other cases
to examine.

If n = m and Mi �= M ′
i for some 1 ≤ i ≤ n, then, because NH is 2−64-AΔU

over strings that are a multiple of 2w = 128 bits in length (which both Mi

and M ′
i are guaranteed to be), the probability that (NH(K,Mm) mod 2126) −

338 T. Krovetz

(NH(K,M ′
n) mod 2126) = 0 is no more than 9/264. The factor of nine comes

from the mod 2126, which has the affect of zeroing the top two bits of the NH
output. Lemma 3 says that this causes up to a factor of nine degradation.

There is one more situation to consider: when one string is a proper prefix
of the other before zero-padding, but the two strings are identical afterward.
In this case, Mm = M ′

n because the strings are the same after padding but

m �=
′n because one string was a proper prefix of the other before padding.
There is thus zero probability that (NH(K,Mm) mod 2126)+ (
m mod b)264 =
(NH(K,M ′

n) mod 2126)+(
′n mod b)264 because the NH hashes are guaranteed
to give the same result, but two different lengths are added.

In every case, the probability that the vectors output are identical when hash-
ing M and M ′ under key K and parameter b is no more than 9/264. ��

3.4 Stage 2 – Polynomial

The goal of the second hashing phase (Lines 7–9 in Figure 2) is to take the
unbounded-length output of the first NH hash phase and hash it to a short
fixed-length string in such a way that if two inputs to this stage differ then the
probability that the outputs collide is low. Lines 7–9 define a universal hash
family. The domain of the hash family is vectors of integers from Z2127−1. The
codomain is ordered pairs from Z260 × Z260 . Choosing a random function from
the hash family is done by choosing a random element k ∈ {w296 +x264 +y232+
z | w, x, y, z ∈ Z230}. Line 7 is a simple polynomial evaluation hash modulo
2127 − 1. Lines 8–9 utilize Lemma 3 by zeroing seven bits and then breaking in
two the result to produce an output in the domain of the third hash phase. Since
the first NH phase outputs sequences of values less than 2126, those outputs are
suitable without modification for hashing by the polynomial hash.

Lemma 5. Let n ≥ 0 be an integer. Lines 7–9 of Figure 2 define a (n/2107)-AU
hash family over vectors of length up to n of values less than 2127 − 1.

Proof. It is known that the polynomial hash of Section 2 is universal over vectors
of the same length. So, to allow vectors of varying length, let n be an integer
no less than the length of the longest vector to be hashed. Then, to hash vec-
tor m1,m2, . . . ,mj with the polynomial hash of Section 2, first prepend n − j
zeros and a one to the vector, resulting in a vector 0, 0, . . . , 0, 1,m1, . . . ,mj of
length n+ 1 elements. This preprocessing assures that all vectors hashed by the
polynomial are the same length, and it assures that any pair of vectors that are
different before preprocessing are also different after preprocessing. This prepro-
cessing step extends the basic polynomial hash of Section 2 to vectors up to
length n, but maintains a ((n + 1)/2120)-AΔU guarantee when key k is chosen
from {w296 + x264 + y232 + z | w, x, y, z ∈ Z230}. Notice that Line 7 of Figure
2 produces the same result as would the preprocessed polynomial hash just de-
scribed. This is because the prepended zeros have no computational effect but
are used only as a conceptual device to make all vectors equal length. Thus the
hash on Line 7 is also ((n + 1)/2120)-AΔU. Lemma 3 tells us that zeroing seven

Message Authentication on 64-Bit Architectures 339

bits as in Lines 8–9, degrades the universality guarantee by up to a factor of 37.
To simplify the guarantee, (37(n + 1))/2120 < n/2107. ��

3.5 Stage 3 – Inner-Product

Line 10 of Figure 2 is a straightforward application of the inner-product hash
from Section 2. It is a hash family with domain Z261−1 × Z261−1 and codomain
Z261−1. Choosing a random function from the hash family is done by choosing a
random (k1, k2) ∈ Z261−1 × Z261−1. The output from the second hashing phase
is a pair of values less than 260, so no adjustment is needed. The following
proposition needs no further proof.

Proposition 6. Line 10 of Figure 2 defines a (1/(261 − 1))-AΔU hash family
over Z261−1 × Z261−1.

Putting it Together. Lines 1–10 of Figure 2 define VHASH as the composi-
tion of three universal hash functions. The properties of composed hash functions
are well known [4,13]. If H1 is an ε1-AU family of hash functions with codomain
A, and H2 is an ε2-AU family of hash functions with domain B where A ⊆ B,
then H = {h2 ◦ h1 |h1 ∈ H1, h2 ∈ H2} is (ε1 + ε2)-AU. If H2 is ε2-AΔU, then
H is (ε1 + ε2)-AΔU. This leads immediately to the result of Theorem 1.

If an application needs collision probabilities less than those of VHASH, then
VHASH could be applied to given messages twice, using a different key each
time. Alternatively, Figure 3 gives a hash function VHASH-128 based on the
same principles as VHASH, but producing 128-bit outputs without the need for
significantly more internal key than VHASH. Although no proof of correctness
is given here, the arguments mirror those of VHASH. VHASH-128 is (
/b)2−118-
AΔU.

3.6 VHASH Performance

The performance of VHASH is influenced by many factors, the most important
being how efficiently the host architecture multiplies 64-bit and adds 128-bit
quantities. The Athlon 64 and recently released Intel Core 2 architectures — both
64-bit and designed for high “performance-per-watt” — are very efficient in these
operations and so perform at the level described in this paper. Architectures
which do not support fast 64-bit multiplication and multi-precision addition do
not execute VHASH as quickly. Consider multiplication of 64-bit operands into
a 128-bit result. On the Athlon 64 this can be done using a single instruction
with a latency of five cycles, and VHASH hashes at a peak of 0.5 cpb. Intel’s
64-bit NetBurst architecture (eg, “Nacona”) can also perform the multiplication
in a single instruction, but has a latency of 12 cycles, resulting in a VHASH
peak of 1.4 cpb. The PowerPC 970 requires two instructions to complete a 64-
bit multiplication, with a total latency of 13 cycles, and VHASH peaks at 1.0
cpb. The PowerPC version is faster than the NetBurst version due to NetBurst’s
horrible multiprecision addition latencies which also impact performance, but to
a lesser extent than multiplication.

340 T. Krovetz

 0.25

 0.5

 1

 2

 4
 32 64 128 256 512 1024 2048

S
pe

ed
 (

cy
cl

es
/b

yt
e)

Message Length (bytes)

1024 Bytes
512 Bytes
256 Bytes
128 Bytes

64 Bytes
32 Bytes
16 Bytes

Fig. 4. Performance measured in Athlon 64 cycles per byte of message hashed for
various NH key lengths and message lengths. Gains diminish greatly beyond 128 bytes.

VHASH slows down significantly on 32-bit architectures. Computing a 64-bit
multiplication on a 32-bit architecture using the primary-school multiprecision
multiplication algorithm requires four 32-bit multiplications and several multi-
precision additions to produce a 128-bit result. On the Motorola PowerPC 7450,
which has a six cycle latency per 32-bit multiplication, VHASH peaks at 5.0
cpb. On a 32-bit Intel NetBurst architecture, 32-bit multiplication latency is 11
cycles, but use of SSE vector instructions allows for a peak speed of 6.4 cpb.
Clearly, VHASH benefits from architectures which multiply 64-bit registers fast,
enabling exceptional VHASH performance.

Other hash functions are somewhat less variable across the mentioned archi-
tectures. UHASH and SHA1 were designed for 32-bit architectures, and so mov-
ing from 64-bit to 32-bit architectures has no inherent disadvantage. Poly1305 is
multiplication based, but uses a processor’s floating point unit and so is less af-
fected by changes to general purpose register width. For all three hash functions,
it is the efficiency of the processor implementation which will have the greatest
impact. For example, Poly1305 has peak performance on a 64-bit PowerPC 970
of 6.6 cpb and 7.3 cpb on a slightly less efficient 32-bit PowerPC 7410. On the
64-bit Athlon 64 Poly1305 peaks at 3.1 cpb while it peaks on the much less
efficient 32-bit Intel NetBurst at 5.2 cpb.

Other factors having significant affect on VHASH performance are the size
of the message being hashed and the length b of the key used in the first (NH)
stage of hashing. Figure 4 shows how these parameters affect performance on the
Athlon 64 as measured in cycles per byte. Hashing overhead is amortized over
all bytes being hashed, so as message lengths increase, overhead contributes less.
Also, increasing the length of the Stage 1 NH key reduces the amount of data

Message Authentication on 64-Bit Architectures 341

hashed by Stages 2 and 3. Since Stage 1 is much faster than the later stages,
increasing the NH key length improves performance on longer messages.

Acknowledgements

The author wishes to thank the anonymous reviewers of SAC 2006 and FSE 2006
for their helpful reviews, especially in urging a closer look at performance on 32-
bit architectures. Also, Phil Rogaway’s comments and Joe Olivas’s assitance in
gathering timing data were timely and quite helpful. Thanks!

References

1. Afanassiev, V., Gehrmann, C., Smeets, B.: Fast message authentication using effi-
cient polynomial evaluation. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp.
190–204. Springer, Heidelberg (1997)

2. Bernstein, D.: Stronger security bounds for Wegman-Carter-Shoup authentica-
tors. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer, Heidelberg (2005)

3. Bernstein, D.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005)

4. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash
functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994)

5. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and
secure message authentication. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

6. Boesgaard, M., Christensen, T., Badger, Z.E.: A fast and provably secure MAC.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 176–191. Springer, Heidelberg (2005)

7. Carter, L., Wegman, M.: Universal classes of hash functions. J. of Computer and
System Sciences 22, 265–279 (1981)

8. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, Section
11.3.3. MIT Press, Cambridge (2001)

9. Halevi, S., Krawczyk, H.: MMH: Software message authentication in the
Gbit/second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189.
Springer, Heidelberg (1997)

10. Knuth, D.: The Art of Computer Programming. In: Seminumerical Algorithms,
3rd edn., vol. 2, pp. 486–489. Addison-Wesley, Reading (1998)

11. Krovetz, T., Rogaway, P.: Fast universal hashing with small keys and no prepro-
cessing: The PolyR construction. In: Information Security and Cryptology – ICICS
2000, pp. 73–89. Springer, Heidelberg (2000)

12. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

13. Stinson, D.: Universal hashing and authentication codes. Designs, Codes and Cryp-
tography 4, 369–380 (1994)

14. Wegman, M., Carter, L.: New hash functions and their use in authentication and
set equality. J. of Computer and System Sciences 18, 143–154 (1979)

Some Notes on the Security of the Timed

Efficient Stream Loss-Tolerant Authentication
Scheme

Goce Jakimoski�

Department of Electrical and Computer Engineering
Stevens Institute of Technology, Burchard 212, Hoboken, NJ 07030, USA

Abstract. RFC4082 specifies the Timed Efficient Stream Loss-tolerant
Authentication (TESLA) scheme as an Internet standard for stream au-
thentication over lossy channels. In this paper, we show that the sug-
gested assumptions about the security of the building blocks of TESLA
are not sufficient. This can lead to implementations whose security relies
on some obscure assumptions instead of the well-studied security prop-
erties of the underlying cryptographic primitives. Even worse, it can
potentially lead to insecure implementations. We also provide sufficient
security assumptions about the components of TESLA, and present a
candidate implementation whose security is based on block ciphers re-
sistant to related-key cryptanalysis.

Keywords: message authentication, multicast stream authentication,
TESLA, cryptanalysis, block ciphers, related-key attacks.

1 Introduction

While most network applications are based on the client-server paradigm and
make use of point-to-point packet delivery, many emerging applications are based
on the group communications model. In particular, a packet delivery from one
or more authorized sender(s) to a possibly large number of authorized receivers
is required. One such class of applications is the class of multicast stream appli-
cations.

Streams of data are bit sequences of a finite, but a priori unknown, length
that a sender sends to one or more recipients. They occur naturally when the
buffer/memory is shorter than the message, or when real-time processing is re-
quired. Digitalized audio and video are the most common multicast stream ap-
plications. However, streams are quite common in financial applications as well.
Whether it be stock quotes, customer related data or other market data feeds,
the volumes of this data are growing rapidly, and the data takes the form of
continuous data streams rather than finite stored data sets.

� This work was supported in part by the National Science Foundation under the grant
ANI-0087641.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 342–357, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Some Notes on the Security of the TESLA Scheme 343

The problems of stream authentication and stream signing have been ex-
tensively studied in the past years. Gennaro and Rohatgi [11] have proposed a
stream signing scheme based on a chain of one-time signatures. A similar scheme
has been presented by Zhang [28] for authentication in routing protocols. Vari-
ous schemes were proposed subsequently [8,1,27,2,23,6,24] culminating with the
recent adoption of TESLA as an Internet standard [19]. TESLA is also a basis
for other Internet drafts (e.g., [7]), and its security and efficiency analysis can
be found in [16,17,18,20].

The goal of this paper is to point out some flaws in the specification and secu-
rity analysis of TESLA. Although the basic design principles of TESLA are not
flawed, the suggested security assumptions about the underlying cryptographic
do not provide provable security. Namely, we were able to construct examples
of insecure TESLA implementations whose underlying building blocks satisfy
the suggested security assumptions. We also show that provable security can be
obtained by using stronger assumptions, and present an implementation whose
security is based on a related-key model of a block cipher.

The outline of the paper is following. Some preliminaries are given in Section 2.
In Section 3, we present examples of insecure TESLA constructions that are built
using secure components. Sufficient conditions and a security proof are provided
in Section 4. We propose an efficient implementation based on block ciphers in
Section 5. The paper ends with the concluding remarks.

2 Background

2.1 TESLA

The Timed Efficient Stream Loss-tolerant Authentication scheme is a multicast
stream authentication scheme proposed by Perrig et al [16]. Here, we briefly de-
scribe the mechanisms employed in TESLA to achieve loss-tolerance, fast trans-
fer rates and dynamic packet rates.

The security of TESLA is based on the paradigm depicted in Figure 1. To
authenticate the packet Pi of the stream, the sender first commits to the key
value Ki by sending H(Ki) in the packet Pi−1. The key Ki is only known to
the sender, and it is used to compute a MAC on the packet Pi. After all recip-
ients have received the packet Pi, the sender discloses the key value Ki in the
packet Pi+1. The recipient verifies whether the received key value corresponds
to the commitment and whether the MAC of the packet Pi computed using the
received key value corresponds to the received MAC value. If both verifications
are successful, the packet Pi is accepted as authentic. Note that Pi contains
the commitment to the next key value Ki+1. To bootstrap the scheme, the first
packet is signed using a digital signature scheme (e.g., RSA). If the packet Pi−1

is lost, then the authenticity of the packet Pi and all subsequent packets cannot
be verified since the commitment to the key Ki is lost. Similarly, if the packet
Pi+1 is lost, the authenticity of the packet Pi and all subsequent packets cannot
be verified since the key Ki is lost.

344 G. Jakimoski

Di−1
Ki−2

H(Ki)

Pi−1 Pi

Mi

H(Ki+1)
Ki−1

Di

MAC(Ki, Di)

Pi+1

Mi+1
H(Ki+2)
Ki

MAC(Ki+1, Di+1)

Di+1

MAC(Ki−1, Di−1)

Mi−1

Fig. 1. The basic stream authentication scheme

Pi−1 Pi

Di

Pi+1

Di+1
Mi−1

Ki−2

Mi

Ki−1

Mi+1

Ki

MAC(K ′
i, Di) MAC(K ′

i+1, Di+1)MAC(K ′
i−1, Di−1)

K ′
i−1

Ki−1

K ′
i

Ki

K ′
i+1

Ki+1

FF
F ′ F ′ F ′

Di−1

Fig. 2. TESLA Scheme II: Tolerating packet loss

Perrig et al. [16] proposed a solution to the above problem by generating
the sequence of keys Ki using iterative application of a pseudo-random function
to some initial value as illustrated in Figure 2. Let us denote v consecutive
applications of the pseudo-random function F as F v(x) = F v−1(F (x)), and let
F 0(x) = x. The sender has to pick randomly some initial key value Kn and to
pre-compute n key values K0, . . . ,Kn−1, where Ki = Fn−i(Kn), i = 0, . . . , n.
The sequence of key values is called a key chain. The key K ′

i, which is used
to authenticate the packet Pi, is derived from the corresponding key value Ki

by applying the function F ′. Since F is easy to compute and hard to invert,
given Ki the attacker cannot compute any Kj for j > i. However, the recipient
can compute any key value Kj from the received key value Ki, where j < i.
Therefore, if the recipient has received a packet Pi, any subsequently received
packet Pj (j > i) will allow computation of K ′

i = F ′(Ki) and verification of the
authenticity of the packet Pi.

The authors suggest the function F to be implemented as F (Ki) = fKi(0),
where f is a target collision resistant pseudorandom function. There are no
requirements imposed on the function F ′ in the original description of TESLA
[16]. However, RFC4082 requires F ′(Ki) to be computed as F ′(Ki) = f ′

Ki
(1),

where f ′ is a pseudorandom function. We are going to consider two cases:

– F ′ is an identity map. There are two main reasons why we consider this case.
First, the authors make the same assumption when proving the security of
TESLA in [16]. The presented proof is the only security proof of TESLA

Some Notes on the Security of the TESLA Scheme 345

provided by the authors. Second, if F ′ is an identity map or some other
simple transformation, then the scheme is more efficient (i.e., we can avoid
an extra PRF evaluation per packet). As shown in Section 4, the scheme can
be secure even if F ′ is an identity map.

– F ′(Ki) = f ′
Ki

(1), where f ′ is a pseudorandom function. This is required in
RFC4082.

The security of the scheme is based on the assumption that the receiver can
decide whether a given packet arrived safely (i.e., before the corresponding key
disclosure packet was sent by the sender). The unsafe packets are dropped. This
condition severely limits the transmission rate since Pi+1 can only be sent after
every receiver has received Pi. Perrig et al [16] (TESLA Scheme III) solve this
problem by disclosing the key Ki of the data packet Pi in a later packet Pi+d,
instead of in the next packet. Another assumption made in the scheme depicted
in Figure 2 is that the packet schedule is fixed or predictable, with each recipient
knowing the exact sending time of each packet. This significantly restricts the
flexibility of the senders. The proposed solution to this problem of dynamic
packet rates is to pick the MAC key and the disclosed key in each packet only
on a time interval basis. Namely, all packets sent in an interval i are authenticated
using a key Ki and disclose the key Ki−d. This final version (TESLA Scheme IV)
is the one adopted as an Internet standard. See [16,17,18,19,20] for more details.

2.2 Claimed Security of TESLA

The following theorem was given in [16].

Theorem 1. Assume that the PRF, the MAC and the signing schemes in use
are secure, and that the PRF has Target Collision Resistance property. Then,
TESLA (Scheme IV) is a secure stream authentication scheme.

To avoid complexity, the authors provide proof only for a special case when the
MAC and the PRF are realized by the same function family. In their implemen-
tation, this family is the family defined by HMAC [10] when used in conjunction
with MD5 [22]. However, the theorem does not require the MAC and the PRF to
be realized by the same function family. We will show that the theorem does not
hold in the case when the PRF and the MAC can be realized by different function
families (i.e., we will disprove the theorem). Furthermore, in their proof, the au-
thors assume that the function F ′ is an identity mapping. This is not the case in the
RFC4082 version. Hence, their analysis does not apply to the Internet standard.

2.3 OMAC

OMAC [13] is a proven secure CBC MAC scheme that uses only one key. The
evaluation of the authentication tags in OMAC is illustrated in Figure 3. The
first block of the message is encrypted using a block cipher. The result is XORed
with the second block and encrypted, etc. If the length of the last chunk of the
message is equal to the block length n, then the last block is XORed with L · u

346 G. Jakimoski

K K K

M[1] M[2] M[3]

T

E E E

L u L u−1

K K K

M[1]

T

E E E

M[2]
M[3] 10...0

Fig. 3. One-key CBC MAC

before encryption. If the length of the last chunk of the message is less than the
block length n, then 10i padding (i = n − 1 − |M | mod n) is appended and the
last block is XORed with L · u−1 before encryption. The parameter u is some
known constant in GF(2n), and L = EK(0n) is an encryption of 0.

Let l be the key length. It was shown in [13] that if the function family
{EK}K∈{0,1}l block cipher is a pseudorandom permutation family, then
{OMACK}K∈{0,1}l (the function family defined by OMAC) is a pseudorandom
function family and the OMAC scheme is unforgeable.

3 Insecure TESLA Implementations Based on Secure
Components

In this section, we show that the suggested assumptions about the building
blocks of TESLA are not sufficient by providing examples of insecure TESLA
constructions from components that satisfy those assumptions.

3.1 Permuted-Input OMAC

In order to “break” TESLA Scheme II, we introduce Permuted-input OMAC
(POMAC) scheme. The scheme will be used to authenticate the packets of the
stream in our insecure TESLA Scheme II implementation. It is depicted in Fig. 4.
If the length of the message m is not greater than the block size n, then the
authentication tag is computed as OMACK(m). Otherwise, the message m is
rotated right by n bits to derive a new message m′, and the authentication tag
is computed as OMACK(m′).

The unforgeability of POMAC trivially follows from the unforgeability of
OMAC.

Lemma 1. Suppose that:

– h is a collision resistant function (i.e., it is hard to find m1 and m2 �= m1

s.t. h(m1) = h(m2)), and
– {fK}K∈{0,1}l is a function family corresponding to an unforgeable MAC

scheme.

Some Notes on the Security of the TESLA Scheme 347

OMAC K

n bits

n bits

Fig. 4. Permuted-input OMAC

Then, the MAC scheme defined by the function family {fK ◦ h}K∈{0,1}l is un-
forgeable too.

Proof. Assume that there is an adversary that can output a pair (m, a) where
a is a valid authentication tag for a message m that hasn’t been signed before.
Since h is collision resistant, the hash value h(m) must be different from the
hash values of the previously signed messages. Hence, (h(m), a) is a forgery for
the MAC scheme defined by the function family {fK}K∈{0,1}l . This contradicts
our assumption that f is unforgeable. �

Corollary 1. If the function family {EK}K∈{0,1}l defined by the underlying
block cipher is a pseudorandom permutation family, then POMAC is unforgeable.

Proof. Follows from Lemma 1 and the facts that the initial permutation in
POMAC is a bijection (i.e., collision resistant) and OMAC is unforgeable when
the underlying block cipher is a pseudorandom permutation. �

3.2 The Case When F ′ Is an Identity Mapping

In this section, we provide an example of an insecure TESLA construction from
secure components in the case when the function F ′ is an identity mapping.

Suppose that the function family {EK}K∈{0,1}n is a target collision resistant
pseudorandom permutation family whose members are defined on the set {0, 1}n.
Note that the length of the key is equal to the block size n. AES-128 [9] is a
possible candidate. Since {EK}K∈{0,1}n is a pseudorandom permutation family,
it is also a pseudorandom function family (see Proposition 3.7.3 in [12]). We
will use the pseudorandom permutation EK to generate the authentication keys
as illustrated in Figure 5. The key Ki−1 = EKi(0n) is generated by encrypting
0 using the key Ki as suggested in [16]. The MAC scheme that we use in our
construction is POMAC. To encrypt the message blocks in POMAC, we use the
pseudorandom permutation EK .

The PRF and the MAC as defined above satisfy the security requirements of
Theorem 1. However, the resulting stream authentication scheme is not secure.
Figure 5 depicts an attack on our TESLA Scheme II example by replacing the

348 G. Jakimoski

Di

Ki−1
Mi[1]
Mi[2]
Mi[3]

E E0 0

Ki−1 Ki Ki+1

Pi−1 Pi+1

Di+1
Mi−1 Mi+1

KiKi−2
Di−1

Ki−1
Mi[1]
Mi[2]
M ′

i [3]

D′
i

MAC(Ki−1, Di−1)

Pi

MAC(Ki, Di) MAC(Ki+1, Di+1)

P ′
i

M ′
i [3] = (Mi[3]||10i) ⊕ (Ki−1u−1)

⊕(Ki−1u)

MAC(Ki, Di)

Fig. 5. Insecure TESLA implementation. MACs are computed using POMAC.

packet Pi with a packet P ′
i . Without loss of generality, we assume that the

message Mi consists of three chunks Mi[1],Mi[2] and Mi[3]. The length of Mi[1]
and Mi[2] is equal to the block length n, and the length of Mi[3] is less than
the block length n. This implies that Mi[3] is 10i padded and XORed with
L · u−1 when computing the MAC for Pi. The forged packet P ′

i is constructed
by replacing Mi[3] with

M ′
i [3] = (Mi[3]||10i) ⊕ (Ki−1 · u−1) ⊕ (Ki−1 · u).

Using the equations

(Mi[3]||10i) ⊕ (Ki−1 · u−1) = M ′
i [3] ⊕ (Ki−1 · u)

and
L = EKi(0

n) = Ki−1,

one can easily verify that

POMAC(Ki, Di) = POMAC(Ki, D
′
i).

Note that all we need to compute P ′
i is the key Ki−1 and the message Mi.

Since both the key Ki−1 and the message Mi are disclosed in the packet Pi,
we can compute P ′

i before the key Ki is disclosed. Hence, we have succeeded in
constructing a forgery for TESLA Scheme II.

Some Notes on the Security of the TESLA Scheme 349

3.3 Cryptanalysis of TESLA Scheme IV

As we mentioned earlier, the goal of upgrading TESLA Scheme II to TESLA
Scheme IV was to achieve fast transfer rates and dynamic packet rates. The
security of the upgraded scheme relies on the same principles as Scheme II, and
the attack depicted in Figure 5 can be easily extended to the upgraded scheme.
Moreover, the attack works with OMAC instead of POMAC as explained below
in more detail.

There are two differences between Scheme II and Scheme IV that are relevant
to our discussion. First, in Scheme IV, the same key is used to authenticate more
than one packet sent to a given recipient. Second, the key Ki−1 is revealed after
the time interval i (assuming that the delay d is greater than one). However, note
that the adversary can discard all but one packet in some time interval i, and
then delay that packet so that the recipient gets the packet after the disclosure
of Ki−1, but before the disclosure of Ki (i.e., the packet will be safe). Since, the
adversary knows the value of Ki−1 before handing the packet to the recipient,
he can replace it with a forged one as in Figure 5.

The attack will work with OMAC instead of POMAC for the following rea-
sons. The introduction of the POMAC scheme was motivated by the order of
the message Mi and the key Ki−1 within the packet Pi (Fig. 2). The initial
permutation of POMAC swaps the message and the key so that the last block
of Di is a message block. In TESLA Scheme IV, the format of the packets
is Pj = 〈Mj, i,Ki−d,MAC(K ′

i,Mj)〉, where i is the interval during which the
packet Pj was sent. Note that the MACs are computed over the messages Mj

only, and the attack would work when OMAC instead of POMAC is used to
compute the MACs. Hence, our analysis shows not only that the assumptions
about the security properties of the building blocks of TESLA are not sufficient,
but also that it is not unrealistic to expect that TESLA Scheme IV might be
implemented insecurely.

3.4 The Case When F ′ Is Implemented Using a PRF

RFC4082 requires the function F to be implemented as F (K) = fK(0) (Sec-
tion 3.2 of [19]), and F ′ to be implemented as F ′(K) = f ′

K(1) (Section 3.4 of
[19]), where f and f ′ are pseudorandom functions.

Although it seems that the scheme is secure when f and f ′ are identical1, the
RFC does not require f and f ′ to be identical. On the contrary, the use of differ-
ent symbols to denote them suggests that they can be different. In this case, the
new TESLA Scheme II still suffers from the flaw discussed in Section 3.2. Namely,
we can view f ′ as a part of the key scheduling algorithm of the underlying block
cipher. The function F of the insecure TESLA construction is now implemented
as F (Ki) = Ef ′

Ki
(1)(0) (see Figure 6). It is clear that Ki−1 = F (Ki) leaks the

encryption of zero since Ki−1 = EK′
i
(0), and we can mount the same attack.

In addition to the old flaw, the modification of the scheme introduces a new one.
Consider the following “naive” implementation. The function F is implemented
1 The reader should be aware that there is no security proof provided for this case.

350 G. Jakimoski

f ′

K ′
i

F (Ki) = EK′
i
(0)

F

0
1

Ki

E

Fig. 6. The function F leaks the encryption of zero EK′
i
(0)

as F (Ki) = fKi(0), where f is a target collision resistant pseudorandom func-
tion family. The function F ′ is implemented as F ′(Ki) = f ′

Ki
(1), where f ′

Ki
(x) =

fKi(x − 1). One can easily show that f ′ is a pseudorandom function. It is not
hard to verify that the commitment F (Ki) discloses the authentication key K ′

i:
F (Ki) = fKi(0) = fKi(1 − 1) = f ′

Ki
(1) = K ′

i. Although this implementation is
very unlikely, it demonstrates the threat of exploiting the knowledge of the com-
mitment F (Ki) to compute the authentication key K ′

i.

3.5 Cryptanalysis of the RFC4082 TESLA Version

The analysis presented in Section 3.4 can be extended to the TESLA version
described in RFC4082. We use the same arguments as in Section 3.3. The safe
packet test only checks whether a packet authenticated using a key Ki was
received before the disclosure of the key Ki. Hence, the adversary can delay the
packet until the key Ki−1 is disclosed, and then replace it with a forged one. The
aforementioned security flaws cannot be patched by simply modifying the safe
packet test so that the receiver checks whether the packet was received before
the disclosure of the key value Ki−1. In this case, the adversary might be able
to use Ki−2 = F (F (Ki)) or some previous key value to mount an attack.

4 Sufficient Assumptions About the Components of
TESLA

The attacks on the insecure implementations that were presented in Section 3
are based on the following observation. The security of the MAC scheme that
is used to authenticate the packets is proven in a setting where the adversary
has access to a signing oracle and a verifying oracle. In the case of TESLA, we
have a different setting. Now, the adversary has access to an additional oracle
that computes the commitment F (K) to the secret key K which is used by the
MAC scheme. The adversary can exploit the knowledge of F (K) to construct a
forgery.

Some Notes on the Security of the TESLA Scheme 351

It is clear from the discussion above that we need to make an additional
assumption about the function F and the MAC scheme. Namely, the MAC
scheme must remain secure even when the commitment of the secret key used
by the MAC scheme is revealed.

Definition 1. A MAC scheme is known F -commitment unforgeable if there is
no efficient adversary that given a commitment F (K) of the secret key that is
in use can break the MAC scheme with non-negligible probability.

An example, which demonstrates that one can achieve known F -commitment
unforgeability, is provided in Section 5.2.

We also make the following minor modification of TESLA Scheme II. Each
time a stream is authenticated, the sender selects a unique number Ns (e.g.,
using a counter) which is securely communicated to the recipients. The number
Ns is included as part of the authenticated data in each packet of the stream
including the bootstrap packet. So, we assume that the format of the messages
is Mi = 〈Ns, i, Ci〉, where Ci is the actual chunk of the stream 2 3.

The following theorem holds for the security of the slightly modified TESLA
Scheme II.

Theorem 2. Suppose that:

1. the digital signature scheme, which is used to bootstrap TESLA, is unforge-
able,

2. the function F (K) = fK(0), where f is a pseudorandom function, is collision
resistant,

3. the MAC scheme, which is used to authenticate the chunks of the stream, is
known F -commitment unforgeable, and

4. F ′ is an identity mapping.

Then, TESLA Scheme II is a secure multicast stream authentication scheme.

The proof is given in Appendix A.
Note that F ′ is an identity mapping, while in RFC4082, F ′ is realized using

a pseudorandom function. Hence, the scheme that is analyzed here is somewhat
more efficient than the Internet standard.

The requirement for collision resistance of the function F can be slightly
weakened. Assuming that there is a bound on the number of packets within a
stream, it is not hard to show that TESLA Scheme II is secure when the function
F is collision resistant in the following sense: Given a randomly selected value K
and a bound L ≥ 1, it is hard to find K ′ and a positive integer l ≤ L such that
F l(K) = F (K ′) and F l−1(K) �= K ′. A function that satisfies the aforementioned
property is said to be bounded iteration collision resistant.

2 TESLA does not provide ordering of the packets that are authenticated using the
same key. We use sequence numbers to prevent malicious reordering of the packets.

3 To reduce the communication overhead one can communicate Ns only once, and
then just use it to compute the signature and the MACs.

352 G. Jakimoski

5 A Candidate Implementation of TESLA

In this section, we propose an implementation that uses block ciphers to realize
the different components of TESLA.

5.1 CKDA-PRPs

When cryptanalyzed, block ciphers are not considered secure unless they are
resistant to related-key attacks [4]. A theoretical treatment of block ciphers re-
sistant to related-key attacks was given in [3], where it was shown that under
some restrictions one can achieve resistance to related-key attacks. We are going
to use a model of a more specific case: the adversary can query oracles that use
keys whose difference was chosen by the adversary (e.g., related-key differential
cryptanalysis [15,14]).

We define a CKDA secure (i.e., secure against Chosen Key Difference Attacks)
pseudorandom permutation family as a pseudorandom permutation family such
that one cannot tell apart a pair of permutations randomly selected from the
family and a pair of permutations from the family whose index (key) difference
is c �= 0, where c is selected by the adversary. A CKD test is a Turing machine A
with access to four oracles E1, D1, E2 and D2. A selects a non-zero l-bit string c.
The oracle E1 is selected to be a random permutation EK from the permutation
family {EK}K∈{0,1}l , and the oracle D1 is selected to be its inverse. According
to a secret random bit b, the oracle E2 is selected to be either the permutation
EK⊕c or a random permutation EK⊕r, where c is the public non-zero constant
and r is a random bit string of length l (i.e., K ⊕ r is random and not related
to K). The oracle D2 computes the inverse of E2. The algorithm A outputs 0 or
1. The advantage of the CKD test is defined as

AdvA((EK , EK⊕c), (EK , EK⊕r)) =
1
2
(E[AC] − E[AR])

where E[AC] (resp., E[AR]) is the probability that A will output 1 when the
difference between the secret keys is a known non-zero constant (resp., random
l-bit string).

Definition 2. The pseudorandom permutation family {EK}K∈{0,1}l is a [t, q, ε]-
secure CKDA pseudorandom permutation family (or [t, q, ε]-secure CKDA-PRP)
if there is no CKD test that runs in at most t time, sends at most q queries to
the oracles and has at least ε advantage.

5.2 TESLA Implementation Via CKDA-PRPs

The following theorem provides a function F and a MAC scheme such that the
MAC scheme is known F -commitment unforgeable.

Theorem 3. Let the function family {EK}K∈{0,1}n corresponding to the block
cipher used by OMAC be CKDA secure. Let F : {0, 1}n → {0, 1}n be defined as
F (K) = EK⊕c(0), where c = 0n−11. Then, OMAC is a known F -commitment
unforgeable MAC scheme.

Some Notes on the Security of the TESLA Scheme 353

E E0 0

Pi−1 Pi+1

Di+1

Ki−1 Ki Ki+1

Mi−1 Mi+1

KiKi−2
Di−1

MAC(Ki−1, Di−1)

Pi

MAC(Ki, Di) MAC(Ki+1, Di+1)

Di

Mi

Ki−1

0...01 0...01

Fig. 7. TESLA implementation using a block cipher resistant to related-key
cryptanalysis

Proof. An adversary A1 that given a commitment F (K ′) to some randomly
selected key K ′ can break OMAC with probability ε can be easily converted into
an adversary A2 that can break OMAC with the same probability. In particular,
A2 can randomly select the key value K ′ and submit the commitment F (K ′) to
A1. A1’s output will be A2’s output. Since OMAC is unforgeable, there is no ad-
versary that can break OMAC with significant probability given a commitment
to a randomly select key.

Now, assume that there is an adversary A3 that can break OMAC given the
commitment F (K) to the secret key K that is in use. We can construct a CKD
test as follows. We run the adversary A3 and answer its queries by querying
the oracles E1 and E2. If A3 manages to produce a forgery we output 1, other-
wise we output 0. Obviously, the advantage of the CKD test will be significant
since the probability E[AC] is significant (OMAC is not known F -commitment
unforgeable) and the probability E[AR] is small (OMAC is unforgeable). �

The implementation that we propose here is depicted in Figure 7. It is similar to
the insecure implementation shown in Figure 5. The only difference is that the
key value Ki−1 is derived by encrypting zero using the key Ki ⊕ 0n−11 instead
of the key Ki. A similar secure variant of the insecure implementation can be
obtained by using a function F ′ that derives the key K ′

i by flipping the last bit
of Ki instead of using an identity map. We must note that the security of the
proposed scheme is also based on the assumption that h(x) = Ex(0) is collision
resistant (one of the assumptions made in Theorem 2). While there are some
constructions and possibility results regarding hash functions based on block
ciphers [21,5], we are not aware of any results regarding the collision resistance
of h(x) = Ex(0) where E is some widely used cipher with relatively large block
size (e.g., AES).

354 G. Jakimoski

6 Conclusion

We have shown that the assumptions about the components of TESLA are not
sufficient and can potentially lead to insecure implementations. We also provided
sufficient conditions for the security of the scheme and proposed an implemen-
tation based on block ciphers.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J., Manifavas, C., Needham, R.: A
New Family of Authentication Protocols. ACM Operating Systems Review 32(4),
9–20 (1998)

2. Bergadano, F., Cavagnino, D., Crispo, B.: Chained Stream Authentication. In:
Proceedings of Selected Areas in Cryptography 2000, pp. 142–155 (2000)

3. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) Advances in Cryptology
– EUROCRPYT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

4. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

5. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 225–320. Springer, Heidelberg (2002)

6. Canneti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: A taxonomy and some efficient constructions. In: Infocom ’99 (1999)

7. Carrara, E., Baugher, M.: The Use of TESLA in SRTP. Internet draft,
http://ietfreport.isoc.org/ids-wg-msec.html

8. Cheung, S.: An Efficient Message Authentication Scheme for Link State Routing.
In: Proceedings of the 13th Annual Computer Security Application Conference
(1997)

9. FIPS PUB 197, The Advanced Encryption Standard
10. FIPS PUB 198, The Keyed-Hash Message Authentication Code (HMAC)
11. Gennaro, R., Rohatgi, P.: How to Sign Digital Streams. In: Kaliski Jr., B.S. (ed.)

CRYPTO 1997. LNCS, vol. 1294, pp. 180–197. Springer, Heidelberg (1997)
12. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cam-

bridge (2001)
13. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)

FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)
14. Jakimoski, G., Desmedt, Y.: Related-key Differential Cryptanalysis of 192-bit Key

AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

15. Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2 and TEA. In: Proceedings of ICICS’97, pp.
233–246. Springer, Heidelberg (1997)

16. Perrig, A., Canneti, R., Tygar, J.D., Song, D.: Efficient Authentication and Signing
of Multicast Streams Over Lossy Channels. In: Proceedings of the IEEE Security
and Privacy Symposium (2000)

17. Perrig, A., Canneti, R., Song, D., Tygar, J.D.: Efficient and Secure Source Au-
thentication for Multicast. In: Proceedings of the Network and Distributed System
Security Symposium (2001)

http://ietfreport.isoc.org/ids-wg-msec.html

Some Notes on the Security of the TESLA Scheme 355

18. Perrig, A., Canneti, R., Tygar, J.D., Song, D.: The TESLA Broadcast Authenti-
cation Protocol. RSA CryptoBytes 5(2) (2002)

19. Perrig, A., Song, D., Canneti, R., Tygar, J.D., Briscoe, B.: Timed Efficient Stream
Loss-Tolerant Authentication (TESLA): Multicast Source Authentication Trans-
form Introduction. Internet Request for Comments, RFC 4082 (June, 2005)

20. Perrig, A., Tygar, J.D.: Secure Broadcast Communication in Wired and Wireless
Networks. Kluwer Academic Publishers, Dordrecht (2002)

21. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
Springer, Heidelberg (1994)

22. Rivest, R.L.: The MD5 message digest algorithm. Internet Request for Comments,
RFC 1321 (April 1992)

23. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet au-
thentication. In: 6th ACM Conference on Computer and Communications Security,
November 1999 (1999)

24. Syverson, P.F., Stubblebine, S.G., Goldschlag, D.M.: Unlinkable serial transactions.
In: FC 1997. LNCS, vol. 1318, Springer, Heidelberg (1997)

25. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis for Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

26. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

27. Wong, C.K., Lam, S.S.: Digital Signatures for Flows and Multicasts. In: Proceed-
ings of IEEE ICNP ’98 (1998)

28. Zhang, K.: Efficient Protocols for Signing Routing Messages. In: Proceedings of
the Symposium on Network and Distributed System Security (1998)

A Proof of Theorem 2

Assume that the adversary can break the stream authentication scheme. In other
words, the adversary in cooperation with some of the recipients can trick another
recipient u to accept a forged packet of the stream as valid.

Let i be the smallest integer such that the contents D′
i is accepted as valid

by the recipient u when the original contents Di is different from D′
i. There are

three possible events:

Event 1. If i is zero, then the adversary has managed to forge the bootstrap
packet which was signed using a digital signature scheme.

Event 2. If i is greater than zero and the key that u used to verify the validity of
D′

i is equal to the original key Ki, then the adversary has managed to produce
a forgery for the message authentication scheme due to the uniqueness of
〈Ns, i〉.

Event 3. If i is greater than zero and the key Kf
i that u used to verify the

validity of D′
i is different than the original key Ki, then the adversary has

managed to find a collision for the function F . Let Kf
i ,Kf

i−1 = F (Kf
i), . . .

be a key chain derived from Kf
i , and let Ki,Ki−1 = F (Ki), . . . be a key

356 G. Jakimoski

chain derived from Ki. The user u verified the validity of the key value Kf
i

by checking whether F l(Kf
i) is equal to some previously authenticated key

value Kf
i−l. Since i is the smallest index of a packet whose contents D′

i is
different from the original contents Di, the received key value Kf

i−l must
be equal to the original key value Ki−l = F l(Ki). Hence, there is an index
i − l ≤ j < i s.t. Kj+1 �= K ′

j+1 and F (Kj+1) = Kj = K ′
j = F (K ′

j+1).

Given an efficient adversary ASA that breaks the stream authentication scheme
with significant probability, we will construct an adversary AS for the signature
scheme, an adversary AMAC for the MAC scheme and an adversary AF for the
function F , and show that at least one of these adversaries has significant success
probability. All three adversaries simulate the network using sets of read and write
tapes for the users and for the adversary. They differ in the following aspects:

1. The adversary for the signature scheme answers the stream signing queries by
randomly selecting initial key values, computing the key chains and using the
signing oracle for the bootstrap packets. Whenever ASA manages to forge a
bootstrap packet, AS outputs the forged message/signature pair. Otherwise,
it outputs a randomly selected message/signature pair.

2. The adversary for the MAC scheme guesses which stream will be forged and
what will be the smallest index i of a forged packet within the stream. If the
guess is that the stream will not be forged, then AMAC answers the stream
signing query by randomly selecting the initial key value. Otherwise, the
adversary uses the given value Ki−1 = F (Ki) to derive the keys that will
be used to authenticate the packets P1, . . . Pi−1, and computes the MAC
for the packet Pi by submitting a query to the (MAC) signing oracle. If
the adversary for the stream scheme manages to forge the i-th packet, then
the adversary for the MAC scheme outputs the forged message/MAC pair.
Otherwise, it outputs a randomly selected message/MAC pair.

3. The adversary for the function F answers the stream signing queries by
randomly selecting initial key values, computing the key chains and using a
private key when signing the bootstrap packets. In the case when Event 3
occurs, AF finds and outputs a pair of key values that collide. Otherwise, it
outputs two randomly selected key values.

It is easy to show that if the probabilities of Event 1 and Event 3 are signifi-
cant, then the success probabilities of the corresponding adversaries AS and AF

are significant too. To derive a relation between the probability of Event 2 and
AMAC, we need the following Lemma.

Lemma 2. If f is a pseudorandom function, then there is no efficient algorithm
that can distinguish between a random key value and the key value F l(K) derived
from a secret random key K by l ≥ 1 iterations of the function F .

Proof. We can prove the Lemma by induction. If there is an algorithm that can
tell apart between F (K) = fK(0) and a random key value, then we can construct
an algorithm that can distinguish between the function family {fK} defined by

Some Notes on the Security of the TESLA Scheme 357

f and the random function family. Now, assume that there is no algorithm that
can tell apart between the key Kl−1 = F l−1(K) and a random key value. Since
the function f and the key Kl−1 are pseudorandom, the key Kl = fKl−1(0) will
be indistinguishable from a random key too. �

Assume that ns and L are the maximum number of streams and the maxi-
mum number of packets within a single stream respectively. The probability
that AMAC will guess the forged stream and the index i of the first forged packet
within the stream is 1

nsL . According to Lemma 2, there is no efficient algorithm
that can distinguish with significant probability between the secret key Ki used
by the MAC scheme and a key that is derived from some initial key value by l− i
iterations of the function F . Hence, if the probability ε of Event 2 is significant,
then the success probability of AMAC will be approximately ε

nsL .

Constructing an Ideal Hash Function from Weak

Ideal Compression Functions

Moses Liskov

Computer Science Department
The College of William and Mary

Williamsburg, Virginia, USA
mliskov@cs.wm.edu

Abstract. We introduce the notion of a weak ideal compression function,
which is vulnerable to strong forms of attack, but is otherwise random.
We show that such weak ideal compression functions can be used to create
secure hash functions, thereby giving a design that can be used to eliminate
attacks caused by undesirable properties of compression functions.

We prove that the construction we give, which we call the “zipper
hash,” is ideal in the sense that the overall hash function is indistin-
guishable from a random oracle when implemented with these weak ideal
building blocks.

The zipper hash function is relatively simple, requiring two compres-
sion function evaluations per block of input, but it is not streamable.
We also show how to create an ideal (strong) compression function from
ideal weak compression functions, which can be used in the standard
iterated way to make a streamable hash function.

Keywords:Hash function, compression function,Merkle-Damg̊ard, ideal
primitives, non-streamable hash functions, zipper hash.

1 Introduction

The design of hash functions is a long-studied problem that has become recently
more relevant because of significant attacks against commonly-used hash func-
tions [22,20,21,19,1]. It is much easier to create collision functions, which take
input of a particular size and produce output of a reduced size, than a full hash
function directly. It is common practice to follow the basic concept of the Merkle-
Damg̊ard construction [6,14]: composing a compression function with itself, each
time incorporating a block of the message, until the entire message is processed.
If f is the compression function and x is an input divisible into l blocks of the
appropriate size, then

H(x) = f(xl, f(xl−1, . . . , f(x1, IV)) . . .)

is the basic iterated hash function. There are two main ways in which this basic
method has evolved: first of all, to handle messages of arbitrary length, a message
may have to be padded so that the block size divides the length. In addition, the
length of the initial message is included in the padding: this, along with fixing

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 358–375, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constructing an Ideal Hash Function 359

an IV , is called Merkle-Damg̊ard strengthening. Second, a finalization function
g is often used after all the message blocks have been processed. Among other
properties, this allows the output size of the compression function to be different
from the output size of the hash function.

fff f

x
1

x
2

x
3

xl

IV ... g H x()

Fig. 1. The modern iterated hash function

The iterated hash function construction is elegant and natural, and is addi-
tionally attractive in that it is streamable, that is, a message may be hashed piece
by piece with a small, finite amount of memory. Furthermore, this construction
is known to be collision-resistant as long as the underlying compression function
is collision-resistant [6,14]. However, there are reasons to question the iterated
hash function design now.

An underlying theme in the recent high-profile attacks on hash functions has
been the use of weaknesses in the compression function to build up an effective
attack against the overall hash function. Furthermore, many attacks have been
published recently that accomplish interesting black-box attacks against iterated
hash functions once compression-function weaknesses have been found.

Here we summarize some known black-box attacks against iterated hash func-
tions. Let n be the length of the output of a hash function H .

– Second collision attack. The basic attack goal here is to find a second
collision on H once we have found a first collision on H . In a well-known
attack, this is trivial for basic iterated hash functions: if H(x) = H(y) then
for all strings z, H(x||z) = H(y||z) is another collision. Merkle-Damg̊ard
strengthening does not solve this problem completely, since the attack still
works if |x| = |y| and z contains the correct padding. [16,13]

– Joux multicollision attack [10]. It is easier than expected to find multicol-
lisions: that is, a set of many distinct inputs that all hash to the same value.
For a generic hash function, finding a t-way collision should require hash-
ing an expected 2n·(t−1)/t messages. However, Joux showed that finding a
t-way collision can also be done by making (log2 t)2k/2 compression function
queries, where k is the output size of the compression function. Essentially,
the attack is to find one-block collisions for the compression function that
can be chained together (by a brute force birthday attack). Once we have r
such collisions, we can generate a 2r-way collision by choosing one input for
each colliding pair.

– Fixed-point attack [12,7]. The goal here is to come up with a second
preimage for one of a set of known messages. If the target set is of size 2t,

360 M. Liskov

it is easy to see that a second preimage can be found in a generic attack in
time 2n−t. This attack improves upon this by finding expandable messages
based on fixed points for the collision function. Among other examples, the
compression function in any Davies-Meyer block cipher-based hash function
(such as the SHA family as well as MD4 and MD5) is susceptible to fixed-
point attacks[12]. This allows an attack where, after hashing 2t mesage blocks,
a second preimage can be found in time t2n/2 +1+ 2n−t+1. Fixed points are
used to circumvent Merkle-Damg̊ard strengthening; with fixed points, one
can build “expandable messages,” which let us recover a second preimage of
the correct length.

– The “herding” attack [11]. This is an attack against the use of a hash func-
tion for commitments. The idea is to find a 2t-way collision at a value H(x),
and then find a preimage of a commitment H(x) that starts with an arbitrary
z by trying random values y until H(z||y) is one of the 2t-way collisions.

In order to combat attacks like the Joux attack and the Kelsey-Kohno herding
attack, Lucks proposed that the internal state of an iterated hash function should
be larger than the output, thus preventing the usefulness of finding compression
function collisions by brute force [13]. Lucks proposed double-pipe hash as a way to
implement this, using two parallel compression function computations per block
of message, in order to increase the size of the internal state. Lucks proved that, as-
suming the underlying compression function was ideal (i.e., a random oracle), the
double-pipe hash compression function yields a collision-resistant hash function.

At the core of Lucks’ paper, however, was an even more important idea: that
we should attempt to design hash functions that remain secure even when the
compression functions on which they are based can be attacked.

We seek to improve on the work of Lucks in two ways. First, following the work
of Coron, Dodis, Malimaud, and Puniya [4], we will prove that our construction
is not only collision-resistant, but in fact indistinguishable from a random or-
acle, assuming the building blocks are ideal. Coron et al. show that the basic
Merkle-Damg̊ard construction is not ideal in the sense that even with an ideal
compression function, it is impossible to prove that the hash function is indis-
tinguishable from a random oracle. However, with an ideal finalization function
(among other alternate modifications), iterated hash functions can be shown to
be indistiguishable from a random oracle when implemented with ideal compo-
nents. Assuming individual components to be ideal has been established as a
reasonable model for the analysis of hash functions for some time [2]. The work
of Coron et al. has set a higher standard for hash functions analyzed on the basis
of ideal primitives, and we aspire to that standard.

Second, Lucks only attempts to make a hash function resilient to brute-force
collision attacks against the compression function. It would be better to make
a hash function resilient to actual flaws in the compression function as well.
Therefore, we will weaken our assumptions about the underlying compression
function as much as possible. We will still consider an ideal form of a compression
function, but we will explicitly allow attacks against it, in order to model a weak
but minimally secure compression function.

Constructing an Ideal Hash Function 361

1.1 Our Results

In this paper, we formalize the notion of a weak ideal compression function,
and show that such compression functions can be used to make stronger ideal
primitives. Namely, we give a construction we call the “zipper hash” that makes
an ideal hash function from weak ideal compression functions. The zipper hash is
a very simple and elegant design; it requires 2l compression function evaluations
for an l-block input. (Additionally, this concept of a weak ideal primitive may
be of independent interest.)

Then, we go on to use weak ideal compression functions to make an ideal com-
pression function. This construction is based on the zipper hash, and requires four
compression function evaluations to run. We show that the Lucks double-pipe
compression function is not an ideal construction, but offer a simple modification
of it that is ideal. Thus, the compression function we consider comparable requires
eight underlying compression function evaluations per block of input.

Finally, we analyze the efficiency of our schemes. We go on to make a case for
considering non-streamable hash functions like our zipper hash in practice. We
note that streamable hash functions (0with constant-size state) always follow the
essential Merkle-Damg̊ard structure, so to avoid general attacks against iterated
hash functions, one must consider non-streamable hash functions.

2 Notation and Definitions

2.1 Hash Functions and Compression Functions

Before we explore these issues, we must give a basic introduction to the concept
of hash functions and compression functions. An n-bit hash function family is a
family of functions H : K×{0, 1}∗ → {0, 1}n where K represents the set of “keys”
from which one is chosen at random. Note that hash functions must be defined
as families: any specific hash function H : {0, 1}∗ → {0, 1}n cannot be totally
collision-resistant, because a collision H(x) = H(x′) exists, and the algorithm
that merely outputs (x, x′) would always find it. Thus, we imagine that the hash
function we use is randomly drawn from a larger family, and the “key” represents
the individual member of the family. Note that we do not think of the key as secret:
indeed, once the representative is chosen, the key will be known to all.

Compression functions must also be defined in terms of families. An (m, k)-bit
compression function family is a function f : Kf × {0, 1}m × {0, 1}k → {0, 1}k.
Again, here, Kf represents the set of keys for the compression function.

2.2 Ideal Hash Functions and Compression Functions

Typically, an ideal n-bit hash function is thought of as a random function
H : {0, 1}∗ → {0, 1}n. Here, there is no notion of key; the idea of choosing
a random key for the hash function is abstracted away, represented as part of
the randomness in the oracle.

An ideal (m, k)-bit compression function, similarly, is a random function f :
{0, 1}m × {0, 1}k → {0, 1}k.

362 M. Liskov

2.3 Ideal Weak Compression Functions

In our construction we do not want to go so far as to assume that the compression
functions are random oracles, as this would imply that they are collision resistant,
and immune to all forms of attack. Instead, we will model our ideal compression
function as a random oracle with additional attack oracles that provide results
of successful attacks, and yet still give answers consistent with a random oracle.

This can be implemented in a variety of ways, depending on what the attack
oracle does. We imagine that there is an oracle for the compression function f , so
that on a new query (x, y), a random output value z is returned. The following
list describes the attack oracles for a variety of compression function security
levels.

– Ideal compression function. No attack oracle, only the f oracle.
– Collision-tractable compression function: On invoking the attack ora-

cle with no input, the oracle returns random values (x, x′, y, y′, z) such that
f(x, y) = z = f(x′, y′) where (x, y) �= (x′, y′).1

– Second preimage-tractable compression function: On invoking the
attack oracle on input (x, y), the oracle returns a random pair of values
(x′, y′) such that f(x′, y′) = f(x, y).

– Preimage-tractable compression function: On invoking the attack or-
acle on input z, the oracle returns a random pair of values (x, y) such that
f(x, y) = z.

– Partially-specified preimage-tractable compression function: On in-
voking the attack oracle on input (x, z), the oracle returns a random value
y such that f(x, y) = z.

– Two-way partially-specified preimage-tractable compression func-
tion: There are two attack oracles. On querying the first (called f−1) on
input (x, z), the oracle returns a random value y such that f(x, y) = z. On
querying the second (called f∗) on input (y, z), the oracle returns a random
value x such that f(x, y) = z.

This last form of ideal compression function we will name for convenience a
weak ideal compression function. It should be clear that we can implement any
form of compression function higher on the list with a weak ideal compression
function (for instance, to implement the attack oracle for a preimage-tractable
compression function, on input z, we pick a random x and query our first attack
oracle on (x, z) to obtain y, then return (x, y)).

In fact, this form of weak compression function is susceptible to every form of
(black-box) attack we are aware of.2 An ideal weak compression function cannot

1 That is, x, x′, y, y′, and z are generated at random; if known values of f do not
prohibit the property f(x, y) = z = f(x′, y′), then those outputs are given, otherwise
new ones are selected until known values of f do not cause a problem. Once the attack
oracle returns a query, it affects how f will respond to (x, y) or (x′, y′).

2 Of course, we cannot capture non-black-box attacks when we try to view our prim-
itives as ideal.

Constructing an Ideal Hash Function 363

be used simply in an iterated way to make a hash function. For instance, if
the padding function appends padding that depends only on the length of the
input, we can find a collision by creating a random m-bit message x, computing
z = f(x, IV), and then querying the attack oracle f∗(IV, z) to get a random x′

such that f(x′, IV) = z. Then, since the padding changes x and x′ in the same
way (because they are the same length), H(x) and H(x′) will be the same, as
they collide after one block, and the remaining blocks are the same.

Nonetheless, there is cryptographic strength implied in this notion of an
ideal weak compression function, because despite the attacks we explicitly allow
against it, we still imagine that the results of such attacks will be random and
out of the control of the adversary.

Note that we are being quite generous with our attack oracles here. For an
actual compression function, there is no guarantee that (for instance) a y such
that f(x, y) = z even exists, let alone many such y.3

2.4 Ideal Hash Functions and Compression Functions Based on
Weak Ideal Compression Functions

Following Coron et al. [4], and paraphrasing closely from their paper, we will use
the following methodology to prove that our constructions are sound. Let C be
a Turing machine with access to an oracle: C will represent the construction and
its oracle(s) will represent the ideal primitive the construction is made from.

Let Γ represent the oracle(s) for the underlying ideal primitive(s), and let Δ
represent the oracle(s) for the ideal version of the primitive we try to construct
with C.

We say that C is (tA, tS , q, ε)-indifferentiable from Δ if there is a simulator S
such that for all distinguishers A,

|Pr[AC,Γ = 1] − Pr[AΔ,S = 1]| < ε,

where (1) S answers as many different types of oracle queries as Γ provides,
and S has oracle access to Δ and runs in time at most tS , and (2) A runs in
time at most tA and makes at most q queries of its various oracles. We say that
C is computationally indifferentiable from Δ if for all security parameters α it
holds that C is (tA(α), tS(α), q(α), ε(α))-indifferentiable from Δ, where tA and
tS are polynomial in α, where q(α) ≤ tA(α), and where ε is negligible in α. We
say that C is statistically indifferentiable if for all security parameters α it holds
that C is (tA(α), tS(α), q(α), ε(α))-indifferentiable from Δ, where tS and q are
polynomial in α, and where ε is negligible in α.4

3 It may be more reasonable to think of our ideal compression function as a random
quasigroup: that is, for every (x, z) there is a unique random y such that f(x, y) = z,
and similarly, for every (y, z) there is a unique random x. However, we proceed under
the more general attack oracle.

4 In other words, we no longer restrict the running time of the adversary, but we still
restrict the number of queries.

364 M. Liskov

3 The Zipper Hash Construction

The zipper hash is a general hash function construction. To build an n-bit hash
function, we need two independent (m, k)-bit compression functions f0 and f1,
as well as a padding function P , an initialization vector IV , and a finalization
function g : {0, 1}k → {0, 1}n. On input x, P is guaranteed to return a value
such that x||P (x) is a string that can be broken down into m-bit blocks, and for
all x �= x′, x||P (x) �= x′||P (x′). Given all these pieces, the zipper hash function
works as follows:

1. Let x1, . . . xl be m-bit strings such that x1|| . . . ||xl = x||P (x).
2. H1 is computed as f0(x1, IV), and H2, . . . , Hl are computed iteratively as

Hi = f0(xi, Hi−1).
3. H ′

1 is computed as f1(xl, Hl), and H ′
2, . . . , H

′
l are computed iteratively as

H ′
i = f1(xl−i+1, H

′
i−1).

4. Output H(x) = g(H ′
l).

This construction is called the zipper hash as its structure is reminscent of a
zipper. See figure 2. Note that although we require two independent compression
functions, we can implement two independent weak ideal compression functions
with a single one; see Appendix A.

f
0

f
0

f
0

f
0

x
1

x
2

x
3

xl

IV ...

gH x() f
1

f
1

f
1

f
1

...

Fig. 2. The zipper hash function

4 Security

Let C be the Turing machine that implements the zipper hash. We will prove
the following theorem:

Theorem 1. C is statistically indifferentiable from an ideal hash function Δ,
using two ideal weak compression functions represented by Γ , where g is the
identity function.

This will prove that the zipper hash, with g being the identity function, is in-
distinguishable from a random oracle. If g is not the identity function, then the

Constructing an Ideal Hash Function 365

overall zipper hash will be indistinguishable from g ◦ Δ. If, for instance, g has
the property that it produces a random output on a random input, this will also
be an ideal hash.

To briefly sketch the proof, the simulator answers oracle queries for the weak
ideal compression functions randomly, except when a query is the last one needed
to compute the hash function on some value, in which case the simulator assumes
that the query was in the forward direction for the last compression function
evaluation, and queries Δ and gives this value. It is nontrivial to show that the
simulator can always determine when a query amounts to the last one needed
to compute the hash function, but with careful record-keeping, we can do it in
polynomial time.

We will then make the assumption that no unexpected coincidences occur:
that is, for instance, if (u, v) is given as a query to an oracle of Γ , that the
randomly generated answer w is not equal to any w that has been involved in a
query before, nor is it equal to IV . We describe an event Bad, the event that this
assumption fails. We then prove (1) that if Bad never happens, the simulator will
simulate Γ perfectly, and (2) that Bad only happens with negligible probability
over the course of an attack.

4.1 Record Keeping

In order to simulate Γ (the weak ideal compression functions) with access only
to Δ, we use the natural approach: we answer queries to Γ ’s oracles randomly as
long as it follows the constraints: (1) for each (x, y) pair, there is only one value
z such that f0(x, y) = z, and only one value z′ such that f1(x, y) = z′, and (2)
for any l m-bit values x1, . . . , xl, f0 and f1 have to be such that Δ(x1|| . . . ||xl) =
C(Γ).

Meeting the first constraint is easy; we simply do the following on each query.
When we receive a query f(x, y)5, we check to see if we have defined an answer
z = f(x, y); if so, we return z, and if not, we generate a random z and note that
z = f(x, y), and return z. When we receive an attack query f−1(x, z), we pick a
random y until we find one such that we have not defined an answer z′ = f(x, y)
for z �= z′, and return that y, and note that z = f(x, y); we do similarly for an
attack query on f∗(y, z).

However, the most difficult part of record keeping is that we must be aware
of when a query imposes a constraint based on Δ. In order to do this, we
will attempt to keep track of all “partial chains.” A partial chain is a se-
quence of x values x1, . . . , xl, and two y-values y, y′ such that f1(x1, f1(x2, . . . ,
f1(xl, f0(xl, . . . , f0(x1, y

′) . . .)) . . .)) = y. If a partial chain is such that y′ = IV
then y must be equal to Δ(x1|| . . . ||xl). However, it may be computationally in-
feasible to keep track of all partial chains that arise. Instead, we will keep track
of only those that arise in expected ways, and we will prove later that we will
actually find all partial chains as long as no unexpected coincidences occur.

5 In this proof, when we refer to an f query, we mean either an f0 or f1 query. We
use this convention similarly when referring to f∗ or f−1 queries.

366 M. Liskov

For ease of notation, when we discover a partial chain, we will make a note
of it, which we denote Chain(x, y′, y). Effectively, this note means that if the
initialization vector were y′, then H(x) would output y.

Forward queries. We show how to keep track of this for one type of query at a
time, starting with forward queries. Without loss of generality, we assume that
the query is on a new input pair (x, y). If the query is an f0 query, we will not
attempt to find whether any partial chains have been formed. For f1 queries, we
will check if any partial chains have been formed using this query at the end. If
so, we check if any of these partial chains are formed starting at IV , and if so,
we use Δ to find the value we should set to be f1(x, y). If not, we pick f1(x, y)
at random. If a query forms two or more distinct partial chains starting at IV ,
the simulator gives up and halts. If the simulator doesn’t halt, it will make notes
of all partial chains that have been formed with the current query at the end.

If the query is f0(x, y) then we can check if this completes a single-block
partial chain. If there is a y′ such that f0(x, y′) = y then the value we return
will form the chain Chain(x, y′, f1(x, y)). If there is an x′ and a y′′ such that
Chain(x′, y′′, y) and also there is a y′ such that f0(x, y′) = y′′ then the value we
return will form the chain Chain(x||x′, y′, f1(x, y)).

Backward queries. Next, we consider “backward” queries, that is, a query
f−1(x, z). Similarly to forward queries, if the query is an f−1

1 query, we will not
attempt to find whether any partial chains have been formed. For f−1

0 queries,
however, we will check if any partial chains have been formed using this query
at the beginning. If so, it may be that a partial chain has been formed starting
at IV , but we can do nothing to set the appropriate value to one matching Δ in
this case: it is too late, and the simulator will halt. However, this will not happen
unless an unexpected coincidence occurs. Thus, once we have found all partial
chains that will be formed from the current query, we pick a random answer to
it and note the chains that are formed.

The result of a query f−1
0 (x, z) will form a single-block chain if it is al-

ready known that f1(x, z) = y for some value y. In this case, we may note
Chain(x, f−1

0 (x, z), y). The result of f−1
0 (x, z) will form a longer chain if it is

already noted that Chain(x′, z, y′) for some y′, and also f1(x, y′) = y is known
for some y, in which case we may note Chain(x||x′, f−1

0 (x, z), y).

Squeeze queries. Finally, we consider “squeeze” queries, that is, a query
f∗(y, z). Though squeeze queries may form chains, we do not check for them. If
a chain is accidentally formed through a squeeze query, the simulator’s behavior
may become bad later, but this only happes if an unexpected coincidence occurs.

4.2 The Bad Event

We will prove that our simulator fools the adversary by proving that the dis-
tribution of the adversary’s output in the real system (where S is not involved) is

Constructing an Ideal Hash Function 367

identical to the distribution of the adversary’s output in the ideal system, condi-
tioned on a certain “bad” event not happening. The bad event Bad represents the
event that a previously-used value is generated as the random answer to a later
query. To be precise, let us imagine that (xi, yi, zi) are all the triples of values
such that f0(xi, yi) = zi has been established in a query, and that (x′

i, y
′
i, z

′
i) are

all the triples of values such that f1(x′
i, y

′
i) = z′i has been previously established.

Then Bad occurs on the next query if:

1. The latest query is an f(x, y) query that returns a value z equal to yi, zi, y
′
i

or z′i for some i, or z = IV .
2. The latest query is an f−1(x, z) query that returns a value y equal to yi, zi, y

′
i,

or z′i for some i, or y = IV .
3. The latest query is an f∗(y, z) query that returns some value x equal to xi

or x′
i for some i.

Lemma 1. If Bad does not happen when we simulate, the simulator will not halt
during a query.

Recall that the simulator will only halt in one situation: if a forward f1 query
completes more than one partial chain that start at IV . Specifically, this happens
when a forward query f1(x, y) is such that for some x′ �= x′′ and for some y′

0

and y′
1, we know Chain(x′, y′

0, y) and Chain(x′′, y′
1, y), and f0(x, IV) = y′

0 and
f0(x, IV) = y′

1. Therefore we can conclude that y′
0 = y′

1. In order for this to
happen, we must have noted both Chain(x′, y′, y) and Chain(x′′, y′, y) for some
x′ �= x′′.

Remark 1. If we note Chain(x, y′, y) then, when we note it, either y′ or y is a
newly-generated random query answer. This is clear from our description of S
above.

Remark 2. First, we prove that if there is some pair of notes Chain(x0, y
′, y)

and Chain(x1, y
′, y) where the first block of x0 is not the same as the first block

of x1, then Bad must have happened. Assume, without loss of generality, that
Chain(x0, y

′, y) was not noted later than Chain(x1, y
′, y). Because of the way we

notice chains, we note Chain(x1, y
′, y) only when computing either a forward or

backward query with x as the input value, where x is the first block of x1. Since
x is not the first block of x0, we do not note Chain(x0, y

′, y) at this time, so it
must have been noted previously. However, because of remark 1, when we note
Chain(x1, y

′, y) either y′ or y must be a newly-generated random query answer,
so it can only be equal to the previously-known value of y if Bad occurs on this
query.

Remark 3. Next, we note that if x0 and x1 consist of at least one block, and there
is some y such that Chain(x||x0, y

′, y) and Chain(x||x1, y
′, y), where x is a single

block, then either (1) there is some w and some w′ such that Chain(x0, w
′, w)

and Chain(x1, w
′, w) are already known, or (2) Bad has happened.

368 M. Liskov

Assuming that both Chain(x||x0, y
′, y) and Chain(x||x1, y

′, y) were discovered
simultaneously (if not, the previous argument shows that Bad happened), there
are two cases:

– If both were discovered on a forward query f1(x,w), it must have been that
both Chain(x0, w

′, w) was known, and that w′ = f0(x, y′) for some w and
w′. Furthermore, it must also be true that Chain(x1, w

′′, w) was known, and
that w′′ = f0(x, y′). But then, w′′ = f0(x, y′) = w′, so the first condition
holds.

– If both were discovered on a backward query f−1
0 (x,w′), then it must have

been that Chain(x0, w
′, w) was known for some w, and that f1(x,w) = y. We

must also have noted Chain(x1, w
′, w′′) for some w′′ such that f1(x,w′′) = y.

If w = w′′ then the first condition holds. If not, then from remark 1, whichever
of f1(x,w) = y, f1(x,w′′) = y,Chain(x0, w

′, w), or Chain(x1, w
′, w′′) was dis-

covered last would have triggered Bad.

Remark 4. If there is some note Chain(x, y′, y) and Chain(x||x1, y
′, y) where x is a

single block, then Bad has happened. Again, we may assume that Chain(x, y′, y)
and Chain(x||x1, y

′, y) were discovered simultaneously. There are two cases:

– If both were discovered on a forward query f1(x, y′′), then it must have been
known in advance be that f0(x, y′) = y′′, and that Chain(x1, y

′′, y′′). How-
ever, Chain(x1, y

′′, y′′) is impossible unless Bad happens, in view of remark
1.

– Similarly, if both were discovered on a backward query f−1
0 (x, z), then it

must have been known in advance that f1(x, z) = y and that Chain(x1, z, z),
which again guarantees that Bad has happened.

By remarks 2, 3, and 4, if Chain(x, y′, y) and Chain(x′, y′, y) are known for x �= x′

then Bad must have happened: if x is not a prefix of x′ of x′ or vice versa, we
can descend by remark 2, getting similar properties, until the first blocks of x
and x′ are unequal. If x is a prefix of x′ or vice versa, we can descend by remark
2 until we fall in to the case covered by remark 3. Therefore, the simulator will
never halt prematurely unless Bad has happened.

Lemma 2. If a query is ever made to S that would complete a partial chain, we
note it unless Bad happens.

Suppose a query is made to S that would complete a partial chain. There are
three cases to consider:

Case i: A partial chain is completed on a forward query. If the link determined
by f(x, y) is used anywhere other than at the end, it can only be used there if
the value generated for f(x, y) triggers the Bad event. If the link determined by
f(x, y) only completes chains by adding on to the end, it must be a query to f1,
and then there are two cases: either the partial chain is one block long, which
we explicitly check for, or the partial chain is longer, in which case, a shorter,
compatible partial chain is already known. In either case, we note the newly
completed partial chain.

Constructing an Ideal Hash Function 369

Case ii: A partial chain is completed on a backward query f−1(x, z). Similarly,
if the result of this query is used anywhere other than at the beginning, it can
only be used there if the result triggers the Bad event. Again, if the result can
be used at the beginning, it must be a f−1

0 query, and our algorithm for the
simulator is correct.

Case iii: A partial chain is completed on a “squeeze” query f∗(y, z). In this
case, the chain could only be completed if something is already known about f0

or f1 on input x where x is the result of this query. If this were the case, the
result of this query would trigger the Bad event.

Lemma 3. If a query is ever made to S that would complete a partial chain
starting at IV , we note it, and respond correctly, unless Bad happens.

The proof of this lemma is very similar to the proof of lemma 3. Note that by
lemma 3, if a query is made to S that completes any partial chain, and Bad has
not happened, we note it. Therefore, we need only consider two cases:

Case i: The partial chain Chain(x, IV, y) is noted on a forward query to f1. In
this case, we obtain y by querying Δ(x), so our answer is correct.

Case ii: The partial chain Chain(x, IV, y) is noted on a backward query to
f−1
0 . If this is the case, Bad must have happened, because this can only happen

if the result of the final f−1
0 query was IV .

Lemma 4. The probability that Bad happens is negligible.

Note that initially, before any queries are made, Bad has not happened. If Bad
has not happened after the first q queries, then the probability that it happens
on the q + 1st query is at most (2q + 1) · max(2−m, 2−k). This is because there
are at most (2q + 1) answers (all the previous y and z values, plus IV) that
would make Bad happen, out of 2m or 2k possible random answers, depending
on the type of query. Therefore, if the adversary makes a total of q queries, the
probability that Bad happens is at most Ω(q22−r), where r = min(m, k).

We note that the running time of S is polynomial in the number of queries,
but is independent from the running time of the adversary. This completes the
proof of Theorem 1.

4.3 Security Against Standard Attacks

In this section we discuss the applicability of our security proof to the standard
attacks against hash functions. What we have proven, essentially, is that an adver-
sary with a limited number of queries cannot distinguish between the zipper hash
implemented with weak ideal compression function and a random oracle. Specif-
ically, if the number of queries the adversary can make is significantly less than
2min(m,k)/2, the Bad event remains extremely unlikely, and the proof is successful.

Provided the adversary makes fewer than this many queries, the only attacks
an adversary could succeed in are attacks that could be performed against an
ideal hash function. Hence, so long as this query limit is respected, the adversary

370 M. Liskov

should not be able to find collisions, preimages, second preimages, et cetera.
However, our proof does not imply that the adversary cannot perform these
attacks more efficiently on the zipper hash than on an ideal hash function if
the adversary exceeds this query limit. For instance, to find a preimage of an
ideal hash function takes O(2k) queries, where k is the output size, whereas we
cannot guarantee security against that many queries. As another example, our
construction does not provide security against multicollisions: in fact, it fits a
known framework in which an extension of the Joux attack is possible [15,9].

Nonetheless, keep in mind that the queries the adversary is allowed to make
in attacking the zipper hash include attack queries, which are modeled as if they
are trivial, but may in fact require significant effort.

5 Zipper Hash-Based Compression Function

The most natural criticism of the zipper hash in practice is that it is no longer
streamable, as iterated hash functions are. However, we can easily use the zipper
hash construction to create an ideal compression function rather than a full
ideal hash function, which will allow us to use one of the modified iterated
constructions of Coron et al. [4] and create a streamable, ideal hash function
from weak ideal compression functions.

Now that we have proven that the zipper hash is indifferentiable from a
random oracle, if we assume that we have an (m,m)-bit underlying compres-
sion function, we can make an (m,m)-bit ideal compression function very sim-
ply: let f(x, y) = H(x||y). That is, we use a full zipper hash computation
on the two-block message x||y as our compression function. By a simple re-
striction on our theorem, this is indifferentiable from a random oracle from
{0, 1}m × {0, 1}m → {0, 1}m, and is therefore an ideal compression function.

5.1 Amortizing Streamability vs. Efficiency

The full zipper hash requires 2 underlying compression function queries per input
block. If we use the zipper hash in the natural way as a compression function,
the resulting iterated construction (after double-piping) requires 4 underlying
compression function queries per input block. However, we can trade streama-
bility for efficiency here, by using the zipper hash function on more blocks of
input at once.

For instance, we can make a (3m,m)-bit compression function by computing
f(x1||x2||x3, y) = H(x1||x2||x3||y). This requires 8 queries for 3 input blocks,
which is a significant savings compared to 12 queries for 3 input blocks. How-
ever, by having the compression function require more input, we are sacrificing
streamability: we must now buffer 3 input blocks instead of one before we can ap-
ply the compression function. In general, if we use b blocks at once, our efficiency
will be 2(b+1)

b = 2 + 2
b queries per input block.

Constructing an Ideal Hash Function 371

6 Efficiency

The zipper hash requires 2l compression function evaluations on an input of l
blocks. There is one additional drawback in that the zipper hash is not stream-
able: we have to scan the message twice, so in principle, we cannot compute
the zipper hash in fixed memory unless for some reason it is feasible to access
the input a second time. This is an especially significant point as it is often de-
sired that limited devices such as smart cards be able to compute hash functions
with limited available memory. However, there are some points in favor of this
approach anyway:

– In applications on non-limited devices, streamability is not mission-critical.
It may be worthwhile to consider a non-streamable hash function like the
zipper hash if it has attractive theoretical properties.

– The zipper hash can be implemented using existing machinery: essentially all
that is required is two traditional Merkle-Damg̊ard hash function evaluations.

– Theoretically, it is possible that weakly secure compression functions could
be designed that may be more efficient than strong ones. If this is the case,
then such compression functions used in the zipper hash constructions may
actually yield a more efficient hash function.

– The zipper hash may remain secure even if the compression function is vul-
nerable to attack.

– Finally, any streamable hash function is essentially an iterated hash func-
tion based on a compression function. Therefore, some black-box attacks
are known that apply to any streamable hash function. If such attacks are
undesirable, it may be necessary to adopt a non-streamable approach.

This last point needs some explanation. We prove that all streamable hash
functions (that is, all hash functions with constant-size state) are in fact iterated
hash functions in Appendix B. The gist of the argument is that if a hash function
can be streamed, this means it can be computed with a fixed amount of state,
with a fixed maximum amount of memory into which the input is provided.
Whatever method is used to combine the input with the current state to arrive
at the next state can be thought of as the compression function. The initial state
can be thought of as the initialization vector, and whatever method is used, once
all input has been processed, to determine the output can be thought of as the
finalization function.

7 Conclusion

This paper is new in two ways. First of all, this is the first paper that we are
aware of to foray into positive results for non-streamable hash function design.
Second, as far as we know, this is the first paper to explicitly model weakly-secure

372 M. Liskov

primitives as ideal primitives with relevant attack oracles available. Here are some
open problems we consider worth investigating:

– Are there attacks against the generic zipper hash design that are better than
brute force?

– What other non-streamable hash function designs are possible, and what
properties do they have? In particular, are there benefits to making three or
more passes in a zipper-like construction?

– Is there a weaker version of an ideal compression function? If so, can we use
it to build secure hash functions?

– Can this notion of a weak ideal primitive be used elsewhere?
– Can we make better constructions, or prove stronger security results, by

representing our compression functions as ideal random quasigroups?

Acknowledgements

We would like to sincerely thank Bart Preneel [17] and Stefan Lucks [13] for their
Asiacrypt 2005 presentations which inspired this research. We would also like
to thank those with whom we had useful conversations concerning this project:
Ron Rivest, Stefan Lucks, Stuart Haber, Zulfikar Ramzan, Silvio Micali, Susan
Hohenberger, and Barbara Liskov. We would also like to thank the program
committee for their comments.

References

1. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and reduced SHA-1. In: Cramer [5], pp. 36–57

2. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

3. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
4. Coron, J., Dodis, Y., Malinaud, C., Punyia, P.: Merkle-Damg̊ard revisited:how to

construct a hash function. In: Shoup [18], pp. 430–448
5. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494, pp. 22–26. Springer, Hei-

delberg (2005)
6. Damg̊ard, I.: A design principle for hash functions. In: Brassard [3], pp. 416–427
7. Dean, R.: Formal aspects of mobile code security. Ph.D. Dissertation, Princeton

University (1999)
8. Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)
9. Hoch, J., Shamir, A.: Breaking the ICE - finding multicollisions in iterated con-

catenated and expanded (ICE) hash functions. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, Springer, Heidelberg (2006)

10. Joux, A.: Multicollisions in iterated hash functions, application to cascaded con-
structions. In: Franklin [8], pp. 306–316

11. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. Avail-
able on eprint: article 2005/281 (2005)

Constructing an Ideal Hash Function 373

12. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer [5], pp. 474–490

13. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

14. Merkle, R.C.: A certified digital signature. In: Brassard [3], pp. 218–238

15. Nandi, M., Stinson, D.R.: Multicollision attacks on a class of hash functions. Avail-
able on IACR eprint archive, paper 2006-2055 (2006)

16. Preneel, B.: Analysis and design of cryptographic hash functions. Ph. D. thesis,
updated version (2003)

17. Preneel, B.: Hash functions: past, present and future. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, Springer, Heidelberg (2005)

18. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
19. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions

MD4 and RIPEMD. In: Cramer [5], pp. 1–18

20. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [18],
pp. 17–36

21. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [5],
pp. 19–35

22. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup
[18], pp. 1–16

A Simulating Two Compression Functions

In the zipper hash construction, we require two independent compression func-
tions. However, in practice, it is more sensible to use only one. If we have a single
(m + 1, k)-bit compression function f , we can define f0(x, y) = f(0||x, y) and
f1(x, y) = f(1||x, y). This idea is natural, but we must prove that it is secure in
an ideal sense.

Theorem 2. If C is the TM that computes f0 and f1 given the oracle Γ for
a weak ideal compression function f , then C is (perfectly) indifferentiable from
Δ, where Δ is the oracle for two independent random weak ideal compression
functions.

Proof. First of all, we must describe how C answers attack queries. If C is given
an attack query f−1

b (x, z), C makes an attack query f−1(b||x, z) to obtain the
answer y. If, on the other hand, C is given an attack query f−1

b (y, z), C makes
an attack query f−1(y, z) to obtain an answer b′||x where b′ is the first bit. If
b′ = b, C returns x; if not, C makes an identical attack query, and repeats until
it obtains an answer that does begin with b.

To simulate the oracle for the single weak ideal compression function is very
easy. To answer a forward query f(b||x, y), we simply return the result of the
forward query fb(x, y). To answer an attack query f−1(b||x, z), we return the
result of the attack query f−1

b (x, z). Finally, to answer an attack query f−1(y, z),
we pick a random bit b and return the result of f−1

b (y, z).
The only effective difference between the simulation and the construction is

that the construction may have made superfluous queries to f−1(y, z). However,

374 M. Liskov

for all adversaries, the queries of the adversary are independent of the superfluous
queries, and even if the adversary makes a query that is later restricted by one
of those superfluous queries, the result is still random and distributed properly.

Another application of this is to show how to make the Lucks double-pipe con-
struction ideally secure.

Lucks’ construction of a double-pipe compression function can be summed up
as follows: if f is a (2m,n)-bit compression function, then
f ′(x, y1||y2) = f(x, y1||y2)||f(x, y2||y1) is a (2m, 2n)-bit compression function.

It is easy to see that this construction is not ideal: f ′(x, y||y) = z||z for some
z, whereas this is unlikely to be the case for an ideal compression function f ′.
This flaw is easily avoided, however, by the following modification. Assume that
f0 and f1 are two independent (2m,n)-bit compression functions, and let

f ′(x, y1||y2) = f0(x, y1||y2)||f1(x, y2||y1).

Theorem 3. f ′ is computationally indifferentiable from an ideal compression
function.

Proof. It is easy to see how to simulate the f0 and f1 random oracles in the
presence of a single random oracle for f ′: to calculate f0(x, y), for instance, we
query f ′(x, y), and split the result into two halves, the first of which is f0(x, y),
and the second of which is recorded as f1(x, yfl) where yfl flips the first and
second halves of y.

Naturally, we can apply Theorem 2 to show that f0 and f1 can be simulated
with a single compression function. We do not even need the full strength of
Theorem 2, since in this case the compression functions are meant to be ideal,
rather than weak ideal.

B Universality of Merkle-Damg̊ard

In this section, we prove that any streamable hash function can be viewed as an
iterated hash function with a single compression function f , a fixed initialization
vector IV , and a finalization function g.

In order to consider a hash function “streamable,” it must be the case that H
can be computed by an algorithm M in such a way that (1) M has a fixed-size
state, and (2) M receives its input in pieces, each piece being no larger than
some maximum size m. If (1) does not hold, then potentially, M simply stores
the entire input and computes the hash function only at the end. Furthermore,
we assume that the function operates directly on the input message, that is, we
assume that any padding is computed as part of the hash function. If this is the
case, we can view H as an iterated hash function as follows.

Let k be such that any state of M can be written as a k-bit string. Let IV
be the k-bit string corresponding to the starting state of M , appended with the
empty string ε.

Constructing an Ideal Hash Function 375

Let f be the (m, k + m + 1)-bit compression function that works as follows.
On input (x, y), let the state s be the state corresponding to the first k bits of
y, and let x′ be the string encoded in the remaining m + 1 bits. Based on s, we
determine the amount m′ ≤ m of input that M expects in state s. Let s′ be the
state after M is run in state s with input the first m′ bits of x′||x. If |x′||x| is
large enough that it contains the entire next block to process, we repeat this,
processing another chunk of the input. If not, we let sout be the state M ends
in, and let xout be whatever part of x′||x has not been used, and output the
k + m + 1-bit string representation 〈sout, xout〉.

Let g be as follows. On input x, let s be the state corresponding to the first k
bits of x, and let x′ be the string encoded in the remaining bits. Run M , from
state s, on input x′ with the signal that no more input remains, and output the
output of M .

It should be clear that the iterated hash function with compression function
f , finalization function g, and initialization vector IV simply runs M on the
input to the hash function. This shows that the streamable hash function H is
in fact an iterated hash function.

B.1 Universal Vulnerability of Iterated Hash Functions

Since all hash functions that can reasonably be thought of as streamable are in
fact iterated hash functions, black-box attacks against iterated hash functions
are actually universal attacks against streamable hash functions. For instance,
the second collision attack described in the introduction applies to all streamable
hash functions. Also, the Joux attack applies to all streamable hash functions.
The efficiency of the Joux attack, as well as its extensions, depends on the size
of the internal state (k+m+1, with the construction above); if this size is large
enough, the Joux attack is irrelevant, as Lucks has shown. However, note that
a streamable hash function may be realizable as an iterated hash function more
efficiently in terms of internal state size than the general construction above.

Provably Good Codes for Hash Function Design

Charanjit S. Jutla1 and Anindya C. Patthak2,�

1 IBM Thomas J. Watson Research Center
csjutla@watson.ibm.com

2 University of Texas at Austin
anindya@cs.utexas.edu

Abstract. We develop a new technique to lower bound theminimum dis-
tance of quasi-cyclic codes with large dimension by reducing the problem
to lower bounding the minimum distance of a few significantly smaller di-
mensional codes. Using this technique, we prove that a code which is sim-
ilar to the SHA-1 message expansion code has minimum distance at least
82, and that too in just the last 64 of the 80 expanded words. Further the
minimum weight in the last 60 words (last 48 words) is at least 75 (52 re-
spectively).We expect our technique to be helpful in designing future prac-
tical collision-resistant hash functions. We also use the technique to find
the minimum weight of the SHA-1 code (25 in the last 60 words), which
was an open problem.

Keywords: linear codes, minimum distance, collision-resistant hash
functions, SHA-1.

1 Introduction

Recall the SHA-1 message expansion code which is a binary linear code of dimen-
sion 512: the 512 information bits are packed into 16 32-bit words 〈W0, · · · ,W15〉,
and 64 additional words are generated by the recurrence:

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) <<< 1 for i = 16, · · · , 79 (1)

The 80 words 〈W0, · · · ,W79〉 can be seen as constituting a code-word in a linear
code over F2 with the above parity check equations. Unfortunately, this code
has a minimum distance or weight of no more than 44. Further, the weight
restricted to the last 60 words is only 25. This has been exploited in [21] to give
a differential attack on SHA-1 with complexity 269 hash operations. Recently,
the complexity has further been improved to 263 hash operations [19].

The code for SHA-0, which is same as (1) but without the rotation (see
[14], has an even worse minimum weight. The small minimum weight of these
codes is an integral part of the attack strategies on these hash functions (see
[22,23,3,2,1,20,21]). The question naturally arises as to why codes with better

� This work was done while the author was visiting IBM T.J. Watson Research Center,
N.Y.

E. Biham and A.M. Youssef (Eds.): SAC 2006, LNCS 4356, pp. 376–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Provably Good Codes for Hash Function Design 377

minimum weight were not employed, even though the coding theory literature
[17] is rife with codes with proven good minimum weight. However, as we point
out later in section 2, none of them comes close to being as efficient to implement
in software (i.e., do not have an efficient encoder) as the code (1) above. One
is then led to ask if codes more complex than (1), but still easy to implement,
could be shown to have a better minimum distance. Surprisingly, it was not
even known how to lower bound the minimum weight of the above SHA-1 code,
even though it is related to codes such as Hadamard code [17] (we address this
relationship in section 2).

The purpose of this paper is three-fold. First, to introduce a novel technique
for lower bounding efficient-to-implement codes such as given by (1). Second,
to use this technique to lower bound this particular code (which was an open
problem). Third, to show how one can design efficient-to-implement codes with
a much better minimum distance, and to actually give such a code. We expect
our technique to be helpful in designing future practical collision-resistant hash
functions.

Before we describe our technique, we mention the specific code we analyze, as
this specific example will help in understanding the complexity of the problem
and the intricacy of the technique. The code, C, we consider is a 80 × 32 length
binary code of dimension 16 × 32, given by the following recurrence relation (or

parity check equations): Let Vi
def
= Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16.

Wi
def
=

{
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1) if 16 ≤ i < 36
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1) if 36 ≤ i ≤ 79

(2)
We will show that this code has minimum distance 82, and that too in just the
last 64 words (contrast this with SHA-1 which has minimum weight at most 30
[21], and 192 for the highly inefficient Reed Solomon code described in Section 2).
Of course, since the dimension of this code is 16 × 32, a brute force search of
216×32 is infeasible. Further, it is known that computing minimum weight of an
arbitrary linear code is NP-hard (see [18]), and that approximating within a
constant factor is NP-hard under randomized reduction (see [5]).

Still, there is additional structure in the above codes (i.e. (1) and (2)), and we
intend to exploit that. Note that a codeword of the above codes can be seen as
an 80 × 32 matrix, with each column representing the codeword projected on a
particular bit position. Further, the above codes have the property that they are
closed under column rotations. Such codes are called quasi-cyclic codes in the
literature, and have been studied extensively (see [13,4,8,9]). As for estimating
the minimum weight of such codes by algorithmic means, the presently known
techniques are computationally infeasible [4,8].

Our novel technique reduces the problem of lower bounding the minimum weight
of a k × n dimensional quasi-cyclic code to a function of the minimum weight of
a few k × n′ dimensional codes, where n′ is much smaller than n. We now briefly
explain the main idea of our technique, using the above example code given by (2).
For any codeword represented as a 80 × 32 matrix, note that either (a) there are

378 C.S. Jutla and A.C. Patthak

no all-zero columns in the codeword, in which case we would like to show that on
average there are a few (three, e.g.) non-zero bits in each column, or (b) there is
a zero column in the codeword, in which case we would like to show that the code
projected on a few columns (say, m << n) has a large minimum distance.

Unfortunately, there are two major hurdles in this plan (related to case (b)).
Consider the first non-zero column next to a zero column (either to the left or
the right). It turns out that the code projected on that column is not expected to
be any better than the code for SHA-0, and hence we do not expect a minimum
weight of more than 15-20 for that column. Thus, we would need m to be about
five to get a minimum weight of 75, in which case the dimension of the projected
code is still too large, i.e. 16×5. Further, there are pathological cases (and which
cannot be avoided) where the code projected on a column yields a minimum
weight as low as 1. Thus, we may be forced to consider m to be much larger
than five. The novelty of our approach lies in tackling these two major hurdles.
We show that the minimum weight of the sub-code in case (b) can be lower
bounded by a function of the minimum weight of a few codes (some of which are
subspaces), each of dimension at most 16 × 3. A “lazy” brute force search with
early-stopping then yields a lower bound of 82.

Other Contributions: We also use the techniques developed to give a lower
bound of 25 (in the last 60 words) on the minimum weight of the codewords
of SHA-1 (this was an open problem). A codeword of weight smaller than 25,
could potentially lead to an even more drastic attack on SHA-1. As for further
advancement of our techniques, we also prove that the minimum weight of our
example code (2) is at least 75 (52) when restricted to the last 60 (48 resp.)
words. We will give detailed proof of this in the full version of the paper. Note
that front truncations are not equivalent to back truncations for this code.

Organization: The rest of the paper is organized as follows: In section 2 we
review limitations of known algebraic techniques. In section 3 we give an informal
description of the proof technique and the intuition behind why certain codes
are easier to analyze. In section 4 we give a detailed proof of a lower bound on
the code given by (2). In the Conclusion section, we describe applications of our
methods to designing hash functions. In Appendix A, we give detailed algebraic
proofs of some lemmas in section 4.

2 Limitations of Purely Algebraic Techniques

We first investigate the SHA-0 code restricted to a single column, which is a length
80 binary code of dimension 16, given by the binary parity check equations:

ai = ai−3 ⊕ ai−8 ⊕ ai−14 ⊕ ai−16 for i = 16, · · · , 79 (3)

Consider the polynomial h(X) = X16 + X13 + X8 + X2 + 1, which is known to
be a primitive polynomial, as the smallest n such that h(X) divides Xn − 1 is
216−1. Hence, if the above code was extended up to length 216−1, it would be the
code generated by the LFSR (Linear Feedback Shift Register) given by primitive

Provably Good Codes for Hash Function Design 379

polynomial h(X). However, such codes are well known [24,7] to be a subcode of
first-order Reed Muller codes (also known as Hadamard codes) with one digit
dropped. Such codes have an extremely good minimum distance of 215 − 1, or
fractional distance 1/2. Unfortunately, nothing useful can be said about this code
truncated to just the first 80 bits, based purely on known algebraic methods.
In fact, any such code (i.e. using any degree 16 primitive polynomial) has a
minimum weight of at most 26, i.e. a fractional distance of less than 1/3 (as can
be checked by a computer).

The lack of purely algebraic techniques to lower bound even this single column
code emphasizes the difficulty of analyzing the more complex codes such as SHA-
1 and that given by Equation (2). Of course, if h(X) above was not primitive,
and divided X80 − 1, then we would get a cyclic code of length 80. Such codes
can be analyzed much more easily, and it is not too difficult to see that the best
cyclic code gives a minimum distance of only 8. However, there are non-cyclic
linear codes known of minimum distance 31, though they are really difficult to
encode. One could also consider cyclic codes of length 85, which have a much
better minimum distance and then truncate them. However, the analysis does
not extend to codes which do column mixing like SHA-1.

Instead of quasi-cyclic codes as SHA-1 or Equation (2), one could consider
cyclic codes of length 80 × 32, or of an appropriate length. First note that a
random code will give minimum distance roughly 475 for a code with rate 1/4
and length 64 × 32 (follows from the Gilbert-Varshamov bound). Of course,
finding such a code is infeasible. Alternatively, one can try a Reed Solomon
code over F28 of length 28 − 1 (bytes), and dimension 64 (bytes). Such a code
has distance 256 − 64 = 192 (over bytes). However, the encoder for this code
requires multiplication by various elements in F28 , and is not at all suitable for
software implementations. A binary cyclic code of dimension 16× 32 would also
be extremely cumbersome to implement. Similar considerations rule out known
good quasi-cyclic codes.

3 Intuition Behind the Code

Let us start by examining why the message expansion code in SHA-1 given by
Equation (1) is not satisfactory (observed independently in [11] and [10]). We
can rewrite Equation (1) as follows:

∀i, 0 ≤ i ≤ 63, Wi = Wi+2 ⊕ Wi+8 ⊕ Wi+13 ⊕ (Wi+16 >>> 1), (4)

where “>>> 1” denotes a one bit rotation to the right. The above clearly shows
that a difference created in the last 16 words propagates to only up to 4 different
bit positions.

One way to remedy this situation is to let Wi = (Wi+2 >>> 1) ⊕ Wi+8 ⊕
Wi+13 ⊕ (Wi+16 >>> 1). Now Equation (1) becomes Wi = (Wi−3 ⊕ Wi−8 ⊕
Wi−16) <<< 1 ⊕ Wi−14. Thus, whether you consider the evaluation in the
forward direction or in the reverse direction, the spread of differences to the
neighboring columns (i.e. neighboring bits) is more frequent. However, it is not

380 C.S. Jutla and A.C. Patthak

enough to just have a good intuition about the code, but one also needs to prove
a good lower bound on the minimum weight of such codes.

The strategy we use to prove lower bounds on such codes is to divide the
proof into two main cases. We argue that either there are no zero columns in a
codeword (a column in the codeword is the codeword projected on a particular
bit position) or starting from an all zero column, the first neighboring non-zero
column is actually a codeword in a good code, and so on.

Elaborating on the first case, i.e., when there are no zero columns, if every
column has at least 3 bits ON, we are done. So, assume that there is some column
which has 1 or 2 bits ON. Thus, there are (64 × 63)/2 + 64 choices for picking
these bits in the column. Having picked these bits, the neighboring column is
completely specified by at most 16 bits in that column. Now the two columns
together either have weight 6, in which case we are maintaining an average of 3
per column, or the weight of these two columns is at most 5. Thus, our search
is quite restricted. We continue in this fashion, noting that the code has to be
designed carefully so as to satisfy a property as in Claim 3.

As for the second case, we consider a contiguous band of zero columns, bor-
dered on both sides with non-zero columns (we prove that they cannot be same;
in fact we prove by a rank argument that there must be at least four consec-
utive non-zero columns). We have to assure that when a column is zero, and
the neighboring column is non-zero (whether to the right or left), the result-
ing code for the neighboring column is a good code, i.e., with a good minimum
weight. Note that this is important since we may possibly have at most 5-6 non-
zero columns. Therefore it is desired that the disturbance propagates fast across
columns. Unfortunately, this is impossible for the codes we are considering so
far.

Consider a SHA-1 like code, with dimension 16 × 32, and which is invariant
under column rotations. Moreover, suppose that the code is of the form

Wi =
16∑

t=1

atWi−t +

((
16∑

t=1

btWi−t

)

<<< 1

)

, (5)

where a1, · · · , a16, b1, · · · , b16 are boolean. If a16 and b16 are equal, then there is
a codeword which is zero everywhere, except for W0 which is the all one 32-bit
word. Thus for the sake of the argument, assume that b16 = 0 and a16 = 1.
However in this case, suppose t′ < 16 is the largest t such that bt′ is non-zero.
First note that if a column, say Cj , is zero, then in the column to its right, say
Cj−1, Cj−1

k (for k = 0 to 15 − t′) can take any value (i.e., are free variables),
and the rest of the column Cj−1 can be all zero. Further, the propagation to
columns Cj−2, Cj−3 etc. can be rather weak.

A similar situation arises when the code is evaluated in the backward direction.
The trick is to keep the above free variables few in number, so that the subspace
of such pathological cases is of a relatively small dimension. This small dimension
is absolutely necessary to keep the exhaustive search over this space tractable.
One way to get rid of these pathological free variables is to include a term like
Wi−20, as we do in our code. This in fact gets rid of all the pathological variables

Provably Good Codes for Hash Function Design 381

in the forward direction and thereby yields a fast expansion. In the backward
direction at least one pathological free variable per column remains, and we must
search over such subspaces.

4 A Lower Bound on the Minimum Distance

In this section we will prove a lower bound on the code described in the in-
troduction. As mentioned earlier, this is a general technique for reducing the
problem to smaller dimensional codes. However, if the reduction is to codes with
dimensions too large, then a brute force search may not be feasible. On the other
hand, if the reduction is to codes which have really low minimum weight, then
we will not obtain a good bound.

We will see in Claim 7 and Claim 8 (in Appendix A) that if the polynomi-
als describing the parity check equations (5) have a certain algebraic property,
namely that the polynomial corresponding to coefficients at is irreducible, and
does not divide the polynomial corresponding to coefficients bt, then some key
reduced codes have low dimensions. Although, these are not necessary condi-
tions, they make a good choice. Similarly, if the coefficients b1 and b15 are both
one, then the number of pathological variables per column is small.

We will prove a lower bound on the minimum weight of the code given by
Equation (2), but projected on the last 64 words. Clearly, the same bound holds
for the full 80 words. The reason we focus on the last 64 words is because the
recent attacks on hash functions have shown that the weight of the code in early
words (the information words, and a few following words) is mostly immaterial
(see “message modification technique” in [21]), and hence the weight in the latter
words decides the complexity of the attack.

Since we will be arguing about the weight of this code in the last 64 words,
we instead consider the following code C64 : Let W0, · · · ,W15 be the message
blocks. Let Vi

def
= Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16.

Wi
def
=

{
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1) if 16 ≤ i < 20
Vi ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1) if 20 ≤ i ≤ 63

(6)

We first prove that this is indeed sufficient.

Lemma 1. If the code C64 described above has minimum weight at least w,
then C has minimum weight at least w in its last 64 words.

Proof. Consider any nonzero codeword in C, say U = 〈U0, · · · , U79〉. Denote X =
〈U0, · · · , U15〉 and Y = 〈U16 · · · , U31〉 and Z = 〈U32 · · · , U79〉. Therefore U =
〈X,Y, Z〉. From Equation 2 observe that the code C is completely determined by
specifying any consecutive 16 word block provided the block starts anywhere in
0 to 20, since the rest can then be obtained by solving the recurrence relation.
We therefore choose to specify Y = 〈U16, · · · , U31〉, that is we treat Y as the
message symbols. Note that a fixed choice of Y also fixes X and Z. Following
this observation it is now clear that 〈Y, Z〉 is a codeword in C64 .

382 C.S. Jutla and A.C. Patthak

Assume that the minimum weight of C64 is d. Then we need to show that any
non-zero codeword in C has weight at least d in its last 64 words. This follows
provided a non-zero X implies a non-zero Y . However, if Y is zero then X is
zero, as X is a linear function of Y .

Therefore the minimum weight of C64 is exactly the minimum weight of code
C in its last 64 words.

Next we prove a lower bound on the minimum distance of C64 . We break down
the proof into several sub-cases. In each sub-case, we argue often following an
exhaustive search over a small space that the minimum weight of the code is
at least 82. We mention that a naive algorithm may require to search a space
as large as 232×16 which is clearly not feasible. Therefore the novelty in our
approach lies in a careful sub-division of the problem into a small number of
tractable cases.

Theorem 2. The code C64 as defined by Equation 6 has minimum distance at
least 82.

Proof. It is easy to see that the code C64 is a quasi-cyclic code by noting that it
is invariant under a 64 bit cyclic shift. From now onwards, we view the codewords
of C64 as a matrix that has 32 columns where each column is 64-bit long. The
quasi-cyclic property then just mean that the code is invariant under column
rotations. Unless otherwise specified, the arithmetic in the superscript will be
modulo 32.

Now consider any non-zero codeword. Since the code is linear, it suffices to
prove that it has weight at least 82. We break down the proof into two main
cases depending upon whether or not a codeword has zero columns.

1. (All Columns Non-Zero Case:) Consider any such codeword. Also, con-
sider any non-zero column, w.l.o.g., let it be C0. Denote the columns, to the
left of it by C1, C2, · · · , C31. Note that all Ci’s are non-zero. In this case the
following claim holds.

Claim 3. For any non-zero column Cj , there exists k, 0 ≤ k ≤ 7 such that
the combined weight of columns Cj , Cj+1, · · · , Cj+k is at least 3 · (k + 1).

Proof. This is easily verified by a computer program. We mention that for
k ≤ 6, an average of 3 cannot be assured (see Appendix B for an example).

Next we create a partition of the 32 columns into several groups. We pick
a non-zero column Cj . Now following Claim 3, there exists (k + 1)-columns
(0 ≤ k ≤ 7) such that the average weight of each column is at least 3.
Consider the smallest k that achieves this. Then put these (k + 1) columns
Cj , Cj+1, · · · , Cj+k into a group. Call these columns good columns and the
group a good group. We then choose Ck+j+1 and form another group. We
continue like this till no more good groups can be created. The remaining
columns are then grouped together. Call this group a bad group. Note that
the bad group has average weight at least 1. Now let e be the size of this
bad group. Then we have (32 − e) good columns. Also following Claim 3, e

Provably Good Codes for Hash Function Design 383

could be at most 7. Therefore the total weight of the codeword is at least
3 · (32 − e) + e = 96 − 2 · e ≥ 82.

2. (At least One column Zero Case:) Assume that there is at least one zero
column. W.l.o.g. let C0 be a zero column such that the column to the left of
it is non-zero (note that such a column always exists since we are considering
a non-zero codeword). Denote the columns to the left of C0 by C1, C2, · · ·
(see figure).

Also, going towards the right of C0, denote
the first non-zero column by E1 and thereafter
E2, E3, · · · . Denote the column to the left of
E1 by E0. (Note that it may be possible that
C0 and E0 are the same column.) We argue
that a few columns to the left and right of a
band of zero columns must contribute a total
weight of at least 82.

It will be immaterial in our analysis below
if there are some non-zero columns between C0

and E0. All we require in our analysis is that
C0 and E0 are zero.

O

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R

Next consider C1, C2, · · · . How soon can the sequence yield a zero column,
i.e., what is the smallest value of j such that Cj = E0? In order to answer
this question, first note that since C0 is everywhere zero, C1 is essentially
generated by the code whose parity check equations over F2 are given as
follows: Denote C1 = 〈y0, · · · , y63〉. Then

∀i, 16 ≤ i ≤ 63, 0 = yi + yi−3 + yi−8 + yi−14 + yi−16. (7)

Similarly for a fixed C1, the column C2 is generated by the code whose parity
check equations over F2 are given as follows: Denote C2 = 〈x0, · · · , x63〉. Let

ui
def
= xi + xi−3 + xi−8 + xi−14 + xi−16.

0 =

{
ui + yi−1 + yi−2 + yi−15 for 16 ≤ i ≤ 19
ui + yi−1 + yi−2 + yi−15 + yi−20 for 20 ≤ i ≤ 63

(8)

On the other hand E1 is generated by the code whose parity check equations
over F2 are given as follows: Denote E1 = 〈w0, · · · , w63〉. Then

0 =

{
wi−1 + wi−2 + wi−15 for 16 ≤ i ≤ 19
wi−1 + wi−2 + wi−15 + wi−20 for 20 ≤ i ≤ 63

(9)

Similarly for a fixed E1, the column E2 is generated by the code whose parity
check equations over F2 are given as follows: Denote E2 = 〈z0, · · · , z63〉. Let

vi
def
= wi + wi−3 + wi−8 + wi−14 + wi−16. Then

0 =

{
vi + zi−1 + zi−2 + zi−15 for 16 ≤ i ≤ 19
vi + zi−1 + zi−2 + zi−15 + zi−20 for 20 ≤ i ≤ 63

(10)

384 C.S. Jutla and A.C. Patthak

The following claim shows that at least four consecutive columns have to be
non-zero.

Claim 4. If C0 is everywhere zero, and C1 is non-zero, then C2, C3 and
C4 are all non-zero.

Proof. Suppose for a j it is the case that Cj = E1, i.e., Cj+1 is all zero. Then
a homogeneous system of linear equations over F2 can be set up. Consider
the 64 × j variables in column C1 through Cj . There are 48 equations for
each of the columns C1 through Cj . Also, there are 48 more equations for
Cj+1. It is well known that such a system can have a non-trivial solution
if and only if the rank of the co-efficient matrix is strictly smaller than the
number of variables. It can easily be verified by a computer program that
for j = 1, 2, 3, the system has full rank, that is exactly 64× j. This can also
be proved algebraically for j = 1, 2. We give a simple algebraic proof in the
appendix (see Appendix A).

This proof also highlights that for the rank to be full the recurrence relation
must satisfy nice properties. Ranks of all linear systems considered in this
paper have been computed using Gaussian elimination. We now divide the
proof into two cases.

(a) (Number Of Consecutive Non-Zero Columns is at most Five):
By the claim above, we can safely as-
sume that we have at least four consecu-
tive non-zero columns. Also, if we assume
C4 = E1, then the number of nontrivial
solutions can be at most 216 − 1 (since
the co-rank or nullity of the matrix is 16,
as verified by implementing a Gaussian
elimination program). Similarly, assuming
C5 = E1, the number of nontrivial solu-
tions can be at most 232−1. We do an ex-
haustive search to conclude that the min-
imum weight in the latter case is at least
90. (Note that this latter case alone is suf-
ficient.)

5

C

O

R

E

Z
}}
> 90

O

R

E

Z

C1
C2

CC 4
3

Case 2(a)

(b) (Number Of Consecutive Non-Zero Columns is at least Six):
If case 1 and case 2(a) do not hold then, the only case that remains
to be considered is the one where at least six consecutive columns are
non-zero. Note that C1, C2, C3 are then distinct from E1, E2, E3. We
use a computer program to verify that in this case the combined weight
of C1, C2 and C3 is at least 42. However the same cannot be said of
E1, E2, E3, and we have to do a more detailed analysis.

Now recall Equation 9, the constraints induced on E1. A quick ob-
servation reveals that its free variables are the first 15 bits and the very

Provably Good Codes for Hash Function Design 385

last bit. Depending on the values taken by E1s first 15 bits we sub-divide
our proof into two cases:
i. (Non-Pathological Case:) Not all of the first 15 bits of E1 are zero.

This is the simpler case. In
this case, the recurrence induces
a good expansion. By an ex-
haustive search we obtain that
in this case the combined weight
of E1, E2 and E3 is at least
40. Since the combined weight of
C1, C2 and C3 is at least 42, and
that Ci, Ei are all distinct, to-
gether they establish this case.

ii. (Pathological Case:) Here we
assume that the first 15 variables
of E1 are all zero. This is the most

0

C

C

C

2

3

1

0C

2E

E0

1E

E3Z
E
R
O

}> 42 }> 4

Case 2(b)i

subtle and difficult case. Going back to Equation 9, we note that in
this case it must hold that w63 = 1 and for all 0 ≤ i ≤ 62, wi = 0.
We call such w pathological.

Now consider Equation 10. We can have two cases here.
In the first case, assume that the first 15 variables of z are zero.

In that case, it must hold that z62 = 1. (Plugging in i = 16 to 62
in Equation 10 will yield zj = 0 for all 15 ≤ j ≤ 61 since wi = 0
for these values.) Also note that z63 is free. In this case, we also
call z pathological. In fact this may continue along the diagonal i.e.,
E3, E4, · · · may be pathological. If that happens then it is easy to
show that the first non-zero bits of E3 will be its 61st bit, that of E4

will be 60th bit and so on. Also each column will have a free variable
in its 63rd bit.

In the second case, we assume that not all of its first 15 variables
are zero. We call such z’s to be non-pathological.

We now sub-divide into many small cases depending primarily
on the number of pathological columns (and thus on the number of
free variables).
A. (# Pathological Columns ≤ 8) We break this case into two

sub-cases. That each of these sub-cases holds has been verified
using a computer program.

(I). 6th and earlier non-pathological columns are non-zero:
In this case, we verify that the combined weight of the patho-
logical columns and the first three non-pathological columns
to the right of the pathological columns is at least 40. This
ensures that in this case the minimum weight is at least 82.

We mention that the search space has dimension

of Pathological vars + # of Non-Pathological Cols. × 16,

which is at most 40 in this case.

386 C.S. Jutla and A.C. Patthak

We next consider the case where the non-pathological columns
are same as one of C1, C2 or C3.

(II). 6th or earlier non-pathological column is identically
zero: Firstly note that it suffices to check the case where the
6th non-pathological column is identically zero (that is E3 =
C3), since other cases do fall in this case. Now we consider the
parity check equations induced on the pathological columns
and the six non-pathological columns. Note that C1 satisfies
Equation 7 and that E1 satisfies Equation 9. Also note that
in between columns satisfy equations similar to Equations 8
and 10. These equations then set up a homogeneous system of
linear equations whose nullity can be verified (by a computer
program) to be at most 40.

Let the number of pathological columns be p and the number of
non-pathological columns be n. Specifically then the nullity of
the system can then be shown to be exactly (see Appendix A
Claim 9) : p + 64×n− 48× (n + 1) = p + 16 ·n− 48, which is at
most 40 in this case. We do an exhaustive search over the null
space to establish that the min-weight is at least 82.

B. (8 < # Pathological Columns ≤ 16): We also break this case
into two sub-cases. That each of these sub-cases holds has been
verified using a computer program.

(I). 5th and earlier non-pathological columns are non-zero:
In this case, we verify that the combined weight of the patho-
logical columns and the first two non-pathological columns to
the right of the pathological columns is at least 40. This en-
sures that in this case the minimum weight is at least 82.

Therefore the case that remains to be considered is the one
where the non-pathological columns are same as one of C2 or
C3 which leads us to the next case.

(II). 5th or earlier non-pathological column is identically
zero: Firstly, note that it suffices to check the case when the
5th non-pathological column is identically zero (that is E2 =
C3), since other cases do fall in this case. As in the 2nd sub-
case of the previous case (i.e., Case 2(b)(ii)(A)(II)), we verify
that the min-weight is at least 82.

C. (16 < Pathological Columns ≤ 28): First of all, notice that 28
columns is enough, since by our assumption there is at least one
zero column and three non-pathological column (i.e., C1, C2, C3).
Now, we also break this case into two sub-cases. That each of these
sub-cases holds has been verified using a computer program.

(I). 4th and earlier non-pathological columns are non-zero:
In this case, we verify that the combined weight of the patho-
logical columns and the first non-pathological column to the
right of the pathological columns is at least 40. This ensures
that in this case the minimum weight is at least 82.

Provably Good Codes for Hash Function Design 387

Therefore the case that remains to be considered is the one
where the 1st non-pathological column is the same as C3.

(II). 4th non-pathological column is identically zero: As in
the 2nd sub-case of the previous case (or Case 2(b)(ii)(A)(II)),
we verify that the min-weight is at least 82.

O

}}}

1E

<

R

E

Z

O

C

C

C

2

> 42

....
E2

3

1

8#

> 40

Z
E

R

}

Case 2(b)(ii)(A)(I)

O

}}

3C

E1 O

R

E

Z

<

C1
C2

 ..E2

CC 45

O

R

E

Z

8#

8> 2

Z
E

R

}

Case 2(b)(ii)(A)(II)

O

8<#<16

} }}

E1

R

E

Z

O

C

C

C

2

> 42 }

3

1

> 40

 ..E2

Z
E

R

Case 2(b)(ii)(B)(I)

O

} }
3C

E1 O

R

E

Z

8<#<16

C1
C2

 ..E2

C4

O

R

E

Z

8> 2

Z
E

R

}

Case 2(b)(ii)(B)(II)

O

}}

E1

R

E

Z

O

C

C2

> 42 }

 ..E2

3

C1

<16 #<28

> 40

Z
E

R

}

Case 2(b)(ii)(C)(I)

O

} }

E1
O

R

E

Z

3C

 ..E2

<16 #<28

C1
C2

8> 2

O

R

E

Z Z

R
E

}

Case 2(b)(ii)(C)(II)

Fig. 1. Illustrations of various cases in the proof of Theorem 2

388 C.S. Jutla and A.C. Patthak

We remark that the minimum weight of this code can at most be 82 and
therefore our result is tight (see Appendix B). Extending our approach, we can
further prove the following theorem whose proof has been deferred to the full
version.

Theorem 5. The code C64 , as defined by Equation (6), has minimum weight
at least 75 (and at least 52) in its last 60 words (and in its last 48 words,
respectively).

We remark that a simple variants of the above technique can be used to give a
lower bound on the minimum weight of SHA-1 (of course, there are much fewer
cases to consider here). Specifically we have the following theorem whose proof
has been deferred to the full version of this paper (also see [6]).

Theorem 6. SHA-1 message expansion code has minimum weight 25 in the last
60 words.

5 Conclusion

In this paper we have shown how lower bounds on minimum weight of quasi-
cyclic linear codes of dimension m × n given by parity equations of the form

Wi =
i∑

t=1

aitWi−t +

((
i∑

t=1

bitWi−t

)

<<< 1

)

for i ≥ n,

can be obtained by reducing the problem to the minimum weight of significantly
smaller dimensional codes. Note that this equation is more general than Equa-
tion (5), and Equation (2) is of this form rather than the simpler Equation (5). In
some cases, we obtain the exact minimum weight, including the example codes
we considered. An obvious generalization is to consider three or more column
mixing (the equation above has only two column mixing), which could lead to
codes with even better minimum distance.

A common paradigm for designing hash functions, including MD5[12], SHA-
0, SHA-1 and SHA-2[16] is the following: the 512-bit message is first expanded
into N words, and then the N words are used as step keys (sometimes known as
round keys) in N steps of a (non-linear) block cipher invoked on an initial vector.
The output of the block cipher is the output of the compression function. As
pointed out in the Introduction, one of the key ingredients of the recent differen-
tial attacks on MD5, SHA-0, and SHA-1 has been their poor message expansion
(in terms of minimum weight) into the N words. We propose SHA1-IME which
is SHA-1 with the original message expansion (see [15]) substituted by our im-
proved message expansion as given in Equation 2. A preliminary evaluation has
shown that this proposed compression function has at most a 5% overhead in
speed over SHA-1 in a software implementation, and at most a 10% overhead
in gate count in a high performance hardware implementation. However, on the
positive side this proposed compression function resists all presently known at-
tacks against SHA-1. Thus, we consider our novel technique to be an important
advance in the design of collision-resistant hash functions.

Provably Good Codes for Hash Function Design 389

References

1. Biham, E., Chen, R.: Near collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

2. Biham, E., Chen, R.: New results on SHA-0 and SHA-1. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

3. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, Springer, Heidelberg (1998)

4. Chepyzhov, V.V.: New lower bounds for minimum distance of linear quasi-cyclic
and almost linear cyclic codes. Problems of information Transmission 28(1) (1992)

5. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum
distance of a linear code. IEEE Transaction on Information Theory 49(1) (2003)

6. Jutla, C.S., Patthak, A.C.: A Matching Lower Bound on the Minimum Weight
of SHA-1 Expansion Code. Cryptology ePrint Archive, Report 2005/266 (2005),
http://eprint.iacr.org/

7. Kasami, T., Lin, S., Peterson, W.W.: New Generalization of the Reed-Muller Codes
Part I: Primitive Codes. IEEE Transactions on Information Theory IT-14(2), 189–
199 (1968)

8. Lally, K.: Quasicyclic codes of index � over Fq Viewed as Fq [x]-submodules of
Fql [x]/〈xm − 1〉. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) Applied Alge-
bra, Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 2643, Springer,
Heidelberg (2003)

9. Ling, S., Solé, P.: Structure of quasi-clcyic codes III: Generator theory. In: IEEE
Transaction on Information Theory (2005)

10. Matusiewicz, K., Pieprzyk, J.: Finding good differential patterns for attacks on
SHA-1. In: International Workshop on Coding and Cryptography (2005)

11. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A.J. (ed.) CT-RSA 2005.
LNCS, vol. 3376, Springer, Heidelberg (2005)

12. Rivest, R.: RFC1321: The MD5 message-digest algorithm. In: Internet Activities
Board (1992)

13. Townsend, R.L., Weldon, E.J.: Self-orthogonal quasi-cyclic codes. IEEE Transac-
tion on Information Theory (1967)

14. United States Department of Commerce, National Institute of Standards and Tech-
nology, Federal Information Processing Standard Publication #180. Secure Hash
Standard (1993)

15. United States Department of Commerce, National Institute of Standards and Tech-
nology, Federal Information Processing Standard Publication #180-1 (addendum
to [14]). Secure Hash Standard (1995)

16. United States Department of Commerce, National Institute of Standards and Tech-
nology, Federal Information Processing Standard Publication #180-2. Secure Hash
Standard (August 2002)

17. van Lint, J.H.: Introduction to Coding Theory. Springer, Heidelberg (1998)
18. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE

Transaction on Information Theory 43(6) (1997)
19. Wang, X., Yao, A., Yao, F.: New collision search for SHA-1. In: Shoup, V. (ed.)

CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)
20. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks in SHA-0. In: Shoup,

V. (ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)
21. Wang, X., Yu, H., Yin, Y.L.: Finding collisions in the full SHA-1. In: Shoup, V.

(ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

http://eprint.iacr.org/

390 C.S. Jutla and A.C. Patthak

22. Wang, X.Y.: The collision attack on SHA-0. In Chinese (1997)
23. Wang, X.Y.: The Improved collision attack on SHA-0. In Chinese (1997),

http://www.infosec.edu.cn/
24. Zierler, N.: On a variation of the first-order reed-muller codes. In: M.I.T. Lincoln

Lab., Group Report, 34-80, Lexington, Mass (October 1958)

A Rank Proofs

Claim 7. If C0 is zero, and C1 is non-zero, then C2 is non-zero.

Proof. Assume otherwise i.e., that C2 is zero. Consider the 48 × 64 dimensional
parity check matrices (essentially Equations (7) and (9)) over F2.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1010000010000100100000 · · · 000000000000000000
0101000001000010010000 · · · 000000000000000000

. . . · · · . . .
0000000000000000000000 · · · 010100000100001001

⎞

⎟
⎟
⎟
⎟
⎟
⎠

H1

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0100000000000011000000 · · · 000000000000000000000
0010000000000001100000 · · · 000000000000000000000
0001000000000000110000 · · · 000000000000000000000
0000100000000000011000 · · · 000000000000000000000
1000010000000000001100 · · · 000000000000000000000
0100001000000000000110 · · · 000000000000000000000

. . . · · · . . .
0000000000000000000000 · · · 100001000000000000110

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

H2

Then we need to show that H =
(

H1

H2

)
has full rank. For that it is enough

to show that there are 64 linearly independent rows. We consider the 48 rows of
H1 and 16 additional rows, namely 5th through 20th rows of H2. We reduce the
problem to showing that a certain equation over polynomial ring F2[x] does not
have solutions in a restricted set of polynomials. We associate with the vector
c = 〈c0, · · · , c63〉 in F64

2 the polynomial c(x) =
∑63

i=0 cix
i in F2[x]. Then the

following polynomials can be associated with the 1st and 5th rows of matrix H1

and H2, respectively:

p(x)
def
= x16 + x13 + x8 + x2 + 1, and r(x)

def
= x19 + x18 + x5 + 1.

Further note that the ith (note 1 ≤ i ≤ 48) row of H1 then gets associated with
xi−1p(s). Similarly the jth (note we restrict ourselves to 5 ≤ j ≤ 20) row of H2

then gets associated with xj−5r(s). Therefore, observe that if the 80 rows that

http://www.infosec.edu.cn/

Provably Good Codes for Hash Function Design 391

we are considering were dependent then we would have a non-zero solution of
the following polynomial equation : p(x)α(x) + β(x)r(x) = 0, with additional
constraints that degree(α) ≤ 47 and degree(β) ≤ 15. However, it is easy to check
that p(x) is irreducible, therefore if such a equation holds then it must be the
case that p(x) divides r(x). However, it is easy to check that p(x) does not divide
r(x), thus leading to a contradiction.
Therefore H has full rank.

We now strengthen the claim slightly.

Claim 8. If C0 is zero, and C1 is non-zero, then both C2, C3 are non-zero.

Proof. Consider the following polynomials :

p(x)
def
= x16 + x13 + x8 + x2 + 1,

q(x)
def
= x15 + x14 + x, and r(x)

def
= x19 + x18 + x5 + 1 = x4 · q(x) + 1.

Let H1 and H2 be as above. First of all note that H2 has full rank. (This is clear
from the matrix. Otherwise, note that we would have an identity: q(x) · a(x) +
r(x) · b(x) = 0, with degree(a) ≤ 3 and degree(b) ≤ 43. Since degree(q · a) <
degree(r), this cannot happen.) Now we will show that the rank of the matrix

⎛

⎝
H2 0
H1 H2

0 H1

⎞

⎠

is at least 128. Since H1 has full rank, observe that
(

H1 H2

0 H1

)
has rank at least

96. So consider the following 92 independent rows from the above matrix, namely
5th row onwards. We also argue that another additional 5th through 40th rows
of the top H2 are also independent. If not, then they would satisfy the following
polynomial equations

α(x)p(x) + β(x)r(x) = 0 (11)
x4β(x)p(x) + γ(x)r(x) = 0 (12)

with restrictions
degree(α) ≤ 47,
degree(β) ≤ 43, and
degree(γ) ≤ 35.

Since p(x) is an irreducible polynomial, and p(x) � r(x), observe from Equa-
tion (11) that p(x)|β(x). Hence, set β(x) = μ(x)p(x). Substituting in Equa-
tion (12) we get

x4p(x)2μ(x) + γ(x)r(x) = 0.

Since p(x) is irreducible, and p(x) � r(x), and x � r(x), it must hold that x4

p(x)2|γ(x). But that is impossible, since degree(γ) ≤ 35 < 36 =degree(x4p(x)2).

Recall that we used E0 to denote a column that is zero everywhere. Also, recall
that the columns left to E0 are denoted E1, E2 and so on. In the following claim,
we will assume 3 ≤ n.

392 C.S. Jutla and A.C. Patthak

Claim 9. LetE1, E2, · · · , Ep be p pathological columns. Also, letEp+1, Ep+2, · · · ,
Ep+n be n non-pathological columns. Further assume that Ep+n+1 = C0 is every-
where zero. If the nullity of the parity check equations resulting from these columns
for p = 0 is 16 ·n− 48, then the nullity of the parity check equations resulting from
these columns for any p ≤ 28 is p + 16 · n − 48.

Proof. Let Ni,j , (1 ≤ i ≤ n, 0 ≤ j ≤ 63) denote the entries in the non-pathological
columns. Also let Pi,j , (1 ≤ i ≤ p, for each i, 64− i ≥ j ≤ 63) be the pathological
variables. We will denote Ni = 〈Ni,0, · · · , Ni,63〉 and Pi = 〈Pi,64−i, · · · , Pi,63〉.
Let H1|i denote the matrix H1 restricted to the last i columns. (Note that only
the last i rows will be non-zero.) Also let H2|i denote the matrix H2 restricted to
the last i columns. (Note that only the last i− 1 rows will be non-zero.) Note that
〈P1, · · · , Pp, N1, · · · , Nn〉 must belong to the null space of the following matrix:

H =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

H1|1 H2|2
H1|2 H2|3

. . .
. . .

H1|p−1 H2|p
H1|p H2

H1 H2

.
H1 H2

H1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

Note that when we restrict H1 or H2 to the last few columns, the top rows in
that restricted entries may become zero. We remove such rows if the entire row in
the above matrix H becomes everywhere zero. Note that with this modification,
the following sub-matrix is already in the echelon form:

H1 =

⎛

⎜
⎜
⎜
⎝

H1|1 H2|2
H1|2 H2|3

.
H1|p−1 H2|p

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(p − 1) blocks

(Observe that first block corresponding to (H1|1 H2|2) reduces to (1 10), and

that corresponding to (H1|2 H2|3) reduces to
(

10 100
01 110

)
.)

Furthermore, since by assumption the following sub-matrix has full rank:

H2 =

⎛

⎜
⎜
⎜
⎜⎜
⎝

H2

H1 H2

.
H1 H2

H1

⎞

⎟
⎟
⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(n + 1) blocks

the matrix H has full rank. Note here that in the top 48−p rows, H1|p is entirely
zero. However these rows in H are independent since H2 has full rank. In the

Provably Good Codes for Hash Function Design 393

remaining rows H1|p is in echelon form and hence independent. Note that the
number of rows i.e., number of constraints is:

48 × (n + 1) +
p−1∑

i=1

i = 48(n + 1) +
p(p − 1)

2
.

Also, note the number of variables i.e., columns is

64 × n +
p∑

i=1

i = 64 · n +
p(p + 1)

2
.

Thus the nullity of the system is

64 · n +
p(p + 1)

2
−
(

48(n + 1) +
p(p − 1)

2

)
= p + 16 · n − 48.

This completes the proof.

B Examples

We cite below an example where over 7 columns an average of 3 does not hold.
Below we only give 8 columns and the columns are placed horizontally. Note
that the 8 columns yield 29, whereas the first 7 columns yield only 14.

0001000000
00110110
00010100
001110
000100
0011
0001
1000101010000000001001000010000010000100101100000010001000010000

Below is a codeword in the code defined by Equation (6) with optimal mini-
mum weight. We found the following codeword while searching for Case 2(b)(ii)
(A)(II). Below we only give eight columns that includes six non-zero and two
zero columns. The rests are all zero columns. Below the columns are placed
horizontally.

0000000000000000 0000000000000000 0000000000000000 0000000000000000
0011110010011110 1000000001101001 1101001001010110 0000110010010000
1011000101000100 0010111101001000 1011100010101100 1101000000101111
1010101000111011 0010100100110010 1000000101001000 0110011000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000100
0000000000000000 0000000000000000 0000000000000000 0000000000000011
0000000000000000 0000000000000000 0000000000000000 0000000000000001
0000000000000000 0000000000000000 0000000000000000 0000000000000000

Author Index

Avanzi, Roberto Maria 203, 285
Ayaz, Eyüp Serdar 1

Baignères, Thomas 76
Berbain, Côme 174
Billet, Olivier 174
Birkner, Peter 317
Biryukov, Alex 67

Cho, Joo Yeon 249

Dunkelman, Orr 28

Feng, Dengguo 15, 234
Finiasz, Matthieu 76, 266

Gilbert, Henri 174

Handschuh, Helena 163
Hell, Martin 45, 220
Heuberger, Clemens 285
Hlaváč, Martin 114

Jakimoski, Goce 342
Johansson, Thomas 45, 220
Jutla, Charanjit S. 376

Keller, Nathan 28
Kim, Jongsung 28
Krovetz, Ted 327

Liskov, Moses 358

Minematsu, Kazuhiko 96

Neve, Michael 147

Ó hÉigeartaigh, Colm 302
Okeya, Katsuyuki 188

Patthak, Anindya C. 376
Pieprzyk, Josef 249
Preneel, Bart 56, 163
Prodinger, Helmut 285

Rosa, Tomáš 114

Schaumont, Patrick 134
Scott, Michael 302
Seifert, Jean-Pierre 147
Selçuk, Ali Aydın 1

Tiri, Kris 134

Vaudenay, Serge 266
Vuillaume, Camille 188

Wu, Hongjun 56
Wu, Wenling 15

Yoshino, Masayuki 188

Zhang, Bin 234
Zhang, Lei 15
Zhang, Wentao 15

	Title Page
	Preface
	SAC 2006 August 17–18, 2006, Montr´eal, Canada
	Table of Contents
	Improved DST Cryptanalysis of IDEA
	Introduction
	Notation

	IDEA Block Cipher
	The DST Attack
	Some Properties of IDEA
	Attack on 3-Round IDEA
	Attack on 3.5-Round IDEA
	Attacks on Higher Number of Rounds
	Complexity of the DST Attack

	The Improved DST Attack
	Shortening the Variable Parts
	Size of the Sieving Set
	Indirect Elimination Power from the Sieving Set

	The Success Probability
	Experimental Results
	Complexity of the Attack
	Conclusion
	References

	Improved Related-Key Impossible Differential Attacks on Reduced-Round AES-192
	Introduction
	Description of AES
	Notations

	A 5.5-Round Related-Key Impossible Differential of AES-192
	A 7-Round Related-Key Impossible Differential Attack
	The Attack Procedure
	Analysis of the Attack Complexity

	Three 8-Round Related-Key Impossible Differential Attacks
	An Error in the 8-Round Attacks of [6]
	Our Attacks on 8-Round AES-192

	A New Related-Key Differential Attack on 7-Round AES-192
	Summary
	References

	Related-Key Rectangle Attack on the Full SHACAL-1
	Introduction
	Description of SHACAL-1
	PreviousResults
	Related-Key Boomerang and Related-Key Rectangle Attacks
	The Rectangle Attack
	Related-Key Differentials
	Related-Key Rectangle Attack

	Related-Key Rectangle Attack on the Full SHACAL-1
	69-Round Related-Key Distinguisher
	The Key Recovery Attack
	Analysis of the Key Recovery Attack

	Differences Between Attacking SHA-1 and SHACAL-1
	Summary and Conclusions
	References

	Cryptanalysis of Achterbahn-Version 2
	Introduction
	Preliminaries
	Description of Achterbahn
	Initialization

	Previous Analysis of Achterbahn
	Analysis of Achterbahn-Version 1
	Analysis of Achterbahn-Version 2

	Cryptanalysis of Achterbahn-Version 2
	Attack on the Reduced Variant
	Recovering the Key
	Attack on the Full Variant
	Improving the Computational Complexity
	On the Problem of Finding the Initial State of R_2

	Conclusion
	References

	Cryptanalysis of the Stream Cipher ABC v2
	Introduction
	The Stream Cipher ABC v2
	TheWeakKeysofABCv2
	The Large Bias of Carry Bits
	Identifying the Weak Keys

	Recovering the Internal State
	Recovering the Initial Value of the LFSR
	Recovering the Components B and C
	The Complexity of the Attack
	The Attack on ABC v1

	Conclusion
	References

	The Design of a Stream Cipher LEX
	Introduction
	Description of LEX
	Analysis of LEX
	Period of the Output Sequence
	Tradeoff Attacks
	Algebraic Attacks
	Differential, Linear or Multiset Resynchronization Attacks
	Potential Weakness – AES Key-Schedule
	No Weak Keys
	Dedicated Attacks
	The Slide Attack

	Implementation
	Strong Points of the Design
	Summary
	References

	Dial C for Cipher Le chiffrement $\`{e}$tait presque parfait
	Introduction
	The Block Cipher C
	High Overview
	The Substitution-Permutation Network
	The Key-Schedule Algorithm

	Security Results: What Is Known for Sure
	C Is Resistant to Linear and Differential Cryptanalysis
	C Is Resistant to Impossible Differentials
	C Is Resistant to 2-Limited Adaptive Distinguishers
	C Is Resistant to Iterated Attacks of Order 1
	All Substitution Boxes of C Are Indistinguishable from Independent Perfectly Random Permutations
	The Keyed C Is Not Less Secure Than C
	The Keyed C Has No Equivalent Keys

	Security Results: What We Believe to Be True
	C Is (Not That) Resistant to Saturation Attacks
	C Is Resistant to a Wide Variety of Attacks

	Reducing the Extended Key Size
	Implementation and Performances
	Conclusion
	References

	Improved Security Analysis of XEX and LRW Modes
	Introduction
	Preliminaries
	Notation
	Security Notion

	Previous Tweakable Block Cipher Modes
	General DESX-Like Mode
	LRW Mode
	XEX Mode

	Construction of Strong Tweakable Block Cipher
	A Bug in the Initial XEX and an Attack Against OCB1
	The Security of Fixed XEX
	The Proof of Theorem 2

	ImprovingLRW-AES
	References

	Extended Hidden Number Problem and Its Cryptanalytic Applications
	Introduction
	Preliminaries
	On the Way from HNP to EHNP
	Extended Hidden Number Problem
	Real Scenario - Digital Signature Algorithm
	DSA Key Disclosure Problem
	Hyper-threading Technology
	Sliding Window Exponentiation
	Practical Experiments

	Conclusion
	References

	Changing the Odds Against Masked Logic
	Introduction
	Changing the Odds Using a Posteriori Probabilities
	Conditional Transition Probability and Entropy of Random Digital Signals
	Random Switching Logic

	Experimental Results
	Power Measurements
	Device Under Test Setup
	Power Based SCA Results

	Conclusions
	References

	Advances on Access-Driven Cache Attacks on AES
	Introduction
	Definitions and Preliminaries
	Exploiting OS Scheduling Instead of Simultaneous Multithreading
	Analysis of the Last Round
	Average Number of Accesses for the Last Round
	Resolution
	Non-elimination and Elimination Methods
	Non-elimination Method
	Elimination Method

	Practical Considerations
	Summary
	References

	Blind Differential Cryptanalysis for Enhanced Power Attacks
	Introduction
	Extended Unique Masking Method
	Mounting a Blind Differential Attack on 4-Round DES
	Enhanced Power Attacks
	Blind Key Recovery

	Simulations
	Improvements and Generalizations
	Conclusion
	References

	Efficient Implementations of Multivariate Quadratic Systems
	Introduction
	Implementation Strategies
	Generating All Monomials
	Computing the Polynomials
	The Special Case of GF(2)

	Some Multivariate Cryptosystems
	QUAD Stream Cipher
	SFLASH Signature Scheme
	Rainbow Signature Scheme
	PMI^+ Encryption Scheme

	Implementations and Performance Results
	Practical Implementations of quad over GF(2)
	Practical Implementations of quad over $GF(2^4)$
	Practical Implementations of quad over $GF(2^8)$
	Practical Implementations of $sflash$
	Practical Implementations of Rainbow
	Practical Implementations of pmi^+

	Conclusion
	References

	Unbridle the Bit-Length of a Crypto-coprocessor with Montgomery Multiplication
	Introduction
	Known Double Size Techniques
	Fischer et al.’s Schemes

	Montgomery Multiplications
	Montgomery Multiplication Algorithm
	Problems of Previous Techniques

	New Double Size Techniques
	Instruction for Remainders
	Instruction for Quotients
	Representation of 2n-Bit Integers
	Modified Fischer et al.’s Algorithm

	Implementations for Quotients
	Software Approach: Calling Montgomery Multipliers
	Hardware Approach: Changing Montgomery Multipliers

	Experimental Results
	Validation
	Practical Implementation Issues

	Conclusion
	References

	Delaying and Merging Operations in Scalar Multiplication: Applications to Curve-Based Cryptosystems
	Introduction
	Scalar Multiplication Techniques
	Φ-and-Add Scalar Multiplication
	Yao’s Method

	Delaying Group Additions to Collect Field Inversions
	First Approach: Conservative Memory Usage
	Second Approach: Using More Memory

	Performance Analysis
	Analysis of the Conservative Memory Method (Algorithm 3)
	Analysis of the Large Memory Method (Algorithm 4)

	Practical Aspects
	Optimizing the Precomputation and Accumulation Steps
	Operation Counts
	Comparisons and Results

	Conclusions
	References

	On the Problem of Finding Linear Approximations and Cryptanalysis of Pomaranch Version 2
	Introduction
	Notation

	Hypothesis Testing and Distinguishers
	Vectorial Representation of a Linear Approximation
	Finding a Biased Linear Approximation
	Application to the Stream Cipher Pomaranch Version 2
	Description of Pomaranch
	Previous Attack on Pomaranch Version 1
	New Attack on Pomaranch Version 2
	Distinguishing and Key Recovery Attacks

	Simulation Results
	Pomaranch Version 3
	Conclusion
	References

	Multi-pass Fast Correlation Attack on Stream Ciphers
	Introduction
	Multi-pass Fast Correlation Attack
	Outline of Multi-pass Fast Correlation Attack
	Attack Details and Theoretical Analysis
	A Potential Application Beyond Figure 1

	Experimental Results and Comparisons
	Conclusions
	References

	Crossword Puzzle Attack on NLS
	Introduction
	Framework of Crossword Puzzle (CP) Attack
	Brief Description of NLS Stream Cipher
	Analysis of NFSR and NLF
	Linear Approximations of $\alpha_t,(0)$
	Linear Approximations for NFSR
	Linear Approximations of Modular Addition
	Linear Approximation for NLF

	CP Attack on a Simplified NLS
	The CP Attack on NLS
	Case for Konst = 0
	Case for Konst $\neq 0$
	Bias of the Distinguisher
	The Success Rate of Distinguishing Attack

	Improving Distinguishing Attack by Multiple Distinguishers
	The CP Attack on NLSv2
	Conclusion
	References

	When Stream Cipher Analysis Meets Public-Key Cryptography
	Introduction
	New Computational Problems
	The Low-Weight Polynomial Multiple Problem
	The Noisy LFSR Decoding Problem
	The Hidden Correlation Problem

	TCHo Encryption
	Specifications
	Parameters Selection
	Security

	Conclusion
	References

	On Redundant τ-Adic Expansions and Non-adjacent Digit Sets
	Introduction
	Digit Sets
	Algorithmic Characterization
	Representatives of Minimal Norm
	Syntactic Sufficient Conditions
	Point Halving
	Comparing the Digit Sets

	Applications
	Using the Short-NAF Digit Set
	τ-Adic Scalar Multiplication with Repeated Halvings
	Stepping Down Window Size
	A Performance Remark

	Conclusions
	References

	Pairing Calculation on Supersingular Genus 2 Curves
	Introduction
	The Tate Pairing
	Eliminating Divisions in Miller’s Algorithm
	Implementing the Pairing
	The Curve
	Prime-Order Subgroup
	Finite Field Representation
	Using Degenerate Divisors
	Evaluating Functions
	Using Denominator Elimination
	Lucas Exponentiation
	Coding Issues
	Theoretical Analysis

	Experimental Results
	Conclusion
	References

	Efficient Divisor Class Halving on Genus Two Curves
	Introduction
	Basic Notations and Preliminaries
	Classification of Genus Two Curves
	Quadratic Equations in F_2^d
	Choice of the Field Representation

	From Doubling to Halving
	Doubling of Divisor Classes
	Halving of Divisor Classes
	The Case $u1 = 0$

	The Divisor Class Halving Algorithm
	Conclusion and Outlook
	References

	Message Authentication on 64-Bit Architectures
	Introduction
	Three-Stage Hashing
	Stage 1 – Acceleration
	Stage 2 – Fix Length
	Stage 3 – Distillation

	VHASH Definition
	VHASH Analysis
	First: A Lemma
	Stage 1 – NH
	Stage 2 – Polynomial
	Stage 3 – Inner-Product
	VHASH Performance

	References

	Some Notes on the Security of the Timed Efficient Stream Loss-Tolerant Authentication Scheme
	Introduction
	Background
	TESLA
	Claimed Security of TESLA
	OMAC

	Insecure TESLA Implementations Based on Secure Components
	Permuted-Input OMAC
	The Case When $F '$ Is an Identity Mapping
	Cryptanalysis of TESLA Scheme IV
	The Case When $F '$ Is Implemented Using a PRF
	Cryptanalysis of the RFC4082 TESLA Version

	Sufficient Assumptions About the Components of TESLA
	A Candidate Implementation of TESLA
	CKDA-PRPs
	TESLA Implementation Via CKDA-PRPs

	Conclusion
	References

	Constructing an Ideal Hash Function from Weak Ideal Compression Functions
	Introduction
	Our Results

	Notation and Definitions
	Hash Functions and Compression Functions
	Ideal Hash Functions and Compression Functions
	Ideal Weak Compression Functions
	Ideal Hash Functions and Compression Functions Based on Weak Ideal Compression Functions

	The Zipper Hash Construction
	Security
	Record Keeping
	The Bad Event
	Security Against Standard Attacks

	Zipper Hash-Based Compression Function
	Amortizing Streamability vs. Efficiency

	Efficiency
	Conclusion
	References

	Provably Good Codes for Hash Function Design
	Introduction
	Limitations of Purely Algebraic Techniques
	Intuition Behind the Code
	A Lower Bound on the Minimum Distance
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

