
Specifying and Reasoning About Multiple Institutions

Owen Cliffe, Marina De Vos, and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK
{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Correctly specifying the behaviour of normative systems such as con-
tracts and institutions is a troublesome problem. Designers are faced with two
concurrent, difficult tasks: firstly specifying the relationships (over time) of
agents’ actions and their effects, and secondly combining this model with another
that captures the agents’ permissions and obligations. In this paper we present our
model and operational semantics for specifying individual and collective institu-
tions and outline a declarative action language for describing them. We demon-
strate, by way of an example, how this may be used to enable the analysis of
institutional specifications either for simply visualising possible outcomes or for
checking for absence or presence of certain (un)desirable correctness properties.

1 Introduction

Institutions have long been studied in the multi agent systems community as a means
for capturing the social semantics of interactions among agents. While a lot of work
[16, 19, 20, 18, 7, 17, 1, 5, 5] has focused on modelling single institutions, nobody so
far has addressed the issue of modelling multiple interacting institutions. In this case,
particular aspects of a society may be modelled individually and then combined to give
a richer model, leading to the possibility of using institutions as a means for abstrac-
tion (capturing increasing levels of specificity at lower levels) and also as a means for
delegation (whereby one institution relies on the behaviour of another to augment its
function). A good example is a contract violation which is considered as a breach of
civil law. The contract and the civil law are themselves independent entities, and one
could argue that a formal contract exists without the force of law, however the presence
of this institution leads to more force behind the contract—that is, a victim of con-
tract violation may have a reasonable expectation that the violator will be sanctioned
elsewhere.

Action languages have evolved over recent years as a means of providing declara-
tive, human-readable descriptions of the effects of actions and events. In [10] Gelfond
and Lifschitz summarise action languages thus: “Abstract Action languages are formal
models of parts of the natural language that are used for talking about the effects of
actions.” The semantics of action languages are typically described over a transition
system where each state (or situation) is composed of the valuations of zero or more
fluents and each transition is modelled by one or more action symbols.

Action languages are typically used for the analysis of situations and in this case, the
action language describes a model of the situation which can then be queried to deter-
mine various properties. An intuitive and elegant way of doing this is to map the action

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 67–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 O. Cliffe, M. De Vos, and J. Padget

language to an answer set program. Answer set programming (ASP) is a logic pro-
gramming language that admits reasoning about possible world views in the absence of
complete information. Due to its formal semantics, and combined with efficient heuris-
tic solvers, answer set programming, provides an excellent basis from which derived
models may be queried. More information about answer set programming and its ap-
plications can be found in [3].

In this paper, we extend the formal specification of single institutions in [4] to multi-
institutions. We present a top-down approach to virtual multi-institutions, in which ex-
ternal normative concepts are represented in forms that at the same time designers may
analyse (off-line) and about which agents may reason (on-line). Instead of using ASP
directly (as in [5, 4]), we introduce an action language designed for multi-institutions.
The use of the action language makes generating the ASP code less open to human cod-
ing error, and perhaps more importantly easier to understand and create without losing
either expressiveness or a formal basis for the language by narrowing the semantic gap.

2 Multi-institutions

2.1 The Single Institution

To provide some context for the theory that follows, this section begins with a brief
overview of institutions and the terms that we use. As outlined in the introduction the
essential characteristics of an institution are captured in its norms with varying degrees
of specificity. What agents do or say is constrained by the institutional context, so that
irrelevant actions or communications are ignored, and relevant ones advance the inter-
action, cause an agent to acquire an obligation, or through a violation, invite a sanction.
But while that serves to capture the agent’s point of view, what about the (institutional)
environment? How are actions to be observed, how are obligations to be recorded and
their satisfaction enforced, and how are violations to be detected and the corresponding
sanctions to be applied?

The model we propose is based on the concept of Observable Events that capture
notions of the physical world — “shoot somebody” — and Institutional Events that
are those generated by society — “murder” — but which only have meaning within a
given social context. While observable events are clearly observable, institutional ones
are not, so how do they come into being? Searle [12] describes the creation of an in-
stitutional state of affairs through Conventional Generation, whereby an event in one
context Counts As the occurrence of another event in a second context. Taking the phys-
ical world as the first context and by defining conditions in terms of states, institutional
events may be created that count as the presence of states or the occurrence of events in
the institutional world.

Thus, we model an institution as a set of institutional states that evolve over time
subject to the occurrence of events, where an institutional state is a set of institutional
fluents that may be held to be true at some instant. Furthermore, we may separate such
fluents into domain fluents, that depend on the institution being modelled, such as “A
owns something”, and normative fluents that are common to all specifications and may
be classified as follows:

Specifying and Reasoning About Multiple Institutions 69

– Institutional Power: This represents the institutional capability for an event to
be brought about meaningfully, and hence change some fluents in the institutional
state. Without institutional power, the event may not be brought about and has no
effect; for example, a marriage ceremony will only bring about the married state, if
the person performing the ceremony is empowered so to do.

– Permission: Each permission fluent captures the property that some event may
occur without violation. If an event occurs, and that event is not permitted, then a
violation event is generated.

– Obligation: Obligation fluents are modelled as the dual of permission. An obliga-
tion fluent states that a particular event is obliged to occur before a given deadline
event (such as a timeout) and is associated with a specified violation. If an oblig-
ation fluent holds and the obliged event occurs then the obligation is said to be
satisfied. If the corresponding deadline event occurs then the obligation is said to
be violated and the specified violation event is generated.

Events can be classified into: (i) a set of observable events, being those events ex-
ternal to the institution which may be brought about independently from the institution
and (ii) a set of institutional events which may be broken down into violation events and
institutional actions; these events may only be brought about if they are generated by
the institutional semantics. Finally we have a set of institutional rules which associate
the occurrence of events with some effects in the subsequent state. These can be divided
into: (i) generation rules which account for the conventional generation of events. Each
generation rule associates the satisfaction of some conditions in the current institutional
state and the occurrence of an (observed or institutional) event with a generated insti-
tutional event. For example: “A wedding ceremony counts as civil marriage only if the
couple have a licence”. The generating and generated events are taken by the institution
to have occured simultaneously. (ii) consequence rules, each of which associates the
satisfaction of some conditions in the current institutional state and the occurrence of
an event in the institution or the world to the change in state of one or more fluents
in the next institution state. For example: “Submitting a paper to a conference grants
permission for the paper to be redistributed by the conference organisers”.

Violation and sanction play an important role in the specification of institutions.
Violations may arise either from explicit generation, from the occurrence of a non-
permitted event, or from the failure to fulfil an obligation. In these cases sanctions that
may include obligations on violating agents or other agents and/or changes in agents’
permission to do certain actions, may then simply be expressed as consequences of the
occurrence of the associated violation event in the subsequent institutional state.

2.2 Combining Institutions

Institutions are not necessarily separate entities; several of them could operate within
the same context, agents can participate in a number of them at the same time and
perhaps more interestingly institutions themselves can be governed by institutions. In
this section we investigate how such relationships can be established. To our knowledge
we are the first to examine this topic.

Just as agents have the right to join in or stay out of an institution, it should be up
to the institution to allow other institiutions to change directly or indirectly its state. In

70 O. Cliffe, M. De Vos, and J. Padget

other words, it needs to put in place a mechanism of empowerment that allows institu-
tions to bring about events and to initiate and terminate fluents within the institution.

Providing other institutions with the power to bring about certain events within the
institution can easily be supported using the existing single institutional framework by
quantifying the institutional power with the institution that is given the power. Since
verifying empowerment is already part of event generation for a single institution, we
do not need to change event generation in the presence of multiple institutions.

Things are different, when we want to empower institutions to change directly each
others’ state, because as for single institutions, empowerment only ranges over events.
In the presence of multi-instititutions, we need to introduce two new empowerments:
one for initialising and one for terminating fluents. These two institutional powers will
then be used in conjunctions with the consequence rules to determine the next state of
the institution.

2.3 Operational Specification

The model. Each multi-institution specification M is characterised by the institutions
I that constitute it. Thus, M = 〈I1, . . . , In〉 is a sequence of individual institutions
Ii. Each of these institutions is a five-tuple Ii := 〈Ei, Fi, Ci, Gi, Δi〉 with institutional
Events (Ei), Fluents (Fi), Consequences (Ci), Event Generation (Gi) and Initial State
(Δi). In the following subsections we discuss the various parts in more detail and their
effect on the multi-institution M.

Institutional Events. Each institution Ii defines a set of event signatures e ∈ Ei, to
denote the types of event that may occur. Ei comprises two disjoint subsets, E i

obs de-
noting observable events and E i

inst denoting institutional events. We break institutional
events down further into the disjoint subsets: institutional actions E i

instact and violation
events E i

viol. We define E i
viol such that ∀e ∈ E i

instact · viol(e) ∈ E i
viol: that is each in-

stitutional action has a corresponding violation event viol(e) in E i
viol which may arise

from performing e when it is not permitted. Other violations can be added to indicate
agents have not behaved as they should have, e.g. fulfilling an obligation.

We assume that the individual institutions have disjoint sets of events Ei
1. We define

the set of all events of the multi-institution M, by EM =
⋃n

i=1 Ei. We define EM
inst,

EM
obs, EM

instact and EM
viol in a similar fashion. To obtain the corresponding institution for

any event e, we define the function ρ : EM → N such that ρ(e) = i when e ∈ Ei.

Institutional Fluents. Each institution Ii defines a set of Domain Fluents denoted Di

which is a set of fluents modelling the context in which the institution is operational. In
addition to the domain fluents, we define a number of disjoint sets of boolean fluents,
Wi, Pi, Oi, Si and Ti, indicating different types of normative fluents. Together, these
disjoint sets of domain fluents and normative fluents form the Institutional Fluents Fi

(Fi = Wi∪Pi∪Oi∪Si∪Ti∪Di). The set of all available fluents in the multi-institution
M is denoted as FM (FM =

⋃n
j=1 Fj).

1 This may seem as a limitation, especially when the observable events are conscerned, but it
is not. We are modelling events from the viewpoint of an institution and not from the events
themselves.

Specifying and Reasoning About Multiple Institutions 71

Wi A set of institutional powers of the form pow(j , e) : 1 ≤ j ≤ n, e ∈ E i
instact where

each power fluent denotes the capability of some event e to be brought about in the
institution.

Pi A set of action permissions: perm(e) : e ∈ E i
instact where each permission flu-

ent denotes that it is permitted for action e to be brought about. An event is not
explicitly forbidden, instead this is implicitly represented through the absence of
permission for that event to occur.

Oi A set of obligations, of the form obl(e, d, v) : e ∈ Ei, d ∈ Ei, v ∈ E i
inst where each

obligation fluent denotes that action e should be brought about before the occur-
rence of event d or be subject to the violation v. Note that v need not necessarily be
a violation, but any event which represents the failure to satisfy the obligation.

Si A set of institutional initiating powers of the form inipow(j, f): 1 ≤ j ≤ n, where
f ∈ Di denotes that institution j is empowered to initiate some domain fluent f in
institution i.

Ti A set of institutional terminating powers of the form termpow(j, f): 1 ≤ j ≤ n,
where f ∈ Di denotes that institution j is empowered to terminate some fluent f
in institution i.

The state of an institution at a certain time is determined by those institutional fluents
that are valid at that time. So a state S is a subset of F . A fluent f which is not valid is
denoted as ¬f . This notation can be extended to sets of fluents.

The set of all possible institutional states of institution Ii is denoted as Σi with
Σi = 2Fi . It is important to note that not all those states will actually be reachable in an
institution. The state of the multi-institution M is modelled as a sequence 〈S1, . . . , Sn〉
with Si ∈ Σi. The state of all possible states for M is defined as ΣM = Σ1× . . .×Σn.

Events can have the same effect on a number of states. Borrowing a book from a
library will result in the obligation to bring it back regardless of how many books are
currently on loan. To facilitate this, we introduce the concept of State Formulae to
capture a collection of states that satisfy certain properties in that they either contain
certain fluents or they do not. The set of all state formulae is denoted as Xi with Xi =
2Fi∪¬Fi , where ¬Fi is the negation of each fluent in Fi.

Consequences. Each institution Ii defines the function Ci which describes which flu-
ents are initiated and terminated by the occurrence of a certain event in a state matching
some criteria. The function is expressed as Ci : Xi ×Ei → 2FM × 2FM . Given X ∈ Xi

and e ∈ eventsi, Ci(X, e) = (C↑
i (X, e), C↓

i (X, e)) with C↑
i (X, e) containing those

fluents which are initiated by the event e in a state matching X and C↓
i (X, e) collect-

ing those fluents which are terminated by event e in a state matching X . Notice that
the consequence relation can indicate which events can cause fluents to change in the
state of institutions different from itself. This will only take effect if the institution is
empowered to do so.

Event Generation. Each institution Ii defines an event generation function Gi which
describes when the occurrence of one event counts as the occurrence of another:
Gi : Xi × Ei → 2E

M
inst .

72 O. Cliffe, M. De Vos, and J. Padget

Initial State. Each institution Ii defines the set Δi ⊆ Fi which denotes the set of
fluents that should hold when the institution is created.

The initial state of the multi-institution M is the sequence ΔM = 〈Δ1, . . . , Δn〉.

2.4 Semantics

During the lifetime of an institution, its state changes due to events that take place.
Each observable event possibly generates more events which in turn could create further
events. Each of these events could have an effect on the current state. The combined
effect of these events determines the next state.

States. We define the semantics of a multi-institution M over a set of states ΣM. Each
S ∈ ΣM consists of a sequence containing a state Si ∈ Σi for each institution Ii in
M. Each state Si is a set of fluents in Fi which are held to be true at a given time. We
say that S ∈ ΣM satisfies fluent f ∈ Fi, denoted S |= f , when f ∈ Si. It satisfies
its negation ¬f , when f
∈ Si. This notation can be extended to sets X ⊆ Xi in the
following way: S |= X iff ∀x ∈ X · S |= x.

Event Generation. In order to model event generation we define function which de-
scribes which events are generated in a given state. GR : ΣM × 2EM → EM. Given
a state S and a set of of events E, GR(S, E) includes all of the events which must be
generated by the occurrence of events E in state S and is defined as follows:

GR(S, E) = {e ∈ E | e ∈ E or
∃ e′ ∈ E s.t. j = ρ(e′), X ∈ Xj , e ∈ Gj(X, e′) · Sρ(e) |= pow(j , e) ∧ S |= X or
∃ e′ ∈ E, X ∈ Xρ(e), e ∈ Gρ(e)(X, e′) · e ∈ Eρ(e)

viol ∧ S |= X or
∃ e′ ∈ E · e = viol(e′), S |= ¬perm(e′) or
∃ e′ ∈ Eρ(e), d ∈ E · S |= obl(e′, d, e)}

The first condition ensures that events remain generated. The second is responsible
for generating those events that are both prescribed by the institutions’ event generator
and empowered. The third condition deals with violations specified by the event gen-
erator, while the fourth generates violations as consequences of events that were not
permitted. The final conditions deals with obligations that are not met.

It is easy to see that GR(S, E) is a monotonic function. This implies that for any
given state and a set of events, we can obtain a fixpoint GRω(S, E). In our multi-
institutional model, generated events arise from the performance of one observable
event eobs ∈ EM

obs in a given state S. So, to obtain all events that originate from this
one event in this state, we simply need GRω(S, {eobs}).

Event Effects. Each fluent is either valid or not in each state of the institution it belongs
to. The status of these fluents changes over time according to which generated events
have occurred in the previous transition. Events can have two sorts of effects regarding
fluents: fluents can be initiated (they become true in the next state) or they can be termi-
nated (they cease to be true in the next state). The combination of all effects generated
in a state defines the state transition. The state transition function captures inertia, so all
fluents that are not affected in the current state remain valid in the next state.

Specifying and Reasoning About Multiple Institutions 73

As mentioned above, given an observable event eobs all events that could have an
effect on the state S, are obtained by GRω(S, {eobs}).

A fluent can be initiated either by any event in the same institution, or by any event in
another institution which initiates the fluent, if that institution has the power to initiate
the fluent.

INIT(S, eobs) = { p ∈ FM | ∃ e ∈ GRω(S, {eobs}), i = ρ(e), X ∈ Xi·
p ∈ Fi, p ∈ C↑

i (X, e), S |= X or
p ∈ Fj , Ij
= Ij , p ∈ C↑

i (X, e), S |= X, S |= inipow(i, p)}
A fluent can be terminated either by an event in the same institution, or by an event

in another institution given permission, or if it is a fulfilled obligation in any institution
of the multi-institution.

TERM(S, eobs) = {p ∈ FM | ∃ e ∈ GRω(S, {eobs}), i = ρ(e), X ∈ Xi·
p ∈ Fi, p ∈ C↓(i, X)e, S |= X or
p ∈ Fj , Ij
= Ij , p ∈ C↓

i (X, e), S |= X, S |= termpow(i, p) or
p = obl(e, d, v) ∈ FM ∧ p ∈ S or
p = obl(e′, e, v) ∈ FM ∧ p ∈ S}

Now that we know which fluents need adding or deleting we can define the transition
function TR : ΣM × EM

obs → ΣM as TR({S1, . . . , Sn}, eobs) = {S′
1, . . . , S

′
n} such

that S′
i = {p ∈ Fi | p ∈ S, p /∈ TERM(S, eobs) or p ∈ INIT(S, eobs)}.

The first condition models inertia: all fluents which are asserted in the current state
persist into the next state, unless they are terminated. The second condition includes
fluents which are initiated in the current state.

Ordered Traces. Now that we have defined how states may be generated from a previ-
ous state and a single observable event, we may define traces and their state evaluations:

– An ordered trace is defined as a sequence of observable events 〈e0, e1, . . . , en〉 with
ei ∈ EM

obs, 0 ≤ i ≤ n
– The evaluation of an ordered trace for a given starting state S0 is a sequence

〈S0, S1, . . . Sn+1〉 such that Si+1 = TR(Si, ei)
– Ordered traces and their evaluations allow us to monitor or investigate the evolution

of an institution over time. They provide us with the data necessary to answer most
queries one might have about a certain (multi-)institution.

2.5 A Simple Example: Borrowing

This institution (formalised in Fig. 1) describes when agents may borrow money, when
they must pay it back and when they are permitted to leave the interaction. The norm
described by the protocol is that when money is borrowed it must be paid back before
the agent leaves. Note that the observable events in this institution are not generated by
the agents but by the environment in which this institution operates. Also note that the
agents will only receive empowerment to leave the institution as soon as they borrow
from the institution (line 8). This is to indicate that is useless to leave an agreement
before you even started.

74 O. Cliffe, M. De Vos, and J. Padget

Given set of agents Agents ,and multi-institution M s.t. a ∈ Agents ,Ibor, Ii ∈ M:

Ebor
obs = {msg borrow(a), msg payback(a), msg leave(a)} (1)

Ebor
instact = {borrow(a), payback(a), leave(a)} (2)

Ebor
viol = {viol(e) | e ∈ Eb

obs ∪ Ebor
instact} ∪ {nonpay(a)} (3)

Dbor = {loan(a)} (4)

Wbor = {pow(i , e) | e ∈ Ebor
instact} (5)

Pbor = {perm(e) | e ∈ Ebor
obs ∪ Ebor

instact} (6)

Obor = {obl(e, d, v) | e, d ∈ Ebor
obs ∪ Ebor

instact, v ∈ Ebor
inst} (7)

C↑
bor(X , EM) : 〈{}, borrow(a)〉 �→ {obl(payback(a), leave(a), nonpay(a)),

pow(bor , payback(a)), pow(bor , leave(a)),

loan(a)} (8)

C↓
bor(X , EM) : 〈{}, borrow(a)〉 �→ {pow(bor , borrow(a))} (9)

〈{}, payback(a)〉 �→ {pow(bor , payback(a)), pow(bor , leave(a)),

loan(a)} (10)

〈{}, leave(a), 〉 �→ {pow(bor , payback(a)), pow(bor , leave(a))} (11)

Gbor(X , EM) : 〈{}, msg borrow(a)〉 �→ {borrow(a)} (12)

〈{}, msg payback(a)〉 �→ {payback(a)} (13)

〈{}, msg leave(a)〉 �→ {leave(a)} (14)

Sbor
0 = {perm(msg borrow(a)), perm(msg payback(a)),

perm(msg leave(a)), perm(borrow(a)), perm(payback(a)),

perm(leave(a)), pow(borrow(a))} (15)

Fig. 1. The formal model of the borrowing scenario

The state transition diagram for an instance (with a single agent) of this contract is
displayed in Fig. 4. Fluents that are true are included in each state and transitions are
labelled with events (generated events are shown in square brackets).

3 InstAL: An Action Language for Describing Institutions

In this section we outline the syntax and semantics of our institutional action language
InstAL.

3.1 Syntax

The syntax of our action language consists of a set of declarations which define the
types, fluents and events which are supported by the institution and a set of rules which
define the operational semantics of the institution. These are summarised by way of the
borrowing institution described above.

Specifying and Reasoning About Multiple Institutions 75

Types. Each InstAL specification may contain zero or more types. Types describe a set
of atoms which may be applied to the parameters of fluents and events in rule descrip-
tions. The language defines four internal types which are grounded automatically by
the contents of the specification: (i) The set of events: Event (ii) The set of institutions:
Inst (iii) The set of all fluents Fluent (iv) The set of all domain fluents DFluent In
the example we define one type Agent which ranges over the possible subjects of the
contract;

type Agent;

Event Declarations. Each specification may define zero or more event signatures, each
of which describes the event’s status (observable, action or violation), its (unique) name
and the types of any parameters associated with the event.

We define three observable events (Fig. 1, 1) which denote messages associated with:
a request to borrow money by an agent (msg borrow(..)), a message describing that
the money has been payed back (msg payback(...)) and a message indicating an
agent has left the situation (msg leave(...)).

observable event msg_borrow(Agent);
observable event msg_payback(Agent);
observable event msg_leave(Agent);

We define four institutional events (Fig. 1, 2) which denote the effective achievement
of borrowing and paying back money and leaving the contract. Additionally we define
a violation event (Fig. 1, 3) nonpay(...) which is associated with an agent failing
to repay borrowed money.

action event borrow(Agent);
action event payback(Agent);
action event leave(Agent);
violation event nonpay(Agent);

Fluents. Fluent declarations define institutional properties which may change over
time. A fluent declaration consists of a fluent name, and zero or more fluent parameters,
the types of which must be specified.

For instance the following declaration:fluent owns(Agent,Object); defines a
fluent with name owns with two parameters which range over the types Agent and
Object respectively.

In addition to fluents declared in a specification the following types of normative
fluents are implicitly defined:

(i) pow(Inst,Event): A given institution is empowered to generated a given event
(if no institution is specified then the institution in which the fluent is referenced
is assumed).

(ii) initpow(Inst,DFluent),termpow(Inst,DFluent): A given (external) in-
stitution has the power to initiate or terminate a given fluent.

76 O. Cliffe, M. De Vos, and J. Padget

(iii) perm(Event): A given event is permitted.
(iv) obl(Event,Event,Event) : A given obligation exists.

In the example we define a single institutional domain fluent (Fig. 1, 4) which repre-
sents the existence of a loan with respect to some agent.

fluent loan(Agent);

Rules. Each specification may contain zero or more rules, three types of which are
available: (i) Causal rules which describe when fluents change in response to the oc-
currence of events. (ii) Generation rules which describe when events may be generated.
(iii) Initial rules which describe the initial state of the institution.

A causal rule consists of (i) a trigger event which denotes the event which (may) ac-
tivate the rule. (ii) an operation which indicates whether the rule initiates or terminates
the fluents in the rule body. (iii) a set of fluents which are initiated or terminated by
the rule. (iv) a (possibly empty) condition consisting of an expression describing fluents
which must be true in order for the rule to have an effect.

In our example we define the effects of the successful occurrence of the borrow(..)
event (Fig. 1, 8) as the termination of the power to perform further borrow events and
creation of the power to pay back and leave the contract, and also the creation of an
obligation for the agent to repay the debt before they leave the contract (lest they cause
a nonpay(...) violation). Borrowing also initiates a loan for the borrowing agent.

borrow(A) initiates pow(payback(A)),pow(leave(A)),loan(A),
obl(payback(A),leave(A),nonpay(A));

We similarly define that borrow(...) terminates the further power to borrow
(Fig. 1, 9) (so borrowing may not occur while a loan exists). Both payback(...)

and leave(...) terminate the power to both payback and leave (Fig. 1, 10-11).

borrow(A) terminates pow(borrow(A));
payback(A) terminates pow(payback(A)),pow(leave(A)),loan(A);
leave(A) terminates pow(payback(A)),pow(leave(A));

We define three generation rules which associate the performance of the three ob-
servable messages with the generation of the corresponding institutional events (Fig. 1,
12-14).

msg_borrow(A) generates borrow(A);
msg_payback(A) generates payback(A);
msg_leave(A) generates leave(A);

Finally we define the initial state (Fig. 1, 15), in this state all events are permitted,
and borrowing is initially empowered.

initially perm(msg_borrow(A)),perm(msg_payback(A)),
perm(msg_leave(A)),perm(borrow(A)),perm(payback(A)),
perm(leave(A)),pow(borrow(A));

Specifying and Reasoning About Multiple Institutions 77

Static Properties. In addition to fluents which change over time, it is sometimes useful
to refer to external properties which will not change during the execution of an institu-
tion, but are not known at the time of specification. As with fluents, static properties con-
sist of a name and zero or more typed parameters, for instance the declaration: static
participant(Agent,Inst) defines a static property with name participant and
parameters which range over the types Agent and Inst. This static property indicates
which agents are allowed to participate in the institution. It does not imply that the
agents cannot come and go at run-time.

Variables. Variables are indicated in the language by capitalised strings and may ap-
pear in the parameters of fluents and events within rules or within expressions in the
conditions of rules (such as X!=Y) . Variables are locally scoped to each rule and each
variable has a corresponding type, which is computed based on where (in the parameters
of a given fluent or event reference) it occurs in the rule.

During processing, a rule containing variables is expanded into a set of rules contain-
ing all valid possible assignments of each variable. For example the rule: sell(X,Y)
terminates owns(X,Y); would be implicitly expanded to variable free rules con-
taining assignments for X and Y based on the parameter types of event sell and fluent
owns. In the case where the condition of a rule rule contains variable expressions (i.e.
A=bob) then only those variable expansions which satisfy the expressions are generated.

3.2 Model Evaluation

We evaluate properties of our models by performing a transformation of one or more
InstAL specifications into answer set programs (see [3] for an extensive overview of
answer set programming or [9] for an brief desciption). While the details of this trans-
formation are omitted from this paper, we summarise the process here.

Models are evaluated by taking one or more (related) institutional specifications, a
domain description which includes elements of the sets defined in type declarations
and static declarations, a query (see below) and a maximum time interval. This
information is then compiled into an answer set program of the form described in [4].
This program may then be solved using an answer set solver such as Smodels2, yielding
zero or more answer sets, each of which represents an ordered trace (up to the maximum
time interval) of the institution which matches the query. These traces are then parsed
and can be visualised individually or combined into state transition diagrams of the
form seen in Figs. 4 and 5.

This process is sound and complete: all requested traces are found as answer sets
and all answer sets are valid traces fulfilling the specified conditions. In general the
computional complexity of answer set programming is σP

1 (See [3] for more details).
However, the specific chararistics of our program reduces this significantly.

Although ASP can theoretically cope with infinite time, its implementations cannot
as the program needs to ground its variables in advance. This implies that we need to
specify in advance the number of time steps about which one wishes to reason.

Two mechanisms for specifying queries on the properties of models may be used:
(i) for simple queries such as “does it hold that this property is never (or ever) true in

2 http://www.tcs.hut.fi/Software/smodels/

http://www.tcs.hut.fi/Software/smodels/

78 O. Cliffe, M. De Vos, and J. Padget

the model?” and “what is the state after the performance of this sequence of observable
events?” we include a simple query language. In the first case ever loan(a); for ex-
ample would produce all answer sets where a loan is created. (ii) In the second case:
after msg borrow(a),fineAgent(a),msg leave(a); would yield a single an-
swer set describing the series of states (including domain fluents, institution fluents and
generated events) brought about by the occurrence of the specified actions. While this
query language is useful for simple queries, it represents only a small subset of the pos-
sible queries which may be computed using our model. In light of this, queries may also
be expressed directly as answer set program rules, for instance:

condition:- holdsat(loan(bob),I),not holdsat(loan(bob),J),
before(I,J),instant(I),instant(J).

compute all { not condition }.

would return all traces where a loan was created at some time instant but never settled at
some point in the future. In the simple example with a single agent bob above this query
yields a single trace of length 2: msg borrow(bob),msg leave(bob) and associated
fluents.

3.3 An Extended Example: Contract Enforcement

In the previous section we discussed a single specification of a simple institution for
governing loans, however as is clear from Fig. 4 once an agent has violated a loan
agreement by leaving before paying, no further action may be taken. In many cases in
the real world such violations are delegated to a “higher power” which would impose a
sanction. In the following example we demonstrate such an institution which provides
a mechanism for enforcing the violation, not only in the borrowing example but also in
a broad class of institutions where enforcement is required. 3

The enforcement institution (enf) (formally described in Fig. 2) describes a sin-
gle static property participant(Agent,Inst) (Part in Fig. 2) which defines when
agents are participating in a contract, one domain fluent: validContract(Inst) (19)
describes when a given institution is considered to be a valid (enforceable) contract. Six
event types (17-18) are defined: (i) submitContract(Inst)must be generated by the
institution in which sanctions are to be enforced. It generates an acceptContract(..)
event if the submitted institution is not already considered a valid contract (27), and
initiates validContract(..) for the accepted contract and the power for that contract
to generate contract violations in the enforcement institution. (ii) acceptContract
(Inst) describes when a contract is is treated as valid, initiating (23) the valid

Contract(i) fluent also the power for the new contract to dissolve itself and gener-
ate contract violation events in the enforcement institution. (iii) contractViolation
(Agent) must be generated by the contract and when generated, initiates an obligation
in the enforcement institution to apply a sanction to that agent before the contract is
terminated, or be subject to a badViol violation. (iv) fineAgent(Agent) is an ob-
servable event which stands for the imposition of a fine. In the case that a valid contract
exists with this agent this event generates an applySanction(..) event (28) in the

3 We omit the action language description of this example for space reasons. See
http://www.cs.bath.ac.uk/˜occ/instal/ for the source of both examples.

http://www.cs.bath.ac.uk/~occ/instal/

Specifying and Reasoning About Multiple Institutions 79

Given set of agents Agents , contract participants Part i ⊆ Agents and institutions M s.t ai ∈
Part i, enf, i ∈ M :

Eobs = {fineAgent(ai)} (16)

Einstact = {submitContract(i), acceptContract(i), dissolveContract(i),
contractViolation(ai , i), applySanction(ai)} (17)

Eviol = {badGov} ∪ {viol(e), e ∈ Eenf
obs ∪ Eenf

instact} (18)

D = {validContract(i)} (19)

Wenf = {pow(i , e), e ∈ Eenf
instact} (20)

Penf = {perm(e), e ∈ Eenf
obs ∪ Eenf

instact} (21)

Oenf = {obl(e, d, v), e, d ∈ Eenf
obs ∪ Eenf

instact, v ∈ Eenf
inst} (22)

C↑
enf (X ,EM) :

〈{}, acceptContract(i)〉 �→
{validContract(i), pow(i , dissolveContract(i)),

pow(i , contractViolation(ai , i))} (23)

〈{validContract(i)}, contractViolation(ai , i)〉 �→
{pow(enf , applySanction(ai)), perm(fineAgent(ai))

obl(applySanction(ai), dissolveContract(i), badGov)} (24)

C↓
enf (X ,EM) :

〈{}, dissolveContract(i)〉 �→
{validContract(i), pow(i , dissolveContract(i)),

pow(i , contractViolation(ai , i))}, perm(fineAgent(ai)) (25)

pow(enf , applySanction(ai))

〈{}, applySanction(ai)〉 �→ {perm(fineAgent(ai))

pow(enf , applySanction(ai)) (26)

Genf (X ,EM) :
〈{¬validContract(i)}, submitContract(i)〉 �→

{acceptContract(i)} (27)

〈{}, fineAgent(ai)〉 �→ {applySanction(ai)} (28)

Senf
0 = {pow(enf , acceptContract(i)), pow(i , submitContract(i)),

perm(submitContract(i)), perm(acceptContract(i)), (29)

perm(dissolveContract(i)), perm(applySanction(ai))}

Fig. 2. The enforcement institution enf ∈ M

institution (if this event is empowered). (v) dissolveContract(Inst) terminates all
powers granted to the contract by its acceptance and also terminates the validity of the
contract (25).

In order to make the borrowing contract enforceable by this institution we extend it
as follows (Formalised in Fig. 3): borrowing money creates a contract in the enforce-
ment institution (33), paying back money dissolves the contract (34), not paying back
the money generates a contract violation (32) and fining an agent in the enforcement

80 O. Cliffe, M. De Vos, and J. Padget

Given a set of agents Agents and institutions M s.t. a ∈ Agents and bor ∈ M:

C↑
bor(X , EM)′ : 〈{}, acceptContract(bor)〉 �→ {pow(e, payback(a))} (30)

C↓
bor(X , EM)′ : 〈{}, dissolveContract(bor)〉 �→ {pow(e, payback(a))} (31)

Gbor(X , EM)′ : 〈{}, nopay(a), 〉 �→ {contractViolation(bor , a)} (32)

〈{}, borrow(a)〉 �→ {submitContract(bor)} (33)

〈{}, payback(a)〉 �→ {dissolveContract(bor)} (34)

〈{}, fineAgent(a)〉 �→ {payback(a)} (35)

Fig. 3. Extensions of the borrowing scenario for contract enforcement

institution pays back the debt (35). Additionally the creation and dissolution of a con-
tract in the enforcement institution initiate and terminate the power for that institution
to pay back debts (30-31) finally the initial state is extended to permit and empower the
generation of re-payment (not shown).

Fig. 5 shows the reachable states for a combined model (with one borrower) of the
enforcement and borrowing institutions. The ASP query in Section 3.2 above, yields no
answer sets, indicating that there are no traces in the generated model (up to the search
length) where a loan is not repaid.

4 Discussion and Related Work

The use of common-sense reasoning tools such as action languages and answer set
programing for reasoning about normative systems and agent-based systems in general
has been studied extensively in the literature and a complete analysis is beyond the
scope of this paper, however a number of recent studies merit discussion.

The Event Calculus (EC) [14, 15] is a declarative logic that reinterprets the Situa-
tion Calculus to capture when and how states change in response to external events.
EC has been used to model both the behaviour of commitments [22] among agents in
order to build interaction protocols, corresponding to the regulatory aspects of the work
described above, as well as more general social models such as those described in [13].
From a technical point of view, our approach essentially has a kind of duality com-
pared to EC, in that the basis for the model is events rather than states. In itself, this
offers no technical advantage although we believe that being able to express violations
in terms of events rather than states better captures their nature. More significant are
the consequences of the grounding in ASP: (i) For the most part the state and event
models are equivalent with respect to properties such as induction and abduction, but
non-monotonicity is inherent in ASP and so resort to the tricky process of circumscrip-
tion is avoided. (ii) Likewise, reasoning about defaults requires no special treatment in
ASP. (iii) The consequence rules of our specification have equivalents in EC, but the
event generation rules do not. (iv) The state of a fluent is determined by its truth-value

Specifying and Reasoning About Multiple Institutions 81

lo
an

(b
ob

)
pe

rm
(b

or
ro

w
(b

ob
))

pe
rm

(l
ea

ve
(b

ob
))

pe
rm

(m
sg

_b
or

ro
w

(b
ob

))
pe

rm
(m

sg
_l

ea
ve

(b
ob

))
pe

rm
(m

sg
_p

ay
ba

ck
(b

ob
))

pe
rm

(p
ay

ba
ck

(b
ob

))
po

w
(b

or
ro

w
in

g,
le

av
e(

bo
b)

)

pe
rm

(b
or

ro
w

(b
ob

))
pe

rm
(l

ea
ve

(b
ob

))
pe

rm
(m

sg
_b

or
ro

w
(b

ob
))

pe
rm

(m
sg

_l
ea

ve
(b

ob
))

pe
rm

(m
sg

_p
ay

ba
ck

(b
ob

))
pe

rm
(p

ay
ba

ck
(b

ob
))

pe
rm

(b
or

ro
w

(b
ob

))
pe

rm
(l

ea
ve

(b
ob

))
pe

rm
(m

sg
_b

or
ro

w
(b

ob
))

pe
rm

(m
sg

_l
ea

ve
(b

ob
))

pe
rm

(m
sg

_p
ay

ba
ck

(b
ob

))
pe

rm
(p

ay
ba

ck
(b

ob
))

po
w

(b
or

ro
w

in
g,

bo
rr

ow
(b

ob
))

lo
an

(b
ob

)
ob

l(
pa

yb
ac

k(
bo

b)
,le

av
e(

bo
b)

,n
on

pa
y(

bo
b)

)
pe

rm
(b

or
ro

w
(b

ob
))

pe
rm

(l
ea

ve
(b

ob
))

pe
rm

(m
sg

_b
or

ro
w

(b
ob

))
pe

rm
(m

sg
_l

ea
ve

(b
ob

))
pe

rm
(m

sg
_p

ay
ba

ck
(b

ob
))

pe
rm

(p
ay

ba
ck

(b
ob

))
po

w
(b

or
ro

w
in

g,
le

av
e(

bo
b)

)
po

w
(b

or
ro

w
in

g,
pa

yb
ac

k(
bo

b)
)

m
sg

_b
or

ro
w

(b
ob

)
[b

or
ro

w
(b

ob
)]

m
sg

_l
ea

ve
(b

ob
)

[l
ea

ve
(b

ob
)]

[n
on

pa
y(

bo
b)

]

m
sg

_p
ay

ba
ck

(b
ob

)
[p

ay
ba

ck
(b

ob
)]

F
ig

.4
.R

ea
ch

ab
le

st
at

es
of

B
or

ro
w

in
g

in
st

itu
tio

n
fo

r
a

gi
ve

n
ag

en
t‘

bo
b’

S4

S2

fi
ne

A
ge

nt
(b

ob
)

[a
pp

ly
Sa

nc
tio

n(
bo

b)
]

[p
ay

ba
ck

(b
ob

)]
[b

ad
G

ov
]

[v
io

l(
ap

pl
yS

an
ct

io
n(

bo
b)

)]
[d

is
so

lv
eC

on
tr

ac
t(

bo
rr

ow
in

g)
]

S0
S1

m
sg

_b
or

ro
w

(b
ob

)
[b

or
ro

w
(b

ob
)]

[s
ub

m
itC

on
tr

ac
t(

bo
rr

ow
in

g)
]

[a
cc

ep
tC

on
tr

ac
t(

bo
rr

ow
in

g)
]

m
sg

_p
ay

ba
ck

(b
ob

)
[p

ay
ba

ck
(b

ob
)]

[d
is

so
lv

eC
on

tr
ac

t(
bo

rr
ow

in
g)

]

fi
ne

A
ge

nt
(b

ob
)

[p
ay

ba
ck

(b
ob

)]
[v

io
l(

fi
ne

A
ge

nt
(b

ob
))

]
[d

is
so

lv
eC

on
tr

ac
t(

bo
rr

ow
in

g)
]

m
sg

_l
ea

ve
(b

ob
)

[l
ea

ve
(b

ob
)]

[n
on

pa
y(

bo
b)

]
[c

on
tr

ac
tV

io
la

ti
on

(b
ob

,b
or

ro
w

in
g)

]

F
ig

.5
.S

ta
te

s
of

th
e

co
m

bi
ne

d
bo

rr
ow

in
g

an
d

en
fo

rc
em

en
ti

ns
ti

tu
ti

on

82 O. Cliffe, M. De Vos, and J. Padget

in the ASP interpretation, whereas EC (typically) has to encode this explicitly using two
predicates. (v) Inertia in EC is axiomatic, whereas in our approach it follows from the
application of the TR operator—although there is a strong syntactic similarity (perhaps
compounded by using the same terminology!) the philosophy is different. (vi) ASP al-
lows a wider variety of queries than is typically provided in EC implementations but
space constraints do not allow the full illustration of this aspect here. We also note
that, EC is much more general, in that it is aimed at capturing arbitrary narrative, while
the InstAL language we have presented is more like a domain-specific language that
allows only the expression of institutional issues and in that sense is more restrictive
than EC.

[8] use EC to represent the specification of contracts. Their approach of dealing
with contract is similar to ours but with some important differences with respect to
the broader picture of multi-institutions: (i) any formalisation of pow/permissions/
obligation is ommitted from their specification and left as domain dependent con-
cepts which are modelled using XML (ii) this means that that their approach does not
have conventional generation of events/obligations/permissions explicitly, only their
effects (iii) in their work the authors are just concerned with monitoring the state,
not investigating other properties (i.e. planning/verificaition), although these may also
be possible.

Artikis et al. in [1, 2, 13] describe a system for the specification of normative so-
cial systems in terms of power, empowerment and obligation. This is formalized using
both the event calculus [14] and a subset of the action language C+ [6]. The notions
of power and empowerment are equivalent in both systems, but additionally we intro-
duces violation as events and our modelling of obligations differs in that (i) they are
deadline-sensitive, and (ii) can raise a violation if they are not met in time. Violations
greatly improve the capacity to model institutions, but it should be remembered that
institutional modelling was (apparently) not Artikis’s goal. Likewise, although the in-
terpretation of C+ using the CCalc tool gives rise to similar reasoning capabilities (with
similar complexity) to ASP, we believe our approach, including violations, provides a
more intuitive and natural way of expressing social constraints involving temporal as-
pects. A further advantage is in the formulation of queries, where ASP makes it possible
to encode queries similar to those found in (bounded) temporal logic model checking,
whereas, as noted above, queries on action languages are constrained by the action lan-
guage implementation. The other notable difference is once again, our focus on events
rather than states, which we have discussed at some length above.

The syntax and underlying semantics of the action language we present here are
similar to those of the C+ language in [6]. Besides internal support for the semantics
of institutions our approach specifies the effects of actions (in particular the termina-
tion of inertial fluents) in a different way. For example, in C+ the rules “a causes
f.a causes ¬f” will necessarily lead to a being non-executable, the corresponding
statements a initiates f; a terminates f in our language do not effect the
ability of a to occur or be generated and can be handled consistently (leading to f hold-
ing immediately after a); this is similar to the treatment of fluents in the event calculus
[14]. The choice of our semantics stems from a desire to assimilate actions in the real

Specifying and Reasoning About Multiple Institutions 83

world rather than model them accurately, in which case, the institution should be able
to generate consistently a consequent institutional state (albeit one in which no effect
has occurred), regardless of the originating event.

While their work does not consider multiple institutions, C+ could be used for this
purpose. This would, however come at the cost of the semantic and syntactic checking
of the institutional extensions which we provide. C+ does offer some syntactic exten-
sions, which would lead more concise specifications. Of particular interest are multival-
ued fluents (where a fluent is multi-valued rather than boolean) and Dynamic laws e.g.
“caused f1 if f2 ” which allow for the state of fluents to be expressed indirectly
as a function of other (inertial) fluents. The integration of either of these features into
InstAL appears straightforward and is left for future work.

4.1 Related Papers in This Volume

The paper by Viganò and Colombetti [21] focusses on two key elements: (i) A lan-
guage for the definition of and (ii) verification of, social aspects of MAS in respect
of normative systems and electronic institutions, building on Colombetti’s work on
ontological decomposition of institutions and on Searle’s model of constructed social
reality.

The basis for the work is the concept of status functions that capture institutional
facts (including roles, such as buyer and refinement of roles, such as auction winner)
and deontic positions (sic). Status functions are only reified when needed to verify the
legitimacy of an action and as such constitute institutional objects, rather than observ-
ables, in constrast to the event-based approach described here and in the related work.
The language, called FIEVeL, accounts for obligation, permission and power — al-
though the authors call this authorization. Obligations are temporal conditions that may
be tested in contrast to their nature as observable objects in the institution/environment
as described here. FIEVeL permits off-line verification by translation into Promela
(the input language for SPIN) and hence LTL model checking, while the system we
have presented, based on ASP, permits checking and presentation of results in terms
of institutional fluents at the domain level. The use of model checking demonstrates
how correctness properties, e.g. desirable outcomes, of protocols can be verified
off-line.

Grossi et al [11] explore a classification of norms into three kinds: substantive norms
that are generally high-level in nature and not directly enforceable, check norms that
specify how to verify substantive norms and reactive norms that define how violations
are to be sanctioned. Particularly relevant to this paper are the check norms that the au-
thors view as so-called sub-institutions that carry out regular or continuous monitoring
in respect of the upholding of the substantive norm. These sub-institutions could po-
tentially be specified in the language we have outlined and then combined with the rest
of the system, using the multi-institution approach described here. There is a further
intriguing parallel in the observation of deep normative structures that capture multiple
levels of combinations of regimentation and enforcement, where the latter is essentially
delegation to the next level.

84 O. Cliffe, M. De Vos, and J. Padget

References

[1] Artikis, A., Sergot, M., Pitt, J.: An executable specification of an argumentation protocol.
In: Proceedings of conference on artificial intelligence and law (icail), pp. 1–11. ACM
Press, New York (2003)

[2] Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, Springer,
Heidelberg (2003)

[3] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

[4] Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning
about virtual institutions. Computational Logic in Multi-Agent Systems (CLIMA-VII) (to
appear)

[5] Cliffe, O., De Vos, M., Padget, J.: Specifying and analysing agent-based social institutions
using answer set programming. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Orga-
nizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp.
99–113. Springer, Heidelberg (2006)

[6] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[7] Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, Springer, Heidel-
berg (2002)

[8] Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for track-
ing the normative state of contracts. International Journal of Cooperative Information Sys-
tems 14(2 & 3), 99–129 (2005)

[9] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of
fifth logic programming symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

[10] Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210
(1998)

[11] Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. LNCS, vol. 4386, pp. 110–123. Springer, Heidelberg (2007)

[12] Searle, J.R.: The Construction of Social Reality. Allen Lane, The Penguin Press (1995)
[13] Kamara, L., Artikis, A., Neville, B., Pitt, J.: Simulating computational societies. In: Petta,

P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 53–67.
Springer, Heidelberg (2003)

[14] Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

[15] Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus. Jour-
nal of Logic Programming 31(1–3), 39–58 (1997)

[16] Noriega, P.: Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona (1997)

[17] Padget, J., Bradford, R.: A π-calculus model of the spanish fishmarket. In: Noriega, P.,
Sierra, C. (eds.) AMET 1998 and AMEC 1998. LNCS (LNAI), vol. 1571, pp. 166–188.
Springer, Heidelberg (1999)

[18] Rodrı́guez, J.-A., Noriega, P., Sierra, C., Padget, J.: FM96.5 A Java-based Electronic Auc-
tion House. In: Proceedings of 2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM’97), London, UK, April 1997, pp. 207–224
(1997), ISBN 0-9525554-6-8

Specifying and Reasoning About Multiple Institutions 85

[19] Rodriguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona (2001)

[20] Vázquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent Systems
applied to complex domains. PhD thesis, Technical University of Catalonia (2003)

[21] Viganò, F., Colombetti, M.: Specification and verification of institutions through status
functions. LNCS, vol. 4386, pp. 125–141. Springer, Heidelberg (2007)

[22] Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event cal-
culus planning using commitments. In: AAMAS ’02: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pp. 527–534. ACM Press,
New York (2002)

	Specifying and Reasoning About Multiple Institutions
	Introduction
	Multi-institutions
	The Single Institution
	Combining Institutions
	Operational Specification
	Semantics
	A Simple Example: Borrowing

	InstAL: An Action Language for Describing Institutions
	Syntax
	Model Evaluation
	An Extended Example: Contract Enforcement

	Discussion and Related Work
	Related Papers in This Volume

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

