
Modelling and Monitoring Social Expectations in
Multi-agent Systems

Stephen Cranefield

Department of Information Science, University of Otago
PO Box 56, Dunedin, New Zealand

scranefield@infoscience.otago.ac.nz

Abstract. This paper reports on issues confronted and solutions developed while
implementing the author’s previously proposed hyMITL± logic for expressing
social expectations as conditional rules. A high level overview of hyMITL± is
presented, along with a discussion of new features and implementation issues. In
particular, the importance of using human-oriented descriptions of time points is
argued, along with the need to explicitly take time zones into consideration when
defining rules, and a syntax for date/time expressions based on ISO standard 8601
is proposed. A new, more detailed, model for tracking the state of social expec-
tations is also presented, based on the utility of enabling clients of a monitoring
service to be notified of multiple instances of the violation or fulfilment of an
expectation.

1 Introduction

A significant amount of research in the field of multi-agent systems is currently focused
on the theory, design and implementation of electronic institutions [1]. This work adapts
the mechanisms that keep human society orderly to provide a framework for building
open systems of self-interested software agents that are subject to explicitly defined
rules of behaviour. Some key requirements in this area are languages for expressing
the norms or expectations that apply to agents’ interactions and actions, techniques for
detecting violations of these rules of society, and mechanisms to prevent or discour-
age such violations. This paper focuses on the first two requirements, and in particular
discusses issues and solutions arising from one previously proposed approach.

The hyMITL± logic [2] is a form of temporal logic that allows social expectations to
be expressed as rules that are conditional on observations of the past and present, with
consequences that impose constraints on future states of the world. The logic and its re-
stricted rule syntax were designed to be amenable to run-time compliance monitoring.
This is achieved using an algorithm that keeps a history of observed facts and events,
determines when rules are triggered, and applies the technique of formula progression
[3] to incrementally evaluate and simplify the resulting instantiated consequences (the
current expectations) as new states and their associated facts are appended incremen-
tally to the history. When a progressed formula reduces to true or false this means that a

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 308–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modelling and Monitoring Social Expectations in Multi-agent Systems 309

Fig. 1. Overview of the compliance-monitoring process

social expectation has been fulfilled or violated (respectively), and a notification is sent
to the clients of the compliance monitor1. Figure 1 gives an overview of this process.

The structure of this paper is as follows. A brief overview of hyMITL± is given
in Section 2, and some implementation choices in maintaining world states for atomic
formula evaluation are discussed in Section 3. Section 4 discusses the concept of so-
cial expectations as applied to hyMITL± and other approaches to modelling electronic
institutions. Section 5 advocates the use of a human-oriented time scale in social ex-
pectation modelling languages, presents a date/time expression language for hyMITL±

based on ISO standard 8601, and demonstrates the need for explicit time zone informa-
tion in date/time expressions involving relative times. The lifecycle of social expecta-
tions is discussed in Section 6 and a distinction between local and global compliance
is proposed. Some observations are then made in Section 7 on the trade-off between
the expressiveness of a social expectation modelling language and the types of decision
procedure it admits, before a discussion of some related work is presented in Section 8.

2 Overview of hyMITL±

hyMITL± is a temporal logic that includes unary temporal operators (including stan-
dard abbreviations) meaning in the next/previous state (X+/X−), eventually in the
future/past (F+/F−), and always in the future/past (G+/G−), as well as binary until
operators for the future and past directions (U+/U−) and a for all possible future se-
quences of states operator (A). The F, G and U operators are qualified by temporal
intervals to constrain the states that must be considered when evaluating the argument
(or the second argument in the case of U+/U−). The default interval (if one is omitted)

1 To provide useful information to clients, it is necessary to associate each current expectation
with the initial rule instantiation that produced it and the state in which it was fired. This is
straightforward, but has not yet been implemented.

310 S. Cranefield

is (−∞, +∞). An interval may also appear on its own as a formula to express the con-
straint that the current state is within that time period. There is a “current time” binding
operator (↓) that is qualified by a time unit (e.g. week) and a time zone, and binds the
following variable to a term that names the current time in the specified time zone,
rounded down to the beginning of the specified unit of time. The following is an ex-
ample rule expressed using this language, where p, c, publication, price and t are terms
denoting a service provider, a client, a particular publication, a price and a specific date
and time, respectively:

AG+ done(c, buy sub(publication, p, price)) ∧ [t, t + P1W | Z) →
↓week

Z w.G+
[w+ P1W | Z, w+ P53W | Z)

↓week
Z cw.↓now

Z n.(¬X−[cw, n] →
∃d (date time to date(cw, d) ∧

F+
[n, cw+ P1W | Z)done(p, send(c, publication, d))))

This rule states that if client c has bought a subscription to publication from provider
p for price and this happens within a week of time t (the price is only valid for a week),
then at all times within the interval beginning a week after the start of the week that the
payment is made (w) and ending immediately before 53 weeks after w, if the current
state is the first within a given week (encoded as the constraint that the previous state
wasn’t between the start of the week and now, inclusive), then between now and the end
of the week the provider will send the current edition of the publication. In other words,
once the payment is made, the publication will be sent every week for 52 weeks.

This example includes some additions and specialisations to the syntax compared to
the previous description of hyMITL± [2]. In particular, relative times (e.g. P1W) are
expressed in a notation based on ISO standard 8601, and time zone annotations (the Zs)
are added. These are motivated and discussed in Section 5.

Rules such as this are used by matching the left hand side against a history record-
ing the current and previous states in terms of the events that were observed and the
facts that were known to hold in those states2. The matching operation results in an
instantiation of the right hand side. For example, the rule above will match a state in
which the specified buy sub operation has been performed if the date/time associated
with that state is less than a week after, or is at, the time t. The resulting instantiated
right hand side then represents a social expectation that an expectation monitoring tool
can monitor over time. First the new expectation is partially evaluated—in the example
this will result in the outer ↓ operator and its variable being removed and the variable
w being instantiated to a term denoting the date/time at which the current week began
in the timezone Z. Each time a (relevant) event in the world is observed, a new state is
created, atomic formulae describing the observed event and the known facts that hold
in that state are asserted into the history, and all expectations being monitored are “pro-
gressed” to the new state and partially evaluated, which generally will result in them

2 The rules may contain past modalities and even future modalities (if nested within past ones),
but they should be designed so that the left hand sides can be evaluated using a finite history.

Modelling and Monitoring Social Expectations in Multi-agent Systems 311

being simplified. If an expectation becomes true or false on progression, it can be de-
termined that the expectation was fulfilled or violated (respectively). The progression
algorithm is not presented formally in this paper, but a high level description is given in
Section 6.

3 Representing Events and Facts

The semantics of hyMITL± rely on the standard notion of satisfaction of an atomic
formula in a first order model representing a state of the world. When integrating a com-
pliance monitor with an agent platform or institutional middleware, propositions repre-
senting observed events and known facts must be asserted into the history of present and
past states. While the representation of facts can be based on the ontologies used in the
multi-agent system, some convention needs to be adopted for stating that events have
just occurred—the example above uses a done predicate. A domain model is needed to
declare (amongst other things) the event types that are considered relevant to the system
and the properties of predicates, e.g. in the example the predicate date time to date is
used to represent a function that truncates a date/time expression to leave just the date,
and this can be implemented as a built-in or user-supplied state-independent predicate.
The compliance monitor may also need a way of calculating which facts persist from
one state to the next, given the events that have just occurred. A mechanism for fact per-
sistence may not be needed if there is middleware that provides an interface for access-
ing the public institutional state (as in AMELI [4]). However, for more loosely coupled
systems the monitor may need to infer the facts that hold in each state based on the facts
that held in the previous state and the actions that have occurred. This is precisely the
problem that AI planning has addressed with the development of action description for-
malisms such as STRIPS rules [5] and the situation and event calculi [6,7]. The domain
model could include action descriptions in some existing action description language
(such as the event calculus approach of Farrell et al. [8]). Alternatively the hyMITL±

rule language itself can be used to express this information. Such rules describe the
‘physics’ or causality of the domain, and their conclusions need to be interpreted not as
expectations, but as facts to be asserted into the current state’s fact base.

4 Social Expectations

Unlike other languages for defining social rules in electronic institutions, hyMITL±

does not include concepts from deontic logic such as obligation, permission and prohi-
bition, nor does it include any formalised notion of commitments between agents. In-
cluding these concepts in a logic allow the fulfilment and violation of norms by agents
to be explicitly stated and reasoned about within the language (rather than at the meta-
level), as well as allowing the directed social relationships underlying these concepts to
be explicitly represented.

While there would be some benefit in adding these features to hyMITL±, there is
also utility in allowing the expression of rules that are not explicitly defined in terms of
deontic concepts. The social expectations that an agent has may come from a number of
sources. While an electronic insitution will have published rules with official force—in

312 S. Cranefield

which case terms such as obligation, permission and prohibition seem appropriate, an
agent may usefully maintain its own set of rules expressing social regularities that it has
learned, even though these might not have any official status in the institution. Also,
rules could be used to express the effects of actions, as discussed above.

In this paper we use the term “social expectations” to encompass any constraints
on the present and future that result from rules intended to express social regularities,
whether normative or not. We believe that the issues we discuss are relevant to all ap-
proaches to modelling and monitoring social expectations.

5 A Human-Oriented Time Scale

One of the motivations for the development of MAS technology is to allow humans to
decrease their workload or increase their efficiency by delegating work to trusted au-
tonomous software agents (subject to appropriate constraints and policies). Therefore,
while some multi-agent systems (e.g. those controlling nuclear reactors or chemical
processes) may only need to consider time as a metric quantity measured in (e.g.) mil-
liseconds, many applications of multi-agent systems will require agents to work within
human society, and in particular to understand dates and times expressed using human
calendar systems. For example, agents may need to understand deadlines expressed in
terms of units such as days, weeks and months.

The theory and practicalities of using a human time scale have been addressed to
various degrees in the MAS literature. Mallya et al. [9] present example commitments
between agents that include relative time expressions such as t + 7days , but no syntax
and semantics for a date/time language are presented. Verdicchio and Colombetti [10]
present a detailed account of the syntax and semantics of date/time expressions and date
arithmetic within an agent content language. The normative specification language of
Vázquez-Salceda et al. [11] allows the use of absolute and relative deadlines represented
in terms of dates and standard time units, but no formal details are presented. Farrell
et al. [8] discuss ecXML: a version of the event calculus using an XML syntax, which
(based on the examples presented) uses human-oriented date and time units, but this
is not explicitly discussed. In our initial presentation of the hyMITL± language [2],
we showed how a date/time language in the style of Verdicchio and Colombetti can be
integrated into a temporal logic in which time intervals and a date/time binding operator
are first class elements of the language, rather than being axiomatically defined.

In contrast, other research has treated times as (essentially) real numbers. The IS-
LANDER e-institution editor [12] and the associated AMELI [4] middleware for gov-
erning agents in an institution allow timeouts to be specified in protocol-based norms,
and the implementation [13] uses the Java system time in milliseconds for its timestamps.
SOCS-SI [14] and the formalism of Garcı́a-Camino et al. [15] use explicit time vari-
ables, arithmetic time expressions, and time inequality constraints, but only numeric
time stamps are considered.

In this section we discuss the use of a human-oriented date/time scale in our im-
plementation of the hyHITL± logic, in particular, the date/time language used and the
qualification of time expressions by time zones.

Modelling and Monitoring Social Expectations in Multi-agent Systems 313

5.1 A Date/Time Language Based on ISO Standard 8601

ISO standard 8601 [16] defines standard textual representation formats for dates and
times. The defined formats are used (generally in a restricted form, and possibly with
some changes) by various Internet and Web standards, such as RFC 3339 [17] for
date/time timestamps on the Internet and the XML Schema definition of date and time
datatypes [18]. In the implementation of hyMITL± we use the formats from ISO 8601
for expressing points in time in terms of date/time units, and for expressing durations
in time as periods. We also allow new date/time points to be calculated by adding or
subtracting relative times to date/time points.

Date/time strings. Instances in time are represented using the following syntax:

YYYY-MM-DDThh:mm:ss.fffz

where YYYY is the four-digit number of the year (we assume only AD dates are of
interest), and MM , DD, hh, mm, ss are two-digit representations of the month3, day,
hour (using a 24 hour clock), minute and second, respectively. fff represents up to
three optional digits for fractions of a second—the preceding decimal point is omitted
if there is no fractional part. The T separates the date and time components.z represents
a time zone in terms of an offset to Universal Coordinated Time (UTC). It can be either
the character ‘Z’ (representing the “zero meridian”, i.e. an offset of 0), or a ‘+’ or ‘−’
followed by an hour and minute offset in the form hh:mm.

We assume the Gregorian calendar is used and that the usual constraints on the num-
ber of days in each month for a given year are respected.

We do not currently support various abbreviations and variations to this notation
allowed by the ISO standard (such as omitting the field separators) or the use of week-
of-year or day-of-year expressions.

Period strings. An offset in time can be expressed using one of the “period” nota-
tions in the standard representing “a duration not associated with any start or end”. The
notation is:

PyearsYmonthsMweeksWdaysDThoursHminutesMsecondsS

where lower case text stands for the desired number of each unit, and the capital letters
are unit indicators4. Fields and their following unit indicators can be omitted, but the ‘T’
separator must be present if there are any time fields. The seconds field can include a
decimal point. The leading ‘P’ indicates that this is a ‘period’, and this can be followed
by an optional ‘+’ or ‘−’.

Date/time arithmetic. We allow expressions denoting the addition or subtraction of
periods to date/time points. This is useful when defining date/time points as offsets
to date/time variables. The addition of periods to date/time points is complicated as it
involves knowledge of the calendar, and it is necessary to have well understood conven-
tions for handling issues such as the variable number of days in a month when adding

3 Unlike the Java Date class, months are numbered from 1.
4 This format is a slight generalisation of the ISO one as it allows months and weeks to appear

together.

314 S. Cranefield

months to a date and the occurrence of leap years when adding years. Although the ISO
standard is not freely available, an algorithm for adding durations to date/time points
appears in an appendix of the XML Schema datatypes definition [18]. Our implemen-
tation relies on the Joda Time Java library [19] to perform this computation.

A further complication is that the addition of periods to date/time points can only
be defined relative to a particular time zone. This issue is discussed in the following
section.

5.2 The Need for Time Zones

A period defined in terms of units such as months, weeks and days does not define a
fixed length of time. In particular, the addition of months involves an addition to the
month component of a date followed by a “rounding down” of the resulting day to an
allowed value. This means that the time zone in which the computation is performed
can be significant. Consider the following examples, where the subscript to the ‘+’
indicates the timezone used for the addition:

2006-02-28T23:00:00Z +Z P1M = 2006-03-28T23:00:00Z

2006-02-28T23:00:00Z ++01:00 P1M = 2006-04-01T00:00:00+01:00

This shows that, given the starting date of 11pm, 28 February 2006 (UTC), the addition
of a month can result in a difference of three days depending on whether the calculation
is performed with respect to UTC or UTC+01:00. To align with people’s experience of
time, changes to and from summer time must also be reflected in date/time arithmetic.

In the above example, the time zone was provided as a separate annotation to the
addition. As an alternative, the timezone associated with the date/time argument could
be used (“Z” in both cases above). However, hyMITL± can include interval expres-
sions with variables that become instantiated at an outer level of the formula. To ensure
that the time zone in which an addition or subtraction is to be performed is explicit in
the formula, we use the syntax date time + period | time zone as an abbreviation for a
ternary addition operator taking an explicit time zone argument. Without this, in the fol-
lowing formula the time zone for the calculation would not be known until the variable
cd (current day) becomes bound:

paid(cust426, order77867) →
↓day

Z cd. F+
[cd+P1D | Z, cd+P2D | Z)received goods(cust426, order77867)

This formula states that once a particular customer has paid for a particular order,
delivery will be made at some time during the next day. Note that the time binding
operator ↓ must also be qualified by a time zone as well as a time unit.

In practice, for some applications it may be possible to omit time zone annotations
and simply use an agent’s current time zone. However, in other cases where agents are
distributed across different time zones it will be crucial to ensure this information is ex-
plicitly provided for expressions involving temporal arithmetic. It follows that adapting
systems based on real number time points to use a human-oriented time scale is not just
a simple matter of changing the data type used to represent time points and plugging
in a different time arithmetic module—the syntax of the temporal language used may
need to be changed in a more fundamental way.

Modelling and Monitoring Social Expectations in Multi-agent Systems 315

empty

commitment

unset

mc()

pending active
sc()

canceled

sc() r4
sc()

r7

r3

r5 fulfilled

violated

r1

r2

r6

sc()

Fig. 2. Fornara and Colombetti’s commitment lifecycle [20]

6 The Lifecycle of a Social Expectation

A system that monitors future-oriented social expectations, whether these are obliga-
tions, commitments or learned patterns of behaviour, must have some underlying model
of the lifecycle of an expectation. For example, various formalisms and practical tools
based on commitments have been proposed with differing accounts of the dynamics
of a commitment. Figure 2 shows the commitment lifecycle proposed by Fornara and
Colombetti [20]. This diagram defines a state space for conditional commitments and
the possible transitions between those states, with solid arrows indicating operations
(mc for make commitment and sc for set commitment) that occur as a result of agent
communication, and dashed arrows indicating state changes that occur as a result of a
change in truth value of the commitment’s precondition or content propositions. Fur-
ther constraints on the legal transitions are defined by rules (r1 to r7, not shown here)
and some “basic authorizations” that restrict the performance of each sc transition to
be performed by either the debtor or the creditor of the commitment. The unset state
allows an agent to create a commitment for which another agent is the debtor. This can
then be set to the pending state by the debtor (if the commitment is accepted), or set to
the canceled state (if not accepted).

The commitment machine formalism of Yolum and Singh [21] can be viewed as
defining a similar state machine, with some additional operations possible on commit-
ments: the release of the commitment by its creditor, the assignment of an alternative
agent as the creditor (performed by the original creditor) and the delegation of a com-
mitment by its debtor to an alternative debtor. Because a commitment machine is used to
specify protocols in which all commitments are fulfilled, the violation of commitments
is not modelled in this formalism. In contrast to the approach of Fornara and Colom-
betti, a commitment machine does not explicitly represent commitments as propositions
with a temporal component—instead, the semantics of commitment assertions directly
constrain the possible future paths that conform to a commitment in terms of the satis-
faction of the commitment content in some future state. This is in contrast to the earlier
work of Venkatraman and Singh [22] which used the same lifecycle but with particular
patterns of CTL formulae as the content of commitments.

In general, a tool to monitor social state will need to track two types of transition
in the state of a social expectation: those triggered by interactions between agents (the

316 S. Cranefield

solid lines in the figure) and those triggered by changes in truth value of the logical
content of the expectation (the dashed lines). The ability to monitor the former relies
on an ability to overhear communication between agents [23] or the use of group multi-
casting [24] or a group message redistribution agent [25] when sending messages with
important social consequences. Detecting transitions triggered by changes in truth value
requires determining whether particular propositions hold or actions have occurred in
each state. Vásquez-Salceda et al. [11] have proposed practical implementation tech-
niques for managing this process, and suggested the inclusion of specific detection
mechanisms within norm descriptions.

Currently, hyMITL± does not include any notion of commitments or obligations, and
thus a compliance monitor for hyMITL± rules is not concerned with monitoring changes
of social state. Its focus is on the right hand side of the state diagram in Figure 2. The
content of a social expectation having a temporal aspect can have three possible values
when an attempt is made to evaluate it. Its value may be unknown (corresponding to
the active state in the figure), true (the fulfilled state) or false (the violated state). As time
passes, the compliance monitor’s trace of observations and events is extended and expec-
tations with an unknown value may remain in that state or their content may be reduced
to a value of true or false. The hyMITL± compliance algorithm presented previously
follows this approach using an iterative process of partial evaluation and formula pro-
gression [2]. Once a formula has been reduced to true or false, a fulfilment or violation
is reported and the (now trivial) formula is removed from the set of current expectations.

While this may seem an obvious outcome of applying three-valued logic to the evalu-
ation of expectations with a temporal nature, our experience in implementing hyMITL±

has demonstrated to us that monitoring the transitions between the three states active,
fulfilled and violated is not sufficient for compliance monitoring. This is based on the
need to allow a wider range of notifications from the compliance monitor to an agent
using its services. For example, consider an expectation that an agent will perform a
particular operation every day for a year. A client of a compliance monitor tracking this
expectation may wish to be notified after every day that the required operation is not per-
formed, not just the first time (which is when the expectation becomes logically false).
Any resulting sanctions may depend on the number of repeated violations. The client
may also wish to be notified every time the expected action is performed, rather than
being notified at the end of the year that the expectation as a whole was fulfilled. These
examples suggest that a compliance monitor needs distinct notions of global versus lo-
cal compliance, and that its clients may wish to control the notifications they receive in
a flexible by specifying notification policies. These policies would allow clients to spec-
ify, for particular patterns of formulae, their interest or disinterest in single or repeated
violations or fulfilments of social expectations that match the patterns.

Figure 3 shows a UML 2.0 state machine giving a more detailed account of the
possible states of an expectation’s content formula, designed to allow more flexible no-
tification to clients of a compliance monitor. The Active state is decomposed into two
orthogonal sets of substates: those indicating the global state, i.e. whether the expecta-
tion is logically false, true or unresolved (e.g. if its value depends on the evaluation of
future modalities), and those indicating its local state—whether it is true or false when
evaluated at the current point in time, ignoring any past violations and requirements

Modelling and Monitoring Social Expectations in Multi-agent Systems 317

Unresolved

Violated

Fulfilled

Locally

Unresolved

Locally

Violated

Locally

Fulfilled

Active

Violated

Fulfilled

Completed

Fig. 3. A more detailed state space for social expectations

on the future. The Completed state represents an expectation that no longer has any
relevance, e.g. one that was bounded by a particular time interval that has now passed.

Of course it is still necessary to precisely define the notion of local compliance, and
one possible definition follows from the technique of formula progression used in the
hyMITL± monitoring algorithm. Paraphrasing Kerjean et al. [26]:

The idea behind formula progression is to decompose a linear temporal logic
formula into a requirement about the present, which can be checked straight
away, and a requirement about the (as yet unavailable) next state.

As hyMITL± includes temporal modalities that refer to the past, the compliance
monitor keeps a history of past states, and for our purposes Kerjean et al.’s “requirement
about the present” becomes a requirement about the present and past. This component
can then be evaluated to determine the local compliance of the formula.

The computation is, in fact, a little more complex than the above description sug-
gests. Unlike planning, for which the technique of formula progression was developed,
our compliance monitor cannot generate a new state whenever it is ready to progress
a formula. It must wait until a new observation is made, which generates a new state.
However, it is desirable to deliver any fulfilment or violation notifications about the pre-
vious state in a timely fashion. Therefore, we split the progression algorithm into two
steps. The first step is a partial evaluation step that recursively evaluates the formula,
resolving to true or false any subformulae that have no future modalities and applying
the progression rules to those that do, with any resulting “requirements about the next
state” wrapped by the X+ operator. It also performs Boolean simplifications. The sec-
ond step is applied when a new event is observed and the next state is generated. This
basically involves removing the outermost X+ operators. Given a formula p, the result
of the first step, peval(p) determines the local compliance status of the social expec-
tation that this formula is the current value of: if it is false the expectation has been
locally violated; otherwise (if it is true or involves X+ formulae) the expectation has
been locally fulfilled. If the expectation is globally unresolved, then a peval result of
true causes the expectation to become globally fulfilled, and a value of false causes it
to become globally violated.

318 S. Cranefield

A social expectation that has just become globally violated or fulfilled would nor-
mally be removed at the next progression step as the current value (true or false) would
have no future-oriented component. However, further local fulfilments or violations
can be checked for by progressing the future-oriented part of peval(p) before any
Boolean simplification is applied. For example, if peval(p) evaluates to true ∧ X+p,
or to false ∨ X+p, then X+p could be progressed to the next state, giving p. However,
further research is needed to find a general formulation of this idea and a suitably ex-
pressive way for clients to specify their desired policies on when this technique should
be applied and to what patterns of formula.

7 Expressive Power Versus Inference Capability

hyMITL± was designed to allow the expression of social rules with complex temporal
properties (relative to other approaches), while still being amenable to run-time com-
pliance monitoring. However, the compliance monitoring process is concerned solely
with the application of rules and the satisfaction and violation of their consequences,
given the history so far. It cannot detect violations of liveness properties, and it does
not detect inconsistencies between rules or expectations that are inconsistent, until they
have resolved to true or false. For example, the algorithm will progress both F+

I p and
G+

I ¬p, where I is a future interval, until I is reached and one of these formulae is
found to be violated. Other approaches to run-time monitoring of expectations have
similar limitations [8].

As well as run-time monitoring, there are other decision procedures that may be
useful for social expectation modelling languages, e.g.:

– Is a set of rules, or a set of current expectations, consistent?
– Given two sets of rules, which one has the most utility for me?
– What set of rules would ensure that my current goals in society are met?

While there may not be feasible approaches to answering these questions for an expres-
sive language like hyMITL±, it would be possible to define templates of social contracts
that have known properties, with particular parameters that can be varied. Analysis and
negotiation could then take place in terms of the parameter space, just as in human so-
ciety a negotiation over a house purchase usually focuses on the price and occupancy
date rather than the fine print of what is often a standard contract.

8 Related Work

The hyMITL± logic combines aspects of CTL± [27], Metric Interval Temporal Logic
(MITL) [28] and hybrid logic [29]. A discussion of these and a comparison of the
hyMITL± approach with some previous research on modelling and run-time monitor-
ing of social norms have been presented previously [2]. This section discusses some
additional related work that was not addressed by the previous paper or in the preced-
ing sections of this paper.

The rules we use for describing social expectation have the form ‘past-and-present-
occurrences → future-constraints’, where the expression future-constraints is a linear

Modelling and Monitoring Social Expectations in Multi-agent Systems 319

temporal logic formula. This is similar to the rules used to create programs in the
METATEM programming language [30]. The execution cycle for checking the com-
pliance of a sequence of observations with hyMITL± rules is essentially the same as
the METATEM interpreter loop. The main difference is that METATEM applies rules
to generate a sequence of new states to append to the history—a process that involves
choosing between different ways to make until formulae true, and which may therefore
require backtracking to explore all choices. In contrast, each iteration of the hyMITL±

compliance checker is triggered by the arrival of a time-stamped observation, which cre-
ates a new state and causes the progression of existing expectations and the application
of any rules with antecedents that match the newly extended history. Therefore this is a
passive monitoring process. However, agents also need a mechanism to help them de-
cide when they should proactively initiate actions when required by social expectations,
and an adaptation of the METATEM approach may be useful for this (although back-
tracking would not be an option for a run-time process). Also, the techniques used in
METATEM for compressing the history representation could be applied to a hyMITL±

compliance checker.
Stratulat et al. [31] have developed an approach for using first order logic to describe

normative agent systems, which includes the ability to state that predicates hold within
intervals of (real-valued) time. Norms are conditional obligations, permissions and prohi-
bitions of an agent with respect to an action type during an interval, and these are modelled
as fluent properties that hold over particular intervals of time. A notion of violation is de-
fined, and a Prolog implementation of the approach allows violations to be detected when
given the norms and facts asserting the occurrence of events. This model was also used
to provide a technique based on temporal constraint satisfaction for an agent to schedule
its activities so as to incur the least cost from norm violation. As discussed above, such a
scheduler would be a useful addition to a hyMITL± compliance checker, but hyMITL±

is probably too expressive for a constraint satisfaction approach to be viable.

9 Conclusion

This paper has discussed a number of issues related to the modelling and run-time
monitoring of social expectations that have arisen from implementing a monitoring tool
for the hyMITL± logic. Further details on this formalism and its implementation have
been presented, and in particular a date/time language based on ISO standard 8601
was described, and the use of explicit reference to time zones in such a language was
advocated. The lifecycle of social expectations was analysed and a proposal was made
for a more detailed account of violation and fulfilment, in order to support a wider range
of notifications to clients of a compliance monitor.

Acknowledgements

Thanks to Carles Sierra, Marco Colombetti and Ulises Cortés and their colleagues at
IIIA-CSIC, the University of Lugano and Universitat Politècnica de Catalunya (respec-
tively) for their hospitality and thought-provoking discussions during the author’s visits
in 2005.

320 S. Cranefield

References

1. Cortés, U.: Electronic institutions and agents. AgentLink News 15, 14–15 (2004)
2. Cranefield, S.: A rule language for modelling and monitoring social expectations in multi-

agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Os-
sowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Organizations, Institu-
tions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp. 246–258. Springer,
Heidelberg (2006)

3. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial Intelligence 116, 123–191 (2000)

4. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, vol. 1, pp. 236–243. ACM Press, New York
(2004)

5. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, 189–208 (1971)

6. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intel-
ligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502. Edin-
burgh University Press (1969)

7. Miller, R., Shanahan, M.: The event-calculus in classical logic - alternative axiomatizations.
Electronic Transactions on Artificial Intelligence 3, 77–105 (1999)

8. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for track-
ing the normative state of contracts. International Journal of Cooperative Information Sys-
tems 14, 99–129 (2005)

9. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving commitments among autonomous agents.
In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182. Springer, Hei-
delberg (2004)

10. Verdicchio, M., Colombetti, M.: Dealing with time in content language expressions. In: van
Eijk, R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI), vol. 3396, pp.
91–105. Springer, Heidelberg (2005)

11. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent sys-
tems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS
(LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

12. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 1045–1052. ACM Press (2002)

13. IIIA-CSIC: Electronic InstitutionsDevelopmentEnvironmentWebsite.Accessed2006-02-01,
http://e-institutions.iiia.csic.es/software.html

14. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance verifi-
cation of agent interaction: a logic-based software tool. In: Trappl, R., (ed.) Cybernetics and
Systems, vol. II. Austrian Society for Cybernetics Studies, pp. 570–575 (2004)

15. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A distributed ar-
chitecture for norm-aware agent societies. In: Baldoni, M., Endriss, U., Omicini, A., Torroni,
P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 89–105. Springer, Heidelberg (2006)

16. Wikipedia: ISO 8601. Accessed 2006-02-01,
http://en.wikipedia.org/wiki/ISO 8601

17. Klyne, G., Newman, C.: Date and time on the internet: Timestamps. Request for Comments
3339. The Internet Society (2002)

18. W3C: XML schema part 2: Datatypes 2nd edn. (2004),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

http://e-institutions. iiia.csic.es/software.html
 http://en.wikipedia.org/wiki/ISO_8601
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Modelling and Monitoring Social Expectations in Multi-agent Systems 321

19. Joda.org: Joda Time - Java date and time API, Accessed 2006-02-01,
http://joda-time.sourceforge.net/

20. Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Ap-
plied Artificial Intelligence 18, 853–866 (2004)

21. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL
2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg (2002)

22. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open web-based multiagent systems. Autonomous Agents and Multi-Agent Systems 2,
217–236 (1999)

23. Kaminka, G., Pynadath, D., Tambe, M.: Monitoring teams by overhearing: A multi-agent
plan-recognition approach. Journal of Artificial Intelligence Research 17, 83–135 (2002)

24. Cranefield, S.: Reliable group communication and institutional action in a multi-agent trading
scenario. In: Dignum, F., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS (LNAI), vol. 3859,
Springer, Heidelberg (2007)

25. Heard, J., Kremer, R.C.: Practical issues in detecting broken social commitments. In:
Dignum, F., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS (LNAI), vol. 3859, Springer,
Heidelberg (2007)

26. Kerjean, S., Kabanza, F., St-Denis, R., Thiébaux, S.: Analyzing LTL model checking tech-
niques for plan synthesis and controller synthesis (work in progress). Electronic Notes in
Theoretical Computer Science 149, 91–104 (2006)

27. Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent commu-
nication. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2003), pp. 528–535. ACM Press, New York (2003)

28. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the
ACM 43, 116–146 (1996)

29. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, pp. 436–447. Cambridge University
Press, Cambridge (2001)

30. Fisher, M., Owens, R.: From the past to the future: Executing temporal logic programs. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 369–380. Springer, Heidelberg (1992)

31. Stratulat, T., Clerin-Debart, F., Enjalbert, P.: Temporal reasoning: an application to normative
systems. In: Proceedings of the 8th International Symposium on Temporal Representation
and Reasoning (TIME 2001), pp. 41–47. IEEE Computer Society Press, Los Alamitos (2001)

 http://joda-time.sourceforge.net/

	Modelling and Monitoring Social Expectations in Multi-agent Systems
	Introduction
	Overview of hyMITL
	Representing Events and Facts
	Social Expectations
	A Human-Oriented Time Scale
	A Date/Time Language Based on ISO Standard 8601
	The Need for Time Zones

	The Lifecycle of a Social Expectation
	Expressive Power Versus Inference Capability
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

