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Abstract. Electronic institutions (EIs) have been proposed as a means
of regulating open agent societies. EIs define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to do
and under what circumstances. And yet, there is the need for EIs to
adapt their regulations to comply with their goals despite coping with
varying populations of self-interested agents. In this paper we focus on
the extension of EIs with autonomic capabilities to allow them to yield
a dynamical answer to changing circumstances through the adaptation
of their norms.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1], where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of autonomic systems are: it must configure and reconfigure itself automatically
under changing (and unpredictable) conditions; it must aim at optimizing its
inner workings, monitoring its components and adjusting its processings in or-
der to achieve its goals; it must be able to diagnose the causes of its eventual
malfunctions and reparate itself; it must act in accordance to and operate into
a heterogeneous and open environment.

In what follows we argue that are EIs [3] a particular type of self-* system.
When looking at computer-mediated interactions we regard Electronic Institu-
tions (EI) as regulated virtual environments wherein the relevant interactions
among participating agents take place. EIs have proved to be valuable to de-
velop open agent systems [4]. However, the challenges of building open systems
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are still considerable, not only because of the inherent complexity involved in
having adequate interoperation of heterogeneous agents, but also because the
need for adapting regulations to comply with institutional goals despite varying
agents’ behaviors. Particularly, when dealing with self-interested agents.

The main goal of this work consists in studying how to endow an EI with auto-
nomic capabilities that alllow it to yield a dynamical answer to changing circum-
stances through the adaptation of its regulations. Among all the characteristics
that define an autonomic system we will focus on the study of self-configuration
as pointed out in [2] as a second characteristic: “An autonomic computing sys-
tem must configure and reconfigure itself under varying (and in the future, even
unpredictable) conditions. System configuration or ”setup” must occur auto-
matically, as well as dynamic adjustments to that configuration to best handle
changing environments”.

The paper is organized as follows. In section 2 we introduce the notion of
autonomic electronic institution as an extension of the classic notion of electronic
institution along with a general model for norm adaptation. Section 3 details a
case study to be employed as a scenario wherein to test the model presented in
section 2. Section 4 provides some preliminary, empirical results. Finally, section
5 summarizes some conclusions and outlines paths to future research.

2 Autonomic Electronic Institutions

The idea behind EIs [5] is to mirror the role traditional institutions play in the
establishment of “the rules of the game”–a set of conventions that articulate
agents’ interactions– but in our case applied to agents (be them human or soft-
ware) that interact through messages whose (socially relevant) effects are known
to interacting parties. The essential roles EIs play are both descriptive and pre-
scriptive: the institution makes the conventions explicit to participants, and it
warrants their compliance. EIs involve a conceptual framework to describe agent
interactions as well as an engineering framework [6] to specify and deploy actual
interaction environments.

Although EIs can be regarded as the computational counterpart of human
institutions for open agent systems, there are several aspects in which they are
nowadays lacking. According to North [7] human institutions are not static;
they may evolve over time by altering, eliminating or incorporating norms. In
this way, institutions can adapt to societal changes. Nonetheless, neither the
current notion of EI in [3] nor the engineering framework in [6] support norm
adaptation so that an EI can self-configure. Thus, in what follows we study how
to extend the current notion of EI in [3] to support self-configuration.

First of all, notice that in order for norms to adapt, we believe that a “rational”
view of EIs must be adopted (likewise the rational view of organizations in [8])
and thus consider that EIs seek specific goals. Hence, EIs continuously adapt
their norms to fulfill their goals. Furthermore, we assume that an EI is situated
in some environment that may be either totally or partially observable by the
EI and its participating agents.
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With this in mind, we observe that according to [3] an EI is solely composed
of: a dialogic framework establishing the common language and ontology to be
employed by participating agents; a performative structure defining its activities
along with their relationships; and a set of norms defining the consequences of
agents’ actions. From this follows that further elements are required in order to
incorporate the fundamental notions of goal and norm transition as captured by
the following definition of autonomic electronic institution.

Definition 1. Given a finite set of agents A, we define an Autonomic Electronic
Institution (AEI) as a tuple 〈PS, N, DF, G, Pi, Pe, Pa, V, δ〉 where:

– PS stands for a performative structure;
– N stands for a finite set of norms;
– DF stands for a dialogic framework;
– G stands for a finite set of institutional goals;
– Pi = 〈i1, . . . , is〉 stands for the values of a finite set of institutional properties,

where ij ∈ IR, 1 ≤ j ≤ s contains the value of the j-th property;
– Pe = 〈e1, . . . , er〉 stands for the values of the environment properties, where

each ej is a vector, ej ∈ IRnj 1 ≤ j ≤ r contains the value of the j-th
property;

– Pa = 〈a1, . . . , an〉 stands for the values that characterize the institutional
state of the agents in A, where aj = 〈aj1 , . . . , ajm〉 1 ≤ j ≤ n stands for the
institutional state of agent Aj;

– V stands for a finite set of reference values; and
– δ : PS×N×G×V → PS×N stands for a normative transition function that

maps a performative structure and a set of norms into a new performative
structure and a new set of norms given a set of goals and a set of values for
the reference variables.

Notice that a major challenge in the design of an AEI is to learn a normative
transition function, δ, that ensures the achievement of its institutional goals
under changing conditions. Next, we dissect the new elements composing an
AEI.

An AEI employs norms to constrain agents’ behaviors and to assess the con-
sequences of their actions within the scope of the institution. Although there is
a plethora of formalizations of the notion of norm in the literature, in this paper
we adhere to a simple definition of norms as effect propositions as defined in [9]:

Definition 2. An effect proposition is an expression of the form

A causes F if P1, . . . , Pn

Where A is an action name, and each of F, P1, . . . , Pn(n ≥ 0) is a fluent expres-
sion. About this proposition we say that it describes the effect of A on F , and
that P1, . . . , Pn are its preconditions. If n = 0, we will drop if and write simply
A causes F . From this definition, changing a norm amounts to changing either
its pre-conditions, or its effect(s), or both.
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Agents participating in an AEI have their social interactions mediated by the
institution according to its norms. As a consequence of his interactions, only the
institutional (social) state of an agent can change since an AEI has no access
whatsoever to the inner state of any participating agent. Therefore, given a finite
set of participating agents A = {A1, . . . , An} where n ∈ IN, each agent Ai ∈ A
can be fully characterized by his institutional state, represented as a tuple of
observable values 〈ai1 , . . . , aim〉 where aij ∈ IR 1 ≤ j ≤ m. Thus, the actions
of an agent within an AEI may change his institutional state according to the
institutional norms.

The main objective of an AEI is to accomplish its goals. For this purpose,
and AEI will adapt its norms. We assume that the institution can observe the
environment, the institutional state of the agents participating in the institution,
and its own state to assess whether its goals are accomplished or not. Thus, from
the observation of environment properties(Pe), institutional properties (Pi), and
agents’ institutional properties (Pa), an AEI obtains the reference values required
to determine the fulfillment of goals. Formally, the reference values are defined as
a vector V = 〈v1, . . . , vq〉 where each vj results from applying a function hj upon
the agents’ properties, the environmental properties and/or the institutional
properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q.

Finally, we can turn our attention to institutional goals. An example of insti-
tutional goal for the Traffic Regulation Authority could be to keep the number
of accidents below a given threshold. In other words, to ensure that a reference
values satisfies some constraint.

Formally we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V ) � [mi, Mi] where
mi, Mi ∈ IR, � stands for either ∈ or �∈, and gi is a function over the reference
values. In this manner, each goal is a constraint upon the reference values where
each pair mi and Mi defines an interval associated to the constraint. Thus,
the institution achieves its goals if all gi(V ) values satisfy their corresponding
constraints of being within (or not) their associated intervals.

2.1 Norm Adaptation

A major challenge in the design of an AEI is to learn a normative transition
function that allows to accomplish institutional goals under changing situations.
In this work, we concentrate on norm adaptation and therefore we consider that
there is no definition of performative structure. Thus, institutional goals must be
accomplished through norms, which will be the only means of regulating agents’
actions. We are considering the normative transition function defined in 1 in a
more simple way, δ : N ×G×V → N , namely as a normative transition function
that maps a set of norms into a new set of norms.

From the definition 2 of norm, changing a norm amounts to changing ei-
ther its pre-conditions, or its effects, or both. Norms can be parameterized,
and therefore we propose that each norm, Ni ∈ N , has a set of parameters
〈pi1 , ..., pim〉 ∈ IRim . Notice that when the parameters of the norms are asso-
ciated to the pre-conditions and/or to the effects, changing the values of these
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parameters means changing the norm. When we refer to change the norms or
to adapt the norms we are referring to change or to adapt the values of the pa-
rameters of the norms. Norms have associated parametres that can be changed
to increase its persuasiveness depending on the agent population behavior. We
propose to learn the normative transition function by exploring the space of
parameter values in search for the ones that best accomplish goals for a given
population of agents. In this manner, if we can automatically adapt norms to
the global behavior of an agent population, then, we can repeat it for a num-
ber of different agent populations and thus characterize the overall normative
transition function.

Figure 1 describes how this learning process is performed for a given popu-
lation of agents (A) using an evolutionary approach. We have an initial set of
individuals (〈I1, .., In〉), where each individual represents a set of norm parame-
ters ({〈p11, .., p1m〉 , ..., 〈pi1, .., pim〉}). The institution performs a simulation for
each individual with the population of agents A, so that the norms represented
by each individual can be evaluated according to the institutional goals (Norm
evaluation).Finally, the AEI compiles the evaluations of all individuals in order
to perform the Norm adaptation process that results with a new set of individ-
uals (New norms) to be used as an initial set of individuals for next step in the
learning process.

Since we are working with a complex system, we propose use an evolutionary
approach for learning due to the fact that the institutional objective function
can be naturally mapped to the fitness function and an evolutionary approach
provides a solution good enough. Notice that the AEI does not learn any agent
parameter, it learns the best parameters by simulation for a certain population of
agents, that is whose values will be changed by the normative transition function
and by the PS transition function. It is a first step learning where the AEI learns
by simulation the best parameters for a list of populations, thus, in a next step
the AEI could use this learning in a real environment to adapt itself to any
population of agents (e.g., using Case-Based Reasoning (CBR) problem solving
technique).

3 Case Study: Traffic Control

Traffic control is a well-known problem that has been approached from different
perspectives, which range from macro simulation for road net design [10] to traffic
flow improvement by means of multi-agent systems [11]. We tackle this problem
from the Electronic Institutions point of view, and therefore, this section is
devoted to specify how traffic control can be mapped into Autonomic Electronic
Institutions.

In this manner, we consider the Traffic Regulation Authority as an Autonomic
Electronic Institution, and cars moving along the road network as agents inside
the institution. Considering this set-up, traffic norms regulated by Traffic Au-
thorities can therefore be translated in a straight forward manner into norms be-
longing to the Electronic Institution. Norms within this normative environment
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Fig. 1. Example of an step in norm adaptation using an evolutionary approach

are thus related to actions performed by cars (in fact, in our case, they are al-
ways restricted to that). Additionally, norms do have associated penalties that
are imposed to those cars refusing or failing to follow them. In our case study,
we assume that the Traffic Authority is always aware of norm violations: cars
may or may not respect rules, but they are not able to avoid the consequences of
their application. Furthermore, our Electronic Institution is able to change norms
based on its goals – just as traffic authorities do modify their traffic rules– and,
therefore, it is considered to be autonomic.

Our AEI sets up a normative environment where cars do have a limited
amount of credit (just as some real world driving license credit systems) so
that norm offenses cause credit reductions. The number of points subtracted for
each traffic norm violation is specified by the sanction associated to each norm,
and this sanction can be changed by the regulation authority (that is, our AEI)
if its change leads –or contributes to– the accomplishment of goals. Eventually,
those cars without any remaining points are forbidden to circulate. On the other
hand, we assume a non-closed world, so expelled cars are replaced by new ones
having the total amount of points.

Getting into more detail, we focus on a two-road junction. It is a very restrictive
problem setting, but it is complex enough to allow us to tackle the problem with-
out losing control of all the factors that may influence the results. In particular,
no traffic signals (neither yield or stop signals nor traffic lights) are considered,
therefore, cars must only coordinate by following the traffic norms imposed by
the AEI. Our institution is required to define these traffic norms based on general
goals such as minimization of the number of accidents or deadlock avoidance.
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Fig. 2. Grid environment representation of a 2-lane road junction

We model the environment as a grid composed by road and field cells. Road
cells define 2 orthogonal roads that intersect in the center (see figure 2). Dis-
cretization granularity is such that cars have the size of a cell. As section 3.2
details, our model has been developed with the Simma tool [12]. Although the
number of road lanes can be changed parametrically, henceforth we assume the 2-
lane case. Next subsections are devoted to define this “toy problem” and present
our solution proposal in terms of it. But before that, we introduce some nomen-
clature definitions:

– Ai: an agent i, agents correspond to cars.
– t: time step. Our model considers discrete time steps (ticks).
– (Jx, Jy): size in x, y of our road junction area.
– J : inner road junction area with (xJ

0 , yJ
0 ) as top left cell inside it

J = {(x, y) | x ∈ [xJ
0 , xJ

0 + Jx − 1], y ∈ [yJ
0 , yJ

0 + Jy − 1]}
Considering the 4 J cells in the junction area of Figure 2:
J = {(xJ

0 , yJ
0 ), (xJ

0 + 1, yJ
0 ), (xJ

0 , yJ
0 + 1), (xJ

0 + 1, yJ
0 + 1)}.

– JBE : Junction Boundary Entrance, set of cells surrounding the junction that
can be used by cars to access it. They correspond to cells near by the junction
that belong to incoming lanes. Figure 2 depicts JBE = {(xJ

0 , yJ
0 − 1), (xJ

0 −
1, yJ

0 + Jy − 1), (xJ
0 + Jx − 1, yJ

0 + Jy, (xJ
0 + Jx, yJ

0 ))}.
Nevertheless, the concept of boundary is not restricted to adjacent cells: a
car can be also considered to be coming into the junction if it is located one
–or even a few– cells away from the junction.

– (xt
i, y

t
i): position of car Ai at time t, where (x, y) ∈ IN × IN stands for a cell

in the grid.
– (ht

ix, ht
iy): heading of car Ai, which is located in (x, y) at time t. Heading

directions run along x, y axes and are considered to be positive when the car
moves right or down respectively. In our orthogonal environment, heading
values are: 1 if moving right or down; −1 if left or up; and 0 otherwise (i.e.,
the car is not driving in the axe direction). In this manner, car4’s heading
on the right road of figure 3 is (-1,0).

3.1 AEI Specification

Environment. As mentioned above, we consider the environment to be a grid.
This grid is composed of cells, which can represent roads or fields. The main
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difference among these two types is that road cells can contain cars. Indeed, cars
move among road cells along time.

Figure 2 depicts a 8×8 grid example. The top left corner of the grid represents
the origin in the x, y axes. Thus, in the example, cell positions range from (0,0)
in the origin up to (7,7) at the bottom-right corner. Additionally, a cell is a
road if one of its x, y coordinates belong to J inner junction area (see previous
definition).

We define this grid environment as:

Pe = 〈(x, y, α, r, dx, dy) | 0 ≤ x ≤ maxx, 0 ≤ y ≤ maxy,
α ⊆ P(A), r ∈ [0, 1], dx ∈ [−1, 0, 1], dy ∈ [−1, 0, 1] 〉

being x and y the cell position, α defines the set of agents inside the grid cell
(x, y), r indicates whether this cell represents a road or not, and, in case it is a
road, dx and dy stand for the lane direction, whose values are the same as the
ones for car headings. Noticie that the institution can observe the environment
properties along time, we use P t

e to refer the values of the grid environment
at a specific time t. This discretized environment can be observed both by the
institution and cars. The institution observes and keeps track of its evolution
along time, whilst cars do have locality restrictions on their observations.

Agents. We consider A = 〈A1, ..., An〉 to be a finite set of n agents in the
institution. As mentioned before, agents correspond to cars that move inside the
grid environment, with the restriction that they can only move within road cells.
Additionally, agents are given an account of points which decreases with traffic
offenses. The institution forbids agents to drive without points in their accounts.
The institution can observe the Pa = 〈a1, . . . , an〉 agents’ institutional properties,
where

ai = 〈xi, yi, hix, hiy, speedi, indicatori, offensesi,
accidentsi, distancei, pointsi〉

These properties stand for: car Ai’s position within the grid, its heading, its
speed, whether the car is indicating a trajectory change for the next time step
(that is, if it has the intention to turn, to stop or to move backwards), the norms
being currently violated by Ai, wether the car is involved in an accident, the
distance between the car and the car ahead of it; and, finally, agent Ai’s point
account. Notice that the institution can observe the agent properties along time,
we use at

i to refer the agent Ai’s properties at a specific time t.

Reference values. In addition to car properties, the institution is able to ex-
tract reference values from the observable properties of the environment, the
participating agents and the institution. Thus, these reference values are com-
puted as a compound of other observed values. Considering our road junction
case study, we identity different reference values:

V = 〈num collisions, num crashed, num offenses,
num blocked〉
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where num collisions indicates total number of collisions for last tw ticks (0 ≤
tw ≤ tnow):

num collisions=
∑tnow

t=tnow−tw

∑
e∈P t

e
f(eαt)

being P t
e the values of the grid environment at time t, eαt the αt component of

element e ∈ P t
e and

f(eαt) = {1 if |eαt |>1
0 otherwise .

Furthermore, num crashed counts the number of cars involved in accidents for
last tw ticks, num offenses indicates the total number of offenses accumulated
by all agents during last tw ticks, and finally, num blocked shows how many cars
have been blocked by other cars for last tw ticks.

Goals. Goals are institutional goals. The aim of the traffic authority institution
is to accomplish as many goals as possible.The institution tries to accomplish
these goals by defining a set of norms (see subsection 3.1).

Institutional goals are defined as constraints upon a combination of reference
values. Considering our scenario, we define restrictions as intervals of acceptable
values for the previous defined reference values (V ) so that we consider the
institution accomplishes its goals if V values are within their corresponding
intervals. In fact, the aim is to minimize the number of accidents, the number
of traffic offenses, as well as the number of blocked cars by establishing the list
of institutional goals G as:
G = 〈 num collisions ∈ [0, MaxCollisions], num crashed ∈ [0, MaxCrashed],

num offenses ∈ [0, MaxOffenses], num blocked ∈ [0, MaxBlocked] 〉

Norms. Autonomic Electronic Institutions try to accomplish goals by defining
norms. Norms have associated penalties that are imposed to those cars refusing
or failing to follow them. These penalties can be parameterized to increase its
persuasiveness depending on the agent population behavior.

Considering a road junction without traffic signals, priorities become basic to
avoid collisions. We consider, as in most continental Europe, that the default
priority is to give way to the right. This norm prevents a car Ai located on the
Junction Boundary Entrance (JBE) to move forward or to turn left whenever
there is another car Aj on its right. For example, car 1 in figure 3 must wait
for car 2 on its right, which must also wait for car 3 at the bottom JBE . The
formalization in table 1 can be read as follows: “if car Ai moves from a position
in JBE at time t − 1 to its next heading position at time t without indicating a
right turn, and if it performs this action when having a car Aj at the JBE on
its right, then the institution will fine Ai by decreasing its points by a certain
amount” (see figure 4).

Where the predicate in(ai, Region, t) in table 1 is equivalent to
∃(x, y, αt, r, dx, dy) ∈ Et so that (x, y) ∈ Region and ai ∈ αt and right(ai, aj , t)
is a boolean function that returns true if car aj is located at JBE area on the
right side of car ai. For the 2-lane JBE case in Figure 2, it corresponds to the
formula: (xt

i − ht
iy + ht

ixJx, yt
i + ht

ix + ht
iyJy) = (xt

j , y
t
j).
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Fig. 3. Priority to give way to the right (Simma tool screenshot)

Table 1. Right priority norm

Action in(ai, JBE , t − 1)∧
in(ai, (xt−1

i + ht−1
ix , yt−1

i + ht−1
iy ), t)∧

�indicator(ai, right, t − 1)

Pre-conditions right(ai, aj , t − 1)

Consequence pointst
i = pointst

i − fine

Other norms, such as deadlock avoidance or junction blocking prevention
have been considered and implemented. Nevertheless, due to the lack of space,
we cannot detail them.

3.2 Experimental Settings and Design

As a proof of concept of our proposal in section 2.1, we have designed an ex-
perimental setting that implements the traffic case study. In this preliminary
experiment we consider a single normative goal (num collisions) and the right
priority norm in table 1, which is parameterized by its fine (i.e., points to sub-
tract to the car falling to follow the norm).

The 2-road junction traffic model has been developed with Simma [12], a
graphical MAS simulation tool shown in Figure 3, in such way that both envi-
ronment and agents can be easily changed. In our experimental settings, we have
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Fig. 4. Priority to give way to the right

modeled the environment as a 16 × 16 grid where both crossing roads have 2
lanes with opposite directions. Additionally, the environment is populated with
10 cars, having 40 points each.

Our institution can observe the agents properties for each tick and can keep
a record of them in order to refer to past ticks. In fact, the institution usually
determines traffic offenses by analyzing agent actions along time. Agent actions
are observed through consecutive car positions and indicators (notice that the
usage of indicators is compulsory for cars in this problem set up). During our
discrete event simulation, the institution replaces those cars running out of points
by new cars, so that the cars’ population is kept constant. Cars follow random
trajectories at a constant 1-cell/tick speed and they collision if two or more cars
run into the same cell. In that case, the involved cars do remain for two ticks in
that cell before they can start following a new trajectory.

Cars correspond to agents without learning skills. They just move based
on their trajectories and institutional norms. Agents have local information
about their environment (i.e., grid surrounding cells) and know whether their
next moves will violate a norm and what fine will be thus applied. Agents de-
cide whether to comply with a norm based on three parameters: 〈fulfill prob,
high punishment, inc prob〉. Being fulfill prob ∈ [0, 1] the probability of com-
plying with norms that is initially assigned to each agent, high punishment ∈ IN
the fine threshold that causes an agent to consider a fine to be high enough to
reconsider the norm compliance, and inc prob ∈ [0, 1] the probability increment
that is added to fulfill prob when the fine threshold is surpassed by the norm
being violated. In summary, agents decide whether they keep moving regard-
less of violated norms or they stop in order to comply with norms based on
a probability that is computed as: final prob = fulfill prob + inc prob when
fine > high punishment.

Our goal is to adapt norms to agent behaviors by applying Genetic Algo-
rithms (GA)1 to accomplish the institutional goal, to minimize the total number
of collisions. We propose learn the norms by different agent populations behavior
by simulation. Once specified what are the different agent populations behavior,
a genetic algorithm is running by each population of agents. We use 10 indi-
viduals in each step of the genetic algorithm, where each individual is a set of
parameters. Therefore, norm adaptation is implemented as a learning process

1 We use GAlib [13], a C++ library of genetic algorithm components.
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of the “best” norm parameters. To evaluate an individual we run 10 times the
simulator with the set of parameters of the individual. The simulator run the
AEI model explained above during 5000 ticks. Thus, norm quality is given by a
fitness function that considers the number of collisions, which is computed as an
average of 10 different 5000-tick-long simulations for each model setting.

4 Results

From the experimental settings specified above, we have run experiments for
three different agent populations. These populations are characterized by their
norm compliance parameters, being fulfill prob = 0.5 and inc prob = 0.4 for
the three of them whereas high punishment varies from 5 for the first, to 10 for
the second, up to 14 for the third (see table 2).

Since the right priority norm contributes to reduce accidents, our AEI must
learn how to vary its fine parameter to increase its persuasiveness for agents, and
eventually, to accomplish the normative goal of minimizing the total number of
collisions. As to shows table 2, our experiments have resulted in that our AEI
learned a fine of 14, 12, and 15 for each respective population. In all three cases,
the learned fine is larger than the population’s high punishment value, and
therefore, the goal is successfully reached2. In this manner, we can state the AEI
success in learning the norms that better accomplish its goal.

Table 2. Learning results for three different agent populations

Parameters population1 population2 population3
fulfill prob 0.5 0.5 0.5
high punishment 5 10 14
inc prob 0.4 0.4 0.4
Learned fine 14 12 15

Next figure 5 gives some more detail about the performance of agent popula-
tions for different norm fine values. First chart compares the number of collisions
per 100 ticks when the fine is 4 with the resulting number of collisions when it
is 14, which is the learnt value for agents with a high punishment threshold
equal to 5. Analogously, second and third charts compare results between value
4 and learnt values 12 and 15 respectively (which, again, are learnt when the
corresponding agent populations have 10 and 14 threshold values). For all three
cases, we can observe that the number of collisions for fine 4 keep above the ones
for learnt fines. It is so both in average and along the curve that results from a
simulation of 5000 ticks. As expected, the reason is that value 4 is smaller than
the high punishment values for all three agent populations. Additionally, we
can also observe that the deviation in the number of collisions is smaller as well.
2 Notice that, due to the agent’s behavior, any fine value higher that the population

high punishment value will be equally successful.
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Population 1: <0.5, 5, 0.4>
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Fig. 5. Number of collisions per 100 ticks along a 5000-tick simulation
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5 Discussion and Future Work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability. In this manner, works such as the one by Excelente-Toledo
and Jennings [14] propose a decision making framework that enables agents to
dynamically select the coordination mechanism that is most appropriate to their
circumstances. Hübner et al. [15] propose a model for controlling adaptation by
using the MOISE+ organization model. Agents in this model adapt their MAS
organization to both environmental changes and their own goals. In [16] Gasser
and Ishida presented a general distributed problem-solving model which can
reorganize its architecture, in [17] Ishida and Yokoo introduce two new reorga-
nization primitives that change the population of agents and the distribution
of knowledge in an organization; and Horling et al. [18] propose an approach
where the members adapt their own organizational structures at runtime. Nor-
man et al. [19], within the CONOISE project, propose an agent-based model
for dynamic formation of virtual organisations. However all these approaches
are based on agent capabilities instead of on the use of norms. On the other
hand, it has been long stated [20] that agents working in a common society
need norms to avoid and solve conflicts, make agreements, reduce complexity,
or to achieve a social order. Both approaches –i.e. adaptation and norms– have
been considered together by Lopez-y-Lopez et al. [21], where agents can adapt
to norm-based systems and they can even autonomously decide its commitment
to obey norms in order to achieve associated institutional goals. This adaptation
from the point of view of agents in these related works is the most remarkable
difference with the approach presented in this paper, which focuses on adapting
the institution –that is, the authority issuing norms– rather than adapting the
agents. Institution adaptation is accomplished by changing norms autonomously
(as opposite to the work by Hoogendoorn et al. [22], which is based on design
considerations). Therefore, we do not select norms at design stages as it is done
by Fitoussi and Tennenholtz [23], who do it so by proposing the notions of min-
imality and simplicity as selecting criteria. They study two basic settings, which
include Automated-Guided-Vehicles (AGV) with traffic laws, by assuming an en-
vironment that consists of (two) agents and a set of strategies available to (each
of) them. From this set, agents devise the appropriate ones in order to reach
their assigned goals without violating social laws, which must be respected.

Regarding the traffic domain, MAS has been previously applied to it [11] [24]
[25]. But traffic has been also widely studied outside the scope of MAS, for ex-
ample, the preliminary work by [26] used Strongly Typed Genetic Programming
(STGP) to controll the timings of traffic signals within a network of orthogonal
intersections. Their evaluation function computed the overall delay.

This paper presents AEI as an extension of EIs with autonomic capabilities. In
order to test our model, we have implemented a traffic AEI case study, where the
AEI learns a traffic norm in order to fulfill its goals. Preliminary results in this
paper provide soundness to our AEI approach. Recently, we have extended the
AEI definition [27] in order to include a performative structure transition func-
tion in order to adapt performative structures. We are also currently performing
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the same experiments with other norms and with more goals. As future work, and
since this basically represents a centralized scenario, we plan to develop a more
complex traffic network, allowing us to propose a decentralized approach where
different areas (i.e., junctions) are regulated by different institutions. Addition-
ally, we are interested in studying how institutional norms and agent strategies
may co-evolve. Nevertheless, this will require to extend the agents so that they
become able to adapt to institutional changes. Nevertheless, we plan to extend
both our traffic model and the institutional adaptation capabilities so that the
AEI will not only learn the most appropriate norms for a given agent population,
but it will be able to adapt to any change in the population.

Acknowledgements

This work was partially funded by the Spanish Science and Technology Ministry
as part of the Web-i-2 project (TIC-2003-08763-C02-01) and by the Spanish
Education and Science Ministry as part of the TIN2006-15662-C02-01 and the
2006-5-0I-099 projects. The first author enjoys an FPI grant (BES-2004-4335)
from the Spanish Education and Science Ministry.

References

1. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agentlink Roadmap. Agen-
link.org (2005)

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

3. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD
Monography, vol. 19 (2003)

4. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Autonomous Agents and Multi-agent Systems 1, 275–306 (1998)

5. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. IIIA Phd
Monography, vol. 8 (1997)

6. Arcos, J.L., Esteva, M., Noriega, P., Rodŕıguez-Aguilar, J.A., Sierra, C.: Engineer-
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