


Lecture Notes in Artificial Intelligence 4386
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Pablo Noriega Javier Vázquez-Salceda
Guido Boella Olivier Boissier
Virginia Dignum Nicoletta Fornara
Eric Matson (Eds.)

Coordination, Organizations,
Institutions, and Norms
in Agent Systems II

AAMAS 2006 and ECAI 2006
International Workshops, COIN 2006
Hakodate, Japan, May 9, 2006
Riva del Garda, Italy, August 28, 2006
Revised Selected Papers

13



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Pablo Noriega
Instituto de Investigación en Inteligencia Artificial, CSIC, Barcelona, Spain
E-mail: pablo@iiia.csic.es

Javier Vázquez-Salceda
Universitat Politècnica de Catalunya, Barcelona, Spain, E-mail: jvazquez@lsi.upc.edu

Guido Boella
Università di Torino, Torino, Italy, E-mail: guido@di.unito.it

Olivier Boissier
Ecole Nationale Supérieure des Mines, Saint-Etienne, France
E-mail: Olivier.Boissier@emse.fr

Virginia Dignum
Universiteit Utrecht, Utrecht, The Netherlands, E-mail: virginia@cs.uu.nl

Nicoletta Fornara
Università della Svizzera Italiana, Lugano, Switzerland
E-mail: nicoletta.fornara@lu.unisi.ch

Eric Matson
Wright State University, Dayton, OH, USA, E-mail: eric.matson@wright.edu

Library of Congress Control Number: 2007932915

CR Subject Classification (1998): I.2.1, D.2, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-74457-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74457-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12113002 06/3180 5 4 3 2 1 0



Preface

In recent years, social and organizational aspects of agency have become major
research topics in MAS. Recent applications of MAS on Web services, grid com-
puting and ubiquitous computing highlight the need for using these aspects in
order to ensure social order within such environments. Openness, heterogeneity,
and scalability of MAS, in turn, pose new demands on traditional MAS inter-
action models and bring forward the need to look into the environment where
agents interact and at different ways of constraining or regulating interactions.
Consequently, the view of coordination and governance has been expanding to
entertain not only an agent-centric perspective but societal and organization-
centric views as well.

The overall problem of analyzing the social, legal, economic, and technologi-
cal dimensions of agent organizations, and the co-evolution of agent interactions,
provide theoretically demanding and interdisciplinary research questions at dif-
ferent levels of abstraction. The MAS research community has addressed these
issues from different perspectives that have gradually become more cohesive
around the four notions in the title to the workshop: coordination, organization,
institutions, and norms. The COIN workshops are thus designed to consolidate
the subject by providing focus events that reach researchers from diverse com-
munities working in related topics and facilitate more systematic discussion of
themes that have been treated from various perspectives.

This year, the COIN workshops were hosted during AAMAS 2006, (on June
9, in Hakodate, Japan) and ECAI 2006 (on August 28, in Riva del Garda, Italy).
The papers contained in this volume are the revised versions of a selection of
those that were presented in these workshops.

We want to express our gratitude to the Program Committee members, the
additional reviewers, the participants of workshops, and most particularly to the
authors for their respective contributions. We also want to thank the organizers
of the Fifth International Joint Conference on Autonomous Agents and Multi-
agent Systems in Hakodate and of the 17th European Conference in Artificial
Intelligence in Riva del Garda, for hosting and supporting the organization of
the workshops, Finally, we would also like to acknowledge the encouragement
and support from Springer, in the person of Alfred Hofmann, for the publication
of this second volume of COIN workshops.

COIN@AAMAS06: Virginia Dignum
Nicoletta Fornara

Pablo Noriega
COIN@ECAI06: Guido Boella

Olivier Boissier
Eric Matson

Javier Vázquez-Salceda



Organization

COIN@AAMAS06 Program Committee

Guido Boella Università di Torino, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Stephen Cranefield University of Otago, New Zealand
Frank Dignum Utrecht University, The Netherlands
Carl Hewitt MIT, USA
Catholijn Jonker Radboud University Nijmegen,

The Netherlands
Christian Lemâıtre Universidad Autónoma Metropolitana,

Mexico
Gabriela Lindemann Humboldt University in Berlin, Germany
Henrique Lopes Cardoso Universidade do Porto, Portugal
Fabiola López y López Benemérita Universidad Autónoma

de Puebla, Mexico
Michael Luck University of Southampton, UK
Eric Matson Wright State University, USA
Eugenio Oliveira Universidade do Porto, Portugal
Andrea Omicini Università di Bologna, Italy
Anja Oskamp Free University Amsterdam, The Netherlands
Sascha Ossowski University Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Adrian Perreau de Pinninck IIIA-CSIC, Spain
Alessandro Provetti Università degli Studi di Messina, Italy
Luciano dos Reis Coutinho University of Sao Paulo, Brazil
Ana Paula Rocha Universidade do Porto, Portugal
Juan Antonio Rodŕıguez Aguilar IIIA-CSIC, Spain
Rossella Rubino Università di Bologna, Italy
Franco Salvetti Università degli Studi di Messina, Italy
Jaime Simão Sichman University of Sao Paulo, Brazil
Carles Sierra IIIA-CSIC, Spain
Liz Sonenberg University of Melbourne, Australia
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vázquez-Salceda Universitat Politècnica de Catalunya, Spain
Mario Verdicchio Politecnico di Milano, Italy
Marina de Vos University of Bath, UK
Pinar Yolum Bogazici University, Turkey
Franco Zambonelli Università di Modena e Reggio Emilia, Italy



VIII Organization

COIN@ECAI06 Program Committee

Ulises Cortés Universitat Politècnica de Catalunya, Spain
Yves Demazeau LEIBNIZ, France
Virginia Dignum University of Utrecht, The Netherlands
Jomi Fred Hubner FURB Blumenau, Brazil
Catholijn Jonker Radboud Universiteit Nijmegen,

The Netherlands
Victor Lesser University of Massachussetts-Amherst, USA
Gabriela Lindemann Humboldt University, Germany
Pablo Noriega IIIA-CSIC, Spain
Andrea Omicini University of Bologna, Italy
Sascha Ossowski University Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Juan Manuel Serrano University Rey Juan Carlos, Spain
Onn Shehory IBM Research Labs, Isreal
Jaime Simão Sichman University of Sao Paulo, Brazil
Catherine Tessier ONERA, France
Leender van der Torre University of Luxembourg, Luxembourg

Workshop Organizers

Guido Boella Università di Torino, Dipartimento di
Informatica, Turin, Italy
guido@di.unito.it

Olivier Boissier Ecole Nationale Supérieure des Mines,
Saint-Etienne, France,
Olivier.Boissier@emse.fr

Virginia Dignum Institute for Computing and Information
Sciences, Utrecht University, The Netherlands,
virginia@cs.uu.nl

Nicoletta Fornara Università della Svizzera Italiana (University
of Lugano) Faculty of Communication
Sciences, Lugano, Switzerland
fornaran@lu.unisi.ch

Eric Matson Department of Computer Science and
Engineering, Wright State University, Dayton,
Ohio, USA,
eric.matson@wright.edu

Pablo Noriega Instituto de Investigación en Inteligencia
Artificial, Consejo Superior de Investigaciones
Cient́ıficas, Barcelona, Spain
pablo@iiia.csic.es

Javier Vázquez-Salceda Universitat Politècnica de Catalunya,
Departament de Llenguatges i Sistemes
Informàtics, Barcelona, Spain
jvazquez@lsi.upc.edu



Table of Contents

I MODELLING AND ANALYZING ORGANIZATIONS

Structural Aspects of the Evaluation of Agent Organizations . . . . . . . . . . 3
Davide Grossi, Frank Dignum, Virginia Dignum,
Mehdi Dastani, and Làmber Royakkers

Integrating Trust in Virtual Organisations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Ramón Hermoso, Holger Billhardt, and Sascha Ossowski

Coordinating Tasks in Agent Organizations . . . . . . . . . . . . . . . . . . . . . . . . . 32
Virginia Dignum and Frank Dignum

Redesign of Organizations as a Basis for Organizational Change . . . . . . . 48
Mark Hoogendoorn, Catholijn M. Jonker, and Jan Treur

II MODELLING AND ANALYZING INSTITUTIONS

Specifying and Reasoning About Multiple Institutions . . . . . . . . . . . . . . . . 67
Owen Cliffe, Marina De Vos, and Julian Padget

Controlling an Interactive Game with a Multi-agent Based Normative
Organisational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Benjamin Gâteau, Olivier Boissier, Djamel Khadraoui, and
Eric Dubois

Ubi Lex, Ibi Poena: Designing Norm Enforcement in E-Institutions . . . . . 101
Davide Grossi, Huib Aldewereld, and Frank Dignum

Specification and Verification of Institutions Through Status
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Francesco Viganò and Marco Colombetti

III NORMATIVE MODELS AND ISSUES

Spatially Distributed Normative Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Fabio Y. Okuyama, Rafael H. Bordini, and
Antônio Carlos da Rocha Costa

Informing Regulatory Dynamics in Open MASs . . . . . . . . . . . . . . . . . . . . . . 147
Carolina Felićıssimo, Ricardo Choren, Jean-Pierre Briot, and
Carlos Lucena



X Table of Contents

Operationalisation of Norms for Electronic Institutions . . . . . . . . . . . . . . . 163
Huib Aldewereld, Frank Dignum, Andrés Garćıa-Camino,
Pablo Noriega, Juan Antonio Rodŕıguez-Aguilar, and Carles Sierra

Norm-Oriented Programming of Electronic Institutions: A Rule-Based
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Andrés Garćıa-Camino, Juan-Antonio Rodŕıguez-Aguilar,
Carles Sierra, and Wamberto Vasconcelos

An Agent-Based Model for Hierarchical Organizations . . . . . . . . . . . . . . . . 194
Luis Erasmo Montealegre Vázquez and Fabiola López y López

Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Dorian Gaertner, Keith Clark, and Marek Sergot

IV NORM EVOLUTION AND DYNAMICS

Towards Self-configuration in Autonomic Electronic Institutions . . . . . . . 229
Eva Bou, Maite López-Sánchez, and Juan Antonio Rodŕıguez-Aguilar

Norm Conflicts and Inconsistencies in Virtual Organisations . . . . . . . . . . . 245
Martin J. Kollingbaum, Timothy J. Norman, Alun Preece, and
Derek Sleeman

Using Dynamic Electronic Institutions to Enable Digital Business
Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Eduard Muntaner-Perich and Josep Llúıs de la Rosa Esteva

A Peer-to-Peer Normative System to Achieve Social Order . . . . . . . . . . . . 274
Amandine Grizard, Laurent Vercouter, Tiberiu Stratulat, and
Guillaume Muller

V AUTONOMY, COORDINATION AND SOCIAL
ORDER

What Is Commitment? Physical, Organizational, and Social
(Revised) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Carl Hewitt

Modelling and Monitoring Social Expectations in Multi-agent
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Stephen Cranefield

Influence-Based Autonomy Levels in Agent Decision-Making . . . . . . . . . . 322
Bob van der Vecht, André P. Meyer, Martijn Neef,
Frank Dignum, and John-Jules Ch. Meyer



Table of Contents XI

Centralized Regulation of Social Exchanges Between Personality-Based
Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Graçaliz Pereira Dimuro, Antônio Carlos da Rocha Costa,
Luciano Vargas Gonçalves, and Alexandre Hübner

Cooperative Interactions: An Exchange Values Model . . . . . . . . . . . . . . . . . 356
Máıra R. Rodrigues and Michael Luck

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373



 
 
 
 
 
 
 
 
 
 
 
 
 

Part I  
MODELLING AND ANALYZING 

ORGANIZATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Structural Aspects of the Evaluation of Agent
Organizations

Davide Grossi1, Frank Dignum1, Virginia Dignum1, Mehdi Dastani1,
and Làmber Royakkers2

1Institute of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{davide,dignum,virginia,mehdi}@cs.uu.nl
2Department of Technology Management, Eindhoven University of Technology,

Eindhoven, The Netherlands
L.M.M.Royakkers@tm.tue.nl

Abstract. A multi-agent system can be analyzed and specified as an organization
consisting of roles and their relations. The performance of an organization de-
pends on many factors among which the type of its organizational structure, i.e.,
the set of relations holding between its roles. This work focuses on the structure
of organizations and addresses the issue of the analysis, evaluation, and compari-
son of organizational structures which can contribute to develop general methods
for the assessment of multi-agent systems’ performance. Specifically, quantita-
tive concepts from graph theory are used to provide numerical analyses of orga-
nizational structures. It is argued that these analyzes can be used for evaluating
to what extent an organizational structure exhibits some characteristic properties
such as robustness, flexibility and efficiency.

1 Introduction

A great deal of ongoing research in the field of organization-based multi-agent sys-
tems (MAS) is devoted to comparing and evaluating different types of organizations
and their performance. Work on these issues varies from surveys comparing organi-
zational paradigms [6], to frameworks for representing and verifying organizational
designs [7,19], to studies concerning properties and performance of specific types of
organizations [13,17].

The present paper aims at contributing to the establishment of a number of tech-
niques for evaluating MAS organizations and their performance. The notion of or-
ganization plays an important role in multi-agent systems, which is also reflected in
many agent-oriented software methodologies (cf. GAIA, TROPOS). The performance
of different organizations depends on organizations’ characteristics such as robustness,
flexibility, and efficiency. For example, hierarchies are known not to perform well in
rapidly changing environments because of their poor flexibility. The paper is based on
the intuition that a connection can be drawn between some of these characteristics and
graph-theoretical properties of the structure of organizations. For example, flexibility
depends on how strongly the roles in the organization are connected with one another.
The notion of flexibility, though complex and multi-faceted, can definitely be correlated

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 3–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 D. Grossi et al.

with structural aspects of the organization. Intuitively, the more are the connections be-
tween the roles in the organization, the more flexible is the organization. The point is
to relate the notion of flexibility to precise properties of the organizational structure.
Given an organization, can we say it is flexible? And how flexible? Is it more flexible
than another one as far as structure is concerned? How can a designer foster flexibil-
ity in a MAS just working on its structure? These types of questions constitute, in a
nutshell, the target of the present work.

We claim that an investigation of this connection is important for the development of
appropriate methods for comparing and evaluating different types of organizations and
their performances. In order to tackle the evaluation problem, “the space of organizational
options must be mapped, and their relative benefits and costs understood” [6], and to
provide such a “map” a rigorous analysis of organizational structure plays a crucial role.
The perspective chosen consists thus in addressing the evaluation issue from a structural
perspective, that is to say, analyzing the organizational structure of MAS and providing
a way to rigorously describe the pros and cons of them which lie in their structures.

We will proceed as follows. Firstly (Section 3), building on the results presented
in [3] (briefly recapitulated in Section 2) we investigate a number of simple equations
which can provide ways of measuring to what extent a given organizational structure
enjoys some specific graph-theoretical properties. For instance, to what degree is the
structure connected? These measures already provide a way to evaluate, in an exact
fashion, the adherence of organizational structures to structural constraints a designer
might take into consideration. Secondly (Section 4), the proposed measures are linked
to commonly used criteria for the classification and evaluation of organizations. The
criteria on which we focus are robustness, flexibility and efficiency. We show then (Sec-
tion 5) how these criteria can conflict with each other, and how to ground a structural
analysis of these conflicts as well. Conclusions follow in Section 6.

2 Organizational Structure

2.1 Some Terminology

Before getting started it is worth recollecting some standard graph theoretical notions
which will be used in the proceeding of the paper. An Rk-path (of length n) is a se-
quence 〈x1, ..., xn+1〉 of distinct elements of Roles s.t. ∀xi 1 ≤ i ≤ n, (xi, xi+1) ∈
Rk. A Rk-semipath (of length n) is a sequence 〈x1, ..., xn+1〉 of distinct elements of
Roles s.t. ∀xi 1 ≤ i ≤ n, (xi, xi+1) ∈ Rk or (xi+1, xi) ∈ Rk. A source in Roles is
an element s s.t. ∀d ∈ Roles with d �= s there exists a Rk-path from s to d. The inde-
gree idk(d) of a point d in structure k is the number of elements d1 s.t. (d1, d) ∈ Rk.
The outdegree odk(d) of a point d in structure k is the number of elements d1 s.t.
(d, d1) ∈ Rk. We say a point d to be incident w.r.t. a k link if idk(d) ≤ 1, and it is said
to have emanating k links if odk(d) ≤ 1.

2.2 Representing Organizational Structures

In [3] a view on organizational structure has been proposed, inspired by foundational
work on the theory of organizations [11,15], which is based on the claim that



Structural Aspects of the Evaluation of Agent Organizations 5

organizations do not exhibit only one structural dimension, but rather a multiplicity of
interrelated dimensions, the dimensions of power, coordination and control. A natural
way of modeling this notion of organizational structure is via directed graphs, which
we represent here as systems of relations.

Definition 1. (Organizational structure)
An organizational structure OS is a tuple:

〈Roles, RPow, RCoord, RContr〉

where Roles is the finite set of roles, and RPow, RCoord, RContr are three irreflexive
binary relations on Roles characterizing the Power, respectively, the Coordination and
the Control structures.

For every Rk s.t. k ∈ {Pow, Coord, Contr}, we denote with Rolesk the smallest
subset of Roles such that, if (x, y) ∈ Rk then x, y ∈ Rolesk. In other words, sets
Rolesk denote the set of roles involved in the structural dimension k. Each digraph
〈Rolesk, Rk〉 in OS will be also referred to as the structural dimension k of OS.

Some observations are in order. First, it is worth noticing that in [3] the enactment
relations between agents and roles are also included under the notion of organizational
structure . In that work, it was necessary to include agents in the explicit representa-
tion of the structure in order to give an account of the effects that structural links bear
on agents’ performance. That study proposes also a formal analysis of the meaning of
structural links in terms of the effects that they have on the activities of the agents play-
ing roles in the organization. To briefly recapitulate it, the power structure defines the
task delegation patterns possible within the organization. The coordination structure
concerns the flow of knowledge within the organization, and the control structure has
finally to do with the task recovery functions of the organization. In other words, the
existence of a power link between role a and role b implies that every delegation of
tasks from agent a (agent enacting role a) to agent b (agent enacting role b) ends up in
the creation of an obligation directed to agent b. If a and b are connected via a coordina-
tion link, then every information act from a to b ends up in creating the corresponding
knowledge in agent b. Finally, a control link between a and b implies that agent a has to
monitor the activities of agent b, possibly taking over the tasks of agent b which have not
been accomplished. In the present work however, such concern about the “semantics”
of the structural links is left aside, and the main focus is settled only on the structural
configurations linking the roles of the organization. This emphasizes also the generality
of the method proposed here. In fact, the technical results that are going to be presented
in Section 3 abstract from the meaning attached to the links, and can thus be applied to
any kind of organizational structure representable in the fashion of Definition 1.

Second, we consider the roles on which the organizational structure ranges (i.e., the
elements of set Roles) to be enacted by one and only one agent. The reason for this
choice is illustrated by the following example. Suppose we need to model an organiza-
tion for a soccer team implementing a 4-3-3 strategy. in such a way that the organiza-
tional structure inherent in the strategy is made explicit. Three roles can be defined in
every team: ‘attacker’, ‘defender’ and ‘midfielder’, which are connected by appropriate
power, control and coordination relations. An option would be to model the organiza-
tion via imposing complex enactment constraints such as: “the role ‘attacker’ should be



6 D. Grossi et al.

enacted by three agents such that the first agent should communicate with the third one,
the second agent should monitor the first and third ones, etc.”. However, this would
make implicit in the enactment constraints the power, coordination and control links
that are present between all the various attackers in the 4-3-3 strategy. A better option
would be to explicitly define three new roles, which can be seen as specializations of
the ‘attacker’ role and which can be enacted by only one agent. The organizational links
existing between these three new roles could thus be made explicit, and the resulting
organizational structure satisfactorily modeled. This is the perspective we assume here.
In practice, this boils down to a modeling issue: if two agents enacting a same role have
to be connected by power coordination or control links, then two different roles have
to be specified which substitute the first one and which are played by only one agent.
This finer level of granularity is essential in order to suitably evaluate the adherence of
the organizations to desired criteria, which constitute the primary target of the paper:
for example, is the 4-3-3 organization flexible? An analysis at a level where roles do
not specify the precise relative positions of all agents with respect to all the structural
dimensions would fall short, missing many relevant structural links. It follows from this
distinction that a study of the organizational structure ranging on role types would ab-
stract from those power, coordination, and control links that might be present between
role tokens specializing the same role type (for instance the three attackers in a 4-3-3
strategy). Here we are instead interested in the analysis of structure at the level of the
actual agents’ positions within the organization, and thus at a finer level of granularity.
The elements of the set Roles in an OS are then to be considered role tokens. In the
rest of the paper, if not stated otherwise, we use the word role intending role-token.

Finally, besides the analysis of the power, coordination and control dimensions, [3]
proposes a number of ‘soundness’ properties of organizational structures, which con-
cern the interplay between the different structural dimensions.

Definition 2. (Sound OS)
A sound organizational structure is a tuple: 〈Roles, RPow, RCoord, RContr〉 where
Roles is the finite set of roles, and RPow, RCoord, RContr are three irreflexive binary
relations on Roles such that ∀r, s ∈ Roles:

(r, s) ∈ RPow ⇒ there exists a RCoord−path from r to s;
(r, s) ∈ RPow ⇒ there exists a t ∈ Roles s.t. RContr (t, s).

The occurrence of a power relation between role r and role s requires: the existence
of a (finite) coordination path from r to s so that effective informative actions can
transmit the relevant knowledge of agents enacting role r to agents enacting role s; and
the existence of at least one element t (which, notice, might be r itself) which is in a
control relation with s.

3 Measuring Structure

This section presents some equations measuring specific graph-theoretical aspects of
organizational structures1.

1 Equations 2, 3 and 4 below are an adaptation of equations presented in [8].



Structural Aspects of the Evaluation of Agent Organizations 7

3.1 Completeness, Connectedness, Economy

Completeness and connectedness of an OS have to do with how strongly roles are
linked with one another within one of the structural dimensions k. How much does the
given structure approximate the structure where all directed links are present (complete-
ness)? And how much is the given structure split in fragments (connectedness)?

Completenessk(OS) =
|Rk|

|Rolesk| ∗ (|Rolesk| − 1)
(1)

Connectednessk(OS) = 1 − |DISCONk|
|Rolesk| ∗ (|Rolesk| − 1)

(2)

with |Rk| > 0 and DISCONk is the set of ordered pairs (x, y) of Rolesk s.t. there is
neither a Rk-semipath from x to y nor from y to x, i.e., the set of disconnected ordered
pairs of the structural dimension 〈Rolesk, Rk〉. The condition |Rk| > 0 states that the
structural dimension k does indeed exist. If the structure does not exist it cannot be mea-
sured. As a consequence, Completenessk > 0. Stating that Completenessk(OS) = 0
means thus that Rk = ∅ and hence that no structure at all is given. In practice, formula 1
measures the fraction of the actual links of the dimension 〈Rolesk, Rk〉 on all the avail-
able ones and formula 2 measures how ‘not disconnected’ that dimension is. With re-
spect to connectedness, an important notion is that of cutpoint or, in an organizational
reading, liason role [4], i.e., a role whose removal decreases the connectedness of the
structure.

The economy of a given OS expresses a kind of balance between the two concerns of
keeping the structure connected and of minimizing the number of links, i.e., minimizing
completeness:

Economyk(OS) =

1 − |Rk| − (|Rolesk| − 1)
|Rolesk| ∗ (|Rolesk| − 1) − (|Rolesk| − 1)

(3)

with |Rk| > 0. The equation is based on the intuition according to which the most
‘economical’ digraph of n points consists of n − 1 links, i.e., the minimum number
of links which is still sufficient to keep the digraph connected. Indeed, the nominator
of the fraction, consists of the number of links in the structural dimension k which
are in excess or in defect w.r.t. the optimum of n − 1 links. The denominator denotes
instead the absolute number of links in excess in k. If |Rk| = n − 1 then the value
of Economyk(OS) is optimal, i.e., equal to 1. The equation measures, therefore, how
much k is ‘not expensive’ in terms of links. Notice that Economyk(OS) = 1 does not
imply Connectednessk(OS) = 1, it does only imply that there are enough links in Rk

for it to be possibly connected. If the existence of symmetric links in Rk is assumed,
then n − 1 links are clearly not enough any more for guaranteeing connectedness. On
the other hand, notice also that Economyk(OS) can assume a value greater than 1.
That indicates a sort of ‘over-efficiency’ of k. In this case, it is easy to see that, if
Economyk(OS) > 1 then Connectednessk(OS) < 1. In other words, if the economy
measures of OS is lower than the optimal value 1, then OS has more links than the
ones necessary for OS to be connected. If economy is instead higher than the optimal
value 1, than there are in OS too few links for it to be connected.



8 D. Grossi et al.

3.2 Unilaterality, Univocity, Flatness

The properties of unilaterality and univocity express the tendency of an OS to display,
respectively, an orientation in its links (unilaterality), and the absence of redundant links
ending up in the same role (univocity). Do the links of an OS always have a ‘direction’
or does the OS allow, so to say, ‘peer-to-peer’ connections? And how many of those
connections are such that no role has more than one incident link of the same structural
dimension?

Unilateralityk(OS) = 1 − |SIMk|
|Rk|

(4)

Univocityk(OS) =
|INk|

|Rolesk|
(5)

Flatnessk(OS) = 1 − |CUTk|
|Rolesk|

(6)

with |Rk| > 0 and SIMk denotes the set of links (x, y) in Rk s.t. (y, x) is also in Rk,
i.e., |SIMk| is twice the number of symmetric links in k; INk denotes the set of roles x
in Rolesk s.t. idk(x) = 1 or idk(x) = 0, i.e., the set of roles which either have indegree
equal to 1 in k or they are a source of k or of some subgraphs of k; and CUTk denotes the
set of roles x s.t. odk(x) ≤ 1 and idk(x) ≤ 1, that is to say, the set of roles which are at
the same time addresser and addressee of k links. Intuitively, equation 4 measures how
much asymmetry is present in k, while equation 5 measures how much a dimension k
is univocal or “non ambiguous”. The most univocal structures are assumed to be either
the ones in which every point, except the source, has one and only one incident link
(like in trees), or the ones in which exactly all points have only one incident link (like
in cycles). Finally, equation 6 measures the relative amount of points in dimension k
which are not intermediate point in a k-path, in other words the amount of points the
removal of which would not determine a cut in any k-path. Obviously, the lowest value
of flatness is provided by cycles.

Intuitively, unilaterality has to do with the level of subordination present in a struc-
ture. Consider the RCoord dimension. The higher the number of unilaterality, the lower
the amount of ‘peer-to-peer’ information exchange within OS. Univocity has to do
with the level of conflict and redundancies of a given structure. Consider the RPow

dimension. The higher the level of univocity, the more unambiguous is the chain of
commands, as well as the more fragile once a link happens to be removed. See also [2]
for similar investigations on this issue. Flatness instead, has to do with the length of
paths available within a given structure. We will see in Section 4 that long paths of the
control dimension can be useful in order to implement levels of control on the controller
roles themselves.

3.3 Detour, Overlap, Cover and Chain

The properties we address in this section do not concern structural dimensions taken
in isolation, like the one just investigated, but instead how the different dimensions of
an OS interact with one another. This constitutes a crucial undertaking, though hardly
investigated [4].



Structural Aspects of the Evaluation of Agent Organizations 9

The properties we call detour and overlap regard the degree to which a structural
dimension j ‘follows’ a structural dimension k, meaning by this the degree to which j
establishes corresponding paths for each link of k, so that the roles that are related by
Rk links are the same as those that are related by Rj-paths.

Detourjk(OS) =
|PATHjk|

|Rk|
(7)

with |Rk| > 0 and the set PATHjk is defined as the set of ordered pairs (x, y) s.t.
(x, y) ∈ Rk and there exists a Rj-path from x to y. Equation 7 measures the relative
amount of Rj-paths between the elements of Rolesk which have the same direction
of the links in Rk. A special case of detour is the overlap. In fact, to measure how
much does a dimension j overlap with a dimension k, it suffices to define a set LINKjk

corresponding to a PATHjk where the Rj-paths are of length 1, i.e., simple links, and
hence: LINKjk ≡ Rk ∩Rj . A set LINKjk consists then of all the pairs (x, y) which are
in Rk and in Rj , that is to say, of all x, y which are linked in Rk and in Rj .

Overlapjk(OS) =
|LINKjk|

|Rk|
(8)

with |Rk| > 0. Intuitively, the more j-pairs correspond to k-pairs, the more j overlaps
k in OS.

The property we call in-cover concerns the extent to which all the incident roles of
k are also incident roles of a dimension j. In other words, we say that a dimension j in-
covers a dimension k if all the roles which are addressees of a k link, are also addressees
of a j link.

InCoverjk(OS) =
|IN+

j ∩ IN+
k |

|IN+
k |

(9)

with |Rk| > 0 and the set IN+
i is defined as the set of all elements x in Rolesi such that

idi(x) ≤ 1. The equation describes then how many of the incident roles of k are also
incident roles in j.

The usefulness of these measures for capturing aspects of the structural interplay
can already be shown in relation with Definition 2. Readers might have noticed that,
via the equations just exposed, it is possible to provide a quantification of the de-
gree to which a given OS adheres to the soundness principle concerning the inter-
play of the three dimensions of power, coordination and control. In fact, if we have
DetourCoord−Power(OS) = 1 and InCoverContr−Pow(OS) = 1 then, following Defi-
nition 2, OS is sound. Lower degrees of these measures would thus determine lower
adherence to the soundness principle. Notice also that maximum soundness is trivially
obtained via an overlap of both coordination and control structures on the power struc-
ture: that is to say, if OverlapCoord−Power(OS)=1 and OverlapContr−Power(OS)=1,
then OS is (maximally) sound.

Equation 9 can be easily modified in order to capture analogous properties which we
call out-cover and chain. The first one concerns the extent to which all the roles with
emanating links in a dimension k are also roles with emanating links in a dimension j.



10 D. Grossi et al.

power

coordination

control

b

a

c

d

e

g

f

h

A B

Pow Coord Contr

Compl.k(OS) 5
56

11
56

5
56

Conn.k(OS) 1
4

31
56

26
56

Econ.k(OS) 51
49

45
49

51
49

Unil.k(OS) 1 3
11 1

Univ.kOS) 1 5
8 1

Flat.kOS) 1 1
2 1

Coord-Pow Contr-Pow Pow-Contr Coord-Contr Contr-Coord Pow-Coord

Detourjk(OS) 1 2
5

2
5

2
5

2
9

4
9

Overlapjk(OS) 1 2
5

2
5

2
5

2
9

5
9

InCoverjk(OS) 1 4
5

4
5 1 5

6
5
6

OutCoverjk(OS) 1 2
3

2
3

2
3

2
5

3
5

Chainjk(OS) 2
3

1
3

1
3

1
3

3
5

2
5

Fig. 1. Example of structural measures

The second one concerns the extent to which a dimension j is ‘incident’ to the emanat-
ing links in a dimension k, in the sense that the roles with incident links in j contain the
roles with emanating links in k.

OutCoverjk(OS) =
|OUT+

j ∩ OUT+
k |

|OUT+
k |

, (10)

Chainjk(OS) =
|IN+

j ∩ OUT+
k |

|OUT+
k |

, (11)

with |Rk| > 0, IN+
i is as defined above and OUT+

i is the set of all elements x in Rolesi

such that odi(x) ≤ 1. Notice that the chain measure can be viewed as an inter-structural
version of the flatness measure.

Before ending the section, it is worth noticing that all structural measures defined
above range between 0 and 1 except economy which can get values higher than 1.
Despite this, we saw that the optimal value of Economyk(OS) is still 1 (higher values
determine over-efficiency). Whether a given OS enjoys a property at its optimal level,
can therefore be handled as a matter of approximation of the corresponding measure to
1: the more Economyk(OS) approximates value 1 the more OS enjoys economy, etc.



Structural Aspects of the Evaluation of Agent Organizations 11

3.4 An Example

In order to illustrate the above measures, an example is here provided and discussed.
Consider the OS depicted in Figure 1. It is specified as follows:

Roles = {a, b, c, d, e, f, g, h},
RPow = {(a, b), (a, c), (e, d), (f, g), (f, h) },
RCoord = {(a, b), (a, c), (b, a), (c, a), (b, c), (c, b), (e, d), (f, g), (f, h)},
RContr = {(d, b), (e, a), (d, c), (f, g), (f, h)}.
We then have that: RolesPow = RolesCoord = RolesContr = {a, b, c, d, e, f, g, h}.

Such an OS specifies an organization where two substructures A and B are connected
via a symmetric coordination link. It is what we may call, following [6], a form of
federation.

Substructure B is a typical form of highly centralized hierarchy: all connections move
from the source f to the subordinated roles g and h. Indeed, it exhibits the optimal level
of efficiency, unilaterality, univocity and flatness (equal to 1) for all three structural di-
mensions. Completeness and connectedness are also the same for all three dimensions,
respectively equal to 2

6 and to 1. Besides, there is a full reciprocal overlap (equal to 1) of
all the three dimensions which, as showed above in Section 3.3, implies the soundness
of the structure.

Substructure A, instead, displays a slightly more complex pattern. It hides two dis-
connected power hierarchies composed by roles a, b and c and, respectively, roles d
and e. In fact, we have that CompletenessPow(A) = 3

20 and ConnectednessPow(A) =
7
10 . Besides, the coordination structure is much more complete than the power one
(CompletenessCoord(A) = 7

20 ). This is due to the full connection holding between
roles a, b and c. As to the interplay of the different dimensions in A, it is easily seen
that OS is not maximally sound since InCoverContr−Pow(A) = 2

3 . This is due to the
fact that role d is not object of control although it is subordinated, in the power struc-
ture, to role e. In case e would delegate to d a task, a failure in accomplishing this task
would not be recovered. This would definitely constitute a weak spot in an organization
designed according to this structure. Interestingly, there is minimum overlap between
RContr and RPow: OverlapContr−Pow(A) = 0. This embodies a sort of complete “sep-
aration of concerns” between the power and the control dimensions, in the sense that
controller roles are never in a power position with respect to the controlled roles. This
is obviously a sensible design requirement for preventing connivances between con-
trollers and roles in power positions. On the other hand, OutCoverPow−Contr(A) = 1

2
and OutCoverCoord−Contr(A) = 1

2 show that, although no role is at the same time in
a power and in a control position w.r.t. the same roles, there are controllers in A (one
out of two) which have the possibility to delegate tasks and communicate with other
roles (role e). Worth noticing is also the following: ChainContr−Pow(A) = 1

2 , that is,
one out of two roles in a power position are subjected to control. Interestingly, the only
uncontrolled role in a power position is the controller role e itself, and in fact no control
of the controller is implemented: FlatnessContr(A) = 1.

After discussing the two substructures in isolation we focus now on the federation
OS emerging by the joining of the two substructures via a symmetric coordination
link between roles a and f . The resulting structural measures of OS are the one listed



12 D. Grossi et al.

in figure 1. Let us comment upon them. First of all, none of the three dimensions is
connected (with coordination being the most connected among the three). This means
that within each dimension, there exist unrelated clusters of roles. In particular, the
roles in a controlling position within substructure A cannot communicate with the rest
of the federation. It follows that all dimensions happen to display high values of econ-
omy and even over-efficiency, like in the case of power and control. As to the degree
of unilaterality and univocity, power and control enjoy a degree equal to 1, and they
thus display typically hierarchical features. On the other hand, coordination is highly
reciprocal except, as we saw, within substructure B and it maintains a high degree of
univocity keeping therefore a low level of redundancies in coordination as well. As to
the interplay between the different dimensions, OS inherits the flaw of substructure A
which prevents it from enjoying the maximum degree of measure InCoverContr−Pow,
jeopardizing soundness. Coordination, instead, fully overlaps power guaranteeing the
necessary flow of communication after the delegation activity. In the tables in Figure 1
more measures concerning OS are provided which, for reasons of space limitation,
cannot be commented upon here.

4 Criteria and Structure

As the example showed, the structural measures captured in equations (1)-(11) would
be already enough for a quantified comparison of organizational structures. What is still
lacking, is to give those measures an ‘organizational meaning’, so to say, in terms of the
criteria of robustness, flexibility and efficiency.

In this section we ground such a connection. The structural measures captured in
equations (1)-(5) and (7)-(11) are used to provide hints about the adherence of a given
organizational structure to criteria commonly utilized for the classification of organi-
zations. Questions we aim at shedding light on are of the type: Is the coordination
structure flexible (enough)? Is the power structure efficient (enough)? Is the interplay
between power and control structure robust (enough)? etc.

Notice that we do not claim that those notions can be understood only on the basis
of structural considerations. We rather address what, just by looking at the structure of
an organization, can be said about its robustness, flexibility and efficiency. As a matter
of fact, considerations about structure have always been relevant both in organizational
sciences and multi-agent systems for explaining why, for instance, a network is more
flexible than a hierarchy. Here, we try to ground this kind of considerations on a more
solid and fully-fledged base.

Before doing this, it is important to stress that the structural analysis of the general
criteria of robustness, flexibility, and efficiency presupposes the semantics of structural
links exposed in [3] and summarized in Section 2.

4.1 Robustness

“Robustness is simply a measure of how stable the yield is in the face of anticipated
risks. That is, the maintenance of some desired system characteristics despite fluctua-
tions in the behavior of its component parts or its environment [. . . ]. Adding robustness
thus adds complexity” [18].



Structural Aspects of the Evaluation of Agent Organizations 13

Robustness asks for redundancies in the structural dimensions used for dividing tasks
within an organizations, i.e., the power and the coordination structures. Redundancy for
a power structure means low values of the UnivocityPow measure, and for a coordina-
tion structure also a low degree of the UnilateralityCoord in order to allow for symmet-
ric coordination links. In particular, symmetric coordination links can substitute broken
power links allowing for bilateral negotiations of tasks to replace direct delegation.
Therefore, a high OverlapCoord−Pow would be a sign of robustness.

For the same reasons the control structure plays an important role for the robustness
of an organization allowing for failure detection and reaction. It can be required that
each role in the power and coordination structures is controlled, suggesting a high de-
gree of the following measures: ChainContr−Pow, i.e., the control of agents in power
positions; ChainContr−Coord, i.e., the control of roles from which coordination links
depart; InCoverContr−Coord, i.e., the control of roles to which coordination links are
directed. Furthermore, every role in the control structure can be required to have a high
in-degree (every role is monitored by many other roles), which corresponds to a low
level of UnivocityContr. The number of control levels can also be increased, so that as
many controllers as possible are, in turn, controlled. This has to do with the well-known
“control of the controllers” issue which we already touched upon in [3] and corresponds
to a low degree of FlatnessContr (long control paths are enabled).

On the other hand, a good control structure is of no use if the controlling roles have
no capabilities or no power or coordination connections to follow up on perceived fail-
ures. This can be fostered via high values of, respectively, OutCoverPow−Contr and
OutCoverPow−Coord. In addition, the coordination structure determines how well in-
formation can disseminate over the organization. For robustness it is important that
information about failures can spread to the roles that can take appropriate action.
Also this structure can serve as a back up for a failure of the power structure. So, one
can easily claim that the more complete and more connected (CompletenessCoord and
ConnectednessCoord) the coordination structure is the more robust the organization is.

To sum up, the level of robustness of an organization, from the point of view of its or-
ganizational structure, can be evaluated considering the following structural measures:

CompletenessCoord 1 OverlapCoord−Pow 1

ConnectednessCoord 1 ChainContr−Pow 1

UnivocityPow 0 ChainContr−Coord 1

UnilateralityCoord 0 InCoverContr−Coord 1

UnivocityContr 0 OutCoverPow−Contr 1

FlatnessContr 0 OutCoverPow−Coord 1

The 1 and 0 symbol indicate the value which is considered to maximize robustness
with respect to that measure. For instance, the maximum enhancement of robustness
obtainable via modification of the connectedness measure is yielded by value 1. In
other words, the more ConnectednessCoord approximates 1, the more the structure is
robust. As to univocity the optimal value for increasing robustness is instead 0.



14 D. Grossi et al.

Getting back to the organizational structure OS discussed in the example above
(Section 3.4), we see that the robustness criterion is not its forte. Nevertheless it does
score well in the robustness-related measures concerning the interaction between the
structures:

OutCoverPow−Contr(OS) = 2
3 , OutCoverPow−Coord(OS) = 3

5 ,
ChainContr−Coord(OS) = 3

5 and InCoverContr−Coord(OS) = 5
6 .

4.2 Flexibility

“Flexible organizations are a looser co-operative association than classic hierarchical
organizations. [. . . ] Flexible organizations are continually in flux and are able to adapt
in a flexible way to changing circumstances” [14].

To make it more concrete, we look at the flexibility of an organizational structure
as its ability to cope with changing tasks. It is clear that the capabilities required for
the enactment of each role constitute a crucial issue. If all roles require the capability
to perform any task at any moment, then all roles would be designed to cope with any
different type of task. The actual structure does not really matter in this case, because
no matter how a task is distributed over roles and how it is controlled it would be
anyway performed. Given that the organization is sound, the information about the task
is appropriately distributed, control is properly configured and the organization is thus
as flexible as it can be.

Assuming a diversified distribution of capabilities among roles, flexibility of an or-
ganization amounts to decomposing a task in subtasks such that for every subtask a
role can be found which is held to be capable to perform that subtask. This can be
done via delegation through the power structure. However, an articulated power struc-
ture hinders flexibility constraining the distribution of tasks to predisposed patterns.
This suggests that, for enhancing flexibility at a structural level, low degrees of both
CompletenessPow and ConnectednessPow are required. Besides, it is worth noticing
that a given power structure assumes that the role having the power to delegate a task
is at least capable to perform those operations on the task that are needed before it can
be delegated. This can be some preprocessing of a task or a decomposition of a task or
even just a determination to which role the task should be delegated. Whenever a role
does not have the capability to perform this operation for a new task, the processing of
the task halts. Even if the subordinate roles could perform the task they would not get
it and thus the task would not be performed.

The control structure might alleviate this effect in that it can function as a link be-
tween different parts of the power structure. Whenever an agent enacting a role in the
power structure fails on (the distribution of) a task, its controller should react and have
the power to redistribute the task, structurally: high values of ChainContr−Pow and
OutCoverPow−Contr.

Network organizations and teams, instead, where no power structure exists, are com-
monly indicated as the paradigmatic example of flexible organizations [12]. In this type
of organizations the specification of the capabilities required for each role cannot be
complete since the nature of the tasks the organization has to fulfill is not exhaustively
known in advance. What becomes essential is therefore a coordination structure through



Structural Aspects of the Evaluation of Agent Organizations 15

which the knowledge, concerning which agent might be capable to handle the new
task, flows within the whole organization. The more roles are connected through this
structure the more likely the right agent can be found to perform a new task. Complete-
ness and connectivity (CompletenessCoord and ConnectednessCoord) are thus directly
linked also to the enhancement of the flexibility of an organization.

To recapitulate, these are the relevant measures for flexibility:

CompletenessPow 0 CompletenessCoord 1

ConnectednessPow 0 ConnectednessCoord 1

ChainContr−Pow 1 OutCoverPow−Contr 1

Again, 1 and 0 indicate the measures’ values which are considered to maximize flexibility.
With respect to the flexibility of the structure OS in the example, we see that it has

indeed a small power structure (connectedness and completeness are very low) and a
reasonably connected coordination structure (= 31

56 ). These two aspects both enhance
flexibility. This is indeed what we would expect, being OS a form of “federation”,
that is, a form of organization which retains some purely hierarchical aspects (in its
substructures) but exhibiting better flexibility. It scores well also w.r.t. the OutCover
measure between power and control: OutCoverPow−Contr = 2

3 .

4.3 Efficiency

According to [1], efficiency mostly refers to the amount of resources used by the orga-
nization to perform its tasks. Organizational structure plays a role in this sense, since
“links are not without cost in a social systems” [8].

There is a general assumption that high specialization of roles leads to more efficient
performance; it is the old principle of the division of labour2. Within organizational
theory as well as within AOSE (Agent Oriented Software Engineering) it is however
known that there is a balance between specializing (and thus creating more roles) and
the overhead this generates in the coordination of the tasks. Having less roles in the
organizational structure leads to higher efficiency. But having too few roles leads to
lower efficiency due to less appropriate performances of the tasks by the roles.

The existence of a power structure guarantees efficient distribution of tasks, and
a tree is the most efficient structure to cover all roles. Such a structure is obtained
imposing value 1 for all the following measures: ConnectednessPow (a disconnected
power structure generates fragments with independent power), EconomyPow (maxi-
mum economy without over-efficiency), UnilateralityPow (no peer-to-peer connections)
and UnivocityPow (no conflicts in the chain of command). If every role is specialized to
an extreme that all the capabilities required by the roles are disjunct, then every task can
be distributed in only one way within the organization. Given that there is only one way
of distributing the task, one can use a power structure reaching all roles to efficiently
effectuate this.

2 “The greatest improvement in the productive powers of labour [. . . ] seem to have been the
effects of the division of labour” ([16] p. 9).



16 D. Grossi et al.

As to coordination and control, economy (Economy) should also be required to
be 1 in order to minimize the amount of links. Besides, the most efficient way in or-
der to guarantee soundness (Definition 2) consists in mirroring the power dimension,
therefore obtaining high levels for all measures of overlap, that is: Overlap w.r.t. the
related dimensions of Coord − Pow, Contr − Pow, as well as Pow − Coord and
Pow−Contr (overlap needs to hold in both directions in order to enforce coincidence).
This keeps the number of links minimal and avoids the creation of further roles with
mere coordination and control tasks. It follows that a fully hierarchical organization
(such as substructure B described in the example of Section 3.4) where all structures
follow the same pattern forms the most efficient organization possible.

These are the thus the measures we consider to be related to efficiency:

ConnectednessPow 1 UnilateralityPow 1

EconomyPow 1 UnivocityPow 1

EconomyCoord 1 EconomyContr 1

OverlapCoord−Pow 1 OverlapContr−Pow 1

OverlapPow−Coord 1 OverlapPow−Contr 1

Again, 1 and 0 indicate the value which is considered to maximize efficiency with
respect to the measure at issue.

The structure OS of the example incorporates a very efficient power structure: uni-
laterality and univocity are optimal (equal to 1) as well as the overlap between coordi-
nation and power. On the other hand, the power structure covers only a small fraction of
the whole organization (ConnectednessPow(OS) = 1

4 ). As a consequence, distribution
of tasks via delegation can only partially take place.

5 Tuning Structural Measures to Organizational Properties

At this stage the obvious question is whether organizations can be designed which max-
imize the adherence to all three properties at the same time. From a structural point of
view and as intuition suggests, it is easy to show that this is not possible. Consider, for
instance, the coordination structure. In fact, efficiency increases when EconomyCoord

approximates 1. Maximum robustness and flexibility both require EconomyCoord equal
to 0, while maximum efficiency requires EconomyCoord equal to 1:

Robust Flexible Efficient

EconomyCoord 0 0 1

Intuitively, both robustness and flexibility increase the number of structural links and
thus the costs of the organizational overhead, while efficiency reduces these overhead
costs. Similar problems exist, for instance, for the power structure. The robustness cri-
terion requires as many redundancies as possible, and therefore low levels of univocity,
while flexibility demands the structure to be as small as possible and therefore with very



Structural Aspects of the Evaluation of Agent Organizations 17

low degrees of completeness. A number of similar incompatibilities can be detected and
mathematically investigated.

Since it is not possible to maximize the adherence to all properties at the same time,
the point consists then in finding suitable compromise solutions.

A good option might be, for instance, to maximize all structural features at the same
time getting a structure which exhibits Pareto efficiency w.r.t. the allocation of values to
equations (1)-(11): an assignment of value to every equation should be found such that
no other assignment exists which attributes a better value to one of the equations. This
would be a typical compromise solution. Although for many applications this can be a
good way to go, such a Pareto efficient structure would adhere to a reasonable extent to
each criterion, but it would not exhibit optimal values in any of the investigated mea-
sures. A circumstance in which this solution would be sensible is when the environment
is expected to change often while the organizational structure is not able to adapt. In that
case a middle of the road solution can provide reasonable performances over time.

However, when the environment does not change that frequently (i.e. it is known in
which kind of environment the organization should function) the issue amounts to what
in organization theory is called “synthesis problems”, that is, the questions concerning
“which structures are best suited to solve optimally certain types of problems” [5]. Should
for instance flexibility be privileged over efficiency? In other words, choices should be
made between the concurrent criteria. An extensive analysis of the interdependencies
between equations (1)-(11) could provide useful insights on this type of issues.

6 Conclusions and Future Work

The work addressed the issue of the influence of organizational structures on the perfor-
mance of organizations, aiming at providing a rigorous method for analyzing, compar-
ing and evaluating different types of structures. We proceeded as follows. First, making
use of graph theory, we provided a number of meaningful measures for quantifying the
adherence of organizational structures to specific structural features. Second, these mea-
sures have been used to ground a numerical analysis of the key organizational properties
of robustness, efficiency and flexibility. Third, it has been shown that such an analysis
pose the ground for an exact investigation of the extent to which those properties can
conflict with each other, providing interesting information for a more aware design of
organizational structures.

In future work we plan to extended this method in order to incorporate more struc-
tural measures and to account for more organizational criteria like, for example, the
scalability of an organizational structure. Another issue worth a detailed investigation
concerns the way the equations proposed in this work are related to each other also
constitutes an issue worth pursuing in future researches. Finally, the framework and its
results should be compared in details with approaches developed in the field of man-
agement sciences, such as [9,10], which bear many similarities both in purposes and
technical solutions.

Acknowledgments. We would like to thank Dr. Juan A. Rodrı́guez-Aguilar for the
useful pointers to relevant literature.



18 D. Grossi et al.

References

1. Etzioni, A.: Modern Organizations. Prentice-Hall, Englewood Cliffs (1964)
2. Friedell, M.F.: Organizations as semilattices. American Sociological Review 32, 46–54

(1967)
3. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Foundations of organizational structures

in multiagent systems. In: Proceedings of AAMAS’05, Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, July 2005, pp. 690–697. ACM Press, New
York (2005)

4. Harary, F.: Graph theoretic methods in the management sciences. Managemenet Sci-
ence 5(4), 387–403 (1959)

5. Harary, F.: Status and contrastatus. Sociometry 22, 23–43 (1959)
6. Horling, B., Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. Computer Sci-

ence Technical Report 04-45, University of Massachusetts (May 2004)
7. Horling, B., Lesser, V.: Using ODML to model and design organizations for multi-agent sys-

tems. In: Boissier, O., Dignum, V., Matson, E., Sichman, J., Utrecht (eds.) Proceedings ofthe
International Workshop on Organizations in Multi-Agent Systems (OOOP). AAMAS’05
(July 2005)

8. Krackhardt, D.: Graph theoretical dimensions of informal organizations. In: Carley, C.M.,
Prietula, M.J. (eds.) Computational Organization Theory, pp. 89–110. Lawrence Erlbaum
Associates, Mahwah (1994)

9. Malone, T.W.: Modeling coordination in organizations and markets. Management Sci-
ences 33(10), 1317–1332 (1987)

10. Malone, T.W., Smith, S.A.: Modeling the performance of organizational structures. Opera-
tional Research 36(3), 421–436 (1988)

11. Morgenstern, O.: Prolegomena to a theory of organizations. Manuscript (1951)
12. Powell, W.W.: Neither market nor hierarchy: Network forms of organizations. Research in

Organizational Behavior 12, 295–336 (1990)
13. Scerri, P., Xu, Y., Liao, E., Lai, J., Sycara, K.: Scaling teamwork to very large teams. In: Pro-

ceedings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’04), ACM Press, New York (July 2004)

14. Schoemaker, M.: Identity in flexible organizations: Experiences. Dutch Organizations Cre-
ativity and Innovation Management 12 (December 2003)

15. Selznick, P.: Foundations of the theory of organization. American Sociological Review 13,
25–35 (1948)

16. Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. Methuen and Co,
London (1776)

17. So, Y., Chon, K.: A performance model for tree-structuresd multiagent organizations in faulty
environments. In: Boissier, O., Dignum, V., Matson, E., Sichman, J., Utrecht (eds.) Proceed-
ings ofthe International Workshop on Organizations in Multi-Agent Systems (OOOP). AA-
MAS’05, July 2005 (2005)

18. Stimson, W.: The Robust Organization: Transforming Your Company Using Adaptive De-
sign. Irwin Professional Publishing (1996)

19. van der Broek, E.L., Jonker, C.M., Sharpanskykh, A., Treur, J., Yolum, P.: Formal model-
ing and analysis of organizations. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Organiza-
tions, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp. 18–34.
Springer, Heidelberg (2006)



Integrating Trust in Virtual Organisations�

Ramón Hermoso, Holger Billhardt, and Sascha Ossowski

Artificial Intelligence Group
DATCCCIA - ESCET

University Rey Juan Carlos
{ramon.hermoso,holger.billhardt,sascha.ossowski}@urjc.es

Abstract. Organisational models cannot only be used to structure mul-
tiagent systems but also to express behaviour constraints for agents in
open environments. However, sometimes these behaviour constraints can-
not be exhaustively enforced, and some agents may transgress the norms
put forward by a Virtual Organisation. This poses an additional burden
on agents, as they cannot be sure that their acquaintances will behave as
prescribed. Trust and reputation mechanisms are of particular relevance
to this respect, as they are commonly used to infer expectations of future
behaviour from past interactions.

In this paper we argue that, on the one hand, the a priori structure
of Virtual Organisations can be useful to improve the efficiency of trust
and reputation mechanisms, and that, on the other hand, such mecha-
nisms provide relevant information for agents that are part of Virtual
Organisations. For this purpose, we identify relevant aspects of exist-
ing organisational (meta-)models, and outline a reputation mechanism
for Virtual Organisations that integrates these aspects. The dynamics of
this mechanism is illustrated by an example.

1 Introduction

It is commonly agreed that the notion of organisation is of foremost importance
to Multiagent Systems (MAS). In particular, organisational concepts are heavily
used in the field of Agent-oriented Software Engineering [26]. In fact, it is tempt-
ing to maintain a tight coupling between a MAS, and the relevant features of the
(human) organisation that it models, during the whole design process. Organi-
sational concepts are often used as first-class abstractions that provide structure
to the different models and stages of MAS design, and thus help designers to
cope with high levels of complexity that MAS applications usually need to cope
with [15].

When shifting the attention to open MAS, the coercive facets of organisational
models gain relevance. Organisational abstractions are conceived as something
aimed at limiting the freedom of choice of otherwise autonomous agents: once an
agent freely chooses to enter an organisation in a certain position, playing certain
� The present work was partly funded by the Spanish Ministry of Education and

Science under grant TIC2003-08763-C02-02.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 19–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



20 R. Hermoso, H. Billhardt, and S. Ossowski

roles, etc., it is supposed to behave in accordance with prescriptions attached to
those concepts. Often, these prescriptions are complemented by a more general
set of norms [23][3]. We refer to open MAS with these characteristics as Virtual
Organisations (VOs) [19].

VOs differ in the way that prescriptions are enforced. Several approaches
provide mechanisms to make it impossible for agents to transgress norms (e.g. by
providing specific “governor” agents [6], or by integrating “filtering” mechanisms
into MAS infrastructures [14]). However, especially for large-scale VOs this is a
rather difficult and computationally expensive task. An alternative approach is
to endow the VO with incentive mechanisms that, in general, make it too costly
for agents to deviate from the prescribed behaviour (e.g. by means of installing
incomplete but sufficiently effective detection and penalisation mechanisms for
potential transgressors) [4]. Still, in the latter case, from the standpoint of an
individual agent there is a significantly higher degree of uncertainty as to whether
its organisational acquaintances will effectively behave in accordance with the
organisational norms.

Several authors have investigated trust and reputation mechanisms that pro-
vide agents with expectations about the future behaviour of their acquaintances
based on their interaction history within the MAS [11,2,18]. However, most mech-
anisms aim at supporting the emergence of overlay networks of trust relations
in otherwise poorly structured systems. We believe that, on the one hand, the
a priori structure of VOs can be useful to improve the efficiency of reputation
mechanisms, and that, on the other hand, such mechanisms can be quite use-
ful for an agent’s decision-making. This is particularly true for agents that are
part of (and have to act to attain their individual goals within) VOs with “soft”
enforcement mechanisms.

In this paper we present first results of our work in progress, aimed at integrat-
ing the structuring and coercive facets of organisational abstractions into trust
and reputation mechanisms for VOs. In Section 2 we point to relevant aspects
of previous work in the fields of organisational models and trust and reputation
mechanisms. Section 3 outlines our proposal for building up and maintaining a
trust model that takes into account organisational concepts, and shows how it
can guide an agent’s decision-making in a VO. We present an example of how
to apply those mechanisms within a particular VO in Section 4. Finally, we con-
clude summarising our proposal, compare it to approaches by other authors, and
outline future lines of work.

2 Background

There is a wide range of organisational (meta-) models aimed at describing
basic organisational concepts and their interrelation in the context of MAS
[7,10,20,13]. There is a common agreement that the notion of role is central
for linking agents to an organisational model. Roles are sometimes defined by
the actions they can perform, but usually they are characterised by the types of
social interactions to which they contribute. The latter term does not primarily



Integrating Trust in Virtual Organisations 21

refer to the interaction protocols that agents engage in, but rather to the social
functionality that such interactions shall achieve. In this sense, we assume that
VOs define roles and specify the interactions (functionalities) in which each role
can participate.

Several meta-models allow for specialisation relations among essential organ-
isational concepts. In the organisational model underlying the FIPA-ACL, for
instance, information exchange interactions are a special kind of request inter-
action, where the requested action is a communicative action of type inform
(e.g., [21]). In much the same way, the informer role involved in this interaction
can be conceived as a specialisation of the requester role. In summary, organi-
sational models often contain taxonomies of concept types, e.g., for roles or for
interactions. Such taxonomies can be provided to the agents participating in an
organisation – for instance, as an organisational service.

Finally, it is worth noting that many organisational models allow for certain
types of aggregation relations. Different notions of groups – conceived as collec-
tions of agents – [7,13], or collections of interaction protocols [9] are examples
of such composed concepts. In a similar sense, the proper organisation itself as
the aggregation of all its participating agents can be conceived as an individual
unit.

There are many recent proposals for reputation mechanisms and approaches
to evaluate trust in peer-to-peer systems in general (e.g. [25,2]), and MAS in par-
ticular (e.g. [11,24,18]). Sabater and Sierra [17] consider reputation to have two
different dimensions of influence: an individual dimension measuring local rep-
utation – evaluated from direct interactions– and a social dimension evaluated
from direct interactions and from the opinions from the society. In this paper,
we will follow the proposal by Ramchurn et al. [16] regarding basic concepts of
trust-based systems: confidence is a local rating based on direct interactions;
reputation is a rating based on opinions of others; and trust is a rating built as
a result from combining.

3 Trust Mechanisms in Virtual Organisations

Although VOs may limit the freedom of choice of agents, especially in less reg-
ulated organisations agents will still be confronted with the problem of deciding
appropriate counterparts for their interactions according to their own beliefs and
goals. Hence, trust and reputation mechanisms should be added as an additional
layer on top of the organisational layer of a MAS as it is presented in Figure 1.

Not only a trust layer is useful for VOs. Also VOs provide a new viewpoint
to trust and reputation mechanisms; organisational structures can help to get
more reliable trust evaluations. In the following sections we present, first, an
adaptation of standard trust and reputation mechanisms to VOs. Then we show
how an agent can use knowledge about the organisational structure to infer
confidence in an issue if no previous experience is available.



22 R. Hermoso, H. Billhardt, and S. Ossowski

Fig. 1. Layered-network model for MAS

3.1 Basic Trust Model for Virtual Organisation

As described in Section 2, it seems reasonable to assume that a minimal or-
ganisational model defines at least roles and interactions, and that every agent
participating in the VO plays at least one defined role. Furthermore, we assume
that agents participating in an VO know the organisational structure, i.e. they
know the roles other agents are playing within the organisation as well as the
interactions that are defined for each role.

In line with other approaches [12,24,17,16], we base our trust model on the
notions of confidence and reputation. A typical situation is that an agent A
wants to evaluate the trustworthiness of some other agent B – playing the role
R – in the interaction I. This trustworthiness is denoted as tA(〈B, R, I〉), with
tA(〈B, R, I〉) ∈ [0..1], and it measures the trust of A in B (playing role R) being
a “good” counterpart in the interaction I. In order to build trust, agents can
rely on two different measures: their own confidence, and the social reputation
of an issue.

Confidence, cA(〈B, R, I〉), is obtained from A’s own experience when interact-
ing with agent B playing role R in past interactions of type I. Confidence values
for past interactions are stored in the agent’s local interaction table (LIT). This
table contains one entry for each counterpart agent, playing a particular role,
with which the agent has interacted in a particular interaction1. LITA denotes
agent A’s LIT. An example is given in table 1.

Each entry in a local interaction table LIT contains the following elements: i)
the Agent/Role/Interaction identifier 〈X, Y, Z〉, ii) the confidence value for the is-
sue (cA(〈X, Y, Z〉)), and iii) a reliability value (r(cA(〈X, Y, Z〉))). The confidence
value may be obtained from some function that evaluates past experiences on
the same issue. We suppose cA(〈X, Y, Z〉) ∈ [0..1] and higher values to represent
higher confidence. Reliability (r(cA(〈X, Y, Z〉))) measures how certain an agent is
about its own confidence in issue 〈X, Y, Z〉. We suppose r(cA(〈X, Y, Z〉)) ∈ [0..1].
Furthermore, we assume that r(cA(〈X, Y, Z〉)) = 0 for any tuple 〈B, R, I〉 not
belonging to LITA.

1 Depending on computational restrictions, the table may resume all past events or
just the recent interactions the agent was involved in.



Integrating Trust in Virtual Organisations 23

Table 1. An agent’s local interactions table (LITA)

〈X, Y, Z〉 cA(〈X,Y, Z〉) r(cA(〈X, Y, Z〉))
〈a2, r5, i1〉 0.5 0.3

〈a4, r1, i2〉 0.7 0.8

〈a2, r3, i1〉 0.9 0.5
...

...
...

〈a9, r2, i5〉 0.4 0.7

Reliability can be computed, for example, as proposed by Huynh, Jennings
and Shadbolt [11,12], by taking into account the number of interactions a con-
fidence value is based on and the variability of the individual values across past
experiences.

An agent may build trust directly form its confidence value or it may com-
bine confidence with the social reputation of an issue. The latter is especially
necessary if an agent has no experience on an issue or if its confidence is not
sufficiently reliable. An agent can obtain the social reputation of an issue by
asking other agents about their opinion on that issue. Agents that have been
asked for their opinion return the corresponding confidence and reliability val-
ues from their LIT. Based on confidence and reputation, the trust A has in the
issue 〈B, R, I〉 can be defined in the following way:

tA(〈B,R, I〉) =

��
�

cA(〈B, R, I〉), if r(cA(〈B, R, I〉)) > TRA�
Ak∈RA

cAk
(〈B,R,I〉)·wAk

(cAk
(〈B,R,I〉))

�
Ak∈RA

wAk
(cAk

(〈B,R,I〉)) otherwise
(1)

Using this formula, trust will be measured at a scale [0..1]. TRA is a thresh-
old for the reliability of A’s own confidence values. If the reliability is below
TRA, tA(〈B, R, I〉) is calculated as the weighted mean of the confidence val-
ues received from a set of recommender agents (RA). Agent A itself belongs to
RA. wAk

(cAk
(〈B, R, I〉)) is the weight given to agent Ak’s confidence on issue

〈B, R, I〉. This weight can be calculated as follows:

wAk(cAk (〈B, R, I〉)) =

�
r(cAk(〈B, R, I〉)) · α, if Ak = A
r(cAk(〈B, R, I〉)) · (1 − α), otherwise

(2)

where α ∈ [0..1] is a parameter specifying the importance given to A’s own
confidence value. For values of α > 0.5, an agent relies stronger on its own
experience than on the opinions obtained form others.

One problem of reputation mechanisms is to determine the recommender
agents that should be asked for their opinion about an issue 〈B, R, I〉. In a
VO an agent A can take advantage of the organisational structures in order to
decide which agents it should ask for their opinion. In fact, good recommenders
may be other agents that play the same role as A. The reason is twofold. First,
agents playing the same role in an organisation will have the similar goals and,
hence, it is likely that they have a similar subjective opinion about the trust-
worthiness of possible counterparts. Second, A probably wants to evaluate the



24 R. Hermoso, H. Billhardt, and S. Ossowski

trustworthiness of an issue 〈B, R, I〉 because A’s own role can participate in the
interaction I. Thus, it is likely that other agents, playing the same role as A, will
already have some experience with interaction I and possibly with the particular
agent B.

3.2 Confidence and Trust for Organisational Structures

In the following sections we propose alternative ways to build an agent’s confi-
dence in an issue. We only concentrate on confidence values obtained from an
agent’s own experiences. The use of the proposed approaches in combination
with social reputation in order to build trust is straight forward.

Agents accumulate past experiences in form of atomic confidence values for
Agent/Role/Interaction tuples in their LIT. This information may be used to
calculate confidence (and trust) values for other organisational elements by ac-
cumulating the corresponding entries in an agent’s LIT.

Agent/role confidence evaluates an agent’s trust in a specific role within the
organisation. It measures the confidence an agent A has in agent B playing a
role R and can be calculated by compiling past experiences from any type of
interaction where A and B (playing role R) have met:

cA(〈B, R, 〉) =

�
〈B,R, 〉i∈LITA

cA(〈B, R, 〉i) · r(cA(〈B, R, 〉i))�
〈B,R, 〉i∈LITA

r(cA(〈B, R, 〉i))
(3)

The notation 〈B, R, 〉 refers to tuples for a fixed agent B and a fixed role
R regardless the interaction. Agent/role confidence may be used as an addi-
tional evidence measure when calculating tA(〈B, R, I〉). However, more impor-
tantly it provides a manner to evaluate cA(〈B, R, I〉) (and tA(〈B, R, I〉)) if agent
A has none or not enough experience regarding the issue 〈B, R, I〉, that is, if
r(cA(〈B, R, I〉)) < TRA. The importance increases if none of the agents in the
organisation has had any experience regarding the issue 〈B, R, I〉, and there-
fore, none of the agents could give any (reliable) recommendation. In such a
scenario, cA(〈B, R, 〉) can provide a valuable approximation of cA(〈B, R, I〉) for
any interaction I.

In a similar way, agents can compute agent confidence (cA(〈B, , 〉)) – the
(global) confidence agent A has in agent B. Agent confidence values can provide
a second level of approximation when building tA(〈B, R, I〉). They may be used
as an alternative for cA(〈B, R, I〉) if there is not even enough expertise for a reli-
able confidence cA(〈B, R,〉 ). In a more general environment with agents possibly
participating in several organisations, agent confidence may also be used as a
gauge to authorise agents to join an organisation.

Equation 3 can be adapted to calculate role confidence (cA(〈 , R, 〉)) and
interaction confidence (cA(〈 , , I〉)).2 Role confidence measures an agents con-
fidence in a specific role within an organisation. It could be used as a default
confidence value assigned to agents that just entered an organisation playing a
2 It is also possible to compute agent/interaction confidence values (cA(〈B, , I〉)).

However, we do not consider this measure very useful.



Integrating Trust in Virtual Organisations 25

specific role and, thus, for which there are no confidence values available. Inter-
action confidence provides an estimation of the trust in a concrete interaction
within an organisation despite the actual agents that have participated in the
interaction. Interaction confidence may be used as a means to choose between
several alternative interactions an agent could participate in.

Role and interaction confidence have an additional importance for VOs. They
evaluate certain parts of an organisation at the institutional level, that is, in-
dependently on the agents actually participating in the organisation. From the
institutional point of view, role and interaction confidence can be used to identify
deficiencies in the organisational structure and functioning. From the outside,
both measures can be used to evaluate parts of an organisation or an organisation
as a whole.

Confidence (and trust) values can also be aggregated for groups of agents –
either in general or in relation to one or more interactions or roles. Suppose,
an agent A intends to evaluate a group of agents (AG = {B1, B2, ..., Bn}),
for instance, in order to decide whether to join them or not. The value can
be estimated from A’s experience about past interactions in which also agents
belonging to AG participated. The confidence an agent A has in the group AG
with regard to an interaction I is defined as follows:

cA(〈AG, , I〉) =

�
〈B, ,I〉i∈LITA∧B∈AG cA(〈B, , I〉i) · r(cA(〈B, , I〉i))�

〈B, ,I〉i∈LITA∧B∈AG r(cA(〈B, , I〉i))
(4)

In a similar way it is possible to compute the confidence in a group of agents
in general (cA(〈AG, , 〉)), or in a group of agents with respect to a specific set
of roles and/or interactions.

Finally, considering AG to be the set of all agents participating in a specific
organisation, then cA(〈AG, , 〉) specifies the confidence in that organisation –
measured as the aggregation of the confidence values for all participating agents.
Organisation confidence may have a special importance in open MAS with where
several VOs compete with each other.

3.3 Confidence Inference Using Role and Interaction Similarities

In the previous subsection we have proposed to use the agent/role confidence
cA(〈B, R, 〉) (or cA(〈B, , 〉)) as an estimation for cA(〈B, R, I〉) if agent A has
no reliable experience about issue 〈B, R, 〉. This approach is based on the hy-
pothesis that, in general, agents behave in a similar way in all interactions re-
lated to the same role. Formally, we assume that for any interaction I ′, with
I ′ �= I, the value cA(〈B, R, I ′〉) is an approximation for cA(〈B, R, I〉). Refining
this idea, it seems reasonable to assume that the more similar I ′ and I the more
similar will be the values cA(〈B, R, I ′〉) and cA(〈B, R, I〉). And the same actu-
ally applies to roles. Using this idea, confidence values accumulated for similar
agent/role/interaction tuples may provide evidence for the value of cA(〈B, R, I〉).



26 R. Hermoso, H. Billhardt, and S. Ossowski

We propose the following equation for calculating confidence:

cA(〈B, R, I〉)=

�
〈B′,R′,I′〉∈LITA

cA(〈B′, R′, I′〉) · r(cA(〈B′, R′, I′〉)) · sim(〈B′, R′, I′〉, 〈B, R, I〉)
�

〈B′,R′,I′〉∈LITA
r(cA(〈B′, R′, I′〉i)) · sim(〈B′, R′, I′〉, 〈B, R, I〉)

(5)

Using equation 5, each entry from agent A’s LIT has an influence in the cal-
culation of cA(〈B, R, I〉). The weight given to an entry is determined by the
similarity of the agent/role/interaction key to the key 〈B, R, I〉 and by the re-
liability of the confidence value. sim(〈B′, R′, I ′〉, 〈B, R, I〉) can be computed as
the weighted sum of the similarities of the individual elements (agent, role, and
interaction), as defined in the following equation:

sim(〈B′, R′, I ′〉, 〈B, R, I〉) = α·simA(B, B′)+β·simR(R, R′)+γ·simI(I, I ′) (6)

where simA(B, B′), simR(R, R′), simI(I, I ′) ∈ [0..1] measure the similarity be-
tween the agents, roles and interactions, respectively. α, β and γ, with α + β +
γ = 1, are parameters specifying the sensibility regarding the individual simi-
larities. Assuming that only confidence values for the same agent are taken into
account, simA(B, B′) is defined as follows:

simA(B, B′) =

�
1, if B = B′

0, otherwise
(7)

As argued in Section 2, many organisational models include taxonomies of
roles and/or interactions. If this is the case, simR(R, R′) and simI(I, I ′) can
be implemented by closeness functions that estimate the similarity between two
concepts on the basis of their closeness in the concept hierarchy.

Equations 3 and 5 can be used as an additional indicator for tA(〈B, R, I〉).
If an agent has no reliable experience about a particular agent/role/interaction
issue, they can be used to estimate trust without the necessity to rely on the
opinions of other agents. Thus, the proposed model makes agents less dependent
on others, which is an important issue especially in VOs that do not provide
mechanisms to keep its members from cheating.

4 An Example

In this section we illustrate our approach with an example taken from the Uni-
versity domain. This and other examples have been successfully tested (but not
included in this paper) using a testbed called TOAST [8]. Suppose a School
of Computer Science whose members play roles out of the taxonomy shown in
Figure 2. Furthermore, suppose that the social functionalities provided by the or-
ganisation are summarised in the interaction taxonomy illustrated in
Figure 3.

Suppose an agent a, playing the role Student, has just finished its first year at
the university and wants to enrol in the second year. Suppose a wants to enrol in
the subject Artificial Intelligence (AI) and suppose there are two different lectur-
ers giving AI classes: L1 and L2. Agent a has to decide one of those lecturers to



Integrating Trust in Virtual Organisations 27

Fig. 2. Role taxonomy provided by University organisation

Fig. 3. Interaction taxonomy provided by University organisation

Table 2. Agent a’s local interaction table

〈X, Y, Z〉 ca(〈X, Y, Z〉) r(ca(〈X, Y, Z〉))
〈L7, Th.Lecturer, T each〉 0.1 0.3

〈L2, Th.Lecturer, T each GameTheory〉 0.9 0.3

〈S7, Student, Study〉 0.7 0.5

〈S7, Sprinter,Running〉 0.3 0.7

〈L1, Ass.Lecturer, T each AdvancedAlgorithms〉 0.8 0.9

〈L2, Lecturer, T each GameTheoryAssignments〉 0.3 0.8

〈L1, Th.Lecturer, T each〉 0.7 0.5

〈L1, Singer, Sing In Choir〉 0.5 0.5

〈S4, Student, Study〉 0.7 0.8

attend his/her classes. In order to make this decision agent a can use its experience
stored in form of confidence values in its LIT. This LIT is shown in Table 2.

As it can be seen in Table 2, agent a has no direct experience , that is, no confi-
dence values, for the issues 〈L1, Lecturer, T eachAI〉 and 〈L2, Lecturer, T eachAI〉.
However, using knowledge about the organisation, agent a could assess the ex-
pression ca(〈L1/L2, Lecturer, 〉) as an approximation for the desired confidence
values. In doing so, the agent obtains:

ca(〈L1, Lecturer, 〉) = novalue ca(〈L2, Lecturer, 〉) = 0.3.

Observe that there is no possible rating for ca(〈L1, Lecturer, 〉) since there is
no matching between tuple 〈L1, Lecturer, 〉 and any other tuple in LITA.



28 R. Hermoso, H. Billhardt, and S. Ossowski

In this case, as a second approximation, agent a could calculate agent confi-
dence:

ca(〈L1, , 〉) = 0.56 ca(〈L2, , 〉) = 0.46.

This approximation, however, would not only count the confidence in L1 and
L2 as teachers, but also, for example, the confidence in L1 as a Singer in the
Choir. Hence, it would be better to calculate ca(〈L1/L2, Lecturer, T eachAI〉)
using equation 5. In order to do that, the agent could use the following simple
equation to calculate the similarity between roles and interactions, respectively:

simR/I(x, y) = 1 − hi

hMAX
(8)

where x, y are either roles or interactions, hi is the number of nodes between x
and y in the taxonomy, and hMAX is the longest possible path between any pair
of elements in the hierarchy tree.

Using equations 5 and 8 the calculated confidence values are the following:

ca(〈L1, Lecturer, T eachAI) = 0.61 ca(〈L2, Lecturer, T eachAI) = 0.54,

(We have set α = 0.5, β = 0.35 and γ = 0.15.) Based on these values, agent a
decides to attend the classes from lecturer L1.

5 Conclusion

In this paper we have presented results of our work in progress, aimed at in-
tegrating organisational facets into trust mechanisms. We have emphasised the
problem of finding “good” counterparts, even if no previous interactions have
been performed. The proposed trust model takes into account key concepts of
organisational models, such as roles and interactions, as well as the their ag-
gregation in groups or organisations. We have also endowed our model with
inference capabilities exploiting taxonomies of concept types provided by VOs.

In contrast to other approaches to trust systems (most of them based on
reputation distribution), we have presented a way of evaluating trust at a local
level that emphasizes the different experiences of agents from past interactions.
The model proposed by Sabater and Sierra [18] incorporates social networks
(social relations between agents) as a key factor for reputation ratings. Moreover
their approach considers a hierarchical ontology structure in order to obtain
different kinds of reputation. However, they do not take into account the effect
of super-concepts for the estimation of similarity ratings.

Abdul-Rahman and Hailes [1] propose a trust model for virtual communities
but use qualitative ratings for estimating trust. They focus on evaluating trust
from past expertise and reputation coming from recommender agents without
considering explicitly VO structures.

The FIRE model proposed by Huynh, Jennings and Shadbold [11] is also
concerned with interaction trust and role-based trust. As in our approach, the
former is built from direct experience of an agent, while the latter is the rating



Integrating Trust in Virtual Organisations 29

that results from role-based relationships between agents. Nevertheless, the FIRE
model does not consider inference on VO structures.

The trust model by Ramchurn et al. [16] is based on direct and indirect
multi-agent interactions for establishing contracts between agents in electronic
institutions[5]. Still, it does not account for VOs with “soft” enforcement mech-
anisms, where norms and behaviour rules can be transgressed.

We have also designed and developed a testbed [8] that allow us to simulate
VOs with different trust models (included proposed in this paper), so as to
gain experimental evidence regarding their behaviours in different situations.
It will also allow us to come up with a more quantitative comparison to other
approaches. In future work, we will investigate how different agents behaviours
(honest, incompetent, malicious, etc.) can affect the overall VO performance
using the proposed trust model. Furthermore, we will look into different ways of
applying more accurate similarity functions to uise with structural taxonomies,
e.g., [22] as well.

References

1. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: HICSS
(2000)

2. Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system.
In: CIKM ’01: Proceedings of the tenth international Conference on Information
and Knowledge Management, pp. 310–317. ACM Press, New York, USA (2001)

3. Camino, A.G., Aguilar, J.A.R., Sierra, C., Vasconcelos, W.: Norm-oriented pro-
gramming of electronic institutions: A rule-based approach. In: Noriega, P.,
Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) COIN 2006. LNCS(LNAI), vol. 4386, pp. 177–193. Springer, Heidelberg
(2007)

4. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforce-
ment in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS(LNAI), vol. 4386,
pp. 101–114. Springer, Heidelberg (2007)

5. Esteva, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal
specifications of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) Agent
Mediated Electronic Commerce. LNCS (LNAI), vol. 1991, pp. 126–147. Springer,
Heidelberg (2001)

6. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1,
pp. 236–243 (2004)

7. Ferber, J., Gutknecht, O.: A meta-model for the analysis of organizations in multi-
agent systems. In: Demazeau, Y. (ed.) Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS’98), Paris, France, July 1998, pp.
128–135. IEEE Press, Los Alamitos (1998)

8. Hermoso, R., Billhardt, H., Centeno, R., Ossowski, S.: Effective use of organisa-
tional abstractions for confidence models. In: Proceedings of 7th Annual Interna-
tional Workshop Engineering Societies in the Agents World, pp. 246–261 (2006)



30 R. Hermoso, H. Billhardt, and S. Ossowski

9. Hermoso, R., Ortiz, R., Saugar, S., Serrano, J.M.: Instrumentación de sistemas
multi-agente mediante un entorno organizativo/lingǘıstico: Un caso práctico. In:
Moreno, J.C.G., Morales, P.C., Mestras, J.P. (eds.) I Taller en Desarrollo de Sis-
temas Multiagente (DESMA-2004), Málaga, November 2004, pp. 72–83 (2004)

10. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the moise+ for a cooperative frame-
work of mas reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS
(LNAI), vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

11. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: Developing an integrated trust and
reputation model for open multi-agent systems. In: Falcone, R., Barber, S., Sabater,
J., Singh, M. (eds.) AAMAS-04 Workshop on Trust in Agent Societies (2004)

12. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: FIRE: An integrated trust and rep-
utation model for open multi-agent systems. In: Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI) (2004)

13. Odell, J., Nodine, M.H., Levy, R.: A metamodel for agents, roles, and groups.
In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp.
78–92. Springer, Heidelberg (2005)

14. Omicini, A., Ossowski, S., Ricci, A.: Coordination infrastructures in the engineer-
ing of multiagent systems. In: Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.)
Methodologies and Software Engineering for Agent Systems: The Agent-Oriented
Software Engineering Handbook, June 2004, ch. 14, pp. 273–296. Kluwer Academic
Publishers, Dordrecht (2004)

15. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineer-
ing of agent systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.)
Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 179–202. Springer,
Heidelberg (2003)

16. Ramchurn, S.D., Sierra, C., Godó, L., Jennings, N.R.: A computational trust model
for multi-agent interactions based on confidence and reputation. In: Proceedings
of 6th International Workshop of Deception, Fraud and Trust in Agent Societies,
pp. 69–75 (2003)

17. Sabater, J., Sierra, C.: REGRET: a reputation model for gregarious societies. In:
Müller, J.P., Andre, E., Sen, S., Frasson, C. (eds.) Proceedings of the Fifth In-
ternational Conference on Autonomous Agents, Montreal, Canada, pp. 194–195.
ACM Press, New York (2001)

18. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pp. 475–482. ACM Press, New York,
USA (2002)

19. Schumacher, M., Ossowski, S.: The governing environment. In: Weyns, D.,
Parunak, H.V.D., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp.
88–104. Springer, Heidelberg (2006)

20. Serrano, J.M., Ossowski, S., Fernández, A.: The pragmatics of software agents
- analysis and design of agent communication languages. In: Klusch, M., Berga-
maschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS
(LNAI), vol. 2586, pp. 234–274. Springer, Heidelberg (2003)

21. Serrano, J.M., Ossowski, S.: On the impact of agent communication languages on
the implementation of agent systems. In: Klusch, M., Ossowski, S., Kashyap, V.,
Unland, R. (eds.) CIA 2004. LNCS (LNAI), vol. 3191, Springer, Heidelberg (2004)

22. Sierra, C., Debenham, J.: Trust and honour in information-based agency. In: Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2006, pp. 1225–1232 (2006)



Integrating Trust in Virtual Organisations 31

23. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

24. Yu, B., Singh, M.P.: An evidential model of distributed reputation management. In:
AAMAS ’02: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pp. 294–301. ACM Press, New York, USA (2002)

25. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer sys-
tems. In: Proceedings of First IEEE Symposium on Multi-Agent Security and Sur-
vivability, pp. 1–10. IEEE Computer Society Press, Los Alamitos (2004)

26. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organizational abstractions for
the analysis and design of multi-agent systems. In: Ciancarini, P., Wooldridge, M.J.
(eds.) AOSE 2000. LNCS, vol. 1957, pp. 235–252. Springer, Heidelberg (2001)



Coordinating Tasks in Agent Organizations
Or: Can We Ask You to Read This Paper?

Virginia Dignum and Frank Dignum

Dept. Information and Computing Sciences, Utrecht University,
The Netherlands

{virginia,dignum}@cs.uu.nl

Abstract. Support for new forms of organization and social interaction requires
understanding the influence of structure on behavior. Goal dependencies indi-
cate some relationship between roles, through which actions can be coordinated.
Social relationships determine different types of power links between roles. Ef-
ficient coordination requires that goal dependency and power structure are well
tuned to each other. In this paper, we will investigate what is the exact nature of
this relationship between roles in an organization and what are the consequences
of different structure forms. We will also see what is the difference if the relations
are not hierarchical but organized through a market or network structure.

1 Introduction

One of the main issues in agent organizations is the specification of coordination mech-
anisms between agents playing roles in a regulated social environment. Coordination
can be defined as the process of managing dependencies between activities [16]. One
way to coordinate is to manage functional dependencies. In this sense, which is the
most commonly used in Multi-Agent Systems (MAS) research, coordination refers to
the allocations of tasks to agents, such that common goals are achieved. Coming forth
from Organizational Theory, another way to manage dependencies, considers the su-
pervision and collaboration relations between actors. In this sense, coordination refers
to the specification of power and authority relations between agents. Although the two
perspectives are interrelated, they are based on different concepts and views on organi-
zations, and their differences are not explicitly accounted for in most MAS models.

In this paper, we discuss the implications of the coordination type to the depen-
dencies between roles. Given that one role depends on another to achieve a goal, the
realization of that goal will depend on the social relationship between the roles, that is,
whether the role has power over the other role. We distinguish between hierarchical,
network and market social relationships between roles. Although role hierarchies can
be thought of in terms of hierarchical organizations, we argue that the reason to call
an organization hierarchical is not just because the roles are structured in some kind of
a hierarchy (or tree), but has more bearing on the type of coordination used between
roles that are related. A tree shaped organization usually also indicates that the roles
coordinate in a hierarchical way (through commands), but this is not necessarily so.
Even in such an organization, each role might offer a task to its ”subordinates” (using
something like contract net and a market mechanism) instead of delegating it.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 32–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Coordinating Tasks in Agent Organizations 33

The paper is organized as follows. In sections 2 and 3 we introduce both perspec-
tives on coordination: from Organizational Theory as the representation of the social
structure, and from MAS as the specification of task relationships. In section 4, we de-
scribe how the concept of role can integrate both views, by means of role dependencies
and coordination types. Section 5 shows the consequences of this integration for the se-
mantics of the role-based coordination model. Finally, we present our conclusions and
directions for future research in section 6.

2 Social Structure

Support for social interaction and organizational structure requires understanding the in-
fluence of structure on behavior. Sociology and Organizational Theory have since long
investigated social structures as the medium for human activities. In this section, we will
describe relevant research in those fields on the topic of organizational structure. In the fol-
lowing sections, we will draw from these insight to analyze and model MAS organization.

Behavior and structure are interleaved; people go through a socialization process and
become dependent on the existing social structures, but at the same time structures are
modified by their activities. Giddens’ structuration theory offers an account of social
life in terms of structure and agency [13]. Giddens argues that order, or structure, is pri-
marily created as a medium for practical activity. This instantiation of practical activity
is not based on a even distribution of power and resources, but asymmetry and domina-
tion are, in fact, part of the natural order. Different power relations between actors and
the utilization of different resources are at the basis of the development of particular
structural principles. It is useful to consider groups and organizations from a struc-
turation perspective because doing so: (a) helps one understand the relative balance of
deterministic influences and willful choices that characterize groups; (b) suggests pos-
sibilities for how members may be able to exercise more influence than they otherwise
think themselves capable of.

An organizational structure has essentially two objectives [9]: First, it facilitates the
flow of information within the organization in order to re duce the uncertainty of deci-
sion making. Secondly, the structure of the organization should integrate organizational
behavior across the parts of the organization so it is coordinated.

Relationships between and within organizations are developed for the exchange of
goods, resources, information and so on. Williamson argues that the transaction costs
are determinant for the organizational model [23]. Transaction costs will rise when the
unpredictability and uncertainty of events increases, and/or when transactions require
very specific investments, and/or when the risk of opportunistic behavior of partners is
high. When transaction costs are high, societies tend to choose a hierarchical model in
order to control the transaction process. If transaction costs are low, that is, are straight-
forward, non- repetitive and require no transaction-specific investments, then the mar-
ket is the optimal choice. Powell introduces networks as another possible coordination
model [20]. Networks stress the interdependence between different organizational ac-
tors and pay a lot of attention to the development and maintenance of (communicative)
relationships, and the definition of rules and norms of conduct within the network. At
the same time, actors are independent, have their own interests, and can be allied to



34 V. Dignum and F. Dignum

different networks. That is, transaction costs and interdependencies in organizational
relationships determine different models for organizational coordination.

Central in the way coordination is described is the concept of role. Role theory
bridges social psychology, sociology, and anthropology [1], and recently has interested
agent researchers. Its central concern has been with patterns of conduct, that is, expec-
tations, identities, and social positions; and with context and social structure. Fox et
al. introduce an organizational taxonomy which includes organizations, organizational
goals, roles, and authority [12]. Agents can play roles, which potentially give them
authority over other agents playing other roles. Empowerment and authority are recog-
nized as critical aspects, since these identify which roles (and hence which agents) are
enabled to perform which actions.

3 Coordination in MAS

Multi-agent coordination, defined as managing interdependencies between activities, ad-
dresses the special issues arising from the dependency relationships between multiple
agents tasks. Task coordination in MAS has concentrated on developing coordination
mechanism which facilitates dynamic collaboration between agents, with the goal of sat-
isfying in some specified sense both local and global system objectives. The coordination
structure must support the task-solving process using a generic mediation mechanism and
should provide communication protocols to link the agents having common interests.

In Distributed Artificial Intelligence (DAI), coordination approaches are often based
on contracting. The most famous example of these is the Contract Net Protocol (CNP)
[22] for decentralized task allocation. CNP was designed to handle applications with a
natural spatial distribution. By employing standard interaction mechanisms, the agents
in the MAS can expect certain behavior. The behavior of each individual is determined
to a great extent by the requirements of these interaction patterns. Roles provide both the
building blocks for agent social systems and the requirements by which agents interact.
Each agent is linked to other agents by the roles it plays by virtue of the applications
functional requirements which are based on the expectations that the application has of
the agent [17].

Such contract-based approaches assume the possibility for direct communication be-
tween agents. However, direct interaction and explicit communication are not always
the best approaches to achieve coherent systemic behavior in the context of MAS and
Agent Organizations (cf. stygmergy or mediation infrasctuctures). Omicini et al. have
proposed the notion of coordination artifacts to deal with indirect interaction. Coor-
dination artifacts are runtime abstractions encapsulating and providing a coordination
service, to be exploited by agents in a certain social context [19]. In particular, they
are suitable tools for modelling and engineering the Behavioral Implicit Communica-
tion (BIC) approach [2], which allows a wide spectrum of coordination problems for
intelligent agents to be modelled without relying on direct communication.

In our approach, organizational structures can be seen as a kind of coordination ar-
tifacts. By using the structure, agents are able to coordinate their behavior with each
other and following the expectations of the organization’s design. The more is made ex-
plicit in the coordination structure, the less need agents have to communicate in order



Coordinating Tasks in Agent Organizations 35

to coordinate. Organizational structure in MAS has been defined as that ”what persists
when agents enter or leave an organization, i.e. the relationships that makes an aggre-
gate of elements a whole” [11]. A social structure may be explicitly implemented in
the form of a social coordination artifact existing independently of the implementa-
tions of the agents, may be realized as part of the implementations of the agents, or
may exist only intangibly, in the form of the policies or organizational rules followed
by the agents during interaction.Much of this work has strong roots on the organiza-
tional forms identified in organization theory [8]. Basically the same three paradigms
as in Organizational Science have proved to be most popular among MAS developers:
hierarchy, market-oriented and team-centric, or network, organizations.

Finally, several researchers have recognized that the design of agent societies can
benefit from abstractions analogous to those employed by our robust and relatively suc-
cessful societies and organizations. Normative systems are increasingly being proposed
in agent research cope with the challenge of social order, as to decide on a course of
action when unexpected or undesired events occur (cf. [5,10]). Norms and conventions
specify the behavior that society members are expected to conform to and are suitable
means for decentralized control.

4 Roles and Dependencies

The main idea behind Agent Organizations is that interactions occur not just by acci-
dent but aim at achieving some desired global goals. Global goals are external to each
individual participant (or agent) but can only be reached by the interaction of those
participants. The design of agent organizations must capture on the one hand, the struc-
ture and requirements of the society owners, and on the other hand, must assume that
participating agents must be available that are able and interested in enacting society
roles. Several authors have proposed different models that consider organization as a
first-class abstraction and use roles to model organizational positions. The remainder of
this paper is based on the OperA model. However, most our claims can be related to
other approaches as well.

The OperA Model for agent organizations [7] integrates a top-down specification
of the society objectives and global structure, with a dynamic fulfillment of roles and
interactions by independent participants. That is, the model separates the description of
the structure and global behavior of the domain from the specification of the individual
entities that populate the domain. Agents are actors that perform role(s) described by
the society design. The agent’s own capabilities and aims determine the specific way an
agent enacts its role(s). An OperA model can be thought of as a kind of abstract protocol
that governs how member agents should act according to social requirements. In this
paper, we will only describe a few elements of the organizational model. In the next
sections, we discuss how this model for agent coordination, based on organizational
theory, can be used for social and task dependencies between roles.

4.1 Roles

Roles identify the activities and services necessary to achieve social objectives and en-
able to abstract from the specific individuals that will eventually perform them. From a



36 V. Dignum and F. Dignum

society design perspective, roles provide the building blocks for agent systems that can
perform the role, and from the agent design perspective, roles specify the expectations
of the society with respect to the agent’s activity in the society. Roles also define norma-
tive behavioral repertoires for agents [18]. That is, a role is the abstract representation
of a policy, service or function. In OperA, roles are described in terms of objectives and
sub-objectives (that is, what is an actor of the role expected to achieve) and norms (that
is, how is an actor expected to behave). Furthermore, role descriptions also specify the
rights associated with the role and the type of enactment of the role, that is, whether it
is an institutional role (which behavior is controlled by the society) or an external role.

The specification of objectives and sub-objectives can be more or less restrictive on
the actor performance. The more the aspects that are fixed in the specification, the less
the freedom an agent enacting the role has to decide on how to achieve the role ob-
jectives and interpret its norms. Following the ideas of [15], we call such expressions
landmarks. Formally, landmarks are conjunctions of logical expressions that are true
in a state. Intuitively, landmarks provide a description of a place or situation, which is
enough to identify it but without prescribing any specific process. Several different spe-
cific actions can bring about the same state, and therefore, landmarks represent actually
families of protocols. The use of landmarks to describe activity, enables the actors to
choose the best applicable actions, according to their goals and capabilities. The level
of specification of landmarks determines the degree of freedom the actors have about
their performance.

Role objectives are thus states of affairs expected to be achieved in the environment.
Once a society model is animated, the objectives of a role are expected to be executed
by the agent(s) enacting that role, that is, role objectives should become part of the goals
of the enacting agent. Intuitively, role objectives enable the ‘link’ between society ob-
jectives and agent goals. At this level of abstraction, role objectives do not have a fixed
semantics since roles are not performative entities but mere ‘placeholders’ for actors. The
actual semantics of objectives depend on the way objectives are treated and assumed by
the agent acting the role and on the semantics of agent goals in the agent model.

Definition 1 (Role Objective). Represented by ρ, is a predicate describing an ideal
state (or set of states) for the role. Pr is the set of objectives of role r. �
Roles are identified by their objectives, that is, different roles have different objectives
and all roles must have at least one objective. Formally:

1. ∀r1, r2 : r1 = r2 ⇔ Pr1 = Pr2

2. ∀r : Pr �= {}

A role objective ρ can be further described by specifying a set of sub-objectives that
must hold in order to achieve objective ρ. Sub-objectives give an indication of how
an objective is to be achieved, that is, describe the states that are part of any plan that
an agent enacting the role can specify to achieve that objective. Sub-objectives abstract
from any temporal issues that must be present in a plan, and as such must not be equated
with plans. Intuitively, sub-objectives are objectives that contribute to the realization of
another objective. That is, if Πρ = {ρ1, ..., ρn} is a set of sub-objectives for ρ, the
realization of all sub-objectives in Πρ yields the realization of ρ. Furthermore, for each
objective ρ, the trivial set of sub-objectives ρ is defined.



Coordinating Tasks in Agent Organizations 37

For example, in a Conference Organization, the objective of the PC-member role is
to review papers submitted to the conference, that is, to be in a state in which there are
review reports for all the papers assigned to her. Sub-objectives of that objective are (a)
to have read the paper, (b) to have written the review report, and, (c) to have sent the
report to the organizers. How an actor of the PC-member role is going to achieve this,
and indeed if she herself will do it (e.g. she can ask a student to read the paper and make
the review report) is not, in this situation, a concern of the society.

4.2 Coordination Types

Different application contexts exhibit different needs with respect to coordination, and
the choice of a coordination model will have great impact on the design of the agent so-
ciety. The implications of the coordination type to the architecture and design of agent
societies have usually not been considered. Societies depend on a facilitation layer
that provides the social backbone of the organization [4]. Facilitation activities deal
with the functioning of the society itself and are related to the underlying coordination
model.The social coordination model is used to specify the facilitation framework for
an agent society. In this paper, we distinguish between three coordination models: hier-
archies, markets and networks, which result in different frameworks for agent societies.

Hierarchies are very effective at addressing issues of scale, in particular if the do-
main can easily be decomposed along some dimension. In a hierarchy, interaction lines
are well defined and the facilitation level assumes the function of global control of the
society and coordination of interaction with the outside world. In a hierarchy, agents
are cooperative, not motivated by self interest and all contribute to a common global
goal. Coordination is achieved through command and control lines. Market models that
typically arise in e-business applications allow agents to coordinate activities without
ceding authority to other agents. In markets, agents are self-interested (i.e. determine
and follow their own goals) and value their freedom of association and own judgement
above security and trust issues. Openness is thus a feature of markets. Facilitation in
markets is, in the most extreme case, limited to identification and matchmaking activ-
ities, but usually also includes the specification of some trusted third party, such as a
bank. Interaction in markets occurs through communication and negotiation. Finally,
teams or networks are efficient when working on large-grained tasks which require
coordinated capabilities of more that one agent, but require higher communication ca-
pabilities. Network organizations are built around general patterns of interaction or con-
tracts. Relationships are dependent on clear communication patterns and social norms.
Agents in a network society are still self-interested but are willing to trade some of
their freedom to obtain secure relations and trust. Therefore, agents need to enter a so-
cial contract with the network society in which they commit themselves to act within
and according to the norms and rules of the society. The society is responsible to make
its rules and norms known to potential members. Coordination is achieved by mutual
interest, possibly using trusted third parties, and according to well-defined rules and
sanctions.

The coordination model determines interaction patterns and functionality of the fa-
cilitation layer of the society, that is, the interaction primitives and agent roles neces-
sary to implement the facilitation layer that are specific to each type of society (market,



38 V. Dignum and F. Dignum

network or hierarchy). Moreover, coordination models provide a framework to express
interaction between the activities of agents and the behavior of the system [3].

4.3 Dependencies Between Roles

The notion of role is closely related to those of cooperation and coordination. The way
tasks, or objectives, are allocated to roles determines the dependencies between them.
These dependencies describe how agents enacting the roles should interact and con-
tribute to the realization of the objectives of each other. That is, an objective of a role
can be delegated to, or requested from, other roles. The dependency relation between
roles r1 and r2 for objective γ of r1, represented by r1 ρ r2, indicates that objective
ρ can be passed to r2, that is, that r2 can realize objective ρ for r1.

Definition 2 (Role dependency). A dependency relation r1 ρ r2 describes the fact
that role r1 depends on role r2 to realize (sub)objective ρ. The relation ρ∈ R × R is
reflexive and transitive. That is, for all r1, r2, r3 ∈ R,

1. r1 ρ r1

2. r1 ρ r2 and r2 ρ r3 implies r1 ρ r3. �

In OperA, roles are organized as a partially ordered set, represented as � = (R,)
that reflects role dependencies. A dependency graph represents the dependency rela-
tions between roles. Nodes in a dependency graph are roles in the agent society. Arcs
are labelled with the objectives of the parent role for which realization the parent role
depends on the child role. There can be more than one arc between two nodes, rep-
resenting the fact that the parent role depends on the child role for more than one of
its objectives. The root of the graph is the society itself, represented as a super-role,
and contains the global objectives of the society, which are then decomposed into role
objectives distributed along the role tree. The dependency graph for the Conference
Organization is displayed in figure 1. For example, the arc labelled paper−reviewed,
r, between nodes PCchair, C, and PCmember, M , represents the role dependency
C r M . Note that this graph does not have to be a tree. It should only be partially
ordered (to avoid circular dependencies).

Considering that dependencies require interaction between two actors in order to
establish how to pass the objective from one actor to the other, it is necessary to describe
how this interaction occurs. In OperA, this is determined by the three coordination types
discussed in the previous section: hierarchy, market and network. The way the objective
ρ in a dependency relation r1 ρ r2 is actually passed between r1 and r2 depends on
the coordination type of the society:

– In hierarchies, the parent role demands the realization of its sub-objectives from its
children. In this case, the enactor of a children role can not decide which objectives
it will get but must accept whichever objectives are delegated to it by its parent role.
Hierarchical dependencies are represented by r1 H

ρ r2.
– In markets, a parent role can request the performance of objectives by the child

role; the child role decides whether it will offer to perform it and the parent role
will then decide whether allocation is desired and which instance of the child role



Coordinating Tasks in Agent Organizations 39

Conference
Society

Organizer Author

PC member Session_Chair

paper_reviewed session_organized

conference_organized paper_submitted

Presenter

paper_presented

PC-chair Local-chair

program-organized local-organized

Conference
Society

Organizer Author

PC member Session_Chair

paper_reviewed session_organized

conference_organized paper_submitted

Presenter

paper_presented

PC-chair Local-chair

program-organized local-organized

Fig. 1. Role dependencies in the conference society

will get to realize the objective. In this case, the enactors of a child role can choose
which objectives of its parent they will offer to perform, such that it best fits its own
private goals. Market dependencies are represented by r1 M

ρ r2.
– In a network, both situations can happen. That is, an objective can either be

delegated by the parent role or offered by the child role, which defines a kind of
equivalence relation between related roles in a network. This can depend on prior
agreements between the agents, or be negotiated for each specific situation. Net-
work dependencies are represented by r1 N

ρ r2.

Role dependencies illustrated in figure 1 are therefore interpreted in different ways de-
pending on the coordination type holding in the society. For instance, in the case of an
hierarchy, the relation C r M , indicates that agents enacting the role PCchair, C,
will delegate the objective paper−reviewed, r, to an enactor of role PCmember, M .
In a market dependency relation, enactors of PCmember can bid for objective review-
paper to the enactor of PCchair, that is, a PC member can choose which papers they
want to review and apply for those to the Program Chair. In a network, a dependency
relation represents a request that can be initiated either by the parent or the child roles.

5 Role Dependencies and Coordination

One of the main issues in OperA is the specification of coordination between role en-
acting agents in a regulated society environment. Therefore, the representation of re-
lationships between roles is one of crucial importance. Role dependencies indicate the
relations between roles through which objectives can be passed. In this section, we dis-
cuss in more detail what are consequences of the type of coordination mechanism to the
interaction between roles, and how they influence the semantics of the communication
between agents. Our focus is not the implementation of coordination mechanisms, such
as for example the work on coordination artifacts [19], but we mostly concerned with
the conceptual level of communication. How exactly the concepts and relationships we
identify below will be taken over in multi-agent systems will be object of further study.



40 V. Dignum and F. Dignum

5.1 Relationship Types

In organizational systems, it is usual to organize roles in a inheritance, or is-a, hierar-
chy. In such hierarchies, child roles inherit the characteristics (attributes, rights, norms)
of its parent roles. However, other relationships can hold between roles. Dependency
relations in OperA are not inheritance relations, but define the links through which
objectives can be delegated to other roles. Coordination of behavior is relatively easy
when dependencies are defined hierarchically, in which case when an agent i enacts a
role that is superior to the role that agent j enacts, a request from i will result in an
obligation for j. In networks and markets, however, coordination requires some more
effort. Hierarchical organizations are thus very efficient, in that, task allocation occurs
with no need for negotiation, given the power relations between agents. On the other
hand, networks are more flexible, in that agents can negotiate task allocation between
them so that they can attempt to obtain a most preferred assignment of objectives fitting
with their own goals. In general, one can identify three different reasons for an agent j
to commit itself to a request from another agent i [6]:

– Power:j accepts a request from i because of some domination relationship between
i and j. This type of relation is standard in hierarchical societies, but can also be
explicitly defined between two specific roles, in other types of societies. Power re-
lations, represented by power(i, j, ϕ), indicate that i has power over j for ϕ.

– Authorization: when j has committed itself to i for a certain service, a request
from i leads to an obligation when the conditions are met. This relation is estab-
lished by mutual agreement, e.g. in a (previous) interaction, for a certain time and
under certain conditions. Although authorization relations can happen in any type
of society, they are typical of networks (e.g. where participants can negotiate dif-
ferent approaches to goal realization in each situation). Authorization relations,
represented by auth(i, j, ϕ), mean that i has the authorization to request j to do ϕ.

– Charity: j will answer a request from i without having any explicit relation to i that
forces it to do so. An obligation arises when agent j communicates its acceptance
of the request.

The main difference between power and authorization relationships is that power is
structurally determined and, for a great extent, static; that is, power relations are not in-
fluenced by the actions of the agents. On the other hand, authorization relations can be
created by negotiation between agents; that is, an agent can decide to authorize another
agent to request from it a certain action or resource. In the following, we describe the
implications of power and authorization relations over the interaction behavior of the
agents. For a complete description of the semantics, we refer the reader to [7]. Charity
relations do not have a specific operator, since such relations are completely dependent
on the ‘personality’ of the agent establishing such relation, and cannot thus be influ-
enced or negotiated.

Definition 3 (Power relation). Given agents i, j and roles r1, r2:
∀i, j, r1, r2 : rea(i, r1) ∧ rea(j, r2) ∧ r1 H

ϕ r2 → power(i, j, ϕ) �

The above definition just states that r1 H
ϕ r2, the hierarchical dependency relation

between roles r1 and r2 gives rise to a power relation power(i, j, ϕ) between agents



Coordinating Tasks in Agent Organizations 41

i and j whenever rea(i, r1) and rea(j, r2). Where the role enacting agent relation,
rea(i, r1), means that agent i performs role r1.

The expression power(i, j, ϕ) means informally that i has the power to force j to
achieve ϕ. Power relations are reflexive, i.e. each agent has power over itself, and of-
ten, but not always, also transitive, that is, if power(i, j, ϕ) and power(j, k, ϕ) then
power(i, k, ϕ). Moreover, power to demand ϕ implies power to demand all what can
be derived from ϕ. Formally, the following axiom holds for the power relation:

Definition 4 (Properties of power relation). Given expression ϕ and a role i, the fol-
lowing axioms hold:

1. |= ∀i : power(i, i, ϕ).
2. |= ∀i, j : power(i, j, ϕ) ∧ (ϕ → ψ) → power(i, j, ψ) �

Authorization relations describe situations when power can be (temporarily) effective.
Informally, an authorization, auth(i, j, ϕ) means that i has the authorization to order j
to achieve ϕ. In fact, authorization establishes an agreed power relation of i over j for ϕ.
Consequently, authorization relations always hold in the case of a power relation. That
is, if an agent i has power with respect to ϕ over agent j, then agent i is also authorized
to request j to achieve ϕ. Formally, the following axiom holds for the power relation:

Definition 5 (Authorization relation). Given expression ϕ and agents i and j, the
following axiom holds:

|= ∀ϕ, i, j : power(i, j, ϕ) → auth(i, j, request(i, j, ϕ). �

(We will more formally introduce the request speech act in the next section.)
As we saw above, in hierarchical dependencies between roles, the power relation is

implicit in the dependency. Unfortunately, in the case of markets and hierarchies one
cannot specify ways to define authorization relations in similar ways. Authorization
relations can still be defined between roles but this requires a communicative process
between those roles in order to establish such authorization and its implications. In the
following section we will describe these communication processes.

5.2 Realizing Coordination

It is usual to describe communication between agents fulfilling roles in terms of speech
acts [21]. The illocution of a speech act is the content of the message that the speaker
intends to be recognized by the hearer as what the speaker intends to be doing (inform-
ing, requesting, agreeing, etc.) Many different illocutions can be defined, however for
the purpose of this paper, we assume accept, propose, and request to be basic illocu-
tions that can be uttered by agents fulfilling roles in an agent society. The illocutionary
force of a speech act depends on the social relationship between the agents. That is,
speech acts have different effects depending on the type of social dependency between
the agents. For example, a request to agent x has another force whether it is done by an
agent with power over x, than by any other agent.

Definition 6 (Syntax of Communicative Acts). Given a domain language LD the set
of all communicative acts, CommD , on LD, is defined as:

– ill(i, j, ϕ) ∈ CommD, where ill ∈ {request, accept}, i: speaker, j: hearer and
ϕ ∈ LD.



42 V. Dignum and F. Dignum

– propose(i, j, ϕ, ψ) ∈ CommD , where i: speaker, j: hearer and ϕ, ψ ∈ LD.
– If ι ∈ CommD then also ill(i, j, ι), ill(i, j,¬ι) ∈ CommD . �

The request is intuitively used to get another agent to realize a certain state ϕ. The
propose is used to offer to realize ϕ in return for the other agent realizing ψ. This can
be seen as a kind of conditional commitment. The accept is used to positively answer
a request without authorization (as in the charity relation) or to accept a proposal. The
intended effects of communicative acts are described more formally in definition 7 by
means of deontic operators, and using the dependency relations between agents. These
axioms describe how obligations can arise for an agent: by means of a request based
on a power or authorization relation, or by (conditionally) committing itself through a
propose action. We do not formally introduce the dynamic deontic logic used in this
semantics, but only mention the intuition behind the basic constructs of the dynamic
and deontic operators. In dynamic logic [α]ϕ indicates that the performance of action
α leads to a state in which ϕ holds. The deontic logic uses a conditional obligation
operator Oij(ϕ|ψ) indexed by the debtor and creditor of the obligation. The debtor i is
obliged towards the creditor j to establish ϕ under the condition that ψ holds. We refer
the reader to [6] for a more formal semantics of these operators.

Definition 7 (Axioms for communicative acts). The formal semantics of basic speech
acts are:

1. |= auth(i, j, request(i, j, ϕ)) → [request(i, j, ϕ)]Ojiϕ
2. |= [request(i, j, ϕ); accept(j, i, request(i, j, ϕ))]Ojiϕ
3. |= [propose(i, j, ϕ, ψ)]Oij(ϕ|auth(i, j, request(i, j, ψ)))
4. |= [propose(i, j, ϕ, ψ); accept(j, i, propose(i, j, ϕ, ψ))](Oijϕ ∧ auth(i, j, request(i,

j, ψ))) �

Informally, the first axiom says that if i is authorized than its request to j to achieve ϕ
leads to an obligation of j to achieve ϕ. The second axiom states that a similar result can
be achieved by a request of i followed by an accept of j. In this case no authorization
is necessary. The propose leads to a conditional obligation for the proposer. In fact, this
formalization of the propose is the most simple form to establish a contract between
i and j. It leads possibly to an obligation on one side and a potential obligation (an
authorization to create an obligation) on the other side. Through nesting of operators
we can incorporate a whole set of conditional authorizations for both sides in ψ.

The last axiom states that if a proposal is accepted than the obligation and authoriza-
tion become reality.

The above axioms can be combined with the definitions of the previous section to
reflect that in hierarchical dependencies, power relations define authorization relations
and therefore imply the realization of the intended state of affairs. That is:

r1 H
ϕ r2 ∧ rea(i, r1) ∧ rea(j, r2) → [request(i, j, ϕ)]Oj,iϕ

This explains the efficiency of hierarchical organizations on getting things done. In
networks and market organizations authorization is not automatically granted between
different roles and must be established by a (more or less) complex communicative
process. This process can be described by a sequence of proposals and contra-proposals
between the interested parties in order to determine the conditions of authorization.



Coordinating Tasks in Agent Organizations 43

Such proposal acts can be seen as a kind of conditional commitment, in which each
party says ”I’ll commit to achieve X for you (or commit to do X) provided that you give
me authorization to request you to achieve Y (or you commit to do Y upon request)”.

Different market mechanisms have been designed in order to describe how a proposal
process should run. A well known standard is the Contract Net Protocol that basically
says that an agent should put forward a call for proposals (request for X) which can be
answered by any other agent. By accepting one of these proposals, the requesting agent
is establishing an obligation to the proposing agent to fulfil X. The process of achieving
role dependencies in market organizations is basically as follows:

(r1 M
ϕ r2 ∧ rea(i, r1) ∧ (∀j ∈ G : rea(j, r2))) →

[request(i, G, ϕ); propose(j ∈ G, i, ϕ, true);
accept(i, j, propose(j, i, ϕ, true))]Oj,iϕ

The above formula contains some liberal notation to avoid complications neces-
sary to correctly express speech acts directed to a group and answers from members
of that group. Notice also that the formula above only describes the state of affairs
necessary to achieve an obligation to realize goal ϕ and abstracts from price issues.
These can be thought to be part of the formula ϕ which should then be read as ϕ ≡
φ ∧ gave(i, j, price), and ignores negotiation iterations between the agents enacting
roles r1 and r2.

Whereas hierarchies follow strict power relations and markets usually are guided by
well defined interaction standards, as the one exemplified above, network organizations
are traditionally fairly ’informal’ in the way relations are established between different
roles. On the other hand, once a relation between different roles is formed those tend to
last for some time and often be intensified as more (successful) goal delegations occur
between those roles. Trust and a common desire to realize certain global objectives
are the drive of networks, which see different roles as equals in power to establish
relations. In practice, interactions in a network function in terms of exchange of favors,
or promises to exchange favors. That is, agent A agrees to do X for agent B, expecting
to be able at some time to request B to do something else for A. Proposal negotiations
are often more complex than in markets because both parties must agree on the needs
of each side. Formally, this can be seen as:

r1 N
ϕ r2 ∧ rea(i, r1) ∧ rea(j, r2) →

[request(i, j, ϕ); propose(j, i, ϕ, ψ)]
(auth(j, i, request(j, i, ψ)) → Oj,iϕ)

The crux in the above formula is of course the part: auth(j, i, request(j, i, ψ)). This
authorization has to be established by agent i. So, it needs at least another communica-
tion step here. This can be a simple accept by agent i. However, the establishment of
this authorization might also involve a more intricate negotiation between i and j.

To illustrate the effect of communication between roles in different organization
types, we will use the example of the dependency for the objective paper review, r,
between agent c enacting the role of Program Chair, C, and agent m enacting the role
of PC member, M . Different social dependencies give rise to different attitudes con-
cerning the communication:



44 V. Dignum and F. Dignum

– In a hierarchical relation, C H
r M , the power relation power(c, m, r) holds.

Therefore, after request(c, m, r) the obligation Om,cr holds.
– In a market relation, C M

r M , after request(c, m, r)) an explicit proposal from
m to do r and its acceptance by c is necessary in order to have the obligation. That
is, the following (minimal) dialog must occur:
c : request(c, M, r)
m : propose(m, c, r, true)
c : accept(c, m, r)
∴ Om,cr

– In a network relation, C N
r M , not only m has to accept the request, but also

c has to agree to a counter request from m (in a conference setting, this would
typically be a request to extend the review deadline, e). This can be represented by
the following dialog:
c : request(c, M, r)
m : propose(m, c, r, e)
c : accept(c, m, propose(m, c, r, e))
∴ Om,cr ∧ auth(m, c, request(m, c, e))

The main difference between the market and network situations is the amount of
deliberation needed to reach the obligation. Whereas in a market relation, the program
chair agent just has to evaluate the proposals on the exact paper review request it had
made, in a network situation, the program chair agent will also need that capability to
evaluate the new proposal, and possibly enter a negotiation on the deadline extension
parameter as well.

5.3 Implications of Coordination

In the previous section, we have introduced the differences in task delegation that result
from different types of coordination in organizations. From a coordination perspective
hierarchical relations are most efficient in achieving the delegation of tasks. They need
only one message to achieve the delegation. It seems that the network type is the least
efficient to achieve the delegation of a task, basically, because it allows for some more
negotiation on counter-activities. However, as remarked before the final agreement usu-
ally encompasses more than one interaction. In the example above it could e.g. result
in authorization for the PC chair to ask the PC member to review papers on his favorite
topics for the next 3 years, while not giving him more than 3 papers each time and
at least 5 weeks for reviewing. As a consequence of this agreement the PC chair only
needs to send a request in the next 2 years (just like if there would be a power relation)
to achieve the obligation to review a paper. This means that the costs of the current co-
ordination effort should be spread over 3 years to compare with the other mechanisms.
Most likely the average coordination costs per year will then be lower than that of the
market mechanism that requires the explicit propose and accept part every time.

Note that in the above we only considered the coordination costs (in terms of the
number of messages that have to be send after each other (parallel messages to or from
a group count for one)). However, from an organizational perspective we are, of course,
mainly interested in getting the actual task done. So, we should also take a look at the



Coordinating Tasks in Agent Organizations 45

costs of performing the task once it is delegated to the agent that should actually perform
it. In our formalism (as in reality) the task delegation, no matter which mechanism is
used, results in an obligation. There is therefore no absolute guarantee that the task will
indeed be done, as the agent is free to not fulfil its obligations. The requesting agent
should be able to evaluate the capabilities and availability of the requested agent in order
to maximize the certainty of task achievement. Moreover, mechanisms for controlling
the realization of tasks are needed. We will not go into the latter aspect here but see [14]
for further discussion.

In a hierarchy the requesting agent needs to have all the information available to
determine the best possible agent for a task. So, it needs to know the capabilities, effi-
ciency, capacity and current workload of all agents. When task requirements and agent
capabilities are fairly stable, then it is quite feasible for the delegating agents to main-
tain this information. In this case the requesting agent just needs to determine the best
agent for the task and a request leads to the obligation to do it. However, if tasks and
agents change rapidly, or if the requesting agent does not have the capability to evalu-
ate either the task requirements of the capabilities and availability of the agents, then
the obligation that follows the request may stay unfulfilled and the requesting agent is
then forced to perform the task itself or negotiate realization with other agents, as in the
market or network cases. The decision for a certain coordination type is dependent on
the characteristics of the agents and of the environment.

It is exactly for situations where the delegating agent cannot maintain all information
about the other agents that market mechanisms are meant for. The proposals of the
agents answering a request (implicitly) carry the information that the agent needs to
make the best possible choice for delegating the task. If an agent is not capable to
perform the task it will not answer with a propose. If it is already very busy it will
propose to perform the task later, or slow. The delegating agent only needs to compare
the proposals to find the best one every time. Because the resulting obligations only
hold for the current transaction, the agents are capable to choose the best option every
time, based on the most up-to-date information. So, the overhead in coordination costs
might be paid back through more efficient distribution of the tasks.

As before, the networks have an intermediate position between hierarchies and mar-
kets. In networks, besides the agreement concerning the initial request, usually further
interaction will happen (concerning the realization of the counter request). The inter-
est in maintaining such long-time relation with the requested agent is often one of the
reasons for the requesting agent to enter a negotiation on the counter proposal (see the
example above). In this way long-time relations between agents are achieved, with-
out the inflexibility of a hierarchy. However, if one foresees that the environment will
change rapidly, this longer term relationships may not be very useful. E.g. if the topics
of the conference change every year it is no use to make an agreement for a PC member
to review papers on a fixed topic for several years (because he might have nothing to
do next year). The network mechanism is especially suited for situations where agents
might not always be available (the system is not (completely) closed or agents have
multiple tasks for different organizations) while the environment is relatively stable.

In the previous paragraphs we analyzed the properties of hierarchical, market and net-
work relations. Often organizations as a whole are said to be of one of these three types.



46 V. Dignum and F. Dignum

Although often the relationships within an organization tend to be of the same kind it is
worth observing that we did not assume that all relations within an organization are of
the same kind. One could e.g. have hierarchical relations between the general chair role
and the PC chair role and local organizer role, while the relation between the PC chair
role and the PC member role is of a market type. In this way one can optimally combine
the coordination mechanisms for optimal efficiency and utility of the organization.

6 Conclusion

In this paper we have argued that organizational structures are important for MAS. In
line with other current research we think that these structures need to exist outside the
individual agents in order to ensure the achievement of objectives of the organization
that rise above the individual agent level. By having explicit organizational structures
we also ensure the stability of the organization over a longer period of time.

We have shown that the organizational structure consists of several inter-related ele-
ments. We have concentrated mostly on the role dependencies that arise from the depen-
dencies between the objectives of those roles. These dependencies seem to indicate the
basic needs of coordination between the roles. Moreover we have shown that the basic
coordination types from organizational theory (market, hierarchy and network) are also
very useful for MAS design. Starting from the dependencies between roles that follow
from their objectives, these coordination types determine how the interaction between
the dependent roles is shaped. The coordination type of the organization also influences
the type of facilitation roles that are needed in that organization, such as a matchmaker
for a market and a gate keeper for a network organization.

In the last section we made a start on determining how some characteristics of the
coordination types and the environment determine the best structure to be used for a
MAS in a particular environment. Although we base our theory on the formal theory
underlying the OperA model, we will use simulations to check for the organizational
characteristics that will benefit the organization best in a certain environment.

The main objective of this paper is to present an interconnected view over the many
facets of organization and coordination. We present an initial model for linking coordi-
nation to organizational structure in terms of the interpretation of communicative acts
depending on the dependencies between the roles agents are enacting in the organiza-
tion. Future research will focus on the validation and application of the model and will
lead to more grounded results. In particular, we will use the ideas proposed in [14] to
analyze the performance of different organizational structures.

Acknowledgements. The research of the first author is funded by the Netherlands Orga-
nization for Scientific Research (NWO), through Veni-grant 639.021.509.

References

1. Biddle, B.: Role Theory: Concepts and Research. Krieger Publishing Co. (1979)
2. Castelfranchi, C.: Silent agents: From observation to tacit communication. In: Proc. of WS

on Agent Tracking: Modelling Other Agents from Observations (2004)



Coordinating Tasks in Agent Organizations 47

3. Ciancarini, P., Omicini, A., Zambonelli, F.: Coordination models for multi-agent systems.
AgentLink News 3 (July 1999)

4. Dellarocas, C.: Contractual agent societies: Negotiated shared context and social control. In:
Proc. Workshop on Norms and Institutions in MAS, Autonomous Agents (2000)

5. Dignum, F.: Autonomous agents with norms. AI & Law 7, 69–79 (1999)
6. Dignum, F., Weigand, H.: Communication and deontic logic. In: Wieringa, R., Feenstra, R.

(eds.) Information Systems - Correctness and Reusability. Selected papers from the IS-CORE
Workshop, pp. 242–260. World Scientific Publishing Co., Singapore (1995)

7. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in Logic.
SIKS Dissertation Series 2004-1. Utrecht University, PhD Thesis (2004)

8. Dignum, V., Dignum, F.: Structures for agent organizations. In: Proc. of KIMAS’05, IEEE
Press, Los Alamitos (2005)

9. Duncan, R.: What is the right organizational structure: Decision tree analyis provides the
answer. Organizational Dynamics, 59–80 (Winter, 1979)

10. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In: Meyer,
J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, Springer, Heidelberg (2002)

11. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organizational view of
multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) Agent-Oriented Software
Engineering IV. LNCS, vol. 2935, Springer, Heidelberg (2004)

12. Fox, M., Barbuceanu, M., Gruniger, M., Lin, J.: An organizational ontology for enterprise
modeling. In: Prietula, M., Carley, K., Gasser, L. (eds.) Simulating Organizations: Concep-
tual Models of Institutions and Groups, MIT Press, Cambridge (1998)

13. Giddens, A.: The Constitution of Society: Outline of the Theory of Structure. Univ. Califor-
nia Press (1984)

14. Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural aspects of the
evaluation of agent organizations. LNCS, vol. 4386, pp. 3–19. Springer, Heidelberg (2007)

15. Kumar, S., Huber, M., Cohen, P., McGee, D.: Towards a formalism for conversation protocols
using joint intention theory. Computational Intelligence Journal 18(2) (2002)

16. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing
Surveys 26(1) (March 1994)

17. Odell, J., Nodine, M., Levy, R.: A metamodel for agents, roles, and groups. In: Giorgini, P.,
Müller, J.P., Odell, J.J. (eds.) Agent-Oriented Software Engineering IV. LNCS, vol. 2935,
Springer, Heidelberg (2004)

18. Odell, J., Van Dyke Parunak, H., Fleischer, M.: The role of roles in designing effective
agent organizations. In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Cas-
tro, J. (eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603,
Springer, Heidelberg (2003)

19. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In: Jennings, N., et al. (eds.) AAMAS
2004, pp. 286–293. ACM Press, New York, USA (2004)

20. Powell, W.: Neither market nor hierarchy: Network forms of organisation. Research in Or-
ganisational Behavior 12, 295–336 (1990)

21. Searle, J.: Speech Acts: an Essay in the Philosophy of Language. Cambridge U Press, Cam-
bridge (1969)

22. Smith, R.: The contract net protocol: High-lever communication and control in a distributed
problem solver. IEEE Transactions on Computers C-29(12), 1014–1113 (1980)

23. Williamson, O.: Markets and hierarchies: Analysis and Antitrust Implications. Free Press,
New York (1975)



P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 48–64, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Redesign of Organizations as a Basis 
for Organizational Change 

Mark Hoogendoorn1, Catholijn M. Jonker2, and Jan Treur1 

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence, 
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands 

{mhoogen,treur}@cs.vu.nl 
2 Radboud University Nijmegen, Nijmegen Institute for Cognition and Information 

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands 
C.Jonker@nici.ru.nl 

Abstract. Artificial Intelligence has contributed (formal) design models and 
software support tools to application areas such as architecture, engineering and 
software design This paper explores the effectiveness of applying design 
models to the area of organization (re)design. To that purpose a component-
based model for (re)design of organizations is presented as a specialization of 
an existing generic design model. Using recently developed formalizations 
within Organization Theory organization models are described as design object 
descriptions, and organization goals as design requirements. A design process 
specification is presented that models the redesign process for an organization 
that adapts to changes in the environment. The formally specified and 
implemented approach to organization redesign thus obtained has been tested 
for a well-known historical case study from the Organization Theory literature. 

1   Introduction 

Organizations are created to smoothen processes in all aspects of society, even in the 
artificial societies of software agents. From a design perspective organizations have 
goals to be achieved or maintained that serve as requirements for their functioning. 
The behavior of the elements or parts of the organization and their interaction together 
should result in overall organization behavior that fulfills the goals of the 
organization. Environmental circumstances impose constraints on the organization 
with respect to the way its goals can be fulfilled. As the environment changes over 
time, so do these constraints. To adapt to such changes in constraints, the organization 
might have to change itself. From a design perspective the changing constraints can 
be interpreted as changing requirements for a redesign problem.  

Within the area of AI and Design, in the last decade formally specified generic 
models for (re)design processes have been developed; e.g., [1, 4]. Application of a 
generic redesign model to the area of organizations requires specialized knowledge 
on: (1) organization goals; (2) how to derive refined requirements from such goals 
given a variable environment; (3) the current design object description, and (4) what 
components for a design object satisfy which requirements. A redesign process results 
in a new design object description as a modification of the existing one and a 
specification of changed (new) design requirements.  



 Redesign of Organizations as a Basis for Organizational Change 49 

A redesign process as formally modeled in [4] involves generation and modification 
steps both for the specification of the requirement set and for the design object 
description. A formal model of a redesign process thus requires formalizations of design 
objects, design requirements, and of the dynamics of redesign processes. This paper 
proposes such formalizations for the area of organizational (re)design, in the context of a 
component based model for (re)design of organizations. Formalized organization models 
[5,10,11,14,18] serve as design object descriptions. Formalizations of organizational 
behavior are used for design requirements specifications [10,11,14,18]. Finally, for 
design process dynamics a formalization is used as put forward in [1]. The resulting 
approach contributes to the organization redesign domain in that it facilitates formal 
modeling, simulation and verification of the redesign process, supported by modeling and 
analysis tools.  

Section 2 gives the component-based model for the design and redesign process 
and describes the types of domain specific knowledge needed in such a process. 
Section 3 addresses the formalization of design object descriptions by means of an 
organization model format in which different components and aggregation levels are 
distinguished. In Section 4 the relation between goals, changing environment and 
requirements is described, illustrated for cases described in Organization Theory. 
Section 5 presents the method of requirements refinement and shows a specific 
example. Thereafter, Section 6 presents examples of design object that are known to 
satisfy certain design requirements, and Section 7 presents generic properties which 
enable an evaluation of the successfulness of the whole (re)design process. Section 8 
presents simulation results of the model, and finally Section 9 is a discussion. 

2   A Component-Based Model for (Re)design of Organizations 

This Section presents a component-based generic model for design of organizations 
based on requirements manipulation and design object description manipulation. The 
component-based model presented draws inspiration from [4] and was specified 
within the DESIRE [3] framework. It is composed of three components, see Figure 1: 

• RQSM, for Requirement Qualification Set Manipulation, acquires requirements, 
for example, by elicitation from managers within a company. Within RQSM the 
appropriate requirements are determined in relation to the goals set for the 
organization and the current environmental conditions. After having selected a set 
of requirements, these are refined to more specific ones. 

• DODM, for Design Object Description Manipulation, creates a design object 
description based on the (specific) requirements received from RQSM. In order to 
do this, a number of alternative solutions known to satisfy the requirements are 
generated and according to certain strategic knowledge one of those is selected. 

• Design Process Coordination (DPC) is the coordinating component for the design 
process. The component determines the global design strategy (e.g., [4]) and can 
evaluate whether the design process is proceeding according to plan. 

Information exchange possibilities are represented by the links between input and 
output of the components and the input and output of the model. Input and output are 
represented by the small boxes left and right of components.  



50 M. Hoogendoorn, C.M. Jonker, and J. Treur 

DPC

DODMRQSM

Goals and env Design output

Control info
Req.

Control info

Req.

Design

 

Fig. 1. Top level of the design model 

The next sections describe the three components in more detail. The model as 
described here, is a generic design model for organizational design without 
application- or domain-specific knowledge. In later sections such knowledge is 
specified for a case study. 

RQSM. This component is composed of two sub-components, namely Requirements 
Sets Generation and Requirements Set Selection, see Figure 2. 

RQSM_in RQSM_out

Requirements
Set

Generation

Goal and
env. Requirements

Set Selection

Set of
requirements

Selected
requirements

 

Fig. 2. Components within RQSM 

The component Requirements Sets Generation receives as an input the current 
environmental conditions and the organizational goals. The sub-component contains 
knowledge on what requirements entail fulfillment of organizational goals given the 
environmental conditions. Such knowledge can be depicted in the form of AND/OR 
trees as shown in Figure 3. 

If for example E1 is observed, requirement R1 is an example of a requirement that, 
when fulfilled, guarantees to satisfy goal G under environmental conditions E1. If the 
environment changes to situation E2, the requirement has to change as well; the 
example tree shows how R1 can be changed to requirement R2 that guarantees G 
under the new environmental conditions E2. Note that these environmental conditions 
can be defined as an abstraction of the potentially infinite actual environment. This 
resembles how a manager would define such requirements, for instance by just 
looking at a few specific aspect of the environment, and basing his/her requirement 
for the organization on those. After a requirement is determined, it can be refined in 
order to obtain requirements on a more specific level. Making such a requirement 
more specific can result in several options being generated. For example, it might be 
possible to establish a certain market share by having the best quality products but 
also by having the lowest priced products. After having refined each of the 
requirements, all possible sets of refined requirements are forwarded to the 
component Requirements Set Selection. 

 



 Redesign of Organizations as a Basis for Organizational Change 51 

G

E1 R1 E2 R2 E3 R3  

Fig. 3. Example AND/OR tree relating environmental conditions and requirements to a goal 

After the component Requirements Set Selection has received the alternative sets 
of requirements its task is to select one of those alternatives, and to forward it to the 
component DODM which will in turn find a suitable organization design for such a 
requirement set. Different selection methods exist, e.g., explicit ranking, on the basis 
of strategic knowledge. Such strategic knowledge can for example be based on the 
source of requirements: requirements that originate from users can for example be 
preferred over those derived by default rules which are in turn preferred over 
requirements derived from previous requirements (see [12]). 

DODM. This component receives a set of refined requirements from RQSM, which is 
handled by two sub-components, Design Object Description Generation and Design 
Object Description Selection. The design object descriptions are descriptions of 
designs of the organization, including both structural aspects as behavioral aspects. 

Design Object Description Generation receives the requirements and delivers 
descriptions of possible alternative design objects (i.e., organization design descriptions), 
such that the (specific) requirements as received from RQSM are satisfied. To establish 
satisfaction, knowledge is needed that specifies what part of a design object contributes 
to fulfillment of a specific requirement. If, for example, the requirement is to produce 
products of the highest quality, then a satisfactory design is an organization having a 
department dedicated to checking quality and repairing of production errors. Again, there 
can be many possibilities available that satisfy the requirements. All alternatives found 
are forwarded to the component Design Object Description Selection. 

The component Design Object Description Selection can use several criteria to 
choose the optimal design, such as operational costs effectiveness, and production 
time effectiveness. In order to make such a selection, the component has (strategic) 
knowledge concerning these aspects. It might for example know the typical price for 
hiring an agent for a particular role. Eventually, the component outputs a new design 
for the organization. 

DPC. The component DPC is the component which determines the global design 
strategy and oversees whether the design process proceeds according to plan. Two 
different tasks are distinguished. DPC checks whether a design object description 
determined by DODM satisfies the refined requirements. It might for example be the 
case that the combination of two suitable design object parts causes a conflict. In case 
the refined requirements are not satisfied control information is passed to DODM 
stating that an alternative should be found (e.g., taking a different branch of an OR 
tree). In case these refined requirements are satisfied whereas the high-level 
requirements are not, the requirements refining process has failed, therefore control 



52 M. Hoogendoorn, C.M. Jonker, and J. Treur 

information is given to RQSM to refine the requirements in another way (again by for 
example taking another OR branch). 

3   Organization Models as Design Objects 

An organizational structure defines different elements in an organization and relations 
between them. The dynamics of these different elements can be characterized by sets 
of dynamic properties. An organizational structure has the aim to keep the overall 
dynamics of the organization manageable; therefore the structural relations between 
the different elements within the organizational structure have to impose relationships 
or dependencies between their dynamics; cf. [18]. In the introduction to their book 
Lomi and Larsen [20] emphasize the importance of such relationships: 

• ‘given a set of assumptions about (different forms of) individual behavior, how can 
the aggregate properties of a system be determined (or predicted) that are generated 
by the repeated interaction among those individual units?’  

• ‘given observable regularities in the behavior of a composite system, which rules 
and procedures - if adopted by the individual units- induce and sustain these 
regularities?’ 

Both views and problems require means to express relationships between dynamics of 
different elements and different levels of aggregation within an organization. In [20] 
two levels are mentioned: the level of the organization as a whole versus the level of 
the units. Also in the development of MOISE [11,12,14] an emphasis is put on 
relating dynamics to structure. Within MOISE dynamics is described at the level of 
units by the goals, actions, plans and resources allocated to roles to obtain the 
organization’s task as a whole. Specification of the task as a whole may involve 
achieving a final (goal) state, or an ongoing process (maintenance goals) and an 
associated plan specification. 

The approach in this paper is illustrated for the AGR [9] organization modeling 
approach. Figure 4 shows an example organization modeled using AGR. Within AGR 
organization models three aggregation levels are distinguished: (1) the organization as 
a whole; the highest aggregation level, denoted by the big oval, (2)  the level of a 
group denoted by the middle size ovals, and (3) the level of a role within a group 
denoted by the smallest ovals. Solid arrows denote transfer between roles within a 
group; dashed lines denote inter-group interactions. This format is adopted to 
formalize organization models as design object descriptions. In addition, behavioral 
properties of elements of an organization are part of a design object description. TTL 
[17] is used to express such behavioral properties. 

In TTL state ontology is a specification (in order-sorted logic) of a vocabulary. A 
state for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of 
ground atoms expressed in terms of Ont. The set of all possible states for state 
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont) for 
state ontology Ont is the set of all propositions over ground atoms from At(Ont). A fixed 
time frame T is assumed which is linearly ordered. A  trace or trajectory γ over a state 
ontology  Ont  and time frame T  is a mapping γ : T → STATES(Ont), i.e., a sequence of 
states γt (t ∈ T) in  STATES(Ont). The set of all traces over state ontology Ont is denoted 



 Redesign of Organizations as a Basis for Organizational Change 53 

by TRACES(Ont).  Depending on the application, the time frame T may be dense (e.g., 
the real numbers), or discrete (e.g., the set of integers or natural numbers or a finite 
initial segment of the natural numbers), or any other form, as long as it has a linear 
ordering. The set of dynamic properties DYNPROP(∑) is the set of temporal statements 
that can be formulated with respect to traces based on the state ontology Ont in the 
following manner.  

Role 5 Role 6

Group 2
Role 7 Role 8

Group 3

Role 1 Role 2 Role 3 Role 4

Group 1

 

Fig. 4. An AGR Organization Structure 

Given a trace γ over state ontology Ont, the state in  γ at time point t is denoted by 
state(γ, t). These states can be related to state properties via the formally defined 
satisfaction relation |=, comparable to the Holds-predicate in the Situation Calculus: 
state(γ, t) |= p denotes that state property p holds in trace γ at time t. Based on these 
statements, dynamic properties can be formulated in a formal manner in a sorted first-
order predicate logic, using quantifiers over time and traces and the usual first-order 
logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. A special software environment has 
been developed for TTL, featuring both a Property Editor for building and editing 
TTL properties and a Checking Tool that enables formal verification of such 
properties against a set of (simulated or empirical) traces. 

4   RQSM: Changing Requirements Upon Environmental Change 

Organizational requirements change due to changing environmental circumstances.  
The circumstances are input to RQSM. The general pattern is follows. A certain 
organizational goal G (e.g. sufficient demand) is no longer reached, due to an 
environmental change, say from E1 to E2. In the old situation requirement R1 was 
sufficient to guarantee G under environmental condition E1: E1 & R1 ⇒ G. Here R1 
is a requirement expressing a relation which states that under the condition E1 the 
organization is able to achieve G. The change from E1 to E2 makes that requirement 
R1, which is still fulfilled but has become insufficient, is to be replaced by a new, 
stronger requirement R2 which expresses that under environment E2 goal G can be 
achieved; therefore: E2 & R2 ⇒  G. Thus, the organization is triggered to change to 
fulfill R2 and as a consequence fulfill goal G again.  

Jaffee [16] distinguishes several classes of external triggers for organizational 
change: triggers in the organization’s input, (e.g., changes in the resources or 
suppliers), and triggers in enabling / constraining factors such as government/labor 
rules and (new) technology. Government regulations for workers might affect human 



54 M. Hoogendoorn, C.M. Jonker, and J. Treur 

resource practices and composition of the workforce. Concerning labor aspects, the 
union might demand a reduction from 40 to 36 hours a week, which naturally causes 
organizational change. Examples of input triggers are resources that run out, 
becoming a lot more expensive, customers whose demands decrease for the good 
being produced, and competitors changing their production methods causing more 
efficient production for products within the same product group. Another example of 
an input-base external trigger is the case that at time t suppliers increase their price of 
a product P, which is used by the organization for the production, from M1 to M2. A 
formal form of this environmental condition is specified in E1 using the Temporal 
Trace Language (TTL) as explained in Section 3. 

 
E1(P, M, t): Supplier Price 
∃R:REAL   state(γ, t) |= environmental_condition(price(P, R), pos) & R ≤ M 

 

 

Before the environmental change, E1(P1, M1, t) specifies the relevant property of 
the environment. After the change of supplier price however, this property no longer 
holds whereas E1(P1, M2, t) does hold. The overall goal to be maintained within the 
organization is to keep the demand of product P above a threshold D. A formal 
specification of the goal is presented in OP1. 

 
 

 

OP1(P, D, t): Sufficient demand 
∃I:INTEGER state(γ, t) |= environmental_condition(customer_demand(P, I), pos) & I ≥ D 

 

 

The requirement imposed for the organization is to maintain the goal of keeping 
demand for product P2 above D, in the new situation given the environmental 
condition of the price M for product P1 which is needed for the production of P2. This 
requirement is specified below in property R.  

 
 

R(P1, P2, M, D): Maintain demand 
∀t :TIME [state(γ, t) |= needed_for_production_of(P1, P2) & E1(P1, M, t)] ⇒  OP1(P2, D, t) 

 

 

Before the change in the environment, requirement R1 which is R(P1, P2, M1, D) 
was sufficient to ensure the goal being reached. After the change however, this 
requirement is still satisfied but might be insufficient to ensure the goal. This is due to 
the fact that the environmental condition E1 in the antecedent of E1 & R1 ⇒  G does 
not hold, and hence, cannot be used to entail G (although the requirement R1 is 
fulfilled all the time). The requirement is therefore withdrawn and replaced by the 
requirement R2 which is R(P1, P2, M2, D). This R2, however, is not necessarily 
satisfied and may require an organizational change to enable fulfillment. 

5   RQSM: Refining Requirements Based on Interlevel Relations 

To fulfill requirements at the level of the organization as a whole as discussed in 
Section 4, parts of the organization need to behave adequately (see also the central 
challenges put forward by Lomi and Larsen [20] as discussed in Section 2). Based on 
this idea, in this paper dynamics of an organization are characterized by sets of 
dynamic properties for the respective elements and aggregation levels of the 
organization. An important issue is how organizational structure (the design object 
description determined in DODM) relates to (mathematically defined) relationships 



 Redesign of Organizations as a Basis for Organizational Change 55 

between these sets of dynamic properties for the different elements and aggregation 
levels within an organization (cf. [18]). Preferably such relations between sets of 
dynamic properties would be of a logical nature; this would allow the use of logical 
methods to analyze, verify and validate organization behavior in relation to 
organization structure. Indeed, following [18], in the approach presented below, 
logical relationships between sets of dynamic properties of elements in an 
organization turn out an adequate manner to (mathematically) express such dynamic 
cross-element or cross-level relationships. 

OP1: sufficient
demand

E2 : cyclic
market not going

down

OP2: price low
enough

OP3: cost price
 low enough

Organization
properties

Group
properties

GP1: design costs
low enough

GP2: production
costs low

enough

GP3: quality
repair costs low

enough

E3: competitor
price

 

Fig. 5. Hierarchy of Organizational and Group properties 

Figure 5 shows an example of a hierarchy of dynamic properties for an organization 
producing certain products, the properties follow field observations at the Ford Motor 
Company in 1980 described in [25]. The overall organizational goal is to maintain 
sufficient demand for the goods being produced, as was also the case in OP1 in Section 
4. The organization has separate departments for design, production and quality control, 
which are modeled as groups in the organization. The highest levels represent 
organizational properties or goals at the aggregation level of the organization as a 
whole, whereas the lowest level shown here represents properties at the aggregation 
level of the groups. Note that the fact that these are group properties already restricts the 
design of the object in DODM, which makes the process less complex. 

A definition for each of the properties in Figure 5 is presented below. Notice that 
this hierarchy could easily be extended by other aspects (e.g., of quality of the 
products as a reason for the demand decreasing or not). Property OP1 is described in 
Section 4. One of the environmental conditions is that the cyclic market is not going 
down for a product P at time t in case the demand for the product group as a whole  
(i.e., all goods produced by different companies in this particular category) is not 
going down. 

 

 
 

E2(P, t): Cyclic market not going down 
∀G:PRODUCT_GROUP, I1,I2:INTEGER 
[state(γ, t) |= belongs_to_product_group(P, G) & 
 state(γ, (t-1)) |= environmental_condition(customer_demand(G, I1), pos) & 
 state(γ, t) |= environmental_condition(customer_demand(G, I2), pos) ]  
⇒ I2 ≥ I1 

 



56 M. Hoogendoorn, C.M. Jonker, and J. Treur 

Furthermore, an environmental condition E3 poses a requirement on the price of 
competitors in the form of the average price of products within the product group to 
which product P belongs. These prices should not be higher than V: 

 
 

E3(P, V, t): Competitor Price 
∀G:PRODUCT_GROUP, V1:REAL [ [state(γ, t) |= belongs_to_product_group(P, G) & 
state(γ, t) |= environmental_condition(average_price(G,V1), pos) ] ⇒   V1 ≥ V ] 

 

 

To achieve goal OP1 given environmental conditions E2 and E3, the price of the 
products being produced by the organization should be low enough, which in turn is 
the requirement posed on the organization. Prices are considered low enough for a 
product P at time t in case the price for the product is equal or below the average price 
level within the product group (i.e. prices are ≤ V as set above). 

 
 

OP2(P, V, t): Price low enough 
∀G:PRODUCT_GROUP, V1:REAL [state(γ, t) |= price(P, V1)] ⇒   V1 ≤ V 

 

 

Whether the price is low enough depends on the cost price for the particular 
product P at time t, which purely depends on the costs for the different groups within 
the organization, as expressed in the group properties (GP’s). 

 
 

OP3(P, V, t): Cost price low enough 
∀V1,V2,V3:REAL [state(γ, t) |= design_cost(P, V1) &  state(γ, t) |= production_cost(P, V2) & 
state(γ, t) |= quality_repair_cost(P, V3)] ⇒  V1+V2+V3 ≤ V 

 

 

Finally, the individual group properties can be specified such that the costs of each 
group are below a certain value. The division of such costs over groups is a 
refinement choice. An example decision could be to allow only a small percentage of 
the costs for quality repair and to divide the brunt of the costs equally over production 
and design. Each group should meet their individual requirements. First of all, design 
costs should be low enough: 

 

GP1(P, V1, t): Design costs low enough 
∀Q:REAL [state(γ, t) |= design_cost(P, Q)]  ⇒   Q ≤ V1 

 

 

Also, the production costs for product P should be low enough: 
 

 

GP2(P, V2, t): Production costs low enough 
∀Q:REAL [state(γ, t) |= production_cost(P, Q)]  ⇒   Q ≤ V2 

 

 

Finally, quality repair costs should be low enough for product P: 
 

 

GP3(P, V3, t): Quality repair costs low enough 
∀Q:REAL [state(γ, t) |= quality_repair_cost(P, Q)]  ⇒   Q ≤ V3 

 

 

After having generated all options in RQSM, selection knowledge is used to select 
one of the available options. In this paper, such selection knowledge is not further 
addressed. The output of RQSM is, however, of the form selected_basic_refinement_set(RS) 

where RS is a name for a requirements set. The elements within this set are defined as 
follows: in_selected_basic_refinement_set(R, RS) where R is a requirement, as the ones shown 
above, and RS is the selected basic refinement set. 



 Redesign of Organizations as a Basis for Organizational Change 57 

6   DODM: Constructing Design Objects 

As stated in Section 2, DODM contains a library of templates for (parts of) design 
objects which are known to satisfy certain requirements (of the form as specified in 
the last paragraph of the previous section). For the case study, the DODM library 
contains two templates. One of those is a template in which a mass production system 
is used to produce goods. Such a system produces goods at reasonable production 
costs but at high quality repair costs. The template for mass production includes a 
group of production workers (e.g. a production worker for attaching a wheel to a car). 
The mass production template also contains a quality repair department of 
considerable size with quality repair worker roles. 

The second template in the library is a lean production organization. Lean production 
has no quality repair costs, since there is no separate quality repair department. The 
production costs are at the same level as the production costs for mass production 
organizations. In the lean production method (see e.g. [25]), multi-task production 
workers are present which perform several tasks, and also handle errors in case they are 
observed. As a result of such immediate error detection and correction, a quality repair 
department is not present within a lean production model. 

CP1:
lower

quality repair
cost

CP4:
delete roles

CP5:
add new

roles

CP6:
lean

production

CP3:
effect of lean

production

CP2:
introduce lean

production

.........

 

Fig. 6. Redesign options specified in the form of an AND/OR tree 

Figure 6 shows an example AND/OR tree for DODM (focusing at lean production 
as a solution) in which options for changes in a design object not satisfying the 
requirement that design costs are low enough. The specific changes in the design 
object are presented below. First of all, the highest level property states that design 
costs will at least at the required level within a duration d: 

 

CP1(P, D, t):Lower Quality Repair Costs 
∀V1,V2:REAL [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) & 
state(γ, t) |= DOD_includes(D, quality_repair_cost(P, V2)) & V1 < V2] 
⇒ ∃t2:TIME > t, V3:REAL [t2 < t+d & state(γ, t2) |=DOD_includes(D,quality_repair_cost(P, V3)) & V3 ≤ V1] 

 

 

On a lower level, property CP2(P, D, t) specifies the introduction of lean production 
into an organization. This reduces the quality repair costs to 0 as shown by CP3(P, D, t). 



58 M. Hoogendoorn, C.M. Jonker, and J. Treur 

Although more options are possible for reducing quality repair costs, shown by the dots 
in Figure 6, these are not addressed in this paper. 

 

CP2(P, D, t): Introduce Lean Production 
∀V1,V2:REAL [state(γ, t) |= selected_basic_requirement_in(GP3(P, V1, t), RS) & 
state(γ, t) |= DOD_includes(D, design_cost(P, R2)) & V1 < V2] 
⇒  ∃t2:TIME > t  [t2 < t + d & state(γ, t2) |= DOD_includes(D, lean_production_method(P)) ] 

 

CP3(P, D, t): Effect of Lean Production 
[state(γ, t) |= DOD_includes(D, lean_production_method(P)) ⇒ 
 state(γ, t) |= DOD_includes(D, quality_repair_cost(P, 0))] 

 
 

Introducing a lean production system entails that within the production process the 
specialized roles for mass-production and quality repair department are deleted. 

 
 

CP4(P, D, t): Delete Roles 
∀R1,R2:REAL [state(γ, t) |= DOD_includes(D, lean_production_method(P)) 
⇒ ∃t2:TIME > t [ t2 < t + d & 

     state(γ,t2)|= ¬DOD_includes(D,exists_role(spec_production_worker)) & 
     state(γ, t2)|= ¬DOD_includes(D,exists_group(quality_repair_group))]] 

 

 

Moreover, roles are created that perform multiple tasks, and teams are created such 
that the roles combined in the team have all the abilities to make a car. 

 

CP5(P, D, t): Add New Roles 
∀R1,R2:REAL [ state(γ, t) |= DOD_includes(D, lean_production_method(P))  
⇒ ∃t2:TIME > t, ∀A:AGENT 

  [t2 < t + d & state(γ, t2) |= DOD_includes(D, exists_role(multi_task_production_worker)) & 
    state(γ, t2) |= DOD_includes(D, previously_allocated_to(A, spec_production_worker, production_group)) & 
    state(γ, t2) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))]] 

 

 

Agents that were allocated to the deleted roles in the production process are 
allocated to the newly formed roles. Agents formerly allocated to a role in quality 
repair are fired. Once the system is organized in this fashion, quality repair in a 
separate department becomes obsolete, and quality repair costs are down to 0 as the 
production workers are now performing the task. CP6 expresses that the measures as 
described in CP4 and CP5 results in a lean production method for the product P: 

 
 

CP6(P, D, t): Lean Production 
∀A:AGENT 
[state(γ, t) |= ¬ DOD_includes(D, exists_role(spec_production_worker)) & 
 state(γ, t) |= ¬ DOD_includes(D, exists_group(quality_repair_group)) & 
 state(γ, t) |= DOD_includes(D, exists_role(multi_task_production_worker)) &      
 state(γ, t) |= DOD_includes(D, previously_allocated_to(A, spec_production_worker, production_group))  
 state(γ, t) |= DOD_includes(D, allocated_to(A, multi_task_production_worker, production_group))] 
⇒ ∃t2:TIME < t + d  state(γ, t2) |= DOD_includes(D,lean_production_method(P)) 

 

 

After such options for (re)design of the object have been generated based on the 
requirements, selection knowledge is used to select one of the options that have been 
generated. This knowledge is not addressed in this paper. Eventually, DODM outputs 
a design object description of the form selected_DOD_output(D) where D is the design 
object description. Furthermore to identify properties of the DOD or its parts, output 
of the form in_selected_DOD_output(P,D) is generated where P is a property of (a part of) 
the DOD and D is the selected DOD. This is based on the internal information 
represented in the form of DOD_includes(D, P). 



 Redesign of Organizations as a Basis for Organizational Change 59 

7   (Re)design Process Evaluation 

This section addresses the evaluation of the whole design process. The overall design 
process is successful when both RQSM and DODM show the proper behavior. 

RQSM shows the proper behavior in case it generates requirements, and these 
requirements indeed result in the goal set for the organization being met. Such 
properties are formulated in a formal form below. 

 

RQSM_generate 
If RQSM receives new environmental conditions on its input, then RQSM eventually generates 
a set of requirements  

∀t:TIME, γ:TRACE, E:ENV_COND  [ [ state(γ, t, input(RQSM)) |= environment_property(E) & 
  ¬∃t’:TIME < t [state(γ, t’, input(RQSM)) |= environment_property(E) ] ] 
⇒ ∃t2:TIME > t, G:GOAL, RS:REQUIREMENT_SET  [state(γ, t2, output(RQSM)) |= main_requirement(G) & 
         state(γ, t2, output(RQSM)) |= selected_basic_refinement_set(RS)] ] 

 

RQSM_successful 
If RQSM generates requirements, then the combination of these requirements entail the goal 
set for the organization. 

∀t:TIME, γ:TRACE, RS :REQUIREMENT_SET, G :GOAL  
 [ [state(γ, t, output(RQSM)) |= main_requirement(G) & 
  state(γ, t, output(RQSM)) |= selected_basic_refinement_set(RS)] ⇒ entails_goal(RS, G) ] 

 

 

DODM shows the proper behavior in case it first of all generates a design object 
description in case a new requirement set is received. Besides simply generating such 
a design object description, the object also needs to satisfy the requirements received 
on its input. 

 

DODM_generate 
If DODM receives a new requirements set on its input, then DODM eventually generates a 
design object description as output. 

∀t:TIME, γ:TRACE, RS :REQUIREMENTS_SET 
[ state(γ, t, input(DODM)) |= selected_basic_refinement_set(RS) &  
  ¬∃t’:TIME < t  [ state(γ, t’, input(DODM)) |= selected_basic_refinement_set(RS) ] 
⇒ ∃t2:TIME, D:DESIGN_OBJECT_DESCRIPTION 
  state(γ, t2, output(DODM)) |= selected_DOD_output(D) ] 

 

DODM_successful 
If DODM generates a design object description as output, then the design object description 
satisfies the requirements set on the input of DODM. 

∀t:TIME, γ:TRACE, R :REQUIREMENT_SET, 
   D:DESIGN_OBJECT_DESCRIPTION 
 [state(γ, t, input(DODM)) |= selected_basic_refinement_set(R) &  
   state(γ, t, output(DODM)) |= selected_DOD_output(D) ] 
⇒ fulfills_requirements(D, R)  

8   Simulation Results 

In order to show the functioning of the model presented above, simulation runs have 
been performed based on the properties as identified in Sections 4-6 using the 
component-based design presented in Section 2. As a scenario for the case study, a 
sudden decrease of competitor price is inserted as an event into the simulation  
 



60 M. Hoogendoorn, C.M. Jonker, and J. Treur 

design_cost(ford, 2000)
production_cost(ford, 6000)

E3_competitor_price(ford, 10000)
OP2_price_low_enough(ford, 10000)

quality_repair_cost(ford, 2000)
E3_competitor_price(ford, 8000)

OP2_price_low_enough(ford, 8000)
refined(OP3_cost_price_low_enough(ford, 8000))

selected_basic_refinement_set(s1)
in_selected_basic_refinement_set(GP1_design_cost_low_enough(ford, 2000), s1)

in_selected_basic_refinement_set(GP2_production_cost_low_enough(ford, 6000), s1)
in_selected_basic_refinement_set(GP3_quality_repair_cost_low_enough(ford, 0), s1)

CP1_lower_quality_repair_cost(ford, 0)
CP2_introduce_lean_production(ford)
CP3_effect_of_lean_production(ford)

CP4_delete_roles(ford)
CP5_add_new_roles(ford)

CP6_lean_production(ford)
quality_repair_cost(ford, 0)

time 0 5 10 15 20 

Fig. 7. Case study simulation results 

(following [25]). Figure 7 shows a partial trace of the simulation results. In the figure, 
the left side shows the atoms that occur during the simulation whereas the right side 
shows a timeline where a dark gray box indicates an atom being true at that particular 
time point and a light gray box indicates the atom is false. 

The figure shows the following. Initially, the different cost factors for the ford 
design object are the following: design_cost(ford, 2000); production_cost(ford, 6000); 

quality_repair_cost(ford, 2000). This perfectly fulfills the requirement that price is considered 
to be low enough in case it is at most 10000 as expressed in OP2 at that time point: 
OP2_price_low_enough(ford, 10000) . This requirement is sufficient to guarantee the goal 
OP1 (as expressed in Figure 5) due to the environmental condition E3 that competitor 
price for products within the same product group as ford are at that exact same level: 
E3_competitor_price(ford, 10000). Furthermore, the cyclic market should not be going down 
(E2) which is left constant during this simulation. Suddenly however, the environment 
changes, the price of competing cars drops to 8000: E3_competitor_price(ford, 8000). The 
current property OP2 is now insufficient to guarantee the overall goal OP1 being 
satisfied, therefore, a redesign process is activated. RQSM determines a new 
requirement for the design object, namely that prices should be below 8000, the 
competitor car price:OP2_price_low_enough(ford, 8000). Other options might be possible as 
well, but are not addressed in the simulation. The requirement is refined, first of all by 
expressing that the cost price should be low enough: refined(OP3_cost_price_low_enough(ford, 

8000)). This results in a selected basic refinement that quality repair costs should 
become 0 whereas design and production costs can remain 2000 and 6000 
respectively, as shown in the requirements part of the selected refinement s1: 

 
in_selected_basic_refinement_set(GP1_design_cost_low_enough(ford, 2000), s1); 
in_selected_basic_refinement_set(GP2_production_cost_low_enough(ford, 6000), s1); 
in_selected_basic_refinement_set(GP1_quality_repair_cost_low_enough(ford,0),s1).  

 

Since these are basic refinements, they are passed to DODM in order to find 
templates appropriate for these basic requirements. DODM observes that quality 
repair costs for the current design object are too high, and therefore starts to use the 
tree as expressed in Figure 6, refining the exact changes to be performed on the 
design object more and more. First the introduction of the lean production system is 



 Redesign of Organizations as a Basis for Organizational Change 61 

chosen, as expressed in CP2. Thereafter, the more concrete changes are determined, 
namely the deletion of the specialized production worker roles, the addition of new 
multi-task roles, and the insertion of the new behavior of those roles: 
CP4_delete_roles(ford); CP5_add_new_roles(ford); CP6_lean_production(ford). Note that in the 
simulation the actual contents of such properties are more concrete (in the form of 
current DOD descriptions), however, these are not presented here for the sake of 
brevity. Finally, after the actual changes have been performed for the design object, 
quality repair costs drop to 0, and the goal is therefore satisfied again: 
quality_repair_cost(ford, 0). To see whether the properties as expressed in Section 7 hold for 
the simulation trace, first of all, the RQSM_generate and DODM_generate properties have 
been checked against the trace shown in Figure 7 using a software tool called the TTL 
Checker [17]. Both properties were shown to hold for the trace. In order to see 
whether the refinement process within RQSM is properly performed, the tree used for 
the simulation as presented before in Section 5 has been formally proven by means of 
the SMV model checker [22]. The results indeed show that the lowest level properties 
entail the goal given the environmental conditions. Furthermore, to prove the 
successfulness of DODM, the property hierarchy shown in Figure 6 has also been 
proven by the SMV model checker which shows that introducing lean production in a 
design object indeed results in canceling the quality repair costs, which satisfied the 
property DODM_successful. As a result, the DODM_successful property is satisfied as well as 
the RQSM_successful property in case the components indeed generate the output based 
on these property hierarchies. 

9   Discussion 

Organizations aim to meet their organizational goals. Monitoring whether events 
occur that endanger fulfillment of these goals enables organizations to consciously 
adapt and survive. Adaptation is essential once an organizational goal becomes 
unreachable. This paper views such a change as a (re)design process. A component-
based formal generic model for design developed within the area of AI and Design is 
specialized into a model for organization (re)design.  

Formalizations developed within Organization Theory and AI (or computational 
organization theory), have proved suitable for the description of organization models 
as design object descriptions, and organization goals as design requirements. 
Furthermore, different types of specialized knowledge have been identified: (1) about 
main organization goals and their relation for given environmental conditions to 
organization requirements, (2) about refinement of organization requirements, (3) 
about design object descriptions, and (4) which components for a design object 
description satisfy which requirements. The generic design model was instantiated 
with such types of knowledge to constitute a specialized component-based model for 
(re)design of organizations. Example properties have been taken from a well known 
case in Organization Theory on the introduction of lean production [25]. 

This paper focuses on external triggers for organizational change. Triggers are 
related to specific goals that play the role of design requirements which the 
organizational change should comply to. These requirements tend to be high-level 
goals and lack the detail needed for specifying how an organization should change. 



62 M. Hoogendoorn, C.M. Jonker, and J. Treur 

Therefore, design requirement refinement is used based on requirements hierarchies. 
Such hierarchies relate objectives of the organization (e.g., high demand for cars) to 
organizational change properties at different organizational levels (e.g., change in 
some departments). Thus, they relate triggers at the level of the organization to 
properties at the level of parts (groups) within the organization. For example, that a 
certain type of car is not selling according to the goals set is related to the costs of 
quality repair. Requirements hierarchies help to localize where to change the 
organization. High-level goals for an organization as well as goals for organizational 
redesign have been related to low-level executable properties. Formal verification has 
been performed, showing satisfaction of the non-leaf properties in the property tree. 

When comparing the approach to previous work in redesign of organizations a 
main strength is the formal description of the whole redesign process in terms of a 
generic redesign model for organizations. In the field of management for example 
(e.g., [7]), only informal descriptions are given of redesign processes. Systems Theory 
(e.g., [23]), addresses goal oriented behavior. The gap observed between actual and 
desired state of a system causes redesign, which corresponds with the approach taken 
in this paper. Formalizations by means of property hierarchies are, however, not 
present, therefore formal verification as done in this paper cannot be performed. 

In [13] a general diagnosis engine is presented which drives adaptation processes 
within multi-agent organizations using the TAEMS modeling language as the primary 
representation of organizational information. In the design of the diagnostic engine 
three distinct layers are identified: symptoms, diagnosis, and reactions which in the 
approach presented in this paper roughly correspond to Section 4, 5, and 6 
respectively. The implementation of these elements differs in both approaches. The 
goals and requirements in this paper are explicitly connected to each other. Once an 
organizational goal is observed not to be fulfilled, such a dissatisfaction is related 
directly to a goal for change. In the approach presented in [13] lacks such an explicit 
relation between goals and error diagnosis. Furthermore, this paper also introduces an 
approach to diagnose whether the whole reorganization process was successful, which 
is not the case in [13]. [6] explores dynamic reorganization of agent societies and 
focuses on changes to the structure of an organization, this paper presents an approach 
that enables such a dynamic reorganization. 

 [15] presents an approach which aims to archive adaptive real-time performance 
through reorganizations of the society. As a domain of application, production 
systems are used throughout that paper. Whereas that paper focuses on adaptive 
agents, this paper concentrates on adaptation of an organizational model that abstracts 
from agents and specifies elements on the level of roles the agents can fulfill. 

The work presented in this paper can also be compared with the work on 
institutions as a way to describe multi-agent organizations. In [8] an institution is said 
to structure interactions and enforce individual and social behavior by obliging 
everybody to act according to norms, and a formalization language is introduced for 
such an institution. The approach to use dynamic expressions as a restriction of the 
behavior of agents allocated to that role used in this paper is also expressive enough to 
describe such norms. For example, in [21] an example of a norms is the following: 
“Students are prohibited from sitting the exam if they have not completed the 
assignment”. Such a norm can easily be formulated in terms of a dynamic property for 
the student role. The approach presented in this paper could therefore also be applied 



 Redesign of Organizations as a Basis for Organizational Change 63 

to institutions and normative organizations. In [2] an adaptation mechanism of norms 
is proposed using an evolutionary approach contrary to the pre-specified knowledge 
assumed in this paper. Such an evolutionary approach can be incorporated in RQSM 
and DODM, allowing them to derive requirements and design objects for certain 
environmental conditions and goals without using pre-specified knowledge. 

Finally, in the field of coalition formation (see e.g. [19, 24]), the main purpose of 
forming a coalition is to perform a task that cannot be performed by a single agent. 
That work can be combined with our approach by addressing the problem of the 
allocation of agents to roles, after the change of the organizational model by the 
approach presented in this paper. 

References 

1. Bosse, T., Jonker, C.M., Treur, J.: Analysis of Design Process Dynamics. In: de Mantaras, 
R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial 
Intelligence, ECAI’04, pp. 293–297 (2004) 

2. Bou, E., Lopez-Sanchez, M., Rodriguez-Aguilar, J.A.: Towards Self-Configuration in 
Automatic Electronic Institutions. LNCS, vol. 4386, pp. 247–263. Springer, Heidelberg 
(2007) 

3. Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of Component-Based Design of 
Intelligent Agents. Data and Knowledge Engineering 41, 1–28 (2002) 

4. Brazier, F.M.T., van Langen, P.H.G., Treur, J.: Strategic knowledge in design: a 
compositional approach. Knowledge-Based Systems 11, 405–415 (1998) 

5. Ciancarini, P., Wooldridge, M.J. (eds.): AOSE 2000. LNCS, vol. 1957. Springer, 
Heidelberg (2001) 

6. Dignum, V., Sonenberg, L., Dignum, F.: Dynamic Reorganization of Agent Societies. In: 
Proc. of CEAS: Workshop on Coordination in Emergent Agent Societies at ECAI 2004 
(2004) 

7. Douglas, C.: Organization redesign: the current state and projected trends. Management 
Decision 37(8) (1999) 

8. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In: 
Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 348–366. 
Springer, Heidelberg (2002) 

9. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organisations in 
multi-agent systems. In: Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), pp. 128–135. IEEE Computer Society Press, Los Alamitos 
(1998) 

10. Hannoun, M., Sichman, J.S., Boissier, O., Sayettat, C.: Dependence Relations between 
Roles in a Multi-Agent System: Towards the Detection of Inconsistencies in Organization. 
In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) Multi-Agent Systems and Agent-Based 
Simulation. LNCS (LNAI), vol. 1534, pp. 169–182. Springer, Heidelberg (1998) 

11. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: MOISE: An organizational model 
for multi-agent systems. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and 
IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 152–161. Springer, Heidelberg (2000) 

12. Haroud, D., Boulanger, S., Gelle, E., Smith, I.F.C.: Strategies for conflict management in 
preliminary engineering design. In: Proceeding of the AID 1994 Workshop Conflict 
Management in Design (1994) 



64 M. Hoogendoorn, C.M. Jonker, and J. Treur 

13. Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organizational 
Structures. In: Muller, J.P., Ander, E., Sen, S., Frasson, C. (eds.) Proceedings of the Fifth 
International Conference on Autonomous Agents, pp. 529–536. ACM Press, New York 
(2001) 

14. Hubner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional and 
Deontic Specification of Organizations in Multiagent Systems. In: Proc. 16th Brazilian 
Symposium on Artificial Intelligence (SBIA’02), Porto de Galinhas, Brasil (2002) 
Extended abstract in: Castelfranchi, C., Johnson, W.L. (eds.) Proc. of the First 
International Joint Conference on Autonomous Agents and Multi-Agent Systems, 
AAMAS’02. pp. 501–502, ACM Press, New York (2002) 

15. Ishida, T., Yokoo, M., Gasser, L.: An Organizational Approach to Adaptive Production 
System. In: Proceedings of the 8th National Conference on Artificial Intelligence, Boston, 
USA, pp. 52–58 (1990) 

16. Jaffee, D.: Organization Theory: Tension and Change. McGraw-Hill Publishers, New 
York (2001) 

17. Jonker, C.M., Treur, J.: Compositional verification of multi-agent systems: a formal 
analysis of pro-activeness and reactiveness. Int. J. of Cooperative Information Systems 11, 
51–92 (2002) 

18. Jonker, C.M., Treur, J.: Relating Structure and Dynamics in an Organisation Model. In: 
Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, 
pp. 50–69. Springer, Heidelberg (2003) 

19. Klusch, M., Gerber, A.: Dynamic Coalition Formation among Rational Agents. IEEE 
Intelligent Systems 17(3), 42–47 (2002) 

20. Lomi, A., Larsen, E.R.: Dynamics of Organizations: Computational Modeling and 
Organization Theories. AAAI Press, Menlo Park (2001) 

21. McCallum, M., Vasconcelos, W.W., Norman, T.J.: Verification and Analysis of 
Organisational Change. In: Boissier, O., Dignum, V., Matson, E., Sichman, J. (eds.) Proc. 
1st OOOP Workshop, pp. 91–106 (2005) 

22. McMillan, K.: Symbolic Model Checking: An approach to the state explosion problem. 
Kluwer Academic Publishers, Dordrecht (1993) 

23. Rapoport, A.: General System Theory. Abacus Press (1986) 
24. Shehory, O., Kraus, S.: Task allocation via coalition formation among autonomous agents. 

In: Proceedings of IJCAI 1995, pp. 655–661 (1995) 
25. Womack, J.P., Jones, D.T., Roos, D.: The Machine That Changed The World: The Story 

of Lean Production. HarperCollins Publishers, New York (1991) 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Part II  
MODELLING AND ANALYZING 

INSTITUTIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Specifying and Reasoning About Multiple Institutions

Owen Cliffe, Marina De Vos, and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK
{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Correctly specifying the behaviour of normative systems such as con-
tracts and institutions is a troublesome problem. Designers are faced with two
concurrent, difficult tasks: firstly specifying the relationships (over time) of
agents’ actions and their effects, and secondly combining this model with another
that captures the agents’ permissions and obligations. In this paper we present our
model and operational semantics for specifying individual and collective institu-
tions and outline a declarative action language for describing them. We demon-
strate, by way of an example, how this may be used to enable the analysis of
institutional specifications either for simply visualising possible outcomes or for
checking for absence or presence of certain (un)desirable correctness properties.

1 Introduction

Institutions have long been studied in the multi agent systems community as a means
for capturing the social semantics of interactions among agents. While a lot of work
[16, 19, 20, 18, 7, 17, 1, 5, 5] has focused on modelling single institutions, nobody so
far has addressed the issue of modelling multiple interacting institutions. In this case,
particular aspects of a society may be modelled individually and then combined to give
a richer model, leading to the possibility of using institutions as a means for abstrac-
tion (capturing increasing levels of specificity at lower levels) and also as a means for
delegation (whereby one institution relies on the behaviour of another to augment its
function). A good example is a contract violation which is considered as a breach of
civil law. The contract and the civil law are themselves independent entities, and one
could argue that a formal contract exists without the force of law, however the presence
of this institution leads to more force behind the contract—that is, a victim of con-
tract violation may have a reasonable expectation that the violator will be sanctioned
elsewhere.

Action languages have evolved over recent years as a means of providing declara-
tive, human-readable descriptions of the effects of actions and events. In [10] Gelfond
and Lifschitz summarise action languages thus: “Abstract Action languages are formal
models of parts of the natural language that are used for talking about the effects of
actions.” The semantics of action languages are typically described over a transition
system where each state (or situation) is composed of the valuations of zero or more
fluents and each transition is modelled by one or more action symbols.

Action languages are typically used for the analysis of situations and in this case, the
action language describes a model of the situation which can then be queried to deter-
mine various properties. An intuitive and elegant way of doing this is to map the action

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 67–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



68 O. Cliffe, M. De Vos, and J. Padget

language to an answer set program. Answer set programming (ASP) is a logic pro-
gramming language that admits reasoning about possible world views in the absence of
complete information. Due to its formal semantics, and combined with efficient heuris-
tic solvers, answer set programming, provides an excellent basis from which derived
models may be queried. More information about answer set programming and its ap-
plications can be found in [3].

In this paper, we extend the formal specification of single institutions in [4] to multi-
institutions. We present a top-down approach to virtual multi-institutions, in which ex-
ternal normative concepts are represented in forms that at the same time designers may
analyse (off-line) and about which agents may reason (on-line). Instead of using ASP
directly (as in [5, 4]), we introduce an action language designed for multi-institutions.
The use of the action language makes generating the ASP code less open to human cod-
ing error, and perhaps more importantly easier to understand and create without losing
either expressiveness or a formal basis for the language by narrowing the semantic gap.

2 Multi-institutions

2.1 The Single Institution

To provide some context for the theory that follows, this section begins with a brief
overview of institutions and the terms that we use. As outlined in the introduction the
essential characteristics of an institution are captured in its norms with varying degrees
of specificity. What agents do or say is constrained by the institutional context, so that
irrelevant actions or communications are ignored, and relevant ones advance the inter-
action, cause an agent to acquire an obligation, or through a violation, invite a sanction.
But while that serves to capture the agent’s point of view, what about the (institutional)
environment? How are actions to be observed, how are obligations to be recorded and
their satisfaction enforced, and how are violations to be detected and the corresponding
sanctions to be applied?

The model we propose is based on the concept of Observable Events that capture
notions of the physical world — “shoot somebody” — and Institutional Events that
are those generated by society — “murder” — but which only have meaning within a
given social context. While observable events are clearly observable, institutional ones
are not, so how do they come into being? Searle [12] describes the creation of an in-
stitutional state of affairs through Conventional Generation, whereby an event in one
context Counts As the occurrence of another event in a second context. Taking the phys-
ical world as the first context and by defining conditions in terms of states, institutional
events may be created that count as the presence of states or the occurrence of events in
the institutional world.

Thus, we model an institution as a set of institutional states that evolve over time
subject to the occurrence of events, where an institutional state is a set of institutional
fluents that may be held to be true at some instant. Furthermore, we may separate such
fluents into domain fluents, that depend on the institution being modelled, such as “A
owns something”, and normative fluents that are common to all specifications and may
be classified as follows:



Specifying and Reasoning About Multiple Institutions 69

– Institutional Power: This represents the institutional capability for an event to
be brought about meaningfully, and hence change some fluents in the institutional
state. Without institutional power, the event may not be brought about and has no
effect; for example, a marriage ceremony will only bring about the married state, if
the person performing the ceremony is empowered so to do.

– Permission: Each permission fluent captures the property that some event may
occur without violation. If an event occurs, and that event is not permitted, then a
violation event is generated.

– Obligation: Obligation fluents are modelled as the dual of permission. An obliga-
tion fluent states that a particular event is obliged to occur before a given deadline
event (such as a timeout) and is associated with a specified violation. If an oblig-
ation fluent holds and the obliged event occurs then the obligation is said to be
satisfied. If the corresponding deadline event occurs then the obligation is said to
be violated and the specified violation event is generated.

Events can be classified into: (i) a set of observable events, being those events ex-
ternal to the institution which may be brought about independently from the institution
and (ii) a set of institutional events which may be broken down into violation events and
institutional actions; these events may only be brought about if they are generated by
the institutional semantics. Finally we have a set of institutional rules which associate
the occurrence of events with some effects in the subsequent state. These can be divided
into: (i) generation rules which account for the conventional generation of events. Each
generation rule associates the satisfaction of some conditions in the current institutional
state and the occurrence of an (observed or institutional) event with a generated insti-
tutional event. For example: “A wedding ceremony counts as civil marriage only if the
couple have a licence”. The generating and generated events are taken by the institution
to have occured simultaneously. (ii) consequence rules, each of which associates the
satisfaction of some conditions in the current institutional state and the occurrence of
an event in the institution or the world to the change in state of one or more fluents
in the next institution state. For example: “Submitting a paper to a conference grants
permission for the paper to be redistributed by the conference organisers”.

Violation and sanction play an important role in the specification of institutions.
Violations may arise either from explicit generation, from the occurrence of a non-
permitted event, or from the failure to fulfil an obligation. In these cases sanctions that
may include obligations on violating agents or other agents and/or changes in agents’
permission to do certain actions, may then simply be expressed as consequences of the
occurrence of the associated violation event in the subsequent institutional state.

2.2 Combining Institutions

Institutions are not necessarily separate entities; several of them could operate within
the same context, agents can participate in a number of them at the same time and
perhaps more interestingly institutions themselves can be governed by institutions. In
this section we investigate how such relationships can be established. To our knowledge
we are the first to examine this topic.

Just as agents have the right to join in or stay out of an institution, it should be up
to the institution to allow other institiutions to change directly or indirectly its state. In



70 O. Cliffe, M. De Vos, and J. Padget

other words, it needs to put in place a mechanism of empowerment that allows institu-
tions to bring about events and to initiate and terminate fluents within the institution.

Providing other institutions with the power to bring about certain events within the
institution can easily be supported using the existing single institutional framework by
quantifying the institutional power with the institution that is given the power. Since
verifying empowerment is already part of event generation for a single institution, we
do not need to change event generation in the presence of multiple institutions.

Things are different, when we want to empower institutions to change directly each
others’ state, because as for single institutions, empowerment only ranges over events.
In the presence of multi-instititutions, we need to introduce two new empowerments:
one for initialising and one for terminating fluents. These two institutional powers will
then be used in conjunctions with the consequence rules to determine the next state of
the institution.

2.3 Operational Specification

The model. Each multi-institution specification M is characterised by the institutions
I that constitute it. Thus, M = 〈I1, . . . , In〉 is a sequence of individual institutions
Ii. Each of these institutions is a five-tuple Ii := 〈Ei,Fi, Ci,Gi, ∆i〉 with institutional
Events (Ei), Fluents (Fi), Consequences (Ci), Event Generation (Gi) and Initial State
(∆i). In the following subsections we discuss the various parts in more detail and their
effect on the multi-institution M.

Institutional Events. Each institution Ii defines a set of event signatures e ∈ Ei, to
denote the types of event that may occur. Ei comprises two disjoint subsets, E i

obs de-
noting observable events and E i

inst denoting institutional events. We break institutional
events down further into the disjoint subsets: institutional actions E i

instact and violation
events E i

viol. We define E i
viol such that ∀e ∈ E i

instact · viol(e) ∈ E i
viol: that is each in-

stitutional action has a corresponding violation event viol(e) in E i
viol which may arise

from performing e when it is not permitted. Other violations can be added to indicate
agents have not behaved as they should have, e.g. fulfilling an obligation.

We assume that the individual institutions have disjoint sets of events Ei
1. We define

the set of all events of the multi-institution M, by EM =
⋃n

i=1 Ei. We define EM
inst,

EM
obs, EM

instact and EM
viol in a similar fashion. To obtain the corresponding institution for

any event e, we define the function ρ : EM → N such that ρ(e) = i when e ∈ Ei.

Institutional Fluents. Each institution Ii defines a set of Domain Fluents denoted Di

which is a set of fluents modelling the context in which the institution is operational. In
addition to the domain fluents, we define a number of disjoint sets of boolean fluents,
Wi, Pi, Oi, Si and Ti, indicating different types of normative fluents. Together, these
disjoint sets of domain fluents and normative fluents form the Institutional Fluents Fi

(Fi = Wi∪Pi∪Oi∪Si∪Ti∪Di). The set of all available fluents in the multi-institution
M is denoted as FM (FM =

⋃n
j=1 Fj).

1 This may seem as a limitation, especially when the observable events are conscerned, but it
is not. We are modelling events from the viewpoint of an institution and not from the events
themselves.



Specifying and Reasoning About Multiple Institutions 71

Wi A set of institutional powers of the form pow(j , e) : 1 ≤ j ≤ n, e ∈ E i
instact where

each power fluent denotes the capability of some event e to be brought about in the
institution.

Pi A set of action permissions: perm(e) : e ∈ E i
instact where each permission flu-

ent denotes that it is permitted for action e to be brought about. An event is not
explicitly forbidden, instead this is implicitly represented through the absence of
permission for that event to occur.

Oi A set of obligations, of the form obl(e, d, v) : e ∈ Ei, d ∈ Ei, v ∈ E i
inst where each

obligation fluent denotes that action e should be brought about before the occur-
rence of event d or be subject to the violation v. Note that v need not necessarily be
a violation, but any event which represents the failure to satisfy the obligation.

Si A set of institutional initiating powers of the form inipow(j, f): 1 ≤ j ≤ n, where
f ∈ Di denotes that institution j is empowered to initiate some domain fluent f in
institution i.

Ti A set of institutional terminating powers of the form termpow(j, f): 1 ≤ j ≤ n,
where f ∈ Di denotes that institution j is empowered to terminate some fluent f
in institution i.

The state of an institution at a certain time is determined by those institutional fluents
that are valid at that time. So a state S is a subset of F . A fluent f which is not valid is
denoted as ¬f . This notation can be extended to sets of fluents.

The set of all possible institutional states of institution Ii is denoted as Σi with
Σi = 2Fi . It is important to note that not all those states will actually be reachable in an
institution. The state of the multi-institution M is modelled as a sequence 〈S1, . . . , Sn〉
with Si ∈ Σi. The state of all possible states for M is defined as ΣM = Σ1× . . .×Σn.

Events can have the same effect on a number of states. Borrowing a book from a
library will result in the obligation to bring it back regardless of how many books are
currently on loan. To facilitate this, we introduce the concept of State Formulae to
capture a collection of states that satisfy certain properties in that they either contain
certain fluents or they do not. The set of all state formulae is denoted as Xi with Xi =
2Fi∪¬Fi , where ¬Fi is the negation of each fluent in Fi.

Consequences. Each institution Ii defines the function Ci which describes which flu-
ents are initiated and terminated by the occurrence of a certain event in a state matching
some criteria. The function is expressed as Ci : Xi ×Ei → 2FM × 2FM . Given X ∈ Xi

and e ∈ eventsi, Ci(X, e) = (C↑
i (X, e), C↓

i (X, e)) with C↑
i (X, e) containing those

fluents which are initiated by the event e in a state matching X and C↓
i (X, e) collect-

ing those fluents which are terminated by event e in a state matching X . Notice that
the consequence relation can indicate which events can cause fluents to change in the
state of institutions different from itself. This will only take effect if the institution is
empowered to do so.

Event Generation. Each institution Ii defines an event generation function Gi which
describes when the occurrence of one event counts as the occurrence of another:
Gi : Xi × Ei → 2E

M
inst .



72 O. Cliffe, M. De Vos, and J. Padget

Initial State. Each institution Ii defines the set ∆i ⊆ Fi which denotes the set of
fluents that should hold when the institution is created.

The initial state of the multi-institution M is the sequence ∆M = 〈∆1, . . . , ∆n〉.

2.4 Semantics

During the lifetime of an institution, its state changes due to events that take place.
Each observable event possibly generates more events which in turn could create further
events. Each of these events could have an effect on the current state. The combined
effect of these events determines the next state.

States. We define the semantics of a multi-institution M over a set of states ΣM. Each
S ∈ ΣM consists of a sequence containing a state Si ∈ Σi for each institution Ii in
M. Each state Si is a set of fluents in Fi which are held to be true at a given time. We
say that S ∈ ΣM satisfies fluent f ∈ Fi, denoted S |= f , when f ∈ Si. It satisfies
its negation ¬f , when f �∈ Si. This notation can be extended to sets X ⊆ Xi in the
following way: S |= X iff ∀x ∈ X · S |= x.

Event Generation. In order to model event generation we define function which de-
scribes which events are generated in a given state. GR : ΣM × 2EM → EM. Given
a state S and a set of of events E, GR(S, E) includes all of the events which must be
generated by the occurrence of events E in state S and is defined as follows:

GR(S, E) = {e ∈ E | e ∈ E or
∃ e′ ∈ E s.t. j = ρ(e′), X ∈ Xj , e ∈ Gj(X, e′) · Sρ(e) |= pow(j , e) ∧ S |= X or
∃ e′ ∈ E, X ∈ Xρ(e), e ∈ Gρ(e)(X, e′) · e ∈ Eρ(e)

viol ∧ S |= X or
∃ e′ ∈ E · e = viol(e′), S |= ¬perm(e′) or
∃ e′ ∈ Eρ(e), d ∈ E · S |= obl(e′, d, e)}

The first condition ensures that events remain generated. The second is responsible
for generating those events that are both prescribed by the institutions’ event generator
and empowered. The third condition deals with violations specified by the event gen-
erator, while the fourth generates violations as consequences of events that were not
permitted. The final conditions deals with obligations that are not met.

It is easy to see that GR(S, E) is a monotonic function. This implies that for any
given state and a set of events, we can obtain a fixpoint GRω(S, E). In our multi-
institutional model, generated events arise from the performance of one observable
event eobs ∈ EM

obs in a given state S. So, to obtain all events that originate from this
one event in this state, we simply need GRω(S, {eobs}).

Event Effects. Each fluent is either valid or not in each state of the institution it belongs
to. The status of these fluents changes over time according to which generated events
have occurred in the previous transition. Events can have two sorts of effects regarding
fluents: fluents can be initiated (they become true in the next state) or they can be termi-
nated (they cease to be true in the next state). The combination of all effects generated
in a state defines the state transition. The state transition function captures inertia, so all
fluents that are not affected in the current state remain valid in the next state.



Specifying and Reasoning About Multiple Institutions 73

As mentioned above, given an observable event eobs all events that could have an
effect on the state S, are obtained by GRω(S, {eobs}).

A fluent can be initiated either by any event in the same institution, or by any event in
another institution which initiates the fluent, if that institution has the power to initiate
the fluent.

INIT(S, eobs) = { p ∈ FM | ∃ e ∈ GRω(S, {eobs}), i = ρ(e), X ∈ Xi·
p ∈ Fi, p ∈ C↑

i (X, e), S |= X or
p ∈ Fj , Ij �= Ij , p ∈ C↑

i (X, e), S |= X, S |= inipow(i, p)}
A fluent can be terminated either by an event in the same institution, or by an event

in another institution given permission, or if it is a fulfilled obligation in any institution
of the multi-institution.

TERM(S, eobs) = {p ∈ FM | ∃ e ∈ GRω(S, {eobs}), i = ρ(e), X ∈ Xi·
p ∈ Fi, p ∈ C↓(i, X)e, S |= X or
p ∈ Fj , Ij �= Ij , p ∈ C↓

i (X, e), S |= X, S |= termpow(i, p) or
p = obl(e, d, v) ∈ FM ∧ p ∈ S or
p = obl(e′, e, v) ∈ FM ∧ p ∈ S}

Now that we know which fluents need adding or deleting we can define the transition
function TR : ΣM × EM

obs → ΣM as TR({S1, . . . , Sn}, eobs) = {S′
1, . . . , S

′
n} such

that S′
i = {p ∈ Fi | p ∈ S, p /∈ TERM(S, eobs) or p ∈ INIT(S, eobs)}.

The first condition models inertia: all fluents which are asserted in the current state
persist into the next state, unless they are terminated. The second condition includes
fluents which are initiated in the current state.

Ordered Traces. Now that we have defined how states may be generated from a previ-
ous state and a single observable event, we may define traces and their state evaluations:

– An ordered trace is defined as a sequence of observable events 〈e0, e1, . . . , en〉 with
ei ∈ EM

obs, 0 ≤ i ≤ n
– The evaluation of an ordered trace for a given starting state S0 is a sequence

〈S0, S1, . . . Sn+1〉 such that Si+1 = TR(Si, ei)
– Ordered traces and their evaluations allow us to monitor or investigate the evolution

of an institution over time. They provide us with the data necessary to answer most
queries one might have about a certain (multi-)institution.

2.5 A Simple Example: Borrowing

This institution (formalised in Fig. 1) describes when agents may borrow money, when
they must pay it back and when they are permitted to leave the interaction. The norm
described by the protocol is that when money is borrowed it must be paid back before
the agent leaves. Note that the observable events in this institution are not generated by
the agents but by the environment in which this institution operates. Also note that the
agents will only receive empowerment to leave the institution as soon as they borrow
from the institution (line 8). This is to indicate that is useless to leave an agreement
before you even started.



74 O. Cliffe, M. De Vos, and J. Padget

Given set of agents Agents ,and multi-institution M s.t. a ∈ Agents ,Ibor, Ii ∈ M:

Ebor
obs = {msg borrow(a), msg payback(a), msg leave(a)} (1)

Ebor
instact = {borrow(a), payback(a), leave(a)} (2)

Ebor
viol = {viol(e) | e ∈ Eb

obs ∪ Ebor
instact} ∪ {nonpay(a)} (3)

Dbor = {loan(a)} (4)

Wbor = {pow(i , e) | e ∈ Ebor
instact} (5)

Pbor = {perm(e) | e ∈ Ebor
obs ∪ Ebor

instact} (6)

Obor = {obl(e, d, v) | e, d ∈ Ebor
obs ∪ Ebor

instact, v ∈ Ebor
inst} (7)

C↑
bor(X , EM) : 〈{}, borrow(a)〉 �→ {obl(payback(a), leave(a), nonpay(a)),

pow(bor , payback(a)), pow(bor , leave(a)),

loan(a)} (8)

C↓
bor(X , EM) : 〈{}, borrow(a)〉 �→ {pow(bor , borrow(a))} (9)

〈{}, payback(a)〉 �→ {pow(bor , payback(a)), pow(bor , leave(a)),

loan(a)} (10)

〈{}, leave(a), 〉 �→ {pow(bor , payback(a)), pow(bor , leave(a))} (11)

Gbor(X , EM) : 〈{}, msg borrow(a)〉 �→ {borrow(a)} (12)

〈{}, msg payback(a)〉 �→ {payback(a)} (13)

〈{}, msg leave(a)〉 �→ {leave(a)} (14)

Sbor
0 = {perm(msg borrow(a)), perm(msg payback(a)),

perm(msg leave(a)), perm(borrow(a)), perm(payback(a)),

perm(leave(a)), pow(borrow(a))} (15)

Fig. 1. The formal model of the borrowing scenario

The state transition diagram for an instance (with a single agent) of this contract is
displayed in Fig. 4. Fluents that are true are included in each state and transitions are
labelled with events (generated events are shown in square brackets).

3 InstAL: An Action Language for Describing Institutions

In this section we outline the syntax and semantics of our institutional action language
InstAL.

3.1 Syntax

The syntax of our action language consists of a set of declarations which define the
types, fluents and events which are supported by the institution and a set of rules which
define the operational semantics of the institution. These are summarised by way of the
borrowing institution described above.



Specifying and Reasoning About Multiple Institutions 75

Types. Each InstAL specification may contain zero or more types. Types describe a set
of atoms which may be applied to the parameters of fluents and events in rule descrip-
tions. The language defines four internal types which are grounded automatically by
the contents of the specification: (i) The set of events: Event (ii) The set of institutions:
Inst (iii) The set of all fluents Fluent (iv) The set of all domain fluents DFluent In
the example we define one type Agent which ranges over the possible subjects of the
contract;

type Agent;

Event Declarations. Each specification may define zero or more event signatures, each
of which describes the event’s status (observable, action or violation), its (unique) name
and the types of any parameters associated with the event.

We define three observable events (Fig. 1, 1) which denote messages associated with:
a request to borrow money by an agent (msg borrow(..)), a message describing that
the money has been payed back (msg payback(...)) and a message indicating an
agent has left the situation (msg leave(...)).

observable event msg_borrow(Agent);
observable event msg_payback(Agent);
observable event msg_leave(Agent);

We define four institutional events (Fig. 1, 2) which denote the effective achievement
of borrowing and paying back money and leaving the contract. Additionally we define
a violation event (Fig. 1, 3) nonpay(...) which is associated with an agent failing
to repay borrowed money.

action event borrow(Agent);
action event payback(Agent);
action event leave(Agent);
violation event nonpay(Agent);

Fluents. Fluent declarations define institutional properties which may change over
time. A fluent declaration consists of a fluent name, and zero or more fluent parameters,
the types of which must be specified.

For instance the following declaration:fluent owns(Agent,Object); defines a
fluent with name owns with two parameters which range over the types Agent and
Object respectively.

In addition to fluents declared in a specification the following types of normative
fluents are implicitly defined:

(i) pow(Inst,Event): A given institution is empowered to generated a given event
(if no institution is specified then the institution in which the fluent is referenced
is assumed).

(ii) initpow(Inst,DFluent),termpow(Inst,DFluent): A given (external) in-
stitution has the power to initiate or terminate a given fluent.



76 O. Cliffe, M. De Vos, and J. Padget

(iii) perm(Event): A given event is permitted.
(iv) obl(Event,Event,Event) : A given obligation exists.

In the example we define a single institutional domain fluent (Fig. 1, 4) which repre-
sents the existence of a loan with respect to some agent.

fluent loan(Agent);

Rules. Each specification may contain zero or more rules, three types of which are
available: (i) Causal rules which describe when fluents change in response to the oc-
currence of events. (ii) Generation rules which describe when events may be generated.
(iii) Initial rules which describe the initial state of the institution.

A causal rule consists of (i) a trigger event which denotes the event which (may) ac-
tivate the rule. (ii) an operation which indicates whether the rule initiates or terminates
the fluents in the rule body. (iii) a set of fluents which are initiated or terminated by
the rule. (iv) a (possibly empty) condition consisting of an expression describing fluents
which must be true in order for the rule to have an effect.

In our example we define the effects of the successful occurrence of the borrow(..)
event (Fig. 1, 8) as the termination of the power to perform further borrow events and
creation of the power to pay back and leave the contract, and also the creation of an
obligation for the agent to repay the debt before they leave the contract (lest they cause
a nonpay(...) violation). Borrowing also initiates a loan for the borrowing agent.

borrow(A) initiates pow(payback(A)),pow(leave(A)),loan(A),
obl(payback(A),leave(A),nonpay(A));

We similarly define that borrow(...) terminates the further power to borrow
(Fig. 1, 9) (so borrowing may not occur while a loan exists). Both payback(...)

and leave(...) terminate the power to both payback and leave (Fig. 1, 10-11).

borrow(A) terminates pow(borrow(A));
payback(A) terminates pow(payback(A)),pow(leave(A)),loan(A);
leave(A) terminates pow(payback(A)),pow(leave(A));

We define three generation rules which associate the performance of the three ob-
servable messages with the generation of the corresponding institutional events (Fig. 1,
12-14).

msg_borrow(A) generates borrow(A);
msg_payback(A) generates payback(A);
msg_leave(A) generates leave(A);

Finally we define the initial state (Fig. 1, 15), in this state all events are permitted,
and borrowing is initially empowered.

initially perm(msg_borrow(A)),perm(msg_payback(A)),
perm(msg_leave(A)),perm(borrow(A)),perm(payback(A)),
perm(leave(A)),pow(borrow(A));



Specifying and Reasoning About Multiple Institutions 77

Static Properties. In addition to fluents which change over time, it is sometimes useful
to refer to external properties which will not change during the execution of an institu-
tion, but are not known at the time of specification. As with fluents, static properties con-
sist of a name and zero or more typed parameters, for instance the declaration: static
participant(Agent,Inst) defines a static property with name participant and
parameters which range over the types Agent and Inst. This static property indicates
which agents are allowed to participate in the institution. It does not imply that the
agents cannot come and go at run-time.

Variables. Variables are indicated in the language by capitalised strings and may ap-
pear in the parameters of fluents and events within rules or within expressions in the
conditions of rules (such as X!=Y) . Variables are locally scoped to each rule and each
variable has a corresponding type, which is computed based on where (in the parameters
of a given fluent or event reference) it occurs in the rule.

During processing, a rule containing variables is expanded into a set of rules contain-
ing all valid possible assignments of each variable. For example the rule: sell(X,Y)
terminates owns(X,Y); would be implicitly expanded to variable free rules con-
taining assignments for X and Y based on the parameter types of event sell and fluent
owns. In the case where the condition of a rule rule contains variable expressions (i.e.
A=bob) then only those variable expansions which satisfy the expressions are generated.

3.2 Model Evaluation

We evaluate properties of our models by performing a transformation of one or more
InstAL specifications into answer set programs (see [3] for an extensive overview of
answer set programming or [9] for an brief desciption). While the details of this trans-
formation are omitted from this paper, we summarise the process here.

Models are evaluated by taking one or more (related) institutional specifications, a
domain description which includes elements of the sets defined in type declarations
and static declarations, a query (see below) and a maximum time interval. This
information is then compiled into an answer set program of the form described in [4].
This program may then be solved using an answer set solver such as Smodels2, yielding
zero or more answer sets, each of which represents an ordered trace (up to the maximum
time interval) of the institution which matches the query. These traces are then parsed
and can be visualised individually or combined into state transition diagrams of the
form seen in Figs. 4 and 5.

This process is sound and complete: all requested traces are found as answer sets
and all answer sets are valid traces fulfilling the specified conditions. In general the
computional complexity of answer set programming is σP

1 (See [3] for more details).
However, the specific chararistics of our program reduces this significantly.

Although ASP can theoretically cope with infinite time, its implementations cannot
as the program needs to ground its variables in advance. This implies that we need to
specify in advance the number of time steps about which one wishes to reason.

Two mechanisms for specifying queries on the properties of models may be used:
(i) for simple queries such as “does it hold that this property is never (or ever) true in

2 http://www.tcs.hut.fi/Software/smodels/



78 O. Cliffe, M. De Vos, and J. Padget

the model?” and “what is the state after the performance of this sequence of observable
events?” we include a simple query language. In the first case ever loan(a); for ex-
ample would produce all answer sets where a loan is created. (ii) In the second case:
after msg borrow(a),fineAgent(a),msg leave(a); would yield a single an-
swer set describing the series of states (including domain fluents, institution fluents and
generated events) brought about by the occurrence of the specified actions. While this
query language is useful for simple queries, it represents only a small subset of the pos-
sible queries which may be computed using our model. In light of this, queries may also
be expressed directly as answer set program rules, for instance:

condition:- holdsat(loan(bob),I),not holdsat(loan(bob),J),
before(I,J),instant(I),instant(J).

compute all { not condition }.

would return all traces where a loan was created at some time instant but never settled at
some point in the future. In the simple example with a single agent bob above this query
yields a single trace of length 2: msg borrow(bob),msg leave(bob) and associated
fluents.

3.3 An Extended Example: Contract Enforcement

In the previous section we discussed a single specification of a simple institution for
governing loans, however as is clear from Fig. 4 once an agent has violated a loan
agreement by leaving before paying, no further action may be taken. In many cases in
the real world such violations are delegated to a “higher power” which would impose a
sanction. In the following example we demonstrate such an institution which provides
a mechanism for enforcing the violation, not only in the borrowing example but also in
a broad class of institutions where enforcement is required. 3

The enforcement institution (enf ) (formally described in Fig. 2) describes a sin-
gle static property participant(Agent,Inst) (Part in Fig. 2) which defines when
agents are participating in a contract, one domain fluent: validContract(Inst) (19)
describes when a given institution is considered to be a valid (enforceable) contract. Six
event types (17-18) are defined: (i) submitContract(Inst)must be generated by the
institution in which sanctions are to be enforced. It generates an acceptContract(..)
event if the submitted institution is not already considered a valid contract (27), and
initiates validContract(..) for the accepted contract and the power for that contract
to generate contract violations in the enforcement institution. (ii) acceptContract
(Inst) describes when a contract is is treated as valid, initiating (23) the valid

Contract(i) fluent also the power for the new contract to dissolve itself and gener-
ate contract violation events in the enforcement institution. (iii) contractViolation
(Agent) must be generated by the contract and when generated, initiates an obligation
in the enforcement institution to apply a sanction to that agent before the contract is
terminated, or be subject to a badViol violation. (iv) fineAgent(Agent) is an ob-
servable event which stands for the imposition of a fine. In the case that a valid contract
exists with this agent this event generates an applySanction(..) event (28) in the

3 We omit the action language description of this example for space reasons. See
http://www.cs.bath.ac.uk/˜occ/instal/ for the source of both examples.



Specifying and Reasoning About Multiple Institutions 79

Given set of agents Agents , contract participants Part i ⊆ Agents and institutions M s.t ai ∈
Part i, enf, i ∈ M :

Eobs = {fineAgent(ai)} (16)

Einstact = {submitContract(i), acceptContract(i), dissolveContract(i),
contractViolation(ai , i), applySanction(ai)} (17)

Eviol = {badGov} ∪ {viol(e), e ∈ Eenf
obs ∪ Eenf

instact} (18)

D = {validContract(i)} (19)

Wenf = {pow(i , e), e ∈ Eenf
instact} (20)

Penf = {perm(e), e ∈ Eenf
obs ∪ Eenf

instact} (21)

Oenf = {obl(e, d, v), e, d ∈ Eenf
obs ∪ Eenf

instact, v ∈ Eenf
inst} (22)

C↑
enf (X ,EM) :

〈{}, acceptContract(i)〉 �→
{validContract(i), pow(i , dissolveContract(i)),

pow(i , contractViolation(ai , i))} (23)

〈{validContract(i)}, contractViolation(ai , i)〉 �→
{pow(enf , applySanction(ai)), perm(fineAgent(ai))

obl(applySanction(ai), dissolveContract(i), badGov)} (24)

C↓
enf (X ,EM) :

〈{}, dissolveContract(i)〉 �→
{validContract(i), pow(i , dissolveContract(i)),

pow(i , contractViolation(ai , i))}, perm(fineAgent(ai)) (25)

pow(enf , applySanction(ai))

〈{}, applySanction(ai)〉 �→ {perm(fineAgent(ai))

pow(enf , applySanction(ai)) (26)

Genf (X ,EM) :
〈{¬validContract(i)}, submitContract(i)〉 �→

{acceptContract(i)} (27)

〈{}, fineAgent(ai)〉 �→ {applySanction(ai)} (28)

Senf
0 = {pow(enf , acceptContract(i)), pow(i , submitContract(i)),

perm(submitContract(i)), perm(acceptContract(i)), (29)

perm(dissolveContract(i)), perm(applySanction(ai))}

Fig. 2. The enforcement institution enf ∈ M

institution (if this event is empowered). (v) dissolveContract(Inst) terminates all
powers granted to the contract by its acceptance and also terminates the validity of the
contract (25).

In order to make the borrowing contract enforceable by this institution we extend it
as follows (Formalised in Fig. 3): borrowing money creates a contract in the enforce-
ment institution (33), paying back money dissolves the contract (34), not paying back
the money generates a contract violation (32) and fining an agent in the enforcement



80 O. Cliffe, M. De Vos, and J. Padget

Given a set of agents Agents and institutions M s.t. a ∈ Agents and bor ∈ M:

C↑
bor(X , EM)′ : 〈{}, acceptContract(bor )〉 �→ {pow(e, payback(a))} (30)

C↓
bor(X , EM)′ : 〈{}, dissolveContract(bor )〉 �→ {pow(e, payback(a))} (31)

Gbor(X , EM)′ : 〈{}, nopay(a), 〉 �→ {contractViolation(bor , a)} (32)

〈{}, borrow(a)〉 �→ {submitContract(bor )} (33)

〈{}, payback(a)〉 �→ {dissolveContract(bor )} (34)

〈{}, fineAgent(a)〉 �→ {payback(a)} (35)

Fig. 3. Extensions of the borrowing scenario for contract enforcement

institution pays back the debt (35). Additionally the creation and dissolution of a con-
tract in the enforcement institution initiate and terminate the power for that institution
to pay back debts (30-31) finally the initial state is extended to permit and empower the
generation of re-payment (not shown).

Fig. 5 shows the reachable states for a combined model (with one borrower) of the
enforcement and borrowing institutions. The ASP query in Section 3.2 above, yields no
answer sets, indicating that there are no traces in the generated model (up to the search
length) where a loan is not repaid.

4 Discussion and Related Work

The use of common-sense reasoning tools such as action languages and answer set
programing for reasoning about normative systems and agent-based systems in general
has been studied extensively in the literature and a complete analysis is beyond the
scope of this paper, however a number of recent studies merit discussion.

The Event Calculus (EC) [14, 15] is a declarative logic that reinterprets the Situa-
tion Calculus to capture when and how states change in response to external events.
EC has been used to model both the behaviour of commitments [22] among agents in
order to build interaction protocols, corresponding to the regulatory aspects of the work
described above, as well as more general social models such as those described in [13].
From a technical point of view, our approach essentially has a kind of duality com-
pared to EC, in that the basis for the model is events rather than states. In itself, this
offers no technical advantage although we believe that being able to express violations
in terms of events rather than states better captures their nature. More significant are
the consequences of the grounding in ASP: (i) For the most part the state and event
models are equivalent with respect to properties such as induction and abduction, but
non-monotonicity is inherent in ASP and so resort to the tricky process of circumscrip-
tion is avoided. (ii) Likewise, reasoning about defaults requires no special treatment in
ASP. (iii) The consequence rules of our specification have equivalents in EC, but the
event generation rules do not. (iv) The state of a fluent is determined by its truth-value



Specifying and Reasoning About Multiple Institutions 81
lo

an
(b

ob
)

pe
rm

(b
or

ro
w

(b
ob

))
pe

rm
(l

ea
ve

(b
ob

))
pe

rm
(m

sg
_b

or
ro

w
(b

ob
))

pe
rm

(m
sg

_l
ea

ve
(b

ob
))

pe
rm

(m
sg

_p
ay

ba
ck

(b
ob

))
pe

rm
(p

ay
ba

ck
(b

ob
))

po
w

(b
or

ro
w

in
g,

le
av

e(
bo

b)
)

pe
rm

(b
or

ro
w

(b
ob

))
pe

rm
(l

ea
ve

(b
ob

))
pe

rm
(m

sg
_b

or
ro

w
(b

ob
))

pe
rm

(m
sg

_l
ea

ve
(b

ob
))

pe
rm

(m
sg

_p
ay

ba
ck

(b
ob

))
pe

rm
(p

ay
ba

ck
(b

ob
))

pe
rm

(b
or

ro
w

(b
ob

))
pe

rm
(l

ea
ve

(b
ob

))
pe

rm
(m

sg
_b

or
ro

w
(b

ob
))

pe
rm

(m
sg

_l
ea

ve
(b

ob
))

pe
rm

(m
sg

_p
ay

ba
ck

(b
ob

))
pe

rm
(p

ay
ba

ck
(b

ob
))

po
w

(b
or

ro
w

in
g,

bo
rr

ow
(b

ob
))

lo
an

(b
ob

)
ob

l(
pa

yb
ac

k(
bo

b)
,le

av
e(

bo
b)

,n
on

pa
y(

bo
b)

)
pe

rm
(b

or
ro

w
(b

ob
))

pe
rm

(l
ea

ve
(b

ob
))

pe
rm

(m
sg

_b
or

ro
w

(b
ob

))
pe

rm
(m

sg
_l

ea
ve

(b
ob

))
pe

rm
(m

sg
_p

ay
ba

ck
(b

ob
))

pe
rm

(p
ay

ba
ck

(b
ob

))
po

w
(b

or
ro

w
in

g,
le

av
e(

bo
b)

)
po

w
(b

or
ro

w
in

g,
pa

yb
ac

k(
bo

b)
)

m
sg

_b
or

ro
w

(b
ob

)
[b

or
ro

w
(b

ob
)]

m
sg

_l
ea

ve
(b

ob
)

[l
ea

ve
(b

ob
)]

[n
on

pa
y(

bo
b)

]

m
sg

_p
ay

ba
ck

(b
ob

)
[p

ay
ba

ck
(b

ob
)]

F
ig

.4
.R

ea
ch

ab
le

st
at

es
of

B
or

ro
w

in
g

in
st

itu
tio

n
fo

r
a

gi
ve

n
ag

en
t‘

bo
b’

S4

S2

fi
ne

A
ge

nt
(b

ob
)

[a
pp

ly
Sa

nc
tio

n(
bo

b)
]

[p
ay

ba
ck

(b
ob

)]
[b

ad
G

ov
]

[v
io

l(
ap

pl
yS

an
ct

io
n(

bo
b)

)]
[d

is
so

lv
eC

on
tr

ac
t(

bo
rr

ow
in

g)
]

S0
S1

m
sg

_b
or

ro
w

(b
ob

)
[b

or
ro

w
(b

ob
)]

[s
ub

m
itC

on
tr

ac
t(

bo
rr

ow
in

g)
]

[a
cc

ep
tC

on
tr

ac
t(

bo
rr

ow
in

g)
]

m
sg

_p
ay

ba
ck

(b
ob

)
[p

ay
ba

ck
(b

ob
)]

[d
is

so
lv

eC
on

tr
ac

t(
bo

rr
ow

in
g)

]

fi
ne

A
ge

nt
(b

ob
)

[p
ay

ba
ck

(b
ob

)]
[v

io
l(

fi
ne

A
ge

nt
(b

ob
))

]
[d

is
so

lv
eC

on
tr

ac
t(

bo
rr

ow
in

g)
]

m
sg

_l
ea

ve
(b

ob
)

[l
ea

ve
(b

ob
)]

[n
on

pa
y(

bo
b)

]
[c

on
tr

ac
tV

io
la

ti
on

(b
ob

,b
or

ro
w

in
g)

]

F
ig

.5
.S

ta
te

s
of

th
e

co
m

bi
ne

d
bo

rr
ow

in
g

an
d

en
fo

rc
em

en
ti

ns
ti

tu
ti

on



82 O. Cliffe, M. De Vos, and J. Padget

in the ASP interpretation, whereas EC (typically) has to encode this explicitly using two
predicates. (v) Inertia in EC is axiomatic, whereas in our approach it follows from the
application of the TR operator—although there is a strong syntactic similarity (perhaps
compounded by using the same terminology!) the philosophy is different. (vi) ASP al-
lows a wider variety of queries than is typically provided in EC implementations but
space constraints do not allow the full illustration of this aspect here. We also note
that, EC is much more general, in that it is aimed at capturing arbitrary narrative, while
the InstAL language we have presented is more like a domain-specific language that
allows only the expression of institutional issues and in that sense is more restrictive
than EC.

[8] use EC to represent the specification of contracts. Their approach of dealing
with contract is similar to ours but with some important differences with respect to
the broader picture of multi-institutions: (i) any formalisation of pow/permissions/
obligation is ommitted from their specification and left as domain dependent con-
cepts which are modelled using XML (ii) this means that that their approach does not
have conventional generation of events/obligations/permissions explicitly, only their
effects (iii) in their work the authors are just concerned with monitoring the state,
not investigating other properties (i.e. planning/verificaition), although these may also
be possible.

Artikis et al. in [1, 2, 13] describe a system for the specification of normative so-
cial systems in terms of power, empowerment and obligation. This is formalized using
both the event calculus [14] and a subset of the action language C+ [6]. The notions
of power and empowerment are equivalent in both systems, but additionally we intro-
duces violation as events and our modelling of obligations differs in that (i) they are
deadline-sensitive, and (ii) can raise a violation if they are not met in time. Violations
greatly improve the capacity to model institutions, but it should be remembered that
institutional modelling was (apparently) not Artikis’s goal. Likewise, although the in-
terpretation of C+ using the CCalc tool gives rise to similar reasoning capabilities (with
similar complexity) to ASP, we believe our approach, including violations, provides a
more intuitive and natural way of expressing social constraints involving temporal as-
pects. A further advantage is in the formulation of queries, where ASP makes it possible
to encode queries similar to those found in (bounded) temporal logic model checking,
whereas, as noted above, queries on action languages are constrained by the action lan-
guage implementation. The other notable difference is once again, our focus on events
rather than states, which we have discussed at some length above.

The syntax and underlying semantics of the action language we present here are
similar to those of the C+ language in [6]. Besides internal support for the semantics
of institutions our approach specifies the effects of actions (in particular the termina-
tion of inertial fluents) in a different way. For example, in C+ the rules “a causes
f.a causes ¬f” will necessarily lead to a being non-executable, the corresponding
statements a initiates f; a terminates f in our language do not effect the
ability of a to occur or be generated and can be handled consistently (leading to f hold-
ing immediately after a); this is similar to the treatment of fluents in the event calculus
[14]. The choice of our semantics stems from a desire to assimilate actions in the real



Specifying and Reasoning About Multiple Institutions 83

world rather than model them accurately, in which case, the institution should be able
to generate consistently a consequent institutional state (albeit one in which no effect
has occurred), regardless of the originating event.

While their work does not consider multiple institutions, C+ could be used for this
purpose. This would, however come at the cost of the semantic and syntactic checking
of the institutional extensions which we provide. C+ does offer some syntactic exten-
sions, which would lead more concise specifications. Of particular interest are multival-
ued fluents (where a fluent is multi-valued rather than boolean) and Dynamic laws e.g.
“caused f1 if f2 ” which allow for the state of fluents to be expressed indirectly
as a function of other (inertial) fluents. The integration of either of these features into
InstAL appears straightforward and is left for future work.

4.1 Related Papers in This Volume

The paper by Viganò and Colombetti [21] focusses on two key elements: (i) A lan-
guage for the definition of and (ii) verification of, social aspects of MAS in respect
of normative systems and electronic institutions, building on Colombetti’s work on
ontological decomposition of institutions and on Searle’s model of constructed social
reality.

The basis for the work is the concept of status functions that capture institutional
facts (including roles, such as buyer and refinement of roles, such as auction winner)
and deontic positions (sic). Status functions are only reified when needed to verify the
legitimacy of an action and as such constitute institutional objects, rather than observ-
ables, in constrast to the event-based approach described here and in the related work.
The language, called FIEVeL, accounts for obligation, permission and power — al-
though the authors call this authorization. Obligations are temporal conditions that may
be tested in contrast to their nature as observable objects in the institution/environment
as described here. FIEVeL permits off-line verification by translation into Promela
(the input language for SPIN) and hence LTL model checking, while the system we
have presented, based on ASP, permits checking and presentation of results in terms
of institutional fluents at the domain level. The use of model checking demonstrates
how correctness properties, e.g. desirable outcomes, of protocols can be verified
off-line.

Grossi et al [11] explore a classification of norms into three kinds: substantive norms
that are generally high-level in nature and not directly enforceable, check norms that
specify how to verify substantive norms and reactive norms that define how violations
are to be sanctioned. Particularly relevant to this paper are the check norms that the au-
thors view as so-called sub-institutions that carry out regular or continuous monitoring
in respect of the upholding of the substantive norm. These sub-institutions could po-
tentially be specified in the language we have outlined and then combined with the rest
of the system, using the multi-institution approach described here. There is a further
intriguing parallel in the observation of deep normative structures that capture multiple
levels of combinations of regimentation and enforcement, where the latter is essentially
delegation to the next level.



84 O. Cliffe, M. De Vos, and J. Padget

References

[1] Artikis, A., Sergot, M., Pitt, J.: An executable specification of an argumentation protocol.
In: Proceedings of conference on artificial intelligence and law (icail), pp. 1–11. ACM
Press, New York (2003)

[2] Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, Springer,
Heidelberg (2003)

[3] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

[4] Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning
about virtual institutions. Computational Logic in Multi-Agent Systems (CLIMA-VII) (to
appear)

[5] Cliffe, O., De Vos, M., Padget, J.: Specifying and analysing agent-based social institutions
using answer set programming. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Orga-
nizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp.
99–113. Springer, Heidelberg (2006)

[6] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[7] Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, Springer, Heidel-
berg (2002)

[8] Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for track-
ing the normative state of contracts. International Journal of Cooperative Information Sys-
tems 14(2 & 3), 99–129 (2005)

[9] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of
fifth logic programming symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

[10] Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210
(1998)

[11] Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. LNCS, vol. 4386, pp. 110–123. Springer, Heidelberg (2007)

[12] Searle, J.R.: The Construction of Social Reality. Allen Lane, The Penguin Press (1995)
[13] Kamara, L., Artikis, A., Neville, B., Pitt, J.: Simulating computational societies. In: Petta,

P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 53–67.
Springer, Heidelberg (2003)

[14] Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

[15] Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus. Jour-
nal of Logic Programming 31(1–3), 39–58 (1997)

[16] Noriega, P.: Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona (1997)

[17] Padget, J., Bradford, R.: A π-calculus model of the spanish fishmarket. In: Noriega, P.,
Sierra, C. (eds.) AMET 1998 and AMEC 1998. LNCS (LNAI), vol. 1571, pp. 166–188.
Springer, Heidelberg (1999)

[18] Rodrı́guez, J.-A., Noriega, P., Sierra, C., Padget, J.: FM96.5 A Java-based Electronic Auc-
tion House. In: Proceedings of 2nd Conference on Practical Applications of Intelligent
Agents and MultiAgent Technology (PAAM’97), London, UK, April 1997, pp. 207–224
(1997), ISBN 0-9525554-6-8



Specifying and Reasoning About Multiple Institutions 85

[19] Rodriguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona (2001)

[20] Vázquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent Systems
applied to complex domains. PhD thesis, Technical University of Catalonia (2003)

[21] Viganò, F., Colombetti, M.: Specification and verification of institutions through status
functions. LNCS, vol. 4386, pp. 125–141. Springer, Heidelberg (2007)

[22] Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event cal-
culus planning using commitments. In: AAMAS ’02: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pp. 527–534. ACM Press,
New York (2002)



Controlling an Interactive Game with a Multi-agent
Based Normative Organisational Model

Benjamin Gâteau1,2, Olivier Boissier2, Djamel Khadraoui1, and Eric Dubois1

1 CITI/CRP Henri Tudor
29 Av. John F. Kennedy L-1855 Luxembourg – G.-D. of Luxembourg

{forename.name}@tudor.lu
2 SMA/G2I/ENSM Saint-Etienne

158, Cours Fauriel F-42023 Saint-Etienne Cedex 02 – France
boissier@emse.fr

Abstract. Interactive multimedia applications are whelming to increase realism
in their content and scenes with which users interact. To this aim, autonomous
agents are increasingly used to implement the objects composing the scene. Al-
though autonomy brings flexibility and realism in the animation, it has to be con-
trolled in order to conform to the global behaviour targeted by the designer of
the application. Multi-agent based organisational models are good candidates to
specify “rights” and “duties” of agents with respect to the intended behaviour.
In this paper we present MOISEInst, a meta-model aiming at representing nor-
mative organisations of agents according to four points of view: structural, func-
tional, contextual and normative. We show how this model is suited to control an
application of interactive TV game show where avatars are based on agents.

1 Introduction

For a long time, the interactive multimedia animation domain has specified multimedia
objects’ behaviours in such a rigid manner that they could not behave in a non-expected
way [1]. Recently, with the development of interactive TV (iTV), more flexible and
realistic scenes and contents are required. Multimedia objects start to be considered as
autonomous agents allowing the definition of scenarii in which they would act by adapt-
ing themselves to the context [2]. However the content designers need also to be able to
constrain and to control the resulting autonomy and unpredictability introduced in their
scenes according to a preestablished scenario. Thus, iTV requires models and tools to
define multimedia contents in which, on one side, objects may be autonomous, and, on
the other side, control and regulation of the scenes are possible and made explicit.

To this aim, we turn to multi-agent technologies. They offer the possibility to bring
more adaptability by modelling multimedia objects as agents. Their adaptability in the
scene results from the agents ability to modify their behaviours according to their own
goals, to the other objects or to the environment in which they are situated. In order to
control and regulate their behaviour as the designer has intended to, we have chosen
organisational models (e.g. [3,4]) and different proposals of e-institution middleware
(e.g. [5,6]). This later provides useful mechanisms to control and enforce the system
global laws.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 86–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Controlling an Interactive Game with a Multi-agent 87

In order to cope with the requirements of our application, we have developed a nor-
mative organisation meta-model, MOISEInst and an e-institution middleware, SYNAI.
MOISEInst offers the possibility to represent both the rights and duties of agents. It
is expressive enough to tackle with the modelling of organisations controlling agents
evolving in multimedia contents. In this paper, we focus on MOISEInst. A brief de-
scription of SYNAI is given in Sec. 2.2. To illustrate our approach, we use an iTV game
issued from the European ITEA Jules Verne Project.

In section 2, we present the requirements for the above mentioned application of
iTV game. We also give an overview of the underlying framework in which this appli-
cation has been implemented. We then describe in details the different components of
the MOISEInst meta-model, illustrating them with the application. Finally, before con-
cluding, section 5 compares our work to other organisational models and e-institutions.

2 Motivations

We will present the general architecture of the normative framework in which our appli-
cation has been implemented. This framework provides the application with the mech-
anisms to interpret and use the MOISEInst model. Before its presentation we describe
the main scenario that has motivated the analysis and development of the MOISEInst

organisational model.

2.1 Interactive Game

Let’s consider, a team of televiewers. Each one is equipped with hardware (remote
control and set-top-box) and software developed within the Jules Verne project. They
participate to an iTV game consisting in a “questions–answers”. Being at home, each
televiewer is represented in the TV game by an Avatar (cf. Fig. 1). The Avatar is directly
controlled by the user. The Avatars team is opposed to a team of real players. The
QuizMaster is a virtual assistant that automatically regulates the game.

As in all collective games, the purpose is to constrain players to adopt a team behav-
iour and to respect rules. Avatars should take into account the game’s rules. However
teleplayers do not know each other and do not, a priori, intend to play collectively.
To make the game appealing for televiewers, nothing must prevent them to behave in-
dividually and to violate some rules of the game. For instance, in the second round
the televiewer who plays the “History” role has to answer only certain questions with
same label but he can also use his Avatar to answer in spite of that. While not being
autonomous regarding their user as in [7], Avatars must be autonomous regarding the
game’s rules governing the scene. We require them to be dependent of the game in term
of skills but we want them to be independent of the rules of the game so that they could
be easily changed.

However, the scene must be controlled with the different rules governing the game:
Avatars should behave under the explicit control of the set of rules representing the
game rules coupled with explicit sanctions (e.g. if the player answers while he is not
authorised to, his good answer brings less points than it could and a bad answer makes
him lose points). Thus while being able to decide to answer whereas it is not his turn,



88 B. Gâteau et al.

the televiewer will take the risk to be punished via the iTV scene in which it is play-
ing by the mediation of his Avatar. In this application, one more requirement must be
considered concerning the evolution of the rules controlling the game: rules change ac-
cording to rounds of the game. Thus, the designer must be able to describe explicitly
the evolution of the game.

2.2 Electronic Institution of Interactive Games Regulation

In order to define rights and duties of autonomous and generic agents by means of
unambiguous specifications, we use electronic Institutions. To this aim, we need to rep-
resent the rights and duties of the agents in the context of the game round in which they
are situated and to control their consequently behaviour. However, this representation
should preserve the agent’s decision capability on one hand, and on the other hand, it
should be used to enforce and control the agents’ behaviour in case of non respect.

Whereas the first point is considered in normative deliberative agents [8], the second
point is addressed by Electronic Institutions that have been introduced these last years in
multi-agent domain [9], and in e-commerce in particular [10], where the purpose was to
introduce trust among agents during their transactions [5] through an external confident.
In human societies an institution defines a set of artificial constraints that articulate agent
interactions [11]. These rules enclose all kinds of informal or formal constraints that
human beings use to interact. Current approaches propose the modelling of these rules
through normative systems [12,13]. These ones define an institution as a set of agents
which behave according to some norms taking into account their possible violation.

In the same way we define an Electronic Institution for Interactive Games as an au-
tonomous agents’ organisation in which their behaviours are ruled by norms and con-
trolled by an arbitration system. The role of this arbitration system consists in rewarding
or punishing agents when they respect or not their commitments.

The interactive game is thus composed of two layers (see Fig. 1): (i) the multi-agent
interactive game in which Avatars evolve as autonomous agents, (ii) an institutional
multi-agent middleware called SYNAI (SYstem of Normative Agents for Institution)
dedicated to the management of the organisation and to the arbitration. Both layers use
a normative organisational model described with the MOISEInst language which is
an extension to MOISE+ [14]. The institutional middleware reads this specification in
order to supervise and control the agents in accordance.

The architecture of the Avatars is thus equipped with the ability to represent and
reason on the organisation and norms described with MOISEInst. Avatars have the
possibility to decide to take it into account or not. By themselves Avatars can’t generate
or choose goals, plans and execute actions without the help of their user. They are just
an “interface” with the user proposing him a choice between what is intended by the
organisation in which they operate and all the possibilities in terms of goals, plans and
actions offered to a user.

The agents are executed on the SACI platform [15]. In this paper we mainly focus
on the presentation of MOISEInst. In this ITV Game, emotions are treated in a rather
simplistic manner in the sense that no model of personality or social roles are used. This
was not the focus of this work as is the case for instance in PsychSim [16].



Controlling an Interactive Game with a Multi-agent 89

In what European city would you find the famous Tivoli Gardens?

GEOGRAPHY

(1) Oslo    (3) Copenhagen
(2) Amsterdam (4) Stockholm

Multi-agent platform

Normative Organisation
(MoiseInst)

SS CS

FS

NS

Institution (Synai)

Avatar

Institution wrapper

Institution agent

User Interface

Game

Fig. 1. Global view of the E-Institution for an i-TV game show specification

2.3 General View of MOISEInst

MOISEInst extends the MOISE+ organisational model (Model of Organization for
multIagent SystEm) [14]. MOISE+ allows to specify the global expected functioning
(functional specification) of an agents organisation as well as the structure of this or-
ganisation in terms of roles, groups and links (structural specification). A deontic spec-
ification expresses permissions, obligations and prohibitions of missions referring to
the functional specification with respect to the structural specification roles. As shown
in [17], this explicit split of representations enlarges and facilitates the reorganisation
task in MAS.

To take into account the requirements presented in the scenario such as, for instance,
the need to structure the rules according to the game rounds, we have extended the
three existing specifications of MOISE+ and have added a specification to describe
the a priori dynamic of the system. MOISEInst is thus composed of (see Institution
Specification in Fig. 1):

- A structural specification (SS) that defines the roles that agents will play, the links
between these roles and the groups to which agents playing roles should participate
to and where interactions take place;



90 B. Gâteau et al.

- A functional specification (FS) that defines goals that have to be achieved in the
system;

- A contextual specification (CS) that defines the transitions and contexts influencing
the evolution of the organisation;

- A normative specification (NS) that extends and replace the MOISE+ deontic spec-
ification. It defines clearly rights and duties of roles and groups on a mission (set of
goals) in specific contexts.

These four specifications form the Organisational Specification (OS), i.e. represen-
tation of organisation independent of the agents that are executing in the system. The
Organisation is an instance of the OS and is built from the set of agents that have adopted
roles according to the SS of the OS, interacting within groups, activating missions ac-
cording to the current FS, norms (NS) and contexts (CS). Based on this the SYNAI

middleware manages and controls the functioning of this Organisation by the way of
different events corresponding to the entry/exit of agents of the Organisation, adop-
tion/leaving roles or groups, change of context, commitment to missions, achievement
of goals, etc.

Focus is made on the main contributions of MOISEInst that consist in CS and NS.
However we will first quickly describe the structural and functional specifications that
define the general framework where CS and NS take place.

3 Structural and Functional Specifications

Structural and functional specifications of MOISEInst come from MOISE+. Due to
lack of space we will not go into details here. The interested reader may refer to [14].
However, in order to figure out a global view of both specifications, we describe the OS
built for the scenario described in section 2.1.

3.1 Structural Specification

The MOISEInst structural specification (SS) represents the structure of an organisation
in terms of roles, groups and links between roles. A set of cardinalities constrain roles
and groups.

Groups of the Avatars application (see Fig. 2) defines the first level of structuration
of a game and are: “Team” which structures the Avatars and “Game” structuring the
Avatars, the QuizMaster’s agents and the Avatars waiting for a place in the team. A
group specification gt is represented by a set of no abstract roles that may be played
in groups created from gt, a set of sub-groups of gt, intra and inter-group links and
cardinalities. Cardinalities express minimum and maximum number of roles that have
to be played in the group gt. They also express minimum and maximum number of
sub-groups that have to be instanciated in gt and minimum and maximum number of
agents having to play a role in gt.

In our application, root group is “Game” and its only one sub-group is “Team”. We
will detail their roles, their links and their cardinalities in the following.



Controlling an Interactive Game with a Multi-agent 91

Team Game

Player

BasicPlayer Chief

History Geo SportScience OrgCandidate

1..1

1..1

1..11..11..1

1..1

4..4

*

GameMaster

1..1

Group

Role Abstract Role

inheritance

composition

authority

inter-groupintra-group

acquaintance

communication

compatibility

key

Links

Fig. 2. Structural Specification of the iTV Game

Roles of the example are “Player”, “BasicPlayer”, “Chief”, “History”, “Geo”, “Sport”,
“Science”, “GameMaster” and “OrgCandidate”. Inheritance link between roles permit
to specialize definition of roles. If a role r′ inherits a role r with r �= r′, then r′ receives
some properties (implication into links and norm for instance) from r, and r′ is a sub-
role of r. An abstract role is a role that can not be played by an agent.

In our case, the group “Team” is composed of the roles “History”, “Geo”, “Sport”,
“Science” and “Chief”. It means that the Avatars could play these roles relevant to
the Question/Answer Game by participating to an instance of group “Team”. Besides
the “Chief” role inherits from the “Player” role and roles “History”, “Geo”, “Sport”
and “Science” inherit from “BasicPlayer” role. At last, the group “Game” is composed
of “GameMaster” and “OrgCandidate” roles. “GameMaster” is the role played by the
QuizMaster virtual assistant. The role “OrgCandidate” can be played by an agent in
order to join the team and to play another role.

Links constrain directly agents and are specified by their source and target roles and
their type. Types are acquaintance, communication, authority and compatibility. An ac-
quaintance link authorises the agents playing source role to have a representation of the
agents playing target role. A communication link authorises the agents playing source
role to communicate with the agents playing target role. An authority link authorises the
agents playing source role to control the agents playing target role. A compatibility link
authorises agents playing source role to also play target role. An authority link implies
a communication link which implies itself an acquaintance link.

Inheritance between roles implies links’ inheritance that means if rs is the source
role of an acquaintance link and rt is the target of this link, and r′s inherits from rs

then r′s is also the source of an acquaintance link where rt is the target role. The same
reasoning can be done with the target role.

The SS of the Avatars application specifies thus an authority link between the
“GameMaster” and the “Player” role that means that all inheriting roles from “Player”
are under the authority of the “GameMaster”. Agents playing roles inherited
from the “Player” role is authorised to communicate with other agents playing roles
also inherited from “Player”. The agent playing the “Chief” role is authorised to control



92 B. Gâteau et al.

the agents playing “History”, “Geo”, “Sport” or “Science” roles and is also authorised
to play one of these roles because of the compatibility link between these two roles. All
links defined here are intra-group links which means that roles of the links must be in
the same instance of group “Team”. For instance, an agent playing the role “Chief” in
the group Team1 does not have authority on basic players from a group Team2.

Cardinalities specify the number of agents allowed to play a role in gt for a role car-
dinality. A sub-group cardinality specifies the number of sub-group instances allowed
by the group gt. At last, an agent cardinality specifies the number of agents allowed to
play a role in group gt.

For instance, in group “Team”, cardinality ‘1..1’ on the composition links imposes
that “History”, “Geo”, “Sport”, “Science” and “Chief” roles can be adopted by only one
Avatar at the same time. Thus given the compatibility link, one agent can play at most
two of those five roles. In order to avoid that an agent playing the “Chief” role could
play several roles of kind “BasicPlayer”, the group cardinality ‘4..4’ bearing on group
“Team”, states that any well formed instance of this group may contain four and only
four Avatars. At last, since we can have a lots of candidate wanting to join the team, the
cardinality is ’*’.

3.2 Functional Specification

The MOISEInst functional specification (FS) expresses the global functioning of the
system as a set of social schemes. A social scheme is composed of collective goals
bound together by plans and of missions.

As in [18], goals may be decomposed or not into sub-goals (plan) until primitive
actions. The aim is to delegate to the agents the choice of the way to achieve goals. The
composition of sub-goals into plan uses three operators:

– sequence (“g1 = g2, g3”) which means that the goal g1 will be achieved if the goal
g2 is achieved and after that also the goal g3 is achieved;

– choice (“g4 = g5 | g6”) which means that the goal g4 will be achieved if one and
only one of the goals g5 or g6 is achieved;

– parallelism (“g7 = g8 || g9”) which means that the goal g7 will be achieved if both
goals g8 and g9 are achieved, but they can be achieved in parallel.

According to their roles (see below) agents may adopt a goal and achieve it alone or
in cooperation with other agents. The achievement of a goal is monitored and controlled
by the SYNAI middleware. It will activate other goals in accordance to the evolution of
the plan of the activated social scheme. Missions express the a priori grouping of the
goals composing social schemes into sets according to the way the designer wants the
global plan to be achieved by different agents. The link between those sets of goals and
the agents will be expressed within the NS that will bind roles or groups to missions.

The main goal of the Avatars application FS is to play a game. That’s why as shown
in Fig. 3, the root goal of the “Functional Scheme” is “Game played”. This latter has
just one sub-goal which is achieved when all questions are handled. In order to handle



Controlling an Interactive Game with a Multi-agent 93

Score
Scheme

g5m4g4m4

Functional Scheme

g412m5,m16

g44m4

g421m4

g43m4

g422m6,m16

g42m4

g411m4

g41m4

g431m4g432m7,m16g441m4g442m8,m16

g41: "History" topic handled
        g411: "History" question asked
        g412: "History" question answered
g42: "Geo" topic handled
        g421: "Geo" question asked
        g422: "Geo" question answered

    g43: "Sport" topic handled
        g431: "Sport" question asked
        g432: "Sport" question answered
    g44: "Science" topic handled
        g441: "Science" question asked
        g442: "Science" question answered

goalmissions

sequence

choice parallelism

key

g6: Sanction applied
    g61: Player ejected
    g62: Team disqualified
g7: Score changed
    g71: Score increased
    g72: Score decreased
g8: Emotion shown
    g81: Be happy
    g82: Be sad

g1: Team joined
g2: Game played
    g2a: All questions handled
g2b: Question handled
    g4: Topic handled
    g5: Answer evaluated
g3: Team quit

Emotion Scheme

g8m13

g82m15g81m14

Score Scheme

g7m11

g72m12g71m12

Sanction Scheme

g6m9

Score
Scheme

g62m10g61m10

g3m3

OrgExit Scheme

g1m1

OrgEnter Scheme

g2m2

g2am2

g2bm4

Question Scheme

Fig. 3. Functional Specification of the iTV Game

a question, a “Question Scheme” instance must be executed, and so the “Question han-
dled” goal must be achieved. Its plan is a sequential achievement of goals “g4”, “g5”
and of the root goal of the “Score Scheme” because a scheme may be reused within
other social schemes. The goal “Topic handled” is achieved when a question with a
topic chosen between history, geography, science and sport is asked and an answer
to this question is given. The “Score Scheme” is dedicated to the management of the
scoring during the game and consists in choosing between increasing or decreasing the
score. The “Emotion Scheme” consists in choosing to show either an happy Avatar or a
sad one. The “Sanction Scheme” describes penalties or rewards that agents may have.
The root goal of this scheme consisting in applying a sanction “Sanction applied” is
split into “Player ejected” sub-goal to exclude a player, “Team disqualified” sub-goal
to make the other team win and “Score Scheme” to change the score. The “OrgEnter
Scheme” (resp. “OrgExit Scheme”) defines the behaviour to join (resp. leave) a team.

4 Contextual and Normative Specifications

Thanks to SS and FS, we are able now to describe and specify the global architecture
and the global functioning of an organisation. However as shown by several works in
multi-agent domain, multi-agent applications are often situated in dynamic environ-
ment. Depending on the evolution, the designer may be able to express at design-time
some constraints on the changes that could occur in the organisation. For instance, in our
application, the game execution is structured according to rounds that impose changes
on the rules governing it. The satisfaction of this requirement is captured by the Con-
textual Specification (CS) of MOISEInst. After its presentation, we will focus on the
Normative Specification (NS) of MOISEInst that is used to glue all specifications in a
coherent and normative organisation.



94 B. Gâteau et al.

4.1 Contextual Specification

The contextual specification (CS) of an OS describes the a priori set of contexts occu-
pied by the corresponding Organisation during the execution life of the system. The CS
is defined in BNF as follows:

〈CS〉 ::= ‘(CS’ :context 〈contextDesc〉* :transition 〈transition〉 :initialCtxt
〈contextId〉 :finalCtxt 〈contextId〉‘)’

〈contextDesc〉 ::= ‘(’:id 〈contextId〉 [:subcontext 〈CS〉*]‘)’
〈transition〉 ::= ‘(’:source 〈contextId〉 :target 〈contextId〉 [:event 〈eventId〉]‘)’

- 〈contextDesc〉 is the specification of a context, i.e. global state occupied by the
Organisation during runtime. It is referenced with an identity 〈contextId〉 which is
used in the NS (see below). Special contexts :initialCtxt and :finalCtxt express the
beginning and the end of the CS evolution. A context could be decomposed into
sub-contexts (sub-CS). These sub-contexts may evolve in parallel.

- 〈transition〉 defines a one way transition from a source context to a target context.
The trigger of the transition is done by the production in the Organisation of an
event 〈event〉. Events are application dependant. They are produced and monitored
by SYNAI. In our case, for the iTV game, the following events have been defined:
beginG and endG corresponding to the start and the end of the game, chgR corre-
sponding to a new round, chgT produced by a change of turn of team to answer and
avT if the game starts with a question for Avatars (teleplayers) or hmT for Humans
players.

In Fig. 4, we can see the CS of our application. The organisation will start in context
“Begin”. In this context, as we will see below in the NS, the Avatars are authorised to
join their team, i.e. to play the role “OrgCandidate”. Out of this context, it is forbidden
to join the team. The context “Game” is decomposed into three sub-contexts corre-
sponding to the different rounds encountered during the game. The context “Game”
will be used in the definition of the basic rules of the game while the three sub-contexts
corresponding to the different rounds will be used in the definition of the specific rules
governing these rounds. The “Game” context is also decomposed into two sub-contexts
corresponding to the players’ turn. A round sub-context and a turn sub-context can be
active at the same time. Let’s notice that the macro-context “Game” is active in all its

key

transition
Event

final context

initial context

Contextcontext

Begin

MyTurn

End

NotMyTurn

Round3Round1 Round2

beginG

chgRd chgRd

endG

chgT

chgT

avT hmT

Game endGendG

endG

Fig. 4. Contextual Specification of the iTV Game



Controlling an Interactive Game with a Multi-agent 95

sub-contexts. This property ensures that the rules defined in the “Game” context stay
valid and active in sub-contexts.

Finally the last context is the one in which Avatars quit their team. As stated before
this specification permits to clearly define contexts in which rights and duties of Avatars
could be totally different. This is what we outline in the next section.

4.2 Normative Specification

We turn now to the definition of the NS. It is composed of norms (see Fig. 1) that glue
together the SS, FS and CS.

In the Multi-Agent System domain, norms are defined differently according to their
use (constraints, obligations, goals). In MOISEInst, a norm will define a right (i.e.
permission) or a duty (i.e. obligation, prohibition) for a role or a group to execute a
mission in a particular context and during a given time. This is supervised by an issuer
which can apply a sanction on the bearer if the norm is not respected. A norm is active
when the context referred in the norm equals the current organisation context. A norm
is valid as long as its condition is satisfied. A norm could be respected or violated as
long as it is active and valid. We represent a norm as the following expression

norm : ϕ → op(cont, issuer, bearer, m, sanc, w, tc)

where:

– ϕ is the condition that defines the particular state of the Organisation in which the
norm may be valid. As long as ϕ is satisfied, the norm is valid. A condition could
be a composition of sub-conditions structured with logical operator such as AND
and OR. A primitive condition consists in:
• a predicate that is application dependant such as sad or happy which test if an

Avatar shows a sad or happy face;
• a predicate related to the life cycle of the organization such as number or car-

dinalityMax which respectively access the number of agents being part of a
group and the maximum number of agents that a group may accept;

• a predicate related to the functioning of the institution itself such as violated
which tests if the norm is violated.

A primitive condition is a test on a function result that SYNAI agents execute.
– op ∈ {O, P, F} defines if the norm is an obligation (O), a permission (P) or a

prohibition (F);
– cont refers to a context of the CS in which the norm becomes active (see below).

As a context could be composed of sub-CS, if a norm is active in a context then it
is also active in sub-CS’ contexts. For instance, if a norm is defined for the “Game”
context, the norm will be active when the Organisation will be in the “Round1”,
“Round2” and “Round3” contexts and will be also active in the “MyTurn” and
“NotMyTurn” contexts.

– issuer and bearer refer to structural entities of the SS (i.e. the whole groups and
roles) from which the norm is issued and on which it is applied. The issuer of the
norms is also the role or the group that checks the respect of the norm. Composition
and inheritance that are defined in the SS among groups and roles have consequence
on norms:



96 B. Gâteau et al.

• When the bearer is a group, all roles taking place in this group in the SS,
become the bearer of this norm. For instance, the prohibition for the “Team”
group to answer a question when it is not its turn, is applied on all the roles
(“History”, “Science”, “Geo”, “Sport”, “Chief”) being part of this group. Idem
for the norm’s issuer.

• If the norm’s bearer is a role r all roles inheriting from r are also concerned
by the norm. For instance, if a norm oblige the “Player” role to answer a ques-
tion, “BasicPlayer” and “Chief” are also obliged to answer a question, and
“History”, “Science”, “Geo” and “Sport” roles are also obliged to answer a
question. Idem for the norm’s issuer.

• If the norm’s bearer is a group gt then all sub-groups composing gt are con-
cerned by the norm. For instance, if a norm concerns the “Game” group, the
norm concerns also the “Team” group. As a consequence, if a norm concerns
“Game” and “Team” groups, it concerns also roles belonging to both groups i.e.
“History”, “Science”, “Geo”, “Sport”, “Chief”, “GameMaster” and “OrgCan-
didate”. Idem for the norm’s issuer.

Let us notice that the expression of norms refers to the notions of roles and groups
and not to agents themselves. In this way, the norm expressions are independent of
the kinds of agents that could populate the system at one time.

– m refers to a mission of the FS concerned by the norm.
– sanc contains the reference of a different norm in the NS. It expresses a “sanction”

to apply in case of norm violation. If norm specifies a sanction sanc, then the norm
sanc must specify a condition ϕ = violated(norm).

– w defines a priority used for solving conflicts between norms in case of incoher-
ence [19], when for instance an agent could be constrained by two contradictory
norms1.

– tc specifies when the norm is valid: before (’<’), while (’=’) or after (’>’) a date.

Condition ϕ, context con, sanction sanc, weight w and time constraint tc are op-
tional.

The norms of iTV Game application are shown in Fig. 5. The column “context”
refers to the CS (see Fig. 4). Column “w” contains the weight of the norms. Column
“issuer” and “bearer” refers to the roles and groups as defined in Fig. 2. Column “deOp”
contains the deontic operator. Column “mission” contains the missions id specified in
FS (see upper right of the goals in Fig. 3). Sanctions referring to the NS are written in
column “sanction”.

The norms allow us to define game rules as well as what happens before and after the
game. For instance, norms N01 to N04 constrain the management of the organisation
by defining when it’s possible to join and to quit the team. N01 states that any agent
playing the “OrgCandidate” role is obliged to join a team (instance of “Team” group)
in case there is still a role to play in this team. According to the “context” field, this
norm is valid as long as the Organisation is in the “Begin” context. The norm N02
is used to manage the end of the game by stating that any agent playing a role in
the “Team” group is obliged to quit the team (instance of “Team” group) when the

1 Even, if this field is not satisfactory in case of two norms having the same weight, it was
sufficient in our application. Future works will have to consider this issue.



Controlling an Interactive Game with a Multi-agent 97

Fig. 5. Normative Specification of the iTV Game

Organisation is in the “End” context. Moreover in the “Game” context, agents playing
the “OrgCandidate” role are forbidden to join a team and agents playing a role in the
“Team” group are forbidden to quit the team.

The norm N03 has a sanction which is expressed as the norm N17 stating that in
case of violation of N03, any agent playing the “GameMaster” role has to eject the
agent playing the “OrgCandidate” role. Let us notice that the mission expressed in this
normative expression refers to a mission expressed in the “Sanction” Scheme of the FS.

Other norms constrain the functioning of the game by defining the game’s rules.
For instance, as long as the Organisation is in the “Game” context, according to N05
and N06 any agent playing the “GameMaster” role is obliged to ask question and
to evaluate the answer (see missions m2 and m4 in Functional Scheme). According
to N07, any member of a team (which means any agent playing a role belonging to
the “Team” group) is forbidden to answer a question during the game. Exceptions
to this prohibition are set by defining specific norms in the context of the different
rounds occurring during the game: when the Organisation is in the first and third rounds,
N09 and N10 permit any agent playing respectively a role belonging to the “Team”
group and the role “Chief” to answer all questions during the answer delay. When the
Organisation is in the second round, four norms (N11, N12, N13, N14) allow concerned
roles to answer question. Exceptions are expressed by defining for same context, role
and mission a different priority (“weight”).

Finally norms N15 and N16 forbid the team to answer a question or to show an happy
face when the Organisation is in the “NotMyTurn” context which means the question is
asked to the opponent team.

5 Related Works

In the different works on organisations [3,4] agents can be constrained to play roles
and to belong to groups. Sometimes we can influence the agents behaviour by defining



98 B. Gâteau et al.

social contracts from an organisation. Contracts can concern either two agents or an
agent and the society in which it evolves [20,21].

Since the origin of MOISE+ and its evolution into MOISEInst, other specifications
of normative organisations and e-institutions have been defined in the MAS domain.
In ISLANDER [6], an Institution Definition Language (IDL) is proposed. It is mainly
focused on the specification of interactions and protocols that take part to the definition
of scenes. The agents have to follow the protocols to evolve in a scene. In our case,
interactions are not described in terms of performatives and protocols: we are mainly
concerned with the global coordination for the achievement of goals by the agents.
However, even if we don’t define performative structure as in [9], our CS is similar
to the scene model which is defined in their work. Compared to MOISEInst, their
specification of role hierarchy is minimal in the sense that we can only define roles and
inheritance and compatibility between roles. Their definition of norms don’t contain
sanctions.

As in ISLANDER, the OMNI platform [22] aims at defining in a complex manner
the context in which agents interact. Thus, no specification of the global functioning
in terms of plans or execution schemes are defined. It defines on one hand an organi-
sational dimension and on the other hand a normative dimension. As in our case this
normative dimension glue all the concepts in the definition of norms in the sense that
roles, groups, scenes and interactions are seen as norms.

In this paper, the norm definition that we use, is derived from several works. The
deontic logic is used to differentiate a right (permission) of a duty (obligation) which
define the limits for the agents behaviour like in [5]. Inspired by [20] we completed the
constraint resulting from the norm with a deadline and an activation condition. We also
added a norm issuer.

6 Conclusion and Perspectives

We have proposed in this paper the MOISEInst model which is an extension of
MOISE+. This model is considered as a normative organisation specifying the rights
and duties of agents operating in an organisation as norms expressed are seen as rela-
tions between roles or groups and missions in a given context.

Contrary to existing models, MOISEInst takes into consideration the whole specifi-
cation points of view (structural, functional, contextual and normative). All these spec-
ifications are essential description and representations for building our iTV application.
To enlarge the scope of this model, we plan to incorporate an ontological specification
(like OMNI) or an interaction specification (like ISLANDER) the same way as the other
specifications are integrated in the model.

Acknowledgement

These research works are funded by the University of Luxembourg through the LIASIT
project.



Controlling an Interactive Game with a Multi-agent 99

References

1. Oechslein, C., Klgl, F., Herrler, R., Puppe, F.: Uml for behavior-oriented multi-agent simula-
tions. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296,
Springer, Heidelberg (2002)

2. Renault, S., Meinkohn, F., Khadraoui, D., Blandin, P.: Reactive and adaptive multimedia ob-
ject approach for interactive and immersive applications. In: Proceedings of the International
Conference on Information & Communication Technologies: From Theory to Applications,
Damascus, Syria (2004)

3. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agent systems. In: Proceedings of the Third International Conference on Multi-Agent Sys-
tems (ICMAS98), pp. 128–135. IEEE Computer Society Press, Los Alamitos (1998)

4. Dignum, V., Meyer, J., Weigand, H., Dignum, F.: An organizational-oriented model for agent
societies. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA 2002. LNCS (LNAI),
vol. 2934, Springer, Heidelberg (2004)

5. Dignum, F.: Agents, markets, institutions, and protocols. In: Sierra, C., Dignum, F.P.M.
(eds.) Agent Mediated Electronic Commerce. LNCS (LNAI), vol. 1991, Springer, Heidel-
berg (2001)

6. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: 1rst in-
ternational joint conference on autonomous agents and multiagent systems (AAMAS’02),
vol. 3, pp. 1045–1052. ACM Press, New York (2002)

7. Scerri, P., Pynadath, D.V., Tambe, M.: Why the elf acted autonomously: Towards a theory
of adjustable autonomy. In: Castelfranchi, C., Johnson, W. (eds.) Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2002), ACM Press, New York (2002)

8. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative agents: Prin-
ciples and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 3–540.
Springer, Heidelberg (2000)

9. Esteva, M., Rodriguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal speci-
fication of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) Agent Mediated Elec-
tronic Commerce. LNCS (LNAI), vol. 1991, Springer, Heidelberg (2001)

10. Sierra, C., Rodriguez-Aguilar, J.A., Blanco-Vigil, P.N., Arcos-Rosell, J.L., Esteva-Vivancos,
M.: Engineering multi-agent systems as electronic institutions. UPGRADE - The European
Journal for the Informatics Professional V(4), 33–39 (2004)

11. North, D.C.: Institutions, Institutional Change and Economic Performance. In: Political
Economy of Institutions and Decisions, Cambridge University Press, Cambridge (1990)

12. Papendick, S., Wellner, J., Dilger, W.: Normative behavior based on emergent invariant ex-
pectations. In: Proceedings of the Second Workshop on Norms and Institutions in MAS, 5th
International Conference on Autonomous Agents, Montreal, Canada (2001)

13. López y López, F., Luck, M., d’Inverno, M.: Normative agent reasoning in dynamic societies.
In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international joint con-
ference on Autonomous Agents & Multi-Agent Systems (AAMAS), Columbia University,
New York City - USA, 19-23 July 2004, vol. 2, pp. 732–739. ACM Press, New York (2004)

14. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

15. Hübner, J.F., Sichman, J.S.: Saci: Uma ferramenta para implementação e monitoração da
comunicação entre agentes. In: Monard, M.C., Sichman, J.S. (eds.) International Joint Con-
ference, 7th Ibero-American Conference on AI, 15th Brazilian Symposium on AI (Open
Discussion Track), São Carlos, ICMC/USP, pp. 47–56 (2000)



100 B. Gâteau et al.

16. Marsella, S.C., Pynadath, D.V., Read, S.J.: Psychsim: Agent-based modeling of social inter-
actions and influence. In: ICCM (2004)

17. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the MOISE+ model for a cooperative frame-
work of mas reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI),
vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

18. Tambe, M., Pynadath, D.V., Chauvat, N., Das, A., Kaminka, G.A.: Adaptive agent integra-
tion architectures for heterogeneous team members. In: Fourth International Conference on
Multi-Agent Systems (ICMAS-2000), pp. 301–308 (2000)

19. Kollingbaum, M.J., Norman, T.J., Preece, A., Sleeman, D.: Norm conflicts and inconsisten-
cies in virtual organisations. LNCS, vol. 4386, pp. 264–278. Springer, Heidelberg (2007)

20. Salle, M.: Electronic contract framework for contractual agents. In: Proceedings of the 15th
Conference of the Canadian Society for Computational Studies of Intelligence on Advances
in Artificial Intelligence, pp. 349–353. Springer, Heidelberg (2002)

21. Dellarocas, C.: Contractual agent societies: Negotiated shared context and social control in
open multi-agent systems. In: Proceedings of the Workshop on Norms and Institutions in
Multi-Agent Systems, 4th International Conference on Multi-Agent Systems (Agents-2000),
Barcelona, Spain (2000)

22. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)



Ubi Lex, Ibi Poena :

Designing Norm Enforcement in E-Institutions

Davide Grossi, Huib Aldewereld, and Frank Dignum

Institute of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{davide,huib,dignum}@cs.uu.nl

Abstract. The viability of the application of the e-Institution paradigm
for obtaining overall desired behavior in open multiagent systems (MAS)
lies in the possibility of bringing the norms of the institution to have an
actual impact on the MAS. Institutional norms have to be implemented
in the society. The paper addresses two possible views on implementing
norms, the so-called regimentation of norms, and the enforcement of
norms, with particular attention to this last one. Aim of the paper is to
provide a theory for the understanding of the notion of enforcement and
for the design of enforcement mechanisms in e-Institutions.

1 Introduction

The purpose of electronic institutions (e-Institutions) is to guarantee the over-
all behavior of an open multi-agent system (MAS) to exhibit desired properties
without compromising the agents’ autonomy, aiming in particular at easing in-
teractions and enhancing trust between agents [11]. This is accomplished through
norms directed to the agents in the society which specify the behavior that the
institution expects from the agents. As such, institutions can be seen as norma-
tive systems [1], i.e., as sets of norms.

Institutions do not have access to the internal states of the agents and hence,
they cannot modify them in order to avoid any incongruence between the goals
of the agents and the norms of the institutions. Therefore, the problem arises of
how to let those norms have an effective influence on the activities of the agents.
This is the problem of norm implementation. This issue consists of two main
aspects.

First, there is an interpretation issue concerning the concepts used in the
formulation of the norms in terms of the ontology used at the society level. It is
well-known feature of normative codifications (especially in legal systems) to be
“open-textured” [6] or abstract, that is, to be in need of interpretation in order for
them to be translated into norms which are meaningful for the regulated society.
This is what we have called the “ontological” aspect of norm implementation
[4] or, to use terminology common in legal and social theory, the “constitutive”
aspect [9]. For instance, an institution might require personal data to be treated
according to specific procedures. The notion of “personal data” is of an abstract

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 101–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



102 D. Grossi, H. Aldewereld, and F. Dignum

nature and, in order for the norms concerning the treatment of personal data
to be implemented, a clear specification of what counts as personal data in the
given institution should be made precise. Much attention to this issue has been
dedicated by the authors in previous work (see for instance [5,4]). The present
paper will leave the problem of the interpretation of norm codifications aside.

Second, there is the issue concerning the design of appropriate “enforcement
mechanisms” required to push the society toward the compliance to the norms
of the institution. For instance, if personal data is not treated in accordance to
the institutional regulation, the institution should trigger some kind of reaction.
This broad notion of “institutional reaction” corresponds to what we call here
enforcement.

The present paper focuses on this last point, aiming at discussing a theory
for understanding the implementation of norms in institutions and the design of
enforcement mechanisms.

The core of the enforcement implementation strategy presented in this paper is
summarized in the saying “Ubi lex ibi poena” (“where there is law, there is sanc-
tion”). In other words, if norms are to be enforced, then the institution should
specify and handle sanctions for every possible violation of the norms. The paper
is trying to give some answers around two concrete questions about enforcement:
How do institutions handle violations and specify enforcement mechanisms? And
how should sanctions be designed in order to be effective for the enforcement of
norms in eInstitutions?

In Section 2 we discuss different enforcement strategies (regimentation vs.
reaction). The effect of these different enforcement strategies on the society are
discussed in Section 3. In Section 4 we discuss what are the possible sanctions
that an institution can take in a society consisting of software agents. In Section
5 we give some conclusions and areas for future work.

2 Dealing with Violations

There exists an obvious way in which the compliance to the norms of an in-
stitution can be implemented, namely by making the violation of the norms
impossible. When this is the case we talk about regimentation ([7]): norm com-
pliance is unavoidable, and hence, with respect to what is stated by the norms
of the institution, the space of the agents’ autonomy is strongly limited. This
typically happens in e-commerce: when shopping on the web, you cannot get
your goods delivered before giving consent for using your credit card number for
paying those goods.

Regimentation guarantees the compliance of the society to the norms of the
institution. However, it has been argued, for instance in [2], that violations can
be functional for the society as a whole. Even stronger, if no violation can occur,
if nothing can go wrong, it does not make sense any more to talk about norms
at all. From the agent point of view, a regimented norm, is just a fact.

With enforcement we mean the reaction that the institution specifies to
respond to a violation of its norms. Enforcement presupposes, therefore, the



Ubi Lex, Ibi Poena: Designing Norm Enforcement 103

possibility of violation. Institutions aim at regulating the behavior of agents
through norms, but it is commonplace that norms are useless if the violation
of those norms is ignored (to quote the Romans again: “ubi culpa est, ibi poena
subesse debet”, that is, “where there is a violation, there must be a sanction”). In
other words, the enforcement of a norm by an institution requires the institution
to be in the condition of recognizing the occurrence of violations of that norm in
the society and to react upon them. Not surprisingly, this check-react enforce-
ment mechanism is specified by means of more norms. Enforcement is sought
through further regulating the domain, i.e., adding norms imposing checks and
norms specifying reactions to the occurrences of a given violation. Regulations
on tax evasion are a typical example in this sense: tax payment is impossible
to be regimented but checks, which could detect possible violations, are made
obligatory. Once the detection takes place, precise reactions are also specified
and made obligatory.

On the basis of these considerations, we can isolate three types of norms
involved in the specification of institutions. In fact, the whole statute of an
institution could be analyzed in terms of sets of norms of these types. There
is a set of substantive norms which consists of those norms which describe the
society’s behavior desired by the institution, and there is a set of enforcement
norms consisting of norms regulating checks and reactions on violations of other
norms.

The following is an example inspired by the domain concerning the policies
for data protection followed by the Spanish National Transplant Organization
in the organ allocation process [10].

Example 1. (Types of norms for the specification of institutions)

Substantive norm. “The National Transplant Organization is not allowed to
use racial data for allocating organs to patients”.

Check norm. “The inspecting authority should perform random checks of the
compliance to the previous norm every two months ...”.

Reaction norm. “If racial data are used in the allocation process, then the
hospital has to be fined accordingly.”

The enforcement activity can thus be split in two sub-activities: check and re-
action. Check norms deserve some further comments. They specify the way the
institution is supposed to perceive the occurrence of violations. Needless to say,
this can happen in many different ways. Either directly, via random checks,
like in the above example; or via constant monitoring activity, like a referee
in a sport match. Or indirectly, allowing agents to denounce the occurrence of
a violation and then verifying their claim. This last checking activity is of an
intrinsically more complex nature, calling for the establishment of tribunal-like
sub-institutions within the main institution. It would be appropriate, in this case,
to talk about check sub-institutions rather than check norms. For the present
paper, we leave these complexities aside focusing rather on direct forms of checks.

Via such a normatively specified enforcement of the substantive norms, the
enforcement issue is just lifted up to the set of enforcement norms because, if not



104 D. Grossi, H. Aldewereld, and F. Dignum

SET OF NORMS

regimentation SET OF NORMS

regimentation SET OF NORMS

1st enforcement level

2nd enforcement level

Substantive regulation

Fig. 1. Norms implementation between regimentation and enforcement

regimented, those norms could be violated and be thus in need of enforcement.
In principle, this pattern could be endlessly iterated unless there exists a final
enforcement level, whose norms are all regimented, or whose violations are not
punished (see Figure 1).

As a matter of fact, such a cascade is precisely how real human institutions
seem to be organized, where several levels of enforcement regulations may be
recognized. Violations on the last level are not considered. I.e. rulings of a
supreme court are supposed to be final (even though they might be violating
a norm). In this sense it seems very interesting that instead of a full regimen-
tation, the devising of a deep (i.e. structured on more enforcement levels) nor-
mative guided reaction appears to offer an efficient implementation strategy,
granting at the same time a certain institutional flexibility and the room for
institutional change and development. It is finally important to notice that, al-
though we have somehow drawn a neat line between the regimentation approach
and the approach leaving the possibility of violations open, an institution will
most likely choose for a mixed approach deciding to regiment a (small) number
of norms, and to enforce the others. We will expand on this crucial issue in the
next section.

3 Different Enforcements, Different Societies

The way in which we have framed institutional implementations of norm enforce-
ment offers a straightforward ground for showing in what precisely enforcement
strategies can differ, and what kind of impact they have on societies. Consider
the following most common cases:

1. A set of norms is implemented via direct regimentation;
2. A set of norms is implemented via regimentation of the set of first level

enforcement norms, i.e. all occurrences of violations of the substantive reg-
ulation are sanctioned;



Ubi Lex, Ibi Poena: Designing Norm Enforcement 105

3. A set of norms is implemented via regimentation of the set of reaction norms
of the second enforcement level, while the violation of check norms of this
level is ignored.

In Case 1 violation is impossible. In Case 2 violation is possible but the reaction
is absolutely certain. This would result in creating perfect deterrents. Agents
would violate the norms only if they consider the benefits obtained via violating
the norm higher than the disadvantages originating by the institutional reaction.

It is clear that only in Case 3 it is possible to violate a substantive norm
without any reaction on that precise violation to occur. This can happen because
of a failure in complying with the corresponding check norm or with the reaction
norm at the first enforcement level. If the violation of the substantive norms does
not happen to be detected at the first enforcement level, then no reaction at all
would follow, because at the second enforcement level only the reaction norms
of the first level are regimented. This happens, for instance, when one does not
get caught by the police while exceeding speed limits (they were not checking):
a violation occurs which is not detected and, as a consequence, no reaction is
taken. If, on the other hand, the violation of the substantive norms is detected,
but still no reaction is undertaken, then the second enforcement level would
automatically detect this violation occurred at the first enforcement level and
react to it. This would correspond to the (unrealistic) case of police agents who
are automatically sanctioned when they detect a violation of speed limits and
they do not issue a fine.

3.1 An Example

In the previous section we sketched how institutions can implement norm en-
forcement over different levels of regimentation. When designing an institution
this would lead to the question concerning the number of levels the institution
should use. What are the consequences for the society when one, two, three, or
more levels are used? In this section this question is elaborated upon by means
of a simple example. We take into consideration three possible implementation
strategies of an institution that two agents can use in order to play a chess
match.

Example 2. (Electronic chess)
Let us first consider what happens in an electronic chess match. Players cannot
move pieces other than in the way prescribed by the rules of the game, that
means that they cannot violate them: the set of actions they can perform within
the game is limited, and each of these actions is norm compliant. There is no
possibility for them to move the rook as if it were a bishop. For these reasons
electronic versions of the game of chess constitute a clear example of regimen-
tation of a substantive regulation. Agents cannot do anything else than playing
chess according to the rules.

It is instructive to notice that the AMELI framework [3] falls under this cate-
gory. In fact, in AMELI every agent is coupled with an institutional agent, the



106 D. Grossi, H. Aldewereld, and F. Dignum

“governor”, which acts as a filter on the agent’s activities letting only allowed
actions to actually take place. Governors are, as such, an excellent example of
norm implementation based on the full regimentation of the set of substantive
norms. It provides for a clear and protected environment. However, it is not
very flexible to change (all possible moves of the game in every situation must
be known beforehand).

Example 3. (Chess with flawless referee agent)
A variation on the previous example would be the use of an automatic agent
referee regimenting the first enforcement level norms. Such a referee would always
recognize violations and react to them. What would be the difference of this
implementation of the chess institution with respect to the one described before?
In that implementation, the agents could not do anything but play chess, while
here they would have a wider range of actions at their disposal such as, for
instance, making illegal moves on purpose in order to distract the opponent or
to signal something.

The resulting games would therefore be quite different from the one imple-
mented in the previous example, even though the set of substantial rules (the
rules of chess) is the same.

Example 4. (Chess with referee agent)
Consider now how a chess match in a standard live contest is devised. The two
players are not subjected to any regimentation: there is no limitation of the set
of actions available. They have the possibility to move rooks as bishops, thus
violating the rules of chess. However, there is a further set of norms stating
precisely how to react to a violation. There might for example be a third party
involved, namely a referee, whose task is to detect violations and react to them
in specific ways, or to whom suspected violations can be reported by the players.
We can then think of a norm, addressed to the referee, stating that the referee
ought to check what happens on the chessboard (check norm), to signal an
occurring violation and to intervene in the game suspending it and ordering the
faulting player to retract its move (reaction norms).

Nevertheless, this might not be enough. Violations can indeed occur also at
this level and the same implementation problem is then shifted to the first en-
forcement level. What should happen if the referee does not detect a move that
is not allowed, or does not sanction a player? A further set of norms siding,
this time, the first enforcement regulation provides answers to these questions.
A new enforcement level, namely a second enforcement level, is therefore added.
This can be a contest committee which is obliged to annul a game vitiated by
referee’s faults and so on. As already noticed, reactive levels can in principle be
added ad infinitum, but they are, of course, de facto limited. For a chess contest,
two reactive levels could be reasonably enough to grant a regular chess match.
However, they are not enough in an absolute sense. It is possible that the last
reactive level does not behave in the expected way (reconsidering the example,
suppose that the committee does not annul an irregular match), at least as far
as it is also not fully regimented.



Ubi Lex, Ibi Poena: Designing Norm Enforcement 107

What are the new opportunities in this situation? Notice that in this situ-
ation players might violate the norms without being noticed (and sanctioned).
Therefore the simple fact that a player does not violate the rules might already
give him extra credit with his opponent. A notion like “trust” suddenly might
become important in this game. In general, the possible reasons for making a
(illegal) move have again multiplied as well as the interpretation of them. There-
fore, again, the game is enriched even though the basic rules remain the same.

By means of this example we tried to illustrate how different implementation
strategies of the same substantive set of norms can actually give rise to radically
different institutions and therefore to considerably different systems. The natural
question arising is then: what would be, given a society and a set of substantive
norms, the most sensible implementation strategy? And more crucially, why to
allow for violations instead of choosing for a full regimentation?

3.2 E-Institutions: To Regiment or to Enforce?

The implementation of a set of (substantive) norms can be obtained either via
regimentation or via the specification of an enforcement activity to be carried
out by the institution. Enforcement specification takes place normatively, i.e.,
via adding more norms to the prior set which, thus, also require implemen-
tation. Schematically, suppose S to be the set of to-be-implemented norms,
Regiment(X) to denote the set of norms from X which are regimented, and
Enforce(X) to denote the set of norms containing X together with all the norms
specifying the enforcement of X (X ⊆ Enforce(X)). The implementation of S
can be formally defined as follows:

Implement(S) = Enforce(S \ Regiment(S)).

In other words, to implement a set of norms amounts to implement the set
of unregimented norms together with their enforcement. This definition clearly
states that the implementation of a set of norms yields a set of norms, and this
is, in a nutshell, one of the main theses we are upholding here. In some sense,
it is very difficult to get rid of the normative reality. The only possibility is via
regimentation. In fact:

If Regiment(S) ≡ S then Implement(S) ≡ ∅.

Instead:
If Regiment(S) ⊂ S then ∅ ⊂ Implement(S)

which means that the implementation operation should be applied again on
Implement(S).

This analysis has been led by the consideration of human institutions, but
when it comes to electronic ones, some more assumptions can be made.

First of all, for human institutions it can be accepted that the violation of
some norms can remain in principle ignored (see Example 4), this is not the



108 D. Grossi, H. Aldewereld, and F. Dignum

case for e-Institutions. No designer would accept the possibility of norms the
violation of which would not trigger any reaction.

Secondly, for e-Institutions, one enforcement level (level one of Figure 1) is
enough. The reason is that when implementing unregimented norms, we would
expect the enforcement agents to be explicitly programmed by the designer of
the institution, and therefore we would assume them to act in perfect accordance
with the principles of the institution itself.1

Based on these considerations we can consider Example 4 as too rich (and un-
realistic) in the perspective of e-Institutions. If an institution has to be designed
for agents to play chess, than the possibility of an unreliable referee can be rea-
sonably ruled out assuming that the designer of the institution would program
appropriate referee agents.2 Only two implementation choices are therefore to
be considered realistic:

1. Either all substantive norms are regimented: Regiment(S) ≡ S. In this case
no checking and reacting activities are necessary like in Example 2.

2. Or some (possibly all) norms are left unregimented (Regiment(S) ⊂ S),
while what is regimented is just their enforcement like in Example 3, that
is: Regiment(Enforce(S \ Regiment(S)).

The question amounts then to: “when is it better to choose 1 over 2 or vice
versa?” In general, the preference for 2 over 1 can be dictated by two factors.

Complexity of the regimented activities. Regimentation can considerably
raise the complexity of the activities that agents carry out within the insti-
tution, so that for an agent to pursue its goals it would be necessary to go
through too complex procedures. This is illustrated by a simple example:
consider a postal service in which the deliverer should wait for the addressee
to open his/her parcels and confirm the content has been delivered in the
desired state. This would rule out the possibility of deliveries of damaged
parcels, but it would also make the delivery process considerably slower and
inconvenient for the agents which should always be present at the delivery. In
other words, regimentation can thus give rise to computationally demanding
activities (see [12]) both for the institution itself, and for the agents act-
ing within it. Formally analogous scenarios can be devised especially in the
eCommerce domain, where the possibility of simple and quick transactions
can be a highly desired feature.

1 It is instructive to notice that this is not the case in human institutions, where the
enforcement is always outsourced, in the sense that no agent can be assumed to be
“programmed” by the institution: for instance, enforcement agents such as policemen
do maintain private goals and believes completely inaccessible from an institutional
perspective. This is why, in human institutions, the nesting of many more that just
one enforcement levels is the rule.

2 These are of course contingent assumptions on the actual state of the art in MAS
and e-Institutions. Future developments in these fields would make them become
possibly obsolete. It can indeed be thought of e-Institutions hiring external agents
and delegating to them the enforcement activity.



Ubi Lex, Ibi Poena: Designing Norm Enforcement 109

This aspect has directly to do with the delicate balance between the two
fundamental goals of e-Institutions, i.e, increase trust in agents’ transactions
and facilitate those transactions [11]. The point is that, although via regi-
mentation the highest level of trust can be achieved, agents’ interaction can
end up being not facilitated at all.

Usefulness of the violations. As we have seen in Example 3 the possibility
for agents to violate the substantive regulation would allow for activities
which would otherwise be impossible. The agent can choose to violate the
regulation and possibly incur in a sanction in order to pursue some specific
goals. In Example 3 agents playing chess in an institution with a flawless
referee would actually have the possibility to use a wider variety of strategies
for winning the game by trying to distract the opponent via performing
invalid moves. Alternatively, suppose a reputation value to be attached to
each chess-playing agent so that the less often they violate the norms the
higher reputation they get. In this case, the possibility to violate the norms
enables also the possibility to introduce a reputation value system which
might be useful for further purposes: for instance, a high reputation value
might be required to access chess tournaments.

In the end, allowing for violations results in a higher flexibility of the
e-Institutions which might happen to serve more purposes than the one for
which it was designed. This can be a desirable feature especially in domains
where more e-Institutions operate on the same society.

4 Sanctions in E-Institutions

When using an enforcement mechanism to implement norms in an e-Institution,
as argued in the previous sections, sanctions need to be specified to define the
institution’s reaction to the violations of the norms. Violations that do not trigger
any reaction have no sensible meaning in an e-Institution. In previous literature
(cf. [11,8]) several kinds of sanctions have been proposed, mostly influenced by
sanctions used in human institutions. Some of the sanctions involve, e.g. bans,
dismissal, reputation or trust influences, fines to the agent or its owner, etc.
However, when designing an e-Institution not all human sanctions make sense,
like, for instance, incarceration, which is a common sanction for humans, but no
direct electronic equivalent of this sanction appears useful. In general there are
two ways of sanctioning agents which make sense: 1) limiting the future actions
of the agents, or 2) executing an action on behalf of the agents.

The first option includes, but is not limited to, sanctions such as bans and
fines that are meant to restrict the agent in doing actions that are needed for
it to achieve its goals (the money spent on the fine was actually meant to buy
goods in an auction; the ban prevented the agent from making a bid before the
auction closed). The second kind of sanctions are those where the institution
changes some information (resource) pertaining to the agent which usually can
only be changed by the agent itself. This might consist in changing the reputation
of the agent or in paying bills on behalf of the agent, because either the agent



110 D. Grossi, H. Aldewereld, and F. Dignum

has granted the institution this power upon entering (by signing a contract that
states that the institution has the authority to issue payments on behalf of the
agent in case of violations), or because the agent had to pay a deposit when it
entered the institution (the deposit is then used to pay the bills and any fines
that might arise).

Whatever type of sanction is chosen they are there to serve a purpose. In
the following we examine the purpose of sanctions. We look at what sanctions
are supposed to do and how the complexity of the agents in the institution can
influence the choice of sanctions.

4.1 A Taxonomy of Sanctions

Sanctions serve different purposes in different institutions. However, there is
a general purpose to sanctions that holds for all institutional environments:
sanctions are there to discourage agents from taking actions that are considered
unwanted or illegal by the institution. Sanctions can be viewed as a deterrents,
making agents less keen on performing these unwanted and illegal actions. To
achieve this discouraging effect on the agents in the institution, sanctions are
designed to limit the future actions of agents. For instance, fines influence the
possibilities of the agent, since they make it harder for the agent to get the
items it requires as the agent has less money to spend (which, of course, only
really restricts the agent if it had a limited budget and the agent’s owner ordered
the agent to obtain lots of items). Similarly, reputation changes might limit the
actions of an agent as it might influence the outcome of future negotiations and
interactions.

Next to their discouraging effect, sanctions might also be used as a compen-
sation to those most affected by the violation of the norm. In order to provide
some satisfaction or compensation to those harmed by the violation, the violating
agent is sanctioned. For instance, an agent might become obliged, after violating
a norm, to pay an amount of money to the affected agent(s) as compensation.
This difference between using sanctions as a deterrence and as a compensation
signifies a difference in the role of the institution when applying the sanction.
Sanctions that are solely used as a discouragement are sanctions that are applied
by the institution itself, and therefore benefit the institution itself (the fines are
payed to the institution, bans are applied solely to maintain order in the system).
When sanctions are applied to provide a compensation to those harmed (note
that the sanction will also retain its deterring nature), the institution becomes
a mediator instead, interacting between the agent who committed the violation
and the rest of the society.

Another difference in sanctions, as mentioned in [12], is whether the sanction
is of direct or indirect nature. Direct sanctions are those that influence the agent
immediately and are noticeable directly. These include fines, bans and other “cor-
poreal” sanctions. Indirect sanctions, on the other hand, influence the agent on a
kind of meta-level, such as reputation changes or trust related sanctions. Those
sanctions might not be noticeable immediately but can influence the agent for a
longer period of time. Combinations of both types of sanctions can be used as well.



Ubi Lex, Ibi Poena: Designing Norm Enforcement 111

The choice between using a sanction merely as deterrence or adding a compen-
sational value to it depends on the norm and domain in question. If the violation
of the norm harms other agents, and these ‘victims’ require support to overcome
this harm, a compensation might seem appropriate. However, if the norm only
affects the institution, no compensation is needed. Similarly, the choice between
the usage of direct and indirect sanctions is entirely up to the domain and norm
in question. If indirect sanctions have an equal deterring value as direct sanc-
tions, indirect sanctions can be used just as well. In a domain, however, where
reputation plays no role, an indirect sanction (in this case, lowering the agents
reputation value) has no value and a direct sanction should be used instead.

4.2 Sanctions and Types of Agents

Whatever purpose the sanctions might serve in a certain institution, the complex-
ity of the agents in the system must be understood to determine the effectiveness
of the sanction. A system that is trying to discourage agents from violating the
norms by applying bans might be quite successful when the agents in the system
feel bad about being banned, or are unable to complete their goals because of the
ban. However, if the agents do not mind the ban the sanction fails its purpose.

The hierarchy of types of agents’ autonomy developed in [13] can be used
to distinguish, for each level of autonomy, what the impact of sanctions can be
and what sanctions are suitable for the cognitive structure of the agent. The
hierarchy of [13] distinguishes the following types of autonomy in agents (also
see figure 2):

Type I Reactive Agents: Agents whose autonomy completely resides in the
combination of environmental cues and system properties.

Type II Plan Autonomous Agents: Agents that are autonomous in their
choosing the sequences of actions (plans) to obtain goals. The goals itself
are either inherent to the agent or triggered by requests from other agents.

Type III Goal Autonomous Agents: Agents that are autonomous in making
decisions about goals (which have become their interests), enabling them to
choose their “prevailing interest”, considering its goals. It determines which
states of the world are desired, given the goal satisfaction and its goal priority.

Type IV Norm Autonomous Agents: Agents with the capabilities to choose
goals that are legitimate to pursue, based on the norms of the system. More-
over, norm autonomous agents are equipped to judge the legitimacy of its
own and other agents’ goals.

The lower level agents, i.e. types I to III, have no idea of a sanction (they have
no conception of what a sanction is). To these agents, a sanction applied by the
system is nothing more than an environmental reaction to the situation at hand
(or to the action they have just performed). This makes informing the agents
about the norms a bit harder, as the norms need to be translated to situational
causal effects that are triggered by actions in various situations. The sanctions
become a necessary causal effect of the actions prohibited by the norms. However,
directing and controlling the agents is a bit easier for the lower types of agents,



112 D. Grossi, H. Aldewereld, and F. Dignum

norm
autonomy

goal autonomy

plan autonomy

reactivity

Fig. 2. A Taxonomy of Autonomy

as punishing agents by making them unable to reach their goal is easy for agents
of types I and II. These agents can easily be prevented to achieve their goals
by making them unable to do an action (making the sanction not as much a
punishment for the agent, but more an incentive for the developer to redesign
the agent to become norm-compliant). This is a bit harder for agents of type
III , as these agents are more capable of coming up with alternative ways to
achieve their goal (or can pursue alternative goals, making the punishment less
effective).

Type IV agents are even a bigger problem, since they have a clear conception
about what a sanction is and when a sanction will be applied. These agents
can reason about the results of their actions in a normative manner, i.e. they
take the norms into account to determine if an action in a certain situation is
acceptable or if it will trigger a violation. This means that if a type IV agent
violates a norm, the agent has probably reasoned that violating the norm is the
only or the most efficient way to achieve it’s goal, and a punishment is therefore
only an increase in cost for the agent doing the action (while this increased cost
has been fully taken into account in the decision of the agent). Moreover, since
agents of type IV have the same capabilities as agents of type III, the sanctions
loose even more of their deterring effectiveness.

A big problem, however, is that no guarantees can be given whether the
sanction has the right effect on all the agents possibly joining the institution. To
design sanctions to work for agents, assumptions about the inner working of the
agents have to be made; what effect will the sanction have on them? Will they
replan and try again, or will the sanction make them sorry about what they did?

In human institutions, such assumptions about the inner process of humans
can be made, and such assumptions are correct most of the time (we know how
most of us think, react to certain stimuli etc.). Sanctions applied in human in-
stitutions are based on these assumptions to work as an effective deterrent, as
humans tend to dislike spending time in prison or paying fines applied after
violating a norm. Even alternative punishments, such as being put under pro-
bation, which can be seen merely as a warning, work for humans, as they apply
to the moral sense of the perpetrator. For agents, however, this kind of reaction
is not assured. Agents are programmed by different developers, making them
heterogeneous in nature. This heterogeneity also means that the inner workings



Ubi Lex, Ibi Poena: Designing Norm Enforcement 113

of agents can be very different between agents. Since one cannot assume that all
agents work in a similar manner or have the same beliefs in certain situations, it
makes designing sanctions that are really punishments for all agents very hard.
Using, for instance, probations in agent environments makes no sense, since most
agents will not consider this sanction to be a warning.

If, however, one can assume that (the majority of) Type IV agents are pro-
grammed in such a manner that they will try to be norm-compliant, sanctioning
these agents becomes a bit easier as the sanction is no longer seen by these agents
just as a necessary causal effect to a prohibited action but as something undesir-
able in itself. This would mean that a norm breaking action is just less preferred
by such agents than other norm-compliant actions (even if the norm-compliant
action is more costly) because of the agent’s desire to be norm-compliant. Sanc-
tions can in this case rely on an intrinsic deterrence effect allowing for the spec-
ification of less drastic institutional reactions to violations (for instance fines
instead of bans). However, if the willingness of agents to be norm-compliant
cannot be guaranteed, the normative awareness with which Type IV agents are
endowed cannot be exploited and they will have to be sanctioned in the same
way as Type III agents.

5 Conclusions

In this paper we have explored two related problems that have to be solved when
implementing norms in e-Institutions. First is the decision between enforcement
of norms through regimentation or through reaction. An interesting first obser-
vation is that implementing norms actually implies adding more norms (albeit of
a slightly different nature). Of course all conceivable levels of enforcement norms
are possible. However, we have seen that in most situations the best is to have
one level of enforcement norms in e-Institutions due to the fact that enforcing
agents are centrally controlled (and programmed).

The second question addressed in this paper was which sanctions are useful as
reaction to violations. We have shown that, although many mechanisms are based
on human society, not all human-based sanctions make sense in an e-Institution.
A first classification of different types of sanctions is given, but many issues still
remain open. One of the first issues to be addressed is how to choose the most
effective sanction from an institutional point of view. This would both deter
agents from violating norms too easily, but also facilitate normal transactions
between agents as much as possible.

References

1. Alchourrón, C.E., Bulygin, E.: Normative Systems. Springer, Wien (1986)

2. Castelfranchi, C.: Formalizing the informal?: Dynamic social order, botton-up so-
cial control, and spontaneous normative relations. Journal of Applied Logic 1(1-2),
47–92 (2004)



114 D. Grossi, H. Aldewereld, and F. Dignum

3. Esteva, M., Rodŕıguez-Aguilar, J.A., Rosell, B., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Third International Joint Confer-
ence on Autonomous Agents and Multi-agent Systems, New York, US, July 2004
(2004)

4. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects of
the implementation of norms in agent-based electronic institutions. Computational
& Mathematical Organization Theory 12(2-3), 251–275 (2006)

5. Grossi, D., Dignum, F., Meyer, J.-J.Ch.: Contextual terminologies. In: Toni, F.,
Torroni, P. (eds.) Computational Logic in Multi-Agent Systems. LNCS (LNAI),
vol. 3900, pp. 284–302. Springer, Heidelberg (2006)

6. Hart, H.L.A.: The Concept of Law. Clarendon Press, Oxford (1961)
7. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems.

Deontic Logic in Computer Science, 275–307 (1993)
8. Pasquier, P., Flores, R.A., Chaib-draa, B.: Modelling flexible social commitments

and their enforcement. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW
2004. LNCS (LNAI), vol. 3451, pp. 153–165. Springer, Heidelberg (2005)

9. Searle, J.: The Construction of Social Reality. Free Press (1995)
10. Ley 30/1979, de 27 de octubre, sobre extracción y transplante de órganos. Bolet́ın

Oficial del Estado 266 (April 29, 1986)
11. Vázquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent

Systems. Birkhuser Verlag AG (2004)
12. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Norms in multiagent systems:

from theory to practice. International Journal of Computer Systems Science &
Engineering 20(4), 95–114 (2004)

13. Verhagen, H.: Norm Autonomous Agents. PhD thesis, The Royal Institute of Tech-
nology and Stockholm University (2000)



Specification and Verification of Institutions Through
Status Functions�

Francesco Viganò1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{francesco.vigano,marco.colombetti}@lu.unisi.ch
2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy

marco.colombetti@polimi.it

Abstract. Institutions have been proposed as a means to regulate open interac-
tion systems by introducing a set of norms (involving deontic positions like autho-
rizations, obligations, prohibitions, and permissions) and to define the ontology
of the context in which agents interact. To better clarify the interdependence ex-
isting among deontic positions and the ontology defined by each institution, in
this paper we propose to model institutions in terms of status functions imposed
on agents and defined as aggregates of deontic positions. We present a metamodel
which describes the concepts necessary to specify an institution and FIEVeL, a
language that can be used to formalize institutions. Finally, we discuss how to au-
tomatically translate FIEVeL specifications into the input language of the SPIN
model checker and the kind of properties that it is possible to check.

1 Introduction

Following the ideas presented in [17], institutions have been put forward as a means for
regulating open interaction systems where agents’ internal states cannot be accessed
or agents are implemented by different parties. Norms play a fundamental role in the
design and management of open systems, because they create positive expectations in
the outcomes of such systems and make more predictable the behavior of other agents
which are assumed to be autonomous. To introduce norms in open multiagent systems,
in [7,3,13,10] the authors propose to model such systems in terms of electronic institu-
tions, a formalism developed to design protocols and which can be used to automatically
enforce them as explained in [6].

From a different perspective, but with similar objectives, in [20,22] normative
systems have been proposed to describe agents behavior in terms of obligations, pro-
hibitions, and permissions when it is not possible to assume that agents will behave
according to the expected behavior. In any case, institutions and normative systems
have been essentially applied to define interaction protocols [7,4,9,20,24]: for this rea-
son, we will exemplify our approach with examples taken by a widely used interaction
protocol, the English Auction, which allows us to exemplify and compare our approach
with other attempts to formalize institutions.

� Supported by Swiss National Science Foundation project 200020-109525, “Artificial Institu-
tions: specification and verification of open distributed interaction frameworks.”

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 115–129, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



116 F. Viganò and M. Colombetti

Following the analysis of institutional reality presented in [21], in [9,24] we have
suggested that institutions not only define norms, but also the ontology of the interaction
context. For instance, the institution of the English Auction defines the very concept of
winning an auction, which also implies that the winner ought to follow a set of norms.
In [9,24] institutional attributes assigned to entities and norms are combined to describe
the interaction context and the protocol.

While in [4,9,20,24] institutional states are described and are assumed to exist in-
dependently of agents’ deontic positions (authorizations, obligations, etc.), following
Searle [21] we think that, with the exception of institutional facts related with the cre-
ation of meaning, institutional facts cannot be described or exist without deontic posi-
tions. In fact, when an agent modifies or creates a new institutional fact, it is actually
modifying an authorization or creating new obligations for another agent or for itself.
For instance, when the auctioneer declares a new current price, participants are autho-
rized only to make higher bids.

According to Searle [21], institutional facts are built thanks to the ability of agents to
collectively impose new statuses, named status functions1, on objects, events or agents.
When a new status function is imposed on an agent (or an object) by a community of
agents, it holds certain positions and performs certain functions independently of its
physical features. Moreover, since institutional objects represent the continuous possi-
bility of agents’ activities [21], imposed status functions become manifest only when
they are necessary to perform actions. Therefore, when agents impose a new status
function, they are actually creating new possibilities of action for agents themselves.

Starting from this theory of institutional reality, we propose to model all institutional
facts, even those imposed on events and objects, in terms of status functions imposed on
agents, which are named agent status functions. In particular, we describe agent status
functions in terms of deontic positions, which represent what actions are authorized,
obliged, forbidden, or permitted for an agent. In doing so, institutional events can be
characterized in terms of what status functions are imposed or revoked, which helps to
clarify how each institutional event changes agents’ deontic positions.

Once we have formalized an institution, we have also to ensure that our specification
is sound and allows agents to reach the desired states of affairs. Furthermore, as soon as
institutions become complex, without the aid of automated techniques it is prohibitive
to foresee all possible evolutions and states in which the institution may evolve. For
this reason in this paper we also consider how to verify institutions by applying model-
checking techniques [2,19]. Automated formal verification should be considered as an
important step in the development of institutions, because it can increase the reliability
of institutions by ensuring that agents will be provided with all the needed powers to
fulfill their objectives and that they will not be subject to contradictory or undesired
norms.

The remainder of this paper is so structured: in Section 2 we define a metamodel
of institutional reality based on the concept of status functions. In Section 3 we briefly

1 As in [21] we use the term function to refer to i) a position or an action for which an agent or
a thing is specially fitted or ii) to a status imposed on agents or things independently of their
specific physical features (status function). Therefore, we do not use the term function in its
mathematical sense.



Specification and Verification of Institutions Through Status Functions 117

present the syntax and the semantics of FIEVeL, a language that can be used not only
to model institutions, but also also to verify such specifications. In Section 4 we show
how FIEVeL specifications can be translated into Promela (Process Meta Language),
the input language of the SPIN model checker [12], while in Section 5 we discuss what
kind of properties can be checked in our current implementation. Finally in Section 6
we present an evaluation of our approach and a comparison with other works in the field
of institutions and normative systems.

2 The Institution Metamodel

Many researches on institutions share several common or strongly related notions such
as the concepts of role, norms, and authorization [4,9,10,20]. In this section we in-
troduce our institution metamodel to enhance a comparison with other works and to
explain what are the key concepts that we perceive as essential to specify an institution,
the relationships existing between them and their intended meaning.

As shown in Figure 1, our metamodel is based on the notion of agent status function,
that is, a status imposed on an agent and recognized as existing by a set of agents.
Typical examples of status functions are not only the concept of auctioneer, participant,
or winner of an auction, but also being the owner of a good, being the husband or
the wife of somebody. The concept of status function shares several features with the
concept of role as it has been discussed in the literature (refer to [1,16] for an overview).
Despite that, we prefer to use the term status function for three reasons: (i) the term role
has been used with different meanings and it has been characterized in terms of very
different concepts such as mental states, tasks, duties, etc; (ii) the term status function
better represents the fact that we are concerned with status assigned to agents to perform
several functions and whose existence depends on those agents that recognize them as

Base-level event Event attribute

ActionTime event

Agent
actor

Exchange message

ObligationStatus-function

Authorization

Status-function attribute

Expression
start

violation

fulfillment

whenever

Agent
subject

Institutional action

actor

InstEvent attribute

Institutional event

Institutional entity State

Institutional concepts

Base-level concepts

Convention

condition

Expression

Expression
constrain

* 1

11

*

1

11
1 11 0..11

*

*

0..1

*

1

*

1

1 *

*

1

1
1..*

1..*1

1 *

1

1

* 1 *1

1
*

Fig. 1. The institution metamodel



118 F. Viganò and M. Colombetti

existing; (iii) the concept of status function is broader than the concept of role as used,
for example, in [1]. In fact, it seems to be difficult to describe in terms of a “preexisting
organization” being the owner of a good or being under age, while it is quite natural to
regard them as status functions imposed by a group of agents.

We define status functions as possibly empty aggregates of deontic positions that can
be expressed in terms of two main concepts, authorizations (also named institutional-
ized power [14,20]) and obligations. An obligation is characterized by a state and by
four expressions (whenever, start, fulfillment, and violation) which are used to specify
conditional obligations and when an obligation should be considered fulfilled or vi-
olated (more details can be found in [23]). An obligation is created because a status
function is imposed, changes its state when its conditions are satisfied, and eventually
reaches a final state (inactive) either because its expressions are evaluated to true or
because it is associated to a revoked status function. Obligations can be also used to
express prohibitions by specifying suitable violation expression, while we do not define
a specific construct to explicitly represent the fact that an agent is permitted to perform
an action as in [4,10,20]. Instead, as in [24] we consider that every action, if it is not
prohibited, is also permitted.

Interdependent status functions are declared within institutional entities which en-
force on a group of status functions a set of constraints (e.g. an auctioneer cannot be
also a participant). Moreover, institutional entities define cardinality constraints, like
“an auction is composed by an auctioneer and a set of participants”.

Base-level events reflect changes that are produced in the physical world or that are
relative to lower level institutions, like time events and exchange message events. We
do not name these kinds of events “physical” because, strictly speaking, most events
are somehow dependent on language and therefore institutional [21]. Despite that, in
most cases the deontic positions we want to model are not affected by the institutional
nature of those events, and therefore we can ignore it. In FIEVeL base-level events are
modelled as if they were perceived and analyzed by a centralized institution manager,
which manages the state of the system and updates it when an event occurs. Although
such an assumption would be unrealistic in the implementation of a distributed system,
we introduce it to reduce the complexity of the verified model. Also, it can be noticed
that several prototypes of institutions [6,11] and normative systems [8] consider a single
centralized component which makes the institutional (normative) state evolve.

In the literature only agent actions have been considered relevant to describe in-
stitutions [4,9,20,22,24], and the attention has been focused on a single action type,
namely the act of exchanging a message [7]. In our approach we are also interested in
modelling the institutional effects of events that are not generated by agents, like for
instance time events. In particular, a time event can count as an institutional event (e.g.
in most cultures the 18th birthday imposes new status functions on a person) or can
cause the evolution of the state of an obligation. Therefore, it could be the case that
an environmental event leads the system from a legal state (where no violations have
occurred) to an illegal state, while permitted actions executed in a legal state must lead
only to a legal state as described in [22].

Institutional events are not directly produced by the environment or by an agent
thanks to its own capabilities, because their effects need to be recognized by a set



Specification and Verification of Institutions Through Status Functions 119

of agents. Instead, institutional events happen because agents accept that when cer-
tain base-level events occur, if certain contextual conditions are satisfied, they count
as institutional events. Therefore, there exists an ontological difference among base-
level events and institutional events: while the former exist because they correspond to
certain physical changes, the latter exist because they are recognized as existing by a
community of agents.

In [9] we discussed what kind of contextual conditions are relevant to model that an
agent action counts as an institutional action. In particular, we single out the follow-
ing conditions: (i) there must exist a convention, namely a message type, binding the
agent action to the institutional action; (ii) the system must satisfy the preconditions
associated to the institutional action; (iii) the agent must be authorized to perform the
institutional action. In this paper we extend the treatment of the count-as relation by
considering institutional events in general. Therefore, the act of exchanging a message
cannot be taken as our unique primitive to specify conventions. Instead, any base-level
event can be used to define a new convention. As in [9] a precondition must be sat-
isfied, although here preconditions are expressed in terms of the existence or absence
of certain status functions. Finally, in the case of institutional actions, the agent must
also be authorized. If all these conditions are satisfied, a base-level event counts as an
institutional action and its effects take place, which means that certain status functions
will be assigned or revoked.

3 FIEVeL

Figure 1 not only depicts our metamodel of institutions, but it actually represents the
abstract syntax of FIEVeL (Functions for Institutionalized Environments Verification
Language), a language that has been defined to model institutions in terms of the con-
cepts introduced by our metamodel and to verify them by applying model-checking
techniques [2,19]. For this reason, FIEVeL has been designed to limit the state explosion
problem [2] and to be translated into Promela, the input language of the SPIN model
checker [12]. In the following of this Section we will discuss the formal framework we
have developed to define the semantics of FIEVeL and we will exemplify FIEVeL con-
structs by reporting few fragments extracted by our specification of the English Auction
institution. More details about the formal semantics of FIEVeL, its grammar and the full
specification of the English Auction can be found in [23].

A FIEVeL specification may be composed of several institutions that are concur-
rently executed, although at the moment FIEVeL does not allow the development of
interdependent institutions, that is, institutions whose state and evolution directly de-
pend on the state of another institution. A FIEVeL specification is composed by four
main sections:

– basic-domain definition, where a designer can define new basic types by specifying
them as subsets of built-in basic types or by enumerating their elements. FIEVeL
defines few built-in basic types, like integers (int), agent identifiers (AID), and ob-
jects identifiers (OID). User defined basic types can then be used to define complex
types (status functions, events, etc.).



120 F. Viganò and M. Colombetti

– base-events definitions, where a designer can list all the relevant events. In par-
ticular, messages are constituted by a message type and a (possible empty) set of
attributes, which can affect the institutions defined in the current specification. At
the moment FIEVeL assumes that all messages belong to a single type of commu-
nicative acts, namely, declarations [9].

– institution definitions, where for each institution it is possible to specify a set of
institutional entities and status functions, a possibly empty set of constraints on
them, and a set of conventions binding base-level events to the performance of
several institutional-events. In Figure 2 it can be noticed that preconditions of in-
stitutional events are specified in terms of the existence or absence of certain status
functions, while their effects are expressed by assigning (or revoking) several sta-
tus functions on agents. As in [15], an institutional event describes some changes
among two consecutive states representing which “variables” have been modified
and their new values.

– model definition, where elements composing each basic domain and the initial state
of the system, described by imposing certain status functions on agents, are defined.
Domain elements are specified because SPIN is able to verify only finite models.

In Figure 2 we report a few fragments of our specification of the English Auction
institution, showing that an auctioneer that has received at least one offer (represented
by OFFERED status function) is not only authorized to declare the current winner if no
agent can still make a bid (INROUND), but since then it is also obliged to do so before
the next time instant has elapsed. The action currentWinner is conventionally bound
to the exchange of a message of type decCurrentWinner and, if the agent indicated as
winner of the round is the first which has offered the highest price, therefore that agent
is declared current winner and offers relative to the previous round are cancelled.

In FIEVeL time is considered as a component of the system. Two consecutive time
events ti and ti+1 may be separated by a sequence (possible empty) of other base level
events, which are assumed to occur at time ti. Hence the institutional state may change
due, for instance, to message-exchange events even if the time variable does not change.
Therefore, time aspects are regarded in two distinct ways: (i) as in classical temporal
logic, to define qualitative properties (e.g. it is always the case that an auctioneer cannot
win an auction), and (ii) as in RTTL [18] to express quantitative properties (e.g. the
auctioneer must open the auction before two minutes since now).

Every FIEVeL specification corresponds to an ideal transition system characterized
by a many sorted first-order signature where every transition represents all institutional
effects (institutional events, fulfillment of obligations, etc) associated with a base-level
event. Actually, the generation of such transition system is not only computationally
expensive, but it would also lead to a huge number of Promela code lines. In fact,
due to several limitations of SPIN, for every institution instance we should generate a
transition for each possible combination of base-level events, institutional-events, and
obligation state changes. For this reason, instead of calculating the ideal transition sys-
tem, we prefer to derive a computational transition system, such that each transition
partially represents the institutional effects of an event, so that summing the effects of
a sequence of transitions we can reach the same institutional state.



Specification and Verification of Institutions Through Status Functions 121

basic-types:
priceD subtype-of int;

base-events :
message decOffer(agent : AID, price : priceD, num : int);

...
institution EnglishAuctionInstitution {
institutional-entity englishAuction {
...
[0,ALL] status-function OFFERED (bidder: AID,
price: priceD, num: int) {
key: bidder;
authorizations:
currentWinner c <- not exists x in INROUND [true];

deontic-specification:
obligation(not exists x in INROUND[true],done(currentWinner),

activation-time>1);
}// OFFERED
...

constraints:
AUCTIONEER disjoint PARTICIPANT;

}// entity
conventions:

exch-Msg(decCurrentWinner (ag,pr,r)) =c=> currentWinner(ag,pr,r);
...

institutional-events:
institutional-action currentWinner(agent : AID,
price : priceD, n: int):
pre: (exists o in OFFERED[((o.subject = actor and o.bidder=agent)
and (o.price=price and o.num=n))] and forall x in OFFERED
[(x.price < price or (x.price=price and n<=x.num))]);

eff: p in PARTICIPANT -X->
assign(p.subject, CURWINNER(price))[p.subject = agent],

o in OFFERED -X->
revoke(o.subject, OFFERED(o.agent, o.price, o.n))[true];

...
}// institution
model-definition:
basic-domains:
AID={aid 0,aid 1,aid 2};
...

institutions:
EnglishAuctionInstitution initial-state:
assign(aid 0,AUCTIONEER());
...

Fig. 2. Fragments of the English Auction institution specification

To demonstrate that we can build a computational transition system which sim-
ulates the ideal system, that is, satisfies the same properties we want to verify, let
M = (S, S0, R, V ) be a Kripke structure over a set AP of atomic propositions such
that S is a finite nonempty set of states, S0 ⊆ S is a finite nonempty set of initial states,
R is a total relation on S, and V is a valuation function associating a value in {0, 1}
at each atomic proposition p in AP for each state. In the sequel we write πk for the
k-th state of path π = s0, s1, s2, . . . and πk for the suffix of π starting at state πk , that
is, the sequence sk, sk+1, sk+2, . . . Π stands for the set of all paths in M , while Π0

represents the set of all initialized paths in M , that is, the set of all paths whose first
state is an initial state (formally: Π0 = {π ∈ Π | π0 ∈ S0}).

Let M̂ be a second Kripke structure defined over a set of atomic proposition ÂP

such that AP ⊆ ÂP ; we define a relation Z ⊆ Π × Π̂ such that (π, π̂) ∈ Z if and only
if for each proposition p ∈ AP :



122 F. Viganò and M. Colombetti

s0 � s1 � s2 �

p, q ¬p, ¬q p, ¬q

� � � � � �

� � � � � �ŝ0 ŝ1 ŝ2 ŝk0 ŝk0+1 ŝk0+k1

p, q
x, y

p, q
¬x, y

p, q
¬x, ¬y

¬p, ¬q
¬x, ¬y

¬p, ¬q
x, ¬y

p, ¬q
x, ¬y

Fig. 3. Simulation relation among paths of different models with respect to propositions p and q.
Dashed arrows represent the Z relation.

1. V (π0, p) = V̂ (π̂0, p);
2. there exists a k > 0 such that:

(a) V (π1, p) = V̂ (π̂k, p);
(b) for every 0 < r < k V (π0, p) = V̂ (π̂r, p) ;
(c) (π1, π̂k) ∈ Z .

Let us consider a Kripke structure M characterized by a set AP = {p, q} of atomic
propositions and let M̂ be a second Kripke structure defined over ÂP = {p, q, x, y}.
Figure 3 depicts two paths π and π̂ related by the Z relation ((π, π̂) ∈ Z). The reader
can observe that: (i) the valuation of common propositions p and q is the same in the first
state; (ii) there exists a segment of length k0 such that state π̂k0 has the same valuation
of π1 and all other states of the segment have the same valuation of state π0; the suffix
π̂k0 is related by Z to the suffix of π starting from π1.

Path π̂ is therefore emulating the behavior of path π by simulating each transition on
path π with a finite sequence of transitions, such that it keeps unchanged the truth values
of common atomic propositions until it changes them in a single step. Intuitively, we
can imagine building a path π̂ by taking path π and inserting between two consecutive
states (πi, πi+1) a new set of intermediate states which are characterized by the same
valuation function of state πi.

It can be demonstrated (see [23]) that if for each π ∈ Π0 exists a π̂ ∈ Π̂0 such
that (π, π̂) ∈ Z , and for each π̂ ∈ Π̂0 exists a π ∈ Π0 such that (π, π̂) ∈ Z , for each
temporal formula ϕ composed by atomic propositions belonging to AP and which does
not contain the next temporal operator, M |= ϕ with respect to initialized paths Π0 if
and only if M̂ |= ϕ with respect to Π̂0. This result can be extended to transition sys-
tems (see [23]) and it means that given an ideal transition system which corresponds
to a FIEVeL specification, we can build a computational transition system which pre-
serves all temporal properties of the ideal system. It can be observed that to obtain
this result we have to renounce to the next operator, which does not represent a problem



Specification and Verification of Institutions Through Status Functions 123

considering that not even SPIN supports it for efficiency reasons. Although in [5] the
next temporal operator has been used to specify interaction protocols, we think that its
use is problematic if we consider as possible events not only message exchanges but
also time events, since it is not longer ensured that the next state is due to a message
exchange. For this reason, we think that renouncing to the next operator in the specifi-
cation of an institution is a sensible choice.

4 Translating FIEVeL into Promela

A Promela specification is composed by a set of processes and global variables that
can be described by defining new process types and record structures. Essentially a
Promela process is constituted by a set of statements, which can be simple statements,
like assignments, or compound statements, like selection (if) and repetition (do). Each
statement is characterized by an enabling condition and a postcondition. Promela im-
poses severe restrictions on what can be specified in a precondition, therefore, to over-
come such limitations and to increase the expressiveness of FIEVeL without producing
an huge number of intermediate states, we chose to use embedded C code to evaluate
preconditions of transitions and to compute reachable states. The SPIN model checker
adopts an interleaving semantics, which means that when several processes have ex-
ecutable statements, it randomly chooses one of them and executes it. When all en-
abling conditions are evaluated to false, two special preconditions (also named guards)
timeout and else, are evaluated to true. In particular, else is enabled only if all
transitions at the process level cannot be executed, while timeout is evaluated to true
only if no process has an enabled transition. In this brief overview we have just intro-
duced a few concepts that are necessary for the sake of the present discussion, while
further details can be found in [12].

To model check FIEVeL specifications we have defined an automatic translation of
FIEVeL into Promela which proceeds as follows. First, status functions, institutional
entities, obligations, base events, and institutional events are translated into a set of type
definitions, which are then used to declare a set of variables representing the state of the
system. According to the framework discussed in Section 3, in Promela we identify two
groups of variables, one representing the current institutional state and another which
is exploited to generate the next institutional state.

Each institution contained in a FIEVeL specification is then translated into a new
process definition according to the pattern represented in Figure 4. Each process in-
stance is associated to an identifier to bind the process with an appropriate set of vari-
ables representing its state. Every process representing an institution consists of a main
loop, which is enabled whenever a new base event is generated. For the sake of sim-
plicity, we can imagine that the process contains an inner loop where each statement
represents an institutional event or an obligation state transition. Actually, to further
reduce the number of intermediate transitions and to generate a more compact Promela
code, our current implementation introduces several improvements that have not been
reported in Figure 4.



124 F. Viganò and M. Colombetti

proctype institutionProc(int id) {
do
:: (nextEvent.analyzed[id]==FALSE)->
do
:: (condition inst event x1 || condition inst event x2)->

apply effects(next event);
...
:: (condition inst event y1 || condition inst event y2)->

apply effects(next event);
:: ((next obligation.state==inactive) &&

(start obligation && obligation.state==unfired)->
next obligation.state=unfired;

::else -> break;
od
nextEvent.analyzed[id]=TRUE;

od
}

Fig. 4. Translation pattern for processes representing institutions

As discussed in Sections 2 and 3, institutional states evolve because base-level events
happen and they count-as institutional events. To model base level events, we define
a new process, named eventGenerator, which generates actions and events as if they
were produced by agents or the environment. Actually, since we are concerned with the
analysis and verification of institutional reality, at each stage we only consider those
events that, according to the institutional state of the system, can count as an institu-
tional event and we randomly generate one of them. The general structure of an event-
Generator is represented in Figure 5.

Finally we declare an init process to generate the initial state of the system according
to the model-definition section of a FIEVeL specification. Essentially, the init process
sets the initial values of the variables and for each institution instance creates a process
of the corresponding process type.

To intuitively show that our translation respects the framework depicted in Section 3,
we can observe that the eventGenerator is executed only when no other process has
an enabled statement, as guaranteed by the timeout guard. Since it is activated, the
eventGenerator updates the current state with the values contained in the next state vari-
ables, calculates the truth value of a set of propositions representing count-as conditions
(preconditions and authorizations) and finally, if it is possible and if a termination con-
dition has not been reached, generates a new event. Finally, it sets the next base-level
event, which also means that analyzed variables are set to false, and since then all other
processes can be executed. Therefore, according to the process structures presented in
Figure 4 and Figure 5, we ensure that whenever an eventGenerator is executed, any
other process cannot be interleaved. Also, we guarantee that the eventGenerator is ex-
ecuted only when all institution instances have generated the next institutional state by
considering all possible institutional transitions (count-as, institutional-event effects,
and obligation transitions), such that current state variables can be updated with the
new calculated values.

An important aspect of our translation of FIEVeL into Promela is that we can directly
check LTL properties, instead of writing assertions embedded in the Promela code.
As a consequence, properties definition results significantly simplified and it can be



Specification and Verification of Institutions Through Status Functions 125

proctype eventGenerator(){
do
:: timeout ->
curr state=next state;
updateConditions();
if
:: !(end condition)->
if
:: (true) -> next event = timer; next time++;
:: condition event1 -> next event = event1;
:: condition event2 -> next event = event2;
...
:: condition event -> next event = event;
fi

fi
od

}

Fig. 5. The structure of an eventGenerator process

automated, although at the moment this feature has not been implemented yet in our
tool.

5 Verifying Institutions

Once an institution has been defined with FIEVeL and translated into Promela, we think
that there are two main types of properties that must be verified, soundness properties
and domain specific properties. Soundness properties represent general desirable prop-
erties of institutions which stem from the metamodel: for example, the soundness of an
institution specification requires the consistency of the set of deontic-positions associ-
ated to a status function (weak consistency) and the consistency of all the obligation of
status functions that may be assigned to an agent (strong consistency). Instead, domain
specific properties stem from peculiar features of the specified model and regard the
functionality of an institution: for instance, we may check if it is possible that a par-
ticipant is declared to be the winner of an auction. In the following we exemplify our
approach by defining several LTL properties and by showing how they can be verified
with SPIN.

Soundness properties are often defined to guarantee the rationality of an institution.
For instance, an institutional event must eventually happen in at least one execution. By
checking the satisfiability of the following formula, where we combine FIEVeL expres-
sions with temporal operators, we can verify that an event of type current winner is
must happen in least one execution:

Fhappens(current winner is)

Temporal operators and FIEVeL expressions can be combined because we assume that
semantics domains are fixed at all states of our system. The SPIN model checker only
admits propositional symbols into LTL formulae [12], hence we must introduce new
propositional symbols corresponding to FIEVeL expressions. For instance, the happens
expression reported above is translated as follows:



126 F. Viganò and M. Colombetti

#define happens currentWinner (lastEvent.EAI currentWinner ==true)

If the property does not hold, the model checker returns a counterexample, which shows
a possible trace that violates it.

To conclude this section we report an example of a domain specific property that al-
lows us to verify that desired institutional states may be reached, which implies that our
specification defines all the institutional actions and authorizations needed for the cor-
rect evolution of the system. For instance, we may want to check that only a participant
can become the winner of an auction. This requirement also means that an auction-
eer cannot win an auction and that any participant may eventually become the winner.
These properties are formalized as follows:

G¬(auctioneer ∧ winner) (1)

F(participant ∧ winner) (2)

By verifying if property 1 is valid and if property 2 is satisfiable and by analyzing
the generated counterexamples, we discovered and fixed an error in an earlier version
of our specification of the English Auction. In fact, the effects of the institutional action
current winner is were accidentally specified such that the status function of current-
winner was assigned to the actor of that action, instead of to the agent declared to be
the winner (see Section 3). Clearly, given that such action is authorized only for the
auctioneer, in that specification only an auctioneer could win an auction.

To provide the reader with a feeling of the computational costs of our approach,
we report results obtained during the verification of property 1 on a desktop PC with
installed Windows and equipped with a pentium 3.0 GHz and 512 MB of RAM. Clearly,
results reported in Table 1 are severely influenced by the small amount of memory we
had at our disposal. Despite that, we consider our results interesting, considered the
complexity of the specification and compared with our experience in the verification of
systems specified in Promela.

Table 1 reports our experiments, where “HCm” indicates that we have applied the
Hash Compression mode while “*” represents the fact that the verification process re-
quires more than 500 seconds and therefore it has been interrupted. Analyzing results
showed in Table 1, we can observe that the number of agents and prices, but especially
the number of possible time events contribute to a very fast growth of time and mem-
ory required to verify the property. This is essentially due to two different factors, one
relative to our framework and one which depends on the chosen example. The repre-
sentation of time as an explicit variable of the system somehow introduces an explicit
counter, which leads the model checker to consider as different similar states which just
differ in the value of the clock. In our formalization of the English Auction the order
in which agents make their bids is associated to each OFFERED status function (see
Section 3) , so that the auctioneer is able to declare a current winner even if two agents
have offered the same price during a round (the first agent that has bid the highest price
is declared to be the current winner ). Clearly, keeping trace of the relative order of
offers contributes to increasing the number of possible paths that the model checker has
to consider, and hence the amount of required memory and time.



Specification and Verification of Institutions Through Status Functions 127

Table 1. Time and memory required to verify G¬(auctioneer ∧ winner). Results are reported
showing the size of the considered models.

Agents Time events Prices Memory (MB) Time (sec) HCm memory (MB) HCm time (sec)
3 2 5 94.71 4 4.96 2
3 2 6 155.78 7 6.60 4
3 2 7 252.90 12 8.65 8
4 2 5 150.03 10 5.79 6
4 2 6 257.40 18 7.43 14
4 2 7 421.32 123 9.47 23
3 3 5 309.85 16 9.47 10
3 3 6 511.60 374 13.98 13
3 3 7 * * 20.53 25
4 3 5 505.60 165 10.70 23
4 3 6 * * 15.62 43
4 3 7 * * 23.00 56
4 4 7 * * 52.10 147
4 5 7 * * 109.05 444

6 Discussion and Conclusions

In this paper we have presented a framework for verifying institutional reality based on
the notion of status function, which is regarded as a possibly empty aggregate of autho-
rizations and obligations. Our approach is motivated by the fact that institutional events
modify institutional facts and, as a consequence, agents authorizations and obligations
are changed. For this reason, we chose to characterize institutional events in terms of
imposition and revocation of agent status functions, which are taken as our basic con-
cept. We have also introduced FIEVeL, a language which allows to specify artificial
institutions in terms of the concepts of our metamodel. We have also briefly discussed
how FIEVeL specifications can be translated into Promela, such that soundness proper-
ties can be defined and model-checked with SPIN.

Several attempts have been previously carried out to apply model checking tech-
niques and tools to verify electronic institutions, a formalism proposed in [7] to spec-
ify institutions. Roughly speaking, the language defined in [7] describes institutions
as finite automata, and starting from this point [13] and [3] focus their attention on
properties of finite automata (e.g. “it is always possible to reach a final state”), while
they do not take into account norms. Instead, in our approach the attention is essen-
tially focused on verifying properties of institutional states, described in terms of sta-
tus functions, which are intrinsically related with norms of the system and thereby on
checking whether norms and authorizations defined by the designer are consistent. In
this respect, our approach is more similar to the one presented in [4], where answer
set programming techniques are applied to represent and analyze institutions. In [4] the
authors distinguish among institutional domain facts and normative facts (obligations,
institutionalized powers, and permissions), while in this paper we proposed a unified
view of institutional domain and normative facts. Indeed, we claim that institutional
facts are such only because they imply new normative facts for the interacting agents,



128 F. Viganò and M. Colombetti

which also represents a significant difference with respect to our previous attempts to
model institutional reality [9,24].

As [4,24], in [20] several key concepts like authorizations, obligations and prohibi-
tion are used to model institutional reality. It can be observed that the formalism used in
[20] to specify institutions (named normative systems) does not provide any abstraction
to describe that every institutional action must be authorized in order to be success-
fully executed. Instead, the authors must specify this fact for every single action and for
every role defined by the institution. Therefore, the definition of a metamodel provides
a significant advantage, especially when many status function (or roles, using the ter-
minology of [20]) are authorized to perform the same institutional action. Furthermore,
the definition of an automatic translation of FIEVeL into Promela allows us to verify
our specification, while in [20] the authors must rely on “systematic runs”.

We plan to extend our metamodel, and consequently FIEVeL, to model different
interdependent institutions like in [24], which raises, among others, two interesting re-
search problems: first, how to model interdependencies among different contexts, and
second, how to design an institution which somehow depends on another institution.

References

1. Boella, G., van der Torre, L.: The Ontological Properties of Social Roles: Definitional De-
pendence, Powers and Roles Playing Roles. In: Proceedings of the ICAIL05 Workshop on
Legal Ontologies and Artificial Intelligence Techniques (2005)

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambrige, MA (1999)
3. Cliffe, O., Padget, J.: A Framework For Checking Interactions Within Agent Institutions. In:

Proceedings of the ECAI Workshop on Model Checking and Artificial Intelligence (MoChart
I) (2002)

4. Cliffe, O., Vos, M.D., Padget, J.: Specifying and Analysing Agent-based Social Institutions
using Answer Set Programming. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Orga-
nizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp.
99–113. Springer, Heidelberg (2006)

5. Endriss, U.: Temporal Logics for Representing Agent Communication Protocols. In:
Dignum, F., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS (LNAI), vol. 3859, Springer,
Heidelberg (2006)

6. Esteva, M., Rodrı́guez-Aguilar, J.A., Rosell, B., Arcos, J.L.: AMELI: An Agent-based Mid-
dleware for Electronic Institutions. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M.
(eds.) Proceedings of the 3rd International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2004), pp. 236–243. ACM Press, New York (2004)

7. Esteva, M., Rodrı́guez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the Formal Spec-
ification of Electronic Institutions. In: Sierra, C., Dignum, F.P.M. (eds.) Agent Mediated
Electronic Commerce. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

8. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the Event Calculus for Tracking
the Normative State of Contracts. Journal of Cooperative Information Systems 14(2-3), 99–
129 (2005)

9. Fornara, N., Viganò, F., Colombetti, M.: Agent Communication and Institutional Reality. In:
van Eijk, R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI), vol. 3396, pp.
1–17. Springer, Heidelberg (2005)



Specification and Verification of Institutions Through Status Functions 129

10. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A.: Implementing norms in electronic
institutions. In: Proceedings of the 4th International Joint Conference on Autonomous agents
and Multi-Agent Systems (AAMAS 2005), pp. 667–673. ACM Press, New York (2005)

11. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: A distributed ar-
chitecture for norm-aware agent societies. In: Baldoni, M., Endriss, U., Omicini, A., Torroni,
P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 89–105. Springer, Heidelberg (2006)

12. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,
Reading (2003)

13. Huget, M.-P., Esteva, M., Phelps, S., Sierra, C., Wooldridge, M.: Model Checking Electronic
Institutions. In: Proceedings of the ECAI Workshop on Model Checking and Artificial Intel-
ligence (MoChArt I) (2002)

14. Jones, A., Sergot, M.J.: A formal characterisation of institutionalised power. Journal of the
IGPL 4(3), 429–445 (1996)

15. Kowalski, R.A., Sergot, M.J.: A Logic-based Calculus of Events. New Generation Comput-
ing 4, 67–95 (1986)

16. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.: So-
cial Roles and their Descriptions. In: Dubois, D., Welty, C., Williams, M. (eds.) Proceedings
of the Ninth International Conference on the Principles of Knowledge Representation and
Reasoning (KR2004), pp. 267–277 (2004)

17. North, D.: Institutions, Institutional Change and Economics Performance. Cambridge Uni-
versity Press, Cambridge, United Kingdom (1990)

18. Ostroff, J.S.: Modelling, specifying and verifying real-time temporal interval logic. In: Pro-
ceedings of the IEEE Symposium on Real-Time Systems, New York, IEEE Press, Los Alami-
tos (1987)

19. Peled, D.: Software reliability methods. Texts in Computer Science. Springer, New York, NJ
USA (2001)

20. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for virtual
organizations. In: Proceedings of the 4th International Joint Conference on Autonomous
agents and Multi-Agent Systems (AAMAS 2005), pp. 373–380. ACM Press, New York,
USA (2005)

21. Searle, J.R.: The construction of social reality. Free Press, New York, USA (1995)
22. Sergot, M.J.: Modelling unreliable and untrustworthy agent behaviour. In: Dunin-Keplicz,

B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Tech-
niques in Multiagent Systems. Advances in Soft Computing, pp. 161–178. Springer, Heidel-
berg (2005)

23. Viganò, F.: FIEVeL, a Language for the Specification and Verification of Institutions. Tech-
nical Report 3, Institute for Communication Technologies, Università della Svizzera Italiana
(2006)

24. Viganò, F., Fornara, N., Colombetti, M.: An Event Driven Approach to Norms in Artificial
Institutions. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski,
S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp. 142–154. Springer, Heidel-
berg (2006)



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part III  
NORMATIVE MODELS AND ISSUES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Spatially Distributed Normative Objects

Fabio Y. Okuyama1, Rafael H. Bordini2, and Antônio Carlos da Rocha Costa3

1 Universidade Federal do Rio Grande do Sul, Brazil
okuyama@inf.ufrgs.br

2 University of Durham, United Kingdom
R.Bordini@durham.ac.uk

3 Universidade Católica de Pelotas, Brazil
rocha@atlas.ucpel.tche.br

Abstract. Organisational structures for multi-agent systems are usually defined
independently of any spatial or temporal structure. Therefore, when the multi-
agent system is situated in a spatial environment, there is usually a conceptual
gap between the definition of the system’s organisational structures and the defi-
nition of the environment. In this paper, we focus on a mechanism for the spatial
distribution of an organization’s normative information. Spatially distributing the
normative information over the environment is a natural way to simplify the defi-
nition of organisational structures and the development of large-scale multi-agent
systems. By distributing the normative information in different spatial locations,
we allow agents to directly access the relevant information needed in each en-
vironmental context. We extend our previous work on a language for modelling
multi-agent environments in order to allow for the definition of spatially distrib-
uted norms in the form of normative objects.

1 Introduction

The environment is an important part of a Multi-Agent System (MAS), specially for
systems of situated agents. Situated multi-agent systems are usually designed as a set
of agents, together with the environment where they operate, their social structures, and
the possible interactions among these components. In previous works, we introduced a
language that allows MAS designers to describe, at a high conceptual level, environ-
ments for situated multi-agent systems [11,1]. The language is called ELMS, and was
created to be part of a platform for the development of (social) simulations based on
multi-agent systems.

In this paper, we present extensions to the ELMS language which allow the distrib-
ution of normative information over an environment, construing what we call situated
norms. In particular, we introduce here the notion of spatially distributed normative ob-
jects, which facilitates the modelling of various real-world situations, particularly for
simulation, but more generally the coordination of large-scale multi-agent systems too,
through situated norms.

To understand the notions of normative object and situated norm, consider the posters
one typically sees in public places (such as libraries or bars) saying “Please be quiet”
or “No smoking in this area”. Human societies often resort to this mechanism for de-
centralising the burden of regulating social behaviour; people then adopt such situated

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 133–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



134 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

norms whenever they have visual access to such posters. This should be equally effi-
cient for computational systems because it avoids the need for providing a complete,
exhaustive representation of all social norms in a single public structure, known to all
agents, as it is usually the case in current approaches to agent organisations.

Another extension we have introduced to our environment description language is the
notion of normative places, which are zones where the normative objects and situated
norms are relevant. As an example, consider a research group where there are agents
with the role principal researcher whose main objective is to supervise the research of
agents playing the research student role; such research can be conducted both at the
laboratory or at the library. The interactions at the laboratory are to be outlined in the
spatial scene of the laboratory space. The information about how to behave in a library
is defined in the library spatial scene, where all researchers will also assume the role of
library users. Normative information relevant for each such site (and each place within
each site) can be made accessible to the agents with the help of normative objects.

In summary, the extensions we introduce here support situated norms and leaves the
necessary room for the inclusion of group structures that are spatially situated within a
(simulated) physical environment. This is done using two means: first, normative ob-
jects, which are objects that can contain normative information; and second, a norma-
tive principle for situated norms, conceived as a special form of conditional rule, where
an explicit condition on an agent’s perception of a normative object appears: ‘When
playing the relevant role and being physically situated within the confines referred by
a situated norm N expressed in a normative object previously perceived, the agent is
required to reason about following norm N ; otherwise, it is excused from reason about
it’. Also, normative objects may be directed towards a specific role in a given organ-
isation. We can thus model things such as a sign saying that students are not allowed
beyond the library desk (while members of staff are).

In the next section, we briefly present our platform and the various component lan-
guages we use to model multi-agent systems. In Section 3, we briefly review how an
environment should be modelled using our approach. In Sections 4 and 5, we present
and discuss the normative extensions that we introduce in this paper. We then illus-
trate our approach with an example in Section 6; the example is based on the scenario
presented in [4]. We discuss related work in Section 7, then conclude the paper.

2 The MAS-SOC Platform

One of the main goals of the MAS-SOC simulation platform (Multi-Agent Simulation
for the SOCial Sciences)is to provide a framework for the creation of agent-based sim-
ulations which do not require too much experience in programming from users, yet
allowing the use of state-of-the-art agent technologies. In particular, it should allow for
the design and implementation of simulations with cognitive agents.

In our approach, an agent’s individual reasoning is specified in an extended version
of AgentSpeak [13], as interpreted by Jason, an open source agent platform1 based
on Java [2]. The extensions allow, among other things, the use of speech-act based

1 Available at http://jason.sf.net



Spatially Distributed Normative Objects 135

agent communication, and there is ongoing work to allow the use of ontologies and of
organisational structures as part of a Jason multi-agent system.

The environments where agents are situated are specified in ELMS, a language we
have designed for the description of multi-agent environments [11]. For more details on
MAS-SOC, refer to [1]. We here concentrate on the ELMS extensions to describe ba-
sic organisational structures and social norms, and to relate an organisational structure
and the relevant normative aspects to the spatial structures defined within the physical
environment.

3 Modelling Physical Environments with ELMS

As presented in [11], we developed ELMS (Environment Description Language for
Multi-Agent Simulation) as a means to describe environments and to execute simulated
environments. Agents in a multi-agent system interact with the environment where they
are situated and interact with each other (possibly through the shared environment).
Therefore, the environment has an important role in a multi-agent system, whether the
environment is the Internet, the real world, or some simulated environment.

We understand as environment modelling, the modelling of external aspects that an
agent needs as input to its reasoning and for deciding on its course of action. Further, it
is necessary to model explicitly the physical actions and perceptions that the agents are
capable of in a given environment. Below we briefly review how a physical environment
is described using this language.

To define an environment using ELMS, the following classes of constructs can be
used:

– Agent Body: the agent’s characteristics that are perceptible to other agents. Agent
“bodies” are defined by a set of properties that characterise it and are perceptible to
other agents. Such properties are represented as string, integer, float, and boolean
values. Each “body” is associated with a set of actions that the agent is allowed to
perform and of environment properties that the agent can perceive.

– Agent Sensorial Capabilities (Perception): the environment properties that will
be perceptible to each agent at a given time, and under given specific circumstances.

– Agent Effective Capacities (Actions): the actions that an agent is able to perform
in order to change the current state of the environment. These actions are defined
as assignments of values to the attributes of entities in the environment2. The pro-
duction (i.e., instantiation) of previously defined resources (i.e., objects), and the
consumption (i.e., deletion) of existing instances can also be part of an action de-
scription.

– Physical Environment Objects (Resources): the objects/resources that are present
in the environment. Although objects and resources can have conceptual differ-
ences, they are represented by the same structure in ELMS. Agents interact with
objects through their actions in the environment. Object structures are defined by
a set of properties that are relevant to the modelling and may be perceived by an
agent. In the same way as the properties of the “bodies” of the agents, the prop-
erties of objects are also represented by string, integer, float, and boolean values.

2 Note that agent bodies are also properties of the environment.



136 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

Each object can also be associated with a set of reactions that may happen as con-
sequence of an agent’s actions.

– Object Reactions: the objects can “react”, under specific circumstances, in order to
respond to actions performed by the agents in the environment. Such reactions are
given as the assignment of values to properties, the creation of previously defined
object instances, and the deletion of existing object instances.

– Space Structure (Grid): the space is (optionally) divided into cells forming a grid
that represents the spatial structure of the environment. When a grid is used, it can
be defined in 2 or 3 dimensions. As for resources, each cell can have reactions
associated to it. Although the specified set of reactions apply to all of the cells,
this does not mean that all cells will behave equally, since they may be in different
contexts (i.e., each cell has independent attributes, thus having different contents
and, clearly, different positions, which can all affect the particular reactions).

3.1 Notes on Environment Descriptions

– Perceptions: agents do not normally have complete access to the environment.
Perception of the environment will not normally give complete and accurate infor-
mation about the whole environment and the other agents in it. However, since such
restriction is not imposed by the ELMS model itself, designers can choose to create
fully accessible environments if this is appropriate for a particular application.

– Actions: actions defined here are assumed to be atomic, as the action chaining or
planning is meant to be part of the “mind” of the agent

– Reactions: all object reactions triggered by some change in the environment are
executed in a single simulation cycle. This is different from agent actions, as each
agent can execute only one action per cycle.

Additionally to the constructs mentioned above, the following operational constructs
are used in our approach to model the (simulated) physical environment.

– Constructors: Each agent and resource may need to be initialised at the moment of
its instantiation. This is defined by a list of initial value assignment to its attributes.

– Observables: A list of environment properties whose values are to be dis-
played/logged; these are the specific properties of a simulation that the user wants
to observe/analyse.

The simulation of the environment itself is done by a process that controls the access
and changes made to the data structure that represents the environment; the process is
called the environment controller. The data structure that represents the environment is
generated by the ELMS interpreter from a specification in ELMS given as input. In each
simulation cycle, the environment controller sends to all agents currently taking part in
the simulation the percepts to which they have access (as specified in ELMS). Recall
that ELMS environments are designed for cognitive agents, so perception is transmitted
in messages as a list of ground logical facts. After sending perception, the process waits
for the actions that the agents have chosen to perform in that simulation cycle and then
execute the actions, changing the environment data structures accordingly.



Spatially Distributed Normative Objects 137

4 Normative Objects and Situated Norms

Typically, environments will have some objects aimed at informing agents about norms,
give some advice, or warn about potential dangers. For example, a poster fixed on a wall
of a library asking for “silence” is an object of the environment, but also informs about
a norm that should be respected within that space. Another example are traffic signs,
which give advice about directions or regulate priorities in crossings. The existence of
such signs, that we call normative objects, implies the existence of a regulating code in
such context, that we call situated norms.

In the examples above, the norms are only meant to be followed within certain
boundaries of space or time and lose their effect completely if those space and time
restrictions are not met, which is the initial motivation for situated norms. Another im-
portant advantage of modelling some norms as situated norms is the fact that the spatial
context where the norm is to be followed is immediately determined. Thus, the norm can
be “pre-compiled” to its situated form, making it easier for the agents to operationalise
the norm, and also facilitating the verification of norm compliance.

For example a norm that says “Be kind to the elderly”, may be quite hard to oper-
ationalise and verify, in general. However, in a fixed spatial context such as a bus or
train, with the norm contextualised as “Give up your seat for the elderly”, or in a street
crossing, with the norm contextualised as “Help elderly people to cross the street”, the
norm would be much more easily interpreted by the agents, and verified by any norm
compliance checking mechanism.

It is important to remark that the norm-abiding behaviour is not related to the exis-
tence of a normative object. Beyond the existence of such object, it is necessary for the
agent to perceive the normative object, and autonomous agents will also reason about
whether to follow or not the norm stated by the normative object.

4.1 Normative Objects and Situated Norms in ELMS

In the extended version of ELMS, normative objects are “readable” by agents under
specific individual conditions: an agent is able to read a specific rule if it has the specific
ability to perceive the type of object in which the rule is written at its given location. In
the most typical case, the condition is simply being physically close to the object.

Normative objects can be defined before the simulation starts, or can be created dy-
namically during the simulation. Each normative object can be placed in a normative
place (see below), in the spatial grid of the environment. The conditions under which
the normative objects can be perceived are defined by the simulation designer using the
usual ELMS constructs for defining perception capabilities and their conditions.

The normative information in a normative object is “read” by an agent through its
perception ability. Besides the norm itself, it may contain meta-information, e.g., which
agent or institution created the norm. In ELMS, normative objects should have at least
the following properties:

– Type: the type of the normative information contained in the object; it determines
the level of importance (e.g., a warning, an obligation, a direction);

– Issued by: where the power underlying the norm comes from (e.g., an agent, a
group, an institution).



138 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

– Norm: a string that represents the normative information; this should be in the for-
mat of AgentSpeak predicates in the case of MAS-SOC environments, or whatever
format the targeted agents will be able to understand.

– Placement: the set of normative spaces where the normative information applies. If
omitted, the object is assumed to be accessible from anywhere, but normally under
conditions determined by the designer; see the next item.

– Condition: conditions under which the normative information can be perceived.
The conditions can be associated with groups, roles, abilities, and current physical
placement and orientation of agents and objects.

– Id: identification string for eventual deletion/edition of the normative object.

We now briefly describe how the agents will receive normative information from
normative objects. Whenever the agent position is such that access to the normative
object is accessible, and the Condition is satisfied, the agent will receive perception of
the form:

rule([PLACE],[GROUP],[ISSUED BY],[NORM])
Ex: rule(home, family, parents, obligation(child,play(TOY),tidy(TOY)))

The example above can be read as: “This is rule in group family, issued by the par-
ents, with application at the normative place home (see below), that says: if the action
play(TOY ) is done by an agent of role child, then it is an obligation of that agent to
do tidy(TOY ) as well”.

A rule like that would not normally be posted on a sign in a family home, but it
illustrates the more general idea of situated norms as norms that apply within given
environmental locations.

4.2 Normative Places in ELMS

Considering the ideas discussed above about normative objects and situated norms,
ELMS descriptions of an environment (based on the concepts of agent bodies, objects,
and an optional grid) need to be extended with the notion of normative places, i.e., a set
of cells where an organisational activity occurs under the conditions of a set of situated
norms.

A normative place can be defined in ELMS simply by its name and the set of cells
that are part of it. A normative place may have intersections with other normative places,
or even be contained within another normative place. For example, a normative place
“school” may have a large set of cells where some of those cells refer to a normative
place “classroom” and others to its “library”. A normative place allows for the definition
of the spatial location where certain situated norms are valid and relevant, as it will be
exemplified in the next section.

In order to facilitate the definition of repetitive normative place structures, classes
of normative places can be first defined and then instantiated in specific positions of
the grid. The place “home” in the previous section is an example of a normative place.
Other examples of such definitions and instantiations are as follows:



Spatially Distributed Normative Objects 139

<NORMATIVE-PLACE-TYPE NAME="library"/>

<NORMATIVE-PLACE-TYPE NAME="classroom"/>

<PLACE NAME="lib1" NORMATIVE-PLACE-TYPE="library">
<CELL X="0" Y="0"/>
<CELL X="0" Y="1"/>

</PLACE>

<PLACE NAME="cr1" NORMATIVE-PLACE-TYPE="classroom">
<CELL X="2" Y="0">

</PLACE>

5 MAS-SOC Modelling of Organisations Governed by Situated
Norms

As the MAS-SOC platform does not enforce a particular agent-oriented software en-
gineering methodology, designers can use the one they prefer. It is possible to model
a multi-agent system that will have an ELMS environment using any approach: start-
ing from the system organisation (top-down), or starting from the agent interactions
(bottom-up).

In both approaches, the modelling of the organisational structures and the agents’
reasoning need fine tuning to achieve the desired results. To have a stable point on
which to base the tuning-up of the agents’ reasoning or the organisational model, we
have suggest the use of an explicitly defined environment description written in the
ELMS language and the concepts presented in the Section 3. The environment is an
important part of an multi-agent system, and although it can be very dynamic, in regards
to design it is usually the most “stable” part of the system.

Based on these observations, we suggest that the multi-agent system modelling starts
with the environment definition, followed by the definition of the normative places. The
environment modelling is achieved by:

1. Definition of which kinds of action each type of agent is able to perform in the
environment. Actions typically produce effects over objects of the environment or
other agents.

2. Based on the changes that the agents’ effective capabilities are able to make in the
environment and the objectives of the simulation, the size and granularity of the
grid can be determined. For example, how many cells an agent can move within
one action or simulation cycle, and in how many simulation cycles the agent would
be able to traverse the simulated space.

3. Based on the granularity and size of the spatial environment, the sensorial capabil-
ities of the agents can be modelled, defining for example in which range an agent
can detect other agents or objects.

4. Based on an agent’s sensorial capabilities and on its typical activities, it should be
possible to define which attributes of that agent is important to declare as accessible
to other agents. For example, if agents identify each other’s role by the colour of
their uniform, the “agent body” should have an attribute that represent the colour
of the agent’s uniform.



140 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

5. The types of objects or resources present in the environment should also be mod-
elled based on which attributes will be perceptible by the agents and which actions
can affect them.

6. Finally, instances of the agent and object classes should be placed in the environ-
ment, determining its initial state.

The definition of the environment should be followed by the definition of norma-
tive places and then by the definition of the spatially distributed normative objects, as
follows:

1. Together with the object types placed in the environment, the types of normative
places within the environment can also be defined.

2. By instantiating normative places into sets of cells, normative places are created.
3. Then, based the set of activities that can possibly be performed in each type of

normative place, the norms that are relevant to that type of place can be defined.
4. Finally, the types of normative objects can be defined and instantiated in the nor-

mative places, defining the locations where situated norms can be perceived.

Using the environment as a basis, the agents’ reasoning capabilities can then be de-
fined so as to help agents achieve their objectives as well as the objective of the groups
in which they participate. Also, the detailed definitions of possible organisational struc-
tures can be fine-tuned, in order to have the system achieving its overall objectives. In
MAS-SOC, we use AgentSpeak to define the practical reasoning for each agent; in par-
ticular, we use the extended version of AgentSpeak as interpreted by Jason; for details,
see [3].

6 Example

Below we give an example showing how normative objects are defined using our ap-
proach. It is based on the scenario presented in [4], a scenario in which the agents are
placed on an environment where they may eat the food they find, challenge other agents
for their food, or move in search of food.

In this scenario, an agent owns any food item that is near to itself (at a distance of
up to 2 cells). The agents can “see” food and other agents in a radius of 1 cell, but can
sense food in a radius of 2 cells. The physical space is represented by a grid of 10 × 10
cells.

The norms used in that scenario essentially concern the respect for the ownership
of a food item, which means they prescribe non-aggressive behaviour. In the original
scenario, the norms were valid throughout the grid, but in this example norms are valid
only within normative places, as indicated by normative objects.

A shortened version of the physical environment description in ELMS is given below.

<!DOCTYPE ENVIRONMENT SYSTEM "elms.dtd">
<ENVIRONMENT NAME = "NORMATIVE">

<DEFGRID SIZEX="10" SIZEY = "10"/>

<RESOURCE NAME="food">
<STRING ownner = "none">

</RESOURCE>



Spatially Distributed Normative Objects 141

<AGENT_BODY NAME="agent">
<INTEGER NAME = "id"> "SELF" </INTEGER>
<PERCEPTIONS>

<ITEM NAME = "vision"/>
<ITEM NAME = "sense_food">

</PERCEPTIONS>
<ACTIONS>

<ITEM NAME = "walk"/>
<ITEM NAME = "attack"/>
<ITEM NAME = "eat"/>

</ACTIONS>
</AGENT_BODY>

<PERCEPTION NAME="vision">
<CELL_ATT ATTRIBUTE="CONTENTS" ABSOLUTE="TRUE">

<X> +0</X>
<Y> +0</Y>

</CELL_ATT>
<CELL_ATT ATTRIBUTE="CONTENTS" ABSOLUTE="TRUE">

<X> +1</X>
<Y> +0</Y>

</CELL_ATT>
<!-- shortened-->

</PERCEPTION>

<PERCEPTION NAME="sense_food">
<!-- shortened-->

</PERCEPTION>

<ACTION NAME="eat">
<PARAMETER NAME = "FOOD_ID" TYPE="INTEGER" />
<!-- shortened-->

</ACTION>

<ACTION NAME="walk">
<!-- shortened-->

</ACTION>

<ACTION NAME="attack">
<!-- shortened-->

</ACTION>

<INITIALIZATION>
<!-- instantiation and placement of

food and agents -->
</INITIALIZATION>

</ENVIRONMENT>

In the code excerpt above, the grid size is defined, then food is defined as an en-
vironment resource, then a generic type of agent body is defined. The agent body is
defined as being capable of two types of perception — vision and food sensing – and
being able to perform three types of actions: walk, attack, and eat. The vision percep-
tion allows the agent to perceive the contents of the current cell and the 4 neighbouring
cells, while sense food allows it to perceive food within a 2-cell radius.

For this example, the grid is partitioned in four normative places of equal sizes,
and the normative objects are defined and placed only in the upper-left and upper-right
quadrants, as shown in the code excerpt below:

<NORMATIVE-PLACE-TYPE NAME="food-protected"/>

<PLACE NAME="upper-left" NORMATIVE-PLACE-TYPE="food-protected">
<CELL X="0" Y="0"/><CELL X="1" Y="0"/>
<!-- shortened-->



142 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

<CELL X="3" Y="4"/><CELL X="4" Y="4"/>
</PLACE>

<PLACE NAME="upper-right" NORMATIVE-PLACE-TYPE="food-protected">
<CELL X="5" Y="0"/><CELL X="6" Y="0"/>
<!-- shortened-->
<CELL X="8" Y="4"/><CELL X="9" Y="4"/>

</PLACE>

<PLACE NAME="lower-left" NORMATIVE-PLACE-TYPE="null">
<CELL X="0" Y="5"/><CELL X="1" Y="5"/>
<!-- shortened-->
<CELL X="3" Y="9"/><CELL X="4" Y="9"/>

</PLACE>

<PLACE NAME="lower-right" NORMATIVE-PLACE-TYPE="null">
<CELL X="5" Y="4"/><CELL X="6" Y="4"/>
<!-- shortened-->
<CELL X="8" Y="9"/><CELL X="9" Y="9"/>

</PLACE>

<NORMATIVE_OBJECT ID="norm1" TYPE="prohibition" PLACE = "upper-left">
<NORM>prohibited(true,attack(SELF,AGENT))</NORM>

</NORM_OBJ>

<NORMATIVE_OBJECT ID="norm2" TYPE="prohibition" PLACE = "upper-right">
<NORM>prohibited(not(owned(FOOD,SELF)),eat(SELF,FOOD))</NORM>

</NORM_OBJ>

The norms in the above example are very simple, and are given simply to illustrate
how they can be modelled in our approach. For instance, norm1 says that an agent
ought not to attack (steal food from) another agent, while norm2 says that the agent
ought not to eat a food item that is not owned by itself.

Clearly, the agents’ behaviour will be different in the four quadrants of the environ-
ment:

– in the upper-left quadrant, an agent is barred from eating food that belongs to an-
other agent (since the situated norm states that an agent is prohibited from stealing
food);

– in the upper-right quadrant, agents are supposedly prohibited of doing that, but not
effectively, since the situated norm only prohibits the eating of food that is not
owned by the agent itself rather than the stealing of food, so an agent can eat food
that previously belonged to another agent if it first manages to steal that food;

– the lower quadrants (both left and right) are lawless areas, where agents are com-
pletely free to attack each other and to eat anyone else’s food.

Notice that prohibited is used as a conditional deontic operator, with two argu-
ments: the first argument is a condition to be tested, the second argument is the action
that is prohibited.

7 Related Work

The notion of artifacts [16] and coordination artifacts [12] resembles our notion of
normative objects. As defined in [12], coordination artifacts are abstractions meant to
improve the automation of coordination activities, being the building blocks to cre-
ate effective shared collaborative working environments. They are defined as runtime



Spatially Distributed Normative Objects 143

abstractions that encapsulate and provide a coordination service to the agents. Arti-
facts [16] were presented as a generalisation of coordination artifacts. Artifacts are an
abstraction to represent tools, services, objects and entities in a multi-agent environ-
ment.

As building blocks for environment modelling, artifacts encapsulate the features of
the environment as services to be used by the agents. The main objective of a coordi-
nation artifacts is to be used as an abstraction of an environmental coordination service
provided to the agents. However, coordination artifacts express normative rules only
implicitly, through their practical effects on the actions of the agents, and so their nor-
mative impact does not require any normative reasoning from the part of the agents. In
our work, rather than having a general notion of objects that by their (physical) prop-
erties facilitate coordination, normative objects are objects used specifically to store
symbolic information that can be interpreted by agents, so that they can become aware
of norms that should be followed within a well-defined location.

Our choice has the advantage of keeping open the possibility of agent autonomy, as
suggested in [5]. Agents are, in principle, able to decide whether to follow the norms or
not, when trying to be effective in the pursuit of their goals. This is something that is
not possible if an agent’s action can only happen if in accordance to norms enforced by
coordination mechanisms.

Another important difference is that normative objects are spatially distributed over
a physical environment, with a spatial scope where they apply, and closely tied to the
part of the organisation that is physically located in that space. While the objective of
the coordination artifacts is to remove the burden of coordination from the agents, our
work tries to simplify the way designers can guide the behaviour of each individual
agent as they move around an environment where organisations are spatially located;
this allows agents to adapt the way they behave in different social contexts.

In [8], the authors present the AGRE model, an extension to the previous AGR
model. These latest extensions allow the definition of structures that represents the phys-
ical space. The approach defines organisational structures (i.e., groups) and the physical
structures (i.e., areas) as “specialisations” of a generic space. The social structures are
not contextualised in the space as they are in our work, leaving the social and physical
structures quite unrelated.

In ELMS, however, it is not possible to explicitly define social structures, even
though it would be possible to implicitly define them through the norms. This is
because the aim of ELMS is, as mentioned earlier, to allow for environmental infrastruc-
tures compatible with existing approaches to organisational modelling, not for the mod-
elling of organisations as such; the combination of ELMS with existing approaches to
modelling organisations is planned as future work.

Another important series of related work is that on Electronic Institutions [9]. The
internal working of an electronic institutions is given (in a simplified view) as a state-
machine where each state is called a “scene”. Each scene specifies the set of roles
that agents may perform in it, and a “conversation protocol” that the agents should
follow when interacting in the scene. To traverse the series of scenes that constitute
the operation of the electronic institution, agents must do a sequence of actions in each
scene, and also to commit to certain actions in certain scenes, as the result of their



144 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

having performed certain other actions in certain other scenes. Our notion of normative
space was inspired by such notion of scene, through giving it a physical, spatial content.

Similar to the electronic institutions approach, there is work on computational insti-
tutions [14], which are defined as virtual organisations ruled by constitutive norms and
regulative norms. In computational institutions, organisational modelling uses the ab-
straction of coordination artifacts as building blocks, in a way that is very similar to our
use of normative objects in spatially distributed organizations, but still keeping implicit
in coordination artifacts the normative content imposed on the agents.

8 Conclusions

In this paper we have extended the ELMS language for describing environments with
the means to define normative structures that make part of an environment representa-
tion. There are currently many approaches to modelling and implementing multi-agent
systems: some are top-down approaches with focus on the organisations, while bottom-
up approaches focus on the agents. We believe that including environment modelling at
the initial stages of both approaches would help the modelling and implementation of
multi-agent systems. To help such modelling, we have proposed an approach with an
explicit environment description which now also includes the notions of situated norms,
normative places, and (spatially distributed) normative objects.

It is important to note that our work is not an approach for modelling the organ-
isational dimension of a multi-agent system. With the definition of normative places,
where group structures would be inserted, we intend to fill a conceptual gap between the
usual ways in which organisations and physical environments are modelled. In future
work, with the integration of current means for defining organisational structures with
ELMS, and thus with the possibility of associating them to normative places, we hope
to contribute to a more integrated approach to designing and implementing the various
aspects of multi-agent systems: concentrating on one particular organisation section at
a time, specially if it is an organisation section attached to a spatial location, makes it
easier for designers to define the groups, roles and agent behaviour that should operate
in that particular organisation section.

By distributing the normative information in the environment, it is possible to parti-
tion the environment in a functional way, thus helping the structured definition of large
simulations, norms being associated only with the places where they are meant to be
followed. It is also more efficient (by taking advantage of natural distribution) to have
norms spread in an environment than having them in a repository made available for
the whole society, as it is usually the case.

We believe that an explicit environment description is an important part of a multi-
agent system because it is a stable point from where the agent reasoning and the organ-
isational structures can be fine-tuned so as to facilitate the development of agents and
organisations that can achieve their goals. The notion of spatially distributed normative
objects that we have introduced here can be a good solution connecting definitions of
organisations and definitions of environments. Additionally, distributing the organisa-
tional/normative information can facilitate the modelling of large organisations.

It is interesting to note that, being conditioned on the possibility of checking the
existence of a normative object, the normative reasoning required from agents that deal



Spatially Distributed Normative Objects 145

with normative objects is necessarily of a non-monotonic nature, and the experience of
programming such reasoning in AgentSpeak is something we plan to experiment with
in the future. Also as future work, we intend to allow a normative place to be associated
with group structures, creating a connection between the organisational structures and
the physical environment. We plan to make possible such association for any existing
approach to agent organisations, such as MOISE+ [10], OperA/OMNI [15], GAIA [17],
or approaches based on electronic institutions [6,7]. The recursive nature of normative
places may not be compatible, however, with some of such approaches to organisation,
where the (possibly implicit) system of normative rules has no provision for a recursive
structure in its operation.

Acknowledgements

This work was partially supported by CNPq, CAPES, and FAPERGS. Rafael Bor-
dini gratefully acknowledges the support of The Nuffield Foundation (grant number
NAL/01065/G). The authors greatly benefited from the comments and suggestions that
arose in the discussions during the presentation of the paper at the COIN@ECAI2006
workshop in Riva del Garda.

References

1. Bordini, R.H., da Rocha Costa, A.C., Hübner, J.F., Moreira, Á.F., Okuyama, F.Y., Vieira, R.:
MAS-SOC: a social simulation platform based on agent-oriented programming. Journal of
Artificial Societies and Social Simulation 8(3) (2005)

2. Bordini, R.H., Hübner, J.F., et al.: Jason: A Java-based Interpreter for an Extended Version
of AgentSpeak, manual, release version 0.9 edn. (July 2006),
http://jason.sourceforge.net/

3. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of agent-oriented pro-
gramming. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) Multi-Agent
Programming: Languages, Platforms and Applications, ch. 1, Springer, Heidelberg (2005)

4. Castelfranchi, C., Conte, R., Paolucci, M.: Normative reputation and the costs of compliance.
Journal of Artificial Societies and Social Simulation 1(3) (1998),
http://www.soc.surrey.ac.uk/JASSS/1/3/3.html

5. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative agents: Prin-
ciples and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 364–378.
Springer, Heidelberg (2000)

6. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: AAMAS,
pp. 1045–1052. ACM Press, New York (2002)

7. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based mid-
dleware for electronic institutions. In: AAMAS, pp. 236–243. IEEE Computer Society, Los
Alamitos (2004)

8. Ferber, J., Michel, F., Báez-Barranco, J.-A.: Agre: Integrating environments with organi-
zations. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI),
vol. 3374, pp. 48–56. Springer, Heidelberg (2005)

9. Garcia-Camino, A., Noriega, P., Rodrı́guez-Aguilar, J.A.: Implementing norms in electronic
institutions. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M.
(eds.) AAMAS, pp. 667–673. ACM Press, New York (2005)



146 F.Y. Okuyama, R.H. Bordini, and A.C. da Rocha Costa

10. Hübner, J.F., Sichman, J.S., Boissier, O.: MOISE+: Towards a structural, functional, and
deontic model for MAS organization. In: Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS’2002), Bologna, Italy
(2002)

11. Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: ELMS: An environment description
language for multi-agent simulations. In: Weyns, D., van Dyke Parunak, H., Michel, F. (eds.)
E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 91–108. Springer, Heidelberg (2005)

12. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In: AAMAS’04 (2004)

13. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, Springer, Heidelberg
(1996)

14. Rubino, R., Omicini, A., Denti, E.: Computational institutions for modelling norm-regulated
MAS: An approach based on coordination artifacts. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coor-
dination, Organizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI),
vol. 3913, pp. 127–141. Springer, Heidelberg (2006)

15. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)

16. Viroli, M., Omicini, A., Ricci, A.: Engineering MAS environment with artifacts. In: Weyns,
D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 62–77.
Springer, Heidelberg (2006)

17. Wooldridge, M., Jennings, N.R., Kinny, D.: The GAIA methodology for agent-oriented
analysis and design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)



P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 147 – 162, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Informing Regulatory Dynamics in Open MASs 

Carolina Felicíssimo1, Ricardo Choren2, Jean-Pierre Briot1,3, and Carlos Lucena1 

1 DI, PUC-Rio, Rua M. de São Vicente, 225, Gávea Rio de Janeiro, RJ, 22453-900, Brasil 
{cfelicissimo,lucena}@inf.puc-rio.br 

2 SE-8, IME - Pca General Tiburcio 80, 22290-270, Rio de Janeiro RJ, Brazil 
choren@de9.ime.eb.br 

3 LIP6 - 8 rue du Capitaine Scott, 75015 Paris, France 
jean-pierre.briot@lip6.fr  

Abstract. We believe that, in the near future, all multi-agent systems (MASs) 
will be open, permitting agents to migrate among MASs to obtain resources or 
services not found locally. In this scenario, open MASs should be enhanced 
with norms for restricting agents’ actions and, thus, avoiding unexpected behav-
ior. In this work, we present a case study where an open MAS is enhanced with 
contextual norms. Agents from this MAS are continuously supported with pre-
cise norm information, according to their contexts (implicit situational informa-
tion) and, then, can make better decisions. Although the presented case study is 
simple, it clearly shows different levels of norm abstractions and how agents 
can be influenced by norms while acting in a regulated open MASs. 

1   Introduction 

Multi-agent systems (MASs) have emerged as a powerful technology for developing 
information systems that clearly require several goal-oriented problem-solving enti-
ties [25]. Information systems tend to be formed of autonomous entities and without 
centralized control [21]. Following this direction, we believe that, in the near future, 
all MASs will be open and composed of many sets of heterogeneous self-interested 
agents, migrating among MASs for obtaining resources or services not found locally. 
Because agents’ actions will probably deviate from expected behavior according to 
individual goals, regulatory mechanisms will be a mandatory feature of open MASs. 

Important works concerning regulations in open MASs, as [1], [6], [15], [16], [17], 
have been proposed recently. However, in these works, it is missed a precise mecha-
nism for explicitly regarding different levels of norm abstractions. Consequently, it is 
hard to define and evolve specific norms. We are currently working on an approach 
for supporting contextual regulation in open MASs. Our approach, called Dy-
naCROM (dynamic contextual regulation information provision in open MASs) [9], 
[10], [11], [12], continuously provides precise norm information for agents according 
to their contexts. DynaCROM is based on a top-down modeling of contextual norms, 
on a meta-ontology for representing norm semantics and on a rule inference engine 
for composing related contextual norms. Furthermore, DynaCROM implementation 
can be summarized as an agent behavior, independent of agents’ original codes. 



148 C. Felicíssimo et al. 

Norm-aware agents can use DynaCROM answers (updated contextual norm informa-
tion) to make better decisions and, thus, achieve their goals faster. Developers of 
regulations in open MASs can use DynaCROM as a flexible solution for defining, 
updating and managing contextual norms. 

The structure of this paper is organized as follows. Section 2 briefly presents Dy-
naCROM. Section 3 describes a case study where agents are continuously supported 
with contextual norm information and, then, make decisions based on this informa-
tion. Section 4 compares DynaCROM with related works. Finally, Section 5 con-
cludes the work and outlines directions for future works. 

2   Norm-Aware Open Multi-agent Systems 

MASs are generally made up of environments, organizations and agents [24]. Envi-
ronments [37] are discrete computational locations (similar to places in the physical 
world) that provide conditions for agents to inhabit it. Organizations [13] are social 
locations where groups of agents play roles inside it. Roles are abstractions that define 
a set of related tasks for agents achieving their designed goals [34]. Agents interact 
with others, from the same or different organizations and environments. 

Environments, organizations, roles and agent interactions suggest different con-
texts found in MASs. Contexts can be defined as pieces of information that character-
ize the situation of participants [7]. Context-aware systems use contexts to provide 
relevant information and/or services to their users, where relevancy depends on the 
users’ tasks [7]. In our definition, a regulated context-aware MASs is a MASs that 
continuously provides updated contextual norm information to their agents. 

Researches into context-aware applications suggest top-down architectures for 
modeling contextual information [26]. Thus, DynaCROM suggests to model norms of 
open MASs according to the Environment, Organization, Role and Interaction con-
texts. These regulatory contexts are differentiated by their boundaries. Environment 
norms are applied to all agents in a regulated environment. Organization norms are 
applied to all agents in a regulated organization. Role norms are applied to all agents 
playing a regulated role. Interaction norms are applied to all agents involved in a 
regulated interaction.  

DynaCROM regulatory contexts and their data (norms) are explicitly represented 
by an ontology, which provides a meaningful understanding for heterogeneous agents 
from open MASs. For the DynaCROM ontology, the following definitions are valid: 
an ontology is a conceptual model that embodies shared conceptualizations of a given 
domain [19]; a contextual ontology is an ontology that represents contextual informa-
tion [3]; and, a contextual normative ontology is an ontology that represents contex-
tual norm information.  

Fig. 1 illustrates the DynaCROM ontology. It is made up of six related concepts. 
The Action concept encompasses all instances of regulated actions. The Penalty con-
cept encompasses all instances of fines to be applied when norms are not fulfilled. 
The Norm concept encompasses all instances of norms from all regulatory contexts. 
The Environment concept encompasses all instances of regulated environments; and, 
each environment encompasses its associated norms and its owner environment (the 
environment it belongs to). The Organization concept encompasses all instances of 



 Informing Regulatory Dynamics in Open MASs 149 

regulated organizations; and, each organization encompasses its associated norms, 
main organization (the organization to which it is associated) and environment. The 
Role concept encompasses all instances of regulated roles; and, each role encom-
passes its associated norms and organization. 

 

Fig. 1. The DynaCROM ontology 

Norms should control environments, organizations, agent roles and agent interac-
tions by defining which actions are permitted, obliged and prohibited. A permitted 
norm defines that an act is allowed to be performed; an obliged norm defines that an 
act must be performed; and a prohibited norm defines that an act must not be per-
formed. While regulating open MASs from different domains, the DynaCROM ontol-
ogy must be instantiated with particular domain instances and it can be extended with 
domain concepts and interaction norms. Interaction norms should be implemented by 
following a representation pattern, from the Semantic Web Best Practices document 
[30]. This pattern defines that the relation object itself must be represented by a cre-
ated concept that links the other concepts from the relation (i.e., reification of the 
relationship). So, in DynaCROM ontologies, an interaction norm should be repre-
sented by a new Norm sub-concept linking two Role concepts. 



150 C. Felicíssimo et al. 

Norms from related regulatory contexts should be easily composed during systems’ 
run-time. For this, DynaCROM uses rules and a rule inference engine for both com-
posing related contextual norms and informing them to agents. DynaCROM execution 
process can be summarized by the following tasks: read the ontology instance for 
getting data and how concepts are structured; read a rule file for getting how concepts 
must be composed; and, finally, infer an ontology instance based on the previous 
readings. Thus, all information provided by DynaCROM is updated. Fig. 2 illustrates 
an overview of the DynaCROM process. 

 

Fig. 2. The DynaCROM execution process 

The main idea behind using rules is to permit dynamics and flexibility while  
compositing related contextual norms. Instead of spread implementations of norm 
compositions in agents’ codes and in regulated systems, these implementations are 
centralized in a rule file. Furthermore, modular context refinements allow a more 
flexible system, providing a better support to manage regulatory dynamics. Dy-
naCROM offers a simple way to manage norm evolutions, without the need to stop 
the system execution, in two different cases. The first case is when norms need to be 
added, updated or deleted. For this case, simply updating the ontology instance makes 
the evolution done. The second case is when new compositions of contextual norms 
are desired. For this case, simply updating the specific rules for the new compositions 
concludes the evolution.  

3   Case Study 

The domain of multinational corporations is used to present our case study. This do-
main was chosen because it well illustrates important implicit contextual information 
found in MASs. In our case study, a regulated open MASs continuously provides 
updated contextual norm information, permitting agents to make better decisions. 



 Informing Regulatory Dynamics in Open MASs 151 

The world of our case study is created as follows: Canada and the United States of 
America are environments located in the North America environment; Argentina, 
Brazil and Chile are environments located in the South America environment; Hpie 
Canada and Hpie Argentina organizations are branches from the Hpie main organiza-
tion; Dellie Brazil and Dellie Chile organizations are branches from the Dellie main 
organization; Dellie organizations have the supplier, manufacturer and customer 
roles; and, Hpie organizations have the supplier, manufacturer, distributor, retailer 
and customer roles. All entities from our world are illustrated in Fig. 3. 

 

 

Fig. 3. The environments, organizations and roles from our case study 

3.1   Examples of Environment, Organization, Role and Interaction Norms 

Normally, organizations do not make their norms public because they are of strategic 
importance to their businesses. Because of this, based on the available information 
collected from several corporate Web sites, we created norms for our environments, 
organizations, roles and agent interactions and classified them according to our four 
regulatory contexts. 

3.1.1   Examples of Environment Norms 
 

a. In North America, the price of a finished good from every organization has a per-
centage of its price (depending on the seller’s location) added as taxes if the deliv-
ery is immediate (carry-out) or if the delivery address is in the seller’s location. 

b. In Canada, a finished good from every organization has 15% of the price value 
added as taxes if the delivery is immediate (carry-out) or if the delivery address is 
in Canada. 

c. In the state of the Dellie headquarters (in the United States of America), a finished 
good from every organization has 8% of the price value added as taxes if the deliv-
ery is immediate (carry-out) or if the delivery address is in the state of the Dellie 
headquarters. 

 
 



152 C. Felicíssimo et al. 

d. In the state of the Hpie headquarters (in the United States of America), a finished 
good from every organization has 5% of the price value added as taxes if the deliv-
ery is immediate (carry-out) or if the delivery address is in the state of the Hpie 
headquarters. 

e. In South America, taxes are included in the price of every finished good. 
 

3.1.2   Examples of Organization Norms 
 

a. Hpie organizations have to follow the direct sales to customer model, i.e. sales of 
the organization’s products can only be made between: suppliers and manufactur-
ers, or manufacturers and distributors, or distributors and retailers, or retailers and 
customers. 

b. In Hpie Argentina, sales of the organization’s products can only be made between: 
suppliers and manufacturers, or manufacturers and distributors, or distributors and 
retailers, or distributors and customers, or retailers and customers. 

c. In Dellie organizations, only suppliers and manufacturers are permitted to sell 
organization’s products to customers. 

d. In Dellie Chile, sales of the organization’s products can only be made between: 
suppliers and manufacturers, or manufacturers and customers. 

 

3.1.3   Examples of Role Norms 
 

a. In Dellie, customers receive only complete orders. 
b. In Hpie Canada, suppliers must ship orders on their due dates. 
c. In Dellie Brazil, suppliers must ship orders until their due dates. 
d. In Dellie Brazil, customers must receive orders until one day after their due dates. 
e. In Hpie Argentina, customers must make a down payment of 10% for every order 

placed. 
 

3.1.4   Examples of Interaction Norms 
 

a. In Dellie, manufacturers can pay in up to 30 days after they receive their orders 
from suppliers. 

b. In Dellie Brazil, manufacturers have a 10% discount off the total price of their 
orders if the payment to their suppliers is made in cash. 

c. In Hpie Canada, suppliers can ship incomplete orders to manufacturers. 
 
For our case study, the DynaCROM ontology was extended for representing the inter-
action norms 3.1.4a, 3.1.4b and 3.1.4c, and the following roles: supplier, manufac-
turer, distributor, retailer and customer. Then, the extended ontology was instantiated 
for representing all the norms written above. Fig. 4, Fig. 5, Fig. 6 and Fig. 7 illustrate 
different parts of the DynaCROM ontology instance created for our case study. 

3.2   Applying Environment, Organization, Role and Interaction Norms 

The following five subsections present different issues resulting from the application 
of contextual norms. Subsections 3.2.1 and 3.2.2 present scenarios where norm-aware 
agents make decisions based on given norm information. Subsections 3.2.3 and 3.2.4 
exemplify, respectively, restriction and relaxation of contextual norms. Subsection 
3.2.5 exemplifies how composition of contextual norms can generate conflicts. 



 Informing Regulatory Dynamics in Open MASs 153 

3.2.1  A Scenario Where Customers Need Their Orders in Due Dates 
For exemplifying how norm-aware agents can make decisions based on given norm 
information, a scenario is given with a customer in North America looking for Hpie 
products. This customer needs his orders on the due dates. For minimizing delivery 
expenses, the customer will choose to buy in Hpie or in Hpie Canada (Hpie organiza-
tions in North America) depending on their current norms. Fig. 4 illustrates the cur-
rent norms related to the Hpie and Hpie Canada contexts. 

 

 

Fig. 4. Hpie and Hpie Canada organization norms 

 
 

If the customer decides to buy in Hpie (being “AHpieCustomer”), he is restricted to 
buying products only from retailers (organization norm 3.1.2a), but he pays only 5% 
of the price value as taxes if the delivery is immediate (carry-out) or if the delivery 
address is in the state of the Hpie headquarters (environment norm 3.1.1d). 

If the customer decides to buy in Hpie Canada (being “AHpieCanadaCustomer”), 
he has to pay 15% of the price value as taxes if the delivery is immediately (carry-out) 
or if the delivery address is in Canada (environment norm 3.1.1b). In Hpie Canada, 
the customer can also buy direct from suppliers and, doing that, he has the guarantee 
that his orders will be shipped on their due dates (role norm 3.1.3b). However, if Hpie 
Canada is also regulated through Hpie norms (its main organization norms), the cus-
tomer is restricted to buying products only from retailers (organization norm 3.1.2a), 
but he pays only 5% of the price value if the delivery is immediate (carry-out) or if 
the delivery address is in the state of the Hpie headquarters (environment norm 
3.1.1d). 

 



154 C. Felicíssimo et al. 

Because Hpie and Hpie Canada are organizations in North America, both are also 
regulated through the North America environment norm 3.1.1a. This norm is more 
general than the environment norms 3.1.1b and 3.1.1d and, thus, does not affect the 
current regulation. 

3.2.2   A Scenario Where Manufacturers Look for Good Deals with Suppliers 
For another example of how norm-aware agents can make decisions based on given 
norm information, a scenario is given with a manufacturer in North America looking 
for suppliers. This manufacturer has flexibility for choosing good deals with suppli-
ers. For minimizing delivery expenses, the customer can choose to buy with Dellie, 
Hpie or Hpie Canada suppliers (North America suppliers). Fig. 5 illustrates the cur-
rent norms related to the Dellie context. 

 

 

Fig. 5. Dellie organization norms and Dellie manufacturer and supplier role norms 

 

If the manufacturer decides to buy in Dellie with one of the Dellie suppliers (being 
“ADellieManufacturer”), he has the benefit payoff being able to pay in up to 30 days 
after he receives his orders (interaction norm 3.1.4a). Besides this, he pays 8% of the 
price value as taxes if the delivery is immediately (carry-out) or if the delivery ad-
dress is in the state of the Dellie headquarters (environment norm 3.1.1c). 

If the manufacturer decides to buy in Hpie Canada with one of the Hpie Canada 
suppliers (being “AHpieCanadaManufacturer”), he has the permission to receive 
incomplete orders before their due dates (interaction norm 3.1.4c). However, he has to 



 Informing Regulatory Dynamics in Open MASs 155 

pay 15% of the price value as taxes if the delivery is immediate (carry-out) or if the 
deliver address is in Canada (environment norm 3.1.1b).  

If the manufacturer decides to buy in Hpie with one of the Hpie suppliers (being 
“AHpieManufacturer”), he pays only 5% of the price value as taxes if the delivery is 
immediate (carry-out) or if the delivery address is in the state of the Hpie headquar-
ters (environment norm 3.1.1d). 

3.2.3   A Scenario Where Norms Are Restricted 
For exemplifying restriction of contextual norms, a scenario is given with organiza-
tion norms 3.1.2a and 3.1.2b. Hpie Argentina is regulated through the organization 
norm 3.1.2b, but as Hpie is its main organization, it is also regulated through the Hpie 
organization norm 3.1.2a. Thus, by the composition of contextual norms, Hpie Argen-
tina distributors are no longer allowed to sell directly to customers. This scenario is 
illustrated in the left side of Fig. 6. (note that the dashed norm from the left side of 
Fig. 6. – “PermissionToDistributorsSaleToCustomers” – is not presented in Hpie). 

 

 

Fig. 6. Compositions of contextual norms resulting in restriction and relaxation of norms 
 

3.2.4   A Scenario Where Norms Are Relaxed 
For exemplifying relaxation of contextual norms, a scenario is given with organiza-
tion norms 3.1.2d and 3.1.2c. Dellie Chile is regulated through the organization norm 
3.1.2d, but as Dellie is its main organization, it is also regulated through the Dellie 
organization norm 3.1.2c. Thus, by the composition of contextual norms, Dellie Chile 
suppliers are now allowed to sell direct to customers. This scenario is illustrated in the 
right side of Fig. 6. (note that the dashed norm from the right side of Fig. 6. – “Per-
missionToSuppliersSaleToCustomers” – is only presented in Dellie). 



156 C. Felicíssimo et al. 

3.2.5   A Scenario Where Norms Are Conflicting 
For exemplifying how composition of contextual norms can generate conflicts, a 
scenario is given with the role norm 3.1.3c, from Dellie Brazil suppliers, and with the 
role norm 3.1.3d, from Dellie Brazil customers. These norms state the same subject 
(deadline to ship orders) in an opposite way. The role norm 3.1.3c states that suppliers 
are obliged to ship orders until their due dates, but the role norm 3.1.3d states that 
customers can receive their orders until one day after their due dates. Fig. 7 illustrates 
this scenario. 

 

 

Fig. 7. Compositions of role norms resulting in a conflict for the action of ship orders 

 

It is important to remark here that, in this work, we do not make any assumptions 
about the problem of how to resolve raised conflicts when norms state the same sub-
ject in an opposite way. However, we suggest enhancing conflicted norms with priori-
ties, as a very simple idea to minimize the problem. 

3.3   Case Study Implementation 

Our case study was implemented inside the Eclipse platform [8], using the Java pro-
gramming language [18] and the Jena API [23]. The Jena API was used as a pro-
grammatic environment for OWL [27] and as a rule-based inference engine (rules 
were written according to the Jena rule syntax [23]). The Protégé Editor [31] was used 
to extend and instantiate the DynaCROM ontology. Our agents were implemented in 
JADE [22], extending its Agent class with both an attribute for agents’ locations and 
two specific behaviors. One behavior, called Migratory, makes agents move randomly 
from one location to another. The other behavior, called Normative, continuously 
informs agents about their current contextual norms. Once an agent migrates, its loca-
tion attribute is updated and, consequently, the answers from the Normative behavior 
change, informing the new contextual norms to which the agent is currently bound. 
Fig. 8 illustrates the code responsible for adding the Migratory and Normative behav-
iors inside our JADE agents. 
 



 Informing Regulatory Dynamics in Open MASs 157 

 

Fig. 8. Adding the Migratory and Normative behaviors inside our agents 

JADE containers were used for representing the abstractions of environments and 
organizations. North America, South America, Canada, the United States of America, 
Argentina, Brazil, Chile, Dellie, Hpie, Hpie Canada, Hpie Argentina, Dellie Brazil 
and Dellie Chile are all the JADE containers created for our case study. These con-
tainers offer the technical support for agents with the Migratory behavior change 
locations. Fig. 9 illustrates the JADE containers for the United States of America, 
Canada, Brazil and Chile environments with some agents inside them. For instance, in 
Brazil there is an agent, called “*****MobileAgent1”, with the Migratory and Norma-
tive behaviors. Once this agent migrates, its location attribute is updated. Subse-
quently, the Normative behavior gets the new agent location and, then, informs the 
contextual norms to which it is currently bound.  

 

Fig. 9. Part of our system’s world implemented as Jade containers 

 

Our Normative behavior uses rules for compositions and retrievals of contextual 
norms. These rules are ontology-driven, i.e. they are created based on how Dy-
naCROM regulatory concepts are linked to each other (see the structure of its ontol-
ogy in Fig. 1). Rules can be activated and deactivated, at run time, for changing the 
current compositions of contextual norms. To activate rules, it is necessary to remove 
rules’ comment marks; to deactivate rules, it is necessary to insert rules’ comment 
marks, both from a rule file.  

 



158 C. Felicíssimo et al. 

All the rules used for the scenarios described in the previous subsections are pre-
sented in Table 1. When Rule 1 is activated, it states that a given environment will 
also be regulated with its owner environment norms; when Rule 2 is activated, it 
states that a given organization will also be regulated with its main organization 
norms; when Rule 3 is activated, it states that a given organization will also be regu-
lated with its environment norms; when Rules 1, 2 and 3 are activated, they state that 
a given organization will also be regulated with the norms from its main organization 
and environment; when Rule 4 is activated, it states that a given role will also be 
regulated with its organization norms. When Rules 1, 2, 3 and 4 are activated, they 
state that a given role will also be regulated with the norms from its organization, its 
organization’s main organization and environments. 

Table 1. Rules for compositions of contextual norms 
 

Rule 1- [ruleForEnvironmentWithOwnerEnvironmentNorm: 

               (?Environment belongsTo ?OwnerEnvironment) 

               (?OwnerEnvironment hasNorm ?OwnerEnvironmentNorm) 

                  -> (?Environment hasNorm ?OwnerEnvironmentNorm)] 
 

Rule 2- [ruleForOrganizationWithMainOrganizationNorm: 

               (?Organization hasMainOrganization ?MainOrganization) 

               (?MainOrganization hasNorm ?MainOrganizationNorm) 

                  -> (?Organization hasNorm ?MainOrganizationNorm)] 
 

Rule 3- [ruleForOrganizationWithEnvironmentNorm: 

               (?Organization isIn ?Environment) 

               (?Environment hasNorm ?EnvironmentNorm) 

                  -> (?Organization hasNorm ?EnvironmentNorm)]  
 

Rule 4- [ruleForRoleWithOrganizationNorm: 

               (?Role isPlayedIn ?Organization) 

               (?Organization hasNorm ?OrganizationNorm) 

                  -> (?Role hasNorm ?OrganizationNorm)]  
 

 
The Normative behavior represents the core of DynaCROM. This is because this 

behavior is responsible for implementing the DynaCROM execution process (illus-
trated in Fig. 2). The most important part of this implementation is presented in Table 
2. The DynaCROM process starts when the “getOntModel()” method (see line 8) 
retrieves both the ontology structure (related regulatory contexts) and data (norms). 
The defined compositions of contextual norms are defined by activations and deacti-
vations of rules written in the “rulesToComposeNorms.rules” file (called in line 4). 
The “reasoner” variable (see line 5) represents the rule-based inference engine which, 
based on the retrieved ontology instance and active rules, automatically deduces the 
defined compositions of contextual norms. This result is kept in the “inferredModel” 
variable (see line 7), which will be used by DynaCROM for continuously informing 
agents about their updated contextual norms. 

 



 Informing Regulatory Dynamics in Open MASs 159 

Table 2. The core of the DynaCROM implementation 

 

Model m = ModelFactory.createDefaultModel(); 

Resource configuration =  m.createResource(); 

configuration.addProperty ( ReasonerVocabulary.PROPruleSet, 

                                             ontologyDir.concat ("rulesToComposeNorms.rules" ) );

          

Reasoner reasoner =    

      GenericRuleReasonerFactory.theInstance().create(configuration); 

     

InfModel inferredModel =  

      ModelFactory.createInfModel(reasoner, this.getOntModel()); 

 

(1) 

(2) 

(3) 

(4) 

 

(5) 

(6) 

 

(7) 

(8) 

4   Related Work 

Our work was compared to OMNI (Organizational Model for Normative Institutions) 
[35]. OMNI is a framework for modeling agent organizations in three levels of ab-
stractions: the Abstract Level, which has the statutes of the organization to be mod-
eled, the definitions of terms that are generic for any organization and the ontology of 
the model itself; the Concrete Level, which refines the meanings defined in the previ-
ous level, in terms of norms and rules, roles, landmarks and concrete ontological 
concepts; and, finally, the Implementation Level, which has the Normative and Organ-
izational dimensions implemented in a given multi-agent architecture with the 
mechanisms for role enactment and for norm enforcement. 

Comparing our work with OMNI, both define a meta-ontology with a taxonomy 
for regulations in open MASs and use norms to recommend right and wrong behavior. 
The use of norms can inspire trust in regulated MASs. One difference is that, in 
OMNI, enforcement is carried out by any internal agents from the system while in our 
work it can be carried out by some trusted agents or by some system’s enforcement 
mechanisms. A second difference, and the most important, is that in OMNI the idea of 
regulatory contexts is not explicit and separated in different levels of abstractions, 
especially for the environment and role norm contexts. Our approach is based on the 
environment, organization, role and interaction regulatory contexts to simplify the 
enforcement and evolution processes. For instance, the social structure of an organiza-
tion in OMNI describes, in the same level of abstraction, norms for roles and groups 
of roles. Group of roles is used to specify norms that hold for all roles in the group. 
We use the organization regulatory context to specify organization norms that hold 
for all roles from an organization and use the role regulatory context to specify role 
norms, both regulatory contexts from different levels of abstractions. 

In [16], a distributed architecture for endowing MASs with a social layer is pro-
posed. This architecture explicitly represents and manages normative positions via 
rules. Every external agent from the architecture has a dedicated governor agent con-
nected to it, enforcing the norms of executed events. DynaCROM also uses rules to 
manage normative agent positions, but executed actions, instead of executed events, 



160 C. Felicíssimo et al. 

are the focus of the regulation. Moreover, DynaCROM provides a more precise 
mechanism for regulation, while permitting the use of contextual norms. Furthermore, 
each agent can be enhanced with a normative behavior for continuously informing its 
contextual norms instead of having many extra monitoring agents. 

5   Conclusion 

In this work, we focused on a case study for exemplifying different issues resulting 
from the application of contextual norms. It was presented two scenarios where norm-
aware agents make decisions based on given norm information and three scenarios 
where compositions of contextual norms result in restrictions, relaxations and con-
flicts. For the case study, we used our DynaCROM solution for continuously inform-
ing the current contextual norms of agents from an open MAS. Norm-aware agents 
use DynaCROM answers (updated contextual norms) to make better decisions and, 
thus, achieve their goals faster. Developers of regulations in open MASs use Dy-
naCROM as a flexible solution for updating systems’ norms at run-time. 

DynaCROM has being used in three different application domains. For the domain 
of ubiquitous computing [20], [33] DynaCROM is supporting the implementation of 
context-aware pervasive mobile applications [36]. Instead of using JADE containers 
for simulating environments and organizations, we are using MoCA (Mobile Collabo-
ration Architecture) [32] for delivering updated real location information of mobile 
devices. MoCA infers mobile devices’ locations based on the intensity of their signals 
to 802.11 network access points. DynaCROM uses MoCA answers (device locations) 
for continuously apply the contextual norms of agents found in the mobile devices. 
For the domain of next-generation wireless communications [2], DynaCROM is being 
used in an example where it automatically changes prices and other parameter values 
(based on pre-defined rules) according to overloads in regulated networks. The idea is 
to keep balancing the use of network bandwidths by distributing clients in particular 
networks. Clients will be guided to always use a not overload network by following 
pricing discounts. Thus, only changing the domain instance of DynaCROM rules and 
data, developers can better distribute clients in their regulated networks. For the do-
main of Brazilian navy [4], DynaCROM has being used for dynamically determinate 
the better ship routes based on climate and other pre-defined conditions. 

For future work, we are currently testing DynaCROM with the LGI [28], [29] and 
SCAAR [5] frameworks, both specific for norm enforcement. The idea is to use Dy-
naCROM for continuously feeding the enforcement framework with the information 
of agent contextual norms and expect from this framework the enforcement of norms. 
Concerning our rule solution, we are planning to use the JESS rule engine [14] instead 
of the JENA engine [23], mainly addressing issues such as ease-of-use, expressive-
ness and reasoning. We are also planning to use JADEX instead of JADE for enhanc-
ing BDI agents with DynaCROM answers. We aim to discover how we can interfere 
in agents’ beliefs, which are, normally, pre-defined during the design phase. 

Acknowledgments 

This work was partially funded by the projects ESSMA (CNPq 552068/2002-0) and 
EMACA (CAPES/COFECUB 482/05 PP 016/04), and by CNPq individual grants. 



 Informing Regulatory Dynamics in Open MASs 161 

References 

1. Artikis, A.: Executable Specification of Open Norm-Governed Computational Systems. 
PhD thesis, Imperial College London (2003) 

2. Berezdivin, R., Breinig, R., Topp, R.: Next-generation wireless communications concepts 
and technologies. IEEE Communications Magazine 40, 108–116 (2002) 

3. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL: 
Contextualizing Ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 
2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003) 

4. Brazilian Navy: Accessed in (October 2006), https://www.mar.mil.br/ 
5. Chopinaud, C., Fallah-Seghrouchn, A.E., Taillibert, P.: Prevention of Harmful Behaviors 

Within Cognitive and Autonomous. In: The Proc. of the 17th European Conference on Ar-
tificial Intelligence (ECAI 2006), Italy, pp. 205–209 (2006), ISBN: 1-58603-642-4 

6. Cliffe, O., de Vos, M., Padget, J.: Specifying and Reasoning about Multiple Institutions. 
LNCS, vol. 4386, pp. 73–92. Springer, Heidelberg (2007) 

7. Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7 
(2001) 

8. Eclipse: Accessed in (October 2006), http://www.eclipse.org/ 
9. Felicíssimo, C.H.: Dynamic Contextual Regulations in Open Multi-agent Systems. In: 

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, 
L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 974–975. Springer, Heidelberg (2006) 

10. Felicíssimo, C.H., de Lucena, C.J.P., Briot, J.-P., Choren, R.: Regulating Open Multi-
Agent Systems with DynaCROM. In: The Second Workshop on Software Engineering for 
Agent-oriented Systems (SEAS 2006), Brazil (2006) 

11. Felicíssimo, C.H., de Lucena, C.J.P., Briot, J.-P., Choren, R.: An Approach for Contextual 
Regulations in Open MAS. In: The Eight International Bi-Conference Workshop on Agent 
Oriented Information Systems (AOIS-2006) at AAMAS, Hakodate, Japan (2006) 

12. Felicíssimo, C.H., de Lucena, C., Carvalho, G., Paes, R.: Normative Ontologies to Define 
Regulations over Roles in Open Multi-Agent Systems. In: AAAI Fall Symposium TR FS-
05-08, USA (2005), ISBN 978-1-57735-254-9 

13. Ferber, J., Gutknecht, O., Michael, F.: From Agents to Organizations: an Organization 
View of Multi-Agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) Agent-
Oriented Software Engineering IV. LNCS, vol. 2935, Springer, Heidelberg (2004) 

14. Friedman-Hill, E.: Jess, the Rule Engine for the Java Platform. At Sandia National Labora-
tories. Accessed in (October 2006), http://herzberg.ca.sandia.gov/ 

15. Gaertner, D., Clark, K., Sergot, M.: Ballroom etiquette: a case study for norm-governed 
multi-agent systems. LNCS, vol. 4386, pp. 228–243. Springer, Heidelberg (2007) 

16. Garcia-Camino, A., Rodriguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.: A Distributed 
Architecture for Norm-Aware Agent Societies. In: Baldoni, M., Endriss, U., Omicini, A., 
Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, Springer, Heidelberg (2006) 

17. García-Camino, A., Rodriguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.: Norm-Oriented 
Programming of Electronic Institutions: A Rule-based Approach. LNCS, vol. 4386, pp. 
192–207. Springer, Heidelberg (2007) 

18. Gosling, J., Joy, B., Junior, G.L.S., Bracha, G.: The Java Language Specification. Ac-
cessed in (October 2006), http://java.sun.com/, ISBN 0-201-31008-2 

19. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Ac-
quisition 5(2), 199–220 (1993) 



162 C. Felicíssimo et al. 

20. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: 
Models and approach. In: Pervasive and Mobile Computing, Elsevier, Amsterdam (in 
press) 

21. Hewitt, C.: Open Information Systems Semantics for Distributed Artificial Intelligence. 
Artificial Intelligence 47(1-3), 79–106 (1991) 

22. JADE: Accessed in (October 2006), http://jade.tilab.com/ 
23. Jena: Accessed in (October 2006), http://jena.sourceforge.net/ 
24. Jennings, N.R.: On Agent-Based Software Engineering. AI 117(2), 277–296 (2000) 
25. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Develop-

ment. Journal of Agents and Multi-Agent Systems 1, 7–38 (1998) 
26. Khedr, M., Karmouch, A.: ACAI: Agent-Based Context-aware Infrastructure for Sponta-

neous Applications. Journal of Network & Computer Applications 28(1), 19–44 (1995) 
27. McGuinness, D.L., Harmelen, F.v.: OWL Web Ontology Language Overview. Accessed 

in (October 2006), http://www.w3.org/TR/owl-features/ 
28. Minsky, N.H.: The imposition of protocols over open distributed systems. IEEE Transac-

tions on Software Engineering, USA (1991) 
29. Minsky, N.H.: LGI. Accessed in (November 2006), http://www.moses.rutgers.edu/ 
30. Noy, N., Rector, A. (eds.): Defining N-ary Relations on the Semantic Web: Use with Indi-

viduals. Accessed in (October 2006), http://www.w3.org/TR/swbp-n-aryRelations/ 
31. Protégé: Accessed in (October 2006), http://protege.stanford.edu/ 
32. Rubinsztejn, H.K., Endler, M., Sacramento, V., Gonçalves, K., Nascimento, F.N.: Support 

for context-aware collaboration. MATA 2004 5(10), 34–47 (2004) 
33. Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L., Crowley, J.L.: Agent based mid-

dleware infrastructure for autonomous context-aware ubiquitous computing services. Jour-
nal of Computer Communications (2006) 

34. Thomas, G., e Williams, A.B.: Roles in the Context of Multiagent Task Relationships. 
AAAI Fall Symposium TR FS-05-08. USA (2005), ISBN 978-1-57735-254-9 

35. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing Multiagent Systems. Journal of 
Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005) 

36. Viterbo, J., Felicissimo, C., Briot, J.-P., Endler, M., Lucena, C.: Applying Regulation to 
Ubiquitous Computing Environments. In: The Second Workshop on Software Engineering 
for Agent-oriented Systems (SEAS 2006), Brazil (2006) 

37. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for Multi-
agent Systems: State-of-the-Art and Research Challenges. In: Weyns, D., Parunak, 
H.V.D., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, 
Heidelberg (2005) 

 



Operationalisation of Norms for Electronic

Institutions

Huib Aldewereld1, Frank Dignum1, Andrés Garćıa-Camino2, Pablo Noriega2,
Juan Antonio Rodŕıguez-Aguilar2, and Carles Sierra2

1 Institute of Information and Computing Sciences, Utrecht University,
The Netherlands

{huib,dignum}@cs.uu.nl
2 Artificial Intelligence Research Institute, IIIA, Spanish Council for Scientific

Research, CSIC, Campus de la UAB, Barcelona, Spain
{andres,pablo,jar,sierra}@iiia.csic.es

Abstract. Agent-mediated electronic institutions belong to a new and
promising field where interactions among agents are regulated by means
of a set of explicit norms. Current implementations of such open-agent
systems are, however, mostly using constraints on the behaviour of the
agents, thereby severely limiting the autonomy of the agents. In this
paper we propose an extension to electronic institutions to allow for a
flexible enforcement of norms, and manners to help overcome the diffi-
culties of translating abstract norms for the use of implementation.

1 Introduction

Agent-mediated institutions, introduced in [16,17], are open agent systems that
allow heterogeneous agents to enter and perform tasks. Because of this heteroge-
neous nature of the agents joining the electronic institution (e-institution), mea-
sures have to be taken to control and regulate the behaviour of these agents. These
measures are needed to improve and guarantee the safety and stability of the sys-
tem, as agents joining the institution might, (un)intentionally, break the system by
behaving in non-expected or non-accepted manners. It has been widely accepted
that norms can be used to ensure this safety, since norms, can be used for defining
the legality and illegality of actions (and states) in e-institutions [4].

For these norms to be used in the e-institutions, thereby regulating the agents
joining the institution, enforcement mechanisms must be devised to implement
the norms in the institution, ensuring its safety. There is, however, a big gap
between the theoretical work on norms and the practice of e-institutions. In this
paper we will try to bridge this gap from both sides.

From the implementation side we will extend current implementations of norm
enforcement through constraints on unwanted behaviour [7] by mechanisms that
can detect violations of norms and react to these violations. This will allow the
agents in e-institutions more freedom and flexibility, while still complying to the
norms.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 163–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



164 H. Aldewereld et al.

On the theoretical side work on normative systems (mainly focussed on deon-
tic frameworks [14,5]) is mostly declarative in nature while using very abstract
notions of norms. Norms are specified in a general way abstracting from spe-
cific actions or parties and thus being on the one hand very generally applicable
while in the other hand being very vague and ambiguous compared to a concrete
situation in an institution. The implementation of norms and norm enforcement
in e-institutions, as mentioned above, require norms to have an operational se-
mantics that is concrete and that connects with the ontology of the institutional
actions. Recent approaches on normative systems have begun to research and
express this operational meaning of norms, as seen in [18,2,15,10]. These ap-
proaches represent norms and their operational meaning, but are not conclusive
on how the implementation in an agent system, such as an e-institution, should
be obtained. In this paper we extend this work, by proposing a ”translation”
from the operational approach proposed in [18] to elements usable for norm en-
forcement in AMELI. Moreover we will show that the approaches from [15] and
[2] can be translated in this formalism as well.

In this paper we assume institutions to be defined as a set of norms, which
are to be enforced by a distributed set of (internal) agents. Secondly we assume
that the norms can sometimes be violated by agents in order to keep their
autonomy, which can also be functional for the system as a whole as argued
in [3]. The violation of norms is handled from the organisational point of view
by violation and sanction mechanisms. And finally, we assume that the internal
state of agents is neither visible, nor controllable from an institution’s point of
view, which, basically, means that enforcement of norms needs to be done by
the detection of violations and the reacting to these violations, and that we can
only use the observable behaviour of agents to detect the violations.

The remainder of this paper is organised as follows. In the next section we give
a short discussion on a formal view of electronic institutions. In sections 3 and
4 we introduce the syntax and semantics of the mechanism used for expressing
and handling the violation of norms, while in section 5 we give a translation from
the norm frame of [18] into this enforcement mechanism. In section 6 we give a
tentative comparison on how this enforcement method can be applied to other
normative approaches, and in section 7 we indicate some issues in the translation
process of norms to implementation.

2 Electronic Institutions

Electronic institutions, as we consider them [6,16,17], shape agent environments
that restrict the behaviour of agents to ensure that agents interact in safe con-
ditions. E-institutions constrain agent behaviour by defining the valid sequences
of (dialogical) interactions that agents can have to attain their goals.

The dialogical framework defines all the conventions required to make in-
teraction between two or more agents possible. Moreover, it defines what the
participant roles within the e-institution and the relationships among them will
be. We take interactions to be a sequence of speech acts between two or more



Operationalisation of Norms for Electronic Institutions 165

parties. Formally, we express speech acts as illocutionary formulas of the form:
ι(speaker, hearer, φ, t). The speech acts that we use start with an illocutionary
particle (ι), which can be ”declare”, ”request”, ”promise”, etc., that a speaker
addresses to a hearer, at time t, whose content φ is expressed in some object
language whose vocabulary stems from an e-institution’s ontology.

A dialogical framework encompasses all the illocutions available to the agents
in a given institution. Formally,

Definition 1. A dialogical framework is a tuple DF = 〈O, LO, P, R, RS〉 where
O stands for an ontology (vocabulary); LO stands for a content language to
express the information exchanged between agents using ontology O; P is the set
of illocutionary particles; R is the set of roles; RS is the set of relationships over
roles.

For each activity in an institution, interactions between agents are articulated
through agent group meetings, which we call scenes. A scene is a role-based
multi-agent protocol specification. A scene defines the valid sequences of inter-
actions among agents enacting different roles. It is defined as a directed graph
where each node stands for scene state and each edge connecting two states is
labelled by an illocution scheme. An illocution scheme is an illocutionary for-
mula with some unbound variables. At run-time, agents playing different roles
make a scene evolve by uttering illocutions that match the illocution schemes
connecting states. Each scene maintains the context of the interaction, that is
how the dialogue is evolving, i.e. which have been the uttered illocutions and
how the illocution schemes have been instantiated.

Definition 2. A scene is a tuple S = 〈s, R, DF, W, w0, Wf , Θ, λ, min, Max〉
where s is the scene identifier; R is the set of scene roles; DF is a dialogical
framework; W is the set of scene states; w0 ∈ W is the initial state; Wf ⊆ W is
the set of final states; θ ⊆ W × W is a set of directed edges; λ : θ −→ L∗

DF is a
labelling function, which maps each edge to an illocution scheme in the pattern
language of the DF dialogical framework L∗

DF ; min, Max; R −→ N min(r) and
Max(r) are, respectively, the minimum and the maximum number of agents that
must and can play each role r ∈ R.

The activities in an e-institution are the composition of multiple, distinct, possi-
bly concurrent, dialogical activities, each one involving different groups of agents
playing different roles. A performative structure can be seen as a network of
scenes, whose connections are mediated by transitions (a special type of scene),
and determines the role-flow policy among the different scenes by showing how
agents, depending on their roles and prevailing commitments, may get into dif-
ferent scenes, and showing when new scenes will be started. The performative
structure defines the possible order of execution of the interaction protocols
(scenes). It also allows agent synchronisation, and scene interleaved execution.

Definition 3. A performative structure is a tuple PS = 〈S, T, s0, sΩ, E, fL, fT ,
fO

E , µ〉 where S is a finite, non-empty set of scenes; T is a finite, non-empty set of
transitions; s0 ∈ S is the initial scene; sΩ ∈ S is the final scene; E = EI ∪ EO



166 H. Aldewereld et al.

is a set of edge identifiers where EI ⊆ S × T is a set of edges from scenes
to transitions and EO ⊆ T × S is a set of edges from transitions to scenes;
fL : E −→ DNF2VA×R maps each edge to a disjunctive normal form of pairs
of agent variable and role identifier representing the edge label; fT : T −→ T
maps each transition to its type; fO

E : EO −→ E maps each edge to its type;
µ : S −→ {0, 1} sets if a scene can be multiply instantiated at execution time;

The institutional state consists of the list of scene executions (described by their
participating agents and interaction context) along with the participating agents’
state (represented by their observable attributes).

3 Integrity and Dialogical Constraints

As mentioned in the introduction, we want to extend the AMELI formalism
with mechanisms to implement norms by means of a distributed set of agents.
To achieve this we need mechanisms to detect violations and react to these
violations. This is accomplished by using, respectively, integrity constraints and
dialogical constraints. The main idea is that integrity constraints are checked
by the institution to detect and register all violations, i.e. the passing from a
legal state to an illegal state. The dialogical constraints express the obligation of
the enforcing agents to act according to the violations detected, i.e. sanction the
responsible agent. The dialogical constraints themselves are part of the internal
enforcing agents.

Due to the fact that the internal agents should be designed to follow the norms
of the institution, we might assume that internal agents will always act according
to the dialogical constraints specified. However, the internal agents might not be
responsible for the enforcement of all the norms in the system, we can specify
integrity constraints that express when a dialogical constraint (which is in a
sense an obligation to enforce) has been violated, i.e. a violation has occurred,
but no action has been taken by the enforcing agent to punish the violator.
In theory, complex hierarchical structures of enforcement chains (institutions
enforcing the enforcement within another institution, etc.) are possible with the
approach presented in this paper, but we are not going to discuss them in this
paper.

Before enforcement can take place, norm violations have to be detected. This
is done by specifying integrity constraints, extracted from previous work [8]:

Definition 4. Integrity constraints are first-order formulas of the form
⎛

⎝
n∧

i=1

uttered(si, wki , ili) ∧
m∧

j=0

ej

⎞

⎠ ⇒ ⊥

where si are scene identifiers or variables, wki is a state ki of scene si or a vari-
able, ili is an illocution scheme li matching the schema labelling an outgoing arc
from wki and ej are boolean expressions over variables from uttered predicates.



Operationalisation of Norms for Electronic Institutions 167

These integrity constraints define sets of situations that should not occur within
an e-institution. The meaning of these constraints is that if grounded illocu-
tions matching the illocution schemes il1 , . . . , iln are uttered in the correspond-
ing scenes and states, and expressions e1, . . . , em are satisfied, then a violation
(⊥)occurs afterwards. We use the ”⇒” to indicate that it is not really an impli-
cation, but some temporal order is involved.

Since agents can violate norms, the integrity constraints are not enough. We
need to specify which actions are to be taken by the enforcers after the violation
has been detected. In a sense, the violation of a norm by agents within the e-
institution obliges the enforcers to perform actions, namely to punish the agent
breaking the norm. This “obligation to enforce” is expressed by means of a
dialogical constraint:

Definition 5. Dialogical constraints are first-order formulas of the form:
⎛

⎝
n∧

i=1

uttered(si, wki , i
∗
li) ∧

m∧

j=0

ej

⎞

⎠ ⇒

⎛

⎝
n′
∧

i=1

uttered(s′i, w
′
ki

, i′∗li ) ∧
m′
∧

j=0

ej

⎞

⎠

where si, s′i are scene identifiers or variables, wki , w′
ki

are variables or states of
scenes si and s′i respectively, i∗li , i

′∗
li are illocution schemes li matching the schema

labelling an outgoing arc from wki of scenes si and s′i respectively, and ej, e′j
are boolean expressions over variables from uttered predicates. These boolean
expressions can include functions to check the state of the institution.

The intuitive meaning of a dialogical constraint is that if grounded illocutions
matching i∗l1 , . . . , i

∗
ln are uttered in the corresponding scene states, and the ex-

pressions e1, . . . , em are satisfied, then, grounded illocutions matching i′∗l1 , . . . , i
′∗
ln

satisfying the expressions e′1, . . . , e
′
m′ must be uttered in the corresponding scene

states as well. Dialogical constraints assume a temporal ordering: the left-hand
side illocutions must be uttered prior to the illocutions on the right-hand side,
i.e. the illocutions on the left should have time stamps which precede those of
the illocutions on the right.

The dialogical constraints point out the actions to perform in the enforcement
of a violated norm. For instance,

uttered(S,W,inform(A,Role,all,Role2,smoke,T ))⇒
uttered(S,W,inform(B,enforcer,A,Role,decrement(credit,50),T ′))∧T ′>T

shows an example of a dialogical constraint which expresses that every agent ”A”
playing any role ”Role” that smokes in a scene should be sanctioned (since smok-
ing is illegal). Whenever an agent performs the action of smoke, an ”enforcer”
agent ”B” is obliged to decrement its credit by 50.



168 H. Aldewereld et al.

The integrity constraints are then implemented in the infrastructure of the
e-institutions, thereby providing the means to detect violations of norms, where
the dialogical constraints are implemented in the enforcing agents which use
them to determine the illocutions that should be uttered when a norm has been
violated.

4 Semantics

In this section we present the semantics of the integrity constraints, used for
detecting violations, and the dialogical constraints, used for specifying enforce-
ment, which we introduced in the previous section. In the definitions below we
use the standard concept of substitution (denoted by σ) to relate a set of values
(first-order terms denoted τ) to a set of variables (denoted x, y, z) in a compu-
tation [1,9]. We use φ · σ to denote the formula φ on which the substitution σ
has been performed.

We conceive the notion of state (∆) in an electronic institution as the set of
illocutions uttered (expressions of the form uttered(s, w, i)) and the boolean ex-
pressions that hold during its enactment. The execution of the institution would
be divided into two different, alternating rounds: event addition and process-
ing. Firstly, we start the execution with a (possibly empty) initial state where
agents’ illocutions are added. Secondly, the rules are executed evolving the state
adding inconsistency marks or obligations. Then, we again start the event ad-
dition round and so on. The semantics of the integrity constraints are defined
as relationships (sIC) between the current state ∆ and the next state ∆′. Let
us first look at the utterances and boolean expressions that are used in the
constraints. An utterance holds iff it is uttered in the current state:

Definition 6. S(∆, uttered(s, w, i), σ) holds iff uttered(s · σ, w · σ, i · σ) ∈ ∆

The semantics of Boolean expressions are defined as follows:

Definition 7. S(∆, τ1 � τ2, σ) holds iff τ1 · σ � τ2 · σ holds. Where � ∈ {=, �=
, >, <,≥,≤} with their usual meaning.

Conjunctions used in the constraints are satisfied in the normal way:

Definition 8. S(∆, (
∧n

i=1 φi), σ) holds iff S(∆, φi, σ), 1 ≤ i ≤ n, n ∈ IN , hold.

In the following we use u as an abbreviation of:
∧n

i=1 uttered(si, wki , ili)∧
∧m

j=0 ej

Integrity constraints define the violations of the norms. An integrity constraint
is applicable to the institutional state (∆), and thus introducing a violation (⊥),
iff the conjunction of utterances and boolean expressions holds in ∆:

Definition 9. sIC(∆, u · σ ⇒ ⊥, ∆ ∪ {⊥}) holds iff S(∆, u, σ) hold.

An integrity constraint does not introduce a violation, if either the utterances
or the boolean expressions do not hold in ∆, i.e. the integrity constraint is not
applicable:



Operationalisation of Norms for Electronic Institutions 169

Definition 10. sIC(∆, u · σ ⇒ ⊥, ∆) holds iff S(∆, u, σ) does not hold.

Dialogical constraints introduce obligations to enforce, based on the violations
detected by integrity constraints. We define the semantics of dialogical con-
straints as relationships (sDC) between current state ∆ and the next state ∆’.
A dialogical constraint is applicable to a state ∆, thus introducing an obliga-
tion to enforce, iff the conjunction of utterances and boolean expressions holds
in ∆:

Definition 11. sDC(∆, u · σ ⇒ u′ · σ, ∆ ∪ {u′ · σ}) holds iff S(∆, u, σ) holds.

A dialogical constraint does not introduce an obligation to enforce iff the con-
junction of utterances or the conjunction of boolean expression does not hold in
∆:

Definition 12. sDC(∆, u · σ ⇒ u′ · σ, ∆) holds iff S(∆, u, σ) does not hold.

Note that definitions 9 and 10 can be seen as a kind of special cases of defini-
tions 11 and 12. We chose to treat them separate, because the temporal flavor
(and implementation) of the dialogical constraints is much bigger than of the
integrity constraints. From the semantics we can straightforwardly implement an
interpreter in Prolog as done in [11]. This interpreter would evolve the state of
enactment of an institution by adding inconsistency marks, based on violations
detected through the integrity constraints, or obligations to enforce, based on
the specified dialogical constraints.

In the current AMELI framework, agent interactions are mediated by a special
kind of agents called governors. These governors regulate the agents’ illocutions
following the specification of electronic institutions, i.e. they only forward illo-
cutions that match the illocution scheme of an outgoing arc of the current state
of the scene. By including the interpreter mentioned above, we improve the gov-
ernors by allowing them to regulate according to more expressive and flexible
specifications of electronic institutions.

5 Implementing Norms

The operational approach to norms expressed in [18] that tries to implement
norms from an institutional perspective, that is to say enforcing norms by means
of detecting violations and reacting to such violations, views norms as a manner
to describe how someone should behave, i.e., they define obligations, permissions
and prohibitions also known as the declarative meaning of norms (cf. [5,14]).
Since a system needs responses to the violations that occur, the norms in this
approach are viewed as a frame which includes not only this declarative meaning
of the norm but also a definition of the responses to violations to the norms,
which are known as sanctions and repairs (also known as the operational meaning
of the norm). In [18] this norm frame is defined as follows:



170 H. Aldewereld et al.

Definition 13 (Norms)

NORM := NORM CONDITION,VIOLATION CONDITION,

DETECTION MECHANISM,SANCTION,REPAIRS
VIOLATION CONDITION := formula

DETECTION MECHANISM := {action expressions}
SANCTION := PLAN

REPAIRS := PLAN
PLAN := action expression | action expression ; PLAN

The norm condition is the declarative norm, as obtained from, for instance, the
legal domain (see definition 14 for a description of what these norm conditions
can be. The other fields in this norm description are; 1) the violation condition
which is a formula defining when the norm is violated, 2) the detection mecha-
nism which describes the mechanisms included in the agent platform that can
be used for detecting violations, 3) the sanction which defines the actions that
are used to punish the agent(s) violating the norm, and 4) the repairs which is
a set of actions that are used for recovering the system after the occurrence of a
violation.

Definition 14 (Norm Condition)

NORM CONDITION := N(a,S 〈IF C〉) |OBLIGED(aENFORCE(N(a,S 〈IF C〉)))
N := OBLIGED |PERMITTED | FORBIDDEN
S := P |DO A |P TIME D |DO A TIME D

C := formula

P := predicate

A := action expression

TIME := BEFORE |AFTER

As definition 14 shows, norms can either be permissions, obligations or pro-
hibitions. Moreover, norms can be related to actions or to predicates (states).
Through the condition (C) and deadline (D), norms can be made applicable to
certain situations only (conditions and deadlines are considered optional).

Before we can use norms specified in the formalism described above, we need
to translate the abstract predicates and actions into corresponding concrete ut-
terances and scenes that are specified in the definition of the institution. For
instance, a norm such as
OBLIGED((buyer DO pay(Price,seller)) IF done(buyer,won(Item,Price)))

should be translated into utterances as used in e-institutions:
uttered(payment,W,inform(A,buyer,B,payee,pay(Item,Price),T ))

uttered(auction,w2,inform(C,auctioneer,A,buyer,won(Item,Price),T ′))

We will get back to this issue in section 7. For now we will assume that some
translation from, e.g., OBLIGED((a DOA) IF C) into OBLIGED(utter(S,W,I)IF C)
can be given, taking into account that the state S and world W of the insti-
tution will correspond to the applicable state meant by the norm, and that
I is an illocution performed by a to implement action A. We can use the
DETECTION MECHANISM description to assist in the translation.



Operationalisation of Norms for Electronic Institutions 171

Once the norms are contextualised, we can map them to integrity constraints,
as specified in the previous section, which we use to check whether violations oc-
cur. This mapping of the contextualised norm conditions to integrity constraints
can be done by the use of the following table:

Norm Translation

FORBIDDEN(utter(s,w,i)) uttered(s,w,i)→⊥
OBLIGED(utter(s,w,i) IF C) (C∧¬uttered(s,w,i))→⊥
FORBIDDEN(utter(s,w,i) IF C) (C∧uttered(s,w,i))→⊥
OBLIGED(utter(s,w,i) BEFORE D) ( ∃T :uttered(s,w,i(T ))∧T<D)→⊥
OBLIGED(utter(s,w,i) AFTER D) ( ∃T :uttered(s,w,i(T ))∧T>D)→⊥
FORBIDDEN(utter(s,w,i) BEFORE D) (∃T :uttered(s,w,i(T ))∧T<D)→⊥
FORBIDDEN(utter(s,w,i) AFTER D) (∃T :uttered(s,w,i(T ))∧T>D)→⊥

An observant reader should note that permissions are left out of this trans-
lation, since permissions cannot be violated, and therefore cannot be specified
as an integrity constraint. Unconditional obligations are also not in this table,
since these would mean that agents are obliged to utter a certain illocution all
the time, which is not meaningful. Likewise, obligations that should be satisfied
after a specific point in time are not very useful either, since these can never
be violated. This can, however, be adapted by including another deadline before
which the obligation has to be fulfilled, which would mean that, in most cases,
the obligation should be fulfilled before the institution ends.

The VIOLATION CONDITION of a norm is translated into a conjunction of
boolean expressions that can be checked in the institution.

Finally, the SANCTION and REPAIR of a norm as described in the norm
framework should both be translated to (a sequence of utterances plus boolean
constraints) for the enforcer agents. This will create the dialogical constraints to
be used by the enforcing agents to determine which actions should be performed
when a norm is violated.

6 Other Normative Approaches

In this section we give a tentative comparison between the approach just men-
tioned and the norm frameworks introduced in [2] and [15]. Given the concepts
seemingly in those frameworks we show how we think norms from these frame-
works can be implemented using the language given in section 3.

6.1 Norms in Z

In [15] Luck et al. proposed a framework for norms that could be integrated
into their multiagent systems. Like the framework of the previous section it
identifies the addressee, normative goal, punishments and context of norms (in
the previous approach these were, respectively, the role a, the predicate P or
action A, the sanctions and the (temporal) condition C or D). The norm frame
in [15] expands this with the concepts of beneficiaries, exceptions and rewards,



172 H. Aldewereld et al.

which were left implicit in the approach of the previous section. Additionally,
their norm frame also specifies that for norms the inclusion of an addressee,
a context and a normative goal are mandatory, and, moreover, it shows that
the sets defining the context and the exceptions, as well as the sets of rewards
and punishments, are disjoint. Note that punishments and rewards in this norm
frame are specified as goals which are to be achieved by norm enforcing agents,
that is to say, when the norm is violated the norm enforcing agents of the system
are obliged to fulfil the punishment-goal to punish the agent violating the norm.

Using the language introduced in section 3 we can again show that norms
specified in this norm frame can be operationalised for use in e-institutions.
After contextualisation, the norms can be automatically translated to integrity
constraints and inference rules.

The contextualisation of the norms as specified above includes linking the ad-
dressee, beneficiaries (if present) and normative goal to the correct corresponding
utterance, as well as identifying the predicates used in the e-institution to ex-
press the context and exceptions. After this contextualisation the norms can
easily be translated into the following integrity constraint to detect violations of
the norm:

(context∧ ∼ exception ∧ ¬goal′) → ⊥

where context and exception are predicates obtained through the contextuali-
sation for specifying the context and exceptions mentioned in the norm, goal′

is the contextualised normative goal (thus including the addressee and possible
beneficiaries), and the ∼ operator is for expressing negation-as-failure (since no
exceptions might be given).

If punishments and rewards are specified, the following dialogical constraints
can be defined:

(context∧ ∼ exception ∧ ¬goal′) ⇒ punishment

(context∧ ∼ exception ∧ goal′) ⇒ reward

which define that punishment should be executed by an enforcing agent when
the specified condition (i.e. the violation of the norm) occurs while a reward
should be given when agents comply to the norm.

6.2 Event Calculus Norms

In [2] Artikis et al. propose the use of event calculus for the specification of norm
based protocols. The event calculus is a formalism to represent reasoning about
actions or events and their effects in a logic programming framework. It is based
on a many-sorted first-order predicate calculus.

Predicates that change along time are called fluents. Obligations, permis-
sions, empowerments, capabilities and sanctions are formalised by means of
the following fluents: obl(Ag, Act), per(Ag, Act), pow(Ag, Act), can(Ag, Act) and
sanction(Ag). In the example of [2], prohibitions are not formalised as fluents
since they assume that every action that is not permitted is forbidden by default.



Operationalisation of Norms for Electronic Institutions 173

The expression below shows an example of an obligation specified in Event
Calculus extracted from [2]. The obligation that C revokes the floor holds at
time T if C enacts the role of chair and the floor is granted to someone else
different from the best candidate.

holdsAt(obl(C, revoke floor(C)) = true, T ) ←
role of(C, chair)
holdsAt(status = granted(S, T ′), T ), (T ≥ T ′),
holdsAt(best candidate = S′, T ), (S �= S′)

If we translate all the holdsAt predicates into uttered predicates, we can
translate the obligations of the example by including the rest of conditions in
the LHS of the integrity constraints:

(uttered(s, w, inform(A, R, B, R′, best candidate(S′))∧
uttered(s, w, inform(C, chair, S, candidate, granted(S))∧
S �= S′) ⇒ utter(s, w, inform(C, chair, A, R′′, revoke floor))

However, since there is no concrete definition of a norm, we cannot state that
Artikis’ approach is fully translatable into integrity constraints and dialogical
constraints.

Although event calculus models time, the deontic fluents specified in the ex-
ample of [2] are not enough to inform an agent about all types of duties. For
instance, to inform an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation fluent and the part of
the theory that models the violation of the deadline.

7 Contextualising Norms

In previous sections we have mentioned that norms need to be contextualised in
order to be used in e-institutions. This contextualisation is, in a sense, interpreting
the abstract norm from the institution’s point of view such that it is usable for
implementation. In the example that we used earlier this interpretation was quite
clear. However, if we regard institutional norms that are derived (or translated)
from human laws and regulations, the contextualisation becomes much harder,
as laws contain vague and ambiguous concepts that cannot always be related to
a single integrity constraint. In order to implement such norms with a high level
of abstraction two steps must be taken: 1) interpreting the abstract concepts and
link them to concrete concepts used in the institution, and 2) adding procedural
information and artifacts to the institution to simplify (or allow) the enforcement
of the norm. In this section we examine both these elements.

7.1 Ontological Interpretations of Concepts

The first step of the contextualisation of norms is to connect abstract concepts
appearing in the norm to concepts used in the institution. Consider the following



174 H. Aldewereld et al.

norm of an auction house, expressing the obligation to identify oneself upon
entering an auction:
OBLIGED((participant DO identify) IF (participant DO enter(auction)))

The action identify in this norm has an abstract meaning and can be imple-
mented in various different manners. To implement this norm the meaning of
this abstract action must be defined, which is done by connecting the abstract
action to concrete action(s), e.g. through the use of a counts-as operator [12,13]:
[participant DO give(certificate,manager) AND
manager DO check(certificate)] counts-as participant DO identify

describing that giving an identification certificate to the auction manager, and
the manager checking this certificate (both actions defined in the institution!)
is seen as an implementation of the identify action. Each institution can de-
fine its own relations between abstract and concrete concepts (depending on the
available concrete concepts) using the counts-as relation.

Thus implementing these counts-as definitions is achieved by extending the
existing ontology of the institution. This ontology consists of all the concrete con-
cepts used in the institution. It is extended with the abstract concepts that are
used in the norms and the relation between the abstract and concrete concepts
using the counts-as relation as done above.

7.2 Introducing Procedural Information

After interpreting the abstract concepts of the norm, the norm can be imple-
mented by means of integrity and dialogical constraints as mentioned in sections
3 and 4. In some cases, though, trying to detect a violation would be computa-
tionally hard or totally infeasible from the institution’s point of view. Moreover,
there might be norms for which a recovery from a violation is difficult or costly.

In both cases, the norm should be modified in (logically or morally equivalent)
norms such that it either becomes feasible to detect the violation, or protect the
system from very harmful violations. This process of contextualising norms can
be done in two ways. Either the norm is translated into smaller and simpler
norms which are easier to check but ensure the compliance of the original norm,
or the norm is translated into a set of constraints that ensure the compliance.

Consider the following norm in an auction house, expressing that as an agent
bids on an item it has to pay for the item if it won the auction:
OBLIGED((buyer DO pay(Price,seller)) IF done(buyer,won(Item,Price)))

Violations of this norm occur, for instance, because the agent does not have
enough money to pay, the agent does not want the item anymore or the agent
simply disconnects (unintentionally or on purpose). Although the violation of
this norm can be detected easily, sanctioning the agent and repairing the sit-
uation might be difficult (especially if the agent disconnects). To avoid these
situations, one can choose to implement this norm by means of a constraint;
upon entering the institution all agents have to deposit an amount of money
(for security) that they will get back when leaving the institution if no viola-
tions have occurred:



Operationalisation of Norms for Electronic Institutions 175

OBLIGED((agent DO pay(Security Fee)) IF done(agent,enter(Institution)))

However, if a violation of the mentioned norm occurs, this money can be used
to pay for the items, thereby sanctioning the agent. This means that our origi-
nal norm has been implemented by introducing a norm that is easier to enforce
(i.e. agents are obliged to pay security before entering), which generates the con-
straint (or mechanism) that is used for enforcing the original norm. Thus, instead
of implementing one norm which was hard to enforce, we have implemented two
norms (which were derived from the original norm) that are easily enforced.

8 Conclusions

Previous implementations of electronic institutions enforced norms by ensuring
that the agents joining the system followed a pre-defined protocol, thereby guar-
anteeing norm compliance of the agents. As this approach severely limits the
autonomy of the agents, a more flexible enforcement was desired. This paper
proposes the use of integrity constraints and dialogical constraints to implement
such a flexible enforcement of norms. This norm enforcement is based on the
detection of and reacting to the violations of norms.

In order for any kind of norm enforcement to be implemented, abstract norms
need to be expanded with an operational meaning, as the declarative nature
of abstract norms only defines what is legal/illegal, but never expresses how
this legality/illegality is obtained/averted. In [18] we introduced several mecha-
nisms for operationalising norms, where we annotated norms (expressed in de-
ontic logic) with operational aspects, like sanctions and repairs. In this paper
we have used this normative frame to design an implementation scheme usable
for implementing norm enforcement in electronic institutions. However, before
norms can be implemented using this scheme, the norms need to be contextu-
alised. This contextualisation is 1) connecting the abstract concepts of the norm
to the concrete concepts used in the institution, and 2) extending the norm
with additional procedural information before attempting to implement it. The
contextualisation of the norms is, in fact, a further operationalisation of the
norms, where, in contrast to declarative norms (which never change the world),
the second step of this operationalisation changes the world in order to enforce
the norm.

Acknowledgements

The first author of this paper was supported by the Netherlands Organisation
for Scientific Research (NWO) under project number 634.000.017. This paper
was also partially supported by the Spanish Science and Technology Ministry
as part of the Web-i-2 project (TIC-2003-08763-C02-00) and the IEA project
(TIN2006-15662-C02-01).



176 H. Aldewereld et al.

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, UK (1997)
2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A protocol for resource sharing in

norm-governed ad hoc networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, Springer, Heidelberg (2005)

3. Castelfranchi, C.: Formalizing the informal?: Dynamic social order, bottom-up so-
cial control, and spontaneous normative relations. Journal of Applied Logic 1(1-2),
47–92 (2003)

4. Dignum, F.: Abstract norms and electronic institutions. In: Lindemann, G., Moldt,
D., Paolucci, M. (eds.) RASTA 2002. LNCS (LNAI), vol. 2934, pp. 93–104.
Springer, Heidelberg (2004)

5. Dignum, F., Broersen, J., Dignum, V., Meyer, J.-J.C.: Meeting the Deadline: Why,
When and How. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A.
(eds.) FAABS 2004. LNCS (LNAI), vol. 3228, Springer, Heidelberg (2004)

6. Esteva, M.: Electronic Institutions: from specification to development. Number 19
in IIIA Monograph Series. PhD Thesis (2003)

7. Esteva, M., Rodŕıguez-Aguilar, J., Rosell, B., Arcos, J.: AMELI: An Agent-based
Middleware for Electronic Institutions. In: Third International Joint Conference
on Autonomous Agents and Multi-agent Systems, New York, US, July 2004 (2004)

8. Esteva, M., Vasconcelos, W., Sierra, C., Rodŕıguez-Aguilar, J.: Verifying norm
consistency in electronic institutions. In: Proc. of The AAAI-04 Workshop on
Agent Organizations: Theory and Practice (ATOP), San Jose, California, July
2004 (2004)

9. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, New
York, USA (1990)

10. Garćıa-Camino, A., Rodŕıguez-Aguillar, J.: Implementing norms in electronic in-
stitutions. In: Proceedings of the 4th Int. Joint Conf. on Autonomous Agents &
Multi Agent Systems (AAMAS-05), Utrecht, The Netherlands, July 2005 (2005)

11. Garćıa-Camino, A., Rodŕıguez-Aguillar, J., Sierra, C., Vasconcelos, W.: A distrib-
uted architecture for norm-aware agent societies. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, Springer,
Heidelberg (2006)

12. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects of
the implementation of norms in agent-based electronic institutions. Computational
and Mathematical Organization Theory ( to appear)

13. Grossi, D., Dignum, F., Meyer, J.-J.C.: Contextual taxonomies. In: Leite, J.A.,
Torroni, P. (eds.) Computational Logic in Multi-Agent Systems. LNCS (LNAI),
vol. 3487, pp. 2–17. Springer, Heidelberg (2005)

14. Lomuscio, A.R., Nute, D. (eds.): DEON 2004. LNCS (LNAI), vol. 3065. Springer,
Heidelberg (2004)

15. López y López, F., Luck, M.: Towards a Model of the Dynamics of Normative
Multi-Agent Systems. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA
2002. LNCS (LNAI), vol. 2934, pp. 175–194. Springer, Heidelberg (2004)

16. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. Number 8 in
IIIA Monograph Series. PhD Thesis (1997)

17. Rodriguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-
tronic Institutions. Number 14 in IIIA Monograph Series. PhD Thesis (2001)

18. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multi-
agent systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.)
MATES 2004. LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)



Norm-Oriented Programming of Electronic

Institutions: A Rule-Based Approach

Andrés Garćıa-Camino1, Juan-Antonio Rodŕıguez-Aguilar1, Carles Sierra1,
and Wamberto Vasconcelos2

1 IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain
{andres,jar,sierra}@iiia.csic.es

2 Dept. of Computing Science, University of Aberdeen,
Aberdeen AB24 3UE, United Kingdom

wvasconcelos@acm.org

Abstract. Norms constitute a powerful coordination mechanism among
heterogeneous agents. We propose means to specify and explicitly man-
age the normative positions of agents (permissions, prohibitions and
obligations), with which distinct deontic notions and their relationships
can be captured. Our rule-based formalism includes constraints for more
expressiveness and precision and allows the norm-oriented programming
of electronic institutions: normative aspects are given a precise com-
putational interpretation. Our formalism has been conceived as a ma-
chine language to which other higher-level normative languages can be
mapped, allowing their execution.

1 Introduction

A major challenge in multi-agent system (MAS) research is the design and imple-
mentation of open multi-agent systems in which coordination must be achieved
among agents defined with different languages by several designers who may not
trust each other. Norms can be used for this purpose as a means to regulate the
observable behaviour of agents as they interact in pursuit of their goals [1,2,3].
There is a wealth of socio-philosophical and logic-theoretical literature on the
subject of norms (e.g., [4,5]), and, more recently, much attention is being paid
to more pragmatic and implementational aspects of norms, that is, how norms
can be given a computational interpretation and how norms can be factored in
in the design and execution of MASs (e.g. [6,7,8,9,10]).

A normative position [4] is the “social burden” associated with individual
agents, that is, their obligations, permissions and prohibitions. Depending on
what agents do, their normative positions may change – for instance, permis-
sions/prohibitions can be revoked or obligations, once fulfilled, may be removed.
Ideally, norms, once captured via some suitable formalism, should be directly ex-
ecuted, thus realising a computational, normative environment wherein agents
interact. This is what we mean by norm-oriented programming. We try to make
headway along this direction by introducing an executable language to specify

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 177–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



178 A. Garćıa-Camino et al.

agents’ normative positions and manage their changes as agents interact via
speech acts [11].

In this paper we present a language that acts as a “machine language” for
norms on top of which different, higher-level normative languages can be accom-
modated. This language can represent distinct flavours of deontic notions and
relationships. Although our language is rule-based, we achieve greater flexibility,
expressiveness and precision than production systems by allowing constraints to
be part of our rules and states of affairs. In this way, normative positions can
be further refined. For instance, picture a selling agent that is obliged to deliver
a good satisfying some quality requirements before a deadline. Notice that both
the quality requirements and the delivery deadline can be regarded as constraints
that must be considered as part of the obligations. Thus, when the agent de-
livers the good satisfying all the constraints, we should regard the obligation as
fulfilled. Notice too that since the deadline might eventually be changed, we also
require the capability of modifying constraints at run-time. Hence, constraints
are considered as first-class citizens in our language.

Although in this paper we restrict to a particular class of MASs, namely elec-
tronic institutions [12], our work sets the foundations to specify and implement
open regulated MASs via norms.

The structure of this paper is as follows. In the next section we present de-
sirable properties of normative languages. In section 3 we propose a simple nor-
mative language that covers all these requirements along with a sketch of an
implementation of an interpreter. Section 4 summarises electronic institutions
and explains how we capture normative positions of participating agents. We
put our language to use by specifying the Dutch Auction protocol in section
5. In section 6 we contrast our approach with a sample of other contemporary
work. Finally, we draw conclusions and outline future work in section 7.

2 Norm-Oriented MAS: Desiderata

Our main goal is to produce a language that supports the specification of coordi-
nation mechanisms in multi-agent systems by means of norms. For this purpose,
we identify below the desirable features we expect in candidate languages.

Explicit Management of normative positions. We take the stance that we
cannot refer to agents’ mentalistic notions, but only to their observable ac-
tions and their normative positions. Notice that as a result of agents’ ob-
servable, social interactions, their normative positions [4] change. Hence, the
first requirement of our language is to support the explicit management of
agents’ normative positions.

General purpose. Turning our attention to theoretical models of norms, we
notice that there is a plethora of deontic logics with different axioms to
establish relationships among deontic notions. Thus, we require that our
language captures different deontic notions along with their relationships. In



Norm-Oriented Programming of Electronic Institutions 179

other words, the language must be of general purpose so that it helps MAS
designers to encode any axiomatisation, and thus specify the widest range
of normative systems as possible.

Pragmatic. In a sense, we pursue a “machine language” for norms on top of
which higher-level languages may be accommodated. Along this direction,
and from a language designer’s point of view, it is fundamental to identify
the norm patterns (e.g., conditional obligation, time-based permissions and
prohibitions, continuous obligation, and so on) in the literature to ensure
that the language supports their encoding – this is demonstrated in sec-
tion 6. In this way, not only shall we be guaranteeing the expressiveness of
our language, but also addressing pragmatic concerns by providing design
patterns to guide and ease MAS design.

Declarative. In order to ease MAS programming, we shall also require our
language to be declarative, with an implicit execution mechanism to reduce
the number of issues designers ought to concentrate on. As an additional
benefit, we expect its declarative nature to facilitate verification of properties
of the specifications.

3 A Rule Language for Norms

In this section we introduce a rule language for the explicit management of
norms associated with a population of agents. Our rule-based language allow
us to represent changes in an elegant way and also fulfils the requirement that
a normative language should be declarative. The rules depict how normative
positions change as agents interact with each other. We achieve greater flexibility,
expressiveness and precision by allowing constraints [13] to be part of our rules
– such constraints associate further restrictions with permissions, prohibitions
and obligations.

The building blocks of our language are first-order terms (denoted as τ) and
implicitly, universally quantified atomic formulae (denoted as α) without free
variables . We shall make use of numbers and arithmetic functions to build terms;
arithmetic functions may appear infix, following their usual conventions1. We
also employ arithmetic relations (e.g., =, �=, and so on) as predicate symbols, and
these will appear in their usual infix notation with their usual meaning. Atomic
formulae with arithmetic relations represent constraints on their variables and
have a special status, as we explain below. We give a definition of our constraints,
a subset of atomic formulae:

Definition 1. A constraint γ is an atomic formula of the form τ � τ ′, where
�∈ {=, �=, >,≥, <,≤}.
We need to differentiate ordinary atomic formula from constraints. We shall use
α′ to denote atomic formulae that are not constraints.

1 We adopt Prolog’s convention using strings starting with a capital letter to represent
variables and strings starting with a small letter to represent constants.



180 A. Garćıa-Camino et al.

Intuitively, a state of affairs is a set of atomic formulae. As we will show below,
they can store the state of the environment2, observable agent attributes and
the normative positions of agents:

Definition 2. A state of affairs ∆ = {α0, . . . , αn} is a a finite and possibly
empty set of implicitly, universally quantified atomic formulae αi , 0 ≤ i ≤ n,n ∈
IN .

Our rules are constructs of the form LHS � RHS, where LHS contains a
representation of parts of the current state of affairs which, if they hold, will cause
the rule to be triggered. RHS depicts the updates to the current state of affairs,
yielding the next state of affairs. The grammar in Fig. 1 defines our rules, where x
is a variable name and LHS∗ is a LHS without set constructors (see below). The
Us represent the updates: they add (via operator ⊕) or remove (via operator �)
atomic formulae αs. Furthermore, we make use of a special kind of term, called
a set constructor, represented as {α′ | LHS∗}. This construct is useful when we
need to refer to all α′s for which LHS∗ holds,e.g., {p(A,B) | A > 20∧B < 100}
is the set of atomic formulae p(A,B) such that A > 20 and B < 100.

R ::= LHS � RHS
LHS ::= LHS ∧ LHS | ¬LHS | Lit
RHS ::= U • RHS | U

Lit ::= α | x = {α′ | LHS∗}
U ::= ⊕α | 
α

Fig. 1. Grammar for Rules

We need to refer to the set of constraints that belongs to a state of affairs.
We call Γ = {γ0, . . . , γn} the set of all constraints in ∆.

Definition 3. Given a state of affairs ∆, relationship constrs(∆, Γ ) holds iff
Γ is the smallest set such that for every constraint γ ∈ ∆ then γ ∈ Γ .

In the definitions below we rely on the concept of substitution, that is, the set of
values for variables in a computation, as well as the concept of its application to
a term [14]. We now define the semantics of our rules as relationships between
states of affairs: rules map an existing state of affairs to a new state of affairs.
We adopt the usual semantics of production rules, that is, we exhaustively apply
each rule by matching its LHS against the current state of affairs and use the
values of variables obtained in this match to instantiate the RHS via s∗.

Definition 4. s∗(∆, LHS � RHS, ∆′) holds iff s∗l (∆, LHS, {σ1, . . . , σn}) and
sr (∆, RHS · σi , ∆

′), 1 ≤ i ≤ n,n ∈ IN , hold.

That is, two states of affairs ∆ and ∆′ are related by a rule LHS � RHS if, and
only if, we obtain all different substitutions {σ1, . . . , σn} that make the left-hand

2 We refer to the state of the environment as the set of atomic formulae that represent
the aspects of the environment in a given point in time.



Norm-Oriented Programming of Electronic Institutions 181

side match ∆ and apply these substitutions to RHS (that is, RHS ·σi ) in order
to build ∆′.

Our rules are exhaustively applied on the state of affairs thus considering
all matching atomic formulae. We thus need relationship s∗l (∆, LHS, Σ) which
obtains in Σ = {σ0, . . . , σn} all possible matches of the left-hand side of a rule:

Definition 5. s∗l (∆, LHS, Σ) holds, iff Σ = {σ1, . . . , σn} is the largest non-
empty set such that sl(∆, LHS, σi ), 1 ≤ i ≤ n,n ∈ IN , holds.

We now define the semantics of the LHS of a rule:

Definition 6. sl (∆, LHS, σ) holds between state ∆, the left-hand side of a rule
LHS and a substitution σ depending on the format of LHS:
1. sl(∆, LHS ∧ LHS′, σ) holds iff sl(∆, LHS, σ′) and sl(∆, LHS′, σ′′) hold

and σ = σ′ ∪ σ′′.
2. sl(∆,¬ LHS, σ) holds iff sl (∆, LHS, σ) does not hold.
3. sl(∆, α′, σ) holds iff α′ · σ ∈ ∆ and constrs(∆, Γ ) and satisfiable(Γ · σ)

hold.
4. sl(∆, γ, σ) holds iff constrs(∆, Γ ) and satisfiable((Γ ∪ {γ}) · σ) hold.
5. sl(∆, x = {α′ | LHS′}, σ) holds iff σ = {x/{α′ · σ1, . . . , α

′ · σn}} for the
largest n ∈ IN such that sl(∆, α′ ∧ LHS′, σi), 1 ≤ i ≤ n

Cases 1-3 depict the semantics of atomic formulae and how their individual
substitutions are combined to provide the semantics for a conjunction. Case 4
formalises the semantics of our constraints when they appear on the left-hand
side of a rule: we apply the substitution σ to them (thus reflecting any values of
variables given by the matchings of atomic formula), then check satisfiability of
constraints 3. Case 5 specifies the semantics for set constructors : x is the set of
atomic formulae that satisfy the conditions of the set constructor.

Definition 7. Relation sr (∆, RHS, ∆′) mapping a state ∆, the right-hand side
of a rule RHS and a new state ∆′ is defined as:
1. sr (∆, (U • RHS), ∆′) holds iff both sr (∆, U, ∆1) and sr (∆1, RHS, ∆′) hold.
2. sr (∆,⊕α′, ∆′) holds iff ∆′ = ∆ ∪ {α′}.
3. sr (∆,⊕γ, ∆′) = true iff constrs(∆, Γ ) and satisfiable(Γ ∪ {γ}) hold and

∆′ = ∆ ∪ {γ}.
4. sr (∆,�α, ∆′) holds iff ∆′ = ∆ \ {α}

Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Case 2 cater for the insertion of atomic formulae α′ which
do not conform to the syntax of constraints. Case 3 defines how a constraint is
added to a state ∆: the new constraint is checked whether it can be satisfied
with constraints Γ and then it is added to ∆′. Case 4 cater for the removal of
atomic formulae.

We extend s∗ to handle sequences of rules: s∗(∆0, 〈R1, . . . , Rn〉, ∆n) holds iff
s∗(∆i−1, Ri , ∆i), 1 ≤ i ≤ n hold.

3 Our work builds on standard technologies for constraint solving – in particular, we
have been experimenting with SICStus Prolog constraint satisfaction libraries.



182 A. Garćıa-Camino et al.

∆0 �
∆0

α0
1, · · · , α0

n

� �
ag1 · · · agn

∗� ∆1 �
∆1

α1
1, · · · , α1

m

� �
ag1 · · · agm

∗� · · ·

Fig. 2. Semantics as a Sequence of ∆’s

The semantics above define an infinite sequence of states 〈∆0, ∆1, . . .〉 if
s∗(∆i , {R1, . . . , Rn}, ∆i+1), that is, ∆i+1 (obtained by applying the rules to ∆i)
is used to obtain ∆i+2 and so on. Fig. 2 illustrates how this sequence can ac-
commodate the intervention of agents sending/receiving messages. The diagram
shows an initial state ∆0 (possibly empty) that is offered (represented by “�”)
to a set of agents {ag1, . . . , agn}. These agents exchange messages, adding a
record (via “�”) {α0

1, . . . , α
0
n} of these messages to ∆0. After the agents add

their utterances, then the rules are exhaustively applied (represented by “ ∗�”)
to ∆0 ∪ {α0

1, . . . , α
0
n}. The resulting state ∆1 is, on its turn, offered to agents,

and so on.

3.1 Implementation

The semantics above provide a basis for the implementation of our rule inter-
preter. Although we have implemented it with SICStus Prolog we show such
interpreter in Fig. 3 as a logic program, interspersed with built-in Prolog predi-
cates; for easy referencing, we show each clause with a number on its left.

1. s∗(∆, Rules, ∆′) ←
findall(〈RHS, Σ〉, (member((LHS � RHS), Rules), s∗

l (∆, LHS, Σ)), RHSs),
s′
r (∆, RHSs, ∆′)

2. s∗
l (∆, LHS, Σ) ← findall(σ, sl (∆, LHS, σ), Σ)

3. sl (∆, (LHS ∧ LHS′), σ) ← sl (∆, LHS, σ′), sl(∆, LHS′, σ′′), union(σ′, σ′′, σ)
4. sl (∆,¬ LHS, σ) ← ¬ sl (∆, LHS, σ)
5. sl (∆, α′, σ) ← member(α′ · σ, ∆), constrs(∆, Γ ), satisfiable(Γ · σ)
6. sl (∆, γ, σ) ← constrs(∆, Γ ), satisfiable([γ | Γ ] · σ)
7. sl (∆, x = {α′ | LHS′}, {x/AllAlphas}) ← findall(α′ · σ, sl (∆, α′ ∧ LHS′, σ), AllAlphas)
8. s′

r (∆, [ ], ∆′) ← ∆ = ∆′

9. s′
r (∆, [〈RHS, Σ〉 | RHSs], ∆′) ← s′′

r (∆, RHS, Σ, ∆′′), s′
r (∆

′′, RHSs, ∆′)
10. s′′

r (∆, RHS, [ ], ∆′) ← ∆ = ∆′

11. s′′
r (∆, RHS, [σ | Σ], ∆′) ← sr (∆, RHS · σ, ∆′′), s′′

r (∆′′, RHS, Σ, ∆′)
12. sr (∆, (U • RHS), ∆′) ← sr (∆, U, ∆1), sr (∆1, RHS, ∆′)
13. sr (∆, ⊕α′, [α′ | ∆]) ←
14. sr (∆, �α, ∆′) ← delete(∆, α, ∆′)
15. sr (∆, ⊕γ, [γ | ∆]) ← constrs(∆, Γ ), satisfiable([γ | Γ ])

Fig. 3. An Interpreter for Rules

Clause 1 contains the top-most definition: given an existing ∆ and a set of rules
Rules, it obtains the next state ∆′ by finding all those rules in Rules (picked by the
member built-in) whose LHS holds in ∆ (checked via the auxiliary
definition s∗l ). This clause then uses the RHS of those rules with their respective



Norm-Oriented Programming of Electronic Institutions 183

sets of substitutions Σ as the arguments of s′r to finally obtain ∆′. Clause 2 imple-
ments s∗l : it finds all the different ways that the left-hand side LHS of a rule can be
matched in ∆ – the individual σ’s are stored in sets Σ of substitutions, as a result
of the findall/3 execution. Clauses 8 and 9 show how s′r computes the new
state from a list RHSs of pairs 〈RHS, Σ〉 (obtained in the second body goal of
clause 1): it picks out each pair 〈RHS, Σ〉 and uses s′′r (clauses 10 and 11) to
compute each intermediate state of affairs after applying the RHS to ∆ via pred-
icate sr for all the substitutions in Σ. Clauses 3-7 and 12-15 are, respectively,
adaptations of the cases depicted in Def. 6 and Def. 7.

4 Electronic Institutions

Our work extends electronic institutions (EIs) [12], providing them with an ex-
plicit normative layer. There are two major features in EIs: the states and il-
locutions (i.e., messages) uttered (i.e., sent) by those agents taking part in the
EI. The states are connected via edges labelled with the illocutions that ought
to be sent at that particular point in the EI. Another important feature in EIs
are the agents’ roles : these are labels that allow agents with the same role to be
treated collectively thus helping engineers abstract away from individuals. We
define below the class of illocutions we aim at – these are a special kind of term:

Definition 8. Illocutions I are terms p(ag, r, ag′, r′, τ, t) where p is an illocu-
tionary particle ( e.g., ask); ag, ag′ are agent identifiers; r , r ′ are role labels; τ
is a term with the actual content of the message and t ∈ IN is a time stamp.

We shall refer to illocutions that may have uninstantiated (free) variables as
illocution schemes, denoted by Ī.

Another important concept in EIs we employ here is that of a scene. Scenes
offer means to break down larger protocols into smaller ones with specific pur-
poses. We can uniquely refer to the point of the protocol where an illocution I
was uttered by the pair (s ,w) where s is a scene name and w is the state from
which an edge labelled with Ī leads to another state.

An institutional state is a state of affairs that stores all utterances during the
execution of a MAS, also keeping a record of the state of the environment, all
observable attributes of agents and all obligations, permissions and prohibitions
associated with the agents that constitute their normative positions.

We differentiate seven kinds of atomic formulae in our institutional states ∆,
with the following intuitive meanings:

1. oav(o, a, v) – object (or agent) o has an attribute a with value v .
2. att(s ,w , I) – an agent attempted to get illocution I accepted at state w of

scene s .
3. utt(s ,w , I) – I was accepted as a legal utterance at w of s .
4. ctr(s ,w , ts) – the execution of scene s reached state w at time ts .
5. obl(s ,w , Ī) – Ī ought to be uttered at w of s .
6. per(s ,w , Ī) – Ī is permitted to be uttered at w of s .
7. prh(s ,w , Ī) – Ī is prohibited at w of s .



184 A. Garćıa-Camino et al.

We only allow fully ground attributes, illocutions and state control formulae
(cases 1-4 above) to be present4; however, in formulae 5-7 s and w may be
variables and Ī may contain variables. We shall use formulae 4 to represent state
change in a scene in relation to a global clock. We shall use formulae 5–7 above
to represent normative positions of agents within EIs.

We do not “hardwire” deontic notions in our semantics: the predicates above
represent deontic operators but not their relationships. These are captured with
rules (also called in this context institutional rules), conferring the generality
claimed on section 2 on our approach as different deontic relationships can be
forged, as we show below. We can confer different grades of enforcement on EIs .
On the one hand, we can transform only legal attempts into accepted utterances:

�
att(S , W , I )∧

per(S , W , I ) ∧ ¬ prh(S , W , I )

�
�
�


att(S , W , I )•
⊕utt(S , W , I )

�
(1)

This rule states that if an agent attempts to say something and it is permitted
and not prohibited, then that attempt becomes a (confirmed) utterance. On the
other hand, we can allow agents to do certain illegal actions under more harsh
penalties: �

att(S , W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T ))∧
Ag1 �= Ag2 ∧ Ag1 �= Ag3 ∧ Ag2 �= Ag3

�

��

att(S , W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T ))•
⊕utt(S , W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T ))

� (2)

The rule above states that if an agent attempts to reveal to Ag2 (secret)
information about agent Ag3, it is accepted without taking into account if it
is forbidden or not. In both cases (rules 1 and 2), we can punish agents that
violate prohibitions. Although we can address all forbidden utterances if we use
a variable as the third parameter of att and prh, the following rule punishes only
the revelation of beliefs of third parties:

�
���

att(S , W , inform(Ag1, R,Ag2,R′, info(Ag3,C ),T ))∧
Ag1 �= Ag2 ∧ Ag1 �= Ag3 ∧ Ag2 �= Ag3∧

prh(S , W , inform(Ag1,R,Ag2,R′, info(Ag3,C ),T ))∧
oav(Ag1, rep, VRep) ∧ (V ′

Rep = VRep − 10)

�
���

��

oav(Ag1, rep, VRep) • ⊕oav(Ag1, rep, V ′

Rep)
	

The rule above states that when agent Ag1 tries to reveal to Ag2 informa-
tion about agent Ag3, it gets punished. Notice that agents can be punished by
decreasing the value of any of their observable attributes. But only for exempli-
fying purposes, we use here an attribute called rep (for reputation) that models
in which degree an agent is norm compliant. In the example, the punish consists

4 We allow agents to utter whatever they want (via att formulae). However, the illegal
utterances may be discarded and/or may cause sanctions, depending on the deontic
notions we want or need to implement. The utt formulae are thus confirmations of
the att formulae.



Norm-Oriented Programming of Electronic Institutions 185

in decreasing the trust of agents to share information with Ag1, that is, the value
of Ag1’s reputation is decreased by 10.

5 Example: The Dutch Auction

We now illustrate the pragmatics of our norm-oriented language, as required
in section 2, by specifying, with the rules of Fig. 4, the auction protocol for
a fish market as described in [15]. In the fish market several scenes [12] take
place simultaneously, at different locations, but with some causal continuity.
The principal scene is the auction itself, where buyers bid for boxes of fish that
are presented by an auctioneer who calls prices in descending order, the so-called
downward bidding protocol, a variation of the traditional Dutch auction protocol
that proceeds as follows: 1. The auctioneer chooses a good out of a lot of goods
that is sorted according to the order in which sellers deliver their goods to the
sellers’ admitter; 2. With a chosen good, the auctioneer opens a bidding round
by quoting offers downward from the good’s starting price, previously fixed by
a sellers’ admitter, as long as these price quotations are above a reserve price
previously defined by the seller; 3. For each price the auctioneer calls, several
situations might arise during the open round described below. 4. The first three
steps repeat until there are no more goods left.

The situations arising in step 3 are:
Multiple bids – Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the auc-
tioneer restarts the round at a higher price;
One bid – Only one buyer submits a bid at the current price. The good is sold
to this buyer whenever his credit can support his bid. Otherwise, the round is
restarted by the auctioneer at a higher price, the unsuccessful bidder is fined;
No bids – No buyer submits a bid at the current price. If the reserve price has
not been reached yet, the auctioneer quotes a new price obtained by decreasing
the current price according to the price step. Otherwise, the auctioneer declares
the good as withdrawn and closes the round.

5.1 Proposed Solution

I. Multiple bids – it obliges the auctioneer to inform the buyers, whenever a
collision comes about, about the collision and to restart the bidding round
at a higher price (in this case, 120% of the collision price). Notice that X will
hold all the utterances at scene dutch and state w4 issued by buyer agents
that bid for an item It at price P at time T0 after the last offer. We obtain
the last offers by checking that there are no further offers whose time-stamps
are greater than the time-stamp of the first one. If the number of illocutions
in X is greater than one, the rule fires the obligation above;

II. One bid/winner determination – If only one bid has occurred during the
current bidding round and the credit of the bidding agent is greater than or
equal to the price of the good in auction, the rule adds the obligation for the
auctioneer to inform all the buyers about the sale.



186 A. Garćıa-Camino et al.

�
X =

�
α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

�∧ | X |> 1
� � �⊕α3 • ⊕α4 • ⊕(P2 > P ∗ 1.2)

�

where

�����
����

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P),T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , collision(It, P), T2))
α4 = obl(dutch, w3, inform(Au, auct, all, buyer , offer(It, P2), T3))

(I)

�
X =

�
α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

�∧
| X |= 1 ∧ oav(A1, credit, C ) ∧ C ≥ P

	
� �⊕α3

�

where

���
��

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P),T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , sold(It, P , A1), T4))

(II)

�
α0 ∧ ¬ (α1 ∧ T2 > T) ∧ oav(Ag, credit, C ) ∧ C < P

� � �⊕α2
�

where

��
�

α0 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P),T))
α1 = utt(dutch, w3, inform(Au, auct, A, buyer , offer(It, P),T2))
α2 = prh(dutch, w4, inform(A, buyer , Au, auct, bid(It, P2), T3))

(III)

�
X =

�
α0 α1 ∧ ¬ (α2 ∧ T2 > T1) ∧ T0 > T1

�∧
| X |= 1 ∧ oav(A1, credit, C ) ∧ C < P

	
�


� �oav(A1, credit,C )•

⊕oav(A1, credit,C2) • ⊕α3•
⊕(C2 = C − P ∗ 0.1) • ⊕(P2 = P ∗ 1.2)

�


where

���
��

α0 = utt(dutch, w4, inform(A1, buyer , Au, auct, bid(It, P),T0))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T1)),
α2 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α3 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(It, P2), T3))

(IV)



��

ctr(dutch, w5, Tn) ∧ α0 ∧ ¬ (α1 ∧ T2 > T)∧
timeout(dutch, w4, w5, T3) ∧ T3 > T∧

oav(IT , reservation price, RP)∧
oav(IT , decrement rate, DR) ∧ RP < P − DR

�
� �

� ⊕α2•
⊕(P2 = P − DR)

	

where

��
�

α0 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(IT , P),T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer , offer(IT , P),T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer , offer(IT , P2), T4))

(V)



� ctr(dutch, w5, Tn) ∧ α0 ∧ ¬ (α1 ∧ T2 > T)∧

timeout(dutch, w4, w5, T3) ∧ T3 > T ∧ oav(It, reservation price,RP)∧
oav(It, decrement rate, DR) ∧ RP ≥ P − DR

�
 � �⊕α2

�

where

��
�

α0 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T))
α1 = utt(dutch, w3, inform(Au, auct, all, buyer ,offer(It, P), T2))
α2 = obl(dutch, w5, inform(Au, auct, all, buyer , withdrawn(It), T3))

(VI)

Fig. 4. Rules for the Dutch Auction Protocol

III. Prevention – It prevents agents from issuing bids they cannot afford (their
credit is insufficient) and states that if agent Ag’s credit is less than P (the
last offer the auctioneer called for item It , at state w3 of scene dutch), then
agent Ag is prohibited to bid.

IV. Punishment – It punishes agents when issuing a winning bid they cannot
pay for. More precisely, the rule punishes an agent A1 by decreasing his
credit of 10% of the value of the good being auctioned. The oav predicate
on the LHS of the rule represents the current credit of the offending agent.
The rule also adds an obligation for the auctioneer to restart the bidding



Norm-Oriented Programming of Electronic Institutions 187

round and the constraint that the new offer should be greater than 120%
of the old price.

V. No bids/New Price – It checks if there were no bids and the next price
is greater than the reservation price. If so, it adds the obligation for the
auctioneer to start a new bidding round. Rule 5 checks that the current
scene state is w5, whether a timeout has expired after the last offer and
whether the new price is greater than the reservation price. If so, the rule
adds the obligation for the auctioneer to offer the item at a lower price. By
retrieving the last offer we gather the last offer price. By checking the oav
predicates we gather the values of the reservation price and the decrement
rate for item It .

VI. No bids/withdrawal – It checks if there were no bids and the next price
is less than the reservation price, then adds the obligation for the auctioneer
to withdraw the item. Rule 6 checks that the current institutional state is
w5, whether a timeout has occurred after the last offer and whether the
new offer price is greater than the reservation price. If the LHS holds, the
rule fires to add the obligation for the auctioneer to withdraw the item. By
checking the last offer we gather the last offer price. By checking the oav
predicates we gather the values of the reservation price and the decrement
rate for the price of item It .

6 Comparison with Other Normative Languages

In this section we compare our proposal with other normative languages in the
literature. We concentrate on different approaches, explaining how we can cap-
ture a wide range of normative notions from these formalisms using our rule
language. In doing so, we can provide an implementation for some of these for-
malisms.

A norm from [16] is composed of several parts: the norm condition is the
declarative description of the norm and the context in which it applies; the vi-
olation condition (a formula defining when the norm is violated); the detection
mechanism describing the mechanisms that can be used for detecting violations;
3) the sanctions defined as actions to punish the agents’ violation of the norm;
and the repairs (a set of actions that are used for recovering the system after
the occurrence of a violation). Through the condition (IF) and temporal opera-
tors (BEFORE and AFTER), which are considered optional, norms can be made
applicable only to certain situations. Temporal operators can be applied to a
deadline or to an action or predicate.

Norms as defined in [16] can be translated into our rules by specifying the
violation conditions on the LHS and sanctions and repairs on the RHS. Since
we consider illocutions as the only actions that can be performed in an electronic
institution, actions need to be translated into illocutions uttering that the action
has been done. We call this operation contextualisation. In general, the transla-
tion of the norms of [16] into our rules is straightforward. The permission of an
action is translated as a rule that converts the attempt to utter illocution, i.e.,



188 A. Garćıa-Camino et al.

att(S ,W , I ), into the illocution being uttered, i.e., utt(S ,W , I ). The prohibi-
tion of an action can be translated into a rule that ignores the attempt to utter
the illocution, and, optionally, a sanction to the violation can be imposed. The
obligation of an action needs to be translated into two rules, viz., a rule to sanc-
tion an agent when it does not fulfil an obligation (i.e., not uttering the expected
illocution at the right scene and state), and a rule to remove the obligation once
it is fulfilled. The translation of temporal clauses (BEFORE and AFTER) can be
achieved by adding to the LHS of the rule the condition that the time in which
the attempt is done has to be less (or greater) than the deadline.

Although the work in [3] proposes a framework that covers several topics of
normative multi-agent systems we shall focus on its definition of norm, in which
addressees stands for the set of agents that have to comply with the norm;
beneficiaries stands for the set of agents that profit from the compliance of the
norm; normativegoals stands for the set of goals that ought to be achieved by
addressee agents; rewards are received by addressee agents if they satisfy the
normative goals; punishments are imposed to addressee agent when they do not
satisfy the normative goals; context specifies the preconditions to apply the norm
and exceptions when it is not applicable. Notice that a norm must always have
addressees, normative goals and a context; rewards and punishments are disjoint
sets, and context and exceptions too.

A norm from [3] can be translated into the following rule schema to detect its
violation:

(context ∧ ¬ exception ∧ ¬ goal ′) � punishments

where context and exception are predicates obtained through contextualisation5

for specifying the context and exceptions mentioned in the norm, goal ′ is the
contextualised normative goal (which includes the addressee and possible bene-
ficiaries). Component punishments are contextualised actions obtained from the
norm. This rule captures that in a particular context which is not an exception
of the norm and whose goal has not yet been fulfilled the actions defined by
punishments should be executed.

Rewards can also be specified via the rule schema:

(context ∧ ¬ exception ∧ goal ′) � rewards

where rewards are also contextualised actions obtained from the norm. This rule
specifies that a reward should be given when addressee agents comply with the
norm, which is when the norm is applicable and the contextualised normative
goal (goal ′) has been achieved.

Event calculus is used in [6] for the specification of protocols. Event calculus is
a formalism to represent reasoning about actions or events and their effects in a
logic programming framework and is based on a many-sorted first-order predicate
calculus. Predicates that change with time are called fluents. In [6] obligations,
permissions, empowerments, capabilities and sanctions are formalised by means

5 Recall that contextualisation is the process of transforming actions into illocutions
stating that actions have been brought about.



Norm-Oriented Programming of Electronic Institutions 189

of fluents – prohibitions are not formalised in [6] as a fluent since they assume
that every action not permitted is forbidden by default. If we translate all the
holdsAt predicates into utt predicates, we can translate the obligations and per-
missions of [6] by including the rest of conditions in the LHS of the normative
rules. However, since there is no concrete definition of norm, we cannot state
that the approach in [6] is fully translatable into our rules.

Although event calculus models time, the deontic fluents specified in the ex-
ample of [6] are not enough to inform an agent about all types of duties. For
instance, to inform an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation fluent and the part of
the theory that models the violation of the deadline.

In [7] we find a proposal to represent norms via rules written in a modal logic
with temporal operators called hyMITL±. It combines CTL± with Metric Inter-
val Temporal Logic (MITL) as well as features of hybrid logics. That proposal
uses the technique of formula progression from the TLPlan planning system to
monitor social expectations until they are fulfilled or violated.

Intuitively, our rules capture formulae AG+(LHS → X+RHS) where LHS
and RHS are atomic formulae without temporal operators. As we build the
next state of affairs by applying the operations on the RHS of the fired rules, we
cannot use any other temporal operator in the RHS of our rules. Furthermore,
since our state of affairs has non-monotonic features we cannot reason over the
past of any formulae. We can only do it with predicates with time-stamps, like
the utt predicate, that are not removed from the state of affairs.

We can capture the meaning of the X− operator when it is used on the LHS of
the hyMITL rule: X−φ is intuitively equivalent to ctr(S ,W ,Ts)∧φ(T0)∧T0 =
Ts − 1. Moreover, we can also translate the U+ operator when it is used in the
RHS of the hyMITL rule: φ U+ψ is roughly equivalent to ψ � �φ. Although we
cannot use all the temporal operators on the RHS of our rules, we can obtain
equivalent results by imposing certain restrictions in the set of rules. F+φ can
be achieved if ⊕φ appears on the RHS of a rule and it is possible that the rule
fires. G+φ can be achieved after φ is added and no rule that could fire removes
it. Time intervals can be translated into comparisons of time-points as shown in
the previous example.

In [17] the language Social Integrity Constraints (SIC) is proposed. This lan-
guage’s constructs check whether some events have occurred and some conditions
hold to add new expectations, optionally with constraints. Although syntacti-
cally their language is very similar to ours, they are semantically different. Dif-
ferent from their use of abduction and Constraint Handling Rules (CHR) to
execute their expectations, we use a forward chaining approach. Despite the fact
that expectations they use are quite similar to obligations and they mention how
expectations are treated, that is, what happens when an expectation is fulfilled
or when it is not, and state the possibility of SICs being violated, no mecha-
nism to regulate agents’ behaviour like the punishment of offending agents or
repairing actions are offered.



190 A. Garćıa-Camino et al.

The work in [8] proposes the Object Constraint Language (OCL) for the speci-
fication of artificial institutions. The example of this work commits an auctioneer
not to declare a price lower than the agreed reservation price. As shown in sec-
tion 5, we can also express (rule VI) the case that the auctioneer is obliged to
withdraw the good when the call price becomes lower than the reservation price.
As for [8], we cannot perform an exhaustive analysis of the language because
neither the syntax nor the semantics are specified.

The approach in [18] uses Answer Set Programming (ASP) [19] for the spec-
ification and analysis of agent-based social institutions. They state that ASP
overcomes many Prolog limitations since, instead of calculating only the first
possible solution, it provides all answers to a query. Although ASP is suitable
for institution analysis, it may not be so efficient as required for institution
execution since only one answer is needed, viz., the next state of affairs.

As for institution modelling, they include institutional facts and actions, per-
missions, prohibitions, obligations (only) with deadline, violations and institu-
tional power. The latter, not included in our EI model: it specifies that a certain
agent is empowered to perform a specified institutional action in a given in-
stitution. However, they do not include the possibility of rewarding for norm
compliance nor managing other constraints than deadlines.

The work in [9] reports on the translation of the normative language presented
in [16] into Jess rules to monitor and enforce norms. This language captures
the deontic notions of permission, prohibition and obligation in several cases:
absolute norms, conditional norms, norms with deadline and norms in temporal
relation with another event. Absolute norms are directly translated into Jess
facts; conditional norms are directly translated into rules that add the deontic
facts when the condition holds; norms with deadline are translated into rules that
add conditional norms after the deadline has passed. Finally, norms in temporal
relation with other events are translated into rules that check if those events
have occurred.

Our proposal bears strong similarities with the work reported in [20] where
norms are represented as rules of a production system. We notice that our rules
can express their notions of contracts and their monitoring (i.e., fulfilment and
violation of obligations). However, in [20] constraints can only be used to depict
the left-hand side of a rule, that is, the situation(s) when a rule is applicable –
constraints are not manipulated the way we do. Furthermore, in that work there
is no indication as to how individual agents will know about their normative
situation; a diagram introduces the architecture, but it is not clear who/what
will apply the rules to update the normative aspects of the system nor how
agents synchronise their activities.

After analysing all these approaches we have found some norm patterns that
they have in common. Norms can be conditional or can have temporal constraints,
that is, they establish relationships between time-points or events or they hold
periodically. Our rules can capture the patterns from rather disparate formalisms,
thus fulfilling the requirement of general purpose mentioned in section 2.



Norm-Oriented Programming of Electronic Institutions 191

7 Conclusions and Future Work

In this paper we have introduced a formalism for the explicit management of
the normative position of agents in electronic institutions. Ours is a rule lan-
guage in which constraints can be specified and changed at run-time, conferring
expressiveness and precision on our constructs. The semantics of our formalism
defines a kind of production system in which rules are exhaustively applied to a
state of affairs, leading to the next state of affairs. The normative positions are
updated via rules, depending on the messages agents send.

Our formalism addresses the points of a desiderata for normative languages
introduced in section 2. We have explored our proposal in this paper by specify-
ing a version of the Dutch Auction protocol. We illustrate how our language can
provide other (higher-level) normative languages with a computational model
(i.e., an implementation) thus making it possible for normative languages pro-
posed with more theoretical concerns in mind to become executable.

Although our language is not as expressive as the language of [7] since we
cannot represent all the temporal modalities, our language is not a language for
checking properties of a system but for specifying its behaviour.

Furthermore, we notice that although our implementation directly captures
the proposed formal semantics, it is not as efficient as other implementations for
rule-based systems, such as the Rete algorithm [21].

As for future work, we would like to overcome the efficiency issue by providing
an implementation based on the Rete algorithm.

We would also like to generalise our language to cope with arbitrary actions,
rather than just speech acts among agents – this would allow our work to ad-
dress any type of open multi-agent system. We would also like to improve the
semantics of the language in order to support the use of temporal operators for
the management of time.

Our semantics describe a transition system similar to the one presented in
[22] – we would like to carry out a careful comparison between that work and
our operational semantics.

An interesting avenue of investigation is to endow agents with reasoning abil-
ities over our rules. Such reasoning, possibly using resource-bounded forward
and backward chaining mechanisms, would allow agents to anticipate the ef-
fects of their actions, that is, the punishments or rewards for, respectively, norm
violation and norm compliance.

We also want to investigate the verification of norms (along the lines of
our work in [23]) expressed in our rule language, with a view to detecting,
for instance, obligations that cannot be fulfilled, prohibitions that will prevent
progress, inconsistencies and so on.

Acknowledgements. This work was partially funded by the Spanish Educa-
tion and Science Ministry as part of the projects TIN2006-15662-C02-01 and
2006-5-0I-099. Garćıa-Camino enjoys an I3P grant from the Spanish Council for
Scientific Research (CSIC).



192 A. Garćıa-Camino et al.

References

1. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons,
Chichester, UK (2002)

2. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7(1),
69–79 (1999)

3. López y López, F.: Social Power and Norms: Impact on agent behaviour. PhD
thesis, Univ. of Southampton (2003)

4. Sergot, M.: A Computational Theory of Normative Positions. ACM Trans. Com-
put. Logic 2(4), 581–622 (2001)

5. Shoham, Y., Tennenholtz, M.: On Social Laws for Artificial Agent Societies: Off-
line Design. Artificial Intelligence 73(1-2), 231–252 (1995)

6. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, Springer, Heidelberg (2005)

7. Cranefield, S.: A Rule Language for Modelling and Monitoring Social Expectations
in Multi-Agent Systems. Technical Report 2005/01, Univ. of Otago (2005)

8. Fornara, N., Viganò, F., Colombetti, M.: An Event Driven Approach to Norms
in Artificial Institutions. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI),
vol. 3913, pp. 142–154. Springer, Heidelberg (2006)

9. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: Implementing Norms in
Electronic Institutions. In: Procs. 4th AAMAS (2005)

10. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Dis-
tributed Architecture for Norm-Aware Agent Societies. In: Baldoni, M., Endriss,
U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, Springer,
Heidelberg (2006)

11. Searle, J.: Speech Acts, An Essay in the Philosophy of Language. Cambridge Uni-
versity Press, Cambridge (1969)

12. Esteva, M.: Electronic Institutions: from Specification to Development. PhD thesis,
Universitat Politècnica de Catalunya (UPC), IIIA monography vol. 19 (2003)

13. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of Logic
Progr. 19/20, 503–581 (1994)

14. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, New
York, USA (1990)

15. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. PhD thesis,
Universitat Autònoma de Barcelona (UAB), IIIA monography vol. 8 (1997)

16. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multi-
agent Systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.)
MATES 2004. LNCS (LNAI), vol. 3187, Springer, Heidelberg (2004)

17. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
Verification of Agent Interactions using Integrity Social Constraints. Technical Re-
port DEIS-LIA-006-03, University of Bologna (2003)

18. Cliffe, O., De Vos, M., Padget, J.: Specifying and Analysing Agent-based Social
Institutions using Answer Set Programming. In: Boissier, O., Padget, J., Dignum,
V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J.
(eds.) Coordination, Organizations, Institutions, and Norms in Multi-Agent Sys-
tems. LNCS (LNAI), vol. 3913, pp. 99–113. Springer, Heidelberg (2006)



Norm-Oriented Programming of Electronic Institutions 193

19. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Press, Cambridge (2003)

20. Lopes Cardoso, H., Oliveira, E.: Towards an Institutional Environment using
Norms for Contract Performance. LNCS (LNAI). Springer, Heidelberg (in press)

21. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19(1), 17–37 (1982)

22. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

23. Vasconcelos, W.W.: Norm Verification and Analysis of Electronic Institutions. In:
Leite, J.A., Omicini, A., Torroni, P., Yolum, P. (eds.) DALT 2004. LNCS (LNAI),
vol. 3476, Springer, Heidelberg (2005)



An Agent-Based Model for Hierarchical

Organizations

Luis Erasmo Montealegre Vázquez and Fabiola López y López

Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla

montealegreluis@gmail.com, fabiola.lopez@siu.buap.mx

Abstract. Hierarchical structures have been widely used by human or-
ganizations because they provide the natural means to delegate tasks,
to reduce communication lines and to control the activities performed
into them. This has motivated the development of different approaches
to automate many of the activities that take place in hierarchical or-
ganizations. Recent frameworks, such as Gaia, Aalaadin, HarmonIA
and OperA, among others, have considered the agent paradigm to do so
without taking into account that organizations are dynamic entities that
evolve with the time and, consequently, agents must adapt to changes.
Here we develop a model for flexible and open hierarchical organiza-
tions where agents can dynamically adapt themselves to organizational
changes.

1 Introduction

The deployment of Internet and the middleware available to build distributed
applications provide the tools needed to automate many of the tasks that are
carried out into organizations. To do so, a paradigm to allow the representation
of both the elements that comprise an organization and the processes that oc-
cur within it, is needed. Since humans are a key element in any organization
and computational agents are conceived as software entities acting on behalf of
users, multi-agent systems (MAS) have been considered a suitable paradigm to
represent any kind of social group [1].

A big effort has been made to introduce organizational concepts into the
analysis and design of multi-agent systems. Examples of this can be found in
models such as Aalaadin [2], Moise [3], and MaSE [4]. All of them are based
on concepts such as roles, groups and structures. In addition, there are method-
ologies based in organizational concepts like Gaia [5]. An extension to Gaia,
the GaiaExOA methodology [6], includes organizational patterns to promote
the reusability of design models. Some other models such as HarmonIA [7] and
OperA [8] have dealt with open systems and self-interested agent behavior. Har-
monIA is a framework to model electronic organizations from the abstract level
where norms are defined to the final protocols and procedures that implement
those norms [7]. OperA is a framework for the specification of multi-agent sys-
tems that distinguishes between the mechanisms through which the structure

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 194–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Agent-Based Model for Hierarchical Organizations 195

and the global behavior of the model is described and coordinated, and the aims
and the behavior of the agents that populate the model [8].

Hierarchical structures have been widespread by human organizations because
they provide a natural way to delegate tasks, to reduce communication lines and
to control the behavior of each member in an organization. Moreover, in hierar-
chical organizations, as in any type of organization, services are provided either
to other organizations or to individuals, well-defined roles are established for
every member and organizational objectives are set since the beginning. How-
ever, organizations are complex and dynamic by nature, they can be redesigned
and re-engineered, consequently the way the agents and the coordination struc-
ture adapt and change over the time may affect the organizational performance
[9]. This paper presents our first results to address this problem.

Here, we have developed a model for open hierarchical organizations by taking
a framework for normative agents [10] as the base. In our model, each member
of the organization is considered as a normative agent [11], capable of reasoning
about the responsibilities and benefits it acquires acting as a member of an orga-
nization. We have used positions profiles [12] to represent functional positions (or
roles) and hierarchical structures. Since normative agents can modify its behavior
according to the changes in the legislation by rejecting or adopting new norms,
we have used norms in the definition of position profiles to represent dynamical
functional positions. Thus, agents can adapt to organizational changes at run-
time by updating the set of norms that defines their position profile. This makes
possible the implementation of flexible and dynamic organizations. Our work
also takes many concepts from different social theories such as the classic and
the neoclassic administration theory [13,14] as well as the human relationships
theory [15]. We have used the administrative process [14] to coordinate, to mon-
itor and to control the activities of the agents in the organization. The model
is mainly intended to facilitate the implementation of agent-based hierarchical
organizations that may help us to automate human organizations. In our model
one or several agents may act on behalf of a human member of an organization.

The model is represented by using the Unified Modeling Language (UML)
[16] because it has been widespread and it has become a standard de facto
within the software development industry. This paper is organized as follows.
In Section 2, we present the UML representation of the different elements of
normative multi-agent systems. Section 3 describes each element in the model
for agent-based hierarchical organizations. In Section 4, we develop the classical
example of a conference organization [8,5] by using our model, in order to show
its applicability. Finally, in Section 5 we present our conclusions and future work.

2 Normative Multi-Agent Systems

We have used the normative framework for agent-based systems developed by
López, Luck and d’Inverno [10] as the basis of our model. In this section we
present a summary of the main components, details can be found elsewhere
[11,17,18,19].



196 L.E. Montealegre Vázquez and F. López y López

2.1 Norms

According to [10], norms are the mechanisms through which societies regulate
the behavior of their members. The model of a norm, which representation is
shown in Figure 1, includes the following components:

– Normative goals. These are the goals prescribed by a norm.
– Addressee agents. These agents must comply the normative goals.
– Beneficiaries agents. These agents might result benefited from norm compli-

ance.
– Context. It represents the conditions to activate a norm.
– Exceptions. These are the situations where the agents are not forced to fulfill

a norm.
– Punishments. They model the penalties applied to the agents that do not

satisfy the normative goals.
– Rewards. Rewards are given to the agents that comply the norms.

Norms may be created by the agent designer as built-in norms, they can be the
result of agreements between agents, or can be elaborated by a complex legal
system [11]. Here, we assume that norms have already been created. Norms
can be divided into categories in several ways, like in [20] where norms are
classified according to their context into environment, organization, role and
interaction laws, for instance. Hereafter, we adhere to the position of López,
Luck and d’Inverno [10] and we will use the term norm as an umbrella term
to cover every type of norm ranging from obligations and permissions to social
commitments and social codes. We also recognize that although norms can be
created in different ways and for different purposes, all of them share the same
structure as described before. Categories of norms can be found in [11,18].

 

Norm
normativegoals : SetOfGoals
addressees : SetOfAutonomousAgents
beneficiaries : SetOfAutonomousAgents
context : EnvState
exceptions : SetOfEnvStates
rewards : SetOfGoals
punishments : SetOfGoals

{normativegoals!={}
 addresses!={}
 context!={}
 context.isIn(exceptions)==false
 rewards.intersectionWith(punishments)=={}}

Fig. 1. Class Norm

 

NormativeAgent
norms : SetOfNorms

adoptNorm(newnorm : Norm) : Boolean
deliberateNorm(adoptednorm : Norm) : Boolean
fullfillNorm(acceptednorm : Norm) : Boolean

LegislatorAgent
legislationnorms : SetOfNorms

issueNorm() : Norm
abolishNorm(obsoletenorm : Norm) : Void

DefenderAgent
enforcenorms : SetOfNorms
rewardnorms : SetOfNorms

enforceNorm(unfullfillednorm : Norm) : SetOfAttributes
rewardNorm(fullfillednorm : Norm) : SetOfAttributes

Fig. 2. Types of agents in a NMAS



An Agent-Based Model for Hierarchical Organizations 197

2.2 Normative Agents

A normative agent is an autonomous agent able to adopt, to deliberate and to
comply with norms on the basis of its own goals and preferences. A better de-
scription of these kind of agents can be found in [19]. Due to space constraints
we do not present the UML specification for attributes, goals, environmental
states, and autonomous agents, but it can be found elsewhere in [21]. Figure 2
describes a normative agent which is supposed to inherit from an autonomous
agent class. In a Normative Multi-Agent System (NMAS) there are agents enti-
tled to legislate and therefore to create new norms (see class LegislatorAgent),
and there are agents entitled to give rewards or to apply punishments to other
agents according to the compliance of norms (observe class DefenderAgent).
The UML representation of these agents is also shown in Figure 2. A NMAS [11]
must include the following elements (illustrated graphically in Figure 3).

– A set of agent members able to reason about the norms.
– A set of legislator agents.
– A set of norm defender agents.
– A set of norms directed to regulate the behavior of the agents.
– A set of norms whose purpose is to enforce and to determine the fulfillment

of the most recent set of norms.
– A set of norms directed to promote the fulfillment of norms through rewards.
– A set of emitted norms to allow the creation and the abolition of norms.

 

LegislatorAgent

NormativeAgent

DefenderAgent

Norm

NMAS

1..*

1

1..*

1

include

include

1..*
1

1..*
1

include

1..*

1

1..*

1 include

normsNMAS.unionWith(legislationnorms.unionWith(enforcingNorms.unionWith(rewardnorms)))

2..*

Fig. 3. Class NMAS

When systems regulated by norms are populated by autonomous agents, nei-
ther can all norms be considered in advance (since new conflicts among agents
may surge, and consequently new norms may be needed), nor can compliance with
norms be guaranteed (since agents can decide not to comply norms). Thus, these
systems must include mechanisms to deal with the modification and creation of
norms as well as with the unpredictable normative behavior of agents. That is



198 L.E. Montealegre Vázquez and F. López y López

the case of the last three sets of norms described above, which are intended to
be used by legislators and defenders to address such problems. Further details
are given in [10].

3 An Agent-Based Hierarchical Organization

In this section we use the model of NMAS and some concepts taken from ad-
ministrative theories to develop a model for hierarchical organizations. A human
organization is a goal-oriented social entity consisting of a group of persons and
designed to obtain results, to generate utilities and to provide social satisfac-
tion. It is structured deliberately because its structure suggests the division of
labor in such a way that it can be used to assign the execution of tasks among
its members [13]. The neoclassic administrative theory [14] adds some elements
to the formal concept of organization and defines it as a set of functional and
hierarchical positions oriented to the production of goods and services.

Translating these definitions to an agent-based hierarchical organization we
can define it as a NMAS where agent’s activities are coordinated with the pur-
pose of reaching organizational goals and, in this way, to offer some services.
In addition, an agent-based hierarchical organization has a set of functional
positions which describes a hierarchical structure. This structure is used to co-
ordinate the activities of the agents within the organization. Before providing
a model for hierarchical organizations we describe some organizational concepts
that will be used later on.

3.1 Resources

In order to provide services and achieve goals a human organization needs several
resources. Similarly, an agent-based hierarchical organization requires a set of
resources to operate according to its objectives. The representation of a resource
includes a name, a type, a location, and its availability as shown in Figure 4.

 

Resource
name : String
type : String
location : String
availability : Boolean

Fig. 4. Class Resource

 

OrganizationalGoal
organizationgoal : Goal
goalplan : PartialGlobalPlan
goalleader : PositionProfile

Fig. 5. Class OrganizationalGoal

3.2 Organizational Goals

Every human organization exists not only to reach objectives and to produce
results (lending some service) but also to obtain profits [14]. In a similar way,
an agent-based hierarchical organization is designed to reach goals, to offer ser-
vices and to obtain profits. Viewing the organization as a unit, the goals of an



An Agent-Based Model for Hierarchical Organizations 199

agent-based hierarchical organization are defined as a set of desired states. Each
organizational goal has associated some elements, such as a plan to reach that
goal, and a leader whose mission is to coordinate and consequently to ensure the
achievement of the organizational goal. This leader must be a legislator, because
it must make changes in legislation in the case of recurrent and unexpected con-
flicts among agents or due to effectiveness reasons. Its representation is shown
in Figure 5. The plans related to goals will be further described in Section 3.7.
Whereas, position profiles will be described in Section 3.5.

3.3 Organizational Services

Human organizations are intended to provide services to both organizations and
individuals [14]. In an agent-based organization, a service is defined as the set of
capacities or resources of a software entity, which can be accessed through the
network by external entities such as individual agents, people or other agent-
based organizations. Our representation of a service is like the one shown in
Figure 6. It includes an identifier, a set of goals, a description (which helps the
client to decide whether to contract the service or not), a plan, and a leader which
must be a defender agent, because it is the one responsible of guaranteeing the
service through norm compliance. Due to space constraints the process to verify
the fulfillment or the violation of a norm in a NMAS is not explained here, but
it can be found elsewhere in [11].

3.4 Contracts

A contract represents rights and obligations for the participants in it. An oblig-
ation is a norm which infringement is always penalized. To specify a right we
need a pair of norms, one specifying what must be done and another specifying
a reward to the addressee of the first norm. This relation between norms has
been called interlocked norms and the concept is better explained in [10]. Thus,
we can represent a contract by using sets of norms. In this way norms specify the
things that must be done to consider a service as fulfilled. A contract consists
of an identifier for the service, the identifiers of the participants, and the set of
obligations directed to the service providers (delivered product, deadlines, etc.).
The normative goals of these obligations must match the service goals, otherwise
the service cannot be guaranteed, i. e. the fulfillment of the service goals is an
obligation for the service providers, they are responsible of achieving the desired
results specified in the contract. A contract also includes the set of obligations as-
sociated to clients (payment, for instance). Therefore, obligations of both clients
and providers benefit their counterpart agents with rewards and/or contribute to
reach their goals when fulfilling the contract norms. Designing contracts in this
way let the agent decide whether to join the society or not as described in [22].
The remaining contract details are not discussed in this paper. However, details
about the specification of contracts can be found elsewhere [8,23,24].



200 L.E. Montealegre Vázquez and F. López y López

 

{servicegoals!={}}

OrganizationalService
serviceID : String
servicegoals : SetOfOrganizationalGoals
servicedescription : SetOfAttributes
serviceplan : PartialGlobalPlan
serviceleader : PositionProfile

Fig. 6. Class OrganizationalService

 

{serviceID!=null
 participantsID!={}
 obligationsprovider!={}
 obligationsclient!={}
 Contract.obligationsprovider.normativegoals
                       ==
             Service.servicegoals}

Contract
serviceID : String
participantsID : SetOfStrings
obligationsprovider : SetOfNorms
obligationsclient : SetOfNorms

Fig. 7. Class Contract

3.5 Position Profiles

In order to represent the hierarchy of an organization we have used the functional
positions analysis, as described in [12]. A functional position analysis consists of
a header which includes the organization’s general information (name, address,
etc.); an identification for the position, this includes all the information required
to identify the positions (a key for the position, a hierarchical level, the amount
of employees performing that position, the immediate inferior and superior po-
sitions, etc.); a generic description, here all the position activities are defined
in terms of goals; a specific description, this describes in detail all the activities
of the profile (i.e activities are ordered chronologically and according to their
importance); a specification for the position, it is derived from the position’s
description and emphasizes the minimum requirements to perform the position
(abilities, responsibilities, effort and working conditions); and a position profile,
which contains all the information collected during the analysis. A position pro-
file is intended firstly, to identify a functional position in a hierarchy, secondly,
to describe the set of obligations and rights related to a position, and thirdly, to
determine the authority and communication paths, i. e. to specify the superior
and the set of inferior elements regarding to a given position.

A role is an abstract description of an entity’s expected function [25]. Roles
have been represented in [3] as a set of forbidden/authorized goals to achieve,
plans to follow, actions to execute and resources to use. In [4] a role defines
the tasks that must be accomplished in order to achieve the role’s targets. In
HarmonIA [7] a role is a set of rules which define constraints to ensure that
desired states are kept or achieved, and acceptable behaviors are performed, i.
e. rules define the actions that are accepted. In OperA [8] roles are described in
terms of objectives and norms which specify the rights associated with the role,
and the type of enactment of the role (institutional or external). Here we use
the term position profile for describing a role, its main difference and advantage
over other models is that our role model include norms in its definition. Thereby,
agents can modify a position profile (role) by adopting new norms or updating
its current set of norms at runtime.

As mentioned before, in an agent-based hierarchical organization, the position
profiles are defined by using norms. It can be done due to the possibility of de-



An Agent-Based Model for Hierarchical Organizations 201

signing norms to specify authority (by means of benefits) and responsibility (by
means of obligations). The class PositionProfilet shown in Figure 8 depicts
the elements needed to define a profile for a functional position [12]. A profile
must include a profile key and a profile identifier. It also specifies the sets of
norms representing the obligations and the responsibilities included in a profile,
as well as the set of position profiles representing its subordinates and the posi-
tion profile representing its superior. The usage of these attribues will be detailed
in Section 4. It is necessary to emphasize that every organizational goal must be
an obligation for at least one position profile (the goal’s leader profile). There is
a relation between profiles and services similar to the one between organizational
goals and profiles. Service goals must be an obligation for the leader and/or its
subordinates. These two constraints can be explained as follows. Think for in-
stance, in the organization of a conference (see Section 4 for further details).
One goal for this organization is to review the papers submitted, this is the PC
members’ main obligation, they have to review at least one paper, i.e. there is a
norm in their profiles which aim is to review the papers assigned to them. These
constraints must apply for every organizational goal, otherwise it is not possible
to guarantee the proper operation of the organization.

3.6 Organizational Agents

This section aims to determine the characteristics and the capabilities of an
organizational agent. An organizational agent must exhibit abilities to do certain
activities or to obtain goals (autonomous agents). It must recognize and fulfill
the norms of the organization (normative agents). It must adopt one or several
functional positions, which are defined by position profiles; it must recognize
the authority lines of an organization and it must have access to some resources
(organizational agents). Thus, we have modelled the class OrganizationalAgent
as a specialization of the class NormativeAgent. In the case of organizational
agents which are also authorities, they must be represented by inheriting from
either LegislatorAgent or DefenderAgent classes. The OrganizationalAgent
class also defines the position profiles that an agent is currently performing as
well as the resources to which an agent has access to. Figure 9 shows how an
organizational agent is represented.

3.7 Administrative Process

A human organization can offer more than one service. The notion of service
needs the knowledge of the administrative process functions [14]. Each service
defines an administrative process. The administrative process consists of four
interrelated activities as Figure 10 shows.

1. Planning. In this phase the objectives of a service or organizational goal are
determined.

2. Organization. The output of this phase is a plan, which is the result of
the decomposition of an organizational goal into sub-goals. These sub-goals



202 L.E. Montealegre Vázquez and F. López y López

 

PositionProfile
profilekey : String
profileID : String
obligations : SetOfNorms
rights : SetOfNorms
superior : PositionProfile
inferiors : SetOfPositionProfiles

{obligations!={}}

Fig. 8. Class PositionProfile

 

 

 

PositionProfile

NormativeAgent

{resources!={}
 positions!={}}

Resource

OrganizationalAgent

1..*

1

1..*

1
perform

1..*

1

1..*

1
use

Fig. 9. Class OrganizationalAgent

are assigned to specific position profiles. A plan also defines the conditions
or states under which it can be applied and the consequences or the states
reached after the plan has been effectively finished (like in a STRIPS planner
[26]), as well as the resources required to achieve a goal or to provide a
service. A plan is depicted as Figure 11 shows. An important restriction
related to plans must be highlighted. All the sub-goals of a plan must be in
the obligations of the set of normative goals of the participants profiles.

 

 

 

 

Planning 

Direction 

Organization Control 

Fig. 10. The administrative process

 

PartialGlobalPlan
subgoals : SetOfGoals
conditions : SetOfAttributes
consequences : SetOfAttributes
participants : SetOfPositionProfiles
requiredresources : SetOfResources

{subgoals!={}
 conditions!={}
 consequences!={}
 participants!={}}

Fig. 11. Class PartialGlobalPlan

3. Direction. This activity involves the processes through which an adminis-
trator tries to influence its subordinates, to make them behave according to
the expectations and to reach the organizational goals. In our approach, it
is done by establishing performance standards. A performance standard is
modelled as an organizational goal.

4. Control. The activity of control supervises the organizational activities by
comparing the current performance (the goals achieved in a given moment)
with the established standard, and executes remedial actions, if needed.

In an agent-based hierarchical organization we can achieve coordination by
using the administrative process functions and the position profiles.

3.8 Administrative Agents

As mentioned before, we have used the administrative process as a coordination
mechanism. Then, we must recognize and describe the types of agents capable
of performing the functions of the administrative process (see Figure 12).



An Agent-Based Model for Hierarchical Organizations 203

– Administrator. It is an agent with certain authority over other agents. Its
main capabilities are focused on planning and directive activities.

– Supervisor. This agent verifies the fulfillment of other agents’ obligations,
this activity is intended to achieve the organizational goals. This type of
agent is capable of performing activities of supervision and control.

 

OrganizationalAgent
resources : SetOfResources
functionalpositions : SetOfPositionProfiles

AdministratorAgent
organizationalgoalplans : SetOfPartialGlobalPlans
serviceplans : SetOfPartialGlobalPlans

setOrganizationalGoals(goal : OrganizationalGoal) : SetOfGoals
setServiceGoals(service : OrganizationalService) : SetOfGoals
createGoalPlan(goalobjectives : SetOfGoals) : PartialGlobalPlan
createServicePlan(serviceobjectives : SetOfGoals) : PartialGlobalPlan

SupervisorAgent
performancestandards : SetOfOrganizationalGoals
supervisedgoals : SetOfGoals

directGoal(goalplan : PartialGlobalPlan) : SetOfOrganizationalGoals
directService(serviceplan : PartialGlobalPlan) : SetOfOrganizationalGoals
controlGoal(performancestandards : SetOfOrganizationalGoals) : Void
controlService(performancestandards : SetOfOrganizationalGoals) : Void

Fig. 12. Administrator and supervisor agents

An administrator must be able to establish the objectives of a goal or ser-
vice as stated by the first administrative activity: planning. This is done by the
methods setOrganizationalGoals and setServiceGoals. An administrator
can also generate plans (i. e. it can perform the second administrative activ-
ity: organization) by using the methods createGoalPlan to satisfy a goal and
createServicePlan to provide a service. This type of agent is a specializa-
tion of the class LegislatorAgent because it is responsible of applying changes
in legislation in order to coordinate an organizational goal or service as men-
tioned in Section 3.2. The activity of direction is carried out by a supervisor
by means of the methods directGoal and directService. These methods take
the plan of a service or goal to establish the expected performance standards.
A supervisor can reward or enforce the fulfillment or violation of norms since
it is the one in charge of monitoring the agents’ behavior in order to assure
the achievement of the organizational objectives, thus a supervisor must in-
herit from class DefenderAgent. The activity of control is implemented by the
methods controlGoal and controlService. Both of them verify if performance
standards have been reached and execute a remedial action if needed.

Previous organizational models [4,3,2],do not define a supervisor agent. This
agent is necessary because the agents in an open organization can act in a self-
interested way, and therefore, as the workers of a human organization, they will



204 L.E. Montealegre Vázquez and F. López y López

try to satisfy their individual goals [15]. The individual goals and the motivations
(preferences) of agents allow them to choose which norms to fulfill. Thus, we need
a means to control the unexpected and undesirable behavior of agents, with the
purpose of preserving the good performance of the organization. This control
is exerted by the supervisor agent. The idea of this kind of agent appears in
the HarmonIA framework [7]. There, an institutional role is defined, the police
agent, which is an agent that checks if the behavior of the other agents follows
the norms. The agent playing this role knows all the roles, and consequently
the complete set of rules that define them. Once again, our model of supervisor
is better in the sense that if a change in legislation may occur it would not
affect the effectiveness of supervision, because the supervisor can update its set
of monitored norms at runtime.

3.9 Global View

The relations between the elements of our model can be summarized as follows.

 

adopt

LegislatorAgentDefenderAgent

Goal

EnvState

AutonomousAgent
1..* 11..* 1

reach

1

1

1

1
perceive

Contract

Resource

PartialGlobalPlan

OrganizationalService

1..*

1

1..*

1

use

1..*

1

1..*

1

establish

1

1

1

1

require

OrganizationalGoal

1..*

1

1..*

1

use

1

1

1

1

require

OrganizationalAgent

SupervisorAgent

PositionProfile

1..*

1

1..*

1

perform

1..*

1

1..*

1

perform

AdministratorAgent

1..*

1

1..*

1

perform

AgentOrganization

1..*

1

1..*

1 offer

1..*

1

1..*

1
reach

1..*

1

1..*

1

include

1..*

1

1..*

1

include

1..*

1

1..*

1

define

1..*

1

1..*

1

include

Norm
1..*

1

1..*

1

establish

NormativeAgent
1..*1 1..*1

Fig. 13. Global view

An agent-based hierarchical organization consists of a set of organizational
agents able to perform the administrative process activities (the agents supervi-
sor and administrator). An organizational agent is the specialization of a nor-
mative agent. A normative agent can be a defender or a legislator. A normative
agent is the specialization of an autonomous agent, which is defined as a BDI
agent capable of reaching goals and perceiving an environment. An agent-based



An Agent-Based Model for Hierarchical Organizations 205

organization aims to offer services and to achieve organizational goals. These
services and goals need to use various resources and require the elaboration of
a plan. A service associates a contract for each client of an organization. An
agent-based organization defines position profiles which are performed by orga-
nizational agents. The organization establishes norms to regulate the behavior
of agents. This description is depicted in the UML diagram shown in Figure 13.

4 The Applicability of the Model

In order to show the applicability of our model, we have developed the example
of a conference organization, previously done in [8] and [5]. Due to the lack
of space, we will only compare our model with OperA [8]. The UML use case
diagram for our organization is shown in Figure 14. The functional positions in
this example are: the organizer, the PC chairs, the PC members, the local chairs,
and the session chairs. The organizational service provided by this society is to
organize a conference. To organize a conference, it is necessary to review the
papers submitted. This service is described in the instance of the Figure 15. It
includes the identifier for the service, it also describes the goals of the service.
Each one of these goals have associated a set of goals which must be previously
achieved. These goals are aimed to show the dependency between service’s goals.
They also define the importance of each goal, because they dictate which goal
must be reached first. It means that in order to review a paper it must be
assigned first, then it must be read and a report must be written, finally, this
report must be sent to the leader of the service. Additional information related
to the participation of the client in the conference is also given (the date and
the place where the conference will take place). It also has a plan and a profile,
which acts as the service leader, associated. Once the author has decided to
contract the service, an instance like the one shown in Figure 16 is created. It
includes the identifier for the service and an identifier for both the client and
the provider, it also describes the obligations that the author, as a client, must

 

agtOrganizer

agtPCMember

agtPCChair

agtSessionChair

Review a Paper

Assign a Paper <<use>>

Organize Session

<<use>>

agtLocalChair

Get Notification

<<use>>

Submit a Paper

<<use>>

Organize Local

<<use>>

agtAuthor

Organize Program

<<use>>

Get Presentation 
Schedule

<<use>>

Fig. 14. Use case diagram



206 L.E. Montealegre Vázquez and F. López y López

 

serviceID = "RVW"
servicegoals = {
 {paperAssigned(Paper,Reviewer,Deadline),{}},
 {read(Paper),{golPaperAssigned}},
 {reportWritten(Paper,Report),{goalReadPaper}},
 {reviewReceived(serviceleader,Paper,Report),
                            {golReportWritten}},
 {paperReviewed(paper,report),
                           {golReviewReceived}}}
servicedescription = {hostCity(CityName), 
                   presentationDate(Month,Year)}
serviceplan = plnReviewPaper
serviceleader = prfPCChair

srvReviewPaper : OrganizationalService

Fig. 15. Service srvReviewPaper

 

serviceID = "srvReviewPaper"
participantsID = {authorID,conferencename}
obligationsprovider = {nrmAssignPaper,
                       nrmReviewPaper}
obligationsclient = {nrmAssistConference,
              nrmAcceptNotificationResult}

ctrAuthorContract : Contract

Fig. 16. Contract ctrAuthorContract

accept. In this case its obligation is to accept the reviewing results (negative or
positive), and to attend the conference in the case the paper is accepted. On
the other hand, the organization, as a service provider, is obliged to assign the
paper to a reviewer, who consequently, must review the paper.

In [8] a role is defined as a set of objectives, a set of sub-objectives, a set
of rights, a set of norms and a type. In our model, that role corresponds to
the class PositionProfile. Figure 17 shows the instance for the PC mem-
ber profile. The profile key is PCM, which identifies the profile in general. The
profile identifier gives a unique identifier to the agent performing that profile.
The attributes superior and inferiors, have been defined in order to repre-
sent the organization’s hierarchical structure. The profile for the PC member
indicates that it’s superior is the profile PC Chair, and that it has no infe-
riors, which means that this profile is the lowest in the hierarchy, because it
has no subordinates. Conversely when a profile has no superior, it means that
it is highest in the hierarchy. Therefore, these attributes describe the hierar-
chical levels of the organization being modelled. Following the example devel-
oped in [8], the obligations given to pfrPCMember, are defined by the norms
nrmReviewPaper and nrmRefuseColleague. Figure 18 shows the instance di-
agram for the norm nrmReviewPaper. The normative goals for the norm are:
to review the paper, to make a written report of the paper, and to send the
report to the PC member in charge. Those actions will lead the agent to the
state paperReviewed(Paper,Report). These goals have some other goals as-
sociated which tell the agent which goals have to be reached first, starting
from the most important, which has no goals associated, to the least. In other
words, the goals’ importance of the profile defines individual goal dependency.
Observe that these goals are a subset of the goals of the service. This implies
a dependency between the profiles prfPCMember and prfPCChair. Observe that
the context of the norm nrmReviewPaper is the goal paperAssigned(Paper,
Reviewer,Deadline) which is the goal of the norm nrmAssignPaper which is
directed to the profile prfPCChair. This means that a paper cannot be reviewed
until that paper is assigned to a PC member. Due to space constraints neither
the profile nor the norm mentioned above are depicted here.

To model the processes done in organizations, OperA uses scene scripts. A
scene script serves as a blueprint for the actual interactions between actors [8].



An Agent-Based Model for Hierarchical Organizations 207

 

profilekey = PCM
profileID = 02PCM01
obligations = {nrmReviewPaper, 
               nrmRefuseColleague}
rights = {nrmAccesConfTool}
superior = prfPCChair
inferiors = {}

prfPCMember : PositionProfile

Fig. 17. Position profile prfPCMember

 

normativegoals = {{read(Paper),{}},
 {reportWritten(Paper,Report),{golReadPaper}},
 {reviewReceived(prfPCMember.superior,Paper,Report),
                            {golReportWritten}},
 {paperReviewed(paper,report),{golReviewReceived}}}
addresses = {prfPCMember}
beneficiaries = {prfPCChair}
context = {paperAssigned(Paper,prfPCMember,Deadline)}
exceptions = {isColleague(Author,Paper)}
rewards = {}
punishments = {discardAsReviewer(prfPCMember)}

nrmReviewPaper : Norm

Fig. 18. Norm nrmReviewPaper

A scene script is equivalent to the activities of planning and direction of the
administrative process. In what follows we describe the administrative process
done when a paper is reviewed, by using UML sequence diagrams. The use
case begins when an author uploads a paper to the ConfMaster Tool, this
action changes the environment in the organization by adding the predicate
newPaper(Author,Paper). This induces the deliberation process of the agent
enacting the position profile prfOrganizer who is the leader of the organiza-
tional service (agtOrganizer). The current environmental state matches the
context of the norm nrmCoordinateReviewProcess which is defined in the pro-
file prfOrganizer. Service’s goals are the goals of the norm activated. The
agent agtOrganizer creates a new organizational goal oglReviewPaper, which
aim is to review the paper recently sent. To do so, the organizer uses method
setOrganizationalGoal which returns the set of sub-goals for the organiza-
tional goal (see Figure 12), these goals are the same defined in the goals of
the service (assign and read the paper and write and deliver the report as Fig-
ure 15 shows). This method corresponds to the first activity in the adminis-
trative process. Once the sub-goals are established, the organizer uses method
createGoalPlan, which creates the partial global plan to achieve the organiza-
tional goal. Thus, the agent agtOrganizer get its inferiors’ position profiles, to
choose the profile that best fits the sub-goals. This decision is taken based on
the obligations’ normative goals of the profile. Then, the agent creates a plan
establishing the set of sub-goals, the set of position profiles, the set of resources
required, and the context for the plan, in order to add that plan to the organiza-
tion’s set of plans. Once a resource is assigned to an agent performing a profile,
it is no longer available to any other until the goal plan has been achieved or the
plan has been discarded. These actions correspond to the second administrative
process activity (See Figure 19).

The following example is intended to show, the actions taken when some
agents do not comply with their obligations. In OperA [8] this can be done by
monitoring the contracts of the role enactors, but not specific activities or mech-
anism are defined. Verification of norm compliance is an optional clause in the
contract that specifies by whom and how the norm will be verified and which are
the actions to be executed if norms are ignored. In HarmoniA norm compliance
is verified by the police agents as mentioned in Section 3.8. In the approach
presented in [27] the verification of norm compliance is done by checking the



208 L.E. Montealegre Vázquez and F. López y López

 orgConference : 
AgentOrganization

agtPCChair 
: Organizer

prfOrganizer : 
PositionProfile

plnReviewPaper : 
PartialGlobalPlan

setNewGoal(Goal)

setOrganizationalGoals(OrganizationalGoal)

createGoalPlan(SetOfGoals)

getInferiors( )

setSubgoals(SetOfGoals)

setPositionProfiles(SetOfPositionProfiles)

setRequiredResources(SetOfResources)

setContext(SetOfAttributes)

setPartialGlobalPlan(PartialGlobalPlan)

Fig. 19. Planning and organizing a global goal

 

orgConference : 
AgentOrganization

agtPCChair : 
PCChair

agtNewPCMember : 
PCMember

envConference 
: EnvState

getState( )

updateBeliefs(SetOfAttributes)

enforceNorm(Norm)

setState(SetOfAttributes)

getState( )

controlGoal(SetOfOrganizationalGoals)

setOrganizationalGoal(Goal)

fullfillNorm(Norm)

getOrganizationalGoal(Goal)

getPartialGlobalPlan(Goal)

directGoal(PartialGlobalPlan)

setPartialGlobalPlan(PartialGlobalPlan)

Fig. 20. Directing and controlling a global goal

safety and the liveness properties of protocols. The former states that if there is
no steps in a protocol that violate any norm, the protocol will not violate any
of the norms as a whole [27], the latter checks if the protocol achieves a specific
goal at its end.

Here, the actions to verify norm compliance are implemented using the ac-
tivities of control and direction. If the agent PC member decides not to fulfill
the norm nrmRefuseColleague, the following process is initiated. The PC chair
detects that a PC member did not comply with norm nrmRefuseColleague,
and uses its method controlGoal, which takes the set of organizational goals
that cannot be reached, and decides whether to apply a corrective action or not.



An Agent-Based Model for Hierarchical Organizations 209

A corrective action can be either, the issue or the enforcement of a norm, the
modification of either a global plan or a global goal, or the creation of a con-
tingency plan among other actions. This undesirable behavior, activates method
enforceNorm, by applying the punishment associated. In our example, it pro-
duces the activation of method directGoal, which creates a contingency plan,
by adding a new global goal directed to a new reviewer, i. e. other agent per-
forming the PC member position profile, this new agent gets both the new plan
and the new goal directed to it. Figure 20 illustrates these activities.

Here we have proposed a norm-based model to represent hierarchical organi-
zations which main difference with other models, and specifically with OperA
is its flexibility. Autonomous normative agents are designed in such a way that
changes in norms and the issuance of new ones does not produce any harm to
the effectiveness of the whole system, since agents can adopt new norms and
update its current set of norms. Therefore, the implementation of dynamical
position profiles (or roles) is possible, this can also lead us to represent flexi-
ble organizations. This flexibility is extended to the mechanisms of supervision
and verification of norm compliance, since changes in norms are updated by
supervisor and defender agents at runtime.

5 Conclusions

We have presented a model for hierarchical organizations based on a normative
framework for agent-based systems [10]. The model comprises elements from
the administrative area [13,14] like, the administrative process, which defines
the set of internal actions performed when an organization needs to provide a
service or to reach some organizational goals. The model defines suitable agents
to support and to perform the administrative process functions. It also provides
a representation for a position profile, which is used to make a functional position
analysis in human organizations [12]. Just as in human organizations [15] our
model also represents the norms that control the behavior of their members [11].
The usage of norms in the definition of the position profiles allow to adapt agent’s
behavior at runtime. The model can be used to represent and to automate the
procedures that are present in human organizations. So, we can make possible
the implementation of human-like organizations open and heterogeneous, based
on normative multi-agent systems. This implementation can be done by using
the middleware available until now and the services can be provided through
the Internet. In this paper we have assumed that the organization is already
formed, details concerning to the creation of the system such as, how are the
norms created, how the agents enter or leave the organization or how are they
selected to perform a position profile (by using a trust mechanism as the one
described in [28], for instance), etc., as well as more specific details related to
the implementation of the model are beyond the scope of this paper, however
these issues conform our proposal for future research.



210 L.E. Montealegre Vázquez and F. López y López

References

1. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)

2. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: Proceedings of the Third International Conference
on Multi-Agent Systems (ICMAS98), pp. 128–135 (1998)

3. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: MOISE: An organizational
model for multi-agent systems. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000
and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 156–165. Springer, Heidelberg
(2000)

4. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering.
International Journal of Software Engineering and Knowledge Engineering 11(3),
231–258 (2001)

5. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transaction on Software Engineering Methodol-
ogy 12(3), 317–370 (2003)

6. Gonzalez-Palacios, J., Luck, M.: A framework for patterns in gaia: A case-study
with organisations. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382, pp. 174–188. Springer, Heidelberg (2005)

7. Vázquez-Salceda, J.: Thesis: The role of norms and electronic institutions in multi-
agent systems applied to complex domains. The harmonia framework. AI Commu-
nications 16(3), 209–212 (2003)

8. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. PhD thesis, Utrecht University (2003)

9. Carley, K.M., Gasser, L.: Computational organization theory. In: Weiss, G. (ed.)
Multiagent systems: A modern Approach to Distributed Artificial Intelligence, pp.
299–330. MIT Press, Cambridge (1999)

10. López, F., Luck, M., d’ Inverno, M.: A normative framework for agent-based sys-
tems. In: NorMAS ’05: Proceedings of the Symposium on Normative Multiagent
Systems, The Society for the Study of Artificial Intelligence and the Simulation of
Behaviour, pp. 24–35 (2005)

11. López, F., Luck, M.: A model of normative multi-agent systems and dynamic rela-
tionships. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA 2002. LNCS
(LNAI), vol. 2934, pp. 259–280. Springer, Heidelberg (2004)

12. Gama, E.: In: Bases para el Análisis de los Puestos. Manual Moderno, ch. 4, pp.
59–89 (1992)

13. Chiavenato, I.: Teoŕıa Clásica de la Administración. In: Introducción a la Teoŕıa
General de la Administración, pp. 88–112. McGraw-Hill, New York (2000)

14. Chiavenato, I.: Teoŕıa Neoclásica de la Administración. In: Introducción a la Teoŕıa
General de la Administración, pp. 201–250. McGraw-Hill, New York (2000)

15. Chiavenato, I.: Implicaciones de la Teoŕıa de las Relaciones Humanas. In: Intro-
ducción a la Teoŕıa General de la Administración, pp. 141–196. McGraw-Hill, New
York (2000)

16. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Man-
ual. Addison-Wesley, Reading (1998)

17. López, F., Luck, M., d’ Inverno, M.: Constraining autonomy through norms. In:
AAMAS ’02: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 674–681. ACM Press, New York
(2002)



An Agent-Based Model for Hierarchical Organizations 211

18. López, F., Luck, M.: Modelling norms for autonomous agents. In: Chavez, E.,
Favela, J., Mejia, M., Oliart, A. (eds.) ENC ’03: Proceedings of the Fourth Mexican
International Conference on Computer Science, Washington, DC, USA, pp. 238–
245. IEEE Computer Society Press, Los Alamitos (2003)

19. López, F., Arenas, A.: An architecture for autonomous normative agents. In: ENC
’04: Proceedings of the Fifth Mexican International Conference in Computer Sci-
ence (ENC’04), Washington, DC, USA, pp. 96–103. IEEE Computer Society Press,
Los Alamitos (2004)

20. Felićıssimo, C., Choren, R., Briot, J.P., Lucena, C.: Supporting regulatory dynam-
ics in open mas. LNCS, vol. 4386, pp. 140–155. Springer, Heidelberg (2007)

21. Montealegre, L.: Modelado de organizaciones jerárquicas usando sistemas multia-
gentes normativos. Master’s thesis, Benemérita Universidad Autónoma de Puebla
(2005)

22. López, F., Luck, M., d’Inverno, M.: Normative agent reasoning in dynamic soci-
eties. In: Jennings, N., Sierra, C., Sonenberg, L., Tambe, M. (eds.) AAMAS ’04:
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems. LNCS (LNAI), vol. 3394, pp. 732–739. IEEE Computer
Society, Los Alamitos (2004)

23. Boella, G., van der Torre, L.: Contracts as legal institutions in organizations of
autonomous agents. In: Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 948–955 (2004)

24. Sandholm, T., Lesser, V.: Leveled-commitment contracting: A backtracking instru-
ment for multiagent systems. AI Magazine 23(3), 89–100 (2002)

25. Kendall, E.: Agent roles and role models: New abstractions for intelligent agent
system analysis and design. In: Proceedings of the International Workshop on
Intelligent Agents in Information and Process Management, Bremen, Germany,
September 1998 (1998)

26. Russell, S., Norving, P.: Artificial Intelligence. A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ (1995)

27. Aldewereld, H., Vázquez-Salceda, J., Dignum, F., Meyer, J.: Verifying norm com-
pliancy of protocols. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G.,
Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems. LNCS (LNAI),
vol. 3913, pp. 127–141. Springer, Heidelberg (2006)

28. Hermoso, R., Billhardt, H., Ossowski, S.: Integrating trust in virtual organisations.
LNCS, vol. 4386, pp. 17–29. Springer, Heidelberg (2007)



Ballroom etiquette: A Case Study for

Norm-Governed Multi-Agent Systems

Dorian Gaertner�, Keith Clark, and Marek Sergot

Imperial College London, SW7 2AZ, United Kingdom

Abstract. We present a case study which describes a ballroom as a
social institution with autonomous dancer agents constrained by sets of
norms and conventions that coordinate the behaviour of the participants.
We provide a representation for the interaction protocols as finite state
machines and a new way of formalising the associated norms in a logic
programming language. Furthermore, we report on recent and ongoing
work on an architecture for normative systems of this kind which allows
agents to dynamically download interaction protocols and operational
norms to guide their behaviour. Finally, we outline an alternative ap-
proach for representing the institutional state in a virtual, distributed
fashion in the agents’ private belief stores.

1 Introduction

We present the main elements of a norm-governed multi-agent system which sim-
ulates a ballroom for social dancing. It is intended as a case study to explore the
specification and implementation of a wide class of norm-governed multi-agent
systems. Agents in the ballroom form commitments by negotiating according to
specified protocols and conventions. The fulfilment of these commitments, and
other aspects of the agents’ interactions, are further guided and constrained by
norms of conduct expressing what behaviours are socially acceptable (or ‘legal’).
These protocols and norms together constitute the ballroom etiquette1. Our as-
sumption is that all ballroom etiquette has general common features, and an
ontology in terms of which the norms can be expressed, though the details will
vary from one specific ballroom to another. Our aim is to provide an implemen-
tation in which agents joining a computational society (here, a ballroom) are
provided with an executable representation of the applicable norms which they
use in their internal decision-making procedures.

Clark and McCabe [7] have used the ballroom example to demonstrate fea-
tures of the agent programming language Go!, and its support for multi-threaded
agents with inter-agent communication and coordination via messages. Although
the agents are quite simple, this scenario encompasses key behavioural features
� The first author undertook part of this work while at the Artificial Intelligence

Research Institute (IIIA) in Bellaterra, Spain.
1 Etiquette: the customs or rules governing behaviour regarded as correct or acceptable

in social or official life. [Collins dictionary]

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 212–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 213

of agents: autonomy, adaptability and responsibility. However, in that imple-
mentation the norms governing the dancers’ interactions — the protocols used
to negotiate commitments, and the conventions that govern how commitments
are fulfilled — are implicit in the code. These implicit norms are hard-coded
which makes their modification cumbersome and time-consuming.

We have constructed a version in which these norms are explicit, providing
a case study for specifying and implementing a multi-agent system (MAS) in
which agents take account of and deliberate about the norms that regulate their
behaviour. Like Artikis et al. [2,3], Ossowski [16], and many others, we accept
that organisational and legal elements of open agent systems, the semantics of
agent communication, and social and normative relations generally, must be
externally visible and not embedded in the internal state of individual member
agents. However, we also want to address how individual agents can take into
account the existence of norms in their internal decision making procedures.
While this aspect has been analysed thoroughly for individual normative agents
by Boella and Lesmo [4] and Castelfranchi et al. [6] and others, the institutional
view of norms for multi-agent systems is only just beginning to receive attention
(but see e.g. [14,17]).

In the present version we assume that agents always fulfil their commitments
and comply with any other applicable norms, as in the original implementation
by Clark and McCabe. In future versions we will remove this assumption, so as to
explore mechanisms for enforcing and encouraging norm compliance, sanctioning
and other reparational procedures, and the associated auditing infrastructure.
These topics will not be covered in this paper.

In the next section, we describe the ballroom simulation in more detail. We
provide examples of the protocols and norms, their representation, and require-
ments for their implementation in Sections 3 and 4. In Section 5 we outline an
agent architecture in which agents can download interaction protocols together
with the applicable norms and conventions expressed in a common ontology
when they join the ballroom. Section 6 then introduces a way of modelling the
institutional state in a virtual fashion, in which each agent maintains its own rep-
resentation of the relevant state of the institution as part of its internal beliefs.
Section 7 presents related work and Section 8 concludes.

2 The Simulation

As a springboard for this research we are using a ballroom simulation devised
by Clark and McCabe [7] that consists of a dance floor and a bar area. In this
simulation, male and female agents participate in social dancing and negotiate
over which partner to dance with for the next dance of a certain kind. The agents
are multi-threaded in the sense that their reactive and deliberative behaviours
are executed concurrently. Agents communicate and coordinate their behav-
iour using their beliefs, intentions and desires which are modelled using dynamic



214 D. Gaertner, K. Clark, and M. Sergot

memory stores. The band, represented by an additional agent, plays one of six
different types of dance deciding randomly which dance to play next. Once a
negotiation between two dancers concludes in an agreement between them to
dance the next polka, say, both dancers are committed to indeed perform the
next polka together.

Dancer agents can arrive and leave the dance hall at any time — while the
band is playing or during the negotiation phase. When a new dancer agent ar-
rives, it registers with the directory server (which is a facilitator used by the
dancer agents to discover potential partners) its gender and a list of its desires.
These include the desire to dance n1 dances of type D1, n2 dances of type D2,
and so on, and to go to the bar when dances of type D3 are played. The direc-
tory server then announces the arrival of a new dancer agent to the others and
informs the new dancer about what were the initial desires of the other agents
that are present. This information might not coincide with the current desires of
the other dancers due to the fact that it is the dancers themselves, rather than
the directory server, which keep track of (their beliefs about) other dancers’
changing desires. For example, while agent Bob may have been informed that
agent Alice initially desired to dance two tangos, he is generally unaware that
she may already have fulfilled these desires (unless it was he himself who has
danced the tango with her twice, in which case he will have updated his beliefs
accordingly). The prototype application is written in Go!, a multi-paradigm pro-
gramming language for agent applications. Go! has logic programming features
such as relations and action procedure definitions for imperative programming
[7]. It is multi-threaded and uses asynchronous message-passing for inter-agent
communication. Threads within the same agent can also communicate using
Prolog-style dynamic relations as shared memory, in the manner of a Linda [5]
tuple store.

The simulation cycles through two phases. In phase one, the band plays a
tune of type D (randomly chosen from the set of dance types). In the Go!
implementation, the band announces that it is about to play a dance of type D
by broadcasting a start D message. Dancers who have a joint commitment to
dance the next D dance together, then exchange messages as part of a hand-
shake protocol and begin to dance. Dancers who have a joint commitment to go
to the bar together at the next D dance, exchange messages and go to the bar.
The end of the dance is signalled when the band announces (again by way of
message broadcast) that it has stopped playing.

In phase two, which takes place between dances, the dancer agents negotiate
to form commitments to dance the next time the band plays a particular type of
dance, say a waltz, or to go to the bar area the next time some type of dance, say
a polka, is played. At the next dance interval the beliefs, desires and intentions
of the dancer will almost certainly have changed. Even if they are the same, a re-
negotiation with the same female may now have a different outcome because of
changes in her mental state. The negotiations in phase two follow fixed protocols,
the details of which will vary from one dance hall to another and will be looked
at in the next section.



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 215

3 Negotiation Protocols

In order to coordinate what to dance, when, and with whom, agents need to
negotiate. In the simplest form, this involves one agent inviting another agent
to dance, who then accepts or declines. In general however, negotiations can
be much more complex and have to follow certain protocols which define valid
interactions.

Example variations. The dance simulation we described above restricts the
ability to negotiate to times when the band is not playing. This is not necessarily
a fixed feature of all dance halls. In some dance halls one may want to allow
negotiations to take place at any time, or perhaps only when the band is not
playing except if both dancers are at the bar.

Another characteristic of a negotiation is the initiator. In the original simu-
lation the female never takes the initiative. A female dancer has to wait for an
initial proposal from a male and thereafter can make counter proposals about a
different dance or about going to the bar, depending on her current desires and
commitments.

Our approach supports a wider range of negotiation protocols, according to
the type of dance hall. In a ladies’ choice discotheque, for example, the female
dancer can and should take the initiative. This is easily implemented by changing
the protocol. Other possible variations involve disallowing counter proposals, or
requiring a dancer to accept any proposal to dance, irrespective of its desires, as
long as it does not conflict with existing commitments. One could also imagine
a ballroom, in which dancers must negotiate via some intermediary. As men-
tioned before, a dancer agent can participate in many simultaneous negotiations
by spawning auxiliary negotiation threads, subject to the ‘good faith’ principle
outlined below. We may wish to impose further restrictions, so that agents can
negotiate with only one other agent at a time, for example.

Commitments. We assume that agents do not dance/go to the bar unless they
have a commitment to do so. Furthermore, in the present version of the system,
dancers always fulfil their commitments, i.e. they will always dance/go to the
bar, if they have a commitment to do so. Thus dancer agents should never make
commitments regarding a particular type of dance with more than one partner at
a time. It also follows that each agent has at most n dance commitments at any
given time, where n is the number of different dance types, since commitments
are always taken to be for the actions to be performed the next time the band
announces a particular type of dance.

Good faith principle. Dancers can participate in many negotiations concur-
rently, but only in accordance with a principle of good faith whereby (a) they
never initiate, accept or counter-propose a new negotiation concerning the next
dance of type D when already participating in a negotiation about dance type
D with another agent, and (b) they never propose or accept a commitment con-
cerning dance type D when they already have a commitment regarding dance
type D with another agent. There are several assumptions about the nature of



216 D. Gaertner, K. Clark, and M. Sergot

the negotiation protocol that are implicit in this good faith principle: one aim
of our case study is to make them explicit.

Representation. Negotiations follow a particular protocol which is specified by
the system designer when formalising the interaction of agents. These protocols
are represented as Finite-State-Machines and instantiated by the agents when
required. One example protocol and the simplified messages passed between
the negotiation participants is given in Figure 1. Note that Dance, Dance2 and
Dance3 are variables instantiated such that Dance �= Dance2 etc. and that in
this example, only female dancers can suggest drinking at the bar.

After the negotiations are finished and the band has announced it has started
to play a certain dance (a polka, say) the dancing phase is executed (as explained
in Section 2). Agents who have a joint commitment to action, triggered by the
announcement, enter another exchange of messages. There, another protocol
regulates the interaction between male and female dancers similar to the notion
of a hand-shake. The male reminds the female of their mutual commitment and
the female acknowledges him and the action, to dance or go to the bar, begins.
If their agreement was to go drinking at the bar when the next polka is played,
then their interaction will vary accordingly. Once the band stops playing, the
dancing or drinking stops and another round of negotiations begins. Finally, the
band announces the end of the evening and agents follow a protocol that governs
how they bid farewell to each other.

M

1
��
��������F

3

���
��

��
��

5

������������������

2

����
��

��
�

4

������������������

M

2

����
��

��
�

3

���
��

��
��

6 ��

M M M

8

���
��

��
��

7

����
��

��
�

6��

��������	
�����F ��������	
�����F ��������	
�����F ��������	
�����F

Fig. 1. Simplified example protocol which allows agents to counter-propose

(1) willyouDance(Dance) (5) barWhen(Dance2)
(2) okDance() (6) willyouDance(Dance3)
(3) sorryDance() (7) okBar()
(4) willyouDance(Dance2) (8) sorryBar()



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 217

To summarise, there are three stages in the simulation that are controlled by a
protocol (negotiation, hand-shake and farewell) but these protocols are no longer
hard-wired into the agents’ code. Instead they are downloaded dynamically, in
a sense that will become clear in Section 5.

4 Norms

For the purposes of this paper, we will follow a commonly accepted usage and
classify norms broadly into two general categories: constitutive norms and be-
havioural norms (or norms of conduct).

Constitutive norms specify (1) the conventional-institutional meaning of mes-
sages and other communicative acts within a given institution (that a message
‘Will you dance the tango?’ is an expression of an ‘offer to dance’, that a mes-
sage ‘Yes’ is an expression of an ‘acceptance to dance’ depending on context,
and so on), (2) the protocols and procedures which define what kinds of acts
are meaningful or ‘valid’ according to context (that an ‘acceptance’ following a
(valid) ‘offer’ forms a ‘commitment’, that an ‘offer’ by one party can be followed
by a ‘counter-offer’ by the other party in a negotiation, that the parties in a
negotiation must take turns in exchanging messages, and so on), and (3) other
more general forms of what are sometimes called ‘qualification norms’ which
define how institutional facts, such as ‘band is playing’, are determined from
observable facts (‘brute facts’ in Searle’s terminology) such as a ‘started play-
ing’ message having been broadcast by the band agent and no ‘stopped playing’
message having been broadcast in the meantime. A wide variety of formalisms
for expressing constitutive norms have been reported in the literature. We dis-
cuss the choices we have made in our current implementation in the following
section.

Behavioural norms specify what actions are permitted and obligatory. They
may be further classified according to whether we take a “bird’s eye” perspective
from the system designer’s point of view or whether we take a genuinely agent-
centric perspective. We will not elaborate further on that distinction here. As
already mentioned, in the present version of our system we assume for simplicity
that all agents comply with the applicable behavioural norms: agents do not
perform actions that are not permitted, and always perform actions that are
obligatory. We plan to remove this simplification in later versions.

Although apparently simple, the ballroom example has a very rich and varied
set of possible norms, of both kinds. Some are straightforwardly constitutive,
some are clearly behavioural, and some, in their natural language formulation,
can be interpreted in different ways. We list here some examples with a brief
discussion in each case.

Some constitutive norms:

– Dance partner (and negotiation partner) must be of opposite sex — this
may not apply in certain dance halls. It may be that a male agent sends a
message to another male agent offering to dance but that message is not a



218 D. Gaertner, K. Clark, and M. Sergot

valid offer according to the constitutive norms in force in the ballroom. We
might want to add a further behavioural norm to say that it is not permitted
for a male dancer to send a message that offers to dance to another male
agent, but that is a separate level of specification.

– A female must wait to be approached by a male dancer: only a male agent
can (has the institutional power to) initiate a negotiation to dance — this
can also vary according to the dance hall. Again, it is possible that a female
agent sends a message attempting to initiate a negotiation but this is not a
meaningful message according to the constitutive rules in force. As a separate
level of specification, we might add another norm to the effect that females
are not permitted to send such messages.

– Negotiations only take place when the band is not playing. In other dance
halls, negotiations can take place at any time, or perhaps only at the bar
when the band is playing. Messages offering to dance can be sent while the
band is playing but they are not offers to dance according to the constitutive
norms. It is a separate question whether the dance hall permits such messages
to be sent.

Some behavioural norms:

– An agent must fulfil all its commitments to dance/go to the bar (if it has a
chance to do so).

– An agent should not leave the dance hall while it has unfulfilled commit-
ments. In future versions we will allow agents to negotiate about the release
from commitments but we do not support that refinement yet.

– Always accept a request for a dance if it does not conflict with existing
commitments. (This does not apply in all dance halls.) Here there is an
obligation on an agent to exercise its powers, as defined in the constitutive
norms, in a particular way.

– Do not dance more than three consecutive dances with the same partner.
(In the present version, agents do not maintain an explicit history of all
previous dances but this can be easily added by extending the belief state
of an agent.)

– At a wedding dance, all male agents must dance at least once with their
mother-in-law. (In the present version, agents negotiate only about the next
dance of a particular type. In future versions we want to introduce an element
of planning, say regarding the next but one waltz.)

In the present version, agents always fulfil their commitments, and comply
with all obligations. In future versions, we plan to distinguish between deliber-
ate violation of an obligation (such as when an agent chooses not to fulfil its
commitment to dance) and practically unavoidable violations (such as when an
agent is prevented from fulfilling its commitment to dance, for example because
of physical restrictions on the size of the dance floor, inability to complete the
required hand-shaking protocol in the time available, and so on).

Some norms, in their natural language formulation, can be interpreted either
as constitutive norms, or as behavioural norms, or as a combination of the two.



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 219

For example: the principle of ‘good faith’ introduced in Section 3 requires that
an agent X does not propose to dance a tango with Y when it already has a
commitment to dance a tango, or is already negotiating to dance a tango, with
another agent Y ′. Should this be represented as a constitutive norm or as a
behavioural norm? If we view it as a constitutive norm, we are saying that a
message from X to Y proposing to dance a tango is not valid when X has a
(potentially) conflicting commitment to dance with Y ′. Depending on what other
norms are in force, the recipient Y may have obligations to accept offers from X ,
or to send counter-proposals, or rejections, according to its other commitments.
But how is the recipient Y to determine whether X ’s offer is valid? In order to
do that, it would need to know what other commitments X has made, and even
what other negotiations X is currently engaged in. This is clearly impractical,
unless we have some kind of central server which records all messages exchanged
and to which agents can refer to determine what is currently valid and what
is not. This is something we want to avoid. The alternative is to say that all
proposals from X are constitutionally valid (as long as they are correctly formed)
whether or not X is currently committed to dancing the tango or is engaged in
negotiations to do so. Instead, we say that there is a behavioural norm which
forbids X from sending (valid) offers to dance the tango in these circumstances.
Y can proceed in its decision-making without access to X ’s other commitments
and negotiations; the obligation is on X to ensure that the ‘good faith’ principle
is complied with.

5 Architecture

In this section, we will outline an agent architecture that supports normative
agents of a heterogeneous kind. While we assume that, in order to participate
in the ballroom, dancers have an understanding of concepts from an underlying
ontology (as outlined in [8]), the agents are not required to have the norms hard-
wired into their code. Instead, they download the interaction protocols together
with explicit norms and conventions when they join the ballroom. The choice of
ontology language is not important in our present discussion.

In order to understand the protocol annotation, agents need to know the
semantics of role names and the institutional meaning of messages sent and re-
ceived. The interpretation of a message ‘Will you dance the tango?’ as expressing
an offer to dance, and the specific conditions under which it is a valid offer to
dance, are part of the (constitutive) norms of the ballroom etiquette. In this
paper we will refer to the institutional meaning of a message as its purpose. We
are aware that this term is rather overloaded, but it seems natural and intuitive
in the present context. Since each transition in the protocol graph corresponds
to the sending of a message, we annotate the protocol arc with the corresponding
‘purpose’. Furthermore, not every agent can use every transition, so role labels
are used to restrict certain transitions.

When an agent decides, depending on its current goal, to invoke a communi-
cation with another agent, the protocol tells it what messages to send subject to



220 D. Gaertner, K. Clark, and M. Sergot

M

start
male,inviteDance

(F :female,D:dance):constraints1

�� ��������F
female,rejectDance

(M:male,D:dance):true
��

		�����������������������������



����������������������������� M

M

Fig. 2. Part of a proposal protocol with annotated arcs

certain norms. It can only send the message if it has the correct role and fulfils all
the norms associated with the transition in question. These norms are expressed
using an ontology of specific relations and the interface to this ontology needs
to be understood by each dancer.

An example could be a norm limiting the number of dances a dancer can per-
form with the same partner to six. It uses the predicate dancesPerPartner(P,N),
which has to be implemented by each agent and provides access to its mental state.
This particular predicate unifies N with the number of dances that the agent has
already danced with partner P.

canStillDanceWith(P) :-
dancesPerPartner(P, N),
N < 6.

The norm canStillDanceWith(P) is not violated, if this number is less than
six. In a different ballroom, this number may vary or indeed the norm may not
be present at all. The predicate dancesPerPartner is an example of the rela-
tions we termed introspective predicates. Each participating agent is required to
provide definitions for each of these predicates, which then access the current
mental state of the agent. These definitions are agent specific and can be imple-
mented in a variety of ways thus allowing for more autonomy when designing
agents. Even architectural differences can be accounted for at this level (e.g.
a predicate will have different implementations depending on whether or not
the agent operates in a multi-threaded fashion). Another example introspective
predicate is bandResting. In the absence of a central authority that logs when
the band starts and stops to play, each agent needs to keep track of this itself
and the predicate is true, if the agent currently believes that the band is not
playing.

Thus, the ontology comprises the top-level set of relations (those that express
the normative conditions used in the protocol) and the introspective predicates
(those that access the mental state of the agent and are used in the rules defining
the top-level relations).

In Figure 2, we illustrate a part of the protocol from Figure 1. The arcs
between states of the protocol are annotated with a role, a purpose, several
parameters and a set of constraints. The introspective predicates can be used



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 221

here directly to constrain a transition or they can be used in the description of
an explicit norm that has been downloaded by the dancer.

For example, an agent can go from the start state to the next state if it has the
role male by sending a message which has the purpose inviteDance. The actual
illocution used by the agent is provided by the protocol so that agents do not have
to know them as long as they understand the purposes. An agent obtains this
illocution by providing two things: a binding for the variable F (of type female)
and a binding for the variable D (of type dance). The constraints denoted by
contraints1 in Figure 2 further restrict the applicability of this transition. They
are made up of introspective predicates and some of the downloaded conventions.
In the example, constraints1 could be:

canStillDanceWith(P), bandResting, notCommittedNorm(D)

A different transition that leaves the state annotated with F can only be
traversed by a female agent who intends to reject an offer. The female dancer
needs to provide the identity of the male who approached her and the dance
in question in order to form a valid rejection message (using the appropriate
illocution provided by the protocol). However, there are no further constraints
associated with this transition (indicated by the true constraint).

Summarising, we can see that the path an agent takes through the protocol
graph is influenced by its desires, biases and preferences as well as the constraints
on the protocol and the norms and conventions it downloaded.

6 Virtual, Distributed Institutional State

In common with previous work (see e.g. [3,12] among others), we use the term
institutional state to refer to the set of obligations, permissions, and other in-
stitutional facts (such as ‘band is playing’ or ‘X can send an offer’) current at
any given time. An implementation of a MAS then provides some mechanism to
maintain and evolve this institutional state and verify actions with respect to
it. In many implementations, this is done by providing a central server external
to the agents but perhaps physically distributed, to which agents refer to obtain
authoritative information about the current institutional state (see e.g. [1,12]).
In Garćıa-Camino et al. [12] governor agents are used to intercept messages from
agents. They are forwarded to the intended recipients and recorded as commu-
nications in the institutional state only if they conform to the norms specified
in the current institutional state. These governor agents act as filters, stopping
agents from acting in prohibited ways (by restricting its autonomy) but they
cannot enforce obligations.

We are using the ballroom case study to develop an alternative approach,
intended to be complementary to the methods summarised above, which we
believe is more appropriate in some applications of norm-governed MAS. Like
Robertson in [18], we argue that centralised control is not always needed. In-
stead of storing the institutional state externally, whether centralised or in a
distributed manner, every agent in the system is responsible for maintaining its



222 D. Gaertner, K. Clark, and M. Sergot

own partial view of the current institutional state. This is intended to provide
a much lighter and more flexible mechanism for enforcing norm compliance and
also allows agents to determine how to conform to norms without resorting to
governor agents. Conceptually, there is an institutional state, but it is not repre-
sented explicitly (except perhaps for auditing purposes which might be desirable
in some applications).

Our ballroom scenario is one example of a society which can operate without
central control or norm enforcement. If an institution has sanctions, compen-
sations and/or reparatory mechanisms, then it needs some form of auditing to
objectively test its participants’ claims. The more it relies on such mechanisms,
the more important it is to have some central authority. Conversely, societies
that have more implicit norm enforcement (via reputation and trust) are less
reliant on strict, authoritarian enforcement.

Since each agent is responsible for maintaining its own beliefs about the evolv-
ing institutional state, these beliefs may differ from the actual institutional state.
We make two remarks about this.

– In order to be effective, both in terms of impact and in terms of execution
time, norms (both constitutive and behavioural) that apply to agents must
be formulated in terms of facts that an agent can observe directly or obtain
via simple communication with other agents. We have already discussed one
such example in previous sections, where we argued that the recipient of a
message (an offer to dance the tango, for example) could not be expected to
have information about the sender’s other commitments or ongoing negoti-
ations.

– We imagine it will be possible to verify formally that an agent’s imple-
mentation of the required norm interpreter will yield correct beliefs about
the institutional state (correct with respect to the conceptual institutional
state), on the assumption that all relevant actions are monitored reliably.
We believe a certification process of this kind can be made practicable, in
some cases at least. Experimentation with other possible methods is one of
the main topics of the next phase of the development.

We have several promising candidate formalisms for representing agents’ be-
liefs about the institutional state. In particular we are investigating the use
of nC+ [20], an adapted version of the action language (C+)++ [21] for this
purpose.

7 Related Work

Electronic institutions have attracted a lot of attention amongst AI researchers re-
cently. Thus far they have been used in the domain of e-Commerce, most notably
in the form of auctions [10,15,19] and allocation processes [23,24]. Frameworks
have been developed which help with the specification of organisational require-
ments and verification of electronic institutions. Two examples are OMNI [24] and
ISLANDER [10,19].



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 223

We have used the ISLANDER formalism and associated specification tool to
design the ballroom as an electronic institution. This work has been undertaken
in collaboration with Sierra, Noriega, Rodŕıguez-Aguilar and Garćıa-Camino and
will be reported elsewhere.

Grossi et al. [13] note that ontologies are used to relate the abstract concepts
in which the norms of an institution are defined to the concrete application.
They introduce the notion of contextual ontology and formally characterise it
using a description logic. We avoid the need to translate from norms expressed
in an abstract way to operational norms by making the conventions and norms
downloadable at run-time. Agents still need to be aware of concepts from an
ontology, but in our case these concepts are limited to role names, purposes and
introspective predicates.

As we have pointed out in the introductory section, there has been a lot of
research on normative agents, some of which pre-dates the work on the institu-
tional view on norms (i.e. [4,6,9]). Our work attempts to take into account the
institutional responsibilities as well as internal beliefs and desires when choosing
a course of action for each agent. The agent architecture we outlined facilitates
this by providing a way to combine external norms with internal mental states.

8 Summary and Future Work

The aim of this paper was to present a novel and rich case study for investi-
gating normative behaviour in multi-agent systems. We described a ballroom
simulation where interaction protocol templates can be downloaded at run-time
together with a representation of behavioural norms and conventions associated
with them. We outlined an agent architecture that incorporates these ideas and
suggested that for some multi-agent systems no central regulatory authority is
needed, and can be replaced by a virtual representation where each agent is re-
sponsible for maintaining its own partial view of the relevant institutional state.
A main aim of our experiments with this example is to determine more precisely
the relative merits and disadvantages of this approach, and to identify the classes
of applications in which it can be used.

The fundamental issues we raised in this paper must be taken into account
when trying to make norms operational in a distributed environment. We hope
to stimulate scientific discussions with our thoughts and will continue to work
with the ballroom scenario in a variety of ways. Below, we describe some of our
ideas.

In order to achieve full norm-awareness, agents need to be able to reason
about norms. In some cases, they will adopt a norm and in others they will not.
This depends a lot on their current beliefs, desires and intentions. For exam-
ple, a female agent, who believes strongly in emancipation is unlikely to adopt
a norm that says ’A female has to wait to be approached by a male dancer’.
We are currently working on relating a norm or potential commitment to the
BDI modalities (for preliminary results, the interested reader is referred to the
BDI+C architecture [11]). The ballroom scenario can then be used to investigate



224 D. Gaertner, K. Clark, and M. Sergot

norm adoption by simulating different ballrooms with different conventions and
allowing the agent to choose which ballroom to go to depending on its agreement
with the conventions.

A second line of research is to investigate more formally the openness of the
system. In a fully open system that makes as few assumptions about the agents’
capabilities as possible, the conventions will need to be expressed in an XML-like
ontology language (like OWL) for agents to read and reason about them (using
an OWL reasoners like [22]). Queries such as ’Can I still dance with X?’ will
need to be answered by an external, institutional service. The feasibility of this
approach has to be contrasted to our de-centralised (but less open) approach
where introspective predicates are used.

We are currently also working on extensions which include planning (allowing
agents to commit further into the future), standing obligations (the mother-
in-law example) and action histories (implemented using a variant of the Event
Calculus as in [3]). All of these will clearly complicate the internal representation
of an agent and lead to modifications of our system.

The ballroom example may seem at first sight to be unrealistically simple, a
toy example that offers few practical insights. This is not so. As we have tried
to indicate in the paper, the example exhibits a very wide and varied range of
issues, of exactly the kind that are to be encountered in practical applications
of norm-governed multi-agent systems. A multiple-auction application, for in-
stance, shares many of the same features. What is deliberately simple in the
ballroom example is the implementation of the agents’ internal decision making
procedures not connected to the representation of norms – in the example, how
to dance a specific number of dances, and how to select potential partners. This
allows us to focus on the primary question of interest, which is the represen-
tation and possible operationalisations of norms. We are confident that lessons
learned from experiments with the ballroom example will be directly applicable
in practical applications.

Acknowledgements

The first author is partially supported by a PhD bursary from the Engineering
and Physical Sciences Research Council (EPSRC) of the United Kingdom. He
also received a scholarship from Fujitsu Laboratories of America and is grateful
for a student grant from the Spanish Scientific Research Council through the
Web-i(2) project (CSIC PI 2004-5 0E 133).

References

1. Artikis, A.: Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, Imperial Colllege London (2003)

2. Artikis, A., Kamara, L., Pitt, J.V., Sergot, M.J.: A protocol for resource sharing in
norm-governed ad hoc networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, Springer, Heidelberg (2005)



Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems 225

3. Artikis, A., Pitt, J.V., Sergot, M.J.: Animated specifications of computational so-
cieties. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the first interna-
tional joint conference on Autonomous agents and multiagent systems (AAMAS
2002), pp. 1053–1061. ACM Press, New York (2002)

4. Boella, G., Lesmo, L.: Deliberate normative agents. In: Conte, R., Dellarocas, C.
(eds.) Social order in MAS, Kluwer Academic Publishers, Dordrecht (2001)

5. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4),
444–458 (1989)

6. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative
agents: Principles and architecture. In: Agent Theories, Architectures, and Lan-
guages, pp. 364–378 (1999)

7. Clark, K.L., McCabe, F.G.: Go! - a multi-paradigm programming language for
implementing multi-threaded agents. Annals of Mathemathics and Artificial Intel-
ligence 41(2-4), 171–206 (2004)

8. Clark, K.L., McCabe, F.G.: Ontology schema for an agent belief store. International
Journal Of Human Computer Studies (to appear)

9. Conte, R., Falcone, R., Sartor, G.: Introduction: Agents and norms: How to fill the
gap? Artificial Intelligence and Law 7, 1–15 (1999)

10. Esteva, M.: Electronic Institutions: from specification to development. PhD thesis,
Institut d’Investigació en Intelligència Artificial, Bellaterra, Spain (2003)

11. Gaertner, D., Noriega, P., Sierra, C.: Extending the BDI architecture with com-
mitments. In: Proceedings of the Ninth Internation Conference of the Catalan
Asscociation for Artificial Intelligence, Perpignan, France (2006)

12. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A dis-
tributed architecture for norm-aware agent societies. In: Baldoni, M., Endriss, U.,
Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, Springer,
Heidelberg (2006)

13. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects of
the implementation of norms in agent-based electronic institutions. In: Proceedings
of NorMAS’05, First International Symposium on Normative Multiagent Systems,
Hatfield, April 2005 (2005)

14. Lopéz y Lopéz, F., Luck, M.: Modelling norms for autonomous agents. In: Mejia,
M., Chavez, E., Favela, J., Oliart, A. (eds.) Proceedings of the Fourth Mexican In-
ternational Conference on Computer Science (ENC’03), pp. 238–245. IEEE Com-
puter Society Press, Los Alamitos (2003)

15. Noriega, P.: Agent Mediated Auctions: The Fishmarket Metaphor. PhD thesis,
Universitat Autònoma de Barcelona (1997)

16. Ossowski, S.: Coordination in Artificial Agent Societies: Social Structure and its
Implications for Autonomous Problem-Solving Agents. In: Distibuted Artificial
Intelligence. Lecture Notes on Artificial Intelligence, vol. 1535, pp. 48–55. Springer,
Heidelberg (1999)

17. Panzarasa, P., Jennings, N.R., Norman, T.J.: Formalising collaborative decision-
making and practical reasoning in multi-agent systems. Journal of Logic and Com-
putation 12(1), 55–117 (2002)

18. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite,
J.A., Omicini, A., Torroni, P., Yolum, P. (eds.) DALT 2004. LNCS (LNAI),
vol. 3476, pp. 183–197. Springer, Heidelberg (2005)

19. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-
tronic Institutions. PhD thesis, Institut d’Investigació en Intelligéncia Artificial
(2003)



226 D. Gaertner, K. Clark, and M. Sergot

20. Sergot, M., Craven, R.: The deontic component of action language nC+. In: Goble,
L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237.
Springer, Heidelberg (2006)

21. Sergot, M.J.: (C+)++: An action language for modelling norms and institutions.
Technical Report 2004/8, Department of Computing, Imperial College London
(2004)

22. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics (submitted for publication)

23. Vázquez-Salceda, J.: The Role of Norms and Electronic Institutions in Multi-Agent
Systems. Birkhaeuser Verlag (2004)

24. Vazquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part IV  
NORM EVOLUTION AND 

DYNAMICS 
 
 
 
 
 
 
 
 
 
 
 
 



Towards Self-configuration in Autonomic

Electronic Institutions

Eva Bou1, Maite López-Sánchez2, and Juan Antonio Rodŕıguez-Aguilar1

1 IIIA - CSIC Artificial Intelligence Research Institute, Campus UAB 08193
Bellaterra, Spain

{ebm,jar}@iiia.csic.es
2 WAI, Volume Visualization and Artificial Intelligence, MAiA Dept., Universitat de

Barcelona
maite@maia.ub.es

Abstract. Electronic institutions (EIs) have been proposed as a means
of regulating open agent societies. EIs define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to do
and under what circumstances. And yet, there is the need for EIs to
adapt their regulations to comply with their goals despite coping with
varying populations of self-interested agents. In this paper we focus on
the extension of EIs with autonomic capabilities to allow them to yield
a dynamical answer to changing circumstances through the adaptation
of their norms.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1], where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of autonomic systems are: it must configure and reconfigure itself automatically
under changing (and unpredictable) conditions; it must aim at optimizing its
inner workings, monitoring its components and adjusting its processings in or-
der to achieve its goals; it must be able to diagnose the causes of its eventual
malfunctions and reparate itself; it must act in accordance to and operate into
a heterogeneous and open environment.

In what follows we argue that are EIs [3] a particular type of self-* system.
When looking at computer-mediated interactions we regard Electronic Institu-
tions (EI) as regulated virtual environments wherein the relevant interactions
among participating agents take place. EIs have proved to be valuable to de-
velop open agent systems [4]. However, the challenges of building open systems

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 229–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



230 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

are still considerable, not only because of the inherent complexity involved in
having adequate interoperation of heterogeneous agents, but also because the
need for adapting regulations to comply with institutional goals despite varying
agents’ behaviors. Particularly, when dealing with self-interested agents.

The main goal of this work consists in studying how to endow an EI with auto-
nomic capabilities that alllow it to yield a dynamical answer to changing circum-
stances through the adaptation of its regulations. Among all the characteristics
that define an autonomic system we will focus on the study of self-configuration
as pointed out in [2] as a second characteristic: “An autonomic computing sys-
tem must configure and reconfigure itself under varying (and in the future, even
unpredictable) conditions. System configuration or ”setup” must occur auto-
matically, as well as dynamic adjustments to that configuration to best handle
changing environments”.

The paper is organized as follows. In section 2 we introduce the notion of
autonomic electronic institution as an extension of the classic notion of electronic
institution along with a general model for norm adaptation. Section 3 details a
case study to be employed as a scenario wherein to test the model presented in
section 2. Section 4 provides some preliminary, empirical results. Finally, section
5 summarizes some conclusions and outlines paths to future research.

2 Autonomic Electronic Institutions

The idea behind EIs [5] is to mirror the role traditional institutions play in the
establishment of “the rules of the game”–a set of conventions that articulate
agents’ interactions– but in our case applied to agents (be them human or soft-
ware) that interact through messages whose (socially relevant) effects are known
to interacting parties. The essential roles EIs play are both descriptive and pre-
scriptive: the institution makes the conventions explicit to participants, and it
warrants their compliance. EIs involve a conceptual framework to describe agent
interactions as well as an engineering framework [6] to specify and deploy actual
interaction environments.

Although EIs can be regarded as the computational counterpart of human
institutions for open agent systems, there are several aspects in which they are
nowadays lacking. According to North [7] human institutions are not static;
they may evolve over time by altering, eliminating or incorporating norms. In
this way, institutions can adapt to societal changes. Nonetheless, neither the
current notion of EI in [3] nor the engineering framework in [6] support norm
adaptation so that an EI can self-configure. Thus, in what follows we study how
to extend the current notion of EI in [3] to support self-configuration.

First of all, notice that in order for norms to adapt, we believe that a “rational”
view of EIs must be adopted (likewise the rational view of organizations in [8])
and thus consider that EIs seek specific goals. Hence, EIs continuously adapt
their norms to fulfill their goals. Furthermore, we assume that an EI is situated
in some environment that may be either totally or partially observable by the
EI and its participating agents.



Towards Self-configuration in Autonomic Electronic Institutions 231

With this in mind, we observe that according to [3] an EI is solely composed
of: a dialogic framework establishing the common language and ontology to be
employed by participating agents; a performative structure defining its activities
along with their relationships; and a set of norms defining the consequences of
agents’ actions. From this follows that further elements are required in order to
incorporate the fundamental notions of goal and norm transition as captured by
the following definition of autonomic electronic institution.

Definition 1. Given a finite set of agents A, we define an Autonomic Electronic
Institution (AEI) as a tuple 〈PS, N, DF, G, Pi, Pe, Pa, V, δ〉 where:

– PS stands for a performative structure;
– N stands for a finite set of norms;
– DF stands for a dialogic framework;
– G stands for a finite set of institutional goals;
– Pi = 〈i1, . . . , is〉 stands for the values of a finite set of institutional properties,

where ij ∈ IR, 1 ≤ j ≤ s contains the value of the j-th property;
– Pe = 〈e1, . . . , er〉 stands for the values of the environment properties, where

each ej is a vector, ej ∈ IRnj 1 ≤ j ≤ r contains the value of the j-th
property;

– Pa = 〈a1, . . . , an〉 stands for the values that characterize the institutional
state of the agents in A, where aj = 〈aj1 , . . . , ajm〉 1 ≤ j ≤ n stands for the
institutional state of agent Aj;

– V stands for a finite set of reference values; and
– δ : PS×N×G×V → PS×N stands for a normative transition function that

maps a performative structure and a set of norms into a new performative
structure and a new set of norms given a set of goals and a set of values for
the reference variables.

Notice that a major challenge in the design of an AEI is to learn a normative
transition function, δ, that ensures the achievement of its institutional goals
under changing conditions. Next, we dissect the new elements composing an
AEI.

An AEI employs norms to constrain agents’ behaviors and to assess the con-
sequences of their actions within the scope of the institution. Although there is
a plethora of formalizations of the notion of norm in the literature, in this paper
we adhere to a simple definition of norms as effect propositions as defined in [9]:

Definition 2. An effect proposition is an expression of the form

A causes F if P1, . . . , Pn

Where A is an action name, and each of F, P1, . . . , Pn(n ≥ 0) is a fluent expres-
sion. About this proposition we say that it describes the effect of A on F , and
that P1, . . . , Pn are its preconditions. If n = 0, we will drop if and write simply
A causes F . From this definition, changing a norm amounts to changing either
its pre-conditions, or its effect(s), or both.



232 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

Agents participating in an AEI have their social interactions mediated by the
institution according to its norms. As a consequence of his interactions, only the
institutional (social) state of an agent can change since an AEI has no access
whatsoever to the inner state of any participating agent. Therefore, given a finite
set of participating agents A = {A1, . . . , An} where n ∈ IN, each agent Ai ∈ A
can be fully characterized by his institutional state, represented as a tuple of
observable values 〈ai1 , . . . , aim〉 where aij ∈ IR 1 ≤ j ≤ m. Thus, the actions
of an agent within an AEI may change his institutional state according to the
institutional norms.

The main objective of an AEI is to accomplish its goals. For this purpose,
and AEI will adapt its norms. We assume that the institution can observe the
environment, the institutional state of the agents participating in the institution,
and its own state to assess whether its goals are accomplished or not. Thus, from
the observation of environment properties(Pe), institutional properties (Pi), and
agents’ institutional properties (Pa), an AEI obtains the reference values required
to determine the fulfillment of goals. Formally, the reference values are defined as
a vector V = 〈v1, . . . , vq〉 where each vj results from applying a function hj upon
the agents’ properties, the environmental properties and/or the institutional
properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q.

Finally, we can turn our attention to institutional goals. An example of insti-
tutional goal for the Traffic Regulation Authority could be to keep the number
of accidents below a given threshold. In other words, to ensure that a reference
values satisfies some constraint.

Formally we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V ) � [mi, Mi] where
mi, Mi ∈ IR, � stands for either ∈ or �∈, and gi is a function over the reference
values. In this manner, each goal is a constraint upon the reference values where
each pair mi and Mi defines an interval associated to the constraint. Thus,
the institution achieves its goals if all gi(V ) values satisfy their corresponding
constraints of being within (or not) their associated intervals.

2.1 Norm Adaptation

A major challenge in the design of an AEI is to learn a normative transition
function that allows to accomplish institutional goals under changing situations.
In this work, we concentrate on norm adaptation and therefore we consider that
there is no definition of performative structure. Thus, institutional goals must be
accomplished through norms, which will be the only means of regulating agents’
actions. We are considering the normative transition function defined in 1 in a
more simple way, δ : N ×G×V → N , namely as a normative transition function
that maps a set of norms into a new set of norms.

From the definition 2 of norm, changing a norm amounts to changing ei-
ther its pre-conditions, or its effects, or both. Norms can be parameterized,
and therefore we propose that each norm, Ni ∈ N , has a set of parameters
〈pi1 , ..., pim〉 ∈ IRim . Notice that when the parameters of the norms are asso-
ciated to the pre-conditions and/or to the effects, changing the values of these



Towards Self-configuration in Autonomic Electronic Institutions 233

parameters means changing the norm. When we refer to change the norms or
to adapt the norms we are referring to change or to adapt the values of the pa-
rameters of the norms. Norms have associated parametres that can be changed
to increase its persuasiveness depending on the agent population behavior. We
propose to learn the normative transition function by exploring the space of
parameter values in search for the ones that best accomplish goals for a given
population of agents. In this manner, if we can automatically adapt norms to
the global behavior of an agent population, then, we can repeat it for a num-
ber of different agent populations and thus characterize the overall normative
transition function.

Figure 1 describes how this learning process is performed for a given popu-
lation of agents (A) using an evolutionary approach. We have an initial set of
individuals (〈I1, .., In〉), where each individual represents a set of norm parame-
ters ({〈p11, .., p1m〉 , ..., 〈pi1, .., pim〉}). The institution performs a simulation for
each individual with the population of agents A, so that the norms represented
by each individual can be evaluated according to the institutional goals (Norm
evaluation).Finally, the AEI compiles the evaluations of all individuals in order
to perform the Norm adaptation process that results with a new set of individ-
uals (New norms) to be used as an initial set of individuals for next step in the
learning process.

Since we are working with a complex system, we propose use an evolutionary
approach for learning due to the fact that the institutional objective function
can be naturally mapped to the fitness function and an evolutionary approach
provides a solution good enough. Notice that the AEI does not learn any agent
parameter, it learns the best parameters by simulation for a certain population of
agents, that is whose values will be changed by the normative transition function
and by the PS transition function. It is a first step learning where the AEI learns
by simulation the best parameters for a list of populations, thus, in a next step
the AEI could use this learning in a real environment to adapt itself to any
population of agents (e.g., using Case-Based Reasoning (CBR) problem solving
technique).

3 Case Study: Traffic Control

Traffic control is a well-known problem that has been approached from different
perspectives, which range from macro simulation for road net design [10] to traffic
flow improvement by means of multi-agent systems [11]. We tackle this problem
from the Electronic Institutions point of view, and therefore, this section is
devoted to specify how traffic control can be mapped into Autonomic Electronic
Institutions.

In this manner, we consider the Traffic Regulation Authority as an Autonomic
Electronic Institution, and cars moving along the road network as agents inside
the institution. Considering this set-up, traffic norms regulated by Traffic Au-
thorities can therefore be translated in a straight forward manner into norms be-
longing to the Electronic Institution. Norms within this normative environment



234 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

Norm
evaluation

...

...

...

AEI
Simulation

AEI
Simulation

AEI
Simulation

A

In

I1

Ij = { <p11, …. , p1m>
          <p21, …. , p2m>
          ……………. 

          <pi1, …. , pim>}

Fitness(A,I1,G)

...

...

Crossover
and

mutation

Norm
adaptation

New
norms

I’
1

…
…
…
...

I’
n

Fitness(A,In,G)

Fitness(A,Ij,G)

Fig. 1. Example of an step in norm adaptation using an evolutionary approach

are thus related to actions performed by cars (in fact, in our case, they are al-
ways restricted to that). Additionally, norms do have associated penalties that
are imposed to those cars refusing or failing to follow them. In our case study,
we assume that the Traffic Authority is always aware of norm violations: cars
may or may not respect rules, but they are not able to avoid the consequences of
their application. Furthermore, our Electronic Institution is able to change norms
based on its goals – just as traffic authorities do modify their traffic rules– and,
therefore, it is considered to be autonomic.

Our AEI sets up a normative environment where cars do have a limited
amount of credit (just as some real world driving license credit systems) so
that norm offenses cause credit reductions. The number of points subtracted for
each traffic norm violation is specified by the sanction associated to each norm,
and this sanction can be changed by the regulation authority (that is, our AEI)
if its change leads –or contributes to– the accomplishment of goals. Eventually,
those cars without any remaining points are forbidden to circulate. On the other
hand, we assume a non-closed world, so expelled cars are replaced by new ones
having the total amount of points.

Getting into more detail, we focus on a two-road junction. It is a very restrictive
problem setting, but it is complex enough to allow us to tackle the problem with-
out losing control of all the factors that may influence the results. In particular,
no traffic signals (neither yield or stop signals nor traffic lights) are considered,
therefore, cars must only coordinate by following the traffic norms imposed by
the AEI. Our institution is required to define these traffic norms based on general
goals such as minimization of the number of accidents or deadlock avoidance.



Towards Self-configuration in Autonomic Electronic Institutions 235

Fig. 2. Grid environment representation of a 2-lane road junction

We model the environment as a grid composed by road and field cells. Road
cells define 2 orthogonal roads that intersect in the center (see figure 2). Dis-
cretization granularity is such that cars have the size of a cell. As section 3.2
details, our model has been developed with the Simma tool [12]. Although the
number of road lanes can be changed parametrically, henceforth we assume the 2-
lane case. Next subsections are devoted to define this “toy problem” and present
our solution proposal in terms of it. But before that, we introduce some nomen-
clature definitions:

– Ai: an agent i, agents correspond to cars.
– t: time step. Our model considers discrete time steps (ticks).
– (Jx, Jy): size in x, y of our road junction area.
– J : inner road junction area with (xJ

0 , yJ
0 ) as top left cell inside it

J = {(x, y) | x ∈ [xJ
0 , xJ

0 + Jx − 1], y ∈ [yJ
0 , yJ

0 + Jy − 1]}
Considering the 4 J cells in the junction area of Figure 2:
J = {(xJ

0 , yJ
0 ), (xJ

0 + 1, yJ
0 ), (xJ

0 , yJ
0 + 1), (xJ

0 + 1, yJ
0 + 1)}.

– JBE : Junction Boundary Entrance, set of cells surrounding the junction that
can be used by cars to access it. They correspond to cells near by the junction
that belong to incoming lanes. Figure 2 depicts JBE = {(xJ

0 , yJ
0 − 1), (xJ

0 −
1, yJ

0 + Jy − 1), (xJ
0 + Jx − 1, yJ

0 + Jy, (xJ
0 + Jx, yJ

0 ))}.
Nevertheless, the concept of boundary is not restricted to adjacent cells: a
car can be also considered to be coming into the junction if it is located one
–or even a few– cells away from the junction.

– (xt
i, y

t
i): position of car Ai at time t, where (x, y) ∈ IN × IN stands for a cell

in the grid.
– (ht

ix, ht
iy): heading of car Ai, which is located in (x, y) at time t. Heading

directions run along x, y axes and are considered to be positive when the car
moves right or down respectively. In our orthogonal environment, heading
values are: 1 if moving right or down; −1 if left or up; and 0 otherwise (i.e.,
the car is not driving in the axe direction). In this manner, car4’s heading
on the right road of figure 3 is (-1,0).

3.1 AEI Specification

Environment. As mentioned above, we consider the environment to be a grid.
This grid is composed of cells, which can represent roads or fields. The main



236 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

difference among these two types is that road cells can contain cars. Indeed, cars
move among road cells along time.

Figure 2 depicts a 8×8 grid example. The top left corner of the grid represents
the origin in the x, y axes. Thus, in the example, cell positions range from (0,0)
in the origin up to (7,7) at the bottom-right corner. Additionally, a cell is a
road if one of its x, y coordinates belong to J inner junction area (see previous
definition).

We define this grid environment as:

Pe = 〈(x, y, α, r, dx, dy) | 0 ≤ x ≤ maxx, 0 ≤ y ≤ maxy,
α ⊆ P(A), r ∈ [0, 1], dx ∈ [−1, 0, 1], dy ∈ [−1, 0, 1] 〉

being x and y the cell position, α defines the set of agents inside the grid cell
(x, y), r indicates whether this cell represents a road or not, and, in case it is a
road, dx and dy stand for the lane direction, whose values are the same as the
ones for car headings. Noticie that the institution can observe the environment
properties along time, we use P t

e to refer the values of the grid environment
at a specific time t. This discretized environment can be observed both by the
institution and cars. The institution observes and keeps track of its evolution
along time, whilst cars do have locality restrictions on their observations.

Agents. We consider A = 〈A1, ..., An〉 to be a finite set of n agents in the
institution. As mentioned before, agents correspond to cars that move inside the
grid environment, with the restriction that they can only move within road cells.
Additionally, agents are given an account of points which decreases with traffic
offenses. The institution forbids agents to drive without points in their accounts.
The institution can observe the Pa = 〈a1, . . . , an〉 agents’ institutional properties,
where

ai = 〈xi, yi, hix, hiy, speedi, indicatori, offensesi,
accidentsi, distancei, pointsi〉

These properties stand for: car Ai’s position within the grid, its heading, its
speed, whether the car is indicating a trajectory change for the next time step
(that is, if it has the intention to turn, to stop or to move backwards), the norms
being currently violated by Ai, wether the car is involved in an accident, the
distance between the car and the car ahead of it; and, finally, agent Ai’s point
account. Notice that the institution can observe the agent properties along time,
we use at

i to refer the agent Ai’s properties at a specific time t.

Reference values. In addition to car properties, the institution is able to ex-
tract reference values from the observable properties of the environment, the
participating agents and the institution. Thus, these reference values are com-
puted as a compound of other observed values. Considering our road junction
case study, we identity different reference values:

V = 〈num collisions, num crashed, num offenses,
num blocked〉



Towards Self-configuration in Autonomic Electronic Institutions 237

where num collisions indicates total number of collisions for last tw ticks (0 ≤
tw ≤ tnow):

num collisions=
∑tnow

t=tnow−tw

∑
e∈P t

e
f(eαt)

being P t
e the values of the grid environment at time t, eαt the αt component of

element e ∈ P t
e and

f(eαt) = {1 if |eαt |>1
0 otherwise .

Furthermore, num crashed counts the number of cars involved in accidents for
last tw ticks, num offenses indicates the total number of offenses accumulated
by all agents during last tw ticks, and finally, num blocked shows how many cars
have been blocked by other cars for last tw ticks.

Goals. Goals are institutional goals. The aim of the traffic authority institution
is to accomplish as many goals as possible.The institution tries to accomplish
these goals by defining a set of norms (see subsection 3.1).

Institutional goals are defined as constraints upon a combination of reference
values. Considering our scenario, we define restrictions as intervals of acceptable
values for the previous defined reference values (V ) so that we consider the
institution accomplishes its goals if V values are within their corresponding
intervals. In fact, the aim is to minimize the number of accidents, the number
of traffic offenses, as well as the number of blocked cars by establishing the list
of institutional goals G as:
G = 〈 num collisions ∈ [0, MaxCollisions], num crashed ∈ [0, MaxCrashed],

num offenses ∈ [0, MaxOffenses], num blocked ∈ [0, MaxBlocked] 〉

Norms. Autonomic Electronic Institutions try to accomplish goals by defining
norms. Norms have associated penalties that are imposed to those cars refusing
or failing to follow them. These penalties can be parameterized to increase its
persuasiveness depending on the agent population behavior.

Considering a road junction without traffic signals, priorities become basic to
avoid collisions. We consider, as in most continental Europe, that the default
priority is to give way to the right. This norm prevents a car Ai located on the
Junction Boundary Entrance (JBE) to move forward or to turn left whenever
there is another car Aj on its right. For example, car 1 in figure 3 must wait
for car 2 on its right, which must also wait for car 3 at the bottom JBE . The
formalization in table 1 can be read as follows: “if car Ai moves from a position
in JBE at time t − 1 to its next heading position at time t without indicating a
right turn, and if it performs this action when having a car Aj at the JBE on
its right, then the institution will fine Ai by decreasing its points by a certain
amount” (see figure 4).

Where the predicate in(ai, Region, t) in table 1 is equivalent to
∃(x, y, αt, r, dx, dy) ∈ Et so that (x, y) ∈ Region and ai ∈ αt and right(ai, aj , t)
is a boolean function that returns true if car aj is located at JBE area on the
right side of car ai. For the 2-lane JBE case in Figure 2, it corresponds to the
formula: (xt

i − ht
iy + ht

ixJx, yt
i + ht

ix + ht
iyJy) = (xt

j , y
t
j).



238 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

Fig. 3. Priority to give way to the right (Simma tool screenshot)

Table 1. Right priority norm

Action in(ai, JBE , t − 1)∧
in(ai, (x

t−1
i + ht−1

ix , yt−1
i + ht−1

iy ), t)∧
�indicator(ai, right, t − 1)

Pre-conditions right(ai, aj , t − 1)

Consequence pointst
i = pointst

i − fine

Other norms, such as deadlock avoidance or junction blocking prevention
have been considered and implemented. Nevertheless, due to the lack of space,
we cannot detail them.

3.2 Experimental Settings and Design

As a proof of concept of our proposal in section 2.1, we have designed an ex-
perimental setting that implements the traffic case study. In this preliminary
experiment we consider a single normative goal (num collisions) and the right
priority norm in table 1, which is parameterized by its fine (i.e., points to sub-
tract to the car falling to follow the norm).

The 2-road junction traffic model has been developed with Simma [12], a
graphical MAS simulation tool shown in Figure 3, in such way that both envi-
ronment and agents can be easily changed. In our experimental settings, we have



Towards Self-configuration in Autonomic Electronic Institutions 239

Fig. 4. Priority to give way to the right

modeled the environment as a 16 × 16 grid where both crossing roads have 2
lanes with opposite directions. Additionally, the environment is populated with
10 cars, having 40 points each.

Our institution can observe the agents properties for each tick and can keep
a record of them in order to refer to past ticks. In fact, the institution usually
determines traffic offenses by analyzing agent actions along time. Agent actions
are observed through consecutive car positions and indicators (notice that the
usage of indicators is compulsory for cars in this problem set up). During our
discrete event simulation, the institution replaces those cars running out of points
by new cars, so that the cars’ population is kept constant. Cars follow random
trajectories at a constant 1-cell/tick speed and they collision if two or more cars
run into the same cell. In that case, the involved cars do remain for two ticks in
that cell before they can start following a new trajectory.

Cars correspond to agents without learning skills. They just move based
on their trajectories and institutional norms. Agents have local information
about their environment (i.e., grid surrounding cells) and know whether their
next moves will violate a norm and what fine will be thus applied. Agents de-
cide whether to comply with a norm based on three parameters: 〈fulfill prob,
high punishment, inc prob〉. Being fulfill prob ∈ [0, 1] the probability of com-
plying with norms that is initially assigned to each agent, high punishment ∈ IN
the fine threshold that causes an agent to consider a fine to be high enough to
reconsider the norm compliance, and inc prob ∈ [0, 1] the probability increment
that is added to fulfill prob when the fine threshold is surpassed by the norm
being violated. In summary, agents decide whether they keep moving regard-
less of violated norms or they stop in order to comply with norms based on
a probability that is computed as: final prob = fulfill prob + inc prob when
fine > high punishment.

Our goal is to adapt norms to agent behaviors by applying Genetic Algo-
rithms (GA)1 to accomplish the institutional goal, to minimize the total number
of collisions. We propose learn the norms by different agent populations behavior
by simulation. Once specified what are the different agent populations behavior,
a genetic algorithm is running by each population of agents. We use 10 indi-
viduals in each step of the genetic algorithm, where each individual is a set of
parameters. Therefore, norm adaptation is implemented as a learning process

1 We use GAlib [13], a C++ library of genetic algorithm components.



240 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

of the “best” norm parameters. To evaluate an individual we run 10 times the
simulator with the set of parameters of the individual. The simulator run the
AEI model explained above during 5000 ticks. Thus, norm quality is given by a
fitness function that considers the number of collisions, which is computed as an
average of 10 different 5000-tick-long simulations for each model setting.

4 Results

From the experimental settings specified above, we have run experiments for
three different agent populations. These populations are characterized by their
norm compliance parameters, being fulfill prob = 0.5 and inc prob = 0.4 for
the three of them whereas high punishment varies from 5 for the first, to 10 for
the second, up to 14 for the third (see table 2).

Since the right priority norm contributes to reduce accidents, our AEI must
learn how to vary its fine parameter to increase its persuasiveness for agents, and
eventually, to accomplish the normative goal of minimizing the total number of
collisions. As to shows table 2, our experiments have resulted in that our AEI
learned a fine of 14, 12, and 15 for each respective population. In all three cases,
the learned fine is larger than the population’s high punishment value, and
therefore, the goal is successfully reached2. In this manner, we can state the AEI
success in learning the norms that better accomplish its goal.

Table 2. Learning results for three different agent populations

Parameters population1 population2 population3

fulfill prob 0.5 0.5 0.5

high punishment 5 10 14

inc prob 0.4 0.4 0.4

Learned fine 14 12 15

Next figure 5 gives some more detail about the performance of agent popula-
tions for different norm fine values. First chart compares the number of collisions
per 100 ticks when the fine is 4 with the resulting number of collisions when it
is 14, which is the learnt value for agents with a high punishment threshold
equal to 5. Analogously, second and third charts compare results between value
4 and learnt values 12 and 15 respectively (which, again, are learnt when the
corresponding agent populations have 10 and 14 threshold values). For all three
cases, we can observe that the number of collisions for fine 4 keep above the ones
for learnt fines. It is so both in average and along the curve that results from a
simulation of 5000 ticks. As expected, the reason is that value 4 is smaller than
the high punishment values for all three agent populations. Additionally, we
can also observe that the deviation in the number of collisions is smaller as well.
2 Notice that, due to the agent’s behavior, any fine value higher that the population

high punishment value will be equally successful.



Towards Self-configuration in Autonomic Electronic Institutions 241

Population 1: <0.5, 5, 0.4>

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

#ticks

#c
o

lli
si

o
n

s 
p

er
 1

00
 t

ic
ks

Fine = 4 average fine = 4

Fine = 14 average fine = 14

Population 2: <0.5, 10, 0.4>

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

#ticks

#c
o

lli
si

o
n

s 
p

er
 1

00
 t

ic
ks

Fine = 4 average fine = 4
Fine = 12 average fine = 12

Population 3: <0.5, 14, 0.4>

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

#ticks

#c
o

lli
si

o
n

s 
p

er
 1

00
 t

ic
ks

Fine = 4 average fine = 4

Fine = 15 average fine = 15

Fig. 5. Number of collisions per 100 ticks along a 5000-tick simulation



242 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

5 Discussion and Future Work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability. In this manner, works such as the one by Excelente-Toledo
and Jennings [14] propose a decision making framework that enables agents to
dynamically select the coordination mechanism that is most appropriate to their
circumstances. Hübner et al. [15] propose a model for controlling adaptation by
using the MOISE+ organization model. Agents in this model adapt their MAS
organization to both environmental changes and their own goals. In [16] Gasser
and Ishida presented a general distributed problem-solving model which can
reorganize its architecture, in [17] Ishida and Yokoo introduce two new reorga-
nization primitives that change the population of agents and the distribution
of knowledge in an organization; and Horling et al. [18] propose an approach
where the members adapt their own organizational structures at runtime. Nor-
man et al. [19], within the CONOISE project, propose an agent-based model
for dynamic formation of virtual organisations. However all these approaches
are based on agent capabilities instead of on the use of norms. On the other
hand, it has been long stated [20] that agents working in a common society
need norms to avoid and solve conflicts, make agreements, reduce complexity,
or to achieve a social order. Both approaches –i.e. adaptation and norms– have
been considered together by Lopez-y-Lopez et al. [21], where agents can adapt
to norm-based systems and they can even autonomously decide its commitment
to obey norms in order to achieve associated institutional goals. This adaptation
from the point of view of agents in these related works is the most remarkable
difference with the approach presented in this paper, which focuses on adapting
the institution –that is, the authority issuing norms– rather than adapting the
agents. Institution adaptation is accomplished by changing norms autonomously
(as opposite to the work by Hoogendoorn et al. [22], which is based on design
considerations). Therefore, we do not select norms at design stages as it is done
by Fitoussi and Tennenholtz [23], who do it so by proposing the notions of min-
imality and simplicity as selecting criteria. They study two basic settings, which
include Automated-Guided-Vehicles (AGV) with traffic laws, by assuming an en-
vironment that consists of (two) agents and a set of strategies available to (each
of) them. From this set, agents devise the appropriate ones in order to reach
their assigned goals without violating social laws, which must be respected.

Regarding the traffic domain, MAS has been previously applied to it [11] [24]
[25]. But traffic has been also widely studied outside the scope of MAS, for ex-
ample, the preliminary work by [26] used Strongly Typed Genetic Programming
(STGP) to controll the timings of traffic signals within a network of orthogonal
intersections. Their evaluation function computed the overall delay.

This paper presents AEI as an extension of EIs with autonomic capabilities. In
order to test our model, we have implemented a traffic AEI case study, where the
AEI learns a traffic norm in order to fulfill its goals. Preliminary results in this
paper provide soundness to our AEI approach. Recently, we have extended the
AEI definition [27] in order to include a performative structure transition func-
tion in order to adapt performative structures. We are also currently performing



Towards Self-configuration in Autonomic Electronic Institutions 243

the same experiments with other norms and with more goals. As future work, and
since this basically represents a centralized scenario, we plan to develop a more
complex traffic network, allowing us to propose a decentralized approach where
different areas (i.e., junctions) are regulated by different institutions. Addition-
ally, we are interested in studying how institutional norms and agent strategies
may co-evolve. Nevertheless, this will require to extend the agents so that they
become able to adapt to institutional changes. Nevertheless, we plan to extend
both our traffic model and the institutional adaptation capabilities so that the
AEI will not only learn the most appropriate norms for a given agent population,
but it will be able to adapt to any change in the population.

Acknowledgements

This work was partially funded by the Spanish Science and Technology Ministry
as part of the Web-i-2 project (TIC-2003-08763-C02-01) and by the Spanish
Education and Science Ministry as part of the TIN2006-15662-C02-01 and the
2006-5-0I-099 projects. The first author enjoys an FPI grant (BES-2004-4335)
from the Spanish Education and Science Ministry.

References

1. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agentlink Roadmap. Agen-
link.org (2005)

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

3. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD
Monography, vol. 19 (2003)

4. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Autonomous Agents and Multi-agent Systems 1, 275–306 (1998)

5. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. IIIA Phd
Monography, vol. 8 (1997)

6. Arcos, J.L., Esteva, M., Noriega, P., Rodŕıguez-Aguilar, J.A., Sierra, C.: Engineer-
ing open environments with electronic institutions. Engineering Applications of
Artificial Intelligence 18, 191–204 (2005)

7. North, D.: Institutions, Institutional Change and Economics Perfomance. Cam-
bridge U. P., Cambridge (1990)

8. Etzioni, A.: Modern Organizations. Prentice-Hall, Englewood Cliffs, NJ (1964)

9. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

10. Yang, Q.: A Simulation Laboratory for Evaluation of Dynamic Traffic Management
Systems. PhD thesis, MIT (1997)

11. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent
simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop, p. 8 (2004)

12. López-Sánchez, M., Noria, X., Rodŕıguez-Aguilar, J.A., Gilbert, N.: Multi-agent
based simulation of news digital markets. International Journal of Computer Sci-
ence and Applications 2(1), 7–14 (2005)



244 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

13. Wall, M.: GAlib, A C++ Library of Genetic Algorithm Components. Massa-
chusetts Institute of Technology (MIT), http://lancet.mit.edu/ga/

14. Excelente-Toledo, C.B., Jennings, N.R.: The dynamic selection of coordination
mechanisms. Autonomous Agents and Multi-Agent Systems 9(1-2), 55–85 (2004)

15. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the Moise+ for a cooperative
framework of mas reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004.
LNCS (LNAI), vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

16. Gasser, L., Ishida, T.: A dynamic organizational architecture for adaptive problem
solving. In: Proc. of AAAI-91, Anaheim, CA, pp. 185–190 (1991)

17. Ishida, T., Yokoo, M.: Organization self-design of distributed production systems.
IEEE Trans. Knowl. Data Eng. 4(2), 123–134 (1992)

18. Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organizational
Structures. In: Proceedings of the 5th International Conference on Autonomous
Agents, pp. 529–536 (2001)

19. Norman, T.J., Preece, A., Chalmers, S., Jennings, N.R., Luck, M., Dang, V.D.,
Nguyen, T.D., Deora, V., Shao, J., Gray, W.A., Fiddian, N.J.: Conoise: Agent-
based formation of virtual organisations. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI
2003. LNCS (LNAI), vol. 2903, pp. 353–366. Springer, Heidelberg (2003)

20. Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial
Intelligence and Law 7, 1–15 (1999)

21. López-López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms.
In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS ’02: Proceedings of the
1st international joint conference on Autonomous agents and multiagent systems,
pp. 674–681. ACM Press, New York, USA (2003)

22. Hoogendoorn, M., Jonker, C., Treur, J.: Redesign of organizations as a basis for
organizational change. LNCS, vol. 4386, pp. 51–71. Springer, Heidelberg (2007)

23. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Min-
imality and simplicity. Artificial Intelligence 119(1-2), 61–101 (2000)

24. Dresner, K., Stone, P.: Multiagent traffic management: An improved intersection
control mechanism. In: The 4th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 471–477. ACM Press, New York (2005)

25. Doniec, A., Espié, S., Mandiau, R., Piechowiak, S.: Dealing with multi-agent co-
ordination by anticipation: Application to the traffic simulation at junctions. In:
EUMAS, pp. 478–479 (2005)

26. Montana, D.J., Czerwinski, S.: Evolving control laws for a network of traffic signals.
In: Genetic Programming 1996: Proceedings of the 1st Annual Conference, Stanford
University, CA, USA, pp. 333–338. MIT Press, Cambridge (1996)

27. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Adaptation of Autonomic
Electronic Institutions through norms and institutional agents. In: 7th Annual
International Workshop Engineering Societies in the Agents World (ESAW’06),
pp. 137–152 (2006)



Norm Conflicts and Inconsistencies in Virtual
Organisations

Martin J. Kollingbaum, Timothy J. Norman, Alun Preece, and Derek Sleeman

Department of Computing Science, University of Aberdeen,
Aberdeen AB24 3UE, UK

{mkolling,tnorman,apreece,sleeman}@csd.abdn.ac.uk

Abstract. Organisation-oriented approaches to the formation of multi-agent sys-
tems use roles and norms to describe an agent’s social position within an artificial
society or Virtual Organisation. Norms are descriptive information for a role –
they determine the obligations and social constraints for an agent’s actions. A le-
gal instrument for establishing such norms are contracts signed by agents when
they adopt one or more roles. A common problem in open Virtual Organisations
is the occurrence of conflicts between norms – agents may sign different con-
tracts with conflicting norms or organisational changes may revoke permissions
or enact dormant obligations. Agents that populate such Virtual Organisations can
remain operational only if they are able to resolve such conflicts. In this paper,
we discuss, how agents can identify these conflicts and resolve them.

1 Introduction

Organisation-oriented approaches to the formation of multi-agent systems assume that
a community of agents form a Virtual Organisation. Its purpose is to facilitate resource
sharing and problem solving among software and/or human agents [1,2]. Virtual Organ-
isations are defined by a set of roles, inter-role relationships and norms describing the
obligations and social constraints for agents adopting such roles. Agents are regarded
as signing a contract with the rest of the community when they are recruited into a
specific role – they commit to act according to the normative specification of a role.
By adopting a set of norms, the agent finds itself in a specific normative position – it
takes on a social burden in terms of specific norms. This implies that agents must be
norm-governed – they must be able to reason about the obligations, permissions and
prohibitions that characterise their role (or set of roles) within a specific organisational
context.

Virtual organisations are situated in a changing world and may, therefore, need to
adapt to changes. This dynamic nature of organisations has to be taken into account in
the design of agents that are recruited into organisational structures. Due to the dynamic
nature of coalitions, the agent’s normative position can change – the agent may have to
adopt additional norms or revise existing ones. Such a change can lead to conflicts: an
agent wants to perform an action that is simultaneously allowed and forbidden. Or it
can lead to inconsistencies: the agent may suddenly be forbidden to perform an action
that may be essential for fulfilling one of its obligations.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 245–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



246 M. J. Kollingbaum et al.

The NoA model of norm-governed agency [3,4] is specifically designed to deal with
such problems. NoA takes inspirations from classical BDI models [5], but has certain
unique characteristics: (a) norms are first class entities that influence the practical rea-
soning of an agent and (b) a specific form of deliberation, called informed deliberation
[6], is used that enables agents to efficiently identify and resolve norm conflicts and
inconsistencies. An agent based on the NoA model will analyse whether it can fulfill its
obligations in a norm-consistent way. The agent has to investigate whether (a) all op-
tions of actions for such an obligation are allowed, (b) least one of them or (c) whether
the agent will be forced to violate any other norms if it wants to fulfill an obligation.
NoA agents do not filter out options for action that are norm-inconsistent. Instead, the
deliberation process of the agent is informed about conflicts between permissions and
prohibitions and the consistency situation of obligations. With such a norm-informed
deliberation, a NoA agent becomes norm-autonomous [7] – an agent can decide whether
to honour its norms or act against them.

The concepts of norm conflict and consistency of obligations are related. The agent
can perform actions and fulfill its obligations in a norm-consistent manner only if there
are no conflicts within the set of norms – the agent must first resolve conflicts between
permissions and prohibitions regarding actions in order to be able to create a complete
partitioning of the options for actions for fulfilling obligations. Allowing conflicts in
the first place has practical benefits in the engineering of multi-agent systems – excep-
tional situations do not have to be anticipated in advance, but the agents themselves are
endowed to deal with them. In fact, we argue [6] that it is not possible to ensure that an
agent will be conflict-free in even simple scenarios. For that, NoA introduces mecha-
nisms for detecting and classifying conflicts and proposes conflict resolution strategies
the agent can employ to disambiguate its normative position so that it can then decide
and select actions for fulfilling its obligations.

This paper addresses the critical issue of the occurrence of norm conflicts and how
agents can remain operative in the face of such conflicts. If there is a conflict, it has to be
resolved by the agents involved. A set of conflict resolution strategies has been proposed
in [3,4]. In this paper, we are interested how agents can refine their set of currently held
norms (for example, via re-negotiating clauses in their contracts) in order to answer
questions such as which obligations and prohibitions should be refined or removed or
what additional permissions would ease a conflict situation and help an agent to remain
operational.

2 Usage Scenario

A specific scenario is used to illustrate the importance of a normative approach to the
use of Grid services. In this scenario, a research facility commits to achieve specific re-
search goals for a company. Such a commitment has to be specified formally in the form
of a contract to define the rights of the contracting partners. In our scenario, we assume
that such a contract is established between the research facility and the company and
includes an obligation for the researchers to deliver results of a specific analysis of a set
of data. We also assume that this agreement describes a prohibition for the researchers
to disclose any of these data (they have an obligation to observe confidentiality). In



Norm Conflicts and Inconsistencies in Virtual Organisations 247

order to fulfill their obligation, they use services on the Grid to execute their scientific
work. We assume that there are two different service providers operating on the Grid:

– a non-profit organisation provides the required service for free, but requires the user
to make its data available for public use

– a commercial organisation provides the required service without such an obligation
to disclose data, but the service itself is expensive

We assume that the fee for the commercial service is not covered by the budget of the
research organisation – the contract with the industrial partner does not allow to spend
money on such extra costs. The research organisation is, therefore, compelled to use
the free service. This introduces a conflict, as the free service requires the data to be
disclosed.

3 Norm-Governed Practical Reasoning

According to the model of norm-governed practical reasoning, as described in [3,4],
NoA agents are motivated by obligations to achieve a state of affairs or to perform
an action. NoA agents operate with a reactive planning mechanism, where capabilities
of an agent are expressed as a set of pre-specified plans. These plans are adapted to
the needs of a norm-governed reasoning – they include explicit effect specifications
to allow an agent to reason about the normative consequences of possible actions. In
the development of this model, specific attention was given to the fact that agents may
be confronted with conflicting norms in open environments. A conflict would normally
render an agent unable to act. Therefore, NoA includes a model of informed deliberation
that provides the agent with information about classes of norm conflicts and proposes
conflict resolution strategies. This guarantees that NoA agents remain operational in the
face of such conflicts.

3.1 Conflicts and Inconsistencies

We describe an interference between obligations and prohibitions as norm inconsis-
tency and the interference between permissions and prohibitions as norm conflict. In
order to show how norms interfere, we have to investigate how norms are specified in
NoA. The NoA norm specification language provides constructs to specify obligations,
permissions and prohibitions. As NoA allows universally quantified variables within
norm specifications, such specifications may address whole sets of states or actions:

obligation (r,perform shift("a","r",Z))
prohibition(r,perform shift("a",Y,Z))

Obviously, these two norms address sets of actions that possibly overlap – each of
the norms is regarded as having a so-called scope of influence. By creating a graph over
all partial and full instantiations of action (plan) shift, we can gain insights into these
scopes of influence in more detail.

Figure 1 shows a part of a graph that outlines all partial and full instantiations of
action shift(X,Y,Z). It also shows the scope of influence of the prohibition for



248 M. J. Kollingbaum et al.

shift ( X, Y, Z )

shift ( “a”, Y, Z )

shift ( “a”, “r”, Z ) shift ( “a”, “s”, Z )

shift ( “a”, “r”, “u” )

shift ( “a”, “r”, “v” )

shift ( “a”, “s”, “u” )

shift ( “a”, “s”, “v” )

shift ( X, “r”, Z )

prohibition ( robot, 
perform shift ( “a”, Y, Z ), 
T, F

)
X ∈ {“a”, “b”}
Y ∈ {“r”, “s”}
Z ∈ {“u”, “v”}

obligation ( robot, 
perform shift ( “a”, “r”, Z ), 
T, F

)

Fig. 1. Containment Relationship between Obligation and Prohibition

action shift("a",Y,Z). This prohibition is regarded to be explicitly specified for
shift("a",Y,Z) and propagated to each node contained in its scope – each of these
nodes represents a specific partial instantiation of shift(X,Y,Z) and each of these
partial instantiations is regarded as being explicitly forbidden. The instantiation set in
this depiction is the set of full instantiations that correspond to shift("a",Y,Z).
They are regarded as inheriting their normative status from their antecedents and repre-
sent those actions that are explicitly forbidden because of the adoption of a prohibition
that contains an activity specification that addresses a whole set of actions. The instan-
tiation set represents the set of actions (or states) that are actually allowed or forbidden.
With this representation, we can regard norms as being explicitly introduced for a spe-
cific partial instantiation of an action (or state), represented as a node in this graph,
and being propagated to all nodes in the scope of the norm. Nodes are interconnected
according to their (partial) instantiation, with leaf nodes in this graph representing full
instantiations. We see that the scope of influence of the prohibition covers the scope of
influence of the obligation – the obligation demands actions that are forbidden.

Conflicts and inconsistencies occur if norms are adopted with scopes of influence
that overlap. In terms of the instantiation graph, norms are regarded as being introduced
for different nodes within this graph at the same time, where (a) a norm addresses a
specific partial instantiation of a state or action that is contained within the scope of
another norm, (b) the scopes of two norms intersect or (c) a norm is adopted for a
specific action that conflicts with norms adopted for states of affairs that are effects of
this action. Three main categories of conflicts emerge [4]:

– Containment. The scope of a norm is contained within the scope of another norm.
The norms themselves can be regarded as having a specialisation relationship – one
norm contains an activity specification that addresses a subset of actions or states
addressed by the second norm.

– Intersection. The scope of a norm intersects the scope of another norm. There is no
specialisation relationship between the norms. The actions or states in the intersec-
tion of both scopes inherit both norms at the same time.



Norm Conflicts and Inconsistencies in Virtual Organisations 249

– Indirect Conflict/Inconsistency. As NoA distinguishes between the achievement of
a state of affairs and the performance of an action explicitly, there can also be norms
formulated that address either an action or a state. For example, an obligation is
adopted that demands the performance of a set of actions (its scope of influence)
and some of these actions may have effects (produce states of affairs) that are for-
bidden. This is regarded as an indirect inconsistency. In an analogous fashion, an
indirect conflict may occur.

With respect to these characteristics of NoA, a definition of norm-consistent action
can be given. If TF describes the set of currently forbidden actions, SF the currently
forbidden states and SO the set of states that the agent is obliged to achieve, then the
execution of an action (plan) α, where α is not a currently forbidden action (TF ), is
consistent with the current set of norms of an agent, if none of the effects of α, ex-
pressed as effects(α), is currently forbidden and none of the effects of α counteracts
any obligation currently held by the agent (expressed as neg effects(α)):

consistent(α, TF , SF , SO) iff p /∈ TF

and SF ∩ effects(α) = ∅
and SO ∩ neg effects(α) = ∅

With the definition of norm-consistent action and the concept of the scope of influ-
ence of a norm regarding these actions, the consistency of obligations can be deter-
mined. In NoA, we distinguish three so-called levels of consistency for obligations. If
we describe with options(o) the set of options for action that would satisfy the oblig-
ation o and which represents the scope of influence for this obligation, then we can
investigate the consistency of each element α ∈ options(o). There are three possible
configurations for this set: (a) all elements in options(o) are consistent, (b) at least one
element in options(o) is consistent or (c) all elements are inconsistent. According to
these three possibilities, we introduce three so-called consistency levels for a specific
obligation:

– Strong Consistency. An obligation is strongly consistent if all α ∈ options(o) are
consistent.

– Weak Consistency. An obligation is weakly consistent if at least one candidate in
the set options(o) is consistent.

– Inconsistency. An obligation is inconsistent if no candidate in the set options(o) is
consistent.

With this consistency information, the agent can decide which actions to perform to
remain in a situation of at least weak consistency regarding its obligations.

In accordance with our e-Science scenario, let us assume that the agent (representing
the research institution) has signed a contract C1 (the research agent has to deliver
a data analysis) (see figure 2) and, with that, committed to fulfil obligation OC1 and
adhere to a prohibition FC1 (this can be, for example, a prohibition for the research
agent to disclose data or to spend over budget). To fulfil its obligation, the agent has
two Grid services available as options for action. To use one of these services, it has
to accept a second contract C2 with one of the service providers. As outlined before,



250 M. J. Kollingbaum et al.

both service providers offer their services under conditions that counteract the original
agreement between research agent and industrial partner. Let us assume that the agent
does not have the capability to fulfil its obligation and, therefore, has to subcontract
with one of the service providers. As pointed out in figure 2, contract C2 introduces a
new obligation OC2, which is regarded as conflicting with the prohibition FC1 of the
original contract C1.

Contract C1 Contract C2Agent

FC1 PC2OC1 OC2

OC1 OC2 ?

Can obligation OC2 be fulfilled when adopting both 
contracts? 

Fig. 2. Agent Signs an Additional Contract

In this situation, the agent should re-negotiate one of these contracts. The contract-
ing partners will try to change the norms specified within the contract. As our e-Science
example shows, the research institution cannot act because of a conflict between oblig-
ations specified within different contracts. To resolve this conflict, certain obligations
and prohibitions have to be changed. In our scenario, there are two options:

– the client lifts the non-disclosure agreement – with that, the contractee could use
the free service;

– the client makes additional allowances in the agreed budget, which makes the use
of a commercial service possible (the data does not have to be disclosed).

Both partners need information about the best course of action in such a negotiation.
For the contracting partners, it is important to be informed about the normative situation
– what are the conflicting norms and how obligations and prohibitions can be “relaxed”
in order to allow additional options for action.

4 Norm Refinement

The goal of the re-negotiation of contracts is to create or extend a set of options for
actions for a contracting agent that are consistent with respect to its obligations and
prohibitions. In order to make such a decision, additional information is needed.

This reasoning of an agent can be supported by information derived from the instan-
tiation graph. Inconsistency of an obligation means that the scope of influence of an
obligation is completely contained within the scope of influence of a prohibition (see
figure 1). To achieve a shift from inconsistency to, at least, weak consistency for an
obligation, the scopes of influence have to be changed so that such a containment does
not occur. There are three options:



Norm Conflicts and Inconsistencies in Virtual Organisations 251

– Extending the Scope of Influence. Change an obligation so that it becomes a moti-
vator for additional actions that do not have any prohibitions.

– Reducing the Scope of Influence. Change a prohibition so that additional actions
motivated by obligations become free of conflict.

– Overriding prohibitions. Introduce new permissions that override prohibitions to
“allow” additional actions for the fulfilment of obligations.

To achieve a shift from this level of inconsistency to, at least, weak consistency, the
scope of influence of either the obligation, the prohibition or both has to be changed.
Figure 1 shows, that the two norm specifications can change their scope of influence
by becoming either more specialised or more general. For example, if the prohibition
forbids the action shift("a","s",Z) instead of the more general
shift("a",Y,Z), no interference with the obligation would occur – the obligation
would become strongly consistent. Similarly, if the obligations would be re-negotiated
from shift("a","r",Z) to shift(X,Y,Z), then its set options(o) is extended
and it becomes weakly consistent.

Capabilities (Options for action) of the agent 

FC1
OC2

Scope of Influence FC1Scope of Influence OC2

F’C1 OC2 FC1 O’C2

FC1

OC2 PC1

Change prohibition FC1 to 
F’C1 in contract C1

Change obligation OC2 to 
O’C2 in contract C2

Obligation OC2 is 
inconsistent

Change consistency of OC2 : inconsistent -- weak consistency

Introduce overriding 
permission PC1

Fig. 3. Possible Changes to Norms to achieve a state of Weak Consistency

Figure 3 shows the transition from the initial situation of inconsistency to a situation
of weak consistency by either re-negotiating FC1 to transform it into F ′

C1 (reducing its
scope of influence) or re-negotiating OC2 to transform it into O′

C2 (extending its scope
of influence). Figure 3 also shows a third option. By introducing a new Permission PC1

with a scope of influence that intersects with the scope of FC1, options for action can
be made permitted to allow the fulfilment of obligation OC2. The obligation OC2 is
operating at a level of weak consistency. Translated into our e-Science example, the
research agent will try to utilise the commercial service as an option for action, but has
to re-negotiate additional budget allowances to cover the costs of its use. With that, it is
able to fulfill its obligation of payment towards the commercial service.

To achieve strong consistency, those norms with intersecting scopes have to be sepa-
rated completely. Figure 4 shows the transition from the left-most case of figure 3 into a



252 M. J. Kollingbaum et al.

F’C1 OC2

F’’C1 OC2 F’C1 OC2 F’C1 O’C2

PC1

Change prohibition F’C1 to 
F’’C1 in contract C1

Introduce overriding 
permission PC1

Change obligation OC2 to 
O’C2 in contract C2

Change consistency of OC2 : weak consistency -- strong consistency

Fig. 4. Possible Changes to Norms to achieve a state of Strong Consistency

situation of strong consistency. This can be achieved by further specialising prohibitions
or generalising obligations or by introducing specific permissions for those options for
action, where the scopes of obligations and prohibitions intersect.

As these examples show, the instantiation graph is a device that can display issues
of conflict and inconsistencies. It shows, how prohibitions and obligations have to be
changed to achieve a partial or complete separation of their scopes or how the normative
position of an agent can be eased by introducing a specific permission.

In order to operationalise such a refinement of norms, which may take place through
a process of re-negotiation, the deliberation of an agent has to be informed about the
problems occurring and the options available for solving them. An important device in
NoA is the cross-referencing of actions and norms with a label that annotates actions
with its motivators (obligations) and prohibitors prohibitions).

4.1 Labeling Actions

Actions are regarded as being motivated by obligations and may also be, at the same
time, prohibited as well as permitted. The normative state of an action may, there-
fore, be determined by a set of obligations, permissions and prohibitions. In order to
cross-reference actions with norms and to indicate potential interference between these
norms, these three sets are used to construct a label for actions that contains a set of
motivators and prohibitors. Obligations comprise the set of motivators. We assume that
a conflict between a prohibition and permission is solved and that the set of prohibitors
only contains prohibitions that are not in conflict with permissions (an overriding per-
mission removes prohibitions from this set). We can describe a label for an action α as
a tuple

l = 〈α,MOTIVATORS ,PROHIBITORS〉,

where



Norm Conflicts and Inconsistencies in Virtual Organisations 253

– α is the labelled candidate action for a set of motivating obligations
– MOTIVATORS is the set of obligations that motivate the consideration of this

action as a candidate for execution, because (a) one of its effects achieves the state
of affairs demanded by this obligation or (b) it is the action demanded by these
obligations

– PROHIBITORS is the set of prohibitions or obligations that conflict with all the
obligations in the set MOTIVATORS .

As an obligation may address a whole set of actions (see figure 1), it will be a mo-
tivator for these actions and, therefore, be an element of the set MOTIVATORS for
each of these actions. A label for an action tries to accummulate information about con-
flicting norms in relation to an action. Therefore, the sets of motivators and prohibitors
contain norms that are in conflict. In the set of motivators there may be obligations
that are in conflict with only a subset of the prohibitors. To account for this situation,
multiple labels have to be established for an action for each subset of obligations and
prohibitors that are in conflict. If the set of prohibitors is empty, then a label expresses
that an obligation is, at least, weakly consistent, as there is at least one option for action
to fulfil this obligation without creating conflicts. If the set of prohibitors is empty in
all labels, where an obligation occurs in the set of motivators, then this obligation is
strongly consistent.

4.2 Detecting Conflicts

In investigating our previous example of an obligation,

obligation(r,perform shift("a","r",Z))

conflicting with a prohibition prohibition(r,perform shift("a",Y,Z)),
we can conclude that there is a conflict between these norms if the terms representing
the shift operation in both norm specifications can be unified. Consequently, a con-
flict can be resolved if the agent finds a substitution so that such a unification fails. For
guiding the re-negotiation, the agent has to find the set Σfailed = {σ1, . . . , σn} where
the σi, 1 ≤ i ≤ n, are substitutions that are not unifiers for terms occurring in our norm
specifications.

For example, if we assume X ∈ {”a”, ”b”, ”c”}, Y ∈ {”r”, ”s”, ”t”} and Z ∈
{”u”, ”v”, ”w”} for action shift(X,Y,Z), then a substitution σ = {X/t1, Y/t2}
with t1 ∈ {”b”, ”c”} and/or t2 ∈ {”s”, ”t”} would be an appropriate argument for the
agent to be proposed in its effort to refine either the prohibition or obligation.

The introduction of new permissions may be used to override prohibitors. A permis-
sion partially or completely overrides a prohibitor (covers parts of or the complete scope
of influence), if the agent can find a substitution so that unification is successful. The
agent has to find the set Σsuccess = {σ1, . . . , σn} where the σi, 1 ≤ i ≤ n, are substi-
tutions that are unifiers for terms occurring in our norm specifications. For example, if
we assume X ∈ {”a”, ”b”, ”c”}, Y ∈ {”r”, ”s”, ”t”} and Z ∈ {”u”, ”v”, ”w”} for
action shift(X,Y,Z), then a substitution σ = {X/t1, Y/t2, Z/t3} with t1 ∈ {”a”}
and t2 ∈ {”r”, ”s”, ”t”} and t2 ∈ {”u”, ”v”, ”w”} would be an appropriate proposal
for a new permission.



254 M. J. Kollingbaum et al.

In the set of prohibitors, only those prohibitions are contained that do not have a
conflict with a permission. Therefore, if there is a conflict (for example, by introducing
a permission that overrides a prohibition), then such a prohibition is removed from the
set of prohibitors.

4.3 Options for Re-negotiation

The label expresses consistency for an action. As expressed before, an action is anno-
tated with multiple labels, each displaying a conflict between obligations and prohibi-
tions that expresses a situation of inconsistency for this action. An action is consistent
if the set PROHIBITORS is empty in all of its labels.

As outlined in figure 2, we assume a scenario where a new contract introduces a
conflict. To simplify the explanations and avoid an overload with indexing, we assume
that each contract introduces a single obligation, prohibition and / or permission and
that each norm is indexed with a contract identifier to express the relationship between
a norm and a contract.

lα1 = 〈α1, {OC1}, {}〉
lα2 = 〈α2, {OC3}, {}〉
lα3 = 〈α3, {OC1, OC2}, {FC1}〉
lα4 = 〈α4, {OC1, OC3}, {FC2}〉
lα5 = 〈α5, {OC2, OC3}, {FC1}〉

In this scenario, a set of norms N = {OC1, OC2, OC3, FC1, FC2, FC3} motivate
and, partially, prohibit the performance of actions from the set of actions A =
{α1, . . . , α5}. For example, obligation OC1 can be fulfilled by candidate actions α1,
α3 and α4 – obligation OC1 is a motivator for these actions.

The goal of re-negotiation is to resolve conflicts in the set of norms that determine
an agent’s normative position. It must be possible for the agent to fulfil its obligations
without violating other norms – all obligations have to be at least weakly consistent. To
achieve this, the agent has to know which prohibitors to re-negotiate in order to resolve
conflicts. In order to perform such an analysis, we will take a snapshot of the set of
labels and investigate their sets of motivators and prohibitors.

As outlined before, a label with an empty set of prohibitors indicates that obligations
in the set of motivators for this label are weakly consistent. As the scenario outlined
above shows, actions α1 and α2 have a set of motivators only:

lα1 = 〈α1, {OC1}, {}〉
lα2 = 〈α2, {OC3}, {}〉

OC1 and OC3 are the motivators for actions α1 and α2. Their labels contain no
prohibitors. Therefore, these two actions provide possibilities to fulfil these obligations
without violating other norms – they make obligation OC1 and OC3 weakly consistent.
With that, these two obligations do not have to be considered any more.

For a further analysis of the set of labels, all occurrences of these weakly consistent
obligations are removed from the set of labels. If, after this cleanup, a label has an



Norm Conflicts and Inconsistencies in Virtual Organisations 255

empty set of motivators, then this label will be removed from the set of labels. In our
scenario, labels lα1 , lα2 and lα4 are changed in this way and are removed:

lα3 = 〈α3, {OC2}, {FC1}〉
lα5 = 〈α5, {OC2}, {FC1}〉

The resulting set of labels can now be used to derive the minimal set of prohibitors
that the agent has to re-negotiate in order to achieve weak consistency for all obliga-
tions. A procedure is employed here that will select a prohibitor according to occurrence
– the prohibitor with the highest occurrence is chosen, removed from the remaining la-
bels and added to a set R of prohibitors to be re-negotiated. Such a prohibitor has a
relationship to a set of obligations and, therefore, has to be added to the set R together
with its related obligations. In our scenario, set R contains prohibitor FC1 together with
obligation OC2:

R = {{FC1, OC2}}

In general, the removal of such a prohibitor from all the labels where it occurs will,
again, leave some labels with empty sets of prohibitors. The cleanup step described
before must be repeated and such labels deleted. After that, again, a new prohibitor
with maximal occurrence has to be selected, added to set R and removed from labels.
Both the cleanup step and the selection of a prohibitor has to be repeated until all labels
are removed. This creates a set R of prohibitors for re-negotiation, where a precedence
relationship ≺ exists between its members. The relationship of a prohibitor to its oblig-
ations has to be expressed accordingly:

R = {{F1, O1, . . . , Om1}, . . . , {Fn, O1, . . . , Omn}},

F1 ≺ F2 ≺ . . . ≺ Fn

Instead of selecting prohibitors according to occurrence, other criteria may be chosen
for such a selection process. For example, the agent may hold a function

violate(F ) : N → R

that calculates the cost of a violation of a specific prohibitor, which influences the se-
lection in the elimination process described before.

5 Related Work

Norms have found increasing attention in the research community as a concept that
drives the behaviour of agents within virtual societies. Conte and Castelfranchi [8,9]
investigate in detail how agents within a society reason about norms regarding their
actions and what motivates them to honour their obligations and prohibitions and ful-
fill their commitments. Conte et al. [8,7], argue that for a computational model of
norm-governed agency, the internal representation of norms and normative attitudes,
and models of reasoning about norms is a necessity. Norm-governed agents must be



256 M. J. Kollingbaum et al.

able to recognise norms as a social concept, represent them as mental objects and solve
possible conflicts among them. Such agents should, in the words of [7], be truly norm-
autonomous – they must know existing norms, learn / adopt new ones, negotiate norms
with peers, convey / impose norms on other agents, control and monitor other agents’
norm-governed behaviour, and be able to decide whether to obey or violate them. Pan-
zarasa et al. [10,11] discuss the influence of a social context on the practical reasoning
of an agent. They point out that the concept of social commitment as introduced by
Castelfranchi and investigated by Cavendon and Sonenberg has to be extended to in-
clude issues of how social commitments and regulations inform and shape the internal
mental attitudes of an agent to overcome the solipsistic nature of current BDI models.
Work pursued by Broersen et al. [12], Dastani and van der Torre [13,14], the model of
a normative agent described by Lopez et al. [15] and, specifically, the NoA system as
presented in this paper and elsewhere [4,3] introduce concepts of norm influence into
practical reasoning agent to make this transition from solipsistic to social agents. The
NoA model of norm-governed agents takes strong inspirations from the work of Kanger
[16], Lindahl [17] and Jones and Sergot [18,19] for the representation of rights and the
concept of a normative position. Members of a society adopt these norms and, ideally,
operate according to them. Adopted norms determine the social or normative position
of an individual [17], expressing duties, powers, freedom etc. under specific legal cir-
cumstances. This normative position can change any time with new norms coming into
existence or old ones removed. Relationships of power create organisational structures
and hierarchies within a society, assigning specific roles to members of an organisa-
tion [18,20]. Dignum et al. [21] describe the three basic aspects in the modelling of
virtual societies of agents: (a) the overall purpose of such a community of agents, (b)
organisational structure based on a set of roles and (c) norms for regulating the actions
and interactions of the agents adopting such roles. In line of our previous argument
that the solipsistic nature of agents has to be overcome for virtual organisations, they
emphasise as well the importance of introducing a collective perspective on an agent’s
actions in a specific role within a society - the agent cannot not be solely driven by
internal motivations, but it has to be socially aware in its practical reasoning. As also
described in [22], Agents take on roles and responsibilities and are determined in their
actions by external influences in the form of social regulations and norms. Pacheco and
Carmo [20] describe the modelling of complex organisations and organisational behav-
iour based on roles and normative concepts. The creation of virtual societies is based
on contracts between agents. Such a contract describes the set of norms that specify
roles and agents adopting such roles commit to act according to these norms. Pacheco
and Carmo emphasise the importance of these contracts as the central element to bind
agents into societies.

Organisational change and the impact of these social dynamics on the normative
position of the agent, as addressed in previous work [23,4,24,3], also find attention in the
work of Esteva et al. [25], Lopez and Luck [26] and Skarmeas [27]. Dastani et al. [28]
investigate conflicts that can occur during the adoption of a role by an agent. Esteva et al.
[25] present a computational approach for determining the consistency of an electronic
institution. As shown in [4], the NoA model includes a detailed classification of conflict
situations that informs the deliberation of the agent about problems of norm conflicts



Norm Conflicts and Inconsistencies in Virtual Organisations 257

and inconsistencies between the agents actions and its norms and can be used to guide
the re-negotiation of contracts. With that, a NoA agent does not require a conflict-free
set of norms to be operable, as it is provided with conflict resolution strategies to deal
with conflicting norm sets.

6 Conclusion

In case of a norm conflict, agents may have to re-negotiate their contracts. The goal
of such a re-negotiation must be a guarantee that obligations can be fulfilled by ac-
tions that do not violate any prohibitions. The NoA model and architecture for norm-
governed practical reasoning agents takes specific care to inform the agent about the
norm consistency of its options for actions for fulfilling its obligations and provides
resolution strategies for conflicts between norms. In this paper, we illustrate how this
model of norm-consistent action and norm conflicts can be used to inform the agents in
the re-negotiation of their contracts.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int’ J. Supercomputer Applications 15, 209–235 (2001)

2. Norman, T., Preece, A., Chalmers, S., Jennings, N., Luck, M., Dang, V., Nguyen, T., De-
ora, V., Shao, J., Gray, W., Fiddian, N.: Agent-based Formation of Virtual Organisations.
Knowledge Based Systems 17, 103–111 (2004)

3. Kollingbaum, M.: Norm-governed Practical Reasoning Agents. PhD thesis, University of
Aberdeen (2005)

4. Kollingbaum, M., Norman, T.: Strategies for Resolving Norm Conflict in Practical Reason-
ing. In: ECAI Workshop CEAS 2004 (2004)

5. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, LTD. Chich-
ester (2002)

6. Kollingbaum, M., Norman, T.: Anticipating and Resolving Conflicts during Organisational
Change, Technical Report AUCS/TR0505. Technical report, University of Aberdeen (2005)

7. Conte, R., Falcone, R., Sartor, G.: Agents and Norms: How to fill the Gap? Artificial Intelli-
gence and Law 7 (1999)

8. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press (1995)
9. Castelfranchi, C.: Modelling Social Action for AI Agents. Artificial Intelligence 103, 157–

182 (1998)
10. Panzarasa, P., Norman, T., Jennings, N.: Modelling Sociality in the BDI Framework. In:

Intelligent Agent Technology: Systems, Methodologies, and Tools. Proceedings of the First
Asia-Pacific Conference on Intelligent Agent Technology. World Scientific Publishing, pp.
202–206 (1999)

11. Panzarasa, P., Jennings, N., Norman, T.: Social Mental Shaping: Modelling the Impact of
Sociality on the Mental States of Autonomous Agents. Computational Intelligence 17, 738–
782 (2001)

12. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architec-
ture: Conflicts between Beliefs, Obligations, Intentions and Desires. In: Proceedings of Au-
tonomous Agents 2001, pp. 9–16 (2001)

13. Dastani, M., van der Torre, L.: What is a normative Goal? In: Falcone, R., Barber, S., Korba,
L., Singh, M.P. (eds.) AAMAS 2002. LNCS (LNAI), vol. 2631, Springer, Heidelberg (2002)



258 M. J. Kollingbaum et al.

14. Dastani, M., van der Torre, L.: A Classification of Cognitive Agents. In: Proceedings of the
24th Annual Meeting of the Cognitive Science Society CogSci 2002, pp. 256–261 (2002)

15. Lopez y Lopez, F., Luck, M., dÍnverno, M.: Constraining autonomy through norms. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and Multi-agent
Systems, pp. 647–681 (2002)

16. Kanger, S., Kanger, H.: Rights and Parliamentarism. Theoria 32, 85–115 (1966)
17. Lindahl, L.: Position and Change: A Study in Law and Logic. D. Reidel Publishing Company

(1977)
18. Jones, A., Sergot, M.: A Formal Characterisation of Institutionalised Power. Journal of the

IGPL 4, 429–445 (1996)
19. Sergot, M.: A Computational Theory of Normative Positions. ACM Transactions on Com-

putational Logic 2, 581–622 (2001)
20. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of Organized

Collective Agency and Agents Interaction. Autonomous Agents and Multi-Agent Systems 6,
145–184 (2003)

21. Dignum, V., Meyer, J.J., Weigand, H., Dignum, F.: An Organization-Oriented Model for
Agent Societies. In: Falcone, R., Barber, S., Korba, L., Singh, M.P. (eds.) AAMAS 2002.
LNCS (LNAI), vol. 2631, Springer, Heidelberg (2003)

22. Dastani, M., Dignum, F., Dignum, V.: Organizations and Normative Agents. In: Proceedings
of the 1st Eurasian Conference on Advances in Information and Communication Technology
Eurasia ICT (2002)

23. Kollingbaum, M., Norman, T.: Norm Consistency in Practical Reasoning Agents. In: Das-
tany, M., Dix, J. (eds.) PROMAS Workshop on Programming Multiagent Systems (2003)

24. Kollingbaum, M., Norman, T.: Norm Adoption and Consistency in the NoA Agent Archi-
tecture. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS
(LNAI), vol. 3067, Springer, Heidelberg (2004)

25. Esteva, M., Vasconcelos, W., Sierra, C., Rodriguez-Aguilar, J.: Verifying Norm Consistency
in Electronic Institutions. In: Proceedings of the AAAI 2004 Workshop on Agent Organisa-
tions: Theory and Practice (2004)

26. Lopez y Lopez, F., Luck, M.: Towards a Model of the Dynamics of Normative Multi-Agent
Systems. In: Proceedings of the International Workshop on Regulated Agent-Based Social
Systems: Theories and Applications RASTA’02, Bologna (2002)

27. Skarmeas, N.: Organisations through Roles and Agents. In: Proceedings of the International
Workshop on the Design of Cooperative Systems COOP’95 (1995)

28. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open Agent Societies. In: Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems (2003)



P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 259 – 273, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Using Dynamic Electronic Institutions to Enable 
Digital Business Ecosystems 

Eduard Muntaner-Perich and Josep Lluís de la Rosa Esteva 

Agents Research Lab, Edifici PIV, Campus de Montilivi, 17071 
Universitat de Girona, Catalonia, Spain 

{emuntane,peplluis}@eia.udg.cat  

Abstract. In this paper, which is exploratory in nature, we introduce how to use 
Dynamic Electronic Institutions to enable Digital Business Ecosystems. A 
Digital Business Ecosystem is an evolutionary self-organising system aimed at 
creating a digital software environment for small organisations. These new 
forms of networked business require a multi-disciplinary approach based on 
biology, computer science and social sciences mechanisms and models. Our 
proposal is to use a multi-agent approach in combination with some social 
sciences metaphors. More specifically, we propose to imagine the digital 
environment of business ecosystems as an open agent system, and to study the 
spontaneous composition and adaptation of the different services and software 
components, by using Dynamic Electronic Institutions, which we have recently 
presented in our latest works. In this paper we present a brief summary of our 
previous work on dynamic institutions, and our first ideas on how to enable 
Digital Business Ecosystems. 

Keywords: Open Agent Systems, Electronic Institutions, Coalition Formation, 
Digital Business Ecosystems, Normative Systems, Electronic Contracts. 

1   Introduction 

Businesses today are a highly interconnected network of companies, organisations, 
technologies, consumers, products and services. The degree of interactions in 
electronic business is becoming higher, and these interactions are becoming 
increasingly complex. In fact, the success of businesses is ever more dependent on the 
associations and relationships in the Market (business ecosystems). 

The Digital Business Ecosystem (DBE) is the enabling technology for the business 
ecosystems. A Digital Business Ecosystem is defined as “an evolutionary self-
organising system aimed at creating a digital software environment for small 
organisations that support the regional and local development by empowering open, 
distributed and adaptive technologies and evolutionary business models for small 
organisations growth” [1].  

The concept of DBE has been coined initially in 2002 in Europe. Today the 
European vision of Digital Ecosystems is becoming mature ant currently there are two 
important related projects ongoing in Europe:  



260 E. Muntaner-Perich and J.L. de la Rosa Esteva 

• The DBE Project [1,2]: the ideas behind the DBE project use mechanisms from 
living organisms like evolution, adaptation, autonomy, or self-organisation, to 
arrive at novel architectures, technologies and business processes, thus creating a 
network of digital business ecosystems for SMEs (Small and Medium size 
Enterprises) to improve their value networks and foster local economic 
development. 

• The ONE Project [3]: the main objective of the ONE project is to enrich Digital 
Ecosystems with an open, decentralised negotiation environment and enabling tools 
that will allow organisations to create contract agreements (electronic contracts) for 
supplying complex, integrated services as a virtual organisation/coalition or 
temporary e-business unions. 

The idea is that an open-source distributed environment will support the spontaneous 
composition and adaptation of services and software components (which include 
business rules and norms), in order to allow SMEs to cooperate in production of 
components and applications adapted to local business needs. A “digital environment” 
will be an environment populated by “digital species” like software components, 
applications, services, knowledge, business models, laws, etc. In Figure 1, an example 
of Digital Business Ecosystem is shown. 

 

Fig. 1. An example of DBE. Adapted from [2]. 

The Digital Business Ecosystem concept is emerging as an innovative approach to 
support the adoption and development of ICTs [4]. A network of digital ecosystems, 
will offer opportunities of participation in the global economy to SMEs and also to 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 261 

less developed or remote areas. These new forms of dynamic business interactions 
and global cooperation among companies, organisations and business communities 
will foster local economic growth, and they will probably contribute to overcome the 
digital divide. 

In the European case, SMEs represent the 99% of the total number of businesses, 
so they are a very important part of the European economy. The DBE Project aims to 
provide SMEs with new cost-effective technology paradigms and innovative uses of 
ICTs. This way, SMEs will be able to reduce their time to market, and to enlarge their 
business networks. 

At this moment there are different European research groups and organisations 
working on the DBE Project and the ONE Project (Waterford Institute of Technology, 
Instituto Tecnológico de Aragón, Trinity College Dublin, London School of 
Economics, University of Girona, etc.). There is also some preliminary software for 
DBEs: DBE Execution Environment (ExE) [5] and DBE Studio [6]. But in our 
opinion, these projects are centred on the execution and management of DBEs, and 
we believe that there is a need to study the mechanisms which will allow the 
automatic composition and teamwork of the different components inside and among 
ecosystems. 

These new forms of networked business will require a multi-disciplinary approach 
based on biology, computer science and social sciences mechanisms and models. The 
science team in the DBE project is working on an evolutionary environment by using 
a biological approach. Our proposal is to use a multi-agent approach in combination 
with some social sciences metaphors. More specifically, we propose to imagine the 
digital environment of the DBE as an open agent system, in which the components 
(agents) are not known a priori, can change over time, and can be heterogeneous (with 
different objectives, capabilities and behaviours). 

But the use of open agent systems could cause some problems, because in this kind 
of systems, the emergent behaviour of the global system can become chaotic and 
unexpected. In critical applications this can be a significant problem, and it is evident 
that regulatory measures must be introduced to determine what things agents can and 
cannot do. Electronic institutions [7] could be an effective solution. They incorporate 
social and organisational abstractions into multi-agent systems; in fact they 
incorporate the rules of the game. But they have some limitations: they are based on 
medium to long-term associations between agents, they require a design phase 
performed by humans, and there are no mechanisms for automatic creation, 
reconfiguration and dissolution processes. 

We argue, therefore, that the solution could be to study the spontaneous 
composition and adaptation of the different services and software components, by 
using Dynamic Electronic Institutions, which we have presented in our recent works 
[8, 9, 10]. 

This paper is organized as follows. In section 2 we explain the most important 
characteristics of electronic institutions, their key concepts and their main problems. 
In section 3 we explain our model and approach to Dynamic Electronic Institutions. 
Next, section 4 illustrates the connection points between dynamic institutions and 
DBE, and suggests a way for enabling DBEs by using dynamic institutions. Finally 
section 5 concludes with discussion and future research. 



262 E. Muntaner-Perich and J.L. de la Rosa Esteva 

2   Electronic Institutions 

From a social point of view, it is easy to observe that the interactions between people 
are often guided by institutions that help and provide us with structures for daily life 
tasks. Institutions structure incentives in human exchange (political, social, or 
economic). Institutions establish laws, norms and rules to respond to emergencies, 
disasters, et cetera. Somehow we could say that institutions represent the rules of the 
game in a society or, more formally, are the humanly devised constraints that shape 
human interaction [11]. 

The idea to use organisational metaphors to model systems was early proposed  
[12, 13]. These approaches suggest structuring the agent society with roles and 
relationships between agents. But the study of electronic institutions is a relatively 
recent field (the first approach was [14]). The main idea is simple, and it could be 
summarized by imagining groups of intelligent, autonomous and heterogeneous 
agents, which play different roles, and which interact with each other under a set of 
norms, with the purpose of satisfying individual goals and/or common goals. As a 
first impression, it could seem that these norms are a negative factor which adds 
constraints to the system, but in fact they reduce the complexity of the system, 
making the agents’ behaviour more predictable. 

Research in Distributed Artificial Intelligence (DAI), and more specifically, 
research in MAS, has focused on the individual behaviour of agents (agent-centred 
view). But this agent-centred perspective is not useful in complex systems like open 
agent systems, where their components (agents) are not known a priori, can change 
over time, and can be heterogeneous and exhibit very different behaviours. Open 
agent systems are also characterized by limited trust and conflicting individual goals. 
In these kinds of systems, this vision that is focused on the agent can cause the 
emergent behaviour of the global system to be chaotic and unexpected. In critical 
applications this can be a significant problem, and it is evident that is necessary to 
introduce regulatory measures which determine what things the agents can do, and 
what they cannot. It is here where the institutions acquire importance. Agent-centred 
approaches can be useful for closed and small systems, but they fail to design open 
systems [15, 16]. 

In Noriega’s thesis [14], an abstraction of the notion of institution is introduced for 
the first time. He is also the first to use the term agent-mediated electronic institution, 
which he describes as: computational environments which allow heterogeneous 
agents to successfully interact among them, by imposing appropriate restrictions on 
their behaviours.  

Continuing and extending the ideas of Noriega’s thesis, there is Rodríguez-Aguilar 
[16] who emphasizes the need for a formal framework which allows to work with 
general electronic institutions. 

From these first approaches to this area, to the actual lines of research, there have 
been different European research groups working on similar subjects, each one with 
its particular perspective and approach to the problem. At the moment, many efforts 
are dedicated to this research area. The proof of this is that in 2003, five PhD theses 
intimately related to this subject were presented. The theses are: [7,17,18,19,20]. 

 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 263 

These different approaches to electronic institutions have demonstrated how 
organisational approaches are useful in open agent systems, but in our opinion, they 
still have several problems and limitations. We have summarized these problems in 
the following list: 

• All the approaches to electronic institutions are based on medium to long-term 
associations and dependencies between agents. This characteristic is useful in some 
application domains but it is a significant problem in other domains, where 
changes in tasks, in information and in resources make temporary associations 
(regulated by norms) necessary. 

• Electronic institutions require a design phase (performed by humans). It is 
necessary to automate this design phase in order to allow the emergence of 
electronic institutions (without human intervention) in open agent systems. 

• Agents can join and leave institutions, but how do these entrances and exits affect 
the institutions’ norms and objectives? Could these norms and objectives change 
over time? 

• When an institution has fulfilled all its objectives, how can it dissolve its 
components (agents)?  

In our opinion, these problems and limitations can be studied and possibly solved 
with a coalition formation approach to electronic institutions, in order to develop 
dynamic electronic institutions. This is the main objective of our research. In the next 
section we present our model of dynamic electronic institutions and their lifecycle. 

There is little previous work on dynamic electronic institutions: this idea has just 
recently been introduced as a challenge for agent-based computing. It first appeared 
when the term dynamic electronic institution appeared in a roadmap for agent 
technology [21]. 

3   Dynamic Electronic Institutions 

We argue that Dynamic Electronic Institutions (DEIs from now on) can be described 
as follows: emergent associations of intelligent, autonomous and heterogeneous 
agents, which play different roles, and which are able to adopt a set of norms in order 
to interact with each other, with the aim of satisfying individual goals and/or common 
goals. These formations are dynamic in the sense that they can be automatically 
formed, reformed and dissolved, in order to constitute temporary electronic 
institutions on the fly. This type of institution should be able to adapt its norms and 
objectives dynamically in relation to its present members (agents). 

There are several application domains that require short-term agent organisations 
or alliances, in which DEIs could be applied. Some of them are: Digital Business 
Ecosystems (we will study this application domain in the next section), B2B 
Electronic Commerce, Mobile Ad-Hoc Networks, simulation of Operations Other 
Than War (OOTW), etc. 

In our opinion DEIs should have a lifecycle made up of by three phases: Formation, 
Foundation and Fulfilment (We call this lifecycle “3F cycle” [9]). Figure 2 depicts this 
cycle. 



264 E. Muntaner-Perich and J.L. de la Rosa Esteva 

1. Formation phase: this is the coalition formation phase. Associations between 
agents which have the same (or similar) goals emerge. Other notions such as trust 
between agents should also be considered as important factors in the coalition 
formation phase. In order to allow agents to form coalitions, a coalition formation 
mechanism is necessary; this implies a protocol and strategies. 

2. Foundation phase: the process of turning the coalition into a temporary electronic 
institution. This phase is the real challenge, because the process of turning the 
coalition into a temporary electronic institution is not a trivial problem. The 
foundation phase has never been studied before. Currently, we are focusing our 
work on this phase. We address this question in the next section. 

3. Fulfilment phase: this is the dissolution phase. When the institution has fulfilled all 
its objectives, the association should be broken up. This phase occurs because the 
association is no longer needed, or because the institution is no longer making a 
profit. A dissolution process can also be considered after the formation phase. 
Within this phase the agents should distribute the profits obtained and store 
relevant information for future DEIs. 

Within this lifecycle there are also the re-formation and the re-foundation processes 
as shown in Figure 2. The re-formation process facilitates reconfiguring the coalition 
when member changes occur, and the re-foundation process facilitates reconfiguring 
the institution when member changes occur.  

 

Fig. 2. DEI construction phases (3F cycle) 

One of these three phases has been poorly studied in the past: the foundation phase 
(and the re-foundation process). At this moment, we are focusing our work on this 
phase. 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 265 

3.1   The Foundation Phase  

We define foundation as the process of turning a coalition into a temporary electronic 
institution. This phase is a real challenge because the process of turning the coalition 
into a temporary electronic institution is not a trivial problem. It requires the agents to 
adopt a set of norms that regulate their interactions. This must be an automated 
process, without any human intervention, so agents must be able to reason and 
negotiate at a high level. 

Our perspective on this problem is that to construct an institution from zero 
without human intervention may be too difficult, so we argue that an approach based 
on using knowledge from previous cases (like Case Based Reasoning, CBR) could be 
interesting and useful for solving this issue (also for the re-foundation problem). 
Presently, we are directing our efforts in this direction.  

The foundation phase can be represented as a black box in which a coalition is 
turned into an institution (Figure 3). In an ideal situation, the output of the black box 
for the foundation phase could be an ISLANDER specification of the institution [15]. 
Thus, AMELI [22] could be used for running the institution specified with 
ISLANDER. In our opinion these are the most complete and functional tools to work 
with electronic institutions. 

 

Fig. 3. The Foundation Phase represented using a black box 

In our approach we are using Case-Based Reasoning. CBR is based on the idea that 
new problems are often similar to problems that have been encountered previously 
and that past solutions may be of use in the current situation.  

A stored case refers to a problem situation and contains a description of a problem, 
and its solution, and a new case contains the description of the problem to be solved. 
Case-based reasoning is a cycle. There are four phases in the process: Retrieve, 
Reuse, Revise and Retain. 

With a CBR approach to the foundation process, when a coalition has been formed 
and needs to turn itself into an institution, agents should consult their case databases 
in order to find the stored institution’s specification that adapts best to the present 
situation, and should then make the pertinent reforms to the selected specification in 
order to obtain an institution that works correctly. 



266 E. Muntaner-Perich and J.L. de la Rosa Esteva 

The CBR process should be done in a distributed way (each agent has its own 
stored institution cases, in relation to its own experience in the system) or in a 
centralized way (there is a central database with the stored institution cases. Previous-
Institutions Base: PIB). 

3.2   Formalisation of the Foundation Phase 

In our system, a coalition can be expressed as a tuple C that consists of five 
components. 

C = { A, T, O, het, tr } (1) 

Where A is a finite set of agents. Each agent is also a tuple (that contains the 
agent’s type, its objectives, its capabilities or tasks, and its private and public 
variables). T is the finite set of the types of the agents involved in the coalition. O is 
the finite set of the joint objectives of the agents involved in the coalition. Finally, 
there are two more components: het is a value that describes the heterogeneity of the 
coalition members. It must take into account the heterogeneity within types and the 
heterogeneity within objectives; and tr defines the trust mean value among the 
coalition members (it depends on the trust value between each pair of agents inside 
the coalition). All these components are used to create a Coalition Case, with the aim 
of finding the stored Institution Case (within the Previous-Institutions Base, PIB) that 
adapts best to the coalition. 

A dynamic institution can be expressed as a tuple I that consists of six components. 

 I = { A, T, O, het, tr, IC } 

IC = { N, pr, ont, FC } 

(2) 

Where the first five components (A, T, O, het, tr) are the same that in the coalition, 
and IC is a set of institutional components. IC is composed by four elements: N is a 
finite set of institutional norms (obligations, prohibitions and permissions), pr is a 
communication protocol, ont is an ontology, and FC is a finite set of the required 
conditions to start the fulfilment phase (Fulfilment Conditions). 

With this formulation we can describe our CBR process for the foundation phase 
as a function called Foundation. 

Foundation : C X PIB → IC (3) 

This function has two input parameters: a coalition C and a previous-institutions 
base PIB; and one output parameter: the institutional components IC which have to be 
adopted by the coalition in order to turn itself into an institution. 

3.3   Exploratory Work  

Our first exploratory work was focused on Operations Other Than War (OOTW) 
[8,10], which is a challenging problem because the task of planning humanitarian aid 
operations means that a large number of different types of organisations have to 
collaborate to solve problems in fast-changing environments [23]. Our first 
experiments were very simple [10], but the results were encouraging. They used a 
 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 267 

 

Fig. 4. A scheme of the foundation process within our exploratory work 

centralized CBR approach on the OOTW domain, and showed that the foundation 
phase is feasible, and that the DEI lifecycle can be fully implemented. 

Our first steps are based on a centralized CBR approach. We have used the 
JADE/Agent-0 framework [24], and our agents have a BDI architecture with a mental 
state composed of three mental categories: Beliefs, Commitments and Capabilities. 
Within our CBR mechanism, when a coalition has been formed and needs to turn 
itself into an institution, agents consult a centralized case database (Previous-
Institutions Base, PIB) in order to find the stored institution’s specification that adapts 
best to the present situation. Then the agents have to adopt the institutional 
components specified in the selected institution (at this moment we are only adopting 
norms) in order to turn the coalition into an institution. In our system, norms are 
adopted by taking on new commitments. Figure 4 shows a scheme of this process. 

Our first experiments and results are encouraging but not yet decisive [10]; we 
have worked with our own framework, our own scenario, and our own examples, so 
we need to compare our results with other platforms and systems in order to validate 
them.  The importance of these experiments is to show that the foundation phase is 
feasible, and that the DEI lifecycle can be fully implemented. 

 



268 E. Muntaner-Perich and J.L. de la Rosa Esteva 

At this moment we are studying how to use our previous work on DEIs to enable 
Digital Business Ecosystems, or more specifically, to allow the spontaneous 
composition and adaptation of the different services and software components within 
digital environments. This is the main purpose of this paper, and in the next section 
we will focus on these ideas. 

4   Using DEIs to Enable Digital Business Ecosystems 

As we have said in the introduction, in our approach, the digital environment of DBEs 
is considered as an open agent system. So, there is an agent community in which there 
are the different services and software components of SMEs. The idea is to allow the 
spontaneous composition and adaptation of the different services and software 
components within digital environments. 

These services and components have to find new business opportunities among 
them. Using our 3F cycle of DEIs, this process can be considered as the coalition 
formation phase. So, we are introducing an analogy between "coalition" and "business 
opportunity", and between "coalition formation" and the "search of business 
opportunities". 

From our perspective, when a coalition has been formed (that is, a business 
opportunity has been found), an institution should be built, so the different 
components and services should adopt a set of institutional components (in this 
domain an electronic contract) in order to work correctly and fulfil their objectives. 
Using our 3F cycle, this process is the foundation phase. In the business domain, these 
temporary business unions are called UTEs (from the spanish expression “Union 
Temporal de Empresas”). A UTE is a legal form of temporary business cooperation 
set up for a specified period of time or for a specified project or service. UTEs allow 
several companies to operate together in one common project. This form of 
association is commonly used in engineering and construction projects. 

This way, we are assuming some analogies between the DEIs and DBE domains 
(see Table 1). 

Table 1. Analogies between Dynamic Electronic Institutions and Digital Business Ecosystems 
domains 

Dynamic Electronic Institutions Digital Business Ecosystems 
Agent Community Digital Environment 
Coalition Formation Search of Opportunities 
Coalition Business Opportunity 
Institutional Components Electronic Contract 
Dynamic Institution Temporary Business Union (UTE) 

Figure 5 depicts the 3F cycle of DEIs with these new analogies from the DBE 
domain. 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 269 

 

Fig. 5. DEI construction phases (3F cycle) with DBE analogies 

In our opinion, the complete process should be divided in seven steps. Figure 6 
shows these steps. 

1. Search of opportunities (Formation): this is the coalition formation phase. The 
services and components within the digital environment have to find new business 
opportunities among them. Coalitions allow agents to perform tasks together that 
they would be unable to perform individually. Coalitions can be searched with 
respect to: agents' objectives, trust, etc. This phase has to be automatic and 
emergent. There are many works about coalition formation in business domains 
[25], but at this moment we are not interested in this phase, we are centring our 
research and our efforts on the foundation phase.  

2. Analysis of the opportunity: when a business opportunity is found, the analysis and 
authorization (or rejection) of the user or manager is needed. Agents have to obtain 
authorization from their managers in order to continue the process. 

3. Coalition establishment: when all authorizations have arrived, the coalition 
establishment can be done, with the purpose of preparing the foundation phase. 

4. Temporary Business Union creation (Foundation): this is the foundation phase, the 
process of turning the coalition into a dynamic electronic institution, so in this 
domain, that means: turning the business opportunity into a temporary business 
union (UTE). Of course, the automatic adoption of norms and regulations is a hard 



270 E. Muntaner-Perich and J.L. de la Rosa Esteva 

task, but as we have said before, our perspective on this problem is to use an 
approach based on using knowledge from previous cases. At this moment we are 
studying how to use our previous work on CBR to start our experiments with 
DBEs. In this domain the coalition should adopt the institutional components 
(norms and regulations, protocol, ontology and fulfilment conditions) through an 
electronic contract. 

5. Acceptation: when the institution specification and the organisational mechanisms 
(institutional components) have been chosen, an authorization for each agent 
manager is required. This process could imply the signature of an electronic 
contract. 

6. Temporary Business Union execution: this is the execution phase.  The different 
software components and services work together as a team, following the norms 
that they have adopted, in order to fulfil their objectives. There is no need to create 
specific software for each temporal association, because each SME has its own 
software components. The adopted institution only provides the interactions and 
organisational mechanisms between them. 

 

Fig. 6. Steps of the temporary business union (UTE) lifecycle 

7. Dissolution (Fulfilment): when the temporary business union has fulfilled all its 
objectives, the association should be dissolved. This phase occurs because the 
association is no longer needed, or because the institution is no longer making a 
profit. This phase could imply the distribution of gains between agents, with 
respect to the electronic contract which has been adopted in the acceptation step. 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 271 

5   Discussion and Conclusions 

This article is a position paper that introduces some ideas on how to use Dynamic 
Electronic Institutions to enable Digital Business Ecosystems. This work is 
exploratory, and its main purpose is to find analogies between DBEs and DEIs, and to 
propose some research directions on how to use our previous work with DEIs in the 
Operations Other Than War domain in order to develop DBEs. 

We have presented a brief summary of our previous work on DEIs: our general 
model, a possible formalisation for the foundation phase, and our first exploratory 
work. We have also presented our first ideas on how to enable DBEs, and finally we 
have introduced a possible set of steps for the DBE lifecycle. 

Our approach, based on using dynamic institutions to enable digital business 
ecosystems, is closely related to the concept of Contractual Agent Societies [26], a 
metaphor for building open information systems where agents configure themselves 
automatically through a set of dynamically negotiated social contracts. In this 
approach, social contracts define the shared context of agent interactions, including 
ontologies, joint beliefs, joint goals, normative behaviours, etc. 

We have not spoken about Virtual Organisations (VO, or Virtual Enterprises, VE) 
[25]. This concept is closely related to electronic institutions and coalition formation. 
In fact, in our opinion, virtual organisations could be described in terms of dynamic 
electronic institutions, although their architectures and implementations are usually 
directed to a specific application domain: B2B electronic commerce. We believe that 
in someway virtual organisations could be considered as a sub-group of dynamic 
electronic institutions which are more general. In [25] the authors work towards the 
development of an agent-based electronic institution providing a virtual normative 
environment that assists and regulates the creation and operation of VOs, through 
contract-related services. Their works confirm our idea, because they proof that VOs 
can be conceived as DEIs. 

At this moment we are centring our efforts on the study of the foundation process 
(turning coalitions into institutions), which we have described in section 3. In the 
digital business ecosystems domain this process means to turn business opportunities 
(coalitions) into temporary business unions (dynamic institutions). We are using a 
CBR approach, but we do not rule out alternative approaches like meta-institutions or 
genetic algorithms. 

There are several open issues in DEIs. These include works on the institutions' 
adaptivity and on the dissolution process (fulfilment phase). There is a recent work 
[27] that is focused on the extension of electronic institutions with autonomic 
capabilities to allow them to yield a dynamical answer to changing circumstances, 
through the adaptation of their norms. In our model this process is called re-
foundation. 

At this moment, we are involved in the ONE Project (Open Negotiation 
Environment [3]) and we would like to direct our research efforts toward developing 
DBE theory and technologies, by using our previous work and knowledge on DEIs. 
 
Acknowledgments. This research was partially funded by EU project Nº 34744 ONE: 
Open Negotiation Environment, FP6-2005-IST-5, ICT-for Networked Businesses. 



272 E. Muntaner-Perich and J.L. de la Rosa Esteva 

References 

1. DBE Project.: Conclusions of the brainstorming workshop on the Digital Ecosystem 
concept. Conclusions emerged from the 2002 cycle of workshops; Bruxelles (2002), 
(online document: http:// europa.eu.int/ information_society/ topics/ ebusiness/ godigital/ 
sme_research/doc/ ecowshop4oct.pdf)  

2. DBE Project.: A micro-economic introduction to the DBE. DBE Induction Flash movie 
(2006), (online document: http://www.digital-ecosystem.org/ DBE_Main/ Members/ 
aenglishx/learn/ dbe_movies)  

3. ONE Project.: Blog of the University of Girona (UdG) for the Project One (2006), (online 
blog: http://proj-one.blogspot.com/) 

4. Dini, P., Nicolai, A.: DBE: The Digital Business Ecosystem: an introduction to the DBE 
project (2003), (online document: http://www.digital-ecosystems.org/ cluster/ dbe/ 
dbe_summary_cc.pdf) 

5. Noguera, J.: ServENT user guide. Project documentation of the Swallow Project (DBE 
ExE), Sourceforge.net (2005) 

6. McKitterick, D.: Getting on the DBE – The Basic Steps. Getting started with the DBE 
Studio. Digital-Ecosystems.org (2005) 

7. Esteva, M.: Electronic Institutions: From specification to development. PhD thesis, 
Universitat Politècnica de Catalunya (2003) 

8. Muntaner-Perich, E.: Towards Dynamic Electronic Institutions: from coalitions to 
institutions. Thesis proposal submitted to the University of Girona in Partial Fulfilment of 
the Requirements for the Advanced Studies Certificate in the Ph.D. program in 
Information Technologies. Girona (2005), http:// eia.udg.es/ %7eemuntane/ papers/ 
thesis_proposal.pdf 

9. Muntaner-Perich, E., de la Rosa, J.L.: Dynamic Electronic Institutions: from agent 
coalitions to agent institutions. In: Hinchey, M.G., Rago, P., Rash, J.L., Rouff, C.A., 
Sterritt, R., Truszkowski, W. (eds.) WRAC 2005. LNCS (LNAI), vol. 3825, pp. 109–121. 
Springer, Heidelberg (2006) 

10. Muntaner-Perich, E., de la Rosa, J.L., Carrillo, C., Delfín, S., Moreno, A.: Dynamic 
Electronic Institutions for Humanitarian Aid Simulation. Congrés Català d’Intel.ligència 
Artificial. In: Polit, M., Talbert, T., López, B., Meléndez, J. (eds.) Perpinyà, Octubre del 
2006. Frontiers in Artificial Intelligence and Applications, vol. 146, p. 332 (2006) 

11. North, D.C.: Economics and Cognitive Science. Economic History 9612002, Economics 
Working Paper Archive at WUSTL (1996) 

12. Pattison, H.E., Corkill, D.D., Lesser, V.R.: Distributed Artificial Intelligence. In: 
Instantiating Descriptions of Organizational Structures, pp. 59–96. Pitman Publishers 
(1987) 

13. Werner, E.: Distributed Artificial Intelligence. chapter Cooperating Agents: A Unified 
Theory of Communication and Social Structure, pp. 3–36. Pitman Publishers (1987) 

14. Noriega, P.: Agent Mediated Auctions. The Fishmarket Metaphor. Ph.D.Thesis, 
Universitat Autònoma de Barcelona (1997) 

15. Esteva, M., Rodríguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the Formal 
Specification of Electronic Institutions. IIIA, CSIC (2001) 

16. Rodríguez-Aguilar, J.A.: On the design and construction of Agent-mediated Electronic 
Institutions. Ph.D. thesis, Universitat Autònoma de Barcelona (2001) 

17. Dignum, V.: A model for organizational interaction. Based on Agents, Founded in Logic. 
Ph.D. Thesis, Utrecht University (2003) 



 Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems 273 

18. Fornara, N.: Interaction and communication among autonomous agents in multiagent 
systems, Ph.D. Thesis, University of Lugano (2003) 

19. López y López, F.: Social power and norms. Impact on Agent Behaviour. Ph.D. Thesis, 
University of Southampton (2003) 

20. Vázquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent 
Systems applied to complex domains. The HARMONIA framework. PhD thesis, 
Universitat Politècnica de Catalunya. Artificial Intelligence Dissertation Award, ECCAI 
(2003) 

21. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next generation 
Computing. A Roadmap for Agent Based Computing. AgentLink II (2003) 

22. Sierra, C., Rodríguez-Aguilar, J.A., Noriega, P., Esteva, M., Arcos, J.L.: Engineering 
Multi-agent Systems as Electronic Institutions. Novática, 170 (July-August 2004) 

23. Pechoucek, M., Barta, J., Marík, V.: CPlanT: Coalition Planning Multi-Agent System for 
Humanitarian Relief Operations. Multi-Agent-Systems and Applications: pp. 363–376 
(2001) 

24. Muntaner-Perich, E., del Acebo, E., de la Rosa, J.L.: Rescatando AGENT-0. Una 
aproximación moderna a la Programación Orientada a Agentes. II Taller de Desarrollo en 
Sistemas Multiagente, DESMA’05. Primer Congreso Español de Informática, CEDI. 
Granada (2005) 

25. Rocha, A.P., Lopes Cardoso, H., Oliveira, E.: Contributions to an Electronic Institution 
supporting Virtual Enterprises’ life cycle. In: G. Putnik e M. M. Cunha (eds.), Virtual 
Enterprise Integration: Technological and Organizational Perspectives, Idea Group Inc. (in 
press, 2005) 

26. Dellarocas, C.: Contractual Agent Societies: Negotiated shared context and social control 
in open multi-agent systems. In: Proc. WS on Norms and Institutions in Multi-Agent 
Systems, Autonomous Agents-2000, Barcelona (2000) 

27. Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A.: Towards Self-configuration in 
Autonomic Electronic Institutions. LNCS, vol. 4386, pp. 220–235. Springer, Heidelberg 
(2007) 



A Peer-to-Peer Normative System to Achieve

Social Order

Amandine Grizard1, Laurent Vercouter2, Tiberiu Stratulat3,
and Guillaume Muller2

1 Institut Eurecom, Affective Social Computing Lab.,
2229 routes des crêtes, BP 193, F-06904 Sophia Antipolis, France

grizard@eurecom.fr
2 École N.S. des Mines de Saint-Étienne, Multi-Agent System Dpt

158 cours Fauriel, F-42023 Saint-Étienne Cedex 02, France
{vercouter,muller}@emse.fr

3 LIRMM
161 rue Ada, F-34392 Montpellier Cedex 5, France

stratulat@lirmm.fr

Abstract. Social order in distributed descentralised systems is claimed
to be obtained by using social norms and social control. This paper
presents a normative P2P architecture to obtain social order in multi-
agent systems. We propose the use of two types of norms that coexist:
rules and conventions. Rules describe the global normative constraints
on autonomous agents, whilst conventions are local norms. Social control
is obtained by providing a non-intrusive control infrastructure that helps
the agents build reputation values based on their respect of norms. Some
experiments are presented that show how communities are dynamically
formed and how bad agents are socially excluded.

Introduction

In multi-agent systems the execution of global tasks strongly differs according
to the centralised or decentralised nature of the system. Decentralisation im-
plies that information, resources and agent capacities are distributed among the
agents of the system and hence an agent cannot perform alone a global task.
The most popular examples of decentralised multi-agent systems are peer-to-
peer (P2P) networks used for file sharing. In such applications, agents must
collaborate to index shared files and propagate queries for given files. It is also
essential that all agents use compatible strategies for propagation (in most of
the cases they use the same strategy) to ensure the correct termination of search
algorithms.

Peer-to-peer systems illustrate how important it is in decentralised systems
that each agent behaves well, that is to be compliant to some expected “good”
behaviour, in order to cooperate with the others. If not, the activities of other
agents can be blocked or corrupted. In peer-to-peer systems we usually consider
that the agents have been downloaded from the same place and are coded by

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 274–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Peer-to-Peer Normative System to Achieve Social Order 275

the same developers. It is then natural to consider that the agents will behave
the same as expected. But if we consider decentralised multi-agent systems in
general, this assumption is not realistic. Heterogeneity and autonomy are the
required properties of the agents to build open and flexible systems and they
rule out any assumption concerning the way they are constructed and behave.
Moreover, the agents can no longer be controlled by central institutions which
supervise their behavior since we consider decentralised systems.

C. Castelfranchi [1] also claimed that, in decentralised system, Social Order
is achieved by the use of norms as rules of good behaviour and through Social
Control. In order to preserve the openness and the flexibility of the system,
norms are only external representations that should not be hard coded into the
agents, since they are supposed to be dynamically created or modified. Norms
also preserve the autonomy of the agents, since smart agents can reason on them,
decide autonomously to respect or violate them and observe the behaviour of
other agents if they are norm compliant. Social Control mainly refers to the
fact that each agent is observed and controled by some other agents from the
same system. However in the literature we find mainly trust mechanisms that are
proposed to achieve it [2,3,4]. According to these works agents with bad behaviors
are punished by social sanctions, get bad reputations and are excluded from the
society.

In this paper we propose a peer to peer normative architecture to obtain so-
cial order in a decentralised system. The main contribution of our proposition
is not on the formalism used to represent the norms nor on the representation
and calculation of reputation but rather on the integration of norms within a
trust model that allows agents to perform Social Control. We also provide some
mechanisms to update existing norms when groups of agents feel the need for
the system to evolve. The next section defines the concepts of norms used in
this article and describe their formalization. Section 2 describes the architecture
of a decentralised multi-agent system that performs social control and some ex-
perimental results are presented in section 3. Finally, we propose in section 4 a
mechanism to adapt the content of some specific types of norms, called conven-
tions and we conclude in the last section.

1 Norms and Control

In the area of agent-based systems, two important contradictory properties are
needed: autonomy and control. Autonomy abstracts out the way an agent be-
haves when asked to solve a problem or execute a task. Control is necessary to
be sure that autonomous agents behave according to the specifications formu-
lated by someone on their behavior. In terms of degrees of freedom, the former
relieves, the latter constrains.

Norms have been recently considered as being good candidate tools to design
agent-based system and also to solve the paradoxical problem that confronts
the preservation of the autonomy of the agents and the need of control. Getting
its inspiration from social sciences, a norm is mainly a description of an (ideal)



276 A. Grizard et al.

behavior that an agent or a group of agents is expected to display. The normative
behavior is generally described by using deontic constraints, such as obligations,
permissions and interdictions. Although there is no complete agreement on how
to use norms in artificial systems, there are however two main trends [5]. The
first considers a norm as a sort of specification of good behavior that, once
identified, should be hard coded directly into the agents. The agents are by
construction norm compliant or “regimented”. The second trend adopts a more
flexible perspective, where norms are considered as being only indications of an
ideal behavior that could be adopted or not by an agent. In the case where the
norm is not respected we talk about violation. In order to avoid the proliferation
of unexpected behavior and therefore the chaos in the system, some of the works
adopting the second perspective suggest the use of various structures that allow
to sanction the deviating behavior and hence to “control” the agents.

In the literature two main categories of control structures are described: in-
ternal and external. Internal control is where an agent is able to identify by itself
which is the good behavior to adopt according to an external reference. In this
type of scenario we count on the agents’ cognitive and learning capacities to
understand and evaluate the normative behavior.

External control is where some external or institutional structures can in-
terfere (even physically) with the agent and hence influence it to display the
normative behavior. The behavior of an agent is interpreted and evaluated by
others (authorities, group of agents, etc.) according to the norms governing the
system wherein the agent acts.

1.1 Social Norms Revisited

In the domain of social sciences, R. Tuomela proposed a theory of social norms
that characterizes communities in human societies [6]. For him a social norm has
the form “An agent of the kind F in group G ought to perform task T in situation
C”. Such norms are further divided into rules (r-norms) and proper social norms
(s-norms). The r-norms are the norms created by an authority or a body of
agents that are authorized to represent the group. The obedience to the rules is
made on an agreement-making basis and their violation is explicitly sanctioned.
The governmental laws are examples of r-norms. The s-norms represent the
conventions or the mutual beliefs about the right thing to do in a community.
An agent obeys also to an s-norm because it believes that the other members of
the community expect that. The sanction of an s-norm is only social: approval
or disapproval and it can not be decided in advance.

The definition of both types of norms is given in terms of certain conditions.
For instance a norm N of obligation which says “Everyone in G ought to perform
task T when in situation C” is considered an r-norm iff the following conditions
are satisfied (see [6] for a detailed discussion):

– promulgation condition: N has been issued by an authority;
– accessibility condition: the agents are aware that N is in force;
– pervasiveness condition: many members of G perform T in C ;



A Peer-to-Peer Normative System to Achieve Social Order 277

– motivational condition: some of the agents that perform T do that because
they believe that they ought to perform T in C ;

– sanction condition: there are sanctions applied when N is violated.

In the case of an s-norm, the following conditions should be satisfied:

– acceptance condition: there is a mutual belief in G to the effect that the
members of G ought to perform T in situation C ;

– pervasiveness condition: many members of G perform T in C ;
– motivational condition: some of the agents that perform T do that because

they believe that they ought to perform T in C and that is what is expected
by other members of G;

– recognized sanction condition: there are social sanctions applied when N is
violated.

There are two main cases where s-norms and r-norms coexist: parallel norms
(norms with the same content) and conflicting norms (norms with conflicting
content). Tuomela considers that in both cases r-norms override s-norms but
which one or ones of these kinds of social norms wins empirically is a factual
issue not to be decided a priori.

Tuomela shows further that s-norms characterize the high-trust societies
whereas r-norms are norms for low-trust, or business-like societies.

Since Tuomela’s theory of social norms stands for human societies we will try
to adapt it to be applied to artificial societies of agents. Therefore we propose
in this article to use two different but coexisting settings that correspond to the
use of r-norms and s-norms.

The first setting is related to the use of r-norms. We will reconsider the defi-
nition of an r-norm, that we will call simply a rule in the rest of the article. A
rule R of obligation is described by using the following notation:

rule(C, T, S+, S−)

which says that in the context described by C, T ought to be executed. If T is
the case the agent is rewarded with S+ otherwise it gets sanctioned with S−.

In addition to the adoption of such a notation for rules, the setting we propose
should satisfy the other conditions given in the definition of an r-norm. The
architecture we describe in the following section contains as main ingredients:

1. authorities responsible to create independent sound sets of norms (promul-
gation condition) and to inform the autonomous agents about them (acces-
sibility condition);

2. ordinary autonomous agents that receive the norms and that are observed
and controlled if they are norm compliant;

3. monitoring or control structures that evaluate the behavior of the agents
and sanction or reward them according to the normative content (sanction
condition).

The pervasiveness condition in the definition of an r-norm accounts for the sup-
posed fact that people in human societies tend to obey the norms. In the setting



278 A. Grizard et al.

we propose, the pervasiveness condition is relaxed and is sometimes obtained by
applying the sanctions. But it is not guaranteed because of the hypothesis we
made to respect the autonomy of the agents. The motivational condition is also
very strong, because it considers that i) the agents have cognitive abilities and
that ii) they adopt the normative behavior rationally. The hypothesis we adopt
on the agents we use is hence that they are autonomous decision-makers able to
decide by themselves what to do next, given their internal state, the normative
information and the current state of their environment.

The second setting is about s-norms. In a similar way, we propose to re-adapt
the definition of an s-norm that we will simply call convention. The notation we
use for the conventions of obligation is as follows:

convention(C, T )

This notation says that in the context where C is true an agent ought to do the
task T .

As in the case of rules, the setting we propose should allow a community of
agents to create and manipulate conventions. The conditions that define an s-
norm are therefore partially preserved. For instance, the acceptance condition is
obtained by introducing a protocol that allows some agents to exchange informa-
tion about the current mutual convention. Concerning the recognized sanction
condition, since this setting coexists with the setting for rules, we will use the
same monitoring structures to help an agent observe the behavior of the other
agents. However, the decision on how to sanction or reward the others is made
only by the concerned agent, and can not be known in advance. For the per-
vasiveness and motivational conditions, we make the same hypothesis that we
made for rules.

1.2 Reputation as Sanction or Reward

One of the differences existing between rules and conventions consists in the
application of sanctions. As shown above, two explicit sanctions are defined in
the specification of a rule: a positive sanction applied when an agent respects
the deontic constraint and a negative sanction applied in the contrary case. In
most of normative systems, these sanctions are material, for instance a fee. In
our case, we do not use material sanctions because it implies that there is a way
to enforce an agent to pay a fee or at least a physical means of pressure on the
agent. This assumption is contradictory with the property of autonomy claimed
for agents and it is even more the case for decentralised systems because agents
may be deployed on different platforms.

We propose to describe sanctions as a positive or negative influence on the
reputation of an agent. Agent reputation is a concept that has been studied in
several works [7,2,3,8,4] with different approaches but also with different seman-
tics attached to reputation. The word “reputation” does not have exactly the
same meaning depending on the considered approach. Some authors consider
that an agent has only one reputation maintained globally by the system [9],
whereas others think that two agents can have a different opinion about the



A Peer-to-Peer Normative System to Achieve Social Order 279

reputation of an agent [2,8,4]. Moreover, some works consider that reputation
should be relative to a given context [7], to the sources used to build it [10], to
the nature of its target [10], to the estimated facet of the agent [2,11], . . . A uni-
fied view of all these aspects has recently been proposed in a functional ontology
of reputation [12]. However, we consider reputation more generally in this paper.
Since our contribution is not on the reputation model but on the integration of
the concepts of reputation and of norms in a peer-to-peer environment, we only
represent reputation by a simple plain value. We will consider using more precise
concepts of reputation in future works. The only property that is important here
is that two agents can maintain different reputation values for a same target as
there is no global view or control of the system.

Thus, reputations are values maintained by other agents and are external to
the sanctionned agent. The violation of a rule will cause a decrease of the agent’s
reputation whereas positive sanction may cause its increase. Sanctions in term
of reputation are still an incentive to respect the rules for the agents because
one of the consequences of a low reputation for an agent could be the refuse of
certain other agents to interact with it (social exclusion). Such sanctions can be
viewed as social constraints on the agents.

We consider that the sanction for a rule is defined in terms of reputation and
we formalize it as follows:

sanction(Applier, Sanctioned, Weight)

where Applier is the agent applying the sanction, Sanctioned is the agent sanc-
tioned and Weight represents generally the value of the sanction. We use the
last parameter to affect the reputation of an agent according to a mechanism
which is explained in latter sections.

In the case of conventions, the sanction is not represented explicitly because
it can not be known a priori. It depends on the agent in cause and it is the
expression of an approval or disapproval of the actual behavior. It is up to an
agent to sanction or not other agents that violate or respect its own conventions.
These sanctions may also impact reputation values but these values should be
maintained locally by the owner of the convention. In this case the scope of the
sanctions does not cover the whole society but only the relation between one
agent and another agent or group of agents.

2 An Overlay System to Sanction the Violation of Rules

Since agents are autonomous, we can not assume that they will respect the rules
of their system. There must be a way to observe their behavior, their compliance
to the rules and to sanction the violations. If such a mechanism exists and is
efficient, rational agents are more motivated to respect the rules in order to avoid
being sanctionned. This is achieved by a social control of the system if it is the
society of agents that supervises and sanctions its members. Then, there is a need
for a control system that can be integrated to an existing multi-agent system.
This integration can only be effective if the control system takes into account the



280 A. Grizard et al.

Applicative
Peer−to−peer
System

Overlay
System

Controller agent

Applicative agent

Neighbourhood link between two agents

Observation link between an applicative agent ans its controller

Fig. 1. Overview of the overlay system

specific features of a multi-agent system, in particular the decentralised nature
of the system and the autonomy of the agents.

In this section, we propose and describe such a control system for a P2P sys-
tem of application agents in order to control the respect of the rules governing
the system. To comply to the features quoted above, the control system is also
a multi-agent system where each controller agent is associated to an application
peer of the controlled P2P system (see Figure 1). The control system is an over-
lay system in which each controller agent has a partial view of the interactions
inside the P2P system. Based on observations on the application agents, a con-
troler agent detects rule violations and cooperates with other controller agents
in order to sanction the violators in the P2P system. This solution keeps the
decentralised nature of the whole system and is not intrusive for the peers. By
“non-intrusive”, we mean that there is no constraint on the agent’s internal im-
plementation. The observation of the agent’s communication is not an intrusion
since communications are sent and transit through an interaction medium and
we assume that this medium can be observed. This assumption remains realistic
because one of the property of communications is that they are public as claimed
in [13].

Reputation is used as a mean to sanction the application agents. Thus the
reputation of an application agent that violated a rule will decrease for each
other controller agent that has observed and detected the violation. Then, the
controller agent can share its reputation models with other controller agents or
even with its application agent to which it is connected. The reputation of the
application agents is hence locally propagated and application agents that do not
respect the rules can get bad reputations and be excluded by other application
agents from future interactions. We consider that the overlay system performs



A Peer-to-Peer Normative System to Achieve Social Order 281

a social control over the application P2P system and that it aims at excluding
the application agents that violate the rules.

2.1 Application Agents

The tasks performed by application agents are completely dependent of the kind
of P2P system considered. For instance, in the case of P2P networks used for file
sharing, application agents possess some files to share and are able to formulate
queries for given files or answer to or propagate the queries from other agents.
The behavior of application agents is application-dependent and, since they are
autonomous, we do not make any assumption on it. However, inside the system,
an application agent may behave or not as it is expected by other application
agents.

The goal of the overlay system is to control that application agents respect
the rules of the system. The rules only focus on the communicative behavior of
application agents. Application agents should be considered as black boxes and
there is no way to observe their internal functioning to check if they comply to
the rules. The only thing we can control are the external actions of an application
agent, which correspond to the interactions with other agents. We therefore make
the assumptions that (i) interactions between application agents can be observed
by some controller agents; (ii) there exists some rules, formalised as described in
section 1, that application agents must respect; (iii) these rules are available for
both application and controller agents.

The neighborhood of an application agent is composed of other application
agents. We do not study the reason why some application agents are neighbors
or not (it also depends on the application) and we note Neighbors(Appi) the
set of neighbors of the application agent Appi.

2.2 Controller Agents

The overlay system is composed of controller agents. A controller agent has the
capacity to observe the interactions of an application agent, that is the messages
sent and received by this agent. It also knows the rules that must be respected
by application agents and can detect violations by comparing its observations to
the rules. At last, a controller agent has the capacity to sanction an application
agent, and to do so, it may have to collaborate with other controller agents. We
should also note that we assumed that the controller agents are deployed by a
trusted third party and that they are trustworthy.

Each application agent is associated to a unique controller agent in the overlay
system described here. This association preserves the autonomy of the applica-
tion agent and is not very constraining for the P2P system. For example, we can
imagine in a P2P file sharing system that controller agents are hosted by internet
providers and that they can observe the messages exchanged. From the point
of view of an application agent, the existence of a controller is a real advantage
since it provides the information about the reputation of the other application
agents in its neighborhood. Then the application agent can use this information
to choose to cooperate with application agents with good reputation.



282 A. Grizard et al.

The system we propose is caracterized by the fact that for an application agent
Appi the neighbors of the associated controller Conti is the set of controllers
associated to the neighbors of agent Appi:

Appj ∈ Neighbors(Appi) ≡ Contj ∈ Neighbors(Conti)

The reputation model used by a controller agent considers the reputation
value for each application agent in the neighborhood of its application agent.
We note Repj

i the reputation of an agent Appj ∈ Neighbors(Appi) computed
by the controller Conti.

2.3 Interaction Between Agents

between application agents. An application agent interacts with its neigh-
bors (other application agents). The nature and the content of these interactions
depends on the application and we do not make any assumption over them. How-
ever, application agents should respect the rules of the system if they do not want
to be sanctionned.

between application and controller agents. An application agent inter-
acts with its own controller agent and can not interact with other controller
agents. Such interactions are used by an application agent to get some infor-
mation related to norms or reputation. Application agents may ask two types
of information to their controller agent: (i) the rules that they must respect in
their interaction with other application agents; (ii) the reputation value of one
or several of its neighbors. These interactions are only possible and not required.
Application agents are autonomous and we can not assume that they will inter-
act in a given way with the controller. This possibility of interaction enables an
application agent that could reason on norms and reputation to get the informa-
tion necessary for its reasoning. However, it is also possible to consider different
application agents that do not interact with their controller. In this case, if the
respect of norms is not hardcoded in their implementation, they are likely to be
sanctionned. A controller agent does not need to interact with its application
agent but it is able to oversee its interactions and check for violations.

between controller agents. A controller agent interacts with other controller
agents to inform them when its application agent violated a rule or behaved
well. For instance, when a controller agent detects that its application agent
has violated a rule, it sends a message to its neighbors that are concerned by
the violation in order to ask them to sanction its application agent using the
negative sanction field of the rule. At the opposite, it can also ask its neighbors
to apply the positive sanction if the application agent has respected the rule.

3 Experimental Results

The normative system presented here has been implemented and tested on a
scenario of a P2P file sharing network.



A Peer-to-Peer Normative System to Achieve Social Order 283

3.1 The Scenario of P2P File Sharing

We consider a P2P system where each application agent possesses some files to
share with other agents and needs to download some files that may be contained
by other peers. For simplicity, we used a gnutella-like [14] protocol. According
to this protocol, an agent that requests a file formulates a query with the file
name and sends this query to each of its neighbors. Each neighbor looks if it
owns a file that matches the query. If it does, it responds positively to the agent
requester. If not, it does not respond. Then, each neighbor propagates further
the query to its own neighbors.

To avoid flooding the network, the queries are enriched with two fields. First,
the queries have an unique ID so that an agent does not have to handle twice
the same query. The second field is called TTL (Time To Live). The TTL cor-
responds to the depth of propagation of the query in the network. For example
a query with a TTL of 3 will be propagated to the neighbors of the neighbors of
the neighbors of the requester but not further. When an agent receives a query,
it decreases its TTL and it propagates it to its neighbors only if the value of the
TTL is at least 1.

3.2 Rules of the Scenario

The correct functionning of a P2P file sharing system requires that the agents
propagate the queries of other agents. This is a cooperative behavior, but selfish
agents may not behave like this because it would cost them some ressources (CPU
time) consumed for the benefit of others. We propose to define the following rule
as an incentive to behave cooperatively:

rule(asked(Id, TTL, Appb, Apps, Appr, f ile) ∧ TTL > 1 ∧ trusted(Apps),
asked neighbors(Id, TTL− 1, Appr),
sanction(Contr, Appr, HigherRep(Conts, S+)),
sanction(Contr, Appr, LowerRep(Conts, S−)))

This rule is an obligation in the context asked(Id, TTL, Appb, Apps, Appr, f ile)
representing that a query about the file file initiated by the agent Appb with the
id Id has been received by the agent Appr from the agent Apps with a TTL greater
than 1. This context also requires that the sender of the query Apps is trustworthy.
This condition is necessary to avoid that an agent that do not want to interact
with untrusted neighbors is sanctionned by its controller. The trusted or untrusted
nature of a neighbor can be deduced by the controller according to its reputation
about Apps, and it may be communicated to Appr if it requests it.

In this context, a task must be achieved to obtain asked neighbors(Id, TTL−1,
Appr, f ile) that means that the query Id should be propagated to the neighbours
of Appr with a TTL decreased by 1. If this obligation is respected the positive
sanction indicates that the controller Contr will ask to the controller Conts to
increase the reputation of Appr by a value S+. Otherwise the negative sanction
sanction(Contr, Appr, LowerRep(Conts, S−)) is applied. This negative sanction
indicates that the controller Contr will sanction its application agent Appr by
asking to the controller Contr to lower the reputation of Appr by a value S−.



284 A. Grizard et al.

Fig. 2. Average of the reputation of an agent (violations occur at step 5)

3.3 Experiments

Some experiments have been done to observe how the reputation of an agent
evolves if it does not respect the rules. We used PeerSim simulator [15] to simu-
late the P2P protocols, Java to implement the agents and Prolog with JPL [16]
to code and interpret the rules.

The tests have been done on a set of 50 agents. Each agent owns from 5 to 10
files taken from a global set of 100 different files. The agents are connected in a
network such that each agent has a minimum of 2 and a maximum of 5 neighbors.
The simulation lasts 15 cycles. At each cycle an agent formulates from 3 to 5
queries for a file (randomly chosen) and sends on query to its neighbors with
a TTL of 2. All queries are propagated according to the gnutella protocol and
the agents that own a file matching a received query, answer positively to the
requester.

The controller of an agent computes the reputation of the neighbors of its
agent by using values in the domain [0:1] with an initial value of 0.8. The positive
and negative sanctions associated to the rule are S+ = 0.01 and S− = −0.02.
Initially, all the agents behave well and respect the rule. After 5 cycles, one agent
(the agent 0 in the figures) changes its behavior: it will not respect systematically
the rule and in 50% of the cases, it does not propagate the queries from its
neighbors. This violation of the rule is detected by its controller which applies the
negative sanction. The impact of the sanction is shown in figure 2 representing
the average value of the reputation value of agent 0 kept by the controllers of its
neighbors.

The reputation value of an agent is used by an application agent to remove
that agent from its neighborhood, for instance, when it has a low reputation.
Removal of a neighbor means that queries from it will no longer be considered



A Peer-to-Peer Normative System to Achieve Social Order 285

(neither answered, nor propagated) and that queries from other agents will not
be sent further to the neighbor with a bad reputation. This is equivalent to
an irrevocable social exclusion, since the removed neighbor will not have the
possibility to get positive sanctions and then to recover an acceptable reputation.
If we wanted to keep the possibility to “forgive” to an agent, we may have kept
the possibility for it to get positive sanctions.

The exclusion of agent 0 can be seen on figures 3 and 4. Figure 3 represents the
number of queries sent by agent 0 that are propagated by the rest of the network.
We can see that this number decreases when other agents begin to remove agent
0 from their neighborhood (around cycle 9) and that no more queries from it are
considered at cycle 12. Figure 4 shows the percentage of files received by agent
0 at each cycle. Since its queries are no more considered, this percentage begins
to decrease at cycle 9 and reaches 0 at cycle 11.

The reputation threshold, below which an agent removes a neighbor from its
neighborhood, has been set to 0.5 for the simulations. This explains the fact that
the reputation value of agent 0 does not continue to decrease in figure 2 after
its exclusion, since the agents stop interacting with it and therefore agent 0 can
not violate the rule anymore.

4 Convention Dynamics

The control system presented in the section 2 can be used to enforce the respect
of the rules of the system. If an agent does not respect these rules, its reputation
become lower and lower and other agents will stop cooperating with it. In sec-
tion 1, we mentioned the distinction we make between two kinds of norms: rules
and conventions. The main difference is that a rule is shared by the whole system
and its violation should be explicitly sanctionned whereas conventions rather re-
fer to an usage local to a group of agents. Conventions describe the behavior
approved and expected by the group. In case of violation of the convention, the
sanction is not explicit.

In the example of file sharing P2P networks, described in section 3, a con-
vention can establish, for instance, the initial value of the TTL of a query. The
higher is the TTL, the better are the chances to get the required file. But higher
values of TTL also means that there will be more communications needed to
propagate the query and that the network will be more loaded and that it will
be slowed. We can continue to imagine that some agents request rare files dif-
ficult to obtain and therefore require a high TTL value, while agents that send
many queries for commonly shared files would prefer a low TTL value.

Therefore, we can have many cases showing different conventions needed only
by some agents that could regroup in small communities according to their pref-
erences. Our proposal is therefore to use conventions to reorganize the neighbor-
hood links between agents in order to group agents sharing the same conventions.
We propose to use the overlay system presented in section 2 to deal with con-
ventions as it follows:



286 A. Grizard et al.

Fig. 3. Number of propagated queries from the agent violator

Fig. 4. Percentage of files got by the agent violator



A Peer-to-Peer Normative System to Achieve Social Order 287

– an application agent Appi sends its own set of conventionsConventions(Appi)
to its controller agent Conti.

– the controller Conti informs its neighbors (belonging to the set Neighbors
(Conti)) that its application agent has the set of conventions Conventions
(Appi).

– each controller Contj ∈ Neighbors(Conti) keeps this information available
for its application agent Appj .

The controller Conti now observes the behavior of other agents to check if
they violate or not a convention of Appi. If a violation occurs, Conti does not
apply any sanction but inform Appi of this violation. The sanction to apply
is up to Appi. We suggest that it also maintains a reputation model about its
neighbors. This reputation is attached to conventions and should not replace the
reputation based on the respect of rules. Then, two reputation values co-exist
for each neighbor of Appi. A violation of a convention may result in a decrease
of the corresponding reputation value.

The interpretation by Appi of its reputation model attached to conventions
is free, but here again we suggest that it uses it to modify its neighborhood.
For instance, Appi could remove agents with a low reputation value for con-
ventions, from its neighborhood and then look for other agents to replace them
in its neighborhood. The method used to find new neighbors depends on the
kind of P2P network considered and is anyway out of the scope of this paper.
The modification of the agents’ neighborhood brings a reorganisation of the P2P
system and communities of agents sharing similar conventions should be consti-
tuted. This reorganisation can also be dynamical because an agent can change
its conventions and then progressivly change its neighborhood.

This is ongoing work and an implementation of such a control system that
includes conventions is in progress.

5 Conclusion

The work described in this article follows the guideliness proposed by Castel-
franchi in [1] who claims that social order in distributed decentralised systems is
to be obtained by using social norms and social control. Concerning the use of
norms, the adaptation of the concepts of social norms proposed by Tuomela (for
human societies) to multi-agent systems seems to satisfy the need of both types
of control, centralised and decentralised. We introduced the concept of rules to
describe the global norms that constrain globally all the agents of a system, and
conventions to describe the rules that could be created and applied locally to a
group of agents by mutual acceptance.

We think that this is the main difference between our proposal and related
approaches. For instance in [17] the authors propose a formalization of the rules
of an ad hoc network which is seen as an instance of a norm-governed system.
They also discuss the possibility of a sanction as excluding an agent from the
network (i.e. the sanctioned agent loses its roles and therefore its permissions,



288 A. Grizard et al.

obligations, etc.). This is in a way similar to what we call “social exclusion”. In
addition we assure a decentralized control by letting the application agents to
decide on-line on the social exclusion of the others (social control).

The notion of controller is also present in works stemming from various do-
mains of research, under names such as wrappers, sentinels [18], controllers [19],
governors [20], etc. In general, the controller functions like a filter. It is a sort
of interface between the agents and the resources of a system. In our work the
notion of controller is used mainly to keep the information about the past be-
havior of some agents. This information is actually encapsulated in what we call
reputation.

Concerning the manifestation of social control, we showed how to obtain it in a
P2P network of application agents. Each application agent decides autonomously
with whom to cooperate based on the reputation values of other agents. The
reputation value depends on the respect or not of the rules and conventions
that are currently in force. It is the role of the overlay system to monitor the
behaviours and inform the application agents about the reputation of the others.
The control of the agents is completely non-intrusive and decentralised.

The experiments showed interesting results, notably the fact that agents with
good reputations are rapidly identified and are at the center of communities
of agents with similar behaviour. In future works we would like to study the
dynamics of open systems when agents come and go and when the content of
the norm changes dynamically.

References

1. Castelfranchi, C.: Formalising the informal? dynamic social order, bottom-up social
control, and spontaneous normative relations. Journal of Applied Logic 1, 47–92
(2003)

2. Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: Müller,
J.P, Andre, E., Sen, S., Frasson, C. (eds.) Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, pp. 194–195. ACM Press,
New York (2001)

3. Conte, R., Paolucci, M.: Reputation in Artificial Societies. Social Beliefs for Social
Order, vol. 6. Springer, Heidelberg (2002)

4. Muller, G., Vercouter, L.: Decentralized monitoring of agent communication with
a reputation model. In: Falcone, R., Barber, S., Sabater-Mir, J., Singh, M.P. (eds.)
Trusting Agents for Trusting Electronic Societies. LNCS (LNAI), vol. 3577, pp.
144–161. Springer, Heidelberg (2005)

5. Jones, A.J.I., Sergot, M.: On the characterisation of law and computer systems: The
normative systems perspective. In: Meyer, J.J.C., Wieringa, R.J. (eds.) Deontic
Logic in Computer Science: Normative System Specification, John Wiley & Sons,
Chichester (1993)

6. Tuomela, R.: The Importance of Us: A Philosophical Study of Basic Social Norms.
Stanford University Press (1995)

7. Castelfranchi, C., Falcone, R.: Principles of trust in mas: cognitive anatomy, social
importance and quantification. In: ICMAS’98, Paris, pp. 72–79 (1998)

8. Abdulrahman, A.: A framework for decentralized trust reasoning. PhD thesis, Uni-
versity of London (2004)



A Peer-to-Peer Normative System to Achieve Social Order 289

9. Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms in elec-
tronic marketplaces. In: HICSS ’99: Proceedings of the Thirty-second Annual
Hawaii International Conference on System Sciences, Washington, DC, USA, vol. 8,
p. 8026. IEEE Computer Society Press, Los Alamitos (1999)

10. McKnight, D., Chervany, N.: Trust and distrust definitions: One bite at a time. In:
Falcone, R., Singh, M., Tan, Y.-H. (eds.) Trust in Cyber-societies. LNCS (LNAI),
vol. 2246, pp. 27–54. Springer, Heidelberg (2001)

11. Wang, Y., Vassileva, J.: Bayesian network-based trust model in peer-to-peer net-
works. In: Proceedings of the Workshop on Deception, Fraud and Trust in Agent
Societies, pp. 57–68 (2003)

12. Casare, S., Sichman, J.: Using a functional ontology of reputation to interoperate
different agent reputation models. Journal of the Brazilian Computer Society 11(2),
79–94 (2005)

13. Singh, M.P.: Agent communication languages: Rethinking the principles. In: Huget,
M.-P. (ed.) Communication in Multiagent Systems. LNCS (LNAI), vol. 2650, pp.
37–50. Springer, Heidelberg (2003)

14. Gnutella: Gnutella 0.48 specifications (2000),
http://rfc-gnutella.sourceforge.net/developer/stable/

15. PeerSim: A peer-to-peer simulator (2005),
http://peersim.sourceforge.net/

16. JPL: A java interface to prolog (2003),
http://www.swi-prolog.org/packages/jpl/java api/

17. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A protocol for resource sharing in
norm-governed ad hoc networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg
(2005)

18. Klein, M., Rodriguez-Aguilar, J., Dellarocas, C.: Using domain-independent excep-
tion handling services to enable robust open multi-agent systems: the case of agent
death. Journal of Autonomous Agents and Multi-Agent Systems 7(1-2), 179–189
(2003)

19. Minsky, N., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 9(3), 273–305 (2000)

20. Aldewereld, H., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A., Sierra,
C., Dignum, F.: Operationalisation of norms for electronic institutions. LNCS,
vol. 4386, pp. 156–169. Springer, Heidelberg (2007)



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part V  
AUTONOMY, COORDINATION AND 

SOCIAL ORDER 
 
 
 
 
 
 
 
 
 
 
 
 



What Is Commitment? Physical, Organizational,

and Social (Revised)

Carl Hewitt

MIT EECS (emeritus)
carlhewitt@alum.mit.edu

Abstract. This paper uses Participatory Semantics to explicate com-
mitment. Information expresses the fact that a system is in a certain
configuration that is correlated to the configuration of another system.
Any physical system may contain information about another physical
system.

For the purposes of this paper, physical commitment is defined to
be information pledgedabout physical systems (situated at a particular
place and time). This use of the term physical commitment is currently
nonstandard.

Note that commitment is defined for whole physical system; not just
a participant or process.

Organizational and social commitments can be analyzed in terms of
physical commitments. For example systems that behave as scientific
communities can have commitments for monotonicity, concurrency, com-
mutativity, pluralism, skepticism, and provenance.

Speech Act Theory has attempted to formalize the semantics of some
kinds of expressions for commitments. Participatory Semantics for com-
mitment can overcome some of the lack of expressiveness and generality
in Speech Act Theory.

1 Introduction

This paper uses Participatory Semantics [15] as formalism within which to ex-
plicate commitment. Participatory Semantics makes use of participations that
are 4 dimensional regions of space-time. Participations include both happen-
ings (regions in which things happen, e.g., purchasing, communicating, etc) and
participants (regions for things that participate, e.g., people, XML expressions,
etc). Participatory Semantics derives from concepts in physics (e.g. quantum,
relativistic).

2 Information

Information expresses the fact that a system is in a certain configuration that
is correlated to the configuration of another system. Any physical system may
contain information about another physical system.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 293–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



294 C. Hewitt

2.1 Information Is Necessarily Incomplete

Although Einstein was one of the first to formulate the necessary incompleteness
of quantum physics, he never fully accepted it. Chris Fuchs [9] summed up the
reality of the necessary incompleteness of information in quantum physics as
follows:

“Incompleteness, it seems, is here to stay: The theory prescribes that no
matter how much we know about a quantum system−even when we have
maximal information about it−there will always be a statistical residue. There
will always be questions that we can ask of a system for which we cannot
predict the outcomes. In quantum theory, maximal information is simply not
complete information Caves and Fuchs [5]. But neither can it be completed”

The kind of information about the physical world that is available to us ac-
cording to [9] is “the potential consequences of our experimental interventions
into nature” which is the subject matter of quantum physics.

2.2 Information Is Relational

According to Relational Quantum Physics [18], the way distinct physical systems
affect each other when they interact (and not of the way physical systems “are”)
exhausts all that can be said about the physical world. The physical world is thus
seen as a net of interacting components, where there is no meaning to the state of
an isolated system. A physical system (or, more precisely, its contingent state) is
reduced to the net of relations it entertains with the surrounding systems, and the
physical structure of the world is identified as this net of relationships. In other
words, “Quantum physics is the theoretical formalization of the experimental
discovery that the descriptions that different observers give of the same events
are not universal”.

The concept that quantum mechanics forces us to give up the concept of a de-
scription of a system independent from the observer providing such a description;
that is the concept of the absolute state of a system. I.e., there is no observer
independent data at all. According to Zurek [25],“Properties of quantum systems
have no absolute meaning. Rather they must be always characterized with respect
to other physical systems”.

Does this mean that there is no relation whatsoever between views of different
observers? Certainly not. According to Rovelli [23] “It is possible to compare
different views, but the process of comparison is always a physical interaction
(and all physical interactions are quantum mechanical in nature).”

3 Actors and Events

Actors are the universal primitives of concurrent digital computation. In re-
sponse to a message that it receives, an Actor can make local decisions, create
more Actors, send more messages, and designate how to respond to the next



What Is Commitment? Physical, Organizational, and Social 295

message received. A Serializer is an Actor that is continually open to the arrival
of messages. Messages sent to a Serializer always arrive although delivery can
take an unbounded amount of time. (The Actor model can be augmented with
metrics.)

Unbounded nondeterminism is the property that the amount of delay in ser-
vicing a request can become unbounded as a result of arbitration of contention
for shared resources while still guaranteeing that the request will eventually be
serviced.

Arguments for unbounded nondeterminism include the following:

– There is no bound that can be placed on how long it takes a computational
circuit called an Arbiter to settle.
• Arbiters are used in computers to deal with the circumstance that com-

puter clocks operate asynchronously with input from outside, “e.g..”,
keyboard input, disk access, network input, “etc.”

• So it could take an unbounded time for a message sent to a computer
to be received and in the meantime the computer could traverse an
unbounded number of states.

– Electronic mail enables unbounded nondetermism since mail can be stored
on servers indefinitely before being delivered.

– Communication links to servers on the Internet can be out of service indefi-
nitely.

This section focuses on just those events that are the arrival of a message sent
to an Actor.

3.1 Activation Ordering

The activation ordering (− ≈→) is a fundamental transitive ordering that models
one event activating another (there must be energy flow from an event to an event
which it activates).

3.2 Arrival Orderings

The arrival ordering of an Actor x(−x →) models the (total) ordering of events
in which a message arrives at x. Arrival ordering is determined by arbitration in
processing messages (often making use of arbiters).

Hewitt [11], and Hewitt and Agha [1], and other published work argued that
mathematical models of concurrency did not determine particular concurrent
computations as follows: The Actor model makes use of arbitration for deter-
mining which message is next in the arrival ordering of an Actor that is sent
multiple messages concurrently. For example Arbiters can be used in the im-
plementation of the arrival ordering of an Actor which is subject to physical
indeterminacy in the arrival order.

In concrete terms for Actor systems, typically we cannot observe the details by
which the arrival order of messages for an Actor is determined. Attempting to do
so affects the results and can even push the indeterminacy elsewhere. Instead of



296 C. Hewitt

observing the internals of arbitration processes of Actor computations, we await
outcomes. Physical indeterminacy in arbiters produces indeterminacy in Actors.
The reason that we await outcomes is that we have no alternative because of
indeterminacy.

According to Fuchs[9], quantum physics is a theory whose terms refer pre-
dominately to our interface with the world. It is a theory not about observables,
not about beables, but about ‘dingables’ . We tap a bell with our gentle touch
and listen for its beautiful ring.

The semantics of indeterminacy raises important issues for autonomy and in-
terdependence in information systems. In particular it is important to distinguish
between indeterminacy in which factors outside the control of an information
system are making decisions and choice in which the information system has
some control.

It is not sufficient to say that indeterminacy in Actor systems is due to un-
known/unmodeled properties of the network infrastructure. The whole point of
the appeal to indeterminacy is that aspects of Actor systems can be unknowable.

3.3 Combined Ordering

The combined ordering (denoted by →) is defined to be the transitive closure
of the activation ordering and the arrival orderings of all Actors. The combined
ordering is obviously transitive by definition.

For all events e1, e2 if e1 → e2, then the time of e1 precedes the time of e2 in
the frame of reference of every relativistic observer.

Law of Strict Causality for the Combined Ordering: For no event e does e → e.

3.4 Discreteness

Discreteness captures an important intuition about computation: it rules out
counter-intuitive computations in which an infinite number of computational
events occur between two events (à la Zeno).

The property of Finite Chains Between Events in the Combined Ordering is
closely related to the following property:

Discreteness of combined ordering: For all events e1 and e2, the set {e|e1 → e
→ e2} is finite.

Theorem 1 (Clinger [6]). Discreteness of the combined ordering is equiva-
lent to the property of Finite Chains Between Events in the Combined Ordering
(without using the axiom of choice.)

We know from physics that infinite energy cannot be expended along a finite
trajectory. Therefore, since the Actor model is based on physics, the Discreteness
of the Combined Ordering was taken as an axiom of the Actor model1.
1 Discreteness of each of the Arrival Orderings and discreteness of the Activation

Ordering together do not imply Discreteness of Combined Ordering even if there is
no change in behavior (see appendix).



What Is Commitment? Physical, Organizational, and Social 297

The above described Actor event structures can be used as the basis to con-
struct a denotational model of Actor systems as described in the next section.

4 Denotational Semantics

The task of denotational semantics is to construct denotations for concurrent
systems that are all the possible behaviors that can be exhibited by the system.

We can use Actor event diagrams to help construct denotations where an
Actor event diagram is just an initial history of the evolution of a concurrent
system making use of the combined ordering.

4.1 Domain of Timed Actor Computations

Related to the work of Clinger[6], we will construct an ω-complete computational
domain for Actor computations2. In the domain constructed here, for each event
in an Actor computation, there is a delivery time which represents the time at
which the message is delivered such that each delivery time satisfies the following
conditions:

1. The delivery time is a positive rational number that is not the same as the
delivery time of any other message.

2. The delivery time is more than a fixed δ greater than the time of its activating
event. It will later turn out that the value δ of doesn’t matter. In fact the
value of δ can even be allowed to decrease linearly with time to accommodate
Moore’s Law.

TheActor event timeddiagrams formapartially ordered set< TimedDiagrams,
≤>. The diagrams are partial computation histories representing “snapshots”
(relative to some frame of reference) of a computation on its way to being com-
pleted. For d1, d2 ∈ TimedDiagrams , d1 ≤ d2means d1 is a stage the computation
could go through on its way to d2.

The completed elements of TimedDiagrams represent computations that have
terminated and nonterminating computations that have become infinite. The
completed elements may be characterized abstractly as the maximal elements of
TimedDiagrams. Concretely, the completed elements are those having no pend-
ing events.

Theorem 2. TimedDiagrams is an ω-complete domain of Actor computations
i.e.,

2 ω-complete means that limits exist. The work here stands in contrast to [6] which
constructed an ω-complete power domain from an underlying incomplete dia-
grammatic domain, which did not include time. The advantage of the domain
TimedDiagrams constructed here is that it is physically motivated and the result-
ing computations have the desired property of ω-completeness (therefore unbounded
nondeterminism) which provides guarantee of service.



298 C. Hewitt

1. If D ⊆ TimedDiagrams is directed3 , the least upper bound �D exists; fur-
thermore �D obeys all the Actor laws.

2. The finite elements of TimedDiagrams are countable where an element x
∈ TimedDiagrams is finite (isolated) if and only if D ⊆ TimedDiagrams is
directed and x ≤ �D, there exists d ∈ D with x ≤ d. In other words, x is
finite if one must go through x in order to get up to or above x via the limit
process.

3. Every element of TimedDiagrams is the least upper bound of a countable in
creasing sequence of finite elements.

4.2 Power Domains

Definition 1. The domain < Power[TimedDiagrams],⊆> (after Clinger [1981]
with the crucial difference that in this work the domain TimedDiagrams is ω-
complete) is the set of possible initial histories M of a computation such that

1. M is downward-closed, i.e.,
if d ⊆ M, then∀d ∈ TimedDiagrams, d ≤ d ⇒ d ∈ M

2. M is closed under least upper bounds of directed sets, i.e. if D ⊆ M is directed,
then �D ∈ M

Note: Although Power[TimedDiagrams] is orderedby ⊆, limits are not given by
U. I.e., ∀i, Mi ⊆ Mi+1 ⇒ Ui∈ωMi ⊆ �i∈ωMi

E.g., If ∀i, di ∈ TimedDiagrams and di ≤ di+1 and Mi = {dk|k ≤ i} then

�i∈ωMi = Ui∈ωMi{�i∈ωdi}

Theorem 3. Power[TimedDiagrams] is an ω-complete domain.

4.3 Denotations

An Actor computation can progress in many ways.
Let d be a diagram with next scheduled event e and X ≡ {e|e− ≈→1−message e},

Flow(d) is defined to be the set of all diagrams with d and extensions of d by X
such that

1. the arrival all of the events of X has been scheduled where
2. the events of X are scheduled in all possible orderings among the scheduled

future events of d
3. subject to the constraint that each event in X is scheduled at least δ after e

and every event in X is scheduled at least once in every δ interval after that.
(Please recall that δ is the minimum amount of time to deliver a message.)
Flow(d) ≡ d if d is complete.

3 A subset A of a partially ordered set < P, ≤> is called a directed subset if and only
if A is not the empty set and if a, b ∈ A, there exists a c ∈ A with a ≤ c and b ≤ c
(directedness).



What Is Commitment? Physical, Organizational, and Social 299

Let S be an Actor system, ProgressionS is a mapping
Power[TimedDiagrams] → Power[TimedDiagrams]
ProgressionS(M) ≡ Ud∈MFlow(d)

Theorem 4. ProgressionS is ω-continuous.

I.e., if ∀iMi ⊆ Mi+1 then,

ProgressionS(�i∈ωMi) = �i∈ωProgressionS(Mi)

Furthermore the least fixed point of ProgressionS is

�i∈ωProgressioni
S(⊥ S)

where ⊥ S is the initial configuration of S.
The denotation DenoteS of an Actor system S is the set of all computations

of S. Define the time abstraction of a diagram to be the diagram with the time
annotations removed.

Theorem 5 (Representation Theorem). The denotation DenoteS of an Ac-
tor system S is the timeabstraction of

�i∈ωProgressioni
S(⊥ S)

Using the domain TimedDiagrams, which is ω-complete, is important because
it provides for the direct expression of the above representation theorem for the
denotations of Actor systems by directly constructing a minimal fixed point. In
future work it will be shown how the representation theorem can be used as
the basis for model checking to verify properties of Actor systems. The previous
sections on the Actor model provide a basis for grounding concurrent computa-
tion in space-time. This grounding provides part of the foundation for the next
sections on commitment.

5 Commitment

Various notions of commitment have been proposed around the notion of infor-
mation pledged.

5.1 What Is Physical Commitment?

For the purposes of this paper, a physical commitment PC is defined to be a
pledge that certain information I holds for a physical system PS for a space-
time region R. Note that physical commitment is defined for whole physical
systems ; not just a participant or process. Participants and/or processes might
be entangled!

Let K be the expressed knowledge of physical commitment for how a large
number of people interact with their information systems. The experience (e.g.



300 C. Hewitt

Microsoft, the US government, IBM, etc.) with respect to large software systems
(where K consists of tens of millions of lines of documentation, code, and use
cases) is that K is inconsistent. Such inconsistencies are addressed in Direct
Logic [13], [12], [14].

The use of physical commitment here differs from the previous work of Brat-
man, Cohen, Durfee, Georgeff, Grosz, Huber, Hunsberger, Jennings, Kraus,
Levesque, Nunes, Pollack etc. in that it is not founded on the notion of psy-
chological beliefs, desires, intentions, and goals.

5.2 Physical Commitment and Contracts

A contract C is a signed (XML) expression for a physical commitment PC that
pledges the signers S show certain parties Ps behave. In the course of time the
parties Ps can fall into and out of compliance with the contract C.

Since C is a finite and of limited expressiveness there is a great deal of behavior
by Ps that is left unspecified or ambiguous by C. Given these limitations, it might
be that C is clarified, amended, or even completely revised in the course of time.

Furthermore various participants might actually see things differently as to
whether the parties Ps are complying with C. For example violations might not
be detected for some time or might not ever be detected. Participants who detect
violations may or may not be members of Ps.

Also C might contain escape clauses such that the commitment might become
trivialized. For example C might contain a time limit such that it is no longer
in force after a certain time.

Sometimes some of the parties Ps do not fulfill C or desire to deviate from
C. In some cases violations are innocent, unintentional, or cannot reasonably be
avoided. In other cases some members of Ps may deliberately violate C perhaps
even concealing what they are doing.

5.3 Organizational Commitments

Organizational commitments are physical commitments that are undertaken by
organizations.

Organizational commitments can be represented in contracts by having an
organization sign a contract as opposed to an individual. For example, it is
common for organizations to sign executable code for computers which commits
that the organization is the originator of the code.

Often an organization will not entrust its entire authority to just one signa-
ture. So a system of delegation is established in which another signature might be
granted a limited amount of organizational authority. This can be accomplished
by a contract signed by a higher authority delegating certain specified abilities to
another signature. In many cases, this delegation can be revoked at a later time.

5.4 Social Commitments

Social commitments involving permissions and obligations have been the subject
of previous research by [3], [4], [22], [8], [16], [19] and [20], etc.



What Is Commitment? Physical, Organizational, and Social 301

[8] proposed that a social commitment can be characterized by the following
attributes:

– debtor: owes the content to the creditor
– creditor: is owed the content by the debtor
– content: a temporal proposition that at every time instant has a truth value

that can be one of the following: undefined, true, or false.
– state: which is obtained by the actions makeCommitment, setCancel, set-

Pending and must be one of the following: unset, pending, cancelled, fulfilled,
or violated.

Similarly in [24], a social commitment has attributes of debtor, creditor, con-
dition the debtor is to bring about, and organizational context. A social com-
mitment as characterized in the above work can be considered a special case of
physical commitment (as defined in this paper) between information with the
required attributes and the physical system of the debtor and creditor during
the time periods in question.

5.5 Inconsistent Social Commitments

Social commitments are analyzed in terms of permissions, obligations, prohi-
bitions, dispensations, and delegations in [17] where meta-policies are used to
attempt to remove some inconsistencies. As an example, they describe the re-
cent issue with the passage of the Medicare prescription drug bill in the United
States:

USGovStaff(p) ⇒ obligated(p, answerCongressionalQuery(p))

USGovStaff(Foster)

boss(p1, p2) ∧ order(p1, p2, s) ⇒ obligated(p, s)

boss(Scully, Foster)

order(Scully, Foster,¬answerCongressionalQuery(Foster)

The above example has Foster faced with inconsistent social commitments when
he received a query from the congressional Democrats on the estimated cost of
the Medicare prescription drug bill since

obligated(Foster, answerCongressionalQuery(Foster))

has an inconsistent obligation with

obligated(Foster,¬answerCongressionalQuery(Foster))



302 C. Hewitt

5.6 Psychological Commitment

Psychological commitment has been studied in Artificial Intelligence by Brat-
man, Cohen, Georgeff, Grosz, Harman, Huber, Hunsberger, Jennings, Kraus,
Levesque, Nunes, Pollack, Sidner, Singh,etc.

Psychological commitmentis subject to certain pitfalls including the following:

– omniscience of deductive consequence: Typically psychological commitment
has been based on psychological beliefs. However, an Agent cannot be ex-
pected to be psychologically committed to all the deductive consequences of
their beliefs because of combinatorial intractability.

– mentalism: Psychological commitment has been widely criticized as being
based on mentalism which makes it subject to great uncertainty because
the current state of development in Artificial Intelligence. Such mentalism
was the subject of great controversy in the 1991 AAAI Fall Symposium on
Knowledge and Action at Social and Organizational Levels.

The notion of physical commitment as defined in this paper is not making
the kind of psychological assumptions that are involved in psychologically based
accounts of commitment [22], etc.

5.7 Electronic Institutions

[10] presented an analysis in terms of a normative framework of obligations,
permissions, prohibitions, violations, and sanctions, which can be formalized in
terms of physical commitment.

For example consider the commitment to be a Fishmarket in which buyers
submit bids to an auctioneer in a Dutch auction to purchase round lots of fish.
A proper Fishmarket provides that

– its participants have particular obligations, permissions, and prohibitions
– that certain violations may occur
– if violations occur, what sanctions are imposed

It is possible to implement an actual Fishmarket in the form of an electronic
institution (e.g. as described in [21]) in which information technology plays an
important role in the operations of obligations, permission, prohibitions, and
sanctions. Once this has been done (e.g. in Blanes) we can look at the physical
commitment that the fish market in Blanes operates as a proper Fishmarket
at some particular time (e.g. 12 December 1997). In this regard, it would be
possible to have every participant take part in a full audit on 13 December 1997
of what happened the previous day and then sign a contract that to the best
of their knowledge all of the Fishmarket obligations, permissions, prohibitions,
and violations had been obeyed on the previous day. However, although they
are evidence, just by themselves, these contracts may not definitely settle the
question as to whether a proper Fishmarket operated in Blanes on 12 December
1997. E.g., error or fraud (large or small) may still be a possibility. (See [2] for
a flexible extension of electronic institutions to allow for a flexible enforcement
of norms and manners.)



What Is Commitment? Physical, Organizational, and Social 303

6 Speech Act Semantics

Speech Act Theory has been developed by philosophers and linguists to account
for the use of language beyond simply stating propositions as in mathematical
logic. Speech Act Theory encompasses perlocutionary and illocutionary seman-
tics.

6.1 Limitations of Perlocutionary Semantics

The perlocutionary semantics of a speech act the effect, intended or not, achieved
in an addressee by a speakers utterance, e.g., persuading, convincing, scaring,
insultng, getting the addressee to desire something, etc.. However, perlocutionary
semantics is limited in scope to mental state of the addressee. In terms of physics,
the addressee is a dingable! In fact the speaker and addressee may be entangled
and even privately interacting unbeknownst to an observer.

6.2 Limitations of Illocutionary Semantics

The illocutionary semantics of a speech act is the basic purpose of a speaker in
making an utterance, e.g., Assertive, Commissive, Declarative, or Expressive as
follows:

– Assertive: The speaker expresses that the state of affairs described by the
propositional content of the utterance is actual.

– Commissive: The speaker expresses that they are committed to bring about
the state of affairs described in the propositional content of the utterance.

– Declarative: The speaker expresses that they are bringing into existence the
state of affairs described in the propositional content of the utterance.

– Directive: The speaker expresses that they are attempting to get someone
to bring about the state of affairs described by the propositional content of
the utterance.

– Expressive: The speaker expresses that they are communicating an attitude
or emotion about the state of affairs described in the propositional content
of the utterance.

Illocutionary semanticsis limited in scope to the psychological state of a
speaker. However, it is unclear how to determine psychological state! Also com-
mitments dont fall neatly into the pigeonholes specified by speech act theorists.
Furthermore the speaker and addressee may be entangled.

6.3 Web Services

FIPA attempted to promote Agent Communication Languages based on Speech
Act Theory. This pioneering effort ran into many difficulties including the prob-
lem of trying to pigeonhole communications into the FIPA prescribed illocution-
ary performative communicative acts whose semantics are expressed terms of
psychological beliefs [7].

Subsequently attention has turned to Web Service standardization. However
the current Web Services standards lack formal semantics.



304 C. Hewitt

7 Prospects and Future Work

On the 40th anniversary of the publication of Moore’s Law, hardware development
is furthering both local and nonlocal massive concurrency. Local concurrency is
being enabled by new hardware for 64-bit many-core microprocessors, multi-chip
modules, and high performance interconnect. Nonlocal concurrency is being en-
abled by new hardware for wired and wireless broadband packet switched commu-
nications. Both local and nonlocal storage capacities are growing exponentially.
All of the above developments favor the Actor model.

The development of large software systems and the extreme dependence of our
society on these systems have introduced new phenomena. These systems have
pervasive inconsistencies among their documentation, implementations, and use
cases. There is no prospect for eliminating these inconsistencies. Furthermore,
there is no evident way to divide up the information into consistent microtheo-
ries. Organizations such as Microsoft, the US government, and IBM have tens of
thousands of employees pouring over hundreds of millions of lines of documen-
tation, code, and use cases attempting to cope. Also it would be fair to say that
our society is becoming increasingly“committe” to these large software systems.
Implications of this circumstance are on the agenda for future research.

Prospects for Agents are difficult to estimate. Currently Web Services do not
assign any large role to Agents. On the other hand the semantics of commitment
whose development is furthered in this paper are crucial to the future develop-
ment of Web Services. So one issue before us is what science, technology and
terminology will Web Services use for these concepts going forward. For our
future Agent systems research, we will need to take the following measures:

– Make extensive use of monotonicity, commutativity, pluralism, skepticism,
and provenance.

– Use (binary) XML to express commitments organizing them in viewpoints
(theories, contexts) making use of inheritance and translation.

– Further develop semantics and pragmatics for processing expressions for
commitments.

– Develop formal semantics for Web Services.
– Study how human individuals, organizations, and communities process ex-

pressions for commitments using psychology, sociology, and philosophy of
science.

– Prepare for the semantic consequences of massive concurrency both local
(many-cores) and nonlocal (Web Services).

Acknowledgments. Mike Huhns, Hidey Nakashima, and Munindar Singh pro-
vided comments on the abstract of this paper. Sol Feferman, Mike Genesereth,
David Israel, Ben Kuipers, Pat Langley, Vladimir Lifschitz, John McCarthy,
Fanya Montalvo, Ray Perrault, Mark Stickel, Richard Waldinger, and others pro-
vided valuable feedback at seminars at Stanford, SRI, and UT Austin in which I
presented earlier versions of the material in this paper. The AAAI Spring Sym-
posium’06, AAMAS’06, KR’06, and COIN@AMAS’06 reviewers made valuable



What Is Commitment? Physical, Organizational, and Social 305

comments. Substantial comments and suggestions for improvement were con-
tributed by Lalana Kagal, Hidey Nakashima, Pablo Noriega, Munindar Singh,
and Richard Waldinger. Unfortunately because of illness, I was unable to attend
AAMAS’06. Carles Sierra kindly volunteered to deliver my talk in Hakadote.
Sindhu Joseph generously converted this paper from MS Word to LATEX for
these proceedings.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
PhD thesis, MIT (1986)

2. Aldewereld, H., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A., Sierra,
C., Dignum, F.: Operationalisation of Norms for Electronic Institutions. In: Nor-
iega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N.,
Matson, E. (eds.) COIN 2006. LNCS(LNAI), vol. 4386, pp. 163–176. Springer,
Heidelberg (2007)

3. Bergeron, M., Chaib-draa, B.: Acl: Specification, design and analysis all based
on commitments. In: Proceedings of the Workshop on Agent Communication
(AAMAS 2005) (2005)

4. Castelfranchi, C.: Practical “permission”: Dependence, power, and social commit-
ment. In: 2nd Workshop on Practical Reasoning and Rationality, Manchester (April
1997)

5. Caves, C.M., Fuchs, C.A.: Quantum information: How much information in a state
vector. In: The Dilemma Of Einstein, Podolsky and Rosen - 60 Years Later, vol. 12,
pp. 226 – 257. Annals of the Israel Physical Society (1996)

6. Clinger, W.: Foundations of Actor Semantics. PhD thesis, MIT Mathematics (1981)
7. FIPA. Communicative act library specification (2000),

http://www.fipa.org/specs/fipa00037/
8. Fornara, N., Vigan, F., Colombetti, M.: Agent communication and institutional

reality. In: Workshop on Agent Communication. AAMAS (2004)

9. Fuchs, C.A.: Quantum Mechanics as Quantum Information (and only a little
more). In: Quantum Theory: Reconstruction of Foundations. Växjö University
Press (2002)

10. Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.A.: Implementing norms in
electronic institutions. In: AAMAS (2005)

11. Hewitt, C.: The challenge of open systems. BYTE Magazine (April 1985)

12. Hewitt, C.: Inconsistency is the norm. Submitted for publication (October 2006)
13. Hewitt, C.: The repeated demise of logic programming and why it will be rein-

carnated. In: Papers from the, Spring Symposium, Menlo Park, California, March
2006. American Association for Artificial Intelligence (2006)

14. Hewitt, C.: Will logicists accept that ‘inconsistency is the norm’ and ‘logic pro-
gramming is not universal’? Submitted for publication (October 2006)

15. Hewitt, C., Manning, C.: Synthetic infrastructures for multi-agency systems. In:
ICMAS ’96, Kyoto, Japan (1996)

16. Jennings, N.R.: Commitments and conventions: The foundation of coordination in
multi-agent systems. The Knowledge Engineering Review 8(3), 223–250 (1993)

17. Kagal, L., Finin, T.: Modeling conversation policies using permissions and obliga-
tions. Journal of Autonomous Agents and Multi-Agent Systems (December 2006)



306 C. Hewitt

18. Laudisa, F., Rovelli, C.: Relational quantum mechanics. The Stanford Encyclope-
dia of Philosophy(Fall 2005 Edition) (2005)

19. Louis, V., Martine, T.: An operational model for the fipa-acl semantics. In: Work-
shop on Agent Communication. AAMAS (2005)

20. Mallya, A., Singh, M.: A semantic approach for designing commitment protocols.
In: Workshop on Agent Communication. AAMAS (2004)

21. Noriega, P.: Agent Mediated Auctions: The Fishmarket Metaphor. PhD thesis,
IIIA-CSIC (1997)

22. Brahim Chaib-draa Roberto, A., Pasquier, P.: Conversational semantics with social
commitments. In: JAAMAS (January 2005)

23. Rovelli, C.: Relational quantum mechanics. International Journal of Theoretical
Physics 35, 1637–1678 (1996)

24. Singh, M., Huhns, M.: Service-Oriented Computing: Semantics, Processes, Agents.
John Wiley & Sons, Chichester (2005)

25. Zurek, W.: Physics review letters. Journal of the american physical society D26,
1862 (1982)

Appendix: Discreteness of Each of the Arrival Orderings
and Discreteness of the Activation Ordering Together Do
Not Imply Discreteness of Combined Ordering Even if
There Is No Change in Behavior

Clinger in [6] surprisingly proved that the Law of Finite Chains Between Events
in the Combined Or-dering is independent of the discreteness of the arrival or-
derings and arrival ordering. The following result generalizes the result of Clinger
because it shows that change in behavior is not required for the result to hold.

Theorem 6. The Discreteness of the Combined Ordering is not implied by the
individual discreteness of the Activation ordering and the Arrival orderings even
if there is no change in behavior.

It is sufficient to show that there is an Actor computation that satisfies the
previously stated laws but violates the Law of Finite Chains Between Events in
the Combined Ordering. Such a computation can be generated by Initial.Start� 
where 4

Initial ≡
receiver

Start�  →
let initialGreeter = Greeter.Create�  

then send InitialAgain�initialGreeter 
Again�oldGreeter →

let nextGreeter = Greeter.Create�  
4 The program uses messages expressed in XML us-

ing the notation < name >tag �< element >1 · · · < element >n�
for“ < ” < name >tag “ > ” < element >1 · · · < element >n “ < ”/< name > tag“ >”
For example, PersonName�First�“Kurt”�Last�“Godel”��� prints as follows:
<PersonName><First>Kurt</First><Last>Godel</Last></PersonName>



What Is Commitment? Physical, Organizational, and Social 307

then {send InitialAgain�nextGreeter 
also send nextGreeter SayHelloTo�oldGreeter }

The above program which defines the Actor Initial makes use of the follow-
ing program for Greeter:

Greeter ≡ receiver Request�Create�  customer →
send customerReturned� serializer SayHelloBehavior() 

SayHelloBehavior() ≡
behavior

SayHelloTo�oldGreeter → { send oldGreeterHello�  
also SayHelloBehavior()}

Hello�  → SayHelloBehavior()

Consider a computation which begins when an actor Initial is sent a Start� 
message causing it to take the following actions:

Send Initial the message Again�Greeter1 . Thereafter the behavior of Initial
is as follows:

On receipt of an Again�Greetern (which we will call the event Againn) create
a new actor Greetern+1 which is sent the message SayHelloTo�Greetern 
and send Initial the message Again�Greetern+1 

Obviously the computation of Initial sending itself Again messages never ter-
minates. The behavior of each Actor Greetern is as follows:

– When it receives a message SayHelloTo�Greetern−1 (which we will call the
event SayHelloTon), it sends a Hello�  message to Greetern−1

– When it receives a Hello�  message (which we will call the event Hellon),
it does nothing.

Now it is possible that Hellon → Greetern → SayHelloTon every time and there-
fore ∀nHellon → SayHelloTon.

Also Againn− ≈→ Againn+1 every time and therefore ∀nAgainn → Againn+1.

All of the Laws for the Activation Ordering and Arrival Orderings
Individually Are Satisfied.

However, there are an infinite number of events in the combined ordering be-
tween Again1 and SayHelloTo1 as follows:

Again1 → · · · → Againn → · · ·∞ · ·· → Hellon
→ SayHelloTon → · · · → Hello1 → SayHelloTo1



Modelling and Monitoring Social Expectations in
Multi-agent Systems

Stephen Cranefield

Department of Information Science, University of Otago
PO Box 56, Dunedin, New Zealand

scranefield@infoscience.otago.ac.nz

Abstract. This paper reports on issues confronted and solutions developed while
implementing the author’s previously proposed hyMITL± logic for expressing
social expectations as conditional rules. A high level overview of hyMITL± is
presented, along with a discussion of new features and implementation issues. In
particular, the importance of using human-oriented descriptions of time points is
argued, along with the need to explicitly take time zones into consideration when
defining rules, and a syntax for date/time expressions based on ISO standard 8601
is proposed. A new, more detailed, model for tracking the state of social expec-
tations is also presented, based on the utility of enabling clients of a monitoring
service to be notified of multiple instances of the violation or fulfilment of an
expectation.

1 Introduction

A significant amount of research in the field of multi-agent systems is currently focused
on the theory, design and implementation of electronic institutions [1]. This work adapts
the mechanisms that keep human society orderly to provide a framework for building
open systems of self-interested software agents that are subject to explicitly defined
rules of behaviour. Some key requirements in this area are languages for expressing
the norms or expectations that apply to agents’ interactions and actions, techniques for
detecting violations of these rules of society, and mechanisms to prevent or discour-
age such violations. This paper focuses on the first two requirements, and in particular
discusses issues and solutions arising from one previously proposed approach.

The hyMITL± logic [2] is a form of temporal logic that allows social expectations to
be expressed as rules that are conditional on observations of the past and present, with
consequences that impose constraints on future states of the world. The logic and its re-
stricted rule syntax were designed to be amenable to run-time compliance monitoring.
This is achieved using an algorithm that keeps a history of observed facts and events,
determines when rules are triggered, and applies the technique of formula progression
[3] to incrementally evaluate and simplify the resulting instantiated consequences (the
current expectations) as new states and their associated facts are appended incremen-
tally to the history. When a progressed formula reduces to true or false this means that a

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 308–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Modelling and Monitoring Social Expectations in Multi-agent Systems 309

Fig. 1. Overview of the compliance-monitoring process

social expectation has been fulfilled or violated (respectively), and a notification is sent
to the clients of the compliance monitor1. Figure 1 gives an overview of this process.

The structure of this paper is as follows. A brief overview of hyMITL± is given
in Section 2, and some implementation choices in maintaining world states for atomic
formula evaluation are discussed in Section 3. Section 4 discusses the concept of so-
cial expectations as applied to hyMITL± and other approaches to modelling electronic
institutions. Section 5 advocates the use of a human-oriented time scale in social ex-
pectation modelling languages, presents a date/time expression language for hyMITL±

based on ISO standard 8601, and demonstrates the need for explicit time zone informa-
tion in date/time expressions involving relative times. The lifecycle of social expecta-
tions is discussed in Section 6 and a distinction between local and global compliance
is proposed. Some observations are then made in Section 7 on the trade-off between
the expressiveness of a social expectation modelling language and the types of decision
procedure it admits, before a discussion of some related work is presented in Section 8.

2 Overview of hyMITL±

hyMITL± is a temporal logic that includes unary temporal operators (including stan-
dard abbreviations) meaning in the next/previous state (X+/X−), eventually in the
future/past (F+/F−), and always in the future/past (G+/G−), as well as binary until
operators for the future and past directions (U+/U−) and a for all possible future se-
quences of states operator (A). The F, G and U operators are qualified by temporal
intervals to constrain the states that must be considered when evaluating the argument
(or the second argument in the case of U+/U−). The default interval (if one is omitted)

1 To provide useful information to clients, it is necessary to associate each current expectation
with the initial rule instantiation that produced it and the state in which it was fired. This is
straightforward, but has not yet been implemented.



310 S. Cranefield

is (−∞, +∞). An interval may also appear on its own as a formula to express the con-
straint that the current state is within that time period. There is a “current time” binding
operator (↓) that is qualified by a time unit (e.g. week) and a time zone, and binds the
following variable to a term that names the current time in the specified time zone,
rounded down to the beginning of the specified unit of time. The following is an ex-
ample rule expressed using this language, where p, c, publication, price and t are terms
denoting a service provider, a client, a particular publication, a price and a specific date
and time, respectively:

AG+ done(c, buy sub(publication, p, price)) ∧ [t, t + P1W | Z) →
↓week

Z w.G+
[w+ P1W | Z, w+ P53W | Z)

↓week
Z cw.↓now

Z n.(¬X−[cw, n] →
∃d (date time to date(cw, d) ∧

F+
[n, cw+ P1W | Z)done(p, send(c, publication, d))))

This rule states that if client c has bought a subscription to publication from provider
p for price and this happens within a week of time t (the price is only valid for a week),
then at all times within the interval beginning a week after the start of the week that the
payment is made (w) and ending immediately before 53 weeks after w, if the current
state is the first within a given week (encoded as the constraint that the previous state
wasn’t between the start of the week and now, inclusive), then between now and the end
of the week the provider will send the current edition of the publication. In other words,
once the payment is made, the publication will be sent every week for 52 weeks.

This example includes some additions and specialisations to the syntax compared to
the previous description of hyMITL± [2]. In particular, relative times (e.g. P1W) are
expressed in a notation based on ISO standard 8601, and time zone annotations (the Zs)
are added. These are motivated and discussed in Section 5.

Rules such as this are used by matching the left hand side against a history record-
ing the current and previous states in terms of the events that were observed and the
facts that were known to hold in those states2. The matching operation results in an
instantiation of the right hand side. For example, the rule above will match a state in
which the specified buy sub operation has been performed if the date/time associated
with that state is less than a week after, or is at, the time t. The resulting instantiated
right hand side then represents a social expectation that an expectation monitoring tool
can monitor over time. First the new expectation is partially evaluated—in the example
this will result in the outer ↓ operator and its variable being removed and the variable
w being instantiated to a term denoting the date/time at which the current week began
in the timezone Z. Each time a (relevant) event in the world is observed, a new state is
created, atomic formulae describing the observed event and the known facts that hold
in that state are asserted into the history, and all expectations being monitored are “pro-
gressed” to the new state and partially evaluated, which generally will result in them

2 The rules may contain past modalities and even future modalities (if nested within past ones),
but they should be designed so that the left hand sides can be evaluated using a finite history.



Modelling and Monitoring Social Expectations in Multi-agent Systems 311

being simplified. If an expectation becomes true or false on progression, it can be de-
termined that the expectation was fulfilled or violated (respectively). The progression
algorithm is not presented formally in this paper, but a high level description is given in
Section 6.

3 Representing Events and Facts

The semantics of hyMITL± rely on the standard notion of satisfaction of an atomic
formula in a first order model representing a state of the world. When integrating a com-
pliance monitor with an agent platform or institutional middleware, propositions repre-
senting observed events and known facts must be asserted into the history of present and
past states. While the representation of facts can be based on the ontologies used in the
multi-agent system, some convention needs to be adopted for stating that events have
just occurred—the example above uses a done predicate. A domain model is needed to
declare (amongst other things) the event types that are considered relevant to the system
and the properties of predicates, e.g. in the example the predicate date time to date is
used to represent a function that truncates a date/time expression to leave just the date,
and this can be implemented as a built-in or user-supplied state-independent predicate.
The compliance monitor may also need a way of calculating which facts persist from
one state to the next, given the events that have just occurred. A mechanism for fact per-
sistence may not be needed if there is middleware that provides an interface for access-
ing the public institutional state (as in AMELI [4]). However, for more loosely coupled
systems the monitor may need to infer the facts that hold in each state based on the facts
that held in the previous state and the actions that have occurred. This is precisely the
problem that AI planning has addressed with the development of action description for-
malisms such as STRIPS rules [5] and the situation and event calculi [6,7]. The domain
model could include action descriptions in some existing action description language
(such as the event calculus approach of Farrell et al. [8]). Alternatively the hyMITL±

rule language itself can be used to express this information. Such rules describe the
‘physics’ or causality of the domain, and their conclusions need to be interpreted not as
expectations, but as facts to be asserted into the current state’s fact base.

4 Social Expectations

Unlike other languages for defining social rules in electronic institutions, hyMITL±

does not include concepts from deontic logic such as obligation, permission and prohi-
bition, nor does it include any formalised notion of commitments between agents. In-
cluding these concepts in a logic allow the fulfilment and violation of norms by agents
to be explicitly stated and reasoned about within the language (rather than at the meta-
level), as well as allowing the directed social relationships underlying these concepts to
be explicitly represented.

While there would be some benefit in adding these features to hyMITL±, there is
also utility in allowing the expression of rules that are not explicitly defined in terms of
deontic concepts. The social expectations that an agent has may come from a number of
sources. While an electronic insitution will have published rules with official force—in



312 S. Cranefield

which case terms such as obligation, permission and prohibition seem appropriate, an
agent may usefully maintain its own set of rules expressing social regularities that it has
learned, even though these might not have any official status in the institution. Also,
rules could be used to express the effects of actions, as discussed above.

In this paper we use the term “social expectations” to encompass any constraints
on the present and future that result from rules intended to express social regularities,
whether normative or not. We believe that the issues we discuss are relevant to all ap-
proaches to modelling and monitoring social expectations.

5 A Human-Oriented Time Scale

One of the motivations for the development of MAS technology is to allow humans to
decrease their workload or increase their efficiency by delegating work to trusted au-
tonomous software agents (subject to appropriate constraints and policies). Therefore,
while some multi-agent systems (e.g. those controlling nuclear reactors or chemical
processes) may only need to consider time as a metric quantity measured in (e.g.) mil-
liseconds, many applications of multi-agent systems will require agents to work within
human society, and in particular to understand dates and times expressed using human
calendar systems. For example, agents may need to understand deadlines expressed in
terms of units such as days, weeks and months.

The theory and practicalities of using a human time scale have been addressed to
various degrees in the MAS literature. Mallya et al. [9] present example commitments
between agents that include relative time expressions such as t + 7days , but no syntax
and semantics for a date/time language are presented. Verdicchio and Colombetti [10]
present a detailed account of the syntax and semantics of date/time expressions and date
arithmetic within an agent content language. The normative specification language of
Vázquez-Salceda et al. [11] allows the use of absolute and relative deadlines represented
in terms of dates and standard time units, but no formal details are presented. Farrell
et al. [8] discuss ecXML: a version of the event calculus using an XML syntax, which
(based on the examples presented) uses human-oriented date and time units, but this
is not explicitly discussed. In our initial presentation of the hyMITL± language [2],
we showed how a date/time language in the style of Verdicchio and Colombetti can be
integrated into a temporal logic in which time intervals and a date/time binding operator
are first class elements of the language, rather than being axiomatically defined.

In contrast, other research has treated times as (essentially) real numbers. The IS-
LANDER e-institution editor [12] and the associated AMELI [4] middleware for gov-
erning agents in an institution allow timeouts to be specified in protocol-based norms,
and the implementation [13] uses the Java system time in milliseconds for its timestamps.
SOCS-SI [14] and the formalism of Garcı́a-Camino et al. [15] use explicit time vari-
ables, arithmetic time expressions, and time inequality constraints, but only numeric
time stamps are considered.

In this section we discuss the use of a human-oriented date/time scale in our im-
plementation of the hyHITL± logic, in particular, the date/time language used and the
qualification of time expressions by time zones.



Modelling and Monitoring Social Expectations in Multi-agent Systems 313

5.1 A Date/Time Language Based on ISO Standard 8601

ISO standard 8601 [16] defines standard textual representation formats for dates and
times. The defined formats are used (generally in a restricted form, and possibly with
some changes) by various Internet and Web standards, such as RFC 3339 [17] for
date/time timestamps on the Internet and the XML Schema definition of date and time
datatypes [18]. In the implementation of hyMITL± we use the formats from ISO 8601
for expressing points in time in terms of date/time units, and for expressing durations
in time as periods. We also allow new date/time points to be calculated by adding or
subtracting relative times to date/time points.

Date/time strings. Instances in time are represented using the following syntax:

YYYY-MM-DDThh:mm:ss.fffz

where YYYY is the four-digit number of the year (we assume only AD dates are of
interest), and MM , DD, hh, mm, ss are two-digit representations of the month3, day,
hour (using a 24 hour clock), minute and second, respectively. fff represents up to
three optional digits for fractions of a second—the preceding decimal point is omitted
if there is no fractional part. The T separates the date and time components.z represents
a time zone in terms of an offset to Universal Coordinated Time (UTC). It can be either
the character ‘Z’ (representing the “zero meridian”, i.e. an offset of 0), or a ‘+’ or ‘−’
followed by an hour and minute offset in the form hh:mm.

We assume the Gregorian calendar is used and that the usual constraints on the num-
ber of days in each month for a given year are respected.

We do not currently support various abbreviations and variations to this notation
allowed by the ISO standard (such as omitting the field separators) or the use of week-
of-year or day-of-year expressions.

Period strings. An offset in time can be expressed using one of the “period” nota-
tions in the standard representing “a duration not associated with any start or end”. The
notation is:

PyearsYmonthsMweeksWdaysDThoursHminutesMsecondsS

where lower case text stands for the desired number of each unit, and the capital letters
are unit indicators4. Fields and their following unit indicators can be omitted, but the ‘T’
separator must be present if there are any time fields. The seconds field can include a
decimal point. The leading ‘P’ indicates that this is a ‘period’, and this can be followed
by an optional ‘+’ or ‘−’.

Date/time arithmetic. We allow expressions denoting the addition or subtraction of
periods to date/time points. This is useful when defining date/time points as offsets
to date/time variables. The addition of periods to date/time points is complicated as it
involves knowledge of the calendar, and it is necessary to have well understood conven-
tions for handling issues such as the variable number of days in a month when adding

3 Unlike the Java Date class, months are numbered from 1.
4 This format is a slight generalisation of the ISO one as it allows months and weeks to appear

together.



314 S. Cranefield

months to a date and the occurrence of leap years when adding years. Although the ISO
standard is not freely available, an algorithm for adding durations to date/time points
appears in an appendix of the XML Schema datatypes definition [18]. Our implemen-
tation relies on the Joda Time Java library [19] to perform this computation.

A further complication is that the addition of periods to date/time points can only
be defined relative to a particular time zone. This issue is discussed in the following
section.

5.2 The Need for Time Zones

A period defined in terms of units such as months, weeks and days does not define a
fixed length of time. In particular, the addition of months involves an addition to the
month component of a date followed by a “rounding down” of the resulting day to an
allowed value. This means that the time zone in which the computation is performed
can be significant. Consider the following examples, where the subscript to the ‘+’
indicates the timezone used for the addition:

2006-02-28T23:00:00Z +Z P1M = 2006-03-28T23:00:00Z

2006-02-28T23:00:00Z ++01:00 P1M = 2006-04-01T00:00:00+01:00

This shows that, given the starting date of 11pm, 28 February 2006 (UTC), the addition
of a month can result in a difference of three days depending on whether the calculation
is performed with respect to UTC or UTC+01:00. To align with people’s experience of
time, changes to and from summer time must also be reflected in date/time arithmetic.

In the above example, the time zone was provided as a separate annotation to the
addition. As an alternative, the timezone associated with the date/time argument could
be used (“Z” in both cases above). However, hyMITL± can include interval expres-
sions with variables that become instantiated at an outer level of the formula. To ensure
that the time zone in which an addition or subtraction is to be performed is explicit in
the formula, we use the syntax date time + period | time zone as an abbreviation for a
ternary addition operator taking an explicit time zone argument. Without this, in the fol-
lowing formula the time zone for the calculation would not be known until the variable
cd (current day) becomes bound:

paid(cust426, order77867) →
↓day

Z cd. F+
[cd+P1D | Z, cd+P2D | Z)received goods(cust426, order77867)

This formula states that once a particular customer has paid for a particular order,
delivery will be made at some time during the next day. Note that the time binding
operator ↓ must also be qualified by a time zone as well as a time unit.

In practice, for some applications it may be possible to omit time zone annotations
and simply use an agent’s current time zone. However, in other cases where agents are
distributed across different time zones it will be crucial to ensure this information is ex-
plicitly provided for expressions involving temporal arithmetic. It follows that adapting
systems based on real number time points to use a human-oriented time scale is not just
a simple matter of changing the data type used to represent time points and plugging
in a different time arithmetic module—the syntax of the temporal language used may
need to be changed in a more fundamental way.



Modelling and Monitoring Social Expectations in Multi-agent Systems 315

empty 

commitment

unset

mc()

pending active
sc()

canceled

sc() r4
sc()

r7

r3

r5 fulfilled

violated

r1

r2

r6

sc()

Fig. 2. Fornara and Colombetti’s commitment lifecycle [20]

6 The Lifecycle of a Social Expectation

A system that monitors future-oriented social expectations, whether these are obliga-
tions, commitments or learned patterns of behaviour, must have some underlying model
of the lifecycle of an expectation. For example, various formalisms and practical tools
based on commitments have been proposed with differing accounts of the dynamics
of a commitment. Figure 2 shows the commitment lifecycle proposed by Fornara and
Colombetti [20]. This diagram defines a state space for conditional commitments and
the possible transitions between those states, with solid arrows indicating operations
(mc for make commitment and sc for set commitment) that occur as a result of agent
communication, and dashed arrows indicating state changes that occur as a result of a
change in truth value of the commitment’s precondition or content propositions. Fur-
ther constraints on the legal transitions are defined by rules (r1 to r7, not shown here)
and some “basic authorizations” that restrict the performance of each sc transition to
be performed by either the debtor or the creditor of the commitment. The unset state
allows an agent to create a commitment for which another agent is the debtor. This can
then be set to the pending state by the debtor (if the commitment is accepted), or set to
the canceled state (if not accepted).

The commitment machine formalism of Yolum and Singh [21] can be viewed as
defining a similar state machine, with some additional operations possible on commit-
ments: the release of the commitment by its creditor, the assignment of an alternative
agent as the creditor (performed by the original creditor) and the delegation of a com-
mitment by its debtor to an alternative debtor. Because a commitment machine is used to
specify protocols in which all commitments are fulfilled, the violation of commitments
is not modelled in this formalism. In contrast to the approach of Fornara and Colom-
betti, a commitment machine does not explicitly represent commitments as propositions
with a temporal component—instead, the semantics of commitment assertions directly
constrain the possible future paths that conform to a commitment in terms of the satis-
faction of the commitment content in some future state. This is in contrast to the earlier
work of Venkatraman and Singh [22] which used the same lifecycle but with particular
patterns of CTL formulae as the content of commitments.

In general, a tool to monitor social state will need to track two types of transition
in the state of a social expectation: those triggered by interactions between agents (the



316 S. Cranefield

solid lines in the figure) and those triggered by changes in truth value of the logical
content of the expectation (the dashed lines). The ability to monitor the former relies
on an ability to overhear communication between agents [23] or the use of group multi-
casting [24] or a group message redistribution agent [25] when sending messages with
important social consequences. Detecting transitions triggered by changes in truth value
requires determining whether particular propositions hold or actions have occurred in
each state. Vásquez-Salceda et al. [11] have proposed practical implementation tech-
niques for managing this process, and suggested the inclusion of specific detection
mechanisms within norm descriptions.

Currently, hyMITL± does not include any notion of commitments or obligations, and
thus a compliance monitor for hyMITL± rules is not concerned with monitoring changes
of social state. Its focus is on the right hand side of the state diagram in Figure 2. The
content of a social expectation having a temporal aspect can have three possible values
when an attempt is made to evaluate it. Its value may be unknown (corresponding to
the active state in the figure), true (the fulfilled state) or false (the violated state). As time
passes, the compliance monitor’s trace of observations and events is extended and expec-
tations with an unknown value may remain in that state or their content may be reduced
to a value of true or false. The hyMITL± compliance algorithm presented previously
follows this approach using an iterative process of partial evaluation and formula pro-
gression [2]. Once a formula has been reduced to true or false, a fulfilment or violation
is reported and the (now trivial) formula is removed from the set of current expectations.

While this may seem an obvious outcome of applying three-valued logic to the evalu-
ation of expectations with a temporal nature, our experience in implementing hyMITL±

has demonstrated to us that monitoring the transitions between the three states active,
fulfilled and violated is not sufficient for compliance monitoring. This is based on the
need to allow a wider range of notifications from the compliance monitor to an agent
using its services. For example, consider an expectation that an agent will perform a
particular operation every day for a year. A client of a compliance monitor tracking this
expectation may wish to be notified after every day that the required operation is not per-
formed, not just the first time (which is when the expectation becomes logically false).
Any resulting sanctions may depend on the number of repeated violations. The client
may also wish to be notified every time the expected action is performed, rather than
being notified at the end of the year that the expectation as a whole was fulfilled. These
examples suggest that a compliance monitor needs distinct notions of global versus lo-
cal compliance, and that its clients may wish to control the notifications they receive in
a flexible by specifying notification policies. These policies would allow clients to spec-
ify, for particular patterns of formulae, their interest or disinterest in single or repeated
violations or fulfilments of social expectations that match the patterns.

Figure 3 shows a UML 2.0 state machine giving a more detailed account of the
possible states of an expectation’s content formula, designed to allow more flexible no-
tification to clients of a compliance monitor. The Active state is decomposed into two
orthogonal sets of substates: those indicating the global state, i.e. whether the expecta-
tion is logically false, true or unresolved (e.g. if its value depends on the evaluation of
future modalities), and those indicating its local state—whether it is true or false when
evaluated at the current point in time, ignoring any past violations and requirements



Modelling and Monitoring Social Expectations in Multi-agent Systems 317

Unresolved

Violated

Fulfilled

Locally

Unresolved

Locally

Violated

Locally

Fulfilled

Active

Violated

Fulfilled

Completed

Fig. 3. A more detailed state space for social expectations

on the future. The Completed state represents an expectation that no longer has any
relevance, e.g. one that was bounded by a particular time interval that has now passed.

Of course it is still necessary to precisely define the notion of local compliance, and
one possible definition follows from the technique of formula progression used in the
hyMITL± monitoring algorithm. Paraphrasing Kerjean et al. [26]:

The idea behind formula progression is to decompose a linear temporal logic
formula into a requirement about the present, which can be checked straight
away, and a requirement about the (as yet unavailable) next state.

As hyMITL± includes temporal modalities that refer to the past, the compliance
monitor keeps a history of past states, and for our purposes Kerjean et al.’s “requirement
about the present” becomes a requirement about the present and past. This component
can then be evaluated to determine the local compliance of the formula.

The computation is, in fact, a little more complex than the above description sug-
gests. Unlike planning, for which the technique of formula progression was developed,
our compliance monitor cannot generate a new state whenever it is ready to progress
a formula. It must wait until a new observation is made, which generates a new state.
However, it is desirable to deliver any fulfilment or violation notifications about the pre-
vious state in a timely fashion. Therefore, we split the progression algorithm into two
steps. The first step is a partial evaluation step that recursively evaluates the formula,
resolving to true or false any subformulae that have no future modalities and applying
the progression rules to those that do, with any resulting “requirements about the next
state” wrapped by the X+ operator. It also performs Boolean simplifications. The sec-
ond step is applied when a new event is observed and the next state is generated. This
basically involves removing the outermost X+ operators. Given a formula p, the result
of the first step, peval(p) determines the local compliance status of the social expec-
tation that this formula is the current value of: if it is false the expectation has been
locally violated; otherwise (if it is true or involves X+ formulae) the expectation has
been locally fulfilled. If the expectation is globally unresolved, then a peval result of
true causes the expectation to become globally fulfilled, and a value of false causes it
to become globally violated.



318 S. Cranefield

A social expectation that has just become globally violated or fulfilled would nor-
mally be removed at the next progression step as the current value (true or false) would
have no future-oriented component. However, further local fulfilments or violations
can be checked for by progressing the future-oriented part of peval(p) before any
Boolean simplification is applied. For example, if peval(p) evaluates to true ∧ X+p,
or to false ∨ X+p, then X+p could be progressed to the next state, giving p. However,
further research is needed to find a general formulation of this idea and a suitably ex-
pressive way for clients to specify their desired policies on when this technique should
be applied and to what patterns of formula.

7 Expressive Power Versus Inference Capability

hyMITL± was designed to allow the expression of social rules with complex temporal
properties (relative to other approaches), while still being amenable to run-time com-
pliance monitoring. However, the compliance monitoring process is concerned solely
with the application of rules and the satisfaction and violation of their consequences,
given the history so far. It cannot detect violations of liveness properties, and it does
not detect inconsistencies between rules or expectations that are inconsistent, until they
have resolved to true or false. For example, the algorithm will progress both F+

I p and
G+

I ¬p, where I is a future interval, until I is reached and one of these formulae is
found to be violated. Other approaches to run-time monitoring of expectations have
similar limitations [8].

As well as run-time monitoring, there are other decision procedures that may be
useful for social expectation modelling languages, e.g.:

– Is a set of rules, or a set of current expectations, consistent?
– Given two sets of rules, which one has the most utility for me?
– What set of rules would ensure that my current goals in society are met?

While there may not be feasible approaches to answering these questions for an expres-
sive language like hyMITL±, it would be possible to define templates of social contracts
that have known properties, with particular parameters that can be varied. Analysis and
negotiation could then take place in terms of the parameter space, just as in human so-
ciety a negotiation over a house purchase usually focuses on the price and occupancy
date rather than the fine print of what is often a standard contract.

8 Related Work

The hyMITL± logic combines aspects of CTL± [27], Metric Interval Temporal Logic
(MITL) [28] and hybrid logic [29]. A discussion of these and a comparison of the
hyMITL± approach with some previous research on modelling and run-time monitor-
ing of social norms have been presented previously [2]. This section discusses some
additional related work that was not addressed by the previous paper or in the preced-
ing sections of this paper.

The rules we use for describing social expectation have the form ‘past-and-present-
occurrences → future-constraints’, where the expression future-constraints is a linear



Modelling and Monitoring Social Expectations in Multi-agent Systems 319

temporal logic formula. This is similar to the rules used to create programs in the
METATEM programming language [30]. The execution cycle for checking the com-
pliance of a sequence of observations with hyMITL± rules is essentially the same as
the METATEM interpreter loop. The main difference is that METATEM applies rules
to generate a sequence of new states to append to the history—a process that involves
choosing between different ways to make until formulae true, and which may therefore
require backtracking to explore all choices. In contrast, each iteration of the hyMITL±

compliance checker is triggered by the arrival of a time-stamped observation, which cre-
ates a new state and causes the progression of existing expectations and the application
of any rules with antecedents that match the newly extended history. Therefore this is a
passive monitoring process. However, agents also need a mechanism to help them de-
cide when they should proactively initiate actions when required by social expectations,
and an adaptation of the METATEM approach may be useful for this (although back-
tracking would not be an option for a run-time process). Also, the techniques used in
METATEM for compressing the history representation could be applied to a hyMITL±

compliance checker.
Stratulat et al. [31] have developed an approach for using first order logic to describe

normative agent systems, which includes the ability to state that predicates hold within
intervals of (real-valued) time. Norms are conditional obligations, permissions and prohi-
bitions of an agent with respect to an action type during an interval, and these are modelled
as fluent properties that hold over particular intervals of time. A notion of violation is de-
fined, and a Prolog implementation of the approach allows violations to be detected when
given the norms and facts asserting the occurrence of events. This model was also used
to provide a technique based on temporal constraint satisfaction for an agent to schedule
its activities so as to incur the least cost from norm violation. As discussed above, such a
scheduler would be a useful addition to a hyMITL± compliance checker, but hyMITL±

is probably too expressive for a constraint satisfaction approach to be viable.

9 Conclusion

This paper has discussed a number of issues related to the modelling and run-time
monitoring of social expectations that have arisen from implementing a monitoring tool
for the hyMITL± logic. Further details on this formalism and its implementation have
been presented, and in particular a date/time language based on ISO standard 8601
was described, and the use of explicit reference to time zones in such a language was
advocated. The lifecycle of social expectations was analysed and a proposal was made
for a more detailed account of violation and fulfilment, in order to support a wider range
of notifications to clients of a compliance monitor.

Acknowledgements

Thanks to Carles Sierra, Marco Colombetti and Ulises Cortés and their colleagues at
IIIA-CSIC, the University of Lugano and Universitat Politècnica de Catalunya (respec-
tively) for their hospitality and thought-provoking discussions during the author’s visits
in 2005.



320 S. Cranefield

References

1. Cortés, U.: Electronic institutions and agents. AgentLink News 15, 14–15 (2004)
2. Cranefield, S.: A rule language for modelling and monitoring social expectations in multi-

agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Os-
sowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordination, Organizations, Institu-
tions, and Norms in Multi-Agent Systems. LNCS (LNAI), vol. 3913, pp. 246–258. Springer,
Heidelberg (2006)

3. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial Intelligence 116, 123–191 (2000)

4. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, vol. 1, pp. 236–243. ACM Press, New York
(2004)

5. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, 189–208 (1971)

6. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intel-
ligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502. Edin-
burgh University Press (1969)

7. Miller, R., Shanahan, M.: The event-calculus in classical logic - alternative axiomatizations.
Electronic Transactions on Artificial Intelligence 3, 77–105 (1999)

8. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for track-
ing the normative state of contracts. International Journal of Cooperative Information Sys-
tems 14, 99–129 (2005)

9. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving commitments among autonomous agents.
In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182. Springer, Hei-
delberg (2004)

10. Verdicchio, M., Colombetti, M.: Dealing with time in content language expressions. In: van
Eijk, R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI), vol. 3396, pp.
91–105. Springer, Heidelberg (2005)

11. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent sys-
tems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS
(LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

12. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 1045–1052. ACM Press (2002)

13. IIIA-CSIC: Electronic InstitutionsDevelopmentEnvironmentWebsite.Accessed2006-02-01,
http://e-institutions.iiia.csic.es/software.html

14. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance verifi-
cation of agent interaction: a logic-based software tool. In: Trappl, R., (ed.) Cybernetics and
Systems, vol. II. Austrian Society for Cybernetics Studies, pp. 570–575 (2004)

15. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A distributed ar-
chitecture for norm-aware agent societies. In: Baldoni, M., Endriss, U., Omicini, A., Torroni,
P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 89–105. Springer, Heidelberg (2006)

16. Wikipedia: ISO 8601. Accessed 2006-02-01,
http://en.wikipedia.org/wiki/ISO 8601

17. Klyne, G., Newman, C.: Date and time on the internet: Timestamps. Request for Comments
3339. The Internet Society (2002)

18. W3C: XML schema part 2: Datatypes 2nd edn. (2004),
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/



Modelling and Monitoring Social Expectations in Multi-agent Systems 321

19. Joda.org: Joda Time - Java date and time API, Accessed 2006-02-01,
http://joda-time.sourceforge.net/

20. Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Ap-
plied Artificial Intelligence 18, 853–866 (2004)

21. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL
2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg (2002)

22. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open web-based multiagent systems. Autonomous Agents and Multi-Agent Systems 2,
217–236 (1999)

23. Kaminka, G., Pynadath, D., Tambe, M.: Monitoring teams by overhearing: A multi-agent
plan-recognition approach. Journal of Artificial Intelligence Research 17, 83–135 (2002)

24. Cranefield, S.: Reliable group communication and institutional action in a multi-agent trading
scenario. In: Dignum, F., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS (LNAI), vol. 3859,
Springer, Heidelberg (2007)

25. Heard, J., Kremer, R.C.: Practical issues in detecting broken social commitments. In:
Dignum, F., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS (LNAI), vol. 3859, Springer,
Heidelberg (2007)

26. Kerjean, S., Kabanza, F., St-Denis, R., Thiébaux, S.: Analyzing LTL model checking tech-
niques for plan synthesis and controller synthesis (work in progress). Electronic Notes in
Theoretical Computer Science 149, 91–104 (2006)

27. Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent commu-
nication. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2003), pp. 528–535. ACM Press, New York (2003)

28. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the
ACM 43, 116–146 (1996)

29. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, pp. 436–447. Cambridge University
Press, Cambridge (2001)

30. Fisher, M., Owens, R.: From the past to the future: Executing temporal logic programs. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 369–380. Springer, Heidelberg (1992)

31. Stratulat, T., Clerin-Debart, F., Enjalbert, P.: Temporal reasoning: an application to normative
systems. In: Proceedings of the 8th International Symposium on Temporal Representation
and Reasoning (TIME 2001), pp. 41–47. IEEE Computer Society Press, Los Alamitos (2001)



Influence-Based Autonomy Levels in Agent

Decision-Making

Bob van der Vecht1,2, André P. Meyer1, Martijn Neef1, Frank Dignum2,
and John-Jules Ch. Meyer2

1 TNO Defence, Security and Safety, The Hague
{bob.vandervecht, andre.meyer, martijn.neef}@tno.nl

2 Department of Information and Computing Sciences, Universiteit Utrecht, Utrecht
dignum,jj@cs.uu.nl

Abstract. Autonomy is a crucial and powerful feature of agents and it is
the subject of much research in the agent field. Controlling the autonomy
of agents is a way to coordinate the behavior of groups of agents. Our
approach is to look at it as a design problem for agents. We analyze the
autonomy of an agent as a gradual property that is related to the degree
of intervention of other agents in the decision process. We define different
levels of autonomy in terms of inter-agent influences and we present a
BDI-based deliberation process in which different levels of autonomy can
be implemented.

1 Introduction

This research is motivated by a perspective on automation of distributed sys-
tems. As systems are becoming more capable of performing complex tasks, a
number of new applications can be thought of where different actors collaborate
to reach joint goals. Collaboration can be achieved in several ways and coordina-
tion of action always plays an important role. In mixed-initiative systems several
types of collaboration occur in a dynamic manner. Mixed-initiative means that
the initiative for actions of the system comes from multiple actors.

If we look at the engineering of mixed-initiative systems, an agent-based ap-
proach seems logical and appropriate. Concepts that are used in the agent com-
munity like situatedness and proactiveness [1] are recurring themes when dealing
with the design of such systems. We believe that the concept of autonomy of
the actors plays a crucial role as well. Actors in mixed-initiative systems need
to perform tasks on multiple levels of autonomy during the collaboration.

Mixed-initiative systems can consist of human and artificial actors. Human
beings can collaborate with agents, or several types of agents with each other. In
this paper we will analyze some engineering issues of agents for mixed-initiative
systems and more specifically the concept of autonomy in agents. We propose
a decision model that includes different levels of autonomy. We deal with the
problem of autonomy in agent design by introducing inter-agent influence types
in the reasoning process. In Sect. 2.1 and 2.2, we describe the function of au-
tonomy in mixed-initiative system, and define the concept of autonomy itself.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 322–337, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Influence-Based Autonomy Levels in Agent Decision-Making 323

Section 2.3 addresses related work on agent autonomy. In Sect. 3 we present a
deliberation loop for autonomy-aware BDI agents. We show how different levels
of autonomy can be defined and how they relate to the agent decision model.
Section 4 explains our practical approach and illustrates it with an experiment.
We give some conclusions in Sect. 5.

2 Autonomy

The first part of this section describes the function of autonomy of actors in
mixed-initiative systems in a general way. In the second part, we focus on au-
tonomy in artificial agents, and we present the definition of autonomy as used
in this research.

2.1 Mixed-Initiative Systems

A property of mixed-initiative systems is that the system makes use of different
types of collaboration among the actors. We have tried to identify some system
requirements of mixed-initiative systems and we try to meet these requirements
using an agent-based approach. Figure 1 shows some of the concepts that actors
in mixed-initiative systems should be aware of in order to handle different co-
ordination types dynamically. In this paper we focus on the issue of autonomy,
although neither autonomy, nor any of the other requirements can be studied in
isolation. The various concepts interact and influence each other and add to the
complexity of this research topic.

Fig. 1. Important issues concerning dynamic collaboration in mixed-initiative systems

The concept of autonomy is related to the ability of taking initiative. In human
cooperation, people readily change their level of dependence with respect to
others. This can be regarded as adaptation of their autonomy level. This ability is
also essential for agents in mixed-initiative systems, and is currently still lacking.
In this paper we will introduce a solution for implementing different levels of
autonomy in agents.

2.2 Agent Autonomy

The term autonomy is used in many definitions of agents and is regarded as one
of the key features of an agent [1]. Being autonomous means that the agent has
control over both its internal state and its behavior. By assuming that agents



324 B. van der Vecht et al.

are autonomous entities, we expect to know something about the way they are
internally constructed.

However, the fact that an agent is autonomous does not imply that it has
to make all its decisions by itself. In the context of this paper, we look at au-
tonomy as a relational property. We consider the levels of agent autonomy with
respect to a certain goal and with respect to other agents. Therefore the degree
of autonomy can be defined as the degree of intervention by other agents on the
decision making process of how to reach that goal. Barber defines autonomy in
a similar manner [2]: An agent’s degree of autonomy, with respect to some goal
that it actively uses its capabilities to pursue, is the degree to which the decision-
making process, used to determine how that goal should be pursued, is free from
intervention by any other agent.

We have adopted Barber’s definition of autonomy for the purpose of this re-
search. It states that an agent can have complete internal autonomy, but delib-
erately restrict or limit its autonomy in the decision-making process when it is
pursuing a certain goal. This means that it allows influences of other agents in its
decision-making. In the reasoning process of an agent, the level of autonomy is rel-
evant at every point where the agent actually makes a choice. We consider only
agents that are more or less deliberate, since they are aware of their choices. We
willpresent examples of different levels of autonomy in the decision-making process
and describe how autonomy can be included in the decision model of agents.

It is widely recognized that the ability of an agent to make decisions au-
tonomously is a strong feature [3]. In some settings it is inevitable to allow au-
tonomous decisions, for example if communication with others fails, or if there
is no time to negotiate actions. On the other hand, some tasks require coordina-
tion, and then it is necessary to be able to predict an agent’s actions, in order to
avoid mistakes or conflicts. By limiting its autonomy the agent becomes (partly)
dependent of others. At the same time the agent uses capabilities of others. The
level of autonomy of agents in the decision-making process with respect to a
certain goal is important for cooperation in groups of agents. Controlling and
adjusting the agent autonomy can be used in coordination principles.

One perspective on autonomy is that it is an internal feature of an agent, such
that it controls its own internal state and its behavior. Another perspective is
to look at autonomy as a relational property and consider an agent’s autonomy
with respect to a certain goal and with respect to other agents. Then autonomy
becomes a gradual property of the decision-making process of the agent. We
would like to argue here that a truly internally autonomous agent should be
able to reason about its level of autonomy in the decision-making process and
should be able to adjust its autonomy with respect to a certain goal and to other
agents. In the following sections, we first evaluate the use of agent autonomy in
other research, and then propose our reasoning model.

2.3 Related Work on Agent Autonomy

Although agent autonomy has been subject to a lot of research, there is no
agreement on one definition. Reason for this could be that autonomy is often



Influence-Based Autonomy Levels in Agent Decision-Making 325

seen as a property of agents, but it is possible to look at it from different per-
spectives. Carabelea et al. [4] have given an overview of those perspectives and
have tried to classify them. They call the property of an agent being autonomous
self-autonomy. They distinguish three main types of autonomy in the relation be-
tween an agent and its surrounding: user-autonomy, social-autonomy and norm-
autonomy. Our approach of agent autonomy is from a relational perspective, and
fits in their definition of social-autonomy.

Controlling the autonomy of an agent is a way to coordinate the behavior of
groups of agents. This coordination can be achieved by explicitly implementing
the relations between agents inside their behaviors, e.g. by predefined protocols.
We want to argue that this undermines the self-autonomy of an agent; the agent
does not control its internal state anymore. Agent organizations are an approach
to improve coordination without touching the self-autonomy as feature of agents.
Several researchers propose ways for defining organizational relations, for exam-
ple by using norms. The Opera model proposes an expressive way for defining
organizations in terms of an organizational model, a social model and an interac-
tion model [5]. It uses norms in the description of roles and interaction schemes
to define obligations and permissions of an agent. In its approach it explicitly
distinguishes between the organizational model and the agents who will act in
it. Another example is Moise+, which provides an organizational middle ware
for agents, which checks whether actions of agents are allowed or not according
to the governing organizational rules [6]. Both approaches separate the organiza-
tional model from the agent model. This choice is very legitimate for their goal
of developing organizational models. We believe that we can make the concept of
agent organizations more powerful by designing agents that can handle different
levels of autonomy in the decision-making process. The freedom an agent should
get in its decision making can be described in organizational rules and norms.

Sichman [7] has introduced dependence networks to express dependencies be-
tween agents in multi-agent systems. Using those dependencies he distinguishes
two notions of agent autonomy with respect to a certain goal; relative to ac-
tions and relative to resources. Knowledge about the dependencies can be used
in plan selection and coalition formation. The dependence theory focuses on
dependencies of goal achievement and action execution. In our work we look
at interactions and influences between agents as well, but our focus is on goal
selection and decision making.

Work on adjustable autonomy of agents is done by Scerri [8] and Barber [9].
Their work is motivated by issues on development of human-agent collaborative
systems. Scerri’s work includes an implementation of a classification task, where
humans and agents work together in a dynamic manner. The agent reasons about
when the human or when the agent should perform the task. This is a kind
of reasoning about autonomy by using transfer-of-control strategies. However,
the strategies that Scerri uses, are specifically developed for this classification
domain. The system shows mixed-initiative behavior, but only in this domain.
The general concept of autonomy is not included in the reasoning process of the
agents. In the approach of Barber [9] different levels of autonomy are related to



326 B. van der Vecht et al.

styles of decision making. The focus of their work is on decision strategies for
organizations and on the interaction that comes from the choices of autonomy
levels. Their aim is to make the agents select the best organizational structure
autonomously as a group. Our view on autonomy comes close to theirs, but, in
contrast, we use the notion of autonomy for the design of a decision model for
single agents and allow them to reason about it individually.

3 Decision Making on Different Levels of Autonomy

In this section we will introduce the concept of autonomy in the reasoning model of
an agent. First we will briefly explain the deliberation process of the agent. Then
we analyze how we can distinguish different levels of autonomy in the decision-
making process and we will integrate autonomy in the agent deliberation.

3.1 Agent Deliberation: Introducing the OODA-Loop

In the agent deliberation process we distinguish four sub-processes: 1. do ob-
servations and receive messages, 2. process the observations and messages, and
determine their semantics 3. decide on the next action and 4. perform the selected
action. These processes can be recognized in the four phases of agent delibera-
tion: Observe, Orient, Decide and Act (OODA). We borrowed these terms from
the OODA-loop as it is used in decision-making processes in the military com-
mand and control domain [10]. In its generalized form, the OODA-loop can be
seen as a cycle for all sorts of decision-making processes. It is comparable to
Perceive-Reason-Act cycles that are used in the agent reasoning domain. The
reasoning phase has been split into two phases, one for information processing
and the other for deciding on actions.

The four phases in the OODA-loop can be implemented in a sequential or in
a parallel way (cf. Fig. 2). When parallel they can be seen as separate processes
sharing resources, but each with its own frequency.

Fig. 2. Sequential and parallel OODA-processes

The Orient phase prepares a world model for the agent to reason with. It trans-
fers raw observation data to data structures that are used in the Decide phase.
The designer has some freedom in defining how much information processing



Influence-Based Autonomy Levels in Agent Decision-Making 327

takes place in the Orient phase. For example, if certain higher-level information
processing is seen as an optional action, the choice for higher-level information
processing should deliberately be made in the Decide phase. In the Decide phase,
the agent reasons about the actions to take.

We believe that reasoning mechanisms using cognitive notions like beliefs,
desires and intentions (BDI) are a good approach for agent reasoning. Several
BDI reasoning models have been proposed. For example, 3APL [11], [12], pro-
vides the designer with a formalized programming language which is designed for
BDI-agent programming. In order to reach its goals, the agent reasons about its
beliefs and plans. We use 3APL reasoning in the Decide phase of our deliberation
model.

Since we use a BDI-reasoning model in the Decide phase, we will translate
both the observations and the content of the messages to beliefs and goals in
the Orient phase. These are the data with which the agent can reason properly.
Summarizing the four OODA-phases as we use them:

– Observe. In the Observe phase, the agent observes the environment with its
sensors and receives incoming messages. Observations and messages contain
the presented world state, i.e. the world as presented by the sensors. There
is no connection yet with the agent’s beliefs.

– Orient. In the Orient phase, the observations and messages are processed.
The beliefs of the agent are updated with those observations and messages.
Result of the orient phase is an interpreted world state; the world as the agent
interprets it. The belief base may include knowledge that the agent derived
and that is not observable by the sensors. In the Orient phase, the Decide
phase will be prepared; the interpreted world state is the world state with
which the agent will continue its reasoning. All concepts that are necessary
for the BDI-reasoning process need to be defined. Figure 3(a) shows that the
belief base and the goal base of the agent are updated.

– Decide. The Decide phase is the actual reasoning phase as proposed by
3APL and other BDI programming-languages. The agent reasons with its
beliefs and goals and decides upon the next action. Figure 3(b) shows the
constructs that are used; Beliefs, Goals, Basic Actions and Practical Rea-
soning Rules [12].

– Act. In this phase the action that has been selected will be executed. Ac-
tions can be internal actions of the agent (i.e. the capabilities in the 3APL
program) or external actions that take place in the environment.

We use the OODA loop to illustrate how different kinds of influences take
part in the agent deliberation. In our definition, the agent’s level of autonomy is
related to the degree of influence of other agents in the reasoning process of the
agent. In the next section we will define different levels of autonomy by relating
inter-agent influences to the different phases of the reasoning process.



328 B. van der Vecht et al.

(a) (b)

Fig. 3. Two phases of the OODA-loop: (a) the Orient phase, and (b) the Decide phase

3.2 Inter-agent Influences

There are three types of influence between agents to be distinguished, [3], [9]:
influence by environmental modification, influence by belief alteration and influ-
ence on goal/task determination.

All three types of influence can come together and all types of influence can
change the decision on the actions selected. We will explain the types of influence
and show how they can be integrated in the decision-making process of an agent.
The OODA-cycle as we previously introduced is used to demonstrate this.

Influence by Environmental Modification. Influence by environmental
modification is achieved by modifying the agents’ environment. It influences
the agent via its observations. This type of influence affects the Observe phase
of the agent deliberation. What is done with those observations and how they
are processed is up to the agent itself.

Influence by Belief Alteration. Influence on beliefs between agents occurs
when one agents informs another by sending a message. Belief influence implies
that the agent receives a message and processes the information, i.e. integrates
the content with its beliefs. The contents of a message can contain knowledge
about the environment or an opinion of the best action to take. Belief influence is
based on communication, and therefore it implies that the agents have a shared
ontology about the concepts they communicate about. Belief influence reaches
upto and including the Orient phase of the OODA-loop. The decision on actions
is completely up to the agent itself.

Influence on Goal/Task Determination. Influence on goal/task determi-
nation occurs when an agent determines the tasks or goals for another agent.
The selection process of goals and tasks takes place in the Decide phase of the
OODA-cycle and therefore this type of influence reaches to this phase. If agent
A has influence on the goal/task determination of agent B it implies that agent
B considers suggestions for next actions proposed by agent A, or even stronger,
agent B just follows commands of agent A without any doubt. In order to receive
a command from another agent or to get someone’s opinion about the best next



Influence-Based Autonomy Levels in Agent Decision-Making 329

action, agents need to communicate about goals and plans and need to be able
to send commands and opinions to each other. Therefore a certain level of belief
influence between the agents is required.

Barber [2] has identified a spectrum of decision-making styles on goals and
tasks as shown in Fig. 4. The spectrum ranges from completely autonomous to
completely command driven. In between there are several types of joint decision
making, with true consensus as the ultimate form of cooperation.

Fig. 4. Spectrum of Decision Making Styles by Barber,[2]

With completelyautonomousdecisionmaking, there isno influenceongoal/task
determination.Theagentwilldetermine its goals and its actions allby itself, nopos-
sible solutions coming from other agents will be considered in the decision-making
process. In a fully command-driven decision-making style, there is a full influence
on goal/task determination. The agent is dependent on the commands of its part-
ner in the hierarchical relation. With joint decision making styles different types of
influences of other agents are possible, for example, an agent can collect opinions
of other agents and use them for its decision making.

3.3 Influence-Based Levels of Autonomy

Table 1 summarizes how the influences are linked to the phases in the OODA
cycle. We can implement the OODA cycle in such a way that only the required
types of influences from other agents take effect.

We will relate inter-agent influences to levels of autonomous decision making.
We can design reasoning profiles for agents in an agent organization in terms of
the influence types. Some basic examples of those profiles:

– Solipsistic: An agent with a solipsistic personality does not care about other
agents. Messages from others are ignored. Also the goal/task determination
is free from influences. The agent creates and selects its own goals and plans.
Influence via environmental modification is still possible. By manipulating
an agent’s environment, it is possible to influence the agent’s behavior. In
a solipsistic agent the direct influence of other agents affects the Observe
phase of the reasoning process.

– Trusting or naive: A trusting or naive agent will process messages from
others and belief the content. It is under belief influence of others. The
decision of which action to perform next is made by the agent itself. The
influence of other agents reaches to the Orient phase of the reasoning process.



330 B. van der Vecht et al.

Table 1. The inter-agent influences in the deliberation process

Type of influence OODA-phase Corresp. function
Environmental Modification Observe observe()

Belief Influence Observe receive messages()
Orient process messages()

Goal- Task determination Observe receive messages()
Orient process message()
Decide commit to commands

– Obedient : If Agent A is obedient with respect to agent B, it will do what
agent B says without considering other opinions. Its tasks and goals are
determined by agent B. Agent B can send a command message to agent
A. This message is processed in the Orient phase, and in the Decide phase
agent A commits to the command. In the Orient phase, there is influence
on beliefs of agent A: it now believes it received a command from agent B.
And in the Decide phase there is influence on goal/task determination. This
can be done via pre-defined plans in the deliberation cycle of agent A, that
demand that if there is an Obedience relation with agent B and a command
from agent B then the agent has to commit to the command. In hierarchical
decision-making the direct influence of other agents reaches to the Decide
phase.

These are a few examples that use extreme forms of some inter-agent influ-
ences. Of course more complex profiles are possible as well. All the reasoning
profiles can be implemented using our model of influenced-based autonomy lev-
els. In some sense the profiles provide a basic interaction protocol embedded
internally in the agent’s deliberation process.

3.4 Towards Adjustable Autonomy

Mixed-initiative systems have the property of using different types of collabora-
tion among the actors. The ability of switching dynamically between those types
of collaboration is still lacking in agents. We have introduced levels of autonomy
in agent reasoning and a next step would be to make the agent reason about
its autonomy and allow it to adjust its autonomy level. An agent can not fully
control its own level of autonomy. An agent’s autonomy is bilateral adjustable
[3], which means that the level of autonomy can be adjusted by the agent itself
as well as by other agents. For example, an agent asking for help instructions
chooses to consider options generated by others and therefore it becomes depen-
dent of other agents and lowers its degree of autonomy while pursuing its goal.
In a hierarchical relation the master can tell the assistant to solve a problem on
its own. Then the assistant becomes autonomous in solving the problem.

We want to look at agents reasoning about their own autonomy. Question
is where in the agent-reasoning model the decision about the desired autonomy
level should be made. Dastani et al. [13] have analyzed autonomy in the delibera-
tion of BDI agents. Several choices on the deliberation level of an agent influence



Influence-Based Autonomy Levels in Agent Decision-Making 331

the agent’s autonomy in its decision for new goals and tasks. They propose a
meta-language for agent deliberation, which allows the construction of different
deliberation cycles. Switching between autonomy levels then could be done in
the deliberation cycle itself.

In order to make agents adjust their own autonomy, we need to find rules
for switching between autonomy levels. In the next section we will describe
experiments that show us some properties of agents collaborating at certain
autonomy levels. On basis of the performances in different situations we want to
find rules about which autonomy level would be desired in which situation.

4 Experiment

In this section we introduce an experiment for illustrating the concept of auton-
omy levels in agent decision-making. We have defined an agent organization, in
which the agents can operate on different levels of autonomy. We want to ob-
serve properties of the organization in the different compositions and compare
the performances.

4.1 Organizational Description

The general setting is a fire brigade organization. There is a world with fires,
firefighters and a coordinator. The aim of the organization is to extinguish the
fires as fast as possible. In the agent organization two roles have to be fulfilled:
Coordinator and Firefighter.

– Coordinator : Plan which fire is to be extinguished by which fireman, and
send commands to the firefighters.

– firefighter : Move around randomly to look for a fire, select a fire and extin-
guish the selected fire.

The agents playing the roles have been implemented following the decision
model described above. The phases of the OODA-loop have been implemented
sequentially and the 3APL-reasoning mechanism is used in the Decide phase.
Goals, beliefs, plans, and basic actions have been made explicit.

In our simulation, firefighters are situated in an environment, where fires can
pop up. A firefighter can move to the fire and extinguish it. Fires are growing
gradually in time, except for when they are being extinguished, then the fire
size decreases and they will disappear. The firefighters have a limited view. The
coordinator agent has a global view, it can see all fires. The only action the
coordinator can take is sending commands to the firefighters, telling them which
fire they should extinguish. The coordinator has one handicap, which is that he
can send only one message per time interval.

We have equipped the firefighters with three different profiles: solipsistic,
trusting and obedient. All required influence types are represented in a single
OODA-loop. We can create a profile by activating or de-activating the functions
corresponding to the influence types as shown in Table 1. As variable we consider



332 B. van der Vecht et al.

only influence on beliefs and on goal/task determination. In all profiles influence
via environmental modification is possible, so the observe()-function is always
active.

– Solipsistic: Solipsistic firefighters observe the fires and select the fire they
want to extinguish all by themselves. Influence by environmental modifica-
tion is possible, for example when a firefighter observes that a fire is getting
smaller, because another firefighter is extinguishing it. The agents do not
process any message from each other or from the coordinator agent.

– Trusting: Trusting firefighters are communicating with the other agents. If
they see a fire while they are busy extinguishing another fire, they send a
message to the other agents to inform them that there is a fire that needs to
be extinguished. The receiving agent processes the message. The information
of the particular fire is added to its beliefs. There is still influence by envi-
ronmental modification by other agents extinguishing fires. There is belief
influence by sending messages to each other informing them about fires. The
receive message()-function is active, as well as the process message()-
function.

– Obedient : Obedient firefighters are commanded by another agent, who tells
them which fire they have to extinguish. They do not take initiative by
themselves. There is still influence by environmental modification by other
agents extinguishing fires. There is belief-influence by the other agent com-
mands and possibly informing about unknown fires. Therefore both functions
receive message() and the process message()-function are both active.
There is influence on goal/task determination by following the 3APL plans
constructed for the obedient relation. A 3APL rule that makes a firefighter
agent to follow a command to extinguish a certain fire, could be:

<- (obedient(Boss) AND
command(Boss, fightFire, FireX))

| fightFire(FireX)

It can be read such that the agent no matter what goal it has, if it has
an obedient relation with Boss and has received a command from Boss to
extinguish FireX, it will adopt the plan fightFire(FireX). Boss and FireX
are variables. The command fightFire is written as a constant. This assures
that the agent only adopts commands that it knows.

In our experiment we used an organization consisting of two firefighters and
one coordinator. We have varied the organizational composition by varying the
reasoning profiles of the firefighters with respect to the other agents. We have
created three different organizations, as shown in Table 2. In the solipsistic or-
ganization the firefighter agents ignore all other agents, their profile with respect
all other agents is solipsistic. In the trusting organization the firefighters trust
each other, but ignore the coordinator agent. In the obedient organization the
firefighters are obedient to the coordinator and ignore each other. Note that the
difference between the organizations has been created purely by constructing



Influence-Based Autonomy Levels in Agent Decision-Making 333

Table 2. Reasoning profiles of firefighters in their relation with the other agents. Three
different organizations.

Organizational Profile firefighter Profile firefighter
characteristic regarding firefighters regarding coordinator
Solipsistic Solipsistic Solipsistic

Trusting Trusting Solipsistic

Obedient Solipsistic Obedient

different levels of autonomy for a firefighter agent with respect to other agents
in the organization.

Furthermore we used environments with different characteristics. The fire-
fighters started in a world containing five fires. In on situation the fires were
spread randomly over the field. In the second situation the five fires were clus-
tered in a group. The performance of the organizations was evaluated by mea-
suring the time it took to extinguish all the fires.

4.2 Results and Discussion

What we wanted to show is that the organizations perform differently in environ-
ments with other characteristics. We have run several simulations of the different
implementations of the firefighter organization. In our results we show the results
of 100 runs in six situations (three organizations in two environments). Figures
5(b) and 5(a) show the average extinguish times and the corresponding standard
deviation.

Comparing the results of the clustered and random environments, we see
the biggest difference in performance for the trusting firefighters. They perform
worse in the situation of randomly spread fires. This can be explained by the
fact that they will only view the fires one by one. They are not able to take
advantage of their communication, since tn their behavior it was specified that
they would inform each other in the situation when they saw more then one
fire. They have to search for each fire individually, which explains the growing
standard deviation. As a result they perform comparable with the solipsistic
firefighters.

If we consider the only clustered environment, the results in Fig. 5(b) show
a difference in performance of all three organizations. The obedient firefighters
perform best. They get orders from the coordinator agent, which has a global
view, so all fires are known from the start and the coordinator just sends the
firefighters to the right places. In the solipsistic and trusting organizations the
firefighters do not process messages from the coordinator agent. They have only
a local view, so they first need to look for the fires. When one firefighter has
found a fire, he will see the other fires as well in the clustered situation. The
trusting firefighters exploit this knowledge by telling each other about the fires,
so the second firefighter immediately joins to help. Solipsistic firefighters do not
have this ability of information sharing. As an illustrative example we show the
results of a typical run in the clustered situation in Fig. 6. On the x-axis the



334 B. van der Vecht et al.

(a)

(b)

Fig. 5. Extinguish times over 100 runs; average and standard deviation. a) Random
fire distribution and b) Clustered fire distribution.

time is given and on the y-axis the total fire size in the environment for all three
organizational types. It is visible that once the trusting firefighters have found
the first fire, the fire size decreases faster than for the others. In the obedient
organization the fire size decreases most constantly.

In the above presented simulations, the obedient organization outperformed
the other two on average. The organization uses the global view of the coordi-
nator agent. The firefighters follow the orders of the coordinator and it does not
really matter how the fires are distributed. However, this type of organization
has limitations as well. The organization works by a centralized approach and
is very sensitive to the performance of the coordinator agent. The restriction on
the number of messages that the coordinator agent can send, is not a big issue in
the small organization we use here, but it will be in larger organizations. Another
problem is that the observations of the coordinator agent play a very important



Influence-Based Autonomy Levels in Agent Decision-Making 335

Fig. 6. Total fire size over time, fires are clustered

role, since he determines which fire is to be extinguished by which firefighter.
Failure of the observations of the coordinator has big consequences. We have run
the same test with randomly distributed fires and the obedient organization, but
with the restriction that the coordinator could only see two third of the field.
The average extinguish times of successful run were comparable of the results
in Fig. 5(a), but of the 100 runs the organization failed in 87 cases, because the
coordinator missed at least one of the fires. This test shows the necessity of at
least some autonomy of the actors in a distributed system.

All results of our experiment are explained by analyzing the information flow
in the agent organization. We want to point out that the goal of this experiment
was mainly a proof of concept. We have defined different organizations by making
the agents reason on different levels of autonomy with respect to the other agents.
In our experiment the organization was still static. By defining the autonomy
levels internally in the agents in one reasoning model we also create possibilities
for switching between autonomy levels at runtime, and therewith allow dynamic
organizations. We feel that we need some more experiments to define rules for
the agents for switching between autonomy levels.

5 Conclusion and Future Work

This research is motivated by the belief that mixed-initiative and adjustable au-
tonomy are important aspects of future distributed systems and require specific
attention. Autonomy of actors is one of the key features when we talk about
mixed-initiative. The actors should be able to handle several levels of autonomy
with respect to a certain goal and with respect to others. We believe that an
agent-based approach is a promising way for developing such systems. We have
analyzed the concept of autonomy in the decision-making process of agents. Our
aim here is to add the notion of autonomy to the reasoning model of an agent.



336 B. van der Vecht et al.

The level of autonomy is related to the degree of intervention of other agents
in the decision making process. We have proposed four phases in the agent
deliberation: Observe, Orient, Decide and Act and we have described three types
of influence between agents: environmental influence, influence on beliefs and
influence on goal or task determination. We have linked the different influence
types to the first three phases of the agent deliberation. Autonomy levels have
been defined in terms of inter-agent influences and we have shown how they can
be implemented in the agent’s reasoning. In our experiment using a fire-brigade
organization, we have created three reasoning profiles for the agents based on
the autonomy levels. The three organizational types have performed differently
in environments with other characteristics.

As future work, we want to formalize the concepts we used in our reasoning
model. We want to construct a mechanism to allow agents to reason about their
autonomy. By extending our experiments we want to find rules for the agent to
decide on switching between autonomy levels. Furthermore, we are interested in
including human interaction in our simulation environment in order to conduct
experiments concerning adjustable autonomy in the human-agent interaction
domain.

Acknowledgement. The research reported here is part of the Interactive Col-
laborative Information Systems (ICIS) project, supported by the Dutch Ministry
of Economic Affairs, grant nr: BSIK03024.

References

1. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296
(2000)

2. Barber, K.S., Martin, C.E.: Agent autonomy: Specification, measurement, and dy-
namic adjustment. In: Autonomy Control Software Workshop, Autonomous Agents
99, pp. 8–15 (1999)

3. Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: the
theory of adjustable social autonomy. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 31(5), 406–418 (2001)

4. Carabelea, C., Boissier, O., Florea, A.: Autonomy in multi-agent systems: A clas-
sification attempt. In: Agents and Computational Autonomy, pp. 103–113 (2003)

5. Dignum, V.: A Model for Organizational Interaction: based on Agents,founded in
Logic. Utrecht University, PhD Thesis (2004)

6. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In: Bittencourt,
G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128.
Springer, Heidelberg (2002)

7. Sichman, J.S., Conte, R., Castelfranchi, C., Demazeau, Y.: A social reasoning mech-
anism based on dependence networks. In: ECAI, pp. 188–192 (1994)

8. Scerri, P., Sycara, K., Tambe, M.: Adjustable autonomy in the context of coordi-
nation. In: AIAA 3rd.

9. Barber, K.S., Han, D.C., Liu, T.-H.: Strategy selection-based meta-level reasoning
for multi-agent problem-solving. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE
2000. LNCS, vol. 1957, pp. 269–283. Springer, Heidelberg (2001)



Influence-Based Autonomy Levels in Agent Decision-Making 337

10. Boyd, J.: A discourse on winning and losing. Maxwell Air Force Base, AL: Air
University Library Document No. M-U 43947 (unpublished collection of briefing
slides and essays) (1987)

11. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming
in 3apl. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

12. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents goal directed 3apl. In: Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111–130.
Springer, Heidelberg (2004)

13. Dastani, M., Dignum, F., Meyer, J.-J.C.: Autonomy and agent deliberation. In:
Agents and Computational Autonomy, pp. 114–127 (2003)



Centralized Regulation of Social Exchanges

Between Personality-Based Agents

Graçaliz Pereira Dimuro, Antônio Carlos da Rocha Costa,
Luciano Vargas Gonçalves, and Alexandre Hübner

Escola de Informática, PPGINF, Universidade Católica de Pelotas
96010-000 Pelotas, Brazil

{liz,rocha,llvarga,hubner}@ucpel.tche.br

Abstract. This paper presents a centralized mechanism for solving the
coordination problem of personality-based multiagent systems from the
point of view of social exchanges. The agents may have different person-
ality traits, which induce different attitudes towards both the regulation
mechanism and the possible profits of social exchanges. A notion of ex-
change stability can be defined, and the connections between agents’
personalities and deviations of social exchanges from the stability point
can be established. The model supports a decision procedure based on
Qualitative Interval Markov Decision Processes, that can solve the prob-
lem of keeping the stability of social exchanges, in spite of the different
personality traits of the agents. The paper deals only with transparent
agents (agents that allow the external access to their balances of exchange
values), but we hint on the case of non-transparent agents. The model is
analyzed theoretically and contextualized simulations are presented.

1 Introduction

Social control is a powerful notion for explaining the self-regulation of a society,
and the various possibilities for its implementation have been considered, both
in natural and artificial societies [1,2]. As mentioned in [3], social control, or co-
ordination mechanisms, vary according to the structure of the society: hierarchy,
market or network-oriented societies tend to coordinate activities through, re-
spectively, authority supervision, price mechanism or collaboration mechanisms.
Our work aims at the simulation of network-oriented societies with collabora-
tion based social control. However, up to now, we are dealing with a hierarchical
model, and the system of exchange values that constitutes the basis of the social
control model that we adopted seems to be a price mechanism, although one
based on qualitative values, as we show presently.

The centralized social control mechanism that we introduced in [4], concerning
small social groups, is based on the Piaget’s theory of exchange values [5], where
a variety of social norms (moral, juridical, even economic rules) are rooted in the
qualitative economy of exchange values that emerges when individuals evaluate
their interactions. That control mechanism is performed by a social equilibrium
supervisor that, at each time, decides on which actions it should recommend

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 338–355, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Centralized Regulation of Social Exchanges 339

agents to perform in order to lead the system towards the equilibrium, regarding
the balance of the exchange values involved in their exchanges.

The qualitative exchange values are represented using techniques of Interval
Mathematics [6]. The equilibrium point of the exchanges between a pair of agents
is defined as a pair of intervals, each enclosing the value zero, meaning that ben-
efits and losses in exchanges, for each agent, compensate one another. Then, the
equilibrium supervisor builds on Qualitative Interval Markov Decision Processes
(QI-MDP), where states are represented by intervals, actions are interval oper-
ations [6], and equality of intervals is interpreted as a loose equivalence relation
(two intervals are equivalent if their midpoints are “approximately” equal).

In general, however, since the agents may have different objectives, it may
happen that the exchange balance of a given agent, regarding its exchanges with
another agent, becomes stable (after a certain period of time) around a value
different from zero. That is, in general, agents stabilize their exchanges in non-
equilibrated ways, thus keeping the society disequilibrated, as a whole. Given
two agents, the pair of exchange values in which they stabilize their respective
exchange balances is called the stability point of the exchanges between them.
Such stability point may vary with time.

In this paper, trying to advance the development of a future model of decen-
tralized social control, we extend the centralized control architecture presented
in [7], in order to consider a society with personality-based agents. We propose a
social control mechanism coordinated by a stability supervisor, whose duty is: (i)
to determine, at each time, the target stability point for each pair of agents in
the system (which is not necessarily around the value zero); (ii) to decide which
actions should be recommended for each pair of agents in order to lead them to-
wards that stability point; (iii) to maintain them stable around that point, until
(for some reason) another stability point for some pair of agents is required.

As explained in [8], a realistic account of agent interactions has to consider
that agents may have different interaction personalities, in order to allow for
the agents to participate in different ways in social interactions, depending not
only on the way tasks were delegated to them, but also on the way the agents
assess their own contributions and the contributions of the other agents to the
interaction. So, in this paper, we allow for the agents to have different personal-
ity traits, which induce different attitudes towards the social control mechanism
(blind obedience, eventual obedience etc.) and the possible profits of social ex-
changes (egoism, altruism etc.). As a consequence, the agents may or may not
follow the recommendations given by the stability supervisor, thus creating a
probabilistic social environment, from the point of view of the social control.

Also, we allow the agents to control the supervisor access to their internal
states, behaving either as transparent agents (agents that allow full external ac-
cess to their internal states) or as non-transparent agents (agents that restrict
such external access). In the paper, however, we focus on the supervisor dealing
only with transparent agents. Then, it has full knowledge of the agents’ person-
ality traits and has access to all current balances of exchange values, and so it
is able to choose, at each step, the adequate recommendation for each agent.



340 G. Pereira Dimuro et al.

We note, however, that the motivation for establishing a social control mech-
anism (for instance, social stability, social equilibrium or disequilibrium etc.), is
usually not inscribed in the details of the social control mechanism itself. That
motivation usually lies in the agents themselves or in the application context
of the system. Thus, the social control mechanisms that we are developing are
neutral with respect to those motivations, serving any of those purposes.

Section 2 shows our modeling of social exchanges. The regulation mechanism
of exchanges is introduced in Sect. 3. Section 4 presents the QI-MDP model
for the regulation of exchanges between transparent personality-based agents,
and the stability analysis. Section 5 shows a sample simulation. Related work is
discussed in Sect. 6. Section 7 is the Conclusion and discussion of further work.

2 The Modelling of Social Exchanges

According to Piaget’s approach [5], the evaluation of an exchange by an agent is
done on the basis of a scale of exchange values (that are of a qualitative, subjec-
tive nature, like those everyone uses to judge the daily exchanges he has: good,
bad, better than etc.). In general, those values cannot be faithfully represented
quantitatively, due to the lack of neat objective conditions for their measure-
ment. Then, following the approach introduced in [4,9], techniques from Interval
Mathematics [6] are used to represent any exchange value1 as a real interval
X = [x1, x2] = {x ∈ R | x1 ≤ x ≤ x2}, with −L ≤ x1 ≤ x ≤ x2 ≤ L, x1, x2, for
a bound L ∈ R, L > 0. The set of such intervals is denoted by IRL.

Analogously to [4,7], consider a reference value h (an anchor for the stability
point) such that −L < h < L, and a tolerance ε ∈ R+. We build an h-centered
scale of exchange values as an algebraic structure 〈IRL, +,Xh,′ 〉, where: (i) the
L-bounded interval addition operation + is well defined; (ii) Xh = {X ∈ IRL |
mid(X) ∈ [h−ε, h+ε]} is the set of h-reference intervals, where mid(X) = x1+x2

2
is the mid point of X ; (iii) an h-compensation interval of an interval X ∈ IRL is
any interval X ′ ∈ IRL such that X + X ′ is an h-reference interval; (iv) the least
compensation interval of X is given by [−mid(X) + h − ε,−mid(X) + h + ε].

A social exchange between two agents, α and β, involves two types of stages.
In stages of type Iαβ , α realizes an action on behalf of (a “service” for) β. The
exchange values involved in this stage are the following: rIαβ

, which is the value
of the investment done by α for the realization of a service for β (this value is
always negative); sIβα

, which is the value of β’s satisfaction due to the receiving
of the service done by α; tIβα

is the value of β’s debt, the debt it acquired to α
for its satisfaction with the service done by α; and vIαβ

, which is the value of
the credit that α acquires from β for having realized the service for β. In stages
of type IIαβ , α asks the payment for the service previously done for β, and the
values related with this exchange have similar meaning.

The values rIαβ
, sIβα

, rIIβα
and sIIαβ

are called material values (investments
and satisfactions), generated by the evaluation of immediate exchanges ; the
1 Our choice makes the representation operational and the decision process computa-

tionally viable, without being unfaithful to Piaget’s approach [4].



Centralized Regulation of Social Exchanges 341

values tIβα
, vIαβ

, tIIβα
and vIIαβ

are the virtual values (credits and debts), con-
cerning deferred exchanges, which are expected to happen in the future [4,5].

The exchange values are undefined if either no service is done in a stage I, or
no credit is charged in a stage II. Also, it is not possible for α to realize a service
for β and, at the same, to charge him a credit. A configuration of ex-values is
specified by one of the tuples of well defined values: (rIαβ

, sIβα
, tIβα

, vIαβ
), (rIβα

,
sIαβ

, tIαβ
, vIβα

), (vIIαβ
, tIIβα

, rIIβα
, sIIαβ

), (vIIβα
, tIIαβ

, rIIαβ
, sIIβα

).
A social exchange process is composed by a sequence of stages of type Iαβ

and/or IIαβ in a set of discrete instants of time. The material results, according
to the points of view of α and β, are given by the sum of the well defined material
values involved in the process, and are denoted, respectively, by mαβ and mβα.
The virtual results vαβ and vβα are defined analogously.

A stability point is a pair of balances of exchanges that is desired that a pair
of agents should maintain for a certain period of time, established according to
conditions and constraints imposed by the system’s external and internal envi-
ronments (see Sect. 3). A social exchange process is said to be in material stability
if in all its duration it holds that the pair of material results (mαβ ,mβα) encloses
a given stability point (ωαβ , ωβα) ∈ R × R. It is said in material equilibrium2 if
both mαβ and mβα enclose the zero.

Let H = {−L,−L+ L
n ,−L + 2L

n , . . . , L− 2L
n , L− L

n , L} be the set of possible
reference values induced on IRL by a given n ∈ N

∗
+, and κn = L

n be the accuracy
of the stability supervisor. Given a target stability point (ωαβ , ωβα) ∈ R×R for
the exchange process between the pair of agents α and β, occurring during a
certain period of time, a pair of reference values (hαβ , hβα) ∈ H × H is chosen
such that ωαβ ∈ [hαβ − ε, hαβ + ε] and ωβα ∈ [hβα − ε, hβα + ε] , for a tolerance
0 < ε < L

n and machine numbers hαβ ± ε, hβα ± ε. The stability supervisor
builds two scales of exchange values, one that is hαβ-centered (for the agent
α) and other that is hβα-centered (for the agent β). The index αβ (βα) of a
reference value hαβ (hβα) will be omitted when it is not relevant in the context.

3 The Social Exchange Regulation Mechanism

Figure 1 shows the architecture of our social exchange regulation mechanism,
which extends the one proposed in [7] with (i) a module for the evaluation of
stability points and (ii) a learning module based on Hidden Markov Models
(HMM) [10]. The stability supervisor, at each time, uses an Evaluation Mod-
ule to analyze the conditions and constraints imposed by the system’s external
and internal environments (not shown in the figure), determining the target
equilibrium point. To regulate transparent agents, the supervisor uses two Bal-
ance Modules, Σmaterial and Σvirtual, to calculate their material and virtual
results of the performed exchanges. To regulate non-transparent agents, the su-
pervisor uses a HMM Module to observe their behavior in exchanges and then

2 Notice that Piaget’s notion of equilibrium has no game-theoretic meaning, since it
involves no notion of game strategy, and concerns just an algebraic sum.



342 G. Pereira Dimuro et al.

Exchange

Balances

Non-transp .

Agents

HMM
Evaluation

Module

Target

Point

System

Exchanges

Obs.

Transparent

Agents

QI - MDP

Supervisor

Recommendations

Σmaterial Σvirtual

Fig. 1. The social exchange regulation mechanism

recognize and maintain an adequate model of the personality traits of such
agents, generating plausible balances of their material exchange values.

Taking both the directly observed and the indirectly calculated material re-
sults, together with the currently target stability point, the supervisor uses the
module that implements a personality-based QI–MDP to decide on recommen-
dations of exchanges for the two agents3, in order to keep the material results of
exchanges stable. It also takes into account the virtual results of exchanges for
deciding which type of exchange stage it should suggest. This paper is concerned
only with the QI–MDP module. The HMM Module was studied in [13].

4 Personality-Based QI-MDPs

4.1 The States

Consider an h-centered scale of exchange values built as explained in Sect.2. Let
Êh = {E−n− sn

L

h , . . . , E−1
h , E0

h, E1
h, . . . , E

n− sn
L

h } be the set of 2n + 1 equivalence
classes of intervals, where, for each value i = −n − sn

L , . . . , n − sn
L :

Ei
h =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{X | h + iL
n ≤ mid(X) < h + (i + 1)L

n } if − n − hn
L ≤ i < −1

{X | h − L
n ≤ mid(X) < h − ε} if i = −1

{X | h − ε ≤ mid(X) ≤ h + ε} if i = 0
{X | h + ε < mid(X) ≤ h + L

n} if i = 1
{X | h + (i − 1)L

n < mid(X) ≤ h + iL
n } if 1 < i ≤ n − hn

L .

3 We consider systems composed by two agents for simplicity. The results are readily
extended for more than two agents using the matrix-like notation introduced in [4],
where we assumed that the exchanges performed by any two agents are totally inde-
pendent and cause no interference in any other exchanges. Thus, subQI–MDPs for
any two agents can be solved individually and an optimal global supervisor recom-
mendation realized by concurrent execution of the optimal local recommendations;
solution time is determined by the size of the subQI–MDPs [11,12].



Centralized Regulation of Social Exchanges 343

The classes Ei
h ∈ Êh are the supervisor representations of classes of material

results that are either intervals around the reference value h (i = 0), or down
scale intervals (i < 0), called unfavorable results, or up scale intervals (i > 0),
called favorable results. Whenever it is understood from the context, we shall
denote by E− (or E+) any class Ei<0

h (or Ei>0
h ). The range of the midpoints of

the intervals that belong to a class Eh is called the representative of the class
Eh. In the following, we identify a class Eh with its representative.

The states of a QI–MDP model are pairs (Ehαβ
, Ehβα

) of equivalence classes
representing the material results of the social exchange process between the
agents α and β, from the point of view of α and β, respectively, considering their
respective hαβ-centered and hβα-centered scales of exchange values. The set of
states is denoted by Ehαβ ,hβα

. (E0
hαβ

, E0
hβα

) is the terminal state, representing
that the system is stable around the reference point (hαβ , hβα) that encloses the
stability point (ωαβ , ωβα). In the following, for simplicity, a class Ehαβ

is denoted
by Eαβ , whenever hαβ is clear from the context.

4.2 The Actions

An action is a pair of intervals (Ai
αβ , Aj

βα) that induces a state transition

of the form (Ei
αβ , Ej

βα)
(Ai

αβ ,Aj
βα)

$→ (Ei′

αβ , Ej′

βα), such that mid(Ei
αβ + Ai

αβ) ∈
Ei′

αβ and mid(Ej
βα + Aj

βα) ∈ Ej′

βα. An interval Ai
αβ (analogously for an in-

terval Aj
βα) is of one of the following types: (i) a compensation interval Ci

αβ

of a class representative Ei
αβ ; (ii) a go-forward-k-step interval F i

k, such that

mid(Ei
αβ + F i

k) ∈ E
(i+k) =0
αβ , i �= L; (iii) a go-backward-k-step interval Bi

−k, such

that mid(Ei
αβ +Bi

−k) ∈ E
(i−k) =0
αβ , i �= −L. The sets of compensation, go-forward

and go-backward intervals are denoted by C (Table 1), F and B, respectively.
For example, considering a class Ei

h, with 1 < i ≤ n− hn
L , a go-forward-k-step

interval, with k ≤ n − hn
L − i, is given by F i

k = [k L
n − ε, k L

n + ε]. And, for a class
Ei

h where −n− hn
L ≤ i < −1, a go-backward-k-step interval, with k ≤ n+ hn

L + i,
is given by Bi

−k = [−k L
n − ε,−k L

n + ε].
Given a target stability point (ωαβ , ωβα) ∈ R × R (which specifies the pair of

reference values (hαβ , hβα) ∈ H×H), the stability supervisor has to find, for each
state (Ehαβ

, Ehβα
) representing the current material results, the action that may

achieve the terminal state (E0
hαβ

, E0
hβα

) (representing that the system is stable

Table 1. Specification of compensation intervals

State Compensation Interval Ci
h ∈ C

Ei,−n≤i<−1
h [−( 2i+1

2
L
n
) − ε, −( 2i+1

2
L
n
) + ε]

E−1
h [ 12 (L

n
+ ε) − ε, 1

2 (L
n

+ ε) + ε]
E0

h [0, 0]
E1

h [− 1
2 (L

n
+ ε) − ε, − 1

2 (L
n

+ ε) + ε]

Ei,1<i≤n
h [ (1−2i)

2
L
n

− ε, (1−2i)
2

L
n

+ ε]



344 G. Pereira Dimuro et al.

around (hαβ , hβα)) or, at least, another state from where the terminal state can
be achieved, with the least number of steps.4 Such action generates an optimal
exchange recommendation, consisting of a partially defined exchange stage that
the agents are suggested to perform (see Sect. 4.4). This partial definition shall
be completed by the analysis of the virtual results, which allows the specification
of which particular types of exchange stages (I or II) should be considered.

4.3 Exchanges Between Personality-Based Agents

We define different levels of obedience to the supervisor that the agents may
present: blind obedience (the agent always follows the recommendations); even-
tual obedience (the agent may not follow the recommendations, according to a
certain probability); and full disregard of recommendations (the agent always
decides on its own, disregarding what was recommended).

The agents may have different personality traits that give rise to different
state-transition functions, which specify, for each obedience level, and given the
current state and recommendation, a probability distribution Π(Ehαβ ,hβα

) over
the set of states Ehαβ,hβα

that the interacting agents will try to achieve next. In
the following, we illustrate some of those personality traits:

Egoism: the agent is mostly seeking his own benefit, with a high probability
to accept exchanges that represent transitions to favorable results;

Strong Egoism: the agent has a very low probability to accept exchanges that
represent reduction of its material results even if the agent is maintained in
favorable results;

Altruism: the agent is mostly seeking the benefit of the other, with a high
probability to accept exchanges that represent transitions toward states
where the other agent has favorable results;

Strong Altruism: the agent has a very low probability to accept exchanges
that represent reduction of the other agent’s material results even if the
latter is maintained in favorable results;

Fanaticism: the agent has a very high probability to accept exchanges that
lead it to its reference value, avoiding other kinds of transitions;

Tolerance: the agent has a high probability to accept exchanges that lead it
to its reference value if his material results are far from that state, but it
accepts other kinds of transitions;

Prudence: the agent has a high probability to avoid exchanges when the values
involved are higher than a specified limit.

Let Eh = {E−, E0, E+} be a simplification of the set Êh of the classes of ma-
terial results, where E+ and E− denote the subsets of classes of unfavorable and
favorable results, respectively, related to the reference value h. Table 2 presents
a pattern of the probability distribution Π(Eh), considering individual agent

4 The choice of actions is constrained by the rules of the social exchanges. Since some
transitions are forbidden (e.g., both agents increasing results simultaneously), the
supervisor has to find alternative paths to lead the agents to the stability point.



Centralized Regulation of Social Exchanges 345

Table 2. A pattern of probability distribution Π(Eh) for agent transitions

Egoist agents Altruist agents

Π(Eh) E0 E+ E− E0 E+ E−

E0 low very-high very-low low very-low very-high
E+ low very-high very-low low very-low very-high
E− low very-high very-low low very-low very-high

Fanatic agents Tolerant agents

Π(Eh) E0 E+ E− E0 E+ E−

E0 very-high very-low very-low high low low
E+ very-high very-low very-low high low low
E− very-high very-low very-low high low low

Table 3. A pattern of distribution Π(T ) for the set T of transitions Ei
h �→ Ej

h

Π(T ) Ei
h < Ej

h Ei
h = Ej

h Ei
h > Ej

h

Strong Egoism very-high low very-low
Strong Altruism very-low low very-high

transitions, characterizing egoist/altruist and fanatic/tolerant agents. Observe
that, for an egoist agent, transitions ending in favorable results (E+) occurs with
very high probability, whereas, for an altruist agent, the most probable transi-
tions are those ending in unfavorable results (E−). For a fanatic agent, the least
probable transitions are those not ending in the terminal state E0 (around the
stability point). In contrast, a tolerant agent accepts transitions to states other
than E0, although with a low probability.

Table 3 shows a pattern for the probability distribution Π(T ) for the set T of
individual agent transitions Ei

h $→ Ej
h, for strong egoism/altruism. Observe that

strong egoist agents presents a very high probability to increase their material
results in any exchange, whereas strong altruist agents behave in a completely
opposite way.

Table 4 shows parts of sample state-transition functions F for systems com-
posed by (a) two tolerant agents and (b) two egoist agents that always disregard
the supervisor’s recommendations. The mark X indicates that the transition is
forbidden according to the adopted social rules (both agents increasing results
simultaneously). In (b), the highest probabilities appear in the transitions ending
in the state (E+, E+), representing increasing results for both agents, or in the
states (−, E+) or (E+,−) when the transitions to the state (E+, E+) are not
allowed. The probability of 100% in the last line of (b) indicates that the agents
refuse to exchange (which would lead both to unfavorable results), remaining
in the same state (E−, E−). This shows that this system presents an absorbent
state, (E−, E−), meaning that the system is not able to leave that state if it
reaches it, and so it may never achieve the desired target stability point. In



346 G. Pereira Dimuro et al.

Table 4. Parts of state-transition functions F for pairs of agents that always disregard
recommendations

(a) (tolerant, tolerant) agents
F (%) (E0, E0) (E0, E+) (E0, E−) (E+, E0) (E+, E+) (E+, E−) (E−, E0) (E−, E+) (E−, E−)

(E0, E0) 63.90 X 13.70 X X 2.90 13.70 2.90 2.90

(E+, E−) 49.20 10.50 10.50 10.50 2.20 2.20 10.50 2.20 2.20

(E−, E−) X X 37.85 X X 8.10 37.85 8.10 8.10

(b) (egoist, egoist) agents
F (%) (E0, E0) (E0, E+) (E0, E−) (E+, E0) (E+, E+) (E+, E−) (E−, E0) (E−, E+) (E−, E−)

(E0, E−) X X 0.00 X X 0.00 15.00 85.00 0.00

(E+, E+) 2.20 12.00 0.70 12.00 64.10 4.00 0.70 4.00 0.30

(E+, E−) 2.20 12.80 0.00 12.00 68.00 0.00 0.70 4.30 0.00

(E−, E−) X X 0.00 X X 0.00 0.00 0.00 100.00

Table 5. Parts of state-transition functions F for pair of agents with 50% of obedience

(a) (tolerant, tolerant) agents
F (%) (E0, E0) (E0, E+) (E0, E−) (E+, E0) (E+, E+) (E+, E−) (E−, E0) (E−, E+) (E−, E−)

(E0, E0) 81.95 X 6.85 X X 1.45 6.85 1.45 1.45

(E+, E−) 74.6 5.25 5.25 5.25 1.10 1.10 5.25 1.10 1.10
(E−, E−) X X 18.92 X X 29.05 18.92 29.05 4.06

(b) (egoist, egoist) agents
F (%) (E0, E0) (E0, E+) (E0, E−) (E+, E0) (E+, E+) (E+, E−) (E−, E0) (E−, E+) (E−, E−)

(E0, E−) X X 0.0% X X 25.00 7.50 67.50 0.00

(E+, E+) 51.10 6.00 0.35 6.00 32.05 2.00 0.35 2.00 0.15
(E+, E−) 51.10 6.40 0.00 6.00 34.00 0.00 0.35 2.15 0.00

(E−, E−) X X 0.00 X X 25.00 0.00 25.00 50.00

(a), one observes the more uniform behavior of tolerant agents, even though the
transitions to the states (E0, E0), (E0,−) and (−, E0) being the most probable.

We remark that even if the agents present a certain level of obedience, there
may be a great deal of uncertainty about the effects of the supervisor’s recom-
mendations. Considering an obedience level of 50%, the state-transition func-
tions shown in Table 4 become the respective ones shown in Table 5, showing
an increase in the probability of the transitions ending in (E0, E0) and also the
absence of an absorbent state.

For example, for two agents α and β and classes of material results given by
(Ei

hαβ
, Ej

hβα
) ≡ ([hαβ + iL

n , hαβ + (i + 1)L
n ], [hβα + (j − 1)L

n , hβα + j L
n ]), with

−n − nhαβ

L ≤ i < −1 and 1 < j ≤ n − nhβα

L , a compensation–compensation
action (Ci

hβα
, Cj

hβα
) ≡ ([− 2i+1

2
L
n − ε,− 2i+1

2
L
n + ε], [ (1−2j)

2
L
n − ε, (1−2j)

2
L
n + ε]),

should be chosen by the stability supervisor; then, if the agents are obedient,
and under certain conditions (see Sect. 4.5), the resulting state transition would
be one of the following, with −n − nhαβ

L ≤ i < −1 and 1 < j ≤ n − nhβα

L :
(Ei

hαβ
, Ej

hβα
) $→ (E0

hαβ
, E0

hβα
) or (E−1

hαβ
, E0

hβα
) or (E0

hαβ
, E1

hβα
) or (E−1

hαβ
, E1

hβα
), in

increasing order of probability. If one of the agents is not obedient, then there is
a probability that none of the above transitions occurs.



Centralized Regulation of Social Exchanges 347

4.4 Optimal Value Recommendations

A reward function R : (E × A) → R must conform to the idea of supporting a
recommendation function that is able to direct pairs of agents into the stability
point, according to the model of social exchanges (see, e.g, [7]). One sample
reward function is partially sketched in Table 6, illustrating some requirements
that should be satisfied by such functions. For instance, if the current state is
of the type (E−, E+), then the reward function must state that the best action
to be chosen is a compensation-compensation action (C, C), which may result
in a state transition (E−, E+) $→ (E0, E0). On the other hand, if the current
state is of type (E−, E−), then it must prevent the choice of a compensation-
compensation action (C, C) that would generate a recommendation of exchange
of satisfaction-satisfaction type, which is forbidden in the model, because it
considers impossible to get a satisfaction from no service.

Table 6. Partial schema of the reward function R

R (C,C) (B−1, F+1) (F+1, B−1) (B−3, C)

(E−, E+) 30 -5 3 20
(E+, E+) 30 0 0 20
(E−, E−) -30 30 30 26

The optimal recommendation associated to an optimal policy π∗ is an operator
ρπ∗ that gives, for each state (Ei

αβ , Ej
βα) and optimal action π∗(Ei

αβ , Ej
βα) =

(Ai
αβ , Aj

βα), partial definitions of recommended exchange stages, consisted by
either (rαβ , Ai

αβ) and (sβα, Aj
βα), or (sαβ , Ai

αβ) and (rβα, Aj
βα), where (rλδ , W )

means the realization, by the agent λ, of a service with investment value W , and
(sδλ, W ′) means δ’s satisfaction with value W ′, for receiving the service. The
optimal recommendation ρπ∗ is partially sketched in Table 7.

Finally, the stability supervisor has to decide which types of exchange stages (I
or II) should be recommended. This is done by the analysis of the virtual results.
For example, if vαβ > 0 (vβα > 0), then α (β) is able to charge β (α) the credit
for services previously done. In this case, an exchange stage T 1 (T 2) of type IIαβ

(IIβα) should be recommended. However, if vαβ ≤ 0 ( vβα ≤ 0), then the agent
α (β) does not have any credit to charge α (β). Therefore, the service done by
the agent β (α) must be spontaneous. In this case, an exchange stage T 3 (T 4)
of type Iβα (Iαβ ) should then be recommended. Some stage recommendations
and their combined effects with the optimal value recommendations are sketched
in the simplified state transition diagram shown in Fig. 2, where the dot lines
represent alternative paths that were not considered as optimal recommendations
since they may seem unfair according to social rules.

4.5 Formal Definition and Analysis of the Stabilization Process

Definition 1. A Qualitative Interval Markov Decision Process (QI–MDP), for
keeping the social exchanges in a multiagent system stable around a reference
value h, is a tuple 〈Ehαβ ,hβα

,A,F,R〉L,n
ε , where:



348 G. Pereira Dimuro et al.

Table 7. Partial schema of the optimal value recommendation ρπ∗

State Optimal policy Recommendation Label

(Ei, Ej)1<j≤n
−n≤i<−1 (Ci, Cj) ((rβα, Cj), (sαβ , Ci)) R1

(Ei, Ej)1<i,j≤n (Ci, Cj)
((rαβ, Ci), (sβα, Cj))
or ((rβα, Cj), (sαβ, Ci))

R2

R3

(E0, Ej)1<j≤n ([0, 0], Cj) ((rβα, Cj), (sαβ , [0, 0])) R4

(E0, Ei)−n≤i<−1 (B0
−1, F

i
+(−i+1)) ((rαβ, B0

−1), (sβα, F i
+(−i+1))) R5

(E−1, Ej)1<j≤n (F −1
+1 ∨ C−1, Cj) ((rβα, Cj), (sαβ , F −1

+1 or C−1)) R6

(E1, Ei)−n≤i<−1 (B1
−1 ∨ C1, Ci) ((rαβ, B1

−1 ∨ C1), (sβα, Ci)) R7

(E−1, E1) (F −1
+1 ∨ C−1, B1

−1 ∨ C1) ((rβα, B1
−1 ∨ C1), (sαβ, F −1

+1 ∨ C−1)) R8

(E1, E−1) (B1
−1 ∨ C1, F −1

+1 ∨ C−1) ((rαβ, B1
−1 ∨ C1), (sβα, F −1

+1 ∨ C−1)) R9

(Ei, E1)−n≤i<−1 (Ci, B1
−1 ∨ C1) ((rβα, B1

−1 ∨ C1), (sαβ, Ci)) R10

(E−1, E0) (F −1
+1 ∨ C−1, B0

−1) ((rβα, B0
−1), (sαβ , F −1

+1 ∨ C−1)) R11

(E0, E−1) (B0
−1, F

−1
+1 ∨ C−1) ((rαβ, B0

−1), (sβα, F −1
+1 ∨ C−1)) R12

(Ei, Ej)−n≤i,j<−1
(F i

+(−i+1), B
j
−1)

or (Bj
−1, F

i
+(−i+1))

((rβα, Bj
−1), (sαβ, F i

+(−i+1))

or ((rαβ, Bj
−1), (sβα, F i

+(−i+1))

R13

R14

- The set of states of the model is Ehαβ,hβα
= {(Ei

αβ , Ej
βα) | Ei

αβ ∈ Êhαβ
, Ej

βα ∈
Êhβα

} of pairs of classes of material results as specified in Sect. 4.1.
- The set of the actions of the model is the set A = {(Ai

αβ , Aj
βα) | Ai

αβ , Aj
βα ∈

C ∪ F ∪ B} of pairs of compensation, go-forward and go-backward intervals.
- F : Ehαβ ,hβα

× A → Π(Ehαβ ,hβα
) is the personality-based state-transition

function, that gives for each state and each action, a probability distribution
over the set of states Ehαβ,hβα

.
- R : Ehαβ,hβα

×A → R is the reward function, giving the expected reward gained
by choosing an action (Ai

αβ , Aj
βα) when the current state is (Ei

αβ , Ej
βα).

The analysis of the stabilization process is concerned with the number of steps
that are necessary to achieve the target stability point. Since the decision process
is non-trivial (due to: (i) the qualitative nature of exchange values, (ii) the re-
strictions imposed by the definition of exchange, that always requires a service
to be done in any stage, and mainly (iii) the stochastic nature of the agents’
behaviors), an analytical study was only possible for agents with blind obedi-
ence (after a certain number of free exchanges). Then, the supervisor accuracy
κn = L

n can be adjusted to have the system stable in at most four steps, as we
show here.5 Let mτ

αβ and mτ
βα be the material results of an exchange process

performed by the agents α and β, at step τ , and hαβ and hβα be the reference
values that approximate a target stability point. For a tolerance ε, it holds that:

Proposition 1. If m0
αβ ∈ E−1

hαβ
and m0

βα ∈ E1
hβα

, then the target stability point
is achieved in one step if and only if 1 < κn

ε ≤ 3.

Proof. (⇒) Since hβα +ε < mid(m0
βα) ≤ hβα + L

n and the optimal recommenda-
tion (Table 7, R8) gives the action C1

hβα
= [− 1

2 (L
n + ε),− 1

2 (L
n + ε)] (Table 1), it

5 For other levels of obedience, the analysis is based on simulations, as shown in Sect. 5.



Centralized Regulation of Social Exchanges 349

(E
+
, E

-
)

(E
+
, E

0
)

  (E
0
, E

0
)

  (E
0
, E

+
)

(E
+
, E

+
)

  (E
-
, E

+
)

  (E
0
, E

-
)

  (E
-
, E

0
)

T
1
orT

3

T
2
orT

4

T
1
orT

2
orT

3
orT

4

T
1
orT

3

T
2
orT

4

T
2
orT

4

T
1
orT

3

T
2
orT

4

(E
-
, E

-
) T

2
orT

4

T
1

or T
3

T
1
orT

3

Fig. 2. Effects of stage and optimal value recommendations

follows that: hβα + ε− 1
2 (L

n + ε) < mid(m0
βα)− 1

2 (L
n + ε) ≤ hβα + L

n − 1
2 (L

n + ε) ⇒
hβα + 1

2 (−qε + ε) < mid(m1
βα) ≤ hβα + 1

2 (qε − ε), where L
n = qε, q > 1. If the

system achieves the stability point in the step 1, then hβα + 1
2 (qε− ε) ≤ hβα + ε,

1 < q ≤ 3, and thus, 1 < κn

ε ≤ 3, since κn = L
n .

Proposition 2. (i) If m0
αβ ∈ Ei

hαβ
, 1 < i ≤ n, then it is possible to get mτ

αβ ∈
E0

hαβ
in at most τ = 2 steps if and only if 1 < κn

ε ≤ 3; (ii) If m0
βα ∈ Ei

hβα
,

−n ≤ i < −1, then it is possible to get mτ
βα ∈ E0

hβα
in at most τ = 2 steps if and

only if 1 < κn

ε ≤ 3; (iii) If m0
αβ ∈ Ei

hαβ
, with 1 < i ≤ n and hαβ + 2i+1

2
L
n − ε ≤

mid(m0
αβ) ≤ hαβ + 2i+1

2
L
n + ε, then m1

αβ ∈ E0
hαβ

.

Proof. (i)(⇒) Since hαβ + (i − 1)L
n ≤ mid(m0

αβ) < hαβ + iL
n and the opti-

mal recommendation (Table 7, R2/R3) is the action Ci = [ (1−2i)
2

L
n , (1−2i)

2
L
n ]

(Table 1), it follows that: hαβ + (i − 1)L
n + (1−2i)

2
L
n < mid(m0

βα) + (1−2i)
2

L
n ≤

hαβ + iL
n + (1−2i)

2
L
n ⇒ hαβ − 1

2
L
n < mid(m1

βα) ≤ hαβ + 1
2

L
n , and thus m1

βα ∈ E1
α.

From Prop. 1, with one more step we can get the result.

It follows that an individual transition from Ei (1 < i ≤ n or −n ≤ i < −1), to
the stability point can be done in at most two steps (Ei $→ E1( or E−1) $→ E0).
However, combined transitions departing from a state (Ei, Ej) or (Ej , Ei),
with 1 < i ≤ n and −n ≤ j < −1, may result in a state different from
(E1, E−1), (E−1, E1) or (E0, E0). The worst case is when the system is in the
state (Ei, Ej), with −n ≤ i, j < −1, since two simultaneous positive com-
pensation actions are not allowed. In this case, which occurs very often in



350 G. Pereira Dimuro et al.

exchanges between altruist agents, the optimal recommendation (Table 7) leads
the agents to the stability point in at most four steps, by one of the transitions: (i)
(Ei, Ej)−n≤i,j<−1

R13�→ (E1, Ej)−n≤j<−1
R7�→ (E0, E−1)

R12�→ (E−1, E1)
R8�→ (E0, E0) or

(ii) (Ei, Ej)−n≤i,j<−1
R14�→ (Ej , E1)−n≤j<−1

R10�→ (E−1, E0)
R11�→ (E1, E−1)

R9�→ (E0, E0).

5 A Sample Simulation

We show a simulation of part of the scenario analyzed in [14], extending the
application to consider personality-based agents. The situation is a political one,
with politicians and voters interacting for the purpose of electing politicians to
governmental positions. Politicians are expected to fulfill the promises they have
made to voters before the election, by making decisions that favor the voter’s
interests. After reaching governmental positions, politicians may or may not
fulfill their promises. In the positive case, they are entitled to charge the voters
for their re-election in the next polling. On the other hand, voters are expected to
choose politicians that best represent their interests, and give them votes. After
the election, they are entitled to charge the politicians for coherent behavior
with the promises they made. Frustration of any of those expectations entitles
the frustrated agent to refrain from behaving in a positive way toward the others.

An equilibrated political society is one where both voters and politicians do
not accumulate neither benefits nor losses, which is an idealization that may
never occur in practice. On the other hand, a stable political society is one
where both voters and politicians behave as respectively expected by the others
during a considered period, or the regulation of the behaviors of politicians and
voters is such that significant deviations from the expected behaviors of any of
them get each of the agents to be either enforced to backtrack from the deviated
behavior or allowed to look for other partners with different interests. In our
simulations, such regulation actions are not allowed, so that agents are doomed
to misfortune if the stability supervisor fails in being effective.

Exchange values can easily be associated with each action, of voting and gov-
ernmental decision. Voters and politicians can thus successively build a balance
of such values, as elections are successively performed. Considering this as an
open society, at each election new voters and new politicians may appear in the
process, behaving as non-transparent agents for the supervisor.

In a realistic simulation, both politicians and voters would have their own
decision procedures about the actions they have to take at each election. Such
procedures can be seen as stability supervisors that were internalized at each
agent, and that restrict themselves to give recommendations specifically for the
agent where each one is internalized. Having been internalized, the supervisors
can easily be seen to operate under the condition of partial observation, since the
internalization makes it not possible for the agents to fully grasp the exchange
values accumulated by the others. We are leaving for future work the problem of
tackling such situations, also because it could involve the analysis of interactions
between groups of agents, where the results of the exchanges between a pair of
agents may influence the exchanges performed by the others.



Centralized Regulation of Social Exchanges 351

Here, the stability supervisor is a centralized agent that makes recommen-
dations for a pair of transparent agents: a politician and an elector. The sim-
ulations were developed in the Python programming language, generating (i)
tables with the configurations of exchange values and material results at each
time t ∈ T = 0, . . . , 1000, and (ii) graphics showing the trajectory of the mid
points of the material results of the exchanges. The material and virtual values
that the electors and politicians could use at each exchange were set to vary in
−100 . . . + 100. The target stability point was set at ω = 1000 for both agents,
meaning that both agents get positive material results from the interactions. A
tolerance of ε = 25 was adopted for the definition of the reference value.

At each election and successive governmental period, the elector β assigns a
value rβα to its vote for the politician α and concludes a value vβα for his credit
over his election. Correspondingly, the politician α assigns a value rαβ to the
decisions he makes while in the government, after the election, and a credit vαβ

for the benefits he thinks are received by the elector β due to those decisions.
Satisfaction and debit values (sαβ , sβα, tαβ , tβα) are correspondingly assigned.

First, we considered successions of elections where the elector and the politi-
cian always disregard the supervisor’s recommendations. In those simulations
(Fig. 3(a), exchange values bound to [−3000, 2400]), the exchanges were totally
guided by the agents’ personality traits, characterized by the egoism of the politi-
cian and the altruism of the elector. The politician profited from the interaction
much more than the elector, which kept the latter in unfavorable results (related
to the stability point), resulting that the system was unable to be stabilized.

In successive experiments, we increased the level of obedience to the recom-
mendations, generating the following simulations: (1) obedience during 2% of
the elections (Fig.3(b), with exchange values bound to [−850, 1800] and range
of exchange values equals to 2650); (2) obedience during 25% of the elections
(Fig. 3(c), exchange values bound to [500, 1500], maximal deviation of 500 around
the stability point); (3) obedience in 100% of the elections (Fig. 3(d), exchange
values bound to [900, 1100], maximal deviation of 100 around the stability point).

Figure 3(b) shows a succession of elections, with a level of obedience to the
recommendations of 2%. Observe that just such level of obedience was enough
to make the politician and the elector alternated their kinds of behaviors, thus
avoiding that one of them profited from the interaction at the expense of the
other. The system was able to pass through the stability point in various oppor-
tunities (e.g., at t = 180 and t = 365), but was unstable almost all of the time.
Figure 3(c-d) shows the effects of the increasing level of obedience. The range
of deviations of the results from the stability point was progressively reduced as
the politician and the elector progressively adhered to the recommendations.

The simulations that we produced seem to agree with the theoretical predic-
tions derived from the model (in Sect. 4.5). Thus, considering agents with blind
obedience (Fig. 3(d)), the deviation around the stability point stayed stable be-
tween −100 and 100, the maximum variation allowed at each interaction.



352 G. Pereira Dimuro et al.

-4000

-3000

-2000

-1000

0

1000

2000

3000

1 95 189 283 377 471 565 659 753 847 941

Time

M
id

 P
oi

nt
 o

f M
at

er
ia

l R
es

ul
ts

(a)

Altruist Elector
Egoist PoliticianEgoist Politician
Altruist Elector

-1000

-500

0

500

1000

1500

2000

1 95 189 283 377 471 565 659 753 847 941

Time

M
id

 P
oi

nt
 o

f M
at

er
ia

l R
es

ul
ts

(b)

Altruist Elector
Egoist PoliticianEgoist Politician
Altruist Elector

M
id

 P
oi

nt
 o

f M
at

er
ia

l R
es

ul
ts

Time
-200

0
200

400
600
800

1000
1200
1400
1600

1 95 189 283 377 471 565 659 753 847 941

(c )

Altruist Elector
Egoist PoliticianEgoist Politician
Altruist Elector

M
id

 P
oi

nt
 o

f M
at

er
ia

l R
es

ul
ts

Time
-200

0

200

400

600

800

1000
1200

1400

1600

1 98 195 292 389 486 583 680 777 874 971

(d)

Altruist Elector
Egoist PoliticianEgoist Politician
Altruist Elector

Fig. 3. (a) Agents always disregarding recommendations; agent obedience in (b) 2% of
the elections, (c) 25% of the elections and (d) 100% of the elections (blind obedience)

6 Related Work

Values have been extensively used in the MAS area, through value-based and
market-oriented decision, and value-based social theory (see, e.g., [15,16,17]), as
well social norms (e.g., in [18,19]), the latter considering that knowledge sharing
between agents is supported by social contracts and rules.

However, the approach based on social exchange values, which gives rise to
a qualitative analysis of the interactions based on the individual evaluations of
the exchanges, appeared only in 2003 [20], its formulation becoming stable only
after [4]. Since them, the merits in using Piaget’s notion of exchange values to
the analysis of social organization, and applications to problems like that of part-
ners selection, formation of coalitions and collaborative interactions have been
discussed [14,21,22]. In particular, the application of this approach applied to
the analysis of successful/uncessful cooperative interactions in the bioinformatics
domain was presented in [22].

On the other hand, the study of personality-based agents can be traced back
to at least [23], while its study in the context of multiagent systems goes back
to [8,24], where advantages and possible applications of the approach were exten-
sively discussed. In both works, personality traits were mapped into goals and
practical reasoning rules (internal point of view). Modeling personality traits
from an external (the supervisor’s) point of view, through state transition ma-
trices as we do here, seems to be new.



Centralized Regulation of Social Exchanges 353

7 Conclusion

The paper leads toward the idea of modeling agents’ personality traits in social
exchange regulation mechanisms in open societies, also extending the previously
proposed concept of equilibrium supervisors to consider the stability of social
exchanges in points that may be different from the equilibrium and may vary in
time. Then, the notion of equilibrium is a particular case of stability [4].

We studied two sample sets of personality traits: (i) blind, eventual obedience,
and full disregard of recommendations (related to the levels of adherence to
the regulation mechanism), and (ii) fanaticism, tolerance, egoism, altruism and
prudence (in connection to preferences about balances of material results).

The regulation mechanism implements a Qualitative Interval Markov Deci-
sion Processes for the coordination of the exchanges between transparent agents
(agents that allow full external access to their internal states). A theoretical
analysis of the Qualitative Interval Markov Decision Process was realized, and
simulations of performances of a stability supervisor were presented, considering
different levels of obedience, which conformed to the theoretical analysis.

We point out that the regulation of the interactions between non-transparent
agents (agents that restrict such external access) was done in [13], with the
help of personality-based Hidden Markov Models, so that the supervisor is able
to recognize and maintain an adequate model of the personality traits of such
agents, based on observations of their behaviors. In that work, the set of person-
ality traits was enlarged with the agents’ tendencies in the evaluation of their
virtual results, which is then observed by the supervisor.

In our future work, we expect to advance the internalization of the stability
supervisor into the agents themselves, going toward the idea of self-regulation
of exchange processes, not only distributing the decision process (like, e.g., in
Multiagent MDP [11,25]), but also considering incomplete information about the
balances of material results of the exchanges between non-transparent agents,
in the form of a personality-based qualitative interval Partially Observable MDP
(POMDP) [26,27], a kind of decentralized or distributed POMDP [28,29,30].

Acknowledgements. This work has been partially supported by FAPERGS
and CNPq. We would like to thank the referees and the participants of the
COIN@ECAI 2006 workshop for their valuable comments.

References

1. Castelfranchi, C.: Engineering social order. In: Omicini, A., Tolksdorf, R., Zam-
bonelli, F. (eds.) Engineer. Societ. in Agents World, pp. 1–18. Springer, Berlin
(2000)

2. Homans, G.C.: The Human Group. Harcourt, Brace & World, New York (1950)

3. Dignum, V., Dignum, F.: Coordinating tasks in agent organizations or: Can we ask
you to read this paper? LNCS, vol. 4386, pp. 30–45. Springer, Heidelberg (2007)



354 G. Pereira Dimuro et al.

4. Pereira Dimuro, G., da Rocha Costa, A.C., Palazzo, L.A.M.: Systems of exchange
values as tools for multi-agent organizations (Special Issue on Agents’ Organiza-
tions). Journal of the Brazilian Computer Society 11(1), 31–50 (2005)

5. Piaget, J.: Sociological Studies. Routlege, London (1995)
6. Moore, R.E.: Methods and Applic. of Interval Analysis. SIAM, Philadelphia (1979)
7. Pereira Dimuro, G., da Rocha Costa, A.C.: Exchange values and self-regulation

of exchanges in multi-agent systems: the provisory, centralized model. In: Brueck-
ner, S.A., Serugendo, G.D.M., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS
(LNAI), vol. 3910, pp. 75–89. Springer, Heidelberg (2006)

8. Castelfranchi, C., Rosis, F., Falcone, R., Pizzutilo, S.: Personality traits and social
attitudes in multiagent cooperation. Applied Artif. Intelligence 12, 649–675 (1998)

9. Pereira Dimuro, G., da Rocha Costa, A.C.: Interval-based Markov Decision
Processes for regulating interactions between two agents in multiagent systems. In:
Dongarra, J.J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732,
pp. 102–111. Springer, Heidelberg (2006)

10. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. of the IEEE 77(2), 257–286 (1989)

11. Boutilier, C.: Sequential optimality and coordination in multiagent systems. In:
Proc. XVI Intl. Joint Conf. Artificial Intellig. IJCAI’99, Stockholm, pp. 478–485
(1999)

12. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester, UK (1994)
13. Pereira Dimuro, G., da Rocha Costa, A.C., Vargas Gonçalves, L., Hübner, A.:

Regulating social exchanges between personality-based non-transparent agents. In:
Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293,
Springer, Heidelberg (2006)

14. Rodrigues, M.R., da Rocha Costa, A.C.: Using qualitative exchange values to im-
prove the modelling of social interactions. In: Multi-Agent-Based Simulation III.
LNCS, vol. 2927, pp. 57–72. Springer, Heidelberg (2003)

15. Antunes, L., Coelho, H.: Decisions based upon multiple values: the BVG agent
architecture. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI),
vol. 1695, pp. 297–311. Springer, Heidelberg (1999)

16. Miceli, M., Castelfranchi, C.: The role of evaluation in cognition and social in-
teraction. In: Dautenhahn, K. (ed.) Human cognition and agent technology, pp.
225–262. John Benjamins, Amsterdam (2000)

17. Walsh, W.E., Wellman, M.P.: A market protocol for distributed task allocation.
In: Proc. III Intl. Conf. on Multiagent Systems, Paris pp. 325–332 (1998)

18. Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberate normative agents:
Principles and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757,
pp. 364–378. Springer, Heidelberg (2000)

19. López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms.
In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and Multi-Agent
Systems. LNCS (LNAI), vol. 2636, pp. 674–681. Springer, Heidelberg (2003)

20. Rodrigues, M.R., da Rocha Costa, A.C., Bordini, R.: A system of exchange values
to support social interactions in artificial societes. In: Proc. II Intl Conf. on Au-
tonomous Agents and Multiag. Systems, AAMAS’03, Melbourne, pp. 81–88. ACM
Press, New York (2003)

21. Rodrigues, M.R., Luck, M.: Analysing partner selection through exchange values.
In: Sichman, J.S., Antunes, L. (eds.) MABS 2005. LNCS (LNAI), vol. 3891, pp.
24–40. Springer, Heidelberg (2006)

22. Rodrigues, M.R., Luck, M.: Cooperative interactions: an exchange values model.
LNCS, vol. 4386, pp. 344–360. Springer, Heidelberg (2007)



Centralized Regulation of Social Exchanges 355

23. Carbonell, J.G.: Towards a process model of human personality traits. Artificial
Intelligence 15(1-2), 49–74 (1980)

24. Castelfranchi, C., Rosis, F., Falcone, R., Pizzutilo, S.: A testbed for investigat-
ing personality-based multiagent cooperation. In: Proc. of the Symp. on Logical
Approaches to Agent Modeling and Design, Aix-en-Provence (1997)

25. Boutilier, C.: Multiagent systems: challenges and oportunities for decision theoretic
planning. Artificial Intelligence Magazine 20(4), 35–43 (1999)

26. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101(1), 99–134 (1998)

27. Lovejoy, W.S.: A survey of algorithmic methods for Partially Observable Markov
Decision Processes. Annals of Operations Research 28(1), 47–65 (1991)

28. Bernstein, D., Zilberstein, S., Immerman, N.: The complexity of decentralized con-
trol of Markov Decision Processes. In: Proc. of the 16th Conference on Uncertainty
in Artificial Intelligence, Stanford, pp. 32–37 (2000)

29. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In: Proc.
18th Intl. Joint Conf. on Artificial Intelligence, IJCAI’03, Acapulco, pp. 705–711
(2003)

30. Scerri, P., Pynadath, D., Tambe, M.: Towards adjustable autonomy for the real-
world. Journal on Artificial Intelligence Research 17, 171–228 (2002)



Cooperative Interactions: An Exchange Values Model

Maı́ra R. Rodrigues� and Michael Luck

School of Electronics and Computer Science, University of Southampton, Southampton, UK
{mrm03r,mml}@ecs.soton.ac.uk

Abstract. In non-economic cooperative applications with resource constraints,
explicitly motivating cooperation is important so that autonomous service
providers have incentives to cooperate. When participants of such applications
have different skills and expectations over services, it may be that an agent re-
ceives less than expected from a cooperation. A decision-making strategy over
interactions in this context must consider not only the motivation to cooperate,
but also which interactions to perform to cope with resource limitations. In this
paper, we present a computational approach for modelling non-economic coop-
erative interactions based on the theory of exchange values. Here, exchange val-
ues are used to motivate cooperative interactions, and to allow agents to identify
successful and unsuccessful cooperations with others, in order to limit service
provision and to improve the number of successful interactions. We also present
a scenario in which agents participate in a cooperative application in the bioin-
formatics domain, and show how agents can improve their interactions using the
proposed approach.

1 Introduction

According to [1], it can be useful in certain contexts to view a society as a market, in
which individuals exchange goods, services and ideas to achieve their goals. While mar-
kets typically involve monetary exchanges, many do not necessarily involve economic
capital. For example, in computer-supported scientific communities like bioinformatics,
different types of information and tools can be exchanged in a cooperative way in order
to improve individual or global results [2].

Although examples of systems that support cooperative bioinformatics applications
already exist [3,4,5], there are still issues to be addressed to allow effective cooperation
between participants [6]. In particular, resources need to be managed sensibly because
they are provided free of charge. This is because services in bioinformatics generally
require the processing of large amounts of data, so that responding to a request involves
significant computational resources. In addition, the kind of automated experiments that
arise in this domain tend to generate more service requests than if they were performed
manually. Thus, both the increasing number of requests that automated experiments can
generate, and the large amount of computation resources that these requests need, place
a heavy overload on service providers, which can limit the number of requests that can

� The first author is supported by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES) of the Brazilian Ministry of Education.

P. Noriega et al. (Eds.): COIN 2006 Workshops, LNAI 4386, pp. 356–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Cooperative Interactions: An Exchange Values Model 357

be processed. These issues provide the context in which we consider non-economic
cooperative interactions.

Explicitly motivating cooperation is also important for non-economic exchanges.
Considering a system with self-interested entities, a service provider has an incentive
to cooperate if it receives a service in return from the requester, either immediately or
in the near future. Cooperation with immediate reciprocation is easier to model and to
check whether the cooperative interaction is genuine (mutual), since it involves concrete
actions that can be clearly observed by both entities. However, immediate reciprocation
is not always possible since the provider may not need any service by the time the
interaction takes place, or the requester may only be available to provide a service in
return in the near future.

Cooperative situations in which reciprocation is not immediate raise interesting is-
sues for modeling cooperative agents. First, there is no guarantee that the requester
agent will reciprocate in the future. Second, the provider must receive some value in
return from the requester, so the provider is motivated to cooperate even in the lack of
a concrete, immediate return. Third, if we consider that in a multi-agent system agents
might have different perspectives of the same service due, for example, to individual
preferences and the relevance of each service to goals, a provider can evaluate a service
it gets in return in the future as being of less quality than the service it provided in the
past; that is, it may be that an agent receives less than expected from a cooperation.

In this context, the focus of this paper is on cooperative applications in which interac-
tions are based on deferred reciprocity, and deal with the issues of modeling cooperative
agents that act in such applications. We propose a model based on exchange values [7]
to motivate such cooperative interactions, and to allow agents to identify successful
and unsuccessful cooperations with others, in order to limit service provision. We also
analyse the different reasons why interactions succeed as a result of personal influences,
such as personal goals and preferences, on the evaluation of services, and how agents
can react to improve the quality of their cooperative interactions.

Here, exchange values represent the agents’ individual evaluation of provided and
received services, and are associated with their interactions, indicating the effort, cost,
or satisfaction to each agent. We believe that this approach is suitable for addressing the
issue of motivating interactions in cooperative, non-economic applications, especially
in cases of deferred reciprocation, in the sense that exchange values provide a system
of credits and debts that motivates interactions by giving expectations of future gains
(for example, a credit that is gained by performing a service can be charged in the
future). Moreover, exchange values allow agents to analyse the outcome of interactions
in terms of whether services they receive compensate for services they provide, and use
this information to decide about future interactions, which is important when there are
different types of services available and there is a need to limit service provision.

The key contribution of this paper is a computational approach for motivating and
modelling non-economic cooperative interactions, based on the theory of exchange
values.

The paper begins with an introduction to the theory of exchange values, including
its advantages for modelling cooperative autonomous agents, followed by an analysis
of the different cooperative interactions that can occur between autonomous agents in a



358 M.R. Rodrigues and M. Luck

non-economic cooperative scenario. We end by presenting an experimental simulation
of this scenario and discussing obtained results.

2 Exchange Values

The application of exchange values for modelling interactions between agents was first
proposed in [8], in which the mechanism for reasoning over interactions is based on
Piaget’s theory [7].

In previous work [9], exchange values have been used for addressing the problem
of partner selection in dynamic and resource-constrained environments. Here, agents
reduce their effort in finding available interaction partners by identifying those that are
more likely to accept requests. However, the analysis of interactions in terms of whether
the services that agents receive give some compensation for those that they provide,
which is relevant to the kind of applications we focus on this paper, is not addressed.

In response, this paper proposes the use of exchange values in agent interactions
not only to motivate service provision, but also to allow agents to analyse the outcome
of their interactions in terms of gains and losses. We argue that this approach has the
following advantages for cooperative and non-economic applications:

– autonomous agents can reason about continuing or stopping cooperative relations,
instead of assuming indefinite cooperation, which is only possible with benevolent
agents; and

– agents are motivated to provide good quality services to ensure that they are val-
orised by requesters.

Piaget’s theory of exchange values, and the dynamics of exchange values — the way
they vary according to gains and losses of values during interactions — are introduced
in the next sections.

2.1 Piaget’s Theory of Exchange Values

Social exchange is the particular interaction in which an individual performs an action
on behalf of another and vice-versa. The theory of exchange values was proposed by
Piaget [7] as an analysis of human social exchanges and the reasons for their persistence
or discontinuity. More specifically, Piaget argues that in all social interactions in which
one individual acts on behalf of another there is an exchange of values between them.
These values result from each individual’s evaluation of the provided or received action
over a common scale of values.

According to Piaget, every action and reaction of two interacting individuals towards
each other has an influence on their values: if the action is useful and beneficial it
increases their values; if the action is harmful and disadvantageous it decreases their
values; and if the action is neutral their values remain the same. Thus, when two indi-
viduals interact and one provides a service that is valuable to the other, three situations
can happen as described below.

1. The individual that received the service can pay back the provider by giving an
object or providing another service in return (immediate exchange). This is the



Cooperative Interactions: An Exchange Values Model 359

case, for example, if a researcher who is submitting a paper to a conference receives
comments on his paper from a colleague, and returns comments on his colleague’s
paper which is being submitted to the same conference.

2. The receiver just valorises the provider by expressing gratitude or approval, instead
of giving something immediately in return (deferred exchange). Using the same
example as above, the researcher who receives the comments on his paper expresses
gratitude and valorises his colleague’s action.

3. The receiver neither returns a service to nor valorises the provider (no exchange).

All reactions of the receiver have also an effect on the provider’s values. In the im-
mediate exchange, the receiver returns a material action to the provider (comments on
a paper), which constitutes an actual, concrete value for the latter (the comments are
valuable to improve the quality of the paper). In the deferred exchange, the receiver re-
turns an abstract action to the provider (a word or a gesture of approval, gratitude, etc),
which constitutes a virtual value for the latter, in the sense that his valorisation gives
him reputation, respect and authority, which are values he can use to get some benefit
in future interactions (next time he is writing a paper, he can then ask the receiver for
comments). The third reaction, however, was disadvantageous for the provider since the
receiver did not reciprocate the action in any way, and the latter is ultimately devalorised
by the provider as ungrateful or unjust.

The values that are exchanged between individuals are clear when concrete objects
are involved in the exchange, like the immediate exchange described above. However,
when the exchange involves virtual values, like in the deferred exchange, a more de-
tailed analysis is needed. When two individuals α (the provider) and β (the receiver)
interact, the performed action is for α an actual renouncement, since it requires the ex-
penditure of time and effort, while for β it is an actual satisfaction or gain. Now, if β
immediately performs an action in return to α, β has an actual renouncement and α has
an actual satisfaction. At the end of this interaction, both individuals had an actual satis-
faction (they received a concrete action). If there is a valorisation of α by β instead, as a
reaction for the received action, this valorisation is for α a reward, a virtual credit that it
can draw upon in the future, and for the receiver the valorisation constitutes a promise,
a virtual debt, in the sense that the receiver feels obliged to return the favour to the
provider in the future. At the end of this interaction, both individuals acquire virtual
values, instead of only actual values as in the immediate cooperation. When the ex-
change is not immediate, the exchange values in an interaction between two individuals
α and β are, therefore, the following as shown in Figure 1:

– the renouncement of the provider α on performing a service to β (rα),
– the satisfaction β with the received service (sβ),
– the acknowledged debt of β as a consequence of his satisfaction (tβ), and
– the valorisation of α by β (vα).

In the future, α can make use of this credit vα and ask β to perform a service on its
behalf; that is, α can realise its virtual values in actual values, as illustrated in Figure 2.
Nothing forces β to accept the request, but it returns the favour to α not only because
it feels gratitude and recognises its debt tβ , but also because it is a way to persevere
with interactions with α when these are successful (otherwise, α will devalorise β as



360 M.R. Rodrigues and M. Luck

Fig. 1. Exchange of values between interacting individuals α and β: acquisition of virtual values

Fig. 2. Exchange of values between interacting individuals α and β: realisation of virtual values

ungrateful and will not interact with it again). On the other hand, if β’s expectations
were not fulfilled by α, β may not reciprocate the action since it is not interested in
continuing the relationship with α.

If β agrees to perform an action for α in return, this action is an actual renouncement
for β (rβ) since it requires investment of time and effort, and a satisfaction for α (sα).
After the realisation of virtual values, the exchange is complete: α provided a service to
β and, later, β provided a service to α.

2.2 Dynamics of Exchange Values

The dynamics of exchange values, or the way they are accumulated and spent by indi-
viduals, is based on the premise that in every interaction in which an action is provided
or received, something is lost and something is gained: the provider α renounces its
time and resources for providing an action (rα) but gains a credit as a result of his val-
orisation (vα), and the receiver β gains satisfaction with the benefits of the received
action (sβ) but loses in acquiring a debt with the provider in return (tβ). What follows
is that, if the gains and losses of participants according to their individual evaluations
are equivalent (if rα = sβ , sβ = tβ , tβ = vα and, consequently, vα = rα), the in-
teraction between them is said to be in equilibrium regarding the acquisition of virtual
values (provided that the participants’ evaluations are estimated over the same scale of
values). We represent the equilibrium situation for interactions in which virtual values
are acquired in the form of the equation below:

(rα = sβ) ∧ (sβ = tβ) ∧ (tβ = vα) ⇒ (vα = rα) (1)

After the values of credit and debt are acquired and α requests an action from β in
return, the exchange values change as follows: α loses its credit (vα) but gains satisfac-
tion with the received action (sα), while β gains by paying its debt (tβ) but loses effort
for performing the action (rβ). Again, if losses and gains are equivalent, the interaction
between α and β is said to be in equilibrium regarding the realisation of values. The
equilibrium situation for interactions in which virtual values are realised is represented
in the form of the equation below:



Cooperative Interactions: An Exchange Values Model 361

(vα = tβ) ∧ (tβ = rβ) ∧ (rβ = sα) ⇒ (sα = vα) (2)

In summary, the dynamics of exchange values is based on what is gain and what is
lost in every interaction. However, since individual evaluations are subjective and indi-
vidual interests can influence the valorisation of actions, other situations are possible in
addition to the general equilibrium of exchange values. These situations are described
in the next section.

3 Analysing Cooperative Interactions

3.1 Scenario

In the bioinformatics domain, different types of information are available, such as
genome sequences and annotations, protein sequences, structure and interaction maps,
as well as metabolic pathways and phylogenetic trees [10]. Each of these information
sources can be associated with a particular organism, tissue, cell, disease, etc, resulting
in a large variety of information that can be exchanged in a cooperative manner. Thus,
since all types of information in bioinformatics is related in some way, the cooperation
between users to exchange this information may facilitate some of the tasks they per-
form, such as validation of new discoveries against existing data, or even help them to
gain insights on what path to follow towards a new discovery.

Bioinformatics data and services vary in terms of quality or performance, for ex-
ample, genome annotations made by one group can be more accurate and described in
more detail, while annotations from another group can be poor in detail and ambigu-
ous. The same can happen for services: some may have a better response time and more
precise algorithms, while others may take longer to perform or give poor quality results.

Despite sharing similar services or information, users can have very different goals
and preferences towards service quality. Developing an automated cooperative system
with all this variety is a challenge, mainly because it has consequences for the way in
which agents evaluate the services and information they receive from others, and the
way providers evaluate the service they provide.

3.2 Cooperative Situations

In our approach, exchange values represent the gains and losses of agents in each in-
teraction. Thus, we define the success of an interaction in terms of the balance of the
agent’s values: a successful interaction for a generic agent is when its losses and gains
are equivalent, or when its gain is greater than its loss, and an unsuccessful interaction
is when the agent’s gain is less than its loss.

It is important to note that, based on the outcome of interactions, an agent can decide
whether it should continue with the cooperation (in cases of successful interactions),
drop the cooperation, or review the quality of its services to adjust its evaluation to
that of the partner in an attempt to improve its valorisation (in cases of unsuccessful
interactions).



362 M.R. Rodrigues and M. Luck

When two agents α and β interact, and α provides a service to β, their individual
evaluations of the service involved can coincide (as in Equations 1 and 2) or can be dif-
ferent, since individual evaluations are subjective and individual interests such as goals
and preferences can influence the evaluation of services. In the following we analyse
how different individual perspectives over service evaluations can lead to successful or
unsuccessful interactions, and discuss possible causes of each situation and how they
affect the cooperation between agents.

Successful Interactions. A successful interaction is the one in which the balance of
the exchange values of an agent is in equilibrium (its gains and losses coincide) or
is positive (its gains are greater than losses). Examples of successful interactions are
presented below.

1. The provider’s effort and the receiver’s satisfaction coincide. This is represented by
the relation rα=sβ⇒ rα=vα, which means their values are in equilibrium and the
provider is valorised by the receiver in correspondence to its effort. Possible causes
for the equilibrium of exchange values are that:

(a) the service result was as expected for both provider α and requester β; or
(b) α’s and β’s expectations are at the same level.

2. The provider’s effort is less than the receiver’s satisfaction. This is represented
by the relation rα<sβ⇒ rα<vα, which indicates that the receiver valorises the
provider more than the latter valorises its efforts. This means that the interaction
was successful for the provider, since it did not have to make much effort to satisfy
the other agent. Possible causes for the high-valorisation of α’s service are that:

(a) α is over-skilled and can perform the service with a small effort;
(b) β has a low expectation for the service result and thus over-values even a fairly

poor service; or
(c) even though the service is trivial, it helped β to achieve an important goal and

thus had a higher value for the latter.

3. The receiver valorises the provider more than its real satisfaction. This is repre-
sented by the relation sβ<tβ⇒ rα<vα, which means the interaction is successful
and the provider is valorised more than it valorises its efforts. The cause for the
high-valorisation of the provider can be the following:

(a) the requester β wants to persuade provider α to continue the cooperation by
valorising the service higher than its real satisfaction either because β is in a
lower social position than α, α is the only provider for the service that β needs,
or α is a busy provider and may have to limit its provision in the future.

4. The debt is recognised by β and paid by spending similar effort. This is represented
by the relation tβ=rβ⇒ vα=sβ , which means α’s satisfaction with the service pro-
vided by β was equivalent to the credit it charged. This interaction is in equilibrium
regarding the values gained and lost and the cooperation between α and β is there-
fore successful (since there was reciprocal cooperation).

The causes for the equilibrium can be that β is compelled to return the favour
to α not only because it recognises its debt tβ , but also because reciprocating is
a way to persevere with cooperation with α when this cooperation is successful.



Cooperative Interactions: An Exchange Values Model 363

Otherwise, α will devalorise β as a bad cooperative partner and will not interact
with it again.

In all situations described above — when there is either high-evaluation of β by
α , equilibrium of α and β’s evaluations, or reciprocation by spending similar effort —
agents are successful in their interaction and, as a consequence, the cooperation between
them tends to continue.

Unsuccessful Interactions. An unsuccessful interaction is the one in which the bal-
ance of the exchange values of an agent is negative (its losses are greater than gains).
Examples of unsuccessful interactions are described as follows.

1. The provider’s effort is greater than the receiver’s satisfaction. This is represented
by the relation rα>sβ⇒ rα>vα, which indicates that if the satisfaction of β is less
than the effort of α, the valorisation of α is less than its effort. This means that the
interaction was not beneficial for α, since its valorisation did not compensate for
its efforts. The disequilibrium of evaluations happened because β was not satisfied
with the service it received, for which possible causes are:

(a) that α’s service had poor quality and did not meet β’s expectations; or
(b) that β had very high expectations and thus under-valued even a good service.

In the bioinformatics example, this situation can occur when β requests from α the
annotation data related to a specific tissue, but the data is only partially annotated
and with poor descriptions. In this case, β’s evaluation of the received service is
less than expected. The consequence of this situation can be that:

- α can either continue cooperating with β and improve the quality of its service
to get a better evaluation;

- α can cease its cooperation with β if the latter is not being fair in its valorisa-
tion;

- β can continue cooperating with α and lower its expectations on service eval-
uation; or

- β can cease the cooperation with α if the latter is providing a poor service and
search for another partner to cooperate with.

2. The receiver valorises the provider less than its real satisfaction. This is represented
by the relation sβ>tβ⇒ rα>vα, which means that even though β was satisfied with
the received service, its does not valorise α accordingly and, as a consequence, the
latter’s efforts are greater than its valorisation (this interaction is unsuccessful for α).
The possible causes for the under-valuation of the provider in this case are that:

(a) β has authority over α and thus does not feel obliged to reciprocate the service;
(b) β wants to exploit α and to have as few debts as possible; or
(c) β is busy and does not want to compromise its future time with α.

In the bioinformatics scenario, this situation can arise, for example, when a new
agent provides a service to an existing agent in the collaborative community, and
even if the new agent provides a good service, the existing agent valorises it less.
The effects of the under-valuation in α and β ’s cooperative relation is that:



364 M.R. Rodrigues and M. Luck

- α stops the cooperation with β if it thinks the interaction is not beneficial for
it;

- α maintains the cooperation despite the under-valorisation if it needs β’s ser-
vice for achieving a goal in the future (either because there is no other agent to
provide the service, or because β provides the service with best quality);

- β tends to keep the cooperation since it is beneficial for it (the debt it acquires
as a result of α’s valorisation is less than its gain from the received service).

When agent α is successful in its action, and achieves vα=rαor even vα>rα, α’s
valorisation constitutes a credit for it. In the future, α can make use of this credit vα and
ask β to perform a service on its behalf. Nothing forces β to reciprocate and accept
the request, since there is no formal or legal commitment between them, and thus the
following situations are possible.

3 The debt is recognised by β but paid by spending less effort than the worth of the
credit. This is represented by the relation tβ>rβ⇒ vα>sα, which means that α’s
satisfaction with the service provided by β was less than the credit it charged (the
service α provided to β in the past was highly valued than the service it received
from β in return). Thus, the interaction was not beneficial for α since it lost more
than it gained. A possible cause for the disequilibrium is that β wants to exploit
α by asking more than it is willing to return, or because β does not have enough
skills to perform a good service. As a consequence, α tends to stop the cooperation
with β if it has other possible partners to cooperate with.

4 The debt is not recognised by β. In this case, the interaction does not take place.
Possible causes are that β just wants to take advantage of interactions and does not
share or provide services to others, or that β’s expectations were not fulfilled by
α in the previous interactions, and thus β may not reciprocate the action since it is
not interested in continuing interacting with α. It is clear in this case that there is
no more cooperation between both agents.

In summary, when agents have different perspectives over service evaluations (such
as different levels of expectation towards service results), or are influenced by personal
interests (like providing a service with less effort in return for another received previ-
ously to reduce losses), interactions may not always be successful in terms of gains and
losses of exchange values. Therefore, in a resource constrained environment in which
agents take autonomous decisions about interactions, it is important that they avoid re-
peating unsuccessful interactions and try to maintain successful ones instead. To show
this approach to decision-making over interactions, we set an experimental testbed with
a similar scenario, which is described in the next sections.

4 Experiment

4.1 Scenario

Cooperative applications in bioinformatics are characterised by different types of avail-
able services, which can vary in terms of performance and quality (since providers have



Cooperative Interactions: An Exchange Values Model 365

different skills to perform services). Because service providers are resource-bounded,
they must limit the number of services they provide. In addition, service users have
different perspectives over service quality.

In this context, agents cooperate by providing services to and requesting services
from each other. Since services are free, providers receive from requesters a valori-
sation, based on the requesters evaluation of the received service, as an incentive for
cooperation that the former uses as credit for asking something in return in the future.
However, since agents have different perspectives of the same service — providers have
different skills and users have different preferences — it may be that an agent receives
less than expected from a cooperation (so that its interactions are unsuccessful, as de-
scribed in Section 3.2).

We want to determine whether the analysis of cooperative situations can reduce the
number of unsuccessful interactions, but without decreasing the number of interactions
between participants, which would be expected if agents increase the restrictions on
desirable interactions.

In seeking to determine that, we observe the difference between the number of un-
successful and successful interactions for agents using two different decision-making
strategies: simple reciprocation, and analysis of cooperative situations. Our hypothe-
sis is that by analysing cooperative situations the agents can improve the number of
successful interactions in the society, without significatively reducing the number of
achieved interactions.

4.2 Strategies

Both strategies for selecting among alternative interaction partners are based on the
analysis of exchange values. The difference is that, in the simple reciprocation, agents
take into account only the credits and debts they have with other agents, as described in
previous work [9], while in the analysis of cooperative situations, agents also take into
account the balance of each interaction in which they participate to decide whether to
cooperate and to which partner to send a request.

Consider the set of possible providers as P = {p1, .., pn} for a service sri, and the
set of received requests as Q = {q1, .., qm}. For simple reciprocation, the decision-
making strategy is as follows.

1. For an agent α requesting a service:

(a) remove from P agents that did not pay their debts in the past;
(b) let Po be an ordered sequence of the elements in P according to the credits α

has with each agent in P , with higher credits first (since providers with debt
are more likely to cooperate);

(c) send a request to the first agent in Po;
(d) while the request is refused, send the request to the next agent in Po.

2. For an agent β providing a service:

(a) remove from Q requests from agents that did not pay their debts previously,
since they are likely not to reciprocate in the future;



366 M.R. Rodrigues and M. Luck

(b) let Qo be an ordered sequence of the elements in Q according to the debts β
has with each agent in Q, with higher debts first (so that β can reciprocate for
services received previously);

(c) accept requests in order, until reaching maximum capacity, and refuse the re-
maining requests.

In the analysis of cooperative situations strategy, decision-making complements items
1(b) and 2(b) by avoiding repetition of unsuccessful interactions, as described in Section
3.2. This strategy is presented below:

1. For agent α:
(b) reorder sequence Po by moving the candidate providers with which α had un-

successful interactions previously to the end of the sequence, such as cases
in which α’s satisfaction is smaller than its debt, sα < tα (indicating that α
received a service under its expectations).

2. For agent β:
(b) deny requests from agents from which β received an unfair evaluation in previ-

ous interactions causing its renouncement to be greater than its credit, rβ > vβ ;
and reorder the requesters in Qo with equivalent debt with those with which β
had higher satisfaction from previously received services first.

Thus, by analysing the balance of their exchange values in previous interactions,
requesters try to avoid sending requests to agents that provided a poor service in the
past (resulting in sα < tα), and providers try to avoid continue cooperating with agents
that did not reciprocate in the past and also those that are under-evaluating the service
they are providing (resulting in rβ > vβ).

4.3 Simulation Configuration

To simulate cooperative interactions between agents with different perspectives over
service evaluations, we require: first, that agents have different skills to provide services,
and second, that agents have different expectations towards received services. Thus,
every provider has an associated skill from the set k = {0.5, 1, 2}, where 0.5 means
the provider has low skills; 1, medium skills; and 2, high skills. Also, every service an
agent needs is associated with an expected quality of result exp = {0.5, 1, 2}, where
0.5 means the requester has low expectations; 1, medium expectations; and 2, high
expectations.

Each service sri is associated with an execution effort effsri (for the purpose of
comparison, we assume that all agents invest the same effort to perform the same ser-
vice), and the relation between the effort to perform the service and the skill of the
provider determines the service result, represented by ressri . The service result is in-
formed to the requester after execution and calculated as follows:

ressri = effsri × ksri

A simulation in our experiment consists of a number of iterations. In each iteration,
all agents perform an action: they can request a service or provide a service. They use
their decision-making strategy to decide whether to provide a service and to whom to



Cooperative Interactions: An Exchange Values Model 367

send a request. An interaction occurs when the request is accepted and a service is
received. After every interaction, the agents determine their individual evaluation of the
service. The requester (α) evaluates service sri as follows:

Evalα(sri) =
ressri

expsri

The provider (β) evaluates the performed service sri as follows:

Evalβ(sri) =
effsri

ksri

Based on these evaluations, α and β determine their exchange values, as described
in the next section.

In real applications, evaluations might be determined in a straightforward way
through an objective evaluation process. More specifically, the provider’s evaluation
(Evalβ) could be based on a cost function (which would include an effort measure re-
lated, for example, to processing time or memory usage), and the receiver’s evaluation
(Evalα) based on a utility function (which would consider the actual service result and
an expected result).

In every simulation run, we fix the number of total requests the agents can send, and
record the total number of interactions that occurred, and the number of unsuccessful
interactions.

4.4 Determining Exchange Values

After agent α receives a service sri from another agent β, α determines its satisfaction
(s) and debt (t) values. The satisfaction is determined by α based on its evaluation of the
received service. We assume that the debt acknowledged by α is always 1 to represent
the situations in which the result of the service provided by β achieved α’s expectations
(

ressri

expsri
= 1). Therefore, α’s satisfaction and debt values are:

– Vα,β(s) = Evalα(sri)
– Vα,β(t) = 1

Regarding the balance of α’s exchange values, if α’s evaluation of the service is
less than expected, Vα,β(s) < Vα,β(t), the interaction is considered unsuccessful for α.
After determining its exchange values, α communicates its satisfaction to β to represent
its valorisation of the latter.

After agent β provides a service to α, it determines its renouncement (r) and credit (v)
values. The renouncement of β to perform sri is determined according to its evaluation
of the service, and the valorisation of β by α is stored by β as a credit. Thus, β’s
renouncement and credit values are:

– Vβ,α(r) = Evalβ(sri)
– Vβ,α(v) = Vα,β(s)

If β’s renouncement is greater than the credit it gained, Vβ,α(r) > Vβ,α(v), the in-
teraction is considered unsuccessful for β.



368 M.R. Rodrigues and M. Luck

Table 1. Population variation for Experiment 1

characteristic percent in population
providers skills low(20%), medium(60%), high(20%)

requester expectations low(25%), medium(60%), high(15%)

Table 2. Results

Strategy (U) Interactions (%) Total interactions
SR 26.4 769

ACS 6.9 756

4.5 Results

All simulations used a society with 30 agents, which provide and request services from
a set of 4 available services. We fixed the provider capacity at a maximum of 2 simul-
taneous services, and the total number of sent requests at 800. Services that are needed
and provided are distributed equality over the agent population, so that no provider is
busier than any other. The variation of the population of agents in terms of skills and
expectations follows the proportions in Table 1.

We performed two different experiments: in the first one, we vary the agents’ charac-
teristics (skills and expectations) but keep the proportions in Table 1; and in the second
one, we keep the proportions for requester expectations and vary the proportion of low-
skilled providers.

In the first experiment, we performed 50 simulations for both decision-making strate-
gies, varying the agents’ characteristics but keeping the proportions in Table 1, to pro-
vide variation to the agent population from one simulation to another, guaranteeing that
both decision-making strategies were simulated over the same agent population sample.
In each simulation, we recorded the total number of interactions that occurred between
agents, and the number of unsuccessful interactions (U) for each strategy. The average
results for the 50 simulations are shown in Table 2.

According to the results, when using the simple reciprocation strategy (SR), of the
800 sent requests, an average of 769 actually resulted in an interaction and, from this
total, 26% of the interactions were unsuccessful. However, when using the analysis of
cooperative situations strategy (ACS), an average of 756 requests actually resulted in
an interaction and, of this total, only 6.9% of the interactions were unsuccessful.

We observe that by analysing the balance of the exchange values when deciding over
cooperative interactions, agents can significantly reduce the number of unsuccessful in-
teractions. The decrease in the number of total interactions is justified by the increase in
the number of constraints that agents make on desirable interactions, when they analyse
the balance of exchange values. However, interactions were reduced by only 1.6% in
contrast with the significant reduction in the number of unsuccessful interactions.

In the second experiment, we test the behaviour of both strategies when we increase
the proportion of low-skilled providers in the agent population. To that end, we keep
the proportions for requester expectations in Table 1, fix the proportion of high-skilled
providers at 10%, and vary the proportion of low-skilled providers from 5% to 40%



Cooperative Interactions: An Exchange Values Model 369

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5  10  15  20  25  30  35  40
U

(%
)

low-skilled(%)

Varying percent of low-skilled providers

ACS
SR

Fig. 3. Percentage of unsuccessful interactions for different proportions of low-skilled providers
in the population

(the proportion of medium-skilled providers decreases proportionately with the increase
of low-skilled providers). The results are shown in Figure 3.

According to the results, when there are more providers performing poor quality
services (40%), the number of unsuccessful interactions can reach a critical amount
(almost 50%) if agents rely on simple reciprocation. However, by analysing cooperative
situations agents can reduce this amount to less than 30%.

We can see from the results that, when there is a significant number of poor quality
services, it becomes more critical to identify unsuccessful interactions, so that success-
ful ones can be maintained instead.

5 Related Work

Related work on exchange values [11] has proposed a centralised approach to coordi-
nate the balance of interactions in terms of exchange values, in which a social equilib-
rium supervisor uses exchange values and social rules to coordinate exchanges between
agents. An extension of this approach to address coordination of social exchanges in
spite of different personality traits of agents is presented in [12].

The valorisation of agents that act cooperatively to motivate cooperation in a multi-
agent system is used in [13] in the form of brownie points. Agents that perform tasks
for the group gain brownie points and agents that defect from group tasks lose brownie
points. Although it is applied to cooperative group work and our model focuses on one-
to-one cooperations, the brownie point approach is similar to the valorisation through
exchange values proposed in this paper in the sense that the credits earned by agents are
a motivation for providing services with no monetary return, which is the case of the
cooperative applications we focus on this paper. However, brownie points represent an
agent’s self-valorisation (the agent rewards itself for cooperating in a team) and not the
valorisation an agent receives from others in retribution for the provided service.

The analysis of reciprocal interactions as a criterion for deciding whether to coop-
erate with other agents is proposed by [14,15] in the form of an expected utility-based
decision-making. According to this approach, agents agree to cooperate if the cost of
helping the requester agent is smaller than the expected benefit of receiving help from
the requester and other agents in the future. By considering expected future help in



370 M.R. Rodrigues and M. Luck

the providers’s utility function, agents are motivated to cooperate with each other since
the probability of receiving resources increases with the number of times they helped
others. Similar to this approach, the decision-making based on exchange values also
provides a motivation for agents to cooperate with others and to maintain reciprocal
relations as a guarantee for future benefits. However, the utility based decision-making
does not consider the success of the cooperative relations in terms of the balance be-
tween the effort spent by the provider and the satisfaction of the receiver, which is
important to consider if the environment has agents with different preferences and per-
spectives, or even agents that reciprocate but by providing low quality services.

Alternatively, cooperation and reciprocity supported by norms and organisations is
proposed by [16], in which knowledge sharing between agents is supported by social
contracts and rules inside a virtual organisation framework. Agents that request infor-
mation from a provider have to offer a service in return that is of interest of the provider
by means of a formal contract, which is monitored by an organisation-related agent that
checks whether the agreement is followed. Although this approach uses reciprocity to
motivate cooperation, it differs from our approach in the way reciprocity is achieved.
Instead of using formal social contracts to enforce reciprocal relations, the exchange
values approach relies on the informal commitments represented by virtual credits and
debts which influence the chance of future interactions. Also, their approach does not
consider the evaluation of services neither the influence of the outcome of interactions
for the maintenance of cooperative relations.

6 Conclusion and Future Work

We have presented a computational approach for modelling non-economic, autonomous
cooperative interactions based on the theory of exchange values. Here, exchange val-
ues motivate agent interactions and their maintenance through a system of credits and
debts. Moreover, the credits and debts acquired by agents during interactions are based
on their individual evaluation of the service being performed or received, and the bal-
ance of these evaluations indicates whether an interaction was successful for each agent
involved. We argue that, by analysing the balance of exchange values in past interac-
tions, autonomous agents can identify situations in which the cooperation with other
agents is unsuccessful and decide whether to maintain this cooperation.

We presented a scenario in which agents participate in a cooperative application
in the bioinformatics domain by requesting and providing services to each other with
bounded resources, and with different perspectives over service evaluation. Agents have
two different cooperative strategies, one based on simple reciprocation of credits and
debts, and another based on the analysis of cooperative situations. We use an exper-
imental testbed to compare the number of unsuccessful interactions that occur when
agents use both approaches, and show that agents can reduce the number of unsuc-
cessful interactions by analysing cooperative situations and still keep a high number of
achieved interactions.

Future work aims to combine the analysis of exchange values and their balance with
the analysis of service dependencies between agents to improve the decision-making
strategy, as proposed in [8]. We also aim at developing a qualitative representation for



Cooperative Interactions: An Exchange Values Model 371

exchange values to which quantitative evaluations are mapped, to facilitate their appli-
cation to different scenarios (with different evaluation scales).

References

1. Burt, R.: The network structure of social capital. In: Research in Organizational Behavior,
vol. 22, JAI press, Greenwich, CT (2000)

2. Stein, L.: Creating a bioinformatics nation. Nature 417, 119–120 (2002)
3. Gao, H.T., Hayes, J.H., Cai, H.: Integrating biological research through web services. IEEE

Computer 38, 26–31 (2005)
4. Goble, C., Wroe, C., Stevens, R.: the myGrid consortium: The mygrid project: services ar-

chitecture and demonstrator. In: UK e-Science All Hands Meeting 2003, pp. 595–603 (2003)
5. Overbeek, R., Disz, T., Stevens, R.: The SEED: A peer-to-peer environment for genome

annotation. Communications of the ACM 47(11), 47–50 (2004)
6. Foster, I.: Service-oriented science. Science 308(5723), 814–817 (2005)
7. Piaget, J.: Sociological Studies. Routlege, London (1973)
8. Rodrigues, M.R., da Rocha Costa, A.C., Bordini, R.H.: A system of exchange values to

support social interactions in artificial societies. In: Second International Joint Conference
on Autonomous Agents and Multiagent Systems, Melbourne, pp. 81–88 (2003)

9. Rodrigues, M.R., Luck, M.: Analysing partner selection through exchange values. In: Sich-
man, J.S., Antunes, L. (eds.) MABS 2005. LNCS (LNAI), vol. 3891, pp. 24–40. Springer,
Heidelberg (2006)

10. Campbell, A.M., Heyer, L.J.: Discovering Genomics Proteomics and Bioinformatics. Ben-
jamin Cummings, San Francisco, CA (2002)

11. Dimuro, G.P., Costa, A.C.R.: Qualitative Markov decision processes and the coordination of
social exchanges in multi-agent systems. In: Gmytrasiewicz, P., Parsons, S. (eds.) Workshop
on Game Theoretic and Decision Theoretic Agents at IJCAI Conference, Edinburgh (2005)

12. Dimuro, G.P., Costa, A.C.R., Gona̧lves, L.V., Hübner, A.: Centralized Regulation of So-
cial Exchanges between Personality-based Agents. In: Boissier, O., Padget, J., Dignum, V.,
Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coor-
dination, Organizations, Institutions, and Norms in Multi-Agent Systems, Springer-Verlag,
Berlin (2006)

13. Glass, A., Grosz, B.: Socially conscious decision-making. In: Proceedings of the fourth in-
ternational conference on Autonomous agents, pp. 217–224. ACM Press, New York (2000)

14. Sen, S., Dutta, P.S., Saha, S.: Emergence and stability of collaborations among rational
agents. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS
(LNAI), vol. 2782, pp. 192–205. Springer, Heidelberg (2003)

15. Banerjee, D., Saha, S., Dasgupta, P., Sen, S.: Reciprocal resource sharing in p2p environ-
ments. In: Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, Netherlands (2005)

16. Dignum, V., Dignum, F.: Knowledge market: Agent-mediated knowledge sharing. In: Third
International/Central and Eastern European Conference on Multi-Agent Systems, Prague
(2003)



Author Index

Aldewereld, Huib 101, 163

Billhardt, Holger 19
Boissier, Olivier 86
Bordini, Rafael H. 133
Bou, Eva 229
Briot, Jean-Pierre 147

Choren, Ricardo 147
Clark, Keith 212
Cliffe, Owen 67
Colombetti, Marco 115
Cranefield, Stephen 308

da Rocha Costa, Antônio Carlos 133,
338

Dastani, Mehdi 3
de la Rosa Esteva, Josep Llúıs 259
De Vos, Marina 67
Dignum, Frank 3, 32, 101, 163, 322
Dignum, Virginia 3, 32
Dubois, Eric 86

Felićıssimo, Carolina 147

Gaertner, Dorian 212
Garćıa-Camino, Andrés 163, 177
Gâteau, Benjamin 86
Grizard, Amandine 274
Grossi, Davide 3, 101

Hermoso, Ramón 19
Hewitt, Carl 293
Hoogendoorn, Mark 48
Hübner, Alexandre 338

Jonker, Catholijn M. 48

Khadraoui, Djamel 86
Kollingbaum, Martin J. 245

López y López, Fabiola 194
López-Sánchez, Maite 229
Lucena, Carlos 147
Luck, Michael 356

Meyer, André P. 322
Meyer, John-Jules Ch. 322
Montealegre Vázquez, Luis Erasmo 194
Muller, Guillaume 274
Muntaner-Perich, Eduard 259

Neef, Martijn 322
Noriega, Pablo 163
Norman, Timothy J. 245

Okuyama, Fabio Y. 133
Ossowski, Sascha 19

Padget, Julian 67
Pereira Dimuro, Graçaliz 338
Preece, Alun 245

Rodrigues, Máıra R. 356
Rodŕıguez-Aguilar, Juan-Antonio 163,

177, 229
Royakkers, Làmber 3

Sergot, Marek 212
Sierra, Carles 163, 177
Sleeman, Derek 245
Stratulat, Tiberiu 274

Treur, Jan 48

van der Vecht, Bob 322
Vargas Gonçalves, Luciano 338
Vasconcelos, Wamberto 177
Vercouter, Laurent 274
Viganò, Francesco 115


	Title page
	Preface
	Organization
	Table of Contents
	MODELLING AND ANALYZING ORGANIZATIONS
	Structural Aspects of the Evaluation of Agent Organizations
	Introduction
	Organizational Structure
	Some Terminology
	Representing Organizational Structures

	Measuring Structure
	Completeness, Connectedness, Economy
	Unilaterality, Univocity, Flatness
	Detour, Overlap, Cover and Chain
	An Example

	Criteria and Structure
	Robustness
	Flexibility
	Efficiency

	Tuning Structural Measures to Organizational Properties
	Conclusions and Future Work
	References

	Integrating Trust in Virtual Organisations
	Introduction
	Background
	Trust Mechanisms in Virtual Organisations
	Basic Trust Model for Virtual Organisation
	Confidence and Trust for Organisational Structures
	Confidence Inference Using Role and Interaction Similarities

	AnExample
	Conclusion
	References

	Coordinating Tasks in Agent Organizations Or:  Can We Ask You to Read This Paper?
	Introduction
	Social Structure
	Coordination in MAS
	Roles and Dependencies
	Roles
	Coordination Types
	Dependencies Between Roles

	Role Dependencies and Coordination
	Relationship Types
	Realizing Coordination
	Implications of Coordination

	Conclusion
	References

	Redesign of Organizations as a Basis for Organizational Change
	Introduction
	A Component-Based Model for (Re)design of Organizations
	Organization Models as Design Objects
	RQSM: Changing Requirements Upon Environmental Change
	RQSM: Refining Requirements Based on Interlevel Relations
	DODM: Constructing Design Objects
	(Re)design Process Evaluation
	Simulation Results
	Discussion
	References

	MODELLING AND ANALYZING INSTITUTIONS
	Specifying and Reasoning About Multiple Institutions
	Introduction
	Multi-institutions
	The Single Institution
	Combining Institutions
	Operational Specification
	Semantics
	A Simple Example: Borrowing

	InstAL: An Action Language for Describing Institutions
	Syntax
	Model Evaluation
	An Extended Example: Contract Enforcement

	Discussion and Related Work
	Related Papers in This Volume

	References

	Controlling an Interactive Game with a Multi-agent Based Normative Organisational Model
	Introduction
	Motivations
	Interactive Game
	Electronic Institution of Interactive Games Regulation
	General View ofMOISEInst

	Structural and Functional Specifications
	Structural Specification
	Functional Specification

	Contextual and Normative Specifications
	Contextual Specification
	Normative Specification

	Related Works
	Conclusion and Perspectives
	References

	Ubi Lex, Ibi Poena: Designing Norm Enforcement in E-Institutions
	Introduction
	Dealing with Violations
	Different Enforcements, Different Societies
	An Example
	E-Institutions: To Regiment or to Enforce?

	Sanctions in E-Institutions
	A Taxonomy of Sanctions
	Sanctions and Types of Agents

	Conclusions
	References

	Specification and Verification of Institutions Through Status Functions
	Introduction
	The Institution Metamodel
	FIEVeL
	Translating FIEVeL into Promela
	Verifying Institutions
	Discussion and Conclusions
	References

	NORMATIVE MODELS AND ISSUES
	Spatially Distributed Normative Objects
	Introduction
	The MAS-SOC Platform
	Modelling Physical Environments with ELMS
	Notes on Environment Descriptions

	Normative Objects and Situated Norms
	Normative Objects and Situated Norms in ELMS
	Normative Places in ELMS

	MAS-SOC Modelling of Organisations Governed by Situated Norms
	Example
	Related Work
	Conclusions
	References

	Informing Regulatory Dynamics in Open MASs
	Introduction
	Norm-Aware Open Multi-agent Systems
	Case Study
	Examples of Environment, Organization, Role and Interaction Norms
	Applying Environment, Organization, Role and Interaction Norms
	Case Study Implementation

	Related Work
	Conclusion
	References

	Operationalisation of Norms for Electronic Institutions
	Introduction
	Electronic Institutions
	Integrity and Dialogical Constraints
	Semantics
	Implementing Norms
	Other Normative Approaches
	Norms in Z
	Event Calculus Norms

	Contextualising Norms
	Ontological Interpretations of Concepts
	Introducing Procedural Information

	Conclusions
	References

	Norm-Oriented Programming of Electronic Institutions: A Rule-Based Approach
	Introduction
	Norm-Oriented MAS: Desiderata
	A Rule Language for Norms
	Implementation

	Electronic Institutions
	Example: The Dutch Auction
	Proposed Solution

	Comparison with Other Normative Languages
	Conclusions and Future Work
	References

	An Agent-Based Model for Hierarchical Organizations
	Introduction
	Normative Multi-Agent Systems
	Norms
	Normative Agents

	An Agent-Based Hierarchical Organization
	Resources
	Organizational Goals
	Organizational Services
	Contracts
	Position Profiles
	Organizational Agents
	Administrative Process
	Administrative Agents
	Global View

	The Applicability of the Model
	Conclusions
	References

	Ballroom etiquette: A Case Study for Norm-Governed Multi-Agent Systems
	Introduction
	The Simulation
	Negotiation Protocols
	Norms
	Architecture
	Virtual, Distributed Institutional State
	Related Work
	Summary and Future Work
	References

	NORM EVOLUTION AND DYNAMICS
	Towards Self-configuration in Autonomic Electronic Institutions
	Introduction
	Autonomic Electronic Institutions
	Norm Adaptation

	Case Study: Traffic Control
	AEI Specification
	Experimental Settings and Design

	Results
	Discussion and Future Work
	References

	Norm Conflicts and Inconsistencies in Virtual Organisations
	Introduction
	Usage Scenario
	Norm-Governed Practical Reasoning
	Conflicts and Inconsistencies

	Norm Refinement
	Labeling Actions
	Detecting Conflicts
	Options for Re-negotiation

	Related Work
	Conclusion
	References

	Using Dynamic Electronic Institutions to Enable Digital Business Ecosystems
	Introduction
	Electronic Institutions
	Dynamic Electronic Institutions
	The Foundation Phase
	Formalisation of the Foundation Phase
	Exploratory Work

	Using DEIs to Enable Digital Business Ecosystems
	Discussion and Conclusions
	References

	A Peer-to-Peer Normative System to Achieve Social Order
	Introduction
	Norms and Control
	Social Norms Revisited
	Reputation as Sanction or Reward

	An Overlay System to Sanction the Violation of Rules
	Application Agents
	Controller Agents
	Interaction Between Agents

	Experimental Results
	The Scenario of P2P File Sharing
	Rules of the Scenario
	Experiments

	Convention Dynamics
	Conclusion
	References

	AUTONOMY, COORDINATION AND SOCIAL ORDER
	What Is Commitment? Physical, Organizational, and Social (Revised)
	Introduction
	Information
	Information Is Necessarily Incomplete
	Information Is Relational

	ActorsandEvents
	Activation Ordering
	Arrival Orderings
	Combined Ordering
	Discreteness

	Denotational Semantics
	Domain of Timed Actor Computations
	Power Domains
	Denotations

	Commitment
	What Is Physical Commitment?
	Physical Commitment and Contracts
	Organizational Commitments
	Social Commitments
	Inconsistent Social Commitments
	Psychological Commitment
	Electronic Institutions

	Speech Act Semantics
	Limitations of Perlocutionary Semantics
	Limitations of Illocutionary Semantics
	Web Services

	Prospects and Future Work
	References

	Modelling and Monitoring Social Expectations in Multi-agent Systems
	Introduction
	Overviewofhy$MITL^{±}$
	Representing Events and Facts
	Social Expectations
	A Human-Oriented Time Scale
	A Date/Time Language Based on ISO Standard 8601
	The Need for Time Zones

	The Lifecycle of a Social Expectation
	Expressive Power Versus Inference Capability
	Related Work
	Conclusion
	References

	Influence-Based Autonomy Levels in Agent Decision-Making
	Introduction
	Autonomy
	Mixed-Initiative Systems
	Agent Autonomy
	Related Work on Agent Autonomy

	Decision Making on Different Levels of Autonomy
	Agent Deliberation: Introducing the OODA-Loop
	Inter-agent Influences
	Influence-Based Levels of Autonomy
	Towards Adjustable Autonomy

	Experiment
	Organizational Description
	Results and Discussion

	Conclusion and Future Work
	References

	Centralized Regulation of Social Exchanges Between Personality-Based Agents
	Introduction
	The Modelling of Social Exchanges
	The Social Exchange Regulation Mechanism
	Personality-Based QI-MDPs
	The States
	The Actions
	Exchanges Between Personality-Based Agents
	Optimal Value Recommendations
	Formal Definition and Analysis of the Stabilization Process

	A Sample Simulation
	Related Work
	Conclusion
	References

	Cooperative Interactions: An Exchange Values Model
	Introduction
	Exchange Values
	Piaget’s Theory of Exchange Values
	Dynamics of Exchange Values

	Analysing Cooperative Interactions
	Scenario
	Cooperative Situations

	Experiment
	Scenario
	Strategies
	Simulation Configuration
	Determining Exchange Values
	Results

	Related Work
	Conclusion and Future Work
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (ISO Coated v2 300% \050ECI\051)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




