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Abstract. We introduce the Blue-Red Matching problem: given a
graph with red and blue edges, and a bound w, find a maximum match-
ing consisting of at most w edges of each color. We show that Blue-Red

Matching is at least as hard as the problem Exact Matching (Pa-
padimitriou and Yannakakis, 1982), for which it is still open whether it
can be solved in polynomial time. We present an RNC algorithm for this
problem as well as two fast approximation algorithms. We finally show
the applicability of our results to the problem of routing and assigning
wavelengths to a maximum number of requests in all-optical rings.

1 Introduction

We define and study a matching problem on graphs with blue and red edges;
we call the new problem Blue-Red Matching (BRM for short). The goal is
to find a maximum matching under the constraint that the number of edges of
each color in the matching does not exceed a given bound w.

We are motivated for this study by a problem that arises in all-optical
networks, namely DirMaxRWA [12]. In particular, it was implicit in [12]
that solving BRM exactly would imply an improved approximation ratio for
DirMaxRWA in rings. Moreover, BRM can capture several interesting scenar-
ios such as the following: Consider a team of friends that would like to play
chess or backgammon. Some pairs prefer to play chess, while other pairs prefer
backgammon. There could even exist pairs that would like to play either game.
Now, if the number of available boards for each game is limited we need to solve
BRM if we want to maximize the number of pairs that will manage to play the
game of their preference.

In this work we first show that BRM is at least as hard as Exact Matching,
a problem defined by Papadimitriou and Yannakakis [13], for which it is still
an open question whether it can be solved in polynomial time. Therefore, an
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exact polynomial time algorithm for BRM would answer that question in the
affirmative.

Our main result is that BRM can be solved exactly by a polynomial time
randomized (in fact RNC2) algorithm, which uses ideas from [10]. Since the
sequential version of the randomized algorithm is quite slow, we also present
two approximation algorithms for BRM; the first is a fast and simple greedy
algorithm that achieves a 1

2 -approximation ratio, the second is a more involved
algorithm that achieves an asymptotic 3

4 -approximation ratio.
We finally demonstrate the relation between BRM and DirMaxRWA in

rings, by showing that an algorithm for BRM with (asymptotic) approximation
ratio a results in an algorithm for DirMaxRWA in rings with (asymptotic)
approximation ratio a+1

a+2 . Combining all the above results we obtain as a corol-
lary that DirMaxRWA in rings admits a randomized approximation algorithm
with ratio 2

3 and a (much faster) deterministic approximation algorithm with
asymptotic ratio 7

11 .
As far as we know BRM has not been studied before. As mentioned earlier, a

related problem is Exact Matching [13] which admits an RNC algorithm due
to Mulmuley, Vazirani and Vazirani [10]. Polynomial time algorithms for Exact

Matching are known only for special classes of graphs, e.g. complete graphs [7]
and complete bipartite graphs [7][17].

2 Problem Definition and Hardness

Let G = (V, Eblue ∪ Ered) be a graph in which each edge is colored either blue
or red; Eblue is the set of blue edges and Ered the set of red edges. A matching
M in G is called w-blue-red matching if M ∩ Eblue ≤ w and M ∩ Ered ≤ w, that
is, if it contains at most w edges of each color.

The notion of w-blue-red matching can be extended for multigraphs that
may contain edges of both colors between two vertices. It is easy to see that
in fact we do not have to use multigraphs; it suffices to specify a third set of
initially uncolored (white) edges as follows. Let G = (V, Eblue ∪ Ered ∪ Ewhite)
be a graph in which Eblue, Ered, and Ewhite are sets of blue, red, and white
edges respectively. A matching M in G is called w-blue-red matching if there
exists a partition {Ewb, Ewr} of Ewhite such that M ∩ (Eblue ∪ Ewb) ≤ w and
M ∩ (Ered ∪ Ewr) ≤ w. In other words M is a w-blue-red matching if we can
choose a color for each white edge in G so that M contains at most w edges of
each color.

We define BRM to be the following optimization problem: given a graph
G = (V, Eblue∪Ered∪Ewhite) and a positive integer w, find a w-blue-red matching
of maximum cardinality. In the decision version of this problem, denoted by
BRM(D), a bound B is also given and the question is whether G has a w-blue-
red matching of cardinality at least B.

It turns out that BRM(D) is closely related to a well known problem, namely
Exact Matching, defined in [13]. In this problem, the input is a graph G =
(V, E), a set of red edges E′ ⊆ E and a positive integer k and the question is
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whether G contains a perfect matching involving exactly k edges in E′. The next
theorem shows that BRM(D) is at least as hard as Exact Matching.

Theorem 1. There is a logarithmic space reduction from Exact Matching to
BRM(D).

Proof. Consider a graph G = (V, E), a set of red edges E′ ⊆ E and a positive
integer k.

If |V | is an odd number or k > |V |
2 , then G does not contain a perfect matching

involving exactly k edges in E′. In that case we construct a ‘no’ instance of
BRM(D) (for example, any instance with 2w < B).

Otherwise, let w = max(k, |V |
2 − k) and r = w − min(k, |V |

2 − k). Graph G∗

is obtained from G by adding 2r new vertices u1, . . . , ur, v1, . . . , vr and r edges
{u1, v1}, . . ., {ur, vr}. The additional edges are colored blue if k > |V |

2 − k,
otherwise they are colored red. Furthermore, edges in E − E′ are colored blue
and edges in E′ remain red in G∗. Let B = 2w.

The above construction requires logarithmic space. It is not hard to check
that G contains a perfect matching involving exactly k edges in E′ if and only
if G∗ contains a w-blue-red matching of cardinality B. ��

The above theorem indicates that it is probably not a trivial task to find a
polynomial time (deterministic) algorithm for BRM, since this would imply
polynomial time solvability for Exact Matching as well. Therefore, we will
restrict our attention to approximation and randomized algorithms.

3 Approximation Algorithms for Blue-Red Matching

We first observe that there exists a simple approximation algorithm for BRM,
which requires time linear in the number of edges. The algorithm, which we call
Greedy-BRM, constructs a w-blue-red matching M in a greedy manner: edges
are examined in an arbitrary order; an edge e is added to M if both endpoints
of e are unmatched and M contains fewer than w edges of the same color as e
(or M contains fewer than w edges of any color if e is white). It is not hard to
prove the following:

Theorem 2. Algorithm Greedy-BRM returns a solution with at least 1
2 · μOPT

edges, where μOPT is the cardinality of an optimal solution.

In the remaining of this section we present an approximation algorithm for BRM,
which achieves asymptotic approximation ratio 3

4 .
The algorithm first computes a maximum cardinality matching M (Step 1).

In Step 2, a color is assigned to each white edge of the graph. If after Step 2 M
contains more than w edges of one color and fewer than w edges of the other
color then Step 3 is executed in order to produce a more balanced matching.
Finally, Step 4 eliminates superfluous edges of any of the two colors.
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Algorithm Balance-BRM

Input: graph G = (V, Eblue ∪ Ered ∪ Ewhite), integer w.
Output: a w-blue-red matching of G.

1. find a maximum matching M in G
2. for every white edge e do

color e with the color which is currently less used in M , breaking ties arbitrarily
let E′

red, E
′
blue be the sets of red and blue edges after coloring the white edges

3. if M contains > w edges of one color and < w edges of the other color then
(Assume w.l.o.g. that the majority color in M is blue—the other case is symmetric)
(a) find a maximum matching Mred in graph Gred = (V, E′

red)
(b) let G′ be the graph resulting by superimposing M and Mred

(c) let S be the set of all connected components in G, in which the number of
edges that belong to Mred is greater than the number of red edges that belong
to M

(d) while M contains more than w + 1 blue edges and fewer than w red edges
and S is not empty do
(i) choose (arbitrarily) a connected component F in S. Let bM , bF be the

number of blue edges in M , F respectively
(ii) if bM − w < bF then pick a chain F ′ of edges in F containing exactly

bM − w blue edges, such that F ′ begins and ends with a blue edge
else let F ′ = F

(iii) delete from M all edges that belong to F ′; add to M all edges in F ′ that
belong to Mred

(iv) delete F from S

4. if M contains more than w blue (red) edges then
choose arbitrarily w of them and eliminate the rest

5. return M

We will next prove that algorithm Balance-BRM achieves an asymptotic 3
4 -

approximation ratio. Let us first note that if after the first two steps there are
either at most w edges of each color in matching M or at least w edges of each
color in M , then M (after removing surplus edges, in the latter case, in Step 4)
is an optimal solution. Therefore, it remains to examine the case in which there
are more than w edges of one color and fewer than w edges of the other after
Step 2. W.l.o.g. we assume that the majority color is blue. We will first give two
lemmata concerning Step 3.

Each substitution in Step 3 increases the number of red edges in M . However,
it may decrease the number of blue edges. In the extreme case one red edge
replaces two blue edges. Therefore, we have:

Lemma 1. If Step 3 of algorithm Balance-BRM decreases the number of blue
edges by δ, then it increases the number of red edges by at least δ/2.

If M contains more than w + 1 blue edges, then Step 3 can always perform a
substitution, unless the number of red edges has reached its maximum possible
value. Therefore we have:
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Lemma 2. If after Step 3, M contains more than w + 1 blue edges, then algo-
rithm Balance-BRM returns an optimal solution.

We are now ready to state the main theorem of this section.

Theorem 3. Algorithm Balance-BRM returns a solution with at least 3
4 ·μOPT −

1
2 edges, where μOPT is the cardinality of an optimal solution.

Proof. We prove the claim for the case in which the number of blue edges is
greater than the number of red edges. The other case is symmetric.

Let μSOL be the number of edges in the solution returned by Balance-BRM,
μr, μb be the number of blue and red edges respectively contained in M after
Step 2, and μred be the size of Mred. For convenience, let us also define z =
min(μred, w, μb + μr − w).

All red edges in an optimal matching belong to Ered ∪ Ewhite which is equal
to E′

red in the case in which blue is the majority color. Therefore μred is an
upper bound for the number of red edges in an optimal matching, which implies
μOPT ≤ w+μred. Since μb +μr is the size of the maximum cardinality matching
M , it also holds μOPT ≤ μb + μr = w + (μb + μr − w). Moreover, by definition
μOPT ≤ 2w. Combining the above inequalities we obtain:

μOPT ≤ w + z (1)

Lemma 2 implies that in any non-optimal solution, M contains at most w +1
blue edges after Step 3. Hence, in Step 3 the number of blue edges decreases by
at least μb − w − 1. By Lemma 1, the number of additional red edges is at least
(μb−w−1)

2 . Since after Step 3 the number of blue edges in M is at least w, we get
μSOL ≥ w + μr + (μb−w−1)

2 . Using the fact that, by definition, z ≤ μb + μr − w,
it turns out that:

μSOL ≥ w +
μb + μr − w

2
+

μr − 1
2

≥ w +
z

2
− 1

2
+

μr

2
≥ w +

z

2
− 1

2
(2)

From (2) and the fact that, by definition, z ≤ w we obtain:

μSOL ≥ 3z

2
− 1

2
(3)

From (1) and (2) we get that:

μOPT ≤ μSOL +
z

2
+

1
2

(4)

Finally, from (3) and (4) it follows that μOPT ≤ μSOL + 1
3 (μSOL + 1

2 ) + 1
2 =

4
3 (μSOL + 1

2 ), which is equivalent to μSOL ≥ 3
4μOPT − 1

2 . ��

It can be shown that the above asymptotic approximation ratio is tight. The
complexity of the algorithm is O(n2.5): Steps 1 and 3 require O(n2.5) time to
construct M and Mred and all the remaining tasks require time that is linear in
the number of edges, which is at most O(n2).
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4 A Randomized Algorithm for Blue-Red Matching

In this section we present a randomized polynomial time algorithm, called
Random-BRM that finds an optimal solution for BRM with high probability.
This algorithm makes use of some ideas proposed in [10].

Algorithm Random-BRM operates as follows: First, it augments G to a com-
plete graph G∗ by adding edges of a new color (say black). Then it assigns a
random weight to each edge of G∗ and constructs a variation of the Tutte ma-
trix of G∗, in which each indeterminate is replaced by a constant value or by
a monomial, depending on the weight and the color of the corresponding edge.
In particular the indeterminate that corresponds to a blue (red) edge eij of
weight wij is replaced by the monomial x2wij (resp. y2wij ). Then, the algorithm
computes the Pfaffian of this matrix, which in this case is a polynomial in the
variables x, y. Finally, it uses the coefficients of this polynomial in order to find
a specific matching in G∗, from which it obtains an optimal solution for BRM.

The detailed algorithm is given at the end of the section; its correctness is
based on a series of lemmata which are stated below, together with some neces-
sary definitions.

Consider a graph G = (V, E), where V = {v1, v2, . . . , vn} and E = Eblue ∪
Ered ∪ Ewhite, and an positive integer w. Without loss of generality we may
assume that n is even (otherwise an isolated vertex can be added to G). Let G∗

be the complete graph with set of vertices V . We denote the edge {vi, vj} by eij .
We assume that edges not in E are colored black, i.e. G∗ = (V, E ∪ Eblack). A
perfect matching of G∗ with exactly p blue and q red edges is called (p, q)-perfect
matching. We denote by M (resp. Mpq) the set of all perfect matchings (resp.
(p, q)-perfect matchings) of G∗.

Perfect matchings in G∗ can be used in order to obtain w-blue-red matchings
in G. For fixed w, let us define a function solw(p, q, t) = min(2w, min(w, p) +
min(w, q) + t). The lemma below explains the use of function solw:

Lemma 3. Let M be a (p, q)-perfect matching of G∗ with t white edges. Then
there exists a w-blue-red matching Mw ⊆ M of G of cardinality solw(p, q, t).

Proof. We can construct Mw as follows: we first select arbitrarily min(w, p) blue
edges and min(w, q) red edges from M and add them to Mw; then we repeatedly
select a white edge from M , color it with the color which is currently less used
by edges in Mw, and add it to Mw, until the cardinality of Mw becomes 2w or
we run out of white edges. In the latter case Mw = min(w, p)+min(w, q)+ t. ��

Suppose that a number sij is selected at random from {1, 2, . . . , n4}, for each
(i, j), 1 ≤ i < j ≤ n, and define the weight wij of eij as follows:

wij =
{

sij if eij ∈ E
n5 + sij if eij ∈ Eblack

The weight of a perfect matching M is WM =
∑

eij∈M wij . We denote by Wpq

the minimum weight of a matching among all matchings in Mpq. The number of
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white edges in a (p, q)-perfect matching with weight Wpq can be easily computed,
using the next lemma:

Lemma 4. Let p, q be integers, with 0 ≤ p, q ≤ n
2 and let Mpq be a minimum

weight (p, q)-perfect matching of G∗. Then the number of white edges in Mpq is
n
2 − p − q − 
Wpq

n5 �.

The following lemma can be used to compute the number of edges in an optimal
w-blue-red matching:

Lemma 5. The number of edges in an optimal w-blue-red matching of graph G
is

C = max
(p,q):Mpq �=∅

solw(p, q,
n

2
− p − q − 
Wpq

n5 �).

The Tutte matrix A of G∗ is defined as follows:1

aij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i = j
2wij if i < j and eij ∈ Ewhite ∪ Eblack

x2wij if i < j and eij ∈ Eblue

y2wij if i < j and eij ∈ Ered

−aji if i > j

The canonical permutation for a perfect matching M ∈ M, denoted by πM ,
is the unique permutation of {1, 2, . . . , n} that satisfies the following properties:

– {vπM (2i−1), vπM (2i)} ∈ M , for every i, 1 ≤ i ≤ n
2

– πM (2i − 1) < πM (2i), for every i, 1 ≤ i ≤ n
2

– πM (2i − 1) < πM (2i + 1), for every i, 1 ≤ i ≤ n
2 − 1

For every matching M , let sign(πM ) = (−1)|{(i,j): i<j, πM (i)>πM (j)}| and
value(πM ) =

∏n/2
i=1 aπM (2i−1),πM (2i) .

The Pfaffian of A is defined as follows: PF(A) =
∑

M∈M sign(πM ) ·
value(πM ). The Pfaffian of A is a polynomial of the form: PF(A) =∑n/2

p=0
∑n/2

q=0 cpqx
pyq and it can be computed by interpolation (see [6]), using

an algorithm that computes arithmetic Pfaffians [4,8] as a subroutine.
The term xpyq of PF(A) corresponds to the (p, q)-perfect matchings of G∗.

Therefore, if cpq is nonzero, then a (p, q)-perfect matching exists in G∗. The
converse does not necessarily hold: it is possible that the coefficient of cpq is
zero although G∗ contains (p, q)-perfect matchings, in the case where the terms
corresponding to these matchings are mutually cancelled. The following lemma
gives a sufficient condition so that the coefficient of cpq is nonzero.

Lemma 6. Let p, q be integers, with 0 ≤ p, q ≤ n
2 and suppose that there exists a

unique minimum weight (p, q)-perfect matching Mpq of G∗. Then the coefficient
cpq of PF(A) is nonzero. Furthermore, Wpq is the maximum power of 2 that
divides cpq.
1 Strictly speaking, A is a special form of the Tutte matrix of G∗, where each indeter-

minate has been replaced either by a specific value or by an indeterminate multiplied
by a specific value.
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Proof. We have: cpq = sign(πMpq)·2Wpq +
∑

M∈Mpq−{Mpq} sign(πM )·2WM Since
Mpq is a unique minimum weight (p, q)-perfect matching, Wpq < WM for every
M ∈ Mpq−{Mpq}. Therefore cpq mod 2Wpq = 0 and cpq mod 2Wpq+1 = 1, which
imply that cpq �= 0 and that W is the maximum power 2 that divides cpq. ��

For every edge eij of G∗ we define

Zij =
∑

M∈M:eij∈M

sign(πM ) · value(πM )

(that is, Zij is the part of PF(A) that involves eij). The following lemma shows
how Zij can be computed up to sign.

Lemma 7. For every edge eij of G∗, Zij = σ · aij · PF(Aij) where σ ∈ {−1, 1}
and Aij is the matrix obtained from A by removing the i-th and j-th row and
the the i-th and j-th column.

If G∗ has a unique minimum weight (p, q)-perfect matching Mpq, we can decide
whether an edge belongs to Mpq, using the following lemma:

Lemma 8. Suppose that G∗ has a unique minimum weight (p, q)-perfect match-
ing Mpq. Let c be the coefficient of xpyq in Zij. Then eij ∈ Mpq if and only if
2Wpq+1 does not divide c.

In order to bound from below the probability that the algorithm returns an
optimal solution, we make use of the following strong version of the Isolating
Lemma:

Lemma 9. (Isolating Lemma [10]) Let B = {b1, b2, . . . , bk} be a set of
elements, let S = {S1, S2, . . . , S�} be a collection of subsets of B and let
a1, a2, . . . , a� be integers. If we choose integer weights w1, w2, . . . wk for the ele-
ments of B at random from the set {1, 2, . . . , m}, and define the weight of set
Sj to be aj +

∑
bi∈Sj

wi then the probability that the minimum weight subset in
S is not unique is at most k

m .

Theorem 4. Algorithm Random-BRM returns an optimal solution with proba-
bility at least 1

2 .

Proof. If there exists a unique minimum weight element Mpq in every non-empty
set Mpq, 0 ≤ p, q ≤ n

2 then it follows from Lemmata 3, 5, 6, 7 and 8 that the
above algorithm returns an optimal w-blue-red matching.

The probability that Mpq contains at least two minimum weight elements for
fixed values p and q is at most 1

2n2 by the Isolating Lemma. Thus, the probability
that there exist values p, q such that Mpq contains at least two minimum weight
elements is at most (n

2 +1)2 · 1
2n2 ≤ 1

2 . Therefore the algorithm returns a correct
solution with probability at least 1

2 . ��
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Algorithm Random-BRM

Input: graph G = (V, Eblue ∪ Ered ∪ Ewhite) with even number of vertices n, positive
integer w.
Output: maximum w-blue-red matching (with probability ≥ 1

2 ).

1. augment G to a complete graph G∗ by adding a set Eblack of black edges
2. for every eij ∈ G∗ do

– choose at random a number sij from {1, 2, . . . , n4}
– if eij ∈ Eblack then wij := n5 + sij

else wij := sij

3. construct the Tutte matrix A of G∗

4. compute PF(A); let cpq be the coefficient of xpyq in in PF(A), 0 ≤ p, q, ≤ n
2

5. for every (p, q) ∈ {0, 1, . . . n
2 }2 do

– if cpq �= 0 then let Wpq be the maximum power of 2 that divides cpq

else Wpq := ∞
find (p, q) ∈ {0, 1, . . . n

2 }2 such that solw(p, q, n
2 − p − q − �Wpq

n5 	) is maximum
6. Mpq := ∅

for every eij ∈ G∗ do
– compute |Zij | := |aij · PF(Aij)|
– let c be the coefficient of xpyq in |Zij |
– if c mod 2Wpq+1 �= 0 then Mpq := Mpq ∪ {eij}

7. compute a w-blue-red matching M from Mpq , by a greedy coloring of white edges
8. return M

Complexity. Sequentially, the algorithm requires O(n7) time, since the compu-
tation of the symbolic Pfaffian requires O(n5) time, using the algorithm in [4]
which computes arithmetic Pfaffians in O(n3) time and Step 6 requires the com-
putation of O(n2) minor Pfaffians. However all steps can be parallelized resulting
in a RNC algorithm (in the parallel version, the algorithm from [8] is used to
compute arithmetic Pfaffians). In fact, it can be shown by careful analysis that
Random-BRM is an RNC2 algorithm.

5 Application to Optical Networking

In this section we show how solving BRM can help in approximately solv-
ing the Directed Maximum Routing and Wavelength Assignment

(DirMaxRWA) problem in rings.
DirMaxRWA is defined as follows [12]: Given are a directed symmetric graph

G, a set of requests (pairs of nodes) R on G, and an integer w (bound on the
number of available wavelengths). The goal is to find a routing and wavelength
assignment to an as large as possible set of requests R′ ⊆ R such that any two
requests routed via edge-intersecting paths receive different wavelengths and only
wavelengths from {1, . . . , w} are used.

It can be shown that the algorithm for DirMaxRWA in rings proposed in
[12] can be modified to make an explicit call to an algorithm for solving BRM

(instead of implicitly solving it, as was the case originally).
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The following theorem relates the approximation ratio of the modified algo-
rithm to the approximation ratio achieved by the algorithm for BRM that is
employed. The proof is an adaptation of the analysis of the algorithm presented
in [12] and will appear in the full version.

Theorem 5. An algorithm for BRM which returns a w-blue-red matching con-
taining at least a ·μOPT − b edges, where μOPT is the size of an optimal solution
and a > 0, b ≥ 0 are constants, results in an algorithm for DirMaxRWA in
rings that satisfies at least a+1

a+2 · OPT − b
a+2 requests, where OPT is the size of

an optimal solution for DirMaxRWA.

Therefore, by using the algorithms for BRM proposed in the previous sections
(Random-BRM and Balance-BRM) we obtain the following:

Corollary 1. DirMaxRWA in rings admits a randomized approximation algo-
rithm with ratio 2

3 and a deterministic approximation algorithm with asymptotic
ratio 7

11 .

Note that the 2
3 approximation ratio is tight, as can be shown by appropriate

examples.2 The deterministic algorithm is slightly worse in terms of approxima-
tion ratio, but is considerably faster. An even faster deterministic approximation
algorithm with ratio 3

5 is obtained if we use algorithm Greedy-BRM as a subrou-
tine. As regards time requirements, it can be shown that the complexity of the
algorithm for DirMaxRWA is dominated by the complexity of the algorithm
for BRM that is employed; therefore it is O(n7) if we use Random-BRM for
solving BRM, while it is O(n2.5) if we use Balance-BRM and O(n2) if we use
Greedy-BRM.
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