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Abstract. We investigate the state complexity of basic operations for
suffix-free regular languages. The state complexity of an operation for
regular languages is the number of states that are necessary and sufficient
in the worst-case for the minimal deterministic finite-state automaton
that accepts the language obtained from the operation. We establish
the precise state complexity of catenation, Kleene star, reversal and the
Boolean operations for suffix-free regular languages.

1 Introduction

Codes are useful in many areas such as information processing, data compression,
cryptography and information transmission [16]. Some of well-known codes are
prefix codes, suffix codes, bifix codes and infix codes. People use different codes
for different applications based on the characteristic of each code [1,16]. Since
codes are sets of strings over an alphabet, they are closely related to formal
languages: a code is a language. Thus, the condition defining a class of codes
defines a corresponding subfamily of each language family. For regular languages,
for example, suffix-freeness defines suffix-free regular languages, which constitute
a subfamily of regular languages.

There are different ways to define the complexity of a regular language L.
One classical definition is the total number of states in the minimal determinis-
tic finite-state automaton (DFA) for L since the minimal DFA for L is unique
(up to isomorphism) [13,21]. Based on this definition, Yu and his co-authors [24]
defined the state complexity of an operation for regular languages to be the
number of states that are necessary and sufficient in the worst-case for the mini-
mal DFA that accepts the language obtained from the operation. Yu [23] gave a
comprehensive survey of the state complexity of regular languages. Salomaa et
al. [20] studied classes of languages for which the reversal operation reaches the
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exponential upper bound. As special cases of the state complexity, researchers
examined the state complexity of finite languages [3,8], the state complexity of
unary language operations [19] and the nondeterministic descriptional complex-
ity of regular languages [11,12]. There are several other results with respect to
the state complexity of different operations [4,5,6,14,15,18].

Recently, Han et al. [9] examined the state complexity of prefix-free regu-
lar languages. They tackled the problem based on the structural property of
prefix-free DFAs: A prefix-free DFA must be non-exiting assuming all states
are useful [10]. It turns out that the state complexity for the prefix-free case is
strictly less than the corresponding state complexity for regular languages over
some basic operations. We know that if a language L is prefix-free, then its rever-
sal LR is suffix-free by definition. Moreover, if L is regular and non-empty, then
the start state of a DFA for LR should not have any in-transitions. However, this
condition is necessary but not sufficient. Due to this fact, the state complexity of
suffix-free regular languages is not symmetric to the prefix-free case. This leads
us to investigate the state complexity of basic operations on suffix-free regular
languages. Interestingly, the results for catenation and Kleene star turn out to
be of a totally different order than in the case of prefix-free regular languages.

In Section 2, we define some basic notions. In Section 3, we examine the state
complexity of Kleene star and reversal of suffix-free regular languages. We then
look at the catenation of two suffix-free minimal DFAs in Section 4. Next, we
investigate the state complexity of intersection and union of suffix-free regular
languages based on the Cartesian product of states in Section 5. We present the
comparison table of the state complexity on different types of regular languages
and conclude the paper in Section 6.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over
Σ is any subset of Σ∗. Given a set X , 2X denotes the power set of X . For a
string x ∈ Σ∗ and a character a, |x|a denotes the number of symbol a occurrences
in x. We say that a string x is a suffix of a string y if y = ux for some string u.
We define a set X of strings to be a suffix-free set if a string from X is not a
suffix of any other string in X . Given a string x from a set X , let xR be the
reversal of x, in which case XR = {xR | x ∈ X}.

The symbol ∅ denotes the empty language and the character λ denotes the
null string. A finite-state automaton (FA) A is specified by a tuple (Q, Σ, δ, s, F ),
where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is a
transition function, s ∈ Q is the start state and F ⊆ Q is a set of final states.
If F consists of a single state f , we use f instead of {f} for simplicity. |Q|
denotes the number of states in Q. We define a state d to be a sink state if d
is reachable from s of A and, for any a ∈ Σ, δ(d, a) = d and d /∈ F . Since all
sink states are always equivalent, we can assume that A has a unique sink state.
For a transition δ(p, a) = q in A, we say that p has an out-transition and q has
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an in-transition. Furthermore, p is a source state of q and q is a target state of
p. The transition function δ can be extended to a function Q × Σ∗ → 2Q that
reflects sequences of inputs. A string x over Σ is accepted by A if there is a
labeled path from s to a state in F such that this path spells out the string x.
Namely, δ(s, x) ∩ F �= ∅. The language L(A) of an FA A is the set of all strings
that are spelled out by paths from s to a final state in F . We say that A is
non-returning if the start state of A does not have any in-transitions and A is
non-exiting if all out-transitions of every final state in A go to the sink state.

Given an FA A = (Q, Σ, δ, s, F ), we define the right language Lq of a state q
to be the set of strings that are spelled out by some path from q to a final state in
A; namely, Lq is the language accepted by the FA obtained from A by changing
the start state to q. We say that two states p and q are equivalent if Lp = Lq.

We define an FA A to be a DFA if the number of target states for each pair
of a state q and a character a ∈ Σ is one: namely, |δ(q, a)| = 1. Given a DFA A,
we assume that A is complete; namely, each state has |Σ| out-transitions. If A
has m states, then we say that A is an m-state DFA.

We define a (regular) language L to be suffix-free if L is a suffix-free set. A
regular expression E is suffix-free if L(E) is suffix-free. Similarly, an FA A is
suffix-free if L(A) is suffix-free. Moreover, if L(A) is suffix-free and non-empty,
then A must be non-returning. Similarly, we can define prefix-free regular ex-
pressions and languages. Note that if a language L is suffix-free, then LR is
prefix-free.

For complete background knowledge in automata theory, the reader may refer
to textbooks [13,21].

Due to the limit on the number of pages, we omit all the proofs in the following
sections. The proofs can be found in a full version [7].

3 Kleene Star and Reversal

Before examining the state complexity of various operations, we establish that
any suffix-free (complete) DFA must always have a sink state. Recall that the
state complexity of a regular language L is the number of states in its minimal
DFA. If L is a regular language, its minimal DFA does not necessarily have have
a sink state. However, if L is prefix-free, then its minimal DFA A must have a
sink state since A is non-exiting. Therefore, we have to verify the existence of the
sink state in a suffix-free minimal DFA before investigating the state complexity
for each operation. This is crucial for computing the correct state complexity.

Lemma 1. Let A = (Q, Σ, δ, s, F ) be a minimal DFA for a suffix-free language
and k = |Q|. Then, A has a sink state d ∈ Q and for every string w ∈ Σ+,
δ(s, wk) = d.

Lemma 1 shows that we must always consider the sink state for computing the
state complexity of suffix-free regular languages. From now, we assume that a
suffix-free minimal DFA has the unique sink state.
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3.1 Kleene Star of Suffix-Free Regular languages

We first start with the Kleene star operation.

Lemma 2. Given an m-state suffix-free minimal DFA A = (Q, Σ, δ, s, F ),
2m−2 + 1 states are sufficient for L(A)∗.

We now define a DFA A such that L(A) is suffix-free and the state complexity
of L(A)∗ reaches the upper bound in Lemma 2. Let A = (Q, Σ, δ, s, F ), where
Q = {0, 1, . . . , m−1}, for m ≥ 4, Σ = {a, b, c, d}, s = m−2, F = {0} and δ is
defined as follows:

(i) δ(m−2, c) = 0,
(ii) δ(i, a) = i+1, for 0 ≤ i ≤ m−4, and δ(m−3, a) = 0,
(iii) δ(i, d) = i, for 1 ≤ i ≤ m−3,
(iv) δ(m−2, b) = 1, δ(0, b) = 0, δ(i, b) = i for 2 ≤ i ≤ m−3,
(v) all transitions not defined above go to the sink state m−1.

Fig. 1 depicts the DFA A. The figure omits the sink state m−1.
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Fig. 1. The DFA A for the worst-case lower bound for the Kleene star of L(A), for
m ≥ 4. Note that we omit the sink state m−1.

Lemma 3. Let A be the DFA in Fig. 1 for m ≥ 4.

1. The language L(A) is suffix-free.
2. The state complexity of L(A)∗ is 2m−2 + 1.

Combining Lemma 2 and Lemma 3, we have the following result.

Theorem 1. Given an m-state suffix-free minimal DFA A, 2m−2 +1 states are
necessary and sufficient in the worst-case for the minimal DFA of L(A)∗.

The proof of Lemma 3 uses a four character alphabet. It remains an open question
whether the bound of Theorem 1 can be reached using an alphabet of size 2 or 3.
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Fig. 2. An example of a minimal DFA A in Proposition 1. Note that A# is also a
minimal DFA and L(A#) is suffix-free.

3.2 Reversal of Suffix-Free Regular Languages

We examine the reversal operation of suffix-free regular languages. First, we re-
call the state complexity of reversal on regular languages. If a regular language L
is accepted by an m-state minimal DFA, then its reversal LR is accepted by an
m-state NFA. By the well-known subset argument, we can conclude that the
state complexity of LR is at most 2m.

Proposition 1 (Leiss [17] and Salomaa et al. [20]). There are classes of
regular languages for which 2m states are necessary and sufficient for the reversal
of an m-state minimal DFA. Note that such an m-state minimal DFA does not
have the sink state.

Given a suffix-free minimal DFA A = (Q, Σ, δ, s, F ), we flip all transition direc-
tions in A and obtain a new FA AR for L(A)R. If we apply the subset construction
on AR, then the resulting DFA is the minimal DFA for L(AR) [2,22].

Lemma 4. Given an m-state suffix-free minimal DFA A, 2m−2 + 1 states are
sufficient in the worst-case for the minimal DFA of L(A)R.

Next, we show that 2m−2 + 1 states are necessary for the reversal of a suffix-
free minimal DFA. Given a (regular) language L over Σ, #L is suffix-free if the
character # is not in Σ.

We construct a suffix-free minimal DFA that has m states as follows: Let A =
(Q, Σ, δ, s, F ) be a minimal DFA as in Proposition 1 over Σ, which is not suffix-
free in general. We introduce a new start state s′ and a new transition δ(s′, #) =
s. We also introduce a sink state d. Note that a minimal DFA for a regular
language in Proposition 1 does not have a sink state. Consequently, d is not
equivalent with any of the states of A. Then, the new FA A# is deterministic
and minimal by construction. Furthermore, L(A#) is suffix-free. Thus, if A has
m − 2 states, then A# has m states. See Fig. 2 for an example.



506 Y.-S. Han and K. Salomaa

Lemma 5. Given an m-state suffix-free minimal DFA A# as shown in Fig. 2,
2m−2 + 1 states are necessary for the minimal DFA of L(A#)R, where # /∈ Σ.

We establish the following theorem from Lemmas 4 and 5. Note that Salomaa
et al. [20] established that the result of Proposition 1 holds also for binary
alphabets.

Theorem 2. Given an m-state suffix-free minimal DFA A over Σ, 2m−2 + 1
states are necessary and sufficient in the worst-case for the minimal DFA of
L(A)R, where |Σ| ≥ 3.

4 Catenation

We investigate the state complexity of the catenation of two suffix-free regular
languages. We first compute the upper bound and after that present a matching
lower bound example.

Lemma 6. Given two suffix-free minimal DFAs A = (Q1, Σ, δ1, s1, F1) and B =
(Q2, Σ, δ2, s2, F2), (m−1)2n−2 + 1 states are sufficient for the minimal DFA of
L(A) · L(B), where m = |Q1| and n = |Q2|.

We present two suffix-free minimal DFAs A and B such that the state complexity
of L(A)L(B) reaches the upper bound in Lemma 6. In the following, let Σ =
{a, b, c, d}. We define

A = (Q1, Σ, δ1, s1, F1), (1)

where Q1 = {0, 1, . . . , m−1}, m ≥ 3, s1 = 0, F1 = {1} and δ1 is defined as
follows:

(i) δ1(0, c) = 1,
(ii) δ1(i, a) = i + 1, 1 ≤ i ≤ m−3, δ1(m−2, a) = 1,
(iii) δ1(i, b) = i, 1 ≤ i ≤ m−2,
(iv) δ1(1, d) = 1,
(v) all transitions not defined above go to the sink state m−1.

The DFA A is depicted in Fig. 3. The figure does not show the sink state m−1
or the transitions into the sink state.

Next we define
B = (Q2, Σ, δ2, s2, F2), (2)

where Q2 = {0, 1, . . . , n−1}, n ≥ 3, s2 = 0, F2 = {1}, and δ2 is defined by the
following:

1. δ2(0, d) = 1,
2. δ2(i, b) = i + 1, 1 ≤ i ≤ n−3, δ2(n−2, b) = 1,
3. δ2(i, a) = δ2(i, c) = i, 1 ≤ i ≤ n−2,
4. δ2(i, d) = i, 2 ≤ i ≤ n−2,
5. all transitions not defined above go to the sink state n−1.
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Fig. 3. The DFA A for the worst-case lower bound for catenation
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Fig. 4. The DFA B for the worst-case lower bound for catenation

The DFA B is depicted in Fig. 4. Again the figure does not show the sink
state n−1.

Lemma 7. Let A be as in (1) and B as in (2), for m, n ≥ 3.

1. The languages L(A) and L(B) are suffix-free.
2. The state-complexity of L(A) · L(B) is (m − 1)2n−2 + 1.

Lemma 7 shows that the upper bound in Lemma 6 is tight when |Σ| ≥ 4.

Theorem 3. For arbitrary m, n ≥ 3, (m − 1)2n−2 + 1 states are necessary and
sufficient in the worst-case for the catenation of, respectively, an m-state and an
n-state suffix-free minimal DFAs.
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The worst-case example in Lemma 7 uses an alphabet with 4 characters. We
do not know whether the upper bound can be reached using an alphabet of
size 2 or 3.

5 Intersection and Union

Note that for the complement operation of an m-state suffix-free DFA, it is easy
to verify that m states are necessary and sufficient. In the following, we consider
the operations of intersection and union.

5.1 Intersection of Suffix-Free Regular Languages

Given two DFAs A and B, we can construct a DFA for the intersection of L(A)
and L(B) based on the Cartesian product of states. For details on the Cartesian
product construction, refer to Hopcroft and Ullman [13].

Proposition 2. Given two DFAs A = (Q1, Σ, δ1, s1, F1) and B = (Q2, Σ, δ2, s2,
F2), let M = (Q1 × Q2, Σ, δ, (s1, s2), F1 × F2), where for all p ∈ Q1 and q ∈ Q2
and a ∈ Σ,

δ((p, q), a) = (δ1(p, a), δ2(q, a)).

Then, L(M) = L(A) ∩ L(B).

Since the automaton M constructed in Proposition 2 is deterministic, it follows
that mn states are sufficient for the intersection of L(A) and L(B), where |A| =
m and |B| = n. Note that mn is a tight bound for the intersection of two regular
languages [24].

We assign a unique number for each state from 1 to m in A and from 1 to n
in B, where |A| = m and |B| = n. Assume that the mth state and the nth state
are the sink states in A and B, respectively. Let A ∩c B denote the resulting
intersection automaton that we compute using the Cartesian product of states.
By the construction, A ∩c B is deterministic since A and B are deterministic.
Therefore, we obtain a DFA for L(A) ∩ L(B). Next, we minimize A ∩c B by
merging all equivalent states and removing unreachable states from the start
state.

Proposition 3 (Han et al. [9]). For a state (i, j) in A ∩c B, the right lan-
guage L(i,j) of (i, j) is the intersection of Li in A and Lj in B.

Since a suffix-free DFA A has the sink state as proved in Lemma 1, L(m,i) = ∅,
for 1 ≤ i ≤ n, by Proposition 3, where m is the sink state of A. Therefore, we
can merge all these states. Similarly, all states (j, n), for 1 ≤ j ≤ m, of A ∩c B
are equivalent and, therefore, can be merged.

Observation 1. Given suffix-free minimal DFAs A and B, all states (m, i) for
1 ≤ i ≤ n and all states (j, n) for 1 ≤ j ≤ m of A ∩c B are equivalent.
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these states are not reachable from (1,1).

these states are all equivalent.

Fig. 5. The figure depicts the intersection automaton A∩cB constructed for two suffix-
free minimal DFAs A and B. Note that, by Observation 1, all states in the last row and
in the last column are equivalent. Similarly, by Observation 2, all states, except for the
start state (1,1), in the first row and in the first column are unreachable from (1,1).

Consider all states (1, i), for 1 < i ≤ n, of A ∩c B. Since L(A) is suffix-free, the
start state of A has no in-transitions. It implies that (1, i) is not reachable from
(1, 1) in A ∩c B and, therefore, these states are useless as shown in Fig. 5. We
can establish a similar result for the the states (j, 1), for 1 < j ≤ m.

Observation 2. Given suffix-free minimal DFAs A and B, all states (1, i), for
1 < i ≤ m, and all states (j, 1), for 1 < j ≤ n, are useless in A ∩c B.

Once we minimize A∩c B based on Observations 1 and 2, the resulting minimal
DFA has mn − 2(m + n) + 6 states.

Theorem 4. Given two suffix-free minimal DFAs A and B, mn− 2(m+n)+6
states are necessary and sufficient in the worst-case for the minimal DFA of
L(A) ∩ L(B), where |Σ| ≥ 3.

5.2 Union of Suffix-Free Regular Languages

We now investigate the union of two suffix-free regular languages. We compute
the union DFA for L(A) and L(B) using the Cartesian product of states. Given
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two suffix-free minimal DFAs A = (Q1, Σ, δ1, s1, F1) and B = (Q2, Σ, δ2, s2, F2),
let M = (Q1 × Q2, Σ, δ, (s1, s2), F ), where for all p ∈ Q1 and q ∈ Q2 and a ∈ Σ,

δ((p, q), a) = (δ(p, a), δ(q, a))

and F = (F1 × Q2) ∪ (Q1 × F2). Then, L(M) = L(A) ∪ L(B) and M is deter-
ministic. Let A ∪c B denote M . Consider the right language of a state (i, j) in
A ∪c B.

Proposition 4 (Han et al. [9]). For a state (i, j) in A ∪c B, the right lan-
guage L(i,j) of (i, j) is the union of Li in A and Lj in B.

Note that the two constructions for A ∩c B and A ∪c B are different. This
implies that we may not be able to apply the same approach that we used for
A ∩c B for computing the upper bound for L(A) ∪ L(B). For example, since
L(n,j) = Ln ∪ Lj �= ∅ by Proposition 4, all states (m, i) and (j, n) for 1 ≤ i ≤ n
and 1 ≤ j ≤ m, in A ∪c B are not necessarily equivalent. Thus, these states
cannot be merged. On the other hand, we observe that all states (1, i) and (j, 1),
for 1 < i ≤ n and 1 < j ≤ m, are useless since L(A) and L(B) are suffix-free.
Therefore, we minimize A ∪c B by removing these m + n − 2 states.

Theorem 5. Given two suffix-free minimal DFAs A and B, mn − (m + n) + 2
states are necessary and sufficient in the worst-case for the minimal DFA of
L(A) ∪ L(B), where |Σ| ≥ 5.

6 Conclusion

The state complexity of an operation for regular languages is the number of
states that are necessary and sufficient for the minimal DFA that accepts the
language obtained from the operation. Yu et al. [24] studied the operational
state complexity of general regular languages and Han et al. [9] examined the
state complexity of basic operations on prefix-free regular languages. Since suffix-
freeness is reversal of prefix-freeness, it was a natural problem to examine the
state complexity of basic operations on suffix-free regular languages.

operation regular languages prefix-free case suffix-free case
L∗

1 2m−1 + 2m−2 m 2m−2 + 1
LR

1 2m 2m−2 + 1 2m−2 + 1
L1 · L2 (2m − 1)2n−1 m + n − 2 (m − 1)2n−2 + 1
L1 ∩ L2 mn mn − 2(m + n) + 6 mn − 2(m + n) + 6
L1 ∪ L2 mn mn − 2 mn − (m + n) + 2

Fig. 6. Operational state complexity of general, prefix-free and suffix-free regular lan-
guages
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Based on the structural property that a suffix-free minimal DFA must be
non-returning, we have tackled Kleene star, reversal, catenation, intersection
and union cases and obtained the tight bound for each operation.

Fig. 6 shows the comparison table of the state complexity on regular lan-
guages, prefix-free regular languages and suffix-free regular languages. We have
established the tight state complexity bounds for each of the operations using
languages over a fixed alphabet. However, the constructions usually require an
alphabet of size 3 or 4 and, then, for most operations, it is open whether or not
the upper bound for the state complexity of each operation can be reached using
a small size alphabet such as |Σ| = 2 or 3.
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