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Abstract. We define the notion of height-deterministic pushdown au-
tomata, a model where for any given input string the stack heights dur-
ing any (nondeterministic) computation on the input are a priori fixed.
Different subclasses of height-deterministic pushdown automata, strictly
containing the class of regular languages and still closed under boolean
language operations, are considered. Several such language classes have
been described in the literature. Here, we suggest a natural and intuitive
model that subsumes all the formalisms proposed so far by employing
height-deterministic pushdown automata. Decidability and complexity
questions are also considered.

1 Introduction

Visibly pushdown automata [3], a natural and well motivated subclass of push-
down automata, have been recently introduced and intensively studied [SI2I4].
The theory found a number of interesting applications, e.g. in program ana-
lysis [1I9] and XML processing [I0]. The corresponding class of visibly push-
down languages is more general than regular languages while it still possesses
nice closure properties and the language equivalence problem as well as simula-
tion/bisimulation equivalences are decidable [3I1I]. Several extensions [7l5] have
been proposed in order to preserve these nice properties while describing a larger
class of systems. These studies have been particularly motivated by applications
in the field of formal verification. However, unlike the natural model of visibly
pushdown automata, these extensions are rather technical and less intuitive.

In this paper we suggest the model of height-deterministic pushdown au-
tomata which strictly subsumes all the models mentioned above and yet possesses
desirable closure and decidability properties. This provides a uniform framework
for the study of more general formalisms.

The paper is organized as follows. Section [2] contains basic definitions.
Section [ introduces height-deterministic pushdown automata, or hpda. It stud-
ies the languages recognized by real-time and deterministic hpda, and proves
a number of interesting closure properties. Section [ shows that these classes
properly contain the language class of [7] and the classes defined in [3] and [5].
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2 Preliminaries

Let X = {a,b,c,...} be a finite set of letters. The set 3* denotes all finite words
over Y. The empty word is denoted by A. A subset of X* is called a language.
Given a nonempty word w € X* we write w = w(1)w(g) - - - w(y,) where wg) € X
denotes the i-th letter of w for all 1 < i < n. The length |w| of w is n and |A\| = 0.
By abuse of notation | - | also denotes the cardinality of a set, the absolute value
of an integer, and the size of a pushdown automaton (see definition below). We
denote by ew the word w()w(s) -+ w(y,), and define further ea = X for every
a € ¥ and e\ = \. Finally, we let L¢ abbreviate X* \ L for L C X*.

Finite State Automata. A finite state automaton (fsa) R over X is a tuple
(S, X, 50,0, F) where S = {s,t,...} is a finite set of states, so € S is the initial
state, 0 € S x X x S is a set of rules, and F C S is the set of final states. We
call R a deterministic finite state automaton (dfsa) if for every s € S and every
a € X there is exactly one ¢t € X such that (s,a,t) € p, i.e., the relation p can
be understood as a function p: S x X — S. Given a nonempty w € X* we write
s — ¢ (or just s — t if R is understood) if either w € X and (s,w,t) € g or
there exists an s € S such that (s,w(),s") € o and s 2%, t. We say that R
recognizes the language L(R) = {w € X* | s9 — t,t € F}. A language is reqular
if it is recognized by some fsa. The class of all regular languages is denoted by

REG.

Finite State Transducers. A finite state transducer (fst) T' from X* to a monoid
M (in this paper we have either M =X"* or M =27), is a tuple (S, X, M, so, 0, F')
where (S, X x M, sg, 0, F) is an fsa and o = {(s,a,m,t) | (s, (a,m),t) € o'}
Given w € X* and m € M, we write s =% ¢ (or s =% ¢ if T is understood)
if either w € X and (s,w,m,t) € g or if there exists an ' € S such that
(s, w1y, m1,8") € o, s *22 ¢ and m = my @ mo, where & is the operation
associated with the monoid M. Given L C X*, the image of L under T, denoted
by T'(L), is the set of elements m such that s w?m t for some t € F and w € L.

Pushdown Automata. A pushdown automaton (pda) A over an alphabet X is
a tuple (Q, X, I,0,q0, F) where Q = {p,q,r,...} is a finite set of states, I' =
{X,Y,Z,...} is a finite set of stack symbols such that QNI =0, 6 CQ x I' x
(DU{e}) xQ@xI*uQ x{L} x(XU{e})xQxI*"{L}is a finite set of rules,
where | ¢ I' (empty stack) and € ¢ X (empty input word) are special symbols,
qo € Q is the initial state, and F C @ is a set of final states. The size |A| of a
pda A is defined as |Q| + | X| + |T'| + {|pXqa| | (p, X, a,q, ) € 6}. We usually
write pX +—— ga (or just pX —— ga if A is understood) for (p, X, a,q,a) € 6.
We say that a rule pX % qa is a push, internal, or pop rule if la] = 2,1, or 0,
respectively. A pda is called real-time (rpda) if pX % qa implies a # €. A pda
is called deterministic (dpda) if for every p € Q, X € 'U{L} and a € X U {e}
we have (i) |[{ga | pX +% ga}| < 1 and (i) if pX —— ga and pX % ¢’a’ then
a = €. A real-time deterministic pushdown automaton is denoted by rdpda.
The set QI'™ L is the set of configurations of a pda. The configuration gyl
is called initial. The transition relation between configurations is defined by: if
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pX = qa, then pXf — qgaf for every 3 € I'*. A transition pa — ¢f is
called e-transition or e-move. The labelled transition system generated by A is
the edge-labeled, directed graph (QI™L,J,c x5 (e} —%5). Wherever convenient
we use common graph theoretic terminology, like (w-labeled) path or reachability.
Given w € X*, we write pa == ¢f (or just pa == ¢f if A is understood) if
there exists a finite w’-labeled path from pa to ¢ in A such that w' € (Zu{e})*
and w is the projection of w’ onto X. We say that A is complete if oL = qa
for every w € X*. We say that A recognizes the language L£L(A) = {w 'y |
qoL == pa,p € F}. A language recognized by a pda (dpda, rpda, rdpda) is called
(deterministic, real-time, real-time deterministic) context-free and the class of all
such languages is denoted by CFL, dCFL, rCFL, and rdCFL, respectively.

Pushdown automata may reject a word because they get stuck before they
read it completely, or because after reading it they get engaged in an infinite
sequence of e-moves that do not visit any final state. They may also scan a
word and then make several e-moves that visit both final and non-final states
in arbitrary ways. Moreover, in a rule pX —— ga the word « can be arbitrary.
For our purposes it is convenient to eliminate these “anomalies” by introducing
a normal form.

Definition 1. A pushdown automaton A = (Q, X, I,6,qo, F') is normalized if

(i) A is complete;
(i) for all p € Q, all rules in § of the form pX = qa either satisfy a € X or
all of them satisfy a = €, but not both;
(i) every rule in § is of the form pX = g\, pX —— ¢X, or pX = qYV' X
where a € X U {e}.

States which admit only e-transitions (see property (i), are called e-states.

Lemma 1. For every pda (dpda, rpda, rdpda) there is a normalized pda (dpda,
rpda, rdpda, respectively), thal recognizes the same language.

3 Height Determinism

Loosely speaking, a pda is height-deterministic if the stack height is determined
solely by the input word; more precisely, a pda A is height-deterministic if all
runs of A on input w € (XU {e})* (here, crucially, ¢ is considered to be a part
of the input) lead to configurations of the same stack height. Given two height-
deterministic pda A and B, we call them synchronized if their stack heights
coincide after reading the same input words (again, this includes reading the
same number of €’s between two letters). The idea of height-determinism will be
discussed more formally below.

Definition 2. Let A be a pda over the alphabet X with the initial state qo, and
let we (XU{e})*. The set N(A,w) of stack heights reached by A after reading
w is {|a| | goL % gal}. A height-deterministic pda (hpda) A is a pda that is
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(i) normalized, and

(ii) |N(A,w)| <1 for every w € (XU {e})*.

A language recognized by some hpda is height-deterministic context-free. The
class of height-deterministic context-free languages is denoted by hCFL.

Note that every normalized dpda is trivially an hpda.

Definition 3. Two hpda A and B over the same alphabet X are synchronized,
denoted by A ~ B, if N(A,w) = N(B,w) for every w € (¥ U{e})*.

Intuitively, two hpda are synchronized if their stacks increase and decrease in
lockstep at every run on the same input. Note that ~ is an equivalence relation
over all hpda. Let [A]. denote the equivalence class containing the hpda A, and
let A-hCFL denote the class of languages {£(A) | A € [A].} recognized by any
hpda synchronized with A.

In the following subsections we will study some properties of general, real-
time, and deterministic hpda.

3.1 The General Case

Let us first argue that height-determinism does not restrict the power of pda.
Theorem 1. hCFL = CFL.

The basic proof idea is that for any context-free language L a pda A can be
constructed such that £(A) = L and for every non-deterministic choice of A
a different number of e-moves is done.

Proof. Let L € CFL. There exists an rpda A = (Q, X, I, 6, qo, F') with L(A) = L.
We can assume that A is normalized by Lemma [Il Certainly, |[N(A,w)| < 1
for every w € X* does not hold in general. However, we can construct a pda
A = (Q,X,I¢,q0, F) from A such that a different number of e-moves is
done for every non-deterministic choice of A after reading a letter. In this way
every run of A’ on some input w is uniquely determined by the number of e-
moves between reading letters from the input. Hence, |[N(A,w)| < 1 for every
w € (X U{e})* (condition () of the Definition ) is satisfied.

Formally, over all p € Q and X € 'U{L} and a € X, let m be the maximum
number of rules of the form pX —— ga for some ¢ and «. For every ga appearing
on the right-hand side of some rule, we introduce m new states péa, pgw P
and for every X € 'U{L} and 1 <i < m we add the rules

pflaX — prle and PaaX — ga .
Now, forallpe Q, X e 'U{L} and a € X, let
pX == qran, pX = gag, ..., pX = guan

be all rules under the action a with the left-hand side pX; we replace all these
rules with the following ones:

pX LpélalX, pX »Lpgrza?X, oo, pX »LpgnanX .
Note that A’ is normalized if A is normalized, and that £(A") = L(A). |
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Theorem 2. Let A be any hpda. Then REG C A-hCFL.

In particular, if R is a complete dfsa then there exists an hpda B € A-hCFL
such that L(B) = L(R) and |B| = O(JA| |R|). Moreover, if A is deterministic,
then B is deterministic.

Proof. Let L € REG, and let R be a dfsa recognizing L. W.l.o.g. we can assume
that R is complete, that is, for every a € X' and state r in R there is a transition
r — /. We construct a pda B as the ubual product of (the control part of) A
with R: for alla € ¥, B has arule (¢,r7)X M (¢', ") if and only if X — ¢
and r - ¢/; for every state r of R, B has an e-rule (q,7)X +— (¢',r)a 1f and
only if q@( +— ¢'c. The final states of B are the pairs (g, ) sucﬁ that r is a final
state of R. Clearly, we have |B| = O(|A||R]|). Moreover, every run of B on some

w € X* ends in a final state (¢,r) if and only if R is in r after reading w, and
hence, L(B) = L.

Next we show that B is hpda. Firstly, condition () of Definition 2 and com-
pleteness (Definition [f)) clearly hold. Secondly, every state of B either ad-
mits only e-transitions or non-e-transitions but not both (Deﬁnition IIl(Iﬁl) since
(p, )X|—>( r)a and (p, )Yb—>(q r)ﬂlmphepranandeHqﬂ,
contradlctmg the normalization of A. Finally, DeﬁmuonAﬂ](Eﬁ]) follows tr1v1ally
from the fact that A is normalized. It remains to prove A ~ B, however, this
follows easily because the height of B’s stack is completely determined by A. O

Note that the pda B in Theorem [ is real-time (deterministic) if A is real-time
(deterministic). The following closure properties are easily proved using classical
constructions.

Theorem 3. Let A be any hpda. Then A-hCFL is closed under union and in-
tersection.
In particular, let A and B be two hpda with A ~ B.

(1) The language L(A)UL(B) is recognized by some hpda C of size O(|A|+|B|)
such that A ~ C ~ B.
(i) If A and B are deterministic, then the language L(A) U L(B) is recognized
by some deterministic hpda C' of size O(|A| |B|) such that A ~ C ~ B.
(iii) The language L(A) N L(B) is recognized by some hpda C' of size O(|A| |B|)
such that A ~ C ~ B. If A and B are deterministic, then C is determin-
1stic.

Moreover, we have in all cases that if both A and B are rpda, then C is an rpda.

3.2 The Real-Time Case

Let rhpda denote a real-time hpda, and let rhCFL denote the class of languages
generated by rhpda. We remark that rhpda contain visibly pushdown automata
introduced in [3] but not vice versa as shown in Example [Il below. A visibly
pushdown automaton A (vpda) over X' is an rpda together with a fixed partition
of ¥ =X.UX,uZX, suchthatlpr|—>qYXthena€E and if pX = ¢X
then a € X; and if pX H g\ then a ‘€ Y. By vCFL we denote the class of
languages generated by vpda
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Ezample 1. Consider the language L1 = {a"ba™ | n > 0} which is not recognized
by any wpda; see also [3]. Indeed, a vpda recognizing L; would have to either
only push or only pop or only change its state whenever the letter a is read, but
then the two powers of ¢ in an input word from a*ba* could not be compared for
most inputs. However, the obvious rdpda that pushes the first block of a’s into
the stack, reads the b, reads the second block of a’s while popping the first block
from the stack, and compares whether they have the same length, is a rhpda
that accepts L. O

On the other hand, it is easy to see that not every language accepted by an rpda
can also be accepted by a rhpda. For example, the language of all palindromes
over X' is in rCFL but not in rhCFL. This follows from the fact that this language
does not belong to rdCFL, and from the fact that rdCFL = rhCFL, which is
proved below in Theorem [l All together, we get the following hierarchy.

REG C vCFL C rhCFL = rdCFL C rCFL = hCFL = CFL

The next theorem shows that real-time hpda can be determinised. The proof of
this theorem uses the same basic technique as for determinising vpda [3].

Theorem 4. rhCFL = rdCFL.

In particular, we can construct for every rhpda A_a deterministic rhpda B
such that L(A) = L(B) and A ~ B and B has O 2”2) many states and a stack
alphabet of size O (E|2”2 where n is the number of pairs of states and stack
symbols of A.

It follows from Theorem [ and the closure of rfd CFL under complement that a
complement A€ exists for every rhpda A. However, the following corollary more
precisely shows that A¢ can be chosen to satisfy A ~ A.

Corollary 1. rhCFL is closed under complement.
In particular, for every rhpda A there exists an rhpda B such that £L(B) =

L(A)® and A ~ B and |B| = 2004P).

The emptiness problem can be decided in time O(n?) for any pda of size n; see
for example [6]. In combination with the previous results we get the bound on
the equivalence problem.

Theorem 5. Language equivalence of synchronized rhpda is decidable.
In particular, let A and B be two rhpda with A ~ B, and let n = |A| and

m = |B|. We can decide L(A) 2z L(B), in time 90(n*+m?)_

3.3 The Deterministic Case

Contrary to the real-time case, arbitrary hpda cannot always be determinised,
as shown by Theorem [Il For this reason we investigate the synchronization re-
lation ~ restricted to the class of deterministic pushdown automata. Certainly,
dhCFL = dCFL since every dpda can be normalized by Lemma [[] and then it is
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trivially height-deterministic. However, we lay the focus in this section on the
closure of each equivalence class of ~ under complement. Therefore, we denote
a deterministic hpda by dhpda. The class of languages recognized by some dhpda
synchronized with the dhpda A is denoted by A-dhCFL.

First, we show that, as in the real-time case, every dhpda can be complemented
without leaving its equivalence class. The proof is, however, more delicate due
to the presence of e-rules. In fact, the normalization of Definition [l has been
carefully chosen to make this theorem possible.

Theorem 6. Let A be any dhpda. Then A-dhCFL is closed under complement.
In particular, for every dhpda B there exists a complement dhpda B¢ such
that B¢ ~ B and |B°| = O(|B]).

Proof. Let B=(Q,X,T,6,q0,F). Let Q" C @ be the set of all e-states of B and
let Q" = Q\ Q. We construct B¢ by first defining an dhpda B’ equivalent to B
such that a word is accepted if and only if it can be accepted with a state in Q"
that is, a state which allows only non-e-moves. Then the set of accepting states
is a subset of states in " that do not accept £(B). This gives the complement
of B.

We will define a dhpda B’ such that B ~ B’ and L(B') = L(B) and every
accepting path in the transition system generated by B’ ends in a state in Q' U
(Q"NF), that is, when B’ accepts a word w, then B’ shall end in a final state after
reading w with a maximal (and finite by property ({l) in Definition [[) number of
€ moves after reading the last letter of w. Note that the completeness property
of B in Definition [1l implies that B is always in a state in Q" after reading w
followed by a maximal number of e-transitions.

Let B' = (Q x {0,1}, X, I, 9, ¢, F') with F' = Q x {1}, and ¢} = (qo,1) if
qo € F and ¢, = (qo,0) otherwise. The set of rules ¢ is defined as follows:

= ((p1), X,e,(g,1),a) €D if (p,X,e,q,a) €6 and g € F,
- ((p,i),X,a,(q,0),a) € ¥ if (p,X,a,q,«) € 6 and ¢ € F', and
- ((p,i),X,¢e,(q,1),a) € ¥ if (p, X,e,¢q,c) € 6 and g & F.

where e € YU{c} and i € {0,1} and a € X'. We have now L(B’) = L(B). Indeed,
we have two copies, indexed with 0 and 1, of B in B” and whenever an accepting
state is reached in B then it is reached in the 1-copy of B in B’ (the first two
items in the definition of ¥ above) and B’ is in an accepting state and both B
and B’ accept the word read so far. The set of accepting states of B’ is only
left when the next letter is read from the input and B reaches a non-accepting
state (the third item in the definition of ¢ above). Otherwise, B’ remains in the
respective copy of B (first and fourth item in the definition of ¢ above). Clearly,
B’ ~ B.

Now, B¢ = (Q x {0,1}, ¥, T, 9., Q" x {0}). 0

The equivalence checking problem for two synchronized dhpda is, like in the
real-time case, decidable.

Theorem 7. Language equivalence of synchronized dhpda is decidable.
In p?am‘icular, for any dhpda A and B such that A ~ B, we can decide whether
L(A) = L(B) in time O (|AP|BJ?).
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4 Other Language Classes — A Comparison

In this section height-deterministic context-free languages are compared to two
other recent approaches of defining classes of context-free languages closed under
boolean operations. In [5], Caucal introduced an extension of Alur and Madhusu-
dan’s visibly pushdown languages [3], and proved that it forms a boolean algebra.
The second class is the one introduced by Fisman and Pnueli in [7]. We show in
this section that rhCFL (which is a proper subclass of dhCFL) properly contains
these two classes.

4.1 Caucal’s Class

Caucal’s class is defined with the help of a notion of synchronization, just as
our hCFL class[] Before we can define Caucal’s synchronization, we need some
preliminaries.

A fst is input deterministic, if (s,a,m,t) € o and (s,a,n,t’) € p implies that
m = n and ¢t = t'. Caucal considers input deterministic transducers from X*
to ZZ (the additive monoid of integers) where every state accepts, i.e., trans-
ducers whose transitions are labeled with a letter from X and an integer. When
the transducer reads a word over X, it outputs the sum of the integers of the
transitions visited. Notice that if a transducer T is input deterministic then the
set T'(w) is a singleton, i.e., a set containing one single integer. By abuse of
notation, we identify T'(w) with this integer. We let |T'(w)| denote the absolute
value of T'(w).

Given an input deterministic fst T' from X* to ZZ and an rpda A over X with
initial state go, we say that A is a T-synchronized pda (T-spda) if goL - pal
implies || = |T'(w)| for every w € X* and every configuration pa of "A. Let
wSCFL denote the class of all languages that are recognized by some T-spda for
some T'. (See also Caucal’s introduction of wSCFL in [3]).

Theorem 8. wSCFL C rhCFL.
In particular, the language

Lz ={a"b"w | m>n>0,|w,=|wpwa =aifw#A}

belongs to thCFL but not to wSCFL.

4.2 Fisman and Pnueli’s Class

We define the class of M-synchronized pda, which is the formalism used by
Fisman and Pnueli in their approach to non-regular model-checking [7].

Let M = (A, I,6) be a I-rdpda, let R = (Q,X x I',qo,0,F) be a dfsa, and
let ¢: ¥ — A be a substitution. The cascade product M og R is the rdpda
(Q, X, 1,8, q, F) with ¢X % 0(q, (a, X))6(¢(a), X) for all ¢ € Q, a € X and
X € I'U{L}. An rdpda A is called M-synchronized (M-spda) if there exists

! In fact, Caucal’s class was the starting point of our study.
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a substitution ¢ and a dfsa R such that A = M oy R. Let 1SCFL denote the
class of all languages that are recognized by some M -spda for some I1-rdpda M.
See also Fisman and Pnueli’s introduction of 1SCFL in [7].

Theorem 9. 1SCFL C rhCFL.
In particular, the language

Ly = {a"ba"™ | n >0} U {a"ca® | n > 0}

belongs to ThCFL but not to 1SCFL.

5 Conclusion

We have introduced several (sub)classes of the class of context-free languages
that are closed under boolean operations. Our key technical tools are height-
deterministic pushdown automata (hpda) and synchronization between hpda.
These notions are inspired by and generalize Caucal’s work on real-time syn-
chronized pushdown graphs [5]. In fact, our results can be seen as an exten-
sion of Caucal’s ideas to pushdown automata with e-transitions. This extension
has turned out to be rather delicate. Both Theorem 2 (REG C A-hCFL) and
Theorem [0 (A-hCFL is closed under complement) depend crucially on the nor-
malization of Definition [I] which had to be carefully chosen. In a sense, one of
the contributions of the paper is to have worked out the right notion of nor-
malization. We have also showed that language equivalence of real-time height-
deterministic pushdown automata is decidable in EXPTIME.

Both this paper and Caucal’s have been also inspired by Alur and Madhusu-
dan’s work on visibly pushdown automata, initiated in [3]. From an automata-
theoretic point of view, we have extended the theorem of [3], stating that visibly
pushdown automata are closed under boolean operations, to deterministic hpda.
This is rather satisfactory, because deterministic hpda recognize all determin-
istic context-free languages, while visibly pda are far from it. Remarkably, the
extension is be achieved at a very low cost; in our opinion, height-deterministic
pda are, at least from the semantical point of view, as natural and intuitive as
visibly pda.

Acknowledgments. The authors are deeply indebted to Javier Esparza who con-
tributed to this work in many ways. We also thank to the anonymous referees
for their useful remarks.
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