

Lecture Notes in Computer Science 4708
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luděk Kučera Antonín Kučera (Eds.)

Mathematical
Foundations of
Computer Science 2007

32nd International Symposium, MFCS 2007
Český Krumlov, Czech Republic, August 26-31, 2007
Proceedings

13

Volume Editors

Luděk Kučera
Charles University
Faculty of Mathematics and Physics, Department of Applied Mathematics
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
E-mail: ludek@kam.mff.cuni.cz

Antonín Kučera
Masaryk University
Faculty of Informatics, Department of Computer Science
Botanická 68a, 602 00 Brno, Czech Republic
E-mail: tony@fi.muni.cz

Library of Congress Control Number: 2007932973

CR Subject Classification (1998): F.1, F.2, F.3, F.4, G.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74455-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74455-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12112838 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 32nd International Symposium on
Mathematical Foundations of Computer Science (MFCS 2007). The purpose of
the MFCS symposia is to encourage high-quality research in all fields of theoret-
ical computer science. This year’s conference was held in Český Krumlov, Czech
Republic, during August 26–31.

The conference program of MFCS 2007 consisted of 61 contributed papers
selected by the Program Committee from a total of 167 submissions. All submis-
sions were read and evaluated by at least four referees, and the resulting decision
was based on electronic discussion which often included help from outside ex-
perts. A selection of contributed papers will appear in the journal Theoretical
Computer Science.

Complementing the contributed papers, the program of MFCS 2007 included
invited lectures by Vašek Chvátal (Montreal, Canada), Anuj Dawar (Cambridge,
UK), Kurt Mehlhorn (Saarbrücken, Germany), Luke Ong (Oxford, UK), and
Leslie Valiant (Cambridge, USA). We are grateful to the invited speakers for
accepting our invitation and sharing their knowledge and skills with all MFCS
2007 participants.

As the editors of these proceedings, we would like to thank everyone who
contributed to the success of the symposium. First of all, we thank the authors
of all submitted papers for considering MFCS 2007 as an appropriate platform for
presenting their work. Since the number of submissions was very high, many good
papers could not be accepted. We also thank the Program Committee members
for their demanding and responsible work, the referees for careful reading of
all the submissions, and the staff at Springer for the professional support in
producing this volume.

June 2007 Luděk Kučera
Antońın Kučera

Organization

The 32nd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2007) was held in Hotel R̊uže, Český Krumlov, Czech Republic,
during August 26–31, 2007. The conference was organized by the Faculty of
Mathematics and Physics, Charles University, Prague in cooperation with other
institutions in the Czech Republic.

Organizing Committee

Milena Zeithamlová (Action M Agency)
Blanka Puková (Action M Agency)
Martin Mareš (Charles University)
Luděk Kučera (Charles University)

Program Committee

Parosh Abdulla (Uppsala University, Sweden)
Jos Baeten (Eindhoven University of Technology, The Netherlands)
Narsingh Deo (University of Central Florida, USA)
Josep Dı́az (Universitat Politecnica de Catalunya, Spain)
Yefim Dinitz (Ben-Gurion University of the Negev, Israel)
Javier Esparza (Technische Universität München, Germany)
Fedor Fomin (University of Bergen, Norway)
Pierre Fraigniaud (CNRS and University Paris 7, France)
Juraj Hromkovič (ETH Zürich, Switzerland)
Giuseppe F. Italiano (Università di Roma “Tor Vergata”, Italy)
Kazuo Iwama (Kyoto University, Japan)
Michael Kaufmann (Universität Tübingen, Germany)
Barbara König (Universität Duisburg-Essen, Germany)
Petr Kolman (Charles University, Czech Republic)
Rastislav Královič (Comenius University, Slovak Republic)
Antońın Kučera (Co-chair, Masaryk University, Czech Republic)
Luděk Kučera (Co-chair, Charles University, Czech Republic)
Alberto Marchetti-Spaccamela (Università di Roma “La Sapienza”, Italy)
Martin Mareš (Charles University, Czech Republic)
Friedhelm Meyer auf der Heide (Universität Paderborn, Germany)
Madhavan Mukund (Chennai Mathematical Institute, India)
Mogens Nielsen (University of Aarhus, Denmark)
Reinhard Pichler (Technische Universität Wien, Austria)
Rajeev Raman (University of Leicester, UK)
José Rolim (University of Geneva, Switzerland)

VIII Organization

Davide Sangiorgi (University of Bologna, Italy)
Philippe Schnoebelen (École Normale Supérieure de Cachan, France)
Jerzy Tyszkiewicz (Warsaw University, Poland)
Uzi Vishkin (University of Maryland, USA)
Peter Widmayer (ETH Zürich, Switzerland)
James Worrell (Oxford University, UK)
Christos Zaroliagis (CTI & University of Patras, Greece)

Referees

Farid Ablayev
Isolde Adler
Manindra Agrawal
Luca Allulli
Kazuyuki Amano
Vikraman Arvind
Albert Atserias
Jǐŕı Barnat
Amos Beimel
Wolf Bein
Amir Ben-Amram
Daniel Berend
Stefan Berghofer
Nayantara Bhatnagar
Vittorio Bilò
Davide Bilò
Johannes Blömer
Peter van Emde Boas
Hans Bodlaender
Filippo Bonchi
Guillaume Bonfante
Vincenzo Bonifaci
Paul Bonsma
Ahmed Bouajjani
Torben Braüner
Václav Brožek
Sander Bruggink
Henning Bruhn
Jakub Bystroň
H.-J. Böckenhauer
Peter Bürgisser
Toon Calders
Alberto Caprara
Arturo Carpi
Olivier Carton

Didier Caucal
Jakub Černý
Ho-Lin Chen
Jianer Chen
Paul Christophe
Josef Cibulka
Maxime Crochemore
Felipe Cucker
Flavio D’Alessandro
Peter Damaschke
Valentina Damerow
Samir Datta
Anuj Dawar
Francien Dechesne
Bastian Degener
Stéphane Demri
Jörg Derungs
Volker Diekert
Martin Dietzfelbinger
Yannis Dimopoulos
Arnaud Durand
Bruno Durand
Ron Dutton
Martin Dyer
Miroslav Dynia
Tomáš Ebenlendr
Thomas Erlebach
Zoltán Ésik
Serge Fehr
Maribel Fernández
Jǐŕı Fiala
Andrzej Filinski
Jean-Christophe Filliâtre
Jǐŕı Fink
Lev Finkelstein

Michele Flammini
Abraham Flaxman
Vojtěch Forejt
Enrico Formenti
Lance Fortnow
Gudmund Frandsen
Kimmo Fredriksson
Keith Frikken
Stefan Funke
Joaquim Gabarró
Anna Gambin
Alfredo Garcia
Michael Gatto
Cyril Gavoille
Markus Geyer
Beat Gfeller
Dan Ghica
Kristian Gjøsteen
Bart Goethals
Paul Goldberg
Avi Goldstein
Rajeev Goré
Fabrizio Grandoni
Petr Gregor
Gregory Gutin
Alex Hall
Magnus Halldorsson
Xin Han
Sariel Har-Peled
Ichiro Hasuo
Tobias Heindel
Harald Hempel
Miki Hermann
Ulrich Hertrampf
Petr Hliněný

Organization IX

Michael Hoffmann
Jan Holeček
Markus Holzer
Tomas Hruz
Yinghua Hu
Cornelis Huizing
Pierre Hyvernat
Costas Iliopoulos
Riko Jacob
Florent Jacquemard
Mark Jerrum
Ravi Kant
Christos Kapoutsis
Jan Kára
Jarkko Kari
Neeraj Kayal
Iordanis Kerenidis
Uzma Khadim
Stefan Kiefer
Pekka Kilpelainen
Martin Klazar
Bartek Klin
Johannes Köbler
Roman Kolpakov
Elisavet Konstantinou
Spyros Kontogiannis
Peter Korteweg
Takeshi Koshiba
Michal Koucký
Elias Koutsoupias
Jakub Kozik
Richard Královič
Maksims Kravcevs
Steve Kremer
Danny Krizanc
Peter Krusche
Manfred Kufleitner
Werner Kuich
Viraj Kumar
Michal Kunc
Petr Kůrka
Piyush Kurur
Anna Labella
Ugo Dal Lago
Giovanni Lagorio

Jim Laird
Gad Landau
Ivan Lanese
Sophie Laplante
S�lawomir Lasota
Søren Lassen
Luigi Laura
Ranko Lazić
Emmanuelle Lebhar
Katharina Lehmann
Pietro Di Lena
Nutan Limaye
Guohui Lin
Giuseppe Liotta
Maciej Liskiewicz
Bruce Litow
Kamal Lodaya
Martin Loebl
Christoph Löding
Markus Lohrey
Daniel Lokshtanov
Sylvain Lombardy
Alex Lopez-Ortiz
Martin Lotz
Antoni Lozano
Michael Luttenberger
Ian Mackie
Meena Mahajan
Peter Mahlmann
Johann A. Makowsky
Christos Makris
Federico Mancini
Nicolas Markey
Hendrik Maryns
Luděk Matyska
Jens Maue
Elvira Mayordomo
Ernst Mayr
Jacques Mazoyer
Tyrrell B. McAllister
Andrew McGregor
Pierre McKenzie
Klaus Meer
Daniel Meister
Stéphane Messika

Jan Midtgaard
Matus Mihalak
Zoltan Miklos
Peter Bro Miltersen
Tobias Moemke
Luminita Moraru
Andrzej Murawski
Christophe Morvan
Nysret Musliu
Veli Mäkinen
Takayuki Nagoya
Masaki Nakanishi
Shin-ichi Nakano
K. Narayan Kumar
Alan Nash
Pavel Nejedlý
Jaroslav Nešetřil
Cyril Nicaud
Rolf Niedermeier
Harumichi Nishimura
Dirk Nowotka
Marc Noy
Marc Nunkesser
Jan Obdržálek
Alexander Okhotin
Luke Ong
Jaroslav Opatrný
Simona Orzan
Michiel van Osch
S.P. Suresh
Ondřej Pangrác
Dana Pardubská
Mike Paterson
Dirk Pattinson
Andrzej Pelc
Paolo Penna
Martin Pergel
Libor Polák
John Power
Sanjiva Prasad
Rudy Raymond
J. Radhakrishnan
M. Sohel Rahman
C.R. Ramakrishnan
R. Ramanujam

X Organization

Srinivasa Rao
Jean-François Raskin
Stefan Ratschan
Bala Ravikumar
Ran Raz
Vojtěch Řehák
Eric Remila
Chloé Rispal
Mike Robson
Piet Rodenburg
Laurent Rosaz
Salvador Roura
Hana Rudová
Daniel Russel
Jan Rutten
Harald Räcke
David Šafránek
Jacques Sakarovitch
Louis Salvail
Piotr Sankowski
Saket Saurabh
Zdeněk Sawa
Francesco Scarcello
Guido Schaefer
Gunnar Schomaker
Florian Schoppmann
Lutz Schroeder
Stefan Schwoon
Sebastian Seibert
Helmut Seidl
Maria Serna
Olivier Serre

Anil Seth
Nikolay Shilov
Amir Shpilka
Jakob Grue Simonsen
Alex Simpson
Sitabhra Sinha
Christian Sohler
Ana Sokolova
Robert Špalek
Jǐŕı Srba
Srikanth Srinivasan
Ludwig Staiger
Yannis Stamatiou
Martin Staněk
Ian Stark
Bjoern Steffen
Benjamin Steinberg
Krzysztof Stencel
Jan Strejček
K.V. Subrahmanyam
K.G. Subramanian
Stefan Szeider
Andrzej Szepietowski
Siamak Taati
Tadao Takaoka
Jean-Marc Talbot
Seiichiro Tani
Greg Tener
Véronique Terrier
Dimitrios Thilikos
Seinosuke Toda
Marc Tommasi

Jacobo Torán
Tayssir Touili
Kostas Tsichlas
Dekel Tsur
Emilio Tuosto
Pavel Tvrdik
Pawe�l Urzyczyn
Tarmo Uustalu
Tomas Valla
Pavel Valtr
Victor Vianu
Elias Vicari
Yngve Villanger
Tjark Vredeveld
Tomasz Waleń
Fang Wei
Pascal Weil
Michael Weiss
Carola Wenk
Mark Weyer
Ronald de Wolf
Alexander Wolff
David Wood
Thomas Worsch
Ondřej Zaj́ıček
Ayal Zaks
Hans Zantema
Guochuan Zhang
Jie Zheng
Martin Ziegler

Sponsoring Institutions

European Association for Theoretical Computer Science

Previous MFCS

MFCS symposia have been organized in the Czech Republic, Poland, and Slovak
Republic since 1972. The previous meetings are listed below.

Organization XI

1972 Jablonna (Poland)
1973 Štrbské Pleso (Czechoslovakia)
1974 Jadwisin (Poland)
1975 Mariánské Lázně

(Czechoslovakia)
1976 Gdaǹsk (Poland)
1977 Tatranská Lomnica

(Czechoslovakia)
1978 Zakopane (Poland)
1979 Olomouc (Czechoslovakia)
1980 Rydzyna (Poland)
1981 Štrbské Pleso (Czechoslovakia)
1984 Praha (Czechoslovakia)
1986 Bratislava (Czechoslovakia)
1988 Karlovy Vary (Czechoslovakia)
1989 Porabka-Kozubnik (Poland)
1990 Banská Bystrica

(Czechoslovakia)

1991 Kazimierz Dolny (Poland)
1992 Praha (Czechoslovakia)
1993 Gdaǹsk (Poland)
1994 Košice (Slovak Republic)
1995 Praha (Czech Republic)
1996 Kraków (Poland)
1997 Bratislava (Slovak Republic)
1998 Brno (Czech Republic)
1999 Szklarska Poreba (Poland)
2000 Bratislava (Slovak Republic)
2001 Mariánské Lázně

(Czech Republic)
2002 Warsaw-Otwock (Poland)
2003 Bratislava (Slovak Republic)
2004 Praha (Czech Republic)
2005 Gdaǹsk (Poland)
2006 Bratislava (Slovak Republic)

Table of Contents

Invited Papers

How To Be Fickle . 1
Vašek Chvátal

Finite Model Theory on Tame Classes of Structures 2
Anuj Dawar

Minimum Cycle Bases in Graphs Algorithms and Applications 13
Kurt Mehlhorn

Hierarchies of Infinite Structures Generated by Pushdown Automata
and Recursion Schemes . 15

C.-H.L. Ong

Evolvability . 22
Leslie G. Valiant

Random Graphs

Expander Properties and the Cover Time of Random Intersection
Graphs . 44

Sotiris E. Nikoletseas, Christoforos Raptopoulos, and
Paul G. Spirakis

Uncover Low Degree Vertices and Minimise the Mess: Independent Sets
in Random Regular Graphs . 56

William Duckworth and Michele Zito

Rewriting

Transition Graphs of Rewriting Systems over Unranked Trees 67
Christof Löding and Alex Spelten

Rewriting Conjunctive Queries Determined by Views 78
Foto Afrati

Approximation Algorithms

Approximation Algorithms for the Maximum Internal Spanning Tree
Problem . 90

Gábor Salamon

XIV Table of Contents

New Approximability Results for 2-Dimensional Packing Problems 103
Klaus Jansen and Roberto Solis-Oba

On Approximation of Bookmark Assignments . 115
Yuichi Asahiro, Eiji Miyano, Toshihide Murata, and Hirotaka Ono

Automata and Circuits

Height-Deterministic Pushdown Automata . 125
Dirk Nowotka and Jǐŕı Srba

Minimizing Variants of Visibly Pushdown Automata 135
Patrick Chervet and Igor Walukiewicz

Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids 147
Christoph Behle, Andreas Krebs, and Mark Mercer

Complexity I

Combinatorial Proof that Subprojective Constraint Satisfaction
Problems are NP-Complete . 159

Jaroslav Nešetřil and Mark Siggers

NP by Means of Lifts and Shadows . 171
Gábor Kun and Jaroslav Nešetřil

The Complexity of Solitaire . 182
Luc Longpré and Pierre McKenzie

Streams and Compression

Adapting Parallel Algorithms to the W-Stream Model, with
Applications to Graph Problems . 194

Camil Demetrescu, Bruno Escoffier, Gabriel Moruz, and
Andrea Ribichini

Space-Conscious Compression . 206
Travis Gagie and Giovanni Manzini

Graphs I

Small Alliances in Graphs . 218
Rodolfo Carvajal, Mart́ın Matamala, Ivan Rapaport, and
Nicolas Schabanel

The Maximum Solution Problem on Graphs . 228
Peter Jonsson, Gustav Nordh, and Johan Thapper

Table of Contents XV

Iteration and Recursion

What Are Iteration Theories? . 240
Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil

Properties Complementary to Program Self-reference 253
John Case and Samuel E. Moelius III

Algorithms I

Dobrushin Conditions for Systematic Scan with Block Dynamics 264
Kasper Pedersen

On the Complexity of Computing Treelength . 276
Daniel Lokshtanov

On Time Lookahead Algorithms for the Online Data Acknowledgement
Problem . 288

Csanád Imreh and Tamás Németh

Automata

Real Time Language Recognition on 2D Cellular Automata: Dealing
with Non-convex Neighborhoods . 298

Martin Delacourt and Victor Poupet

Towards a Rice Theorem on Traces of Cellular Automata 310
Julien Cervelle and Pierre Guillon

Progresses in the Analysis of Stochastic 2D Cellular Automata: A
Study of Asynchronous 2D Minority . 320

Damien Regnault, Nicolas Schabanel, and Éric Thierry

Complexity II

Public Key Identification Based on the Equivalence of Quadratic
Forms . 333

Rupert J. Hartung and Claus-Peter Schnorr

Reachability Problems in Quaternion Matrix and Rotation
Semigroups . 346

Paul Bell and Igor Potapov

VPSPACE and a Transfer Theorem over the Complex Field 359
Pascal Koiran and Sylvain Perifel

Protocols

Efficient Provably-Secure Hierarchical Key Assignment Schemes 371
Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci

XVI Table of Contents

Nearly Private Information Retrieval . 383
Amit Chakrabarti and Anna Shubina

Graphs II

Packing and Squeezing Subgraphs into Planar Graphs 394
Fabrizio Frati, Markus Geyer, and Michael Kaufmann

Dynamic Matchings in Convex Bipartite Graphs . 406
Gerth Stølting Brodal, Loukas Georgiadis,
Kristoffer Arnsfelt Hansen, and Irit Katriel

Networks

Communication in Networks with Random Dependent Faults 418
Evangelos Kranakis, Michel Paquette, and Andrzej Pelc

Optimal Gossiping in Directed Geometric Radio Networks in Presence
of Dynamical Faults (Extended Abstract) . 430

Andrea E.F. Clementi, Angelo Monti, Francesco Pasquale, and
Riccardo Silvestri

Algorithms II

A Linear Time Algorithm for the k Maximal Sums Problem 442
Gerth Stølting Brodal and Allan Grønlund Jørgensen

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms 454
Elias Koutsoupias and Angelina Vidali

Analysis of Maximal Repetitions in Strings . 465
Maxime Crochemore and Lucian Ilie

Languages

Series-Parallel Languages on Scattered and Countable Posets 477
Nicolas Bedon and Chloé Rispal

Traces of Term-Automatic Graphs . 489
Antoine Meyer

State Complexity of Basic Operations on Suffix-Free Regular
Languages . 501

Yo-Sub Han and Kai Salomaa

Graphs III

Exact Algorithms for L(2, 1)-Labeling of Graphs . 513
Jan Kratochv́ıl, Dieter Kratsch, and Mathieu Liedloff

Table of Contents XVII

On (k, �)-Leaf Powers . 525
Andreas Brandstädt and Peter Wagner

Quantum Computing

An Improved Claw Finding Algorithm Using Quantum Walk 536
Seiichiro Tani

Complexity Upper Bounds for Classical Locally Random Reductions
Using a Quantum Computational Argument . 548

Rahul Tripathi

Isomorphism

On the Complexity of Game Isomorphism (Extended Abstract) 559
Joaquim Gabarró, Alina Garćıa, and Maria Serna

Hardness Results for Tournament Isomorphism and Automorphism 572
Fabian Wagner

Relating Complete and Partial Solution for Problems Similar to Graph
Automorphism . 584

Takayuki Nagoya and Seinosuke Toda

Equilibria

Well Supported Approximate Equilibria in Bimatrix Games: A Graph
Theoretic Approach . 596

Spyros C. Kontogiannis and Paul G. Spirakis

Selfish Load Balancing Under Partial Knowledge . 609
Elias Koutsoupias, Panagiota N. Panagopoulou, and Paul G. Spirakis

Extending the Notion of Rationality of Selfish Agents: Second Order
Nash Equilibria . 621

Vittorio Bilò and Michele Flammini

Games

Congestion Games with Player-Specific Constants . 633
Marios Mavronicolas, Igal Milchtaich, Burkhard Monien, and
Karsten Tiemann

Finding Patterns in Given Intervals . 645
Maxime Crochemore, Costas S. Iliopoulos, and M. Sohel Rahman

The Power of Two Prices: Beyond Cross-Monotonicity 657
Yvonne Bleischwitz, Burkhard Monien, Florian Schoppmann, and
Karsten Tiemann

XVIII Table of Contents

Algebra and Strings

Semisimple Algebras of Almost Minimal Rank over the Reals 669
Markus Bläser and Andreas Meyer de Voltaire

Structural Analysis of Gapped Motifs of a String . 681
Esko Ukkonen

Algorithms III

Online and Offline Access to Short Lists . 691
Torben Hagerup

Optimal Randomized Comparison Based Algorithms for Collision 703
Riko Jacob

Randomized and Approximation Algorithms for Blue-Red Matching 715
Christos Nomikos, Aris Pagourtzis, and Stathis Zachos

Words and Graphs

Real Computational Universality: The Word Problem for a Class of
Groups with Infinite Presentation (Extended Abstract) 726

Klaus Meer and Martin Ziegler

Finding Paths Between Graph Colourings: PSPACE-Completeness and
Superpolynomial Distances . 738

Paul Bonsma and Luis Cereceda

Shuffle Expressions and Words with Nested Data . 750
Henrik Björklund and Miko�laj Bojańczyk

Author Index . 763

How To Be Fickle

Vašek Chvátal

Canada Research Chair in Combinatorial Optimization
Concordia University, Montreal, Canada

Abstract. The backbone of many popular algorithms for solving
NP-hard problems is implicit enumeration. There, the input problem
is split into two or more subproblems by assigning some variable a new
fixed value in each new subproblem – this is called branching – and
the procedure is repeated recursively until the subproblems become easy
enough to be dealt with directly.

Unfortunate branching choices may have disastrous consequences:
once you have branched, there is no turning back and you may be doomed
to painfully replicate all your subsequent moves. In this sense, branching
is like marrying in the Roman Catholic church: Branch in haste, repent
at leisure.

To some, the ominous prospect of irrevocable matrimony may supply
the motivation for utmost care in choosing a spouse; others may prefer
to choose spouses carelessly and to make divorce easy.

An implementation of the former plan is the prototype of strong
branching, first introduced in Concorde, a computer code for the sym-
metric traveling salesman problem: use first quick and coarse criteria to
eliminate some of a large number of initial candidates in a first round,
then slower and finer criteria to eliminate some of the remaining candi-
dates in the next round, and so on in an iterative fashion.

Two of the most popular implementations of the latter plan are dy-
namic backtracking of Matthew Ginsberg and GRASP of João Marques
Silva and Karem Sakallah; one of the most neglected ones is resolution
search. In reviewing resolution search, I will go into its origins, details,
and extensions beyond the original presentation in 1995. In particular,
I will point out that it can bridge the gap between certain local search
heuristics and so-called exact algorithms.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finite Model Theory on Tame Classes of

Structures

Anuj Dawar

University of Cambridge Computer Laboratory, William Gates Building,
J.J. Thomson Avenue, Cambridge, CB3 0FD, UK

Anuj.Dawar@cl.cam.ac.uk

Abstract. The early days of finite model theory saw a variety of results
establishing that the model theory of the class of finite structures is not
well-behaved. Recent work has shown that considering subclasses of the
class of finite structures allows us to recover some good model-theoretic
behaviour. This appears to be especially true of some classes that are
known to be algorithmically well-behaved. We review some results in
this area and explore the connection between logic and algorithms.

1 Introduction

Finite model theory is the study of the expressive power of various logics—such
as first-order logic, second-order logic, various intermediate logics and extensions
and restrictions of these—on the class of finite structures. Just as model theory
is the branch of classical mathematical logic that deals with questions of the
expressive power of languages, so one can see finite model theory as the same
study but carried out on finite interpretations. However, finite model theory is
not simply that as it has evolved its own specific methods and techniques, its
own significant questions and a core of results specific to the subject that all
make it quite distinct from model theory. These methods, questions and results
began to coalesce into a coherent research community in the 1980s, when the
term finite model theory came into common use. The core of the subject is now
well established and can be found in books such as [17,33,23]. Much of the mo-
tivation for the development of finite model theory came from questions in com-
puter science and in particular questions from complexity theory and database
theory. It turns out that many important questions arising in these fields can
be naturally phrased as questions about the expressive power of suitable logics
(see [1,29]). Moreover, the requirement that the structures considered are avail-
able to algorithmic processing leads to the study of such logics on specifically
finite structures. Such considerations have provided a steady stream of problems
for study in finite model theory.

In his tutorial on finite model theory delivered at LICS in 1993, Phokion
Kolaitis [31] classified the research directions in finite model theory into three
categories that he called negative, conservative and positive. In the first category
are those results showing that theorems and methods of classical model theory

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 2–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finite Model Theory on Tame Classes of Structures 3

fail when only finite structures are considered. These include the compactness
theorem, the completeness theorem and various interpolation and preservation
theorems. In the second category are results showing that certain classical theo-
rems and methods do survive when we restrict ourselves to finite structures. One
worth mentioning is the result of Gaifman [22] showing that any first-order sen-
tence is equivalent to a Boolean combination of local sentences. This has proved
to be an extremely useful tool in the study of finite model theory. A more recent
example in the vein of conservative finite model theory is Rossman’s result [38]
that the homomorphism preservation theorem holds in the finite (a topic we will
return to later). Finally, the third category identified by Kolaitis is of results
exploring concepts that are meaningful only in the context of finite structures.
Among these are work in descriptive complexity theory as well as 0-1 laws.

Much early work in finite model theory focussed on the negative results, as
researchers attempted to show how the model theory of finite structures differed
from that of infinite structures. The failure of compactness and its various con-
sequences led to the conclusion that the class of finite structures is not model-
theoretically well behaved. Indeed, Jon Barwise once stated that the class of
finite structures is not a natural class, in the sense that it is difficult to define
(in a formal logic) and does not contain limit points of sequences of its structures.
However, recent work in finite model theory has begun to investigate whether
there are subclasses of the class of finite structures that may be better behaved.
We call such classes tame. It is impossible to recover compactness in any rea-
sonable sense in that any class that contains arbitrarily large finite structures
but excludes all infinite ones will not have reasonable compactness properties.
Thus, interesting subclasses of the class of finite structures will not be natural
in the sense of Barwise, but as we shall see, they may still show interesting
model-theoretic behaviour. The subclasses we are interested in are motivated
by the applications in computer science. It is often the case in a computational
application where we are interested in the expressive power of a logic that the
structures on which we interpret the logic are not only finite but satisfy other
structural restrictions. Our aim is to understand how such restrictions may affect
the model-theoretic tools available.

Preservation Theorems. Consider classical preservation theorems, which relate
syntactic restrictions on first-order formulas with semantic counterparts. A key
example is the extension preservation theorem of �Loś and Tarski which asserts
that a first-order formula is preserved under extensions on all structures if, and
only if, it is logically equivalent to an existential formula (see [27]). One direc-
tion of this result is easy, namely that any formula that is purely existential is
preserved under extensions, and this holds on any class of structures. The other
direction, going from the semantic restriction to the syntactic restriction makes
key use of the compactness of first-order logic and hence of infinite structures.
Indeed, this direction is known to fail in the case of finite structures as it was
shown by Tait [41] that there is a first-order sentence whose finite models are
closed under extensions but that is not equivalent on finite structures to an
existential sentence. Thus, we can consider the extension preservation question

4 A. Dawar

relativised to a class of structures C as: if a first-order sentence ϕ is preserved
under extensions on C, is it equivalent on C to an existential sentence? If we
replace C by a class C′ that is contained in C, we are weakening both the hypoth-
esis and the consequent of the question. Thus, one cannot deduce the truth or
otherwise of the preservation theorem on C′ from that on C. The question arises
anew for every class C. The extension preservation theorem for various classes
of finite structures C is explored in [3].

A related preservation result of classical model theory is the homomorphism
preservation theorem which states that a first-order formula is preserved under
homomorphisms on all structures if, and only if, it is logically equivalent to an
existential positive formula. For many years it was an open question whether this
preservation theorem was true in restriction to the class of finite structures. The
question was finally settled by Rossman [38] who showed that it is indeed true
in this case. This provides a rare example of a preservation theorem that sits in
the conservative rather than the negative category in Kolaitis’ classification of
results. Once again, for every class C of finite structures, the question of whether
the homomorphism preservation theorem holds on C is a new question. The
preservation property is established for a large variety of classes in [4].

Descriptive Complexity. In the positive research direction, the most prominent
results are those of descriptive complexity theory. The paradigmatic result in
this vein is the theorem of Fagin [19] which states that a class of finite struc-
tures is definable in existential second-order logic if, and only if, it is decidable
in NP. Similar, descriptive, characterisations were subsequently obtained for a
large number of complexity classes (see [29]). In particular, Immerman [28] and
Vardi [42] showed that LFP—the extension of first-order logic with a least fixed
point operator—expresses exactly those classes of finite ordered structures that
are decidable in P (a similar result is shown by Livchak [35]). Whether or not
there is a logic that expresses exactly the polynomial time properties of finite
structures, without the assumption of order, remains the most important open
question in descriptive complexity. It was shown by Cai, Fürer and Immerman [8]
that LFP+C, the extension of LFP with a counting mechanism, does not suffice.
However, it turns out that on certain restricted classes of structures, LFP + C is
sufficient to express all properties in P. We will see examples of this below.

2 Tame Classes of Structures

We consider classes of finite structures defined in terms of restrictions on their
underlying adjacency (or Gaifman) graphs. The adjacency graph of a structure
A is the graph GA whose vertices are the elements of A and where there is an
edge between vertices a and b if, and only if, a and b appear together in some
tuple of some relation in A. The restrictions we consider on these graphs are
obtained from graph structure theory and algorithmic graph theory. They are
restrictions which have, in general, yielded interesting classes from the point of
view of algorithms. Our aim is to explore to what extent the classes are also
well-behaved in terms of their model-theoretic properties. From now on, when

Finite Model Theory on Tame Classes of Structures 5

we say that a class of structures C satisfies some restriction, we mean that the
collection of graphs GA for A ∈ C satisfy the restriction.

The restrictions we consider and their interrelationships are depicted in
Figure 1.

excluded minors bounded local treewidth

planar graphs bounded degree

bounded expansion locally excluded minors

acyclic graphs

bounded genus

bounded treewidth

Fig. 1. Relationships between tame classes

Among the restrictions given in Figure 1, that of acyclicity and planarity are
of a different character to the others in that they apply to single graphs. We can
say of graph G that it is acyclic or planar. When we apply this restriction to a
class C, we mean that all structures in the class satisfy it. The other conditions
in the figure only make sense in relation to classes of graphs. Thus, it makes little
sense to say of a single finite graph that it is of bounded degree (it is necessarily
so). When we say of a class C that it is of bounded degree, we mean that there
is a uniform bound on the degree of all structures in C.

The arrows in Figure 1 should be read as implications. Thus, any graph that
is acyclic is necessarily planar. Similarly, any class of acyclic graphs has bounded
treewidth. The arrows given in the figure are complete in the sense that when
two restrictions are not connected by an arrow (or sequence of arrows) then the
first does not imply the second and separating examples are known in all such
cases.

The restrictions of acyclicity, planarity and bounded degree are self-
explanatory. We say that a class of graphs C has bounded genus if there is
a fixed orientable surface S such that all graphs in C can be embedded in S
(see [37]). In particular, as planar graphs are embeddable in a sphere, any class
of planar graphs has bounded genus. The treewidth of a graph is a measure of
how tree-like it is (see [16]). In particular, trees have treewidth 1, and so any
class of acyclic graphs has treewidth bounded by 1. The measure plays a cru-
cial role in the graph structure theory developed by Robertson and Seymour in
their proof of the graph minor theorem. We say that a graph G is a minor of
H (written G ≺ H) if G can be obtained from a subgraph of H by a series of
edge contractions (see [16] for details). We say that a class of graphs C excludes
a minor if there is some G such that for all H ∈ C we have G �≺ H . In particular,
this includes all classes C which are closed under taking minors and which do not

6 A. Dawar

include all graphs. If G is embeddable in a surface S then so are all its minors.
Since, for any fixed integer k, there are graphs that are not of genus k, it follows
that any class of bounded genus excludes some minor.

The notion of bounded local treewidth was introduced as a common generali-
sation of classes of bounded treewidth and bounded genus. A variant, called the
diameter width property was introduced in [18] while bounded local treewidth
is from [21]. Recall that the r-neighbourhood of an element a in a structure
A, denoted N r

A(a), is the substructure of A induced by the set of elements at
distance at most r from a in the graph GA. We say that a class of structures
C has bounded local treewidth if there is a nondecreasing function f : N → N
such that for any structure A ∈ C, any a in A and any r, the treewidth of N r

A(a)
is at most f(r). It is clear that any class of graphs of bounded treewidth has
bounded local treewidth (indeed, bounded by a constant function f). Similarly,
any class of graphs of degree bounded by d has local treewidth bounded by the
function dr, since the number of elements in N r

A(a) is at most dr. The fact that
classes of bounded genus also have bounded local treewidth follows from a result
of Eppstein [18].

We say that a class of structures C locally excludes minors if there is a nonde-
creasing function f : N → N such that for any structure A ∈ C, any a in A and
any r, the clique Kf(r) is not a minor of the graph GN r

A(a). This notion is intro-
duced in [11] as a natural common generalisation of bounded local treewidth and
classes with excluded minors. Classes of graphs with bounded expansion were
introduced by Nešetřil and Ossona de Mendez [40] as a common generalisation
of classes of bounded degree and proper minor-closed classes. A class of graphs
C has bounded expansion if there is a function f : N → N such that for any
graph G ∈ C, any subgraph H of G and any minor H ′ of H obtained from H
by contracting neighbourhoods of radius at most r, the average degree in H ′

is bounded by f(r). In particular, classes that exclude a minor have bounded
expansion witnessed by a constant function f .

3 Logic and Algorithms on Tame Classes

The interest in tame classes of structures from the point of view of algorithms
is that it is often the case that problems that are intractable in general become
tractable when a suitable restriction on the structures is imposed. For instance,
for any class of graphs of bounded treewidth, there are linear time algorithms
for deciding Hamiltonicity and 3-colourability and on planar graphs there is a
polynomial time algorithm for the Max-Cut problem. On the other hand, many
problems remain hard as, for instance, 3-colourability is NP-complete even on
planar graphs.

What is of interest to us here is that in many cases the good algorithmic
behaviour of a class of structures can be explained or is linked to the expressive
power of logics. This is especially the case with so-called meta-theorems that link
definability in logic with tractability. Examples of such meta-theorems are Cour-
celle’s theorem [10] which shows that any property definable in monadic second-

Finite Model Theory on Tame Classes of Structures 7

order logic is decidable in linear time on classes of bounded tree-width and the
result of Dawar et al. [13] that first-order definable optimization problems admit
polynomial-time approximation schemes on classes of structures that exclude a
minor. Also among results that tie together logical expressiveness and algorith-
mic complexity on restricted classes, one can mention the theorem of Grohe and
Mariño [26] to the effect that LFP + C captures exactly the polynomial-time de-
cidable properties of classes of structures of bounded treewidth. In this section,
we take a brief tour of some highlights of such results.

Acyclic Structures. To say that the adjacency graph GA of a structure A is
acyclic is to say that all relations in A are essentially unary or binary and the
union of the symmetric closures of the binary relations is a forest. One interest-
ing recent result on such classes of structures is that of Benedikt and Segoufin [6]
that any first-order sentence that is order-invariant on trees is equivalent to one
without order. This contrasts with a construction of Gurevich (see [1, Exer-
cise 17.27]) that shows that there is a first-order sentence that is order-invariant
on the class of finite structures but is not equivalent to any first-order sentence
without order. The theorem of Benedikt and Segoufin can be seen as a spe-
cial case of interpolation. The general version of Craig’s interpolation theorem
(see [27]) is known to fail on the class of finite structures and even on the class
of finite acyclic structures.

Another important respect in which acyclic structures are well-behaved is
that while the validities of first-order logic on finite structures are not recur-
sively enumerable, the validities on acyclic structures are decidable. Indeed, it
is well-known that even monadic second-order logic (MSO) is decidable on trees
(see [7] for a treatment). Moreover, by Courcelle’s theorem mentioned above, we
know that the problem of deciding, given a formula ϕ of MSO and an acyclic
structure A, whether or not A |= ϕ is decidable by an algorithm running in time
O(f(|ϕ|)|A|) for some computable function f . We express this by saying that the
satisfiability problem for the logic (also often called the model-checking problem)
is fixed-parameter tractable. It has also been known, since results of Immerman
and Lander and Lindell that LFP + C captures polynomial time on trees [30,34].

Finally, it has been proved that the homomorphism and extension preservation
theorems hold on the class of acyclic structures (see [4] and [3] respectively).
Indeed these preservation properties hold of any class of finite acyclic structures
which is closed under substructures and disjoint unions, but may fail for other
subclasses.

Bounded Treewidth. Let Tk denote the class of all structures of treewidth at
most k. It is known that many of the properties of acyclic structures that make
it a well-behaved class also extend to Tk for values of k larger than 1. However,
it is not known if the order-invariance result of Benedikt and Segoufin is one of
these properties. This remains an open question. Monadic second-order logic is
as tame on Tk as it is on T1 since it is known that the satisfiability problem is
decidable [9] and the satisfaction problem is fixed-parameter tractable [10].

It has been shown that Tk has the homomorphism preservation property [4]
as well as the extension preservation property [3]. The former holds, in fact, for

8 A. Dawar

all subclasses of Tk that are closed under substructures and disjoint unions, but
this is not true of extension preservation. Indeed, it is shown in [3] that extension
preservation fails for the class of all planar graphs of treewidth at most 4, which
is a subclass of T4.

We have mentioned above that Grohe and Mariño [26] proved that LFP + C
captures polynomial time computation on Tk for any k. Recently, this has been
shown to be optimal, in the following sense. For any nondecreasing function
f : N → N, let Tf denote the class of structures where any structure A of at
most n elements has treewidth at most f(n). Then, we can show [15] that as long
as f is not bounded by a constant, there are polynomial time properties in Tf
that are not expressible in LFP + C. Note, this does not preclude the possibility
that LFP+C capture P on subclasses of Tf of unbounded treewidth. Indeed, just
such a possibility is realised by the result of Grohe that LFP + C captures P on
planar graphs [24] and more generally on graphs of bounded genus [25].

Bounded Degree Structures. Bounding the maximum degree of a structure is a
restriction quite orthogonal to bounding its treewidth and yields quite different
behaviour. While graphs of maximum degree bounded by 2 are very simple,
consisting of disjoint unions of paths and cycles, structures of maximum degree
3 already form a rather rich class. That is, if Dk is the class of structures with
maximum degree k, then the MSO theory of D3 is undecidable as is its first-order
theory. Indeed, the first-order theory of planar graphs of degree at most 3 is also
undecidable [12]. Furthermore, the satisfaction problem for MSO is intractable as
one can construct sentences of MSO which express NP-hard problems on planar
grids. However, it is the case that the satisfaction problem for first-order logic
is fixed-parameter tractable on Dk for all k. This was shown by Seese [39].

The question of devising a logic in which one can express all and only the
polynomial-time properties of bounded degree structures is an interesting one.
The graph isomorphism problem is known to be solvable in polynomial time on
graphs of bounded degree [36], and indeed, there is a polynomial-time algorithm
for canonical labelling of such graphs [5]. It follows from general considerations
about canonical labelling functions (see [17, Chapter 11]) that there is some
logic that captures exactly P on Dk, for each k. However, we also know, by the
construction of Cai, Fürer and Immerman [8] that LFP+C is too weak a logic for
this purpose. It remains an open question to find a “natural” logic that captures
P on bounded degree classes.

On the question of preservation properties, both the homomorphism and ex-
tension preservation theorems have been shown to hold, not only on Dk, but also
on subclasses closed under substructures and disjoint unions [4,3].

Excluded Minor Classes. Classes with excluded minors are too general a case for
good algorithmic behaviour of MSO. This logic is already undecidable, and its
satisfaction problem intractable, on planar graphs. Indeed, first-order logic is also
undecidable on planar graphs. However, it has been shown that the satisfaction
problem for first-order logic is fixed-parameter tractable on any class of struc-
tures that excludes a minor [20]. While the extension preservation theorem fails

Finite Model Theory on Tame Classes of Structures 9

in general on such classes, and was even shown to fail on planar graphs [3], the ho-
momorphism preservation property holds of all classes which exclude a minor and
are closed under taking substructures and disjoint unions [4]. It remains an open
question whether one can construct a logic that captures P on excluded minor
classes. Grohe conjectured [25] that LFP+C is actually sufficient for this purpose.
Indeed, he proved that LFP + C captures P on all classes of bounded genus.

Further Extensions. Frick and Grohe showed that the satisfaction problem for
first-order logic is fixed-parameter tractable, even on classes of structures of
bounded treewidth [21]. This result was recently extended to classes of graphs
that locally exclude a minor [11] by an algorithmic analysis of the graph structure
theorem of Robertson and Seymour. It is an open question whether or not it can
also be extended to classes of graphs of bounded expansion. The model-theoretic
and algorithmic properties of classes of graphs of bounded expansion and that
locally exclude minors are yet to be studied in detail and a number of open
questions remain.

4 Preservation Theorems

Among the results in the last section, we looked at classes of structures where
the homomorphism and the extension preservation theorems are known to hold.
Indeed, the homomorphism preservation theorem survives all the restrictions we
considered, while the extension preservation is available in some. We now take
a brief look at the methods used to establish the homomorphism and extension
preservation theorems in the tame classes where they have been shown.

The key idea in these proofs is to establish an upper bound on the size of
minimal models of a first-order sentence that has the relevant preservation prop-
erty. For instance, suppose ϕ is a sentence that is preserved under extensions
on a class of structures C. Then, we say that a structure A is a minimal model
of ϕ in C if A |= ϕ and no proper induced substructure of A is a model of ϕ.
It is then immediate that the models of ϕ in C are exactly the extensions of
minimal models. It is not difficult to show that ϕ is equivalent to an existential
sentence on C if, and only if, it has finitely many minimal models. The same
holds true for sentences preserved under homomorphisms if we take minimal
models, not with respect to induced substructures, but allowing substructures
that are not induced (see [4] for details). The preservation properties for tame
classes mentioned above are then proved by showing that from every sentence
ϕ we can extract a bound N such that all minimal models of ϕ have at most
N elements. This bound is obtained by considering structural properties that a
minimal model must satisfy.

It can be shown that if ϕ is preserved under homomorphisms on a class C
(closed under disjoint unions and substructures) then there are positive integers
d and m such that no minimal model of ϕ in C contains a set of m elements
that are pairwise distance d or greater from each other. This result is essentially
obtained from a construction of Ajtai and Gurevich [2] and is a consequence of
Gaifman’s locality theorem for first-order logic. A more involved construction,

10 A. Dawar

again based on Gaifman’s theorem establishes this density property also for for-
mulas preserved under extensions. An immediate consequence is the preservation
theorem for certain classes we call wide. A class of structures C is wide if for all
d and m, there is an N such that every structure in C with at least N elements
contains a set of m elements that are pairwise distance at least d from each
other. For instance, any class of bounded degree is easily seen to be wide.

The construction of Ajtai and Gurevich shows further that for any sentence
ϕ preserved under homomorphisms on C, and for every positive integer s, there
are d and m such that no minimal model of ϕ in C contains a set of m elements
that are pairwise distance d or greater from each other, even after s elements
are removed from it. This leads to a definition of classes that are almost wide:
C is almost wide if there is an s such that for all d and m there is an N such
that in every structure A in C with at least N elements, one needs to remove at
most s elements to obtain a set of m elements that are pairwise distance at least
d from each other. A combinatorial construction is needed to prove that classes
of graphs that exclude a minor are almost wide (see [4] and also [32]). Almost
wideness is not sufficient in itself to establish the extension preservation property
(as is witnessed by the class of planar graphs). However, we can strengthen
the requirement of closure under disjoint unions to closure under unions over
“bottlenecks” (see [3]) and obtain a sufficient condition. This leads, in particular,
to the proof that the extension preservation theorem holds for the classes Tk.

It is not clear if classes of structures of bounded expansion or with locally
excluded minors are almost wide. However, they can be shown to satisfy a weaker
condition. Say a class of structures C is quasi-wide if for all d there is an s such
that for all m, there is an N such that if A ∈ C has N or more elements, then
there is a set B of at most s elements in A such that A \ B contains a set of m
elements that are pairwise at least distance d from each other. It can be shown
that classes of structures of bounded expansion and that locally exclude minors
are quasi-wide. Furthermore, it seems that a strengthening of the Ajtai-Gurevich
lemma can establish the homomorphism preservation theorem for quasi-wide
classes that are closed under disjoint unions and minors [14].

5 Conclusion

The class of all finite structures is not a model-theoretically well-behaved class.
Recent work has investigated to what extent considering further restricted classes
may enable us to discover interesting model-theoretic properties. The restrictions
that have been found that yield tame classes are also those that yield good al-
gorithmic behaviour. The interaction between logical and algorithmic properties
of these classes remains an active area of investigation. Besides preservation the-
orems, many model-theoretic properties of these classes remain to be explored.
In the absence of the Compactness Theorem, which is the bedrock of the model
theory of infinite structures, the methods used on tame classes of finite struc-
tures are varied and often combinatorial in nature. However, methods based on
locality appear to play a central role.

Finite Model Theory on Tame Classes of Structures 11

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. J. of Computer and System
Sciences 49, 562–588 (1994)

3. Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved
finite structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg
(2005)

4. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms
and unions of conjunctive queries. Journal of the ACM 53, 208–237 (2006)

5. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. of the 15th ACM
Symp. on the Theory of Computing, pp. 171–183. ACM Press, New York (1983)

6. Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries
over tame structures. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 276–291.
Springer, Heidelberg (2005)

7. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (1997)

8. Cai, J-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4), 389–410 (1992)

9. Courcelle, B.: The monadic second-order logic of graphs ii: Infinite graphs of
bounded width. Theory of Computing Systems 21, 187–221 (1989)

10. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwan,
J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Sematics
(B), vol. B, pp. 193–242. Elsevier, Amsterdam (1990)

11. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. 22nd
IEEE Symp. on Logic in Computer Science (2007)

12. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model theory makes formulas
large. In: ICALP’07: Proc. 34th International Colloquium on Automata, Languages
and Programming. LNCS, Springer, Heidelberg (2007)

13. Dawar, A., Kreutzer, S., Grohe, M., Schweikardt, N.: Approximation schemes for
first-order definable optimisation problems. In: Proc. 21st IEEE Symp. on Logic
in Computer Science, pp. 411–420 (2006)

14. Dawar, A., Malod, G.: forthcoming
15. Dawar, A., Richerby, D.: The power of counting logics on restricted classes of finite

structures. In: CSL 2007: Computer Science Logic. LNCS, Springer, Heidelberg
(2007)

16. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
17. Ebbinghaus, H-D., Flum, J.: Finite Model Theory. 2nd edn., Springer, Heidelberg

(1999)
18. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorith-

mica 27, 275–291 (2000)
19. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.

In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7,
pp. 43–73 (1974)

20. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking.
SIAM Journal on Computing 31, 113–145 (2001)

21. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM 48, 1184–1206 (2001)

12 A. Dawar

22. Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Proceedings
of the Herbrand Symposium Logic Colloquium ’81, pp. 105–135. North-Holland,
Amsterdam (1982)

23. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema,
Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg
(2007)

24. Grohe, M.: Fixed-point logics on planar graphs. In: Proc. 13th IEEE Annual Symp.
Logic in Computer Science, pp. 6–15 (1998)

25. Grohe, M.: Isomorphism testing for embeddable graphs through definability. In:
Proc. 32nd ACM Symp.Theory of Computing, pp. 63–72 (2000)

26. Grohe, M., Mariño, J.: Definability and descriptive complexity on databases
of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, Springer, Heidelberg (1998)

27. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
28. Immerman, N.: Relational queries computable in polynomial time. Information and

Control 68, 86–104 (1986)
29. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
30. Immerman, N., Lander, E.S.: Describing graphs: A first-order approach to graph

canonization. In: Selman, A. (ed.) Complexity Theory Retrospective, Springer,
Heidelberg (1990)

31. Kolatis, P.G.: A tutorial on finite model theory. In: Proceedings of the Eighth
Annual IEEE Symp. on Logic in Computer Science, LICS 1993, pp. 122–122 (1993)

32. Kreidler, M., Seese, D.: Monadic NP and graph minors. In: Gottlob, G., Grandjean,
E., Seyr, K. (eds.) Computer Science Logic. LNCS, vol. 1584, pp. 126–141. Springer,
Heidelberg (1999)

33. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
34. Lindell, S.: An analysis of fixed-point queries on binary trees. Theoretical Computer

Science 85(1), 75–95 (1991)
35. Livchak, A.: The relational model for process control. Automated Documentation

and Mathematical Linguistics 4, 27–29 (1983)
36. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences 25, 42–65 (1982)
37. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press

(2001)
38. Rossman, B.: Existential positive types and preservation under homomorphisisms.

In: 20th IEEE Symposium on Logic in Computer Science, pp. 467–476 (2005)
39. Seese, D.: Linear time computable problems and first-order descriptions. Math.

Struct. in Comp. Science 6, 505–526 (1996)
40. Nešetřil, J., de Mendez, P.O.: The grad of a graph and classes with bounded ex-

pansion. International Colloquium on Graph Theory, 101–106 (2005)
41. Tait, W.W.: A counterexample to a conjecture of Scott and Suppes. Journal of

Symbolic Logic 24, 15–16 (1959)
42. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th

ACM Symp. on the Theory of Computing, pp. 137–146 (1982)

Minimum Cycle Bases in Graphs
Algorithms and Applications

Kurt Mehlhorn

Max-Planck-Institut für Informatik, Saarbrücken, Germany

A cycle basis of a graph is a family of cycles which spans all cycles of the graph. In an
undirected graph, a cycle is simply a set of edges with respect to which every vertex has
even degree. We view cycles as vectors indexed by edges. The entry for an edge is one
if the edge belongs to the cycle and is zero otherwise. Addition of cycles corresponds
to vector addition modulo 2 (symmetric difference of the underlying edge sets). In this
way, the cycles of a graph form a vector space and a cycle basis is simply a basis of this
vector space. The notion for directed graphs is slightly more involved.

The weight of a cycle is either the number of edges in the cycle (in unweighted
graphs) or the sum of the weights of the edges in the cycle (in weighted graphs). A
minimum cycle basis is basis of total minimum weight.

The analysis of the cycle space has applications in various fields, e.g., electrical en-
gineering [Kir47], structural analysis [CHR76], biology and chemistry [Gle01], surface
reconstruction [GKM+], and periodic timetabling [Lie06]. Some of these applications
require bases with special properties [LR07]. In the first part of the talk, I will discuss
applications of cycle basis.

In the second part, I turn to construction algorithms. The first polynomial time
algorithms for constructing minimum cycle bases in undirected graphs are due to
Horton [Hor87] and de Pina [dP95]. Faster realizations of the latter approach are dis-
cussed in the papers [BGdV04, KMMP04, MM]. Both approaches can be generalized
to directed graphs [LR05, KM05, HKM06, Kav05]. Approximation algorithms are dis-
cussed in [KMM07].

Integral cycle basis are required for the application to periodic timetabling. Finding
minimal integral or fundamental bases is NP-complete. Construction and approxima-
tion algorithms are described in [Lie03, Lie06, Kav, ELR07].

References

[BGdV04] Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle basis for network graphs.
Algorithmica 40(1), 51–62 (2004)

[CHR76] Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal mea-
sure for the structural analysis of skeletal structures by the flexibility method. In:
Proc. Royal Society of London Series A, vol. 350, pp. 61–70 (1976)

[dP95] de Pina, J.C.: Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands (1995)

[ELR07] Elkin, M., Liebchen, Ch., Rizzi, R.: New length bounds for cycle bases. Technical
report, TU Berlin (June 2007)

[GKM+] Gotsman, C., Kaligosi, K., Mehlhorn, K., Michail, D., Pyrga, E.: Cycle Basis of
Graphs and Sampled Manifolds (submitted for publication)

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 13–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 K. Mehlhorn

[Gle01] Gleiss, P.M.: Short Cycles, Minimum Cycle Bases of Graphs from Chemistry and
Biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der
Universität Wien (2001)

[HKM06] Hariharan, R., Kavitha, T., Mehlhorn, K.: A Faster Deterministic Algorithm for
Minimum Cycle Basis in Directed Graphs. In: Bugliesi, M., Preneel, B., Sassone,
V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 250–261. Springer, Hei-
delberg (2006)

[Hor87] Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a
graph. SICOMP 16, 358–366 (1987)

[Kav] Kavitha, T.: A simple approximation algorithm for integral bases. personal com-
munication

[Kav05] Kavitha, T.: An O(m2n) randomized algorithm to compute a minimum cycle basis
of a directed graph. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, Springer, Heidelberg (2005)

[Kir47] Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Unter-
suchungen der linearen Verteilung galvanischer Ströme geführt wird. Poggendorf
Ann. Phy. Chem. 72, 497–508 (1847)

[KM05] Kavitha, T., Mehlhorn, K.: A Polynomial Time Algorithm for Minimum Cycle
Basis in Directed Graphs. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, Springer, Heidelberg (2005)

[KMM07] Kavitha, T., Mehlhorn, K., Michail, D.: New Approximation Algorithms for Mini-
mum Cycle Bases of Graphs. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS,
vol. 4393, Springer, Heidelberg (2007)

[KMMP04] Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: A Faster Algorithm for Mini-
mum Cycle Bases of Graphs. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, Springer, Heidelberg (2004)

[Lie03] Liebchen, Ch.: Finding short integral cycle bases for cyclic timetabling. In: Di
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 715–726. Springer,
Heidelberg (2003)

[Lie06] Liebchen, Ch.: Periodic Timetable Optimization in Public Transport. PhD thesis,
TU Berlin (2006)

[LR05] Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of
a directed graph. Information Processing Letters 94(3), 107–112 (2005)

[LR07] Liebchen, C., Rizzi, R.: Classes of cycle bases. Discrete Applied Mathemat-
ics 155(3), 337–355 (2007)

[MM] Mehlhorn, K., Michail, D.: Minimum Cycle Bases: Faster and Simpler (submitted
for publication)

Hierarchies of Infinite Structures Generated by

Pushdown Automata and Recursion Schemes

C.-H.L. Ong

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, England

users.comlab.ox.ac.uk/luke.ong/

Abstract. Higher-order recursion schemes and higher-order pushdown
automata are closely related methods for generating infinite hierarchies
of infinite structures. Subsuming well-known classes of models of com-
putation, these rich hierarchies (of word languages, trees, and graphs
respectively) have excellent model-checking properties. In this extended
abstract, we survey recent expressivity and decidability results about
these infinite structures.

A class of infinite-state systems of fundamental importance to software veri-
fication are pushdown automata. It is an old idea that first-order imperative
programs with recursive procedures can be accurately modelled by pushdown
automata (see e.g. [1] for a precise account). Viewed abstractly, a pushdown au-
tomaton (PDA) is a finitely-presentable infinite-state transition graph in which
a state (vertex) is a reachable configuration that carries a finite but unbounded
amount of information, namely, the contents of the stack. Müller and Schupp
[2] have proved that the monadic second-order (MSO) theory of the transition
graph of a pushdown automaton is decidable, and the automata-theoretic tech-
nique using two-way alternating automata [3] provides a direct (elementary)
model-checking decision procedure for temporal properties.

1 Pushdown Automata and Safe Recursion Schemes

There is in fact an infinite hierarchy of higher-order pushdown automata. First
introduced by Maslov [4,5] as accepting devices for word languages, order-0 and
order-1 pushdown automata are, by definition, the finite-state and standard
pushdown automata respectively. An order-2 PDA has an order-2 stack, which
is a stack of order-1 (i.e. ordinary) stacks; in addition to the usual (first-order
actions) push and pop, it has an order-2 push2 that duplicates the top 1-stack,
and an order-2 pop2 that pops the entire top 1-stack. As n varies over the
natural numbers, the languages accepted by order-n PDA form an infinite hier-
archy. In op. cit. Maslov showed that the hierarchy can be defined equivalently
as languages generated by higher-order indexed grammars, generalising indexed
grammars in the sense of Aho [6]. Yet another characterisation of Maslov’s hier-
archy was given by Damm and Goerdt [7,8]: they studied higher-order recursion

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 15–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 C.-H.L. Ong

schemes that satisfy the constraint of derived types, and showed that the word
languages generated by order-n such schemes coincide with those accepted by
order-n PDA. The low orders of the Maslov hierarchy are well-known – orders 0,
1 and 2 are respectively the regular, context-free and indexed languages, though
little is known about languages at higher orders.

Higher-order PDA as a generating device for (possibly infinite) ranked trees
was first studied by Knapik, Niwiński and Urzyczyn in a TLCA’01 paper [9].
As in the case of word languages, an infinite hierarchy of trees are thus defined.
Lower orders of the pushdown hierarchy are well-known classes of trees: orders
0, 1 and 2 are respectively the regular [10], algebraic [11] and hyperalgebraic
trees [9]. In a follow-up paper in FoSSaCS’02 [12] Knapik et al. considered an-
other method for generating such trees, namely, by higher-order (deterministic)
recursion schemes that satisfy the constraint of safety1. A major result in that
work is the equi-expressivity of the two methods as generators of trees; another
is that all trees in the pushdown hierarchy have decidable monadic second-order
(MSO) theories.

In a MFCS’02 paper, Caucal [14] introduced a tree hierarchy and a graph
hierarchy, which are defined by mutual induction using a pair of transformations,
one from trees to graphs, and the other from graphs to trees. The order-0 graphs
are by definition the finite graphs. Inductively the order-n trees are defined as
the unravelling of the order-n graphs; and the order-(n+1) graphs are defined as
the inverse rational mappings of the order-n trees. Since these transformations
preserve the decidability of MSO theories, all infinite structures belonging to the
two hierarchies have decidable MSO theories. Caucal’s hierarchies turn out to be
closely related to higher-order PDA: Carayol and Wöhrle [15] have shown that
the order-n graphs in Caucal’s graph hierarchy are exactly the ε-closure of the
configuration graphs of order-n pushdown systems.

To summarise, the hierarchies of infinite structures generated by higher-order
pushdown automata are of considerable interest to infinite-state verification:

1. Expressivity: They are rich and very general; as tabulated below, the lower
orders of the hierarchies are well-known classes of models of computation

Pushdown (= Safe Recursion Scheme) Hierarchies of

Order Word Languages Trees Graphs

0 regular regular finite

1 context-free algebraic [11] prefix-recognisable [16]

2 indexed [6] hyper-algebraic [9]
...

...
...

...

though little is known about the structures at higher orders.

1 As a syntactic constraint, safety is equivalent to Damm’s derived types [7]; see de
Miranda’s thesis [13] for a proof.

Hierarchies of Infinite Structures Generated by PDA and Recursion Schemes 17

2. Robustness : Remarkably, order-n pushdown automata are equi-expressive
with order-n recursion schemes that satisfy the syntactic constraint of safety,
as generators of word languages [7,8] and of trees [12] respectively.

3. Excellent model-checking properties : The infinite structures that are gener-
ated have decidable MSO properties. The criterion of MSO decidability is
appropriate because the MSO logic is commonly regarded as the gold stan-
dard of specification languages for model checking: standard temporal logics
such as LTL, ETL, CTL, CTL*, and even modal mu-calculus can all be em-
bedded in MSO; moreover any obvious extension of the logic would break
decidability.

2 Recursion Schemes and Collapsible Pushdown
Automata

Several questions arise naturally from the preceding equi-expressivity and decid-
ability results.

1. Syntactically awkward, the safety constraint [12] seems unnatural. Is it really
necessary for MSO decidability? Precisely, do trees that are generated by
(arbitrary) recursion schemes have decidable MSO theories?

2. Can the expressivity of (arbitrary) recursion schemes be characterised by
an appropriate class of automata (that contains the higher-order pushdown
automata)?

3. Does safety constrain expressivity? I.e. is there a tree or a graph that is
generated by an unsafe, but not by any safe, recursion scheme?

Recent work has provided answers to the first two of these questions, and a
partial answer to the third. Using new ideas and techniques from innocent game
semantics [17], we have proved [18]:

Theorem 1 (MSO decidability). The modal mu-calculus model checking
problem for ranked trees generated by order-n recursion schemes is n-EXPTIME
complete, for each n ≥ 0. Hence these trees have decidable MSO theories.

To our knowledge, the hierarchy of trees generated by (arbitrary) recursion
schemes is the largest, generically-defined class of ranked trees that have decid-
able MSO theories, subsuming earlier results such as [10,11] and also [12,19,20,21]
etc. A novel ingredient in the proof of Theorem 1 is a certain transference prin-
ciple from the tree [[G]] generated by the recursion scheme G – the value tree
– to an auxiliary computation tree λ(G), which is in essence an infinite λ-term
obtained by unfolding the recursion scheme ad infinitum. The transference relies
on a strong correspondence theorem between paths in the value tree and what we
call traversals in the computation tree, established using innocent game seman-
tics [17]. This allows us to prove that a given alternating parity tree automaton
(APT) has an accepting run-tree over the value tree iff it has an accepting
traversal-tree over the computation tree. The second ingredient is the simula-
tion of an accepting traversal-tree by a certain set of annotated paths over the
computation tree.

18 C.-H.L. Ong

Higher-order recursion schemes are essentially closed terms of the simply-
typed lambda calculus with general recursion, generated from uninterpreted first-
order function symbols. A fundamental question in higher-type recursion is to
characterise the expressivity of higher-order recursion schemes in terms of a class
of automata. Thus the results of Damm and Goerdt [8], and of Knapik et al. [12],
may be viewed as partial answers of the question. An exact correspondence with
recursion schemes has never been established before.

Another partial answer was recently obtained by Knapik, Niwiński,
Urzyczyn and Walukiewicz. In an ICALP’05 paper [19], they proved that order-
2 homogeneously typed (but not necessarily safe) recursion schemes are equi-
expressive with a variant class of order-2 pushdown automata called panic
automata. In recent joint work [22] with Hague, Murawski and Serre, we have
given a complete answer to the question. We introduce a new kind of higher-
order pushdown automata (which generalises pushdown automata with links [23],
or equivalently panic automata, to all finite orders), called collapsible pushdown
automata (CPDA), in which every symbol in the stack has a link to a (nec-
essarily lower-ordered) stack situated somewhere below it. In addition to the
higher-order stack operations pushi and popi, CPDA have an important oper-
ation called collapse, whose effect is to “collapse” a stack s to the prefix as
indicated by the link from the top1-symbol of s. A major result of [22] is the
following:

Theorem 2 (Equi-expressivity). For each n ≥ 0, order-n recursion schemes
and order-n collapsible pushdown automata define the same trees.

Thus order-n CPDA may be viewed as a machine characterisation of order-n
recursively-defined lambda-terms, and hence also of order-n innocent strate-
gies (since innocent strategies are a universal model of higher-order recursion
schemes). In one direction of the proof, we show that for every (tree-generating)
order-n pushdown automaton, there is an order-n recursion scheme that gener-
ates the same tree. In the other direction, we introduce an algorithm (as imple-
mented in the tool HOG [24]) translating an order-n recursion scheme G to an
order-n CPDA AG that computes exactly the traversals over the computation
tree λ(G) and hence paths in the value tree [[G]].

The Equi-Expressivity Theorem has a number of useful consequences. It allows
us to translate decision problems on trees generated by recursion schemes to
equivalent problems on CPDA and vice versa. Chief among them is the Modal
Mu-Calculus Model-Checking Problem (equivalently the Alternating Parity Tree
Automaton Acceptance Problem); another is the Monadic Second-Order (MSO)
Model-Checking Problem. We observe that these problems – concerning infinite
structures generated by recursion schemes – reduce to the problem of solving a
parity game played on a collapsible pushdown graph i.e. the configuration graph
of a corresponding collapsible pushdown system (CPDS).

The transfer of techniques goes both ways. Another result in our work [22] is
a self-contained (without recourse to game semantics) proof of the solvability of
parity games on collapsible pushdown graphs by generalising standard techniques
in the field:

Hierarchies of Infinite Structures Generated by PDA and Recursion Schemes 19

Theorem 3 (Solvability). For each n ≥ 0, solvability of parity games over
the configuration graphs of order-n collapsible pushdown systems is n-EXPTIME
complete.

The Theorem subsumes a number of well-known results in the literature
[25,26,19]. By appealing to the Equi-Expressivity Theorem, we obtain new proofs
for the decidability (and optimal complexity) of model-checking problems of trees
generated by recursion schemes as studied in [18].

Finally, in contrast to higher-order pushdown graphs (which do have decid-
able MSO theories [14]), we show in [22] that the MSO theories of collapsible
pushdown graphs are undecidable. Hence collapsible pushdown graphs are, to
our knowledge, the first example of a natural class of finitely-presentable graphs
that have undecidable MSO theories while enjoying decidable modal mu-calculus
theories.

3 Practical Relevance to Semantics and Verification

Recursion schemes are an old and influential formalism for the semantical anal-
ysis of both imperative and functional programs [27,7]. Indeed one of the first
models of “Algol-like languages” (i.e. higher order procedural languages) was
derived from the pushdown hierarchy of word languages (see Damm’s mono-
graph [7]). As indicated by the recent flurry of results [12,14,19,18,22], the hi-
erarchies of (collapsible) pushdown automata and recursion schemes are highly
relevant to infinite-state verification. In the light of the mediating algorithmic
game semantics [17,28], it follows from the strong correspondence (Theorem 2)
between recursion schemes and collapsible pushdown automata, that the col-
lapsible pushdown hierarchies are accurate models of computation that under-
pin the computer-aided verification of higher-order procedural languages (such
as Ocaml, Haskell, F#, etc.) — a challenging direction for software verification.

Acknowledgements. Some of the results cited above are based on (as yet un-
published) joint work [22] with Matthew Hague, Andrzej Murwaski and Olivier
Serre. A full account will be published elsewhere.

References

1. Jones, N.D., Muchnick, S.S.: Complexity of finite memory programs with recursion.
Journal of the Association for Computing Machinery 25, 312–321 (1978)

2. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-
order logic. Theoretical Computer Science 37, 51–75 (1985)

3. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about
infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, Springer, Heidelberg (2000)

4. Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
mathematics Doklady 15, 1170–1174 (1974)

5. Maslov, A.N.: Multilevel stack automata. Problems of Information Transmis-
sion 12, 38–43 (1976)

20 C.-H.L. Ong

6. Aho, A.: Indexed grammars - an extension of context-free grammars. J. ACM 15,
647–671 (1968)

7. Damm, W.: The IO- and OI-hierarchy. Theoretical Computer Science 20, 95–207
(1982)

8. Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-
hierarchy. Information and Control 71, 1–32 (1986)

9. Knapik, T., Niwiński, D., Urzyczyn, P.: Deciding monadic theories of hyperalge-
braic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267.
Springer, Heidelberg (2001)

10. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

11. Courcelle, B.: The monadic second-order logic of graphs IX: machines and their
behaviours. Theoretical Computer Science 151, 125–162 (1995)

12. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303,
pp. 205–222. Springer, Heidelberg (2002)

13. de Miranda, J.: Structures generated by higher-order grammars and the safety
constraint. PhD thesis, University of Oxford (2006)

14. Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg
(2002)

15. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.)
FST TCS 2003: Foundations of Software Technology and Theoretical Computer
Science. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

16. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
194–205. Springer, Heidelberg (1996)

17. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III.
A fully abstract and universal game model. Information and Computation 163,
285–408 (2000)

18. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes.
In: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Science
(LICS’06), pp. 81–90. IEEE Computer Society Press, Los Alamitos (2006)

19. Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars and
panic automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg
(2005)

20. Aehlig, K., Miranda, J.G.d., Ong, C.H.L.: The monadic second order theory of
trees given by arbitrary level two recursion schemes is decidable. In: Urzyczyn, P.
(ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)

21. Aehlig, K.: A finite semantics for simply-typed lambda terms for infinite runs of
automata. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 104–118. Springer,
Heidelberg (2006)

22. Hague, M., Murawski, A.S., Ong, C.H.L., Serre, O.: Collapsible push-
down automata and recursion schemes. Technical report, Oxford Uni-
versity Computing Laboratory, p. 56 (Preprint, 2007), downloable from
users.comlab.ox.ac.uk/luke.ong/publications/cpda-long.pdf

users.comlab.ox.ac.uk/luke.ong/publications/cpda-long.pdf

Hierarchies of Infinite Structures Generated by PDA and Recursion Schemes 21

23. Aehlig, K., de Miranda, J.G., Ong, C.H.L.: Safety is not a restriction at level 2
for string languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp.
490–501. Springer, Heidelberg (2005)

24. Blum, W.: A tool for constructing structures generated by higher-
order recursion schemes and collapsible pushdown automata (2007),
web.comlab.ox.ac.uk/oucl/work/william.blum/

25. Walukiewicz, I.: Pushdown processes: games and model-checking. Information and
Computation 157, 234–263 (2001)

26. Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs and
parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)

27. Nivat, M.: On the interpretation of recursive polyadic program schemes. Symp.
Math. XV, 255–281 (1975)

28. Murawski, A.S., Ong, C.H.L., Walukiewicz, I.: Idealized Algol with ground re-
cursion and DPDA equivalence. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 917–929.
Springer, Heidelberg (2005)

web.comlab.ox.ac.uk/oucl/work/william.blum/

Evolvability

Leslie G. Valiant�

School of Engineering and Applied Sciences
Harvard University

valiant@deas.harvard.edu

Abstract. Living organisms function according to complex mechanisms
that operate in different ways depending on conditions. Evolutionary the-
ory suggests that such mechanisms evolved as result of a random search
guided by selection. However, there has existed no theory that would
explain quantitatively which mechanisms can so evolve in realistic pop-
ulation sizes within realistic time periods, and which are too complex.
In this paper we suggest such a theory. Evolution is treated as a form
of computational learning from examples in which the course of learn-
ing is influenced only by the fitness of the hypotheses on the examples,
and not otherwise by the specific examples. We formulate a notion of
evolvability that quantifies the evolvability of different classes of func-
tions. It is shown that in any one phase of evolution where selection is
for one beneficial behavior, monotone Boolean conjunctions and disjunc-
tions are demonstrably evolvable over the uniform distribution, while
Boolean parity functions are demonstrably not. The framework also al-
lows a wider range of issues in evolution to be quantified. We suggest
that the overall mechanism that underlies biological evolution is evolv-
able target pursuit, which consists of a series of evolutionary stages, each
one pursuing an evolvable target in our technical sense, each target being
rendered evolvable by the serendipitous combination of the environment
and the outcome of previous evolutionary stages.

1 Introduction

We address the problem of quantifying how complex mechanisms, such as those
found in living cells, can evolve into existence without any need for unlikely
events to occur. If evolution merely performed a random search it would require
exponential time, much too long to explain the complexity of existing biologi-
cal structures. Darwin made this observation eloquently in the context of the
evolution of the eye and suggested selection as the critical controlling principle.
He called the supposition that the eye could evolve “ · · · absurd in the highest
possible degree” were it not for the fact that eyes “vary ever so slightly” and
might therefore evolve over time by selection [5].

This paper describes a quantitative theory of the possibilities and limitations
of what selection can achieve in speeding up the process of acquiring complex
� This work was supported by grants NSF-CCR-03-10882, NSF-CCF-04-32037 and

NSF-CCF-04-27129.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 22–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evolvability 23

mechanisms beyond mere exhaustive search. In particular, we show that, in a
defined sense, selection for a given beneficial behavior can provably support the
evolution of certain specific classes of mechanisms, and provably not support
that of certain other classes.

We approach this problem by viewing mechanisms from the viewpoint of the
mathematical functions they realize. In particular the subject matter of the field
of computational learning theory [3, 16, 20, 23] can be viewed as that of delin-
eating limits on the complexity of functions that can be acquired with feasible
resources without an explicit designer or programmer. A primary instance stud-
ied there is the acquisition of a recognition algorithm for a function given just
positive and negative examples of it. The quantitative study of computational
learning over the last two decades has shown that certain classes of recognition
mechanisms can indeed be learned in a feasible amount of time, while others
encounter apparently intractable computational impediments.

Our goal here is to give a quantitative theory of the evolution of mechanisms.
What we formalize is concerned with four basic notions. First, since the biology
of cells consists of thousands of proteins and operates with circuits with complex
mechanisms, we seek mechanisms that can evaluate many-argument functions.
This permits the behavior of circuits to vary in complex ways depending on the
particular combination of values taken by a large number of input parameters.
For example, such a function may determine the expression level of a protein in
terms of the expression levels of all the other proteins. Second, any particular
many-argument function has a measure of performance that is determined by
the values of the function on inputs from a probability distribution over the
conditions that arise. By applying the function to a variety of conditions the
organism will enjoy a cumulative expected benefit that is determined by this
performance. Third, for any function only a limited number of variants can be
explored per generation, whether through mutations or recombination, since the
organisms that can exist at any time have a limited population. Fourth, there is
the requirement that mechanisms with significant improvements in performance
evolve in a limited number of generations.

We show that our notion of evolvability is a restricted case of PAC learnabil-
ity. This offers a unifying framework for the fields of evolution and cognition.
The behavior of a biological organism is clearly affected both by the results of
evolution and those of learning by the individual. Distinguishing between the
effects of nature and nurture on behavior has proved problematic, and it will
perhaps help to have a unifying viewpoint on them.

While evolvability as we define it is a form of learnability, it is a constrained
form. In PAC learning, an update to a hypothesis may depend arbitrarily, as per-
mitted by polynomial time computation, on the particular examples presented,
on the values computed on them by the hypothesis, and on the values of the
functions to be learned on those examples. In the more restricted Statistical
Query (SQ) model of Kearns [14] the updates can depend only on the result of
statistical queries on the distribution of examples. However, these queries can
ask about the percentage of examples that have certain properties and hence the

24 L.G. Valiant

learning algorithm may act differentially for the different inputs. In evolution,
we assume that the updates depend only on the aggregate performance of the
hypothesis on a distribution of examples or experiences, and cannot differentiate
at all among different kinds of examples. This last restriction expresses the idea
that the relationship between the genotype and phenotype may be extremely
complicated, and the evolution algorithm does not understand it. We shall ob-
serve that the function classes that are evolvable, in our sense, form a subset of
those that are SQ learnable, and it is an open question whether the containment
is proper.

As far as the evolvability of specific classes of functions we have both positive
and negative results. On the positive side we show that the classes of monotone
Boolean conjunctions and disjunctions are evolvable over the uniform distribu-
tion of inputs for the most natural representation of these functions. On the
negative side we observe that the class of Boolean parity functions is not evolv-
able over the uniform distribution, as it is not SQ learnable. Since the latter class
is known to be learnable we can conclude that evolvability is more constrained
than learnability.

Our intention is to leave little doubt that functions in classes that are provably
evolvable in the defined sense, do correspond to mechanisms that can logically
evolve into existence over realistic time periods and within realistic populations,
without any need for combinatorially unlikely events to occur. Previous quantita-
tive theories of evolution had aims other than that of quantifying the complexity
of the mechanisms that evolved. The major classical thrust has been the analysis
of the dynamics of populations [10, 21, 28]. A more recent development is the
study of evolutionary algorithms [1, 27], a field in which the goal is to develop
good computer algorithms inspired by evolution, usually for optimization, but
not necessarily those that model biological evolution. For example, these algo-
rithms may choose mutations depending on the current inputs or experiences,
may act on exponentially small increases in performance, and may be forced
to start from a fixed configuration. We note also that the term evolvability has
been used in a further different sense, that of measuring the intrinsic capacity
of genomes to produce variants [26].

We observe that while most discussions of evolution emphasize competition
and survival rather than evolution towards targets, such discussions have not
yielded quantified explanations of which mechanisms can evolve.

2 Many-Argument Functions

The structures or circuits that are the constituents of living cells have to respond
appropriately to wide variations in the internal and external conditions. We
shall represent the conditions as the values of a number of variables x1, · · · , xn,
each of which may correspond, for example, to the output of some previously
existing circuit. The responses that are desirable for an organism under the
various combinations of values of the variables x1, · · · , xn we view as the values
of an ideal function f(x1, · · · , xn). This f will have a low value in circumstances

Evolvability 25

when such a low value is the most beneficial, and a high value in those other
circumstances when a high value is the most beneficial. It will be beneficial to
evolve a circuit that behaves as closely as possible to this f . For simplicity we
shall consider the variables xi and the functions f to take just two possible
values, a low value of -1, and a high value of +1. One can, for example, think of
xi having value +1 or -1 according to whether the ith protein is being expressed
or not, and f having value +1 or -1 according to whether a further protein
is being expressed. Then f is an ideal function if for each combination of the
conditions represented by the xi the value of f is the best one for the organism.

We shall consider in this paper two particular function classes. The first, the
parity functions, will be shown in this paper not to be evolvable. The second,
conjunctions, will be shown to be evolvable in the monotone case over the uniform
distribution.

A parity function is odd or even. An odd (even) parity function f over
x1, · · · , xn has value +1 iff an odd (even) number of the variables in a sub-
set S of the variables have value +1. For example, an odd parity function over
{x1, x2, x3, x4} with S = {x1, x3, x4} has value +1 if x1 = x2 = x3 = x4 = +1,
and value -1 if x1 = x2 = x3 = +1 and x4 = −1.

We shall show that for evolving arbitrary parity functions over n variables
either the number of generations or the population size of the generations would
need to be exponentially large in terms of n.

In contrast we shall also show that there are classes with similarly substantial
structure that are evolvable in a strong sense. An example of such a class is that
of monotone conjunctions, defined as conjunctions of a subset S of the literals
{x1, x2, · · · , xn}. An example of a conjunction is the function that is true if and
only if x1 = +1, and x4 = +1. We abbreviate this function as x1x4.

We denote by Xn the set of all 2n combinations of values that the variables
x1, · · · , xn can take. For both of the above defined function classes the set S is
unknown to the evolution algorithm and the challenge for it is to approximate
it from among the more than polynomially many possibilities. We define Dn

to be a probability distribution over Xn that describes the relative frequency
with which the various combinations of variable values for x1, · · · , xn occur in
the context of the organism. Evolution algorithms that work for all distributions
would be particularly compelling.

Definition 1. The performance of function r : Xn → {−1, 1} with respect to
ideal function f : Xn → {−1, 1} for probability distribution Dn over Xn is

Perff (r,Dn) =
∑

x∈Xn

f(x)r(x)Dn(k).

The performance is simply a measure of the correlation between the ideal func-
tion f and a hypothesis r we have at hand. The value will always be a real
number in the range [-1, 1]. It will have value 1 if f is identical to r on points
with nonzero probability in Dn. It will have value -1 if there is perfect anti-
correlation on these points.

26 L.G. Valiant

The interpretation is that every time the organism encounters a condition, in
the form of a set of values x of the variables x1, · · · , xn, it will undergo a benefit
amounting to +1 if its circuit r agrees with the ideal f on that x or a penalty -1
if r disagrees with f . Over a sequence of life experiences (i.e. different points in
Xn) the total of all the benefits and penalties will be accumulated. Organisms
or groups for which this total is high will be selected preferentially to survive
over organisms or groups with lower such totals.

The performance Perff (r,Dn) may be viewed as a fitness landscape over the
genomes r. Our analysis discusses the viability of this landscape for evolution
in terms of the nature of the ideal function f and the distribution Dn of inputs
for f . Instead of speculating on the nature of fitness landscapes that may be
encountered in the world, we instead discuss which landscapes correspond to
evolvable ideal functions.

An organism or group will be able to test the performance of a function r by
sampling a limited set Y ⊆ Xn of size s(n) of inputs or experiences from Dn,
where, for simplicity we assume that the Y are chosen independently for the
various r. These experiences may be thought of as corresponding to one or more
per organism, so that s(n) certainly upper bounds the population size.

Definition 2. For a positive integer s, ideal function f : Xn → {−1, 1} and
probability distribution Dn over Xn the empirical performance Perff (r,Dn, s) of
function r : Xn → {−1, 1} is a random variable that makes s selections inde-
pendently with replacement according to Dn and for the multiset Y so obtained
takes value

s−1
∑

x∈Y

f(x)r(x).

In our basic definition of evolvability we insist that evolution be able to proceed
from any starting point. Otherwise, if some reinitialization process were permit-
ted, then proceeding to the reinitialized state from another state might incur an
arbitrarily large decrease in performance.

The evolution algorithm for monotone conjunctions that we describe in detail
in Section 5 behaves as follows. The learning of a target function x1x4 will be
achieved by an algorithm that maintains a conjunction of a number of literals.
Clearly the aim is to evolve the function x1x4 which has performance +1 since it
is identical with the target, and is the only conjunction with that performance.
The mutations will consist of adding or deleting a single literal for the current
conjunction, or swapping one literal for another. Since there are then about n2

possible mutations at each step it is feasible to explore the space of all mutations
with a population of (polynomial) size, namely n2.

3 Definition of Evolvability

Given the existence of an ideal function f the question we ask is whether it is
possible to evolve a circuit for a function r that closely approximates f . Roughly,
we want to say that a class C of ideal functions f is evolvable if any f in the

Evolvability 27

class C satisfies two conditions. (i) From any starting function r0 the sequence of
functions r0 ⇒ r1 ⇒ r2 ⇒ r3 ⇒ · · · will be such that ri will follow from ri−1 as
a result of a single step of mutation and selection in a moderate size population,
and (ii) after a moderate number i of steps ri will have a performance value
significantly higher than the performance of r0, so that it is detectable after a
moderate number of experiences. The conditions will be sufficient for evolution
to start from any function and progress towards f , predictably and inexorably.

While the ideal function may be viewed as an abstract mathematical func-
tion, the hypothesis r needs to be represented concretely in the organism and
should be viewed as a representation of a function. We generally consider C to
be a class of ideal functions and R a class of representations of functions from
which the organism will choose an r to approximate the f from C. We shall
assume throughout that the representation R is polynomial evaluatable in the
sense that there is a polynomial u(n) such that given the description of an r in
R and an input x from Xn, the value of r(x) can be computed in u(n) steps.
This reflects the one assumption we make about biology, that its processes can
be simulated in polynomial time on a computer. For brevity, and where it intro-
duces no confusion, we shall denote by r both the representation as well as the
function that that representation computes. We denote by Cn, Rn, and Dn, the
restrictions of C,R, and D to n variables, but sometimes omit these distinctions
where the meaning is clear. Also, we shall denote by ε the error parameter of
the evolution, which describes how close to optimality the performance of the
evolved representation has to be. We shall be prepared to expend resources that
are polynomial in n, the number of arguments of the ideal function, and also in
1/ε. (To be more precise n is the maximum of the input size and the size of the
smallest representation of an ideal target function, but we will, for simplicity as-
sume here that the representations needed are of size polynomial in the number
of variables, which removes this distinction.) Hence our resource bounds will be
polynomial functions, such as p(n, 1/ε) in the following definition.

Definition 3. For a polynomial p(· , ·) and a representation class R a p-
neighborhood N on R is a pair M1,M2 of randomized polynomial time Turing
machines such that on input the numbers n and 	1/ε
 a number n in unary and
a representation r ∈ Rn act as follows: M1 outputs all the members of a set
NeighN(r) ⊆ Rn, that contains r and has size at most p(n, 1/ε). If M2 is then
run on this output of M1, it in turn outputs one member of NeighN (r), with
member r1 being output with a probability PrN (r, r1) ≥ 1/p(n, 1/ε).

The interpretation here is that for each genome the number of variants, deter-
mined by M1, that can be searched effectively is not unlimited, because the
population at any time is not unlimited, but is polynomial bounded. But a sig-
nificant number of experiences with each variant, generated by M2, must be
available so that differences in performance can be detected reliably.One possi-
ble implementation, clearly, is to regard R as the set of possible genomes, re-
strict mutations to a fixed constant number of base pairs, and regard the genome

28 L.G. Valiant

length as a polynomial in the relevant n. We consider exponentially many such
variants to be impractical, while modest polynomial bounds such as n or n2 are
feasible. As in other areas of algorithmic analysis natural polynomially bounded
processes usually have reasonably modest polynomial bounds, and hence such
results are meaningful [11, 19]. The theory, as presented here, aims to distin-
guish between polynomial and exponential resources, insisting as it does that
population sizes, numbers of generations, and numbers of computational steps
all have to be upper bounded by a polynomial in the number of variables on
which a circuit depends, and in the inverse of the error. Clearly, using more
careful analysis finer distinctions can also be made. We note that estimates of
actual mutation rates in various organisms are available [6, 17, 18].

Definition 4. For error parameter ε, positive integers n and s, an ideal func-
tion f ∈ Cn, a representation class R with p(n, 1/ε)-neighborhood N on R,
a distribution D, a representation r ∈ Rn and a real number t, the muta-
tor Mu(f, p(n, 1/ε), R,N,D, s, r, t) is a random variable that on input r ∈ Rn

takes a value r1 ∈ Rn determined as follows. For each r1 ∈ NeighN(r) it first
computes an empirical value of v(r1) = Perff (r,Dn, s). Let Bene be the set
{r1 | v(r1) ≥ v(r) + t} and Neut be the set difference {r1 | v(r1) ≥ v(r) − t} –
Bene. Then

(i) if Bene �= φ then output r1 ∈ Bene with probability

PrN (r, r1)/
∑

r1∈Bene

PrN (r, r1)

(ii) if Bene = φ then output an r1 ∈ Neut, the probability of a specific r1 being

PrN (r, r1)/
∑

r1∈Neut

PrN (r, r1).

In this definition a distinction is made between beneficial and neutral mutations
as revealed by a set of s experiments. In the former the empirical performance
after the mutation exceeds that of the current representation r by an additive
tolerance of at least t, a quantity which will, in general, be large enough, in
particular some inverse polynomial, that it can be reliably distinguished from
a zero increase in performance. In neutral mutations no significant increase in
performance is expected, but it is expected that the performance is not worse
than that of the current r by more than t. If some beneficial mutations are
available one is chosen according to the relative probabilities of their generation
by N as allowed by machine M2 in Definition 3. If none is available then one
of the neutral mutations is taken according to the relative probabilities of their
generation by N . Since in Definition 3 we insist that r ∈ NeighN(R), r will
always be empirically neutral, by definition, and hence Neut will be nonempty.

Definition 5. For a mutator Mu(f, p(n, 1/ε), R,N,D, s, r, t) a t-evolution step
on input r1 ∈ Rn is the random variable r2 = Mu(f, p(n, 1/ε), R, N, D, s, r1,
t). We then say r1 → r2 or r2 ← Evolve(f, p(n, 1/ε), R, N, Dn, s, r1, t).

Evolvability 29

We say that polynomials tl(x, y) and tu(x, y) are polynomially related if for some
η > 1 for all x, y (0 < x, y < 1) (tu(x, y))η ≤ tl(x, y) ≤ tu(x, y). We now define
an evolution sequence as a sequence of t-evolution steps where the t at each step
is bounded between two polynomially related quantities t�(1/n, ε), tu(1/n, ε)
and computable in polynomial time by a Turing machine T that takes r ∈ R, n
and ε as inputs.

Definition 6. For a mutator Mu(f, p(n, 1/ε), R,N,D, s, r, t) a (t�, tu)-evolution
sequence for r1 ∈ Rn is a random variable that takes as values sequences
r1, r2, r3, . . . such that for all i ri ← Evolve(f, p(n, 1/ε), R,N,D, s, ri−1, ti),
where t�(1/n, ε) ≤ ti ≤ tu(1/n, ε), tl and tu are polynomially related polyno-
mials, and ti is the output of a TM T on input ri−1, n and ε.

We shall find that if we want to evolve to performance very close to one, say 1−ε,
we shall need numbers of experiments s or numbers of generations g that grow
inversely with ε, and the tolerances t that diminish with ε. We therefore regard
these as functions of n and ε, and denote them by s(n, 1/ε), g(n, 1/ε), tl(1/n, ε)
and tu(1/n, ε).

Definition 7. For polynomials p(n, 1/ε), s(n, 1/ε), t�(1/n, ε) and tu(1/n, ε),
a representation class R and p(n, 1/ε)-neighborhood N on R, the class C is
(t�, tu)-evolvable by (p(n, 1/ε), R, N, s(n, 1/ε)) over distribution D if there
is a polynomial g(n, 1/ε) and a Turing machine T, which computes a toler-
ance bounded between tl and tu, such that for every positive integer n, every
f ∈ Cn, every ε > 0, and every r0 ∈ Rn it is the case that with probabil-
ity greater than 1 - ε, a (tl, tu)-evolution sequence r0, r1, r2, · · · , where ri ←
Evolve(f, p(n, 1/ε), R,N,Dn, s(n, 1/ε), ri−1, T (ri−1, n, ε), will have
Perff (rg(n,1/ε), Dn) > 1− ε.

The polynomial g(n, 1/ε), the generation polynomial, upper bounds the number
of generations needed for the evolution process.

Definition 8. A class C is evolvable by (p(n, 1/ε), R, N, s(n, 1/ε)) over D iff
for some pair of polynomially related polynomials t�, tu, C is (tl, tu)-evolvable by
(p(n, 1/ε), R, N, s(n1/ε)) over D.

Definition 9. A class C is evolvable by R over D iff for some polynomials
p(n, 1/ε) and s(n, 1/ε), and some p(n, 1/ε)-neighborhood N on R, C is evolvable
by (p(n, 1/ε), R, N, s(n, 1/ε)) over D.

Definition 10. A class C is evolvable over D if for some R it is evolvable by R
over D.

Definition 11. A class C is evolvable if it is evolvable over all D.

Our definition of evolvability is closely related to that of learnability, but includes
the extra ingredients that each step of learning (i) chooses from a polynomial
size set of hypotheses, (ii) tolerates at most a small decrease in performance,
and further (iii) the choice of the next hypothesis from among the candidate
hypotheses is made on the basis of their aggregate performance on inputs, and
not differentially according to the values of the various inputs.

30 L.G. Valiant

Proposition 1. If C is evolvable by R over D then C is learnable by R over D.
In particular, if C is evolvable by R then C is learnable by R.

Proof. If C is evolvable over D then, by definition, for some polynomials
p(n, 1/ε), s(n, 1/ε), g(n, 1/ε), t�(1/n, ε) and tu(1/n, ε), some polynomial eval-
uatable representation R and some p(n, 1/ε)-neighborhood N on R,C is (t�, tu)-
evolvable by (p(n, 1/ε), R,N, s(n, 1/ε)) over distribution D with generation
polynomial g(n, 1/ε). The main observation here is that we can replicate this
evolution algorithm exactly in terms of the PAC learning framework. At each
stage the evolution algorithm takes fixed size samples of s(n, 1/ε) labelled ex-
amples from the distribution, computes for its current hypothesis the empirical
performance, and from that generates the next hypothesis in a polynomially
bounded fashion. But computing this performance is equivalent to computing
the fraction of examples on which the hypothesis predicts correctly. Hence the
access required to examples is that of random labelled examples from D, and
every step is a polynomial time computational process. All this is permitted
within the PAC model. Also the final hypothesis of the evolution model satisfies
the requirements of the learning model since it ensures that the performance is
at least 1− ε, and hence accurate on at least 1− ε/2 of D. �

We can strengthen the above statement by observing that evolvability implies
learnability in the more restricted sense of statistical queries defined by Kearns
[12]. In that model oracles provide not individual examples but estimates, to
within inverse polynomial additive error, of the fraction of examples that satisfy
polynomially evaluatable properties. This is clearly sufficient for the proof of
Proposition 12, which therefore supports also the following.

Proposition 2. If C is evolvable by R over D then it is efficiently learnable
from statistical queries using R over D.

Evolvability for all D is a very strong and desirable notion. As mentioned pre-
viously, it guarantees evolution independent of any assumptions about the dis-
tribution. It also means that evolution can continue even if the D changes. Of
course, a change in D can cause a reduction in the value of Perf for any one
r, and hence may set back the progress of evolution. However, the process of
finding improvements with respect to whatever the current D is will continue.
It remains an open problem as to whether such distribution-free evolution is
possible for a significant class of functions.

Note also that the representation class R may represent a class of functions
that differs from C. For example an R richer than C may be helpful. Alterna-
tively, a weaker class may still produce good enough approximations and may
have better properties for evolution. In general if we wish to identify or empha-
size the class R that supports an evolution algorithm we say that C is evolvable
by R for D, or C is evolvable by R.

The purpose of the main definition above of evolvability is to capture the no-
tion of evolution towards a target under stable conditions. In biological

Evolvability 31

evolution other phenomena are involved also, and, we believe, many of these
can be discussed in the language of our formalism by appropriate variants. One
restriction is evolvability with initialization. In that case in Definition 7, instead
of requiring convergence from any starting point r0 ∈ Rn, we require only that
there is convergence from one fixed starting point r0 for all targets f ∈ Cn.
The more general definition given is more robust, allowing for successive phases
of evolution, each one with a different target ideal function, for example. The
evolved representation for one phase can then serve as the starting representation
for the next, without a decrease in performance at any step. In evolution with
initialization, the steps of going from the end of one phase to a reinitialized
new state may suffer an arbitrary performance decrease. In our definition of
evolvability we seek to avoid allowing any mechanism that would provide for
such initialization by a back door. We therefore insist that the tolerance be
bounded between two polynomially related functions. Allowing the tolerance to
be arbitrarily large would allow initialization in one step via an arbitrarily large
drop in performance.

Another variation is variable population evolution. In this the sample size
s may vary. In particular, if it is made small than random variations in the
empirical performance may make a low performance mutation appear as neutral
or even beneficial, and be adopted. This permits reinitializations, for example,
for a subsequent phase of evolution with initialization. In biology evolution in
small populations is believed to play a special role.

A further variant is evolvability with optimization. Here we insist that in Def-
inition 4 the representation r1 selected is any one with empirical performance
within tolerance t of the best empirical performance in NeighN (r). However, it
is easy to see that this variant is no more powerful than the main definition. One
can simulate the search for the best representation, as required in one step of the
optimized evolution, in no more than 6/t basic steps of looking for a represen-
tation with an empirical additive improvement of at least t/2, each step using a
new sample. (Note that the actual performance can increase cumulatively by at
most 2. Using the Hoeffding Bound (Fact 2) one can show that the cumulative
empirical performance increase on the different samples can be limited to 3 with
overwhelming probability.) For this simulation we change the representation to
i ·rM ·rP where i ≤ 6/t is an integer denoting which basic step we are in, rM ∈ R
is the representation that generates the mutations (using the M1 of Definition
3) for each of the up to 6/t basic steps, and rP ∈ R is the one with best per-
formance found so far. (In other words rP is the function this representation
is computing, but the representation also has a memory of rM from which it
can generate new mutations in R, that may not be generatable from rP alone.)
After i = 6/t basic steps the final rP is adopted as the starting rM and rP of the
next step of the optimized evolution. Note that the constructed representation
in this reduction is a redundant representation in the sense that there are many
representations that correspond to the same function rP . It illustrates the power
of storing history, namely RM , in addition to the active part, RP .

32 L.G. Valiant

Proposition 3. If C is evolvable with optimization by R over D, then C is
evolvable by R over D. If C is evolvable with initialization and optimization by
R over D, then C is evolvable with initialization by R over D.

A simpler variant is that of fixed-tolerance evolvability, obtained if the bounds
tl, tu on the tolerance are the same.

We note that the aspect of evolution that is outside the control of the evolution
algorithm itself is the population size. Thus evolvability guarantees inexorable
convergence only if the population is appropriate. Our algorithms require only
that the population, as represented by s, be large enough. The variable popula-
tion variant defined earlier permits schedules of varying population sizes.

4 Limits to Evolvability

The obvious question arises as to whether the converse of Proposition 12 holds:
does learnability imply evolvability? Our next observation answers this in the
negative, saying as it does that for a certain function class there is a distribution
that defeats all combinations of representations and neighborhoods.

We define Linn to be the set of odd parity functions f(x1, · · · , xn) over
{−1, 1}n. Each such f corresponds to some subset of the variables xi[1], · · · , xi[k]

∈ {x1, · · · , xn}. The function f has value 1 if and only if an odd number of
the variables {xi[1], · · · , xi[k]} have value 1. Clearly there are 2n functions in
Linn. We define U to be the uniform distribution over {−1, 1}n. We note that
the functions in Lin are easy to compute, and further the class is known to be
learnable not only for U but for all distributions [9, 12].

Proposition 4. Lin is not evolvable for U by any representation R.

Proof. Kearns [14] shows that Lin is not efficiently learnable from statistical
queries over U using any representation. The result then follows from Proposition
12 above. �

The class Lin may appear to be biologically unnatural. That is exactly the
prediction of our theory, which asserts that evolution cannot be based on the
evolvability of such a class.

An important class of functions that is known to be learnable is that of linear
halfspaces {a.x ≤ b | a ∈ Rn, b ∈ R} in n-dimensional space Rn. This class
is learnable for all distributions by the natural representation of linear halfs-
paces if the coefficients a, b are represented as rational numbers with n digits
of accuracy, by virtue of the existence of polynomial time algorithms for linear
programming [3]. However, if both the class and its representation is restricted
to {0,1} coefficients then we have the following.

Proposition 5. If C is the class of Boolean Threshold Functions {a.x ≤ b | a ∈
{0, 1}n, b ∈ R} in Rn and R is the given representation of it, then C is not
evolvable by R, unless NP = RP.

Evolvability 33

Proof. In [20] it is shown that this class is not learnable by its natural represen-
tation unless NP = RP. (The proof there shows that an NP-complete problem,
integer programming, can be mapped to instances of learning Boolean thresh-
old functions for a certain distribution to accuracy better than 1/n.) The result
follows from Proposition 12 above. �

There appear to be at least four impediments that can be identified to evolv-
ability in our sense, the first three of which derive from general impediments
to learnability, while the last is particular to evolvability: (i) A purely infor-
mation theoretic impediment [8]: the complexity of the mechanism that is to
evolve exceeds the number of experiences. (ii) A representational limit such as
Proposition 16 above, where learnability by a fixed representation would imply
solving a computational problem that is believed to be hard. (iii) An intrinsic
complexity limitation [15]: the function class is so extensive that learning it by
any representation would imply an efficient algorithm for a problem believed to
be hard to compute. (iv) Limits such as Proposition 15 above, that show that
for information theoretic reasons evolvability cannot proceed because no empir-
ical test of a polynomial number of hypotheses in a neighborhood can guarantee
sufficient convergence in performance. Note that impediments (i) and (iv) are
absolute, requiring no unproven computational assumptions.

5 Some Provably Evolvable Structures

We now describe some basic classes of Boolean functions and distributions
that are provably evolvable. Here disjunction or Boolean “or” is denoted by
+, conjunction or Boolean “and” by the multiplication sign, and Boolean nega-
tion of a variable xi by x′i. In general we shall have n variables x1, · · · , xn.
A q-disjunction is a disjunction of k ≤ q of the n variables or their negations,
while a q-conjunction is a conjunction of k ≤ q of the n variables or their nega-
tions. Thus a q-disjunction is yi[1] + · · · + yi[k] where 1 ≤ i[1], · · · , i[k] ≤ n and
yi[j] ∈ {x1, · · · , xn, x

′
1, · · · , x′n}, and a q-conjunction is yi[1] · · · yi[k]. The uniform

distribution over {−1,+1} will be denoted again by U . A conjunction or disjunc-
tion is monotone if it contains no negated literals. We note that Ros (Section
B2.8 in [1]; [22]) has analyzed evolutionary algorithms for learning conjunctions
and disjunctions. However, a step of his algorithm is allowed to depend not just
on the value of his current hypothesis on an input, but on more detailed informa-
tion such as the number of bits on which the hypothesis and input differ. Such
dependence on the input condition we consider unrealistic for evolution, and is
outside our model. With regard to the literature on evolutionary algorithms [27]
we also note that there the functions being evolved are often real rather than
Boolean valued, and that provides more feedback to the process.

Fact 1. Over the uniform distribution U for any conjunction PrU (yi[1] · · · yi[k] =
1) = 2−k and for any disjunction PrU (yi[1] + · · ·+ yi[k] = 1) = 1− 2−k.

34 L.G. Valiant

For our probabilistic arguments below it will be sufficient to appeal to the
following:

Fact 2 (Hoeffding [13]). The probability that the mean of s independent random
variables each taking values in the range [a, b] is greater than or less than the
mean of their expectations by more than δ is at most exp(−2sδ2/(b−a)2), where
exp(x) denotes ex.

Fact 3 (Coupon Collector’s Problem). Suppose that there is a bucket of n balls
and M is a subset of m of them. Then after j = CC(n, m, η) = n(loge m +
loge(1/η)) samples with replacement the probability that some member of the
chosen set M has been missed is less than η.

Proof. This probability is upper bounded by m(1− 1/n)j < m(1− 1/n)jn/n =
me−j/n < η. �

We note that an evolution algorithm for a representation R needs to have defined
at each step (i) the neighborhood N , (ii) the tolerance t and (iii) the sample sizes,
so that the mutator random variable can be evaluated at that step.

Theorem 1. Monotone conjunctions and disjunctions are evolvable over the
uniform distribution for their natural representations.

Proof. We first note that for our definition of evolvability it is sometimes ad-
vantageous for a local search procedure to introduce literals that do not appear
in the ideal function f . For example, suppose f = x1x2x3 and we start with a
hypothesis 1, the conjunction of zero literals. Then the hypothesis will disagree
with f on 7/8 of the distribution, and the introduction of the literal x4 will be
an improvement, reducing this probability from 7/8 to 1/2.

If we are evolving to accuracy ε and have n variables we let q = 	log2(dn/ε)

for some constant d. We choose the effective representation class R to be mono-
tone q-conjunctions.

We first assume that both the ideal function f and the initial representation
r0 have at most q literals. We denote by r+ and r− the sets of conjunctions
consisting of the literals of r with one literal added, and with one taken away,
respectively. In the case that r has the maximum number q of literals then r+

is empty. In the case that |r| = 0, r− is empty. Also we define r+− to be the
conjunctions consisting of the literals in r with one further literal added and
then one literal taken away. Clearly r ∈ r+−. We then choose the neighborhood
structure N to be such that

NeighN(r) = r+ ∪ r− ∪ r+−.

Finally r and the members of r+ and r− will each have equal probabilities, so
that their total is 1/2, while the remaining members of r+− will also have equal
probabilities, again totaling 1/2. Clearly N is a p(n, 1/ε)-neighborhood structure
where p(n, 1/ε) = O(n2).

The construction will ensure that every mutation in N either causes an im-
provement in performance of at least 2−2q or causes no improvement (and a

Evolvability 35

possible degradation.) We choose the tolerance t(1/n, ε) = 2−2q−1 and the num-
ber of samples s(n, 1/ε) = t−3. It will then follow that the empirical test will,
except with exponentially small probability, correctly identify an available mu-
tation that has true improvement 2t, distinguishing it from one that gives no im-
provement in performance. This can be seen by substituting a = −1, b = 1, δ = t
and s = δ−3 in the Hoeffding Bound above to obtain that the probability of s
trials each with expected improvement 2δ will produce a mean improvement of
less than t = δ is at most exp(−2sδ2/(b − a)2) = exp(−(dn/ε)2). A similar
argument also shows that the same test will not mistakenly classify a mutation
with no performance increase with one with an increase of 2t. In the same way
the same tolerance will distinguish a mutation with a nonnegative performance
increase from one whose performance decreases by at least 2t.

In a run of the evolution algorithm there will be g(n, 1/ε) stages, and in
each stage up to p(n, 1/ε) mutations will be tested, where g and p are poly-
nomials. We will want that in all p(n, 1/ε)g(n, 1/ε) empirical tests the prob-
ability of even one failure to make such a distinction be less than ε/2. But
p(n, 1/ε)g(n, 1/ε)exp(−(dn/ε)2) < ε/2 for all n, ε for a suitable constant d.

Suppose that W is the true set of m literals in the ideal conjunction, and that
the current hypothesis r is the conjunction of a set V of k literals. We claim
that:

Claim 1. For (a)− (g) suppose that k ≤ q. Then

(a) If k < q then adding to r any literal z in W - V will increase the performance
of r by at least 21−q.

(b) Removing from r any literal z in V ∩ W will decrease the performance of r
by at least 21−q.

(c) Adding to r a literal in W - V and removing from r a literal in V - W will
increase the performance by at least 2−q−m.

(d) Adding to r some literal not in W, and removing from r a literal in V ∩ W
will decrease the performance of r by at least 2−q−m.

(e) Adding to r a literal in W - V and removing from r a literal in V ∩ W will
leave the performance unchanged, as will also adding to r a literal not in W ,
and removing one in V - W.

(f) If r contains all the literals in W, then removing a z in V - W will increase
the performance of r by at least 21−q.

(g) If r contains all the literals in W then adding a z in V - W will decrease the
performance of r by at least 2−q.

(h) If m > q then adding a z to an r of length at most q - 2 will increase
performance by at least 21−q, and removing a z from an r of length at most
q − 1 will decrease performance by at least 21−q.

To verify the above eight claims suppose that r is yi[1] · · · yi[k].

(a) Consider a z in W − V . Then conjoining z to yi[1] · · · yi[k] will change
the hypothesis from +1 to the value of -1 on the points satisfying z′yi[1] · · · yi[k].
Clearly, the ideal function f takes value -1 at all these points since z = −1. These

36 L.G. Valiant

points will, by Fact 1, have probability 2−(k+1) ≥ 2−q. Hence, the performance
will improve by at least twice this quantity, namely 21−q.

(b) Suppose that z = yi[1]. Removing it from r will change the hypothesis
from -1 to the value of +1 on the points satisfying z′yi[2] · · · yi[k]. Clearly, the
ideal function takes value -1 at all these points. These points will, by Fact 1,
have probability 2−k ≥ 2−q and hence the performance will degrade by at least
twice this quantity.

(c) Suppose the added literal is z and the removed literal is yi[1]. Then the
hypothesis changes (i) from 1 to -1 on the points where z′yi[1] · · · yi[k] = 1, and
(ii) from -1 to +1 on the points such that zy′i[1]yi[2] · · · yi[k] = 1. Now (i) changes
from incorrect to correct at all such points, and applies with probability 2−(k+1).
Also (ii) applies to a set of points with the same total probability 2−(k+1), but
the change on some of the points may be from correct to incorrect. To show
that the net change caused by (i) and (ii) in combination is beneficial as claimed
it is sufficient to observe that (ii) is nondetrimental on a sufficient subdomain.
To see this we consider the literals Z in W that are missing from r but other
than z, and suppose that there are u of these. Then on the domain of points
zy′i[1]yi[2] · · · yi[k] = 1 that specify (ii) we note that on the fraction 2−u of these
the correct value of the ideal function is indeed 1. Hence the improvement due to
(i) is not completely negated by the degradation due to (ii). The improvement
in performance is therefore at least 2−u−k ≥ 2−m−q.

(d) Suppose the added literal is z and the removed literal is yi[1]. Then the hy-
pothesis changes (i) from 1 to -1 on the points where z′yi[1] · · · yi[k] = 1, and (ii)
from -1 to +1 on the points such that zy′i[1]yi[2] · · · yi[k] = 1. Now (ii) is an incor-
rect change at every point and applies with probability 2−(k+1). Also (i) applies
to a set of points with the same total probability 2−(k+1). To show that the net
change caused by (i) and (ii) in combination is detrimental to the claimed extent,
it is sufficient to observe that (i) is detrimental on a sufficient subdomain. To see
this we consider the literalsZ inW that are missing from r, and suppose that there
are u of these. Then on the domain of points z′yi[1]yi[2] · · · yi[k] = 1 that specify (i)
we note that on the fraction 2−u of these the correct value of the ideal function is
indeed 1. Hence (i) suffers a degradation of performance on a fraction 2−u of its
domain, and hence the rest cannot fully compensate for the degradation caused in
(ii). The combined decrease in performance is therefore at least 2−u−k ≥ 2−m−q.

(e) Suppose the added literal is z and the removed literal is yi[1]. Then the
hypothesis changes (i) from 1 to -1 on the points where z′yi[1] · · · yi[k] = 1, and
(ii) from -1 to +1 on the points such that zy′i[1]yi[2] · · · yi[k] = 1. Now (ii) is an
incorrect change at every point and applies with probability 2−(k+1), and (i)
applies to a set of points with the same total probability 2−(k+1) but is a correct
change at every point. The second part of the claim follows similarly. Again
each of the two conditions holds with probability 2−k−1. But now if there are u
literals in W missing from r, then over each of the two conditions stated in (i)
and (ii) function f is true on a fraction z−u. Hence the effect of the two changes
is again to cancel and keep the performance unchanged.

Evolvability 37

(f) Suppose that z = yi[1]. Removing z from yi[1] · · · yi[k] will change the value
of the hypothesis from -1 to +1 on the points satisfying z′yi[2] · · · yi[k]. But all
such points have true value +1 if r contains all the literals in W . Hence this
gives an increase in performance by an amount 21−k ≥ 21−q.

(g) Consider a z in V −W . Then conjoining z to yi[1] · · · yi[k] will change the
hypothesis from +1 to -1 on the points satisfying z′yi[1] · · · yi[k] . But all such
points have true value +1 if r contains all the literals in W . Hence conjoining z
will cause a decrease in performance by an amount 2−k ≥ 2−q.

(h) If m > q then the hypothesis equals -1 on a large fraction of at least
1 − 2−2−q of the points. A conjunction of length k ≤ q − 2 will equal -1 on
1− 2−k ≤ 1− 22−q points, and a conjunction of length k ≤ q − 1 on 1 − 2−k ≤
1−21−q of the points. Hence the fraction of points on which the -1 prediction will
be made increases by (1− 2−k−1)− (1− 2−k) = 2−k−1 ≥ 21−q if k ≤ q− 2 and a
literal is added, and decreases by (1−2−k)− (1−2−k+1) = 2−k ≥ 21−q with the
removal of one, if k ≤ q − 1. If m > q then the corresponding increase/decrease
in the fraction of points on which predictions are correct is at least 2−q, since
the fraction of predicted -1 points changes by twice this quantity, and the true
+1 points amount to at most a half this quantity.

To prove the proposition, we are first supposing that the number m of literals
in the ideal function is no more than q. Then the intended evolution sequences
will have two phases. First, from any starting point of length at most q the
representation will increase the number of its literals that are in W by a sequence
of steps as specified in Claims (a) and (c). Interspersed with these steps there
may be other steps that cause similar inverse polynomial improvements, but add
or remove non-ideal literals. Once the conjunction contains all the literals of the
ideal conjunction, it enters into a second phase in which it contracts removing
all the non-ideal literals via the steps of Claim (f).

The assertions of the above paragraph can be verified as follows. Claims (a)
and (c) ensure that as long as some ideal literal is missing from r, beneficial mu-
tations, here defined as those that increase performance by at least 2−2q will be
always available and will add a missing ideal literal. Further, Claims (b), (d) and
(e) ensure that mutations that remove or exchange ideal literals will be deleteri-
ous, reducing the performance by at least 2−2q, or neutral, and hence will not be
executed. Some beneficial mutations that add or remove non-ideal literals may
however occur. However, since each literal not already in the conjunction, will be
generated by N with equal probability as a target for addition or swapping in,
the Coupon Collector’s model (Fact 3) can be applied. If the ideal conjunction
contains m literals then after CC(n,m, ε/2) = O((n log n + n log(1/ε)) genera-
tions all m will have been added or swapped in, except with probability ε/2.

Once r contains all the ideal literals then the only beneficial mutations are
those that remove non-ideal literals (Claim (f)). Adding non-ideal literals (Claim
(g)), replacing an ideal literal by a non-ideal literal (Claims (d)), or replacing a
non-ideal literal by a non-ideal literal (Claim (e)) are all deleterious or neutral.
Hence in this second phase after O(n) steps the ideal conjunction with perfect
performance will be reached.

38 L.G. Valiant

We conclude that in the case that the number of literals in both r0 and the
ideal conjunction is at most q then the evolution will reach the correct hypothesis
in the claimed number of stages, except with probability ε, which accounts for
both the empirical tests being unrepresentative, as well as the evolution steps
failing for other reasons.

In case the initial conjunction is of length greater then q we allow for a prologue
phase of evolution of the following form. We define the neighborhood of each
such long conjunction to be all the conjunctions obtained by removing one or
none of its literals, each one being generated with equal probability. Clearly
the removal of a literal from a hypothesis having k > q literals will change
its value on at most 2−k < 2−q = 2ε/(dn) of the distribution and hence the
performance, if it decreases, will decrease by no more than 2ε/(dn). Hence if
we set the tolerance to t = 4ε/(dn) then a mutation that decreases the number
of literals will be available, and will be detected as a neutral mutation as long
as its empirical performance is not less than its true performance by more than
δ = 2ε/(dn). The probability of this happening is small, as can be seen by
substituting a = −1, b = 1, δ = t/2, and s = δ3 in the Hoeffding bound (Fact 2),
yielding exp(−dn/4ε). After this process runs its course, which will take O(n)
stages except with exponentially small probability, a short conjunction of length
at most q will be reached.

Finally we consider the alternative case that the number m of literals in the
ideal conjunction is more than q. If r0 has at most q literals then in the evolution
beneficial steps (h) that add literals will be always available until the hypothesis
becomes of length q − 1. Further, steps (h) that remove literals will be never
taken since these are deleterious. Once length q − 1 is achieved the length can
change only between length q − 1 and q, and the performance will be at least
1− 2(21−q + 2−m) = 1− 5.2−q = 1− 5ε/(dn). In the alternative case that r0 has
more than q literals, the prologue phase will be involved as before until length
at most q will be reached, and the previous condition joined.

The result for conjunctions therefore follows with g(n, 1/ε) = O(n log(n/ε)).
We note that s = Ω((n/ε)6) is sufficient for both phases.

The claimed result for disjunctions follows by Boolean duality: Given an
expression representing a Boolean function, by interchanging “and” and “or” op-
erators and negating the inputs will yield the negation of the original
function. �

The algorithm as described above may be applied to conjunctions with negated
variables, but will then fail sometimes. For example, if the starting configuration
contains many literals that are negations of literals in the ideal function, then it
may have high performance because it predicts -1 everywhere. However, it would
appear difficult in that case to find an improved hypothesis by local search.

If initialization is allowed then the above results can be obtained much more
easily, and then also allow negations.

Proposition 6. Conjunctions and disjunctions are evolvable with initialization
over the uniform distribution.

Evolvability 39

The reader can verify this by considering conjunctions with initial representa-
tion 1. If the hypothesis is of length k and consists only of literals that occur
in the true conjunction of length m > k, then adding a literal from the true
conjunction will increase performance by 2−k, while adding one not in the true
conjunction will increase performance by 2−k−21−h. If m = k then adding a lit-
eral will decrease performance by at least 2−k. Then if we let q = log2(d/ε) for an
appropriate constant d, choose tolerance 2−q−1, have a neighborhood that either
adds a literal or does nothing, and stop adding new literals if the conjunction
reaches length q, then evolution with optimization will proceed through conjunc-
tions of literals exclusively from W until performance at least 1−ε is reached. It
follows that this evolution algorithm will work with optimization and initializa-
tion, and hence, by Proposition 14 it is evolvable with initialization alone, but
for a redundant representation.

6 Discussion

We have introduced a framework for analyzing the quantitative possibilities of
and limitations on the evolution of mechanisms. Our definition of evolvability
has considerable robustness. It can be weakened in several ways, separately and
in combination, to yield notions that impose less onerous requirements. First,
one can entertain the definition for just one specific distribution as we did for
our positive results in Section 5. The question whether significant classes are
provably evolvable for all distributions is one of the more important questions
that our formulation raises. Second, the requirement of having the performance
be able to approach arbitrarily close to the best possible can be relaxed. This
permits processes where computations are feasible only for obtaining approxi-
mations to the best possible. Third, the starting point need not be allowed to
be arbitrary. There may be a tradeoff between the robustness offered by allow-
ing arbitrary starting points, and the complexity of the mechanisms that can
evolve. Wider classes may be evolvable in any of these less onerous senses than
in the most robust sense. We can equally study, in the opposite direction, the
quantitative tradeoffs obtained by constraining the model more, by disallowing,
for example, neutral mutations or redundant representations, or by insisting on
a fixed tolerance. We note that our algorithm for conjunctions as describe does
exploit neutral mutations. Also, it uses a fixed tolerance for the main phase, and
a different tolerance in the prologue.

Our result that some structures, namely monotone conjunctions and disjunc-
tions are evolvable over the uniform distribution, we interpret as evidence that
the evolution of significant algorithmic structure is a predictable and analyzable
phenomenon. This interpretation is further supported by the observation that
the theory, analogously to learning theory, analyzes only the granularity of the
structure that can evolve in a single phase with a single ideal function. If multiple
phases are allowed with different ideal functions in succession then arbitrarily
complex structures can evolve. For example, in response to various initial ideal
functions some set of conjunctions and disjunctions may evolve first. At the next

40 L.G. Valiant

phase the outputs of these functions can be treated as additional basic variables,
and a second layer of functionality can evolve on top of these in response to other
ideal functions. This process can proceed for any number of phases, and build
up circuits of arbitrary complexity, as long as each layer is on its own beneficial.
We call this evolvable target pursuit.

Clearly much work remains to be done before we can characterize the classes
that are evolvable. A further step would be to characterize which classes of
evolution algorithms are themselves evolvable.

We note that our model makes no assumptions about the nature of a muta-
tion, other than that it is polynomial time computable by a randomized Turing
machine. Thus the biological phenomena found in DNA sequences of point mu-
tations, copying of subsequences, and deletion of subsequences, are all easily
accommodated in the model.

The proof of Proposition 14 hints at one possible purpose of redundancy
that is also believed to occur widely in biology. In that construction two near
identical copies of a subsequence are maintained, one of which acts as a reservoir
that records history and offers expanded possibilities for future mutations.

The idea that diversity in the gene pool of a population serves the purpose
of protecting a species against unpredictable changes in the environment can
also be expressed in the model. We would represent the hypotheses of all N
members of a population by a hypothesis that concatenates them all but has a
distinguished first member. The total hypothesis would still be of polynomial size
if N is. The distinguished first member determines the performance while the rest
form a reservoir to facilitate future mutations. In a mutation the subhypotheses
would be cyclicly shifted by an arbitrary amount so that any one of them can
come into first place, and only this first one would undergo mutation. In this
way the diverse gene pool of a population can be represented. In one phase of
evolution the hypotheses that have their first subhypotheses best fitted to the
then current environment would win, but they would retain diversity in their
reservoir. Of course, once we regard the genome of a population as a single
genome, then there may be useful operations on them beyond cyclic shifts, such
as operations that splice together parts of the individual subgenomes. The latter
operations correspond to recombination.

In our model large populations are useful when small improvements in per-
formance need to be detected reliably. Small populations can also have a role
in permitting deleterious mutations to be adapted, which would not be in large
populations.

It is natural to ask what is the most useful view of the correspondence be-
tween our view of circuits and what occurs in biology. What do the nodes and
the functions that evolve in our model correspond to? It seems plausible to sup-
pose that at least some of the nodes correspond to the expression of particular
proteins. Then the regulatory region associated with each protein coding region
would correspond to the function evaluated at that node. Possibly such regions
may have to be subdivided further into nodes and functions. The fact that there

Evolvability 41

are highly conserved regions in the genome that code for proteins, and also some
that do not [2, 6], is consistent with this viewpoint.

In the case that a node corresponds to the expression of a fixed protein the
interpretation of the ideal functions in our model is particularly simple. Suppose
the genome has an evolution algorithm for the class C of functions, such as
disjunctions. Then the ideal function f simply expresses for each combination of
other variables the best choice of whether to, or whether not to (or how much
to) express that protein. Evolution will then be guaranteed towards f provided
f lies within C.

Modularity, in biology or engineering, is the idea that systems are composed
of separate components that have identifiable separate roles. If evolvability is
severely constrained to limited classes of functions as our theory suggests, then
systems that evolve would be constrained to be modular, and to consist of many
identifiable small modules. Hence modularity in biology would be a consequence
of the limitations of evolvability.

A unified theory for learning and evolution is of potential significance to the
studies of cognition and of its emulation by machine. A major challenge in un-
derstanding cognition is that in biological systems the interplay between the
knowledge that is learned through experience by an individual and the knowl-
edge inherent in the genes, is complex, and it is difficult to distinguish between
them. In attempts to construct computer systems for cognitive functions, for
example for vision, this challenge is reflected in the difficulty of providing an ef-
fective split between the preprogrammed and the learning parts. The unification
of learning and evolution suggests that cognitive systems can be viewed as pure
learning systems. The knowledge and skills a biological organism possesses can
be viewed as the accumulation of what has been learned by its ancestors over
billions of years, and what it has learned from its individual experience since con-
ception. Robust logic [24] is a mathematical framework based on learning that
aims to encompass cognitive tasks beyond learning, particularly reasoning. The
pragmatic difficulty of finding training data for systems to be built along such
principles has been pointed out [25]. By acknowledging that the training data
may also need to cover knowledge learned through evolution one is acknowledg-
ing what happens in existing cognitive systems, namely the biological ones. It
is possible that learning is the only way of guaranteeing sufficient robustness in
large-scale cognitive systems. In that case it would follow that the construction
of cognitive systems with human level performance should be conceptualized
as a learning task that encompasses knowledge acquired in biological systems
through evolution as well as experience.

We have shown that with regard to the acquisition of complex mechanisms
evolvability can be viewed as a restricted form of learnability. While evolvability
may be technically the more constrained, it is not inherently more mysterious.

Acknowledgements

The author is grateful to Daniel Fisher and Martin Nowak for stimulating discus-
sions and encouragement, to Brian Jacobson, Loizos Michael and Rocco Servedio

42 L.G. Valiant

for their technical comments on earlier drafts of this paper, and to Gill Bejerano
and Richard Karp for some helpful observations. This work was supported by
grants NSF-CCR-0310882, NSF-CCF-0432037 and NSF-CCF-0427129 from the
National Science Foundation.

References

[1] Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Compu-
tation. Oxford Univ. Press, Oxford (1997)

[2] Bejerano, G., et al.: Ultraconserved elements in the human genome. Science 304,
1321–1325 (2004)

[3] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

[4] Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation.
Wiley, Chichester (2000)

[5] Darwin, C.: On the origin of species by means of natural selection. John Murray,
London (1859)

[6] Dermitzakis, E.T., et al.: Conserved non-genic sequences - an unexpected feature
of mammalian genomes. Nature Reviews Genetics 6, 151–157 (2005)

[7] Drake, J.W., et al.: Rates of spontaneous mutation. Genetics 148, 1667–1686
(1998)

[8] Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.G.: A general lower bound
on the number of examples needed for learning. Inf. and Computation 82(2),
247–261 (1989)

[9] Fischer, P., Simon, H.U.: On learning ring-sum expressions. SIAM J. Comput-
ing 21(1), 181–192 (1992)

[10] Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press,
Oxford (1930)

[11] Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

[12] Helmbold, D., Sloan, R., Warmuth, M.K.: Learning integer lattices. SIAM J. Com-
puting 21(2), 240–266 (1992)

[13] Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Amer. Stat. Assoc. 58, 13 (1963)

[14] Kearns, M.: Efficient noise tolerant learning from statistical queries. J.ACM 45(6),
983–1006 (1998)

[15] Kearns, M., Valiant, L.G.: Cryptographic limitations on learning Boolean formu-
lae. J. ACM 41(1), 67–95 (1994)

[16] Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

[17] Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)
[18] Kumar, S., Subramanian, S.: Mutation rates in mammalian genomes. Proc. Nat.

Acad. Sci. 99, 803–808 (2002)
[19] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, Mass

(1994)
[20] Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J.

ACM 35(4), 965–984 (1988)
[21] Roff, D.A.: Evolutionary Quantitative Genetics. Chapman & Hall, New York

(1997)

Evolvability 43

[22] Ros, J.P.: Learning Boolean functions with genetic algorithms: A PAC analysis.
In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms, pp. 257–275. Morgan
Kaufmann, San Mateo, CA (1993)

[23] Valiant, L.G.: A theory of the learnable. C. ACM 27(11), 1134–1142 (1984)
[24] Valiant, L.G.: Robust logics. Artificial Intelligence Journal 117, 231–253 (2000)
[25] Valiant, L.G.: Knowledge infusion. In: Proc. 21st National Conference on Artificial

Intelligence, AAAI06, pp. 1546–1551 (2006)
[26] Wagner, G.P., Altenberg, L.: Complex adaptations and the evolution of evolvabil-

ity. Evolution 50(3), 967–976 (1996)
[27] Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spi-

rakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78.
Springer, Heidelberg (2001)

[28] Wright, S.: Evolution and the Genetics of Populations, A Treatise. University of
Chicago Press, Chicago (1968-78)

Expander Properties and the Cover Time of

Random Intersection Graphs�

Sotiris E. Nikoletseas1,2, Christoforos Raptopoulos1,2, and Paul G. Spirakis1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
2 University of Patras, 26500 Patras, Greece

nikole@cti.gr, raptopox@ceid.upatras.gr, spirakis@cti.gr

Abstract. We investigate important combinatorial and algorithmic
properties of Gn,m,p random intersection graphs. In particular, we prove
that with high probability (a) random intersection graphs are expanders,
(b) random walks on such graphs are “rapidly mixing” (in particular they
mix in logarithmic time) and (c) the cover time of random walks on such
graphs is optimal (i.e. it is Θ(n log n)). All results are proved for p very
close to the connectivity threshold and for the interesting, non-trivial
range where random intersection graphs differ from classical Gn,p ran-
dom graphs.

1 Introduction

Random graphs are interesting combinatorial objects that were introduced by
P. Erdös and A. Rényi and still attract a huge amount of research in the com-
munities of Theoretical Computer Science, Algorithms, Graph Theory and Dis-
crete Mathematics. This continuing interest is due to the fact that, besides their
mathematical beauty, such graphs are very important, since they can model in-
teractions and faults in networks and also serve as typical inputs for an average
case analysis of algorithms.

There exist various models of random graphs. The most famous is the Gn,p

random graph, a sample space whose points are graphs produced by randomly
sampling the edges of a graph on n vertices independently, with the same proba-
bility p. Other models have also been quite a lot investigated: Gn,r (the “random
regular graphs”, produced by randomly and equiprobably sampling a graph from
all regular graphs of n vertices and vertex degree r) and Gn,M (produced by ran-
domly and equiprobably selecting an element of the class of graphs on n vertices
having M edges). For an excellent survey of these models, see [2,4].

� This work was partially supported by the IST Programme of the European Union
under contact number IST-2005-15964 (AEOLUS) and by the Programme PENED
under contact number 03ED568, co-funded 75% by European Union – European
Social Fund (ESF), 25% by Greek Government – Ministry of Development – Gen-
eral Secretariat of Research and Technology (GSRT), and by Private Sector, under
Measure 8.3 of O.P. Competitiveness – 3rd Community Support Framework (CSF).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 44–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Expander Properties and the Cover Time of Random Intersection Graphs 45

In this work we study important properties (expansion properties and the
cover time) of a relatively recent model of random graphs, namely the random in-
tersection graphs model introduced by Karoński, Sheinerman and Singer-Cohen
[16,27]. Also, Godehardt and Jaworski [12] considered similar models. In the
Gn,m,p, to each of the n vertices of the graph, a random subset of a universal set
of m elements is assigned, by independently choosing elements with the same
probability p. Two vertices u, v are then adjacent in the Gn,m,p graph if and only
if their assigned sets of elements have at least one element in common.

Importance and Motivation. First of all, we note that (as proved in [17]) any
graph is a random intersection graph. Thus, the Gn,m,p model is very general.
Furthermore, for some ranges of the parameters m, p (m = nα, α > 6) the spaces
Gn,m,p and Gn,p̂ are equivalent (as proved by Fill, Sheinerman and Singer-Cohen
[11], showing that in this range, the total variation distance between the graph
random variables has limit 0).

Second, random intersection graphs may model real-life applications more ac-
curately (compared to the Gn,p̂ Bernoulli random graphs case). In fact, there
are practical situations where each communication agent (e.g. a wireless node)
gets access only to some ports (statistically) out of a possible set of commu-
nication ports. When another agent also selects a communication port, then
a communication link is implicitly established and this gives rise to communi-
cation graphs that look like random intersection graphs. Even epidemiological
phenomena (like spread of disease) tend to be more accurately captured by this
“proximity-sensitive” random intersection graphs model. Other applications may
include oblivious resource sharing in a distributed setting, interactions of mobile
agents traversing the web etc.

Regarding the properties we study, we believe that their importance is evi-
dent. So we just mention the fact that expander graphs are basic building blocks
in optimal network design. Also, at a combinatorial/algorithmic level, it is well
known that random walks whose second largest eigenvalue is sufficiently less than
1 are “rapidly mixing”, i.e. they get close (in terms of the variation distance)
to the steady state distribution after only a polylogarithmic (in the number of
vertices/states) number of steps (see e.g. [26]); this has important algorithmic
applications e.g. in efficient random generation and counting of combinatorial
objects. Finally, the cover time of a graph is one of its most important com-
binatorial measures which also captures practical quantities like the expected
communication time in a network of mobile entities, infection times in security
applications etc.

Related Work. Random intersection graphs have recently attracted a growing
research interest. The question of how close Gn,m,p and Gn,p̂ are for various val-
ues of m, p has been studied by Fill, Sheinerman and Singer-Cohen in [11]. In
[19], new models of random intersection graphs have been proposed, along with
an investigation of both the existence and efficient finding of close to optimal
independent sets. The authors of [10] find thresholds (that are optimal up to a

46 S.E. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

constant factor) for the appearance of hamilton cycles in random intersection
graphs. The efficient construction of hamilton cycles is studied in [24]. Also, by
using a sieve method, Stark [28] gives exact formulae for the degree distribution
of an arbitrary fixed vertex of Gn,m,p for a quite wide range of the parameters
of the model. In [21], the authors use a coupling technique to bound the sec-
ond eigenvalue of random walks on instances of symmetric random intersection
graphs Gn,n,p (i.e. in random intersection graphs with m = n), when p is near the
connectivity threshold. The upper bound proved holds for almost every instance
of the symmetric random intersection graphs model. We should note that in this
paper we deal with the case m = nα, for α < 1, which is very different from the
symmetric case, as in the first case each label is selected by a large number of
vertices (which allows for much tighter concentration bounds that help in the
analysis).

In [15] the author proves that with high probability (whp) the cover time (that
is the expected time to visit all the vertices of the graph) of a simple random walk
on a Bernoulli random graph Gn,p̂ is quite close to optimal when p̂ = ω

(
lnn
n

)
.

Also, he proves that by further increasing the value of p̂, the same bound that
holds for the cover time holds whp for the actual time needed for the random
walk on Gn,p̂ to visit all the vertices of the graph. His results are improved by
Cooper and Frieze in [5], who prove that when p̂ = c logn

n , c > 1, the cover time

of Gn,p̂ is asymptotic to c log
(

c
c−1

)
n logn.

Geometric proximity between randomly placed objects is also nicely captured
by the model of random geometric graphs (see e.g. [7,8,23]) and important vari-
ations (like random scaled sector graphs, [9]). In [3], the cover time of random
geometric graphs near the connectivity threshold is found almost optimal, by
showing that the effective resistance of the graph is small. Other extensions of
random graph models (such as random regular graphs) and several important
combinatorial properties (connectivity, expansion, existence of a giant connected
component) are performed in [18,22].

Our Contribution. As proved in [11], the spaces Gn,m,p and Gn,p̂ are equivalent
when m = nα, with α > 6, in the sense that their total variation distance tends
to 0 as n goes to ∞. Also, the authors in [24] show that, when α > 1, for any
monotone increasing property there is a direct relation (including a multiplicative
constant) of the corresponding thresholds of the property in the two spaces. So,
it is very important to investigate what is happening when α ≤ 1 where the two
spaces are statistically different. In this paper, we study the regime α < 1. In
particular

(a) We first prove that Gn,m,p random intersection graphs are c-expanders
(i.e. every set S of at most n/2 vertices is connected to at least c|S| other
vertices outside S) with high probability. This is shown for p = lnn+g(n)

m ,
where g(n) → ∞ arbitrarily slowly, i.e. p is just above the connectivity
threshold. 1 Note that [21] has no equivalent results to this one.

1 The connectivity threshold for α ≤ 1 is proved to be τc = ln n
m

in [27].

Expander Properties and the Cover Time of Random Intersection Graphs 47

(b) We then show that random walks on the vertices of random intersection
graphs are whp rapidly mixing (in particular, the mixing time is logarithmic
on n). This is shown for p very close to the connectivity threshold τc of
Gn,m,p, with m = nα, α < 1. We interestingly note that the c-expansion
property shown in (a) cannot ensure “small” rapid mixing. For example
imagine the following graph pointed out to us by Noga Alon [1]: two cliques
of size n/2 each, connected by a perfect matching of their vertices is a
c-expander but has mixing time Ω(n). To get our result on the mixing
time we had to prove an upper bound on the second eigenvalue of Gn,m,p,
that holds with high probability, through coupling arguments of the original
Markov Chain describing the random walk and another Markov Chain on
an associated random bipartite graph whose conductance properties we
show to be appropriate. The attentive reader can easily understand that
although the general technique used to prove the results of section 4 is
similar to the technique used in [21], the proofs are quite different. More
specifically, in the case of Gn,m,p, with m = nα, α < 1, the concentration
results of section 2 (and especially the first part of Lemma 1) can be used to
give an elegant proof of Lemma 5 (which cannot be applied in the symmetric
case considered in [21]).

(c) Finally, we show that the cover time of such graphs (in the interesting, non-
trivial range mentioned above and for p close to the connectivity threshold)
is whp Θ(n lnn), i.e. optimal up to multiplicative constants. To get this
result we had to prove a technically involved intermediate result relating
the probability that our random walk on Gn,m,p has not visited a vertex
v by time t with the degree of v. Note that [21] has no equivalent results
to this one. Also, to prove the results of section 6, one needs to prove an
extra preliminary result (namely Lemma 3) that does not appear in [21].

2 Notation, Definitions and Properties of Gn,m,p

Let Bin(n, p) denote the Binomial distribution with parameters n and p. We
first formally define the random intersection graphs model.

Definition 1 (Random Intersection Graph). Consider a universe M =
{1, 2, . . . ,m} of elements and a set of vertices V (G) = {v1, v2, . . . , vn}. If we as-
sign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj of M choosing
each element i ∈ M independently with probability p and put an edge between
two vertices vj1 , vj2 if and only if Svj1

∩ Svj2
�= ∅, then the resulting graph is an

instance of the random intersection graph Gn,m,p. In this model we also denote
by Ll the set of vertices that have chosen label l ∈ M . The degree of v ∈ V (G)
will be denoted by dG(v). Also, the set of edges of Gn,m,p will be denoted by e(G).

Consider now the bipartite graph with vertex set V (G) ∪ M and edge set
{(vj , i) : i ∈ Svj} = {(vj , i) : vj ∈ Li}. We will refer to this graph as the
bipartite random graph Bn,m,p associated to Gn,m,p.

In this section we assume that m = nα, for some α < 1. This is the interest-
ing regime where Gn,m,p differs from Gn,p̂ (see also “Our Contribution” in the

48 S.E. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

previous section). Let τc
def
= lnn

m be the connectivity threshold for Gn,m,p in that
case. Also we assume that p = 4τc. We prove that

Lemma 1. The following hold with high probability in Gn,m,p when α < 1 and
p = 4 lnn

m

(a) For every label l ∈ M we have (1 − ε)np ≤ |Ll| ≤ (1 + ε)np for any
ε ∈ [n−(1−α)/2, 1).

(b) For every vertex v ∈ V we have |Sv| ∈ (1±
√

4/5)4 lnn.

Proof. See full paper [20]. ��

Note that Lemma 1 implies that the minimum degree in Gn,m,p when α < 1 and
p just above the connectivity is whp at least Ω(n1−α lnn). In fact, we prove the
following

Lemma 2. The following hold with high probability in Gn,m,p when α < 1 and
p = 4 lnn

m

(a) The degree of any vertex v ∈ V satisfies dG(v) ∈ (1 ± n−ε′
)4|Sv|n1−α lnn

for some positive constant ε′ bounded away from 0 and 1− α.
(b) The number of edges of the Gn,m,p graph satisfies |e(G)| ∈ (1 ± ε′′)

1
216n2−α ln2 n, for some small constant ε′′ > 0.

(c) There are no vertices x �= y ∈ V (G) such that |Sx ∩ Sy| ≥
⌈

3
α

⌉
.

Proof. See full paper [20]. ��

Let now D(k) be the number of vertices v ∈ V (G) that have |Sv| = k, i.e.
D(k) = |{v ∈ V : |Sv| = k}|. Consider also the following partition of the set
{0, 1, . . . ,m}.

M2 = {k ∈ (1±
√

4/5) lnn : E[D(k)] > lnn}
M1 = {k ∈ (1±

√
4/5) lnn : E[D(k)] ≤ lnn}

M0 = {{0, 1, . . . ,m}\{M2 ∪M1}}

We can then prove the following lemma that will be useful for upper bounding
the cover time.

Lemma 3. For the Gn,m,p with α < 1 and p = 4τc the following hold with high
probability

1. For every k ∈M0, D(k) = 0
2. For every k ∈M1, D(k) ≤ ln3 n and
3. For every k ∈M2, D(k) ≤ 2E[D(k)].

Proof. See full paper [20]. ��

Expander Properties and the Cover Time of Random Intersection Graphs 49

3 Expansion Properties of Random Intersection Graphs

We first give the following definition:

Definition 2 (c-expanders). Let c be a positive constant. A graph G = (V (G),
E(G)) is a c-expander if every set S ⊆ V (G) of at most n/2 vertices is connected
to at least c|S| vertices outside S.

In this section we assume that p = lnn+g(n)
m , that is, p is just above the con-

nectivity threshold τc. In the following, let SX =
⋃

v∈X Sv, for X ⊆ V and let
LY =

⋃
l∈Y Ll, for Y ⊆M. We prove the following:

Lemma 4. Assume that m = nα, α < 1 and p = lnn+g(n)
m , for some function

g(n) →∞ (arbitrarily slowly). With high probability Gn,m,p is a c-expander, for
some constant c > 0.

Proof. See full paper [20]. ��

4 Bounds for the Second Eigenvalue and the Mixing
Time

In this section we give an upper bound on the second eigenvalue (i.e. the eigen-
value with the largest absolute value less than 1) of Gn,m,p, with α < 1 and
p = 4τc, that holds for almost every instance. This will imply a logarithmic
mixing time.

Let W̃ be a Markov Chain on state space V (i.e. the vertices of Gn,m,p) and
transition matrix given by

P̃ (x, y) =
{∑

l∈Sx∩Sy

1
|Sx|·|Ll| if Sx ∩ Sy �= ∅

0 otherwise.

Note that this Markov Chain comes from observing the simple random walk
on the Bn,m,p graph associated with Gn,m,p every two steps. This means that
W̃ is reversible and we can easily verify that its stationary distribution is given
by

π̃(x) =
|Sx|∑

y∈V |Sy|
, for every x ∈ V .

Now let W denote the random walk on Gn,m,p and let P denote its tran-
sition probability matrix. It is known that W is reversible and its stationary
distribution is given by π(x) = dG(x)

2|e(G)| , for every x ∈ V .

Notice now that P (x, y) > 0 ⇔ P̃ (x, y) > 0. By using Theorem 2.1 of [6],
we can show that if λ1 (respectively λ̃1) is the second largest eigenvalue of P
(respectively P̃), then

λ1 ≤ 1− β

A
(1− λ̃1) (1)

50 S.E. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

where β is such that π̃(x) ≥ βπ(x), for all x ∈ V , and

A = max
(x,y):P (x,y)>0

{
π̃(x)P̃ (x, y)
π(x)P (x, y))

}
.2

Because of (a) of Lemma 2 and the fact that |e(G)| =
∑

y∈V dG(v), there
exist two positive constants β < 1 < β′, such that βπ(x) ≤ π̃(x) ≤ β′π(x), for
all x ∈ V (These two constants can be quite close to 1 as they depend on the
value of ε′′ of Lemma 2). Also, by (a) and (c) of Lemma 2, for any (x, y) such
that P (x, y) > 0, we have

P̃ (x, y)
P (x, y)

=

∑
l∈Sx∩Sy

1
|Sx|·|Ll|

1
dG(x)

≤ (1 + γ′)|Sx ∩ Sy| ≤ γ

for some positive constants γ′, γ. This means that A is upper bounded bounded
by some constant. Thus, we have established that λ1 ≤ 1 − ζ1(1 − λ̃1), for
ζ1 = β

β′γ .
We now show that λ̃1 is whp bounded away from 1 by some constant (which

will mean that λ1 is also bounded away from 1).
Let Ŵ denote the random walk on the Bn,m,p bipartite graph that is asso-

ciated to Gn,m,p. Let also P̂ denote its transition probability matrix and let
λ̂i, i = 1, . . . ,m+n, its eigenvalues and x̂i, i = 1, . . . ,m+n, their corresponding
eigenvectors. Note that

P̂ 2 =
[
P̃ ∅
∅ Q

]

where Q is some transition matrix. But for any i = 1, . . . ,m + n, we have
P̂ 2x̂i = λ̂2

i x̂i. So, in order to give the desired upper bound to λ̃1, we need to
show that λ̂1 is whp bounded away from 1 by some constant (because we already
have that λ̃1 ≤ λ̂2

1). In order to do so, we use the notion of conductance ΦŴ of
the walk Ŵ that is defined as follows:
2 The original theorem is as follows: For each pair x �= y with P̃ (x, y) > 0, fix a

sequence of steps x0 = x, x1, x2, . . . , xk = y with P (xi, xi+1) > 0. This sequence
of steps is called a path γxy of length |γxy| = k. Let E = {(x, y) : P (x, y) > 0)},
Ẽ = {(x, y) : P̃ (x, y) > 0)} and Ẽ(z, w) = {(x, y) ∈ Ẽ : (z, w) ∈ γxy}, where
(z, w) ∈ E . Then

λ1 ≤ 1− β

A
(1− λ̃1)

where β is such that π̃(x) ≥ βπ(x), for all x ∈ V , and

A = max
(z,w)∈E

⎧
⎨

⎩
1

π(x)P (x, y))

∑

Ẽ(z,w)

|γxy|π̃(x)P̃ (x, y)

⎫
⎬

⎭ .

In our case we have taken γx,y = {x0 = x, x1 = y} for every (x, y) ∈ Ẽ which
simplifies our formula.

Expander Properties and the Cover Time of Random Intersection Graphs 51

Definition 3. Consider the bipartite random graph Bn,m,p that is associated to
Gn,m,p. The vertex set of Bn,m,p is V (B) = V (G)∪M. For every x ∈ V (B), let
dB(x) be the degree of x in B. For any S ⊆ V (B), let eB(S : S) be the set of edges
of S with one end in S and the other in S = V (B)\S, let dB(S) =

∑
v∈S dG(v)

and π̂(S) =
∑

v∈S π̂(v). Then

ΦŴ = min
π̂(S)≤1/2

|eB(S : S)|
dB(S)

.

We now prove the following

Lemma 5. With high probability, the conductance of the random walk on Bn,m,p

satisfies ΦŴ ≥ ζ2, where ζ2 is some positive constant.

Proof. See full paper [20]. ��

By a result of [13,25], we know that λ̂1 ≤ 1− Φ2
Ŵ

2 and so λ̂1 is (upper) bounded
away from 1. By the above discussion, we have proved the following

Theorem 1. With high probability, the second largest eigenvalue of the random
walk on Gn,m,p, with m = nα, α < 1 and p = 4τc, satisfies λ1 ≤ ζ, where
ζ ∈ (0, 1) is a constant that is bounded away from 1.

Such a bound on λ1 implies (as shown in Proposition 1 of [26]) a logarithmic
mixing time. Thus we get

Theorem 2. With high probability, there exists a sufficiently large constant K >

0 such that if τ (G)
0 = K logn, then for all v, u ∈ V (G) and any t ≥ τ

(G)
0 ,

|P (t)(u, v)− π(v)| = O(n−3)

where P (t) denotes the t-step transition matrix of the random walk W on Gn,m,p,
with m = nα, α < 1 and p = 4τc. We will refer to τ

(G)
0 as the mixing time of

Gn,m,p.

5 A Useful Lemma

In order to give bounds to the cover time of Gn,m,p, for m = nα, α < 1 and p
four times the connectivity threshold we first prove a lemma that the probability
that the random walk on Gn,m,p has not visited a vertex v by time t with the
degree of v. Before presenting the lemma we give some notation.

Let G be an instance of the random intersection graphs model and let H(v) =
G − {v}. We will sometimes write H instead of H(v) when v is clear from the
context. Let τ (H)

0 denote the mixing time of H , namely the time needed for the
random walk on H to get closer than O(n−3) to its steady state distribution
(see also definition of τ (G)

0 in Theorem 2). Note that because of the definition of

52 S.E. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

H and by Lemma 1, the removal of v from G does not affect its mixing time3

and so τ
(G)
0 ∼ τ

(H)
0 ≤ τ0

def
= Θ(log n) for any v whp. We will denote by Wu,H

the random walk on H that starts at vertex u ∈ V (H). Let also Wu,H(t) be the
random walk generated by the first t steps. For u �= v ∈ V , let At(v) be the
event that Wu,G(t) has not visited v.

Lemma 6. Let G be an instance of Gn,m,p, with m = nα, α < 1 and p = 4 lnn
m ,

that satisfies Lemma 1 and has τ
(H)
0 ≤ τ0 = Θ(log n) for every H = H(v) (note

that almost every instance of Gn,m,p in this range satisfies these requirements).
Let δv be the minimum degree of the neighbours of v ∈ V (G). Then, for every
v ∈ V (G),

Pr(At(v)) ≤
(

1−
(
δv − 1
δv

− o(1)
)

dG(v)
2|e(G)|

)t−τ0

Pr(Aτ0(v)).

Proof. See full paper [20]. ��

6 An Upper Bound on the Cover Time

Let G be an instance of Gn,m,p, where m = nα, α < 1 and p = 4 lnn
m . Fix

an arbitrary vertex u. Let TG(u) be the time that the random walk Wu on G
needs to visit every vertex in V (G). The following theorem shows that the cover
time on G is optimal assuming that G is a “typical” instance of the Gn,m,p

model in this range, i.e. an instance that satisfies Lemmata 1, 2, 3 and has
τ

(H)
0 ≤ τ0 = Θ(log n) for every H = H(v) (the last assumption assures us that

Lemma 6 can be applied). Note that almost every instance of Gn,m,p in this
range is “typical”, since these requirements are satisfied whp.

Theorem 3. The cover time Cu of the random walk starting from u is almost
surely at most Θ(n lnn).

Proof. We will denote by Ut the number of vertices that have not been visited
by Wu at step t. Clearly, the cover time of Wu satisfies

Cu = E[TG(u)] =
∞∑

t=0

Pr(TG > t) =
∞∑

t=0

Pr(Ut > 0) ≤
∞∑

t=0

min{1, E[Ut]}

by Markov’s inequality. So, for any t0 > 0,

Cu ≤ t0 +
∑

t≥t0+1

E[Ut] = t0 +
∑

t≥t0+1

∑

v∈V (G)

Pr(At(v)) (2)

where in the last equality we used the linearity of expectation and the fact that
the events {v ∈ Ut} and At(v) are the same.

3 In fact the same analysis of section 4 can be applied unchanged to H(v).

Expander Properties and the Cover Time of Random Intersection Graphs 53

We set t0 = 5n logn. Since δv ≥ n1−α lnn, for every v ∈ V (G), by setting
Pr(Aτ0(v)) equal to 1 in Lemma 6 and using the well known inequality 1+x ≤ ex,
for any real x, we have that for all t ≥ t0,

Pr(At(v)) ≤ exp
{
− tdG(v)

2|e(G)|

(
1−O

(
τ0
δv

))}
≤ exp

{
−(1−B)

t|Sv|
4n lnn

}

for some small constant B > 0. Note that for the final inequality we used the
fact that τ0 = o(δv).

Now equation (2) becomes

Cu ≤ 5n lnn +
∑

v∈V (G)

∑

t≥t0+1

e(1−B) −t|Sv|
4n ln n ≤ 5n ln n + 5n ln n

∑

v∈V (G)

1

|Sv|
e− 5(1−B)

4 |Sv|

≤ 5n lnn + 5n ln n

⎛

⎝
∑

v:|Sv|∈M1

1

|Sv |
e−|Sv| +

∑

v:|Sv|∈M2

1

|Sv|
e−|Sv|

⎞

⎠ (3)

Because of Lemma 1 and Lemma 3, the first sum is clearly o(1) (just notice
that for any v such that |Sv| ∈ M1 we have that |Sv| = Θ(lnn) and D(|Sv|) ≤
ln3 n). For the second sum, by Lemma 3 we have

∑

v:|Sv|∈M2

1
|Sv|

e−
|Sv|

5 ≤
m∑

k=1

D(k)
1
k
e−k ≤

m∑

k=1

2n
(
m

k

)
pk(1− p)m−k 1

k
e−k

≤ 7n
1
mp

m∑

k=1

(
m + 1
k + 1

)
pk+1(1− p)m−ke−(k+1)

≤ 7n
1
mp

(
1− p + pe−1

)m+1
= o(1).

By (3) this means that Cu ≤ Θ(n lnn) for any fixed vertex u. ��

Since the cover time C = maxu∈V (G) Cu, and it is known that C ≥ (1 −
o(1))n lnn, we have proved

Theorem 4. The cover time of an instance of Gn,m,p, with m = nα, α < 1 and
p = 4 lnn

m , is C = Θ(n lnn) with high probability.

7 Conclusions and Future Work

In this work, we investigated the expansion properties, the mixing time and the
cover time of Gn,m,p random intersection graphs for the non-trivial regime where
m = nα, for α < 1 and p very close to the connectivity threshold. We showed
that the mixing time is logarithmic on the number of vertices and that the cover
time is asymptotically optimal. Our analysis can be pushed further (although
not without many technical difficulties) to provide even tighter results. However,
the cover time and expansion properties in the case α = 1 remains an open

54 S.E. Nikoletseas, C. Raptopoulos, and P.G. Spirakis

problem. It is worth investigating other important properties of Gn,m,p, such as
dominating sets, existence of vertex disjoint paths between pairs of vertices etc.

Acknowledgement. We wish to warmly thank Noga Alon for pointing out to
us the particular graph (two cliques of size n/2 with a perfect matching between
them) that despite being a c-expander is not rapidly mixing. Also, for providing
material on his relevant research to us.

References

1. Alon, N.: Personal communication (January 2007)
2. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley & Sons, Inc.,

Chichester (2000)
3. Avin, C., Ercal, G.: On the Cover Time of Random Geometric Graphs. In: Caires,

L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 677–689. Springer, Heidelberg (2005)

4. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

5. Cooper, C., Frieze, A.: The Cover Time of Sparse Random Graphs. Random Struc-
tures and Algorithms 30, 1–16 (2007)

6. Diaconis, P., Saloff-Coste, L.: Comparison Theorems for Reversible Markov Chains.
The Annals of Applied Probability 3(3), 696–730 (1993)

7. Dı́az, J., Penrose, M.D., Petit, J., Serna, M.: Approximating Layout Problems on
Random Geometric Graphs. Journal of Algorithms 39, 78–116 (2001)

8. Dı́az, J., Petit, J., Serna, M.: Random Geometric Problems on [0, 1]2. In: Rolim,
J.D.P., Serna, M.J., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 294–306.
Springer, Heidelberg (1998)

9. Dı́az, J., Petit, J., Serna, M.: A Random Graph Model for Optical Networks of
Sensors. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA
2003. LNCS, vol. 2647, pp. 186–196. Springer, Heidelberg (2003)

10. Efthymiou, C., Spirakis, P.G.: On the Existence of Hamilton Cycles in Random
Intersection Graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 690–701. Springer, Heidelberg
(2005)

11. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random Intersection Graphs
when m = ω(n): An Equivalence Theorem Relating the Evolution of the G(n, m, p)
and G(n, p) models, http://citeseer.nj.nec.com/fill98random.html

12. Godehardt, E., Jaworski, J.: Two models of Random Intersection Graphs for Classi-
fication. In: Opitz, O., Schwaiger, M. (eds.) Studies in Classification, Data Analysis
and Knowledge Organisation, pp. 67–82. Springer, Heidelberg (2002)

13. Jerrum, M., Sinclair, A.: Approximate Counting, Uniform Generation and Rapidly
Mixing Markov Chains. Information and Computation 82, 93–133 (1989)

14. Jerrum, M., Sinclair, A.: The Markov Chain Monte Carlo Method: an Approach
to Approximate Counting and Integration. In: Hochbaum, D. (ed.) Approximation
Algorithms for NP-hard Problems, PWS, pp. 482–520 (1996)

15. Jonasson, J.: On the Cover Time of Random Walks on Random Graphs. Combi-
natorics, Probability and Computing 7, 265–279 (1998)

16. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On Random Intersection
Graphs: The Subgraph Problem. Combinatorics, Probability and Computing jour-
nal 8, 131–159 (1999)

http://citeseer.nj.nec.com/fill98random.html

Expander Properties and the Cover Time of Random Intersection Graphs 55

17. Marczewski, E.: Sur deux propriétés des classes d’ ensembles. Fund. Math. 33,
303–307 (1945)

18. Nikoletseas, S., Palem, K., Spirakis, P.G., Yung, M.: Short Vertex Disjoint Paths
and Multiconnectivity in Random Graphs: Reliable Network Computing, In: The
Proceedings of the 21st International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Computer Science vol. In: Shamir, E.,
Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 247–262. Springer, Heidel-
berg (1994)

19. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: The Existence and Efficient Con-
struction of Large Independent Sets in General Random Intersection Graphs. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1029–1040. Springer, Heidelberg (2004)

20. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Expander Properties and
the Cover Time of Random Intersection Graphs, DELIS technical report,
http://delis.upb.de/paper/DELIS-TR-0491.pdf.

21. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: The Second Eigenvalue of Random
Walks on Symmetric Random Intersection Graphs. In: Proceedings of the 2nd
International Conference on Algebraic Informatics (CAI 2007) (2007)

22. Nikoletseas, S., Spirakis, P.G.: Expander Properties in Random Regular Graphs
with Edge Faults. In: Mayr, E.W., Puech, C. (eds.) STACS 95. LNCS, vol. 900,
pp. 421–432. Springer, Heidelberg (1995)

23. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability (2003)
24. Raptopoulos, C., Spirakis, P.G.: Simple and Efficient Greedy Algorithms for Hamil-

ton Cycles in Random Intersection Graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 493–504. Springer, Heidelberg (2005)

25. Sinclair, A.: Algorithms for Random Generation and Counting: a Markov Chain
Approach, PhD Thesis, University of Edimburg (1988)

26. Sinclair, A.: In: Birkhauser (ed.) Algorithms for Random Generation and Counting
(1992)

27. Singer-Cohen, K.B.: Random Intersection Graphs, PhD thesis, John Hopkins Uni-
versity (1995)

28. Stark, D.: The Vertex Degree Distribution of Random Intersection Graphs. Ran-
dom Structures & Algorithms 24(3), 249–258 (2004)

http://delis.upb.de/paper/DELIS-TR-0491.pdf.

Uncover Low Degree Vertices and Minimise the

Mess: Independent Sets in Random Regular
Graphs�

William Duckworth1 and Michele Zito2

1 Mathematical Sciences Institute
Australian National University
Canberra, ACT 0200, Australia

Billy.Duckworth@maths.anu.edu.au
2 Department of Computer Science

University of Liverpool
Liverpool L69 3BX, UK
M.Zito@csc.liv.ac.uk

Abstract. We present algorithmic lower bounds on the size sd of the
largest independent sets of vertices in random d-regular graphs, for each
fixed d ≥ 3. For instance, for d = 3 we prove that, for graphs on n vertices,
sd ≥ 0.43475n with probability approaching one as n tends to infinity.

1 Introduction

Given a graph G = (V,E), an independent set is a subset I of V which spans no
edge. In this paper we are interested in finding (by algorithmic means) indepen-
dent sets of the largest possible cardinality. Let α(G) be the size of the largest
independent sets in G divided by |V (G)|. The problem has a long history. It is
one of the first optimization problems whose decision version was shown to be
NP-complete [12]. Since then many results have appeared either proving that
an optimal structure can be found in polynomial time on special graph classes
[1,13] or showing that particular polynomial-time heuristics return solutions that
are not too small for particular classes of graphs [5,6,8,16] or else proving that
finding heuristics returning solutions significantly close to the optimal ones is at
least as hard as solving the optimization problem exactly [15].

The algorithmic results in this paper are valid asymptotically almost surely
(a.a.s.), i.e. with probability approaching one as |V (G)| tends to infinity, under
the assumption that the input structure is presented according to a pre-specified
probability distribution. The maximum independent set problem (MIS) has been
studied thoroughly in several of such random structures. For graphs generated
according to the well-known G(n, p) model (n vertices, edges appear indepen-
dently with probability p) it has been proven [7,10] that as long as pn tends to
� Part of this work was carried out during a visit of the second author to the Australian

National University (ANU). The authors wish to thank the Mathematical Sciences
Institute at the ANU for its support.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 56–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Uncover Low Degree Vertices and Minimise the Mess 57

Table 1. A.a.s. bounds on α(G) for random d-regular graphs

d l.b. u.b. αd

3 0.4328 0.4554 0.4348

4 0.3901 0.4163 0.3921

5 0.3566 0.3844 0.3593

6 0.3296 0.3580 0.3330

7 0.3071 0.3357 0.3106

infinity α(G(n, p))n ∼ 2 lognp/ log 1/(1 − p) (although no polynomial time al-
gorithm is known which returns, even just a.a.s., an independent set containing
more than half that many vertices). For random d-regular graphs the situation
is less satisfactory. For large d, α(G) is close to 2 log d

d [11]. However if d is a small
fixed constant (say 3 or 5 or even 100), only lower and upper bounds are known.
The best known bounds are reported in the second and third column of Table 1
for d up to 7. The upper bounds are derived using Markov’s inequality [18]. The
lower bounds are algorithmic [19]. It is quite interesting that for the past 12
years, nobody has been able to improve these bounds (in fact the upper bounds
are even older than that). More to this, the existence of greedy algorithms that
return independent sets asymptotically larger than those promised by Wormald’s
algorithm [19], is an open problem raised ten years ago by Frieze and McDiarmid
[9]. Notice that combinatorial methods like the one studied in [2], although suc-
cessful for other packing problems [3,4], failed to shed any light on the exact
location of α(G) [2, Chap. IV].

In this paper we argue that careful algorithm design may be of significant
help in improving the current situation. We propose a couple of heuristics that,
when followed by an algorithm, lead to improvements on the performances of
Wormald’s algorithm for all values of d with only minimal additional running
time costs. Wormald [19] showed that a simple process (termed “neighbourly”
algorithm in that paper) that repeatedly picks vertices of minimum positive
degree, adds them to the independent set that is being built and then removes
all edges at distance at most one from the chosen vertex, builds fairly large
independent sets a.a.s. if G ∈ G(n,d-reg). It turns out that, in some cases, it is
more convenient to add to the independent set one of the neighbours v of the
initially chosen vertex u, rather than u itself. More precisely, v should be chosen
if this is guaranteed to create a number of low degree vertices (sparsification
principle) or if it leads to the removal of very few edges (minimal mess principle).
A detailed description of our algorithm is in Section 3.

We contend that our solution is simple to analyse: the proof of our results relies
on a standard application of the differential equation method, spelled out in [20]
(the method is general enough to allow the analysis of even more sophisticated
algorithms). Furthermore, it seems plausible that similar principles may lead to
improvements for other optimization problems.

In Section 2 we present the model of random regular graphs that we use and
a statement of our main result. In Section 3 we describe our new algorithm.

58 W. Duckworth and M. Zito

The final part of the paper is devoted to the proof of our result: we first briefly
describe the differential equation method, then we fill in all the details needed
in the specific case.

2 Model and Main Result

Let G(n,d-reg) denote the uniform probability space of d-regular graphs on n ver-
tices. Notation G ∈ G(n,d-reg) will signify that the graph G is selected according
to such model.

A construction that gives the elements of G(n,d-reg) is the configuration model
(see, for example, [17, Chapter 9]). Let n urns be given, each containing d balls.
A set F of dn/2 unordered pairs of balls is chosen uniformly at random (or
u.a.r.). Let Ω be the set of all such pairings. Each F ∈ Ω corresponds to an
d-regular (multi)graph with vertex set V = {1, . . . , n} and edge set E formed by
those sets {i, j} for which there is at least one pair with one ball belonging to
urn i and the other ball belonging to urn j. Let Ω∗ be the set of all pairings not
containing an edge joining balls from the same urn or two edges joining the same
two urns. Since each simple graph corresponds to exactly (d!)n such pairings, a
random pairing F ∈ Ω∗ corresponds to an d-regular graph G without loops or
multiple edges chosen u.a.r.

Notice that a random pairing can be picked by choosing pairs one after the
other. Moreover, the first point in a pair may be selected using any rule whatso-
ever, as long as the second point is chosen u.a.r. from all the remaining unpaired
points. This property implies the existence of two equivalent ways of describing
the algorithm presented in this paper. The description in Section 3 works on
a previously generated (random) graph. However it would be equally easy to
define a process that, by working on configurations, at the same time generates
the graph and simulates our algorithm (this approach might help understanding
our analysis).

In this paper we prove the following result:

Theorem 1. For every integer n and d ≥ 3, if G ∈ G(n,d-reg) then α(G) ≥ αd

a.a.s. where the values of αd are obtained through the method described in Section
4 and are reported, for d ≤ 7 in the fourth column of Table 1.

The proof of Theorem 1 is based on the definition of an algorithm and on the
fact that, for each constant value of d, the algorithm dynamics can be described
with sufficient precision by a random process that, for large n, behaves in a
predictable way.

3 Greedy Algorithms for Independent Sets

If G = (V,E) is a graph then Γ (v) = {u ∈ G : {u, v} ∈ E(G)}, for each
v ∈ V (G). The degree of a vertex v of G is the size of Γ (v). Let G be a graph

Uncover Low Degree Vertices and Minimise the Mess 59

whose maximum degree is bounded by some fixed constant d > 0. We call the
isolation of u the process of deleting all edges at distance at most one from
vertex u (where the distance of an edge {u, v} from a vertex w is the minimal
length of a shortest path connecting w to u or v). For each q ∈ {1, . . . , d} define
Opq to be the process of picking a vertex u of degree q in G u.a.r., and isolating
it unless the minimal degree x in Γ (u) is at most q, there is a vertex v of degree
x in Γ (u) and one of the following conditions hold (in such case v gets isolated):

1. there are at least two vertices of degree x in Γ (u), OR
2. there is a single vertex v of degree x in Γ (u) AND

(a) q = 2 and the minimum degree in Γ (v)\u is larger than that in Γ (u)\ v
OR

(b) 2 < q < d− 1, the minimum degree in Γ (v) \ u is larger than q, and the
sum of all degrees in Γ (v) \ u is smaller than that in Γ (u) \ v.

For each q ∈ {1, . . . , d} Opq obeys the sparsification (cases 1. and 2.(a)) and min-
imal mess principles (case 2.(b)) described in Section 1. We may then consider
the following process:

Careful minimum degree process. While there are still edges in
G, define q as the minimum positive degree in G and perform Opq on
G, adding to I the vertex that has been (deliberately) isolated in the
process.
If there is no edge left then return I and stop.

Note that other vertices (apart from u or v) may get isolated while performing
Opq. They are not taken into account by our analysis. Denote by Gt, for each
integer t, the graph obtained from G by removing all edges at distance at most
one from any of the first t vertices added to I (of course G0 ≡ G).

The differential equation method [20] allows us to estimate the size of I at
the end of the process from (approximate) knowledge of the dynamics of the
vector (|V1|, . . . , |Vd|) (where Vi = Vi(t) = {v ∈ Gt : |Γ (v)| = i}, for each
i ∈ {1, . . . , d}). It turns out that the spawning of vertices of smaller and smaller
degree can be described by well-known probabilistic tools (e.g. [14]). This implies
that a.a.s. the process proceeds by picking vertices of degree d − 1 and d − 2
during an initial phase, then d − 2 and d− 3 during a second phase, and so on
eventually running out of vertices of positive degree during phase d − 2 while
picking mainly vertices of degree two or one, and by that time all graph has
been explored. The main technical drawback of this approach is the fact that
the minimum degree in Gt is a random variable and a number of conditions
must be checked to ensure that the proposed analysis method works smoothly.
However, there is a different, but equivalent (see [20]), process that avoids such
problems. In the forthcoming description d is a fixed integer greater than two, ε a
small positive real number, and function p(q, x,y) a discrete probability measure
defined precisely in Section 4.

60 W. Duckworth and M. Zito

Algorithm CarefulGreedyd,ε(G)
Input: a graph G = (V, E) on n vertices and maximum degree d.

I ← ∅;
for t ← 0 to �εn	 perform Opd;
while E �= ∅

compute a probability distribution p(q, t
n
, |V1|

n
, . . . , |Vd|

n
),

for q ∈ {1, . . . , d};
choose q ∈ {1, . . . , d} with probability p(q, t

n
, |V1|

n
, . . . , |Vd|

n
);

perform Opq on Gt;
t ← t + 1;

return I.

A step of this algorithm is a complete iteration of the algorithm main while
loop. Assuming that each vertex adjacencies are retrievable in time O(d) and
that all vertex degrees are computed before the main loop is executed and then
updated as edges get removed, it is easy to believe that the algorithm time
complexity is linear in the size of the input graph.

Initially Vd = V and Vi = ∅ for i ≤ d − 1. The main difference between
CarefulGreedyd,ε(G) and the minimum degree process described before is that,
here, for t > 	εn
, the choice to perform Opq, for q ∈ {1, . . . , d − 1} is based
on a probability distribution p(q, x,y), rather than being dictated by the value
of the minimum degree in Gt. The general definition of p(q, x,y), valid when
G is a random d-regular graph, will be given in Section 4. Depending on the
particular probability distribution p(q, x,y) that is used at a given step, the
algorithm will be in one of a number of different phases, defined formally in the
next section. The outcome of our analysis implies that the algorithm processing
goes through successive phases. In phase j ∈ {1, 2, . . .} the process performs
only Opd−j or Opd−j−1. In this sense algorithm CarefulGreedyd,ε simulates the
careful minimum degree process described above.

4 Analysis Method

In order to obtain estimates on the size of the independent set returned by
algorithm CarefulGreedyd,ε(G) we use the differential equation method proposed
by Wormald [20]. Given the input graph, our algorithm peels off a number of
edges (upper bounded by an expression depending only on d) from the graph
Gt and updates the structure I (It will denote the content of I before Gt is
further processed) that is being built. Let Yi(t) = |Vi(t)| for i ∈ {1, . . . , d} and
Yd+1(t) = |It|. In what follows, for i ∈ {1, . . . , d + 1} and q ∈ {1, . . . , d − 1},
functions fi,q in IRd+2 will be such that the expected change to Yi(t), conditioned
on the history of the process up to step t and following one occurrence of Opq

during step t + 1 is asymptotically fi,q(t
n ,

Y1(t)
n , . . . , Yd+1(t)

n) + o(1), whenever
Yq(t) > 0. Let νd−s(x,y) = fd−s−1,d−s(x,y)

fd−s−1,d−s(x,y)−fd−s−1,d−s−1(x,y) . Assuming that these
functions are continuous and bounded in

Dε = {(x, y1, . . . , yd+1) : 0 ≤ x ≤ d, 0 ≤ yi ≤ d for 1 ≤ i ≤ d + 1, yd ≥ ε}

Uncover Low Degree Vertices and Minimise the Mess 61

we may consider the following d− 1 distinct systems of differential equations

dyi
dx

= νd−s(x,y)fi,d−s−1 (x,y) + (1− νd−s(x,y))fi,d−s(x,y) s ∈ {1, . . . , d− 2}

dyi
dx

= fi,1 (x,y) s = d− 1 (1)

Note that, if we run the careful minimum degree process, during phase d−s, the
expression fd−s−1,d−s(x,y) (resp. −fd−s−1,d−s−1(x,y)) would be approximately
the expected number of vertices of degree d− s− 1 created by one Opd−s (resp.
removed by an instance of Opd−s−1). Thus, in a sense, νd−s(x,y) (resp. 1 −
νd−s(x,y)) represent, on average, the proportion of times the minimum degree
process performs Opd−s (resp. Opd−s−1) during phase d− s. Provided

(F1) the functions fi,q are rational with no pole in Dε and
(F2) there exist positive constants C1, C2, and C3 such that for each i ∈

{1, . . . , d}, everywhere in Dε, fi,q ≥ C1yi+1 − C2yi (for q �= i), and
fi,q ≤ C3yi+1 for all q (see [20])

each system in (1), coupled with a suitably defined initial condition, admits a
unique solution over [xs−1, xs] (for s ∈ {1, . . . , d− 1}), where

x0 = 0 and xs is defined as the infimum of those x > xs−1 for
which at least one of the following holds:
(C1) fd−s−1,d−s−1(x,y) ≥ 0 or

fd−s−1,d−s(x,y) − fd−s−1,d−s−1(x,y) ≤ ε and s < d− 1;
(C2) the component d− s of the solution falls below zero or
(C3) the solution is outside Dε or ceases to exist. (2)

Let ỹ = ỹ(x) = (ỹ1(x), . . . , ỹd+1(x)) be the function defined inductively as
follows:

For each i ∈ {1, . . . , d + 1}, ỹi(0) = Yi(0)
n . For s ≥ 1, ỹ is the solution

to (1) over [xs−1, xs], with initial condition y(xs−1) = ỹ(xs−1). (3)

We may now state the result which bounds from below α(G).

Theorem 2. Let d be a positive integer with d ≥ 3, and ε an arbitrarily small
positive real number. For q ∈ {1, . . . , d − 1}, let fi,q, for each i ∈ {1, . . . , d +
1} be the functions referred to in the description above and defined in Sec-
tions 4.1 and 4.2. Then there exists a positive integer m such that the algo-
rithm CarefulGreedyd,ε(G) a.a.s. returns a structure of size nỹd+1(xm) + o(n)
where functions ỹ1, . . . , ỹd+1 are defined in (3) and x0, . . . , xm in (2) when
G ∈ G(n,d-reg).

The values of m and ỹd+1(xm)(= αd) referred to in Theorem 2 were found
solving the various systems numerically using Maple’s Runge-Kutta Fehlberg

62 W. Duckworth and M. Zito

method (a very primitive solver written in C for the case d = 3 is enclosed in the
Appendix). The distributions used in CarefulGreedyd,ε(G) satisfy the following
definition: p(d − s − 1, x,y) = νd−s(x,y), p(d − s, x,y) = 1 − p(d − s − 1, x,y)
and p(q, x,y) = 0 otherwise, when x ∈ [xs−1, xs], for each s ∈ {1, . . . ,m}. The
intervals [xs−1, xs] define the process phases. For x ∈ [xs−1, xs] the definition of
p(q, x,y) implies that only Opd−s and Opd−s−1 have a positive probability of
being performed during one step of algorithm CarefulGreedyd,ε(G).

The proof of Theorem 2 is carried out invoking Theorem 1 in [20]. The impor-
tant point to stress is that the argument has two quite separate components. The
definition of a number of functions and numerical quantities (satisfying certain
conditions) related to the particular algorithm and the proof that everything
works and the solutions of (1) actually give information on |I| after the execu-
tion of CarefulGreedyd,ε(G). As long as we are able to define the various fi,q and
verify conditions (F1) and (F2), we do not need to be concerned with the second
part of the argument (which mirrors the proof of Wormald’s general result).

Before digging into the details of the specific cases we introduce a few nota-
tions. In what follows for integers a and b, δa,b is equal to one (resp. zero) if
a = b (resp. otherwise). Given a vertex u, the probability of creating a vertex
of degree i − 1 in Γ (u) when removing an edge incident to u is asymptotically
Pi = iYi∑

j jYj
. In what follows Sb

a will denote the sum of all Pi’s for a ≤ i ≤ b

(with Sb
a = 0 if a > b). Furthermore let χc(a) = (Sb

a)c − (Sb
a+1)c. For large n,

χc(a) approximates the probability that the minimum degree in a given set of c
vertices is a, given that all degrees are between a and b. The expected change in
Yi due to the degree changes in Γ (u) following the removal of an edge incident to
u can be approximated by ρi = Pi+1−Pi with Pd+1 = 0. Similarly, if e = {u, v}
the expected change in Yi due to the removal of e and of any other edge incident
to v is asymptotically μi = −Pi+ρi

∑d
z=2 Pz(z−1). Finally, if P is some boolean

condition, define �ir(P) = (r − 1)ρi − δi,r (resp. δi,r−1 − δi,r) if P is true (resp.
false).

4.1 The Simple Case d = 3

Before describing the general case, it may be useful to follow an informal de-
scription of the analysis on cubic graphs.

For d = 3, we may assume that, at the beginning of a step, vertex u has
degree either one or two (the initial 	εn
 steps will make sure that this assump-
tion is valid). Algorithm CarefulGreedy3,ε(G) behaves exactly like Wormald’s
algorithm except in the case when Op2 is performed and the two neighbours of
u both have degree two. In such case our algorithm chooses a random neighbour
of u rather than u itself. Thus, if fW

i,q denotes the function fi,q associated with
Wormald’s algorithm (a precise definition is given in formula (2.12) of [20]) then
fi,q = fW

i,q + δq,2(P2)2(δi,1 + μi − 2ρi), for i ∈ {0, . . . 3} and q ∈ {1, 2} (whereas
f4,q = fW

4,q). Of course each fi,q satisfies conditions (F1) and (F2) that imply

Uncover Low Degree Vertices and Minimise the Mess 63

Theorem 2 (this follows from the properties of fW
i,q in [20]). For d = 3 it turns out

that m = 1. Condition (C2) eventually becomes true exactly when the vector
(x, y1, y2, y3, y4) hits the boundary of Dε. At that point the process stops and
ỹ4 � 0.4347531298, which agrees with the value for α3 in Table 1.

4.2 Arbitrary d ≥ 4

We next state the result characterising the dynamics of (Y1, . . . , Yd+1) for arbi-
trary d ≥ 4 following an instance of Opq, for q ∈ {1, . . . , d− 1}.

Lemma 1. Let d ≥ 4 and ε > 0. For each q ∈ {1, . . . , d − 1}, conditioned on
the history of algorithm CarefulGreedyd,ε(G) up to step t, the expected change
to Yi(t) following one occurrence of Opq is asymptotically

−δi,q + (Sd
q+1)q ×

∑d
k=q+1 q Pk

Sd
q+1

((k − 1)ρi − δi,k)

+
∑q

x=1

[
(χq(x) − qPx(Sd

x+1)
q−1) ((x − 1)μi − δi,x) − (qPx(Sd

x)q−1 − χq(x))

×(δi,x − δi,x−1) − q(χq−1(x) − (q − 1)Px(Sd
x+1)

q−2)
∑d

k=x+1 Pk(δi,k − δi,k−1)
]

+ qP1(Sd
2)q−1(−δi,1 + (q − 1)

∑d
k=2((k − 1)ρi − δi,k)Pk

Sd
2

)

+
∑q

x=2 qPx

{∑d−1
z=x+1

[∑q+(d−q)δq,2
m=1

[
− δi,xχq−1(z)χx−1(m)

+ (q − 1)χx−1(m) × ((Sd
z)q−2 �i

z (m ≤ z)Pz + χq−2(z)
∑d

r=z+1 �i
r(m ≤ z)Pr)

+ (x − 1)χq−1(z) · ((Sd
m)x−2 �i

m (m > z)Pm + χx−2(m)
∑d

s=m+1 �i
s(m > z)Ps)

]

+
∑d

m=q+(d−q)δq,2+1
∑

j:jz>0
(q−1
jz,...,jd

)
P jz

z . . . P
jd
d

∑
k:km>0

(x−1
km,...,kd

)
P km

m . . . P
kd
d γ(j, k)

]

+ P q−1
d ((x − 1)ρi − δi,x + ((d − 1)ρi − δi,d)(q − 1))

}

where γ(j,k) =
∑d

r=z �ir(P) · jr − δi,x−
∑d

r=m �ir(¬P) · kr and P ≡
∑d

r=z rjr <∑d
r=m rkr, if i ≤ d. Finally fd+1,q = 1 for all q.

Remark. The first line in the asymptotic expression for fi,q (i ≤ d) refers to the
case when the minimum degree around u is at least q + 1. The subsequent sum
deals with the case when there are at least two vertices of minimum degree x ≤ q
in Γ (u). The remainder of the expression covers the case when there is a single
vertex of minimum degree x ≤ q in Γ (u).

Proof. We sketch the definition of fi,q for each q in the given range and i ≤ d.
The stated expression (more convenient from the numerical point of view) can
then be obtained through simple algebraic manipulations.

For arbitrary, fixed d ≥ 4, each step of algorithm CarefulGreedyd,ε(G) may
perform Opq for q ∈ {1, . . . , d − 1}. More importantly the execution of such

64 W. Duckworth and M. Zito

an operation generates a number of alternative events whose probabilities are
approximately multinomial, under the assumption that G ∈ G(n, d-reg). Hence,
for each i ∈ {1, . . . , d} and q ∈ {1, . . . , d − 1} function fi,q satisfies (a.a.s.) the
following definition:

fi,q = −δi,q +
∑

j

(
q

jq+1,...,jd

)
P

jq+1
q+1 . . . P

jd
d (

∑d
k=q+1((k − 1)ρi − δi,k)jk) +

+
∑q

x=1

{∑
j:jx>1

(
q

jx,...,jd

)
P jx

x . . . P jd
d

(
(x− 1)μi − δi,x +

−
∑d

k=x(δi,k − δi,k−1)(jk − δk,x)
)

+ gi,q,x

}

where the first sum is over all sequences (jq+1, . . . , jd) of non-negative integers
adding up to q, the second sum on the second line is over all (jx, . . . , jd) with the
further restriction that jx must be positive (x represents the minimum degree
in Γ (u)), and gi,q,x is the expected change to Yi conditioned on performing
Opq and on the existence of a single vertex of minimum degree x around u
(this is case 2. in the description of the equivalent minimum degree process).
Function gi,d−1,x has a very simple definition, since if we perform Opd−1 we are
essentially just replicating Wormald’s algorithm. To define gi,q,x for q < d−1 we
need to condition on the degree structure in Γ (v) \ u and Γ (u) \ v. This enables
us to analyse algorithms based on the two proposed optimization principles. In
particular if x = 1 then Γ (v)\u is empty and therefore (just following Wormald’s
algorithm) gi,q,1 =

∑(
q

1,js,...,jd

)
P1 . . . P

jd

d (−δi,1 +
∑d

k=2((k− 1)ρi− δi,k)jk). For
x ≥ 2,

gi,q,x = qPx

{∑d−1
z=x+1

[
hi,q,x,z +

∑
m�=z

∑
j:jz>0

(
q−1

jz,...,jd

)
P jz

z . . . P jd
d ×

×
∑

k:km>0

(
x−1

km,...,kd

)
P km

m . . . P kd
d γi,q,x,z,m

]
+

+ P q−1
d ((x− 1)ρi − δi,x + ((d− 1)ρi − δi,d)(q − 1))

}

where hi,q,x,z describes the case when the minimum degree in Γ (u)\v and Γ (v)\u
are the same and γi,q,x,z,m the expected updates necessary in any other case. If
z �= m the algorithm’s rule is quite simple: v is added to I if the minimum degree
in Γ (v)\u is larger than that in Γ (u)\ v. Then γi,q,x,z,m =

∑d
r=z �ir(m ≤ z)jr +∑d

s=m �is(m > z)ks. Finally, for q > 2, function hi,q,x,z is computed conditioning
on each possible pair of sequences (jz , . . . , jd) and (kz, . . . , kd) adding up to q−1
and x − 1 respectively, and having jz > 0 and kz > 0. Following the minimum
mess principle, vertex v is added to I if

∑d
r=z rjr >

∑d
r=m rkr.

To get to the expression in the Lemma statement we use repeatedly well-
known multinomial identities like

∑(
q

jx,...,jd

)
P jx

x . . . P jd
d = (Sd

x)q or
∑(

q
jx,...,jd

)
jkP jx

x . . . P jd
d = qPk(Sd

x)q−1,

remembering that the case q = 2 needs slightly different computation. ��

Uncover Low Degree Vertices and Minimise the Mess 65

References

1. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in
graphs without forks. Discrete Applied Mathematics 135(1–3), 3–16 (2004)

2. Assiyatun, H.: Large Subgraphs of Regular Graphs. PhD thesis, Department of
Mathematics and Statistics - The University of Melbourne (2002)

3. Assiyatun, H., Wormald, N.: 3-star factors in random d-regular graphs. European
Journal of Combinatorics 27(8), 1249–1262 (2006)

4. Assiyatun, H.: Maximum induced matchings of random regular graphs. In:
Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS, vol. 3330,
pp. 44–57. Springer, Heidelberg (2005)

5. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the Association for Computing Machinery 41(1), 153–180 (1994)

6. Berman, P., Fujito, T.: On approximation properties of the independent set prob-
lem for low degree graphs. Theory of Computing Systems 32(2), 115–132 (1999)

7. Bollobás, B., Erdős, P.: Cliques in random graphs. Mathematical Proceedings of
the Cambridge Philosophical Society 80, 419–427 (1976)

8. Chen, Z.-Z.: Approximation algorithms for independent sets in map graphs. Journal
of Algorithms 41(1), 20–40 (2001)

9. Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Struc-
tures and Algorithms 10, 5–42 (1997)

10. Frieze, A.M.: On the independence number of random graphs. Discrete Mathemat-
ics 81(2), 171–175 (1990)

11. Frieze, A.M., �Luczak, T.: On the independence and chromatic number of random
regular graphs. Journal of Combinatorial Theory B 54, 123–132 (1992)

12. Garey, M.R., Johnson, D.S.: Computer and Intractability, a Guide to the Theory
of NP-Completeness. Freeman and Company (1979)

13. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques and maximum independent set of a chordal graph. SIAM Journal on
Computing 1(2), 180–187 (1972)

14. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)
15. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,

105–142 (1999)
16. Hunt, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,

Stearns, R.E.: NC-approximation scheme for NP- and PSPACE-hard problems for
geometric graphs. Journal of Algorithms 26, 238–274 (1998)

17. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. John Wiley and Sons, Chich-
ester (2000)

18. McKay, B.D.: Independent sets in regular graphs of high girth. Ars Combinato-
ria 23A, 179–185 (1987)

19. Wormald, N.C.: Differential equations for random processes and random graphs.
Annals of Applied Probability 5, 1217–1235 (1995)

20. Wormald, N.C.: Analysis of greedy algorithms on graphs with bounded degrees.
Discrete Mathematics 273, 235–260 (2003)

Appendix

We enclose a short C program that solves the single system relevant for d = 3.
The final print statement outputs α3. While the code is by no mean perfect (in

66 W. Duckworth and M. Zito

particular it contains no checking on fi,q or ỹ) the fact that it gives an answer
very close to the one returned by Maple’s solver may be taken as further evidence
of the robustness of our numerical results.

#include <stdio.h>

double p (int i, double y[]) {return i*y[i]/(y[1]+2*y[2]+3*y[3]);}
double R (int i, double y[]) {return (i<3?p(i+1,y):0.0) - p(i,y);}
double M (int i, double y[]) {return -p(i,y)+R(i,y)*(p(2,y)+2*p(3,y));}

double f (int i, int q, double y[]) {
if (i==4) return 1.0;
else return -(i==q)+q*M(i,y)-(q==2)*p(2,y)*p(2,y)*(2*R(i,y)-M(i,y)-(i==1));

}

double F(int i,double y[]) {
double p2=-f(1,1,y)/(f(1,2,y)-f(1,1,y));
return p2*f(i,2,y)+(1-p2)*f(i,1,y);

}

main(int argc, char *argv[]) {
int i,l;
double h = 0.00000001,w[5],mid[5];

for(i=0;i<5;i++) w[i]=0.0+(!(3-i));
for (l=0;;l++) {
for (i=0;i<5;i++) mid[i]=w[i]+(h*F(i,w)/2.0);
for (i=0;i<5;i++) w[i]=w[i]+h*F(i,mid);

if ((f(1,1,w)>0||f(1,2,w)-f(1,1,w)<=h) || (w[2]<=0.0)) {
printf("|I| = %11.10f\n",w[4]); break;

}
}

}

Transition Graphs of Rewriting Systems over

Unranked Trees

Christof Löding and Alex Spelten

RWTH Aachen, Germany
{loeding,spelten}@informatik.rwth-aachen.de

Abstract. We investigate algorithmic properties of infinite transition
graphs that are generated by rewriting systems over unranked trees. Two
kinds of such rewriting systems are studied. For the first, we construct a
reduction to ranked trees via an encoding and to standard ground tree
rewriting, thus showing that the generated classes of transition graphs
coincide. In the second rewriting formalism, we use subtree rewriting
combined with a new operation called flat prefix rewriting and show
that strictly more transition graphs are obtained while the first-order
theory with reachability relation remains decidable.

Keywords: Infinite graphs, reachability, rewriting, unranked trees.

1 Introduction

One of the main trends in verification is the field of infinite state model checking,
in which procedures (and limits to their applicability) are developed to check
systems with infinite state spaces against formal specifications (for a survey on
infinite graphs cf. [19]).

In automatic verification, checking whether a system can reach an undesir-
able state or configuration translates to the reachability problem “Given a finite
representation of an infinite graph G and two vertices u, u′ of G, is there a path
from u to u′?”. From this point of view, an important task in the development
of a theory of infinite graphs is to identify classes of infinite graphs where such
elementary problems like reachability are decidable.

The strong formalism of monadic second-order logic (MSO) subsumes tempo-
ral logic (cf. [11]) and thus allows to express reachability properties. A well-known
representative of graph classes with decidable MSO theory is the “pushdown hi-
erarchy” introduced by Caucal [6]. Although this hierarchy is very rich and
contains a lot of graphs, grid-like structures are not captured.

In order to compensate this weakness, a different approach of generating tran-
sition systems is to employ ranked trees (or terms) as the basic objects of the
rewriting formalism, as already considered in [2]. Thereby, the internal structure
of the trees is not of primary interest, but the different rewriting operations
that can be applied on trees. Consequently, the vertices of the generated infinite
graphs are represented by ranked trees, while the edge relation is induced by
(simple) tree operations.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 67–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 C. Löding and A. Spelten

Among attractive subclasses of rewriting systems, an interesting and practi-
cal subclass is made up by the ground tree rewriting systems (which contain
the infinite grid as transition graph; for an extensive analysis cf. [15]). “Ground
rewriting” means that no variables occur in the rules, thus in ground tree (or
term) rewriting systems (GTRSs), only explicitly specified subtrees can be re-
placed by other explicitly specified subtrees. Though in general MSO is unde-
cidable for transition graphs of GTRSs, there is a decidable logic that allows to
express reachability problems: first-order logic with the reachability relation [10].
In [13, 15] the structure of the transition graphs of GTRSs and their relation
to other classes of infinite graphs, in particular to pushdown graphs, was stud-
ied. Furthermore, in [14, 15] several variants of the reachability problem for this
class of graphs were investigated and a decidable logic was defined for the class
of (regular) ground tree rewriting graphs.

For many applications however, the modelling of system states, messages, or
data by ranked trees is not the most intuitive approach (if not impossible as e.g.
the modelling of associative operations), since every symbol is of a fixed arity.
Thus, our aim is to investigate a possible generalization of the idea of ground tree
rewriting systems to the case of unranked trees. Briefly, unranked trees are finite
labeled trees where nodes can have an arbitrary but finite number of children,
and no fixed rank is associated to any label.

In this paper, we investigate to which extent results for ground tree rewriting
systems are transferable to the unranked case. Note however, that the direct
adaptation of this rewriting principle is not of interest: When starting from a
fixed initial tree and applying a finite set of rewrite rules with constant trees,
the resulting trees are of bounded branching and hence can be traced to the case
of ground tree rewriting over ranked trees. Another natural approach to handle
unbounded branching of unranked trees is to encode unranked trees as binary
trees. Using this formalism, we show that there is a class of rewriting systems
over unranked trees, which will be called partial subtree rewriting systems, that
generates the same class of infinite graphs as ground tree rewriting systems over
ranked trees.

However, encodings are problematic as they alter locality and path properties.
This means that this approach of compensating unbounded branching via a
dispersal into subtrees blurs a decisive point, namely the separation of two types
of unboundedness: one is derived from the arbitrariness of “hierarchy levels”
(represented by the height of the tree) while the other unboundedness refers to
the number of data on the same hierarchy level. Pursuing the latter aspect, we
define a new class of rewriting systems over unranked trees, the subtree and flat
prefix rewriting systems, which combine ground tree rewriting with prefix word
rewriting on the “flat front” of a tree. Here, a flat front indicates a successor
sequence wherein all nodes are leaves. With this approach related to ground tree
rewriting, we obtain a class of infinite graphs which has a decidable first-order
theory with reachability predicate. Furthermore, analogous to regular ground
tree rewriting systems over ranked trees, a regular variant of these rewriting
systems is considered.

Transition Graphs of Rewriting Systems over Unranked Trees 69

After introducing the basic terminology in Section 2, the class of transition
graphs of partial subtree rewriting systems is treated in Section 3. We show that
this class coincides with the class of transition graphs of ground tree rewriting
systems over ranked trees. Section 4 introduces (regular) subtree and flat prefix
rewriting systems, relates the classes of transition graphs to the previous ones,
and investigates the decidability of the reachability problem over the transition
graphs of (regular) subtree and flat prefix rewriting systems. Furthermore, it is
shown that the structure consisting of the set of unranked trees and the relations
reachability and one-step reachability is automatic for a suitable definition over
unranked trees and thus has a decidable first-order theory (cf. [1]). Section 5
concludes with a short summary and points to further aspects of interest.

2 Preliminaries

It is assumed that the reader is familiar with the basic notions of automata theory
and regular languages (for an introduction cf. [12], for automata on ranked trees
cf. [7], and on unranked trees cf. [3]).

An unranked tree over an alphabet Σ is a mapping from a nonempty finite
domain domt ⊆ N∗ to Σ, where domt is prefix closed and it holds that if xi ∈
domt then xj ∈ domt for x ∈ N∗, i ∈ N, and j ≤ i. In an unranked tree, each
node may have an arbitrary but finite number of successors. If the root of a finite
tree t is labeled by a ∈ Σ and has k successors at which the subtrees t1, . . . , tk
are rooted, then t can be written as the term a(t1, . . . , tk). The set of unranked
trees over an alphabet Σ is denoted by TΣ .

The subtree t�x of t is the tree rooted at node x ∈ dom t (i.e. t�x(u) = t(xu)
for xu ∈ domt). The height of a tree is defined as ht(t) := max{|x| | x ∈ domt};
if a tree t is of height 1, the word derived from the front (i.e. the sequence of
leaves read from left to right) of t is called the flat front.

A hedge as introduced by Courcelle [9] is a (possibly empty) finite ordered
sequence of trees. The width of a hedge is defined as the number of trees that
are contained in the sequence; consequently, a tree is a hedge of width 1.

A nondeterministic bottom up tree automaton (N�TA) on unranked trees is
of the form A = (Q,Σ,Δ, F) over an unranked alphabet Σ, with a finite set
Q of states, a set F ⊆ Q of final states, and a finite set of transitions Δ ⊆
REG(Q) ×Σ ×Q, where REG(Q) denotes the class of regular word languages
over Q, which are given for single transitions e.g. by a nondeterministic finite
(word) automaton (NFA). A run of A on t is a mapping ρ : domt → Q such that
for each node x ∈ domt there is a transition (L, t(x), ρ(x)) ∈ Δ such that the
sequence q1 · · · qn of states formed by the run at the successors of x is a word in
L. Thus, an N�TA employs NFAs that read the successor sequence of a node,
and decide with this word and the label of the current node which state to assign
to the current node.

As usual, a run is accepting if the root is labeled with a final state, and the
accepted language T (A) contains all trees for which there is an accepting run.
If there is a run labeling the root with state q then we write A : t→∗ q.

70 C. Löding and A. Spelten

We also use the equivalent model N�TA as well as an extended model (denoted
by ε-N�TA) with ε-transitions from the set Q × Q, each with the standard
semantics.

A tree is called ranked if every symbol a ∈ Σ is assigned a unique arity
rk(a) ∈ N, and each node labeled with a has exactly rk(a) successors.

A ground tree rewriting system (GTRS) over ranked trees is defined as a tuple
R = (Σ,Γ,R, tin), with ranked alphabet Σ, transition alphabet Γ , finite set R

of rules of the form s
σ
↪→ s′ with s, s′ ∈ TΣ, σ ∈ Γ , and initial tree tin ∈ TΣ .

A rule s
σ
↪→ s′ ∈ R is applicable to a tree t if there is a node x ∈ domt with

s = t�x, and the resulting tree is t′ = t[x|s′], where the subtree rooted at node
x is replaced by the tree s′. In this case, t′ is derived from t by the rule s

σ
↪→ s′

and we write t →σ
R t′. The tree language that is generated by R is denoted

T (R) = {t ∈ TΣ | tin →∗
R t}; the focus of this paper will be the structure

induced by the rewriting system with respect to the tree language. This is a
directed edge labeled transition graph GR = (VR, ER, Γ), ofR with VR = T (R),
and (t, σ, t′) ∈ ER iff t→σ

R t′. Note that the vertex set VR is defined as the set
of trees that are reachable from tin by repeated application of the rewrite rules.
The class of transition graphs of GTRSs is denoted by GTRG. For an extensive
survey on GTRG cf. [15].

One way of dealing with unranked trees is to encode them by ranked trees.
We use here a formalism proposed in [18], and employed as an encoding in [4],
that uses only one binary symbol corresponding to an operation for constructing
unranked trees. The extension operator @ : TΣ × TΣ → TΣ extends a given tree
t by t′ by adjoining t′ as the next sibling of the last child of t: a(t1, . . . , tn) @ t′ =
a(t1, . . . , tn, t′), respectively for case n = 0 : a@ t′ = a(t′). Furthermore, we
can also adjoin a hedge instead of a single tree t′ in the intuitive way. Note
that every unranked tree can be generated uniquely from trees of height 0 using
the extension operator: a(t1, . . . , tn) = [(· · · (a@ t1) @ t2) · · · @ tn], and thus, this
formalism can be used as an encoding of unranked trees into binary ones (by
assigning rank 0 to each symbol of the unranked alphabet and rank 2 to the
extension operator @).

3 Partial Subtree Rewriting Systems

As mentioned in the Introduction, the direct transfer of the ground tree rewrit-
ing principle to unranked trees would result in bounded branching, therefore
new rewriting principles have to be considered. The first rewriting principle
considered aims at an easy transfer of nice properties of GTRSs. Therefore, un-
ranked trees are encoded into ranked ones via the extension operator encoding
as introduced in Section 2. Subtrees of the tree obtained after the encoding are
hereby mapped to partial subtrees in the corresponding unranked tree; where if
a(t1, . . . , tn) is a subtree, then a(t1, . . . , ti) is a partial subtree for each 0 ≤ i ≤ n.
The rewriting system therefore is defined such that exactly those partial subtrees
are replaced.

Transition Graphs of Rewriting Systems over Unranked Trees 71

The set TΣ, ξ is the set of all unranked trees over Σ with one occurrence of
the variable ξ as leaf and rightmost child of the root, i.e. the set of trees of the
form t̄@ ξ with t̄ ∈ TΣ.

A partial subtree rewriting system (PSRS) over unranked trees in TΣ is of the
form R = (Σ,Γ,R, tin), with an unranked alphabet Σ, a transition alphabet
Γ , a finite set of rules R, and an initial tree tin . The set R consists of subtree
rewrite rules over trees of TΣ, ξ of the form: r

σ
↪→ r′ with r, r′ ∈ TΣ, ξ and σ ∈ Γ .

A tree t′ is derived from t (t →σ
R t′), if there is a node x ∈ domt, a hedge h

over Σ, and a rule r
σ
↪→ r′ ∈ R, such that r[ξ|h] = t�x, and t[x|r′[ξ|h]] = t′ (cf.

Figure 1). The class of transition graphs of PSRSs is denoted by PSRG.

σ−→
R

t t′

r̄ r̄′

• •x x

··· ···

h h

Fig. 1. Application of rewrite rule r
σ
↪→ r′ according to the definition of PSRSs

With these definitions it can be shown that PSRSs over unranked trees and
GTRSs over ranked trees generate the same transition graphs up to isomorphism.

Theorem 1. Partial subtree rewriting systems generate the same class of tran-
sition graphs as ground tree rewriting systems (PSRG = GTRG).

Proof (Sketch). When unranked trees are encoded into ranked ones by the ex-
tension operator encoding, subtrees of the ranked encoding correspond exactly
to the partial trees of TΣ, ξ by construction. Thus applying a rule of a PSRS
corresponds to rewriting an entire subtree in the ranked tree obtained after the
encoding. The technical details of the construction of a GTRS for a given PSRS
can be found in [17].

Since ranked trees can be viewed as unranked trees, and since each symbol
has a unique rank, the construction of a PSRS R for a GTRS S = (Σr, Γ, S, tin)
over ranked alphabet Σr is straightforward. The ranks of the symbols are simply
omitted, the initial tree is kept, and the given rules of the GTRS are endorsed
by extending the trees in the rules with the variable ξ to obtain trees in TΣ, ξ.
Consequently, with the same initial tree for both rewriting systems, the variable
ξ can only be substituted by the empty hedge, thus resulting in isomorphic
transition graphs. ��

This class equivalence of GTRG and PSRG induces that by disregarding the
inner structure of the vertices (unranked vs. ranked trees), the transition graphs
are of identical structure.

72 C. Löding and A. Spelten

Corollary 2. The first-order theory with reachability is decidable for PSRG.

Additionally, several other decidability and undecidability results for GTRG can
be transferred to PSRG (cf. [2, 15]).

4 Subtree and Flat Prefix Rewriting Systems

Previously, unbounded branching was coped with via a dispersal into the un-
boundedness of depth of a tree. In order to respect the nature of these two
different types of unboundedness, we now consider a new rewriting formalism.
Towards a compromise between known principles and meeting this requirement,
we combine standard subtree substitution with flat prefix substitution. That
means, for subtrees of height 1, a prefix of the successor sequence of this subtree
can be replaced by another sequence, enabling us to exploit properties of prefix
rewriting over words.

Note that these prefix rewrite rules can be regarded as a kind of synchroniza-
tion: they can only be applied at a node x if all subtrees rooted at its successors
have a certain property, namely are of height 0. This kind of structural control
is not available for the previously considered rewriting systems, and thus yields
a new class of transition graphs.

t

x
sj

σ−→
t′

x

s′
j

(a) Subtree substitution

• •

t

•···• ···

x

ui v

σ−→

• •

t′

•··· • ···

x

u′
i

v

(b) Flat prefix substitution

Fig. 2. Application of rewrite rules of according to the definition of SFPRSs

A subtree and flat prefix rewriting system (SFPRS) over unranked trees in
TΣ is of the form R = (Σ,Γ,R, tin), with a finite unranked alphabet Σ, a finite
transition alphabet Γ , an initial tree tin , and a finite set R of rules of two types:

1. subtree substitution (cf. Figure 2(a))
with rules of the form rj : sj

σ
↪→ s′j for j ∈ J , sj , s′j ∈ TΣ, σ ∈ Γ , and

2. flat prefix substitution at the flat front of the tree (cf. Figure 2(b))
with rules of the form ri : ui

σ
↪→ u′i for i ∈ I, ui, u

′
i ∈ Σ+, σ ∈ Γ ,

with I ∪ J = {1, . . . , |R|} and I ∩ J = �O. The class of transition graphs of
SFPRSs is denoted by SFPRG.

A tree t′ is derived from t (t →σ
R t′) by applying a subtree rewrite rule rj , if

there is a node x ∈ dom t with t�x = sj such that t[x|s′j] = t′ (cf. Figure 2(a)).

Transition Graphs of Rewriting Systems over Unranked Trees 73

A tree t′ is derived from t by applying a prefix rewrite rule ri, if there is a
node x ∈ domt with ht(t�x) = 1 and flatfront(t�x) = uiv, a tree s ∈ TΣ with
ht(s) = 1 and s(ε) = t(x), flatfront(s) = u′iv, such that t[x|s] = t′ for some
v ∈ Σ∗ (cf. Figure 2(b)).

Naturally, the definition of SFPRSs can be extended to regular SFPRSs by
introducing regular sets of trees resp. words in the rules to obtain an even larger
class of transition graphs. Conversely, SFPRSs can be regarded as the special
case of singletons in the rules of regular SFPRSs. Note that all negative results in
this paper are shown for SFPRSs while correspondingly, all positive results are
shown for regular SFPRSs and thus hold for both classes of transition graphs.

4.1 Classification of Transition Graph Classes

Towards a classification of the transition graph classes PSRG and (regular) SF-
PRG, consider the SFPRS R0 = (Σ,Γ,R, tin) with Σ = {a, c, e}, Γ = {0, 1},

R = {r1 : c
1
↪→ e

|
e
, r2 : e

1
↪→ e

|
e
, r3 : c

0
↪→ cc} (I = {3}, J = {1, 2}), and tin =

a
\\

c c
,

whose transition graph is depicted in Figure 3.

· · · · · ·
a

c c

a

e
c

e

a

c
e

e

a

e
e

e
e··

· . . .

a

c c c

a

c · · · c
n

0 0 0 0

1 1

11

1 1 1
1 1

2-dim. grid

3-dim. grid n-dim. grid

Fig. 3. Transition graph of SFPRS R0

Note that the 0-transition r3 can only be applied at the trees of the vertices
on the top line in Figure 3, since these are the only trees that have a subtree of
height 1 with flat front cw for w ∈ Σ+. For the transition graph this means that
after traversing a 1-edge, no 0-edges are available any more.

Lemma 3. The transition graph of SFPRS R0 cannot be generated by a GTRS.

Proof (Sketch). It can be shown that using a GTRS, an enabled 0-transition can-
not be disabled by an aritrary number of 1-transitions leading to different nodes.

Towards a contradiction: consider a vertex of the top row of Figure 3 with n
out edges with label 1 and one out edge with label 0. For the tree at this vertex

74 C. Löding and A. Spelten

in a corresponding transition graph of a GTRS S, there have to be n different
1-transitions which rewrite the subtree available for the applicable 0-transition
in order to prevent a 0-transition afterwards. However, the number of nodes in
the tree where these 1-transitions have to be applied in order to fulfill this re-
quirement is bounded by the number of rewrite rules of S and the height of the
trees of the left hand sides of the rewrite rules of S. For n large enough this is
a contradiction (for details, we refer the reader to [17]). ��

Note that Lemma 3 is already true if we omit rule r2 from SFPRS R0. Con-
versely, every ground tree rewriting system can always be conceived as a SFPRS
with subtree rewrite rules only. With the same initial tree and the same subtree
rewrite rules, omitting the ranks of the symbols does not provide more substi-
tution possibilities. Since the classes of transition graphs GTRG and PSRG are
equivalent, one obtains the following.

Proposition 4. The class of transition graphs of PSRSs is strictly included in
the class of transition graphs of SFPRSs: PSRG � SFPRG.

Thus, undecidability results for PSRSs carry over to (regular) SFPRSs. These in-
clude the reachability problems: constrained reachability, universal reachability,
and universal recurrence (cf. [15]).

Additionally, since this is the case for ground tree rewriting systems, the
monadic second-order logic of SFPRSs is undecidable. This can also be observed
directly from the transition graph of R0, since it includes the two-dimensional
grid, whose monadic second-order logic is undecidable (as proven e.g. in [16]).

We would like to point out that the increase of expressive power of SFPRSs
over PSRSs results from the fact that prefix rewrite rules can only be applied
to flat fronts. Due to this restriction it is not possible to transfer these rules to
standard rewriting rules over encodings.

4.2 Reachability Via Saturation

The main contribution of this paper is the decidability of the reachability prob-
lem for transition graphs of (regular) SFPRSs. This is done by an adaption of
the well-known saturation algorithm which e.g. solves the reachability problem
for semi-monadic linear rewriting systems over ranked trees (cf. [8]) by calcu-
lating the set pre∗R(T) = {t ∈ TΣ | ∃t′ ∈ T : t →∗

R t′} of trees from which
the set T can be reached. Thereby, the rewrite rules of a (regular) SFPRS
are simulated by adding transitions to an ε-N�TA that recognizes the union
of the target set T and all trees that correspond to a left hand side of the
rewrite rules similar to the construction in [15]. In the very same manner, the
set post∗R(T) = {t ∈ TΣ | ∃t′ ∈ T : t′ →∗

R t} of trees which are reachable from
the set T can be obtained by pursuing the same strategy for the reversed rewrit-
ing system, i.e. the left and right hand sides of the rules are simply swapped.

However, due to the different natures of the two types of rules of (regular)
SFPRSs, and the employment of word automata in ε-N�TAs over unranked
trees, the saturation is based on an interleaving of two saturation algorithms on

Transition Graphs of Rewriting Systems over Unranked Trees 75

different levels of automata. In detail, for a prefix rewrite rule the saturation
is basically realized by adding ε-transitions on the level of word automata that
recognize the sequence of labels of the successors of a node, while for subtree
rewrite rules, the saturation is realized by adding ε-transitions on the level of
tree automata. The crucial interleaving aspects include that by the application
of subtree rewrite rules new flat fronts may be introduced, which also need to
be saturable.

For an elaborate example, the full construction, and the formal correctness
proof, we refer the reader to [17]. The automaton resulting from the saturation
accepts exactly those trees from which the target set is reachable and thus we
obtain the following theorem.

Theorem 5. Given a (regular) SFPRS R, and a regular set T of unranked trees,
the sets pre∗R(T) and post∗R(T) are again regular.

As emptiness for unranked tree automata is decidable, we obtain the following
corollary.

Corollary 6. The reachability problem for (regular) SFPRSs: “Given a (regu-
lar) SFPRS R, vertex t, and regular set T of vertices, is there a path from t to
a vertex in T?” is decidable.

4.3 First-Order Theory Via Automatic Structures

In addition to the decidability of the reachability problem for (regular) SFPRSs,
we now address the first-order theory for these rewriting systems. We will show
that the first-order theory enriched with the predicates reachability and one-step
reachability remains decidable and thus obtain a proper superclass of (regular)
GTRG with the same decidability properties.

We show that the structure consisting of the universe TΣ, the one-step reach-
ability relation, and the reachability relation is tree-automatic for a suitable defi-
nition over unranked trees, thus exploiting the feature that any (tree-) automatic
structure has a decidable first-order theory (cf. [1]). Due to space restrictions, we
stick to an informal description of the automaton that works on the convolution
of two trees.

Briefly, the convolution t = 〈t1, t2〉 encodes two trees t1, t2 ∈ TΣ such that
the automaton reading the new tree t has access to both original ones. This is
realized by labeling the node of t with pairs of symbols from t1 and t2 such that
the successor sequences of the nodes line up on the right and are padded with a
filling symbol � on the left where necessary. For example, the trees t1 = a(bc)
and t2 = d(efg) are convolved into t = 〈t1, t2〉 = [a, d]([�, e], [b, f], [c, g]).

In the construction of the automaton recognizing the reachability relation→∗,
we embark on a strategy similar to one for pushdown systems (cf. [5]): Given
two trees t1, t2 ∈ TΣ , we guess the set of “minimal” points of the rewriting steps
in t1 →∗

R t2 and then check whether the first component of the convolution can
be rewritten into the left side of the applied rule while the second component
can be rewritten from the right side of the rule.

76 C. Löding and A. Spelten

For (regular) SFPRSs this means that we start with an automatonB working on
the convolution t = 〈t1, t2〉 of two trees, which recognizes the identity function, i.e.
the set {〈t1, t2〉 | t1 = t2}. The automaton then nondeterministically guesses the
set of minimal (w.r.t. the prefix ordering) nodes at which a rewrite rule was applied.
Furthermore, B also guesses which rule was applied for each of these nodes.

For a subtree rewrite rule, B checks whether the projections of the subtree
t�x belong to the regular sets pre∗ resp. post∗ of the applied rule. Theorem 5
yields automata Apre∗ , Apost∗ over Σ for these sets, and with a straightforward
automaton construction, we can add transitions to B such that if the projections
of t�x to the components belong to the corresponding sets, B accepts subtree t�x
of the convolution. A similar but slightly more involved strategy works for flat
prefix rewrite rules.

The construction of an automaton for the one-step reachability relation → is
straightforward. The automaton works in a similar way but ensures that exactly
one rule was applied.

Since both relations are automatic, we obtain the following theorem.

Theorem 7. The first-order theory enriched by the relations reachability and
one-step reachability is decidable for (regular) SFPRSs.

5 Summary and Outlook

We showed that using rewriting systems over unranked trees one can generate
a class of infinite graphs that coincides with the class of transition graphs of
ground tree rewriting systems over ranked trees. The rewriting principle of these
PSRSs consists of substituting unranked trees partially, which corresponds to
ground tree rewriting over an encoding of unranked trees as ranked ones. Due
to the class equivalence, several decidability results over the transition graphs of
GTRSs over ranked trees can be transferred to those of PSRSs.

Furthermore, (regular) SFPRSs over unranked trees were introduced, which add
flat prefix rewriting to the known paradigm of subtree substitution. The class of
transition graphs of SFPRSs was shown to strictly include the class of transition
graphs of PSRSs, which allows to transfer several undecidability results. Addition-
ally, we described a saturation algorithm which yields the decidability of the reach-
ability problem over (regular) SFPRG. We have also shown that the structure con-
sisting of the set TΣ of unranked trees and the relations reachability and one-step
reachability is automatic for a suitable definition over unranked trees, and thus we
can conclude that the first-order theory with these reachability relations is decid-
able for (regular) SFPRSs. Thus, the class of (regular) SFPRSs contains strictly
more graphs than GTRG, but has the same decidable properties.

In general, other rewriting principles over unranked trees have yet to be in-
vestigated. One aspect could be to use other word rewriting techniques in com-
bination with subtree substitution. Another interesting point of application is
to define and investigate an adaption of (semi) monadic rewriting systems to
unranked trees, which were introduced for ranked trees in [8].

Transition Graphs of Rewriting Systems over Unranked Trees 77

Finally, we would like to thank Arnaud Carayol for his useful comments on
the decidability proof for the first-order theory.

References

[1] Blumensath, A.: Automatic Structures. Diploma thesis, RWTH Aachen, Germany
(1999), http://www-mgi.informatik.rwth-aachen.de/Publications/pub/
blume/AutStr.ps.gz

[2] Brainerd, W.: Tree generating regular systems. Inf. and Contr. 14(2), 217–231
(1969)

[3] Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets. Unfinished technical report, Hongkong Uni-
versity (April 2001), http://citeseer.ist.psu.edu/451005.html

[4] Carme, J., Nieren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118.
Springer, Heidelberg (2004)

[5] Caucal, D.: On the regular structure of prefix rewriting. TCS, 106(1), 61–86 (1992)
[6] Caucal, D.: On infinite terms having a decidable theory. In: Diks, K., Rytter, W.

(eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)
[7] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-

masi, M.: Tree Automata Techniques and Applications (Unpublished electronic
book, 1997), http://www.grappa.univ-lille3.fr/tata

[8] Coquidé, J.-L., Dauchet, M., Gilleron, R., Vágvölgyi, S.: Bottom-up tree push-
down automata: classification and connection with rewrite systems. TCS, 127(1),
pp. 69–98 (1994)

[9] Courcelle, B.: A representation of trees by languages. TCS, 7, 25–55 (1978)
[10] Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:

Proc. LICS 1990, pp. 242–248. IEEE CSP, Los Alamitos (1990)
[11] Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook

of TCS, pp. 995–1072. Elsevier, Amsterdam (1990)
[12] Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation, 2nd edn. Addison-Wesley, Boston (2001)
[13] Löding, C.: Ground tree rewriting graphs of bounded tree width. In: Alt, H., Fer-

reira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 559–570. Springer, Heidelberg
(2002)

[14] Löding, C.: Model-checking infinite systems generated by ground tree rewriting.
In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS,
vol. 2303, pp. 280–294. Springer, Heidelberg (2002)

[15] Löding, C.: Infinite Graphs Generated by Tree Rewriting. PhD thesis, RWTH
Aachen, Germany (2003)

[16] Seese, D.: Entscheidbarkeits- und Definierbarkeitsfragen der Theorie, netzartiger
Graphen-I. Wiss. Zeitschrift HU Berlin, XXI(5), 513–517 (1972)

[17] Spelten, A.: Rewriting Systems over Unranked Trees. Diploma thesis,
RWTH Aachen, Germany (2006), http://www-i7.informatik.rwth-aachen.de/
download/papers/spelten/sp06.pdf

[18] Takahashi, M.: Generalizations of regular sets and their application to a study of
context-free languages. Inf. and Contr. 27(1), 1–36 (1975)

[19] Thomas, W.: A short introduction to infinite automata. In: Kuich, W., Rozen-
berg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer,
Heidelberg (2002)

http://www-mgi.informatik.rwth-aachen.de/Publications/pub/blume/AutStr.ps.gz
http://www-mgi.informatik.rwth-aachen.de/Publications/pub/blume/AutStr.ps.gz
http://citeseer.ist.psu.edu/451005.html
http://www.grappa.univ-lille3.fr/tata
http://www-i7.informatik.rwth-aachen.de/download/papers/spelten/sp06.pdf
http://www-i7.informatik.rwth-aachen.de/download/papers/spelten/sp06.pdf

Rewriting Conjunctive Queries Determined by

Views

Foto Afrati

National Technical University of Athens, Greece
afrati@softlab.ntua.gr

Abstract. Answering queries using views is the problem which exam-
ines how to derive the answers to a query when we only have the answers
to a set of views. Constructing rewritings is a widely studied technique
to derive those answers. In this paper we consider the problem of exis-
tence of rewritings in the case where the answers to the views uniquely
determine the answers to the query. Specifically, we say that a view
set V determines a query Q if for any two databases D1, D2 it holds:
V(D1) = V(D2) implies Q(D1) = Q(D2). We consider the case where
query and views are defined by conjunctive queries and investigate the
question: If a view set V determines a query Q, is there an equivalent
rewriting of Q using V? We present here interesting cases where there are
such rewritings in the language of conjunctive queries. Interestingly, we
identify a class of conjunctive queries, CQpath, for which a view set can
produce equivalent rewritings for “almost all” queries which are deter-
mined by this view set. We introduce a problem which relates determi-
nacy to query equivalence. We show that there are cases where restricted
results can carry over to broader classes of queries.

1 Introduction

The problem of using materialized views to answer queries [19] has received
considerable attention because of its relevance to many data-management ap-
plications, such as information integration [6,11,16,18,20,26], data warehousing
[25],[5] web-site designs [14], and query optimization [10]. The problem can be
stated as follows: given a query Q on a database schema and a set of views V
over the same schema, can we answer the query using only the answers to the
views, i.e., for any database D, can we find Q(D) if we only know V(D)? Con-
structing rewritings is a widely used and extensively studied technique to derive
those answers [17].

A related fundamental question concerns the information provided by a set of
views for a specific query. In that respect, we say that a view set V determines
a query Q if for any two databases D1, D2 it holds: V(D1) = V(D2) implies
Q(D1) = Q(D2) [24]. A query Q can be thought of as defining a partition of
the set of all databases in the sense that databases on which the query produces
the same set of tuples in the answer belong to the same equivalence class. In the
same sense a set of views defines a partition of the set of all databases. Thus, if

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 78–89, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Rewriting Conjunctive Queries Determined by Views 79

a view set V determines a query Q, then the views’ partition is a refinement of
the partition defined by the query. Thus, the equivalence class of V(D) uniquely
determines the equivalence class of Q(D). Hence, a natural question to ask is: if
a set of views determines a query is there an equivalent rewriting of the query
using the views? In this paper we consider the case where query and views
are defined by conjunctive queries (CQ for short) and investigate decidability
of determinacy and the existence of equivalent rewriting whenever a view set
determines a query.

The existence of rewritings depend on the language of the rewriting and the
language of the query and views. Given query languages L, LV , LQ we say that a
language L is complete for LV -to-LQ rewriting if whenever a set of views V in LV
determines a query Q in LQ then there is an equivalent rewriting of Q in L which
uses only V . We know that CQ is not complete for CQ-to-CQ rewriting [22].
However there exist interesting special cases it is complete [24,22].

In this paper we consider subclasses of CQs and investigate a) decidability
of determinacy, b) special cases where CQ or first order logic is complete for
rewriting and c) the connection between determinacy and query equivalence. In
more detail, our contributions are the following:

1. We show that CQ is complete for the cases a) where the views are full (all
variables from the body are exported to the head) and b) where query has
a single variable and view set consists of a single view with two variables.

2. We show that determinacy is decidable for chain queries and views.
3. We identify a class of conjunctive queries, CQpath, which is almost complete

for CQpath-to-CQpath rewriting. This is the first formal evidence that there
are well behaved subsets of conjunctive queries.

4. Query rewritings using views is a problem closely related to query equiva-
lence. Hence it is natural to ask what is the connection between determi-
nacy and query equivalence. We investigate this question and introduce a
new problem which concerns a property a query language may have and is
a variant of the following: For a given query language, if Q1 is contained in
Q2 and Q2 determines Q1, then are Q1 and Q2 equivalent? We solve special
cases of it such as for CQ queries without self joins.

5. We make formal the observation that connectivity can be used to simplify
the problem of determinacy and as a result of it we provide more subclasses
with good behavior.

1.1 Related Work

In [24], the problem of determinacy is investigated for many languages including
first order logic and fragments of second order logic and a considerable number
of cases are resolved. The results closer to our setting show that if a language
L is complete for UCQ-to-UCQ (i.e., unions of CQs) rewriting, then L must ex-
press non-monotonic queries. Moreover, this holds even if the database relations,
views and query are restricted to be unary. This says that even Datalog is not
complete for UCQ-to-UCQ rewritings. Datalog is not complete even for CQ
=-
to-CQ rewritings. In [22,24], special classes of conjunctive queries and views are

80 F. Afrati

identified for which the language of conjunctive queries is complete: when views
are unary or Boolean and when there is only one path view. It is shown that
determinacy is undecidable for views and queries in the language of union of
conjunctive queries [24].

Determinacy and notions related to it are also investigated in [15] where the
notion of subsumption is introduced and used to the definition of complete rewrit-
ings and in [7,8] where the concept of lossless view with respect to a query is intro-
duced and investigated both under the sound view assumption (a.k.a. open world
assumption) and under the exact view assumption (a.k.a. closed world assump-
tion) on regular path queries used for semi-structured data. Losslessness under
the CWA is identical to determinacy. There is a large amount of work on equiv-
alent rewritings of queries using views. It includes [19] where it is proven that it
is NP-complete to decide whether a given CQ query has an equivalent rewriting
using a given set of CQ views, [12] where polynomial subcases were identified. In
[23], [4], [13] cases were investigated for CQ queries and views with binding pat-
terns, arithmetic comparisons and recursion, respectively. In some of these works
also the problem of maximally contained rewritings is considered. Intuitively, max-
imally contained rewritings is the best we can do for rewritings in a certain language
when there is no equivalent rewriting in the language and want to obtain a query
that uses only the views and computes as many certain answers [1] as possible.
In [21] the notion of p-containment and equipotence is introduced to characterize
view sets that can answer the same set of queries. Answering queries using views
in semi-structured databases is considered in [7] and references therein.

2 Preliminaries

2.1 Basic Definitions

We consider queries and views defined by conjunctive queries (CQ for short)
(i.e., select-project-join queries) in the form:

h(X̄) : −g1(X̄1), . . . , gk(X̄k).

Each subgoal gi(X̄i) in the body is a relational atom, where predicate gi defines
a base relation (we use the same symbol for the predicate and the relation), and
every argument in the subgoal is either a variable or a constant. A variable is
called distinguished if it appears in the head h(X̄).

A relational structure is a set of atoms over a domain of variables and con-
stants. A relational atom with constants in its arguments is called a ground
atom. A database instance or database is a finite relational structure with only
ground atoms. The body of a conjunctive query can be also viewed as a relational
structure and we call it canonical database of query Q and denote DQ; we say
that in DQ the variables of the query are frozen to distinct constants. A query
Q1 is contained in a query Q2, denoted Q1 � Q2, if for any database D on the
base relations, the answer computed by Q1 is a subset of the answer by Q2, i.e.,
Q1(D) ⊆ Q2(D). Two queries are equivalent, denoted Q1 ≡ Q2, if Q1 � Q2 and

Rewriting Conjunctive Queries Determined by Views 81

Q2 � Q1. Chandra and Merlin [9] show that a conjunctive query Q1 is contained
in another conjunctive query Q2 if and only if there is containment mapping from
Q2 to Q1. A containment mapping is a homomorphism which maps the head and
all the subgoals in Q2 to Q1. A CQ query Q is minimized if by deleting any sub-
goal we obtain a query which is not equivalent to Q. We denote by V(D) the
result of computing the views on database D, i.e., V(D) =

⋃
V ∈V V (D), where

V (D) contains atoms v(t) for each answer t of view V .

Definition 1 (equivalent rewritings). Given a query Q and a set of views V,
a query P is an equivalent rewriting of query Q using V, if P uses only the
views in V, and for any database D on the schema of the base relations it holds:
P (V(D)) = Q(D).

The expansion of a CQ query P on a set of CQ views V , denoted P exp, is
obtained from P by replacing all the views in P with their corresponding base
relations. Existentially quantified variables (i.e., nondistinguished variables) in a
view are replaced by fresh variables in P exp. For conjunctive queries and views a
conjunctive query P is an equivalent rewriting of query Q using V iff P exp ≡ Q.

2.2 Determinacy

For two databases D1, D2, V(D1) = V(D2) means that for each Vi ∈ V it holds
Vi(D1) = Vi(D2).

Definition 2 (views determine query). Let query Q and views V. We say that
V determines Q if the following is true: For any pair of databases D1 and D2,
if V(D1) = V(D2) then Q(D1) = Q(D2).

Let L be a query language or a set of queries (it will be clear from the context).
We say that a subset L1 of L contains almost all queries in L if the following
holds: Imagine L as a union of specific sets of queries, called eq-sets such that
each eq-set contains exactly all queries in L that are equivalent to each other
(i.e., every two queries in a particular eq-set are equivalent). Then L1 contains
all queries in L except those queries contained in a finite number of eq-subsets.

Definition 3 ((almost) complete language for rewriting). Let LQ and LV be
query languages or sets of queries. Let L be query language.

We say that L is complete for LV -to-LQ rewriting if the following is true for
any query Q in LQ and any set of views V in LV : If V determines Q then there
is an equivalent rewriting in L of Q using V. We say that L is complete for
rewriting if it is complete for L -to-L rewriting.

We say that L is almost complete for LV -to-LQ rewriting if there exists a
subset LQ1 of LQ which contains almost all queries in LQ such that the following
holds: L is complete for LV -to-LQ1 rewriting. We say that L is almost complete
for rewriting if it is almost complete for L -to-L rewriting.

It is easy to show that if there is an equivalent rewriting of a query using a set
of views then this set of views determine the query. The following proposition
states some easy observations.

82 F. Afrati

Proposition 1. Let query Q and views V be given by minimized conjunctive
queries. Suppose V determines Q.

Let Q′ be query resulting from Q after deleting one or more subgoals. Let DQ

and DQ′ be the canonical databases of Q and Q′ respectively. Then the following
hold: a) V(DQ) �= V(DQ′). b) For any database D, the constants in the tuples
in Q(D) is a subset of the constants in the tuples in V(D). c) All base predicates
appearing in the query definition appear also in the views (but not necessarily
vice versa). d) V(DQ) �= ∅.

Canonical Rewriting. Let DQ be the canonical database of Q. We compute
the views on DQ and get view instance V(DQ) [3,2]. We construct canonical
rewriting Rc as follows. The body of Rc contains as subgoals exactly all unfrozen
view tuples in V(DQ) and the tuple in the head of Rc is as the tuple in the head
of query Q. Here is an example which illustrates this construction.

Example 1. We have the query Q : q(X,Y) : −a(X,Z1), a(Z1, Z2), b(Z2, Y) and
views V : V1 : v1(X,Z2) : −a(X,Z1), a(Z1, Z2) and V2 : v2(X,Y) : −b(X,Y).
Then DQ contains the tuples {a(x, z1), a(z1, z2), b(z2, y)} and V(DQ) contains
the tuples {v1(x, z2), v2(z2, y)}. Thus, Rc is: q(X,Y) : −v1(X,Z2), v2(Z2, Y).

The following proposition can be used when we want to show that there is no
equivalent CQ rewriting of a query using a set of views.

Proposition 2. Let Q and V be conjunctive query and views and Rc be the
canonical rewriting. If there is a conjunctive equivalent rewriting of Q using V
then Rc is such a rewriting.

2.3 Cases for Which CQ Is Complete for Rewriting

Theorem 1. CQ is complete for LV -to-LQ rewriting in the case where LV and
LQ are subclasses of conjunctive queries in either of the following cases:

1. LQ = CQ and LV contains only queries with no nondistinguished variables.
2. Binary base predicates, one view in the view set, LQ contains only queries

with one variable and LV contains only queries with one non-distinguished
variable.

3 Chain and Path Queries

In this section we consider chain and path queries and views.

Definition 4. A CQ query is called chain query if it is defined over binary
predicates and also the following holds: The body contains as subgoals a number
of binary atoms which if viewed as labeled graph (since they are binary) they
form a directed simple path and the start and end nodes of this path are the
arguments in the head. For example, this is a chain query: q(X,Y) : −a(X,Z1),
b(Z1, Z2), c(Z2, Y).

Rewriting Conjunctive Queries Determined by Views 83

Path queries are chain queries over a single binary relation. Path queries can be
fully defined simply by the length of the path in the body (i.e., number of subgoals in
the body). Hence we denote by Pk the path query of length k. We denote the language
of all chain queries by CQchain and the language of all path queries by CQpath.

3.1 Chain Queries – Decidability

In the case of chain queries and views, we show that the following property fully
characterizes cases where a set of views determine a query (Theorem 2), hence
for this class determinacy is decidable.

Definition 5. Let Q be a binary query over binary predicates. We say that Q
is disjoint if the body of Q viewed as an undirected graph does not contain a
(undirected) path from one head variable of Q to the other.

Theorem 2. Let query Q and views V be chain queries. Then the following
hold:

1. V determines Q iff the canonical rewriting of Q using V is not disjoint.
2. First order logic is complete for CQchain-to-CQchain rewriting.
3. It is decidable whether a set of views determines a query.

3.2 Path Queries – CQ Is Almost Complete for Rewriting

In this section we will prove the following theorem and we will also get a complete
characterization for path queries and two path views as concerns CQ being
complete for this class of queries and views.

Theorem 3. CQpath (and hence CQ) is almost complete for CQpath-to-CQpath

rewriting. Hence CQpath is almost complete for rewriting.

The above theorem is a consequence of Lemma 2. In order to acquire some
intuition we present first some intermediate results.

Theorem 4

1. CQpath (and hence CQ) is complete for {P2, P3}-to-CQpath rewriting.
2. CQpath (and hence CQ) is complete for {P3, P4}-to-CQpath1 rewriting, where

CQpath1 is CQpath after deleting P5.

Proof (of Part 1). The proof of part 1 is easy: The view set does not determine
query P1 for the following reason: Take a database which is empty and another
database which contains a single tuple, then in both databases, the views com-
pute the empty set while the query computes the empty set only in the former
database. All other path queries have easy equivalent CQpath rewritings. �

It is interesting to note (as another counterexample that CQ is not complete for
rewriting) that viewset {P3, P4} determines the query P5 because the following
formula is a rewriting of P5(X,Y) (it is not a CQ however):

84 F. Afrati

φ(X,Y) : ∃Z[P4(X,Z) ∧ ∀W ((P3(W,Z) → P4(W,Y))]

However there is no CQ rewriting of P5 using {P3, P4}.
We generalize the result in Theorem 4 for two views Pk and Pk+1. The fol-

lowing theorem is a complete characterization of all path queries with respect to
viewset {Pk, Pk+1}.

Theorem 5. Let QPk+2 be the set of all path queries except the set of queries

QPPk+2 =
n=k−2⋃

n=1

{Pnk+n+1, Pnk+n+2, . . . , P(n+1)k−1}

Then the following hold:

1. CQpath (and hence CQ) is complete for {Pk, Pk+1}-to-QPk+2 rewriting.
2. CQ is not complete for {Pk, Pk+1}-to-QPPk+2 rewriting.

Proof. (Sketch) First we use Theorem 2 to prove that all path queries except
queries P1, . . . , Pk−1 are determined by {Pk, Pk+1}. We only need to show that
there is in the expansion of the canonical rewriting an undirected path from
head variable X to head variable Y which ends in a forward edge. Inductively,
for query Pm (m ≥ k) there is such a directed path which ends in a forward edge.
For query Pm+1, we augment the undirected path of Pm by taking a backward
edge for Pk and then a forward edge for Pk+1.

Then we use similar argument as in the case of the viewset {P2, P3} to prove
that none of the queries P1, . . . , Pk−1 are determined by {Pk, Pk+1}. Finally we
prove that, for each path query inQPk+2, the canonical rewriting is an equivalent
rewriting. �

The following theorem is a corollary of Theorem 5 and Theorem 7 generalizes for
any two views Pk, Pm. The proof of Theorem 7 is a consequence of Lemma 1.

Theorem 6. CQpath (and hence CQ) is almost complete for {Pk, Pk+1}-to-
CQpath rewriting.

Theorem 7. Let k,m be positive integers. Then, CQpath (and hence CQ) is
almost complete for {Pk, Pm}-to-CQpath rewriting.

Lemma 1. Let Pn be a query and let viewset be {Pk, Pm}. Then the following
hold.

1. If n ≥ km and the greatest common divisor of k and m divides n then there
is a CQpath equivalent rewriting of the query using {Pk, Pm}.

2. If the greatest common divisor of k and m does not divide n then {Pk, Pm}
does not determine the query.

Finally the following lemma generalizes Lemma 1 for any number of views:

Lemma 2. Let Pn be a query and let viewset be V={Pk1 , Pk2 , . . . , PkK}. Then
there is a positive integer n0 which is a function only of k1, k2, . . . , kK such that
for any n ≥ n0 the following statements are equivalent.

Rewriting Conjunctive Queries Determined by Views 85

1. There is no equivalent rewriting in CQ of Pn using V.
2. The canonical rewriting of Pn using V is disjoint.
3. V does not determine Pn.

4 Determinacy and Query Equivalence

The problem that we investigate in this paper relates determinacy to query
rewriting. The simplest way to produce an equivalent rewriting of a query Q is
when we have only one view and the view is equivalent to the query. Hence, a
natural related problem is: If Q1 is contained in Q2 and Q2 determines Q1, are
Q1 and Q2 equivalent? The following simple example shows that this statement
does not hold: Let Q1 : q1(X,X) : −a(X,X) and Q2 : q2(X,Y) : −a(X,Y).
Obviously Q1 is contained in Q2. Also Q2 determines Q1 because there is an
equivalent rewriting of Q1 using Q2, it is R : q(X,X) : −q2(X,X). But Q1 and
Q2 are not equivalent.

We add some stronger conditions: Suppose in addition that there is a con-
tainment mapping that uses as targets all subgoals of Q1 and this containment
mapping maps the variables in the head one-to-one. Still there is a counterex-
ample:

Example 2. We have two queries:
Q1 : q1(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),

s(Z, Z1), s(Z1, Z1), s(Z1, W), s(A,A1), s(A1, A1), s(A1, B).

and
Q2 : q2(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),

s(Z, Z1), s(Z1, Z2), s(Z2, W), s(A,A1), s(A1, A1), s(A1, B).

Clearly Q1 is contained in Q2 and Q2 determines Q1 because there is an equiv-
alent rewriting of Q1 using Q2:
R : q′

1(X, Y, Z, W,A, B) : −q2(X, Y, Z, W,A, B), q2(X1, Y1, Z1, W1, Z, W).

Moreover there is a homomorphism from Q2 to Q1 that uses all subgoals of Q1

and is one-to-one on the head variables. But Q1 and Q2 are not equivalent.

Finally we add another condition which we denote by Q2(D1) ⊆s Q2(D2), where
D1, D2 are the canonical databases of Q1, Q2 respectively.

We need first explain the notation Q(D1) ⊆s Q(D2) which in general expresses
some structural property of databases D1 and D2 with respect to Q and this
property is invariant under renaming. We say that Q(D1) ⊆s Q(D2) holds if
there is a renaming of the constants in D1, D2 such that Q(D1) ⊆ Q(D2). For an
example, say we have query Q : q(X,Y) : −r(X,Y) and three database instances
D1 = {r(1, 2), r(2, 3)}, D2 = {r(a, b), r(b, c)} and D3 = {r(a, b), r(a, c)}. Then it
holds that Q(D1) ⊆s Q1(D2) and Q(D1) ⊆s Q(D2) because there is a renaming
of D2 (actually here D1, D2 are isomorphic) such that Q(D1) ⊆ Q1(D2) and
Q(D1) ⊆ Q(D2). But the following does not hold: Q(D3) ⊆s Q(D2).

We may also allow some constants in D1, D2 that are special as concerns
renaming. Although we need incorporate these constants in the notation, we

86 F. Afrati

will keep (slightly abusively) the same notation here since we always mean the
same constants. By Q2(D1) ⊆s Q2(D2) we mean in addition that (i) the frozen
variables in the head of the queries are identical component-wise, i.e., if in the
head of Q1 we have tuple (X1, . . . , Xm) then in the head of Q2 we also have
same tuple (X1, . . . , Xm) and in both D1, D2 these variables freeze to constants
x1, . . . , xm and (ii) we are not allowed to rename the constants x1, . . . , xm.

Now we introduce a new problem which relates determinacy to query equiv-
alence:

Determinacy and query equivalence: Let Q1, Q2 conjunctive queries. Suppose
Q2 determines Q1, and Q1 is contained in Q2. Suppose also that the following
hold: a) there is a containment mapping from Q2 to Q1 which (i) uses as targets
all subgoals of Q1 and (ii) maps the variables in the head one-to-one, and b)
Q2(D1) ⊆s Q2(D2), where D1, D2 are the canonical databases of Q1, Q2 respec-
tively. Then are Q1 and Q2 equivalent? If the answer is “yes” for any pair of
queries Q1, Q2 where Q1 belongs to CQ class CQ1 and Q2 belongs to CQ class
CQ2, then we say that determinacy defines CQ2-to-CQ1 equivalence.

This problem seems to be easier to resolve than the determinacy problem and
Theorem 8 is formal evidence of that.

Theorem 8. Let CQ1, CQ2 be subsets of the set of conjunctive queries. For the
following two statements it holds: Statement (A) implies statement (B).

A) CQ is complete for CQ2-to-CQ1 single view rewriting.
B) Determinacy defines CQ2-to-CQ1 equivalence.

In [22] it is proven part A of the above theorem for one path view. A consequence
of it and Theorem 8 is the following:

Theorem 9. Determinacy defines CQpath-to-CQ equivalence.

The determinacy and query equivalence question remains open. Theorem 10 set-
tles a special case where we have replaced condition (b) with a stronger one.
Theorem 11 is a consequence of Theorem 10.

Theorem 10. Let Q1, Q2 be conjunctive queries. Suppose Q2 determines Q1,
and Q1 is contained in Q2. Suppose also that the following hold: a) there is a
containment mapping that uses as targets all subgoals of Q1 and this containment
mapping maps the variables in the head one-to-one, and b) Q2(D1) contains
exactly one tuple, where D1 is the canonical database of Q1. Then Q1 and Q2

are equivalent.

Theorem 11. Consider queries in either of the following cases: a) Q1 has no
self joins (i.e., each predicate name appears only once in the body) or b) Q1

contains a single variable.
Suppose CQ query Q2 determines Q1 and Q1 is contained in Q2. Then Q1

and Q2 are equivalent.

Rewriting Conjunctive Queries Determined by Views 87

5 Connectivity

In this section, we present a case where good behavior for determinacy can
carry over to a broader class of queries. Specifically we relate determinacy to
connectivity in the body of the query. The following example shows the intuition.

Example 3. We have query: Q : Q(X) : −r(Y,X), s(Y,X), s1(Z,Z1), s2(Z1, Z)
and views V : v1(X,Y) : −r(Y,X) and v2(X,Y) : −s(Y,X), s1(Z,Z1), s2(Z1, Z).
First observe that all variables contained in the last two subgoals of Q are not
contained in any other subgoal of Q and neither they appear in the head of Q.
In this case we say that subgoals s1(Z,Z1), s2(Z1, Z) form a connected com-
ponent (see definitions below). Moreover, let us consider the canonical rewrit-
ing (which happens to be an equivalent rewriting) of Q using these two views
R1 : Q(X) : −v1(X,Y), v2(X,Y). Observe that none of the variables in the two
last subgoals of the query appear in the rewriting (we conveniently retain the
same names for the variables). In this case, we say in addition that the sub-
goals s1(Z,Z1), s2(Z1, Z) form a semi-covered component wrto the views (see
definition below). We conclude the observations on this example by noticing
that the following query and views a) are simpler and b) can be used “instead”
of the original query and views. Query Q′(X) : −r(Y,X), s(Y,X) and views
V : v′1(X,Y) : −r(Y,X) and v′2(X,Y) : −s(Y,X). They were produced from the
original query and views by a) deleting the semi-covered subgoals from the query
and b) deleting an isomorphic copy of the semi-covered subgoals from view v2

(see Lemma 3 for the feasibility of this). Then the canonical rewriting of Q′ using
V ′ is isomorphic to R1, specifically it is: R′

1 : Q′(X) : −v′1(X,Y), v′2(X,Y) and is
again an equivalent rewriting. In this section, we make this observation formal,
i.e., that in certain cases, we can reduce the original problem to a simpler one.

Definition 6 (Connectivity graph of query). Let Q be a conjunctive query. The
nodes of the connectivity graph of Q are all the subgoals of Q and there is an
(undirected) edge between two nodes if they share a variable or a constant.

A connected component of a graph is a maximal subset of its nodes such that
for every pair of nodes in the subset there is a path in the graph that connects
them. A connected component of a query is a subset of subgoals which define
a connected component in the connectivity graph. A query is head-connected
if all subgoals containing head variables are contained in the same connected
component.

Definition 7 (semi-covered component). Let Q and V be CQ query and views.
Let G be a connected component of query Q. Suppose that every variable or
constant in G is such that there is no tuple in V(DQ) (DQ is the canonical
database of Q) that contains it. Then we say that G is a semi-covered component
of Q wrto V.

Lemma 3. Let Q and V be conjunctive query and views. Suppose V determines
Q. Let GQ be a connected component of Q which is semi-covered wrto V. Then
there is a view in V which contains a connected component which is isomorphic
to GQ.

88 F. Afrati

As a consequence of Lemma 3, we can identify the semi-covered components of
the query in the views definitions as well. Hence, we define the semi-covered-free
pair, (Q′, V ′), of a pair (Q, V) of query and views: Q′ results from Q by deleting
all semi-covered components wrto V and each view in V ′ results from a view in
V by deleting the components isomorphic to the semi-covered components of the
query. Then the following holds:

Theorem 12. Let CQ1, CQ2 be subsets of the set of conjunctive queries such
that each query in either of them is head-connected. Let CQc be a conjunctive
query language. Let CQ1f , CQ2f be subsets of the set of conjunctive queries such
that for each query Q in CQ1 (CQ2 respectively) there is a query in CQ1f (CQ2f ,
respectively) which is produced from Q by deleting a connected component. Then
the following holds:

Language CQc is complete for CQ1-to-CQ2 rewriting iff it is complete for
CQ1f -to-CQ2f rewriting.

The following is a corollary of Theorem 12 and results from Section 3:

Theorem 13. Let P a
k be a query with two variables in the head whose body

contains i) a path on binary predicate r from one head variable to the other and
ii) additional subgoals on predicates distinct from r and using variables distinct
from the variables that are used to define the path. We call the language of such
queries CQapath.

Suppose we have query Q and views V that are in CQapath. Then it holds:
CQpath (and hence CQ) is almost complete for CQapath-to-CQapath rewriting.

6 Conclusion

The case about finding well behaved subclasses of conjunctive queries is of in-
terest and is far from closed. We include some suggestions that are close to the
research presented in this paper. For chain queries, we don’t have a full char-
acterization as concerns subclasses for which CQ is complete. We don’t know
whether determinacy defines CQ-to-CQ equivalence. Decidability of determinacy
for conjunctive queries remains open.

Acknowledgments. Many thanks to Jeff Ullman for insightful discussions and
for providing Example 2. Thanks also to the anonymous reviewers for their very
useful comments.

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized
views. In: PODS (1998)

2. Afrati, F., Li, C., Ullman, J.D.: Generating efficient plans using views. In: SIGMOD
(2001)

Rewriting Conjunctive Queries Determined by Views 89

3. Afrati, F., Li, C., Ullman, J.D.: Using views to generate efficient evaluation plans
for queries. JCSS, to appear

4. Afrati, F.N., Li, C., Mitra, P.: Rewriting queries using views in the presence of
arithmetic comparisons. Theor. Comput. Sci. 368(1-2) (2006)

5. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: Proc. of VLDB (2000)

6. Bayardo Jr., R.J., et al.: Infosleuth: Semantic integration of information in open
and dynamic environments (experience paper). In: SIGMOD (1997)

7. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Lossless regular views.
In: PODS, ACM, New York (2002)

8. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: View-based query
query processing: On the relationship between rewriting, answering and lossless-
ness. In: International Conference on Database Theory (ICDT) (2005)

9. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: STOC (1977)

10. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries
with materialized views. In: ICDE (1995)

11. Chawathe, S.S., et al.: The TSIMMIS project: Integration of heterogeneous infor-
mation sources. In: IPSJ (1994)

12. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. In: Afrati,
F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

13. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:
PODS (1997)

14. Florescu, D., Levy, A., Suciu, D., Yagoub, K.: Optimization of run-time manage-
ment of data intensive web-sites. In: Proc. of VLDB (1999)

15. Grumbach, S., Tininini, L.: On the content of materialized aggregate views. In:
PODS (2000)

16. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: Proc. of VLDB (1997)

17. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4)
18. Ives, Z., Florescu, D., Friedman, M., Levy, A., Weld, D.: An adaptive query exe-

cution engine for data integration. In: SIGMOD (1999)
19. Levy, A., Mendelzon, A., Sagiv, Y., Srivastava, D.: Answering queries using views.

In: PODS (1995)
20. Levy, A., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources

using source descriptions. In: Proc. of VLDB (1996)
21. Li, C., Bawa, M., Ullman, J.: Minimizing view sets without losing query-answering

power. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
Springer, Heidelberg (2000)

22. Nash, A., Segoufin, L., Vianu, V.: Determinacy and rewriting of conjunctive queries
using views: A progress report. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007.
LNCS, vol. 4353, Springer, Heidelberg (2006)

23. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with
binding patterns. In: PODS (1995)

24. Segoufin, L., Vianu, V.: Views and queries: Determinacy and rewriting. In: PODS,
ACM Press, New York (2005)

25. Theodoratos, D., Sellis, T.: Data warehouse configuration. In: Proc. of VLDB
(1997)

26. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis,
P.G. (eds.) ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

Approximation Algorithms for the

Maximum Internal Spanning Tree Problem

Gábor Salamon�

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

1117 Budapest, Magyar tudósok körútja 2., Hungary
gsala@cs.bme.hu

Abstract. We consider the MaximumInternalSpanningTree prob-
lem which is to find a spanning tree of a given graph with a maxi-
mum number of non-leaf nodes. From an optimization point of view,
this problem is equivalent to the MinimumLeafSpanningTree prob-
lem, and is NP-hard as being a generalization of the HamiltonianPath

problem. Although there is no constant factor approximation for the
MinimumLeafSpanningTree problem [1], MaximumInternalSpan-

ningTree can be approximated within a factor of 2 [2].

In this paper we improve this factor by giving a 7
4 -approximation al-

gorithm. We also investigate the node-weighted case, when the weighted
sum of the internal nodes is to be maximized. For this problem, we give
a (2Δ − 3)-approximation for general graphs, and a 2-approximation
for claw-free graphs. All our algorithms are based on local improvement
steps.

Keywords: Approximation algorithm, Spanning tree leaves, Hamilto-
nian path.

1 Introduction

In this paper we consider a generalization of the Hamiltonian path problem: the
MaximumInternalSpanningTree (MaxIST) problem, in which the goal is
to find a spanning tree of a given graph with a maximum number of internal
nodes (non-leaves). Note that a Hamiltonian path is a spanning tree with |V |−2
internal nodes. If the goal is to find an optimum solution then this problem
is clearly equivalent to the MinimumLeafSpanningTree problem. However,
from an approximation point of view, the two problems behave differently. On
one hand, Lu and Ravi [1] proved that there is no constant factor approximation
for the MinimumLeafSpanningTree problem. On the other hand, by slightly
modifying the depth-first search algorithm, one can get a spanning tree that is
either a Hamiltonian path or a tree with independent leaves. Such a tree always

� Research is supported by Grant No. 67651 of the Hungarian National Science Fund
(OTKA).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 90–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approximation Algorithms for the MaxIST Problem 91

has at least half as many internal nodes as the optimal one. This yields a linear-
time 2-approximation for the MaxIST problem [2].

In this paper we improve the approximation ratio by giving a 7
4 -approximation

algorithm for the MaxIST problem. We also consider the node-weighted case,
when the aim is to find a spanning tree maximizing the weighted sum of internal
nodes. For the MaximumWeightedInternalSpanningTree (MaxWIST)

problem we present a (2Δ − 3)-approximation for general graphs, and a
2-approximation for claw-free graphs—here Δ stands for the maximum degree.
Our algorithms are based on local improvement steps. They work in arbitrary
graphs; however, the above approximation ratios are guaranteed only when the
input graph has no degree 1 node. The removal of this extra condition from the
analysis is subject of further research.

Let us mention that for the MaximumLeafSpanningTree problem—when
the aim is to maximize the number of leaves instead of the number of non-
leaves—the best known approximation factor is 2 and is due to Solis-Oba [3].

2 Notation and Basic Definitions

By a graph G = (V,E) we mean an undirected simple connected graph. Through-
out this paper we suppose that G has no degree 1 nodes. Let T = (V,E′) be a
spanning tree of G. The elements of E′ are called tree edges, the edges in E \E′

are called non-tree edges. We say that a node x is a G-neighbor of a node y if
(x, y) ∈ E, and that x is a T -neighbor of y if (x, y) is a tree edge. A set X ⊆ V
is G-independent if it spans no edges of G, and a node x is G-independent from
a set Y ⊆ V if x has no G-neighbors in Y . We use dG(x) and dT (x) to denote
the number of G-neighbors and T -neighbors of x, respectively. A node x is a
leaf of T , a forwarding node of T , or a branching of T if dT (x) = 1, dT (x) = 2,
or dT (x) ≥ 3, respectively. Forwarding nodes and branchings are called internal
nodes of T . We denote the set of leaves by L(T) and the set of internal nodes by
I(T). For nodes x and y, we denote by PT (x, y) the unique path in T between
nodes x and y. The branching b(l) of a leaf l is the one being closest to l in T .
Note that if T is not a Hamiltonian path then each leaf l has a unique branching
b(l). The path PT (l, b(l)) is called the branch of l and is denoted by br(l). The
node b−(l) is the T -neighbor of b(l) being in the branch of l. If l is a leaf and (l, x)
is a non-tree edge then x�l is the predecessor of x and b(l)�x is the successor
of b(l) along the path PT (l, x). The branch of l is short if b−(l) = l, otherwise
the branch of l is long. A leaf l is called short (long) if its branch is short (long).
Ls(T) stands for the set of short leaves and Lg(T) for the set of long leaves. A
leaf l is called (x-)supported if there is a non-tree edge (l, x) with x �∈ br(l). If l is
a long leaf and there exists a non-tree edge (l, x) such that x ∈ br(l) then x�l is
called an l-leafish node. In this case, the node x is called the base of x�l. The set
of l-leafish nodes is denoted by F (l). Note that not every long leaf has a leafish
node in its branch. We denote by Lp(T) the set of long leaves of T having no
leafish nodes in their branch. For a set X ⊆ V , the graph G[X] is the subgraph
of G spanned by X . The trunk of tree T is T [V \ ∪l∈L(T)(br(l) \ {b(l)})]. The

92 G. Salamon

maximum node-degree in G is denoted by Δ. For the sake of simplicity, we use
X + x, and X − x instead of X ∪ {x}, and X \ {x}, respectively.

3 Maximizing the Number of Internal Nodes

In this section we present a local search algorithm for finding a spanning tree
with many internal nodes. The algorithm starts by creating a DFS-tree. Then it
applies local improvement rules as long as possible in order to reduce the num-
ber of leaves. Finally we obtain either a Hamiltonian path or a locally optimal
spanning tree (a LOST). We show that a LOST provides a 7

4 -approximation for
the MaxIST problem.

To prove this approximation ratio we show a primal problem formulation that
has a solution of value |I(T)| corresponding to T . We also show that any dual
solution has a value of at least |I(T ∗)|—the number of internal nodes of an
optimum spanning tree. We give two different dual solutions to establish the
approximation factor. Both dual solutions are based on a set S of forwarding
nodes of T that are G-independent from the leaves.

The structure of the improvement rules is as follows. A precondition part
determines when the specific rule can be executed, and an action part defines
the replacement of some (1 or 2) edges of T by non-tree edges to obtain a
spanning tree T ′ having less leaves than T .

We define a LOST to be a spanning tree T in which none of these improvement
rules can be applied, that is, the precondition of the rules are not satisfied. If T
has many short branches then the violated preconditions of Rules 1–6, if T has
many long branches then the violated preconditions of Rules 1 and 7–14 ensure
a set S that is G-independent from the leaves and whose size is big enough to
yield the approximation ratio.

Rule 1. Precondition: T has two leaves l1 and l2 such that (l1, l2) ∈ E(G).
Action: Let E(T ′) = E(T) + (l1, l2)− (b(l1), b−(l1)). (See Fig. 1(a)).

Rule 2. Precondition: T has an x-supported leaf l such that dT (x�l) > 2.
Action: Let E(T ′) = E(T) + (l, x)− (x, x�l). (See Fig. 1(b)).

Rule 3. Precondition: T has an x-supported leaf l1 and a leaf l2 such that
dT (x�l1) = 2, and that (l2, x�l1) is a non-tree edge. Action: Let E(T ′) =
E(T) + (l1, x)− (x, x�l1). Apply Rule 1 on leaves l2, x�l1 . (See Fig. 1(c)).

Rule 4. Precondition: T has an x-supported leaf l such that dT (b(l)�x) > 2.
Action: Let E(T ′) = E(T) + (l, x)− (b(l), b(l)�x). (See Fig. 1(d)).

Rule 5. Precondition: T has an x-supported leaf l1 and a leaf l2 such that
dT (b(l)�x) = 2, and that (l2, b(l)�x) is a non-tree edge. Action: Let E(T ′) =
E(T) + (l1, x)− (b(l1), b(l)�x). Apply Rule 1 on leaves l2, b(l)�x. (See Fig. 1(e)).

Rule 6. Precondition: T has a short leaf l, and an edge (x, y) such that (l, x)
and (l, y) are both non-tree edges. Action: Let E(T ′) = E(T) + (l, x) + (l, y)−
(x, y)− (l, b(l)). (See Fig. 1(f)).

Approximation Algorithms for the MaxIST Problem 93

b−(l1)

l1 l2

b(l1)

(a) Rule 1

x�l

x

l

(b) Rule 2

l1

x

x�l1

l2

(c) Rule 3

l

x
b�x

b(l)

(d) Rule 4

l1

x
b�x

l2

b(l1)

(e) Rule 5

x y

l

b(l)

(f) Rule 6

l1 l2

b−(l1)

b(l1)

(g) Rule 7

l2l1

b−(l2)

b(l1) b(l2)

b−(l1)

x

(h) Rule 8

l2l1

b−(l2)

x b(l1) = b(l2)

b−(l1)

(i) Rule 9

b(l)

x

x�l

l

(j) Rule A

Fig. 1. Local improvement steps for creating a LOST (squares represent leaves, circles
represent internal nodes)

Rule 7. Precondition: T has a long leaf l1 and a leaf l2 such that (b−(l1), l2)
∈ E(G). Action: Let E(T ′) = E(T) + (b−(l1), l2) − (b−(l1), b(l1)). (See
Fig. 1(g)).

94 G. Salamon

Rule 8. Precondition: T has an x-supported long leaf l1 and a long leaf l2
such that x �∈ br(l2)− b(l2), b(l1) �= b(l2), and (b−(l1), b−(l2)) ∈ E(G). Action:
Let E(T ′) = E(T) + (l1, x) + (b−(l1), b−(l2)) − (b(l1), b−(l1)) − (b(l2), b−(l2)).
(See Fig. 1(h)).

Rule 9. Precondition: T has an x-supported long leaf l1 and a long leaf l2
with b(l1) = b(l2) such that dT (b(l1)) ≥ 4, x �∈ br(l2), and (b−(l1), b−(l2)) ∈
E(G). Action: Let E(T ′) = E(T) + (l1, x) + (b−(l1), b−(l2))− (b(l1), b−(l1))−
(b(l2), b−(l2)). (See Fig. 1(i)).

The following rule differs from the above ones as—while applied on the long
branch of a leaf l—it changes neither the trunk nor any other branch of T . Only
the branch of l is modified such that one of its leafish nodes becomes leaf and l
becomes an internal node.

Rule A. Precondition: T has a leaf l and an l-leafish node x�l with base x.
Action: Let E(T ′) = E(T) + (l, x)− (x, x�l). (See Fig. 1(j)).

We can use Rule A to decrease the number of leaves as follows.

Rule 10. Precondition: T has two leaves l1 and l2, and an l1-leafish node u
such that (u, l2) is a non-tree edge. Action: Apply Rule A on u to make it a
leaf and l1 an internal node. Then apply Rule 1 on leaves l2, u.

Rule 11. Precondition: T has two leaves l1 and l2, an l1-leafish node u, and
an l2-leafish node v such that (u, v) is a non-tree edge. Action: Apply Rule
A on u and on v to make both of them a leaf while l1 and l2 an internal node.
Then apply Rule 1 on leaves u, v.

Rule 12. Precondition: T has two leaves l1 and l2, and an l1-leafish node u
such that (u, b−(l2)) is a non-tree edge. Action: Apply Rule A on u to make it
a leaf and l1 an internal node. Then apply Rule 7 on leaves u, l2.

The following rules do not change the number of leaves. They can be applied
only on pairs of branches that contain no leafish nodes. Rule 13 decreases the size
of Lp(T) and Rule 14 decreases the length-sum of branches without increasing
|Lp(T)|.

Rule 13. Precondition: T has two leaves l1, l2 ∈ Lp(T) and two non-tree
edges (l1, x) and (l2, y) such that x ∈ br(l2) and y ∈ br(l1). Action: Let
E(T ′) = E(T) + (l1, x)− (x, x�(l1)). (See Fig. 2(a)).

Rule 14. Precondition: T has two leaves l1, l2 ∈ Lp(T) such that b(l1) = b(l2),
dT (b(l1)) = 3 and (b−(l1), b−(l2)) is a non-tree edge. Action: Let E(T ′) =
E(T) + (b−(l1), b−(l2))− (b(l2), b−(l2)). (See Fig. 2(b)).

Definition 1. A spanning tree T is a locally optimal spanning tree (LOST) if
none of Rules 1–14 can be applied on it.

Now we build an approximation algorithm for the MaxIST problem using the
above improvement rules.

Approximation Algorithms for the MaxIST Problem 95

b(l1)

l2

b(l2)

l1

y x

(a) Rule 13

l1

b(l1) = b(l2)

b−(l1)

l2

b−(l2)

(b) Rule 14

Fig. 2. Local improvement steps for creating a LOST, cont’d

Algorithm LOST. Create a DFS tree. Then apply Rules 1–14 as long as
possible. If several rules can be applied, execute the one with the lowest
number.

Theorem 1. Algorithm LOST is an O(|V |4) time 7
4 -approximation for the

MaxIST problem in graphs that have no degree 1 nodes.

The proof of the running time is omitted here because of space restrictions. We
only mention that each application of Rules 1–12 decreases the number of leaves,
thus these rules are applied at most O(|V |) times. Rules 13 and 14 do not change
the number of leaves but decrease the sum

∑
l∈Lp(T) |br(l)|. Hence these rules

are applied at most O(|V |2) times. The approximation ratio is established by
the following lemma.

Lemma 1. Let T be a LOST of a graph G that has no degree 1 nodes, and let
T ∗ be a spanning tree of G with a maximum number of internal nodes. Then
|I(T∗)|
|I(T)| ≤

7
4 .

Proof. First observe some basic properties of T which are immediate conse-
quences of the definition of a LOST.

Property 1. L(T) forms a G-independent set. (As Rule 1 is no more applicable
on T).

Property 2. Let l be an x-supported leaf. Then dT (x�l) = dT (b(l)�x) = 2.
Furthermore, both x�l and b(l)�x are G-independent from every leaf l2 �= l. (As
Rules 2–5 are no more applicable on T).

Property 3. Let l be a short leaf. Then no two G-neighbors of l are T -neighbors.
(As Rule 6 is no more applicable on T).

Property 4. Let l1 be a long leaf. Then no leaf l2 �= l1 is a G-neighbor of b−(l1).
(As Rule 7 is no more applicable on T).

96 G. Salamon

Property 5. Let l1 and l2 be leaves. Then the l1-leafish nodes are G-independent
from l2. (As Rule 10 is no more applicable on T).

Property 6. Let l1 and l2 be leaves. Then the l1-leafish nodes are G-independent
from the l2-leafish nodes. (As Rule 11 is no more applicable on T).

Property 7. Let l1 and l2 be leaves. Then the l1-leafish nodes are G-independent
from b−(l2). (As Rule 12 is no more applicable on T).

Property 8. Let l1 and l2 be long leaves such that their branches do not contain
leafish nodes, and (b−(l1), b−(l2)) is a non-tree edge. Then b(l1) = b(l2) and
dT (b(l1)) = 3. (As Rules 8, 9, and 13 are no more applicable on T .) Moreover, as
Rule 14 is no more applicable, T must have exactly 3 leaves. From this point we
suppose that T has at least 4 leaves. (Since it is easy to see that a LOST with
3 leaves satisfies the approximation factor of 7/4.) As a result, l1, l2 ∈ Lp(T)
implies (b−(l1), b−(l2)) �∈ E(G).

To prove the approximation ratio we use a primal-dual linear programming ap-
proach. Let us recall a formulation of the spanning tree polyhedron [4]:

SP(G)={x | ∀S⊆V : x(S) ≤ |S| − 1,−x(V)≤−(|V | − 1), ∀e ∈ E : 0 ≤ x(e)} ,

where x(S) =
∑

e∈E(G[S]) x(e) is the sum of x over all edges spanned by S.
Let us consider the following linear program (δ(v) is the set of edges incident

to v):

maximize
∑

v∈V

z(v)

subject to x ∈ SP(G)

−
∑

e∈δ(v)

x(e) + z(v) ≤ −1 for all v ∈ V

0 ≤ z(v) ≤ 1 for all v ∈ V

We obtain a solution P of this primal problem by setting x(e) = 1 when e is
an edge of T , and z(v) = 1 when v is an internal node of T . All other variables
are 0. Since T is a spanning tree, it is easy to see that this solution is feasible
and has a value of val(P) = |I(T)|.

The dual of the above program is:

minimize
∑

S⊆V

(|S| − 1)y(S)− (|V | − 1)t−
∑

v∈V

w(v) +
∑

v∈V

r(v)

subject to
∑

e∈E(G[S])

y(S)− t−
∑

e∈δ(v)

w(v) ≥ 0 for all e ∈ E (1)

w(v) + r(v) ≥ 1 for all v ∈ V

y(S), t, w(v), r(v) ≥ 0 for all S ⊆ V, v ∈ V

Approximation Algorithms for the MaxIST Problem 97

We consider two different dual solutions corresponding to T , of which the first
one is used in case of many short branches, and the second one is used in case
of many long branches.

Let l be a short leaf. We define the set

Q(l) =
{
x�l | ∃x : (l, x) ∈ E(G) \ E(T)

}
∪ {b(l)�x | ∃x : (l, x) ∈ E(G) \ E(T)} .

Note that Q(l) �= ∅, since as dG(l) ≥ 2. Let Q = ∪l∈Ls(T)Q(l).
The first dual solution D1 is constructed as follows. Let y(V) = 1, y(Q) = 1,

w(v) = 1 for each v ∈ L(T) ∪Q, and r(v) = 1 for each v ∈ V \ (L(T) ∪Q). All
other variables are set to 0.

To see the feasibility of this solution, it is enough to check (1) for all edges
of G. As y(V) = 1, only the edges of G[L(T) ∪Q] could violate the inequality.
However, by Property 1, there is no edge spanned by L(T), and by Properties
2 and 3, there is no edge between L(T) and Q. Thus y(Q) = 1 ensures the
feasibility.

Let us define c1 = |Q|
|I(T)| . The value of this dual solution is

val(D1) = |V | − 1 + |Q| − 1− |L(T)| − |Q|+ |V | − |L(T)| − |Q|
= 2(|I(T)| − 1)− |Q| < (2− c1)|I(T)|.

To construct the second dual solution D2 we denote the set of l-leafish nodes
by F (l), and define the set of leafish nodes to be F = ∪l∈Lg(T)F (l). Recall that
Lp(T) denotes the set of long leaves that have no leafish node in their branch. We
use B−

p to denote the set ∪l∈Lp(T)b
−(l). We immediately obtain |B−

p | = |Lp(T)|.
Dual variables are set as: y(V) = 1, y(F (l)+ l) = 1 for each l ∈ Lg(T)\Lp(T),

y({l, b−(l)}) = 1 for each l ∈ Lp(T), w(v) = 1 for each v ∈ (L(T) ∪ F ∪ B−
p),

r(v) = 1 for each v ∈ V \ (L(T) ∪ F ∪B−
p). All other variables are set to 0.

To see the feasibility of this solution, it is enough to check (1) for all edges
of G. As y(V) = 1, only the edges of G[(L(T) ∪ F ∪ B−

p)] could violate the
inequality. However, by Properties 1 and 4–8, the graph G[(L(T) ∪ F ∪ B−

p)]
has no edge between different branches of T . On the other hand, the edges of
G[(L(T) ∪ F ∪B−

p)] within a single branch of T are also covered by some set S
with y(S) = 1.

Let us define c2 = |V |−|Ls(T)|
|I(T)| . Then as |I(T)| = |V | − |Ls(T)| − |Lg(T)| we

obtain |Lg(T)| = (c2 − 1)|I(T)|.
The value of the solution is

val(D2) = |V | − 1 + |F |+ |Lp(T)| − |L(T)| − |F | − |Lp(T)|
+ |V | − |L(T)| − |F | − |Lp(T)| < 2|I(T)| − |F | − |Lp(T)|

≤ 2|I(T)| − |Lg(T)| = (3− c2)|I(T)|.
Here we have used that |Lg(T)| ≤ |F |+ |Lp(T)|.
Let OPT be the optimal LP-solution. Then val(P) ≤ |I(T ∗)| ≤ val(OPT) ≤

min (val(D1), val(D2)). This gives

|I(T ∗)|
|I(T)| ≤ min (2− c1, 3− c2) . (2)

98 G. Salamon

Now let N(Ls(T)) be the set of G-neighbors of short leaves. Observe that by
the definition of Q, each element of N(Ls(T)) has a T -neighbor in Q. Moreover,
by Property 2, all nodes of Q are forwarding nodes of T . Thus

|N(Ls(T))| ≤ 2|Q| = 2c1|I(T)|. (3)

Let us remark that the condition dG(l) ≥ 2 is used here to ensure that the set
Q(l) is not empty, for each leaf l. This latter fact is necessary to upper bound
|N(Ls(T))| by a function of |Q|.

Let us recall that the scattering number [5] of a non-complete graph is

sc(G) = max {comp(G[V \X])− |X | : ∅ ⊂ X ⊂ V, comp(G[V \X]) ≥ 2} , (4)

where comp(G[V \X]) is the number of components of G[V \X].
Salamon and Wiener [6] proved that sc(G) + 1 ≤ ml(G), where ml(G) is the

minimum number of leaves in a spanning tree.
As the short leaves of T are G-independent, G[V − N(Ls(T))] has at least

|Ls(T)| components implying that sc(G) ≥ |Ls(T)| − |N(Ls(T))|.
Thus, by (3) and (4), we have

|I(T ∗)| = |V | −ml(G) ≤ |V | − sc(G)
≤ |V | − |Ls(T)|+ |N(Ls(T))| ≤ (c2 + 2c1)|I(T)|. (5)

If c1 ≥ 1
4 or c2 ≥ 5

4 then by (2), otherwise by (5), we obtain |I(T∗)|
|I(T)| ≤

7
4 . ��

4 Maximum Weighted Internal Spanning Tree

Let G = (V,E) be a graph without degree 1 nodes and with a non-negative
weight-function c : V −→ Q+ on its nodes. The MaxWIST problem aims to
find a spanning tree T of G that maximizes the sum c(I(T)) =

∑
v∈I(T) c(v).

Obviously, this problem is NP-hard, as it contains the unweighted version, the
MaxIST problem. In this section we present a (2Δ−3)-approximation algorithm
for general graphs which is further refined to get a 2-approximation algorithm
for claw-free graphs. The algorithms are based on local improvement steps.

4.1 General Graphs

Let us consider an arbitrary spanning tree T of G. In order to get a good ap-
proximation we apply local improvement rules as long as possible. Each such
rule either creates an internal node from a leaf or it replaces a leaf with one
of strictly smaller weight. The weighted sum of leaves decreases in both cases.
Similarly to the unweighted case, a rule has a precondition and an action part.

Rule 15. Precondition: T has an x-supported leaf l such that dT (x�l) > 2.
Action: Let E(T ′) = E(T) + (l, x)− (x, x�l) (Fig. 3(a)).

Approximation Algorithms for the MaxIST Problem 99

l

x�l

x

(a) Rule 15

l

x�l

x

(b) Rule 16

x

l

b(l)

b−(l)

(c) Rule 17

l1 = b−(l1) l2

b(l1)

(d) Rule 18

Fig. 3. Local improvement rules for creating a WLOST

Rule 16. Precondition: T has a leaf l, and there is a node x such that (l, x)
is a non-tree edge, dT (x�l) = 2, and c(x�l) < c(l). Action: Let E(T ′) =
E(T) + (l, x)− (x, x�l) (Fig. 3(b)).

Rule 17. Precondition: T has an x-supported leaf l such that c(b−(l)) < c(l)
Action: Let E(T ′) = E(T) + (l, x)− (b(l), b−(l)) (Fig. 3(c)).

Rule 18. Precondition: T has a short leaf l1 and a leaf l2 such that (l1, l2) ∈
E(G). Action: Let E(T ′) = E(T) + (l1, l2)− (b(l1), b−(l1)) (Fig. 3(d)).

Definition 2. A spanning tree T is a weighted locally optimal spanning tree
(WLOST) if none of Rules 15–18 can be applied on it.

We can construct an approximation algorithm for the MaxWIST problem using
the above rules.

Algorithm WLOST. Create an arbitrary spanning tree. Then apply Rules
15–18 as long as possible. If several rules can be applied, execute the one with
the lowest number.

Theorem 2. Algorithm WLOST is an O(|V |4) time (2Δ − 3)-approximation
for the MaxWIST problem in graphs that have no degree 1 nodes.

The proof of the running time is omitted here due to space restrictions. The
following lemma proves the approximation ratio.

Lemma 2. Let T be a WLOST of a node-weighted graph G = (V,E, c) that has
no degree 1 nodes. Then (2Δ− 3)c(I(T)) ≥ c(V).

Proof. First, observe some basic properties of T that are immediate consequences
of the definition of a WLOST.

100 G. Salamon

Property 9. If l is a leaf of T and (l, x) is a non-tree edge then dT (x�l) = 2
and c(x�l) ≥ c(l). (As Rules 15 and 16 are no more applicable on T).

Property 10. If l is a supported leaf of T then c(b−(l)) ≥ c(l). (As Rule 17 is
no more applicable on T).

Property 11. If l is a short leaf of T then l is G-independent from all other
leaves of T . (As Rule 18 is no more applicable on T).

We define a mapping f : L(T) −→ I(T) as follows: for a leaf l, let x be the
node such that (l, x) is a non-tree edge and the length of path PT (l, x) is the
maximum possible. Such an x always exists as dG(l) ≥ 2. If br(l) is a short
branch or x ∈ br(l) then let f(l) = x�l. Otherwise, let f(l) = b−(l). This means
that each long leaf l is mapped to its own branch, thus the images of long leaves
are disjoint. By the above properties, it is easy to see that for every leaf l, we
have c(f(l)) ≥ c(l), and dT (f(l)) = 2.

The mapping f can be used to establish the approximation ratio. Unfortu-
nately, several short leaves can be mapped to the same node y. The following
proposition is used to upper bound the number of such leaves.

Proposition 1. For any node y ∈ V , we have |{l : y = f(l)}| ≤ 2(Δ− 2).

Proof. Let l1, l2, . . . , lr be leaves of T with f(li) = y (1 ≤ i ≤ r). As shown
above, dT (y) = 2. Let y1 and y2 be the T -neighbors of y. Recall that a long leaf
is mapped to a node of its own branch. This implies that neither y1 nor y2 is
a leaf of T . Supposing the contrary, namely e.g. dT (y1) = 1, y must be in the
long branch of y1, and at least r − 1 of the branches br(li) (1 ≤ i ≤ r) must be
short. Moreover, by the definition of the mapping f , graph G must have edges
(li, y1) that is a contradiction to Property 11. Hence, at least 2 edges incident
to y1 (and y2, respectively) are tree edges, and so at most Δ − 2 are non-tree
edges. This shows that r ≤ 2(Δ− 2), yielding the proposition. ��

Using Proposition 1, and the fact that the images of long leaves areG-independent,
we obtain

∑

v∈L(T)

c(v) =
∑

l∈Lg(T)

c(l) +
∑

l∈Ls(T)

c(l)

≤
∑

l∈Lg(T)

c(f(l)) + 2(Δ− 2)
∑

l∈Ls(T)

c(f(l)) ≤ 2(Δ− 2)
∑

v∈I(T)

c(v). (6)

Hence,
∑

v∈V c(v) ≤ (2Δ−3)
∑

v∈I(T) c(v), proving the approximation ratio. ��

4.2 Claw-Free Graphs

In this subsection we extend the above algorithm by an additional improvement
step in order to get a 2-approximation algorithm for the MaxWIST problem in

Approximation Algorithms for the MaxIST Problem 101

claw-free graphs—that is, graphs without induced K1,3. Observe that (6) would
guarantee an approximation ratio of 2 if we could find a WLOST without short
branches. The new improvement rule does exactly this job, namely it converts
short branches to long ones. Throughout this subsection, G is supposed to be
claw-free. First we point out a property of WLOSTs of claw-free graphs.

Let T be a WLOST of G, and l be a short leaf of T . Furthermore, let
l = x0, x1, x2, . . . , xk are the T -neighbors of b(l). Then by Property 9, none
of x1, x2, . . . , xk is a G-neighbor of l. Thus, nodes x1, x2, . . . , xk must span a
complete subgraph of G, since otherwise b(l), l, xi, xj would induce a K1,3 for
some i, j. As a result—using Property 9—all the nodes xi are internal nodes of
T for i ≥ 1. Thus we have

Property 12. If l is a short leaf of T and the T -neighbors of b(l) are x0 =
l, x1, . . . , xk, then x1, x2, . . . , xk are all internal nodes of T and they induce a
complete subgraph of G.

Using this property, we can now give the additional improvement rule to decrease
the number of short branches, while not changing the set of leaves.

Rule 19. Precondition: T has a short leaf l, and the T -neighbors of b(l) are
x0 = l, x1, . . . , xk such that for some 1 ≤ i ≤ k the node xi is a branching, or
xi has a T -neighbor vi �= b(l) which is an internal node. Action: Let E(T ′) =
E(T) \ {(b(l), xj)}j=1..k,j
=i ∪ {(xi, xj)}j=1..k,j
=i.

Definition 3. A WLOST is called a refined WLOST (RWLOST) if Rule 19
cannot be applied on it.

Using the above Rule 19, we can improve Algorithm WLOST to obtain a better
approximation ratio for claw-free graphs.

Algorithm RWLOST. Create an arbitrary spanning tree. Then apply Rules
15–18 and Rule 19 as long as possible. If several rules can be applied, execute
the one with the lowest number.

Theorem 3. Algorithm WLOST is an O(|V |4) time 2-approximation for the
MaxWIST problem in claw-free graphs that have no degree 1 nodes.

The proof is omitted here because of space restrictions. We only mention that
the core idea is to prove that an RWLOST has no short branches. Then (6) can
be used to show the approximation ratio.

Acknowledgment. Author thanks to anonymous referees, Gábor Wiener and
Dániel Marx for their valuable comments that helped a lot to improve the pre-
sentation of the paper.

References

1. Lu, H.I., Ravi, R.: The power of local optimization: Approximation algorithms for
maximum-leaf spanning tree (DRAFT). Technical Report CS-96-05, Department
of Computer Science, Brown University, Providence, Rhode Island (1996)

102 G. Salamon

2. Salamon, G., Wiener, G.: On finding spanning trees with few leaves (submitted
2006)

3. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maxi-
mum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G.
(eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

4. Schrijver, A.: 50: Shortest spanning trees. In: Combinatorial optimization. In:
Polyhedra and efficiency, vol. B, pp. 855–876. Springer, Heidelberg (2003)

5. Zhang, S., Wang, Z.: Scattering number in graphs. Networks 37, 102–106 (2001)
6. Salamon, G., Wiener, G.: Leaves of spanning trees and vulnerability. In: The 5th

Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications,
pp. 225–235 (2007)

New Approximability Results for 2-Dimensional

Packing Problems�

Klaus Jansen1 and Roberto Solis-Oba2

1 Institut für Informatik, Universität zu Kiel, Kiel, Germany
2 Department of Computer Science, University of Western Ontario, London, Canada

Abstract. The strip packing problem is to pack a set of rectangles into
a strip of fixed width and minimum length. We present asymptotic poly-
nomial time approximation schemes for this problem without and with
90o rotations. The additive constant in the approximation ratios of both
algorithms is 1, improving on the additive term in the approximation
ratios of the algorithm by Kenyon and Rémila (for the problem without
rotations) and Jansen and van Stee (for the problem with rotations),
both of which have a larger additive constant O(1/ε2), ε > 0.

The algorithms were derived from the study of the rectangle packing
problem: Given a set R of rectangles with positive profits, the goal is
to find and pack a maximum profit subset of R into a unit size square
bin [0, 1] × [0, 1]. We present algorithms that for any value ε > 0 find a
subset R′ ⊆ R of rectangles of total profit at least (1 − ε)OPT , where
OPT is the profit of an optimum solution, and pack them (either without
rotations or with 90o rotations) into the augmented bin [0, 1]× [0, 1+ ε].

1 Introduction

Recently, there has been a lot of interest in two-dimensional packing problems,
like strip packing [2,12,15,16], two-dimensional bin packing [1], and rectangle
packing [2,4,5,9,10]. These problems play an important role in diverse applica-
tions like cutting stock, VLSI layout, image processing, internet advertisement,
and multiprocessor scheduling. Let R = {R1, . . . , Rn} be a set of n rectangles;
rectangle Ri has width wi ∈ (0, 1], length �i ∈ (0, 1] and profit pi ∈ IR+. The
rectangle-packing problem is to pack a maximum profit subset R′ ⊆ R into a
square bin B, [0, 1]× [0, 1]. We only allow orthogonal packings, i.e., the rectan-
gles must not overlap and their sides must be parallel to the sides of the bin. In
the strip packing problem the goal is to pack all the rectangles R into a strip of
unit width and minimum length. We consider two variants of these problems:
without rotations and with 90o rotations.

The rectangle packing problem (with and without rotations) is known to be
strongly NP-hard even for the restricted case of packing squares with unit profits

� Research supported in part by the EU project AEOLUS contract number 015964,
the Natural Science and Engineering Research Council of Canada grant R3050A01,
and by the DAAD German Academic Exchange Service.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 103–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

104 K. Jansen and R. Solis-Oba

[14]. Jansen and Zhang [10] designed a polynomial time approximation scheme
(PTAS) for packing squares with unit profits in a rectangular bin and a (2 + ε)-
approximation algorithm for packing rectangles with arbitrary profits [9], for any
ε > 0. Recently, Fishkin et al. [5] gave an algorithm for the rectangle packing
problem with resource augmentation, that packs a subset of rectangles with profit
at least (1 − ε)OPT into an augmented square bin [0, 1 + ε] × [0, 1 + ε], where
OPT is the maximum profit of any subset of rectangles that can be packed into
a unit size square bin. For the rectangle packing problem restricted to squares,
the best known algorithm [7] has performance ratio 5

4 + ε, for any ε > 0.
The strip packing problem (without and with rotations) is also strongly NP-

hard [6]. The currently best approximation algorithms for the strip packing prob-
lem without rotations have absolute performance ratio 2 [15,16] and asymptotic
performance ratio 1 + ε, for any ε > 0 [12]. For strip packing with rotations the
best approximation algorithm has absolute performance ratio 2 [16] and asymp-
totic performance ratio 1 + ε, for any ε > 0 [8]. The asymptotic fully polynomial
time approximation schemes (AFPTAS) by Kenyon and Rémila [12] and Jansen
and van Stee [8] compute, respectively, strip packings without rotations and with
90o rotations of total length at most (1 + ε)OPT + O(1/ε2) for any ε > 0.

The first main result presented in this paper is the following:

Theorem 1. Let R = {R1, . . . , Rn} be a set of rectangles with positive profits.
There are polynomial time algorithms that select and pack (without or with 90o

rotations) a subset R′ ⊆ R of rectangles into a rectangular bin [0, 1]× [0, 1 + ε],
for any constant ε > 0. The profit of R′ is at least (1 − ε)OPT , where OPT is
the maximum profit of any subset of rectangles that can be packed (either without
rotations or with 90o rotations) into a unit size square bin [0, 1]× [0, 1].

An interesting feature of our algorithms is that they only need to augment the
length of the bin, while its width does not need to be changed. We consider
this result to be an important step towards the solution of other 2-dimensional
packing problems without resource augmentation. A related result was recently
obtained by Bansal and Sviridenko [1] for two dimensional bin packing, where the
goal is to pack a set of rectangles into the minimum number of unit size square
bins. They designed an algorithm that packs the rectangles into OPT + O(1)
bins of size [0, 1] × [0, 1 + ε], for any value ε > 0, where OPT is the minimum
number of unit size square bins needed to pack the rectangles. This algorithm
rounds up, both, the widths and lengths of large rectangles in a similar fashion
as in [12]. This rounding causes an increase in the dimensions of the bins and
in the number of bins. For our rectangle packing problem we cannot round the
width and length of the large rectangles, as this would require us to increase
both dimensions of the bin.

Using our rectangle packing algorithm, we obtain the following results:

Theorem 2. There are asymptotic polynomial time approximation schemes
(APTAS) for the strip packing problems without rotations and with 90o rota-
tions that produce solutions of length at most (1 + ε)OPTSP + 1, where OPTSP

is the value of the optimum solution for each problem.

New Approximability Results for 2-Dimensional Packing Problems 105

Our additive constant 1 greatly improves on the O(1/ε2) additive constant of
[12] and [8]. Unfortunately, this is obtained at the expense of a higher running
time. A similar situation happened with the bin packing problem (special case
of strip packing with unit length rectangles): Karp and Karmarkar [11] designed
an algorithm using (1 + ε)OPT + O(1/ε2) bins and Fernandez de la Vega and
Lueker [3] gave a slower algorithm that uses only (1 + ε)OPT + 1 bins.

We also show that the strip packing problem with 90o rotations for instances
with optimum value OPTSP ≥ 1 has a PTAS.

Theorem 3. There is a polynomial time approximation scheme (PTAS) for
the strip packing problem with 90o rotations on instances with optimum value
OPTSP ≥ 1.

In this paper we describe the algorithms for the variant without rotations. For
the case with 90o rotations we refer to the full version.

2 Near-Optimum Packings with a Simple Structure

We show that there are near-optimum solutions with a simple structure, de-
scribed in Corollary 1. This greatly simplifies the search space for the problem,
as our algorithm only needs to consider feasible solutions with that structure.

2.1 Partitioning the Set of Rectangles

Let ε′ = min{1/2, ε/4}, where ε is the desired precision for the solution. We
assume that 1/ε′ is an even integer. Consider an optimum solution S∗ for the
rectangle packing problem. Let R∗ be the subset of rectangles chosen by S∗, and
let OPT =

∑
Ri∈R∗ pi.

Let σ1 = ε′ and σk = (σk−1)9/σ
2
k−1 for all integers k ≥ 2. For each k ≥ 2, we

define the following sets: R∗
k = {Ri ∈ R∗ | wi ∈ (σk, σk−1] or �i ∈ (σk, σk−1]}.

Each Ri belongs to at most two of these sets, so
∑

k≥2

∑
Ri∈R∗

k
pi ≤ 2OPT .

Hence, there must be an index τ ∈ {2, . . . , 4/ε′ + 1} such that profit(R∗
τ) ≤

(ε′/2)OPT , where profit(R∗
τ) =

∑
Ri∈R∗

τ
pi. Let

δ = στ and s = 9/δ2 + 1. (1)

We partition the rectangles in three groups according to their lengths: L =
{Ri ∈ R | �i > δ}, H = {Ri ∈ R | �i ≤ δs}, and M� = {Ri ∈ R | �i ∈ (δs, δ]}.
Then, we consider the widths of the rectangles and partition them into three
additional groups: W = {Ri ∈ R | wi > δ}, N = {Ri ∈ R | wi ≤ δs}, andMw =
{Ri ∈ R | wi ∈ (δs, δ]}. The rectangles in L, H, W , and N are called long, short,
wide, and narrow, respectively (thus, there are long-wide, long-narrow, short-
wide, and short-narrow rectangles). We also define L∗ = L ∩R∗, H∗ = H ∩R∗,
M∗

� = M� ∩R∗, W∗ = W ∩R∗, N ∗ = N ∩R∗, and M∗
w = Mw ∩R∗.

Since δ = στ and δs = στ+1, then M∗
� ∪M∗

w = R∗
τ . Discard the rectangles

in M∗
� ∪M∗

w from the optimum solution, creating a gap (στ+1, στ] between the

106 K. Jansen and R. Solis-Oba

w
id

th

length

B

container C

3δs ≥ δs

strip s′

container C

1 + 2δ

δ2

Fig. 1. Shifting the rectangles and discarding short rectangles crossing slot boundaries.
Long rectangles appear in darker shade.

lengths of the rectangles in L∗ and H∗, and between the widths of the rectangles
in W∗ and N ∗. This separation between L∗ and H∗, and W∗ and N ∗ is critical
as it will allow us to deal independently with rectangles from different groups.

Even when an optimum subset R∗ of rectangles is not known, we can still
assume that the value of τ is known, because there is only a constant number,
4/ε′, of possible values for τ . Thus, our algorithm tries all these values (increasing
its time complexity by only a constant factor); among all the solutions computed,
the algorithm chooses one with maximum profit.

2.2 Rounding the Lengths of the Long Rectangles

We round up the length of each long rectangle Ri ∈ R∗ to the nearest multiple
of δ2. Then, we set the origin of a Cartesian system of coordinates at the left-
bottom corner of the bin. In S∗ we shift the rectangles horizontally to the right
until all the long rectangles have their corners placed at points (x, y) where the
x coordinates are multiples of δ2 (See Figure 1).

Since long rectangles have length at least δ, these transformations increase
the length of the packing by at most 1

δ (2δ2) = 2δ. Accordingly, let us increase
the length of the bin B to 1 + 2δ. This rounding and shifting limits the set of
possible lengths and positions for the long rectangles in R∗.

2.3 Containers for Short Rectangles

Draw vertical lines spaced by δ2 across the bin (the left and right sides of each
long rectangle lie along two of these lines). These lines split the bin into at most
(1 + 2δ)/δ2 vertical strips, that we call slots. A container C is the rectangular
region in a slot whose upper boundary is either the lower side of a long rectangle
or the upper side of the bin, and whose lower boundary is either the upper side
of a long rectangle or the lower side of the bin (see Figure 1).

New Approximability Results for 2-Dimensional Packing Problems 107

. . .

. . .

C

. . .

length

w
id

th

the rectangles
Shifting down

. . .

R6

R1

R2

R5

R3

R4

iδ2 (i + 1)δ2

wmax(C)

R2

R6

R1

R3

R5

R4

iδ2 (i + 1)δ2

Fig. 2. (a) A container C. R1 − R6 are short-wide rectangles. (b) Container after
shifting down the short-wide rectangles.

Consider a container C in S∗ as shown in Figure 1. Note that the two verti-
cal sides of a container might be crossed by short rectangles. We remove those
rectangles through the following shifting technique. First, allocate all small rect-
angles crossing the border of two containers C and C′ to the rightmost container.
Then, divide C into δ2/(3δs) > 1/(4ε′) vertical strips of length 3δs. There must
be a strip s′ for which the total profit of the short rectangles completely con-
tained in the strip is at most ε′

4 OPT (C), where OPT (C) is the total profit of the
rectangles assigned to C in S∗. Remove all short rectangles completely contained
in s′, creating in C an empty vertical gap of length at least δs. Now, we move all
small rectangles crossing the left boundary of C to this empty gap (See Figure
1). By performing the above process over all containers we loose profit at most
ε′

4 OPT , but now no short rectangle crosses the boundary of a container.
For the sequel we only consider containers with at least one short-wide rect-

angle inside them. Notice that any packing has at most O(1/δ3) such containers.
Consider a container C. Remove all short-narrow rectangles from C. Compute
the y-coordinate of the bottom side of each short-wide rectangle packed in C and
then sort the rectangles in non-decreasing order of these y-coordinates. Take the
rectangles in this order and shift them down until they touch either the bottom
of C or the top of another rectangle. This yields a new feasible packing (see
Figure 2). Let wmax(C) be the width of this new packing. Note that wmax(C) is
the sum of the widths of at most 1/δ short-wide rectangles.

Consider again the original packing for the short rectangles in C. Round the
width of C down to the nearest value of the form wmax(C) + iδs, for i integer.
This limits the number of possible widths for the containers; however, now some
of the rectangles previously packed in C might not fit anymore. To ensure that
all these rectangles still fit, we increase the length of the container.

Lemma 1. Let S∗c be the set of rectangles packed by S∗ in C. S∗c can be packed
in a container of width w′ and length δ2+2δ4, where w′ is the width of C rounded
down to the nearest value of the form wmax(C) + iδs, for an integer i ≤ n.

108 K. Jansen and R. Solis-Oba

By Lemma 1 every container C storing short-wide rectangles can be replaced by
a container C′ of length at most δ2 + 2δ4 and width of the form wmax(C) + iδs.
The same shifting technique described above can decrease the length of C′ down
to δ2 while losing profit at most 4δ2OPT (C). If we do this on all containers, we
loose in total profit of value at most 4δ2OPT ≤ (ε′/4)OPT .

Corollary 1. There is a set R+ of rectangles of total profit at least (1− ε′)OPT
and a packing S+ for them in a bin of width 1 and length 1 + 2δ such that

– every long rectangle in R+ has its length rounded up to the nearest multiple
of δ2 and its left side is at a position x that is a multiple of δ2, and

– each container C storing at least one short-wide rectangle has length δ2 and
width wmax(C) + iδs, where wmax(C) is the sum of widths of at most 1/δ
short-wide rectangles and i ≤ n is a non-negative integer.

3 Rectangle Selection

As described in Section 2.1, our algorithm tries all possible values{2, 3, . . . , 4/ε′+1}
for τ . Consider one of these and define the sets L, M�, H, W , Mw, and N as
described above. Assume that for this choice of τ , profit(M�∪Mw) ≤ (ε′/2)OPT .
Set M� ∪Mw is discarded.

3.1 Selecting Long Rectangles

Let R∗ be the set of rectangles selected by S∗. We round up the length of each
long rectangle to the nearest multiple of δ2. For any constant K > 0, let L∗K be
the set of the K long rectangles in R∗ of largest profit. Let L̄∗K = (R∗ ∩L) \L∗K ,
and let L̄∗Ki be the subset of L̄∗K formed by rectangles of length iδ2, for i =
1/δ, 1/δ + 1, . . . , 1/δ2. Let w(L̄∗Ki) be the total width of the rectangles in L̄∗Ki.

For any constant K, the set L∗K is, of course, not known. However, since |L∗K |
is constant, our algorithm can construct all O(nK) subsets of K long rectangles
from R; clearly, one of these sets must be equal to L∗K . For each possible L∗K ,
we can find good approximations for w(L̄∗Ki) and L̄∗Ki as follows.

– If |L̄∗Ki| ≤ 1/δ4, our algorithm will simply try all O(n1/δ4
) different subsets

of at most 1/δ4 long rectangles of length iδ2. One of these sets will be L̄∗Ki.
– If |L̄∗Ki| > 1/δ4, the algorithm considers all subsets of R with 1/δ4 rectangles

of length iδ2. One of them will coincide with the set S∗Ki of 1/δ4 widest
rectangles in L̄∗Ki. Let R∗

� ∈ S∗Ki have lowest profit (at most δ4profit(L̄∗Ki))
and use as approximations for w(L̄∗Ki) values of the form �+kw(R∗

�), where
� =

∑1/δ4

j=1 w(R∗
j), k ∈ {0, . . . , n−1/δ4}, and w(R∗

j) is the width of R∗
j . Note

that w(L̄∗Ki) ∈ [�+xw(R∗
�), �+(x+1)w(R∗

�)] for some integer x ≤ n−δ−4.
If we remove R∗

� from L̄∗Ki, the total width of the rectangles in L̄∗Ki is at
most � + xw(R∗

�) and their profit is at least (1− δ4)profit(L̄∗Ki).

New Approximability Results for 2-Dimensional Packing Problems 109

Corollary 2. For each i = 1/δ, 1/δ+1, . . . , 1/δ2, we can find in polynomial time
a set Λi of O(n1/δ4+1) values of the form �+xw�, where � is the sum of widths
of at most 1/δ4 rectangles of length iδ2, w� is the width of a rectangle in S of
minimum profit, and x ∈ {0, 1, . . . , n− 1/δ4}. There is a value �∗ + x∗w∗

� ∈ Λi,
such that �∗ + x∗w∗

� ≤ w(L̄∗Ki) ≤ �∗ + (x∗ + 1)w∗
� , where w∗

� is the width of a
rectangle of profit at most δ4profit(L̄∗Ki).

For each set L̄∗Ki there are at most O(n1/δ4+1) possible values for w(L̄∗Ki) in Λi.
We try all these values, and since there are fewer than 1/δ2 sets L̄∗Ki, the total

number of possible widths that we need to try for them is O
(

(n1+1/δ4
)1/δ

2
)

,

which is (a huge) polynomial in n. For each possible w(L̄∗Ki) we need to select
a subset of rectangles of at most this width and high profit to pack in our
solution. To do this selection we use the knapsack algorithm of [13] on the set of
rectangles of length iδ2: the desired precision used in the knapsack algorithm is
δ, the width of each rectangle is used as its size, and the guessed sum of widths
is the knapsack’s capacity. Among all O(n1/δ4+1) sets selected, at least one of
them must have profit at least (1 − δ)(1 − δ4)profit(L̄∗Ki) and total width no
larger than w(L̄∗Ki). Therefore, one of these selections will include rectangles of
total profit at least (1−δ)(1−δ4)

∑1/δ2

i=1 profit(L̄∗Ki) ≥ (1−2δ)
∑1/δ2

i=1 profit(L̄∗Ki).

3.2 Selecting Short-Wide and Short-Narrow Rectangles

By Corollary 1 there is a near optimum solution S+ with at most δ−3 containers
where short-wide rectangles are packed. The length of each container C is δ2

and its width is of the form wmax(C) + iδs. Our algorithm builds packings with
0, 1, . . . , δ−3 containers, and for each container we try all its O(n1/δ+1) possible
widths. Clearly, one of these sets of containers is identical to that in S+. Consider
such a choice of containers and a selection S of long rectangles such that (a) the
profit of S is at least (1− ε) times the profit of the long rectangles in S+ and (b)
the total width of the long rectangles of length iδ2 in S is no larger than the total
width of the corresponding long rectangles in S+, for all i = 1/δ, 1/δ+1, . . . , 1/δ2.

Let Asn be the area of the bin of width 1 and length 1 + 2δ minus the area
of the rectangles in S and the area of the containers. We choose a set of short-
narrow rectangles to pack outside containers by using the knapsack algorithm of
[13] with precision ε, and using the area of each rectangle as its size and Asn as
the capacity of the knapsack. The profit of this set of rectangles is at least (1−ε)
times the profit of short-narrow rectangles packed by S+ outside containers.

Next, we need to choose short-wide and short-narrow rectangles to be packed
inside the containers. To do this we use the algorithm in [4]; this algorithm
can select and pack a near-optimum profit set of rectangles into a container
of width at least 1/(ε′)4 times its length. The algorithm in [4] was designed to
pack rectangles in a single container, but a straightforward extension allows it to
consider a constant number of containers. The total profit of the short rectangles
selected by the knapsack algorithm and by the algorithm in [4] is at least (1− ε′)
times the total profit of the short rectangles in S+.

110 K. Jansen and R. Solis-Oba

4 Positioning Long Rectangles and Containers

To determine the positions for the rectangles, we first split the bin into vertical
slots of length δ2. Let L be the set of rectangles selected by our algorithm. Let
C be one of the containers selected by our algorithm and let SC be the set of
short-wide and short-narrow rectangles that the algorithm packed in C. Replace
in L all rectangles in SC by a new rectangle RC of the same width and length
as C. The same is done for all containers, so L consists only of long rectangles,
rectangles for containers, and short-narrow rectangles.

Let L′ ⊆ L be the rectangles corresponding to the containers and the K
long rectangles of highest profit in L. A slot assignment for L′ is a mapping
f : L′ → 2M where M = {1, . . . , (1 + 2δ)/δ2} is the set of slots. For each
Rj ∈ L′, f(Rj) is a consecutive set of γj slots, where γjδ

2 is the length of
Rj . Since the number of different mappings f is polynomial, O(n(1+2δ)/δ2

), we
consider all mappings f , and for each one we try to find a packing for L that
is consistent with f . If no packing is found, then L is discarded and a different
set of rectangles is selected as described above. At the end, the packing with the
largest profit is produced.

Consider a packing S for L′ consistent with f . A snapshot is any set of rect-
angles from L′ that is intersected by a horizontal line (see Figure 3). Every Rj ∈
L′ appears in a sequence of consecutive snapshots SHOT (αj), . . . , SHOT (βj).
We index the snapshots from the bottom to the top of the bin as shown in
Figure 3. For example, in Figure 3, R2 appears in snapshots 2 and 3, so α2 = 2
and β2 = 3.

Partition L\L′ into two groups: the short-narrow rectangles Lsn, and the long
rectangles Llo. For packing S, let m′(i) be the slots occupied by the rectangles
from L′ in SHOT (i). M \ m′(i) is the set of free slots. Let F be the family
formed by all possible subsets of free slots.

For each set F ∈ F of free slots, a configuration (SN,Π) is a tuple where SN
is a subset of F and Π is a partition of F \ SN into sets of consecutive slots.

δ2

snapshot 1 = {R3}

snapshot 2 = {R2}

snapshot 3 = {R1, R2}

snapshot 4 = {C1, C2, R1}

1 + 2δ

R1

R3

R2

C1 C2

Fig. 3. Packing for a set of rectangles and containers, and the induced snapshots

New Approximability Results for 2-Dimensional Packing Problems 111

Let cF,i, i = 1, . . . , nF , denote all possible configurations for F , and let nF be
the number of these configurations. Given a configuration cF,i = (SNF,i, ΠF,i),
SNF,i is reserved to pack rectangles from Lsn; every subset of slots F ′ ∈ ΠF,i of
cardinality � is reserved for packing long rectangles from Llo of length �δ2. Let
nF,i(�) be the number of subsets of cardinality � in ΠF,i.

To pack Lsn and Llo, we first use a linear program to assign them to slots.
In this linear program, a variable xF,i is used for each cF,i to denote the total
width of the snapshots where free slots are allocated according to cF,i. Hence,
the area reserved by cF,i to pack short-narrow rectangles is |SNF,i|δ2xF,i. Let
Wi(Llo) be the total width of the long rectangles of length iδ2 in Llo, for all
i = 1/δ, . . . , 1/δ2, and let Asn be the total area of the short-narrow rectangles in
Lsn. Since |L′| ≤ K + δ−3, the number of snapshots is at most g = 2(K + δ−3).

For each Ri ∈ L′ we try all possible values for αi and βi. Since L′ has a con-
stant number of rectangles, there is only a constant number (at most g2(K+δ−3))
of possible assignments of starting and ending snapshots for the rectangles. Let
f be a slot assignment for L′ and let α, β be assignments of starting and ending
snapshots. The following linear program allocates rectangles to slots and snap-
shots. Variable ti is the sum of widths of the first i snapshots; eF is the total
width of the snapshots where the set of slots not occupied by L′ is F .

LP(f , α, β) : t0 = 0, tg ≤ 1
ti ≥ ti−1 i = 1, . . . , g
tβj − tαj−1 = wj ∀Rj ∈ L′∑

i:F=M\m′(i)(ti − ti−1) = eF ∀F ∈ F∑nF

i=1 xF,i ≤ eF ∀F ∈ F∑
F∈F

∑nF

i=1 nF,i(�)xF,i ≥W�(Llo) � = 1, . . . , |M |∑
F∈F

∑nF

i=1 |SNF,i|δ2xF,i ≥ Asn

xF,i ≥ 0 ∀F ∈ F , i = 1, . . . , nF .

If LP (f, α, β) has no feasible solution, then we discard f, α, and β.

5 Generating a Packing

Let (t∗, e∗, x∗) be a feasible solution for LP (f, α, β). For simplicity, let us re-
move all snapshots [t∗i , t

∗
i+1) of zero width. Let g∗ be the number of remaining

snapshots. Without loss of generality we may assume that all the configurations
in which the set of free slots is F = {1, . . . ,M} appear in the last snapshot
[t∗g∗−1, t

∗
g∗); otherwise, we can simply shift these configurations there.

5.1 Packing the Long Rectangles

Each Ri ∈ L′ is placed in the snapshots f(Ri) so its bottom is at distance t∗αi−1

from the bottom of the bin. Notice that no rectangle from L′ is split. To pack
the other long rectangles Llo, consider each snapshot [t∗a, t

∗
a+1), starting with

[t∗0 = 0, t∗1). For each [t∗a, t∗a+1), m′(a+1) is the set of slots used by L′; we consider
all the configurations cF,i with xF,i > 0 corresponding to F = M \m′(a + 1),

112 K. Jansen and R. Solis-Oba

t∗1 + t∗2 + t∗3 + t∗4

t∗1 + t∗2 + t∗3

t∗1

t∗1 + t∗2

δ2

R3

R2

C1 C2

R1

Fig. 4. Packing long rectangles and short narrow rectangles into the snapshots.
R1, R2, R3 ∈ L′; C1 and C2 are containers.

ordered so that all configurations cF,i = (SN,Π) with the same set SN appear
in consecutive positions. This will ensure that a contiguous block of |SN | slots
will be available inside the snapshot to process short-narrow rectangles.

Let R� = {R�,1, . . . , R�,n�
} ⊆ Llo be the long rectangles of length �δ2, for

every � = 1, . . . , 1/δ2. Let y∗a+1 be the width of snapshot [t∗a, t
∗
a+1). Take the

first configuration cF,i = (SNF,i, ΠF,i) in the above ordering, for which x∗F,i > 0.
Select for each set X ∈ ΠF,i, the first not-yet (completely) packed rectangle
R�,j ∈ R� with � = |X |. This rectangle is packed inside snapshot [t∗a, t

∗
a+1) in

the set of slots X . R�,j+1, R�,j+2, . . . are packed in the slots X inside snapshot
[t∗a, t

∗
a+1) until either their total width is at least y∗ = min(x∗F,i, y

∗
a+1), or all

rectangles in R� are packed. If the total width of the rectangles is larger than
y∗, the last rectangle is split so that the width of the rectangles is exactly y∗.

This process is repeated for all sets X ∈ ΠF,i. If x∗F,i < y∗a+1, we set y∗a+1 ←
y∗a+1−x∗F,i; then we consider the next configuration cF,i′ with xF,i′ > 0 and pack
long rectangles as described above. Otherwise, we set x∗F,i ← x∗F,i − y∗a+1 and
continue packing according to configuration cF,i in the next snapshot [t∗a+1, t

∗
a+2).

5.2 Packing the Short-Narrow Rectangles

All configurations cF,i with the same componentSNF,i within an interval [t∗a, t
∗
a+1)

leave a reserved area of total width |SNF,i|δ2 for short-narrow rectangles. This
reserved area gets split by L′ and Llo into at most |M |/2 + 1 rectangular blocks
B1, B2, . . . , Bk. Our algorithm leaves empty those blocks Bj of width b < 4δs−1.
Let Bj have length dδ2 and width b ≥ 4δs−1. Take short-narrow rectangles off Lsn

an put them in a set S until their total area is at least dδ2b. We use the First Fit
Decreasing Width (FFDW) algorithm [2] to pack S into block Bj .

Lemma 2. [2] Let S′ be a set of rectangles, each of length and width at most
Δ. FFDW can pack these rectangles in a rectangular bin of length 1 and width
FFDW (S′) ≤ AREA(S′)(1 + Δ) + Δ.

Since all rectangles in S have width and length at most δs, FFDW can pack
S into a bin of length dδ2 and width at most AREA(S)(1 + δs)/(dδ2) + δs =

New Approximability Results for 2-Dimensional Packing Problems 113

(dδ2b + δ2s)(1 + δs)/(dδ2) + δs ≤ b + 3δs. Hence, we use FFDW to pack all the
rectangles of S into a block of length dδ2 and width b + 3δs. Then, divide the
block into horizontal strips of width 4δs, partitioning S into at least 1/δ disjoint
groups (if a rectangle from S intersects two strips, we consider that it belongs
to the strip that is above). We remove the lowest profit group, which has profit
at most δ×profit(S), so the remaining rectangles fit in block Bj .

5.3 Analysis of the Algorithm

Observe that our algorithm might not produce a valid packing for the rectangles
in Llo since a subset, SPLIT, of them might have been split into several pieces.
Let us remove the subset SPLIT from the bin, thus obtaining a valid packing.
The total profit lost by doing this is at most 3ε′OPT (for details see our full
paper). Short-narrow rectangles were packed in the blocks Bi as described in
Section 5.2, but we do not pack anything in blocks Bi of width smaller than
4δs−1. The total space wasted in these blocks is at most δ. Hence, short-narrow
rectangles of total area at most δ might not get packed. These rectangles are
packed to the right of the bin using the FFDW algorithm. This increases the
length of the bin by at most 2δ, so the total length of the bin is at most 1 + 4δ.

Now, we prove Theorem 1 for the case without rotations. Our algorithm pro-
duces a large number of packings, the best of which is finally selected. Consider
this largest profit packing and the iteration of the algorithm in which it is com-
puted. In Section 3.1 we select a set LK of long rectangles of profit at least
(1−2δ)p+

L , where p+
L is the profit of the long rectangles in S+. In Section 3.2 we

select and pack in the containers short rectangles of profit at least (1 − ε′)p+
C ,

where p+
C is the total profit of the short rectangles packed in containers in S+.

Then, a set of short-narrow rectangles of profit at least p+
sn is chosen, where p+

sn

is the total profit of the short-narrow rectangles in S+ packed outside containers.
In Section 5.1 the long rectangles selected are packed in the bin and a subset

of profit at most ε′p+
L is discarded. Thus, the total profit of the rectangles packed

in the bin [0, 1]× [0, 1+4δ] is at least (1−2δ)p+
L +(1−ε′)p+

C +p+
sn−ε′p+

L−δp+
sn ≥

(1−3ε′)(p+
L+p+

C+p+
sn) = (1−3ε′)profit(S+) ≥ (1−4ε′)OPT = (1−ε)OPT , where

OPT is the profit of an optimum solution. The complexity of the algorithm is
O
(
n(4/δ2)5/δ2)

, where δ is a constant as defined in (1).

6 APTAS for Strip Packing Without Rotations

Use the algorithm of Steinberg [16] to pack R in a strip of length v ≤ 2OPTSP .
Set ε ← ε/5. Consider all values v′ = v/2, (1 + ε)v/2, (1 + 2ε)v/2, . . . , v. Note
that for one of these values v∗, OPTSP ≤ v∗ ≤ (1 + ε)OPTSP . For each value
v′ we scale the lengths of the rectangles by 1/v′ and define the profit of each
rectangle as its area; then, we use our rectangle packing algorithm to pack a
subset of scaled rectangles into a bin of unit width and length.

Observe that when v′ = v∗ there is a way of packing all scaled rectangles into
the augmented bin and, thus, by Theorem 1 for this value of v′ our algorithm
must be able to pack most of the rectangles; the rectangles that our algorithm

114 K. Jansen and R. Solis-Oba

cannot pack have total area at most ε. Find v∗, the smallest value v′ such that in
the packing produced by our algorithm the total area of the set S of un-packed
rectangles is at most ε. Then, use the algorithm of Steinberg to pack S in a strip
of width 1 and length ε+ 1/v∗, and append this to the solution produced above.

The total length of the packing produced by this algorithm is at most v∗(1 +
2ε+ 1/v∗) = (1 + 2ε)v∗ + 1 ≤ (1 + ε)(1 + 2ε)OPTSP + 1 ≤ (1 + 5ε)OPTSP + 1 =
(1 + ε)OPTSP + 1, for ε ≤ 1.

References

1. Bansal, N., Sviridenko, M.: Two-dimensional bin packing with one dimensional
resource augmentation. Discrete Optimization 4, 143–153 (2007)

2. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for
level-oriented two-dimensional packing algorithms. SIAM Journal on Computing 9,
808–826 (1980)

3. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+epsilon in
linear time. Combinatorica 1(4), 349–355 (1981)

4. Fishkin, A.V., Gerber, O., Jansen, K.: On weighted rectangle packing with large
resources. In: Conference Theoretical Computer Science (TCS 2004), pp. 237–250
(2004)

5. Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: Packing weighted rectangles
into a square. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 352–363. Springer, Heidelberg (2005)

6. Garey, M.R., D. S., Johnson.: Computers and Intractability: A guide to the theory
of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

7. Harren, R.: Approximating the orthogonal knapsack problem for hypercubes. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 238–249. Springer, Heidelberg (2006)

8. Jansen, K., van Stee, R.: On strip packing with rotations. In: ACM Symposium on
Theory of Computing. STOC 2005, pp. 755–761 (2005)

9. Jansen, K., Zhang, G.: On rectangle packing: maximizing benefits. In: ACM-SIAM
Symposium on Discrete Algorithms. SODA 2004, pp. 197–206 (2004)

10. Jansen, K., Zhang, G.: Maximizing the number of packed rectangles. In: Hagerup,
T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 362–371. Springer,
Heidelberg (2004)

11. Karmarkar, M., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: IEEE Symposium on Foundations of Com-
puter Science. FOCS 1982, pp. 312–320 (1982)

12. Kenyon, C., Remila, E.: A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 25, 645–656 (2000)

13. Lawler, E.: Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research 4, 339–356 (1979)

14. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing
squares into a square. Journal Parallel and Dist. Computing 10, 271–275 (1990)

15. Schiermeyer, I.: Reverse-fit: a 2-optimal algorithm for packing rectangles. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

16. Steinberg, A.: A strip-packing algorithm with absolute performance bound two.
SIAM Journal on Computing 26, 401–409 (1997)

On Approximation of Bookmark Assignments�

Yuichi Asahiro1, Eiji Miyano2, Toshihide Murata2, and Hirotaka Ono3

1 Department of Social Information Systems, Kyushu Sangyo University,
Fukuoka 813-8503, Japan

asahiro@is.kyusan-u.ac.jp
2 Department of Systems Innovation and Informatics,

Kyushu Institute of Technology, Fukuoka 820-8502, Japan
miyano@ces.kyutech.ac.jp, hide m@theory.ces.kyutech.ac.jp

3 Department of Computer Science and Communication Engineering,
Kyushu University, Fukuoka 819-0395, Japan

ono@csce.kyushu-u.ac.jp

Abstract. Consider a rooted directed acyclic graph G = (V, E) with
root r, representing a collection V of web pages connected via a set
E of hyperlinks. Each node v is associated with the probability that
a user wants to access the node v. The access cost is defined as the
expected number of steps required to reach a node from the root r. A
bookmark is an additional shortcut from r to a node of G, which may
reduce the access cost. The bookmark assignment problem is to find a set
of bookmarks that achieves the greatest improvement in the access cost.
For the problem, the paper presents a polynomial time approximation
algorithm with factor (1−1/e), and shows that there exists no polynomial
time approximation algorithm with a better constant factor than (1−1/e)
unless NP ⊆ DT IME(NO(log log N)), where N is the size of the inputs.

1 Introduction

1.1 Motivation and Formulation

The world wide web is one of the most famous and the hugest repository of
information, which consists of web pages and hyperlinks. The hyperlink is a ref-
erence from one page to another, and hence it gives us a non-linear searchability;
a user can travel to access desired pages by starting from a home page, clicking
correct hyperlinks, and displaying pages one after another. In order to display
the target (desired or favorite) pages by clicking as few hyperlinks as possible,
one of the most popular approaches is to add a “shortcut” linkage, usually called
a bookmark.

The above natural solution for improving web access can be formulated as
the following optimization problem, called the k-Bookmark Assignment Prob-
lem (k-BAP), which has been introduced in [19]: Let G = (V,E) be a rooted,
� This work is partially supported by Grant-in-Aid for Scientific Research on Priority

Areas No. 16092222 and 16092223, and by Grant-in-Aid for Young Scientists (B)
No. 17700022, No. 18700014 and No. 18700015.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 115–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

116 Y. Asahiro et al.

connected, directed acyclic graph (DAG for short) with root r, representing a
web hierarchical structure. Let pv be the access probability associated to a node
v ∈ V , where

∑
v∈V pv = 1 and each pv ≥ 0. For a node v, let d(v) denote the

distance from the root r to the node v, i.e., the length of the shortest directed
path. The expected number of steps to reach a node from the root r is defined by∑

v∈V pv ·d(v). A bookmark to a node v is an additional directed edge (r, v) �∈ E.
Only for simplicity, throughout the paper, we identify the bookmark (r, v) with
the node v itself. Let B = {b1, b2, . . . , bk}, bi ∈ V , be a set of bookmarks and also
let G⊕B be the graph resulting from the assignment of B. The distance from the
root r to a node v in G⊕B is denoted by dB(v). Thus, the expected number of
steps to reach a node of G⊕B from the root is also defined by

∑
v∈V pv · dB(v).

For simplicity, let pv · d(v) and pv · dB(v) be represented by c(v) and cB(v),
respectively, in the following. A gain g(B) of bookmarks B is defined as

g(B) =
∑

v∈V

pv (d(v) − dB(v)) =
∑

v∈V

(c(v) − cB(v)) ,

and thus the problem is formulated as follows:

k-Bookmark Assignment Problem (k-BAP):
Instance: A directed acyclic graph G = (V,E), the access proba-

bility pv for each node v ∈ V , and a positive integer k ≤ |V |.
Goal: Find a bookmark set B ⊆ V of size k maximizing g(B).

1.2 Previous and Our Results

The problem has been considered also in the context of locating web proxies in
the Internet. For restricted network topologies, such as paths and trees, polyno-
mial time exact algorithms are successfully developed: For paths, an O(k|V |2)
time algorithm is proposed by Li, Deng, Golin, and Sohraby in [10] and for trees
Li, Golin, Italiano, Deng and Sohraby proposed an O(k2|V |3) time algorithm
in [11]. In particular, Czyzowicz, Kranakis, Krizanc, Pelc, and Vergas Martin
showed that if the input graph is a perfect binary tree and k ≤

√
|V |+ 1, the

optimal set of bookmarks satisfies a good property [4] and a faster O(|V |) time
algorithm can be developed based on that property [19]. On the other hand,
Vergas Martin shows that k-BAP is NP-hard for directed acyclic graphs in [19].
As far as the authors know, there is no result with respect to approximation for
k-BAP.

In this paper, we consider (in)approximability of k-BAP, and obtain the fol-
lowing results.

(Approximability). There is a polynomial time approximation algorithm with
factor (1− 1/e).

(Inapproximability). There is no polynomial time approximation algorithm
with a better constant factor than
– (1 − 1/e) unless NP ⊆ DT IME(NO(log logN)), where N is the size of

the inputs, and

On Approximation of Bookmark Assignments 117

– (1 − δ) under a weaker assumption, i.e., P �= NP , where δ is a fixed
small positive constant.

An algorithm is called an approximation algorithm with factor α, or an α
factor approximation algorithm for k-BAP, if g(ALG)/g(OPT) ≥ α holds for any
instance G, where ALG and OPT are sets of bookmarks obtained by the algorithm
and an optimal algorithm, respectively. α is called approximation ratio.

1.3 Related Work

There is a large amount of literature on the problem of improving the accessibility
of the most popular pages by adding hyperlinks over the underlying structure
(e.g., [3,6,13,17,18]). A variant of a bookmark is called a hotlink, which is defined
as a hyperlink that links an arbitrary page to its descendant page. The problem
variant is known as the Hotlink Assignment Problem (HAP), which has been
introduced by Bose et al. in [3]. It is known that HAP is NP-hard for arbitrary
DAGs [3] but unknown for trees whether it is NP-hard or not. Many researchers
have studied on HAP in perfect binary tree structures [3,6]. Matichin and Peleg
present a polynomial time 1/2 factor approximation algorithm for DAGs in [13],
and also a 1/2 factor approximation algorithm for trees under some realistic
access model in [14]. It is important to note that no result on inapproximability
has been obtained so far for HAP.

1.4 Organization

In Section 2, we present the polynomial time approximation algorithm with
factor (1−1/e). The inapproximability of k-BAP is discussed in Section 3. Then
we conclude in Section 4.

2 Approximation Guarantee of a Greedy Algorithm

Consider the following greedy algorithm for a DAG G = (V,E), which selects
k bookmarks in total by iteratively assigning a new bookmark that obtains the
maximum gain:

Algorithm Greedy:
B = ∅
for i = 1 to k do

select a bookmark b ∈ V \B that maximizes g(B ∪ {b})
B = B ∪ {b}

endfor
output B

Theorem 1. Algorithm Greedy achieves an approximation ratio of (1 − 1
e) for

k-BAP, and its running time is O(k|V ||E|).

118 Y. Asahiro et al.

Proof. First we show the approximation ratio. The basic framework of the proof
is the same as in [20]. That is, we utilize a result of Nemhauser et al. [15], which
analyzes the approximation ratio of a greedy algorithm for a certain maximiza-
tion problem whose cost is defined as a monotone submodular function. The
submodularity and its monotonicity are defined as follows:

Definition 1. Let S be a finite set, and f : 2S → R be a function with f(∅) = 0.
f is called submodular if for any sets X,Y ⊆ S,

f(X ∪ Y) + f(X ∩ Y) ≤ f(X) + f(Y).

f is called monotone if for any set X ⊂ S and s ∈ S \X

f(X ∪ {s})− f(X) ≥ 0.

The result of Nemhauser et al. is that the problem of selecting k-element subsets
maximizing a monotone submodular function can be approximated within a
constant factor (1 − 1

e) by a greedily picking algorithm [15]. By Proposition 2
(monotonicity) and Lemma 1 (submodularity) shown later, the gain function
g is monotone submodular, and hence the approximation ratio of the above
algorithm Greedy is also (1− 1

e).
As for the running time, Greedy selects k bookmarks by evaluating the values

of g(B ∪ {b})’s for each b ∈ V . Computing g(B ∪ {b}) requires to solve the
shortest path problem for the DAG G⊕ (B ∪ {b}), which takes O(|E|) time [5].
Since the number of possible bookmarks in each iteration is at most |V | and the
number of iterations is k, the total running time is O(k|V ||E|). ��
Now we show that the gain function g is monotone and submodular. First we
briefly note the monotonicity of g. The following property obviously holds.

Proposition 1. For S′ ⊆ S ⊆ V and u ∈ V , dS′(u) ≥ dS(u) holds. ��
Then, from the above proposition, we can see that g is monotone in a straight-
forward way:

Proposition 2 (monotonicity). For S′ ⊆ S ⊆ V , g(S′) ≤ g(S) holds. ��
We next prove the submodularity of the gain function g. Let V (X) be a set of
descendant nodes that are reachable from a set X of nodes in G.

Proposition 3. For two subsets of nodes X,Y ⊆ V

(i) V (X) ∪ V (Y) = V (X ∪ Y)
(ii) V (X) ∩ V (Y) ⊇ V (X ∩ Y)

Proof. (i) It is easy to see that V (S′) ⊆ V (S) holds for S′ ⊆ S ⊆ V . Thus,
V (X)∪ V (Y) ⊆ V (X ∪ Y) holds. We show that V (X ∪ Y) ⊆ V (X)∪ V (Y) also
holds in the following: First, note that for ∀u ∈ V (X ∪ Y), there exists a node
v ∈ X ∪ Y such that u is reachable from v, i.e., for ∀u ∈ V (X ∪ Y), u belongs
to V (X) ∪ V (Y). It follows that V (X ∪ Y) ⊆ V (X) ∪ V (Y) holds. As a result,
V (X ∪ Y) = V (X) ∪ V (Y) holds.

(ii) By a similar discussion, we can show that V (X) ⊇ V (X ∩Y) and V (Y) ⊇
V (X ∩ Y) hold, which means that V (X) ∩ V (Y) ⊇ V (X ∩ Y) is satisfied. ��

On Approximation of Bookmark Assignments 119

Using Propositions 1, 2, and 3, we can show the submodularity of the gain
function g:

Lemma 1 (submodularity). The gain function g : 2V → R is submodular,
i.e., for any subsets of nodes X,Y ⊆ V , g(X ∪ Y) + g(X ∩ Y) ≤ g(X) + g(Y)
holds.

Proof. Note that the following holds for a node set S ⊆ V by definition:

g(S) =
∑

v∈V (S)

(c(v)− cS(v)).

Thus,

g(X) + g(Y)− (g(X ∪ Y) + g(X ∩ Y))

=
∑

v∈V (X)

(c(v)− cX(v)) +
∑

v∈V (Y)

(c(v) − cY (v))

−

⎛

⎝
∑

v∈V (X∪Y)

(c(v) − cX∪Y (v)) +
∑

v∈V (X∩Y)

(c(v)− cX∩Y (v))

⎞

⎠

=

⎛

⎝
∑

v∈V (X)∪V (Y)

cX∪Y (v) +
∑

v∈V (X)∩V (Y)

c(v)

⎞

⎠ (1)

−

⎛

⎝
∑

v∈V (X)

cX(v) +
∑

v∈V (Y)

cY (v)

⎞

⎠ (2)

−
∑

v∈V (X∩Y)

(c(v)− cX∩Y (v))

holds, where the last equality comes from Proposition 3 (i). By definition, the
following two equations are satisfied:

∑

v∈V (X)

cX(v) =
∑

v∈V (X)\V (Y)

cX(v) +
∑

v∈V (X)∩V (Y)

cX(v)

∑

v∈V (Y)

cY (v) =
∑

v∈V (Y)\V (X)

cY (v) +
∑

v∈V (X)∩V (Y)

cY (v).

Also, as for the union X ∪ Y of bookmarks,
∑

v∈V (X)∪V (Y)

cX∪Y (v)

=
∑

v∈V (X)\V (Y)

cX∪Y (v) +
∑

v∈V (Y)\V (X)

cX∪Y (v) +
∑

v∈V (X)∩V (Y)

cX∪Y (v)

holds. Thus, the above two terms (1) and (2) can be replaced by the following
terms:

120 Y. Asahiro et al.

∑

v∈V (X)\V (Y)

(cX∪Y (v) − cX(v)) +
∑

v∈V (Y)\V (X)

(cX∪Y (v)− cY (v))

+
∑

v∈V (X)∩V (Y)

(c(v) + cX∪Y (v)− cX(v) − cY (v)) .

Note that even if we add bookmarks to nodes in Y , the length of the shortest
path from r to a node v does not change if v ∈ V (X) \ V (Y). Thus,

∑

v∈V (X)\V (Y)

(cX∪Y (v)− cX(v)) = 0.

From a similar reason,
∑

v∈V (Y)\V (X)

(cX∪Y (v)− cY (v)) = 0.

As a result,

g(X) + g(Y)− (g(X ∪ Y) + g(X ∩ Y))

=
∑

v∈V (X)∩V (Y)

(c(v) + cX∪Y (v) − cX(v)− cY (v)) (3)

−
∑

v∈V (X∩Y)

(c(v)− cX∩Y (v)). (4)

Since cX∪Y (v) = min{cX(v), cY (v)} for v ∈ V (X)∩V (Y) from Proposition 3-(i),
the term (3) can be replaced to the following:

∑

v∈V (X)∩V (Y)

(c(v)−max{cX(v), cY (v)}) . (5)

Since cX∩Y (u) ≥ cX(u) and cX∩Y (u) ≥ cY (u) hold for any vertex u from X∩Y ⊆
X and X ∩ Y ⊆ Y , respectively, the inequality cX∩Y (v) ≥ max{cX(v), cY (v)}
holds for v ∈ V (X ∩ Y). Hence the following inequality is true for the term (4):

∑

v∈V (X∩Y)

(c(v) − cX∩Y (v)) ≤
∑

v∈V (X∩Y)

(c(v)−max{cX(v), cY (v)}) . (6)

From (5), (6), and Proposition 3-(ii), we can obtain the following:

g(X) + g(Y)− (g(X ∪ Y) + g(X ∩ Y))

≥
∑

v∈(V (X)∩V (Y))\V (X∩Y)

(c(v)−max{cX(v), cY (v)})

≥ 0.

Therefore, the gain function g is submodular. ��

On Approximation of Bookmark Assignments 121

Before concluding this section, we mention a possibility of speeding the algorithm
up. In Greedy, we need to compute the shortest path problem O(|V |) times for
each iteration. Although the shortest path of a directed acyclic graph can be
computed in O(|E|) time, it still might be time-consuming and actually many
parts of the computation may be redundant; since most of the graph structure is
preserved even if we add a bookmark, the shortest path computation can reuse
the previous computation. This idea can be implemented by using several results
from dynamic topological sort algorithms (cf., [12,1]), although we do not give
the detail here because the main scope of the paper is the approximation factor.

Another issue of the running time is on the restriction of graph classes. One
of the most common subclasses of directed acyclic graphs is a tree. In the case
of trees, we actually can reduce the running time by the following: We prepare
q(u) and w(u) for each node u to store the distance of u from the root r and
w(u) =

∑
v∈V (u) pv, respectively. Then, in each iteration of the for-loop, the

algorithm processes the following operations:

1. Pick a node b which has the maximum gain q(b) · w(b) as a new bookmark,
2. Replace q(u) with q(u)− q(b) + 1 for each node u ∈ V (b), and
3. Replace w(u) with w(u) − w(b) for each node u on the simple path from r

to b (exclusive).

It is easy to see that the above procedure maintains q and w correctly, and each
step can be done in O(|V |) time. Hence the total running time of Greedy for
trees is reduced to O(k|V |). It is much faster than the running time of the known
exact algorithm in [11], O(k2|V |3), although Greedy obtains only approximate
solutions.

3 Lower Bounds

We show that the (1− 1
e) approximation ratio proved in the previous section is

the best possible for k-BAP, in the sense that no approximation algorithm with
factor (1 − 1

e + ε) exists for any ε > 0, unless NP ⊆ DT IME(NO(log logN)).
The hardness of approximation is shown via a gap-preserving reduction [2] from
the Unit Cost Maximum Coverage Problem (UCMCP):

Unit Cost Maximum Coverage Problem (UCMCP):
Instance: A collection of sets S = {S1, S2, . . . , Sm} with associated

unit cost ci = 1 for each i = 1, 2, . . . ,m defined over a domain
of elements X = {x1, x2, . . . , xn} with associated unit weight
wj = 1 for each j = 1, 2, . . . , n, and a positive integer � ≤ |S|.

Goal: Find a collection of sets S′ ⊆ S such that the total cost of
sets in S′ does not exceed �, and the total weight of elements
covered by S′ is maximized.

Theorem 2 ([8]). No approximation algorithm with approximation ratio better
than (1− 1

e) exists for UCMCP unless NP ⊆ DT IME(NO(log logN)).

122 Y. Asahiro et al.

β1

r

r1,1

r1,2

r1,3

r1,h

r2,1

r2,2

r2,3

r2,h

r3,1

r3,2

r3,3

r3,h

rm,1

rm,2

rm,3

rm,h

α1 α2 α3 αm

β2 β3 β4 β5 βn

Fig. 1. Gap-preserving reduction

Let OPTmcp(I) denote the weight of elements covered by a collection of sets out-
put by an optimal algorithm for the instance I of UCMCP. Also, let OPTbap(G)
be the gain of bookmarks output by an optimal algorithm for the graph G of
k-BAP.

Lemma 2. There is a gap-preserving reduction from UCMCP to k-BAP that
transforms an instance I of UCMCP to a graph G = (V,E) of k-BAP such that

(i) if OPTmcp(I) = max, then OPTbap(G) ≥ h
nmax, and

(ii) if OPTmcp(I) ≤ (1− 1
e)max, then OPTbap(G) ≤ (1− 1

e + �
h·max)h

nmax, where
h is a sufficiently large integer such that h = O(|I|q) for some constant q.

Proof. Consider an instance I of UCMCP; a collection of sets S = {S1, S2, . . . ,
Sm} defined over a domain of elements X = {x1, x2, . . . , xn}, and a positive
integer �. Then, we construct the following directed graph, illustrated in Figure 1.
Let VR = {r, r1,1, r1,2, . . . , r1,h, r2,1, r2,2, . . . , rm,h−1, rm,h} be a set of 1 + mh
nodes associated with |S| = m. Also, let VS = {α1, α2, . . . , αm} be a set of m
nodes corresponding to the m sets, S1 through Sm, and VX = {β1, β2, . . . , βn}
be a set of n nodes corresponding to the n elements, x1 through xn. Here, VR,
VS , and VX are pairwise disjoint, and let V = VR ∪ VS ∪ VX . The set E of
directed edges is defined as follows: E1 = {(r, ri,1), (ri,1, ri,2), . . . , (ri,h, αi) | i =
1, 2, . . . ,m}, E2 = {(αi, βj) | xj ∈ Si for each i and each j}, and E = E1 ∪ E2.
As for the access probabilities of nodes, we define pβj = 1

n for j = 1, 2, . . . , n,
pr = 0, and pri,1 = pri,2 = · · · = pri,h

= pαi = 0 for i = 1, 2, . . . ,m. Finally,

On Approximation of Bookmark Assignments 123

we set k = �. Clearly this reduction can be done in polynomial time since h =
O(|I|q).

(i) Suppose that OPTmcp(I) = max and the optimal collection of sets is
OPT = {Si1 , Si2 , . . . , Si�} where {i1, i2, . . . , i�} ⊆ {1, 2, . . . ,m}. Then, if we
select a set B = {αi1 , αi2 , . . . , αik} of k (= �) nodes as bookmarks, then we can
obtain the gain of h

nmax since d(αij) − dB(αij) = h for each j and the nodes
αij ’s are connected with exactly max leaves β’s of probability 1

n .
(ii) Next suppose that OPTmcp(I) ≤ (1− 1

e)max and again the optimal collec-
tion of sets is OPT = {Si1 , Si2 , . . . , Si�} where {i1, i2, . . . , i�} ⊆ {1, 2, . . . ,m}. If
a set B = {αi1 , αi2 , . . . , αik} of k (= �) nodes is selected as bookmarks, then the
gain is at most (1− 1

e)h
nmax. For example, the replacement of αij with, say, rij ,h

decreases the gain by 1
n because d(rij ,h)− dB(rij ,h) = h− 1. On the other hand,

if we select, say, β1 instead of αij as a bookmark, then the gain possibly increases
at most by (h+ 1) · 1

n − h · 1
n = 1

n , i.e., at most 1
n gain per such replacement. As

a result, the gain on G is at most (1− 1
e)h

nmax+ k
n = (1− 1

e + �
h·max)h

nmax. This
completes the proof. ��

The following theorem is obtained by the above lemma:

Theorem 3. No (1 − 1
e + ε) factor approximation algorithm exists for k-BAP

unless NP ⊆ DT IME(NO(log logN)), where ε is an arbitrarily small positive
constant.

A similar gap-preserving reduction from the Maximum k-Vertex Cover Prob-
lem [7,9,16] gives us the following hardness of approximation under the different
weak assumption:

Theorem 4. No (1−δ) factor approximation algorithm exists for k-BAP unless
P = NP, where δ is a fixed small positive constant.

Proof. Let δ0 < 1 be the approximation hardness factor of the Maximum
k-Vertex Cover Problem. By using similar ideas in [2,9,7], we can provide the
gap-preserving reduction with δ = 1305

1349 · (1− δ0). Details are omitted. ��

4 Conclusion

In this paper we have considered the problem of assigning bookmarks from the
root to the nodes of a DAG in order to maximize the gain in the expected cost.
Then we have shown that there is a polynomial time approximation algorithm
with factor (1 − 1/e) and the factor is the best possible under the assumption
that NP is not in DT IME(NO(log logN)).

As for further researches, there is a gap between the inapproximability result
we have shown under the assumption that P �= NP , and the approximability
result of (1 − 1/e) ratio. To reduce the time complexity for trees is another
interesting topic.

124 Y. Asahiro et al.

References

1. Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., Zadeck, F.K.: Incremental
evaluation of computational circuits. In: Proc. SODA’90, pp. 32–42 (1990)

2. Arora, S., Lund, C.: Hardness of Approximation. In: Hochbaum, D.S. (ed.) Approx-
imation Algorithms for NP-hard problems, pp. 399–446. PWS publishing company
(1995)

3. Bose, P., Kranakis, E., Krizanc, D., Vergas Martin, M., Czyzowicz, J., Pelc, A.,
Gasieniec, J.: Strategies for hotlink assignments. In: Lee, D.T., Teng, S.-H. (eds.)
ISAAC 2000. LNCS, vol. 1969, pp. 23–34. Springer, Heidelberg (2000)

4. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Vergas Martin, M.: Assigning
bookmarks in perfect binary trees. Ars Combinatoria, vol. LXXXII (2007)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

6. Fuhrmann, S., Krumke, S.O., Wirth, H.-C.: Multiple hotlink assignment. In:
Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 189–200. Springer,
Heidelberg (2001)

7. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

8. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem.
IPL 70(1), 39–45 (1999)

9. Langberg, M.: Approximation Algorithms for Maximization Problems arising in
Graph Partitioning. M. Sc. thesis, Weizmann Institute of Science (1998)

10. Li, B., Deng, X., Golin, M.J., Sohraby, K.: On the optimal placement of web proxies
in the Internet: Linear Topology. In: Proc. HPN’98, pp. 485–495 (1998)

11. Li, B., Golin, M.J., Italiano, G.F., Deng, X., Sohraby, K.: On the optimal placement
of web proxies in the Internet. In: Proc. INFOCOMM’99, pp. 1282–1290 (1999)

12. Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: Maintaining a topological order
under edge insertions. IPL 59(1), 53–58 (1996)

13. Matichin, R., Peleg, D.: Approximation algorithm for hotlink assignments in
web directories. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS,
vol. 2748, pp. 271–280. Springer, Heidelberg (2003)

14. Matichin, R., Peleg, D.: Approximation algorithm for hotlink assignment in the
greedy model. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104,
pp. 233–244. Springer, Heidelberg (2004)

15. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for
maximizing submodular set functions. Mathematical Programming 14, 265–294
(1978)

16. Petrank, E.: The hardness of approximation: gap location. Computational Com-
plexity 4, 133–157 (1994)

17. Perkowitz, M., Etzioni, O.: Towards adaptive web sites: conceptual framework and
case study. Computer Networks 31, 1245–1258 (1999)

18. Pessoa, A.A., Laber, E.S., de Souza, C.: Efficient algorithms for the hotlink assign-
ment problem: the worst case search. In: Fleischer, R., Trippen, G. (eds.) ISAAC
2004. LNCS, vol. 3341, pp. 778–792. Springer, Heidelberg (2004)

19. Vergas Martin, M.: Enhancing Hyperlink Structure for Improving Web Perfor-
mance. PhD thesis, School of Computer Science, Carleton University (2002)

20. Vohra, R.V., Hall, N.G.: A probabilistic analysis of the maximal covering location
problem. Discrete Applied Mathmatics 43(2), 175–183 (1993)

Height-Deterministic Pushdown Automata

Dirk Nowotka1 and Jǐŕı Srba2,�

1 Institut für Formale Methoden der Informatik
Universität Stuttgart, Germany

2 BRICS��, Department of Computer Science
Aalborg University, Denmark

Abstract. We define the notion of height-deterministic pushdown au-
tomata, a model where for any given input string the stack heights dur-
ing any (nondeterministic) computation on the input are a priori fixed.
Different subclasses of height-deterministic pushdown automata, strictly
containing the class of regular languages and still closed under boolean
language operations, are considered. Several such language classes have
been described in the literature. Here, we suggest a natural and intuitive
model that subsumes all the formalisms proposed so far by employing
height-deterministic pushdown automata. Decidability and complexity
questions are also considered.

1 Introduction

Visibly pushdown automata [3], a natural and well motivated subclass of push-
down automata, have been recently introduced and intensively studied [8,2,4].
The theory found a number of interesting applications, e.g. in program ana-
lysis [1,9] and XML processing [10]. The corresponding class of visibly push-
down languages is more general than regular languages while it still possesses
nice closure properties and the language equivalence problem as well as simula-
tion/bisimulation equivalences are decidable [3,11]. Several extensions [7,5] have
been proposed in order to preserve these nice properties while describing a larger
class of systems. These studies have been particularly motivated by applications
in the field of formal verification. However, unlike the natural model of visibly
pushdown automata, these extensions are rather technical and less intuitive.

In this paper we suggest the model of height-deterministic pushdown au-
tomata which strictly subsumes all the models mentioned above and yet possesses
desirable closure and decidability properties. This provides a uniform framework
for the study of more general formalisms.

The paper is organized as follows. Section 2 contains basic definitions.
Section 3 introduces height-deterministic pushdown automata, or hpda. It stud-
ies the languages recognized by real-time and deterministic hpda, and proves
a number of interesting closure properties. Section 4 shows that these classes
properly contain the language class of [7] and the classes defined in [3] and [5].
� Partially supported by the research center ITI, project No. 1M0021620808.

�� Basic Research In Computer Science, Danish National Research Foundation.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 125–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 D. Nowotka and J. Srba

2 Preliminaries

Let Σ = {a, b, c, . . .} be a finite set of letters. The set Σ∗ denotes all finite words
over Σ. The empty word is denoted by λ. A subset of Σ∗ is called a language.
Given a nonempty word w ∈ Σ∗ we write w = w(1)w(2) · · ·w(n) where w(i) ∈ Σ
denotes the i-th letter of w for all 1 ≤ i ≤ n. The length |w| of w is n and |λ| = 0.
By abuse of notation | · | also denotes the cardinality of a set, the absolute value
of an integer, and the size of a pushdown automaton (see definition below). We
denote by •w the word w(2)w(3) · · ·w(n), and define further •a = λ for every
a ∈ Σ and •λ = λ. Finally, we let Lc abbreviate Σ∗ \ L for L ⊆ Σ∗.

Finite State Automata. A finite state automaton (fsa) R over Σ is a tuple
(S,Σ, s0, , F) where S = {s, t, . . .} is a finite set of states, s0 ∈ S is the initial
state, ⊆ S ×Σ × S is a set of rules, and F ⊆ S is the set of final states. We
call R a deterministic finite state automaton (dfsa) if for every s ∈ S and every
a ∈ Σ there is exactly one t ∈ Σ such that (s, a, t) ∈ , i.e., the relation can
be understood as a function : S×Σ → S. Given a nonempty w ∈ Σ∗ we write
s

w−→
R

t (or just s
w−→ t if R is understood) if either w ∈ Σ and (s, w, t) ∈ or

there exists an s′ ∈ S such that (s, w(1), s
′) ∈ and s′

•w−→ t. We say that R
recognizes the language L(R) = {w ∈ Σ∗ | s0

w−→
R

t, t ∈ F}. A language is regular
if it is recognized by some fsa. The class of all regular languages is denoted by
REG.

Finite State Transducers. A finite state transducer (fst) T from Σ∗ to a monoid
M (in this paper we have either M =Σ∗ or M =ZZ), is a tuple (S,Σ,M, s0, , F)
where (S,Σ ×M, s0,

′, F) is an fsa and = {(s, a,m, t) | (s, (a,m), t) ∈ ′}.
Given w ∈ Σ∗ and m ∈ M , we write s

w,m−→
T

t (or s
w,m−→ t if T is understood)

if either w ∈ Σ and (s, w,m, t) ∈ or if there exists an s′ ∈ S such that
(s, w(1),m1, s

′) ∈ , s′
•w,m2−→ t and m = m1 ⊕ m2, where ⊕ is the operation

associated with the monoid M . Given L ⊆ Σ∗, the image of L under T , denoted
by T (L), is the set of elements m such that s0

w,m−→
T

t for some t ∈ F and w ∈ L.

Pushdown Automata. A pushdown automaton (pda) A over an alphabet Σ is
a tuple (Q,Σ, Γ, δ, q0, F) where Q = {p, q, r, . . .} is a finite set of states, Γ =
{X,Y, Z, . . .} is a finite set of stack symbols such that Q ∩ Γ = ∅, δ ⊆ Q× Γ ×
(Σ ∪ {ε})×Q× Γ ∗ ∪ Q× {⊥}× (Σ ∪ {ε})×Q× Γ ∗{⊥} is a finite set of rules,
where ⊥ �∈ Γ (empty stack) and ε �∈ Σ (empty input word) are special symbols,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. The size |A| of a
pda A is defined as |Q| + |Σ| + |Γ | + {|pXqα| | (p,X, a, q, α) ∈ δ}. We usually
write pX

a#−→
A

qα (or just pX
a#−→ qα if A is understood) for (p,X, a, q, α) ∈ δ.

We say that a rule pX
a#−→
A

qα is a push, internal, or pop rule if |α| = 2, 1, or 0,
respectively. A pda is called real-time (rpda) if pX a#−→ qα implies a �= ε. A pda
is called deterministic (dpda) if for every p ∈ Q, X ∈ Γ ∪ {⊥} and a ∈ Σ ∪ {ε}
we have (i) |{qα | pX a#−→ qα}| ≤ 1 and (ii) if pX ε#−→ qα and pX

a#−→ q′α′ then
a = ε. A real-time deterministic pushdown automaton is denoted by rdpda.

The set QΓ ∗⊥ is the set of configurations of a pda. The configuration q0⊥
is called initial. The transition relation between configurations is defined by: if

Height-Deterministic Pushdown Automata 127

pX
a#−→ qα, then pXβ

a−→ qαβ for every β ∈ Γ ∗. A transition pα
ε−→ qβ is

called ε-transition or ε-move. The labelled transition system generated by A is
the edge-labeled, directed graph (QΓ ∗⊥,

⋃
a∈Σ∪{ε}

a−→). Wherever convenient
we use common graph theoretic terminology, like (w-labeled) path or reachability.
Given w ∈ Σ∗, we write pα

w=⇒
A

qβ (or just pα
w=⇒ qβ if A is understood) if

there exists a finite w′-labeled path from pα to qβ in A such that w′ ∈ (Σ∪{ε})∗
and w is the projection of w′ onto Σ. We say that A is complete if q0⊥ w=⇒

A
qα

for every w ∈ Σ∗. We say that A recognizes the language L(A) = {w ∈ Σ∗ |
q0⊥ w=⇒ pα, p ∈ F}. A language recognized by a pda (dpda, rpda, rdpda) is called
(deterministic, real-time, real-time deterministic) context-free and the class of all
such languages is denoted by CFL, dCFL, rCFL, and rdCFL, respectively.

Pushdown automata may reject a word because they get stuck before they
read it completely, or because after reading it they get engaged in an infinite
sequence of ε-moves that do not visit any final state. They may also scan a
word and then make several ε-moves that visit both final and non-final states
in arbitrary ways. Moreover, in a rule pX

a#−→ qα the word α can be arbitrary.
For our purposes it is convenient to eliminate these “anomalies” by introducing
a normal form.

Definition 1. A pushdown automaton A = (Q,Σ, Γ, δ, q0, F) is normalized if

(i) A is complete;
(ii) for all p ∈ Q, all rules in δ of the form pX

a#−→ qα either satisfy a ∈ Σ or
all of them satisfy a = ε, but not both;

(iii) every rule in δ is of the form pX
a#−→ qλ, pX a#−→ qX, or pX

a#−→ qY X
where a ∈ Σ ∪ {ε}.

States which admit only ε-transitions (see property (ii)), are called ε-states.

Lemma 1. For every pda (dpda, rpda, rdpda) there is a normalized pda (dpda,
rpda, rdpda, respectively), that recognizes the same language.

3 Height Determinism

Loosely speaking, a pda is height-deterministic if the stack height is determined
solely by the input word; more precisely, a pda A is height-deterministic if all
runs of A on input w ∈ (Σ ∪ {ε})∗ (here, crucially, ε is considered to be a part
of the input) lead to configurations of the same stack height. Given two height-
deterministic pda A and B, we call them synchronized if their stack heights
coincide after reading the same input words (again, this includes reading the
same number of ε’s between two letters). The idea of height-determinism will be
discussed more formally below.

Definition 2. Let A be a pda over the alphabet Σ with the initial state q0, and
let w ∈ (Σ∪{ε})∗. The set N(A,w) of stack heights reached by A after reading
w is {|α| | q0⊥

w−→
A

qα⊥}. A height-deterministic pda (hpda) A is a pda that is

128 D. Nowotka and J. Srba

(i) normalized, and
(ii) |N(A,w)| ≤ 1 for every w ∈ (Σ ∪ {ε})∗.
A language recognized by some hpda is height-deterministic context-free. The
class of height-deterministic context-free languages is denoted by hCFL.

Note that every normalized dpda is trivially an hpda.

Definition 3. Two hpda A and B over the same alphabet Σ are synchronized,
denoted by A ∼ B, if N(A,w) = N(B,w) for every w ∈ (Σ ∪ {ε})∗.
Intuitively, two hpda are synchronized if their stacks increase and decrease in
lockstep at every run on the same input. Note that ∼ is an equivalence relation
over all hpda. Let [A]∼ denote the equivalence class containing the hpda A, and
let A-hCFL denote the class of languages {L(A) | A ∈ [A]∼} recognized by any
hpda synchronized with A.

In the following subsections we will study some properties of general, real-
time, and deterministic hpda.

3.1 The General Case

Let us first argue that height-determinism does not restrict the power of pda.

Theorem 1. hCFL = CFL.

The basic proof idea is that for any context-free language L a pda A can be
constructed such that L(A) = L and for every non-deterministic choice of A
a different number of ε-moves is done.

Proof. Let L ∈ CFL. There exists an rpda A = (Q,Σ, Γ, δ, q0, F) with L(A) = L.
We can assume that A is normalized by Lemma 1. Certainly, |N(A,w)| ≤ 1
for every w ∈ Σ∗ does not hold in general. However, we can construct a pda
A′ = (Q′, Σ, Γ, δ′, q0, F) from A such that a different number of ε-moves is
done for every non-deterministic choice of A after reading a letter. In this way
every run of A′ on some input w is uniquely determined by the number of ε-
moves between reading letters from the input. Hence, |N(A,w)| ≤ 1 for every
w ∈ (Σ ∪ {ε})∗ (condition (ii) of the Definition 2) is satisfied.

Formally, over all p ∈ Q and X ∈ Γ ∪{⊥} and a ∈ Σ, let m be the maximum
number of rules of the form pX

a#−→ qα for some q and α. For every qα appearing
on the right-hand side of some rule, we introduce m new states p1

qα, p
2
qα, . . . , p

m
qα

and for every X ∈ Γ ∪ {⊥} and 1 ≤ i < m we add the rules

piqαX
ε#−→ pi+1

qα X and pmqαX
ε#−→ qα .

Now, for all p ∈ Q, X ∈ Γ ∪ {⊥} and a ∈ Σ, let

pX
a#−→ q1α1, pX

a#−→ q2α2, . . . , pX
a#−→ qnαn

be all rules under the action a with the left-hand side pX ; we replace all these
rules with the following ones:

pX
a#−→ p1

q1α1
X, pX

a#−→ p2
q2α2

X, . . . , pX
a#−→ pnqnαn

X .

Note that A′ is normalized if A is normalized, and that L(A′) = L(A). ��

Height-Deterministic Pushdown Automata 129

Theorem 2. Let A be any hpda. Then REG ⊆ A-hCFL.
In particular, if R is a complete dfsa then there exists an hpda B ∈ A-hCFL

such that L(B) = L(R) and |B| = O(|A| |R|). Moreover, if A is deterministic,
then B is deterministic.

Proof. Let L ∈ REG, and let R be a dfsa recognizing L. W.l.o.g. we can assume
that R is complete, that is, for every a ∈ Σ and state r in R there is a transition
r

a−→
R

r′. We construct a pda B as the usual product of (the control part of) A
with R: for all a ∈ Σ, B has a rule (q, r)X a#−→

B
(q′, r′)α if and only if qX a#−→

A
q′α

and r
a−→
R

r′; for every state r of R, B has an ε-rule (q, r)X ε#−→
B

(q′, r)α if and
only if qX ε#−→

A
q′α. The final states of B are the pairs (q, r) such that r is a final

state of R. Clearly, we have |B| = O(|A| |R|). Moreover, every run of B on some
w ∈ Σ∗ ends in a final state (q, r) if and only if R is in r after reading w, and
hence, L(B) = L.

Next we show that B is hpda. Firstly, condition (ii) of Definition 2 and com-
pleteness (Definition 1(i)) clearly hold. Secondly, every state of B either ad-
mits only ε-transitions or non-ε-transitions but not both (Definition 1(ii)) since
(p, r)X ε#−→

B
(q, r)α and (p, r)Y a#−→

B
(q′, r′)β implies pX ε#−→

A
qα and pY

a#−→
A

q′β,
contradicting the normalization of A. Finally, Definition 1(iii) follows trivially
from the fact that A is normalized. It remains to prove A ∼ B, however, this
follows easily because the height of B’s stack is completely determined by A. ��
Note that the pda B in Theorem 2 is real-time (deterministic) if A is real-time
(deterministic). The following closure properties are easily proved using classical
constructions.

Theorem 3. Let A be any hpda. Then A-hCFL is closed under union and in-
tersection.

In particular, let A and B be two hpda with A ∼ B.

(i) The language L(A)∪L(B) is recognized by some hpda C of size O(|A|+|B|)
such that A ∼ C ∼ B.

(ii) If A and B are deterministic, then the language L(A)∪L(B) is recognized
by some deterministic hpda C of size O(|A| |B|) such that A ∼ C ∼ B.

(iii) The language L(A)∩L(B) is recognized by some hpda C of size O(|A| |B|)
such that A ∼ C ∼ B. If A and B are deterministic, then C is determin-
istic.

Moreover, we have in all cases that if both A and B are rpda, then C is an rpda.

3.2 The Real-Time Case

Let rhpda denote a real-time hpda, and let rhCFL denote the class of languages
generated by rhpda. We remark that rhpda contain visibly pushdown automata
introduced in [3] but not vice versa as shown in Example 1 below. A visibly
pushdown automaton A (vpda) over Σ is an rpda together with a fixed partition
of Σ = Σc ∪ Σi ∪Σr such that if pX a#−→

A
qY X then a ∈ Σc and if pX a#−→

A
qX

then a ∈ Σi and if pX a#−→
A

qλ then a ∈ Σr. By vCFL we denote the class of
languages generated by vpda.

130 D. Nowotka and J. Srba

Example 1. Consider the language L1 = {anban | n ≥ 0} which is not recognized
by any vpda; see also [3]. Indeed, a vpda recognizing L1 would have to either
only push or only pop or only change its state whenever the letter a is read, but
then the two powers of a in an input word from a∗ba∗ could not be compared for
most inputs. However, the obvious rdpda that pushes the first block of a’s into
the stack, reads the b, reads the second block of a’s while popping the first block
from the stack, and compares whether they have the same length, is a rhpda
that accepts L1. ��

On the other hand, it is easy to see that not every language accepted by an rpda
can also be accepted by a rhpda. For example, the language of all palindromes
over Σ is in rCFL but not in rhCFL. This follows from the fact that this language
does not belong to rdCFL, and from the fact that rdCFL = rhCFL, which is
proved below in Theorem 4. All together, we get the following hierarchy.

REG � vCFL � rhCFL = rdCFL � rCFL = hCFL = CFL

The next theorem shows that real-time hpda can be determinised. The proof of
this theorem uses the same basic technique as for determinising vpda [3].

Theorem 4. rhCFL = rdCFL.
In particular, we can construct for every rhpda A a deterministic rhpda B

such that L(A) = L(B) and A ∼ B and B has O
(
2n2

)
many states and a stack

alphabet of size O
(
|Σ|2n2

)
where n is the number of pairs of states and stack

symbols of A.

It follows from Theorem 4 and the closure of rdCFL under complement that a
complement Ac exists for every rhpda A. However, the following corollary more
precisely shows that Ac can be chosen to satisfy Ac ∼ A.

Corollary 1. rhCFL is closed under complement.
In particular, for every rhpda A there exists an rhpda B such that L(B) =

L(A)c and A ∼ B and |B| = 2O(|A|2).

The emptiness problem can be decided in time O(n3) for any pda of size n; see
for example [6]. In combination with the previous results we get the bound on
the equivalence problem.

Theorem 5. Language equivalence of synchronized rhpda is decidable.
In particular, let A and B be two rhpda with A ∼ B, and let n = |A| and

m = |B|. We can decide L(A) ?= L(B), in time 2O(n2+m2).

3.3 The Deterministic Case

Contrary to the real-time case, arbitrary hpda cannot always be determinised,
as shown by Theorem 1. For this reason we investigate the synchronization re-
lation ∼ restricted to the class of deterministic pushdown automata. Certainly,
dhCFL = dCFL since every dpda can be normalized by Lemma 1 and then it is

Height-Deterministic Pushdown Automata 131

trivially height-deterministic. However, we lay the focus in this section on the
closure of each equivalence class of ∼ under complement. Therefore, we denote
a deterministic hpda by dhpda. The class of languages recognized by some dhpda
synchronized with the dhpda A is denoted by A-dhCFL.

First, we show that, as in the real-time case, every dhpda can be complemented
without leaving its equivalence class. The proof is, however, more delicate due
to the presence of ε-rules. In fact, the normalization of Definition 1 has been
carefully chosen to make this theorem possible.

Theorem 6. Let A be any dhpda. Then A-dhCFL is closed under complement.
In particular, for every dhpda B there exists a complement dhpda Bc such

that Bc ∼ B and |Bc| = O(|B|).
Proof. Let B = (Q,Σ, Γ, δ, q0, F). Let Q′ ⊆ Q be the set of all ε-states of B and
let Q′′ = Q \Q′. We construct Bc by first defining an dhpda B′ equivalent to B
such that a word is accepted if and only if it can be accepted with a state in Q′′,
that is, a state which allows only non-ε-moves. Then the set of accepting states
is a subset of states in Q′′ that do not accept L(B). This gives the complement
of B.

We will define a dhpda B′ such that B ∼ B′ and L(B′) = L(B) and every
accepting path in the transition system generated by B′ ends in a state in Q′ ∪
(Q′′∩F), that is, when B′ accepts a word w, then B′ shall end in a final state after
reading w with a maximal (and finite by property (i) in Definition 1) number of
ε moves after reading the last letter of w. Note that the completeness property
of B in Definition 1 implies that B is always in a state in Q′′ after reading w
followed by a maximal number of ε-transitions.

Let B′ = (Q × {0, 1}, Σ, Γ, ϑ, q′0, F
′) with F ′ = Q × {1}, and q′0 = (q0, 1) if

q0 ∈ F and q′0 = (q0, 0) otherwise. The set of rules ϑ is defined as follows:

– ((p, i), X, e, (q, 1), α) ∈ ϑ if (p,X, e, q, α) ∈ δ and q ∈ F ,
– ((p, i), X, a, (q, 0), α) ∈ ϑ if (p,X, a, q, α) ∈ δ and q �∈ F , and
– ((p, i), X, ε, (q, i), α) ∈ ϑ if (p,X, ε, q, α) ∈ δ and q �∈ F .

where e ∈ Σ∪{ε} and i ∈ {0, 1} and a ∈ Σ. We have now L(B′) = L(B). Indeed,
we have two copies, indexed with 0 and 1, of B in B′ and whenever an accepting
state is reached in B then it is reached in the 1-copy of B in B′ (the first two
items in the definition of ϑ above) and B′ is in an accepting state and both B
and B′ accept the word read so far. The set of accepting states of B′ is only
left when the next letter is read from the input and B reaches a non-accepting
state (the third item in the definition of ϑ above). Otherwise, B′ remains in the
respective copy of B (first and fourth item in the definition of ϑ above). Clearly,
B′ ∼ B.

Now, Bc = (Q× {0, 1}, Σ, Γ, ϑ, q′0, Q
′′ × {0}). ��

The equivalence checking problem for two synchronized dhpda is, like in the
real-time case, decidable.

Theorem 7. Language equivalence of synchronized dhpda is decidable.
In particular, for any dhpda A and B such that A ∼ B, we can decide whether

L(A) ?= L(B) in time O
(
|A|3 |B|3

)
.

132 D. Nowotka and J. Srba

4 Other Language Classes — A Comparison

In this section height-deterministic context-free languages are compared to two
other recent approaches of defining classes of context-free languages closed under
boolean operations. In [5], Caucal introduced an extension of Alur and Madhusu-
dan’s visibly pushdown languages [3], and proved that it forms a boolean algebra.
The second class is the one introduced by Fisman and Pnueli in [7]. We show in
this section that rhCFL (which is a proper subclass of dhCFL) properly contains
these two classes.

4.1 Caucal’s Class

Caucal’s class is defined with the help of a notion of synchronization, just as
our hCFL class.1 Before we can define Caucal’s synchronization, we need some
preliminaries.

A fst is input deterministic, if (s, a,m, t) ∈ and (s, a, n, t′) ∈ implies that
m = n and t = t′. Caucal considers input deterministic transducers from Σ∗

to ZZ (the additive monoid of integers) where every state accepts, i.e., trans-
ducers whose transitions are labeled with a letter from Σ and an integer. When
the transducer reads a word over Σ, it outputs the sum of the integers of the
transitions visited. Notice that if a transducer T is input deterministic then the
set T (w) is a singleton, i.e., a set containing one single integer. By abuse of
notation, we identify T (w) with this integer. We let |T (w)| denote the absolute
value of T (w).

Given an input deterministic fst T from Σ∗ to ZZ and an rpda A over Σ with
initial state q0, we say that A is a T -synchronized pda (T -spda) if q0⊥ w−→

A
pα⊥

implies |α| = |T (w)| for every w ∈ Σ∗ and every configuration pα of A. Let
wSCFL denote the class of all languages that are recognized by some T -spda for
some T . (See also Caucal’s introduction of wSCFL in [5]).

Theorem 8. wSCFL � rhCFL.
In particular, the language

L3 = {ambnw | m > n > 0, |w|a = |w|b, w(1) = a if w �= λ}

belongs to rhCFL but not to wSCFL.

4.2 Fisman and Pnueli’s Class

We define the class of M -synchronized pda, which is the formalism used by
Fisman and Pnueli in their approach to non-regular model-checking [7].

Let M = (Δ,Γ, δ) be a 1-rdpda, let R = (Q,Σ × Γ, q0, , F) be a dfsa, and
let φ : Σ → Δ be a substitution. The cascade product M ◦φ R is the rdpda
(Q,Σ, Γ, δ′, q0, F) with qX

a#−→ (q, (a,X))δ(φ(a), X) for all q ∈ Q, a ∈ Σ and
X ∈ Γ ∪ {⊥}. An rdpda A is called M -synchronized (M -spda) if there exists
1 In fact, Caucal’s class was the starting point of our study.

Height-Deterministic Pushdown Automata 133

a substitution φ and a dfsa R such that A = M ◦φ R. Let 1SCFL denote the
class of all languages that are recognized by some M -spda for some 1-rdpda M .
See also Fisman and Pnueli’s introduction of 1SCFL in [7].

Theorem 9. 1SCFL � rhCFL.
In particular, the language

L4 = {anban | n ≥ 0} ∪ {anca2n | n ≥ 0}

belongs to rhCFL but not to 1SCFL.

5 Conclusion

We have introduced several (sub)classes of the class of context-free languages
that are closed under boolean operations. Our key technical tools are height-
deterministic pushdown automata (hpda) and synchronization between hpda.
These notions are inspired by and generalize Caucal’s work on real-time syn-
chronized pushdown graphs [5]. In fact, our results can be seen as an exten-
sion of Caucal’s ideas to pushdown automata with ε-transitions. This extension
has turned out to be rather delicate. Both Theorem 2 (REG ⊆ A-hCFL) and
Theorem 6 (A-hCFL is closed under complement) depend crucially on the nor-
malization of Definition 1 which had to be carefully chosen. In a sense, one of
the contributions of the paper is to have worked out the right notion of nor-
malization. We have also showed that language equivalence of real-time height-
deterministic pushdown automata is decidable in EXPTIME.

Both this paper and Caucal’s have been also inspired by Alur and Madhusu-
dan’s work on visibly pushdown automata, initiated in [3]. From an automata-
theoretic point of view, we have extended the theorem of [3], stating that visibly
pushdown automata are closed under boolean operations, to deterministic hpda.
This is rather satisfactory, because deterministic hpda recognize all determin-
istic context-free languages, while visibly pda are far from it. Remarkably, the
extension is be achieved at a very low cost; in our opinion, height-deterministic
pda are, at least from the semantical point of view, as natural and intuitive as
visibly pda.

Acknowledgments. The authors are deeply indebted to Javier Esparza who con-
tributed to this work in many ways. We also thank to the anonymous referees
for their useful remarks.

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

134 D. Nowotka and J. Srba

2. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005)

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing (STOC’04), pp. 202–211. ACM Press, New York (2004)

4. Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown lan-
guages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
420–431. Springer, Heidelberg (2006)

5. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

7. Fisman, D., Pnueli, A.: Beyond regular model checking. In: Hariharan, R., Mukund,
M., Vinay, V. (eds.) FST TCS 2001: Foundations of Software Technology and
Theoretical Computer Science. LNCS, vol. 2245, pp. 156–170. Springer, Heidelberg
(2001)

8. Löding, Ch., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya,
K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer,
Heidelberg (2004)

9. Murawski, A., Walukiewicz, I.: Third-order idealized algol with iteration is decid-
able. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer,
Heidelberg (2005)

10. Pitcher, C.: Visibly pushdown expression effects for XML stream processing. In:
Proceedings of Programming Language Technologies for XML (PLAN-X), pp. 5–19
(2005)

11. Srba, J.: Visibly pushdown automata: From language equivalence to simulation and
bisimulation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 89–103. Springer,
Heidelberg (2006)

Minimizing Variants of Visibly Pushdown

Automata

Patrick Chervet and Igor Walukiewicz�

LaBRI, Université de Bordeaux and CNRS
351, Cours de la Libération, F-33 405, Talence cedex, France

Abstract. The minimization problem for visibly pushdown automata
(VPA) is studied. Two subclasses of VPA are introduced: call driven au-
tomata, and block automata. For the first class, minimization results are
given unifying and generalizing those present in the literature. Unfor-
tunately, this class shares the drawback of all other classes for which a
minimization result is known: it is exponentially less succinct than VPA.
The second class, block automata, is introduced to address this problem.
These automata are as succinct as VPA. A minimization procedure for
them is presented that requires one additional parameter to be fixed. An
example of an exponential gain in succinctness is given.

Introduction

The class of visibly pushdown languages is the class of languages defined by
pushdown automata where an input letter determines a stack action of the
automaton. It seems that this class was first studied by Melhorn under the
name of input driven automata. In [11] he shows that the parsing problem is in
O(log2(n)). Alur and Madhusudan [4] exhibit many good properties of this class.
It is closed under boolean operations and it contains some interesting previously
studied classes as: parenthesis languages [10] and balanced grammars [5]. Visibly
pushdown languages have several different characterizations. One is via syntac-
tic congruences in a style of Myhill-Nerode congruence for regular languages [2].
This characterization permits to obtain a canonical visibly pushdown automaton
for a given language. Unfortunately, this canonical automaton is not always the
minimal visibly pushdown automaton for the language.

In this paper we study the minimization problem for deterministic VPA. Our
research is motivated by the presence of two different subclasses in the litera-
ture: SEVPA [2] and MEVPA [8]. These are two subclasses of VPA for which
some minimization results are known. We introduce two new classes: call driven
automata (CDA), and their expanded version (eCDA). The class CDA is a su-
perset of both SEVPA and MEVPA; while eCDA is included in these two classes.
We prove a minimization result for eCDA and show how it can be used to get
known and new minimization results for the other three classes. This gives a
unified picture of the previous studies of the minimization problem.
� This work was supported by ANR grant ANR-06-SETIN-001.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 135–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 P. Chervet and I. Walukiewicz

The drawback of all of the above results is that translation from deterministic
VPA to automata in one of these classes may incur exponential blowup. This
happens due to structural constraints on the form of automata. We propose a new
subclass of VPA, called block VPA (BVPA), which is much better in this respect.
The translation from VPA to a BVPA results in at most quadratic blowup. Thus
a minimization result for BVPA would give an approximative minimization of
VPA. Unfortunately, we are able to show minimization of BVPA only when some
additional parameter is fixed. The advantage of this result is that minimizations
of eCDA and SEVPA are its special cases. It makes also evident that minimizing
VPA is related to optimizing the one parameter that we exhibit.

Since the paper of Alur and Madhusudan [4], VPA has appeared in several
contexts: XML [15,7], verification [9,1], learning [8], semantics of programing lan-
guages [13]. It is in particular this last paper that motivated the current work. In
that paper an algorithm is given for constructing a VPA describing the seman-
tics of a given program expression. This way comparing program expressions is
reduced to VPA equivalence. For the feasibility of the translation from programs
to VPA it is essential to be able to reduce the size of intermediate automata dur-
ing construction. This leads directly to the problem of minimization. It is worth
noting that in other applications mentioned above minimization can also play
an important role.

Let us comment on the importance and feasibility of minimization in general.
Small canonical ways of representing objects are omnipresent. Consider two ex-
amples from verification: Binary Decision Diagrams [12] (BDD’s) are nothing else
but minimal automata for languages of bit strings; difference bounded matrices [6]
(DBM’s) are canonical representations of sets clock valuations. Good representa-
tions are rare. For example, nondeterministic automata are in principle more suc-
cinct than deterministic automata, still it seems very difficult to obtain, with a
reasonable computational effort, a nondeterministic automaton of size close to a
minimal one. Similar problems appear with two way deterministic automata, or
even with two-pass deterministic automata that read the word first from left to
right and then from right to left. In this context having minimal automata even for
a restricted class of VPA is rather unexpected. The general minimization of VPA
seems at least as difficult as minimization of two-pass automata.

The plan of the paper is as follows. We start with basic definitions on VPA. In
the following section we introduce the new classes CDA and eCDA. We also show
the minimization result for eCDA and point out how it implies a minimization
result for CDA. Section 3 discusses relations with MEVPA and SEVPA. Finally,
we present BVPA, discuss their properties and present a minimization procedure
for them. The missing proofs can be found in the full version of the paper [14].

1 Visibly Pushdown Automata

A visibly pushdown alphabet Σ̂ = (Σcall, Σret, Σint) consists of three disjoint
finite sets: Σcall a set of calls, Σret a set of returns, and Σint a set of internal
actions.

Minimizing Variants of Visibly Pushdown Automata 137

For any such Σ̂, let Σ denote Σcall ∪Σret ∪Σint. In the following we will use:
c, c1, . . . for elements of Σcall; r, r1, . . . for elements of Σret; i, i1, . . . for elements
of Σint.

Definition 1. A visibly pushdown automaton (VPA) is a pushdown automaton
A = 〈Q, Σ̂, q0, Γ, δ,QF 〉, where Q is a finite set of states, Σ̂ = (Σcall, Σret, Σint)
is a visibly pushdown alphabet, q0 ∈ Q is an initial state, Γ is a (finite) stack
alphabet, QF is a set of final states and δ = δcall ∪ δret ∪ δint is a transition
function, such that: δcall : Q × Σcall → Q × Γ , δret : Q × Σret × Γ → Q and
δint : Q×Σint → Q.

A stack over Γ will be represented by a finite word over Γ with the top on the
left of the word. We will write γσ to denote a stack with the top letter γ and
the rest of the stack σ. A configuration is a pair (q, σ) where q is a state and σ
is a stack.

An execution of a VPA A as above on a word w = a1 · · ·ak from Σ∗ is a
sequence of configurations (q0, σ0), . . . , (qk, σk) where σ0 is the empty stack ε,
and for every j ∈ [1, k]:

– if aj is a call then δcall(qj , aj) = (qj+1, γ) and σj+1 = γσj ,
– if aj is an internal action then δint(qj , aj) = qj+1 and σj = σj+1,
– if aj is a return then δret(qj , aj , γ) = qj+1 and σj = γσj+1.

Intuitively, on reading a call the automaton is obliged to do a push operation
and moreover it cannot look at the top of the stack. On internal actions the
automaton cannot change the stack, neither it can look at the top of it. When
reading a return, the automaton has to do a pop, but this time it can use the

information on the top of the stack. We will write q
c/γ#−→ q′, q i#−→ q′, and q

r/γ#−→ q′

for push, internal, and pop transitions, respectively.
An execution (q0, σ0), . . . , (qk, σk) is accepting if qk is a final state (qk ∈ QF).

A word w ∈ Σ∗ is recognized by an automaton A if the unique execution of A
on w is accepting. The language recognized by A, denoted L(A), is the set of
all words of Σ∗ recognized by A. A language L over an alphabet Σ̂ is a VPL if
there is a visibly pushdown automaton over Σ̂ recognizing L.

If A is a VPA and δ is its transition function, we will write δ(u) to denote the
state reached by A after the reading of u ∈ Σ∗. We will sometimes also use →A

to denote the transition function of A.

Remark 1. A visibly pushdown automaton is a deterministic pushdown automa-
ton with one important restriction that input letters determine stack actions.
The restrictions disallowing to look at the top of the stack when doing push or
internal actions are not essential if recognizability is concerned as one can always
remember the top of the stack in a state. One can also consider nondeterministic
visibly pushdown automata, but we will not do it here.

Remark 2. Without a loss of generality, one can assume that Γ = Q×Σcall and
that in a state q when reading a call c the automation pushes (q, c) on the stack.
This works as (q, c) is the maximal information the automaton has when doing
the push. In the following we will use this form of Γ when convenient.

138 P. Chervet and I. Walukiewicz

Definition 2 (Matched calls and returns). Let Σ̂ be a pushdown alphabet,
and u be a word in Σ∗.

The word u is matched calls if every call has a matching return, i.e. if for
every suffix u′ of u the number of call symbols in u′ is at most the number of
return symbols of u′.

Similarly, the word u is matched returns if every return has a matching call,
i.e. if for every prefix u′ of u the number of return symbols in u′ is at most the
number of call symbols in u′.

The word u is well-matched if it is matched calls and matched returns. Observe
that being well matched means being well bracketed when call symbols are consid-
ered as opening brackets and return symbols are considered as closing brackets.

Let then MC(Σ̂), MR(Σ̂) and WM(Σ̂) be respectively the set of matched
calls, matched returns and well-matched words. A language L is well-matched if
L ⊆WM(Σ̂).

Remark 3. In this paper we consider only well-matched languages. In this case
it is not restrictive to disallow return actions with empty stack: to fit with the
classical definition of VPA it is enough to add a sink where every return transition
with empty stack can go.

Given a VPL L over a visibly pushdown alphabet Σ̂ = (Σcall, Σret, Σint), let us
define the equivalence relation ≈L on well-matched words:

w1 ≈L w2 if for all u, v ∈ Σ∗ : uw1v ∈ L iff uw2v ∈ L.

Observe that ≈L is a congruence with respect to the concatenation.

Theorem 1. [2] A language L ⊆ WM(Σ̂) is a VPL iff ≈L has finitely many
equivalence classes.

2 Call Driven Automata and Their Minimization

In this section we introduce the class of call driven automata. A call driven
automaton is a special kind of visibly pushdown automaton where we require
that a call letter determines uniquely the state to which the automaton goes. We
will show later that this subclass of VPA is larger than previously introduced
subclasses: SEVPA and MEVPA.

Definition 3. A VPA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 is a Call Driven Automaton
(CDA) if there is a function Target : Σcall #→ Q and an equivalence relation Q↔
on Q such that:

– for all c ∈ Σcall, q0
Q� Target(c)

– if q i→ q′ then q
Q↔ q′,

– if q
c/(q,c)−→ q′ then q′ = Target(c),

– if q
r/(q′,c)−→ q′′ then q′

Q↔ q′′.

Minimizing Variants of Visibly Pushdown Automata 139

This definition essentially says that the set of states is divided into equivalence
classes of Q↔. An internal transition has to stay in the same equivalence class. A
call transition goes to the class determined by the call letter. A return transition
has to go back to the class from which the matching call was done. The first
condition says that the equivalence class of q0 is not the target of any call, so
being in this class we know that the stack is empty.

An interesting subclass of CDA, which we call expanded CDA, is obtained by
requiring that each call leads to a different equivalence class. We will show in the
next subsection that eCDA are relatively straightforward to minimize. Moreover,
minimization of CDA can be done via minimization of eCDA (cf. Theorem 2).

Definition 4. A VPA A is an expanded Call Driven Automaton (eCDA) if
it is a CDA for some function Target and equivalence relation Q↔ such that if
Target(c) Q↔ Target(c′) then c = c′.

2.1 Minimization of eCDA

Due to the restriction on their structure, minimization of eCDA resembles very
much minimization of finite automata. Later, we will show that minimizations
of other subclasses of visibly pushdown automata can be obtained via reduction
to minimization of eCDA. As usual, by the size of an automaton we mean the
number of its states.

Theorem 2. Let Σ̂ be a visibly pushdown alphabet. For every VPL L⊆WM(Σ̂)
there is a unique (up to isomorphism) minimum-size eCDA recognizing L.

Moreover, for a given eCDA in cubic time it is possible to find a minimal
equivalent eCDA.

Proof. The proof uses the same method as minimization of SEVPA [2,3] but
it is notationaly simpler, due to the simpler structure of eCDA. The idea is to
construct first a syntactic eCDA A recognizing L, and then to prove its mini-
mality by showing for any eCDA recognizing L a surjective homomorphism from
it to A. The construction uses congruence relations which are coarser than ≈L,
and hence of finite index (cf Theorem 1). So the construction resembles Myhill-
Nerode minimization for finite automata. As the more complicated construction
for SEVPA has the cubic complexity, the same is true here.

2.2 Minimization of CDA

An obvious question is whether one can minimize CDA in the same way as
eCDA. The answer is negative as there is no unique minimal CDA for the lan-
guage (see Example 1 below). Without much work though we can obtain an
approximative minimization of CDA, i.e., minimization up to the factor |Σcall|.
The construction uses the minimization of eCDA.

Lemma 1. Given a CDA of size n, an equivalent eCDA of size O(n × |Σcall|)
can be constructed in linear time.

140 P. Chervet and I. Walukiewicz

The construction only needs to duplicate states so that the equivalence relation
Q↔ relates no two states in the range of Target . Given a CDA, this lemma together
with the Theorem 2 allows us to find the smallest equivalent eCDA. Moreover,
due to the Lemma 1, the smallest equivalent eCDA is of size O(n × |Σcall|),
where n is the minimal size of an equivalent CDA. This gives us:

Corollary 1. Given a CDA in a cubic time it is possible to find a CDA of size
|Σcall| × n where n is the size of a minimal equivalent CDA.

The following example shows a language L such that there is no unique minimal
CDA recognizing L. We take for L the VPL c1(1 · 1)∗r + c21∗r over the visibly
pushdown alphabet ({c1, c2}, {r}, {1}). The two automata presented in Figure 1
have the same number of states and transitions. While L is a regular language,
of course the same problem arises for some languages that are not regular.

q0 qf

c1/
c1

c2/c2

r/c1 ,c2

r/c2

1 q0 qf

r/c1 ,c2

r/c2

c1/
c1

c2/
c2

1

Fig. 1. Two non-isomorphic minimal CDA recognizing L (each automaton also has a
sink that is not represented)

3 Comparison Between Different VPA Subclasses

In this section we discuss the relations between CDA and two other classes
of VPA introduced in the literature: single entry visibly pushdown automata
(SEVPA) [2], and multi-entry visibly pushdown automata (MEVPA) [8]. Not
only these two classes are included in CDA, but we can recover minimization
results for them from our basic minimization result for eCDA.

A SEVPA is a CDA when every equivalence class of Q↔ has a single entry, i.e.,
only one state in a class is a target of a push transition.

Definition 5. A CDA with Target and Q↔ is a single entry visibly pushdown
automaton (SEVPA) if, for all call actions c and c′:

if Target(c) Q↔ Target(c′) then Target(c) = Target(c′).

Multi-entry automata (MEVPA) represent another kind of restriction on CDA.
In general we can assume that the stack alphabet of a visibly pushdown automa-
ton is Q×Σcall (cf. remark 2) as a push transition depends only on the current
state and a letter being read. In MEVPA we assume that the symbol pushed on
the stack depends only on the state and not on the input letter.

Minimizing Variants of Visibly Pushdown Automata 141

Definition 6. A CDA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 is a Multi Entry Visibly Push-

down Automaton (MEVPA) when for all transitions q1
c1/γ1−→ q′1 and q2

c2/γ2−→ q′2:
if q1 = q2 then γ1 = γ2.

By definition, CDA includes all other classes: eCDA, SEVPA, MEVPA. Also
by definition, eCDA is included in SEVPA. The class eCDA is also included in
MEVPA. Indeed, if (A,Target , Q↔) is an eCDA then each state of A is related in
Q↔ to at most one state Target(c), so the automaton always knows what is the
last call read, and does not need to put this information on the stack. This gives
the following graph of inclusions between the subclasses.

CDA
↗ ↖

SEVPA MEVPA
↖ ↗

eCDA

Due to Theorem 2 and Lemma 1, for every VPA there is an equivalent au-
tomaton in every one of the four classes above. The question is, given a VPA,
how small an equivalent CDA can be. The following example shows that the
blow-up can be exponential; which is also an upper bound.

Example. Consider an alphabet Σ̂ = ({c}, {r}, {a1, . . . , ak}) with one call sym-
bol c and one return symbol r. Let Lk = a1cLa1r + · · · + akcLak

r, where
Lai ⊆ {a1, . . . , an}∗ is the set of words where the number of ai is even. By
counting equivalence classes one can show that the minimal eCDA recognizing
Lk is of size bigger than 2k. Lemma 1 gives the bound 2k/k for CDA . On the
other hand, Lk can be recognized by a VPA of size in O(k2) (see figure 2 below).

q0

1

k

⊥

qf

a 1

a
k

a1

ak

c/∗

c/∗

r/∗

r/∗

Fig. 2. VPA of size in O(k) recognizing Lk

4 Other Results on MEVPA and SEVPA

It turns out that we can reprove known minimization results on MEVPA and
SEVPA using the result about eCDA. The main idea is to use an appropriately
chosen injective morphism Φ : Σ∗ → Λ∗ where Λ is some alphabet. The idea of

142 P. Chervet and I. Walukiewicz

the construction is presented in the schema in Figure 3. Given an automaton A
from a class C, one constructs an eCDA A recognizing Φ(L). Then one finds the
minimal eCDA B equivalent to A, and finally translates B to an automaton B
recognizing L. If Φ is suitably chosen then the size of A can be bounded by a
small polynomial in the size of A and usually the translation from B to B does
not introduce extra states.

A ∈ C recognizing L Φ-translation A ∈ eCDA recognizing Φ(L)−→ size ≤ p(|A|)

eCDA↓ minimization

B ∈ C recognizing L ←− B ∈ eCDA recognizing Φ(L)

size ≤ |B| back translation

Fig. 3. Translation method: p(n) is a fixed polynomial

4.1 MEVPA

We explain how to obtain a minimization of MEVPA using eCDA.

Theorem 3 (Kumar, Madhusudan & Viswanathan). [8] Let Σ̂ be a vis-
ibly pushdown alphabet. For every VPL L ⊆ WM(Σ̂), there is a unique (up to
isomorphism) minimum-size equivalent MEVPA. Moreover, it can be constructed
in a cubic time from a given MEVPA recognizing L.

Proof. We apply the translation method for the homomorphism Φ that is an
identity on all letters but on the call letters where we put Φ(c) = 1c. The idea
of the construction is that each call transition on a letter c is split into a 1
transition that does the push followed by internal c transition. An eCDA A for
the transformed language can be obtained by adding one entry state E, which is
the target of 1 transition, and modifying c transitions appropriately (see figure 4).

p

p

q

qE

c/γ

1/γ c

SPLIT INTO

Fig. 4. c → 1c translation

We then apply eCDA minimization toA, and collapse back the previously split
translations of the resulting automaton. Finally, we prove that the MEVPA B
obtained this way is the unique minimal equivalent MEVPA.

Minimizing Variants of Visibly Pushdown Automata 143

4.2 SEVPA

In [2] Alur, Kumar, Madhusudan and Viswanathan give a minimization of
SEVPA provided some additional structure is preserved. We show how to obtain
this result using the method of translations. Before doing this we present two
remarks. The first shows that preserving the structure can result in exponen-
tial blowup. The second points out that our result on CDA gives approximative
minimization that avoids the blow-up.

For a SEVPA A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 with Target and Q↔ we define an equiv-
alence relation Σ↔ on call actions Σcall by:

c
Σ↔ c′ iff Target(c) = Target(c′).

We then call A a Σ↔-SEVPA. Equivalence relation Σ↔ fixes bit more of the struc-
ture of automaton. One can consider eCDA as SEVPA with Σ↔ that is the identity
relation.

Remark 4. It may happen that minimal SEVPA for one Σ↔ relation can be
much bigger than an equivalent SEVPA for some other relation. Consider vis-
ibly pushdown alphabet Σ̂ = ({c1, . . . , ck}, {r}, {a1, . . . , ak}), and a language
Lk = a1c1La1r + · · ·+ akckLak

r, where Lai ⊆ {a1, . . . , ak}∗ is the set of words
with even number of occurrences of ai. When Σ↔ is the identity relation, the
minimal size of a Σ↔-SEVPA recognizing L is in O(k). If on the other hand Σ↔
is a complete relation where every pair of call letters is related then the size of
the minimal Σ↔-SEVPA is bigger than O(2k) .

Remark 5. Lemma 1 implies that taking Σ↔ to be the identity relation is not far
from optimal. Indeed, every SEVPA is a CDA, so the minimal eCDA for a given
language is only |Σcall| bigger than the minimal equivalent SEVPA. As noted
above an eCDA is a Σ↔-SEVPA when Σ↔ is the identity relation. So modifying
Σ↔ relation we can gain at most a |Σcall| factor.

The following result is the main minimization result of [2]. It can be proved via
translation with the homomorphism Φ that is an identity on all the letters but
Σcall for which we let Φ(c) = ct where t = Target(c). Note that this theorem is
also a particular case of the BVPA minimization we will study in Section 5.

Theorem 4 (Alur, Kumar, Madhusudan & Viswanathan). [2] Let Σ̂ be
a visibly pushdown alphabet and let Σ↔ be an equivalence relation over Σcall. For
every VPL L ⊆ WM(Σ̂) there is a unique (up to isomorphism) minimum-size
Σ↔-SEVPA recognizing L. Moreover it can be constructed in a cubic time given
a Σ↔-SEVPA for the language.

5 Block Visibly Pushdown Automata

In the previous section we have observed that there is an exponential lower
bound for the translation from VPA to CDA. This motivates the quest for a
new subclass of VPA which admits good properties with respect to minimiza-
tion. Here we introduce the class of blocks visibly pushdown automata (BVPA).

144 P. Chervet and I. Walukiewicz

One important property is that for every VPA there is an equivalent BVPA of
quadratic size. The idea of BVPA is that its states are divided in equivalence
classes of some Q↔ and only call transitions can change the classes. But this time
a call does not determine a class to which the automaton has to go.

Definition 7 (Block Visibly Pushdown Automaton). A VPA A =
(Q, Σ̂, q0, Γ, δ,QF) is a Block Visibly Pushdown Automaton (BVPA) if there
is a function Target : Q×Σcall #→ Q and an equivalence relation Q↔ on Q such
that:

– for all (q, c) ∈ Q×Σcall, q0
Q� Target(q, c)

– if q i−→ q′ then q
Q↔ q′,

– if q
c/(q,c)−→ q′ then q′ = Target(q, c),

– if q
r/(q′,c)−→ q′′ then q′

Q↔ q′′.
– if Target(q, c) Q↔ Target(q′, c′) then Target(q, c) = Target(q′, c′)

To conver a VPA to a BPA one can make a copy of A for each state q of A. This
copy will simulate A afer reading a call pointing at q.

Proposition 1. Given a VPA of size n, there is an equivalent BVPA of size
O(n2), that can be computed in quadratic time.

Due to Proposition 1, every VPA has an equivalent BVPA of quadratic size. So
approximative minimization of BVPA is as difficult as approximative minimiza-
tion of VPA. We propose here a weaker minimization in the same sense as SEVPA
minimization preserving Σ↔ relation (cf. Section 4.2). Here again, our minimiza-
tion will keep the structure of call transitions fixed. The automata studied in
this section are not call driven any more. So we need a new way to characterize
the structure of call transitions. Let A and B be two BVPA recognizing the same
language L. A and B will have the same structure if when reading u ∈ L, the
two automata pass through the “same” blocks simultaneously.

We use Pref (L) for the set of prefixes of a language L. Take a BVPA recogniz-
ing L: A = 〈Q, Σ̂, q0, Γ, δ,QF 〉 together with Target and Q↔. Let T be the range
of Target . The associated partition is the partition of KL = {uc|u ∈MR(Σ̂), c ∈
Σcall, uc ∈ Pref (L)} defined by:

for every t ∈ T , Kt = {uc|u ∈MR(Σ̂), c ∈ Σcall, δ0(uc) = t, uc ∈ Pref (L)}

Theorem 5. Given a consistent BVPA, in a cubic time it is possible to find the
unique (up to isomorphism) minimal equivalent BVPA with the same associated
partition.

The proof uses again the method of translations, but this time the function Φ is
not a homomorphism. Φ adds to a word m, after each occurrence of a call symbol
c ∈ Σcall, the state reached by A during the execution of m when reading this c.

Remark 6. A Σ↔-SEVPA is a BVPA whose associated partition (Kt)t∈T verifies:
uc and u′c′ are in the same Kt iff c

Σ↔ c′. So the previous theorem gives a
minimization of Σ↔-SEVPA as a special case.

Minimizing Variants of Visibly Pushdown Automata 145

We are now able, given a BVPA, to find the minimal equivalent BVPA of same
associated partition. This is a first step in minimization out of the class of CDA.
But this is not sufficient, as the example in section 3 shows that the blow-up
between the minimal equivalent BVPA and the minimal equivalent BVPA with
respect to a given associated partition can be exponential; which, again, is also
an upper bound. Indeed, recall Lk is the VPL Lk = a1cLa1 + · · · + akcLak

r

over Σ̂ = ({c}, {r}, {a1, . . . , ak}), where Lai ⊆ {a1, . . . , an}∗ is the set of words
where the number of ai is even. Here KLk

is {a1c, . . . , akc}. The minimal BVPA
of associated to the trivial partition of (KLk

) is again of size bigger than 2k. The
example of Figure 2 gives a BVPA of associated partition ({a1c}, . . . , {akc})
recognizing Lk and of size in O(k2).

So the choice of the associated partition has a big influence on the size of the
automaton. Nevertheless, in the case of SEVPA, even with an optimal choice of
the equivalence relation Σ↔ over Σcall the minimal automata Σ↔-SEVPA can be
exponentially bigger than an equivalent VPA. In the case of BVPA the choice
of an optimal associated partition gives a BVPA of quadratic size with respect
to that of a minimal VPA.

6 Conclusion

Our results indicate that the class eCDA is the best choice for minimization if the
call alphabet is small. The class CDA is more interesting than SEVPA because it
includes SEVPA and moreover it permits a general minimization result without
requiring to preserve additional structure. Class MEVPA is still interesting, but:
for getting canonical machines eCDA is simpler, and for getting the smallest
machines possible CDA is better because it is strictly larger. The problem with
all these classes is that VPA are exponentially more succinct than CDA.

The class of BVPA seems quite promising. Our results show that minimization
of VPA can be understood as fixing a partition of calls. At present we do not
know how to calculate a good partition. Still in some contexts it may be easy to
guess a partition that gives good results. Example 2 shows such a partition that
is simple but takes us outside CDA.

The above results can be compared with the situation for regular languages.
Deterministic automata are not the most succinct way of representing regular
languages. Nondeterministic automata or even two-pass deterministic automata
(which reads the input first from left to right and then from right to left) are
exponentially more succinct. Still, as no minimization, even approximative, is
known for other classes, deterministic automata are widely used.

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

146 P. Chervet and I. Walukiewicz

2. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005)

3. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. Technical Report UIUCDCS-R-2005 -2565, UIUC, Technical
report (2005)

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of STOC,
pp. 202–211. ACM Press, New York (2004)

5. Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W.,
Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing.
LNCS, vol. 2300, pp. 419–426. Springer, Heidelberg (2002)

6. Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In:
Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS,
vol. 407, pp. 197–212. Springer, Heidelberg (1990)

7. Kumar, V., Madhusdan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: Proceedings of WWW, pp. 1053–1062. ACM Press, New York
(2007)

8. Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, learning, and confor-
mance testing of boolean programs. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidelberg (2006)

9. Loding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K.,
Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, Springer, Heidelberg (2004)

10. McNaughton, R.: Parenthesis grammars. Journal of the ACM 14, 490–650 (1967)
11. Mehlhorn, K.: Pebbling mountain ranges and its application of dcfl-recognition. In:

de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Programming.
LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980)

12. Michon, J-F., Champarnaud, J.-F.: Automata and binary decision diagrams. In:
Champarnaud, J.-M., Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660, pp.
742–746. Springer, Heidelberg (1999)

13. Murawski, A., Walukiewicz, I.: Third-order idealized algol with iteration is decid-
able. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer,
Heidelberg (2005)

14. Chervet, P., Walukiewicz, I.: Minimizing variants of visibly pushdown automata
(2007), http://www.labri.fr/perso/igw/publications.html

15. Pitcher, C.: Visibly pushdown expression effects for XML streem processing. In:
Programming Language Techonologies for XML, pp. 1–14 (2005)

http://www.labri.fr/perso/igw/publications.html

Linear Circuits, Two-Variable Logic and Weakly

Blocked Monoids

Christoph Behle1, Andreas Krebs1, and Mark Mercer2

1 WSI - University of Tuebingen, Sand 13, 72076 Tuebingen, Germany
2 McGill University, Montreal, Canada

Abstract. Following recent works connecting two-variable logic to cir-
cuits and monoids, we establish, for numerical predicate sets P satis-
fying a certain closure property, a one-to-one correspondence between
FO[<, P]-uniform linear circuits, two-variable formulae with P predi-
cates, and weak block products of monoids. In particular, we consider
the case of linear TC0, majority quantifiers, and finitely typed monoids.
This correspondence will hold for any numerical predicate set which is
FO[<]-closed and whose predicates do not depend on the input length.

1 Introduction

The computational power of boolean circuits are of great interest as they are
among the most powerful classes of computation devices for which we can prove
nontrivial lower bounds [7]. To understand the power granted by nonuniformity
in this setting, we often consider circuit families which can be generated under
bounded resources.

In the case of small depth circuits, we are particularly interested in circuit fam-
ilies whose structure can be described in terms of some restricted class of logical
formulae (Barrington, Immerman, and Straubing [2]). Such circuit families can
often be characterized in terms of logic. For instance, the languages recognized
by FO[+, ∗]-uniform AC0 circuits are exactly those which are expressible by
FO[+, ∗] formulae. Likewise, FO + MOD[+, ∗] formulae correspond to ACC0

circuits, and FO + MAJ [+, ∗] formulae correspond to TC0. This establishes a
strong connection between circuit classes and logical formulae.

The class of languages recognized by logical formula can be also characterized
in terms of algebra. For instance, the class of languages recognized by FO[<]
formula corresponds exactly to the class of star-free languages, which are ex-
actly those which are recognized via morphisms to finite aperiodic monoids, or
equivalently, block products of U1. This gives us a three-fold connection between
circuits, logic and algebra.

In the case of AC0 and ACC0, restricting to linear size corresponds in logic to
a restriction to using only two variables. This was shown in [9], and corresponds
in algebra to weakly-blocked monoids. In [21] Therién and Wilke gave for first
order formulae over two variables with the order predicate an algebraic charac-
terization as the variety DA. By an result of Straubing and Therién [20] this

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 147–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

148 C. Behle, A. Krebs, and M. Mercer

variety, and thus FO2[<], can be characterized as weakly blocked monoids of
U1. Analogously, FO+MOD2[<] was shown in [19] to correspond to the variety
DO � Gsol, which is the closure of DA under weak block products of abelian
groups.

The notion of finitely typed monoids was introduced in [8] to obtain an al-
gebraic characterization for TC0 = L(MAJ [<,Sq]) in terms of finitely typed
monoids. It is clear that general numerical predicates, as well as linear TC0,
need the use of infinite monoids. In this paper, we show that types can be used
to algebraically characterize logical formulae for many types predicate sets in a
uniform way. Second, we apply these results to give matching logical and alge-
braic characterizations to a broad class of uniformity conditions for linear TC0,
which include the FO[<]-closure of the predicate sets {<}, {<,+}, and {<, arb}.

In particular we show, subject to a closure property of P, that the following
properties of a language L are equivalent: (1) that it is recognized by a FO[<,P]-
uniform family of TC0 circuits of linear size and linear fan-in, (2) that it can
be described by a FO + MÂJ2[<,P] formula, and (3) that it is recognized by
a restricted type of morphism into a particular type of finitely typed group,
constructed from weak block products of simpler groups. Recent results suggest
that these characterizations can be used to prove lower bounds on linear sized
circuits [5].

The remainder of the paper is structured as follows. In Sections 2 and 3
we review notions from circuits, logic, and algebra which we will require in
the exposition. In Section 4 we state the main result of this paper, and in the
remaining sections we prove three inclusions that yield our result.

2 Definitions

2.1 Logic

Following the conventions of Straubing’s book [17], we express words w ∈ Σ∗ of
length n as structures over the universe [n] = {1, . . . , n} in the following way.
For each σ ∈ Σ we have a unary relation Qσ such that Qσ(x) is true when the
value of w at the position x is σ. A formula φ over a set of free variables V is
interpreted over V-structures, which are strings w = (w1,V1)(w2,V2) . . . (wn,Vn)
over Σ × 2V , where the Vis are disjoint and

⋃
i Vi = V . We define Σ∗ ⊗ V to be

the set of all V-structures over Σ∗, while we use (Σ × 2V)∗ to denote the set of
arbitrary strings over Σ × 2V . Let Lφ,V be the set of all V-structures modeling
φ. Then for any first-order sentence ψ we can associate a language Lψ = Lψ,∅.

A predicate is called numerical if its truth value does not depend on the input.
(See Section 2.2) Let P be a set of numerical predicates. A first-order formula
over V is a first order formula built from the atomic formulae {Qσ(x)} ∪ {P |
P ∈ P} and free variables V .

There are several cases in the literature where a new quantifier has been
defined to obtain a correspondence between logic and algebra. For example,
Mod x φ(x) [18] has been used to connect FO+MOD formulae to ACC0 circuits.

Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids 149

Likewise, TC0 was shown to correspond to logical formulae using the majority
quantifier Maj xφ(x), which is true iff for more than half of the positions x the
formula φ(x) evaluates to true. This construction requires that we can use the
logic to simulate counting quantifiers ∃=yxφ(x) [10], which are true if and only
if there are y many positions for x where φ(x) is true. But since a counting
quantifier is defined with two variables, one has difficulties to apply this result
in the case of two-variable logic. This leads to the following definition, which is
equivalent in power to counting quantifiers and thus majority quantifiers if the
number of variables is not restricted, but gives the right expressibility in the case
of two variables to capture linear TC0.

Definition 1 (Extended Majority Quantifier). Let φ1(x), . . . , φc(x) be for-
mulae with one free variable. Then Maj x 〈φ1(x), . . . , φc(x)〉 is a formula. We
define the semantics so that the formula is true if wx=i |= φj for the majority of
(i, j) ∈ [n]× [c]. In other words,

w |= Maj x 〈φ1, . . . , φc〉 ⇔ 0 <

n∑

i=1

c∑

j=1

{
1 if wx=i |= φj

−1 otherwise

In the case of c = 1 we have the old definition of the majority quantifier.

Definition 2. FO + MÂJ2[<,P] is the class of two-variable logical sentences
over words which are constructed from atomic formulae, the order predicate,
numerical predicates from the set P, and the extended majority quantifier.

2.2 Numerical Predicates

A c-ary predicate P is called numerical if the truth value of P (x1, . . . , xc) depends
only on the the numeric value of x1, . . . , xc and the length of the input word.
An assignment to a c-ary predicate can be expressed as a V-structure over a
unary alphabet with V = {x1, . . . , xc}. A predicate is said to be expressible in
logic Q[P] if the corresponding V-structures are expressible in first order with
quantifiers Q and predicates P. We can naturally represent such predicates as
subsets of Nc+1. For a predicate P we have the subset P = {(i1, . . . , ic, n) |
anx1=i1,...,xc=ic

|= P}.

Definition 3 (Shifting Predicates). A numerical c-ary predicate P is a shift
of a numerical predicate P ′, if there exist integers v1, . . . , vc+1 such that P =
{(i1, . . . , ic, n) | (i1 + v1, . . . , ic + vc, n + vc+1) ∈ P ′}.

Now we define the closure properties of predicates we need in this paper. For a
set P of numerical predicates, we say that a numerical predicate P is FO[<]-
constructible from P if P can be expressed by a FO[<,P] formula.

Definition 4. We denote by P the smallest set of predicates that contains P
and is closed under FO[<]-constructions and shifting.

In the case of {<}, {<,+}, {<,+, ∗} we have that {<}, {<,+}, {<,+, ∗} are the
FO[<] closure of these predicate sets, i.e. the shifting closure does not introduce

150 C. Behle, A. Krebs, and M. Mercer

new predicates. Shifting may, in general, add extra predicates for predicates that
depend on the length of the word.

2.3 Circuits

In this paper we consider circuits which compute functions f : Σn → {0, 1}. Our
circuits will consist of majority gates and input query gates. A majority gate is
true when more than half of the inputs are true and an Inpσ(i) query gate will
output true when the ith letter of the input is σ.

A family {Cn}n∈N of such circuits can be said to recognize a language in the
usual way. The complexity class TC0 consists of those languages recognized by
families of threshold circuits of constant depth and polynomial size. We define
LTC0 to be the class of languages recognized by TC0 circuit families of linear
size and linear fan-in.

We consider the class of LTC0 circuits with a uniformity condition that is
expressed in terms of first order formulae over words. As in [6], we need the
following definition in order to construct a uniformity language that can be
expressed by FO[<] formulae: For v = (v1, . . . , vc) ∈ [n]c, the unary shuffled
encoding 〈v1, . . . , vc〉 of v is the word w of length n over alphabet {α, β}c defined
by πj(wi) = α⇔ vj ≤ i, where πj((a1, . . . , ac)) = aj .

Definition 5 (Uniformity language). Let C = {Cn} be an LTC0 circuit
family. Fix c ∈ N, a labeling of the gates of each Cn with tuples (x1, x2) ∈ [n]×[c],
and a unique identifier from [|Σ|+ 1] for each possible type of gate (i.e. Inpα or
majority). Additionally, we require (1, 1) to be the output gate of the circuit. Then
a uniformity language of C is the set of all shuffled encodings 〈x1, x2, y1, y2, t〉
such that if t denotes majority gate, then the gate (x1, x2) is a majority gate and
has gate (y1, y2) as an input gate, or if t denotes an Inpσ gate, then (x1, x2) is
an Inpσ(y1) query gate (y2 is arbitrary).

Using the definition of an uniformity language we can easily define uniform
circuits for our setting.

Definition 6 (Uniform LTC0). FO[<,P]-uniform LTC0is the class of lan-
guages recognizable by a family of LTC0circuits with a uniformity language ex-
pressible in FO[<,P].

3 Finitely Typed Groups

In this section we recall the definition of finitely typed groups introduced in [8].
The motivation for finitely typed groups arises from the fact that the syntac-
tic monoid of the majority function is infinite, yet the majority gates have a
finite output. Typed groups allow us to model majority gates as morphisms in
a meaningful way.

Let T be a group. A type of T is a collection of disjoint subsets T = {Ti | i ∈ I}
of T for finite I. A finitely typed group is a group T equipped with a type T.

Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids 151

We call the elements of the boolean closure of T the extended types of T . If the
type set T of T is understood we often simply write T instead of (T,T). Note
that a finite monoid T can be regarded as a finitely typed monoid equipped with
the type T = {{t} | t ∈ T }. The direct product (S,S) × (T,T) of two finitely
typed monoids (S,S) and (T,T) is the usual Cartesian product equipped with
the type S× T = {S × T | S ∈ S, T ∈ T}.

In the following we extend the notion of block products to finitely typed groups.
Let (S,S), (T,T) be finitely typed monoids. Recall that the ordinary block
product of S with T is defined as the bilateral semidirect product ST×T ∗
∗ T of ST×T , the set of all functions from T × T to S, with T , where the
right (resp. left) action of T on ST×T is given by (f · t) (t1, t2) = f(t1, t t2)
(t · f) (t1, t2) = f(t1t, t2), t, t1, t2 ∈ T, f ∈ ST×T . Note that this set may be
uncountable in the case that S and T are infinite. As in [8], a discrete version of
the block product is defined. We begin by defining a set of qualified functions:

Definition 7 (Type respecting functions). A function f(t1, t2) : (T,T) ×
(T,T) → S, where S is any set, is called type respecting if it has a finite image
and, for each s ∈ S, the preimage f−1(s) can be described by a finite boolean
combination of conditions of the form t1 · c1 ∈ T1, c2 · t2 ∈ T2, t1 · c3 · t2 ∈ T3

where c1, c2, c3 are constants in T and T1, T2, T3 are types in T.

The definition of the block product is the same as in the finite case but restraining
the functions used to type respecting functions.

Definition 8 (Block product). Let (S,S), (T,T) be finitely typed monoids
and let V be the set of all type respecting functions with respect to T . The finitely
typed block product (X,X)=(S,S) � (T,T) of (S,S) with (T,T) is defined as
the bilateral semidirect product V ∗ ∗ T of V with T (with respect to the actions
given above). The type set X of X consists of all types Ŝ = {(f, n) ∈ X |
f(eS, eS) ∈ S}, where S ∈ S and eS is the neutral element of S. We also write
π1X , with X ∈ X, for the type S ∈ S, such that Ŝ = X .

Note that for finite M and M ′ equipped with the type sets as above, every
function f : M ×M → M ′ will be type respecting. Thus we have the ordinary
definition of block product as a special case.

As usual we write the operation in V additively to provide a more readable
notation. Note that this does not imply that V is commutative. By definition of
the bilateral semidirect product we have:

(∗) (f1,m1) . . . (fn,mn) = (
n∑

i=1

m1 . . .mi−1 · fi ·mi+1 . . .mn,m1 . . .mn).

The neutral element of (S,S) � (T,T) is (e, eT) where e is the function mapping
all elements to the neutral element of S and eT is the neutral element of T .

We also have the equivalence:

(f1,m1) . . . (fn,mn) ∈ X ⇔
n∑

i=1

fi(m1 . . .mi−1,mi+1 . . .mn) ∈ π1X ,

where π1X is the base type as in Definition 8 above.

152 C. Behle, A. Krebs, and M. Mercer

Definition 9. We say that a finitely typed monoid (T,T) recognizes the language
L ⊆ Σ∗ if there is a morphism h : Σ∗ → T and a subset {T1, . . . , Tk} ⊆ T of
types of T such that L = h−1(

⋃k
i=1 Ti).

Now we turn our attention to how we can characterize predicates via morphisms.

Theorem 1. For each binary numerical predicate P (x, y) there exists a finitely
typed group (T,T) and a distinguished element m ∈ T with the following prop-
erties:

1. there is a morphism h : ({a} × 2{x,y})∗ → T with h((a, ∅)) = m and an
extended type T such that anx=i,y=j |= P (x, y) if and only if h(anx=i,y=j) ∈ T .

2. for all extended types T over T and all morphisms h : ({a} × 2{x,y})∗ → T
with h((a, ∅)) = m the predicate corresponding to the language h−1(T) ∩
{a}∗ ⊗ {x, y} is in {P}.

We call m the incremental element.

If P is a set of predicates that are unary or binary the previous theorem is also
true if we transform an unary predicate P (x) into a binary predicate P ′(x, x).
In following we always assume all predicates in the two-variable logic are binary
predicates.

Definition 10 (Predicate group). The tuple of a finitely typed group (T,T)
and incremental element m is called a predicate group of P if it satisfies the
conditions of Theorem 1.

In the following we denote by (TP ,TP) and mP the predicate group and incre-
mental element for the predicate P . We define now the algebraic variety which
corresponds to FO + MÂJ2[<,P].

Definition 11. Let P be a set of predicates. We let WZ(P) be the smallest va-

riety closed under weak block products with×c

k=1((Z,Z+) � (×c′
k

l=1(Tkl,Tkl)))
for c, c′1, . . . , c

′
c ∈ N , where (Tkl,Tkl) are predicate groups for predicates Pkl, i.e.

G ∈WZ(P) =⇒ G � (
c×

k=1

((Z,Z+) �
c′

k×
l=1

(Tkl,Tkl))) ∈WZ(P).

We now introduce restricted elements to ensure that the predicate groups that
appear in the structure of groups of our variety cannot be “abused”. If we do
not restrict the class of allowable morphisms, then the typed monoids above
can simulate counting quantifiers by using the predicate group to simulate a
quantifier which should not be possible with two-variable majority logic. To
assure the predicate groups are used in the designated way we start with the
following definition:

Definition 12 (Restricted Element). We define inductively the set of re-
stricted elements:

Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids 153

1. All elements of (Z,Z+) are restricted.
2. For each predicate group (TP ,TP) only the incremental element mP is re-

stricted.
3. An element x ∈ A×B is restricted iff π1(x) and π2(x) are restricted.
4. An element x ∈ A � B is restricted iff all elements in the image of π1(x)

are restricted and π2(x) is restricted.

Definition 13. A morphism h : Σ∗ → G is restricted if all elements of h(Σ)
are restricted.

The following definition yields the characterization of the languages that we deal
with in this paper.

Definition 14. For a variety V, H−1
R (V) is the set of all languages that are

recognized by a some (T,T) ∈ V with a restricted morphism.

4 Results

The main theorem translates the well known connections between two-variable
logic, weak blocked monoids, and linear size circuits [21,19,9] to the case of
majority. By establishing a similar uniformity result as in [6], we can show how
the predicates used in logic have their counterparts in algebra and circuits.

Theorem 2. Let P be a set of predicates closed under FO[<]-constructions and
shifting. The following are equivalent:

1. L ∈ FO[<,P]-uniform LTC0,
2. L ∈ L(FO + MÂJ2[<,P]),
3. L ∈ H−1

R (WZ(P)).

Proof. First we show that we can express a circuit family by a logic formula
(Theorem 4). Then we show that a language in this logic can by recognized by
a restricted morphism (Theorem 5). Finally, we show how to construct a circuit
family for a restricted morphism (Theorem 6).

It is unknown whether the TC0 depth hierarchy is strict. In the next theorem
we show a relation between circuit depth and quantifier depth:

Theorem 3. Let P be a set of predicates closed under FO[<]-constructions and
shifting. FO[<,P]-uniform LTC0circuits form a hierarchy in the circuits depth
iff FO + MÂJ2[<,P] form a hierarchy in the quantifier depth.

Proof. The proof of Theorem 4 translates a circuit of depth d into a formula
of depth d + c for a constant c. Similarly the proof for Theorem 5 translates a
formula of quantifier depth d in a homomorphism into a group of weak block
depth d + c. The construction of a circuit in Theorem 6 from a group of weak
block depth d yields a circuit of depth c · d.

154 C. Behle, A. Krebs, and M. Mercer

5 Circuits to Logic

In this section we show how we can transform a circuit into a logical formula.
We proceed inductively, starting with the input gates.

The following lemma helps us to express the uniformity:

Lemma 1. Let φ be a formula in FO[<,P] such that Lφ is the uniformity
language of a family of LTC0 circuits. Then the following predicates are in P:

1. for all x2, y2 ∈ [c] the binary predicate Cx2,y2(x1, y1) which is true iff the
gate labeled (x1, x2) is connected to (y1, y2) in C;

2. for all σ ∈ Σ, x2 ∈ [c] the binary predicate Inpσ,x2(x1, y1) which is true
iff the gate labeled (x1, x2) is an input gate that checks if there is an σ at
position y1 in the input; and

3. for all x2 ∈ [c] the unary predicate Mx2(x1) which is true iff the gate labeled
(x1, x2) is a majority gate.

Now we show that, given a subset of positions by a formula φ(x), we can express
if a formula ψ(x) is true for the majority of these positions.

Lemma 2 (Relativization). Let φ(x) and ψ(x) be formulae in FO+MÂJ2[<
,P] with one free variable. Then there exists a sentence in FO + MÂJ2[<,P]
that is modeled by w iff

|{i | wx=i |= φ(x) ∧ wx=i |= ψ(x)}| > |{i | wx=i |= φ(x) ∧ ¬wx=i |= ψ(x)}|.

Proof. The formula Maj x 〈φ(x) ∧ ψ(x),¬φ(x) ∨ ψ(x)〉 will do. If φ(x) is false,
both formula add to 0 in the evaluation of the extended majority quantifier. If
φ(x) is true, the contribution of the two formulae to the sum will be +2 or −2
depending on the value of ψ(x).

Theorem 4. If L is recognized by a FO[<,P]-uniform family of LTC0-circuits,
then L can be expressed as a formula in FO + MÂJ2[<,P].

Proof. The construction we use is standard (see e.g. [17,6]) but must be modified
to work with two variables. Let (Cn)n∈N be the LTC0-circuit family recognizing
L. By the assumption there is an FO[<,P] formula φ that recognizes the uni-
formity language of (Cn)n∈N. As shown above we can assume that we have the
predicates Cx2,y2(x1, y1), Mx2(x1), and Inpσ,x2(x1, y1) in P.

We now recursively construct a sentence ψ in FO + MÂJ2[<,P] which de-
scribes the same language as (Cn)n∈N. We construct formulae ψ

(d)
x2 such that

ψ
(d)
x2 (x1) is true iff gate (x1, x2) outputs true and has depth at most d. For

d = 0, (x1, x2) outputs true iff it is an input gate which outputs true, so:

ψ(0)
x2

(x1) =
∨

σ∈Σ

∃ y1 (Inpσ,x2(x1, y1) ∧Qσ(y1)).

Now let G(d)
x2 (x1) =

Maj y1 〈 Cx2,1(x1, y1) ∧ ψ
(d−1)
1 (y1),¬Cx2,1(x1, y1) ∨ ψ

(d−1)
1 (y1), . . . ,

Cx2,c(x1, y1) ∧ ψ
(d−1)
c (y1),¬Cx2,c(x1, y1) ∨ ψ

(d−1)
c (y1) 〉.

Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids 155

This is the essential step. Observe that G
(d)
x2 (x1) models a majority gate at

depth d. By the proof of Lemma 2 it evaluates to true iff the number of true
predecessors is larger than the number of false predecessors. With the help of the
formula G

(d)
x2 (x1), we define: ψ(d)

x2 (x1) = Mx2(x1) ∧G
(d)
x2 (x1) ∨ ψ

(0)
x2 (x1). Finally,

we define ψ to be the value of the gate labeled (1, 1), thus ψ = ψ
(d)
1 (1) where d

is the depth of the circuit family.

6 Logic to Algebra

We will show that we can replace a logic formula over two variables by apply-
ing the weak block product principle a finite number of times. This extends the
construction of [20].

Definition 15 (weak block product principle). Let α : Σ∗ → (T,T) be a
morphism, Γ be a finite alphabet and r : T ×Σ×T → Γ be a function such that
rσ(t1, t2) = r(t1, σ, t2) is a type respecting function for all σ ∈ Σ. Then we define
a length-preserving mapping τr,α : Σ∗ → Γ ∗ by τr,α(v1 · · · vn) = w1 · · ·wn, where
wi = r(α(v1 · · · vi−1), vi, α(vi+1 · · · vn)). If α is a restricted morphism, then we
say τr,α is restricted.

As in the usual case [20], τr,α is not a morphism. Without loss of generality
we can assume an innermost formula of quantifier depth one to always be of
the form Maj x 〈Qσi(x) ∧ Pi(x, y)〉i=1,...,c. First predicates using only y can be
moved out of the scope of the quantifier, and the formulae inside the quantifier
can be assumed to have the form Qσi(x) ∧ Pi(x, y) since the predicate set is
closed under boolean combinations. We now proceed by induction on the depth.

Lemma 3. Let φ be a formula in FO+MÂJ2[<,P] with an innermost formula
ψ of quantifier depth one over the alphabet Σ, and Γ = Σ × {0, 1}. We let φ′

be the formula over Γ , which is φ if we replace Qσ(y) by Q(σ,0)(y) ∨ Q(σ,1)(y)
and ψ(y) by

∨
σ∈Σ Q(σ,1)(y). Then there exists a morphism α : Σ∗ → (T,T) =

(Z,Z+) � ×c

l=1(TPl
,TPl

) and type respecting function r : T ×Σ×T → Γ such
that τ−1

r,α(Lφ′) = Lφ.

Lemma 4. Let φ be a formula in FO + MÂJ2[<,P] of quantifier depth d >
1 over the alphabet Σ. Then there exists a finite alphabet Γ and a restricted
mapping τr,α : Σ∗ → Γ ∗ and a formula φ′ in FO + MÂJ2[<,P] of quantifier
depth d− 1 such that Lφ = τ−1

r,α(L′φ).

Lemma 5. Let τr,α be a restricted mapping with α : Σ∗ → (T,T) and let L ⊆ Γ ∗

be a language recognized by a morphism to (S,S). Then τ−1
r,α(L) is recognized by

a morphism to (S,S) � (T,T).

Theorem 5. For each L ∈ FO + MÂJ2[<,P] there is a (T,T) in WZ(P) and
a restricted morphism h such that L = h−1(T) for an extended type T over T.

156 C. Behle, A. Krebs, and M. Mercer

Proof. Let φ be a FO + MÂJ2[<,P] formula of depth d with L = Lφ. By
applying Lemma 4 inductively we get a chain of mappings:

Σ∗ τr1,α1−−−−→ Γ ∗
1

τr2,α2−−−−→ Γ ∗
2 −· · ·→ Γ ∗

d−2

τrd−1,αd−1−−−−→ Γ ∗
d−1

and a FO + MÂJ2[<,P] formula φ(d−1) of depth one such that
L = τ−1

r1,α1
◦ · · · ◦ τ−1

rd−1,αd−1
(Lφ(d−1)).

The remaining formula φ′ is of depth 1 and has no free variable
φ′ = Maj x 〈P1(x) ∧ Qσ1(x), . . . , Pc(x) ∧ Qσc(x)〉. hence it is easy to apply
the construction of Lemma 3 for the morphism α. Since we do not have a free
variable y we replace ax by axy in the construction that simulates a variable y
at the position x but is ignored by the formula φ′.

Now we have a morphism h′ and a type T such that Lφ(d−1) = h′−1(T). By
applying Lemma 5 inductively to τrd−1,αd−1 up to τr1,α1 , we will get a morphism
h : Σ∗ → (···((T � Sd−1) � Sd−2) · · ·) � S1, and a type X with L = h−1(X).

7 Algebra to Circuits

In order to model a morphism by a circuit, we will first split the morphism into
mappings.

Lemma 6. Let h : Σ∗ → (S,S) � (T,T) and L = h−1(X) for some type X of
(S,S) � (T,T). Then there is a finite alphabet Γ and a map τr,α : Σ∗ → Γ ∗ with
α : Σ∗ → (T,T) and a morphism h′ : Γ ∗ → (S,S) such that τ−1

r,α(h′−1(S)) = L
for some S ∈ S. If h is restricted, then τr,α and h′ are also restricted.

So if L is recognized by restricted morphism into a group WZ(P), then there is
a set of mappings τ1, . . . , τd such that L = τ−1

1 ◦ · · · ◦ τ−1
d (h−1(T)), where all the

morphisms map to a group of the form×c

k=1

(
(Z,Z+) � ×c′

k

l=1(TPl
,TPl

)
)

.

Lemma 7. A FO[<,P]-uniform LTC0 circuit can compute the function τr,α

where α : Σ∗ → (T,T) =×c

k=1

(
(Z,Z+) � ×c′

k

l=1(TPl
,TPl

)
)

is restricted. We

require here for each letter γ ∈ Γ the corresponding output gates to be labeled by
(i, γ).

Theorem 6. Let (T,T) ∈ WZ(P) recognize L then L is in FO[<,P]-uniform
LTC0.

Proof. Let h : Σ∗ → (T,T) be a restricted morphism with L = h−1(T), where
T ∈ T. By applying Lemma 6 inductively we get a chain of mappings τrk,αk

and
a morphism h′:

Σ∗ τr1,α1−−−−→ Γ ∗
1

τr2,α2−−−−→ Γ ∗
2 −· · ·→ Γ ∗

d−2

τrd−1,αd−1−−−−→ Γ ∗
d−1

h′
−−−−→ T ′

Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids 157

where T ′ =×c

k=1

(
(Z,Z+) � ×c′

k

l=1(TPl
,TPl

)
)

and there is a T ′ ∈ T′ such

that L = τ−1
r1,α1

◦ · · · ◦ τ−1
rd−1,αd−1

(h′−1(T ′)).
To recognize h′−1(T ′) we construct τrd,αd

with r(t1, σ, t2) = 1 iff t1 · t2 ∈ T ,
r(t1, σ, t2) = 0 otherwise and α = h. Then τrd,αd

= 1n iff w ∈ L and 0n otherwise.
Hence we can apply Lemma 7 to construct a circuit with only one output gate.

Now for each τrk,αk
we can construct a circuit as in Lemma 7, by connecting

these circuits together and also append the circuit for h′ that we just created, we
get a circuit that recognized L. To see that this circuit has a uniformity language
in FO[<,P], we label the gates (x1, x2) that belong to τrk,αk

with (x1, (k, x2))
and the gates (x1, x2) that belong to h′ by (x1, (d, x2)). Since we now have that
the uniformity language for the individual circuit layers is in FO[<,P], also the
uniformity language for all layers is in FO[<,P]. The interconnection between
these circuits is FO[<]-uniform since we always connect a series of output gates
labeled by a tuple (y1, (dk, y2)) where y2 is a fixed constant to an input gate
(x1, (dk+1, x2)) where x1 = y1 and x2 is a fixed constant.

8 Discussion

In this paper we extend the known connections between linear circuits, two-
variable logic, and weakly blocked algebra from the case of linear AC0 and linear
ACC0 to the case of linear TC0. This algebraic characterization can be used to
prove that the word problem over A5 (known to be complete for NC1 [1]) is not
in uniform LTC0 [5].

FO2[<] (resp. FO + MOD2[<]) was linked to weakly blocked U1 (resp. Zp)
but no connection to circuits is known. On the other hand, FO2[arb] (resp.
FO + MOD2[arb]) corresponds to linear AC0 (resp. linear ACC0). We obtain
a three-way correspondence for predicate sets respecting certain closure prop-
erties. Our proofs also hold for the case of FO2 and FO + MOD2: The group
(Z,Z+), which simulates the quantifier, can be substituted by U1, or by U1 and
Zp to get results for those cases. In this way we obtain the possibility to handle
predicate sets between the order predicate and arbitrary numerical predicates,
e.g. {<,+}, {<,+, ∗}.

We want to thank Klaus-Jörn Lange and Stephanie Reifferscheid for helpful
comments.

References

1. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comp. System Sci. 38, 150–164 (1989)

2. Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comp. System Sci. 41, 274–306 (1990)

3. Barrington, D., Immerman, N., Lautemann, C., Schweickardt, N., Thérien, D.:
The Crane Beach Conjecture. In: Proc. of the 16th IEEE Symposium On Logic
in Computer Science, pp. 187–196. IEEE Computer Society Press, Los Alamitos
(2001)

158 C. Behle, A. Krebs, and M. Mercer

4. Barrington, D., Thérien, D.: Finite Monoids and the Fine Structure of NC1. Jour-
nal of ACM 35(4), 941–952 (1988)

5. Behle, C., Krebs, A., Reifferscheid, S.: A5 not in FO+MOD+MAJ2[reg], http://
www-fs.informatik.uni-tuebingen.de/publi/a5notinltc0.pdf (to appear)

6. Behle, C., Lange, K.-J.: FO[<]-Uniformity. In: IEEE Conference on Compuata-
tional Complexity (2006)

7. Furst, M., Saxe, J.B., Sipser, M.: Parity circuits and the polynomial-time hierarchy.
In: Proc. 22th IEEE Symposium on Foundations of Computer Science, pp. 260–270
(1981)

8. Krebs, A., Lange, K.-J., Reifferscheid, St.: In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, Springer, Heidelberg (2005)

9. Koucký, M., Lautemann, C., Poloczek, S., Thérien, D.: Circuit lower bounds via
Ehrenfeucht-Fraissé games. In: Proc. 21st Conf. on Compuatational Complexity
(CCC’06) (2006)

10. Lange, K.-J.: Some results on majority quantifiers over words. In: Proc. of the 19th
IEEE Conference on Computational Complexity, pp. 123–129. IEEE Computer
Society Press, Los Alamitos (2004)

11. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive com-
plexity approach to LOGCFL. J. Comp. System Sci. 62, 629–652 (2001)

12. Lawson, M.: Finite Automata. Chapman & Hall/CRC (2004)
13. Rhodes, J., Tilson, B.: The Kernel of Monoid Morphisms. J. Pure Applied Alg. 62,

227–268 (1989)
14. Roy, A., Straubing, H.: Definability of Languages by Generalized First-Order

Formulas over (N,+). In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, Springer, Heidelberg (to appear 2006)

15. Ruhl, M.: Counting and addition cannot express deterministic transitive closure.
In: Proc. of 14th IEEE Symposium On Logic in Computer Science, pp. 326–334.
IEEE Computer Society Press, Los Alamitos (1999)

16. Schweikardt, N.: On the Expressive Power of First-Order Logic with Built-In Pred-
icates. In: Dissertation, Universität Mainz (2001)

17. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser
(1994)

18. Straubing, H., Thérien, D., Thomas, W.: Regular languages defined by generalize
quantifiers. Information and Computation 118, 289–301 (1995)

19. Straubing, H., Thérien, D.: Regular Languages Defined by Generalized First-Order
Formulas with a Bounded Number of Bound Variables. In: Ferreira, A., Reichel,
H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 551–562. Springer, Heidelberg (2001)

20. Straubing, H., Thérien, D.: Weakly Iterated Block Products of Finite Monoids. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 91–104. Springer, Heidelberg
(2002)

21. Thérien, D., Wilke, T.: Over Words, Two Variables are as Powerful as One Quan-
tifier Alternation. In: Proc. 30th ACM Symposium on the Theory of Computing,
pp. 256–263 (1998)

http://www-fs.informatik.uni-tuebingen.de/publi/a5notinltc0.pdf
http://www-fs.informatik.uni-tuebingen.de/publi/a5notinltc0.pdf

Combinatorial Proof that Subprojective

Constraint Satisfaction Problems are
NP-Complete

Jaroslav Nešetřil� and Mark Siggers

Department of Applied Mathematics and Institute for Theoretical Computer Science
(ITI), Charles University Malostranské nám. 25, 11800 Praha 1 Czech Republic

nesetril@kam.mff.cuni.cz, mhsiggers@gmail.com

Abstract. We introduce a new general polynomial-time construction-
the fibre construction- which reduces any constraint satisfaction prob-
lem CSP(H) to the constraint satisfaction problem CSP(P), where P

is any subprojective relational structure. As a consequence we get a
new proof (not using universal algebra) that CSP(P) is NP -complete
for any subprojective (and thus also projective) relational structure.
This provides a starting point for a new combinatorial approach to the
NP-completeness part of the conjectured Dichotomy Classification of
CSPs, which was previously obtained by algebraic methods. This ap-
proach is flexible enough to yield NP-completeness of coloring problems
with large girth and bounded degree restrictions.

1 Introduction and Previous Work

Many combinatorial problems can be expressed as Constraint Satisfaction Prob-
lems (CSPs). This concept originated in the context of Artificial Intelligence (see
e.g. [20]) and is very active in several areas of Computer Science. CSPs includes
standard satisfiability problems and many combinatorial optimization problems,
thus are also a very interesting class of problems from the theoretical point of
view. The whole area was revitalized by Feder and Vardi [9], who reformulated
CSPs as homomorphism problems (or H-coloring problems) for relational struc-
tures. Motivated by the results of [28] and [13], they formulated the following
conjecture.

Conjecture 1 (Dichotomy). Every Constraint Satisfaction Problem is either
P or NP-complete.

Schaefer [28] established the dichotomy for CSPs with binary domains, and Hell-
Nešetřil [13] established the dichotomy for undirected graphs; it follows from [9]
that the dichotomy for CSPs can be reduced to the dichotomy problem for H-
coloring for oriented graphs. This setting, and related problems, have motivated
� Supported by grant 1M0021620808 of the Czech Ministry of Education and

AEOLUS.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 159–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

160 J. Nešetřil and M. Siggers

intensive research in descriptive complexity theory. This is surveyed, for example,
in [7], [13] and [11].

Recently the whole area was put in yet another context by Peter Jeavons
and his collaborators, in [15] and [5], when they recast the complexity of CSPs
into properties of algebras and polymorphisms of relational structures. Particu-
larly, they related the complexity of CSPs to a Galois correspondence between
polymorphisms and definable relations (obtained by Bodnarčuk et al. [1] and
by Gaiger [10]; see [25] and [26]). This greatly simplified elaborate and tedious
reductions of particular problems and led to the solution of the dichotomy prob-
lem for ternary CSPs [2] and other results which are surveyed, for example, in
[5] and [12]. This approach to studying CSPs via certain algebraic objects yields,
in particular, that for every projective structure H the corresponding CSP(H) is
an NP-complete problem [16], [15]. The success of these general algebraic meth-
ods gave motivation for some older results to be restated in this new context.
For example, [4] treats H-coloring problems for undirected graphs in such a way
that the dichotomy between the tractable and NP-complete cases of H-coloring
problem agrees with the general CSP Dichotomy Classification Conjecture stated
in [6].

In this paper we propose a new approach to the dichotomy problem. We de-
fine a general construction- the fibre construction- which allows us to prove in
a simple way that for every projective structure H , CSP(H) is NP-complete. In
fact we define a subprojective structure and prove that for every subprojective
relational structure H , CSP(H) is NP-complete. Though by an example of Ralph
McKenzie [27], we know there are structures H that are not sub-projective for
which CSP(H) is NP-complete, this is a first step in a combinatorial approach
to the CSP Dichotomy Conjecture. In a later paper we extend this approach
to include all structures that are known to be NP -complete, and possibly oth-
ers. This will provide a new CSP Dichotomy Classification Conjecture, which is
one of the main results yielded by algebraic methods. A discussion of this new
Conjecture can be found in the full version of this paper, [23].

The fibre construction lends easily to restricted versions of CSPs, so allows
us to address open problems from [8] and [17]. In particular, for any subpro-
jective structure H , we show that CSP(H) is NP -complete for instances of
bounded degree. Thus a fibre construction approach to a CSP Dichotomy Classi-
fication will reduce the Feder-Hell-Huang conjecture that NP -complete CSPs are
NP -complete for instances of bounded degree to the CSP Dichotomy Classifi-
cation Conjecture.

Our approach is motivated by the Sparse Incomparability Lemma [22] and
Müller’s Extension Theorem [21] (both these results are covered in [14]). These
results are recalled and extended in Sect. 5. Strictly speaking, we do not need
these results for our main results, Thm. 3 and Cor. 4, but they provided an
inspiration for early forms of the fibre construction in [29] and [30] and for the
general case presented here. Moreover, we do need these results to address the
Dichotomy Conjecture for instances of large girth, extending results of [17].

Combinatorial Proof that Subprojective CSPs are NP-Complete 161

The fibre construction is simple, and is a refinement of gadgets, or indicator
constructions [13,14], using familiar extremal combinatorial results [21,22,24]).
However, the simplicity becomes obscured by the notation when dealing with
general relational structures. Thus we find it useful to prove, in Sect. 3, only a
simple case of the fibre construction. The case we prove is simple, but contains
all the essential ingredients of the general fibre construction.

In Sect. 2 we introduce all the definitions and state the main results: Thm. 3
and Cor. 4. In Sect. 3 we prove a simple case of Thm. 3. In Sect. 4 we consider
further applications of the fibre construction. Sect. 5 contains an extension of
the some of the motivating results of our construction. Finally, in Sect. 6, we
consider the relation of the fibre construction to the Dichotomy Classification
Conjecture of [6].

2 Definitions and Statement of Results

We work with finite relational structures of a given type (or signature). A type
is a vector K = (ki)i∈I of positive integers, called arities. A relational structure
H of type K, consists of a finite vertex set V = V (H), and a ki-ary relation
Ri = Ri(H) ⊂ V k1 on V , for each i ∈ I. An element of Ri is called an ki-tuple.
Thus a (di)graph is just a relational structure of type K = (2). Its edges (arcs)
are 2-tuples in the 2-ary relation R1.

Given two relational structures G and H of the same type, an H-coloring
of G is a map φ : V (G) → V (H) such that for all i ∈ I and every ki-tuple
(v1, . . . , vki) ∈ Ri(G), (φ(v1), . . . , φ(vki)) is in Ri(H). Fix a relational structure
H (sometimes called template). CSP(H) is the following decision problem:

Problem CSP(H)
Instance: A relational structure G;
Question: Does there exists an H-coloring of G?

We write G→ H to mean that G has an H-coloring.
A relational structure H is a core if its only H-colorings are automorphisms.
It is well known, (see, for example, [14]) that G → H if and only if G′ → H′,

where G′ and H′ are the cores of G and H respectively. Therefore, in the sequel,
we only consider relational structures that are cores.

All relational structures of a given type form a category with nice properties.
In particular, this category has products and powers which are defined explicitly
as follows:

Given a relational structure H, and a positive integer d, the d-ary power Hd

of H is the relational structure of the same type as H, defined as follows.

– V (Hd) = {(v1, . . . , vd) | v1, . . . , vd ∈ V (H)}.
– For i ∈ I, ((v1,1, v1,2, . . . , v1,d), . . . , (vki,1, . . . , vki,d)) is in Ri(Hd) if and only

if all of (v1,1, v2,1, . . . , vki,1), . . . , (v1,d, . . . , vki,d) are in Ri(H).

An H-coloring of Hd (i.e. a homomorphism Hd → H) is called a d-ary poly-
morphism of H. A d-ary polymorphism φ is called a projection if there exists

162 J. Nešetřil and M. Siggers

some i ∈ 1, . . . , d such that φ((v1, . . . , vd)) = vi for any v1, . . . , vd ∈ V (H). Let
Pol(H), Aut(H) and Proj(H) be the sets of polymorphisms, automorphisms and
projections (of all arities) of H. A relational structure H is projective if for every
φ ∈ Pol(H), φ = σ ◦π for some σ ∈ Aut(H) and some π ∈ Proj(H). (It is shown
in [19] that almost all relational structures are projective.)

The following definition of graphs that are, in a sense, locally projective, is
our principal definition.

Definition 2. A subset S of V (H) is called projective if for every φ ∈ Pol(H),
φ restricts on S to the same function as does σ ◦ π for some σ ∈ Aut(H) and
some π ∈ Proj(H). S is called non-trivial if |S| > 1. A relational structure H is
called subprojective if it is a core and it contains a non-trivial projective subset.

Note that any subset of a projective set is again projective. A structure is pro-
jective if and only if the set of all its vertices is projective. It is easy to find
subprojective structures which fail to be projective.

The main tool of the paper is the following general indicator construction
which we call the fibre construction. This construction extends a construction
first used in a in a Ramsey theory setting in [29], and then proved in [30] in the
present form, for H = K3 and P being projective. A special case of it is proved
in Sect. 3, the full proof is relegated to the full version of the paper.

Theorem 3. Let H be any relational structure, and let P be any subprojective
relational structure. Then there exists a polynomial time construction, the fibre
construction, MP

H which provides for any instance G of CSP(H), an instance
MP

H(G) of P such that

G→ H ⇐⇒ MP
H(G) → P.

Note that H and P need not be of the same type. Since CSP(K3) is NP -complete,
taking H in to be K3 gives the following result.

Corollary 4. For any subprojective relational structure P, the problem CSP(P)
is NP -complete.

The fibre construction also has immediate applications to restricted versions of
CSP complexity.

The degree of a vertex v in a relational structure G is the number of tuples it
occurs in in

⋃
Ri, and the maximum degree, over all vertices in H, is denoted

by Δ(G). G is called b-bounded if Δ(G) ≤ b.
It is conjectured in [8] that for any relational structure H, if CSP(H) is NP -

complete, then there is some finite b such that CSP(H) is NP -complete when
restricted to b-bounded instances.

In [30], this was shown to be true in the case of graphs and projective relational
structures H. Further explicit bounds were given on b(H), which is the minimum
b such that CSP(H) is NP -complete when restriced to b-bounded instances. In
Sect. 4, we observe the following corollary of the proof of Thm. 3.

Combinatorial Proof that Subprojective CSPs are NP-Complete 163

Corollary 5. For any subprojective relational structure P,

b(P) < (4 ·Δ(P)6).

This greatly improves the bound on b(H) from [30] in the case of sub-projective
graphs H . We intend, in a later paper to show that all non-bipartite graphs are
subprojective, thus applying this better bound to all graphs.

Degrees and short cycles are classical restrictions for coloring problems. Recall
that girth g(G) of a graph G is the length of the shortest cycle in G. We then
observe that the following result about sparse graphs follows from our extension
(from Sect. 5) of the Sparse Incomparability Lemma [22], [24].

Theorem 6. Let H be a subprojective graph, and � a positive integer. Then the
problem CSP(H) is NP-complete when restricted to graphs with girth ≥ �.

This addresses a problem of [17] where the question of CSPs when restricted to
instances with large girth was studied. This result can be generalized futher to
relational structures but we decided to stop here.

3 The Fibre Construction

So called indicator constructions are often used relate the conplexity of different
CSPs. The basic idea is that one can reduce CSP(H) to CSP(H ′) by constructing
in polynomial time, for any instance G of CSP(H), an instance G′ of CSP(H ′),
such that

G→ H ⇐⇒ G′ → H ′.

If CSP(H) is NP -complete, then CSP(H ′) must also be NP -complete. See the
proof of the H-coloring dichotomy in [13] for an intricate use of such
constructions.

One of the difficulties with indicator constructions is that one uses many ad
hoc tricks to find a constrution for a particular graphs H ′ or H . The fibre con-
struction, Thm. 3, is an indicator construction that will suffice for all reductions.

In this section, we prove the following simple case of the fibre construction.

Proposition 7. There exists a polynomial time construction which provides for
and graph G, a graph M(G) such that

G→ C5 ⇐⇒ M(G) → K3.

Ours is not the most elegant known reduction of C5-coloring to K3-coloring, but
it has the advantage that it can be easily generalized. After the proof, we discuss
a couple of issues that we must deal with in the general case, Thm. 3. The proof
of the general case can be found in the full version of the paper.

164 J. Nešetřil and M. Siggers

3.1 Notation

Given an indexed set W ∗ = [w∗
1 , . . . , w

∗
d] of vertices, a copy W a of the set W ∗

will mean the indexed set W a = [wa
1 , . . . , w

a
d]. Given two copies W a and W b of

the same set W ∗ we say that we identify W a and W b index-wise to mean we
identify the vertices wa

i and wb
i for i = 1, . . . , d. When we define a function f on

W ∗, we will assume it to be defined on any copy W a of W ∗ by f(wa
α) = f(w∗

α)
for all α = 1, . . . , d. We will often refer to a function f on an indexed set W ∗ as
a pattern of W ∗. In the case that the image of f is contained in the vertex set
of some graph H we speak about H-pattern of W ∗.

3.2 The Fibre Gadget

The construction consists of two parts. In the first part we build a fibre gadget
M which depends only on C5 and K3. To build the fibre gadget M we need the
following simple lemma which is motivated by a result of Müller, [21].

Lemma 1. Let P be a subprojective relational structure with non-trivial projec-
tive subset S. Let W be an indexed set, and let Γ = {γ1, . . . , γd} be a set of S
patterns of W satisfying the following condition (*).

For any pair w �= w′ ∈ W , there exists some γ ∈ Γ for which γ(w) �=
γ(w′).

Then there exists a relational structure M, isomorphic to Pd, with W ⊂ V (M),
such that the set of P-colorings of M, when restricted to W , is exactly

{α ◦ γ | α ∈ Aut(P), γ ∈ Γ}.

Proof (Proof of Lemma 1). Put M = Pd and for each w ∈ W , identify w with
the vertex (γ1(w), . . . , γd(w)) of M. By condition (*), these are distinct elements
of V (M).

Since S is a projective subset of P, the only P-colorings of M = Pd restrict
on Sd, which contains W , to α ◦ π where α is a automorphism of P and π is a
projection. But the projections restrict on W to exactly the maps of Γ , so the
lemma follows.

The following lemma provides the fibre gadget M .

Lemma 2. There exists a graph M containing two copies W a and W b of an
indexed set W ∗, and a set F = {fx | x ∈ V (C5)} of distinct K3-patterns of W ∗,
such that the following conditions are true upto some permutation of V (K3).

i. Any K3-coloring of M , restricted to W a, (or to W b) is in F .
ii. For any K3-coloring φ of M , φ restricts on W a to fx and on W b to fy for

some edge xy of C5.
iii. For any edge xy (or yx) of C5, there is a K3-coloring φ of M that restricts

on W a to fx and on W b to fy.

Moveover, M ∼= (K3)10.

Proof. Let V (K3) = {0, 1, 2}. Let W ∗ = [w∗
x | x ∈ V (C5)], and let F = {fx | x ∈

V (C5)], where fx is the {0, 1}-pattern (K3-pattern) defined by

Combinatorial Proof that Subprojective CSPs are NP-Complete 165

fx(w∗
y) =

{
1 x = y
0 otherwise.

Let W = W a ∪ W b, where W a and W b are disjoint copies of W ∗ and let
Γ = {γxy | xy ∈ E(C5)} where γxy is the {0, 1}-pattern of W defined by

γxy restricted to W a is fx and restricted to W b is fy.

Observe that γxy and γyx are distinct elements of Γ for every edge xy of C5, so
|Γ | = 10.

Apply Lem. 1 to W and Γ . The instance M of CSP(K3) that it returns is
clearly the graph M that we are looking for.

The name ‘fibre gadget’ comes from the relation of the vertices of W ∗ to the set
of K3-patterns F . We view w ∈ W ∗ as a fibre in V (K3)|F |, whose ith postition
corresponds to its image under the ith pattern fxi of F .

3.3 The Fibre Construction

The fibre gadgets are put together with the following construction, which call
the fibre construction.

Construction 8. Let W ∗, F , and M be as in Lem. 2. Let G be an instance of
CSP(K3), and construct M(G) as follows. (See Fig. 1.)

i. For each vertex v of G let W v be a copy of W ∗.
ii. For each edge uv of G let Muv be a copy of M . Index-wise, identify Wu and

W v with the copies of W a and W b, respectively, in Muv.

Thus M(G) consists of |V (G)| copies of W ∗ and |E(G)| copies of M . All vertices
are distinct unless identified above.

We can now prove Prop. 7.

Proof. For any graph G let M(G) be the graph defined by the fibre construction,
Const. 8. As M(G) is made of |E(G)| copies of M , which is independent of G,
this is a polynomial time construction.

M(G)

G

W b

W a

M

Fig. 1. Fibre Construction

166 J. Nešetřil and M. Siggers

Let φ be a K3-coloring of M(G). We show that this defines a C5 colouring
φ′ of G. It is enough to show this for a compontent of M(G). Now φ restricts
on W v, for each vertex v of G, to σ ◦ f for some permutation σ of V (K3) and
some pattern f in F . Since the number of vertices of each color is constant over
all patterns of F , and this property is not preserved under any permutaion of
V (K3), the permutaion σ must be constant for all W v. We assume that it is the
identity permutation, so φ restricts on each W v to some pattern f in F . Thus
φ′ : V (G) → V (C5) is well defined by letting φ′(v) = x where φ restricts on W v

to the pattern fx. Moreover, by property (ii) of Lem. 2, φ′ is a C5-coloring of G.
On the other hand, given a C5-coloring φ′ of G we define a K3-coloring φ of

M(G) as follows. For all vertices v of G, let φ be fφ′(v) on the set W v. For every
edge uv of G, the sets Wu and W v are already colored by φ, and we must extend
this coloring to Muv. Now φ restricts on Wu to fφ′(u) and on W v to fφ′(v), and
φ′(u)φ′(v) is an edge of C5, so by property (iii) of Lem. 2 φ can be extended to
Muv. Thus φ can be extended to a K3-coloring of M(G).

3.4 Remark

This outline gives only the idea of the general proof. There are several obstacles.
For example, in the general case of relational structures, we will need a different
fibre gadget for each kind of relation. And, of course, our relations need not be
symmetric. In the general case, the set F from Lem. 2 will be S-patterns, instead
of K3-patterns. Also, for general H, it may be more difficult to to ensure that
Γ in the proof of Lem. 2 satisfies property (*) of Lem. 1. We thus use a more
general version on Lem. 1 in which Γ need not satisfy (*), but which returns a
M that is not necessarily isomorphic to Pd.

These are just technicalities which can be handled with care.

4 Applications

4.1 Degree Bounded CSPs

We mentioned in the introduction, that because CSP(K3) is NP -complete, tak-
ing H = K3, Cor. 4 follows from Thm. 3. In fact, CSP(K3) is NP -complete for
4-bounded instances G.

For a 4-bounded graph G, the fibre construction would yield an instance
MP

K3
(G) of CSP(P) with maximum degree (4 ·Δ(P))6. Thus Cor. 5, follows from

the proof of Thm. 3.

4.2 Girth Restricted H-Coloring

The results in this subsection are for graphs.
The following lemma is proved in [21] in the case that P is a complete graph,

and is proved in [24] without item (iii) in the case that P is projective. In both
of these cases, S = V (P).

Combinatorial Proof that Subprojective CSPs are NP-Complete 167

Lemma 3. Let P be a subprojective graph with projective subset S, and let � ≥ 3
be an integer. Let W be an indexed set, and let Γ = {γ1, . . . , γd} be a set of S
patterns of W . Then there exists a relational structure M with W ⊂ V (M), such
that the following are true:

i. The set of P -colorings of M , when restricted to W , is exactly

{α ◦ γ | α ∈ Aut(P), γ ∈ Γ}.

ii. M has girth at least �.
iii. The distance, in M , between any two vertices of W is at least g.

Proof. This lemma follows from Thm. 11 which is a local form of the main result
of [24]. The result will be stated in Sect. 5.

Using this in place of Lem. 1 in the fibre construction, we can ensure that the
graph MP

H(G) that is returned has girth �. Thus Thm. 6 follows.

4.3 Conservative CSPs

A constraint satisfaction problem CSP(H) is conservative if H contains all pos-
sible unary relations. Such a CSP is also known as List H-colouring.

In [3], Bulatov proves the following dichotomy for conservative CSPs.

Theorem 9. [3] A conservative constraint satisfaction problem CSP(H) is NP -
complete if there there is a set B ⊂ V (H) of size at least 2 such that for any
polymophism φ of H, φ restricted to B is essentially unary. Otherwise, CSP(H)
is polynomial time solvable.

The difficult part of Bulatov’s paper is the polynomial time solvable part of this
result. The NP -complete part follows quickly from the algebraic approach of [15]
and [5]. We observe that the NP -complete part is also immedieate from Cor. 4.
Indeed, since we only consider cores H, any essentially unary operation on B is
α ◦ π where π is a projection of Bd to B and α is an automorphism of H. Thus
B is a projective subset of H.

5 Coloring Theorems - Combinatorial Background

The main motivation for our construction is a result of Müller [21], which is a
special graph case of Lem. 1, except that it returns a graph M of arbitrary girth.
The difficult part of the lemma is, of course, ensuring that M has arbitrary girth.
He did this with a special case of Lem. 11. Müller’s lemma was extended in [24],
and the form here, is a localisation of their version.

Localising the notion of H-pointed graphs H , from [24], we get the following
definition.

Definition 10. Let H,H ′ be graphs. Subsets S of V (H) and S′ of V (H ′) are
said to be (H,H ′)-pointed subsets if for any two homomorphisms g, g′ : H → H ′

which satisfy g(x) = g′(x) ∈ S′, whenever x �= x0 and x ∈ S (for some fixed
vertex x0 ∈ S), then g(x0) = g′(x0) ∈ S′.

168 J. Nešetřil and M. Siggers

Theorem 11. For every graph H and every choice of positive integers k and l
there exists a graph G together with a surjective homomorphism c : G→ H with
the following properties.

i. g(G) > l;
ii. For every graph H ′ with at most k vertices and there exists a homomorphism

g : G→ H ′ if and only if there exists a homomorphism f : H → H ′.
iii. For every (H,H ′)-pointed subsets S ⊂ V (H), S′ ⊂ V (H ′) with at most k

vertices and for every homomorphism g : G→ H ′ holds: if homomorphisms
f, f ′ : H → H ′ satisfy g = f ◦ c, then f(x) = f ′(x) for every x ∈ S.

The proof of Thm. 11 is along the same lines as less general version proved in
[24]. We essentially repeat their proof replacing the notion of H-pointed with its
localization, (H,H ′)-pointed. This is routine but lengthy, so we omit the proof.

6 CSP Dichotomy Classification Conjecture

In [5], the universal algebra approach of [15] is extended to to show that CSP(H)
is NP -complete for a large class of CSPs. A conjecture is made that CSP(H) is
polynomial time solvable for all other CSPs H. In [18], this conjecture is then
transported to the language of posets.

An algebra A = (A,F) consists of a non-empty set A, and a set F of finitary
operations on A. It is finite if A is finite. Given a relational structure H, recall
that Pol(H) is the set of polymorphisms of H. This defines an algebra AH =
(V (H),Pol(H)). We say that AH is NP -complete if CSP(H) is.

The following two definitions are borrowed directly from [5].

Definition 12. Let A = (A,F) be an algebra and B a subset of A such that,
for any f ∈ F and for any b1, . . . , bd ∈ B, where d is the arity of f , we have
f(b1, . . . , bd) ∈ B. Then the algebra B = (B,F |B) is called a subalgebra of A,
where F |B consists of the restrictions of all operations in F to B.

Definition 13. Let B = (B,F1) and C = (C,F2) be such that F1 = {f1
i | i ∈ I}

and F2 = {f2
i | i ∈ I}, where both f1

i and f2
i are di-ary, for all i ∈ I. Then C is

a homomorphic image of B if there exists a surjection ψ : B → C such that the
following identity holds for all i ∈ I, and all b1, . . . , bdi ∈ B.

ψ ◦ f1
i (b1, . . . , bdi) = f2

i (ψ(b1), . . . , ψ(bdi)).

Given an algebra C = (C,F), the term operators of C refer to the set of fini-
tary operators of C that preserve the same relations on C as F does. Thus all
operators in F are term operators. A d-ary operator f of F is essentially unary
if f = f ′ ◦ π for some projection π : Cd → C and some non-constant function
f ′ : C → C. Because this f ′ is non-constant, if F has any essentially unary
operators, then |C| ≥ 2.

Combinatorial Proof that Subprojective CSPs are NP-Complete 169

The following result is Cor. 7.3 in [5].

Theorem 14. A finite algebra A is NP -complete if it has a subalgebra B with
a homomorphic image C, all of whose term operators are essentially unary.

Further, they conjecture that CSP(H) is NP -complete for a relational structure
H, only if it is NP -complete by the above theorem.

We at first thought that any relational structure H such that AH has a sub-
algebra B = A(B,F1 = Pol(H)|B) with a homomorphic image C = A(C,F2), all
of whose term operators are essenially unary, was subprojective. However, Ralph
McKenzie [27] provided us with an explicit counterexample to this fact. Further,
he showed that for any subprojective structure H that AH has a subalgebra
which has a homomorphic image, all of whose term operators are essentially
unary.

This shows that subprojective structures are certainly not the only structures
yielding NP -complete CSPs. However, the fibre construction can be adapted to
show NP -completeness for much more than subprojective structures. In a future
paper we extend the fibre construction to show, at least, that all H such that
AH has a subalgebra B = A(B,F1 = Pol(H)|B) with a homomorphic image
C = A(C,F2), are NP -complete. A discussion of this extension appears in [23],
the full version of this paper, and a full presentation will appear in a future
paper.

References

1. Bodnarčuk, V.G., Kaluzhnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for
Post algebras I - II (in Russian), Kibernetika, 3 (1969), 1-10 and 5 (1969), 1-9.
English version: Cybernetics, 243-252 and 531-539 (1969)

2. Bulatov, A.: A dichotomy theorem for constraints on a three element set. FOCS’02 ,
649–658 (2002)

3. Bulatov, A.: Tractable conservative Constraint Satisfaction Problems, ACM Trans.
on Comp. Logic. LICS’03, 321–330 (2003)

4. Bulatov, A.: H-Coloring Dichotomy Revisited. Theoret. Comp. Sci. 1, 31–39 (2005)
5. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints

using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)
6. Bulatov, A., Jeavons, P., Krokhin, A.: Constraint satisfaction problems and finite

algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 272–282. Springer, Heidelberg (2000)

7. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and
Applications, SIAM (2001)

8. Feder, T., Hell, P., Huang, J.: List Homomorphisms of Graphs with Bounded De-
gree (Submitted)

9. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1999)

10. Geiger, D.: Closed systems of functions and predicates. Pacific. Journal of Math. 27,
95–100 (1968)

170 J. Nešetřil and M. Siggers

11. Hell, P.: Algorithmic aspects of graph homomorphisms. In: Survey in Combina-
torics 2003, pp. 239–276. Cambridge University Press, Cambridge (2003)

12. Hell, P.: From Graph Colouring to Constraint Satisfaction: There and Back Again.
In: Klazar, M., Kratochvil, J., Loebl, M., Matousek, J., Thomas, R., Valtr, P. (eds.)
Topics in Discrete Mathematics. Dedicated to Jarik Nesetril on the Occasion of his
60th Birthday, pp. 407–432. Springer, Heidelberg (2006)

13. Hell, P., Nešetřil, J.: On the complexity of H-colouring. J. Combin. Theory B 48,
92–100 (1990)

14. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

15. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theoret.
Comput. Sci. 200(1-2), 185–204 (1998)

16. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of Constraints. Jour-
nal of the ACM 44, 527–548 (1997)

17. Kostochka, A., Nešetřil, J., Smoĺıková, P.: Colorings and homomorphisms of de-
generate and bounded degree graphs. Graph theory (Prague, 1998). Discrete
Math 233(1-3), 257–276 (2001)

18. Larose, B., Zádori, L.: The Complexity of the Extendibility Problem for Finite
Posets. SIAM J. Discrete Math. 17(1), 114–121 (2003)

19. �Luczak, T., Nešetřil, J.: A probabilistic approach to the dichotomy problem. SIAM
J. Comput. 36(3), 835–843 (2006)

20. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences 7, 95–132 (1974)

21. Müller, V.: On colorings of graphs without short cycles. Discrete Math. 26, 165–176
(1979)

22. Nešetřil, J., Rödl, V.: Chromatically optimal rigid graphs. J. Comb. Th. B 46,
122–141 (1989)

23. Nešetřil, J., Siggers, M.: A New Combinatorial Approach to the CSP Dichotomy
Classification (submitted, 2007)

24. Nešetřil, J., Zhu, X.: On sparse graphs with given colorings and homomorphisms.
J. Combin. Theory Ser. B 90(1), 161–172 (2004)

25. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge
(1997)

26. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relatrionenalgebren. DVW, Berlin
(1979)

27. McKenzie, R.: Personal Communication
28. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the

10th ACM Symposium on Theory of Computing (STOC’78), pp. 216–226 (1978)
29. Siggers, M.: On Highly Ramsey Infinte Graphs. (submitted, 2006)
30. Siggers, M.: Dichotomy for Bounded Degree H-colouring (submitted 2007)

NP by Means of Lifts and Shadows�

Gábor Kun and Jaroslav Nešetřil

Department of Mathematics, University of Memphis
373 Dunn Hall, Memphis, TN 38152

Department of Applied Mathematics (KAM) and
Institute of Theoretical Computer Science (ITI),
Charles University, Malostranské nám 22, Praha

kungabor@cs.elte.hu
nesetril@kam.mff.cuni.cz

Abstract. We show that every NP problem is polynomially equivalent
to a simple combinatorial problem: the membership problem for a special
class of digraphs. These classes are defined by means of shadows (pro-
jections) and by finitely many forbidden colored (lifted) subgraphs. Our
characterization is motivated by the analysis of syntactical subclasses
with the full computational power of NP, which were first studied by
Feder and Vardi.

Our approach applies to many combinatorial problems and it induces
the characterization of coloring problems (CSP) defined by means of
shadows. This turns out to be related to homomorphism dualities. We
prove that a class of digraphs (relational structures) defined by finitely
many forbidden colored subgraphs (i.e. lifted substructures) is a CSP
class if and only if all the the forbidden structures are homomorphically
equivalent to trees. We show a surprising richness of coloring problems
when restricted to most frequent graph classes. Using results of Nešetřil
and Ossona de Mendez for bounded expansion classes (which include
bounded degree and proper minor closed classes) we prove that the re-
striction of every class defined as the shadow of finitely many colored
subgraphs equals to the restriction of a coloring (CSP) class.

Keywords: Digraph, homomorphism, duality, NP, Constraint Satisfac-
tion Problem.

1 Introduction, Background and Previous Work

Think of 3-colorability of a graph G. This is a well known hard (and a canonical
NP-complete) problem. From the combinatorial point of view there is a stan-
dard way how to approach this problem (and monotone properties in general):
investigate minimal graphs without this property, denote by F the language of
� Part of this work was supported by ITI and DIMATIA of Charles University Prague

under grant 1M0021620808, by OTKA Grant no. T043671, NK 67867, by NKTH
(National Office for Research and Technology, Hungary), AEOLUS and also by Isaac
Newton Institute (INI) Cambridge.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 171–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 G. Kun and J. Nešetřil

all such critical graphs and define the set Forb(F) of all structures which do not
“contain” any F ∈ F . Then the language Forb(F) coincides with the language
of 3-colorable graphs. Unfortunately, in the most cases the set F is infinite. How-
ever the properties characterized by a finite set F are very interesting if we allow
lifts and shadows.

Let us briefly illustrate this by our example of 3-colorability. Instead of a
graph G = (V,E) we consider the graph G together with three unary relations
C1, C2, C3 (i.e. colors of vertices) which cover the vertex set V ; this structure will
be denoted by G′ and called a lift of G (thus G′ has one binary and three unary
relations). There are 3 forbidden substructures: For each i = 1, 2, 3 the single edge
graph K2 together with cover Ci = {1, 2} and Cj = ∅ for j �= i form structure
F′

i (where the signature of F′
i contains one binary and three unary relations).

The language of all 3-colorable graphs is just the language Φ(Forb(F′
1,F

′
2,F

′
3)),

where Φ is the forgetful functor which transforms G′ to G. We call G the shadow
of G′.

Clearly this situation can be generalized and one of the main results of this
paper is Theorem 3 which states that every NP problem is polynomially equiv-
alent to the membership problem for a class Φ(Forb(F ′)). Here F ′ is a finite set
of (vertex pair)-colored digraphs, Forb(F ′) is the class of all lifted graphs G′ for
which there is no homomorphism F ′ −→ G′ for an F ′ ∈ F ′. Thus Forb(F ′) is
the class of all graphs G′ with forbidden homomorphisms from F ′. (See Section
2 for definitions.) Theorems 4 and 5 provide similar results for forbidden colored
subgraphs and for forbidden induced subgraphs (in both cases vertex colorings
suffice).

We should add one more remark. We of course do not only claim that every
problem in NP can be polynomially reduced to a problem in any of these classes.
This would only mean that each of these classes contains an NP-complete prob-
lem. What we claim is that these classes have the computational power of the
whole NP class. More precisely, to each language L in NP there exists a language
M in any of these three classes such that M is polynomially equivalent to L, i.e.
there exist polynomial reductions of L to M and M to L. E.g. assuming P �= NP
there is a language in any of these classes that is neither in P nor NP-complete,
since there is such a language in NP by Ladner’s celebrated result [14].

The expressive power of classes Φ(Forb(F ′)) corresponds to many combina-
torially studied problems and presents a combinatorial counterpart to the cele-
brated result of Fagin [4] who expressed every NP problem in logical terms by
means of an Existential Second Order formula.

The fact that the membership problem for classes Φ(Forb(F ′)) and their
injective and full variants Φ(Forbinj(F ′)) and Φ(Forbfull(F ′)) have full compu-
tational power is pleasing from the combinatorial point of view as these classes
cover well known examples of hard combinatorial problems: Ramsey type prob-
lems (where as in Theorem 3 we consider edge colored graphs), colorings of
bounded degree graphs (defined by an injectivity condition as in Theorem 4)
and structural partitions (studied e.g. in [8] as in Theorem 5). It follows that, in

NP by Means of Lifts and Shadows 173

the full generality, one cannot expect dichotomies here. On the other side of the
spectrum, Feder and Vardi have formulated the celebrated Dichotomy conjecture
for all coloring problems (CSP).

Our main result is Theorem 9: we give an easy characterization of those lan-
guages Φ(Forb(F ′)) which are coloring problems (CSP). This can be viewed
as an extension of the duality characterization theorem for structures [6]. We
demonstrate the power of this theorem while reproving some theorems about
the local chromatic number. In contrast with this we show that the shadow
Φ(Forb(F ′)) of a vertex colored class of digraphs Forb(F ′) is always a CSP
language when restricted to a bounded expansion class (this notion generalizes
bounded degree and proper minor closed classes) [20]. Our main tools are finite
dualities [23,6], restricted dualities [21], and the Sparse Incomparability Lemma
[22,9]. The detailed proofs can be found in the full version of this paper [13].

2 Preliminaries

We consider finite relational structures although in most of the paper we only
deal with digraphs, i.e. relational structures with just one binary relation. This
itself is one of the main features of this note: oriented graphs suffice. Digraphs
will be denoted by A,B, . . . (as we want to stress that they may be replaced by
more general structures).

Let Γ denote a finite set we refer to as colors. A Γ -colored graph (structure) is
a graph (or structure) together with either a coloring of its vertices or a coloring
of all pairs of vertices by colors from Γ . Only in Theorem 3 we shall consider
coloring of all pairs (but in Theorem 3 this will play an important role). Thus
in the whole paper we shall undestand by a colored graph a graph with colored
vertices. We denote colored digraphs (relational structures) by A′,B′ etc. Fol-
lowing the more general notions in category theory we call A′ a lift of A and A is
called the shadow of A′. Thus (vertex-) colored digraphs (structures) can be also
described as monadic lifts. A homomorphism of digraphs (relational structures)
preserves all the edges (arcs). A homomorphism of colored digraphs (relational
structures) preserves the color of vertices (pairs of vertices), too. The Constraint
Satisfaction Problem corresponding to the graph (relational structure) A is the
membership problem for the class of all graphs (structures) defined by {B : B is
homomorphic to A}. We call a mapping between two (colored) digraphs a full
homomorphism if in addition the preimage of an edge is an edge. Full homo-
morphisms have very easy structure, as every full homomorphism which is onto
is a retraction. The other special homomorphisms we will be interested in are
injective homomorphisms.

Let F ′ be a finite set of colored relational structures (digraphs). By Forb(F ′)
we denote the set of all colored relational structures (digraphs) A′ satisfying
F′ �−→ A′ for every F′ ∈ F ′. (If we use injective or full homomorphisms this will
be denoted by Forbinj(F ′) or Forbfull(F ′), respectively).

174 G. Kun and J. Nešetřil

Similarly (well, dually), for the finite set of colored relational structures (di-
graphs) D′ we denote by CSP (D′) the class of all colored digraphs A′ satisfying
A′ −→ D′ for some D′ ∈ D′. (This is sometimes denoted by → D.) Now suppose
that the classes Forb(F ′) and CSP (D′) are equal. Then we say that the pair
(F ′,D′) is a finite duality. Explicitly, a finite duality means that the following
equivalence holds for every (colored) relational structure (digraph):

∀F′ ∈ F ′ F′ �−→ A′ ⇐⇒ ∃D′ ∈ D′ A′ −→ D′.

We say that the structure A is core if every homomorphism A −→ A is
an automorphism. Every finite structure A contains (up to an isomorphism) a
uniquely determined core substructure homomorphically equivalent to A, see
[23] [9]. The following result was recently proved in [6] and [23]. It characterizes
finite dualities of digraphs (or more generally relational structures with a given
signature).

Theorem 1. For every finite set F of (relational) forests there exists (up to ho-
momorphism equivalence) a finite uniquely determined set D of structures such
that (F ,D) forms a finite duality, i.e. Forb(F) = CSP (D). Up to homomor-
phism equivalence there are no other finite dualities.

Let Φ denote the forgetful functor which corresponds to a Γ -colored relational
structure (digraph) the uncolored one, i.e. it forgets about the coloring. We
will investigate classes of the form Φ(Forb(F ′)). We call the pair (F ′,D) shadow
duality if Φ(Forb(F ′)) = CSP (D). An example of shadow duality is the language
of 3-colorable graphs discussed in the introduction (or, as can be seen easily, any
CSP problem in general). Finite dualities became much more abundant when we
demand the validity of the above formula just for all graphs from a given class K.
In such a case we speak about K-restricted duality. It has been proved in [21] that
so called Bounded Expansion classes (which include both proper minor closed
classes and classes of graphs with bounded degree) have a restricted duality for
every choice of F ′.

The study of homomorphism properties of structures not containing short
cycles (i.e. with a large girth) is a combinatorial problem studied intensively.
The following result has proved particularly useful in various applications. It is
often called the Sparse Incomparability Lemma:

Theorem 2. Let k, � be positive integers and let A be a structure. Then there
exists a structure B with the following properties:

1. There exists a homomorphism f : B −→ A;
2. For every structure C with at most k points the following holds: there exists

a homomorphism A −→ C if and only if there exists a homomorphism
B −→ C;

3. B has girth ≥ �.

This result was proved by probabilistic method in [22] [24], see also [9]. The
polynomial time construction of B is possible, too: in the case of binary relations
(digraphs) this was done in [18] and for relational structures in [12].

NP by Means of Lifts and Shadows 175

3 Statement of Results

3.1 NP by Means of Finitely Many Forbidden Lifts

The class SNP consists of all problems expressible by an existential second-order
formula with a universal first-order part [4]. The class SNP is computationally
equivalent to NP. Feder and Vardi [5] have proved that three syntactically de-
fined subclasses of the class SNP still have the full computational power of the
class NP. We reformulate this result to our combinatorial setting of lifts and
shadows.

Theorem 3. For every language L ∈ NP there exist a finite set of colors Γ
and a finite set of Γ -colored digraphs F ′, where we color all pairs of vertices such
that L is computationally equivalent to the membership problem for Φ(Forb(F ′)).

Theorem 4. For every language L ∈ NP there exist a finite set of colors Γ
and a finite set of Γ -colored digraphs F ′, (where we color the vertices) such that
L is computationally equivalent to the membership problem for Φ(Forbinj(F ′)).

Theorem 5. For every language L ∈ NP there exist a finite set of colors Γ
and a finite set of Γ -colored digraphs F ′, (where we color the vertices) such that
L is computationally equivalent to the membership problem for Φ(Forbfull(F ′)).

3.2 Lifts and Shadows of Dualities

It follows from Section 3.1 that shadows of Forb of a finite set of colored digraphs,
this is classes Φ(Forb(F ′)), where F ′ is a finite set, have the computational
power of the whole NP. What about finite dualities? Are the shadow dualities
also more frequent? The negative answer is expressed by Theorem 7 and shows
a remarkable stability of dualities. Towards this end we first observe that every
duality (of lifted structures) implies a shadow duality:

Theorem 6. Let Γ be a finite set of colors and F ′ a finite set of Γ -colored
digraphs (relational structures), where we color all of the vertices. Suppose that
there exists a finite set of Γ -colored digraphs (relational structures) D′ such that
Forb(F ′) = CSP (D′). Then Φ(Forb(F ′)) = CSP (Φ(D′)).

Theorem 6 may be sometimes reversed: Shadow dualities may be “lifted” in case
that lifted graphs have colored vertices (this is sometimes described as monadic
lift). This is non-trivial and in fact Theorem 7 may be seen as the core of this
paper.

Theorem 7. Let Γ be a finite set of colors and F ′ be a finite set of Γ -colored
digraphs (relational structures), where we color all of the vertices. Suppose that
Φ(Forb(F ′)) = CSP (D) for a finite set D of digraphs (relational structures).

176 G. Kun and J. Nešetřil

Then there exists a finite set D′ of Γ -colored digraphs (relational structures) such
that Forb(F ′) = CSP (D′).

4 Proofs

The proofs of Theorems 3, 4 and 5 are in the full version of this paper [13]. We do
not include them as they need some new definitions (and space) but nevertheless
basically follow the strategy of [5].

Before proving Theorems 6 and 7 we formulate first a simple lemma which we
shall use repeatedly:

Lemma 1. (lifting) Let A,B relational structures, homomorphism f : A −→
B, a finite set of colors Γ and Φ(B′) = B be given. Then there exists a lift A′,
such that Φ(A′) = A and the mapping f is a homomorphism A′ −→ B′ (of
colored structures).

Proof (of Theorem 6). Suppose that A ∈ CSP (Φ(D′)), say A ∈ CSP (Φ(D′)).
Now for a homomorphism f : A −→ Φ(D′) there is at least one lift A′ of A such
that the mapping f is a homomorphism A′ → D′ (here we use Lifting Lemma
1). Since the pair(F ′,D′) is a duality F′ � A′ holds for any F′ ∈ F ′ and thus
in turn A ∈ Φ(Forb(F ′)).

Conversely, let us assume that A′ ∈ Forb(F ′) satisfies Φ(A′) = A. But then
A′ ∈ CSP (D′) and thus by the functorial property of Φ we have A = Φ(A′) ∈
CSP (Φ(D′)).

Proof (of Theorem 7). Assume Φ(Forb(F ′)) = CSP (D). Our goal is to find D′

such that Forb(F ′) = CSP (D′). This will follow as a (non-trivial) combination of
Theorems 1 and 2. By Theorem 1 we know that if F ′ is a set of (relational) forests
then the set F ′ has a dual set D′ (in the class of covering colored structures; we
just list all covering colored substructures of the dual set guaranteed by Theorem
1). It is Φ(D′) = D by Theorem 6. So assume to the contrary that one of the
structures, say F′

0, fails to be a forest (i.e. we assume that one of the components
of F′

0 has a cycle). We proceed by a refined induction (which will allow us to use
more properties of F′

0) to show that D′ does not exist. Let us introduce carefully
the setting of the induction.

We assume shadow duality Φ(Forb(F ′)) = CSP (D). Let D be fixed through-
out the proof. Clearly many sets F ′ will do the job and we select the set F ′ such
that F ′ consists of cores of all homomorphic images (explicitly: we close F ′ un-
der homomorphic images and then take the set of cores of all these structures).
Among all such sets F ′ we take a set of minimal cardinality. It will be again
denoted by F ′. We proceed by induction on the size |F ′| of F ′.

The set Forb(F ′) is clearly determined by the minimal elements of F ′ (mini-
mal in the homomorphism order). Thus let us assume that one of these minimal
elements, say F′

0, is not a forest. By the minimality of F ′ we see that we have a

NP by Means of Lifts and Shadows 177

proper inclusion Φ(Forb(F ′ \ {F′
0})) ⊃ CSP (D). Thus there exists a structure

S in the difference. But this in turn means that there has to be a lift S′ of S
such that F′

0 −→ S′ and S �→ D for every D ∈ D. In fact not only that: as F′
0

is a core, as Forb(F ′) is homomorphism closed and as F ′ has minimal size we
conclude that there exist S and S′ such that any homomorphism F′

0 −→ S′ is a
monomorphism (i.e. one-to-one, otherwise we could replace F′

0 by a set of all its
homomorphic images - F′

0 would not be needed).
Now we apply (the second non-trivial ingredient) Theorem 2 to structure

S and an � > |X(F′
0)|: we find a structure S0 with the following properties:

S0 −→ S, S0 −→ D if and only if S −→ D for every D ∈ D and S0 contains
no cycles of length ≤ �. It follows that S0 �∈ CSP (D). Next we apply Lemma 1
to obtain a structure S′0 with S′0 −→ S′. Now we use that S′0 is a monadic lift
and so does not contain cycles of length ≤ �. Now for any F′ ∈ F ′, F′ �= F′

0 we
have F′ � S′0 as S′0 → S′ and F′ � S′. As the only homomorphism F′

0 −→ S′

is a monomorphism the only (hypothetical) homomorphism F′
0 −→ S′ is also

monomorphism. But this is a contradiction as F′
0 contains a cycle while S′0 has

no cycles of length ≤ �. This completes the proof.

5 Applications

5.1 Classes with Bounded Expansion

We study the restriction of classes Φ(Forb(F ′)) to a class of digraphs with
bounded expansion recently introduced in [20]. These classes are a generaliza-
tion of proper minor closed and bounded degree classes of graphs. Using the
decomposition technique of [20] [21] we can prove that any class Φ(Forb(F ′))
(for a finite set F ′ of monadic lifts) when restricted to a bounded expansion class
equals to a CSP class (when restricted to the same class).

Theorem 8. Consider the finite set of colors Γ and the class Φ(Forb(F ′)) for
a finite set F ′ of Γ -colored digraphs. Let C be a class of digraphs of bounded
expansion. Then there is a finite set of digraphs D such that Φ(Forb(F ′))∩ C =
CSP (D) ∩ C.

Consider a monotone, first-order definable class of colored digraphs C which is
closed under homomorphism and disjoint union. By a combination with recent
results of [2] we also obtain (perhaps a bit surprisingly) that the shadow C is a
CSP language of digraphs. It remains to be seen to which bounded expansion
classes (of graphs and structures) this result generalizes.

5.2 The Classes MMSNP and FP - A Characterization

We conclude with an application to descriptive theory of complexity classes. Re-
call that the class of languages defined by monotone, monadic formulas without
inequality is denoted by MMSNP (Monotone Monadic Strict Nondeterministic

178 G. Kun and J. Nešetřil

Polynomial). (Feder and Vardi proved that the class MMSNP is computationally
equivalent to the class CSP in a random sense [5], this was later derandomized
by the first author [12].) Madeleine [16] introduced the class FP of languages
defined similarly to our forbidden monadic lifts of structures.

It has been proved in [16] that the classes FP and MMSNP are equal. In fact
the class MMSNP contains exactly the languages defined by forbidden monadic
lifts.

Proposition 1. A language of relational structures L is in the class MMSNP if
and only if there is a finite set of colors Γ and a finite set of Γ -colored relational
structures F ′ such that L = Φ(Forb(F ′)).

Madelaine and Stewart [17] gave a long process to decide whether an FP language
is a finite union of CSP languages. We use Theorems 6 and 7 and the description
of dualities for relational structures [6] to give a short characterization of a more
general class of languages.

Theorem 9. Consider the finite set of colors Γ and the language Φ(Forb(F ′))
for a finite set F ′ of Γ -colored digraphs (relational structures).

If no F′ ∈ F ′ contains a cycle then there is a finite set of digraphs (relational
structures) D such that Φ(Forb(F ′)) = CSP (D). If one of the lifts F′ in a min-
imal subfamily of F ′ contains a cycle in its core then the language Φ(Forb(F ′))
is not a finite union of CSP languages.

Proof. If no F′ ∈ Forb(F ′) contains a cycle then the set F ′ has a dual D′

by Theorem 1, and the shadow of this set D′ gives the dual set D of the set
Φ(Forb(F ′)) (by Theorem 6). On the other side if one F′ ∈ Forb(F ′) contains
a cycle in its core and if F ′ is minimal (i.e. F′ is needed) then Forb(F ′) does
not have a dual. The shadow of the language Forb(F ′) is the language L and
consequently this fails to be a finite union of CSP languages by Theorem 7.

Theorem 9 may be interpreted as stability of dualities for finite structures. While
shadows of the classes Forb(F ′) are computationally equivalent to the whole NP,
the shadow dualities are not bringing anything new: these are just shadows of
dualities. In other words: the coloring problems in the class MMSNP are just
shadow dualities. This holds for graphs as well for relational structures.

5.3 On the Local Chromatic Number

Now we apply Theorem 9 in the analysis of local chromatic number introduced
in [3] (see also [26]): we say that a graph G is locally (a, b)-colorable if there
exists a proper coloring of G by b colors so that every (closed) neighborhood of
a vertex of G gets at most a colors. It follows from [3] that the class of all locally
(a, b)-colorable graphs is of the form CSP(U(a, b)) for an explicitely constructed
graph U(a, b). We conclude this paper with an indirect proof of this result with
an application to complexity:

NP by Means of Lifts and Shadows 179

Proposition 2. Let a, b be integers and consider the membership problem for the
class of locally (a, b)-colorable graphs. This is actually a Constraint Satisfaction
Problem which is NP-complete if a, b ≥ 3 and it is polynomial time solvable else.

Proof. Consider the color set Γ = {1, . . . , b} and the following set F ′ of Γ -colored
undirected graphs. Let F ′ consist of all monochromatic edges (colored by any
of the b colors) and all the stars with a + 1 vertices colored by at least a + 1
colors. The corresponding language is exactly the required one: a graph G is in
the language iff it admits a proper Γ -coloring, this is no monochromatic edge is
homomorphic to the colored graph, such that the neighbourhood of every vertex
(including the vertex itself) has at most a different colors, i.e. no star with a+ 1
vertices of different color is homomorphic to it. Since F ′ consists of colored trees
this will be a CSP language by Theorem 9.

Hell and the second author proved that CSP problems defined by undirected
graphs are in P if the graph is bipartite and NP-complete else [9]. We do not
determine which graph defines this particular CSP problem (of locally (a, b)-
colorable graphs). But if a, b ≥ 3 then we know that it contains the triangle if,
so the problem is NP-complete. It is easy to see that this membership problem
is in P if a < 3 or b < 3.

6 Summary and Future Work

We found a computationally equivalent formulation of the class NP by means of
finitely many forbidden lifts of very special type. An ambitious project would be
to find an equivalent digraph coloring problem for a given NP language really
effectively (in human sense, our results provide a polynomial time algorithm).
For example it would be nice to exhibit a vertex coloring problem that is poly-
nomially equivalent to the graph isomorphism problem. In general this mainly
depends on how to express the problem in terms of logic. The next class we
seem to be able to deal with are coloring problems of structures with an equiva-
lence relation. Another good candidate are lifts using linear order. This promises
several interesting applications which were studied earlier in a different setting.

We also proved that shadow dualities and lifted monadic dualities are in 1−1
correspondence. This abstract result has several consequences and streamlines
some earlier results in descriptive complexity theory (related to MMSNP and
CSP classes). The simplicity of this approach suggests some other problems. It
is tempting to try to relate Ladner’s diagonalization method [14] in this setting
(as it was pioneered by Lovász and Gács [7] for NP∩coNP in a similar context).
The characterization of Lifted Dualities is beyond reach but particular cases are
interesting as they generalize results of [23] [6] and as the corresponding duals
present polynomial instances of CSP.

But perhaps more importantly, our approach to the complexity subclasses of
NP is based on lifts and shadows as a combination of algebra, combinatorics
and logic. We believe that it has further applications and that it forms a useful
paradigm.

180 G. Kun and J. Nešetřil

References

1. Atserias, A.: On Digraph Coloring Problems and Treewidth Duality. In: 20th IEEE
Symposium on Logic in Computer Science (LICS), pp. 106–115 (2005)

2. Atserias, A., Dawar, A., Kolaitis, P.G.: On Preservation under Homomorphisms
and Conjunctive Queries. Journal of the ACM 53(2), 208–237 (2006)

3. Erdős, P., Füredi, Z., Hajnal, A., Komjáth, P., Rödl, V., Seress, Á.: Coloring graphs
with locally few colors. Discrete Math. 59, 21–34 (1986)

4. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7,
pp. 43–73 (1974)

5. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1999)

6. Foniok, J., Nešetřil, J., Tardif, C.: Generalized dualities and maximal finite an-
tichains in the homomorphism order of relational structures. In: KAM-DIMATIA
Series 2006-766 (to appear in European J. Comb.)

7. Gács, P., Lovász, L.: Some remarks on generalized spectra. Z. Math. Log.
Grdl. 23(6), 547–554 (1977)

8. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition problems.
In: 31st Annual ACM STOC, pp. 464–472 (1999)

9. Hell, P., Nešetřil, J.: Graphs and Homomorphism. Oxford University Press (2004)
10. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16,

760–778 (1987)
11. Kun, G.: On the complexity of Constraint Satisfaction Problem, PhD thesis (in

Hungarian) (2006)
12. Kun, G.: Constraints, MMSNP and expander structures, Combinatorica (submit-

ted, 2007)
13. Kun, G., Nešetřil, J.: Forbidden lifts (NP and CSP for combinatorists). In: KAM-

DIMATIA Series 2006-775 (to appear in European J. Comb.)
14. Ladner, R.E.: On the structure of Polynomial Time Reducibility. Journal of the

ACM 22(1), 155–171 (1975)
15. Luczak, T., Nešetřil, J.: A probabilistic approach to the dichotomy problem. SIAM

J. Comp. 36(3), 835–843 (2006)
16. Madelaine, F.: Constraint satisfaction problems and related logic, PhD thesis

(2003)
17. Madelaine, F., Stewart, I.A.: Constraint satisfaction problems and related logic,

(manuscript, 2005)
18. Matoušek, J., Nešetřil, J.: Constructions of sparse graphs with given homomor-

phisms (to appear)
19. Nešetřil, J., Pultr, A.: On classes of relations and graphs determined by subobjects

and factorobjects. Discrete Math. 22, 287–300 (1978)
20. Nešetřil, J., de Mendez, P.O.: Low tree-width decompositions and algorithmic con-

sequences. In: STOC’06, Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pp. 391–400. ACM Press, New York (2006)

21. Nešetřil, J., de Mendez, P.O.: Grad and Classes with bounded expansion III. -
Restricted Dualities, KAM-DIMATIA Series 2005-741 (to appear in European J.
Comb.)

22. Nešetřil, J., Rödl, V.: Chromatically optimal rigid graphs. J. Comb. Th. B 46,
133–141 (1989)

NP by Means of Lifts and Shadows 181

23. Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps
and good characterization. J. Combin. Theory B 80, 80–97 (2000)

24. Nešetřil, J., Zhu, X.: On sparse graphs with given colorings and homomorphisms.
J. Comb. Th. B 90(1), 161–172 (2004)

25. Rossman, B.: Existential positive types and preservation under homomorphisms.
In: 20th IEEE Symposium on Logic in Computer Science (LICS’2005), pp. 467–476
(2005)

26. Simonyi, G., Tardos, G.: Local chromatic number, Ky Fan’s theorem and circular
colorings. Combinatorica 26, 589–626 (2006)

27. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of 14th
ACM Symposium on Theory of Computing pp. 137–146 (1982)

The Complexity of Solitaire

Luc Longpré1 and Pierre McKenzie2,�

1 University of Texas at El Paso
2 Université de Montréal

Abstract. Klondike is the well-known 52-card Solitaire game available
on almost every computer. The problem of determining whether an n-
card Klondike initial configuration can lead to a win is shown
NP-complete. The problem remains NP-complete when only three suits
are allowed instead of the usual four. When only two suits of opposite
color are available, the problem is shown NL-hard. When the only two
suits have the same color, two restrictions are shown in AC0 and in NL
respectively. When a single suit is allowed, the problem drops in com-
plexity down to AC0[3], that is, the problem is solvable by a family of
constant depth unbounded fan-in {and, or, mod3}-circuits. Other cases
are studied: for example, “no King” variant with an arbitrary number of
suits of the same color and with an empty “pile” is NL-complete.

1 Introduction

Solitaire card games, called patience games outside of the United States, appar-
ently originate from the fortune-telling circles of the eighteenth century [9]. Of
the many hundred different solitaire card games in existence [8], to the best of
our knowledge, only FreeCell [4] and BlackHole [5] have been studied from a
complexity viewpoint. In both cases, determining whether an initial configura-
tion can lead to a win was shown NP-complete.

Over the last decade, a particular variation of solitaire, the Klondike version, was
popularized by Microsoft Windows (Figure 1). Earlier, Parlett [8] had described
Klondike as the “most popular of all perennial favorites in the realm of patience,
which is surprising since it offers the lowest success rate of any patience”.

In a paper entitled Solitaire: Man Versus Machine, Yan, Diaconis,
Rusmevichientong and Van Roy [10] report that a human expert (and dis-
tinguished combinatorialist, former president of the American Mathematical
Society!) patiently recorded data on his playing 2000 games of thoughtful soli-
taire, that is, the intellectually more challenging Klondike in which the complete
initial game configuration is revealed to the player at the start of the game. The
expert averaged 20 minutes per game and was able to win the game 36.6% of the
time. Pointing to the prohibitive difficulty of obtaining non-trivial mathematical
estimates on the odds of winning this common game, Yan et al., then describe
heuristics developed using the so-called rollout method, and they report a 70%
win rate.
� Supported by the NSERC of Canada and the (Québec) FQRNT.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 182–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Complexity of Solitaire 183

Fig. 1. Initial Klondike configuration on Microsoft Windows. In the terminology of [10],
there are four empty suit stacks, seven build stacks containing 1, 2, 3, 4, 5, 6 and 7 cards
respectively with only the top card facing up, and one pile containing the remaining cards
facing down; another stack, the talon, will appear in the course of the game when cards
from the pile are moved to the talon three by three.

Why is it so hard to compute the odds of winning at Klondike? In part, this
question prompted our investigation of the complexity of the game. As well, after
using the Minesweeper game [6] for several years as a motivating example for
students, we looked for different NP-complete examples based on other widely
popular and deceptively simple games.

The precise rules of Klondike are described in Section 2. To make the game
amenable to a computational complexity analysis, the game is generalized to
allow instances of arbitrary finite size. Hence an instance of the game involves a
“deck” containing the “cards”

1♣, 2♣, 3♣, . . . , n− 1♣, n♣
1♦, 2♦, 3♦, . . . , n− 1♦, n♦
1♥, 2♥, 3♥, . . . , n− 1♥, n♥
1♠, 2♠, 3♠, . . . , n− 1♠, n♠

and the game configurations are generalized appropriately. The problem of in-
terest is to determine, given an initial game configuration, whether the game can
be won. We show here that this is NP-complete.

Our NP-completeness proof bears resemblance to the proof that FreeCell is
NP-complete [4]. In particular, the method of nondeterministically assigning
truth values to card configurations is the same. However, our strategy gets by
with only three card suits as opposed to the usual four used in the current proof
that FreeCell is NP-complete. Many differences between FreeCell and Klondike
further arise, for instance, when we argue the NP upper bound in the presence of
“backward” moves (ie from a suit stack to a build stack) and when we consider
restricted variants of the game. We highlight the following as our main results:

184 L. Longpré and P. McKenzie

1. Klondike is NP-complete and remains so with only three suits available,
2. Klondike with a black suit and a red suit is NL-hard,
3. Klondike with any fixed number b of black suits is in NL,
4. flat Klondike (that is, without a pile) with an input-dependent number of

black suits and without generalized Kings (see below) is NL-complete,
5. Klondike with a single suit is in AC0[3],
6. flat Klondike with 2 black suits and without generalized Kings is in AC0.

Section 2 contains preliminaries and a precise description of the Klondike
variation studied in this paper. Section 3 proves that Klondike is NP-complete
and Section 4 considers restricting the usual four-suit game. Section 5 concludes
with a discussion and some open questions.

2 Preliminaries

2.1 Complexity Theory

We assume familiarity with basic complexity theory, such as can be found in
standard books on the subject, for example [7]. We recall the inclusion chain

AC0 ⊂ AC0[3] ⊂ AC0[6] ⊆ L ⊆ NL = co-NL ⊆ P ⊆ NP.

Here, the complexity class AC0 is the set of langages accepted by DLOGTIME-
uniform unbounded-fan-in constant-depth {∧,∨,¬}-circuits of polynomial size.
The larger class AC0[m] is the set of languages AC0-Turing reducible to the
modm Boolean function, defined to output 1 iff m does not divide the sum of
its Boolean inputs. The classes L and NL stand for deterministic and nondeter-
ministic logarithmic space respectively. The classes P and NP are deterministic
and nondeterministic polynomial time respectively. We adopt the definitions of
[3] for constant-depth circuit uniformity (see also [2]).

If not otherwise stated, the hardness results in this paper are in terms of
many-one logspace reducibility.

2.2 Klondike

We allow ourselves to borrow the following excellent description of Klondike
found in [10, Section 2]:

The goal of the game is to move all cards into the suit stacks, aces
first, then twos, and so on, with each suit stack evolving as an ordered
increasing arrangement of cards of the same suit. On each turn, the player
can move cards from one stack to another in the following manner:
1. Face-up cards of a build stack, called a card block, can be moved

to the top of another build stack provided that the build stack to
which the block is being moved accepts the block (see Points 6 and
7 below for the meaning of acceptance). Note that all face-up cards
on the source stack must be moved together. After the move, these

The Complexity of Solitaire 185

cards would then become the top cards of the stack to which they
are moved, and their ordering is preserved. The card originally im-
mediately beneath the card block, now the top card in its stack, is
turned faceup. In the event that all cards in the source stack are
moved, the player has an empty stack.

2. The top face-up card of a build stack can be moved to the top of a
suit stack, provided that the suit stack accepts the card.

3. The top card of a suit stack can be moved to the top of a build stack,
provided that the build stack accepts the card.

4. If the pile is not empty, a move can deal its top three cards to the
talon, which maintains its cards in a first-in-last-out order. If the
pile becomes empty, the player can redeal all the cards on the talon
back to the pile in one card move. A redeal preserves the ordering of
cards. The game allows an unlimited number of redeals.

5. A card on the top of the talon can be moved to the top of a build
stack or a suit stack, provided that the stack to which the card is
being moved accepts the card.

6. A build stack can only accept an incoming card block if the top card
on the build stack is adjacent to and braided with the bottom card
of the block. A card is adjacent to another card of rank r if it is of
rank r + 1. A card is braided with a card of suit s if its suit is of a
color different from s. Additionally, if a build stack is empty, it can
only accept a card block whose bottom card is a King.

7. A suit stack can only accept an incoming card of its corresponding
suit. If a suit stack is empty, it can only accept an Ace. If it is not
empty, the incoming card must be adjacent to the current top card
of the suit stack.

Yan et al., coin the name thoughtful solitaire for the Klondike variation in
which the player sees the complete game configuration, including the ranks of
all the cards facing down, throughout the course of the game. The Klondike rules
are otherwise unchanged.

Since we generalize Klondike to involve a variable number of cards, we adjust
the notion of a game configuration to allow an arbitrary number of build stacks
of arbitrary size. We will occasionally consider Klondike with a number of suits
other than 4. In that case, the number of suit stacks is adjusted accordingly.

Card numbers and suit numbers are represented in binary notation. We as-
sume any reasonable encoding of cards and game configurations that allows
extracting individual card information in AC0. In particular, the pile, talon and
stacks are represented in table form so that the predicate “c is the ith card in
the table” is AC0-computable.

Definition. Problem Solit(b, r):

Given: an initial b-black-suit and r-red-suit Klondike configuration involving the
same number n of cards in every suit.
Determine: Whether the (b+ r)n cards can be placed on the b+ r suit stacks by
applying the Klondike game rules starting from the given initial configuration.

186 L. Longpré and P. McKenzie

In Section 3 we will be studying Solitaire, by which we mean Solit(2, 2). In
Section 4, we will consider Klondike restrictions, such as Flat-Solit(b, r), by
which we mean Solit(b, r) with an initial configuration having an empty pile and
empty talon. We define the further restriction Flat-SolitNoKing(b, r) to mean
Flat-Solit(b, r) played with modified rules that forbid an empty stack from
accepting a generalized King (ie we disallow refilling an empty build stack; this
is equivalent to viewing the highest ranked cards as generalized Queens rather
than generalized Kings). Using a “∗”, such as in Flat-Solit(∗, 0), means that
the number of suits corresponding to the ∗ is not fixed and depends on the input.

3 Klondike Is NP-Complete

Theorem 1. Solitaire is NP-complete.

Proof. NP upper bound. Consider a winning N -card Klondike instance involving
k build stacks. We need to argue that the length of a shortest winning sequence
of movesis polynomial in N . We define three types of moves:

Type 1: moving a card out of the talon, or turning a build stack card face up
Type 2: moving a block of cards from one build stack to another
Type 3: moving a card from a build stack to a suit stack, or vice versa.

Let � be a shortest winning sequence of moves, neglecting the pile-talon moves
that are not of type 1. Such a sequence contains N − k moves of type 1 since
exactly k cards were visible at the outset. We claim that two successive moves of
type 1 in this sequence are separated by O(kN) moves of type 2 or type 3. The
NP upper bound follows from the claim since moves of type 1 are irreversible
and no obstacle remains after the N − k moves of type 1; thus � is O(kN2).

To see the claim, note first that a repetition-free sequence of type 3 moves is
no longer than 2N . Now any move of type 2 uncovers a card from some build
stack B. Such a move of type 2 excludes any further type 2 move or type 3 move
involving B until the next type 1 move occurs (unless B was emptied by the type
2 move, in which case a King could reactivate B at most once). Hence, between
any two successive type 1 moves in a shortest sequence, there can be at most
(k − 1 + 4)(2N + 1) moves of types 2 or 3, proving the claim.

NP-hardness. We reduce from 3SAT. The main idea is to construct a pair
of build stacks for each 3SAT formula variable. The top cards on these stacks
will correspond to whether we want the variable to be true or false. Only one of
these two top cards can be moved to another build stack. Moving a top card will
uncover cards corresponding to the clauses that become true when the variable
takes the Boolean value associated with the top card.

Let F be a 3CNF Boolean formula with n variables v1, ..., vn and m clauses
c1, ..., cm. Construct an initial configuration corresponding to this formula so
that the configuration is winning if and only if the formula is satisfiable. For
each variable vi, associate cards 2i et 2i + 1. For each clause cj , associate cards
2n + 7j, ..., 2n + 7j + 6.

The Complexity of Solitaire 187

For each variable vi, construct 3 build stacks (called the variable stacks):

1. one with card 2i♠ facing up on top and cards to be determined below,
2. one with card 2i♣ facing up on top and cards to be determined below,
3. one with the sole card (2i + 1)♥.

For each clause cj = (lp, lq, lr), construct 3 build stacks (called clause stacks)
with one card facing up on top and one card facing down below:

1. one stack with (2n + 7j + 6)♥ on top and (2n + 7j + 5)♣ below,
2. one stack with (2n + 7j + 4)♥ on top and (2n + 7j + 3)♣ below,
3. one stack with (2n + 7j + 2)♥ on top and (2n + 7j + 1)♣ below.

Also, if lp = vi, put (2n + 7j + 1)♠ facing down in stack 2i♠, and if lp = vi,
put (2n + 7j + 1)♠ facing down in stack 2i♣. If lq = vi, put (2n + 7j + 3)♠
facing down in stack 2i♠, and if lq = vi, put (2n+7j+ 3)♠ facing down in stack
2i♣. If lr = vi, put (2n + 7j + 5)♠ facing down in stack 2i♠, and if lr = vi,
put (2n+ 7j + 5)♠ facing down in stack 2i♣. Arrange for all clause (spade, face
down) cards within any given build stack to occur in order of increasing card
rank.

Finally, create the critical build stack, facing down, with cards (2n+ 7j)♥ in
any order for 1 ≤ j ≤ m, followed by all remaining cards in increasing order,
starting with aces, and followed further by 3 generalized Kings 2n + 7m + 7♥,
2n + 7m + 7♣ and 2n + 7m + 7♠. Regrouping all the generalized Kings at the
bottom of the critical stack serves to prevent moves to an empty build stack
during the core of the simulation. The pile, talon and suit stacks are empty. For
each clause j, we will refer to the card 2n+ 7j♥ as to the critical clause-j card.

Suppose that some assignment satisfies the formula. Here is how to win the
game. In the assignment, if the variable vi is false, put card 2i♣ on card (2i+1)♥.
If vi is true, put card 2i♠ instead. Then, move all the cards that were below
the 2i cards. This is possible because all these cards are spade cards numbered
2n + 7j + 1 or 2n + 7j + 3 or 2n + 7j + 5, and the red cards 2n + 7j + 2 and
2n + 7j + 4 and 2n + 7j + 6 all sit facing up on top of their build stacks. If the
formula is satisfiable, all the clauses have at least one literal set to true, so at
least one clause j card will be released in this manner for each j.

Claim: For each j, a sequence of j-clause stack moves now exists such that

1. one clause-j stack can be made to accept the critical clause-j card, and
2. after this sequence, if a situation is reached such that all the cards ranked

less than 2n+7j are placed on the suit stacks and a black card ranked 2n+7j
sits on top of the critical stack, then all the cards ranked 2n+ 7j, 2n+ 7j +
1, . . . , 2n + 7j + 6 can be placed on the suit stacks.

This claim implies a win as follows. Part (1) of the claim ensures that all the
critical cards can be moved from the critical stack to the clause stacks. This
releases the aces and allows moving all the cards ranked less that 2n+7, including
those that remained on the variable stacks, to the suit stacks. Part (2) of the
claim together with an induction on j then yield the winning sequence of moves.

188 L. Longpré and P. McKenzie

To prove the claim, fix j and let 2n + 7j + k♠ for some k ∈ {1, 3, 5} be the
smallest clause-j card that got released from a variable build stack. If k = 1, then
2n+ 7j + k♠ was accepted by 2n+ 7j + 2♥ and the resulting stack accepts the
critical clause-j card. If k = 3, then 2n+ 7j + k♠ was accepted by 2n+ 7j + 4♥,
so the 2n+ 7j + 2♥ card can be displaced, thus uncovering 2n+ 7j + 1♣ which
in turn accepts the critical clause-j card. Finally, if k = 5, then 2n + 7j + k♠
was accepted by 2n + 7j + 6♥; now 2n + 7j + 4♥ can be displaced, followed by
2n + 7j + 3♣, followed by 2n + 7j + 2♥, again uncovering 2n + 7j + 1♣ which
accepts the critical clause-j card. This proves part (1) of the claim. To prove
part (2) of the claim, it suffices to observe that although some 2n + 7j + k♣
card(s) remain(s) under some 2n+ 7j + k + 1♥ card(s) after the above sequence
of moves, the resulting stack configurations do not form an obstacle when the
complementary cards in all suits are available in increasing order.

Conversely, suppose that the configuration produced from the formula is win-
ning. Then the initial sequence of a winning sequence of moves must uncover
the aces. This initial sequence cannot involve backward moves (ie from a suit
stack to a build stack). This initial sequence must then first release every critical
card 2n + 7j♥. Each of these cards must be moved to a black (2n + 7j + 1)
card. For any given j, this cannot happen unless for some i, some clause-j card
is released from one (and only one, since a single card 2i + 1 is visible) of the
two vi-variable stacks. An assignment of variables vi based on which of the two
vi-variable stacks was first released is, by construction, a satisfying assignment
to our formula. ��

4 Complexity of Klondike Restrictions

The proof of Theorem 1 used only {♣,♥,♠}. Furthermore, the initial configu-
ration constructed had an empty pile and empty talon. Thus we have:

Theorem 2. Solit(2, 1) and Flat-Solit(2, 1) are NP-complete.

Because the NP argument from Theorem 1 extends to the case in which an
arbitrary number of (red and black) suits is allowed, we also have:

Theorem 3. Solit(∗, ∗) and Flat-Solit(∗, ∗) are NP-complete.

Recall the “no King” game restriction, in which empty build stacks can never
be filled. Because the Klondike instances constructed in the NP-hardness proof
from Theorem 1 neither allow nor tolerate refilling an empty stack (except at
the very end when all the cards have been released), we also have:

Theorem 4. Flat-SolitNoKing(b, r) is NP-complete for any b > r ≥ 1.

One might expect the remaining cases, namely the case of one black suit and
one red suit, and the case in which all suits are black, to be trivial. This is not
quite so. We begin with the latter.

The Complexity of Solitaire 189

A Flat-Solit(∗, 0) instance w involves a set of nb cards c1,1, c1,2, . . . , c1,b,
c2,1, . . . , . . . , cn,b scattered within an arbitrary number of build stacks, where
the card ci,s is the suit-s card of rank i. Since only black suits occur in w, the
only actions possible are those that move a generalized King and its block to an
empty build stack and those that move a card from a build stack to a suit stack.
Even when all suits are black, the generalized King moves are powerful because
the choice of which black King to move to an empty stack can be critical to the
successful completion of the game. We do not yet fully understand the power of
such moves. So we turn to Flat-SolitNoKing(∗, 0).

We say that a Flat-SolitNoKing(∗, 0) instance w is nontrivial if for every s,
the suit-s cards occur in increasing order in every build stack. Clearly, no win
is possible from a trivial w. When w is nontrivial, we define the directed graph
H(w) on the set of cards of w as follows: for 1 ≤ i, j ≤ n and 1 ≤ s, t ≤ b, the
arc (ci,s, cj,t) exists in H(w) iff

1. s = t and j = i− 1 (call this a horizontal edge), or
2. s �= t and the card ci,s is immediately beneath cj,t in some build stack (call

this a vertical edge).

The following proposition is proved in the full paper.

Proposition 5. Consider a nontrivial Flat-SolitNoKing(∗, 0) instance w. A
win is possible from w iff H(w) is cycle-free.

Theorem 6. Flat-SolitNoKing(∗, 0) is NL-complete.

Proof. NL upper bound. Consider a Flat-SolitNoKing(∗, 0) instance w. We first
check in AC0 that w is nontrivial. If w is trivial then we reject immediately.
Otherwise, Proposition 5 implies a co-NL = NL upper bound, because H(w)
is easily constructed in log space (in AC0 in fact), and the total number bn of
nodes in H(w) together with the card numbers and suit numbers involved in w
are O(log n)-bit numbers.

NL-hardness. We reduce to Flat-SolitNoKing(∗, 0) the co-NL-complete prob-
lem of determining whether no path exists from node s to node t �= s in a directed
graph G without self-loops and with edge set E ⊆ {1, . . . , n} × {1, . . . , n}. The
reduction is rendered delicate by the fact that several cards need to be assigned
to each node in G: this is because a card can only occur once in a Klondike
instance and furthermore, the “horizontal requirements” arising from the ranks
of the cards are of course not compatible with the implicit ordering of the nodes
in G. We now describe the flat Klondike instance w produced from G. It uses
the cards ci,u, 1 ≤ i ≤ 2n2, 1 ≤ u ≤ n, arranged in |E|(n − 1) + 2 build stacks
as follows:

1. for each edge (i, j) in E and for each k, 0 ≤ k < n − 1, one stack with
ck(2n)+i,j on top and with c(k+1)(2n)+n+j,i facing down below

2. one stack with c2n2,s on top and with c1,t facing down below
3. one stack with the remaining cards facing down, in increasing order.

190 L. Longpré and P. McKenzie

The reader can check that no card is mentioned twice in this (log space) con-
struction. Furthermore, w is nontrivial, since only one build stack contains two
cards of the same suit, and this stack is properly ordered. Hence the graph H(w)
is defined. It is a n × 2n grid with the horizontal edges forming n parallel lines
running from left to right (card ranks decrease from left to right).

To see how the vertical edges operate, imagine the grid partitioned into
columns n, n − 1, . . . , 1 of width 2n. Each such column is further partitioned
into a target region, of width n, and a source region, of width n. The vertical
edges arising from (i, j) ∈ E run from the source region in every column k+1 on
line i to the target region in column k on line j. Observe then that the vertical
H(w) edges arising from E together with the horizontal H(w) edges are inca-
pable of forming a cycle in H(w). The vertical edge (c1,t, c2n2,s) is the only edge
in H(w) which connects a column (in fact, the rightmost entry in the source
region of the nth column on line t) to a column situated to its left (in fact, to
the leftmost entry in the target region of the first column on line s).

It follows that if a cycle exists in H(w), then (c1,t, c2n2,s) is part of it. Hence
a path exists in H(w) from the line s to the line t. This implies that a path
existed from s to t in G.

Conversely, if a path s = v1, v2, . . . , vm = t with m ≤ n − 1 exists in G,
then a path can be traced from the column n on line s to the column n−m on
line t in H(w) by appropriately combining neighbouring column traversals with
horizontal displacements on the successive lines v1, v2, . . . , vm. A final horizontal
displacement leads to c1,t and thus to c2n2,s, creating a cycle in H(w).

Hence a cycle exists in H(w) iff a path exists in G. By Proposition 5, a
path exists in G iff no win is possible from w. This concludes the NL-hardness
proof. ��

We now relate the case of an arbitrary number of black suits to the case of
a red suit and a black suit. We can show that when generalized King moves
are disallowed, the all-blacks case reduces to the case of a red suit and a black
suit.

Proposition 7
Flat-SolitNoKing(∗, 0) AC0-reduces to Flat-SolitNoKing(1, 1).

Proof. Let a Flat-SolitNoKing(∗, 0) instance w involve the nb cards c1,0, c1,1,
. . ., c1,b−1, c2,0, . . . , . . . , cn,b−1 where ci,s is the suit-(s + 1) card of rank i. The
idea is to rename each ci,s as a ♥ card, and to use ♣ cards to restrict the
release of the renamed cards in such a way as to enforce the rules that had to be
followed in w when the original black cards were constrained by their respective
suit stacks. Once the renamed images are released, all the auxiliary cards will
be released to produce a win in the target {♣,♥} instance.

This is done as follows. The Flat-SolitNoKing(1, 1) instance constructed will
involve 3nb + 1 club cards and 3nb + 1 heart cards. First, for 0 ≤ s < b, we
rename the suit-(s + 1) cards in the instance w as follows:

The Complexity of Solitaire 191

c1,s → 3ns + 3n♥
c2,s → 3ns + 3n− 3♥

· · ·
cn−1,s → 3ns + 6♥
cn,s → 3ns + 3♥.

Then, for 0 ≤ s < b, we add the n following build stacks, with the top card
facing up and the bottom card (when present) facing down:

Below : 3ns + 3n− 2♣ · · · 3ns + 7♣ 3ns + 4♣
Top : 3ns + 3n + 1♣ 3ns + 3n− 1♣ · · · 3ns + 8♣ 3ns + 5♣

Finally, the critical stack is set to the cards 3ns + 2♣, 0 ≤ s < b, in any order,
followed by the remaining cards A♣, A♥, 2♥, 3♣, 4♥, 5♥, 6♣, . . . , 3nb♣, 3nb+1♥
in increasing order.

For any s, 0 ≤ s < b, until the A♥ becomes visible, no backward move is
possible, and the cards 3ns + 3n♥, 3ns + 3n− 3♥, . . ., 3ns + 6♥ and 3ns + 3♥
can only be placed in that order on the n build stacks designed to accept them.
This holds for each s independently. Only after the 3ns+ 3♥ cards for 0 ≤ s < b
have found their ways to their mates 3ns + 4♣ can the critical stack be freed
of the b cards 3ns + 2♣ sitting on top of it. In such an event, all the original
build stacks arising from the renamed w cards are empty and only sorted build
stacks remain, leading to a win. This happens iff the original w instance was
winning. ��

Corollary 8. Flat-SolitNoKing(1, 1) and Solit(1, 1) are NL-hard.

The simplest Klondike restrictions can be solved by constant depth circuits. We
prove parts b) and c) of the following theorem in the full paper.

Theorem 9
a) For any constant b, Flat-SolitNoKing(b, 0) is in AC0

b) Flat-Solit(1, 0) is in AC0

c) Solit(1, 0) is in AC0[3].

Proof. Part a): By Proposition 5, we need to determine whether a cycle exists
in the graph H(w) of a nontrivial Flat-SolitNoKing(b, 0) instance w. We first
prove it for b = 2 and explain later how to generalize the proof.

When b = 2, we claim that H(w) has a cycle iff there exist an edge (i♣, k♠)
and an edge (j♠, �♣) in H(w) such that i < � and j < k. This condition is
AC0-testable.

We now prove the claim. Call a pair of edges (i♣, k♠) and (j♠, �♣) in H(w)
a crossing when i < � and j < k. Clearly, a crossing together with the horizontal
edges in H(w) form a cycle. Conversely, let G be a cycle in H(w). The cycle must
have cards from both suits otherwise the instance is trivial. Consider the two
parallel paths, one for ♣ and one for ♠, running from left to right and formed by
the horizontal edges in H(w). Let i♣ and j♠ be the rightmost (ie lowest ranked)

192 L. Longpré and P. McKenzie

♣ and ♠ cards that belong to G. The edge in G leaving from i♣ must lead to a
♠, say k♠, otherwise the instance is trivial or i was not the rightmost. Similarly,
the edge in G leaving from j♠ must lead to a ♣, say �♣. It is not possible for
both i = � and j = k to hold, since no configuration of the build stacks can
simultaneously give rise to the edges (i♣, j♠) and (j♠, i♣). So assume with no
loss of generality that i < �. Then j < k otherwise the instance is trivial. So we
have i < � and j < k.

For the case b > 2, we claim that H(w) has a cycle iff there exists a sequence of
d ≤ b edges (ca1,s1 , cb2,s2), (ca2,s2 , cb3,s3), (ca3,s3 , cb4,s4), ...(cad,sd

, cb1,s1) such that
ai ≤ bi for 0 ≤ i ≤ d. Clearly, these edges together with the horizontal edges
in H(w) creating paths from cbi,si to cai,si form a cycle. Conversely, assuming
a cycle G, consider the edges leaving from the rightmost card from G for each
suit involved in G in the order they appear in G. These edges have the claimed
property. This proves the claim and concludes part a). ��

Finally we note an upper bound, proved in the full paper, that applies to the
all-black instances:

Proposition 10. For any constant b, Solit(b, 0) is in NL.

5 Conclusion

Figure 2 summarizes what we have learned in this work about the complexity of
Klondike. Some gaps are obvious. In particular, the cases involving two suits beg
for a more satisfactory characterization. The flat cases of a red suit and a black
suit are especially puzzling. We suspect these cases to be in P, but could they
possibly be hard for P? Are they in NL? Some simple Klondike cases involve the
graphs H(w) built around a grid with the horizontal lines representing the suit
stack constraints. Could some of these be related to the grid graph reachability
problems studied in [1]?

Our Klondike definition does not allow creating new build stacks in the course
of the game, but the initial number of build stacks is not bounded. Does Klondike
remain NP-hard if we insist on only seven build stacks initially, as in the usual
52-card Klondike?

Flat Klondike, no King Flat Klondike Klondike

1 black in AC0 in AC0 in AC0[3]
b blacks in AC0 in NL in NL
∗ blacks NL-complete NL-hard, in NP NL-hard, in NP
1 black, 1 red NL-hard, in NP NL-hard, in NP NL-hard, in NP
2 blacks, 1 red NP-complete NP-complete NP-complete
∗ blacks, ∗ red NP-complete NP-complete NP-complete

Fig. 2. Our current knowledge of the complexity of Klondike. A “b” represents any
fixed number and an “∗” represents an input-dependent number.

The Complexity of Solitaire 193

Returning to one of our original motivations, we note that Klondike being
NP-complete does not provide a mathematical justification that investigating
the odds of winning in the case of a standard 52-card deck will be difficult. But
the fact that Klondike is just another name for SAT can at least be seen as
confirmation that the game does involve a good level of intricacy. We note that
Figure 2 might suggest the following: start investigating the odds of winning
in the apparently simpler game restrictions and then proceed onwards to the
NP-complete cases.

Acknowledgement. We thank François Laviolette from Laval University who
showed us in January 2007 how to handle backward moves to prove the Klondike
NP upper bound in Theorem 1. The second author thanks Andreas Krebs and
Christoph Behle in Tübingen for helpful discussions.

References

1. Allender, E., Barrington, D., Chakraborty, T., Datta, S., Roy, S.: Grid Graph
Reachability Problems. In: Proc. 21st Annual IEEE Conference on Computational
Complexity, pp. 299–313 (2006)

2. Barrington, D., Immerman, N., Straubing, H.: On uniformity within NC1. J. Com-
puter and System Sciences 41(3), 274–306 (1990)

3. Buss, S., Cook, S., Gupta, A., Ramachandran, V.: An optimal parallel algorithm
for formula evaluation. SIAM J. Computing 21, 755–780 (1992)

4. Helmert, M.: Complexity results for standard benchmark domains in planning.
Artificial Intelligence 143(2), 219–262 (2003)

5. Gent, I., Jefferson, C., Lynce, I., Miguel, I., Nightingale, P., Smith, B., Tarim, A.:
Search in the Patience Game “Black Hole”. In: AI Communications. pp. 1–15. IOS
Press, Amsterdam, ISSN 0921-7126

6. R, Kaye, Minesweeper is NP-complete, The Mathematical Intelligencer, Springer
Verlag, vol. 22, no. 2, pp. 9-15 (2000)

7. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
8. Parlett, D.: Solitaire: “Aces Up” and 399 Other Card Games, Pantheon (1979)
9. Parlett, D.: A History of Card Games, Oxford University Press, Oxford (1991)

10. Yan, X., Diaconis, P., Rusmevichientong, P., Van Roy, B.: Solitaire: Man versus
Machine. In: Proc. Advances in Neural Information Processing Systems,NIPS vol.
17 (2004)

Adapting Parallel Algorithms to the W-Stream
Model, with Applications to Graph Problems�

Camil Demetrescu1, Bruno Escoffier2, Gabriel Moruz3, and Andrea Ribichini1

1 Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, Rome, Italy
{demetres,ribichini}@dis.uniroma1.it

2 Lamsade, Université Paris Dauphine, France
escoffier@lamsade.dauphine.fr

3 MADALGO, BRICS, Department of Computer Science,
University of Aarhus, Denmark

gabi@daimi.au.dk

Abstract. In this paper we show how parallel algorithms can be turned
into efficient streaming algorithms for several classical combinatorial
problems in the W-Stream model. In this model, at each pass one input
stream is read and one output stream is written; streams are pipelined
in such a way that the output stream produced at pass i is given as
input stream at pass i + 1. Our techniques give new insights on devel-
oping streaming algorithms and yield optimal algorithms (up to polylog
factors) for several classical problems in this model including sorting, con-
nectivity, minimum spanning tree, biconnected components, and
maximal independent set.

1 Introduction

Data stream processing has gained increasing popularity in the last few years
as an effective paradigm for processing massive data sets. Huge data streams
arise in several modern applications, including database systems, IP traffic anal-
ysis, sensor networks, and transaction logs [13, 23]. Streaming is an effective
paradigm also in scenarios where the input data is not necessarily represented
as a data stream. Due to high sequential access rates of modern disks, streaming
algorithms can be effectively deployed for processing massive files on secondary
storage [14], providing new insights into the solution of computational problems
in external memory. In the classical read-only streaming model, algorithms are
constrained to access the input data sequentially in one (or few) passes, using
only a small amount of working memory, typically much smaller than the input
size [14, 18, 19]. Usual parameters of the model are the working memory size s
and the number of passes p that are performed over the data, which are usually

� Supported in part by the Sixth Framework Programme of the EU under contract
number 001907 (“DELIS: Dynamically Evolving, Large Scale Information Systems”),
and by the Italian MIUR Project “MAINSTREAM: Algorithms for massive infor-
mation structures and data streams”.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 194–205, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Adapting Parallel Algorithms to the W-Stream Model 195

functions of the input size. Among the problems that have been studied in this
model under the restriction that p = O(1), we recall statistics and data sketch-
ing problems (see, e.g., [2, 11, 12]), which can be typically approximated using
polylogarithmic working space, and graph problems (see, e.g., [5, 9, 10]), most
of which require a working space linear in the vertex set size.

Motivatedby practical factors, such as availability of large amounts of secondary
storage at low cost, a number of authors have recently proposed less restrictive
streaming models, where algorithms can both read and write data streams. Among
them, we mention the W-Stream model and the StrSort model [1, 21]. In the
W-Stream model, at each pass we operate with an input stream and an output
stream. The streams are pipelined in such a way that the output stream produced
at pass i is given as input stream at pass i + 1. Despite the use of intermediate
streams, which allows achieving effective space-passes tradeoffs for fundamental
graph problems, most classical lower bounds in read-only streaming hold also in
this model [8]. The StrSortmodel is just W-Streamaugmented with a sorting prim-
itive that can be used at each pass to reorder the output stream for free. Sorting
provides a lot of computational power, making it possible to solve several graph
problems using polylog passes and working space [1]. For a comprehensive survey
of algorithmic techniques for processingdata streams, we refer the interested reader
to the extensive bibliographies in [4, 19].

It is well known that algorithmic ideas developed in the context of parallel
computational models have inspired the design of efficient algorithms in other
models. For instance, Chiang et al. [7] showed that efficient external memory
algorithms can be derived from PRAM algorithms using a general simulation.
Aggarwal et al. [1] discussed how circuits with uniform linear width and polylog
depth (NC) can be simulated efficiently in StrSort, providing a systematic way
of constructing algorithms in this model for problems in NC that use a linear
number of processors. Examples of problems in this class include undirected
connectivity and maximal independent set.

Parallel techniques seem to play a crucial role in the design of efficient algo-
rithms in the W-Stream model as well. For instance, the single-source shortest
paths algorithm described in [8] is inspired by a framework introduced by Ullman
and Yannakakis [25] for the parallel transitive closure problem. However, to the
best of our knowledge, no general techniques for simulating parallel algorithms
in the W-Stream model have been addressed so far in the literature.

Our Contributions. In this paper, we show how classical parallel algorithms
designed in the PRAM model can be turned into near-optimal algorithms in
W-Stream for several classical combinatorial problems. We first show that any
PRAM algorithm that runs in time T using N processors and memory M can
be simulated in W-Stream using p = O((T · N · logM)/s) passes. This yields
near-optimal trade-off upper bounds of the form p = O((n · polylog n)/s) in
W-Stream for several problems, where n is the input size. Relevant examples
include sorting, list ranking, and Euler tour. For other problems, however, this
simulation does not provide good upper bounds. One prominent example con-
cerns graph problems, for which efficient PRAM algorithms typically require
O(m+n) processors on graphs with n vertices and m edges. For those problems,

196 C. Demetrescu et al.

this simulation method yields p = O((m·polylog n)/s) bounds, while p = Ω(n/s)
almost-tight lower bounds in W-Stream are known for many of them.

To overcome this problem, we study an intermediate parallel model, which we
call RPRAM, derived from the PRAM model by relaxing the assumption that a
processor can only access a constant number of cells at each round. This way, we
get the PRAM algorithms closer to streaming algorithms, since a memory cell
in the working memory can be processed against an arbitrary number of cells
in the stream. For some problems, this enhancement allows us to substantially
reduce the number of processors while maintaining the same number of rounds.
We show that simulating RPRAM algorithms in W-Stream leads to near-optimal
algorithms (up to polylogarithmic factors) for several fundamental problems, in-
cluding sorting, minimum spanning tree, biconnected components, and maximal
independent set. Since algorithms obtained in this way are not always optimal –
although very close to being so –, for some of the problems above we give better
ad hoc algorithms designed directly in W-Stream, without using simulations.

Finally, we show that there exist problems for which the increased compu-
tational power of the RPRAM model does not help in reducing the number
of processors required by a PRAM algorithm while maintaining the same time
bounds, and thus cannot lead to better W-Stream algorithms. An example is
deciding whether a directed graph contains a cycle of length two.

2 Simulating Parallel Algorithms in W-Stream

In this section we show general techniques for simulating parallel algorithms in
W-Stream. We show in the next sections that our techniques yield near-optimal
algorithms for many classical combinatorial problems in the W-Stream model.
In Theorem 1 we discuss how to simulate general CRCW PRAM algorithms.
Throughout this paper, we assume that each memory address, cell value, and
processor state can be stored using O(logM) bits, where M is the memory size
of the parallel machine.

Theorem 1. Let A be a PRAM algorithm that uses N processors and runs
in time T using space M = poly(N). Then A can be simulated in W-Stream in
p = O((T ·N · logM)/s) passes using s bits of working memory and intermediate
streams of size O(M + N).

Proof (Sketch). In the PRAM model, at each parallel round, every processor may
read O(1) memory cells, perform O(1) instructions to update its internal state,
and write O(1) memory cells. A round of A can be simulated in W-Stream by
performing O((N logM)/s) passes, where at each pass we simulate the execution
of Θ(s/ logM) processors using s bits of working memory. The content of the
memory cells accessed by the algorithm and the state of each processor are
maintained on the intermediate streams. We simulate the task of each processor
in a constant number of passes as follows. We first read from the input stream its
state and the content of the O(1) memory cells used by A and then we execute
the O(1) instructions performed. Finally, we write to the output stream the
new state and possibly the values of the O(1) output cells. Memory cells that

Adapting Parallel Algorithms to the W-Stream Model 197

remain unchanged are simply propagated through the intermediate streams by
just copying them from the input stream to the output stream at each pass.

There are many examples of problems that can be solved near-optimally in
W-Stream using Theorem 1. For instance, solving list ranking in PRAM takes
O(log n) rounds and O(n/ log n) processors [3], where n is the length of the list.
By Theorem 1, we obtain a W-Stream algorithm that runs in O((n log n)/s)
passes. An Euler tour of a tree with n vertices is computed in parallel in O(1)
rounds using O(n) processors [15], which by Theorem 1 yields again a p =
O((n log n)/s) bound in W-Stream. However, for other problems, the bounds
obtained this way are far from being optimal. For instance, efficient PRAM
algorithms for graph problems typically require O(m + n) processors, where n
is the number of vertices, and m is the number of edges. For these problems,
Theorem 1 yields bounds of the form p = O((m ·polylog n)/s), while p = Ω(n/s)
almost-tight lower bounds are known for many of them.

In Definition 1 we introduce RPRAM as an extension of the PRAM model. It
allows every processor to handle in a parallel round not only O(1) memory cells,
but an arbitrary number of cells. Since in W-Stream a value in the working mem-
ory might be processed against all the data in the stream, we view RPRAM as a
natural link between PRAM and W-Stream, even though it may be unrealistic
in a practical setting. We first introduce a generic simulation that turns RPRAM
algorithms into W-Stream algorithms. We then give RPRAM implementations
that lead to efficient algorithms in W-Stream for a number of problems where
the PRAM simulation in Theorem 1 does not yield good results.

Definition 1. An RPRAM (Relaxed PRAM) is an extended CRCW PRAM
machine with N processors and memory of size M where at each round each
processor can execute O(M) instructions that:

– can read an arbitrary number of memory cells. Each cell can only be read
a constant number of times during the round, and no assumptions can be
made as to the order in which values are given to the processor;

– can write an arbitrary subset of the memory cells. The result of concurrent
writes to the same cell by different processors in the same round is undefined.
Writing can only be performed after all read operations have been done.

Similarly to a PRAM, each processor has a constant number of registers of size
O(logM) bits.

The jump in computational power provided by RPRAM allows substantial im-
provements for many classical PRAM algorithms such as decreasing the number
of parallel rounds while preserving the number of processors or reducing the num-
ber of processors used while maintaining the same number of parallel rounds. We
show in Theorem 2 that parallel algorithms implemented in this more powerful
model can be simulated in W-Stream within the same bounds of Theorem 1.

Theorem 2. Let A be an RPRAM algorithm that uses N processors and runs
in time T using space M = poly(N). Then A can be simulated in W-Stream in
p = O((T ·N · logM)/s) passes using s bits of working memory and intermediate
streams of size O(M + N).

198 C. Demetrescu et al.

Proof (Sketch). We follow the proof of Theorem 1. The main difference is that
a processor in the RPRAM model can read and write an arbitrary number
of memory cells at each round, executing many instructions while still using
O(logM) bits to maintain its internal state. Since the instructions of algorithm
A performed by a processor during a round do not assume any particular order
for reading the memory cells, reading memory values from the input stream can
still be simulated in one pass. Replacing cell values read from the input stream
with the new values written on the output stream can be performed in one
additional pass.

3 Sorting

As a first simple application of the simulation techniques introduced in Section 2,
we show how to derive efficient sorting algorithms in W-Stream. We first recall
that n items can be sorted on a PRAM with O(n) processors in O(log n) parallel
rounds and O(n log n) comparisons [15]. By Theorem 1, this yields a W-Stream
sorting algorithm that runs in p = O((n log2 n)/s) passes. In RPRAM, how-
ever, sorting can be solved by O(n) processors in constant time as follows. Each
processor is assigned to an input item; in one parallel round it scans the entire
memory and counts the numbers i and j of items smaller than and equal to
the item the processor is assigned to respectively. Then each processor writes its
own item into all the cells with indices between i+ 1 and i+ 1 + j, and thus we
obtain a sorted sequence.

Theorem 3. Sorting n items in RPRAM can be done in O(1) parallel rounds
using O(n) processors.

Using the simulation in Theorem 2, we obtain the result stated below.

Corollary 1. Sorting n items in W-Stream can be performed in O(n logn/s)
passes.

We obtain a W-Stream sorting algorithm that takes p = O((n log n)/s) passes,
thus matching the performance of the best known algorithm for sorting in a
streaming setting [18]. Since sorting requires p = Ω(n/s) passes in W-Stream,
this bound is essentially optimal. However, both our algorithm and the algorithm
in [18] perform O(n2) comparisons. We reduce the number of comparisons to
the optimal O(n logn) at the expense of increasing the number of passes to
O((n log2 n)/s) by simulating an optimal PRAM algorithm via Theorem 1, as
stated before.

4 Graph Problems

In this section we discuss how to derive efficient W-Stream algorithms for sev-
eral graph problems using the RPRAM simulation in Theorem 2. Since efficient
PRAM graph algorithms typically require O(m + n) processors on graphs with
n vertices and m edges [6], simulating such algorithms in W-Stream using The-
orem 1 yields bounds of the form p = O((m · polylog n)/s), while p = Ω(n/s)

Adapting Parallel Algorithms to the W-Stream Model 199

almost-tight lower bounds in W-Stream are known for many of them. Graph
connectivity is one prominent example [8]. Notice that, assigning each vertex to
a processor, RPRAM gives enough power for each vertex to scan its entire neigh-
borhood in a single parallel round. Since many parallel graph algorithms can be
implemented using repeated neighborhood scanning, in many cases this allows
us to reduce the number of processors from O(m+n) to O(n) while maintaining
the same running time. By Theorem 2, this yields improved bounds of the form
p = O((n · polylog n)/s).

4.1 Connected Components (CC)

A classical PRAM random-mating algorithm for computing the connected com-
ponents of a graph with n vertices and m edges uses O(m+n) processors and runs
in O(log n) time with high probability [6, 20]. We first describe the algorithm
and then we give an RPRAM implementation that uses only O(n) processors
which, by Theorem 2, leads to a nearly optimal algorithm in W-Stream.

PRAM Algorithm. The algorithm is based on building a set of star subgraphs and
contracting the stars. It each parallel round it performs the following sequence
of steps.

1. Each vertex is assigned the status of parent or child independently with
probability 1/2;

2. For each child vertex u, determine whether it is adjacent to a parent vertex.
If so, choose one such a vertex to be the parent f(u) of u, and replace each
edge (u, v) by (f(u), v) and each edge (v, u) by (f(v), u);

3. For each vertex having parent u, set the parent to f(u).

The algorithm performs O(log n) parallel rounds with high probability [6].

RPRAM Implementation. We show how to implement each parallel round in
RPRAM in O(1) rounds using only O(n) processors. We attach a processor
to each vertex. We first assign each vertex the status of parent or child, and
then for each vertex we scan its neighborhood to find a parent, if there exists
one (in case of several parents, we break ties arbitrarily). Updating the parents
according to the third step also takes one round in RPRAM. We obtain the
result in Theorem 4.

Theorem 4. Solving CC in RPRAM takes O(n) processors and O(log n) rounds
with high probability.

By Theorem 2, this yields the following bound in W-Stream.

Corollary 2. CC can be solved in W-Stream in O((n log2 n)/s) passes with high
probability.

By the p = Ω(n/s) lower bound for CC in W-Stream [8], this upper bound is
optimal up to a polylogarithmic factor. We notice that the same bound can be
achieved deteministically by starting from the PRAM algorithm for CC in [22].
This bound can be further improved to O((n log n)/s) passes as shown in [8].

200 C. Demetrescu et al.

4.2 Minimum Spanning Tree (MST)

In this section, we first describe the PRAM algorithm in [6] for computing the
MST of an undirected graph. We then give an RPRAM implementation that
leads to an optimal algorithm (up to a polylog factor) in W-Stream by using the
simulation in Theorem 2. Finally, we give an algorithm designed in W-Stream
that outperforms the algorithm obtained via simulation.

PRAM Algorithm. The randomized CC algorithm previously introduced can
be extended to find a minimum spanning tree in a (connected) graph [6]. It
also takes O(log n) rounds with high probability and uses O(m + n) processors.
The algorithm is based on the property that given a subset V ′ of vertices, a
minimum weight edge having one and only one endpoint in V ′ is in some MST.
We modify the second step of the CC algorithm as follows. Each child vertex u
determines the minimum weight incident edge (u, v). If v is a parent vertex, then
we set f(u) = v and flag the edge (u, v) as belonging to the spanning tree. This
algorithm computes a MST and performs O(log n) rounds with high probability.

RPRAM Implementation. The updated second step runs in O(1) rounds in
RPRAM and uses O(n) processors. Since the implementations of the other steps
of the CC algorithm are unchanged and take O(1) rounds and O(n) processors,
we obtain the result stated in Theorem 5.

Theorem 5. MST is solvable in RPRAM using O(n) processors and O(log n)
rounds with high probability.

Assuming edge weights can be encoded using O(log n) bits, we obtain the fol-
lowing bound in W-Stream by Theorem 2.

Corollary 3. MST can be solved in W-Stream in O((n log2 n)/s) passes.

We now give a deterministic algorithm designed directly in W-Stream that im-
proves the bounds achieved by using the simulation.

A Faster ad hoc W-Stream Algorithm. We again assume edge weights can be
encoded using O(log n) bits. We build the MST by progressively adding edges
as follows. We compute for each vertex the minimum weight edge incident to
it. This set of edges E′ is added to the MST. We then compute the connected
components induced by E′ and contract the graph by considering each connected
component a single vertex. We repeat these steps until the graph contains a single
vertex or there are no more edges to add. More precisely, we consider at each
iteration a contracted graph where the vertices are the connected components of
the partial MST so far computed. Denoting Gi = (Vi, Ei) the graph before the
ith iteration, the (i + 1)th iteration consists of the following steps.

1. for each vertex u ∈ Vi, we compute a minimum weight edge (u, v) incident
to u, and flag (u, v) as belonging to the MST (cycles that might occur due to
weight ties are avoided by using a tie-breaking rule). Denote E′

i = {(u, v), u ∈
Vi} the set of flagged edges.

Adapting Parallel Algorithms to the W-Stream Model 201

2. we run a CC algorithm on the graph (Vi, E
′
i). The resulted connected com-

ponents are the vertices of Vi+1.
3. we replace each edge (u, v) by (c(u), c(v)), where c(u) and c(v) denote the

labels of the connected components previously computed.

We now analyze the number of passes required in W-Stream. Let |Vi| = ni. The
first and the third steps require O((ni logn)/s) passes each, since we can process
in one pass O(s/ logn) vertices. Computing the connected components also takes
O((ni logn)/s) passes, and therefore the ith iteration requires O((ni logn)/s)
passes. We note that at each iteration we add an edge for every vertex in Vi and
thus |Vi+1| ≤ |Vi|/2, i.e., the number of connected components is divided by at
least two. We obtain that the total number of passes performed in the worst case
is given by T (n) = T (n/2) + O((n logn)/s), which sums up to O((n log n)/s).

Theorem 6. MST can be computed in O((n log n)/s) passes in W-Stream.

By the p = Ω(n/s) lower bound for CC in W-Stream [8], this upper bound
is optimal up to a polylog factor. To the best of our knowledge, no previous
algorithm was known for MST in W-Stream.

4.3 Biconnected Components (BCC)

Tarjan and Vishkin [24] gave a PRAM algorithm that computes the biconnected
components (BCC) of an undirected graph in O(log n) time using O(m + n)
processors. We give an RPRAM implementation of their algorithm that uses
only O(n) processors while preserving the time bounds and thus can be turned
using Theorem 2 in a W-Stream algorithm that runs in O((n log2 n)/s) passes.
We also give a direct implementation that uses only O((n log n)/s) passes.

PRAM Algorithm. Given a graph G, the algorithm considers a graph G′ such
that vertices in G′ correspond to edges in G and connected components in G′

correspond to biconnected components in G. The algorithm first computes a
rooted spanning tree T of G and then builds a subgraph G′′ of G′ having as
vertices all the edges of T . The edges of G′′ are chosen such that two vertices are
in the same connected component of G′′ if and only if the corresponding edges
in G are in the same biconnected component. After computing the connected
components of G′′ the algorithm appends the remaining edges of G to their
corresponding biconnected components. We now briefly sketch the five steps of
the algorithm.

1. build a rooted spanning tree T of G and compute for each vertex its preorder
and postorder numbers together with the number of descendants. Also, label
the vertices by their preorder numbers.

2. for each vertex u, compute two values, low(u) and high(u), as follows.

low(u) = min({u} ∪ {low(w)|p(w) = u} ∪ {w|(u,w) ∈ G \ T })
high(u) = max({u} ∪ {high(w)|p(w) = u} ∪ {w|(u,w) ∈ G \ T }),

where p(u) denotes the parent of vertex u.

202 C. Demetrescu et al.

3. add edges to G′′ according to the following two rules. For all edges (w, v) ∈
G \ T with v + desc(v) ≤ w, add ((p(v), v), (p(w), w)) to G′′, and for all
(v, w) ∈ T with p(w) = v, v �= 1, add ((p(v), v), (v, w)) to G′′ if low(w) < v
or high(w) ≥ v + desc(v), where desc(v) denotes the number of descendants
of vertex v.

4. compute the connected components of G′′.
5. add the remaining edges of G to their biconnected components. Each edge

(v, w) ∈ G \ T , with v < w, is assigned to the biconnected component of
(p(w), w).

RPRAM Implementation. We give RPRAM descriptions for all the five steps of
the algorithm, each of them using O(log n) time and O(n) processors. First, we
compute a spanning tree of the graph using the RPRAM algorithm previously
introduced. Rooting the tree and computing for each vertex the preorder and
postorder numbers as well as the number of descendants are performed using
list ranking and Euler tour [24], which take O(log n) time and O(n) processors
in PRAM, and thus in RPRAM. Since the second step takes O(log n) time
using O(n) processors in PRAM [24], the same bounds hold for RPRAM. We
implement the third step in RPRAM in constant time and O(n) processors,
since it suffices a scan of the neighborhood for each vertex. For computing the
connected components of G′′ in the fourth step, we use the RPRAM algorithm
previously introduced that takes O(log n) time and O(n) processors. Finally, we
implement the last step of the algorithm in RPRAM in O(1) time and O(n)
processors by scanning the neighborhood for all vertices v and assigning the
edges to the proper biconnected components. Since we implement all the steps
of the algorithm in RPRAM in O(log n) rounds and O(n) processors, we obtain
the following result.

Theorem 7. BCC can be solved in RPRAM using O(n) processors in O(log n)
rounds with high probability.

By Theorem 2, this yields the following bound in W-Stream.

Corollary 4. BCC can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

We now show that we can achieve better bounds with an implementation de-
signed directly in W-Stream.

A Faster ad hoc W-Stream Algorithm. We describe how to implement directly
in W-Stream the steps of the parallel algorithm of Tarjan and Vishkin [24].
Notice that we have given constant time RPRAM descriptions for the third
and the fifth step, thus by applying the simulation in Theorem 2 we obtain
W-Stream algorithms that run in O((n log n)/s) passes. For computing the con-
nected components in the fourth step, we use the algorithm in [8] that requires
O((n log n)/s) passes. Therefore, to achieve a global bound of O((n log n)/s)
passes, it suffices to give implementations that run in O((n log n)/s) passes for
the first two steps. For the first step, we can compute a spanning tree within
the bound of Theorem 6. Rooting the tree and computing the preorder and pos-

Adapting Parallel Algorithms to the W-Stream Model 203

torder numbers together with the number of descendants can be implemented
in O((n log n)/s) passes using list ranking, Euler tour and sorting. Concerning
the second step, we compute the low and high values by processing Θ(s/ log n)
vertices at each pass, according to the postorder numbers.

Theorem 8. BCC can be solved in W-Stream in O((n log n)/s) passes in the
worst case.

By the p = Ω(n/s) lower bound for CC in W-Stream [8], this upper bound
is optimal up to a polylog factor. To the best of our knowledge, no previous
algorithm was known for BCC in W-Stream.

4.4 Maximal Independent Set (MIS)

We give an efficient RPRAM algorithm for the maximal independent set prob-
lem (MIS), based on the PRAM algorithm proposed by Luby [17]. Using the
simulation in Theorem 2, this leads to an efficient W-Stream implementation.

PRAM Algorithm. A maximal independent set S of a graph G is incrementally
built through a series of iterations, where each iteration consists of a sequence
of three steps, as follows. In the first step, we compute a random subset I of the
vertices in G, by including each vertex v with probability 1/(2 · deg(v)). Then,
for each edge (u, v) in G, with u, v ∈ I, we remove from I the vertex with the
smallest degree. Finally, in the third step, we add to S the vertices in I, and then
we remove from G the vertices in I together with their neighbors. The above
steps are iterated until G gets empty. The algorithm uses O(m + n) processors
and O(log n) parallel rounds.

RPRAM Implementation. We implement the first step of each iteration in con-
stant time and O(n) processors in RPRAM, since it requires each vertex to
compute its own degree. The second step can also be implemented in constant
time, by having each vertex in I scan its neighborhood, and remove itself upon
encountering a neighbor also in I with a larger degree. Finally, we implement
the third step in constant time as well by scanning the neighborhood of each
vertex that is not in I, and removing it from G if at least one of its neighbors is
in I. Since the algorithm performs O(log n) iterations with high probability [17],
we obtain the bound in Theorem 9.

Theorem 9. MIS can be solved in RPRAM using O(n) processors in O(log n)
rounds with high probability.

By Theorem 2, this yields the following bound in W-Stream.

Corollary 5. MIS can be solved in W-Stream in O((n log2 n)/s) passes with
high probability.

We now show that the bound in Corollary 5 is optimal up to a polylog factor.

Theorem 10. MIS requires Ω(n/s) passes in W-Stream.

Proof (Sketch). The proof is based on a reduction from the bit vector disjointness
communication complexity problem. Alice has an n-bit vector A and Bob has an

204 C. Demetrescu et al.

n-bit vector B; they wish to know whether A and B are disjoint, i.e., A ·B = 0.
They build a graph on 4n vertices vji , where i = 1, · · · , n and j = 1, · · · , 4. If
Ai = 0, then Alice adds edges (v1

i , v
2
i) and (v3

i , v
4
i), whereas if Bi = 0, then Bob

adds edges (v1
i , v

3
i) and (v2

i , v
4
i). The size of any MIS is 2n if A · B = 0 and

strictly greater otherwise.

5 Limits of the RPRAM Approach

In this section we prove that the increased power that RPRAM provides does not
always help in reducing the number of processors to O(n) and thus in obtaining
W-Stream algorithms that run in O((n · polylog n)/s) passes. As an example,
in Theorem 11 we prove that detecting cycles of length two in a graph takes
Ω(m/s) passes.

Theorem 11. Testing whether a directed graph with m edges contains a cycle
of length two requires p = Ω(m/s) passes in W-Stream.

Proof (Sketch). We prove the lower bound by showing a reduction from the bit
vector disjointness two-party communication complexity problem. Alice has an
m-bit vector A and Bob has an m-bit vector B; they wish to know whether A
and B are disjoint, i.e., A · B = 0. Alice creates a stream containing an edge
e(i) = (xi, yi) for each i such that A[i] = 1 and Bob creates a stream containing
an edge er(i) = (yi, xi) for each i such that B[i] = 1, where xi = i div 	

√
m

and yi = i mod 	
√
m
. Let G be the directed graph induced by the union of the

edges in the streams created by Alice and Bob. Clearly, there is a cycle of length
two in G if and only if A · B > 0. Since solving bit vector disjointness requires
transmitting Ω(m) bits [16], and the distributed execution of any streaming
algorithm requires the working memory image to be sent back and forth from
Alice to Bob at each pass, we obtain s = Ω(m), which leads to p = Ω(m/s).

Testing whether a digraph has a cycle of length two can be easily done in one
round in RPRAM using O(m) processors, by just checking in parallel whether
there is any edge (x, y) that also appears as (y, x) in the graph. This leads to an
algorithm in W-Stream that runs in O((m log n)/s) passes by Theorem 2.

References

[1] Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model
augmented with a sorting primitive. In: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’04), IEEE Computer
Society Press, Los Alamitos (2004)

[2] Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Computer and System Sciences 58(1), 137–147 (1999)

[3] Anderson, R., Miller, G.: A simple randomized parallel algorithm for list-ranking.
Information Processing Letters 33(5), 269–273 (1990)

[4] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proceedings of the 21st ACM Symposium on Principles
of Database Systems (PODS’02), pp. 1–16. ACM Press, New York (2002)

Adapting Parallel Algorithms to the W-Stream Model 205

[5] Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proc. 13th annual ACM-
SIAM symposium on Discrete algorithms (SODA’02), pp. 623–632. ACM Press,
New York (2002)

[6] Blelloch, G., Maggs, B.: Parallel algorithms. In: The Computer Science and En-
gineering Handbook, pp. 277–315 (1997)

[7] Chiang, Y., Goodrich, M., Grove, E., Tamassia, R., Vemgroff, D., Vitter, J.:
External-memory graph algorithms. In: Proc. 6th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’95), pp. 139–149. ACM Press, New York (1995)

[8] Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: Proc. 17th Annual ACM-SIAM Symposium of Discrete
Algorithms (SODA’06), pp. 714–723. ACM Press, New York (2006)

[9] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 207–216. Springer, Heidelberg (2004)

[10] Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in
the streaming model: the value of space. In: Proceedings of the 16th ACM/SIAM
Symposium on Discrete Algorithms (SODA’05), pp. 745–754 (2005)

[11] Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L1

difference algorithm for massive data streams. SIAM Journal on Computing 32(1),
131–151 (2002)

[12] Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.:
Fast, small-space algorithms for approximate histogram maintenance. In: Proc.
34th ACM Symposium on Theory of Computing (STOC’02), pp. 389–398. ACM
Press, New York (2002)

[13] Golab, L., Ozsu, M.: Data stream management issues: a survey. Technical report,
School of Computer Science, University of Waterloo, TR CS-2003-08 (2003)

[14] Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. In:
“External Memory algorithms”. DIMACS series in Discrete Mathematics and
Theoretical Computer Science 50, 107–118 (1999)

[15] Jájá, J.: An introduction to parallel algorithms. Addison-Wesley, Reading (1992)
[16] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambr. U. Press (1997)
[17] Luby, M.: A simple parallel algorithm for the maximal independent set problem.

SIAM Journal of Computing 15(4), 1036–1053 (1986)
[18] Munro, I., Paterson, M.: Selection and sorting with limited storage. Theoretical

Computer Science 12, 315–323 (1980)
[19] Muthukrishnan, S.: Data streams: algorithms and applications. Technical report

(2003), Available at http://athos.rutgers.edu/∼muthu/stream-1-1.ps
[20] Reif, J.: Optimal parallel algorithms for integer sorting and graph connectivity.

Technical Report TR 08-85, Aiken Comp. Lab, Harvard U., Cambridge (1985)
[21] Ruhl, M.: Efficient Algorithms for New Computational Models. PhD thesis, Mas-

sauchussets Institute of Technology (September 2003)
[22] Shiloach, Y., Vishkin, U.: An o(log n) Parallel Connectivity Algorithm. J. Algo-

rithms 3(1), 57–67 (1982)
[23] Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of

network traffic. In: Proceedings USENIX Annual Technical Conference (1998)
[24] Tarjan, R., Vishkin, U.: Finding biconnected components and computing tree

functions in logarithmic parallel time. In: Proc. 25th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’84), pp. 12–20. IEEE Computer Society
Press, Los Alamitos (1984)

[25] Ullman, J., Yannakakis, M.: High-probability parallel transitive-closure algo-
rithms. SIAM Journal on Computing 20(1), 100–125 (1991)

http://athos.rutgers.edu/~muthu/stream-1-1.ps

Space-Conscious Compression

Travis Gagie and Giovanni Manzini�

Dipartimento di Informatica
Università del Piemonte Orientale
{travis,manzini}@mfn.unipmn.it

Abstract. Compression is most important when space is in short sup-
ply, so compression algorithms are often implemented in limited memory.
Most analyses ignore memory constraints as an implementation detail,
however, creating a gap between theory and practice. In this paper we
consider the effect of memory limitations on compression algorithms. In
the first part we assume the memory available is fixed and prove nearly
tight upper and lower bounds on how much memory is needed to com-
press a string close to its k-th order entropy. In the second part we as-
sume the memory available grows (slowly) as more and more characters
are read. In this setting we show that the rate of growth of the available
memory determines the speed at which the compression ratio approaches
the entropy. In particular, we establish a relationship between the rate of
growth of the sliding window in the LZ77 algorithm and its convergence
rate.

1 Introduction

Data compression has come of age in recent years and compression algorithms
are now vital in situations unforeseen by their designers. This has led to a dis-
crepancy between the theory of data compression algorithms and their use in
practice: compression algorithms are often designed and analysed assuming the
compression and decompression operations can use a “sufficiently large” amount
of working memory; however, in some situations, particularly in mobile or em-
bedded computing environments, the memory available is very small compared
to the amount of data we need to compress or decompress.

Even when compression algorithms are implemented to run on powerful desk-
top computers, some care is taken to be sure that the compression/decompression
of large files do not take over all the RAM of the host machine. This is usually
accomplished by splitting the input in blocks (bzip2), using heuristics to deter-
mine when to discard the old data (compress, ppmd), or by maintaining a “sliding
window” over the more recently seen data and forgetting the oldest data (gzip).
With the exception of the use of a sliding window (see Sect. 4), the validity of
these techniques has not been established in a satisfying theoretical way.

In this paper we initiate the theoretical study of space-conscious compression
algorithms. Although data compression algorithms have their own peculiarities,
� Both authors partly supported by Italian MUIR Italy-Israel FIRB Project “Pattern

Discovery Algorithms in Discrete Structures, with Applications to Bioinformatics”.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 206–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Space-Conscious Compression 207

this study belongs to the general field of algorithmics in the streaming model
(see, e.g., [1,10]), in which we are allowed only one pass over the input and
memory sublinear (possibly polylogarithmic or even constant) in its size.

Our results. The first contribution of this paper is nearly tight upper and lower
bounds on the compression ratio achievable by one-pass algorithms that use an
amount of memory independent of the size of the input. The bounds are worst
case and given in terms of the empirical k-th order entropy of the input string.
More precisely we prove the following results:

(a) Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function independent
of n. In the worst case it is impossible to store a string s of length n over
an alphabet of size σ in λHk(s)n + o(n log σ) + g bits using one pass and
O(σk+1/λ−ε) bits of memory.

(b) Given a (λHk(s)+o(n log σ)+g)-bit encoding of s, it is impossible to recover
s using one pass and O(σk+1/λ−ε) bits of memory.

(c) Given λ ≥ 1, k ≥ 0 and μ > 0, we can store s in λHk(s)n + μn +
O(σk+1/λ log σ) bits using one pass and O(σk+1/λ log2 σ) bits of memory,
and later recover s using one pass and the same amount of memory.

While σ is often treated as constant in the literature, we treat it as a variable to
distinguish between, say, O(σk+1/λ−ε) and O(σk+1/λ log2 σ) bits. Informally, (a)
provides a lower bound to the amount of memory needed to compress a string
up to its k-th order entropy; (b) tells us the same amount of memory is required
also for decompression and implies that the use of a powerful machine for doing
the compression does not help if only limited memory is available when decom-
pression takes place; (c) establishes that (a) and (b) are nearly tight. Notice λ
plays a dual role: for large k, it makes (a) and (b) inapproximability results —
e.g., we cannot use O(σk) bits of memory without worsening the compression in
terms of Hk(s) by more than a constant factor; for small k, it makes (c) an inter-
esting approximability result — e.g., we can compress reasonably well in terms
of H0(s) using, say, O(

√
σ) bits of memory. The main difference between the

bounds in (a)–(b) and (c) is a σε log2 σ factor in the memory usage. Since μ is a
constant, μn ∈ o(n log σ) and the bounds on the encoding’s length match. Note
that μ can be arbitrarily small, but the term μn cannot be avoided (Lemma 4).

A second contribution of this paper is the proof of lower bounds similar to (a)
and (b) for the case in which the input string is generated by a stationary ergodic
k-th order Markov source X . We show that, with high probability, a length-n
string drawn from X cannot be stored in λH(X)n+ o(n log σ) + g bits using one
pass and o(σk log σ) bits of memory (here λ, σ and g have the same meaning as
in (a)). A symmetrical result holds for the space required for recovering a string
emitted by X and compressed up to λH(X)n+ o(n log σ) + g bits. Note that an
upper bound analogous to (c) automatically holds for strings generated by an
ergodic k-th order Markov source X (the term Hk is simply replaced by H(X)).

The final contribution of the paper is a first step in the analysis of the power of
compressors when the amount of available working memory grows with the size
of the input. We model this behavior assuming that we are given an increasing

208 T. Gagie and G. Manzini

function f(t) and that after reading t characters the compression algorithm is
allowed to use Θ(f(t)) bits of memory. In this setting, the result (c) above
implies (Lemma 7) that for any diverging function f (i.e. limt→∞ f(t) = +∞) it
is possible to compress every string up to its k-th order entropy for any k ≥ 0.
Given this state of affairs, it is clear that to understand the role played by the
rate-of-growth function f , we must go deeper than simply considering whether
the compression ratio approaches the k-th order entropy. We initiate this study
with the analysis of LZ77 with a sliding window, which is the algorithm at the
heart of the gzip tool. We show quantitatively that the rate-of-growth function f
influences the convergence rate of the algorithm; that is, the speed at which the
algorithm approaches the k-th order entropy. In particular, now treating σ as a
constant, we prove that

(d) if LZ77 uses a sliding window that grows as f(t) = t/ log2 t, then for any
string s, the output size is bounded by Hk(s)n + O((n log logn)/ logn) si-
multaneously for any k ≥ 0;

(e) if LZ77 uses a sliding window that grows as f(t) = log1−ε t, with 0 < ε < 1,
then for any n > 0 we can build a string ŝ of length n such that LZ77’s
output size is at least H0(s)n + Ω

(
(n log logn)/ log1−ε n

)
bits.

In other words, a faster growing sliding window yields a provably faster rate of
convergence. To our knowledge, these are the first results relating the size of
LZ77’s sliding window and its rate of convergence in the worst case setting. In
the probabilistic setting (see below) what it is known [14] is that using a window
of fixed size W the rate of convergence of LZ77 is Θ((n log logW)/ logW).

2 Notation

In the following we use s to denote the string that we want to compress. We
assume that s has length n and is drawn from an alphabet of size σ. Note that
in Section 3 we measure memory in terms of alphabet size so σ is considered a
variable; conversely, in Section 4 the memory depends on the input size n, so σ
is considered a constant that remains hidden in the asymptotic notation.

For i = 1, 2, . . . , σ, let ni be the number of occurrences of the i-th alpha-
bet symbol in s. The 0-th order empirical entropy of s is defined as H0(s) =
−
∑σ

i=1(ni/|s|) log(ni/|s|) (throughout this paper we assume that all logarithms
are taken to the base 2 and 0 log 0 = 0). It is well known that H0 is the maximum
compression we can achieve using a fixed codeword for each alphabet symbol.
We can achieve a greater compression if the codeword we use for each symbol
depends on the k symbols preceding it. In this case the maximum compression is
bounded by the k-th order entropy Hk(s) (see [6] for the formal definition). We
use two properties of k-th order entropy in particular: Hk(s1)|s1|+Hk(s2)|s2| ≤
Hk(s1s2)|s1s2| and, since H0(s) ≤ log |{a : a occurs in s}|, we have Hk(s) ≤
log max|w|=k{j : w is followed by j distinct characters in s}.

We point out that the empirical entropy is defined pointwise for any string and
can be used to measure the performance of compression algorithms as a function

Space-Conscious Compression 209

of the string structure, thus without any assumption on the input source. For
this reason we say that the bounds given in terms of Hk are worst case bounds.
Another common approach in data compression is to assume that the input
string is generated by a Markov source X . To measure the effectiveness of a
compression algorithm in this setting its average compression ratio is compared
with the entropy of the source H(X). We call this the probabilistic setting, and
we consider it in Sect. 3.3.

Some of our arguments are based on Kolmogorov complexity [8]; the Kol-
mogorov complexity of s, denoted K(s), is the length in bits of the shortest
program that outputs s; it is generally incomputable but can be bounded from
below by counting arguments (e.g., in a set of m elements, most have Kolmogorov
complexity at least logm − O(1)). We use two properties of Kolmogorov com-
plexity in particular, as well: if an object can be easily computed from other
objects, then its Kolmogorov complexity is at most the sum of theirs plus a
constant; and a fixed, finite object has constant Kolmogorov complexity.

In this paper we consider space-conscious compressors, that is, algorithms
that are allowed to use a limited amount of memory during their execution.
We assume that the algorithms are one-pass in the sense that they are allowed
to read each input symbol only once. Hence, if an algorithm needs to access
(portions of) the input more than once it must store it—consuming part of its
precious working memory. In Section 5 we briefly comment on the possibility of
extending our results to multi-pass algorithms. Being space-conscious ourselves,
most of the proofs omitted; they can be found in a technical report [4].

3 Compressing with Memory Independent of Length

Move-to-front compression [2] is probably the best example of a compression al-
gorithm whose space complexity is independent of the input length: keep a list of
the characters that have occurred in decreasing order by recency; store each char-
acter in the input by outputting its position in the list (or, if it has not occurred
before, its index in the alphabet) encoded in Elias’ δ code, then move it to the
front of the list. Move-to-front stores a string s of length n over an alphabet of size
σ in

(
H0(s) + O(logH0(s))

)
n+O(σ log σ) bits using one pass and O(σ log σ) bits

of memory. Note that we can store s in
(
Hk(s) + O(logHk(s))

)
n+O(σk+1 log σ)

bits by keeping a separate list for each possible context of length k; this increases
the memory usage by a factor of at most σk.

In this section we first use a more complicated algorithm to get a better
upper bound: given constants λ ≥ 1, k ≥ 0 and μ > 0, we can store s in
(λHk(s) + μ)n + O(σk+1/λ log σ) bits using one pass and O(σk+1/λ log2 σ) bits
of memory. We then prove that μ > 0 is necessary and that we need to know
k. We use the idea from these proofs to prove a nearly matching lower bound
for compression: in the worst case it is impossible to store a string s of length
n over an alphabet of size σ in λHk(s)n + o(n log σ) + g bits, for any function
g independent of n, using one encoding pass and O(σk+1/λ−ε) bits of memory.
We prove a symmetric lower bound for decompression, and close with slightly
weaker lower bounds for when the input comes from a stationary Markov source.

210 T. Gagie and G. Manzini

3.1 A Nearly Tight Upper Bound

The main drawback of move-to-front is the O(logH0(s)) in its analysis (or
O(logHk(s)) using contexts of length k); we now show how we can replace
this by any given constant μ > 0. We start with the following lemma about
storing an approximation Q of a probability distribution P in few bits, so that
the relative entropy between P and Q is small. The relative entropy D(P‖Q) =∑σ

i=1 pi log(pi/qi) between P = p1, . . . , pσ and Q = q1, . . . , qσ is the expected
redundancy per character of an ideal code for Q when characters are drawn
according to P .

Lemma 1 ([3]). Let s be a string of length n over an alphabet of size σ and
let P be the normalized distribution of characters in s. Given s and constants
λ ≥ 1 and μ > 0, we can store a probability distribution Q with D(P‖Q) <
(λ − 1)H(P) + μ in O(σ1/λ log(n + σ)) bits using O(σ1/λ log(n + σ)) bits of
memory. ��

Armed with this lemma, we adapt arithmetic coding [12] to use O(σ1/λ log(n +
σ)) bits of memory with a specified redundancy per character:

Lemma 2. Given a string s of length n over an alphabet of size σ and constants
λ ≥ 1 and μ > 0, we can store s in (λH0(s)+μ)n+O(σ1/λ log(n+σ)) bits using
O(σ1/λ log(n + σ)) bits of memory. ��

We boost our space-conscious arithmetic coding algorithm to achieve a bound
in terms of Hk(s) instead of H0(s) by running a separate copy for each possible
k-tuple, just as we boosted move-to-front compression:

Lemma 3. Given a string s of length n over an alphabet of size σ and constants
λ ≥ 1, k ≥ 0 and μ > 0, we can store s in (λHk(s) +μ)n+O(σk+1/λ log(n+σ))
bits using O(σk+1/λ log(n + σ)) bits of memory. ��

To make our algorithm use one pass and to change the log(n+σ) factor to log σ,
we process the input in blocks s1, . . . , sb of length O(σk+1/λ log σ). Notice each
individual block si fits in memory — so we can apply Lemma 3 to it — and
log(|si|+ σ) = O(log σ).

Theorem 1. Given a string s of length n over an alphabet of size σ and con-
stants λ ≥ 1, k ≥ 0 and μ > 0, we can store s in (λHk(s)+μ)n+O(σk+1/λ log σ)
bits using one pass and O(σk+1/λ log2 σ) bits of memory, and later recover s us-
ing one pass and the same amount of memory. ��

3.2 Lower Bounds

Theorem 1 is still weaker than the strongest compression bounds that ignore
memory constraints, in two important ways: first, even when λ = 1 the bound
on the compression ratio does not approach Hk(s) as n goes to infinity; second,
we need to know k. It is not hard to prove these weaknesses are unavoidable
when using fixed memory, as follows.

Space-Conscious Compression 211

Lemma 4. Let λ ≥ 1 be a constant and let g be a function independent of n. In
the worst case it is impossible to store a string s of length n in λH0(s)n+o(n)+g
bits using one encoding pass and memory independent of n.

Proof. Let A be an algorithm that, given λ, stores s using one pass and memory
independent of n. Since A’s future output depends only on its state and its
future input, we can model A with a finite-state machine M . While reading
|M | characters of s, M must visit some state at least twice; therefore either M
outputs at least one bit for every |M | characters in s — or n/|M | bits in total
— or for infinitely many strings M outputs nothing. If s is unary, however, then
H0(s) = 0. ��
Lemma 5. Let λ be a constant, let g be a function independent of n and let b
be a function independent of n and k. In the worst case it is impossible to store
a string s of length n over an alphabet of size σ in λHk(s)n+ o(n log σ) + g bits
for all k ≥ 0 using one pass and b bits of memory.

Proof. Let A be an algorithm that, given λ, g, b and σ, stores s using b bits of
memory. Again, we can model it with a finite-state machine M , with |M | = 2b

and M ’s Kolmogorov complexity K(M) = K(〈A, λ, g, b, σ〉) + O(1) = O(log σ).
(Since A, λ, g, and b are all fixed, their Kolmogorov complexities are O(1).)

Suppose s is a periodic string with period 2b whose repeated substring r has
K(r) = |r| log σ − O(1). We can specify r by specifying M , the states M is in
when it reaches and leaves any copy of r in s, and M ’s output on that copy of
r. (If there were another string r′ that took M between those states with that
output, then we could substitute r′ for r in s without changing M ’s output.)
Therefore M outputs at least

K(r)−K(M)−O(log |M |) = |r| log σ −O(log σ + b) = Ω(|r| log σ)

bits for each copy of r in s, or Ω(n log σ) bits in total. For k ≥ 2b, however,
Hk(s) approaches 0 as n goes to infinity. ��
The idea behind these proofs is simple — model a one-pass algorithm with
a finite-state machine and evaluate its behaviour on a periodic string — but,
combining it with the following simple results, we can easily show a lower bound
that nearly matches Theorem 1. (In fact, our proofs are valid even for algorithms
that make preliminary passes that produce no output — perhaps to gather
statistics, like Huffman coding [5] — followed by a single encoding pass that
produces all of the output; once the algorithm begins the encoding pass, we can
model it with a finite-state machine).

Lemma 6 ([3]). Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let r be a
randomly chosen string of length 5σk+1/λ−ε6 over an alphabet of size σ. With
high probability every possible k-tuple is followed by O(σ1/λ−ε) distinct characters
in r. ��
Corollary 1. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants. There exists a string r
of length 5σk+1/λ−ε6 over an alphabet of size σ with K(r) = |r| log σ −O(1) but
Hk(ri) ≤ (1/λ− ε) log σ + O(1) for i ≥ 1. ��

212 T. Gagie and G. Manzini

Consider what we get if, for some ε > 0, we allow the algorithm A from Lemma 5
to use O(σk+1/λ−ε) bits of memory, and evaluate it on the periodic string ri

from Corollary 1. Since ri has period 5σk+1/λ−ε6 and its repeated substring r
has K(r) = |r| log σ −O(1), the finite-state machine M outputs at least

K(r) −K(M)−O(log |M |) = |r| log σ −O(σk+1/λ−ε) = |r| log σ −O(|r|)

bits for each copy of r in ri, or n log σ − O(n) bits in total. Because λHk(ri) ≤
(1− ε) log σ + O(1), this yields the following nearly tight lower bound; notice it
matches Theorem 1 except for a σε log2 σ factor in the memory usage.

Theorem 2. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function
independent of n. In the worst case it is impossible to store a string s of length
n over an alphabet of size σ in λHk(s)n+ o(n log σ) + g bits using one encoding
pass and O(σk+1/λ−ε) bits of memory. ��

With a good bound on how much memory is needed for compression, we turn
our attention to decompression. Good bounds here are equally important, be-
cause often data is compressed once by a powerful machine (e.g., a server
or base-station) and then transmitted to many weaker machines (clients or
agents) who decompress it individually. Fortunately for us, compression and de-
compression are essentially symmetric. Recall Theorem 1 says we can recover
s from a

(
λHk(s) + μ)n + O(σk+1/λ log σ)

)
-bit encoding using one pass and

O(σk+1/λ log2 σ) bits of memory. Using the same idea about finite-state ma-
chines and periodic strings gives us the following nearly matching lower bound:

Theorem 3. Let λ ≥ 1, k ≥ 0 and ε > 0 be constants and let g be a function
independent of n. There exists a string s of length n over an alphabet of size σ
such that, given a (λHk(s)n + o(n log σ) + g)-bit encoding of s, it is impossible
to recover s using one pass and O(σk+1/λ−ε) bits of memory. ��

3.3 Markov Sources

As many classic analyses assume the data comes from a Markov source, we close
this section with versions of Theorems 2 and 3 that have slightly weaker bounds
on memory usage — we show o(σk log σ) bits of memory are insufficient, instead
of O(σk+1/λ−ε) — but apply when the data are drawn from a such a source. (All
other things being equal, upper bounds are stronger when proven in terms of
empirical entropy, without any assumptions about the source; conversely, lower
bounds are stronger when they hold even with such assumptions.) The proofs of
these theorems are slightly different and involve de Bruijn sequences; a σ-ary de
Bruijn sequence of order k contains every possible k-tuple exactly once and, so,
has length σk + k − 1. This property means every such sequence has kth-order
empirical entropy 0 and, equivalently, can be generated by a deterministic kth-
order Markov source. Rosenfeld [13] proved there are (σ!)σ

k−1
such sequences

so, by Stirling’s formula, a randomly chosen one d has expected Kolmogorov
complexity E[K(d)] = log(σ!)σ

k−1 −O(1) = |d| log σ −O(|d|).

Space-Conscious Compression 213

Theorem 4. Let λ ≥ 1 and k ≥ 0 be constants and let g be a function indepen-
dent of n. There exists a stationary ergodic kth-order Markov source X over an
alphabet of size σ such that, if we draw a string s of length n from X , then with
high probability it is impossible to store s in λH(X)n + o(n log σ) + g bits using
one pass and o(σk log σ) bits of memory. ��

Theorem 5. Let λ ≥ 1 and k ≥ 0 be constants and let g be a function indepen-
dent of n. There exists a stationary ergodic kth-order Markov source X over an
alphabet of size σ such that, if we draw a string s of length n from X , then with
high probability it is impossible to recover s from a (λH(X)n+o(n log σ)+g)-bit
encoding of s using one pass and o(σk log σ) bits of memory. ��

4 Compressing with (Slowly) Growing Memory

In the previous section we have given upper and lower bounds to the amount of
memory required to compress up to the k-th order entropy for a fixed k. It is well
known that the best compressors, e.g. LZ77, LZ78, and BWT-based tools, are able
to compress up to the k-th order entropy for all k ≥ 0 simultaneously. That is, for
any k ≥ 0 and for any string s, their output is bounded by λHk(s)n+gk(n), with
gk(n) ∈ o(n). Intuitively this means that these algorithms can take advantage of
an “order-k regularity” for an arbitrarily large k. Unfortunately, Lemma 5 tells
us that using memory indepedendent of n, it is impossible to compress up to
λHk(s)n for any k ≥ 0.

For the above reasons, in this section we study compression algorithms in
which the available memory grows with the size of the input. Given an increasing
function f , we define the class Cf of one-pass compressors in which the working
space grows according to f in the sense that when the algorithm has read t
characters it is allowed to use a working space of size Θ(f(t)) bits. Our first
result shows that if limt→∞ f(t) = ∞ the algorithms in Cf can compress up to
λHk(s)n for any k ≥ 0.

Lemma 7. For any increasing and diverging function f there exists an algo-
rithm in Cf achieving the compression ratio given in Theorem 1 for any k ≥ 0.

Proof. For a given k let n′ be such that f(n′) is greater than the working space of
the algorithm in Theorem 1. Consider now the procedure that outputs the first n′

characters without compression and then executes the algorithm of Theorem 1.
Since the space for the initial n′ characters is just a constant overhead, for
sufficiently long strings this procedure asymptotically achieves the space bound
of Theorem 1 as claimed. ��

The proof of Lemma 7 suggests that although any diverging working space suf-
fices to get a compression ratio close to Hk for any k ≥ 0, the rate of growth of
the working space is likely to influence the rate of convergence, that is, the speed
with which the compression ratio approaches the entropy. The quantitative study
of this problem in the general setting appears to be a rather challenging task. In

214 T. Gagie and G. Manzini

the following we initiate this study by exploring the relationship between work-
ing space and rate of convergence for the important special case of the algorithm
LZ77 with a growing sliding window.

4.1 Window Size vs. Convergence Rate for LZ77

In the following we assume that the alphabet size is a constant (see comment
at the beginning of Section 2). The LZ77 algorithm works by parsing the input
string s into a sequence of words w1, w2, . . . , wd and by encoding a compact
representation of these words. For any non-empty string w let w− denote the
string w with the last character removed, and, if |w| > 1, let w−− = (w−)−.
Assuming the words w1, w2, . . . ,wi−1 have been already parsed, LZ77 selects
the i-th word as the longest word wi that can be obtained by adding a single
character to a substring of (w1w2 · · ·wi)−−. Note that although this is a recursive
definition there is no ambiguity. In fact, if |wi| > 1 at least the first character of
wi belongs to w1w2 · · ·wi−1.

In the algorithm LZ77 with sliding window (LZ77sw from now on) the word
wi is selected using a sliding window of size Li, that is, w−

i must be a substring
of (ziwi)−− where zi is the length-Li suffix of w1w2 · · ·wi−1. In practical imple-
mentations the sliding window length is usually fixed (for example it is equal to
215 in gzip) but for our analysis we will consider a sliding window which grows
with the size of the parsed string. Once wi has been found, it is encoded with the
triplet (pi, �i, αi), where pi is the starting position of w−

i in the sliding window,
�i = |wi|, and αi is the last character of wi. In the following we assume that
encoding pi takes logLi +O(1) bits, encoding �i takes1 log �i +O(log log �i) bits,
and encoding αi takes log σ +O(1) bits2. If we store the already parsed portion
of the input in a suffix tree, the algorithm LZ77 runs in linear time and uses
a working space of Θ(n logn) bits. The same result holds for LZ77sw as well:
the only difference is that we use a truncated suffix tree [7,11] to maintain the
sliding window so the working space is Θ(L logL) bits, where L is the maximum
size of the sliding window.

For the algorithm LZ77 we know (see [6, Th. 4.1]) that for any k ≥ 0 and for
any string s:

|LZ77(s)| ≤ Hk(s)n + O

(
n

log logn
logn

)
(1)

which implies that the convergence rate is O((n log logn)/ logn).
In the following we say that LZ77sw uses an f(t)-size sliding window to

denote that when t characters have been read, LZ77sw maintains a sliding
window of size 	f(t)
 (hence, for f(t) = t we have the original LZ77 al-
gorithm). We prove that for f(t) = t/ log2 t the convergence rate is still
O((n log logn)/ logn), whereas for f(t) = log1−ε t, with 0 < ε < 1, the con-
vergence rate is Ω

(
(n log logn)/ log1−ε n

)
.

1 Since we cannot bound in advance the size of �i, we are assuming we code it using
Elias’ δ code.

2 Other encodings are possible but we believe our analysis can be adapted to all
“reasonable” encodings.

Space-Conscious Compression 215

To bound the convergence rate of LZ77sw with a sliding window growing as
(t/ log2 t), we first bound the number of times the same word can appear in the
parsing of the input string.

Lemma 8. Let g(t) denote an increasing and diverging function. The LZ77sw

algorithm with window size f(t) = t/g(t) produces a parsing of the input string
in which the same word appears at most O(g(n) log(n)) times. ��

The next lemma relates the number of words in the parsing with the k-th order
entropy, and Lemma 10 gives an upper bound to the total number of words.

Lemma 9 ([6, Lemma 2.3]). Let y1, . . . , yd denote a parsing of a string s in
which each word yi appears at most M times. For any k ≥ 0 we have

d log d ≤ |s|Hk(s) + d log
(
|s|
d

)
+ d logM +Θ(d) . ��

Lemma 10. Let y1, . . . , yd denote a parsing of a string s in which each word yi
appears at most M times. We have d = O(n/ log(n/M)). ��

Theorem 6. The algorithm LZ77sw with a sliding window growing as f(t) =
(t/ log2 t) produces an output bounded by nHk(s) + O((n log logn)/ logn).

Proof. Let w1 · · ·wd denote the LZ77sw parsing of s. Recall that for each word
wi LZ77sw outputs a triple (pi, �i, αi) whose encoding is described above. Using
elementary calculus it is easy to show that if LZ77sw parses s into d words, the
output size is bounded by

|LZ77sw(s)| ≤ d logn + d log (n/d) + O(d log logn) .

Recall that by Lemma 8 each word appears at most O
(
log3 n

)
times in the

parsing. Since d logn = d log d + d log(n/d), using Lemma 9 we get

|LZ77sw(s)| ≤ d log d + 2n log(n/d) + O(d log logn)
≤ Hk(s)n + 3d log(n/d) + O(d log logn) .

Finally, by Lemma 10 we have d = O(n/ logn), hence

|LZ77sw(s)| ≤ nHk(s) + O

(
n log logn

logn

)

as claimed. ��

Now we show that the algorithm LZ77sw with a sliding window of size o(log t) has
a convergence rate ω(n log logn/logn). To this end, for any ε, with 0 < ε < 1,
we consider the LZ77sw algorithm with a sliding window of size f(t) = log1−ε(t).
Fix n > 0 and let b = 1 +

⌈
log1−ε(n)

⌉
. Note that b− 1 is the maximum window

size reached when compressing a string of length n. We define ŝ = 0j(10b−1)h

where h = 5n/b6 and j < b is such that |ŝ| = n.

216 T. Gagie and G. Manzini

Lemma 11. We have H0(ŝ)n ≤ (n/b) log b + Θ(n/b). ��

Lemma 12. Let ŝ = w1w2 . . . wd denote the LZ77sw parsing of ŝ. Then, if the
word wi contains the character 1, the word wi+1 contains only 0’s.

Proof. It is easy to see that if 1 appears in wi it must be the last character of
wi. As a consequence, the next word will be wi+1 = 0� where � is the current
window size. ��

Lemma 13. For the LZ77sw algorithm with a sliding window of size f(t) =
log1−ε(t) we have

|LZ77sw(ŝ)| ≥ 3(n/b) log b−O(n/b).

Proof. Observe that when we have read t ≥
√
n characters, the sliding window

has size
⌈
log1−ε t

⌉
≥ ((log n)/2)1−ε. From that point on, encoding a position in

the sliding window—which must be done for each word in the parsing—takes at
least

(1− ε) log((log n)/2) = (1− ε) log logn− (1 − ε) ≥ log b− 2

bits. In addition, by the proof of Lemma 12 we see that each other word will
have length equal to the window size; encoding each one of these lengths will
again cost at least log b−2 bits. By Lemma 12, after we have read

√
n characters

there are still 2(n −
√
n)/b words to be parsed. The above observations imply

that their encoding takes at least 3(n/b) log b−O(n/b) bits. ��

Theorem 7. For the LZ77sw algorithm with a sliding window growing as f(t) =
log1−ε(t), we can build an arbitrarily long string ŝ such that

|LZ77sw(ŝ)| ≥ H0(ŝ)n + Ω
(
(n log logn)/ log1−ε n

)
.

Proof. By Lemmas 11 and 13 we have

|LZ77sw(ŝ)| −H0(ŝ)n ≥ 2n log b
b

−O
(n
b

)
=

2n log logn
log1−ε n

−O

(
n

log1−ε n

)
. ��

Comparing Theorems 6 and 7 we see that the penalty we pay for using a smaller
window is a slower convergence rate. Further work is needed to narrow the huge
gap between the rate of growth of the sliding window in the two theorems. In
particular, it would be interesting to determine the smallest rate of growth that
guarantees an output size bounded by Hk(s)n+O((n log logn)/ logn) as in (1).

5 Future Work

We plan to generalize the results in Section 3 to multipass algorithms. Munro
and Paterson [9] introduced a model for multipass algorithms in which the data is
“stored on a one-way read-only tape. [. . .] Initially the storage is empty and the
tape is placed with the reading head at the beginning. After each pass the tape is

Space-Conscious Compression 217

rewound to this position with no reading permitted.” Among other things, they
proved sorting a set of n distinct elements in p passes takes Θ(n/p) memory
locations (each of which can hold a single element).

It seems we can modify the algorithm in Theorem 1 so that, allowed p passes,
during each pass it processes only those character following a (1/p)-fraction of
the possible contexts; any character following a different context is ignored. This
way, the algorithm might need only a (1/p)-fraction as much memory during each
pass. On the other hand, consider a p-pass compression algorithm compressing
the string ri from Corollary 1: we can specify r by specifying the algorithm, the
algorithm’s memory configurations when it enters and leaves a particular copy
of r in ri during each pass (i.e., 2p configurations in all), and its output while
reading that copy during each pass. Thus, allowing the algorithm in the proof of
Theorem 2 to use p passes but only O((1/p) · σk+1/λ−ε) bits of memory seems
not to affect the proof.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues
in data stream systems. In: Proceedings of the 21st Symposium on Principles of
Database Systems, pp. 1–16 (2002)

2. Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data com-
pression scheme. Communications of the ACM 29, 320–330 (1986)

3. Gagie, T.: Large alphabets and incompressibility. Information Processing Let-
ters 99, 246–251 (2006)

4. Gagie, T., Manzini, G.: Space-conscious compression. Technical Report TR-INF-
2007-06-02, Università del Piemonte Orientale (2007)

5. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40, 1098–1101 (1952)

6. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel–Ziv
algorithms. SIAM Journal on Computing 29(3), 893–911 (1999)

7. Larsson, N.J.: Extended application of suffix trees to data compression. In: DCC
’96: Proceedings of the Conference on Data Compression, Washington, DC, USA,
p. 190. IEEE Computer Society Press, Los Alamitos (1996)

8. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2nd edn. Springer, Heidelberg (1997)

9. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

10. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers,
See also: http://www.nowpublishers.com/tcs/ (2005)

11. Na, J.C., Apostolico, A., Iliopoulos, C., Park, K.: Truncated suffix trees and their
application to data compression. Theor. Comput. Sci. 304(1-3), 87–101 (2003)

12. Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Journal of
Research and Development 20, 198–203 (1976)

13. Rosenfeld, V.R.: Enumerating De Bruijn sequences. MATCH Communications in
Mathematical and in Computer Chemistry 45, 71–83 (2002)

14. Wyner, A.J.: The redundancy and distribution of the phrase lengths of the fixed-
database Lempel-Ziv algorithm. IEEE Transactions on Information Theory 43,
1452–1464 (1997)

http://www.nowpublishers.com/tcs/

Small Alliances in Graphs�

Rodolfo Carvajal1, Mart́ın Matamala1,2,
Ivan Rapaport1,2, and Nicolas Schabanel2,3

1 Departamento de Ingenieŕıa Matemática, Universidad de Chile
{rocarvaj,mmatamal,rapaport}@dim.uchile.cl

2 Centro de Modelamiento Matemático, Universidad de Chile
3 LIP, École Normale Supérieure de Lyon, France

nicolas.schabanel@gmail.com

Abstract. Let G = (V, E) be a graph. A nonempty subset S ⊆ V is a
(strong defensive) alliance of G if every node in S has at least as many
neighbors in S than in V \S. This work is motivated by the following ob-
servation: when G is a locally structured graph its nodes typically belong
to small alliances. Despite the fact that finding the smallest alliance in a
graph is NP-hard, we can at least compute in polynomial time depthG(v),
the minimum distance one has to move away from an arbitrary node v
in order to find an alliance containing v.

We define depth(G) as the sum of depthG(v) taken over v ∈ V . We
prove that depth(G) can be at most 1

4 (3n2 − 2n + 3) and it can be
computed in time O(n3). Intuitively, the value depth(G) should be small
for clustered graphs. This is the case for the plane grid, which has a depth
of 2n. We generalize the previous for bridgeless planar regular graphs of
degree 3 and 4.

The idea that clustered graphs are those having a lot of small alliances
leads us to analyze the value of rp(G) = IP{S contains an alliance}, with
S ⊆ V randomly chosen. This probability goes to 1 for planar regular
graphs of degree 3 and 4. Finally, we generalize an already known result
by proving that if the minimum degree of the graph is logarithmically
lower bounded and if S is a large random set (roughly |S| > n

2), then
also rp(G)→ 1 as n→∞.

1 Introduction

The clustering coefficient of a vertex v, denoted by c(v), indicates the extent to
which neighbors of v are neighbors themselves [1]. More precisely, if the num-
ber of edges within the neighborhood of v is Γ and the degree of v is d, then
c(v) = 2Γ

d(d−1) . The average of c(v) taken over all the nodes of a graph G gives
the clustering coefficient of G. With this coefficient, Watts and Strogatz [1] were
able to justify empirically the idea that small-world networks are locally con-
nected while classical random graphs are not (with both families having a small
diameter).
� Partially supported by Programs Conicyt “Anillo en Redes”, Fondap on Applied

Mathematics and Ecos-Conicyt.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 218–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Small Alliances in Graphs 219

k

Fig. 1. A locally structured graph

A fundamental limitation of the clustering coefficient is shown in the graph
of Fig. 1, consisting of a ring where every vertex has two additional neighbors at
ring-distance k. When k = 2, the clustering coefficient is 1

2 > 0. However, when
k ≥ 3 it becomes 0, despite the fact that the structure of the graph remains the
same.

This and other limitations have lead researchers to propose all kinds of gen-
eralizations. In [2], for instance, authors introduced a new definition intended to
filter out the effect of degree correlations. In [3], instead of asking “how many
of my neighbors are connected?”, researchers started to ask “how closely related
are my neighbors?”. Roughly, this is the approach behind most of the new no-
tions such as grid coefficient [4], meshedness coefficient [5], weighted clustering
coefficient [6], high order clustering coefficient [7] and efficiency [8].

In the present work we take another approach, which is motivated by the
following observation: the nodes of locally structured graphs typically belong to
small alliances . In Fig. 1, these alliances are cycles of length k. More precisely,
a subset of nodes S ⊆ V is an alliance if each of its nodes has at least as
many neighbors inside S than outside S. The formal definition was given in [9],
where they used the term strong defensive alliance (which for simplicity we call
alliance).

Our results. Let Sv be, among all the alliances containing the node v, a min-
imum one (with respect to the cardinality). Since finding |Sv| is NP-hard, we
exhibit in Sect. 2 a polynomial time algorithm that computes depthG(v), the
minimum distance one has to move away from v in order to find an alliance
containing v. We define depth(G) as the sum of depthG(v) taken over all the
nodes of G. We prove that the depth of G can be at most 1

4 (3n2− 2n+ 3) and it
can be computed in time O(n3). For bridgeless planar cubic graph we obtain a
better upper bound, namely 15

2 n. We consider this section the starting point of
our research efforts by which we expect to find bounds for the depth of different
graph classes.

We also take a probabilistic approach introducing another coefficient. We
consider the probability of finding an alliance in a randomly chosen subset of
nodes S (each one independently and with probability p). We prove that, as
expected and in accordance with the previous result, this probability goes to 1
for planar regular graphs of degree 3 and 4.

220 R. Carvajal et al.

It is known that in every graph G = (V,E) of n nodes there exists an alliance
of size at most

⌊
n
2

⌋
+ 1 [9, 10]. We prove a stronger result which says that, for

graphs where the degree of every node is ω(log(n)), if the chosen set S is large
enough (i.e, with p > 1

2), then S will be an alliance with high probability.

Related work. The notion of alliance was first studied in [9], where the authors
introduced various types of alliances which have been studied later, calculat-
ing and bounding their size on certain classes of graphs. Namely, these types
of alliances are: defensive alliances [9, 11], offensive alliances [12], global defen-
sive/offensive alliances [13, 14], dual or powerful alliances [15] and k-alliances
[16, 17, 18, 19].

The notion of alliance is very natural and, for that reason, it has appeared
in other works in different contexts. In [20] the notion of web community was
introduced: “a community is a set of sites that have more links to members of the
community than to non-members”. In [21] the authors refer to a “white block”
as a subset W of an (m × n)-torus composed of vertices “each of which has at
least two neighbors in W”. This set W is, of course, an alliance. It appeared
when researchers were trying to bound the size of monopolies and coalitions in
graphs [22, 23]. A closely related line of research consists in trying to partition
the graph into communities (alliances in this work). Here the key object is the
partition itself and the measure of its quality. Newman in [24], together with a
state-of-the-art survey and a complete list of references, provides an algorithm
for partitioning based on the eigenspectrum of a matrix he calls modularity
matrix.

Some terminology. Let G = (V,E) be a (simple) undirected graph. We will
usually assume |V | = n. Let X ⊆ V and v ∈ V . Let dX(v) be the number of
neighbors the node v has in X . In other words, dX(v) = |NG(v) ∩ X |, where
NG(v) is the (open) neighborhood of v. A nonempty subset S ⊆ V is a strong
defensive alliance [9] if for every vertex v ∈ S it holds that |NG(v) ∩ S| ≥
|NG(v) ∩ S|. Note that this is equivalent to dS(v) ≥ dS(v). In this work such a
set S will simply be called an alliance. The eccentricity of a node v, denoted by
eccG(v), is the greatest distance between v and any other node in G.

2 The Depth of a Graph

Let v be a node of a graph G = (V,E). Let Sv ⊆ V denote a minimum size
alliance containing v. Our work is motivated by the following observation: in
locally structured graphs the value |Sv| is typically small. Therefore, if we want
to measure how locally structured a graph is, we should compute the average
of |Sv| taken over all the nodes. Unfortunately, calculating the size of each Sv

turns out to be NP-hard. In fact, let us define the problem Alliance as follows:

Alliance

Instance: Graph G and k ∈ IN.
Question: Is there any alliance S in G such that |S| ≤ k?

Small Alliances in Graphs 221

This problem is NP-complete [25]. For sake of completeness we present our
own reduction in the Appendix. Despite the fact that the previous result implies
that in practice there is no efficient way to find |Sv|, we can still do something.
In fact, since we are looking for a measure of “clustering”, it would be enough
to compute the depth of v, the minimum distance one has to move away from v
in order to find an alliance containing v:

depthG(v) = min{eccS(v) : S alliance with v ∈ S},

where eccS(v) is the S-eccentricity of v, the distance from v to the farthest node
in S. We are going to present first an algorithm that, given A ⊆ V , outputs
m(A), the largest alliance contained in A.

ALLIANCE Input: G = (V,E), A ⊆ V . Output: m(A).
S ← A
S′ ← {v ∈ S : 2dS(v) ≥ dG(v)}
while S′ �= S do
S ← S′

S′ ← {v ∈ S : 2dS(v) ≥ dG(v)}
end while
return S

Proposition 1. If the set m(A) computed by algorithm ALLIANCE is not
empty, then it is the largest alliance contained in A. The time complexity of
ALLIANCE is O(n2).

Proof. Let S be any set of vertices and let

S′ = {v ∈ S : 2dS(v) ≥ dG(v)}

Clearly, S′ = S if and only if S is an alliance. Moreover, an alliance is contained
in S if and only it is contained in S′. Hence, the largest alliance contained
in S (if any) is also contained in S′. Therefore, if ALLIANCE sets S′ to ∅
during some iteration, then it will finish with m(A) = ∅. Otherwise, it stops
with m(A) = S′ = S �= ∅, for some set S. For the time complexity notice that
the construction of S′ is O(n) and there are at most n iterations. ��

By using ALLIANCE we propose the following algorithm to compute the depth
of a vertex.

DEPTH Input: G = (V,E), v ∈ V . Output: depthG(v).
A← NG(v) ∪ {v}, r ← 1
while r ≤ n do

if v ∈ ALLIANCE(A) then
return r

end if
A← A ∪NG(A)
r ← r + 1

end while

222 R. Carvajal et al.

Proposition 2. DEPTH returns depthG(v) and its time complexity is O(n3).

Proof. In order to prove the statement we prove that the depth of a vertex v
corresponds to the smallest radius r > 0 such that the ball of radius r centered
in v contains an alliance containing v, which is exactly the quantity returned by
DEPTH.

Clearly, if S is an alliance contained in a ball of radius r centered in v, then
the distance between v and any vertex in S is at most r. Hence the eccentricity
of v in S is at most r. Therefore, the depth of v is at most r. Conversely, for
sake of contradiction, let us assume that there is an alliance S containing v such
that the eccentricity of v in S is less than r. Then the distance from v to any
vertex in S is less than r. Hence, S is an alliance contained in a ball of radius
smaller than r.

Since running DEPTH involves running ALLIANCE at most n times, the
time complexity follows. ��

The depth of a graph G is the sum of the depth of its vertices. It is denoted by
depth(G). From Proposition 2, depth(G) can be computed in polynomial time.
As we have already mentioned, it is known that every graph G with n vertices
has an alliance of size at most

⌊
n
2

⌋
+ 1 [9, 10]. In order to find an upper bound

for the depth of G we prove now a slightly different result.

Proposition 3. Every graph G = (V,E) has an alliance S ⊆ V such that |S| ∈
{	n2
, 	

n
2
+ 1}.

Proof. Let us consider the set of all “almost balanced” cuts of G = (V,E). More
precisely, C =

{
E(U,U) ⊆ E : U ⊆ V, |U | ∈ {	n/2
, 	n/2
+ 1}

}
. Let U0 ⊆ V

be such that E(U0, U0) is a min-cut of C. i.e, |E(U0, U0)| = minẼ∈C |Ẽ|.
All we need to prove now is that U0 is an alliance of G. Suppose that there is a

node u ∈ U0 such that dU0(u) < dU0
(u). In that case, if we define U1 = U0 \ {u},

we would have

|E(U1, U1)| = |E(U0, U0)| − (dU0
(u)− dU0(u)) < |E(U0, U0)|.

In order to conclude we need to show that E(U1, U1) ∈ C. In fact, if |U0| =
	n/2
 + 1 then |U1| = 	n/2
. On the other hand, if |U0| = 	n/2
 then |U1| ∈
{	n/2
, 	n/2
+ 1}. ��

Corollary 1. The depth of any graph G is at most 1
4 (3n2 − 2n + 3).

Proof. The depth of
⌈
n
2

⌉
vertices is at most

⌈
n
2

⌉
. ��

We do not know whether this upper bound is tight. Nevertheless, by forcing the
graph to be bridgeless planar of degree at most 4, the upper bound decreases
drastically.

First notice the following: the depth of every vertex in the (m× n)-grid is 2,
since every vertex belongs to a small alliance (a cycle of length 4). We are now
going to generalize this and prove that the depth of any planar bridgeless graph

Small Alliances in Graphs 223

of degree at most 4 is linear in n. This result goes in the right direction: the
depth of a graph seems to be a good generalization of its clustering coefficient.

Let G be a bridgeless plane cubic graph. Then, each vertex v belongs to a cycle
C which is the boundary of a face. We call these faces facial cycles in the sequel.
Clearly, C is an alliance containing v, and therefore depthG(v) ≤ |V (C)|/2.

Proposition 4. The depth a bridgeless planar cubic graph is at most 15
2 n.

Proposition 4 is a consequence of the following lemma.

Lemma 1. Let G = (V,E) be a bridgeless plane cubic graph and let F (G) denote
the set of its faces. Then there exists a function f associating to each vertex a
facial cycle containing it and such that no face is associated with more than five
vertices.

Proof. Consider the dual graph G∗ = (F (G), E∗). Since G is plane, cubic and
bridgeless, then G∗ is a plane graph with no loops and with no multiple edges.
We are looking for a function f that assigns to each vertex of G a particular
alliance to which it belongs. By duality, this is equivalent to look for a function
f∗ that assigns to each face h∗ of G∗ a particular vertex v∗ of G∗ with v∗ lying
in the boundary of h∗. Hence, in order to prove the lemma we have to make sure
that in our construction (of f∗) at most 5 faces of G∗ are labeled with the same
vertex.

We proceed by induction on the number of vertices of G∗. If G∗ has just
one vertex then we label the unique face of the graph with this vertex. Suppose
now that G∗ has n + 1 vertices. Since G∗ is plane (with no loops and with no
multiple edges) there must be a vertex v∗ of degree at most five. Consider the
graph G′ = G∗ \ v∗ (i.e, we delete the vertex and the incident edges). By the
induction hypothesis one can solve the problem in G′ without using v∗. The
point occupied by v∗ belongs to one face of G′. That face contains at most 5
faces of G∗. We label all of them with v∗ and we get the result. ��

Proof. (of Proposition 4). Let us consider the function f of the previous lemma.
It follows:

∑

v∈V

|f(v)| =
∑

h∈F (G)

|h||f−1(h)| ≤ 5
∑

h∈F (G)

|h| = 5× 2|E| = 5× 3|V |.

Therefore, depth(G) =
∑

v∈V depthG(v) ≤ 1
2

∑
v∈V |f(v)| ≤ 15

2 |V |. ��

3 A Probabilistic Approach

Clustered graphs are those having a lot of small alliances. So a natural way of
testing this is to compute the probability of finding an alliance in a small fraction
of nodes (chosen randomly).

We can formalize this question. Let p ∈ [0, 1]. Let us denote Vp(G) the out-
come of selecting each node of V with probability p. Let us denote rp(G) =
IP{Vp(G) contains an alliance}. The problem of computing rp(G) seems to be
very difficult in general. But it can be tackled in some cases.

224 R. Carvajal et al.

Proposition 5. Let G = (V,E) be a cubic planar graph. Let 0 < p < 1. Then
rp(G) ≥ 1− (1− p6)

n+4
56 .

Proof. Let us assume that G is already embedded in the plane and let F be the
set of faces of G. As any face is an alliance of G, we have that

rp(G) ≥ IP{S : ∃f ∈ F, V (f) ⊆ S}.

Let F ′ be any maximal set of vertex pairwise disjoint faces of size at most 6.
The probability that a random set S does not contain a given face f in F ′ is
1− p|V (f)| ≤ 1− p6. Since the faces in F ′ are vertex disjoint the probability that
S does not contain any face in F ′ is at most (1 − p6)|F

′|. In order to conclude
we will prove that 56|F ′| ≥ |V |+ 4.

Let ai be the number of faces of size i and let bi be the number of faces of
size at most i. By maximality, any face f with size at most 6 intersects at least
one element of F ′ and a face f ∈ F ′ intersect at most 6 faces of size at most 6
not in F ′. Therefore, 6|F ′| ≥ b6 − |F ′| and then 7|F ′| ≥ b6. From the definition
of ai, we get that |F | =

∑
i≥3 ai and 2|E| =

∑
i≥3 iai. From Euler’s Formula for

cubic graphs, 2|E| = 6|F | − 12, we get the following.
∑

i≥7

(i− 6)ai + 12 = a5 + 2a4 + 3a3 (1)

Let c be a positive number. From equation 1 we deduce that if a5 + 2a4 +
3a3 < c|F |, then |F | − b6 < c|F | and hence b6 > (1 − c)|F |. Otherwise, if
a5 + 2a4 + 3a3 ≥ c|F | then b6 ≥ c

3 |F |. By choosing c = 3
4 we conclude that

b6 ≥ 1
4 |F |. By using again Euler’s formula and the upper bound |F ′| ≥ b6

7 we
conclude that

|F ′| ≥ b6
7
≥ 1

28
|F | =

1
28

(2 + |V |/2)

Therefore,
rp(G) ≥ 1− (1− p6)|F

′| ≥ 1− (1− p6)
|V |+4

56 . ��

We say that a sequence of graphs (Gk)k∈IN is an increasing sequence if the order
(number of nodes) of the graphs grows with k.

Corollary 2. Let 0 < p < 1. Every increasing sequence (Gk)k∈IN of cubic planar
graphs satisfies limk→∞ rp(Gk) = 1.

Remark 1. The previous result also holds for planar regular graphs of degree 4.

As we have already seen, every graph G with n nodes has an alliance of size at
most

⌊
n
2

⌋
+ 1. This alliance comes from a very particular construction, dealing

with an “almost balanced” minimum cut of G. What if we choose randomly a
large set of nodes? Is it going to contain an alliance with high probability?

Proposition 6. Let G = (V,E) be a graph with minimum degree d. Let 1
2 <

p < 1. Then rp(G) ≥ 1− ne−
pδ2
2 d, where 1

2 = p(1− δ).

Small Alliances in Graphs 225

Proof. We apply the Chernoff bound in a standard way as explained in [26]. Let
Xv = 1 if v ∈ Vp(G) and Xv = 0 otherwise. Let X(v) =

∑
u∈N(v) Xu. It follows:

rp(G) ≥ IP{∀v ∈ Vp(G) : dVp(G)(v) ≥ dVp(G)(v)}

≥ 1−
∑

v∈Vp(G)

IP{X(v) <
d(v)
2
} = 1−

∑

v∈Vp(G)

IP{X(v) < (1− δ)�(X(v))}

≥ 1−
∑

v∈Vp(G)

e−
pδ2
2 d(v) ≥ 1− ne−

pδ2
2 d. ��

We can apply the previous lemma to graphs for which the degree of every node
is high enough. A class of graphs is said to have minimum degree d(n) if the
minimum degree of any graph having more than n nodes is at least d(n).

Corollary 3. Let 1
2 < p < 1 and let d(n) = ω(log(n)). Then, for every

increasing sequence (Gk)k∈IN of graphs with minimum degree d(n), we have
limk→∞ rp(Gk) = 1.

Acknowledgment. The authors would like to thank Martin Loebl for very
helpful hints and comments.

References

1. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Na-
ture 393, 440–442 (1998)

2. Soffer, S.N., Vazquez, A.: Network clustering coefficient without degree-correlation
biases. Phys. Rev. E 71(5), 57101 (2005)

3. Abdo, A.H., de Moura, A.P.S.: Measuring the local topology of networks: An ex-
tended clustering coefficient, arXiv:physics/0605235 (2006)

4. Caldarelli, G., Pastor-Santorras, R., Vespignani, A.: Cycles structure and local
ordering in complex networks. The European Physical Journal B - Condensed
Matter 38(2), 183–186 (2004)

5. Buhl, J., Gautrais, J., Solé, R.V., Kuntz, P., Valverde, S., Deneubourg, J., Ther-
aulaz, G.: Efficiency and robustness in ant networks of galleries. The European
Physical Journal B - Condensed Matter 42, 123–129 (2004)

6. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. Jour-
nal of Graph Algorithms and Applications 9(2), 265–275 (2005)

7. Fronczak, A., Holyst, J.A., Jedynak, M., Sienkiewicz, J.: Higher order clustering
coefficients in Barabasi-Albert networks. Physica A 316(1), 688–694 (2002)

8. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev.
Lett. 87(19), 198701 (2001)

9. Kristiansen, P., Hedetniemi, S.M., Hedetniemi, S.T.: Alliances in graphs. J. Com-
bin. Math. Combin. Comput. (48), 157–177 (2004)

10. Shafique, K.H.: Partitioning a graph in alliances and its application to data cluster-
ing. PhD thesis, School of Comp. Sci., College of Eng. and Comp. Sci., University
of Central Florida (2004)

226 R. Carvajal et al.

11. Sigarreta, J.M., Rodŕıguez, J.A.: On defensive alliances and line graphs. Applied
Mathematics Letters 12(19), 1345–1350 (2006)

12. Favaron, O., Fricke, G., Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Kris-
tiansen, P.: Offensive alliances in graphs. Discuss. Math. Graph Theory 24(2),
263–275 (2004)

13. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Global defensive alliances in
graphs. Electron. J. Combin (10), 139–146 (2003)

14. Rodŕıguez, J.A., Sigarreta, J.M.: Global offensive alliances in graphs. Electronic
Notes in Discrete Mathematics 25, 157–164 (2006)

15. Brigham, R., Dutton, R., Hedetniemi, S.: A sharp lower bound on the powerful
alliance number of cm × cn. Congr. Number. 167, 57–63 (2004)

16. Shafique, K.H., Dutton, R.D.: Maximum alliance-free and minimum alliance-cover
sets. Congr. Number. 162, 139–146 (2003)

17. Shafique, K.H., Dutton, R.D.: A tight bound on the cardinalities of maximum
alliance-free and minimum alliance-cover sets. J. Combin. Math. Combin. Com-
put. 56, 139–145 (2006)

18. Rodŕıguez-Velázquez, J.A., Gonzalez-Yero, I., Sigarreta, J.M.: Defensive k-alliances
in graphs. eprint arXiv:math/0611180 (2006)

19. Rodŕıguez-Velázquez, J.A., Sigarreta, J.M.: Global defensive k-alliances in graphs.
eprint arXiv:math/0611616 (2006)

20. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities.
In: Proc. of the 6th ACM SIGKDD Int. Conference on Knowledge Discovery and
Data Mining, pp. 150–160. ACM Press, New York (2000)

21. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in
tori. Discrete Appl. Math. 137(2), 197–212 (2004)

22. Bermond, J., Bond, J., Peleg, D., Perennes, S.: Tight bounds on the size of 2-
monopolies. In: Proc. 3rd Colloq. on Structural Information and Communication
Complexity (1996)

23. Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theor.
Comput. Sci. 282(2), 231–257 (2002)

24. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 36104 (2006)

25. McRae, A., Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Kristiansen, P.:
The algorithmic complexity of alliances in graphs (Preprint, 2002)

26. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)

27. Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing (1996)

Appendix: Alliance is NP -Complete

It is known that the following problem is NP-complete [27].

Half-Clique

Instance: Graph G (with n nodes, n even).
Question: Is there any clique in G of size (at least) n

2 ?

Proposition 7. Alliance is NP -complete.

Small Alliances in Graphs 227

Proof. Let G = (V,E) be an instance of Half-Clique (i.e, n is even). In the
reduction to Alliance we construct a graph G′ of size 4n as follows. We first
generate graphs G1 = (V,E), G2 = (V, φ), G3 = (V, φ) and G4 = (V,E).
The connection between these graphs is made according to the original graph
G = (V,E). Here we will abuse the notation, making no distinction between the
copies in the four graphs, of a node v ∈ V .

Nodes t ∈ G1 are connected to those nodes u ∈ G2 such that
t ∈ V \ ({t} ∪N(u)). Nodes u ∈ G2 are connected to those nodes v ∈ G3 such
that u ∈ N(v). Nodes v ∈ G3 are connected to those nodes w ∈ G4 such that
v ∈ (V \ ({v} ∪N(w)). For each i ∈ {1, 2, 3, 4}, vi is connected to every vertex
of Gi. Notice that G′ is n-regular and therefore the smallest alliances are of size
n
2 . The reader should verify that there exists an alliance in G′ of size n

2 + 1 if
and only if there exists a clique in G of size n

2 . ��

The Maximum Solution Problem on Graphs

Peter Jonsson�, Gustav Nordh��, and Johan Thapper���

Department of Computer and Information Science
Linköpings universitet

S-581 83 Linköping, Sweden
{petej,gusno,johth}@ida.liu.se

Abstract. We study the complexity of the problem MAX SOL which is a natural
optimisation version of the graph homomorphism problem. Given a fixed target
graph H with V (H) ⊆ N, and a weight function w : V (G) → Q+, an instance
of the problem is a graph G and the goal is to find a homomorphism f : G → H
which maximises

∑
v∈G f(v) · w(v). MAX SOL can be seen as a restriction of

the MIN HOM-problem [Gutin et al., Disc. App. Math., 154 (2006), pp. 881-889]
and as a natural generalisation of MAX ONES to larger domains. We present new
tools with which we classify the complexity of MAX SOL for irreflexive graphs
with degree less than or equal to 2 as well as for small graphs (|V (H)| ≤ 4).
We also study an extension of MAX SOL where value lists and arbitrary weights
are allowed; somewhat surprisingly, this problem is polynomial-time equivalent
to MIN HOM.

Keywords: Constraint satisfaction, homomorphisms, computational complexity,
optimisation.

1 Introduction

Throughout this paper, by a graph we mean an undirected graph without multiple edges
but possibly with loops. A homomorphism from a graph G to a graph H is a mapping f
from V (G) to V (H) such that (f(v), f(v′)) is an edge of H whenever (v, v′) is an edge
of G. The homomorphism problem with a fixed target graph H takes a graph G as input
and asks whether there is a homomorphism from G to H . Hence, by fixing the graph H
we obtain a class of problems, one for each graph H . For example, the graph homomor-
phism problem with fixed target graph H = {(v0, v1), (v1, v0)}, denoted by HOM(H),
is exactly the problem of determining whether the input graph G is bipartite (i.e., the 2-
COLORING problem). Similarly, if H = {(v0, v1), (v1, v0), (v1, v2), (v2, v1), (v0, v2),
(v2, v0)}, then HOM(H) is exactly the 3-COLORING problem. More generally, if H is
the clique on k-vertices, then HOM(H) is the k-COLORING problem.

� Partially supported by the Center for Industrial Information Technology (CENIIT) under
grant 04.01, and by the Swedish Research Council (VR) under grant 2006-4532.

�� Supported by the National Graduate School in Computer Science (CUGS), Sweden.
��� Supported by the Programme for Interdisciplinary Mathematics, Department of Mathemat-

ics, Linköpings universitet.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 228–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Maximum Solution Problem on Graphs 229

Hence, the HOM(H) class of problems contains several well studied problems, some
of which are in P (e.g, 2-COLORING) and others which are NP-complete (e.g.,
k-COLORING for k ≥ 3). A celebrated result, due to Hell and Nesetril [9], states that
HOM(H) is in P if H is bipartite or contains a looped vertex, and that it is NP-complete
for all other graphsH . For more information on graph homomorphism problems in gen-
eral and their complexity in particular, we refer the reader to the excellent monograph
by Hell and Nesetril [10].

In this paper we study a natural optimisation variant of the HOM(H) problem, i.e.,
we are not only interested in the existence of a homomorphism but want to find the
“best homomorphism”. We let the vertices of H be a subset of the natural numbers,
w : V (G) → Q+ be a weight function and look for a homomorphism h from G to H
that maximise the sum

∑
v∈G w(v) · h(v). We call this problem the maximum solution

problem (with a fixed target graph H) and denote it by MAX SOL(H).
Just as the HOM(H) problem captures several interesting combinatorial decision

problems, it is clear that the MAX SOL(H) captures several interesting combinatorial
optimisation problems. The MAX SOL(H) problem where H = {(0, 0), (0, 1), (1, 0)}
is exactly the NP-hard optimisation problem WEIGHTED MAXIMUM INDEPENDENT

SET. MAX SOL can also be seen as a natural generalisation of MAX ONES or, alterna-
tively, as a variation of the integer linear programming problem.

Gutin et al. [7] introduced MIN HOM, another homomorphism optimisation problem
motivated by a real-world application in defence logistics. This problem was studied
in [5,6] and among other things, a dichotomy was established for (undirected) graphs.
In particular, MIN HOM(H) was shown to be tractable whenever H is a proper interval
graph or a proper interval bigraph. When formulated as a minimization problem, MAX

SOL is easily seen to be a restriction of MIN HOM.
In [13], MAX SOL was studied as an optimisation variant of the constraint satis-

faction problem over arbitrary constraint languages. There, languages defined using
a many-valued logic were characterised as being either polynomial time solvable or
APX-hard. This was accomplished by adopting algebraic techniques from the study
of constraint satisfaction problems. In this paper, we continue the study of MAX SOL.
We look at languages given by undirected graphs. In particular, we give a complete
classification of the tractability of languages given by irreflexive graphs which have de-
gree less than or equal to 2. We also classify the cases when |V (H)| ≤ 3 and when
V (H) = {0, 1, 2, 3}. An interesting observation in these cases is that for some graphs,
the complexity of the problem depends very subtly on the values of the vertices. In
particular, applying an order preserving map on the values may change the complexity.

Furthermore, we consider two natural extensions of the MAX SOL-framework. One
is to relax the restriction of the weights and allow arbitrary (possibly negative) rational
weights on the variables. The other is to attribute a list, L(v), of allowed values to each
vertex v in the input instance. The list is a subset of V (H) and any solution must assign
v to one of the vertices in L(v). In this paper we focus, apart from the ordinary MAX

SOL, on the most general extreme, where we allow both lists and arbitrary weights.
This problem, which we call LIST MAX AW SOL, can be seen both as an optimisation
version of L-HOM(H), the list homomorphism problem (see [3,4]) while it is still a

230 P. Jonsson, G. Nordh, and J. Thapper

restriction of MIN HOM. We show that for each undirected graph H , LIST MAX AW
SOL(H) and MIN HOM(H) are in fact (polynomial time) equivalent.

The paper is organised as follows. In Section 2 we give a formal definition of CSP

and the problems MAX SOL and LIST MAX AW SOL. In Section 3 we formalise the
algebraic framework for studying MAX SOL. We also give a number of basic results
which are used throughout the paper. These results are interesting in their own right,
as many of them apply to general constraint languages. The results for MAX SOL are
given in Section 4. In Section 5 we show the equivalence of LIST MAX AW SOL and
Min Hom for undirected graphs, before concluding in Section 6.

2 Preliminaries

We formally define constraint satisfaction as follows: Let D ⊂ N (the domain) be a
finite set. The set of all n-tuples of elements from D is denoted by Dn. Any subset of
Dn is called an n-ary relation on D. The set of all finitary relations over D is denoted
by RD. A constraint language over a finite set, D, is a finite set Γ ⊆ RD. Constraint
languages are the way in which we specify restrictions on our problems. The constraint
satisfaction problem over the constraint language Γ , denoted CSP(Γ), is defined to be
the decision problem with instance (V,D,C), where V is a set of variables, D is a
finite set of values (the domain), and C is a set of constraints {C1, . . . , Cq}, in which
each constraint Ci is a pair (si, i) with si a list of variables of length mi, called the
constraint scope, and i an mi-ary relation over the set D, belonging to Γ , called the
constraint relation. The question is whether there exists a solution to (V,D,C) or not,
that is, a function from V to D such that, for each constraint in C, the image of the
constraint scope is a member of the constraint relation.

List Maximum Solution with Arbitrary Weights over a constraint languageΓ , denoted
LIST MAX AW SOL(Γ), is the maximization problem with

Instance: Tuple (V,D,C, L,w), where D is a finite subset of N, (V,D,C) is a CSP

instance over Γ , L : V → 2D is a function from V to subsets of D, and w : V → Q
is a weight function.

Solution: An assignment f : V → D to the variables such that all constraints are
satisfied and such that f(v) ∈ L(v) for all v ∈ V .

Measure:
∑

v∈V f(v) · w(v)

Weighted Maximum Solution over Γ , MAX SOL(Γ), is then defined by restricting w
to non-negative rational numbers and letting L(v) = D for all v ∈ V .

Let G be a graph. For a fixed graph H , the Minimum Cost Homomorphism Problem
[7], MIN HOM(H), is the problem of finding a graph homomorphism f from G to
H which minimises

∑
v∈V (G) cf(v)(v), where ci(v) ∈ Q+ are costs, for v ∈ V (G),

i ∈ V (H).
Let G be a graph and H be a subgraph of G. H is a retract of G if there exists

a graph homomorphism f : G → H such that f(v) = v for all v ∈ V (H). The
Retraction Problem, RET(H), is to determine whether or not H is a retract of G.

The Maximum Solution Problem on Graphs 231

Let F = {I1, . . . , Ik} be a family of intervals on the real line. A graph G with
V (G) = F and (Ii, Ij) ∈ E(G) if and only if Ii ∩ Ij �= ∅ is called an interval graph.
If the intervals are chosen to be inclusion-free, G is called a proper interval graph.

Let F1 = {I1, . . . , Ik} and F2 = {J1, . . . , Jl} be two families of intervals on the real
line. A graph G with V (G) = F1 ∪ F2 and (Ii, Jj) ∈ E(G) if and only if Ii ∩ Jj �= ∅
is called an interval bigraph. If the intervals in each family are chosen to be inclusion-
free, G is called a proper interval bigraph.

Interval graphs are reflexive, while interval bigraphs are irreflexive and bipartite.

3 Methods

3.1 Algebraic Framework

An operation on D is an arbitrary function f : Dk → D. Any operation on D can be
extended in a standard way to an operation on tuples over D, as follows: Let f be a
k-ary operation on D and let R be an n-ary relation over D. For any collection of k
tuples, t1, . . . , tk ∈ R, define f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . ,
tk[n])) where tj [i] is the i-th component in tuple tj . If f is an operation such that for
all t1, t2, . . . , tk ∈ R, we have f(t1, t2, . . . , tk) ∈ R, then R is said to be invariant
under f . If all constraint relations in Γ are invariant under f , then Γ is invariant under
f . An operation f such that Γ is invariant under f is called a polymorphism of Γ . The
set of all polymorphisms of Γ is denoted Pol(Γ). Sets of operations of the form Pol(Γ)
are known as clones, and they are well-studied objects in algebra (cf. [15]).

A first-order formula φ over a constraint language Γ is said to be primitive positive
(we say φ is a pp-formula for short) if it is of the form ∃x : (P1(x1) ∧ . . . ∧ Pk(xk))
where P1, . . . , Pk ∈ Γ and x1, . . . ,xk are vectors of variables such that |Pi| = |xi|
for all i. Note that a pp-formula φ with m free variables defines an m-ary relation
R ⊆ Dm; the relation R is the set of all tuples satisfying the formula φ. It follows, for
example from the proof of [13, Lemma 4], that there is a polynomial time reduction
from MAX SOL(Γ ∪ {R}) to MAX SOL(Γ).

For any relation R and a unary operation f , let f(R) denote the relation f(R) =
{f(r) | r ∈ R}. Accordingly, let f(Γ) denote the constraint language {f(R) | R ∈ Γ}.
Definition 1. A constraint language Γ is a max-core if and only if there is no non-
injective unary operation f in Pol(Γ) such that f(d) ≥ d for all d ∈ D. A constraint
language Γ ′ is a max-core of Γ if and only if Γ ′ is a max-core and Γ ′ = f(Γ) for some
unary operation f ∈ Pol(Γ) such that f(d) ≥ d for all d ∈ D.

We refer to [13] for the proof of the following lemma.

Lemma 1. If Γ ′ is a max-core of Γ , then MAX SOL(Γ) and MAX SOL(Γ ′) are poly-
nomial time equivalent.

3.2 Basic Lemmas

We now present a series of lemmas which will prove useful in the coming section.
Several of the lemmas are, however, interesting in their own right and can be applied to
a wider class of problems. Let Γ denote a constraint language over D = {d1, . . . , dk}.

232 P. Jonsson, G. Nordh, and J. Thapper

Lemma 2. Arbitrarily choose D′ ⊆ D, assume without loss of generality that D′ =
{d1, . . . , dl} with d1 < d2 < . . . < dl and let F = {f ∈ Pol1(Γ) | f |D′ = idD′}.
Assume that there exists constants a1, . . . , al > 0 such that for every f ∈ Pol1(Γ)\F it
holds that

∑l
i=1 ai ·di >

∑l
i=1 ai ·f(di). Then, MAX SOL(Γ ∪{{(d1)}, . . . , {(dl)}})

and MAX SOL(Γ) are polynomial time equivalent problems.

Proof. The non-trivial reduction follows from a construction which uses the concept of
an indicator problem [11].

Corollary 1. Let Γ be an arbitrary constraint language and let U be a unary relation
on D. If MAX SOL(Γ) and MAX SOL(Γ ∪ {U}) are polynomial time equivalent prob-
lems, then so are MAX SOL(Γ) and MAX SOL(Γ ∪{{(maxU)}}). In particular, MAX

SOL(Γ) and MAX SOL(Γ ∪ {(dk)}) are polynomial time equivalent.

Proof. Use Lemma 2 on Γ ∪ {U}, k = 1, d1 = m and a1 > 0.

Lemma 3. Let Γ be a constraint language on a finite domain D. Assume that there is
a set F ⊆ Pol1(Γ), such that for each f ∈ F , MAX SOL(f(Γ)) is in PO and such
that for each choice of a1, . . . , ad ∈ Q+ there is a f ∈ F for which

∑d
i=1 ai · di ≤∑d

i=1 ai · f(di). Then, MAX SOL(Γ) is in PO.

Let H = {H1, . . . , Hn} be a set of connected graphs and let H be the disjoint union
of these graphs. We are interested in the complexity of MAX SOL(H), given the com-
plexities of the individual problems. Let Hi = H \ {Hi}. We say that Hi extends
the set Hi if there exists an instance I = (V,D,C,w) of MAX SOL(Hi) for which
OPT(I) > OPT(Ij) where Ij = (V,Dj , {xHjy | xHiy ∈ C}, w), for all j such that
1 ≤ j �= i ≤ n. We call I a witness to the extension.

Assume that for some 1 ≤ i ≤ n, it holds that Hi does not extend Hi. It is
clear that for any connected instance I = (V,D,C,w) of MAX SOL(H), we have
OPT(I) = OPT(Ij) for some j, where Ij = (V,Dj , {xHjy | xHy ∈ C}, w). Fur-
thermore, since Hi does not extend Hi, we know that we can choose this j �= i.
Let H ′ be the disjoint union of the graphs in Hi. Then, OPT(I) = OPT(I ′), where
I ′ = (V,D, {xH ′y | xHy ∈ C}, w) is an instance of MAX SOL(H ′). For this reason,
we may assume that every Hi ∈ H extends every graph inHi.

Lemma 4. Let H1, . . . , Hn be connected graphs and H their disjoint union. If the
problems MAX SOL(Hi), 1 ≤ i ≤ n are all tractable, then MAX SOL(H) is tractable.
If MAX SOL(Hi) is NP-hard and Hi extends the set {H1, . . . , Hi−1, Hi+1, . . . , Hn}
for some i, then MAX SOL(H) is NP-hard.

The next lemma can be shown by a reduction from MAXIMUM INDEPENDENT SET.

Lemma 5. If a < b and R = {(a, a), (a, b), (b, a)}, then MAX SOL(R) is NP-hard.

4 Results for MAX SOL

Throughout this section, we will assume that all graphs defining constraint languages
are max-cores and connected. Due to Lemma 1 and Lemma 4, we can do this without

The Maximum Solution Problem on Graphs 233

loss of generality. There is a straightforward reduction from MAX SOL to MIN HOM,
so polynomiality results for MIN HOM translates directly to MAX SOL. Additionally,
the following reduction can sometimes be used to show hardness.

Lemma 6. Let H be a graph for which the retraction problem is NP-complete. Then
MAX SOL(H ∪ {{(d1)}, . . . , {(dk)}}) is NP-hard.

4.1 Irreflexive Graphs with deg(v) ≤ 2

There are two types of irreflexive graphs H with deg(v) ≤ 2 for all v ∈ V (H), paths
and cycles. Since irreflexive paths are proper interval bigraphs, a reduction to MIN

HOM, and [5, Corollary 2.6] shows that:

Proposition 1. Let H be an irreflexive path. Then MAX SOL(H) is in PO.

When H is an odd cycle, we have that CSP(H) is NP-complete and therefore
MAX SOL(H) is NP-hard. It remains to investigate even cycles. Since we do not allow
multiple edges, C2 is a single edge, for which MAX SOL is trivially in PO. When H ∼=
C4
∼= K2,2, there is always an increasing endomorphism from H to one of its edges.

Thus no max-core is isomorphic to C4. For even cycles of length greater or equal to 6,
it has been shown in [4] that the retraction problem is NP-complete. We will use this
with Lemma 6 to prove the NP-hard cases. The tractable cases are proven by Lemma 3.
We will assume a bipartition V (H) = {d1, . . . , dk} ∪ {d′1, . . . , d′k} of H with d1 <
d2 < · · · < dk and d′1 < d′2 < · · · < d′k and without loss of generality that dk > d′k .

d′
4d2d4 d′

2

d′
1 d3 d′

3 d1

Fig. 1. The graph H in Proposition 3

Proposition 2. Let H be isomorphic to C6 and a max-core. Then, MAX SOL(H) is
NP-hard.

Proposition 3. Let H be isomorphic to C8 and a max-core. If H is isomorphic to the
graph in Figure 1 and (d4 − d3)(d′4 − d′3) ≥ (d3 − d2)(d′3 − d′2), then MAX SOL(H)
is in PO. Otherwise it is NP-hard.

In general, for even cycles, the following holds:

Proposition 4. Let H be a max-core isomorphic to C2k , k ≥ 3. Then MAX SOL(H)
and MAX SOL(H ∪ {{(dk)}, {(d′k)}}) are polynomial time equivalent problems.

Assume that there exists non-negative constants a1, . . . , ak−1, a
′
1, . . . , a

′
k−1 such

that for each f ∈ Pol1(H) \ F , where F = {f ∈ Pol1(Γ) | ∃j �= k : f(dj) �=
dj ∨ f(d′j) �= d′j}, it is true that

234 P. Jonsson, G. Nordh, and J. Thapper

k−1∑

i=1

(
ai · di + a′i · d′i

)
>

k−1∑

i=1

(
ai · f(di) + a′i · f(d′i)

)
. (1)

Then MAX SOL(H) is NP-hard, otherwise it is in PO.

4.2 Small Graphs

In this section we determine the complexity of MAX SOL(H) for all graphs H =
(V,E) on at most 4 vertices, i.e., |V (H)| ≤ 4. For |V (H)| = 4 we only consider
the case where V = {0, 1, 2, 3}, but for |V (H)| ≤ 3 we classify the complexity for
all V (H) ⊂ N. In the process we discover a new tractable class for the MAX SOL(H)
problem which is closely related to the critical independent set problem [1,17].

We know from Lemma 1 that it is sufficient to consider graphs H that are max-
cores. The case |V (H)| = 1 is trivial since there are only two such graphs and both
are tractable. For |V (H)| = 2 there are two graphs that are max-cores, namely, the
irreflexive path on two vertices (in PO by Proposition 1) and the graph on V = {d1, d2},
d1 < d2 where d1 is adjacent to d2 and d1 is looped (which is NP-hard by Lemma 5).

When |V (H)| = 3 we have the following classification.

Theorem 1. There are six (types of) max-cores over {d1, d2, d3} where d1 < d2 < d3,
denoted H1, . . . , H6 and shown in Figure 2. MAX SOL(H) is NP-hard for all of these
except H5. MAX SOL(H5) is in PO if d3 + d1 ≤ 2d2 and NP-hard otherwise.

d1

d2

d3

H1

d3 d2d1

H3

d2 d1d3

H2

H4

d3 d1 d2

H6H5

d3 d1 d2

d1

d2

d3

Fig. 2. The graphs Hi

The MAX SOL(H5) problem is related to the critical independent set problem [1,17]
in the following way. An independent set IC ⊆ V (G) is called critical if

|IC | − |N(IC)| = max{|I| − |N(I)| | I is an independent set in G},
where N(I) denote the neighborhood of I , i.e., the set of vertices in G that are adjacent
to at least one vertex in I . Zhang [17] proved that critical independent sets can be found
in polynomial time.

The Maximum Solution Problem on Graphs 235

We extend the notion of a critical independent sets to (k,m)-critical independent
sets. A (k,m)-critical independent set is an independent set IC ⊆ V (G) such that

k · |IC | −m · |N(IC)| = max{k · |I| −m · |N(I)| | I is an independent set in G}.

Note that the maximum independent set problem is exactly the problem of finding a
(1, 0)-critical independent set. The following proposition shows that that MAX SOL(H5)
is polynomial-time equivalent to the (d3−d2, d2−d1)-critical independent set problem.

Proposition 5. IC is a (d3−d2, d2−d1)-critical independent set in G if and only if the
homomorphism h from G to H5, defined by h−1(d3) = IC and h−1(d1) = Nbd(IC) is
an optimal solution for MAX SOL(H5).

Proof. Assume that IC is a (d3− d2, d2− d1)-critical independent set in G but h is not
an optimal solution to MAX SOL(H5), i.e., there exists a homomorphism g from G to
H5 such that m(g) > m(h). That is,

w(g−1(d3)) · d3 + w(g−1(d1)) · d1 + w(g−1(d2)) · d2 >

w(h−1(d3)) · d3 + w(h−1(d1)) · d1 + w(h−1(d2)) · d2.

Subtracting w(V (G)) · d2 from both sides, we get

w(g−1(d3)) · (d3 − d2)− w(g−1(d1)) · (d2 − d1) >

w(h−1(d3)) · (d3 − d2)− w(h−1(d1)) · (d2 − d1).

This contradicts the fact that IC is a (d3 − d2, d2 − d1)-critical independent set. The
proof in the other direction is similar. ��

Building upon the results in [1], we are able to completely classify the complexity of
the (k,m)-critical independent set problem and, hence, also the complexity of MAX

SOL(H5). More specifically, we prove that the (k,m)-critical independent set problem
is in PO if k ≤ m and that it is NP-hard if k > m.

Finally, we present the complexity classification of MAX SOL for all graphs H =
(V,E) where V = {0, 1, 2, 3}. Just as in the case where |V (H)| ≤ 3 we make heavy
use of the fact that only graphs that are max-cores need to be classified. Our second tool
is the following lemma, stating that we can assume that we have access to all constants.

Lemma 7. Let H be a max-core over {0, 1, 2, 3}. Then MAX SOL(H) is in PO (NP-
hard) if and only if MAX SOL(H ∪ {{(0)}, {(1)}, {(2)}, {(3)}}) is in PO (NP-hard).

As an immediate corollary, we get that MAX SOL(H) is NP-hard for all max-cores
H on D = {0, 1, 2, 3} when the retraction problem (RET(H)) is NP-complete. Note
that the complexity of the retraction problem for all graphs on at most 4 vertices have
been classified in [16]. The classification is completed by considering the remaining
max-cores (for which RET(H) is in P) one by one. Our result is the following.

Theorem 2. Let H be a max-core on D = {0, 1, 2, 3}. Then, MAX SOL(H) is in PO
if H is an irreflexive path, and otherwise, MAX SOL(H) is NP-hard.

236 P. Jonsson, G. Nordh, and J. Thapper

5 Results for LIST MAX AW SOL

The main theorem of this section is stated as follows.

Theorem 3. Let H be an undirected graph with loops allowed. Then LIST MAX AW
SOL(H) is solvable in polynomial time if all components of H are proper interval
graphs or proper interval bigraphs. Otherwise, LIST MAX AW SOL(H) is NP-hard.

Corollary 2. Let H be an undirected graph with loops allowed. Then, LIST MAX AW
SOL(H) is polynomial time equivalent to MIN HOM(H).

The reduction from LIST MAX AW SOL(H) is easy. The lists are replaced by weights
of∞ for the appropriate variable-value pairs. Remaining weights are negated and trans-
lated so that the smallest weight becomes 0 for MIN HOM. The rest of this section is
devoted to proving the other direction. We assume that the input instance is connected.
If it is not, then we can solve each component separately and add the solutions.

Lemma 8. Let H be an undirected graph. Then, LIST MAX AW SOL(H) is NP-hard
if there exists a connected component H ′ of H such that LIST MAX AW SOL(H ′) is
NP-hard. Otherwise, if for each connected componentH ′ of H we have that LIST MAX

AW SOL(H ′) is in PO, then LIST MAX AW SOL(H) is in PO.

Lemma 9. Let H be an undirected graph in which there exists both loop-free vertices
and vertices with loops. Then, LIST MAX AW SOL(H) is NP-hard.

Proof. This is proved by reduction from MAXIMUM INDEPENDENT SET.

Proposition 6. If H is a connected graph which is a proper interval graph or a proper
interval bigraph, then LIST MAX AW SOL(H) is polynomial time solvable.

Proof. This follows from [5, Corollary 2.6] which states that the corresponding MIN

HOM(H)-problem is polynomial time solvable. ��

Theorem 4 (P. Hell, J. Huang [8]). A bipartite graph H is a proper interval bigraph
if and only if it does not contain an induced cycle of length at least six, or a bipartite
claw, or a bipartite net, or a bipartite tent.

Figure 3 displays the bipartite net and bipartite tent graphs.

Lemma 10. Let H be a cycle of length at least six. Then LIST MAX AW SOL(H) is
NP-hard.

Proof. The proof is by a simple reduction from the retraction problem on H . This
problem is shown to be NP-complete in [4]. ��

Lemma 11. Let H be one of the graphs shown in Figure 3. Then LIST MAX AW
SOL(H) is NP-hard.

Proof. The proof follows the same ideas as those in [5]. That is, one reduces from the
problem of finding a maximum independent set in a 3-partite graph. The apparent lack
of expressive power of the LIST MAX AW SOL-framework, and the dependence on the

The Maximum Solution Problem on Graphs 237

x4

x1

x3x2

(a) (b) (c)

y3

x1

x4 y1

x3y2x2 y3 x1 y2

x4y1x2

x3

Fig. 3. (a) reflexive claw, (b) bipartite net, (c) bipartite tent

labels of the target graph, are resolved by a precise choice of weights in the constructed
instances. We carry out the case in Figure 3(a) in detail.

Let G be a 3-partite graph with partite sets X,Y and Z . We create an instance I =
(V,D,C, L,w) of LIST MAX AW SOL(H) as follows. Let V = V (G), D = V (H) =
{x1, x2, x3, x4} and create a constraint uHv in C for each (u, v) ∈ E(G). Now, define
the lists and weights as follows.

L(u) =

⎧
⎪⎨

⎪⎩

{x4, x1} when u ∈ X

{x4, x2} when u ∈ Y

{x4, x3} when u ∈ Z.

w(u) =

⎧
⎪⎨

⎪⎩

1/(x1 − x4) when u ∈ X

1/(x2 − x4) when u ∈ Y

1/(x3 − x4) when u ∈ Z.

Now, if s is a solution to I , let X1 = s−1(x1), X0 = X \X1 and define similarly Y0,
Y1 and Z0, Z1. Note that s defines an independent set X1 ∪ Y1 ∪ Z1 of G. Conversely,
it is also clear that any independent set of G yields a solution to I by assigning each
variable to x4 precisely when it is not a part of the independent set. The value of s can
be written as

∑

u∈V

s(u) · w(u) =
∑

x∈X

s(x) · w(x) +
∑

y∈Y

s(y) · w(y) +
∑

z∈Z

s(z) · w(z) =

|X0| · x4 + |X1| · x1

x1 − x4
+
|Y0| · x4 + |Y1| · x2

x2 − x4
+
|Z0| · x4 + |Z1| · x3

x3 − x4
=

|X | · x4

x1 − x4
+ |X1|+

|Y | · x4

x2 − x4
+ |Y1|+

|Z| · x4

x3 − x4
+ |Z1| = M + |X1|+ |Y1|+ |Z1|,

where M is independent of s and can be calculated in polynomial time from I . Thus,
an optimal solution to I gives a maximal independent set in G. ��

We now have all the tools necessary to complete the proof of Theorem 3.

Proof of Theorem 3. According to Lemma 8 we can assume that H is connected. Fur-
thermore, due to Lemma 9 we can assume that H is either loop-free or reflexive, or
LIST MAX AW SOL(H) is NP-hard. Proposition 6 gives the polynomial cases.

238 P. Jonsson, G. Nordh, and J. Thapper

If H is loop-free and non-bipartite, we can reduce from HOM(H), which is
NP-complete for non-bipartite graphs. So assume that H is bipartite. IfH is not a proper
interval bigraph, then, due to Theorem 4, H has either an induced cycle of length at least
6, an induced bipartite claw, an induced bipartite net or an induced bipartite tent. We can
use the lists L to induce each of these graphs, so NP-hardness follows from Lemma 10
and 11. Note that hardness for the reflexive claw implies hardness for the bipartite claw.

Finally, if H is reflexive, then it is either not an interval graph, or a non-proper
interval graph. If H is not an interval graph, then we can reduce from the list homomor-
phism problem L-HOMH which is shown to be NP-complete for reflexive, non-interval
graphs in [3]. In the second case, it has been shown by Roberts [14] that H must con-
tain an induced claw. Lemma 11 shows that this problem is NP-hard, which finishes the
proof. ��

6 Discussion and Future Work

In this paper we have initiated a study of the complexity of the maximum solution
problem on graphs. Our results indicate that giving a complete complexity classification
of MAX SOL(H) for every fixed graph H is probably harder than first anticipated. In
particular, the new tractable class for the MAX SOL problem identified in Section 4.2
depends very subtly on the values of the domain elements and we have not yet been able
to characterize this tractable class in terms of polymorphisms. Hence, this tractable class
seems to be of a very different flavour compared to the previously identified tractable
classes for the MAX SOL problem [13].

On the other hand, we are able to give a complete classification for the complex-
ity of the arbitrary weighted list version of the problem, LIST MAX AW SOL(H).
Interestingly, the borderline between tractability and NP-hardness for LIST MAX AW
SOL(H) coincide exactly with Gutin et al.’s [5] recent complexity classification of MIN

HOM(H). This is surprising, since the MIN HOM(H) problem is much more expressive
than the LIST MAX AW SOL(H) problem, and hence, we were expecting graphs H
such that MIN HOM(H) were NP-hard and LIST MAX AW SOL(H) were in PO. The
obvious question raised by this result is how far can we extend the agreement in com-
plexity between LIST MAX AW SOL(Γ) and MIN HOM(Γ)? To this end, we state the
MIN HOM problem for general constraint languages.

Minimum Cost Homomorphism over constraint language Γ , denoted MIN HOM(Γ),
is the minimization problem with

Instance: Tuple (V,D,C, ci(v)), where D is a finite subset of N, (V,D,C) is a CSP

instance over Γ , ci : V → Q+ are costs for i ∈ V (H).
Solution: An assignment f : V → D to the variables such that all constraints are

satisfied.
Measure:

∑
v∈V cf(v)(v).

Problem 1. Is it the case that the complexity of LIST MAX AW SOL(Γ) and MIN

HOM(Γ) are equal for all constraint languages Γ ?

It can be shown, using results from [2,12], that LIST MAX AW SOL(Γ) and MIN

HOM(Γ) are polynomial time equivalent when Γ is a boolean constraint language.

The Maximum Solution Problem on Graphs 239

References

1. Ageev, A.: On finding critical independent and vertex sets. SIAM J. Discrete Math. 7(2),
293–295 (1994)

2. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint satisfac-
tion. Artif. Intell. 170(11), 983–1016 (2006)

3. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Combin. Th (B) 72, 236–250
(1998)

4. Feder, T., Hell, P., Huang, J.: List Homomorphisms and Circular Arc Graphs. Combinator-
ica 19, 487–505 (1999)

5. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomor-
phisms. European J. Combin. (to appear)

6. Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete
digraphs. Discrete Applied Mathematics 154(6), 890–897 (2006)

7. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homo-
morphisms of graphs. Discrete Applied Mathematics 154(6), 881–889 (2006)

8. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46, 313–327
(2004)

9. Hell, P., Nešetřil, J.: The complexity of H-coloring. J. Combinatorial Theory B 48, 92–110
(1990)

10. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics
and Its Applications. Oxford University Press (2004)

11. Jeavons, P., Cohen, D., Gyssens, M.: A test for tractability. In: Freuder, E.C. (ed.) CP 1996.
LNCS, vol. 1118, pp. 267–281. Springer, Heidelberg (1996)

12. Jonsson, P.: Boolean constraint satisfaction: complexity results for optimization problems
with arbitrary weights. Theoretical Computer Science 244(1–2), 189–203 (2000)

13. Jonsson, P., Nordh, G.: Generalised integer programming based on logically defined rela-
tions. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 549–560.
Springer, Heidelberg (2006)

14. Roberts, F.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp.
139–146. Academic Press, London (1969)

15. Szendrei, Á. (ed.): Clones in Universal Algebra. Seminaires de Mathématiques Supérieures,
vol. 99. University of Montreal (1986)

16. Vikas, N.: A complete and equal computational complexity classification of compaction and
retraction to all graphs with at most four vertices and some general results. J. Comput. Syst.
Sci. 71(4), 406–439 (2005)

17. Zhang, C.-Q.: Finding critical independent sets and critical vertex subsets are polynomial
problems. SIAM J. Discrete Math. 3(3), 431–438 (1990)

What Are Iteration Theories?

Jǐŕı Adámek1, Stefan Milius1, and Jǐŕı Velebil2,�

1 Institute of Theoretical Computer Science, TU Braunschweig, Germany
{adamek,milius}@iti.cs.tu-bs.de

2 Department of Mathematics, ČVUT Prague, Czech Republic
velebil@math.feld.cvut.cz

Abstract. We prove that iteration theories can be introduced as alge-
bras for the monad Rat on the category of signatures assigning to every
signature Σ the rational-Σ-tree signature. This supports the result that
iteration theories axiomatize precisely the equational properties of least
fixed points in domain theory: Rat is the monad of free rational theories
and every free rational theory has a continuous completion.

“In the setting of algebraic theories enriched with an exter-
nal fixed-point operation, the notion of an iteration theory
seems to axiomatize the equational properties of all the com-
putationally interesting structures of this kind.”

S. L. Bloom and Z. Ésik (1996), see [4]

1 Introduction

In domain theory recursive equations have a clear semantics given by the least
solution. The function assigning to every system of recursive equations e the
least solution e† has a number of equational properties. One answer to the ques-
tion in the title is given by a semantic characterization: iteration theories are
those Lawvere theories in which recursive equations have solutions subject to all
equational laws that the least-solution-map e #→ e† obeys in domain theory. The
same question also has a precise answer given by a list of all the equational ax-
ioms involved, see the fundamental monograph [3] of Stephen Bloom and Zoltan
Ésik, or Definition 3.1 below. The aim of the present paper is to offer a short
and precise syntactic answer:

Iteration theories are precisely the algebras for the rational-tree monad Rat
on the category of signatures.

To be more specific: let Sgn be the category of signatures, that is, the slice
category Set/N. Every signature Σ generates a free rational theory in the sense
of the ADJ-group: it is the theory RTΣ⊥ of all rational trees (which means
trees having, up to isomorphism, only finitely many subtrees) on the signature

� The support of the grant 201/06/664 of the Grant Agency of the Czech Republic is
gratefully acknowledged.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 240–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

What Are Iteration Theories? 241

Σ⊥ = Σ + {⊥}, for a new nullary symbol ⊥. This follows from results in [7]
and [11], and it yields a free-rational-theory monad

Rat, Σ #→ RTΣ⊥

on the category Sgn of signatures.
The main result of our paper is the following

Theorem. The category of iteration theories is isomorphic to the category of
Eilenberg-Moore algebras for the rational-tree monad Rat on Sgn.

This theorem gives at first a new semantic characterization of iteration theories
as a category of algebras. In addition, it is well-known that a characterization
of a category as a category of Eilenberg-Moore algebras for a finitary monad on
a locally finitely presentable category means that the category can be presented
in the form of identities over the base category, see [8]. Hence, our result bears
aspects of a syntactic characterization too.

It is well-known that classical varieties (of one-sorted, finitary algebras) are
precisely the finitary, monadic categories over Set. We can generalize this to Sgn
and speak about varieties of theories as categories that are finitary, monadic over
Sgn. In this sense our main result proves that the iteration theories form a variety
which is generated by all rational theories. Is this new? We believe it is—not in its
spirit, but in its formal proof. In the monograph [3] the same result is formulated,
see Theorem 8.2.5, however, the concept of a variety of theories is not introduced
there. In later work, see, e.g., [4], [5], [6], varieties of preiteration theories are
defined as classes of theories which satisfy given identities—however, the concept
of identity is not defined. We have no doubt that it is possible to introduce the
concept of “identity over Sgn” and then use it to provide a formal proof, but
we decided for a different route using Beck’s Theorem to prove the result above.
The first (and very crucial) part of such a proof is explicitly contained in the
monograph [3]: it is the fact that a free iteration theory on a signature Σ is the
rational-tree theory RTΣ⊥ above.

In our previous work we have dealt with iterative theories, e.g., by character-
izing the Eilenberg-Moore algebras for the free iterative theories [1]. The present
paper uses an analogous method but applied in a second-order setting: whereas
Beck’s Theorem is used over the given base category in [1], here we apply it to
the category of signatures over the base category.

2 Rational Theories

The aim of the present section is to introduce the rational-tree monad Rat with-
out using the result of [3] that Rat is the monad of free iteration theories: instead
we use the free rational theories of [11].

2.1 Remark. Throughout the paper an (algebraic) theory is a category whose
objects are natural numbers and every object n is a coproduct n = 1+1+ · · ·+1

242 J. Adámek, S. Milius, and J. Velebil

(n copies) with chosen coproduct injections. Theory morphisms are the functors
which are identity maps on objects and which preserve finite coproducts (on the
nose). The resulting category of theories is denoted by

Th.

2.2 Examples. (1) Every signature Σ = (Σn)n∈N defines the Σ-tree theory

CTΣ

as follows.
By a Σ-tree on a set X of generators is meant a tree1 labelled so that every

leaf is labelled in X + Σ0 and every node with n > 0 children is labelled in Σn.
The theory CTΣ has as morphisms 1 → k all Σ-trees on k generators, thus:

CTΣ(n, k) = all n-tuples of Σ-trees on k generators.

Composition is given by tree substitution.
(2) Analogously, the finite-Σ-tree theory FTΣ is given by

FTΣ(n, k) = all n-tuples of finite Σ-trees on k generators.

(3) The theory
N

which is the full subcategory of Set on natural numbers is initial: for every the-
ory T we have a unique theory morphism uT : N → T ; we call the morphisms
in uT (N) basic.

2.3 Notation. We denote by

U : Th→ Sgn

the forgetful functor assigning to every theory T the signature U(T) whose
n-ary symbols are T (1, n) for all n ∈ N.

2.4 Remark. (i) U has a left adjoint

FT : Sgn→ Th

assigning to every signature Σ the finite-tree theory FTΣ . This gives us a monad
on the category of signatures:

Fin : Σ #→ U(FTΣ).

Recall that Jean Bénabou [2] proved that U is monadic; that means that Th is
isomorphic to the category of algebras for the monad Fin.
1 Trees are understood to be rooted, ordered, labelled possibly infinite trees that one

considers up to isomorphism.

What Are Iteration Theories? 243

(ii) We denote by
ωCPO

the category whose objects are posets with joins of ω-chains (a least element
is not required; if an object has it we speak about a strict CPO). Morphisms
are the continuous functions; they are monotone functions preserving joins of
ω-chains. Morphisms between strict CPO’s preserving the least element are
called strict continuous maps.

2.5 Definition (see [11]). (1) Theories enriched over Pos, the category of posets
and monotone functions, are called ordered theories. These are the theories
with ordered hom-sets such that both composition and cotupling are monotone.

(2) An ordered theory is called pointed provided that every hom-set T (n, k)
has a least element (notation: ⊥nk or just ⊥) and composition is left-strict, i.e.,
⊥kr ·f =⊥nr for all f ∈ T (n, k).

(3) A continuous theory is a pointed theory enriched over the cate-
gory ωCPO, which means that both composition and cotupling preserve joins
of ω-chains (but there is no condition on cotupling concerning ⊥).

2.6 Remark. (1) In an algebraic theory T equation morphisms are morphisms
of the form

e : n→ n + p.

For example, if T = FTΣ then e represents a recursive system of n equations

x1 ≈ t1(x1, . . . , xn, z1, . . . , zp)
... (2.1)

xn ≈ tn(x1, . . . , xn, z1, . . . , zp)

where the right-hand sides are terms in X + Z for X = {x1, . . . , xn} and Z =
{z1, . . . , zp}.

(2) A solution of an equation morphism e : n→ n+p is a morphism e† : n→ p
such that the triangle

n
e†

��

e

��

p

n + p
[e†,id]

����������

commutes. In case of (2.1) this is a substitution of terms e†(xi) for the given
variables xi such that the formal equations of (2.1) become identities in FTΣ .
It is obvious that many systems (2.1) fail to have a solution in FTΣ (because
the obvious tree expansions are not finite).

(3) In contrast, in continuous theories all equation morphisms have a solution.
In fact, the least solution e† always exists because the endofunction

x #→ [x, id]·e of T (n, p)

244 J. Adámek, S. Milius, and J. Velebil

is continuous. By Kleene’s Fixed-Point Theorem, e† is the join of the following
ω-chain of approximations:

e† =
⊔

i∈N

e†i : n→ p

where e†0 =⊥ and given e†i then e†i+1 is the morphism

n
e†

i+1 ��

e

��

p

n + p
[e†

i ,id]

����������

(2.2)

(4) Observe that the left-hand coproduct injection e in T (n, n + p) has the
solution e† = ⊥ in every continuous theory.

2.7 Example: the continuous theory CTΣ⊥ . Given a signature Σ we denote
by

Σ⊥

the extension of Σ by a nullary symbol ⊥ /∈ Σ (no ordering assumed a priori!).
The theory CTΣ⊥ of Σ⊥-trees, see 2.2, carries a very “natural” ordering: given
trees t and t′ in CTΣ⊥(1, k) then t � t′ holds iff t can be obtained from t′ by
cutting away some subtrees and labelling the new leaves by ⊥. And the ordering
of CTΣ⊥(n, k) is componentwise.

2.8 Notation. We denote by
CTh

the category of all continuous theories and strict, continuous theory morphisms.
Its forgetful functor CTh → Sgn is the domain restriction of U from Nota-
tion 2.3.

2.9 Theorem [11]. For every signature Σ a free continuous theory on Σ
is CTΣ⊥. That is, the forgetful functor CTh→ Sgn has a left adjoint given by
Σ #→ CTΣ⊥ .

2.10 Remark. Let T be a pointed ordered theory. For every equation mor-
phism e : n → n + p we can form the morphisms e†i : n → p as in 2.2 and we
clearly obtain an ω-chain

e†0 � e†1 � e†2 . . . in T (n, p).

We call these chains admissible and extend this to composites e†i ·v for morphisms
v : m→ n:

What Are Iteration Theories? 245

2.11 Definition [11]. In a pointed ordered theory T an ω-chain in T (m, p) is
called admissible if it has the form e†i ·v (i ∈ N) for some morphisms e : n →
n + p and v : m → n. The theory T is called rational if it has joins of all
admissible ω-chains and if cotupling preserves these joins.

2.12 Examples. (1) Every continuous theory is rational.
(2) The free continuous theory CTΣ⊥ has a nice rational subtheory: the theory

RTΣ⊥ of all rational Σ⊥-trees.

Recall that a Σ⊥-tree is called rational if it has up to isomorphism only finitely
many subtrees, see [7]. It is easy to see that RTΣ⊥ is a pointed subtheory
of CTΣ⊥ .

2.13 Notation. We denote by
RTh

the category of rational theories and order-enriched strict theory morphisms
preserving least solutions. That is, given rational theories T and R, a morphism
is a theory morphism ϕ : T → R which (i) is monotone and strict on hom-sets
and (ii) fulfils ϕ(e†) = ϕ(e)† for all e ∈ T (n, n + p).

2.14 Proposition [11]. A free rational theory on a signature Σ is the rational-
tree theory RTΣ⊥. More precisely, the forgetful functor

W : RTh→ Sig

(a domain restriction of U in 2.3) has a left adjoint

Σ #→ RTΣ⊥ .

2.15 Corollary. The monad
Rat

of free rational theories on the category Sgn is defined by

Σ #→W (RTΣ⊥).

More precisely, to every signature Σ this monad assigns the signature whose
n-ary operation symbols are the rational Σ⊥-trees on n generators.

We call Rat the rational-tree monad.

3 Iteration Theories

In this section we first recall the definition of an iteration theory from [3] and
then prove the main result: iteration theories are algebras for the rational-tree
monad Rat.

Our proof uses Beck’s theorem characterizing categories of T-algebras for a
monad T = (T, η, μ) on a category A . Recall that a T-algebra is an object A of A

246 J. Adámek, S. Milius, and J. Velebil

together with a morphism α : TA→ A such that α·ηA = idA and α·μA = α·Tα.
The category A T of T-algebras and homomorphisms (defined via an obvious
commutative square in A) is equipped with the forgetful functor I : A T → A
given by (A,α) #→ A. This functor is a right adjoint, and it creates coequalizers
of I-split pairs. The latter means that for every parallel pair u, v : T → S in the
category A T and every diagram

IT

u ��

v
�� IS

t��
c ��

R
s

��

in A whose mappings satisfy the equations

cu = cv (i)
cs = id (ii)
ut = id (iii)
vt = sc (iv)

there exists a unique morphism c̄ : S → R in A T with Ic̄ = c, and moreover
c̄ is a coequalizer of u and v. Beck’s theorem states that monadic algebras are
characterized by the above two properties of the forgetful functor. More precisely,
whenever a functor I : B → A is a right adjoint creating I-split coequalizers,
then B is isomorphic to A T for the monad T given by the adjoint situation of I.
See [9] for a proof.

3.1 Definition. (See [3], 6.8.1.) An iteration theory is a theory T together with
a function † assigning to every (“equation”) morphism e : n→ n+p a morphism
e† : n→ p in such a way that the following five axioms hold:

(1) Fixed Point Identity. This states that e† is a solution of e, i.e., a fixed
point of [−, idp]·e:

n
e†

��

e

��

p

n + p
[e†,id]

����������

(3.1)

(2) Parameter Identity. We use the following notation: given an equation
morphism e : n → n + p, then every morphism h : p → q yields a new equation
morphism

h • e ≡ n
e−−→ n + p

id+h−−−−→ n + q. (3.2)
The parameter identity tells us how the solutions of e and h • e are related: the
triangle

n
e†

��

(h•e)†
���

��
��

��
� p

h

��
q

(3.3)

commutes.

What Are Iteration Theories? 247

(3) Simplified Composition Identiy. We use the following notation: given
morphisms

m
g−−→ n + p and n

f−−→ m

we obtain an equation morphism

f ◦ g ≡ m
g−−→ n + p

f+id−−−−→ m + p. (3.4)

The simplified composition identity states that the triangle

n
(g·f)†

��

f

��

p

m
(f◦g)†

����������

(3.5)

commutes.
(4) Double Dagger Identity. This is a statement about morphisms of the

form
e : n→ n + n + p.

A solution yields e† : n→ n + p which we can solve again and get (e†)† : n→ p.
On the other hand, the codiagonal 7 : n + n → n yields an equation morphism
7 ◦ e : n→ n + p. The double-dagger identity states

(7 ◦ e)† =
(
e†
)† : n→ p. (3.6)

(5) Commutative identity. This is in fact an infinite set of identities: one
for every m-tuple of basic endomorphisms of m:

 0, . . . , m−1 ∈ N (m,m)

and for every decomposition m = n·k such that the corresponding codiagonal
7 :

∐
k n→ n in N fulfils

7· j = 7 for j = 0, . . . ,m− 1.

The commutative identity concerns an arbitrary morphism

f : n→ m + p in T .

We can form two equation morphisms: 7 ◦ f : n→ n + p (see (3.4)) and

f̂ : m→ m + p

defined by the individual components f̂ ·inj : 1 → m + p for j = 0, . . . ,m− 1 as
follows:

f̂ ·inj ≡ 1
inj−−−→ m

�−−→ n
f−−→ m + p

�j+id−−−−−→ m + p. (3.7)

248 J. Adámek, S. Milius, and J. Velebil

The conclusion is that the triangle

m
f̂†

��

�
��

p

n
(�◦f)†

����������

(3.8)

commutes. (Remark: the notation in [3] for f̂ is 7·f‖(0, . . . , m−1) and instead
of 7 a general surjective base morphism is assumed. The simplification working
with 7 was proved in [6].)

3.2 Definition. Let (T , †) and (S , ‡) be iteration theories. A theory morphism
ϕ : T → S is said to preserve solutions if for every morphism e ∈ T (n, n+p)
we have ϕ(e)‡ = ϕ(e†). The category of iteration theories and solution-preserving
morphisms is denoted by

ITh.

We denote by V : ITh→ Sgn the canonical forgetful functor (a restriction of U
in 2.3).

3.3 Example. The rational-tree theory RTΣ⊥ is an iteration theory (for the
choice e† = the least solution of e). In fact, as proved in [3], Theorem 6.5.2, this
is a free iteration theory on Σ. In other words:

3.4 Theorem. (See [3].) The forgetful functor V : ITh→ Sgn is a right adjoint
and the corresponding monad is the rational-tree monad Rat.

3.5 Theorem. The forgetful functor V : ITh → Sgn is monadic; that means
that the category of iteration theories and solution preserving theory morphisms
is isomorphic to the category of algebras for the rational-tree monad Rat on Sgn.

Proof. We are going to use Beck’s theorem; due to Theorem 3.4 it is sufficient
to verify that V : ITh → Sgn creates coequalizers of V -split pairs. From the
result of Bénabou mentioned in Remark 2.4(i) we know that U : Th → Sgn is
monadic, thus, it creates coequalizers of U -split pairs. Consequently, our task is
as follows: given a parallel pair of solution-preserving morphisms

u, v : (T , ‡) → (S , †) in ITh,

and given a split coequalizer

T

Iu ��

Iv
�� S

t��
c ��

R
s

�� in Sgn,

where c is a coequalizer of u and v in Th and the above equations (i)–(iv) hold,
then there exists a unique function ∗ : R(n, n + p) → R(n, p) (for all n, p ∈ N)
such that

What Are Iteration Theories? 249

(a) c is solution preserving:

cf † = (cf)∗ for all f ∈ S (n, n + p), (3.9)

(b) the axioms of Definition 3.1 hold for ∗, and
(c) c is a coequalizer of u and v in ITh.

In fact, (a) determines ∗ as follows:

e∗ = c(se)† for all e ∈ R(n, n + p). (3.10)

To see this, put f = se, then cf = e due to (ii), thus

e∗ = (cf)∗ = c(f †) = c(se)†.

Conversely, by using (3.10) we get (3.9) for every morphism f ∈ S (n, n + p)

(cf)∗ = c(scf)† (3.10)

= c(vtf)† (iv)

= cv(tf)‡ v in ITh

= cu(tf)‡ (i)

= c(utf)† u in ITh

= cf † (iii)

We now prove the axioms of iteration theories for ∗ and then we will get
immediately (c):

Suppose that c̄ : (S , †) → (R,@) is a morphism of ITh with c̄u = c̄v. We
have a unique theory morphism r : R → R with c̄ = rc in Th and we only need
to prove that

r(e∗) = (re)@ for all e ∈ R(n, n + p). (3.11)

In fact, since c̄ is a morphism of ITh we have by (3.10)

r(e∗) = rc(se)† = c̄(se)† =
(
c̄s(e)

)@

and it remains to verify c̄s = r. This follows from c being an epimorphism since
from (iv) and (iii) we get

c̄sc = c̄vt = c̄ut = c̄ = rc.

Consequently, the theorem will be proved by verifying the individual axioms
of iteration theories for the function from (3.10) above. Observe that since c is
a theory morphism, it preserves ◦, see (3.4):

c(f ◦ g) = (cf) ◦ (cg). (3.12)

250 J. Adámek, S. Milius, and J. Velebil

(1) Fixed Point Identity. Given e ∈ R(n, n+ p), we have, since c preserves
coproducts:

e∗ = c(se)† (3.10)

= c
([

(se)†, id
]
·se
)

(3.1)

=
[
c(se)†, id

]
·e (ii)

= [e∗, id]·e (3.10)

(2) Parameter Identity. Given e ∈ R(n, n + p) and h ∈ R(p, q), then
(ii) implies, since c preserves finite coproducts, the equality

h • e = (id + h)·e = c(sh • se). (3.13)

Therefore

(h • e)∗ = c
[
s·c(sh • se)

]† (3.10) and (3.13)

=
[
csc(sh • se)

]∗ (3.9)

=
[
c(sh • se)

]∗ (ii)

= c(sh • se)† (3.9)

= c
(
sh·(se)†

)
(3.3)

= h·c(se)† (ii)
= h·e∗ (3.10).

(3) Simplified Composition Identity. Given morphisms g ∈ R(m,n + p)
and f ∈ R(n,m), we have

(f ◦ g)∗·f =
[
c
(
(sf) ◦ (sg)

)]∗
·f (ii) and (3.12)

= c
[
(sf) ◦ (sg)

]†·f (3.9)

= c
([

(sf) ◦ (sg)
]†·sf

)
(ii)

= c(sg·sf)† (3.5)

=
[
c
(
(sg)·(sf)

)]∗
(3.9)

= (g·f)∗ (ii).

(4) Double Dagger Identity. Given e ∈ R(n, n + n + p), since c(7) = 7
(recall that c preserves finite coproducts), we have

e∗∗ =
(
c(se)†

)∗ (3.10)

= c(se)†† (3.9)

= c(7 ◦ se)† (3.6)
= (c7 ◦ cse)∗ (3.9) and (3.12)
= (7 ◦ e)∗ (ii) and c7 = 7.

What Are Iteration Theories? 251

(5) Commutative Identity. Given i ∈ N (m,m) and f ∈ R(n, n+p) then
first observe

c(ŝf) = f̂ . (3.14)

In fact, c preserves coproducts and thus it maps base morphisms (inj , 7, j etc.)
of S to the corresponding base morphisms of R. Thus (3.14) follows from (3.7).
Consequently:

f̂∗ =
[
c(ŝf)

]∗ (3.14)

= c(ŝf)† (3.9)

= c
(
(7 ◦ sf)†·7

)
(3.8)

= c(7 ◦ sf)†·7 c7 = 7
=
[
c(7 ◦ sf)

]∗·7 (3.9)
= (7 ◦ f)∗·7 (ii) and (3.12)

This completes the proof. ��

4 Conclusions and Future Research

The goal of our paper was to prove that iteration theories of Stephen Bloom and
Zoltan Ésik are monadic over the category Sgn of signatures. This provides the
possibility of using the corresponding monad Rat (of rational tree signatures)
as a means for defining iteration theories. More important is the way our re-
sult supports the result that iteration theories precisely sum up the “equational
properties” that the dagger function, assigning to every equation morphism e
its least solution e†, satisfies in all continuous theories. In fact, since Rat is the
monad of free rational theories, see [11], and every free rational theory has a
solution-preserving completion to a continuous theory, it is obvious that all con-
tinuous theories and all rational theories satisfy precisely the same equational
laws for †. To make such statements precise, one can either define the concept
of “equation over Sgn”, or use instead finitary monads on Sgn (in analogy to
the classical varieties over Set). We decided for the latter.

In the future we intend to study the analogous question where the base cat-
egory is, in lieu of Sgn, the category of all finitary endofunctors of Set. We
hope that the corresponding monadic algebras will turn out to be precisely the
iteration theories that are parametrically uniform in the sense of Simpson and
Plotkin [10].

References

1. Adámek, J., Milius, S., Velebil, J.: Elgot Algebras. Logical Methods in Computer
Science 2(5:4), 1–31 (2006)

2. Bénabou, J.: Structures algébriques dans les catégories, Cah. Topol. Géom. Différ.
Catég. 10, 1–126 (1968)

252 J. Adámek, S. Milius, and J. Velebil

3. Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993)
4. Bloom, S.L., Ésik, Z.: Fixed-point operations on ccc’s, Part I. Theoret. Comput.

Sci. 155, 1–38 (1996)
5. Bloom, S.L., Ésik, Z.: The equational logic of fixed points. Theoret. Comput.

Sci. 179, 1–60 (1997)
6. Ésik, Z.: Axiomatizing iteration categories. Acta Cybernetica 14, 65–82 (1999)
7. Ginali, S.: Regular trees and the free iterative theory. J. Comput. Syst. Sci. 18,

228–242 (1979)
8. Kelly, G.M., Power, J.: Adjunctions whose units are coequalizers and presentations

of finitary enriched monads. J. Pure Appl. Algebra 89, 163–179 (1993)
9. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Hei-

delberg (1998)
10. Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators.

IEEE Symposium Logic in Computer Science, 30–41 (1998)
11. Wright, J.B., Thatcher, J.W., Wagner, E.G., Goguen, J.A.: Rational algebraic

theories and fixed-point solutions. In: Proc. 17th IEEE Symposium on Foundations
of Computing, Houston, Texas, pp. 147–158. IEEE Computer Society Press, Los
Alamitos (1976)

Properties Complementary to

Program Self-reference�

John Case and Samuel E. Moelius III

Department of Computer & Information Sciences
University of Delaware

103 Smith Hall
Newark, DE 19716

{case,moelius}@cis.udel.edu

Abstract. In computability theory, program self-reference is formal-
ized by the not-necessarily-constructive form of Kleene’s Recursion
Theorem (krt). In a programming system in which krt holds, for any
preassigned, algorithmic task, there exists a program that, in a sense,
creates a copy of itself, and then performs that task on the self-copy.
Herein, properties complementary to krt are considered. Of particular
interest are those properties involving the implementation of control
structures. One main result is that no property involving the implemen-
tation of denotational control structures is complementary to krt. This
is in contrast to a result of Royer, which showed that implementation of
if-then-else — a denotational control structure — is complementary to
the constructive form of Kleene’s Recursion Theorem. Examples of non-
denotational control structures whose implementation is complementary
to krt are then given. Some such control structures so nearly resemble de-
notational control structures that they might be called quasi-denotational .

Keywords: Computability Theory, Programming Language Semantics,
Self-Reference.

1 Introduction

Let N = {0, 1, 2, . . .}, let 〈·, ·〉 : N × N → N be any 1-1, onto, computable
function, and let ψ be an effective programming system (eps)1 [24,18]. For all
p ∈ N, let ψp = ψ(〈p, ·〉). One can think of ψ as a programming language, and of
ψp as the partial function (mapping N to N) computed by the ψ-program with
numerical name p. The not-necessarily-constructive form of Kleene’s Recursion
Theorem (krt) [24, page 214, problem 11-4] holds in ψ def⇔

(∀p)(∃e)(∀x)[ψe(x) = ψp(〈e, x〉)]. (1)

� This paper received support from NSF Grant CCR-0208616.
1 That is, ψ is a partial computable function mapping N to N such that, for every

partial computable function α mapping N to N, (∃p ∈ N)[ψ(〈p, ·〉) = α].

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 253–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 J. Case and S.E. Moelius III

(1) may be interpreted as follows. ψ-program p represents an arbitrary, preas-
signed, algorithmic task to perform with a self-copy; e represents a ψ-program
that

1. creates a copy of itself, external to itself, and, then,
2. runs the preassigned task p on the pair consisting of this self-copy and e’s

input x.

The ‘e’ on the right-hand side of the equation in (1) is the self-copy of the original
‘e’ on the left-hand side of this equation. The way in which e uses this self-copy
is according to how the preassigned task p says to. Thus, in an important sense,
e creates a usable self-model ; it has usable self-knowledge [8].

The form of recursion provided by krt is more general than that built
into most programming languages, i.e., that treated by denotational seman-
tics [20,19,28]. The ‘e’ on the right-hand side of the equation in (1) is e’s own
syntactic code-script, wiring/flow diagram, etc. Thus, e’s I/O behavior can de-
pend, not only upon e’s denotational characteristics,2 but upon e’s connotational
characteristics (e.g., e’s number of symbols or run-time complexity) as well [25].

Self-referential programs were first introduced by Kleene in [16], where he
used such programs to prove properties of ordinal notations. His theorem, and
its variants [27,24,7],3 have since found widespread application. Interesting ex-
amples can be found in [3,4,24,8,26,13,5].4

Our ultimate goal is to characterize insightfully the power of program self-
reference, as formalized by krt.5 In this paper, we examine the subject somewhat
indirectly, by studying properties complementary to krt, as described below.

An eps ψ is acceptable def⇔ (∀ eps ξ)(∃ computable t : N → N) (∀p)[ψt(p) = ξp]
[23,24,18,21,22,25]. Thus, the acceptable epses are exactly those epses into which
every eps can be compiled. Any eps corresponding to a real-world, general pur-
pose programming language (e.g., C++, Java, Haskell) is acceptable. A char-
acterization of the acceptable epses due to the first author6 is that they are
exactly those epses having an implementation of every control structure (see
Definitions 1 (§3.1) and 4 (§4.1), herein).7

2 Since ψ is, itself, a partial computable function mapping N to N, there exists a
universal simulator or self-interpreter for ψ, i.e., a u such that ψu = ψ [2,15]. e can
inquire about its own denotational characteristics by running u on e, i.e., for all
x ∈ N, ψu(〈e, x〉) = ψ(〈e, x〉) = ψe(x).

3 Rogers’ Fixed-Point Recursion Theorem (fprt) is a variant of krt that is often at-

tributed to Kleene [24, page 180]. For an eps ψ, fprt holds in ψ def⇔ for all computable
f : N → N, (∃e)[ψe = ψf(e)]. fprt and krt should not be confused, however, as fprt
is strictly weaker than krt [21, Theorems 5.1 and 5.3].

4 In the work of Bongard, et al. [6], robots employ self-modeling to recover locomotion
after injury. See also [1,12].

5 For recent work in this direction, see [9].
6 This result appears in [21,22].
7 The term control structure is given a formal definition in the literature [21,22,25],

and includes more than what is indicated in Definitions 1 (§3.1) and 4 (§4.1). The
first author’s result holds for all control structures covered by this formal definition.

Properties Complementary to Program Self-reference 255

In [25], Royer showed that if-then-else (Example 1 in §3.1, herein) and the
constructive form of Kleene’s Recursion Theorem (KRT) (equation (6) in §3.2,
herein) are complementary, in the sense that: for each, there is an eps having
that one, and not the other; but , any eps having both is acceptable [25, Theo-
rem 4.1.12] (Theorem 2 in §3.2, herein).8 Given the first author’s characterization
of the acceptable epses, one way of interpreting Royer’s result is: if-then-else
and KRT are independent notions that, together, yield all control structures.

The proof of Royer’s result employs, quite essentially, the constructivity of
KRT. Many other similar results concerning KRT (not described herein) have
the same undesirable quality; that is, the constructivity of KRT is all mixed up
with the program self-modeling.

krt is the focus of the present paper, as it embodies pure self-modeling without
the additional constructivity of KRT. Specifically, the interest herein is in prop-
erties complementary to krt, similar to the way in which implementation of
if-then-else is complementary to KRT (see Definition 2 in §3.3, herein).

One main result (Corollary 1 in §3.3, herein) is that krt is not complementary
to the implementation of any class of denotational control structures [25,28]
(Definition 1 in §3.1, herein) — a type of control structure that includes if-
then-else. This says, in part, that the constructivity of KRT is essential to
establishing Royer’s result.

Despite this outcome, there do exist reasonable non-denotational control
structures whose implementation is complementary to krt. We give exam-
ples of such control structures in Section 4. Some such control structures so
nearly resemble denotational control structures that they might be called quasi-
denotational .

Section 2, just below, covers notation and preliminaries.
Due to space constraints, nearly all proofs are omitted. Complete proofs of

all theorems can be found in [10].

2 Notation and Preliminaries

Computability-theoretic concepts not explained below are treated in [24].
Lowercase Roman letters, with or without decorations, range over elements

of N, unless stated otherwise. Uppercase Roman letters, with or without deco-
rations, range over subsets of N, unless stated otherwise.

The pairing function 〈·, ·〉 was introduced in Section 1. For all x, 〈x〉 def= x.
For all x1, . . . , xn, where n > 2, 〈x1, . . . , xn〉 def=

〈
x1, 〈x2, . . . , xn〉

〉
. For all n, all

i ∈ {1, . . . , n}, and all x1, . . . , xn, πn
i (〈x1, . . . , xn〉) def= xi.

P denotes the collection of all partial functions mapping N to N. α, β, γ, δ, ξ,
and ψ, with or without decorations, range over elements of P . For all α and p,
αp

def= α(〈p, ·〉). We use Church’s lambda-notation [24] to name partial functions,
including total functions and predicates, as is standard in many programming
languages.9

8 Note that, in [25], if-then-else is called conditional.
9 For example, λx (x + 1) denotes the successor function.

256 J. Case and S.E. Moelius III

For all α and x, α(x)↓ denotes that α(x) converges; α(x)↑ denotes that α(x)
diverges.10 We identify a partial function with its graph, e.g., we identify α
with the set {(x, y) : α(x) = y}. We use ↑ to denote the value of a divergent
computation.

As per footnote 1, ψ is an eps def⇔ ψ is partial computable, and ,
(∀ partial computable α)(∃p)[ψp = α] [24,18]. EPS denotes the collection of all
epses. ϕ denotes a fixed, acceptable eps [23,24,18,21,22,25].

Intuitively, a mapping Γ : Nm × Pn → P , where m + n > 0, is a computable
operator iff there exists an algorithm for listing the graph of the partial function
Γ (x1, . . . , xm, α1, . . . , αn) from x1, . . . , xm and listings of the graphs of the par-
tial functions α1, . . . , αn — independently of the enumeration order chosen for
each of α1, . . . , αn [24, §9.8]. Let Γ0, Γ1, . . . be any standard, algorithmic enumer-
ation of the computable operators of all types Nm×Pn → P , where m+n > 0.11

Let Θ0, Θ1, . . . be a similar enumeration of the computable operators of all types
Nm × Pn+1 → P , where m + n > 0. The Θi are those computable operators of
a type suitable to determine a recursive denotational control structure (Defini-
tion 1(b) in §3.1, herein). For ease of presentation, we shall use the Θi exclusively
for the purpose of describing recursive denotational control structures. The Γi,
being of (more or less) arbitrary type, will be used to describe nonrecursive (de-
notational and non-denotational) control structures (Definition 1(a) in §3.1, and
Definition 4 in §4.1, herein, respectively).

Let μ : N → N be a computable function such that, for all i, Γμ(i) is
the least fixed point of Θi w.r.t. the last argument of Θi [24, §11.5] (see
also [20,19,28]). That is, if i, m, and n are such that Θi : Nm × Pn+1 → P ,
then Γμ(i) : Nm × Pn → P is such that, for all x1, . . . , xm, α1, . . . , αn, and β,
Γμ(i)(x1, . . . , xm, α1, . . . , αn) = β implies (i) and (ii) below.

(i) Θi(x1, . . . , xm, α1, . . . , αn, β) = β.
(ii) (∀γ)[Θi(x1, . . . , xm, α1, . . . , αn, γ) = γ ⇒ β ⊆ γ].

The nonrecursive denotational control structure determined by Γμ(i) is the re-
cursive denotational control structure determined by Θi under least fixed point
semantics [20,19,25,28] (see Definition 1 in §3.1, herein).

In several places, we make reference to the following result.

Theorem 1 (Machtey, et al. [17, Theorem 3.2]). For all epses ψ, ψ is
acceptable ⇔ (∃ computable f : N → N)(∀a, b)[ψf(〈a,b〉) = ψa ◦ ψb].

3 Denotational Control Structures and krt

In this section, we show that there is no class of denotational control struc-
tures whose implementation is complementary to krt (Corollary 1). We begin
10 For all α and x, α(x) converges iff there exists y such that α(x) = y; α(x) diverges

iff there is no y such that α(x) = y. If α is partial computable, and x is such that
α(x) diverges, then one can imagine that a program associated with α goes into an
infinite loop on input x.

11 A formal definition of the computable operators (called recursive operators in [24])
as well as a construction of the Γi’s can be found in [24, §9.8].

Properties Complementary to Program Self-reference 257

with a brief introduction to denotational control structures in the context of
epses. Then, we formally state Royer’s result (Theorem 2), that implementation
of if-then-else (Example 1, below) — a denotational control structure — is
complementary to the constructive form of Kleene’s Recursion Theorem (KRT)
(equation (6), below).

3.1. In the context of epses, an instance of a control structure [21,22,25,14,11]
is a means of forming a composite program from given constituent programs
and/or data. An instance of a denotational control structure, more specifically,
is one for which the I/O behavior of a composite program can depend only
upon the I/O behavior of the constituent programs and upon the data. So, for
example, the I/O behavior of such a composite program cannot depend upon
the connotational characteristics of its constituent programs, e.g., their number
of symbols or run-time complexity.

Recursive denotational control structures differ from nonrecursive ones in
that, for the former, the composite program is, in a sense, one of the constituent
programs. For such a control structure, the I/O behavior of a composite program
cannot depend upon the connotational characteristics of the composite program,
itself, just as it cannot depend upon those of the other constituent programs.

In the following definition, x1, . . . , xm represent data, xm+1, . . . , xm+n rep-
resent constituent programs, and f(〈x1, . . . , xm+n〉) represents the composite
program formed from x1, . . . , xm+n.

Definition 1. For all epses ψ, and all f : N → N, (a) and (b) below.

(a) Suppose i, m, and n are such that Γi : Nm × Pn → P . Then, f is effec-
tive instance in ψ of the nonrecursive denotational control structure deter-
mined by Γi ⇔ f is computable and, for all x1, . . . , xm+n, ψf(〈x1,...,xm+n〉) =
Γi(x1, . . . , xm, ψxm+1 , . . . , ψxm+n).

(b) Suppose i, m, and n are such that Θi : Nm × Pn+1 → P . Then, f is an
effective instance in ψ of the recursive denotational control structure deter-
mined by Θi ⇔ f is computable and, for all x1, . . . , xm+n, ψf(〈x1,...,xm+n〉) =
Θi(x1, . . . , xm, ψxm+1, . . . , ψxm+n , ψf(〈x1,...,xm+n〉)).

For the remainder of the present subsection (3.1), let ψ be any fixed eps.

Example 1. Choose iite such that Γiite : P3 → P , and, for all α, β, and γ,

Γiite(α, β, γ)(x) =

⎧
⎨

⎩

β(x), if [α(x)↓ ∧ α(x) > 0];
γ(x), if [α(x)↓ ∧ α(x) = 0];
↑, otherwise.12

(2)

Then, the nonrecursive denotational control structure determined by Γiite is if-
then-else [21,22]. Furthermore, an effective instance in ψ of if-then-else is any
computable function f : N → N, such that, for all a, b, c, and x,

ψf(〈a,b,c〉)(x) =

⎧
⎨

⎩

ψb(x), if [ψa(x)↓ ∧ ψa(x) > 0];
ψc(x), if [ψa(x)↓ ∧ ψa(x) = 0];
↑, otherwise.

(3)

12 Note that the choice of iite is not unique.

258 J. Case and S.E. Moelius III

Example 2. Choose i′ite such that Θi′ite
: P4 → P , and, for all α, β, γ, and δ,

Θi′ite
(α, β, γ, δ)(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β(x), if [α(x)↓ ∧ α(x) > 0]
∨ [β(x)↓ ∧ γ(x)↓ ∧ δ(x)↓
∧ β(x) = γ(x) = δ(x)];

γ(x), if [α(x)↓ ∧ α(x) = 0];
↑, otherwise.

(4)

Then, an f as in (3) above is an effective instance in ψ of the recursive deno-
tational control structure determined by Θi′ite

. Furthermore, if g : N → N is a
computable function such that, for all a, b, c, and x,

ψg(〈a,b,c〉)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ψb(x), if [ψa(x)↓ ∧ ψa(x) > 0]
∨ [ψb(x)↓ ∧ ψc(x)↓ ∧ ψb(x) = ψc(x)];

ψc(x), if [ψa(x)↓ ∧ ψa(x) = 0];
↑, otherwise;

(5)

then, g is also such an effective instance.13

Intuitively, in Example 2, g is an instance of a hasty variant of if-then-else.
That is, g(〈a, b, c〉) runs ψ-programs a, b, and c, on x, in parallel. If both b and
c halt on x, and yield the same result, then g(〈a, b, c〉) does not wait to see if a
halts on x.

As the preceding examples demonstrate, recursive denotational control struc-
tures are more general than nonrecursive ones, in that they allow greater versa-
tility among their implementations.

Henceforth, when convenient, we will abbreviate effective instance, nonrecur-
sive denotational control structure, and recursive denotational control structure,
by ei, ndcs, and rdcs, respectively.

3.2. For any eps ψ, the constructive form of Kleene’s Recursion Theorem (KRT)
holds in ψ def⇔

(∃ computable r : N → N)(∀p, x)[ψr(p)(x) = ψp(〈r(p), x〉)]. (6)

In (6), r(p) plays the role of the self-referential e in (1). Thus, in an eps in
which KRT holds, self-referential programs can be found algorithmically from
a program for the preassigned task.

The following is the formal statement of Royer’s result, that implementation
of if-then-else is complementary to KRT.

Theorem 2 (Royer [25, Theorem 4.1.12]). For all epses ψ, let P (ψ) ⇔
there is an ei of if-then-else in ψ. Then, (a)-(c) below.

(a) (∃ eps ψ)[KRT holds in ψ ∧ ¬P (ψ)].
(b) (∃ eps ψ)[KRT does not hold in ψ ∧ P (ψ)].
(c) (∀ eps ψ)

[
[KRT holds in ψ ∧ P (ψ)] ⇔ ψ is acceptable

]
.

13 It can be seen that Γiite = Γμ(i′
ite)

. Thus, f provides a minimal fixed-point solution
of (4); whereas, g provides a non-minimal fixed-point solution of (4) [20,19,25,28].

Properties Complementary to Program Self-reference 259

3.3. The following definition makes precise what it means for a property of an
eps to be complementary to krt.14

Definition 2. For all P ⊆ EPS, P is complementary to krt ⇔ (a)-(c) below.

(a) (∃ eps ψ)[krt holds in ψ ∧ ¬P (ψ)].
(b) (∃ eps ψ)[krt does not hold in ψ ∧ P (ψ)].
(c) (∀ eps ψ)

[
[krt holds in ψ ∧ P (ψ)] ⇔ ψ is acceptable

]
.

The following definition introduces notions used throughout the remainder of
this section.

Definition 3. For all I, (a) and (b) below.

(a) {Γi : i ∈ I} is nonrecursively denotationally omnipotent ⇔ (∀ eps ψ)
[(∀i ∈ I)[there is an ei in ψ of the ndcs determined by Γi] ⇒ ψ is acceptable].

(b) {Θi : i ∈ I} is recursively denotationally omnipotent ⇔ (∀ eps ψ)
[(∀i ∈ I)[there is an ei in ψ of the rdcs determined by Θi] ⇒ ψ is acceptable].

Thus, a class of recursive operators is nonrecursively denotationally omnipotent
iff it is so powerful that: having an effective instance of each nonrecursive de-
notational control structure that it determines causes an eps to be acceptable.
Recursively denotationally omnipotent can be interpreted similarly.

Example 3. Choose icomp such that Θicomp : P3 → P , and, for all α, β, and
γ, Θicomp (α, β, γ) = α ◦ β. Then, the recursive denotational control structure
determined by Θicomp is ordinary composition, and, by Theorem 1, the class
consisting of just {Θicomp} is recursively denotationally omnipotent.

Corollary 1, our main result of this section, follows from the next theorem.

Theorem 3. Let I be such that {Θi : i ∈ I} is not recursively denotationally
omnipotent. Then, there exists an eps ψ such that (a)-(c) below.

(a) krt holds in ψ.
(b) For each i ∈ I, there is an ei in ψ of the ndcs determined by Γμ(i).
(c) ψ is not acceptable.

The proof of Theorem 3, a finite injury priority argument, is omitted due to
space constraints.15

Corollary 1. There is no I such that λψ ∈ EPS (∀i ∈ I)[there is an ei in ψ of
the rdcs determined by Θi] is complementary to krt.

14 It is relatively straightforward to show that no single property characterizes the
complement of krt, e.g., there exist P ⊆ EPS and Q ⊆ EPS such that both P and
Q are complementary to krt, but P �⊆ Q and Q �⊆ P .

15 Rogers [24] explains priority arguments. We should also mention that our proof of
Theorem 3 makes essential use of Royer’s [25, Theorem 4.2.15].

260 J. Case and S.E. Moelius III

Proof of Corollary. Suppose, by way of contradiction, that such an I exists.
Case {Θi : i ∈ I} is recursively denotationally omnipotent. Then, clearly, the
stated property does not satisfy Definition 2(b) — a contradiction.
Case {Θi : i ∈ I} is not recursively denotationally omnipotent. Then, clearly,
by Theorem 3, the stated property does not satisfy (⇒) of Definition 2(c) — a
contradiction. (Corollary 1)

Remark 1. The statement of Theorem 3 is slightly stronger than needed. To
establish Corollary 1, it would suffice that, for each i ∈ I, there exist an ei in ψ
of the rdcs determined by Θi. As stated, the theorem has the following additional
corollary, which is of some independent interest.

Corollary 2. For all I, {Θi : i ∈ I} is recursively denotationally omnipotent ⇔
{Γμ(i) : i ∈ I} is nonrecursively denotationally omnipotent.

Proof of Corollary. (⇒) Immediate. (⇐) Let I be such that {Θi : i ∈ I} is
not recursively denotationally omnipotent. Then, by Theorem 3, there exists a
non-acceptable eps ψ such that, for each i ∈ I, there is an ei in ψ of the ndcs
determined by Γμ(i). Thus, {Γμ(i) : i ∈ I} is is not nonrecursively denotationally
omnipotent. (Corollary 2)

4 Control Structures Complementary to krt

In this section, we give examples of control structures whose implementation is
complementary to krt. Each of our examples is drawn from a class of control
structures that we call coded composition (CC). Although, the control structures
in this class can, in general, be non-denotational, they are still quite reasonable,
in that they look much like control structures with which one could actually
program.

Note that Definition 2, in the preceding section, formalized what it means for
a property of an eps to be complementary to krt.

4.1. The following definition introduces the notion of nonrecursive control struc-
tures, generally.

Definition 4. Suppose i and m are such that Γi : Nm × P → P . Then, for all
epses ψ, and all f : N → N, f is an effective instance in ψ of the nonrecursive
control structure determined by Γi ⇔ f is computable and, for all x1, . . . , xm,
ψf(〈x1,...,xm〉) = Γi(x1, . . . , xm, ψ).

Henceforth, we will abbreviate nonrecursive control structure by ncs.

Definition 5

(a) Suppose that (fL, gL, fR, gR) : (N → N)4 is such that (i)-(iii) below.
(i) Each of fL, gL, fR, and gR is computable.

(ii) For all a, fL
a and fR

a are onto.16
(iii) For all a, gL

a and gR
a are 1-1.

16 Recall that fa = f(〈a, ·〉).

Properties Complementary to Program Self-reference 261

Then, (fL, gL, fR, gR)-CC : N2 × P → P is the computable operator, such
that, for all a, b, and ψ,

(fL, gL, fR, gR)-CC(a, b, ψ) = fL
a ◦ ψa ◦ gL

a ◦ fR
b ◦ ψb ◦ gR

b . (7)

(b) Suppose that (fL, gL, fR, gR) : (N → N)4 is as in (a) above. Then, for all
epses ψ, (fL, gL, fR, gR)-CC holds in ψ ⇔ there is an ei in ψ of the ncs
determined by (fL, gL, fR, gR)-CC.

(c) For all epses ψ, CC holds in ψ ⇔ there exists (fL, gL, fR, gR) : (N → N)4

as in (a) above such that (fL, gL, fR, gR)-CC holds in ψ.

(L and R are mnemonic for left and right , respectively. CC is mnemonic for
coded composition.) Thus, if ψ is an eps, and � : N → N is an ei in ψ of the ncs
determined by (fL, gL, fR, gR)-CC, then, for all a and b,

ψa�b = fL
a ◦ ψa ◦ gL

a ◦ fR
b ◦ ψb ◦ gR

b , (8)

where, in (8), � is written using infix notation.
CC may be thought of as a collection of control structures, one for each

choice of (fL, gL, fR, gR). As the next theorem shows, the property of having an
effective instance of some control structure in this collection, is complementary
to krt.

Theorem 4. λψ ∈ EPS [CC holds in ψ] is complementary to krt.

The proof of Theorem 4 is omitted due to space constraints. The proof employs
a trick similar to that used in the proof of Theorem 1 to show that: if ψ is an eps
in which both krt and CC hold, then ψ is acceptable. Intuitively, if krt holds in
ψ, then ψ-program b as in (8) can know its own program number. Thus, b can
decode its input as encoded by the 1-1 function gR

b . Similarly, b can pre-encode
its output, so that the onto function fR

b sends this output to the value that b
would actually like to produce. The situation is similar for ψ-program a.17

4.2. As mentioned above, CC may be thought of as a collection of control
structures, one for each choice of (fL, gL, fR, gR). However, it is not the case that,
for each choice of (fL, gL, fR, gR), the property λψ ∈ EPS [(fL, gL, fR, gR)-CC
holds in ψ] is complementary to krt.18 An obvious question is: which choices of
(fL, gL, fR, gR) yield properties complementary to krt, and which do not? As
the following, somewhat curious result shows, the answer is intimately tied to
the choice of fR, specifically.
17 The details of the proof, however, are rather involved. One complication arises from

the fact that, if � is as in (8), then the fL, gL, fR, and gR stack up when one tries to
iterate �. This can be seen, for example, from the underlined terms in the following
calculation.

ψa�(b�c) = fL
a ◦ ψa ◦ gL

a ◦ fR
b�c ◦ ψb�c ◦ gR

b�c

= fL
a ◦ ψa ◦ gL

a ◦ fR
b�c ◦ fL

b ◦ ψb ◦ gL
b ◦ fR

c ◦ ψc ◦ gR
c ◦ gR

b�c.
(9)

18 For example, the control structure determined by (π2
2 , π2

2 , π2
2 , π2

2)-CC is ordinary
composition, which, by Theorem 1, causes an eps to be acceptable.

262 J. Case and S.E. Moelius III

Theorem 5

(a) There exists a computable fR : N → N and an eps ψ such that

(∀a)(∃y)(∀x)

⎡

⎣fR
a (x) =

⎧
⎨

⎩

y, if x = 0;
0, if x = y;
x, otherwise

⎤

⎦ ; (10)

(π2
2 , π

2
2 , f

R, π2
2)-CC holds in ψ, and ψ not acceptable.19

(b) Suppose that (fL, gL, fR, gR) : (N → N)4 is as in Definition 5(a), and that
fR = π2

2 . Then, any eps in which (fL, gL, fR, gR)-CC holds is acceptable.

The proof of Theorem 5 is omitted due to space constraints.20

Note that, in Theorem 5(a), for all a, fR
a is a recursive permutation that acts

like the identity on all but at most two values. Thus, the nonrecursive control
structure determined by (π2

2 , π
2
2 , f

R, π2
2)-CC is nearly identical to ordinary com-

position, i.e., (π2
2 , π

2
2 , π

2
2 , π

2
2)-CC. Such a control structure so nearly resembles a

denotational control structure that it might be called quasi-denotational .21

Acknowledgments. We would like to thank several anonymous referees for
their useful comments.

References

1. Adami, C.: What do robots dream of? Science 314, 1093–1094 (2006)

2. Amtoft, T., Nikolajsen, T., Träff, J.L., Jones, N.: Experiments with implementa-
tions of two theoretical constructions. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic
at Botik 1989. LNCS, vol. 363, pp. 119–133. Springer, Heidelberg (1989)

3. Blum, M.: A machine independent theory of the complexity of recursive functions.
Journal of the ACM 14, 322–336 (1967)

4. Blum, M.: On the size of machines. Information and Control 11, 257–265 (1967)

5. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: A classification of viruses through
recursion theorems. In: Computation and Logic in the Real World - Third Con-
ference of Computability in Europe (CiE 2007). LNCS, vol. 4497, Springer, Berlin
(2007)

6. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314, 1118–1121 (2006)

7. Case, J.: Periodicity in generations of automata. Mathematical Systems Theory 8,
15–32 (1974)

8. Case, J.: Infinitary self-reference in learning theory. Journal of Experimental and
Theoretical Artificial Intelligence 6, 3–16 (1994)

19 Thus, by Theorem 4 (and (⇒) of Definition 2(c)), krt does not hold in ψ.
20 The eps used in the proof of Theorem 5(a) is that constructed in [23, page 333] and

in [24, page 42, problem 2-11].
21 We do know of control structures that are not forms of coded composition and whose

implementation is complementary to krt, but none so nearly resemble denotational
control structures.

Properties Complementary to Program Self-reference 263

9. Case, J., Moelius III, S.E.: Characterizing programming systems allowing program
self-reference. In: Computation and Logic in the Real World - Third Conference
of Computability in Europe (CiE 2007). LNCS, vol. 4497, pp. 125–134. Springer,
Berlin (2007)

10. Case, J., Moelius III, S.E.: Properties complementary to program self-reference
(expanded version). Technical report, University of Delaware (2007), Available at
http://www.cis.udel.edu/∼moelius/publications

11. Case, J., Jain, S., Suraj, M.: Control structures in hypothesis spaces: The influence
on learning. Theoretical Computer Science 270(1-2), 287–308 (2002)

12. Conduit, R.: To sleep, perchance to dream. Science, A letter, including responses
from Adami, C., Lipson, H., Zykov, V., Bongard, J. 315(5816), 1219–1220 (2007)

13. Friedman, H.: [FOM] 305:Proofs of Godel’s Second. Communication to the Foun-
dations of Mathematics electronic mailing list (December 21, 2006)

14. Jain, S., Nessel, J.: Some independence results for control structures in complete
numberings. Journal of Symbolic Logic 66(1), 357–382 (2001)

15. Jones, N.: Computer implementation and applications of Kleene’s s-m-n and re-
cursion theorems. In: Moschovakis, Y. (ed.) Logic From Computer Science. Math-
ematical Science Research Institute Publications, vol. 21, pp. 243–263. Springer,
Heidelberg (1992)

16. Kleene, S.C.: On notation for ordinal numbers. Journal of Symbolic Logic 3, 150–
155 (1938)

17. Machtey, M., Winklmann, K., Young, P.: Simple Gödel numberings, isomorphisms,
and programming properties. SIAM Journal on Computing 7, 39–60 (1978)

18. Machtey, M., Young, P.: An Introduction to the General Theory of Algorithms.
North Holland, New York (1978)

19. Manna, Z.: Mathematical theory of computation. MacGraw-Hill, 1974. Reprinted,
Dover (2003)

20. Manna, Z., Vuillemin, J.: Fixpoint approach to the theory of computation. Com-
munications of the ACM 15(7), 528–536 (1972)

21. Riccardi, G.: The Independence of Control Structures in Abstract Programming
Systems. PhD thesis, SUNY Buffalo (1980)

22. Riccardi, G.: The independence of control structures in abstract programming
systems. Journal of Computer and System Sciences 22, 107–143 (1981)

23. Rogers, H.: Gödel numberings of partial recursive functions. Journal of Symbolic
Logic, 23:331–341 (1958)

24. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press, Cambridge (1987)

25. Royer, J.: A Connotational Theory of Program Structure. LNCS, vol. 273. Springer,
Heidelberg (1987)

26. Royer, J., Case, J.: Subrecursive Programming Systems: Complexity and Succinct-
ness. Progress in Theoretical Computer Science. Birkhäuser, Boston (1994)

27. Smullyan, R.: Theory of formal systems. Annals of Mathematics Studies (1961)
28. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.

Foundations of Computing Series. MIT Press, Cambridge (1993)

http://www.cis.udel.edu/~moelius/publications

Dobrushin Conditions for Systematic Scan with

Block Dynamics�

Kasper Pedersen

Department of Computer Science, University of Liverpool, UK
k.pedersen@csc.liv.ac.uk

Abstract. We study the mixing time of systematic scan Markov chains
on finite spin systems. It is known that, in a single site setting, the mixing
time of systematic scan can be bounded in terms of the influences sites
have on each other. We generalise this technique for bounding the mixing
time of systematic scan to block dynamics, a setting in which a set of
sites are updated simultaneously. In particular we present a parameter α,
representing the maximum influence on any site, and show that if α < 1
then the corresponding systematic scan Markov chain mixes rapidly. We
use this method to prove O(log n) mixing of a systematic scan for proper
q-colourings of a general graph with maximum vertex-degree Δ whenever
q ≥ 2Δ. We also apply the method to improve the number of colours
required in order to obtain mixing in O(log n) scans for a systematic scan
colouring of trees.

1 Introduction

This paper is concerned with the study of finite spin systems. A spin system
is composed of a set of sites and a set of spins, both of which will be finite
throughout this paper. The interconnection between the sites is determined by
an underlying graph. A configuration of the spin system is an assignment of a
spin to each site. If there are n sites and q available spins then this gives rise to
qn configurations of the system, however some configurations may be illegal. The
specification of the system determines how the spins interact with each other at
a local level, such that different local configurations on a subset of the graph may
have different relative likelihoods. This interaction hence specifies a probability
distribution, π, on the set of configurations. One class of configurations that
receive much attention in theoretical computer science is proper q-colourings of
graphs. A proper colouring is a configuration where no two adjacent sites are
assigned the same colour. One important example of a spin system is when the
set of legal configurations is the set of all proper q-colourings of the underlying
graph and π is the uniform distribution on this set. In statistical physics the
spin system corresponding to proper q-colourings is known as the q-state anti-
ferromagnetic Potts model at zero temperature.
� This work was partly funded by EPSRC projects GR/T07343/02 and

GR/S76168/01. A longer version, with all proofs included, is available at http://
www.csc.liv.ac.uk/~kasper

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 264–275, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.csc.liv.ac.uk/~{ }kasper
http://www.csc.liv.ac.uk/~{ }kasper

Dobrushin Conditions for Systematic Scan with Block Dynamics 265

Sampling from π is a computationally challenging task. It is, however, an
important one and is often carried out by simulating some suitable random
dynamics on the set of configurations. Such a dynamics must have the following
two properties

1. the dynamics eventually converges to π, and
2. the rate of convergence (mixing time) is polynomial in the number of sites.

It is generally straightforward to ensure that a dynamics converges to π but
much harder provide good upper-bounds on the rate of convergence, which is
what we will be concerned with in this paper.

Arguably the simplest dynamics is the heat-bath Glauber dynamics which, at
each step, selects a site uniformly at random and updates the spin assigned to
that site by drawing a new spin from the distribution on the spin of the selected
site induced by π. This procedure is repeated until the distribution of the Markov
chain is sufficiently close to π using some suitable measure of closeness between
probability distributions. This dynamics falls under a family of Markov chains
that we call random update Markov chains. We say that a Markov chain is a
random update Markov chain if the sites are updated in a random order. This
type of Markov chain has been frequently studied in theoretical computer science
and much is known about the mixing time of various random update Markov
chains.

An alternative to random update Markov chains is to construct a Markov
chain that cycles through and updates the sites (or subsets of sites) in a deter-
ministic order. We call this a systematic scan Markov chain (or systematic scan
for short). Although systematic scan updates the sites in a deterministic order it
remains a random process since the procedure used to update the spin assigned
to a site is randomised, as specified by the appropriate induced distribution. Sys-
tematic scan may be more intuitively appealing that random update in terms of
implementation, however until recently little was know about the convergence
rates of this type of dynamics. It remains important to know how many steps one
needs to simulate a systematic scan for in order to for it to become sufficiently
close to its stationary distribution and recently there has been an interest among
computer scientists in investigating various approaches for analysing the mixing
time of systematic scan Markov chains, see e.g. Dyer, Goldberg and Jerrum [1,2]
and Bordewich, Dyer and Karpinski [3]. In this paper we present a new method
for analysing the mixing time of systematic scan Markov chains, which is appli-
cable to any spin system. As applications of this method we improve the known
parameters required for rapid mixing of systematic scan on (1) proper colourings
of general graphs and (2) proper colourings of trees.

A key ingredient in our method for proving mixing of systematic scan is to
work with a block dynamics. A block dynamics is a dynamics in which we allow
a set of sites to be updated simultaneously as opposed to updating one site at
a time as in the description of the Glauber dynamics above. Block dynamics is
not a new concept and it was used in the mid 1980s by Dobrushin and Shlos-
man [4] in their study of conditions that imply uniqueness of the Gibbs measure

266 K. Pedersen

of a spin system, a topic closely related to studying the mixing time of Markov
chains (see for example Weitz’s PhD thesis [5]). More recently, a block dynamics
has been used by Weitz [6] when, in a generalisation of the work of Dobrushin
and Shlosman, studying the relationship between various influence parameters
(also in the context of Gibbs measures) within spin systems and using the influ-
ence parameters to establish conditions that imply mixing. Using an influence
parameter to establish a condition which implies mixing of systematic scan is a
key aspect of the method presented in this paper as we will discuss below. Dyer,
Sinclair, Vigoda and Weitz [7] have also used a block dynamics in the context of
analysing the mixing time of a Markov chain for proper colourings of the square
lattice. Both of these papers consider a random update Markov chain, however
several of ideas and techniques carry over to systematic scan as we shall see.

We will bound the mixing time of systematic scan by studying the influence
that the sites of the graph have on each other. This technique is well-known
and the influence parameters generalised by Weitz [6]: “the influence on a site
is small” (originally attributed to Dobrushin [8]) and “the influence of a site
is small” (originally Dobrushin and Shlosman [4]) both imply mixing of the
corresponding random update Markov chain. It is worth pointing out that a
condition of the form “if the influence on a site is small then the corresponding
dynamics converges to π quickly” is known as a Dobrushin condition. In the
context of systematic scan, Dyer et al. [1] point out that, in a single site setting,
the condition “the influence on a site is small” implies rapid mixing of systematic
scan. Our method for proving rapid mixing of systematic scan is a generalisation
of this influence parameter to block dynamics.

We now formalise the concepts above and state our results. Let C = {1, . . . , q}
be the set of spins and G = (V,E) be the underlying graph of the spin system
where V = {1, . . . , n} is the set of sites. We associate with each site i ∈ V a
positive weight wi. Let Ω+ be the set of all configurations of the spin system
and Ω ⊆ Ω+ be the set of all legal configurations. Then let π be a probability
distribution on Ω+ whose support is Ω i.e., {x ∈ Ω+ | π(x) > 0} = Ω. If
x ∈ Ω+ is a configuration and j ∈ V is a site then xj denotes the spin assigned
to site j in configuration x. For each site j ∈ V , let Sj denote the set of pairs
(x, y) ∈ Ω+ × Ω+ of configurations that only differ on the spin assigned to site
j, that is xi = yi for all i �= j.

We will use Weitz’s [6] notation for block dynamics, although we only consider
a finite collection of blocks. Define a collection of m blocks Θ = {Θk}k=1,...,m

such that each block Θk ⊆ V and Θ covers V , where we say that Θ covers V
if
⋃m

k=1 Θk = V . One site may be contained in several blocks and the size of
each block is not required to be the same, we do however require that the size
of each block is bounded independently of n. For any block Θk and a pair of
configurations x, y ∈ Ω+ we write “x = y on Θk” if xi = yi for each i ∈ Θk and
similarly “x = y off Θk” if xi = yi for each i ∈ V \ Θk. We also let ∂Θk denote
the set of sites adjacent to but not included in Θk; we will refer to ∂Θk as the
boundary of Θk.

Dobrushin Conditions for Systematic Scan with Block Dynamics 267

With each block Θk, we associate a transition matrix P [k] on state space Ω+

satisfying the following two properties:

1. If P [k](x, y) > 0 then x = y off Θk, and also
2. π is invariant with respect to P [k].

Property 1 ensures that an application of P [k] moves the state of the system
from from one configuration to another by only updating the sites contained
in the block Θk and Property 2 ensures that any dynamics composed solely of
transitions defined by P [k] converges to π. While the requirements of Property 1
are clear we take a moment to discuss what we mean by Property 2. Consider the
following two step process in which some configuration x is initially drawn from π
and then a configuration y is drawn from P [k](x) where P [k](x) is the distribution
on configurations resulting from applying P [k] to a configuration x. We than say
that π is invariant with respect to P [k] if for each configuration σ ∈ Ω+ we have
Pr(x = σ) = Pr(y = σ). That is the distribution on configurations generated by
the two-step process is the same as if only the first step was executed. In terms
of our dynamics this means that once the distribution of the dynamics reaches
π, π will continue be the distribution of the dynamics even after applying P [k]

to the state of the dynamics. Our main result (Theorem 2) holds for any choice
of update rule P [k] provided that it satisfies these two properties.

The distribution P [k](x), which specifies how the dynamics updates block Θk,
clearly depends on the specific update rule implemented as P [k]. In order to
make this idea more clear we describe one particular update rule, known as the
heat-bath update rule. This example serves a dual purpose as it is a simple way
to implement P [k] and we will make use of heat-bath updates in Sects. 3 and 4
when applying our condition to specific spin systems. A heat-bath move on a
block Θk given a configuration x is performed by drawing a new configuration
from the distribution induced by π and consistent with the assignment of spins
on the boundary of Θk. The two properties of P [k] hold for heat-bath updates
since (1) only the assignment of the spin to the sites in Θk are changed and
(2) the new configuration is drawn from an appropriate distribution induced
by π. If the spin system corresponds to proper colourings of graphs then the
distribution used in a heat-bath move is the uniform distribution on the set of
configurations that agree with x off Θk and where no edge containing a site in
Θk is monochromatic.

With these definitions in mind we are ready to formally define a systematic
scan Markov chain.

Definition 1. We let M→ be a systematic scan Markov chain with state space
Ω+ and transition matrix P→ =

∏m
k=1 P

[k].

The stationary distribution of M→ is π as discussed above, and it is worth
pointing out that the definition of M→ holds for any order on the set of blocks.
We will refer to one application of P→ (that is updating each block once) as
one scan of M→. One scan takes

∑
k |Θk| updates and it is generally straight

forward to ensure, via the construction of the set of blocks, that this sum is of
order O(n).

268 K. Pedersen

We will be concerned with analysing the mixing time of systematic scan
Markov chains, and consider the case when M→ is ergodic. Let M be any
ergodic Markov chain with state space Ω+ and transition matrix P . By classi-
cal theory (see e.g. Aldous [9]) M has a unique stationary distribution, which
we will denote π. The mixing time from an initial configuration x ∈ Ω+ is the
number of steps, that is applications of P , required for M to become sufficiently
close to π. Formally the mixing time of M from an initial configuration x ∈ Ω+

is defined, as a function of the deviation ε from stationarity, by

Mixx(M, ε) = min{t > 0 : dTV(P t(x, ·), π(·)) ≤ ε}

where dTV(·, ·) is the total variation distance between two distributions. The
mixing time of M is then obtained my maximising over all possible initial con-
figurations as as follows Mix(M, ε) = maxx∈Ω+ Mixx(M, ε). We say that M is
rapidly mixing if the mixing time of M is polynomial in n and log(ε−1).

We will now formalise the notion of “the influence on a site” in order to state
our condition for rapid mixing of systematic scan. For any pair of configurations
(x, y) let Ψk(x, y) be a coupling of the distributions P [k](x) and P [k](y) which we
will refer to as “updating block Θk”. Recall that a coupling Ψk(x, y) of P [k](x)
and P [k](y) is a joint distribution on Ω+×Ω+ whose marginal distributions are
P [k](x) and P [k](y). We write (x′, y′) ∈ Ψk(x, y) when the pair of configurations
(x′, y′) is drawn from Ψk(x, y). Weitz [6] states his conditions for general metrics
whereas we will use Hamming distance, which is also how the corresponding
condition is defined in Dyer et al. [1]. This choice of metric allows us to define
the influence of a site i on a site j under a block Θk, which we will denote ρki,j ,
as the maximum probability that two coupled Markov chains differ at the spin
of site j following an update of Θk starting from two configurations that only
differ at the spin on site i. That is

ρki,j = max
(x,y)∈Si

{Pr(x′,y′)∈Ψk(x,y)(x′j �= y′j)}.

Then let α be the total (weighted) influence on any site in the graph site defined
by

α = max
k

max
j∈Θk

∑

i

wi

wj
ρki,j .

We point out that our definition of ρki,j is not the standard definition of ρ used
in the literature (see for example Simon [10] or Dyer et al. [1]) since the coupling
Ψk(x, y) is explicitly included. In the block setting it is, however, necessary to
include the coupling directly in the definition of ρ as we discuss in the full version
of this paper [11]. In the full version we also show that the condition α < 1 is a
generalisation of the corresponding condition in Dyer et al. [1] in the sense that
if each block contains exactly one site and the coupling minimises the Hamming
distance then the conditions coincide.

Our main theorem, which is proved in Sect. 2, states that if the influence on
a site is sufficiently small then the systematic scan Markov chain M→ mixes in
O(log n) scans.

Dobrushin Conditions for Systematic Scan with Block Dynamics 269

Theorem 2. Suppose α < 1. Then Mix(M→, ε) ≤ log(ne−1)
1−α .

As previously stated we will apply Theorem 2 to two spin systems corresponding
to proper q-colourings of graphs in order to improve the parameters for which
systematic scan mixes rapidly. In both applications we restrict the state space
of the Markov chains to the set of proper colourings, Ω. Firstly we allow the
underlying graph to be any finite graph with maximum vertex-degree Δ. Previ-
ously, the least number of colours for which systematic scan was known to mix
in O(log n) scans was q > 2Δ and when q = 2Δ the best known bound on the
mixing time was O(n2 logn) scans due to Dyer et al. [1]. For completeness we
pause to mention that the least number of colours required for rapid mixing of
a random update Markov chain is q > (11/6)Δ due to Vigoda [12]. We consider
the following Markov chain, edge scan denoted Medge, updating the endpoints
of an edge during each update. Let Θ = {Θk}k=1,...,m be a set of edges in G
such that Θ covers V . Using the above notation, P [k] is the transition matrix
for performing a heat-bath move on the endpoints of the edge Θk and the tran-
sition matrix of Medge is

∏m
k=1 P

[k]. In the full version of this paper we prove
the following theorem, which improves the mixing time of systematic scan by a
factor of n2 for proper colourings of general graphs when q = 2Δ and matches
the existing bound when q > 2Δ. An outline of the proof is given in Sect. 3.

Theorem 3. Let G be a graph with maximum vertex-degree Δ. If q ≥ 2Δ then

Mix(Medge, ε) ≤ Δ2 log(nε−1).

Next we restrict the class of graphs to trees. It is known that single site systematic
scan mixes in O(log n) scans when q > Δ + 2

√
Δ− 1 and in O(n2 logn) scans

when q = Δ + 2
√
Δ− 1 is an integer; see e.g. Hayes [13] or Dyer, Goldberg

and Jerrum [14]. More generally it is known that systematic scan for proper
colourings of bipartite graphs mixes in O(log n) scans whenever q > f(Δ) where
f(Δ) → βΔ as Δ → ∞ and β ≈ 1.76 due to Bordewich et al. [3]. Again,
for completeness, we mention that the mixing time of a random update Markov
chain for proper colourings on a tree mixes in O(n log n) updates when q ≥ Δ+2,
a result due to Martinelli, Sinclair and Weitz [15], improving a similar result by
Kenyon, Mossel and Peres [16]. We will use a block approach to improve the
number of colours required for mixing of systematic scan on trees. We construct
the following set of blocks where the height h of the blocks is defined in Table 1.
Let a block Θk contain a site r along with all sites below r in the tree that are
at most h − 1 edges away from r. The set of blocks Θ covers the sites of the
tree and we construct Θ such that no block has height less than h. Again P [k]

is the transition matrix for performing a heat-bath move on block Θk and the
transition matrix of the Markov chainMtree is

∏m
k=1 P

[k] where m is the number
of blocks. We outline a proof of the following theorem in Sect. 4

Theorem 4. Let G be a tree with maximum vertex-degree Δ. If q ≥ f(Δ) where
f(Δ) is specified in Table 1 for small Δ then

Mix(Mtree, ε) = O(log(nε−1)).

270 K. Pedersen

Table 1. Optimising the number of colours using blocks

Δ h ξ f(Δ) �Δ + 2
√

Δ− 1	
3 15 4

7 5 6
4 3 5

11 7 8
5 12 5

11 8 9
6 3 1

2 10 11
7 7 10

23 11 12
8 13 1

3 12 14
9 85 5

19 13 15
10 5 5

19 15 16

2 Bounding the Mixing Time of Systematic Scan

In this section we will outline a proof of Theorem 2. The proof follows the
structure of the proof from the single-site setting in Dyer et al. [1], which follows
Föllmer’s [17] account of Dobrushin’s proof presented in Simon’s book [10].

We will make use the following definitions. For any function f : Ω+ → IR≥0

let δi(f) = max(x,y)∈Si
|f(x) − f(y)| and Δ(f) =

∑
i∈V wiδi(f). Also for any

transition matrix P define (Pf) as the function from Ω+ to IR≥0 given by
(Pf)(x) =

∑
x′ P (x, x′)f(x′). Finally let 1i
∈Θk

be the function given by 1i
∈Θk
=

1 if i �∈ Θk and 1i
∈Θk
= 0 otherwise.

We can think of δi(f) as the deviation from constancy of f at site i and Δ(f)
as the aggregated deviation from constancy of f . Now, Pf is a function where
(Pf)(x) gives the expected value of f after making a transition starting from x.
Intuitively, if t transitions are sufficient for mixing then P tf is a very smooth
function. An application of P [k] fixes the non-constancy of f at the sites within
Θk although possibly at the cost of increasing the non-constancy at sites on the
boundary of Θk. Our aim is then to show that one application of P→ will on
aggregate make f smoother i.e., decrease Δ(f).

We will establish the following lemma, which corresponds to Corollary 12 in
Dyer et al. [1], from which Sect. 3.3 of [1] implies Theorem 2.

Lemma 5. If α < 1 then Δ(P→f) ≤ αΔ(f).

We begin by bounding the effect on f from one application of P [k]. The following
lemma is a block-move generalisation of Proposition V.1.7 from Simon [10] and
Lemma 10 from Dyer et al. [1].

Lemma 6
δi(P [k]f) ≤ 1i
∈Θk

δi(f) +
∑

j∈Θk

ρki,jδj(f).

Proof. Take E(x′,y′)∈Ψk(x,y)) [f(x′)] to be the the expected value of f(x′) when a
pair of configurations (x′, y′) are drawn from Ψk(x, y). Since Ψk(x, y) is a coupling
of the distributions P [k](x) and P [k](y), the distribution P [k](x) and the first
component of Ψk(x, y) are the same and hence

E(x′,y′)∈Ψk(x,y) [f(x′)] = Ex′∈P [k](x) [f(x′)] . (1)

Dobrushin Conditions for Systematic Scan with Block Dynamics 271

Using (1) and linearity of expectation we have

δi(P [k]f) = max
(x,y)∈Si

∣∣∣∣∣∣

∑

x′

P [k](x, x′)f(x′)−
∑

y′

P [k](y, y′)f(y′)

∣∣∣∣∣∣

= max
(x,y)∈Si

∣∣Ex′∈P [k](x) [f(x′)]−Ey′∈P [k](y) [f(y′)]
∣∣

≤ max
(x,y)∈Si

E(x′,y′)∈Ψk(x,y) [|f(x′)− f(y′)|]

≤ max
(x,y)∈Si

∑

j∈V

E(x′,y′)∈Ψk(x,y)

[∣∣∣f(Z(j))− f(Z(j−1))
∣∣∣
]

where Z(j) is the configuration (x′1 . . . x
′
jy

′
j+1 . . . y

′
n).

Now suppose that j ∈ Θk. By definition of ρki,j the coupling ψk(x, y) will yield
x′j �= y′j with probability at most ρki,j and so

E(x′,y′)∈Ψk(x,y)

[∣∣∣f(Z(j))− f(Z(j−1))
∣∣∣
]
≤ ρki,j max

(σ,τ)∈Sj

{|f(σ)− f(τ)|}

= ρki,jδj(f) .

Otherwise (j �∈ Θk) we observe that xj = x′j and yj = y′j since x = x′ off Θk

and y = y′ off Θk. Hence we can only have x′j �= y′j when i = j which gives

E(x′,y′)∈Ψk(x,y)

[∣∣∣f(Z(j))− f(Z(j−1))
∣∣∣
]
≤ 1i=jδi(f).

Adding up the expectations we get the statement of the lemma. ��
We will use Lemma 6 to sketch a proof of the following lemma which is sim-
ilar to (V.1.16) in Simon [10]. It is important to note at this point that the
result in Simon is presented for single site heat-bath updates whereas the fol-
lowing lemma applies to any block dynamics (satisfying the stated assumptions)
and weighted sites. This lemma is also a block generalisation of Lemma 11 in
Dyer et al. [1].

Lemma 7. Let Γ (k) =
⋃k

l=1 Θl then for any k ∈ {1, . . . ,m}, if α < 1 then

Δ(P [1] · · ·P [k]f) ≤ α
∑

i∈Γ (k)

wiδi(f) +
∑

i∈V \Γ (k)

wiδi(f).

Proof. Induction on k. Taking k = 0 we get the definition of Δ.
Now assuming that the statement holds for k−1 and using Lemma 6 we have

Δ(P [1] · · ·P [k]f)

≤ α
∑

i∈Γ (k−1)

wiδi(P [k]f) +
∑

i∈V \Γ (k−1)

wiδi(P [k]f)

≤ α
∑

i∈Γ (k−1)\Θk

wiδi(f) +
∑

i∈V \Γ (k)

wiδi(f) +
∑

j∈Θk

δj(f)
∑

i∈V

wiρ
k
i,j (2)

since α < 1. The lemma then follows from (2) by the definition of α. ��

272 K. Pedersen

Lemma 5 is now a simple consequence of Lemma 7 since

Δ(P→f) = Δ(P [1] · · ·P [m]f) ≤ α
∑

i∈V

wiδi(f) = αΔ(f)

and Theorem 2 follows as discussed above.

3 Application: Edge Scan on an Arbitrary Graph

In this section we outline a proof of Theorem 3 which states that systematic
scan mixes in O(logn) scans on general graphs whenever q ≥ 2Δ. In order to
apply Theorem 2 we need to construct a coupling Ψk(x, y) of the distributions
P [k](x) and P [k](y) for each pair of configurations (x, y) ∈ Si that differ only at
the colour assigned to site i. In the full version of this paper [11] we consider a
set of exhaustive cases for this coupling construction, however here we only state
the derived bounds on ρki,j . The following lemma allows us to establish a bound
on the influence on a site, which we use to prove Theorem 3.

Lemma 8. Let j and j′ be the endpoints of an edge Θk. If {i, j} ∈ E and
{i, j′} �∈ E then

ρki,j ≤
1

q −Δ
and ρki,j′ ≤

1
(q −Δ)2

.

If {i, j} ∈ E and {i, j′} ∈ E then

ρki,j ≤
1

q −Δ
+

1
(q −Δ)2

and ρki,j′ ≤
1

q −Δ
+

1
(q −Δ)2

.

Otherwise ρki,j = ρki,j′ = 0.

Proof of Theorem 3. We will use Theorem 2 and let wi = 1 for all i ∈ V so
we omit all weights. Let j and j′ be the endpoints of an edge represented by
a block Θk. Let αj =

∑
i ρ

k
i,j be the influence on site j and αj′ =

∑
i ρ

k
i,j′

then influence on j′. Then α = max(αj , αj′). Suppose that Θk is adjacent to t
triangles, that is there are t sites i1, . . . , it such that {i, j} ∈ E and {i, j′} ∈ E
for each i ∈ {i1, . . . , it}. Note that 0 ≤ t ≤ Δ − 1. There are at most Δ− 1 − t
sites adjacent to j that are not adjacent to j′ and at most Δ−1−t sites adjacent
to j′ that are not adjacent to j. From Lemma 8 a site adjacent only to j will
emit an influence of at most 1

q−Δ on site j and Lemma 8 also guarantees that a
site only adjacent to j′ can emit an influence at most 1

(q−Δ)2 on site j. Finally
Lemma 8 says that a site adjacent to both j and j′ can emit an influence of at
most 1

q−Δ + 1
(q−Δ)2 on site j and hence

αj ≤ t

(
1

q −Δ
+

1
(q −Δ)2

)
+ (Δ− 1− t)

(
1

q −Δ
+

1
(q −Δ)2

)

=
Δ− 1
q −Δ

+
Δ− 1

(q −Δ)2
.

Dobrushin Conditions for Systematic Scan with Block Dynamics 273

We obtain a similar bound on αj′ by considering the influence on site j′. Thus
whenever q ≥ 2Δ we have

α = max(αj , αj′) ≤ Δ− 1
q −Δ

+
Δ− 1

(q −Δ)2
≤ Δ− 1

Δ
+
Δ− 1
Δ2

=
Δ2 − 1
Δ2

= 1− 1
Δ2

< 1

and we obtain the stated bound on the mixing time by applying Theorem 2. ��

4 Application: Colouring a Tree

In this section we sketch a proof of Theorem 4, which improves the least number
of colours required for mixing of systematic scan on a tree for individual values
of Δ. We will use standard terminology when discussing the structure of the
tree. In particular will say that a site i is a descendant of a site j (or j is a
predecessor of i) if j is on the simple path from the root of the tree to i. We will
call a site j a child of a site i if i and j are adjacent and j is a descendant of i.
Finally Nk(j) = {i ∈ ∂Θk | i is a descendant of j} is the set of descendants of j
on the boundary of Θk.

It is possible to construct the required couplings recursively for blocks of size
h on a tree. For details of the coupling construction as well as the bounds on the
disagreement probabilities see the full version of this paper. The ρki,j values are
summarised in the following lemma which we use in order to sketch a proof of
Theorem 4. This proof will demonstrate the use of weights when bounding the
influence on a site.

Lemma 9. Let d(i, j) denote the number of edges between i and j. Suppose that
j ∈ Θk and i ∈ ∂Θk then ρki,j ≤ (q −Δ)−d(i,j). Otherwise ρki,j = 0.

Proof of Theorem 4. We will use Theorem 2 and assign a weight to each site
i such that wi = ξdi where di is the edge distance from i to the root and ξ is
defined in Table 1 for each Δ. For a block Θk and j ∈ Θk we let

αk,j =

∑
i wiρ

k
i,j

wj

denote the total weighted influence on site j when updating block Θk. For each
block Θk and each site j ∈ Θk we will upper-bound αk,j and hence obtain an
upper-bound on α = maxk maxj∈Θk

αk,j .
We will consider a block Θk that does not contain the root. The following

labels refer to Fig. 1 in which a solid line is an edge and a dotted line denotes
the existence of a simple path between two sites. Let p ∈ ∂Θk be the predecessor
of all sites in Θk and dr − 1 be the distance from p to the root of the tree i.e.,
wp = ξdr−1. The site r ∈ Θk is a child of p. Now consider a site j ∈ Θk which
has distance d to r, hence wj = ξd+dr and d(j, p) = d + 1. From Lemma 9 it
follows that the weighted influence of p on j when updating Θk is at most

ρkp,j
wp

wj
≤ 1

(q −Δ)d(j,p)

ξdr−1

ξdr+d
=

1
(q −Δ)d+1

1
ξd+1

.

274 K. Pedersen

Level: dr + h− 1

Level: dr + d

Level: dr + d− l + 1

Level: dr

Level: dr − 1

Level: dr + h

Level: dr + d− lΘk

p

r

v

v′ j′

j

b u

Fig. 1. A block in the tree. A solid line indicates an edge and a dotted line the existence
of a path.

Now consider some site u ∈ Nk(j) which is on the boundary of Θk. Since u ∈
Nk(j) it has weight wu = ξdr+h and so d(j, u) = h − d. Hence Lemma 9 says
that the weighted influence of u on j is at most

ρku,j
wu

wj
≤ 1

(q −Δ)d(j,u)

ξdr+h

ξdr+d
=

1
(q −Δ)h−d

ξh−d.

Every site in Θk has at most Δ−1 children so the number of sites in Nk(j) is at
most |Nk(j)| ≤ (Δ − 1)h−d and so, summing over all sites u ∈ Nk(j), the total
weighted influence on j from sites in Nk(j) when updating Θk is at most

∑

u∈Nk(j)

ρku,j
wu

wj
≤

∑

u∈Nk(j)

1
(q −Δ)h−d

ξh−d ≤ (Δ− 1)h−d

(q −Δ)h−d
ξh−d.

In the full version of the paper we also consider the influence on j from sites
in ∂Θk \ (Nk(j) ∪ {p}) and obtain an upper-bounds on both αk,j and α0,j for
each j ∈ Θk where Θ0 is the block containing the root. We require α < 1 which
we obtain by satisfying the system of inequalities given by setting

αk,j < 1 (3)

for all blocks Θk and sites j ∈ Θk. In particular we need to find an assignment
to ξ and h that satisfies (3) given Δ and q. Table 1 shows the least number
of colours f(Δ) required for mixing for small Δ along with a weight, ξ, that
satisfies the system of equations and the required height of the blocks, h. These
values were verified by checking the resulting 2h inequalities for each Δ using
Mathematica. The least number of colours required for mixing in the single site
setting is also included in the table for comparison. ��

Acknowledgment. I am grateful to Leslie Goldberg for several useful discus-
sions regarding technical issues and for providing detailed and helpful comments

Dobrushin Conditions for Systematic Scan with Block Dynamics 275

on a draft of the full version of this article. I would also like to thank Paul
Goldberg for useful comments during the early stages of this work.

References

1. Dyer, M., Goldberg, L.A., Jerrum, M.: Dobrushin conditions and systematic scan.
In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RAN-
DOM 2006. LNCS, vol. 4110, pp. 327–338. Springer, Heidelberg (2006)

2. Dyer, M., Goldberg, L.A., Jerrum, M.: Systematic scan and sampling colourings.
Annals of Applied Probability 16(1), 185–230 (2006)

3. Bordewich, M., Dyer, M., Karpinski, M.: Stopping times, metrics and approximate
counting. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 108–119. Springer, Heidelberg (2006)

4. Dobrushin, R.L., Shlosman, S.B.: Constructive criterion for the uniqueness of Gibbs
field. In: Statistical mechanics and dynamical systems. Progress in Physics, vol. 10,
pp. 371–403. Birkhäuser, Boston (1985)

5. Weitz, D.: Mixing in Time and Space for Discrete Spin Systems. PhD thesis, Uni-
versity of California, Berkley (2004)

6. Weitz, D.: Combinatorial criteria for uniqueness of Gibbs measures. Random Struc-
tures and Algorithms 27(4), 445–475 (2005)

7. Dyer, M., Sinclair, A., Vigoda, E., Weitz, D.: Mixing in time and space for lattice
spin systems: A combinatorial view. Random Structures and Algorithms 24(4),
461–479 (2004)

8. Dobrushin, R.L.: Prescribing a system of random variables by conditional distri-
butions. Theory Prob. and its Appl. 15, 458–486 (1970)

9. Aldous, D.J: Random walks on finite groups and rapidly mixing markov chains.
In: Séminaire de probabilités XVII, pp. 243–297. Springer, Heidelberg (1983)

10. Simon, B.: The Statistical Mechanics of Lattice Gases. Princeton University Press
(1993)

11. Pedersen, K.: Dobrushin conditions for systematic scan with block dynamics.
arXiv:math.PR/0703461 (2007)

12. Vigoda, E.: Improved bounds for sampling colourings. J. Math. Phys (2000)
13. Hayes, T.P.: A simple condition implying rapid mixing of single-site dynamics on

spin systems. In: Proc. 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 39–46. IEEE Computer Society Press, Los Alamitos (2006)

14. Dyer, M., Goldberg, L.A., Jerrum, M.: Matrix norms and rapid mixing for spin
systems. ArXiv math.PR/0702744 (2006)

15. Martinelli, F., Sinclair, A., Weitz, D.: Glauber dynamics on trees: Boundary condi-
tions and mixing time. Communications in Mathematical Physics 250(2), 301–334
(2004)

16. Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic
graphs. In: Proc. 42nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 568–578. IEEE Computer Society Press, Los Alamitos (2001)

17. Föllmer, H.: A covariance estimate for Gibbs measures. J. Funct. Analys. 46, 387–
395 (1982)

On the Complexity of Computing Treelength

Daniel Lokshtanov

Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

daniel.lokshtanov@uib.no

Abstract. We resolve the computational complexity of determining the
treelength of a graph, thereby solving an open problem of Dourisboure
and Gavoille, who introduced this parameter, and asked to determine the
complexity of recognizing graphs of bounded treelength [6]. While recog-
nizing graphs with treelength 1 is easily seen as equivalent to recogniz-
ing chordal graphs, which can be done in linear time, the computational
complexity of recognizing graphs with treelength 2 was unknown until
this result. We show that the problem of determining whether a given
graph has treelength at most k is NP-complete for every fixed k ≥ 2,
and use this result to show that treelength in weighted graphs is hard to
approximate within a factor smaller than 3

2 . Additionally, we show that
treelength can be computed in time O∗(1.8899n) by giving an exact ex-
ponential time algorithm for the Chordal Sandwich problem and showing
how this algorithm can be used to compute the treelength of a graph.

1 Introduction

Treelength is a graph parameter proposed by Dourisboure and Gavoille [6] that
measures how close a graph is to being chordal. The treelength of G is defined
using tree decompositions of G. Graphs of treelength k are the graphs that have
a tree decomposition where the distance in G between any pair of nodes that
appear in the same bag of the tree decomposition is at most k. As chordal graphs
are exactly those graphs that have a tree decomposition where every bag is a
clique [14], [3], [10], we can see that treelength generalizes this characterization.

There are several reasons for why it is interesting to study this parameter.
For example, Dourisboure et. al. show that graphs with bounded treelength have
sparse additive spanners [5]. Dourisboure also shows that graphs of bounded tree-
length admit compact routing schemes [4]. One should also note that many graph
classes with unbounded treewidth have bounded treelength, such as chordal, in-
terval, split, AT-free, and permutation graphs [6].

In this paper, we show that recognizing graphs with treelength bounded by
a fixed constant k ≥ 2 is NP-complete. The problem of settling the complexity
of recognizing graphs of bounded treelength was first posed as an open problem
by Doursiboure and Gavoille, and remained open until this result [6]. Our result
is somewhat surprising, because by bounding the treelength of G we put heavy
restrictions on the distance matrix of G. Another indication that this problem

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 276–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Complexity of Computing Treelength 277

might be polynomial for fixed k was that the treelength of a graph is fairly easy
to approximate within a factor of 3 [6]. In comparison, the best known approx-
imation algorithm for treewidth has an approximation factor of O(

√
log k) [7].

As Bodlaender showed, recognizing graphs with treewidth bounded by a con-
stant can be done in linear time [1]. Since the above observation about approxi-
mately might indicate that determining treelength is ”easier” than determining
treewidth, one could arrive at the conclusion that recognizing graphs with tree-
length bounded by a constant should be polynomial. However, there are also
strong arguments against this intuition. For instance, graphs of bounded tree-
length are just bounded diameter graphs that have been glued together in a
certain way. Thus, when trying to show that a graph indeed has small treelength
one would have to decompose the graph into components of small diameter and
show how these components are glued together to form the graph. As the class
of bounded diameter graphs is very rich, one would have a myriad of candidates
to be such components, making it hard to pick out the optimal ones. This intu-
ition is confirmed when we prove the hardness of recognizing graphs of bounded
treelength because the instances we reduce to all have bounded diameter.

In the next section we will give some notation and preliminary results. Next,
we present a proof that determining whether the treelength of a weighted graph
is less than or equal to k is NP-hard for every fixed k ≥ 2. Following this, we
reduce the problem of recognizing weighted graphs with treelength bounded by
k to the problem of recognizing unweighted graphs with the treelength bounded
by the same constant k, thereby completing the hardness proof. Finally we also
consider the complexity of approximating treelength, and propose a fast exact
algorithm to determine the parameter by solving the Chordal Sandwich problem.

2 Notation, Terminology and Preliminaries

For a graph G = (V,E) let w : E → N be a weight function on the edges. The
length of a path with respect to a weight function w is the sum of the weights
of its edges. The distance dw(u, v) between two vertices is the length of the
shortest path with respect to w. Whenever no weight function is specified the
unit weight function w(e) = 1 for all e ∈ E is used. G to the power of k with
respect to the weight function w is Gk

w = (V, {uv : dw(u, v) ≤ k}). A weight
function w is metric if it satisfies a generalization of the triangle inequality, that
is, if w((u, v)) = dw(u, v) for every edge (u, v).

A tree decomposition of a graph G = (V,E) is a pair (S, T) consisting of a set
S = {Xi : i ∈ I} of bags and a tree T = (I,M) so that each bag Xi ∈ S is a
subset of V and the following conditions hold:
–
⋃

i∈I Xi = V

– For every edge (u, v) in E, there is a bag Xi in S so that u ∈ Xi and v ∈ Xi

– For every vertex v in V , the set {i ∈ I : v ∈ Xi} induces a connected subtree
of T

278 D. Lokshtanov

The length of a bag is the maximum distance in G between any pair of vertices
in the bag. The length of a tree-decomposition is the maximum length of any
bag. The treelength of G with weight function w is the minimum length of a
tree-decomposition of G, and is denoted by tlw(G). When no weight function is
given on E, then the treelength is denoted by tl(G). A shortest tree decompo-
sition is a tree decomposition having minimum length. We will always assume
that all weight functions are metric. This can be justified by the fact that if w
is not metric, we easily can make a new metric weight function w′ by letting
w′((u, v)) = dw(u, v) for every edge (u, v) and observe that tlw′(G) = tlw(G).

The neighbourhood of a vertex v is denoted N(v) and is the vertex set {u :
(u, v) ∈ E}. When S is a subset of V , G[S] = (S,E ∩ {(u, v) : u ∈ S, v ∈ S}) is
the subgraph induced by S. We will use G \ v to denote the graph G[V \ {v}].
G is complete if (u, v) is an edge of G for every pair {u, v} of distinct vertices in
G. A clique in G is a set S of vertices in G so that G[S] is complete.

For two graphs G = (V,E) and G′ = (V,E′), G ⊆ G′ means that E ⊆ E′. For
a graph class Π , G is a Π-graph if G ∈ Π . G′ is a Π-sandwich between G and
G′′ if G′ is a Π-graph and G ⊆ G′ ⊆ G′′ [11]. A graph class Π is hereditary if
every induced subgraph of a Π-graph is a Π-graph.

A graph is chordal if it contains no induced cycle of length at least 4. Thus the
class of chordal graphs is hereditary. A vertex v is simplicial if the neighbourhood
of v is a clique. A vertex v is universal if V = {v} ∪ N(v). An ordering of the
vertices of G into {v1, v2, . . . , vn} is a perfect elimination ordering if for every i,
vi is simplicial in G[{vj : j ≥ i}]. A clique tree of G is a tree decomposition of
G where every bag is a maximal clique of G (see e.g., [12] for details).

Theorem 1. The following are equivalent:
– G is chordal.
– G has a clique tree. [14], [3], [10]
– G has a perfect elimination ordering. [9]

For more characterizations of chordal graphs and the history of this graph class,
refer to the survey by Heggernes [12]. Following Theorem 1 it is easy to see that
if v is simplicial then G is chordal if and only if G\v is chordal. Universal vertices
share this property, as has been observed by several authors before.

Observation 1. If v is universal in G then G is chordal if and only if G \ v is
chordal.

Proof. If G is chordal then G\v is chordal because the class of chordal graphs is
hereditary. Now suppose G\v is chordal. Consider a perfect elimination ordering
of G\v appended by v. This is clearly a perfect elimination ordering of G, hence
G is chordal.

We now define the problem that we are going to show is NP-complete. In the
problem statement below, k is an integer greater than or equal to 2.

k-Treelength

Instance: A graph G
Question: Is tl(G) ≤ k?

On the Complexity of Computing Treelength 279

Finally, we define the problem we will reduce from.

Chordal Sandwich [11]

Instance: Two graphs G1 and G2 with G1 ⊆ G2

Question: Is there a chordal sandwich between G1 and G2?

3 Weighted k-Treelength is NP-Complete

In this section we are going to show that determining whether the treelength of
a given weighted graph is at most k is NP-complete for every fixed k ≥ 2. In
the next section we will conclude the hardness proof for unweighted graphs by
showing how one from a weighted graph G in polynomial time can construct an
unweighted graph G′ with the property that tlw(G) ≤ k if and only if tl(G′) ≤ k.

Weighted k-Treelength

Instance: A graph G with weight function w
Question: Is tlw(G) ≤ k?

Observation 2. For a graph G = (V,E), tlw(G) ≤ k if and only if there exists
a chordal sandwich G′ between G and Gk

w.

Proof. Suppose tlw(G) ≤ k. Consider a shortest tree decomposition (S, T) of G,
and construct the graph G′ = (V, {(u, v) : ∃i u ∈ Xi, v ∈ Xi}). G ⊆ G′ is trivial,
G′ ⊆ Gk

w holds because the length of the tree decomposition is at most k, and
G′ is chordal because (S, T) is a clique tree of G′. In the other direction, let G′

be a chordal sandwich between G and Gk
w. Consider a clique tree (S, T) of G′.

This is a tree decomposition of G, and the length of this decomposition is at
most k, as u ∈ Xi and v ∈ Xi implies (u, v) ∈ E(G′) ⊆ E(Gk

w).

Corollary 1. For any graph G, tl(G) = 1 if and only if G is chordal.

From Observation 2, it follows that determining the treelength of a given graph
in fact is a special case of the Chordal Sandwich problem defined above. In a
study of sandwich problems [11], Golumbic et. al. point out that as a consequence
of the hardness of Triangulating Colored Graphs, the Chordal Sandwich problem
is NP-Complete. Thus, in order to prove that Weighted k-Treelength is indeed
hard, we only need to reduce the Chordal Sandwich problem to a special case of
itself, namely the one where G2 = G1

k
w for some weight function w.

We will reduce in the following way. On input G1 = (V1, E1), G2 = (V2, E2)
with G1 ⊆ G2 to the Chordal Sandwich problem, let ED = E2\E1. We construct
a new graph G by taking a copy of G1, adding a new vertex cuv for every edge
(u, v) in ED and making this vertex adjacent to all other vertices of G. We denote
the set of added vertices by C, as C is a clique of universal vertices. The weight
function is simple, w(cuv, u) = w(cuv, v) = 5k/26 for every cuv and w(e) = k for
all other edges.

Lemma 3. Let G, G1 and G2 be as described above. Then tlw(G) ≤ k if and
only if there is a chordal sandwich G′ between G1 and G2.

280 D. Lokshtanov

Proof. Observe that any supergraph G′ of G on the same vertex set (G′ ⊇ G) is
chordal if and only if G′[V1] is chordal since every vertex in C is universal. Also,
notice that for every pair u,v of vertices in V1, dw(u, v) ≤ k if and only if (u, v)
is an edge of G2. Thus it follows that G2 = Gk

w[V1]. Hence, by Observation 2,
tlw(G) ≤ k if and only if there is a chordal sandwich G′ between G and Gk

w.
By the discussion above, this is true if and only if there is a chordal sandwich
between G[V1] = G1 and G2 = Gk

w[V1].

Corollary 2. Weighted k-Treelength is NP-complete for every k ≥ 2.

Proof. By Lemma 3 determining whether a given weighted graph G has tlw(G) ≤
k is NP-hard for every k ≥ 2. By Observation 2 this problem is polynomial time
reducible to the Chordal Sandwich problem, thus it is in NP.

4 k-Treelength is NP-Complete

We will now show how one from a weighted graph G in polynomial time can
construct an unweighted graph G′′ with the property that tlw(G) ≤ k if and only
if tl(G′′) ≤ k. We do this in two steps. First we show how to construct a graph G′

and weight function w′ from G and w so that tlw(G) ≤ k if and only if tlw′(G′) ≤
k and w′(e) = 1 or w′(e) = k for every edge e in G′. In the second step we show
how G′′ can be constructed from G′ and w′. Both steps are done in an inductive
way. Obviously, if G has an edge of weight larger than k then tlw(G) > k. We will
therefore assume that w(e) ≤ k for all edges e. For an edge (u, v), let G(u, v) =
(V ∪{r, q}, (E\(u, v))∪{(u, r),(r, v),(u, q),(q, v)}). That is, we build G(u, v) from
G by removing the edge (u, v), adding two new vertices r and q and making both
of them adjacent to u and v. Let wu,v,k be a weight function of G(u, v) so that
w(u,v,k)(e) = w(e) if e ∈ E(G)∩E(G(u, v)), w(u,v,k)((u, r)) = w(u,v,k)((r, v)) = k,
w(u,v,k)((u, q)) = w(u, v)−1, and w(u,v,k)((q, v)) = 1. Observe that if w((u, v)) >
1 then w(u,v,k) is properly defined.

Lemma 4. Given a graph G, an edge (u, v), and a weight function w with
w((u, v)) > 1, there is a chordal sandwich between G and Gk

w if and only if
there is a chordal sandwich between G(u, v) and G(u, v)kw(u,v,k)

.

Proof. Suppose there is a chordal sandwich Ĝ(u,v) between G(u, v) and
G(u, v)kw(u,v,k)

. Then the edge (u, v) must be in E(Ĝ(u,v)) and thus Ĝ(u,v)\{r, q},
where r and q are the vertices that were added to G (u, v) to obtain G(u, v),
is a chordal sandwich between G and Gk

w. In the other direction, suppose
there is a chordal sandwich Ĝ between G and and Gk

w. Then Ĝ′ = (V (Ĝ) ∪
{r, q}, E(Ĝ)∪ {(u, r), (r, v), (u, q), (q, v)}) is a chordal sandwich between G(u, v)
and G(u, v)kw(u,v,k)

because the r and q are simplicial nodes in Ĝ′.

Now, the idea is that the graph G(u, v) with weight function w(u,v,k) is some-
what closer to not having any edges with weight between 2 and k − 1. With
an appropriate choice of measure, it is easy to show that this is indeed the

On the Complexity of Computing Treelength 281

case. The measure we will use will essentially be the sum of the weights of all
edges that have edge weights between 2 and k − 1. In the following discussion,
let Ww(G) =

∑
e∈E,w(e)<k(w(e) − 1). Observe that if 1 < w(u, v) < k then

Ww(u,v,k)(G(u, v)) = Ww(G) − 1, and that if Ww(G) = 0 then w(e) = 1 or
w(e) = k for every edge e ∈ E.

Lemma 5. For a graph G with weight function w, we can construct in polyno-
mial time a graph G′ with weight function w′ so that |V (G′)| = |V (G)|+2Ww(G),
and tlw(G) ≤ k if and only if tlw′(G′) ≤ k.

Proof. We prove by induction on Ww(G). If Ww(G) = 0 we know that w(e) =
1 or w(e) = k for every edge e. Now, suppose the statement of the lemma
holds for all graphs with Ww(G) < t for some t and consider a graph G with
weight function w so that Ww(G) = t > 0. Then, let (u, v) be an edge so that
1 < w((u, v)) < k. By Lemma 4, tlw(G) ≤ k if and only if tlw(u,v,k)(G(u, v)) ≤
k. Now, Ww(u,v,k) (G(u, v)) = Ww(G) − 1. Thus, by the induction assumption,
we can in polynomial time construct a graph G′ with weight function w′ that
satisfies tlw(G) ≤ k ⇐⇒ tlw(u,v,k)(G(u, v)) ≤ k ⇐⇒ tlw′(G′) ≤ k with
|V (G′)| = |V (G(u, v))| + 2Ww(u,v,k)(G(u, v)) = |V (G)| + 2 + 2(Ww(G) − 1) =
|V (G)|+ 2Ww(G).

The idea of the above proof is that we can use edges of weight 1 and k to emulate
the behaviour of edges with other weights. The method we now will use to prove
the hardness of unweighted treelength will be similar - we are going to show that
weight k edges can be emulated using only edges with weight 1. In order to do
this, we are going to use the following lemma by Dourisboure et. al. concerning
the treelength of cycles.

Lemma 6. [6] The treelength of a cycle on k vertices is 	k3
.

For an edge (u, v) ∈ E, we construct the graph G[u, v, k] in the following way: We
replace the edge (u, v) by three paths on 2k−1, 2k−1 and k−1 vertices respec-
tively. Construct these paths Pa = {a1, a2, . . . , a2k−1}, Pb = {b1, b2, . . . , b2k−1}
and Pc = {c1, c2, . . . , ck−1} using new vertices. Take a copy of G, remove the
edge (u, v) and add edges from u to a1, b1 and c1, and from v to a2k−1, b2k−1

and ck−1. For a weight function w of G, w[u,v,k] will be a weight function of
G[u, v, k] so that w[u,v,k](e) = w(e) if e ∈ E(G) and w[u,v,k] = 1 otherwise.

Lemma 7. Given G, weight function w and an edge (u, v) ∈ E with w(u, v) = k,
tlw(G) ≤ k if and only if tlw[u,v,k](G[u, v, k]) ≤ k

Proof. Suppose there is a chordal sandwich Ĝ between G and Gk
w. We build Ĝ′

from G by taking a copy of Ĝ, adding three new paths Pa = {a1, a2, . . . , a2k−1},
Pb = {b1, b2, . . . , b2k−1} and Pc = {c1, c2, . . . , ck−1} and the edge sets {(u, ai) :
i ≤ k}, {(u, bi) : i ≤ k}, {(u, ci) : i ≤ 5k26}, {(v, ai) : i ≥ k}, {(v, bi) : i ≥
k}, {(v, ci) : i ≥ 5k2 6}. We see that Ĝ′ is chordal because {a1, a2 . . . ak−1,
a2k−1, a2k−2, . . . ak, b1, b2 . . . bk−1, b2k−1, b2k−2, . . . bk, c1, c2, . . . c� k

2 �−1, ck−1,

282 D. Lokshtanov

ck−2, . . . c� k
2 �
} followed by a perfect elimination ordering of Ĝ is a perfect

elimination ordering of Ĝ′. Also, Ĝ′ ⊆ G[u, v, k]kw[u,v,k]
. Thus Ĝ′ is a chordal

sandwich between G[u, v, k] and G[u, v, k]kw[u,v,k]
. In the other direction, let

Ĝ[u,v] be a chordal sandwich between G[u, v, k] and G[u, v, k]kw[u,v,k]
. It is suf-

ficient to show that (u, v) ∈ E(Ĝ[u,v]) because then Ĝ[u,v][V (G)] is a chordal
sandwich between G and Gk

w. Consider the set Vs = {u, v} ∪ V (Pa) ∪ V (Pb),
and let C be the subgraph of G[u, v, k] induced by Vs. Now, observe that
E(G[u, v, k]kw[u,v,k]

[S]) = E(Ck) ∪ {(u, v)}. Suppose for contradiction that (u, v)

is not an edge of Ĝ[u,v]. Then we know that Ĝ[u,v][Vs] is a chordal sandwich
between C and Ck implying that tl(C) ≤ k. This contradicts Lemma 6 because
C is a cycle on 4k vertices.

Lemma 7 gives us a way to emulate edges of weight k using only edges of weight
1. For a graph G with weight function w, let Ww [G] = |{e ∈ E(G) : w(e) = k}|.
Notice that if w((u, v)) = k then Ww[G] = Ww[u,v,k] [G[u, v, k]] + 1.

Lemma 8. For every graph G with weight function w satisfying w(e) = 1
or w(e) = k for every edge, we can construct in polynomial time a graph G′

with Ww[G](5k − 3) + |V (G)| vertices and satisfying tlw(G) ≤ k if and only if
tl(G′) ≤ k.

Proof. We use induction in Ww[G]. If Ww[G] = 0 the lemma follows immediately.
Now, assume the result holds for Ww[G] < t for some t > 0. Consider a graph
G with weight function w so that Ww[G] = t. By Lemma 7 tlw(G) ≤ k if and
only if tlw[u,v,k](G[u, v, k]) ≤ k. By the inductive hypothesis we can construct in
polynomial time a graph G′ with Ww[u,v,k] [G[u, v, k]](5k − 3) + |V (G[u, v, k])|+
5k − 3 = Ww[G](5k − 3) + |V (G)| vertices and satisfying tl(G′) ≤ k ⇐⇒
tlw[u,v,k](G[u, v, k]) ≤ k ⇐⇒ tlw(G) ≤ k

Corollary 3. For a graph G and weight function w, we can in polynomial time
construct a graph G′′ so that tlw(G) ≤ k if and only if tl(G′′) ≤ k.

Proof. By Lemma 5 we can in polynomial time construct a graph G′ with weight
function w′ so that tlw′(G′) ≤ k ⇐⇒ tlw(G) ≤ k and so that w′(e) = 1 or
w′(e) = k for every edge e in E(G′). By Lemma 8 we can from such a G′ and w′

construct in polynomial time a G′′ so that tl(G′′) ≤ k ⇐⇒ tlw′(G′) ≤ k ⇐⇒
tlw(G) ≤ k.

Theorem 2. Determining whether tl(G) ≤ k for a given graph G is NP-
complete for every fixed k ≥ 2.

Proof. By Corollary 3, k-Treelength is NP-hard. As it is a special case of
Weighted k-Treelength it is also NP-complete.

5 Treelength Is Hard to Approximate

Having established that treelength is hard to compute, it is natural to ask how
well this parameter can be approximated. We say that a polynomial time algo-
rithm that computes a tree-decomposition of G is a c-approximation algorithm

On the Complexity of Computing Treelength 283

for treelength if there is an integer k so that on any input graph G, the length
l of the tree-decomposition returned by the algorithm satisfies the inequality
l ≤ c · tl(G)+k. Dourisboure and Gavoille have already given a 3-approximation
algorithm for treelength [6], and have conjectured that the parameter is approx-
imable within a factor 2. In this section we show that as a consequence of the
results in the above section, treelength in weighted graphs can not be approxi-
mated within a factor c < 3

2 unless P = NP . For the treelength of unweighted
graphs we give a weaker inapproximability result, and conjecture that there is
no c-approximation algorithm for treelength with c < 3

2 unless P = NP .

Lemma 9. If P �= NP then, for any c < 3
2 , there is no polynomial time algo-

rithm that on an input graph G returns a tree-decomposition of G with length
l ≤ c · tl(G).

Proof. Suppose there is such an algorithm ALG. We give a polynomial time
algorithm for 2-treelength, thereby showing that P = NP . On input G, run
ALG on G, and let l be the length of the tree-decomposition of G returned by
ALG. Answer “tl(G) ≤ 2” if l < 3 and “tl(G) > 2” otherwise. We now need to
show that tl(G) ≤ 2 if and only if l < 3. Assume l < 3. Then tl(G) ≤ l ≤ 2 as l is
an integer. In the other direction, assume tl(G) ≤ 2. In this case l ≤ c ·tl(G) < 3.

Unfortunately, Lemma 9 is not sufficient to prove that it is hard to approximate
treelength within a factor c < 3

2 . The reason for this is that an algorithm that
guarantees that l ≤ 4

3 tl(G) + 1 can not be used to recognize graphs with tree-
length at most 2 in the above manner. However, we can show that there can be
no c-approximation algorithms for the treelength of weighted graphs by using
the weights on the edges to “scale up” the gap between 2 and 3.

Theorem 3. If P �= NP then there is no polynomial time c-approximation
algorithm for weighted treelength for any c < 3

2 .

Proof. The proof is similar to the one for Lemma 9. Suppose there is a polynomial
time c-approximation algorithm ALG for weighted treelength of G, with c < 3

2 .
Let k be a non-negative integer so that on any graph G with weight function
w, ALG computes a tree-decomposition of G with length l < c · tl(G) + k. Now,
choose t to be the smallest positive integer so that (3

2 − c) · t ≥ k + 1. Let w be
a weight function on the edges of G so that for every edge (u, v), w((u, v)) = t.
Observe that tlw(G) = tl(G) · t. Run ALG on input (G,w) and let l be the
length with respect to w of the tree-decomposition returned by ALG. Answer
“tl(G) ≤ 2” if l < 3t and “tl(G) > 2” otherwise. We now need to show that
tl(G) ≤ 2 if and only if l < 3t. Assume l < 3t. Now, tl(G) · t = tlw(G) ≤ l < 3t.
Dividing both sides by t yields tl(G) < 3 implying tl(G) ≤ 2 as tl(G) is an
integer. In the other direction, assume tl(G) ≤ 2. In this case l ≤ c · tlw(G)+k =
c · tl(G) · t + k = 3

2 · tl(G) · t − (3
2 − c) · tl(G) · t + k ≤ 3t − (k + 1) + k < 3t.

This implies that the described algorithm is a polynomial time algorithm for
2-Treelength implying P = NP

In fact, it does not seem that treelength should be significantly harder to compute
on weighted than unweighted graphs. The hardness proof for k-Treelength is a

284 D. Lokshtanov

reduction directly from weighted k-Treelength. Also, the exact algorithm given
in the next section works as well for computing the treelength in weighted as in
unweighted graphs. We feel that together with Lemma 9 and Theorem 3 this is
strong evidence to suggest that unless P = NP , treelength is inapproximable
within a factor c < 3

2 , also in unweighted graphs. We state this in the following
conjecture.

Conjecture 1. If P �= NP then there is no polynomial time c-approximation
algorithm for treelength for any c < 3

2 .

6 An Exact Algorithm the Chordal Sandwich Problem

In this section we give an exact algorithm that solves the Chordal Sandwich
problem. The running time of this algorithm is O∗(1.8899n). In fact, the algo-
rithm can be obtained by a quite simple modification of an exact algorithm to
compute treewidth and minimum fill in given by Fomin et. al [8]. Together with
Observation 2 this gives a O∗(1.8899n) algorithm to compute the treelength of
a graph. The algorithm applies dynamic programming using a list of the input
graph’s minimal separators and potential maximal cliques.

In order to state and prove the results in this section, we need to introduce
some notation and terminology. Given two vertices u and v of G, a minimal u-
v-separator is an inclusion minimal set S ⊆ V so that u and v belong to distinct
components of G \ S. A minimal separator is a vertex set S that is a minimal
u-v-separator for some vertices u and v. We call a chordal supergraph H of G
for a minimal triangulation of G if the only chordal sandwich between G and H
is H itself. If C ⊆ V is a maximal clique in some minimal triangulation of G, we
say that C is a potential maximal clique of G. The set of all minimal separators
of G is denoted by Δ(G) and the set of all potential maximal cliques is denoted
by Π(G). By CG(S) we will denote the family of the vertex sets of the connected
components of G \ S. Thus, if the connected components of G \ S are G[C1]
and G[C2], CG(S) = {C1, C2}. A block is a pair (S,C) where S ∈ Δ(G) and
C ∈ C(S). A block is called full if S = N(C). For a block (S,C) the realization
of that block is denoted by R(S,C) and is the graph obtained from G[S ∪C] by
making S into a clique.

The proof of correctness for algorithm FCS is omitted due to space restric-
tions.

Theorem 4. Algorithm FCS returns TRUE if and only if there is a chordal
sandwich between G1 and G2.

Theorem 5. Algorithm FCS terminates in O∗(|Π1|) time.

Proof. Computing Δ1 from Π1 can be done in O∗(|Π1|) time by looping over
each potential maximal clique Ω ∈ Π1 and inserting N(C) into Δ1 unless already
present for every connected component C of G\Ω. F1 can be computed similarly
and then sorted in O∗(|Π1|) time. While building Δ1 and F1 we can store a

On the Complexity of Computing Treelength 285

Algorithm: Find Chordal Sandwich – FCS (G1, G2)

Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2) so that G1 ⊆ G2,
together with a list Π1 of all potential maximal cliques of G1 that
induce cliques in G2.

Output: TRUE if there is a chordal sandwich between G1 and G2, FALSE
otherwise.

Δ1 := {S ∈ Δ(G1) : There is an Ω ∈ Π1 so that S1 ⊂ Ω};
F1 := the set of all full blocks (S, C) so that S ∈ Δ1, sorted by |S ∪ C|;
Cs(R(S, C)) := FALSE for every pair of vertex sets S and C;

foreach full block (S, C) in F1 taken in ascending order do
foreach potential maximal clique Ω ∈ Π1 so that S ⊂ Ω ⊆ S ∪ C do

ok := TRUE;

foreach full block (Si, Ci) where Ci ∈ CG1(Ω) and Si = N(Ci) do
if Cs(R(Si, Ci)) = FALSE then

ok := FALSE;

Cs(R(S,C)) := R(S,C) ∨ ok;

if G1 is a clique then
RETURN TRUE;

else
RETURN

∨
S∈Δ1

∧
C∈C(S) Cs(R(S,C));

pointer from every full block (S,C) ∈ F to all potential maximal cliques Ω ∈ Π1

satisfying S ⊂ Ω ⊆ S ∪ C. Using these pointers, in each iteration of the second
foreach loop we can find the next potential maximal clique Ω to consider in
constant time. Furthermore, it is easy to see that each iteration of the second
foreach loop runs in polynomial time. Thus, the total running time is bounded
by O∗(

∑
(S,C)∈F1

|{Ω ∈ Π1 : S ⊂ Ω ⊆ S ∪ C}|) = O∗(
∑

Ω∈Π1
|{(S,C) ∈

F1 : S ⊂ Ω ⊆ S ∪ C}|). But as |{(S,C) ∈ F1 : S ⊂ Ω ⊆ S ∪ C}| ≤ n for
every potential maximal clique Ω, it follows that the algorithm runs in time
O∗(

∑
Ω∈Π1

|{(S,C) ∈ F1 : S ⊂ Ω ⊆ S ∪C}|) = O∗(|Π1|).

Theorem 6. [8] Π(G) can be listed in O∗(1.8899n) time. Thus |Π(G)| =
O∗(1.8899n).

Corollary 4. There is an algorithm that solves the Chordal Sandwich problem
in time O∗(1.8899n).

Proof. Compute Π(G). By Theorem 6 this can be done in O(1.8899n) time.
Now, for every Ω ∈ Π(G) we can test in O(n2) time whether it is a clique in G2.
If it is, insert Ω into Π1. We can now call algorithm FCS on G1, G2 and Π1,
and return the same answer as algorithm FCS. By Theorem 5 algorithm FCS
terminates in time O∗(|Π1|) = O∗(1.8899n) completing the proof.

286 D. Lokshtanov

Corollary 5. There is an algorithm that solves the Chordal Sandwich problem
in time O∗(2tw(G2)) where tw(G2) is the treewidth of G2.

Proof. For any tree-decomposition of G2, every clique of G2 is contained in some
bag in this tree-decomposition [12]. Thus, G2 has at most O∗(2tw(G2)) cliques.
We can list all cliques of a graph with a polynomial delay [13]. For every clique Ω
in G2 we can test whether it is a potential maximal clique of G1 in polynomial
time [2]. If it is, we insert Ω into Π1. Thus |Π1| = O∗(2tw(G2)). Finally, call
algorithm FCS on G1, G2 and Π1, and return the same answer as algorithm
FCS. By Theorem 5 algorithm FCS terminates in time O∗(|Pi1|) = O∗(2tw(G2))
completing the proof.

Corollary 6. There is an algorithm for Weighted k-Treelength that runs in time
O∗(1.8899n).

Proof. By Observation 2 tlw(G) ≤ k if and only if there is a chordal sandwich
between G and Gk

w. By Corollary 4 we can check this in time O∗(1.8899n).

7 Conclusion

We have proved that it is NP-complete to recognize graphs with treelength
bounded by a constant k ≥ 2. In addition we have proved that unless P = NP
there can be no approximation algorithm for the treelength of weighted graphs
with approximation factor better than 3

2 and conjectured that a similar result
holds for unweighted graphs. Finally we gave a O∗(1.8899n) algorithm to solve
the Chordal Sandwich problem and showed how it can be used to determine the
treelength of a graph within the same time bound. Dourisboure and Gavoille
provide two 3-approximation algorithms for treelength in [6], and propose a
heuristic that they conjecture is a 2-approximation algorithm. Thus there are
currently two unresolved conjectures about the approximability of treelength,
and resolving any of these would be of interest.

References

1. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

2. Bouchitte, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM Journal on Computing 31(1), 212–232 (2001)

3. Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9,
205–212 (1974)

4. Dourisboure, Y.: Compact routing schemes for bounded tree-length graphs and for
k-chordal graphs. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 365–378.
Springer, Heidelberg (2004)

5. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Sparse additive spanners for
bounded tree-length graphs. Theoretical Computer Science (to appear)

6. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.
Discrete Mathematics (to appear)

On the Complexity of Computing Treelength 287

7. Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for
minimum-weight vertex separators. In: 37th Annual ACM Symposium on Theory
of Computing (STOC), ACM, New York (2005)

8. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM Journal on Computing (submitted) (first appearance
at ICALP (2004)

9. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Jour-
nal of Mathematics 15, 835–855 (1965)

10. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graps. Journal of Combinatorial Theory B 16, 47–56 (1974)

11. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algo-
rithms 19(3), 449–473 (1995)

12. Heggernes, P.: Minimal triangulations of graphs: A survey. Discrete Mathemat-
ics 306(3), 297–317 (2006)

13. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques, pp.
260–272 (2004)

14. Walter, J.: Representation of rigid cycle graphs. PhD thesis (1972)

On Time Lookahead Algorithms for the Online

Data Acknowledgement Problem�

Csanád Imreh1 and Tamás Németh2

1 Department of Informatics, University of Szeged, Árpád tér 2,
H-6720 Szeged, Hungary
cimreh@inf.u-szeged.hu

2 Móra Ferenc Highschool, Kálvária sgt. 84, H-6724, Szeged, Hungary
tom@moraisk.hu

Abstract. In this work we investigate such online algorithms for the
data acknowledgement problem, which have extra information about the
arrival time of the packets in the following time interval of length c. We
present an algorithm with the smallest possible competitive ratio for the
maximum of delay type objective function. In the case of the sum of delay
type objective function we present an 1+O(1/c)-competitive algorithm.
Moreover we show that no algorithm may have smaller competitive ratio
than 1 + Ω(1/c2) in the case of that objective function.

Keywords: Online algorithms, lookahead, data acknowledgement.

1 Introduction

In the communication of a computer network the information is sent by pack-
ets. If the communication channel is not completely safe then the arrival of the
packets must be acknowledged. The TCP implementations are also using ac-
knowledgement of the packets (see [10]). In the data acknowledgement problem
we try to determine the time of sending acknowledgements. One acknowledge-
ment can acknowledge many packets but waiting for long time can cause the
resending of the packets and that results the congestion of the network. On the
other hand sending immediately an acknowledgement about the arrival of each
packet would cause again the congestion of the network.

The first online optimization model for determining the sending time of the
acknowledgements was developed in [4]. In the model each packet has an ar-
rival time, and at any time the algorithm has to make a decision about the
acknowledgement of the arrived packets without any information about the fur-
ther packets. Two objective functions are investigated. Both of them are the
convex combination of the number of acknowledgements and the total latency
cost assigned to the acknowledgements (with the coefficients γ, 1− γ). The dif-
ference is in the definition of the latency cost assigned to an acknowledgement.
� This research has been supported by the Hungarian National Foundation for Scien-

tific Research, Grant F048587.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 288–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Time Lookahead Algorithms 289

In the case of function fmax this is the maximum of the delays which the packets
have, in the case of fsum it is the sum of the delays of the packets acknowledged.

Optimal 2-competitive online algorithms are presented in both cases. Semi-
online algorithms with some lookahead properties are also considered. In the real
application the algorithms have to be online, they do not have lookahead infor-
mation about the further packets. On the other hand investigating lookahead al-
gorithms is also important for this problem (see [4]). Such algorithms can be used
to understand how useful some learning algorithm to estimate the further ar-
rivals of the packets can be. In the case of the fmax objective function it is enough
to know the arrival time of the next packet to achieve a 1-competitive algorithm.
On the other hand, in the case of the fsum function the knowledge of the next k
arrivals is not enough to have better competitive ratio than 2 for any constant k.

In this paper we investigate another version of lookahead property. Instead
of giving the knowledge of the arrival times of the next k packets we allow the
algorithm to see the arrival times of the packets in a time interval of length c.
This type of lookahead is called time lookahead property and it is investigated
in [2] for online vehicle routing problems. This new type of lookahead property
gives completely different results than the lookahead property investigated in [4].
In the case of the function fmax we can obtain a 1-competitive algorithm if c ≥
γ/(1−γ) and we can define a 2−c(1−γ)/γ-competitive algorithm for the smaller
values of c. We also prove that smaller competitive ratio can not be achieved.
In the case of the function fsum the new lookahead definition allows to achieve
smaller competitive ratio than 2. We present an algorithm with a competitive
ratio tending 1 in order of magnitude 1 + O(1/c) as c is increasing. We also
show that no 1-competitive algorithm may exist for constant size of lookahead
intervals, we prove a 1+Ω(1/c2) lower bound on the possible competitive ratio.
We also present the lower bound 2γ/(c(1− γ) + γ) for the smaller values of c.

There are some further results on the area of data acknowledgement. The
offline version of the problem with the function fsum is further investigated in [8]
where a faster, linear time algorithm is developed for its solution. Randomized
online algorithms are considered in [7] and [9]. In [7] an e/(e − 1)-competitive
algorithm is given for the solution of the problem. In [9] it is shown that no
online randomized algorithm can have smaller competitive ratio than e/(e− 1).

Some further objective functions are investigated in [1] and [6]. In [1] the ob-
jective function is the sum of the number of acknowledgements and the maximum
delay of the packets. A generalized version of the function where the maximum
delay is on the power p is also investigated. In both cases optimal online algo-
rithms are presented, in the case of p = 1 the algorithm has the competitive ratio
π2/6, in the general case the competitive ratio can be given by Riemann’s zeta
function, it tends to 1.5 as p tends to ∞. The paper contains also lower bounds
on the competitive ratio of randomized algorithms. In [6] a further cost function
is investigated, which can be considered as an extension of fmax, and it is also re-
quired that the difference between the times of the acknowledgements is at least
one time unit. In that paper optimal (1+

√
5)/2-competitive deterministic and an

optimal (
√

3 + 1)/2-competitive randomized algorithm are presented. Moreover

290 C. Imreh and T. Németh

a class of algorithms which are allowed to use only a limited number of random
bits is also investigated. A more general problem than the data acknowledgement
problem is investigated in [5]. In that paper an online problem motivated by ser-
vice call management is considered. The model in the case of two customers can
be considered as a generalization of the data acknowledgement problem.

Semi-online algorithms with lookahead are investigated for several online op-
timization problems. We do not collect all of these results here, we just mention
here the most recent paper on online vehicle routing ([2]), one can find further
examples in its list of references.

2 Preliminaries

We use the mathematical model which was defined in [4]. In the model the
input is the list of the arrival times a1, . . . , an of the packets. We also denote
the packets by their arrival time. The decision maker has to determine when to
send acknowledgements, these times are denoted by t1, . . . , tk. We consider the
objective function

γk + (1− γ)
k∑

j=1

Lj ,

where k is the number of the sent acknowledgements and Lj is the extra la-
tency belonging to the acknowledgement tj and γ ∈ (0, 1) is a constant. We
consider two different cases. We obtain the objective function fmax if Lj =
maxtj−1<ai≤tj (tj − ai), the maximal delay collected by j-th acknowledgement.
We obtain the objective function fsum if Lj =

∑
tj−1<ai≤tj

(tj − ai), the sum of
the delays collected by the j-th acknowledgement.

In the on-line problem at time t the decision maker only knows the arrival
times of the packets already arrived and has no information about the further
packets. We consider a semi-online model with time lookahead c, where at time
t the decision maker knows the arrival times of the packets already arrived and
also knows the arrival times of the packets arriving in the time interval (t, t+ c].
We denote the set of the unacknowledged packets at the arrival time ai by σi.
For an arbitrary list L of packets and an algorithm A, we denote by A(L) the
total cost of the acknowledgements sent by algorithm A on list L. The total
cost of sending optimally the acknowledgements is denoted by OPT (L). We
use the competitive analysis to evaluate the algorithms, as it is usual in the
case of online and semi-online algorithms ([3]). An algorithm is d-competitive
if A(I) ≤ d · OPT (I) is valid for every input I. The competitive ratio of an
algorithm is the smallest number d for which the algorithm is d-competitive.

We will examine time lookahead extensions of the online alarming algorithms
defined in [4], thus we recall here the definition of these algorithms. An alarming
algorithm works as follows. At the arrival time aj an alarm is set for time aj +ej .
If no packet arrives before time aj +ej, then an acknowledgement is sent at time
aj + ej which acknowledges all of the unacknowledged packets. Otherwise at the
arrival of the next packet at time aj+1 the alarm is reset for time aj+1 + ej+1.

On Time Lookahead Algorithms 291

These algorithms are defined and analysed in [4]. In the case of function fmax the
alarming algorithm which uses the value ej = γ/(1− γ) for each j is an optimal
2-competitive algorithm. In the case of function fsum the alarming algorithm
which uses the value ej = (γ/(1 − γ) −

∑
ai∈σj

(aj − ai))/|σj | for each j is an
optimal 2-competitive algorithm. (It is worth noting that in this case ej is chosen
to balance the two types of cost, if no further packet arrives than sending an
acknowledgement at time aj + ej has latency cost γ).

3 The fmax Objective Function

3.1 Algorithm

In [4] it is shown that the optimal offline solution has a very simple structure in
the case of function fmax. The following statement is valid.

Proposition 1. Under fmax there exists an optimal solution S that places an
acknowledgement at aj if and only if aj+1 − aj ≥ γ/(1− γ).

We consider two cases depending on the value of c. When c ≥ γ/(1 − γ), then
we obtain a 1-competitive algorithm easily. The size of the lookahead interval
is large enough to determine whether aj+1 − aj > γ/(1 − γ) is valid or not,
thus an algorithm with lookahead c can find the optimal solution described in
Proposition 1.

The case when c < γ/(1 − γ) is more interesting. We define for this case an
extended version of the alarming algorithm developed in [4]. This time lookahead
alarming algorithm (TLA in short) works as follows. At the arrival time aj an
alarm is set for time aj + γ/(1 − γ) − c. If the packet aj+1 arrives before the
alarm or we can see aj+1 at time aj + γ/(1 − γ) − c in the lookahead interval
(aj + γ/(1 − γ) − c, aj + γ/(1 − γ)] then we postpone the alarm to the time
aj+1 + γ/(1− γ)− c. In the opposite case (no packet arrives in the time interval
(aj , aj +γ/(1−γ)]) an acknowledgement is sent at time aj +γ/(1−γ)− c which
acknowledges all of the unacknowledged packets.

Theorem 1. TLA is max{1, 2− 1−γ
γ c}-competitive.

Proof. First we show that the algorithm is 2 − 1−γ
γ c-competitive. Consider an

arbitrary input sequence a1, . . . , an. Partition the sequence into phases. Let
S1 = {a1, . . . , ak(1)} where k(1) is the first index with the property ak(1)+1 −
ak(1) ≥ γ/(1 − γ). The other phases are defined in the same way Sj+1 =
{ak(j)+1, . . . , ak(j+1)} where k(j + 1) is the first index after k(j) with the prop-
erty ak(j+1)+1 − ak(j+1) ≥ γ/(1− γ). The last phase is ended by the last packet.
We will also use the value k(0) = 0.

Then an optimal offline algorithm sends an acknowledgement at the last
packet of each phase. Therefore it has the total cost OPT (Sj) = γ + (1 −
γ)(ak(j) − ak(j−1)+1) for the acknowledgement of the j-th phase. On the other
hand TLA sends the acknowledgement for the phase at time ak(j) +γ/(1−γ)−c,

292 C. Imreh and T. Németh

thus it has a total cost TLA(Sj) = γ + (1− γ)(ak(j) + γ/(1− γ)− c− ak(j−1)+1)
for the acknowledgement of the j-th phase. We have TLA(Sj)/OPT (Sj) > 1,
thus decreasing both values by the same constant increases the ratio. Therefore
we obtain that

TLA(Sj)
OPT (Sj)

≤ γ + (1− γ)(γ/(1− γ)− c)
γ

= 2− 1− γ

γ
c.

Since the total cost is the sum of the costs of the phases, thus we obtain that
TLA is 2− 1−γ

γ c-competitive.

3.2 Lower Bound

TLA has the smallest possible competitive ratio, as the following statement
shows.

Theorem 2. No semi-online algorithm with lookahead c may have smaller com-
petitive ratio than max{1, 2− 1−γ

γ c}.

Proof. If c ≥ γ/(1−γ) then the statement is obviously true, thus we can assume
that c < γ/(1 − γ). Consider an arbitrary online algorithm, denote it by A.
Define the following input sequence denoted by In. The arrival time of the first
packet is a1 = 0, then the i-th packet arrives (i = 2, . . . , n) c time units after
the acknowledgement of the i− 1-th packet (ai = ti−1 + c).

We partition the input sequence into phases in the same way as in the proof
of Theorem 1. Denote the phases by S1, . . . , Sj . Consider the phase Si. To sim-
plify the notation denote the value k(i)− k(i− 1) by ri. Algorithm A sends an
acknowledgement for each packet thus we obtain that

A(Si) = γri + (1 − γ)
k(i)∑

p=k(i−1)+1

(tp − ap).

The optimal solution sends only one acknowledgement at time ak(i) thus

OPT (Si) = γ + (1− γ)
(k(i)−1∑

p=k(i−1)+1

(tp − ap) + c(ri − 1)
)
.

Now suppose that i < j. If we calculate A(Si) − (2 − 1−γ
γ c)OPT (Si) and

we use that tp − ap ≤ γ/(1 − γ) − c for p = k(i − 1) + 1, . . . , k(i) − 1 and
tk(i) − ak(i) > γ/(1− γ)− c then we obtain that

A(Si)−(2− 1− γ

γ
c)OPT (Si) ≥ γ(ri−2+

1− γ

γ
c)+(1−γ)

((1− γ

γ
c−2

)
(ri−1)c+

(ri − 1)
(1− γ

γ
c− 1

)(γ

1− γ
− c

)
+

γ

1− γ
− c

)
= γ(ri − 2 +

1− γ

γ
c)−

(1− γ)(ri − 1)c + (ri − 1)((1− γ)c− γ) + γ − c(1− γ) = 0.

On Time Lookahead Algorithms 293

In the second equality we simplified the formula by eliminating (ri−1)(1−γ
γ c−1)c

which can be found in the formula with the coefficients +1 and −1.
Therefore we proved that A(Si) ≥ (2 − 1−γ

γ c)OPT (Si) if i < j. In the case
of Sj there is only one difference, we cannot state that the inequality tk(j) −
ak(j) > γ/(1− γ)− c is valid. But we can prove in the same way as above that
A(Sj) + γ/(1− γ)− c ≥ (2 − 1−γ

γ c)OPT (Sj).
Since the total cost is the sum of the costs of the phases, thus we obtain that

A(In) + γ/(1− γ)− c ≥ (2 − 1−γ
γ c)OPT (In). On the other hand as n tends to

∞ the value of OPT (In) also tends to ∞, thus the above inequality shows that
A(In)/OPT (In) can be arbitrarily close to 2− 1−γ

γ c thus the competitive ratio
of A can not be smaller than 2− 1−γ

γ c.

4 The Sum Objective Function

4.1 Algorithms

It is a straightforward idea to also use the time lookahead extension of the
alarming algorithm from [4] in this case. We can define the TLA extension of
the alarming algorithm for this case as follows. At the arrival time aj an alarm is
set for time aj + ej where ej = (γ/(1− γ)−

∑
ai∈σj

(aj − ai))/|σj |. If the packet
aj+1 arrives before the time max{aj, aj +ej−c} or we can see aj+1 at this time in
the lookahead interval, then we move to aj+1 and reset the alarm. In the opposite
case (no packet arrives in the time interval (aj , aj + ej]) an acknowledgement is
sent at time max{aj, aj + ej − c} which acknowledges all of the unacknowledged
packets. Unfortunately this lookahead extension of the algorithm does not make
it possible to achieve a smaller competitive ratio than 2.

Theorem 3. The competitive ratio of TLA is 2 for arbitrary c.

Proof. The cost of this algorithm is at most the cost of the online alarm-
ing algorithm from [4] on any input, thus it follows immediately that TLA
is 2-competitive from the result that the online alarming algorithm is
2-competitive. TLA has no better performance as the following input sequence
shows. Let In = {a1, . . . , a2n+1} where a1 = 0 and a2i = iγ/(1 − γ) + (i − 1)ε,
a2i+1 = iγ/(1− γ) + iε for i = 1, . . . , n. Then TLA sends the acknowledgements
at a2, . . . , a2n,max{a2n+1, a2n+1 + γ/(1− γ)− c}. Thus TLA(In) = (n + 1)γ +
nγ+(1−γ) max{0, γ/(1−γ)−c}. An optimal offline algorithm sends an acknowl-
edgement at a1, a3, a2n+1 and it has the cost OPT (In) = (n + 1)γ + (1 − γ)nε.
The ratio of the costs tends to 2 as ε tends to 0 and n tends to ∞, and this
yields that the competitive ratio is at least 2.

In the case when c > γ/(1−γ) we can achieve smaller competitive ratio than 2 by
the following algorithm. We present the Lookahead Interval Planning Algorithm
(LIP in short). The algorithm partitions the packets into blocks and for each
block determines the acknowledgments based on an offline optimal solution.
The block always starts at the first unacknowledged packet. First the algorithm

294 C. Imreh and T. Németh

examines whether there exist packets ai, ai+1 in the c length lookahead interval
with the property ai+1−ai > γ/(1−γ). If there exists such pair, then the block is
ended at the first such ai, otherwise the block has length c. Then LIP calculates
the optimal solution of the offline acknowledgement problem for the packets
in the block, it can use one of the algorithms which solves the offline problem
(such algorithms are presented in [4] and [8]) and sends the acknowledgements
according to this solution and considers the next block.

Theorem 4. LIP is 1 + γ
(1−γ)c -competitive.

Proof. To prove that LIP is 1 + γ
(1−γ)c -competitive consider an arbitrary input

I. Divide the input into phases in the same way as in the proof of Theorem
1. Let us observe that there exists an offline optimal algorithm which sends an
acknowledgement at the last packet of each phase. (Because, if last packet of
the phase is delayed, it incurs a delay cost of more than (1 − γ)(γ/(1 − γ)) =
γ, whereas it incurs a communication cost of exactly γ if it is acknowledged.
Furthermore let us observe that the last packet of a phase is always a last packet
of some block, thus LIP also sends an acknowledgement at the last packet of the
phase.

Consider an arbitrary phase Si. Denote by r the number of blocks in the
phase. Consider an optimal solution of the phase. If we extend it with r − 1
further acknowledgements on the end of the first r − 1 blocks, then we obtain a
solution which acknowledges the blocks separately. But LIP gives the best such
solution therefore we obtain that (r − 1)γ + OPT (Si) ≥ LIP (Si) which yields
that LIP (Si)/OPT (Si) ≤ 1 + (r − 1)γ/OPT (Si).

Consider the value of OPT (Si). Since each block is in the same phase, thus
the length of each of the first r−1 blocks is c, therefore the length of the phase is
at least (r−1)c. Suppose that the optimal offline algorithm sends k acknowledge-
ments in this phase. Then after each of the first k−1 acknowledgement there is an
at most γ/(1−γ) length interval without packet. This yields that in this case the
total latency cost of OPT is at least (1−γ)((r−1)c−(k−1)γ/(1−γ)). Therefore
OPT (Si) ≥ kγ+(1−γ)((r−1)c− (k−1)γ/(1−γ)) = (1−γ)(r−1)c+γ. On the
other hand if we use this bound we obtain that LIP (Si)/OPT (Si) ≤ 1 + γ

(1−γ)c .

4.2 Lower Bounds

First we give a lower bound on the order of magnitude of the possible competitive
ratio. This bound is useful for large lookahead intervals, it shows that no constant
size lookahead is enough to achieve 1-competitiveness in the case of the fsum

function.

Theorem 5. No online algorithm may have smaller competitive ratio than 1 +
Ω(1/c2).

Proof. To simplify the calculation suppose that c = γ(k − 1/4)/(1 − γ), where
k ≥ 1 is an integer. We can assume that without loss of generality since allowing
larger lookahead can not increase the competitive ratio and we are proving lower

On Time Lookahead Algorithms 295

bound on the order of magnitude of the possible competitive ratio. Consider an
arbitrary algorithm A with lookahead c. Let x = γ(2k+1)

4k(1−γ) and y = γ/2(1 − γ).
Define the following sequences for each j = 1, . . . , k.

– Sxjx = {a1, a2, . . . , a2j} where a2i−1 = (i−1)x+(i−1)y and a2i = ix+(i−1)y
for i = 1, . . . , j. Let us note that a2k = c in Sxkx.

– Sxjy = {a1, a2, . . . , a2j+1} where a2i−1 = (i−1)x+(i−1)y for i = 1, . . . , j+1
and a2i = ix + (i− 1)y for i = 1, . . . , j.

– Syjy = {a1, a2, . . . , a2j} where a2i−1 = (i−1)y+(i−1)x and a2i = iy+(i−1)x
for i = 1, . . . , j.

– Syjx = {a1, a2, . . . , a2j+1} where a2i−1 = (i−1)y+(i−1)x for i = 1, . . . , j+1
and a2i = iy + (i− 1)x for i = 1, . . . , j.

Since γ + (1 − γ)(2y + x) = 2γ + (1 − γ)x, thus we obtain that there exist
optimal solutions for the above defined sequences which never acknowledge more
than 2 packets with one acknowledgement. Using this observation the following
lemma can be easily proven by induction.

Lemma 1. For each 1 ≤ j ≤ k we have OPT (Sxjy) = OPT (Syjx) = γ(j + 1) +
(1− γ)jy, OPT (Sxjx) = γj + (1− γ)jx, OPT (Syjy) = γj + (1− γ)jy.

Give Sxkx as the first part of the input to A and wait till time y. Suppose that the
algorithm sends an acknowledgement at time z ≤ y. Then it acknowledges the
packet a1 and it has to handle the remaining part which is Sy(k−1)x. Therefore
by Lemma 1 we obtain that A(Sxkx) ≥ γ + (1 − γ)z + kγ + (1 − γ)(k − 1)y.
Therefore we obtain that

A(Sxkx)
OPT (Sxkx)

≥ (k + 1)γ + (1− γ)(k − 1)y
kγ + k(1− γ)x

= 1 +
1

6k + 1
.

Now suppose that A does not send an acknowledgement before time y. Then
at time y + c a further packet arrives, thus the input is Sxky. The algorithm
observes this packet at time y. If it acknowledges the first packet before time x
then A(Sxky) ≥ γ + (1 − γ)y + OPT (Syky). Therefore by Lemma 1 we obtain
that the following inequality for this case:

A(Sxky)
OPT (Sxky)

≥ (k + 1)γ + (1 − γ)(k + 1)y
(k + 1)γ + (1− γ)ky

= 1 +
1

3k + 2

Finally, suppose that A does not send an acknowledgement before time x.
If it sends its first acknowledgement later than x then its total cost is increas-
ing, therefore we can assume that the first acknowledgement is sent at time x.
Then the algorithm acknowledges the first two packets and the remaining part
is Sx(k−1)y, thus we obtain A(Sxky) ≥ γ + (1− γ)x+OPT (Sx(k−1)y). Therefore
by Lemma 1 we obtain that the following inequality for this case:

A(Sxky)
OPT (Sxky)

≥ (k + 1)γ + (1− γ)(x + (k − 1)y)
(k + 1)γ + (1− γ)ky

≥ 1 +
1

6k2 + 4k

Since we examined all of the possible cases, we proved the statement of the
theorem.

296 C. Imreh and T. Németh

The above bound does not give better value than 1 in the case when the algorithm
has only a small lookahead interval. We also show a lower bound for c ≤ γ/(1−γ)
by extending the technique which is used to prove a lower bound in [4].

Theorem 6. No online algorithm with lookahead c can have smaller competitive
ratio than 2γ/(c(1− γ) + γ).

Proof. Consider an arbitrary on-line algorithm denote it by A. Analyze the
following input. Consider a long sequence of packets where the packets al-
ways arrive c time units after the time when A sends an acknowledgement
(tj + c = aj+1). Then the on-line cost of a sequence containing 2n + 1 pack-
ets is A(I2n+1) = γ(2n+ 1) + (1− γ)

∑2n+1
i=1 (ti− ai). Consider the following two

offline algorithms. ODD sends the acknowledgements after the odd numbered
packets and after the last packet, and EV sends the acknowledgements after the
even numbered packets.

Then the costs achieved by these algorithms are

EV(I2n+1)=(n+1)γ+(1−γ)
n∑

i=1

(a2i+1−a2i)=(n+1)γ+(1−γ)(nc+
n∑

i=1

(t2i−a2i))

and

ODD=(n+1)γ+(1−γ)
n∑

i=1

(a2i−a2i−1)=(n+1)γ+(1−γ)(nc+
n∑

i=1

(t2i−1−a2i−1)).

On the other hand none of the costs achieved by ODD and EV is smaller than
the optimal offline cost, thus OPT (I2n+1) ≤ min{EV (I2n+1),ODD(I2n+1)} ≤
(EV (I2n+1) + ODD(I2n+1))/2. Therefore we obtain that

A(I2n+1)

OPT (I2n+1)
≥ 2(γ(2n + 1) + (1− γ)

∑2n+1
i=1 (ti − ai))

γ(2n + 2) + (1− γ)(
∑2n

i=1(ti − ai) + 2nc)
≥2− 2γ + 4nc(1 − γ)

γ(2n + 2) + 2nc(1− γ)
.

The ratio which we obtained as a lower bound on A(I2n+1)/OPT (I2n+1) tends
to 2γ/(c(1− γ) + γ) as n tends to ∞, and this proves the theorem.

References

1. Albers, S., Bals, H.: Dynamic TCP acknowledgement: Penalizing long delays. SIAM
J. Discrete Math. 19(4), 938–951 (2005)

2. Allulli, L., Ausiello, G., Laura, L.: On the power of lookahead in on-line vehicle
routing problems. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 728–
736. Springer, Heidelberg (2005)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis, Cam-
bridge University Press (1998)

4. Dooly, D.R., Goldman, S.A., Scott, S.D.: On-line analysis of the TCP acknowledg-
ment delay problem. J. ACM 48(2), 243–273 (2001)

5. Epstein, L., Kesselman, A.: On the remote server problem or more about TCP
acknowledgments. Theoretical Computer Science 369(1-3), 285–299 (2006)

On Time Lookahead Algorithms 297

6. Frederiksen, J.S., Larsen, K.S., Noga, J., Uthaisombut, P.: Dynamic TCP acknowl-
edgment in the LogP model. Journal of Algorithms 48(2), 407–428 (2003)

7. Karlin, A.R., Kenyon, C., Randall, D.: Dynamic TCP acknowledgement and other
stories about e/(e-1). Algorithmica 36, 209–224 (2003)

8. Noga, J., Seiden, S.S., Woeginger, G.J.: A faster off-line algorithm for the TCP
acknowledgement problem. Information Processing Letters 81(2), 71–73 (2002)

9. Seiden, S.S.: A guessing game and randomized online algorithms. In: Proceedings
of STOC, pp. 592–601 (2000)

10. Stevens, W.R.: TCP/IP Illustrated, Volume I. The protocols, Addison Wesley,
Reading (1994)

Real Time Language Recognition on 2D Cellular

Automata: Dealing with Non-convex
Neighborhoods

Martin Delacourt and Victor Poupet

LIP (UMR 5668 — CNRS, ENS Lyon, UCB Lyon, INRIA), ENS Lyon,
46 allée d’Italie, 69364 LYON cedex 07, France

martin.delacourt@ens-lyon.fr, victor.poupet@ens-lyon.fr

Abstract. In this paper we study language recognition by two-
dimensional cellular automata on different possible neighborhoods. Since
it is known that all complete neighborhoods are linearly equivalent we
focus on a natural sub-linear complexity class: the real time.

We show that any complete neighborhood is sufficient to recognize in
real time any language that can be recognized in real-time by a cellular
automaton working on the convex hull of V .

1 Introduction

Cellular automata are a widely studied computing model, very well suited for
studying parallel computing (as opposed to most other models such as Turing
machines or RAM machines). It is made of infinitely many elementary machines
of finite memory (the cells) that evolve synchronously at discrete times according
to the states of their neighbors. All cells have the same transition rule and can
only see their neighbors. Because of the parallel behavior, it is easy to consider
cellular automata in any dimension d ∈ N (the cells are arranged on Zd). It is
known that cellular automata are Turing universal [1,8].

The neighborhood of a cellular automaton (the set of cells whose states a
given cell can see before changing its own) defines the possible communication
between all the cells, and therefore the “geography” of the machine: the neigh-
borhood of a cell is the set of cells from which it can get information in one
time step, the neighborhood of the neighborhood is the set from which it can
receive information in two time steps, and so on. In that way, the neighborhood
defines the shortest paths to exchange information from one point to the other.
As such, it can have a great impact on the possible computations that are held
on an automaton.

An important result concerning computations on different neighborhoods is
due to S. Cole [2] and states that two neighborhoods are either linearly equivalent
(any computation that can be done in time T on one can be done in time k · T
on the other for some constant k) or that there exists a cell c ∈ Zd such that
information can go from c to the origin in one of the neighborhoods but not in
the other. If we consider neighborhoods that allow communications between any

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 298–309, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Real Time Language Recognition on 2D Cellular Automata 299

two cells (which are the most interesting because they can perform all possible
computations), we will want to consider sub-linear complexity classes in order
to distinguish them. The real time is especially well suited for this study: it
corresponds to the shortest possible time so that any letter of the input word
could have an impact on the acceptance of the word (we will only deal with
language recognition here). This real time depends on the chosen neighborhood.

In one dimension (when the cells are arranged on Z) most studies were done
on the standard neighborhood {−1, 0, 1} (each cell can see its own state and that
of its left and right neighbor) and the one-way neighborhood {0, 1} (cells can
only see their own state and their right neighbor’s). It has been shown that these
two neighborhoods are different [4,6,11](mainly because information can only go
in one direction on the one-way neighborhood) and many algorithmic results are
known [3,5,9,10]. If we only consider neighborhoods that are “complete enough”
to perform language recognition (all letters of the input word can affect the out-
come of the computation), we have shown in 2005 a stronger version of Cole’s
equivalence: all neighborhoods are real-time equivalent to either the one-way or
standard neighborhood [7]. This was done by showing that it was possible to
recognize the same languages in real time on non-convex neighborhoods (neigh-
borhoods that had “holes”, for example when a cell c can see (c + 2) but not
(c + 1)) than on convex ones.

In two dimensions, the situation is more complicated. Even by only con-
sidering complete neighborhoods it is known that the two more studied
neighborhoods (the von Neumann and the Moore neighborhoods) are not real
time equivalent [12].

In this article we will generalize the work that we had previously done in
one-dimension and show that any language that is recognized in real time by a
cellular automaton working on the convex hull of a complete neighborhood V
can be recognized in real time by a cellular automaton working on V .

To alleviate the notations, we will only consider two-dimensional cellular au-
tomata in this article. All results can however easily be generalized to higher
dimensions. The only result that might seem complicated to generalize would be
Theorem 1, but it can be stated and proved similarly, by considering periodic
volumes, surfaces, etc. and finite sets in the vincinity of the vertices. Theorem 1
is itself a two-dimensional generalization of Theorem 2.1 from [7].

2 Language Recognition by Cellular Automata

2.1 Cellular Automata

Definition 1. A two-dimensional cellular automaton (2DCA) is a triple A =
(Q, V, f) where

– Q is a finite set called set of states containing a special quiescent state #;
– V = {v1, . . . , v|V |} ⊆ Z2 is a finite set called neighborhood that contains 0.
– f : Q|V | → Q is the transition function. We have f(#, . . . ,#) = #.

300 M. Delacourt and V. Poupet

For a given automaton A, we call configuration of A any function C from Z2

into Q. The set of all configurations is therefore QZ2
. From the local function f

we can define a global function F

F : QZ2 → QZ2

C #→ C′ | ∀x ∈ Z2,C′(x) = f(C(x + v1), . . . ,C(x + v|V |))

Elements of Z2 are called cells. Given a configuration C, we’ll say that a cell
c is in state q if C(c) = q.

If at time t ∈ N the 2DCA is in a configuration C, we’ll consider that at time
(t + 1) it is in the configuration F (C). We can therefore define the evolution of
a 2DCA from a configuration. This evolution is completely determined by C.

2.2 Two-Dimensional Language Recognition

Definition 2. Given a finite alphabet Σ and two integers n1 and n2, we define
the set of two-dimensional words of size (n1, n2) over the alphabet Σ as:

Σ(n1,n2) = Σ�0,n1−1�×�0,n2−1�

The set of all two-dimensional words over Σ is defined as:

Σ∗∗ =
⋃

n1∈N,n2∈N

Σ(n1,n2)

Two-dimensional words over Σ can be seen as rectangular grids of size n1 × n2

containing letters of Σ.

Definition 3. A language over an alphabet Σ is a subset of Σ∗∗.

Definition 4. We consider a 2DCA A = (Q, V, f) and a set Qacc ⊆ Q of
accepting states. Let w ∈ Σ(n1,n2) be a word over a finite alphabet Σ ⊆ Q. We
define the configuration Cw as follows.

Cw : Z2 → Q{
(x, y)
(x, y)

#→
#→

w(x, y)
#

if (x, y) ∈ �0, n1 − 1�× �0, n2 − 1�
otherwise

We’ll say that the 2DCA A recognizes the word w with accepting states Qacc

in time tw if, starting from the configuration Cw at time 0, the cell 0 is in a state
in Qacc at time tw.

Definition 5. Let A = (Q, V, f) be a 2DCA and L ⊆ Σ∗∗ a language on the
alphabet Σ ⊆ Q. For a given function T : N2 → N, we’ll say that the language
L is recognized by A in time T if there exists a set Qacc ⊆ Q such that, for all
words w of size (n1, n2) in Σ∗∗, the 2DCA A recognizes w with accepting states
Qacc in time T (n1, n2) if and only if w ∈ L.

Real Time Language Recognition on 2D Cellular Automata 301

3 Iterated Neighborhoods

Definition 6. Given two neighborhoods V1, V2 ⊆ Z2, we define

V1 + V2 = {v1 + v2 | v1 ∈ V1 and v2 ∈ V2}

Given a neighborhood V , we define its iterations as V 0 = {0} and for all k ∈ N,
V k+1 = V k + V and its multiples as kV = {k · v | v ∈ V }.

Definition 7. A neighborhood V ∈ Z2 is said to be complete if
⋃

k∈N V k = Z2.

Definition 8. The continuous convex hull of a neighborhood V , denoted
CCH(V), is the smallest convex polygon (in R2) that contains V . The (discrete)
convex hull of V , denoted CH(V), is the set of all points of Z2 that are in the
continuous convex hull of V .

Definition 9. For a given neighborhood V , the vertices of the polygon CCH(V)
are all elements of V (and therefore elements of Z2). We will call them the
vertices of V .

When considering the set {s1, . . . , sp} of vertices of a neighborhood, we will
always order them as they appear when going clockwise around CCH(V). We
will also consider the indexes modulo p (the number of vertices), meaning that
s0 = sp and sp+1 = s1.

3.1 General Form of Iterated Complete Neighborhoods

In this whole subsection V is a complete neighborhood. We will study the shape
of the successive iterations of V . First of all, we define the integer tc = min{t ∈
N | CH(V)2 ⊆ V tc+2}.

We know that tc is correctly defined because V is complete so there exists an
integer t such that CH(V)2 ⊆ V t. We have the following proposition:

Proposition 1. For all integers t ≥ 2,

CH(V)t ⊆ V tc+t ⊆ CH(V)tc+t

Proof. The rightmost inclusion is immediate because V ⊆ CH(V). The other
inclusion can be shown by induction using the fact that V +CH(V)2 = CH(V)3.

We have the following theorem:

Theorem 1. For any two-dimensional complete neighborhood V , if we denote
by (s1, s2, . . . , sp) its vertices, there exists an integer ts such that:

– for all i ∈ �1, p�, there is a set Ai ⊆ V ts+tc \ V ts ,
– for all integer i ∈ �1, p�, there is a set Bi included in the trapezoid of sides

hi = (si+1 − si), tc · si+1, −tc · hi and −tc · si.
– for any integer t ∈ N, the neighborhood V tc+ts+t is exactly the union of the

following sets:

302 M. Delacourt and V. Poupet

• CH(V)ts+t,
• (Ai + t · si) for all i ∈ �1, p�,
• copies of Bi arranged regularly (translation of vector hi) on the outer

strip of the cone (si, si+1) to cover the area that isn’t covered by the Ai.

The general form of V tc+ts+t (as described by Theorem 1) is illustrated by
Figure 1 for two different values of t.

A1

A2

A3A4

A5

A1

A2

A3A4

A5

Fig. 1. General form of V tc+ts+t (the fillings of the dashed trapezoids are all identical
on a given strip)

Even though it is hard to state clearly, Theorem 1 is very important because
it shows that no matter how irregular V is, it becomes “regular” after a certain
number of iterations.

4 Main Theorem

This whole section will be dedicated to the proof of the following theorem

Theorem 2. Given a complete neighborhood V in d dimensions (d ∈ N), any
language that can be recognized in real time by a 2DCA working on the convex
hull of V can be recognized in real time by a 2DCA working on V .

To prove this theorem, we’ll consider a complete neighborhood V and language
L recognized in real time by a 2DCA A working on CH(V). We will then describe
the behavior of a 2DCA A′ working on the neighborhood V that recognizes L
in real time. We define tc as previously.

Real Time Language Recognition on 2D Cellular Automata 303

4.1 General Behavior of A′

To describe the behavior of A′, we will consider a two-dimensional word w and
describe the evolution of A′ on this input. Since the evolution of A′ will mimick
that of A, it will be convenient to denote by 〈c〉t the state in which the cell c is at
time t in the evolution of A starting from the initial configuration corresponding
to the word w (for instance 〈0〉0 is the lowest and leftmost letter of w).

For some large enough integer t0 depending on V (we’ll explain later how to
choose t0) the automaton A′ will spend the first t0 steps gathering all possible
information on each cell.

After t0 generations, any cell c knows therefore all states {〈c + x〉0 | x ∈ V t0}.
If V t0 is different from CH(V)t0 there are some states in CH(V)t0(c) that c
doesn’t know. All cells will however assume that the states that they don’t know
in their neighborhood CH(V)t0 are #. Obviously, many of these assumptions
are false at time t0, but for cells close enough to the borders of the input word
some of these assumptions are true.

The cells of A′ will now apply the transition rule of A to all the states they
hold (including the ones they assume). Hence, at time (t0 + t) each cell c of A′

holds a set of states that it assumes to be the states {〈c + x〉t | x ∈ CH(V)t0}.

4.2 Propagation of Correct Assumptions

As previously, we denote by {s1, . . . , sp} the set of all vertices of V (ordered
clockwise). For all i ∈ �1, p�, we separate the cone (si, si+1) of the neighborhood
CH(V)t0 in four parts:

– the inside triangle Ci of sides (t0 − tc)si and (t0 − tc)si+1 that we know is
totally included in V t0 ;

– a trapezoidal area Ti included in the remaining strip, whose parallel sides
lay on the inner and outter borders of the strip and whose two other sides
are parallel to the segments [si−1, si] and [si+1, si+2] of the convex hull of V ;

– the two parts Sd
i and Sg

i+1 that are left on each side of the central trapezoidal
area.

We also define Si = Sd
i ∪ Sg

i .
We choose t0 large enough so that V t0 is of the “stabilized form” described

by Theorem 1 (meaning that t0 ≥ tc + ts) and also that for all i the trapezoid Ti

doesn’t extend beyond the central periodic area of the outter strip of the cone
(si, si+1) on V t0 (when t grows, the central periodic area becomes arbitrarily
large so there is a time t0 such that we can choose Ti entirely inside of it).

Figure 2 illustrates the general form of such a splitting of CH(V)t0 .
If we consider a cell c of A′ at time (t0 + t), it knows correctly all states

{〈c + x〉t | x ∈ Ci} for all i but not necessarily all states in the other regions.
For all i, we will say that a cell is (si, si+1)-correct if all the assumptions it

makes in the area (c + Ti) are correct. We will say that it is si-correct if it is
(si−1, si)-correct, (si, si+1)-correct and that all the assumptions it makes in the
area (c + Si) are also correct. Figure 3 illustrates these definitions.

304 M. Delacourt and V. Poupet

S1

S2

S3S4

S5

T1

T2

T3

T4

T5 C1

C2

C3

C4

C5

Fig. 2. Splitting of CH(V)t0

Ci

Ti

si si+1

c

CiTi−1

Si

Ti

Ci−1

si si+1si−1
c

Fig. 3. Correct hypothesis of a (si, si+1)-correct (left) and a si-correct (right) cell

We can now prove the two following lemmas:

Lemma 1. If at time (t0 + t) the cells (c+ si) and (c+ si+1) are both (si, si+1)-
correct then at time (t0 + t + 1) the cell c is (si, si+1)-correct.

Lemma 2. If at time (t0 + t) the cell (c + si) is si-correct and that both cells
(c + si−1) and (c + si+1) are (si−1, si)-correct and (si, si+1)-correct respectively
then at time (t0 + t + 1) the cell c is si-correct.

Figures 4 and 5 illustrate the proofs of these two lemmas. In both cases we
have represented on the left side the area on which the cell must have correct
information to be correct at the next step and on the right side the areas on
which it can see correct information according to the hypothesis of the lemma.

We see that in both cases the cell has enough information at time (t0 + t) to
compute correct states at time (t0 + t+1) (the slope of the central trapezoid has
been chosen so that everything works correctly, and we use the fact that CH(V)t0
is convex). We also use the fact that if there is a conflict between the information

Real Time Language Recognition on 2D Cellular Automata 305

Fig. 4. States that the cell c must know to be (si, si+1)-correct at the next time (left)
and the correct information held by its neighbors (right)

Fig. 5. States that the cell c must know to be si-correct at the next time (left) and
the correct information held by its neighbors (right)

held by a cell and its neighbors, the priority is given to the information held by
the neighbor that is the closest to the disagreeing point.

We know that at time t0 all cells of A′ that are “close enough” to the border of
the word w are correct in the direction pointing outside of the word. Lemmas 1
and 2 show that the the correctness of thes cells “propagates” to their neighbors
towards the origin along the vectors si until eventually at some time (t0 + tf)
the origin is correct in all possible directions. At this time, the origin knows
correctly all the states in {〈x〉tf

| x ∈ CH(V)t0} and can hence anticipate the
simulation of A of t0 steps. At time (t0 + tf) the origin is therefore capable of
knowing the state 〈0〉t0+tf

in which the origin of A would be at time (t0 + tf).
The 2DCA A′ can therefore compensate for the initial t0 steps that were

“lost” at the beginning. Now we have to show that (t0 + tf) is exactly the real
time corresponding to the input word w.

306 M. Delacourt and V. Poupet

4.3 The Real Time

Given a word w in Σ∗∗, we denote by M the set of cells on which the word spans
when “written” on the initial configuration of A and A′. In other terms, if w is
of size (n,m), we have M = �0, n− 1�× �0,m− 1�.

By definition of the real time, we have TRV (n,m) = min{t ∈ N | M ⊆ V t}.
To alleviate the notations in this section, we will define tr = TRV (n,m).

We want to show that at time tr the origin of A′ is correct in all possible
directions. We have to consider both cases of angles (si-correctness) and cones
((si, si+1)-correctness).

Lemma 3. If tr ≥ t0 then for any vertex si of V the cell (tr− t0)si is si-correct
at time t0.

Proof. According to the definition of real time, we have M ⊆ V tr . If tr ≥ t0, the
neighborhood V tr is of the “stabilized” form described by Theorem 1. Moreover,
since V t0 is also “stabilized”, we know that the area corresponding to the vertex
si in both neighborhoods V t0 and V tr is identical (see Figure 6).

tr · si

(tr − t0)si

t0 · si

Fig. 6. The sets V t0 + (tr − t0)si (left) and V tr (right) coincide on the black dashed
area

Since M is included in V tr , there is no point of M in the black dashed area
that isn’t in V tr . By Theorem 1 we know that all points in that area are also
in V t0 + (tr − t0)si. Thus the cell (tr − t0)si makes only correct assumptions in
that area at time t0 when it considers that all the states it doesn’t see are #.

Since we have seen that (si, si+1)-correctness propagates from (c + si) and (c +
si+1) to c and that the only cell we are really interested in is the origin, it is
sufficient to work on the cells of the form (a · si + b · si+1) for a, b ∈ N.

Real Time Language Recognition on 2D Cellular Automata 307

Lemma 4. If tr ≥ t0 then for any i ∈ �1, p�, all cells of the form (a ·si +b ·si+1)
with a, b ∈ N and a + b = tr − t0 are (si, si+1)-correct at time t0 (these cells are
all on the segment [(tr − t0)si, (tr − t0)si+1] as shown by Figure 7).

si

si+1

(tr − t0)si

(tr − t0)si+1

Fig. 7. The cells (a · si + b · si+1) where a, b ∈ N and a + b = tr − t0 (represented by
black circled dots)

Proof. As previously, if tr ≥ t0 the neighborhood V tr is of the form described
by Theorem 1, as is V t0 . This means that the central trapezoids in the strip
of width tc on both neighborhoods are superpositions of identical trapezoidal
fillings periodically translated by a vector (si+1 − si).

This means that for any cell c = (a·si+b·si+1) with a, b ∈ N and a+b = tr−t0
the filling of V t0(c) on the trapezoidal area corresponding to (si, si+1) coincides
with the neighborhood V tr (see Figure 8).

Since M in included in V tr , all letters of the word that are in the area that
the cell c has to know in order to be (si, si+1)-correct are visible to the cell.
It only makes true assumptions in this area when is assumes that all states it
cannot see are #. All cells (a · si + b · si+1) for a, b ∈ N and a + b = tr − t0 are
therefore (si, si+1)-correct at time t0.

4.4 End of the Proof

Using Lemmas 1, 2, 3 and 4 we can now show by induction the following results:

Lemma 5. If tr ≥ t0, for any vertex si of V and any t ∈ N, the cell (tr−t0−t)si
is si-correct at time (t0 + t).

Lemma 6. If tr ≥ t0, for any vertex si of V and any t ∈ N, all cells (a · si + b ·
si+1) where a, b ∈ N and a+ b = tr− t0− t are (si, si+1)-correct at time (t0 + t).

308 M. Delacourt and V. Poupet

t0 · si

a · si + b · si+1

tr · si

Fig. 8. The sets V t0(c) (left) and V tr (right) coincide on the black dashed area

We finally conclude by saying that if tr ≥ t0, the origin is correct in all possible
directions at time t0 + (tr − t0) = tr. Hence, on an input w of size (n,m), the
2DCA A′ working on the neighborhood V can compute at time TRV (n,m) the
state in which the origin of A would be at the same time from the same input.

Since there are only a finite number of words w ∈ Σ∗∗ such that the real time
corresponding to these words is smaller than t0, we can modify the automaton
so that it recognizes also correctly in real time these words that are too small.
This ends the proof of Theorem 2.

5 Conclusion

Understanding the impact of the choice of the neighborhood in language recog-
nition on cellular automata is a key point to understanding communication in
parallel computations. What we have shown here is that, although it might seem
important, the neighborhood needs not be convex since the same computation
can be done on non-convex neighborhoods than on convex ones, and there is no
other loss of time than the obvious one due to the fact that the neighborhood is
smaller. Not only it shows that convexity is never fully used by any parallel algo-
rithm, but it also simplifies our study considerably since we will now be able to
consider only convex neighborhoods when proving algorithmic results (speed-up
theorems for example).

An interesting thing to notice is that we don’t have the converse of
Theorem 2. Although it might seem unlikely, there might exist languages that
can be recognized in real time on a certain neighborhood V but not on its con-
vex hull. Of course, any computation that can be done on V can be done in the
same time on CH(V), but since the real time on CH(V) can be smaller than the
one on V , it is not easy to show that we can go faster on CH(V). This comes

Real Time Language Recognition on 2D Cellular Automata 309

from the fact that we are unable to prove constant time acceleration theorems
on some convex neighborhoods (such as the von Neumann one).

Also it might be interesting to determine precisely which neighborhoods are
real time equivalent but very little is known in that direction. If we consider
complete neighborhoods, we know that there is a language that is recognized in
real time on the von Neumann neighborhood but not on the Moore neighborhood
[12], but it’s the only example (and the converse is still unknown).

References

1. Albert, J., Čulik II, K.: A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems 1, 1–16 (1987)

2. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Transactions on Computers C-18, 349–365 (1969)

3. Čulik, K., Hurd, L.P., Yu, S.: Computation theoretic aspects of cellular automata.
Phys. D 45, 357–378 (1990)

4. Dyer, C.R.: One-way bounded cellular automata. Information and Control 44, 261–
281 (1980)

5. Ibarra, O., Jiang, I.: Relating the power of cellular arrays to their closure properties.
Theoretical Computer Science 57, 225–238 (1988)

6. Ibarra, O.: In: Cellular Automata: a Parallel Model. Mathematics and its applica-
tions edn., pp. 181–197. Kluwer, Dordrecht (1999)

7. Poupet, V.: Cellular automata: Real-time equivalence between one-dimensional
neighborhoods. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 133–144. Springer, Heidelberg (2005)

8. Smith III, A.R.: Simple computation-universal cellular spaces. J. ACM 18, 339–353
(1971)

9. Smith III, A.R.: Real-time language recognition by one-dimensional cellular au-
tomata. Journal of the Assoc. Comput. Mach. 6, 233–253 (1972)

10. Terrier, V.: Language recognizable in real time by cellular automata. Complex
Systems 8, 325–336 (1994)

11. Terrier, V.: Language not recognizable in real time by one-way cellular automata.
Theoretical Computer Science 156, 281–287 (1996)

12. Terrier, V.: Two-dimensional cellular automata recognizer. Theor. Comput.
Sci. 218, 325–346 (1999)

Towards a Rice Theorem on Traces of Cellular

Automata�

Julien Cervelle and Pierre Guillon

Institut Gaspard Monge, Université de Marne la Vallée
77454 Marne la Vallée Cedex 2, France

{julien.cervelle,pierre.guillon}@univ-mlv.fr

Abstract. The trace subshift of a cellular automaton is the subshift of
all possible columns that may appear in a space-time diagram. We prove
the undecidability of a rather large class of problems over trace subshifts
of cellular automata.

Keywords: Discrete-time dynamical systems, cellular automata, sym-
bolic dynamics, formal languages, computability, decidability.

1 Introduction

Cellular automata are well-known formal models for complex systems. They are
used in a huge variety of different scientific fields including mathematics, physics
and computer science.

A cellular automaton (CA for short) consists in an infinite number of identical
cells arranged on a regular lattice. All cells evolve synchronously according to
their own state and those of their neighbors.

Despite the apparent simplicity of the definition of the system, one can observe
very complex behaviors. Many attempts have been made to classify them: strictly
in topological terms [1], emphasizing limit sets [2], considering computability
[3], or yet studying the language appearing in cell evolution [4]. Most behaviors
have been proved undecidable: concerning the attractors (nilpotency in [5], other
properties in [6]), the equicontinuity classification [7], or universality [8].

Our approach concerns the languages that can be associated to a CA and
especially the trace subshift which is the set of all possible sequences of the
states a particular cell takes during the evolution. Motivations come both from
classical symbolic dynamics but also from physics. Indeed, when observing nat-
ural phenomena due to physical constraints, one can keep trace only of a finite
number of measurements. This set of measurements takes into account only a
minor part of the parameters ruling the phenomenon under investigation. Hence,
to some extent, what is observed is the “trace” of the phenomenon left on the
instruments.
� This work has been supported by the Interlink/MIUR project “Cellular Automata:

Topological Properties, Chaos and Associated Formal Languages”, by the ANR
Blanc “Projet Sycomore”.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 310–319, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards a Rice Theorem on Traces of Cellular Automata 311

We try to prove a “Rice Theorem” for trace subshifts, similarly to what is done
in [6,9] for limits sets and tilings, that is to say the undecidability of non-trivial
properties over the trace subshift given a CA.

The paper is organized as follows. Section 2 to 4 are devoted to definitions
and main concepts of the paper. Section 5 study the case of a Rice theorem for
a simpler definition of trace called “subtrace”. Section 6 extends the result to
the “trace” case.

2 Definitions

Let N∗ = N\{0}. For i, j ∈ N with i ≤ j, [i, j] denotes the set of integers between
i and j inclusive. For any function F from AZ into itself, Fn denotes the n-fold
composition of F with itself.

Languages. Let A be a finite alphabet with at least two letters. A word is a
finite sequence of letters w = w0 . . . w|w|−1 ∈ A∗. A factor of a word w =
w0 . . . w|w|−1 ∈ A∗ is a word w[i,j] = wi . . . wj , for 0 ≤ i ≤ j < |w|. We note
w[i,j] � w. A language on alphabet A is a set of words on alphabet A. Given
two languages C,D ⊂ A∗, CD denotes their concatenation, When no confusion
is possible, given a word w, we also note w the language {w}.

Configurations. A configuration is a bi-infinite sequence of letters x ∈ AZ. The
set AZ of configurations is the phase space. The definition of factor can be
naturally extended to configurations: for x ∈ AZ and i ≤ j, x[i,j] = xi . . . xj � x.
If u ∈ A∗, then uω is the infinite word of AN consisting in periodic repetitions of
u and ωuω is the configuration of AZ consisting in periodic repetitions of u.

Topology. We endow the phase space with the Cantor topology. For j, k ∈ N and a
finite set W of words of length j, we note [W]k the set

{
x ∈ AZ

∣∣ x[k,k+j−1] ∈W
}

.
Such a set is called a cylinder. We note [W]Ck the complement of the cylinder
[W]k. Cylinders form a base of open sets for Cantor topology.

Cellular automata. A (one-dimensional two-sided) cellular automaton (CA for
short) is a parallel synchronous computation model consisting in cells distributed
over the regular lattice Z. Each cell i ∈ Z of the configuration x ∈ AZ has a
state xi in the finite alphabet A, which evolves depending on the state of their

T (x)F

0

F(x)

x

F (x)
2

Fig. 1. The trace seen on the space-time diagram

312 J. Cervelle and P. Guillon

neighbors: F (x)i = f(x[i−m,i−m+d−1])), where f : Ad → A is the local rule,
m ∈ Z the anchor and d ∈ N∗ the diameter of the CA. By abuse of notation, we
use the cellular automaton as its global function F : AZ → AZ. The orbit of initial
configuration x ∈ AZ is the sequence of the configurations (F j(x))j∈N. Usually
they are graphically represented by a two-dimensional space-time diagram, like
in Figure 1.

The shift σ : AZ → AZ is a particular CA defined by σ(x)i = xi+1 for every
x ∈ AZ and i ∈ Z which shifts configurations to the left. If the alphabet contains
a special letter 0, the null CA null : AZ → AZ is another particular CA defined
by null(x)i = 0. Its image set is {ω0ω}.

Any local rule f of a CA can be extended naturally to an application on words
f(w) = (f(w[i,i+d−1]))0≤i≤|w|−d, for all w ∈ A∗Ad.

Finally, if a CA has anchor 0, it is called an one-way cellular automata (OCA
for short), since the new state of a cell only depends on its right neighbors. Hence
information can only flow from right to left.

Subshifts. The one-sided shift (or simply shift when no confusion is possible),
also noted σ by abuse of notation is the self-map of AN such that σ(z)i = zi+1,
for every z ∈ AN and i ∈ N. A one-sided subshift Σ ⊂ AN is a σ-stable closed
set of infinite words. The language of Σ is L(Σ) = {w ∈ A∗| ∃z ∈ Σ,w � z}. It
characterizes Σ since Σ =

{
z ∈ AN

∣∣ ∀w � z, w ∈ L(Σ)
}

.
A subshift Σ is nilpotent if there is some k ∈ N such that σk(Σ) = {0ω}.

Equivalently, Σ ⊂ Ak0ω for some k. In particular, it is finite.

3 Trace

Trace. In this section we define the main notion introduced in the paper, namely
the trace of a CA.

Definition 1 (Trace). Given a CA F , the trace of F with initial condition
x ∈ AZ is TF (x) = (F j(x)0)j∈N. In other words, it is the central column of the
space-time diagram of initial configuration x (see Figure 1). The trace subshift
of F is τ(F) = TF (AZ). Similarly, we define T k

F (x) = (F j(x)[0,k−1])j∈N which is
the sequence of the words at positions in [0, k − 1] in the space-time diagram of
initial configuration x.

For instance, the trace subshift of the shift is (0 + 1)ω, it is 0ω + 1ω for the
identity and (0 + 1)0ω for the null CA (see [10] for more examples).

Note that TFF = σTF and, as TF is continuous, it is a factorization between
the CA and the one-sided full shift which means that their two dynamics are
very closely related. For more about factorization, see [11].

Subtrace. If Σ is a subshift on an alphabet B ⊂ Ak, and i ∈ [0, k − 1], then for all
z = ((zj)0 . . . (zj)k−1)j∈N ∈ Σ, we define its ith projection as πi(z) = ((zj)i)j∈N ∈
AN, and π[n,m](z) = ((zj)n, . . . , (zj)m)j∈N. We also note π(Σ) =

⋃
0≤i<k πi(Σ),

which is a subshift on A.

Towards a Rice Theorem on Traces of Cellular Automata 313

Definition 2. Given a CA F on the alphabet B ⊂ Ak, the subtrace subshift is
defined by

◦
τ (F) =

⋃
0≤i<k

{
((F j(x)0)i)j∈N

∣∣ x ∈ BZ
}

= π(τ(F)).

4 The Nilpotency Problem

Definition 3. Consider a CA F of local rule f : Ad → A and q ∈ A. A state
q ∈ A is spreading if for all word u ∈ Ad containing letter q, we have f(u) = q.
A CA on alphabet A is q-nilpotent (or simply nilpotent) if there is some integer
j for which ∀x ∈ AZ, F j(x) = ωqω.

Note that a CA is nilpotent if and only if its trace is nilpotent.

Theorem 1 (Kari[5]). The problem

Instance: a CA F with a spreading state q
Question: is F q-nilpotent?

is undecidable.

Note that it is still undecidable if we restrict to OCA since two CA with the
same diameter and same local rule are either both nilpotent or both non nilpotent
whatever are their anchor. If the first CA F has anchor m and the second CA F ′

has anchor m′ and if there is a k such that for all configuration x, F k(x) = ωqω

then F ′k(x) = σk(m−m′)(F k(x)) = ωqω.

Proposition 1. An OCA with a spreading state q is q-nilpotent if and only if
q appears in all its space-time diagrams.

Proof. Consider a CA F . If its diameter is 1 (each cell uses only its state for
the local rule), then the equivalence is trivial since for all letter a, the space-
time diagram for ωaω contains a q after ka steps and hence for all configuration

x, F
max
a∈A

ka

(x) = ωqω. Otherwise, for every configuration x ∈ AN, there are some
integers i and j such that F j(x)i = q. Note that, by spreadingness, F j+	 i

d
(x)0 =
q. Hence

⋃
j∈N F−j([q]) is a covering by open subsets of the compact AN, so we

can find some k ∈ N such that AN =
⋃

j≤k F
−j([q]) = F−k([q]). By shift-

invariance, F k(AN) = {ωqω}. ��

Proposition 2. Let F a CA on alphabet A, of diameter d, and with a spreading
state q ∈ A. We can build a CA F ′ on alphabet {0, 1}k for some k ∈ N∗, such
that F ′ is (0, . . . , 0)-nilpotent if and only if F is q-nilpotent.

Proof. Let k = 	log2 |A|
 and φ : A → {0, 1}k an injection such that φ(q) =
(0, . . . , 0). F ′ can be defined by the same diameter and anchor as F , and local
rule:

f ′ :
({0, 1}k)d → {0, 1}k

u #→
∣∣∣∣
φ(f(a)) if u = φ(a)
(0, . . . , 0) otherwise

. ��

314 J. Cervelle and P. Guillon

5 Subtrace Problems

A subtrace is somewhat the trace of a “CA” which does not apply the same
evolution rule on each cell. We will first prove, by reduction from the nilpotency
problem, the undecidability of a certain class of properties over subtrace sub-
shifts, that is, non-trivial nilpotent-stable properties. In the next section, we will
reduce properties over trace subshifts.

5.1 The Full Subtrace Problem

This section is devoted to reducing the nilpotency problem to the problem Full:

Instance: an OCA on alphabet Ak+1

Question: is its subtrace equal to the full shift AN?

Our method presents similarities with [8].
Let F a OCA on A of local rule f , diameter d, and with a spreading state

q ∈ A. From Proposition 2, we can assume without loss of generality that A =
{0, 1}k for some k ∈ N∗, and q = (0, . . . , 0). We can build the OCA σ � F on
alphabet {0, 1}1+k with the local rule:

g :
({0, 1} × {0, 1}k)d → {0, 1} × {0, 1}k

(((a0, x0) . . . (ad−1, xd−1))) #→
∣∣∣∣
(a1, f(x0 . . . xd−1)) if x0 �= q
(0, q) otherwise

This rule works almost like the Cartesian product of the shift on {0, 1} and F
except that it applies the shift only if the state of the cell for F is not q and else
goes to 0. It behaves as if F is supplying power to the shift CA and q means “no
power”.

Lemma 1. If F is q-nilpotent, then
◦
τ (σ � F) too. Otherwise,

◦
τ (σ �F) = AN.

Proof. We can see that the last k projections exactly represent the applica-
tion of the CA F . In particular, if F is q-nilpotent, then there is some j ∈
N for which ∀x ∈ AZ, π[1,k](Tσ�F (x))[j,+∞) = qω, and from the rule we get

π0(Tσ�F (x))[j+1,+∞) = 0ω, so
◦
τ (σ � F) is (0, q)-nilpotent.

On the other hand, if F is not q-nilpotent, then from Proposition 1, one can
find a configuration x ∈ AZ such that ∀j ∈ N, ∀i ∈ Z, F j(x)i �= q. For every
z ∈ AN, define y ∈ ({0, 1}1+k)Z such that π[1,k](y) = x and π0(y)[0,+∞) = z. The
second case of the rule will never be applied in the orbit of y; hence π0(Tσ�F (y))
= z. ��

Theorem 2. Problem Full is undecidable.

Proof. σ�F is clearly computable from F , so if we could decide whether
◦
τ (σ�F)

is AN, then from Lemma 1, we could decide whether F is nilpotent. ��

Towards a Rice Theorem on Traces of Cellular Automata 315

5.2 Other Problems

In this section, we use the previously-built CA in order to reduce the nilpotency
problem to a large class of problems over the subtrace of a CA on {0, 1}2+k.

Definition 4. A property P on subshifts is nilpotent-stable if for every subshift
Σ and every nilpotent subshift H, Σ ∈ P ⇔ Σ ∪H ∈ P .

By non-trivial property, we mean that some OCA traces respect it and some do
not.

Theorem 3. For any non-trivial nilpotent-stable property P , the problem

Instance: a CA F on alphabet {0, 1}k, with k ∈ N∗

Question: has the subtrace subshift
◦
τ (F) property P?

is undecidable.

Proof. Let P be a non-trivial nilpotent-stable property of the subshifts of AN.
Should we take its complementary, we can assume P is false for the full shift
AN. Let H be an OCA on {0, 1} such that τ(H) ∈ P , h its local rule and d its
diameter. Let F be an OCA on Ak of local rule f , diameter d and with spreading
state q. Without loss of generality, A = {0, 1} and q = (0, . . . , 0). We can build
the OCA G = (σ � F)×H on alphabet {0, 1}2+k with the local rule:

g :

({0, 1} × {0, 1}k × {0, 1})d → {0, 1} × {0, 1}k × {0, 1}

((a0, x0, b0) . . . (ad−1, xd−1, bd−1)) #→

∣∣∣∣∣∣

a1, f(x0 . . . xd−1), h(b0 . . . bd−1)
if x0 �= q

(0, q, h(b0 . . . bd−1)) otherwise

The first 1+k projections are the previously built automaton σ�F , and the last
one represents H . Hence,

◦
τ (G) =

◦
τ (σ�F)∪ τ(H), and we can use Lemma 1. If

F is nilpotent, then
◦
τ (σ�F) too, and

◦
τ (G) respects P since τ(H) does, and P

is nilpotent-stable. Otherwise,
◦
τ (σ�F) = AN does not respect P . Hence,

◦
τ (G)

respects P if and only if F is q-nilpotent. G is clearly computable from F , so if
we could decide P , then we could decide whether F is nilpotent. ��

6 From Subtrace to Trace

In this section, we assume G is an OCA on Ak, with A = {0, 1}, and we want to
build a CA on A that simulates it in a certain way, thus transforming subtrace
into trace, provided a little restriction. This construction is similar to that done
in [10]. Remark that it is well known that G can be simulated by a CA F on
A, as soon as its diameter is wide enough. Each cell can see its neighborhood
as words of Ak and evolve accordingly. The problem is that all cells must have
the same local rule, so they have to find from the neighborhood which “column”
of the Ak simulation they are representing. This can be achieved by delimiting

316 J. Cervelle and P. Guillon

meaningful words with a border word 10k. That simulation allows to “see” the
evolution of G as an evolution of F . We want a little more: all evolutions of F
must not be far from an evolution of F , especially those that do not correspond
to alternating meaningful words and borders words.

We have two execution modes: a simulation mode will simulate properly the
execution of the OCA G on alphabet Ak, and a default mode will be applied if the
neighborhood contains invalid information. All modes must have an evolution
that locally “looks like” some evolution of G, and in particular we have to ensure
that when a mode is applied to a cell, the same mode keeps being applied there
in the following generations, because a change of mode would produce an invalid
trace.

Macrocells. A concatenation of a word of Ak and of the border word 10k will be
called a macrocell. Let B = Ak10k ⊂ Ah the set of macrocells, where h = 2k+1.
By construction, it has the interesting property that it cannot overlap itself on
more that half of its length.

Property 1. If 0 < i ≤ k, then the intersection BAi ∩ AiB is empty (equiva-
lently [B] ∩ [B]i = ∅).

Simulation mode. We will assume in the rest of the section that G has a diameter
2 (this can be easily generalized), and local rule g.

The simulation mode will be applied to macrocells that are not overlapped by
another macrocell on their right. For this purpose, they have to “look” on their
right (in the local rule). Let Θ = BAh \

⋃
0<i<h A

iBAh−i the set of macrocells
followed by something that in no way could be understood as an overlapping
macrocell. The first thing to notice is that this set is not empty, since it contains
successions of two macrocells thanks to Property 1.

Lemma 2. BB ⊂ Θ.

Proof. If 0 < i ≤ k, then BB ∩AiBAh−i ⊂ (BAi ∩AiB)Ah−i = ∅. If k < i < h,
then BB ∩AiBAh−i ⊂ Ai(Ah−iB ∩BAh−i) = ∅. ��

We can now define a rule on the set Θ that represents the evolution of such a
macrocell that sees on its right either a macrocell abut, or at least no overlapping
macrocell:

Δ :
ΘAh → B

u #→
∣∣∣∣
g(u[0,k−1], u[h,h+k−1])10k if u ∈ BΘ
g(u[0,k−1], u[0,k−1])10m otherwise

.

Default mode. In the case where the neighborhood is not understandable as a
valid word, we have to apply a default rule: the null CA, which has the interesting
property that it erases the border words that could potentially be in an invalid
place.

Towards a Rice Theorem on Traces of Cellular Automata 317

Combining simulation mode and default mode, we are now able to turn the
function Δ into a local rule on {0, 1}. Indeed, we can define, for anchor m = h−1
and diameter d = 4h− 1:

f :
{0, 1}d → {0, 1}

w #→
∣∣∣∣
Δ(u)i if w ∈ Am−iuAi, for some u ∈ ΘAh, i ∈ [0, h− 1]
0 otherwise

,

since such an integer i and such a word u would be unique (from the construction
of Θ). This local rule is such that f(AmuAm) = Δ(u) for every u ∈ ΘAh, which
is what we wanted: it can simulate in one step the behavior of our CA G. Let
F the corresponding rule. You can also note that F ([Θ]) = [Δ(ΘAh)] ⊂ [B]
by definition, and that F−1([1]) ⊂

⋃
0≤j≤m[Θ]−j since the default mode only

produces zeros.

Stability. The following lemmas guarantee that no cell changes its evolution
mode.

Lemma 3. F−1([B]) = [Θ].

Proof. By construction, F−1([B]) ⊂ F−1([1]m) ⊂
⋃

0≤j≤m[Θ]−j . Now let x ∈
F−1([B]). Then, for some j ∈ [0,m], F (x) ∈ [B] ∩ F ([Θ]−j) ⊂ [B] ∩ [B]−j . By
Property 1, we conclude that j = 0, i.e. F−1([B]) ⊂ [Θ]. Conversely, we have
already seen that [Θ] ⊂ F−1([B]). ��

Lemma 4. F ([Θ]) ⊂ [Θ].

Proof. By definition of [Θ], it is included in
⋂

0<i<h[Θ]Ci . Moreover, F ([Θ]C) ⊂
[B]C by Lemma 3. Combining the two, we get F ([Θ]) ⊂

⋂
0<i<h[B]Ci . Hence,

F ([Θ]) ⊂ F ([B]) \
⋃

0<i<h[B]i = [Θ]. ��

Trace. The fact the evolution modes are stable helps us conclude the simulation
result.

Lemma 5. If y ∈ (Am)N and x ∈ AN such that ∀i ∈ N, x[ih,ih+m−1] = yi ∈ Am

and x[ih+m,(i+1)h−1] = 10m, then Tm
F (x) = TG(y).

Proof. We can prove by induction on the generation j ∈ N, that for any i ∈ N,
F j(x)[ih,(i+1)h−1] = Gj(y)i10m. This property holds for j = 0. Now suppose it
is true at generation j ∈ N, and let us prove it for generation j + 1. Let i ∈ N.
F j(x) ∈ [BB]ih ⊂ Θ from the induction hypothesis and Lemma 2. Therefore,
we are in execution mode between cells ih and (i + 1)h:

F j+1(x)[ih,(i+1)h−1] = Δ(F j(x)[ih,(i+1)h−1], F
j(x)[(i+1)h,(i+2)h−1])

= Δ(F j(y)i, F j(y)i+1) = F j+1(y)i .

In particular, Tm
F (x) = (F j(y)[0,m−1])j∈N = TG(y). ��

318 J. Cervelle and P. Guillon

Lemma 6. If p ∈ N and x ∈ AN are such that ∀i < p, x[ih,(i+2)h−1] ∈ Θ and
x[ph,(p+2)h−1] /∈ Θ; let y ∈ (Am)N the ultimately uniform infinite word such that
∀i < p, yi = x[ih,ih+m−1] and ∀i ≥ p, yi = x[(p−1)h,(p−1)h+m−1]. Then Tm

F (x) =
TG(y).

Proof. Similarly to the proof of Lemma 5, it can easily be proved by induction
on the generation j ∈ N that for any i < p, F j(x)[ih,(i+1)h−1] = Gj(y)i10m, since
execution is always applied. Hence, Tm

F (x) = TG(y). ��

Lemma 7. The trace of F is
◦
τ (G) ∪Σ, where Σ ⊂ {0ω, 10ω, 1ω}.

Proof. Let x ∈ AZ.

– If x ∈ [Θ]−q for some q ∈ [0,m− 1], and ∀i ∈ N, x[ih,(i+2)h−1] ∈ Θ, and,
from Lemma 5, TF (x) = πi(TG(y)), where yi = x[ih,ih+m−1].

– If x ∈ [Θ]−q for some q ∈ [0,m− 1], and there is some integer p such
that ∀i < p, x[ih,(i+2)h−1] ∈ Θ and x[ph,(p+2)h−1] /∈ Θ, then from Lemma 6,
TF (x) = πi(TG(y)), for some y ∈ (Am)N.

– If x ∈ [Θ]−q for some q ∈ [m,h− 1], then by induction and Lemma 4, we
can see that ∀j ∈ N, F j(x) ∈ [Θ]−q. Thus, ∀j ∈ N, F j(x)0 = 1 if q = m and
0 if m < q < h.

– Lastly, if x /∈ [Θ]−q for any q ∈ [0, h− 1], then default mode is applied, and,
according to Lemma 3, will always be: ∀j > 0, F j(x)0 = 0.

Putting things together, the first two cases give π(τ(G)) and the last two give
{0ω, 10ω, 1ω}. ��

We are thereby able to “simulate” a OCA G on alphabet Am by a CA F on
alphabet A. This simulation transforms the subtrace of G into the trace of F ,
provided a little restriction - adding three obviously nilpotent infinite words.

Theorem 4. For any non-trivial nilpotent-stable property P , the problem

Instance: a CA on alphabet {0, 1}
Question: has its trace subshift property P

is undecidable.

Proof. Let P a non-trivial nilpotent-stable property. From any OCA G on al-
phabet {0, 1}m, we can, using previous construction, computably build a CA
F on alphabet {0, 1} such that τ(F) =

◦
τ (G) ∪ Σ, where Σ = {0ω, 10ω, 1ω} are

nilpotent subshifts. In particular, we can notice that
◦
τ (G) respects P if and only

if τ(F) does. So if we could decide, from the entry F , whether τ(F) respects P ,
then we could decide from the entry G whether

◦
τ (G) does. ��

Towards a Rice Theorem on Traces of Cellular Automata 319

7 Conclusion

We have proved the undecidability of a class of problems over CA traces, which
could lead us towards a Rice-like Theorem. This class is very comprehensive:
fullness, finiteness, ultimate periodicity, soficness, finite type, inclusion of a par-
ticular word as a factor. . . are all nilpotent-stable non-trivial properties. On the
other hand, note that context-sensitivity of the language is trivial since true for
all trace subshifts according to [12].

The perspectives now would be to decrease the amount of problems that are
not concerned. Finite properties (which depend only on the kth prefix of the
subshift, for some k ∈ N) are clearly decidable. Are they the only ones?

Our result can be easily adpated to traces of any fixed width of a CA on any
given alphabet, but with arbitrarily wide neighborhoods. Another open problem
would be to widen our result to study properties of the canonical factor (of width
d), or at least with fixed diameter (and arbitrary alphabet). That would, in
particular, comprehend the undecidability of the language classification, proved
in [13]. Nonetheless, our construction can hardly be generalized for that matter,
since it is based on increasing the diameter to put more information.

References

1. Gilman, R.H.: Classes of linear automata. Erg. Th. & Dyn. Sys. 7, 105–118 (1988)
2. Hurley, M.: Attractors in cellular automata. Erg. Th. & Dyn. Sys. 10, 131–140

(1990)
3. Mazoyer, J., Rapaport, I.: Inducing an order on cellular automata by a grouping

operation. In: Meinel, C., Morvan, M. (eds.) STACS 98. LNCS, vol. 1373, pp.
116–127. Springer, Heidelberg (1998)

4. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Erg. Th.
& Dyn. Sys. 17, 417–433 (1997)

5. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.
on Computing 21(3), 571–586 (1992)

6. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Th. Comp.
Sci. 127(2), 229–254 (1994)

7. Durand, B., Formenti, E., Varouchas, G.: On undecidability of equicontinuity clas-
sification for cellular automata. In: Morvan, M., Rémila, E. (eds.) DMTCS 2003.
DMTCS Proc., Disc. Math. and Th. Comp. Sci, vol. AB, pp. 117–128 (2003)

8. Ollinger, N.: The intrinsic universality problem of one-dimensional cellular au-
tomata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641.
Springer, Heidelberg (2003)

9. Cervelle, J., Durand, B.: Tilings: recursivity and regularity. Th. Comp. Sci. 310(1-
3), 469–477 (2004)

10. Cervelle, J., Formenti, E., Guillon, P.: Sofic trace of a cellular automaton. In: CiE,
Siena, Italy, LNCS (June 2007)

11. Kůrka, P.: Topological and symbolic dynamics. In: Société Mathématique de France
(2003)

12. Gilman, R.H.: Notes on cellular automata (Manuscript 1988)
13. di Lena, P.: Decidable and Computational properties of Cellular Automata. PhD

thesis, Università di Bologna e Padova (December 2006)

Progresses in the Analysis of
Stochastic 2D Cellular Automata:

A Study of Asynchronous 2D Minority

Damien Regnault1,2, Nicolas Schabanel1,2, and Éric Thierry1

1 IXXI-LIP, École Normale Supérieure de Lyon, 46 allée d’Italie,
69364 Lyon Cedex 07, France

http://perso.ens-lyon.fr/{damien.regnault,eric.thierry}
2 CNRS, Centro de Modelamiento Matemático, Universidad de Chile,

Blanco Encalada 2120 Piso 7, Santiago de Chile
http://www.cmm.uchile.cl/∼schabanel

Abstract. Cellular automata are often used to model systems in
physics, social sciences, biology that are inherently asynchronous. Over
the past 20 years, studies have demonstrated that the behavior of cellular
automata drastically changed under asynchronous updates. Still, the few
mathematical analyses of asynchronism focus on one-dimensional proba-
bilistic cellular automata, either on single examples or on specific classes.
As for other classic dynamical systems in physics, extending known meth-
ods from one- to two-dimensional systems is a long lasting challenging
problem.

In this paper, we address the problem of analysing an apparently
simple 2D asynchronous cellular automaton: 2D Minority where each
cell, when fired, updates to the minority state of its neighborhood. Our
experiments reveal that in spite of its simplicity, the minority rule ex-
hibits a quite complex response to asynchronism. By focusing on the
fully asynchronous regime, we are however able to describe completely
the asymptotic behavior of this dynamics as long as the initial configu-
ration satisfies some natural constraints. Besides these technical results,
we have strong reasons to believe that our techniques relying on defining
an energy function from the transition table of the automaton may be
extended to the wider class of threshold automata.

Due to space constraint, we refer the reader to [16] for the missing
proofs.

1 Introduction

In the literature, cellular automata have been both studied as a model of compu-
tation presenting massive parallelism, and used to model phenomena in physics,
social sciences, biology... Cellular automata have been mainly studied under syn-
chronous dynamics (at each time step, all the cells update simultaneously). But
real systems rarely fulfill this assumption and the cell updates rather occur in
an asynchronous mode often described by stochastic processes. Over the past 20

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 320–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.ixxi.fr/
http://www.ens-lyon.fr/LIP/index.php.en
http://perso.ens-lyon.fr/damien.regnault/
http://perso.ens-lyon.fr/eric.thierry/
http://www.cmm.uchile.cl/
http://www.cmm.uchile.cl/~schabanel

Progresses in the Analysis of Stochastic 2D Cellular Automata 321

years, many empirical studies [2,4,5,13,18] have been carried out showing that
the behavior of a cellular automaton may widely vary when introducing asyn-
chronism, thus strengthening the need for theoretical framework to understand
the influence of asynchronism. Still, the few mathematical analyses of the ef-
fects of asynchronism focus on one-dimensional probabilistic cellular automata,
either on single examples like [8,9,15] or on specific classes like [6,7]. As for other
classic dynamical systems in physics, such as spin systems or lattice gas, ex-
tending known methods from one- to two-dimensional systems is a long lasting
challenging problem. For example, understanding how a configuration all-up of
spins within a down-oriented external field evolves to the stable configuration
all-down has only recently been solved mathematically and only for the limit
when the temperature goes to 0, i.e., when only one transition can occur at time
(see [3]). Similarly, the resolution of the study of one particular 2D automaton
under a given asynchronism regime is already a challenge.

Our Contribution. In this paper, we address the problem of understanding
the asynchronous behavior of an apparently simple 2D stochastic cellular au-
tomaton: 2D Minority where each cell, when fired, updates to the minority
state of its neighborhood. We show experimentally in Section 2 that in spite
of its simplicity the minority rule exhibits a quite complex response to asyn-
chronism. We are however able to show in Section 3 that this dynamics almost
surely converges to a stable configuration (listed in Proposition 3) and that if
the initial configuration satisfies some natural constraints, this convergence oc-
curs in polynomial time (and thus is observable) when only one random cell
is updated at a time. Our main result (Theorems 1 and 2) rely on extending
the techniques based on one-dimensional random walks developed in [6,7] to the
study of the two-dimensional random walks followed by the boundaries of the
main components of the configurations under asynchronous updates. We have
strong reasons to believe that our techniques relying on defining an energy func-
tion from the transition table of the automaton may be extended to the wider
class of threshold automata.

Our results are of particular interest for modeling regulation network in bi-
ology. Indeed, 2D Minority cellular automaton represents an extreme simpli-
fication of a biological model where the biological cells are organized as a 2D
grid and where the regulation network involves only two genes (the two states)
which tend to inhibit each other (see [1]). The goal is thus to understand how
the concentrations of each gene evolve over time within the biological cells, and
in particular, which gene ends up dominating the other in each cell, i.e., in which
state ends up each cell. Understanding this simple rule is thus a key step in the
understanding of more complex biological systems.

2 Experimental Results

This section is voluntarily informal because it presents experimental observations
whose formalizations are already challenging open questions. The next section will
present in a proper theoretical framework our progresses in the understanding of

322 D. Regnault, N. Schabanel, and É. Thierry

α = 1 α = 0.95 α = 0.75 α = 0.5 α = 0.25 α = 0 Pr{cTs is stable}

v. Neumann neigh.
at Step 20N

Go to [12]
for animated

sequences 1 αc≈.83 0

Moore neigh.
at Step 50N

Go to [12]
for animated

sequences 1 αc≈.57 0

Empirical
observations

Large flashing
homogeneous
regions

Random noise erodes
large flashing regions

A stable pattern emerges (checkerboards and
stripes for N- and M-neighborhoods respectively)
and rapidly covers the whole configuration when
both dimensions are even.

Fig. 1. 2D Minority under different α-asynchronous dynamics with N50 = 50 × 50
cells. The last column gives, for α ∈ [0, 1], the empirical probability that an initial
random configuration converges to a stable configuration before time step Ts ·N50 where
Ts = 1000 and Ts = 2000 for von Neumann and Moore neighborhood respectively.

these phenomena. The configurations studied here consist in a set of cells orga-
nized as a n×m torus (n and m are even) in which each cell can take two possible
states: 0 (white) or 1 (black). The asynchronous behavior of 2D minority automa-
ton turns out to be surprisingly complex for both of the studied neighborhoods:

– von Neumann (N-neighborhood for short), where each selected cell updates
to the minority state within itself and its neighbors N, S, E, and W; and

– Moore (M-neighborhood for short), where each selected cell updates to the
minority state among itself and its 8 closest neighbors N, S, E, W, NE, NW,
SE, and SW.

In this section, we present a report on extensive experiments conducted on 2D
Minority for both N- and M-neighborhood.

In this section, we consider the α-asynchronous 2D Minority dynamics in which
at each time step, each cell updates to the minority state in its own neighborhood
independently with probability α. We denote by α = 0 the fully asynchronous
2D Minority dynamics in which at each time step, a daemon selects uniformly at
random one cell and updates it to the minority state in its neighborhood.

The Synchronous Regime (α = 1) of 2D Minority has been thoroughly
studied in [10] where it is proved that it converges to cycles of length 1 or 2.
Experimentally, from a random configuration, the synchronous dynamics in both
neighborhoods converges to sets of large flashing white or black regions.

As Soon As a Little Bit of Asynchronism is introduced, the behavior
changes drastically for both neighborhoods (see Fig. 1 and open our website [12]
for animated sequences). Due to the asynchronism at each step, some random
cells do not update and this creates a noise that progressively erodes the flashing
homogenous large regions that were stable in the synchronous regime. After few

Progresses in the Analysis of Stochastic 2D Cellular Automata 323

steps, the configuration seems to converge rapidly to a homogeneous flashing
background perturbed by random noise.

Experiments Provide Evidences that There Exists a Threshold αcαcαc,
αc ≈ .83 and αc ≈ .57 for the N- and M-neighborhoods respectively, such that
if α � αc, then stable patterns arise (checkerboards and stripes for N- and M-
neighborhood respectively). As it may be observed in [12], above the thresh-
old, when α > αc, these patterns are unstable, but below and possibly at αc,
these patterns are sufficiently stable to extend and ultimately cover the whole
configuration.

Convergence in Asynchronous Regimes. The last column of Fig. 1 shows
that experimentally, when α � αc, the asynchronous dynamics appears to con-
verge at least with constant probability, rapidly to very particular stable config-
urations tiled by simple patterns known to be stable for the dynamics. Above the
threshold, when αc < α < 1, the asynchronous dynamics appears experimentally
to be stuck into randomly evolving configurations in which no structure seems
to emerge.

We will show in Theorem 1 that if at least one of the dimensions is even,
the dynamics will almost surely reach a stable configuration, for all 0 � α < 1,
but after at most an exponential number of steps. We conjecture that below
the threshold αc this convergence occurs in polynomial time on expectation if
both dimensions are even (the threshold Ts = 2000 is probably too low for the
M-neighborhood in Fig.1). We will prove this result in Theorem 2 for the fully
asynchronous regime under the N-neighborhood under certain natural constraint
on the initial configuration. Similar results to the ones to be presented below have
been obtained in [17] for the M-neighborhood by extending of the techniques
presented here.

3 Analysis of Fully Asynchronous 2D Minority

We consider now the fully asynchronous dynamics of 2D Minority with von
Neumann neighborhood. Let n and m be two positive integers and T = Zn×Zm

the n × m-torus. A n × m-configuration c is a function c : T → {0, 1} that
assigns to each cell (i, j) ∈ T its state cij ∈ {0, 1} (0 is white and 1 is black in
the figures). We consider here the von Neumann neighborhood : the neighbors of
each cell (i, j) are the four cells (i ± 1, j) and (i, j ± 1) (indices are computed
modulo n and m, we thus consider periodic boundary conditions). We denote
by N = nm, the total number of cells.

Definition 1 (Stochastic 2D Minority). We consider the following dynamics
δ that associates to each configuration c a random configuration c′ obtained as
follows: a cell (i, j) ∈ T is selected uniformly at random and its state is updated to
the minority state in its neighborhood (we say that cell (i, j) is fired), all the other
cells remain in their current state: c′ij = 1 if cij + ci−1,j + ci+1,j + ci,j−1 + ci,j+1

� 2, and c′ij = 0 otherwise; and c′kl = ckl for all (k, l) �= (i, j). We say that a cell
is active if its neighborhood is such that its state changes when the cell is fired.

324 D. Regnault, N. Schabanel, and É. Thierry

Definition 2 (Convergence). We denote by ct the random variable for the
configuration obtained from a configuration c after t steps of the dynamics:
ct = δt(c); c0 = c is the initial configuration.

We say that the dynamics δ converges almost surely from an initial configu-
ration c0 to a configuration c̄ if the random variable T = min{t : ct = c̄} is finite
with probability 1. We say that the convergence occurs in polynomial (resp., lin-
ear, exponential) time on expectation if E[T] � p(N) for some polynomial (resp.,
linear, exponential) function p.

As seen in Section 2, any configuration tend to converge under this dynamics
towards a stable configuration, i.e., towards a configuration where all cells are in
the minority state of their neighborhood, i.e., inactive.

Checkerboard Patterns. We say that a subset of cells R ⊆ T is connected if
R is connected for the neighborhood relationship. We say that R is checkerboard-
tiled if all adjacent cells in R are in opposite states. A horizontal (resp., vertical)
band of width w is a set of cells R = {(i, j) : k � i < k + w} for some k (resp.,
R = {(i, j) : k � j < k + w}).

3.1 Energy of a Configuration

The following natural parameters measure the stability of a configuration, i.e.,
how far the cells of the configuration are from the minority state in their neigh-
borhood. Following the seminal work of Tarjan in amortized analysis [19], we
define a local potential that measures the amount of local unstability in the con-
figuration. We proceed by analogy with the spin systems in statistical physics
(Ising Model [3]): we assign to each cell a potential equal to the benefit of switch-
ing its state; this potential is naturally defined as the number of its adjacent cells
to which it is opposed (i.e., here, the number of cells which are in the same state
as itself); summing the potentials over all the cells defines the total energy of the
configuration at that time. As we consider arbitrary initial configuration, the sys-
tem evolves out-of-equilibrium until it (possibly) reaches a stable configuration,
thus its energy will vary over time; in particular, as will be seen in Proposition 1,
its energy will strictly decrease each time an irreversible transition is performed
(i.e., each time a cell of potential � 3 is fired). It turns out that this energy
function plays a central role in defining, in Section 3.4, the variant that will be
used to prove the convergence of the system. We will see in particular that as
observed experimentally in Section 2, the system tends to reach configurations
of minimal energy as one would expect in a real physical system.

Definition 3 (Energy). The potential vij of cell (i, j) is the number of its four
adjacent cells that are in the same state as itself. The energy of a configuration
c is defined as the sum of the potentials of the cells: E(c) =

∑
i,j vij.

Definition 4 (Borders and Homogeneous regions). We say that there is a
border between two neighboring cells if they are in the same state. An alternating
path is a sequence of neighboring cells that does not go through a border, i.e., of

Progresses in the Analysis of Stochastic 2D Cellular Automata 325

alternating states. This defines an equivalence relationship « being connected by
an alternating path », the equivalence classes of this relationship are called the
homogenous regions of the configuration.

By definition, each homogeneous region is connected and tiled by one of the
two checkerboard patterns, either or . The boundary of each homogeneous
region is exactly the set of borders touching its cells. Note that the potential of
a cell is the number of borders among its sides. The energy of a configuration is
thus twice the number of borders and a cell is active if and only if at least two of
its sides are borders. It follows that: if both dimensions n and m have the same
parity, (∀c)E(c) ∈ 4N; and (∀c)E(c) ∈ 2 + 4N otherwise.

There are two configurations of maximum energy 4N : all-black and all-white.
If n and m are even, there are two configurations of energy zero: the two checker-
boards. If n is even and m is odd, the minimum energy of a configuration is 2n
and such a configuration consists in a checkerboard pattern wrapped around the
odd dimension creating a vertical band of width 2 tiled with pattern .

Energy of Stable Configurations. A cell is inactive if and only if its po-
tential is � 1. It follows that the energy of any stable configuration belongs to
{0, 2, . . . , N}. Stable configurations are thus as expected of lower energy. If n
and m are even and at least one of them is a multiple of 4, there are stable
configurations of maximum energy N , tiled by the “fat”-checkerboard or .

Under the fully asynchronous dynamics δ, the overall variation of the energy
of the configuration when the state of a cell of potential v is flipped is 8−4v � 0,
and since active cells have potential � 2:

Proposition 1 (Energy is non-increasing). From any initial configuration c,
the random variables E(ct) form a non-increasing sequence and E(ct) decreases
by at least 4 each time a cell of potential � 3 is fired.

Initial Energy Drop. Furthermore, after a polynomial number of steps and
from any arbitrary initial configuration, the energy falls rapidly below 5N/3,
which is observed experimentally through the rapid emergence of checkerboard
patterns in the very first steps of the evolution. Observing that for any configu-
ration of energy at least 5N/3, there exists a sequence of at most two updates
that decreases strictly the energy, one can show that:

Proposition 2 (Initial energy drop, proof omitted). The random variable
T = min{t : E(ct) < 5N/3} is almost surely finite and E[T] = O(N2).

Every inactive cell touches at most one border. Thus, the boundaries of homo-
geneous regions in a stable configuration form straight lines at least 2 cells apart
from each other. Thus,

Proposition 3 (Stable configurations). Stable configurations are the con-
figurations composed of parallel checkerboard-tiled bands of width at least 2.In
particular, if n and m are odd, no stable configuration exists.

It follows that if n and m are odd, the dynamics δ never reaches a stable
configuration.

326 D. Regnault, N. Schabanel, and É. Thierry

3.2 Coupling with Outer-Totalistic 976

From now on up to the end of section 3, we assume that n and m are even
(with the only exception of Corollary 1). We denote by the checkerboard
configuration of energy 0 defined as follows: ij = (i + j) mod 2. Given two
configurations c and c′, we denote by c⊕ c′ the xor configuration c′′ such that
c′′ij = (cij + c′ij) mod 2.

Dual Configurations. As observed above, the fully asynchronous dynamics ct
tends to converge from any initial configuration c0 to configurations tiled by large
checkerboard regions. It is thus convenient to consider instead, the sequence of
dual configurations (ĉt) defined by ĉt = ⊕ ct, in which the large checkerboard
regions of ct appear as large homogeneous black or white regions. Clearly, the
dual sequence ĉt evolves according to the dynamics δ̂(.) = ⊕ δ(⊕ .), indeed
for all t, ĉt+1 = ⊕ ct+1 = ⊕ δ(ct) = ⊕ δ(⊕ ĉt) = δ̂(ĉt).

By construction, the two dual random sequences (ct) and (ĉt) as well as their
corresponding dynamics δ and δ̂ are coupled probabilistically (see [14]): the same
random cell is fired in both configurations at each time step. A simple calculation
shows that the dual dynamics δ̂ associates to each dual configuration ĉ, a dual
configuration ĉ′ as follows: select uniformly at random a cell (i, j) (the same cell
(i, j) as δ fires on the primal configuration c), let Σ = ĉi−1,j+ĉi+1,j+ĉi,j−1+ĉi,j+1

and set: ĉ′ij = 1 if Σ � 3; ĉ′ij = 1 − ĉij if Σ = 2; and ĉ′ij = 0 otherwise; and
ĉ′kl = ĉkl for all (k, l) �= (i, j). It turns out that this rule corresponds to the
asynchronous dynamics of the cellular automaton Outer-Totalistic 976 [11]. The
corresponding transitions are given in Fig. 2.

Stable Configurations of Outer-Totalistic 976. We define the energy of
the dual configuration ĉ and the potentials of each of its cells (i, j) as the cor-
responding quantities, E(c) and vij , in the primal configuration c. By Proposi-
tion 3, the stable dual configurations under the dual dynamics δ̂ are the dual
configurations composed of homogeneous black or white bands of widths � 2.
The two dual configurations of minimum energy 0 are all-white and all-black.

Experimentally, any dual configuration under the fully asynchronous dynam-
ics δ̂ evolves towards large homogeneous black or white regions (corresponding
to the checkerboard patterns in the primal configuration). Informally, these re-
gions evolve as follows (see Fig. 2): isolated points tend to disappear as well as
peninsulas; borders and surrounded points are stable; large regions are eroded
in a random manner from the corners or bridges that can be flipped reversibly
and their boundaries follow some kind of 2D random walks until large bands
without corners ultimately survive (see Fig. 3 or [12]).

3.3 Convergence from an Arbitrary Initial Configuration

In this section, we consider arbitrary initial configurations c0 and show that
indeed the dynamics δ converges to a stable configuration almost surely and
after at most an exponential number of steps on expectation.

Progresses in the Analysis of Stochastic 2D Cellular Automata 327

Von Neumann
neighborhoods

Isolated Peninsula Corner Bridge Border Surrounded

Minority δ(c)δ(c)δ(c) Inactive Inactive
Active

Reversible
ΔE(c) = 0

Active
Reversible
ΔE(c) = 0

Active
Irreversible
ΔE(c) = −4

Active
Irreversible
ΔE(c) = −8

Outer-totalistic
976

δ̂(ĉ) = ⊕ δ(⊕ ĉ)δ̂(ĉ) = ⊕ δ(⊕ ĉ)δ̂(ĉ) = ⊕ δ(⊕ ĉ)

Active
Irreversible
ΔE(c) = −8

Active
Irreversible
ΔE(c) = −4

Active
Reversible
ΔE(c) = 0

Active
Reversible
ΔE(c) = 0

Inactive Inactive

Fig. 2. Neighborhood’s names and transition tables of Minority δ and its counterpart
Outer-Totalistic 976 δ̂ (see section 3.2): only active cells switch their states when fired

Primal

Dual

Step 0N Step 1N Step 5N Step 20N Step 50N Step 300N Step 381N

Fig. 3. The coupled evolutions of Minority δ on the primal configurations (ct) (above)
and its counterparts Outer-Totalistic 976 δ̂ on dual configurations (ĉt) (below). Note
that from step 50N on, (ct) an (ĉt) are bounded configurations.

Theorem 1. From any initial configuration c0, the dynamics δ convergences to
a stable configuration after at most 2N2N+1 steps on expectation.

Proof. According to the coupling above, it is equivalent to prove this statement
for the dual dynamics. The following sequence of δ̂-updates transforms any dual
configuration ĉ into a dual stable configuration : I) as long as there are active
white cells, choose one of them and switch its state to black; II) as long as there
are active black cells, choose one of them and switch its state to white.

During phase 1, the black regions expand until they fill their surrounding
bands or surrounding rectangles. Clearly according to the transition table Fig. 2,
after phase 1 of the algorithm, every white cell is inactive and thus is either a
border or surrounded. In particular, no white band of width 1 survived. During
phase 2, the black cells enclosed in rectangles or in bands of width 1 are eroded
progressively and ultimately disapear. Finally, only black bands of width � 2
survive at the end of phase 2 and the configuration is stable since it is composed
of homogeneous white or black bands of width � 2 (see Proposition 3). During
each phase, at most N cells change their state. We conclude that, from any con-
figuration ĉ, there exists a path of length at most 2N to a stable configuration.
Now, splits the sequence (ct) into segments (c2Nk+1, ..., c2N(k+1)) of length 2N .
The sequence of updates in each of these segments has a probability 1/N2N to be
the sequence of at most 2N updates given above that tranforms configuration

328 D. Regnault, N. Schabanel, and É. Thierry

c2Nk into a stable configuration. Since these events are independent, this oc-
curs after N2N trials on expectation. We conclude that the dynamics δ̂ and
thus δ converge to a stable configuration after at most 2N · N2N steps on
expectation. �

Corollary 1. (Proof omitted) From any initial n×m-configuration c0, where n
is even and m is odd, the dynamics δ convergences to a stable configuration after
at most 3N3N+1 steps on expectation.

3.4 Convergence from a Bounded Configuration

We consider again that n and m are even. We observe experimentally that most
of the time, the dynamics converges rapidly to one of the two checkerboard
configurations of energy zero. We demonstrate in this section that if the dy-
namics reaches a configuration composed of an arbitrary region surrounded by
a checkerboard, then it will converge to the corresponding checkerboard config-
uration almost surely after a polynomial number of steps on expectation. This
corresponds to the analysis of the last steps of the behavior observed in ex-
perimentation. We believe that the techniques developed here may be extended
to prove that the dynamics converges to a stable configuration in polynomial
expected time from any initial configuration (see discussions in section 4).

Definition 5 (Bounded configuration). We say that a configuration c is
bounded if there exists a (n−2)×(m−2) rectangle such that the states in c of the
cells outside this rectangle are equal to the corresponding states in one of the two
checkerboard configurations. W.l.o.g., we assume that the upper-left corner of the
rectangle is (1, 1) and that the checkerboard is , i.e., a configuration c is bounded
if cij = (i + j) mod 2 for all (i, j) ∈ {(i, j) : (−1 � i � 0) or (−1 � j � 0)}.

Each cell outside the surrounding rectangle has 3 neighbors in an opposite state
as itself, and is thus inactive. It follows that if c is a bounded configuration, δ(c)
is also bounded within the same surrounding rectangle. A bounded configuration
is thus equivalent to a finite perturbation of an infinite planar configuration in
Z2 tiled with the pattern. Since the dual of is the configuration all-white,
the dual of a bounded configuration is thus equivalent to a finite number of black
cells, included into a (n− 2)× (m− 2) rectangle within an infinite white planar
configuration in Z2. We shall now consider this setting.

Definition 6 (Convexity). We say that a set of cells R ⊆ Z2 is convex if for
any pair of cells (i, j) and (i + k, j) (resp., (i, j + k)) in R, the cells (i + �, j)
(resp., (i, j + �)) for 0 � � � k belong to R. We say that R is an island if R is
connected and convex.

Our proof of the convergence of the dynamics in polynomial time for bounded
configurations relies on the definition of a variant which decreases on expectation
over time. It turns out that in order to define the variant, we do not need to
consider the exact internal structure of the bounded configuration, but only the
structure of the convex hull of its black cells.

Progresses in the Analysis of Stochastic 2D Cellular Automata 329

Definition 7 (Convex hull of a configuration). For any finite set of cells
R ∈ Z2, we denote by hull(R) the convex hull of the cells in R, i.e., hull(R) =
∩
{
S ⊆ Z2 : S is convex and S ⊇ R}. Given a bounded dual configuration ĉ, we

define the convex hull of ĉ, hull(ĉ), as the dual configuration whose black cells are
the cells in the convex hull of the black cells of ĉ, i.e., if R = {(i, j) : ĉij = 1},
hull(ĉ)ij = 1 if and only if (i, j) ∈ hull(R). We say that a configuration c is
convex if ĉ = hull(ĉ).

We say that ĉ � ĉ′ if for all (i, j), cij � c′ij . Let ĉ be a convex dual bounded
configuration. We define for each black cell (i, j) in ĉ, the island of ĉ that contains
cell (i, j), as the maximum connected and convex configuration ĉ′ such that ĉ′ij =
1 and ĉ′ � ĉ. This defines a unique decomposition into black islands of the
convex bounded configuration ĉ.

The Variant. We now consider the following variant : Φ(ĉ) = E(hull(ĉ))/4 +
|hull(ĉ))|, where |hull(ĉ))| is the number of black cells in the convex hull con-
figuration hull(ĉ). We will show that from any initial configuration c0, Φ(ct)
decreases by at least 1/N on expectation at each time step until it reaches the
value 0, i.e., until the primal and dual configurations ct and ĉt converge to the
infinite checkerboard and the infinite all-white configurations respectively. In
order to prove that Φ(ct) decreases on expectation, we need to study the evolu-
tion of the convex hull of ĉt; for this purpose, we introduce a modified coupled
dual dynamics δ̄ that preserves the convexity of a dual configuration. Given a
dual configuration ĉ, we denote by δ̄(ĉ) the random configuration ĉ′ such that:
ĉ′ = δ̂(ĉ) if the cell updated by δ̂ is not a black bridge, and ĉ′ = ĉ otherwise.
Since only firing a black bridge can break the convexity of a black region, then:

Lemma 1. If ĉ is a convex bounded configuration, δ̄(ĉ) is a convex bounded
configuration.

The energy of a convex region is twice the number of borders, i.e., twice the sum
of the perimeters of the islands that compose it, so:

Lemma 2. For all convex bounded configurations ĉ and ĉ′, if ĉ � ĉ′, then
E(c) � E(c′).

The construction of δ̄ guarantees that the image of the convex hull of ĉ by
the dynamics δ̄ bounds from above the convex hull of the image of ĉ by the
dynamics δ̂.

Lemma 3. (Proof omitted) For all bounded configuration ĉ, δ̂(ĉ) � δ̄(hull(ĉ)).

Let ΔΦλ(ĉ) be the random variable for the variation of the variant after one step
of a dynamics λ from a configuration c, i.e., ΔΦλ(ĉ) = Φ(λ(ĉ))− Φ(ĉ).

Corollary 2. For all bounded configuration ĉ, ΔΦδ̂(ĉ) � ΔΦδ̄(hull(ĉ)).

Proof. By definition, ΔΦδ̄(hull(ĉ)) − ΔΦδ̂(ĉ) =
(
|δ̄(hull(ĉ))| − |hull(δ̂(ĉ))|

)
+(

E(δ̄(hull(ĉ))) − E(hull(δ̂(ĉ)))
)
. According to lemma 3, hull(δ̂(ĉ)) � δ̄(hull(ĉ))

330 D. Regnault, N. Schabanel, and É. Thierry

and thus |hull(δ̂(ĉ))| � |δ̄(hull(ĉ))|. And by Lemma 2, since both configurations
are convex, E(hull(δ̂(ĉ))) � E(δ̄(hull(ĉ))). �

Lemma 4. For all bounded configuration ĉ that consists of a unique black island,
−4/N � E[ΔΦδ̄(ĉ)] � −3/N.

Proof. Each active cell is fired with probability 1/N . According to the dynamics
of δ̄ (the same as the dynamics of δ̂, Fig. 2, except that black bridges are inac-
tive), if ĉ consists of an island of size � 2, E[ΔΦδ̄(ĉ)] = − 1

N

(
#{black corners}

+ 2 #{black peninsulas}
)

+ 1
N #{white corners} = − 1

N #{salient angles}
+ 1

N #{reflex angles} = − 4
N , since #{salient angles} − #{reflex angles} = 4

for all convex rectilinear polygon. Finally, if ĉ consists of a unique (isolated)
black cell, ΔΦδ̄(ĉ) = −3/N . �

Lemma 5. For any bounded not-all-white configuration ĉ, E[ΔΦδ̂(ĉ)] � −�/N ,
where � is the number of islands that compose hull(ĉ).

Proof. By Corollary 2, E[ΔΦδ̂(ĉ)] � E[ΔΦδ̄(hull(ĉ))]. By convexity of hull(ĉ),
the sets of rows and columns touched by the islands that compose hull(ĉ) are
pairwise disjoint. Thus, one can index the islands from 1 to � from left to right,
and the contacts between islands can only occur between two consecutive islands
at the corners of their surrounding rectangles. Each contact creates at most two
new active white cells that contribute for +1/N each to E[ΔΦδ̄(hull(ĉ))]. The
contribution of each island to E[ΔΦδ̄(hull(ĉ))] is at most −3/N according to
Lemma 4. It follows that E[ΔΦδ̄(hull(ĉ))] � −3�/N + 2(�− 1)/N � −�/N . �

Theorem 2. The fully asynchronous minority dynamics δ converges almost
surely from any initial bounded configuration c to the stable configuration of
minimum energy, , and the expected convergence time is O(AN) where A is
the area of surrounding rectangle of the black cells in ĉ.

Proof. Initially and for all time t � 0, Φ(ĉt) � 2(n− 2 +m− 2) +A � 2N +A.
As long as ĉt �≡ 0, Φ(ĉt) > 0 and according to Lemma 5, E[ΔΦδ̂(ĉt)] � −1/N . It
follows that the random variable T = min{t : Φ(ĉt) � 0} is almost surely finite
and E[T] = O(nA) (by applying for example Lemma 2 in [6]); and at that time,
ĉT and cT are the stable configurations all-white and , respectively. �

Example 1 (Worst case configurations). Consider the initial dual bounded n×n-
configuration ĉ consisting of a black 2 × (n − 2) rectangle. The expected time
needed to erase one complete line of the rectangle is at least Ω(nN) = Ω(AN).

4 Concluding Remarks

This paper proposes an extension to 2D cellular automata of the techniques
based on random walks developped in [6,7] to study 1D asynchronous elemen-
tary cellular automata. Our techniques apply as well with some important new

Progresses in the Analysis of Stochastic 2D Cellular Automata 331

ingredients, to the Moore neighborhood where the cell fired updates to the
minority state within its height closest neighbors [17]. We believe that these
techniques may extend to the wide class of threshold automata, which are of
particular interest, in neural networks for instance. We are currently investigat-
ing refinements of the tools developed here, based on the study of the boundaries
between arbitrary checkerboard regions in order to try to prove that every ar-
bitrary n×m-configuration converges to a stable configuration in a polynomial
number of steps when n and m are both even (we conjecture a convergence
in time O(N3) for non-bounded toric configurations of even dimensions). This
result would conclude the study of this automaton under fully asynchronous
dynamics. The experiments lead in Section 2 exhibit an impressive richness of
behavior for this yet apparently simple transition rule. An extension of our re-
sults to arbitrary α-asynchronous regime is yet a challenging goal, especially if
one considers that most of the results concerning spin systems or lattice gas (at
the equilibrium) apply only to the limit when the temperature tends to 0, i.e.,
when only one transition occurs at a time.

Acknowledgements. We would like to thank C. Moore, R. D’Souza and J.
Crutchfield for their useful suggestions on the physics related aspects of our
work.

References
1. Aracena, J., Lamine, S.B., Mermet, M.-A., Cohen, O., Demongeot, J.: Mathemati-

cal modeling in genetic networks: relationships between the genetic expression and
both chromosomic breakage and positive circuits. IEEE Trans. on Systems, Man,
and Cybernetics Part B 33(5), 825–834 (2003)

2. Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based
models. In: Proceedings of Artificial Life IV, pp. 382–387. MIT Press, Cambridge
(1994)

3. Bovier, A., Manzo, F.: Metastability in glauber dynamics in the low temperature
limit: Beyond exponential asymptotics. J. Statist. Phys. 107, 757–779 (2002)

4. Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica
D 1, 59–68 (1984)

5. Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for
elementary cellular automata. Complex Systems 16(1), 1–27 (2005)

6. Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behaviour of
double-quiescent elementary cellular automata. Theoretical Computer Science 362,
1–16 (2006) (An extended abstract was also published in Proc. of MFCS’2005)

7. Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behaviour of
double-quiescent elementary cellular automata. In: LATIN 2006. LNCS, vol. 3887,
Springer, Heidelberg (2006)

8. Fukś, H.: Non-deterministic density classification with diffusive probabilistic cellu-
lar automata. Phys. Rev. E 66(2) (2002)

9. Fukś, H.: Probabilistic cellular automata with conserved quantities. Nonlinear-
ity 17(1), 159–173 (2004)

10. Goles, E., Martinez, S.: Neural and automata networks, dynamical behavior and
applications. Maths and Applications, vol. 58. Kluwer Academic Publishers, Dor-
drecht (1990)

332 D. Regnault, N. Schabanel, and É. Thierry

11. http://mathworld.wolfram.com/Outer-TotalisticCellularAutomaton.html
12. http://www.cmm.uchile.cl/~schabanel/2DMINORITY
13. Lumer, E.D., Nicolis, G.: Synchronous versus asynchronous dynamics in spatially

distributed systems. Physica D 71, 440–452 (1994)
14. Randall, D.: Mixing. In: Proc. of the Symp. on Foundations of Computer Science

(FOCS), pp. 4–15 (2003)
15. Regnault, D.: Abrupt behaviour changes in cellular automata under asynchronous

dynamics. In: Proceedings of 2nd European Conference on Complex Systems
(ECCS), Oxford, UK (2006) (to appear)

16. Regnault, D., Schabanel, N., Thierry, É.: Progresses in the analysis of stochastic
2D cellular automata: a study of asynchronous 2D minority (Full text). Preprint
arXiv:0706.2479 [cs.DM] (2007)

17. Regnault, D., Schabanel, N., Thierry, É.: A study of stochastic 2D Minority CA:
Would wearing stripes be a fatality for snob people? Research Report N◦ENSL-
00140883, École Normale Supérieure de Lyon, 2007.

18. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. BioSystems 51, 123–143 (1999)

19. Tarjan, R.E.: Amortized computational complexity. SIAM Journal of Algebraic
and Discrete Methods 6(2), 306–318 (1985)

http://mathworld.wolfram.com/Outer-TotalisticCellularAutomaton.html
http://www.cmm.uchile.cl/~schabanel/2DMINORITY

Public Key Identification Based on the

Equivalence of Quadratic Forms

Rupert J. Hartung and Claus-Peter Schnorr

Johann Wolfgang Goethe Universität Frankfurt a. M.
Postfach 11 19 32; Fach 238

60054 Frankfurt a. M., Germany
{schnorr,hartung}@mi.informatik.uni-frankfurt.de

Abstract. The computational equivalence problem for quadratic forms
is shown to be NP-hard under randomized reductions, in particular for
indefinite, ternary quadratic forms with integer coefficients. This re-
sult is conditional on a variant of the Cohen-Lenstra heuristics on class
numbers. Our identification scheme proves knowledge of an equivalence
transform.

1 Introduction

The arithmetic theory of quadratic forms has a long history. Algorithmic prob-
lems on lattices and quadratic forms, however, have long been neglected; their
study has been significantly pushed by the LLL-algorithm for lattice basis reduc-
tion [19]. Recently definite forms, or lattices, gave rise to cryptographic protocols
related to the NP-hard problems of finding a shortest, respectively, closest lattice
vector; see [22], [20] for hardness results and [2], [14], [15], [13], [12] for the appli-
cations. Cryptographic protocols based on NP-hard problems seem to withstand
attacks by quantum computers. However, lattice cryptography requires lattices
of high dimension. This yields long cryptographic keys and slow protocols.

By contrast, we show that quadratic form cryptography is possible in dimen-
sion three. We prove conditional NP-hardness of the equivalence and represen-
tation problems of indefinite, ternary forms over the integers using randomized
reductions. We build on the work of Adleman and Manders [21] who proved
NP-hardness of deciding solvability of inhomogeneous binary quadratic equa-
tions over the integers.

In Sect. 3, we present an identification scheme that proves knowledge of
an equivalence transform of quadratic forms. This scheme is statistical zero-
knowledge under reasonable heuristics. It allows short keys and performs merely
one LLL-reduction and a few arithmetic steps per round, but its security requires
many independent rounds.

2 The Equivalence Problem for Quadratic Forms

Quadratic Forms. An n-ary quadratic form (or simply form) f over Z is a
homogeneous quadratic polynomial f =

∑n
i,j=1 ai,jxixj = xtAx with integer

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 333–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

334 R.J. Hartung and C.-P. Schnorr

coefficients ai,j = aj,i ∈ Z, A = (ai,j) and x = (x1, ..., xn)t. Then f has deter-
minant detA and dimension n.

Equivalence Classes. Let f = xtAx be an n-ary form. For T ∈ Zn×n let fT
denote the form xtT tATx. The forms f, fT are called equivalent if T ∈ GLn(Z),
i.e., if | detT | = 1, notation f ∼ fT . The equivalence class of f is simply called
the class of f . Obviously det(fT) = (detT)2 det f = det f .

Analogously, we define the equivalence of integral forms over Zp, the ring of
p-adic integers. Two forms f , g over Z belong to the same genus if they are
equivalent over Zp for all primes p, and over Z∞ = R. Clearly, every genus is a
disjoint union of classes.

We study the equivalence problem of forms f having certain properties P .
Relevant properties are: f is regular if det f �= 0; f is indefinite if f(x) takes both
positive and negative values, otherwise f is definite (definite forms correspond to
the Gram matrices A = BtB of lattice bases B); f = xtAx is properly primitive
if gcd(aii, 2aij | i �= j) = 1; f is isotropic if f(u) = 0 holds for some nonzero
u ∈ Zn, otherwise f is anisotropic. Every regular isotropic form is necessarily
indefinite.

The Computational Equivalence Problem, CEP
INPUT: equivalent forms f, g satisfying certain properties P .
OUTPUT: T ∈ GLn(Z) such that g = fT .

The concept of LLL-reduction [19] extends in a natural way from lattice bases
and definite forms to anisotropic indefinite forms. LLL-forms f = xtAx, A =
(ai,j) satisfy a2

1,1 ≤ 22/n detA2/n. There is a polynomial time LLL-algorithm
that transforms f into an LLL-form fT with T ∈ GLn(Z), see [26], [18], and [25].

Outline. Section 3 presents an identification scheme based on the equivalence
problem. Section 4 proves a variant of the equivalence problem to be NP-hard
under randomized reductions. This is shown for indefinite, anisotropic forms of
dimension n = 3 using a number theoretic assumption that guarantees class
number 1 in real quadratic fields.

3 Identification Based on the Equivalence Problem

Key Generation. Pick a random, indefinite, anisotropic, ternary LLL-form f1

and a random T ∈ GL3(Z) following CT. LLL-reduce f1T to f0 := f1TT
′. The

public key is f0, f1, the secret key is S := TT ′. S is uniquely determined by f0,
f1 up to small automorphisms of f0, f1.

In the protocol (P ,V) the prover P proves to the verifier V knowledge of S.

Identification scheme, (P ,V)
1. P computes an LLL-form g := f0T via CT, and sends g,
2. V sends a random one-bit challenge b ∈R {0, 1},
3. P sends R := ST , and V checks that fbR = g.

Public Key Identification Based on the Equivalence of Quadratic Forms 335

CT: Computation of T = (Ti,j) ∈ GL3(Z). Let ‖T ‖ = maxi,j |Ti,j | be the norm.
Set r := 2100‖S‖. Pick the Ti,j ∈R [−r, r] at random for j �= 1. Compute
T1,1, ..., T3,1 ∈ Z by applying the extended Euclidean algorithm to T adj

1,1 , ..., T
adj
3,1

in order to achieve that detT = ±1.
Note that detT =

∑3
i=1±Ti,1 T

adj
i,1 , where the T adj

i,1 are values of ho-
mogeneous, quadratic polynomials in the Ti,j with j �= 1. Make sure that
gcd(T adj

1,1 , ..., T
adj
3,1) = 1 by picking, if necessary, some new Ti,j . The Euclidean

algorithm yields |Ti,1| ≤ maxi |T adj
i,1 | ≤ 4r2.

Finally LLL-reduce f0T into f0TT
′ and replace T := TT ′. This balances

the large Ti,1 with the smaller Ti,j , j > 1. The leading 100 bits and the least
significant 100 bits of the Ti,j are nearly random. Think of f0T to be a random
LLL-form out of a “sphere” of “radius” Θ(r2) centered at f0.

Completeness. The true prover P withstands the test fbR = g.

Proof of Knowledge. Consider a fraudulent P̃ that sends arbitrary ḡ, R̄. The triv-
ial P̃ guesses b in step 1 with probability 1

2 , sends the LLL-form ḡ := fbT̄b and
the reply R̄b := T̄b. P̃ withstands the verification with probability 1

2 . The prob-
ability 1

2 cannot be increased or else P̃ obtains an cryptographically equivalent
secret key S′ := R̄−1

0 R̄1 such that f0 = f1 S
′.

Suppose an arbitrary P̃ withstands the verification for the same ḡ and both
challenges b = 0, 1 replying R̄b. Then R̄b transforms fb into ḡ and thus
f0R̄

−1
0 R̄1 = f1.

More precisely, letting |(P̃ ,V)| bound the number of steps of (P̃ ,V) we have:

Theorem 1. A fraudulent prover P̃ that withstands k independent executions
of (P̃ ,V) with probability ε > 2−k, obtains an “equivalent” secret key in expected
time |(P̃ ,V)|/(ε− 2−k).

Statistical Zeroknowledge. The protocol (P ,V) is by definition statistical zero-
knowledge if for every probabilistic poly-time verifier Ṽ , there is a probabilistic
poly-time simulator S, which produces randomized strings whose distribution is
statistical close to the communication of (P , Ṽ) (‖ · ‖1-distance ≤ 2−100 suffices
in practice). The simulator S has resettable black-box access to Ṽ but does not
know the secret key.

The simulator S mimics P̃ replying R̄b = T̄b in step 3 whereas the true prover
replies R = SbT . The distributions of SbT, T̄b must be statistical close for both
b = 0, 1.

Note that SbT , T̄b are determined, up to small automorphisms of f0, f1, as
the isomorphisms from fb to g, resp., from fb to ḡ. Consider g, ḡ as random LLL-
forms out of spheres of radius Θ(r2) centered at fb, resp., f̄b. Small deviations
of r should have a negligible impact. In particular, we assume that ST reveals
negligible information about S, and the LLL-reduction reveals merely an upper
bound of ‖S‖.

336 R.J. Hartung and C.-P. Schnorr

Theorem 2. The identification scheme (P ,V) is statistical zeroknowledge under
reasonable heuristics.

The zero-knowledge property extends to independent sequential executions of
(P ,V). Since (P ,V) is restricted to one-bit challenges, a security level 2100 re-
quires to run 100 independent executions of (P ,V). To allow a poly-time simu-
lator S these executions must be sequential. It is open to extend (P ,V) to long
challenges.

4 NP-Completeness

4.1 Introduction and Results

In this section, we prove randomized NP-completeness of a decisional variant of
the CEP, as well as the related representation problem. We will use a number-
theoretic assumption, the special Cohen-Lenstra Heuristics (sCLH), which is
discussed in Sect. 4.2.

A quadratic form f of dimension n is said to represent a number m ∈ Z if
there exists u ∈ Zn \ {0} such that f(u) = m; here u is called a representation
of m by f . The representation is said to be primitive if gcd(u1, . . . , un) = 1. It
is natural to ask for an algorithm which, given f and m, computes such a vector
u. We will consider the following version of this problem.

Decisional Interval Representation Problem, DIRepr
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, quadratic form f of dimension n satifying all properties

from P , integer m, vectors v, w ∈ (Z∪{±∞})n, factorization of det f .
DECIDE: Whether there is x ∈ Zn, vi ≤ xi ≤ wi for all i s. t. f(x) = m.

We can also define the computational problem IRepr with the same param-
eters and inputs as DIRepr, but where a representation in the given interval is
to be computed. But then by a straightforward divide-and-conquer algorithm,
IRepr(P) and DIRepr(P) are polynomial-time equivalent.

Note that the symbols ±∞ do not mean greater generality here because there
are polynomial bounds on possible representations anyway by [8]. We might have
restricted the intervals in the definitions to be origin-symmetric, and to restrict
at most one component, as will turn out from the proofs.

We denote by gen f the genus of a form f , by cls f its class, and by cls +f its
proper class, i. e. the set of forms f U with detU = +1.

Theorem 3. Let M ∈ N. Let P ′
M consist of the properties

dim f = 3, f indefinite anisotropic, gen f = cls +f,

f properly primitive, and (det f,M) = 1

for a quadratic form f . If the sCLH holds true, then DIRepr(P ′
M) is NP-

complete under randomized reductions with one-sided error; more precisely:

NP ⊆ RPDIRepr(P′
M).

Public Key Identification Based on the Equivalence of Quadratic Forms 337

For the security of our identification scheme, it is important that the extraction of
the secret key from public parameters is not feasible; here that means that given
equivalent forms f , g, the computation of an equivalence transformation S ∈
GLn(Z) is hard. Again we consider interval constraints on the desired solution.

Decisional Interval Equivalence Problem, DIEP
PARAMETERS: Set P of properties of quadratic forms.
INPUT: n ∈ N, n-ary quadratic forms f, g satifying all properties from
P , matrices A,B ∈ (Z ∪ {±∞})n×n, factorization of det f .

DECIDE: Whether there exists T ∈ GLn(Z), Aij ≤ Tij ≤ Bij for all i, j
s. t. f T = g.

As with representations, the problem of computing such a transformation is
polynomial-time equivalent to DIEP, and both are NP-hard:

Theorem 4. Let M ∈ N. Let P ′
M consist of the properties

dim f = 3, f indefinite anisotropic, gen f = cls +f,

f properly primitive, and (det f,M) = 1

for a quadratic form f . If the sCLH holds true, then DIEP(P ′
M) is NP-complete

under randomized reductions with one-sided error; precisely:

NP ⊆ RPDIEP(P′
M).

We now explain our assumption in detail and then give proof sketches, while
some of its details are elaborated in the appendix.

4.2 The Special Cohen-Lenstra Heuristics

In [5], Cohen and Lenstra suggested a very general heuristic framework for the
prediction of the average behavior of the class group of a number field K. Based
on the thought experiment that, roughly speaking, all properties of class groups
which are not determined a priori (e. g. by the factorization of the discriminant),
develop according to a certain random model, they obtain a corresponding very
comprehensive conjecture on the distribution of such properties on large sets
of discriminants. The CLH intends to give a convincing link between several
seemingly independent observations from calculations of class groups. Though
still unproven, it has enjoyed a vivid reception, and is thought of as a realistic
way of thinking about long-run development of class numbers and groups.

One famous special case will be of central interest to us: Namely, the class
numbers of real quadratic fields (cf. [6]). The empirical findings that large class
numbers, in particular class numbers with odd part larger than one are rare, have
been one of the central motivations to formulate these heuristics. We are going to
use this empirically noticeable trait of class numbers. However, we cannot draw
upon proven statements here as the conjecture is still wide open; in particular,
our variant would imply that there are infinitely many real quadratic fields with
class number 1, which is still unknown for number fields in general.

338 R.J. Hartung and C.-P. Schnorr

To explain our assumption, we first analyze different parts of the class group
and the class number. Let d be an odd squarefree positive integer (for simplicity).
Recall that the set F(d) of proper classes of integral binary quadratic forms of
determinant d forms a group under Gauß composition. The unit element is given
by the principal class, i. e. the unique class of forms f0 representing 1.

Let Cl(d) be the ideal class group of the real quadratic number field Q[
√
d].

Then Cl(d) ∼= F(d)/I, where I is the subgroup of order 1 or 2 generated by the
unique class which represents −1 (see [4, sec. 5.2]). Gauß [11] showed that F(d)2

equals the genus of f0, whence the 2-rank of F(d) equals the number of genera,
which is 2ω(d). This power of two constitutes the ‘deterministic part’ of the class
number: It is determined by the prime factorization of d.

Beyond that part determined by genus theory, class numbers seem to behave
‘randomly’; and essentially, Cohen’s and Lenstra’s idea was to formulate this im-
pression explicitly and give a probabilistic model to describe the effects observed.
In their original paper, however, they consider only the odd part h2
 of the class
number to avoid interference with the genus structure. But the total exclusion of
the prime 2 now seems to be overly careful since only the index of Cl2(d) is linked
to the genus structure, but not the 2-part of |Cl2(d)|. It was conjectured in [16],
[17] and, in contrast to the large remaining part of the heuristics, it was proven
in [10, thm. 3] that the 2-part of |Cl2(d)| behaves as random as conjectured for
the odd part of the class number.

We now want to assume, first put informally, that the Cohen-Lenstra Heuris-
tics is compatible with the theorem on the 2-part still if restricted to primes of
certain residue classes, and that this convergence is not too slow. Precisely, we
state:

Special Cohen Lenstra Heuristics (sCLH) 4.1. There are c, e > 0 and a
polynomial F s. t. the following holds:

Let B > 0 and primes p1, . . . , pk be given, where k ≤ e logB. Then

#{q ≤ F (B) | q prime,
(

q
pi

)
= −1 ∀ i; |Cl(D(q))2| = 1} ≥ c

F (B)
B logF (B)

.

Here D(q) denotes the fundamental discriminant corresponding to q.

It should be noted that the restriction to primes, and further to primes in specific
residue classes, which is well prepared by tables as [27], already pops up in the
original publication (see [5, §9, II. C12]) and is explicitly encouraged in [7, sec. 3].

4.3 Sketch of Proofs

To bridge between the classical NP-complete problems and quadratic forms, we
use the following problem on binary Diophantine equations.

Public Key Identification Based on the Equivalence of Quadratic Forms 339

MS Narrow Modular Square Problem
PARAMETER: M ∈ N.
INPUT: Integers a, b, c ∈ Z with c > 0, a odd, squarefree, s. t. (ab,M) =

1 and there is an odd prime p s. t. if u2|b, then u is a power of p;
factorization of b.

DECIDE: Whether there is x ∈ Z, |x| ≤ c s. t. x2 ≡ a mod b.

Proposition 1 is similar to the result by Adleman and Manders [21]; they
proved it for arbitrary integers a, b in the problem instance.

We denote a deterministic Karp reduction by �, whereas a probabilistic Karp
reduction with one-sided error is depicted by �r.

Proposition 1. Let M ∈ N be arbitrary. Then 3SAT �r MS(M).

This will be proven in the appendix.- Abbreviate the form a1x
2
1 + . . .+ an x

2
n by

〈a1, . . . , an〉. From genus theory, the following can be derived:

Lemma 1. Let p ≡ 1 mod 4 be a prime satisfying cls 〈1,−p〉 = gen 〈1,−p〉. Let
m ∈ Z be odd and satisfy

(
m
p

)
= 1 and

(
q
p

)
= −1 ∀ q prime, q|m. (In particular,

p � |m.) Then 〈1,−p〉 represents m primitively.

By the theory of the spinor norm (see [24]) the following can be proven:

Proposition 2. Let b be odd, p an odd prime, and p � |b. Then the form f :=
〈2, b,−pb〉 satisfies gen f = cls +f.

Proof sketch of theorem 3: Membership in NP is covered by [8]. Let Φ′ be an
instance of 3SAT, i. e. a boolean formula in 3-CNF. Denote by ϕ := |Φ′| the
binary length of Φ. Then by Proposition 1, Φ is randomly mapped to an instance
of MS′(M). For the resulting problem instance proceed as follows:

input: RMS′-instance (a, b, c).
answer := false;
repeat polynomially many times

select random k ∈ [0, b];
a′ := a + kb;
repeat polynomially many times

select random prime p ≡ 1 mod 4, p > max
(⌈

c+|2a′+b|
|b|

⌉
, |b|

)
,

and
(−2b

p

)
= −1;

ask oracle (2a′ + b,

⎛

⎝
−c
−∞
−∞

⎞

⎠ ,

⎛

⎝
c
∞
∞

⎞

⎠ , 〈2, b,−b p〉)

answer := answer ∨ (oracle answer)
return answer.

Obviously this establishes a polynomial-time oracle algorithm. Let us examine
its correctness for solving MS′(M). At first, note that if it returns true then

340 R.J. Hartung and C.-P. Schnorr

there are |x| ≤ c, z1, z2 ∈ Z s. t. 2 x2 + bz2
1 − bpz2

2 = 2a′ + b, hence, putting
y := z2

1 − pz2
2 , we have, in particular, that there are x, y s. t. 2x2 + by = 2a′ + b

and thus x2 ≡ a′ ≡ a mod b since 2 is invertible modulo the odd integer b. Thus,
the MS′(M) instance has a solution (x, y) and so is a ‘yes’-instance.

Conversely, if the algorithm returns false, but nevertheless (a, b, c) is a ‘yes’-
instance, then there is |x| ≤ c s. t. x2 ≡ a mod b; and thus there is y ∈ Z,
necessarily odd, s. t. 2x2 + by = 2a′ + b, but y is not represented by any of the
binary quadratic forms 〈1,−p〉. For each of these forms, one of two things may
have happened: Either y is represented by the genus of 〈1,−p〉, but this genus
consists of several classes; or y is not even represented by the genus of 〈1,−p〉.

First, the sCLH 4.1 gives us an upper bound on the probability that the first
case applies if the second does not. The second case, however, implies that

∀ (x, y) ∈ Z2, |x| ≤ c, x2 + by = a, ∃ q|y prime:
(
q

p

)
�= −1

by Lemma 45. As the q are odd, the symbol
(
q
p

)
takes the values 1,−1 according

to the uniform distribution and independently for different q as p is randomly
chosen; hence if (x, y) is any solution of the RMS’ instance, the probability that
the second case applies is bounded by 1 − 2−ω(y) (where ω(y) counts the num-
ber of distinct prime factors of y). We now have to show that if we start with
a ‘yes’-instance of MS′(M), then with high probability, in some iteration we
obtain an instance of (a′, b, c) which has solution (x, y) with y decomposing into
only logarithmically many prime factors in the input length. Observe that for all
solutions (x, y), |y| is bounded from above by 2(b+ 1). Assume that (a, b, c) is a
‘yes’-instance with some solution (x0, y0). Then, for k = 0, . . . , b, the problem in-
stance (a′ = a+kb, b, c) necessarily has a solution, namely (x0, y0+k). The range
over which y varies thus is an interval [y0, y0 + b]∩ Z, where y0 < 2b. As follows
directly from a result of Erdős and Nicolas [9, prop. 3], it holds that for B > 0,

#{Y ≤ B |ω(Y) > 2 ln lnB} < 6
π5/2

B

(lnB)2 ln(2)−1
√

ln lnB

(
1 +O

(
1

ln lnB

))
.

(1)
Combining these insights, we conclude that the innermost repeat loop pro-

duces at most

O
(

b

(ln b)2 ln(2)−1
√

ln ln b

)

different a′ for which there exists no solution (x, y) with y having less than
2 ln ln y prime factors. This implies that after log b iterations, we have seen at
least one instance with a solution of few prime divisors with exponentially large
probability.

Now that we have established the occurrence of at least one solution in which
y0 has few prime divisors with high probability, we may conclude that for every
choice of p, the probability of failure according to case two is in each iteration
independently bounded from above by

Public Key Identification Based on the Equivalence of Quadratic Forms 341

1− 2−ω(y0) ≤ 1− 2−2 ln ln y0 ≤ 1− 1

ln2
⌈

c2+|a|
|b|

⌉ ,

which after special treatment of finitely many instances is bounded away from 1.
Together with the sCLH in the first case, we have bounded the error probability
away from 1, and hence this is a one-sided error probabilistic reduction.

It remains to be shown that the forms constructed here satisfy all the prop-
erties entailed on them. Obviously, all forms constructed here are indefinite, of
dimension 3, and of determinant prime to M . Next consider anisotropy: By [3,
sec. 4.2] and the Hasse principle, a ternary quadratic form f over Z is isotropic
if and only if cqf = 1 for all symbols q (see [3, ch. 4] for the definition of cp). But
we have chosen

(−2b
p

)
= −1, hence it can be computed that cp〈2, b,−pb〉 = −1,

so that our forms are anisotropic. Finally, we have to establish the one-proper-
class property for all forms constructed above. But this follows directly from
Proposition 2. �

Proof Sketch of theorem 4: Membership in NP again follows from [8]. Let f , c,
a be taken from an instance of IRepr(P ′) produced in the proof of theorem 3
above. Construct a form g in the genus of f satisfying g((1, 0, 0)t) = a. This
can be accomplished essentially by following the proof of the existence of genera
from [3]; the main steps are the following: First write down p-adic forms gp with
gp((1, 0, 0)t) = a, for all p|2d∞. From values of the gp, construct an integer t
which is primitively represented over Zp by all gp; to this end, we have to select
a prime probabilistically from an arithmetic progression. Then we can compute
Up ∈ GL3(Zp) such that t fp Up = t2x2

1 + f∗p (x2, x3). Then the algorithm calls
itself recursively and returns a form f∗ which is Zp-equivalent to each f∗p . Now
we obtain the desired f by an application of the Chinese Remainder Theorem
to the Up.

If this fails then we know we have started from a ‘no’-instance. Otherwise, a
matrix T with fT = g and |T11| ≤ c exists if and only if there are |x| ≤ c, z1, z2

s. t. f((x, z1, z2)) = a. Hence DIRepr(P ′) �r DIEP(P ′).

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 1602,
781–793 (2004)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the 29th annual ACM symposium on theory of
computing, El Paso, TX, USA, May 4-6 (New York), pp. 284–293 (Association for
Computing Machinery 1997)

3. Cassels, J.W.S.: Rational quadratic forms. London Mathematical Society Mono-
graphs, vol. 13. Academic Press, London (1978)

4. Cohen, H.: Course in computational algebraic number theory. Graduate Texts in
Mathematics, vol. 138. Springer, Heidelberg (1993)

5. Cohen, H., Lenstra, H.W. jun.: Heuristics on class groups of number fields, Number
Theory. In: Queinnec, C., Halstead Jr., R.H., Ito, T. (eds.) PSLS 1995. LNCS,
vol. 1068, Springer, Heidelberg (1996)

342 R.J. Hartung and C.-P. Schnorr

6. Cohen, H., Martinet, J.: Class groups of number fields: Numerical heuristics. Math-
ematics of Computation 48(177), 123–137 (1987)

7. Heuristics on class groups: Some good primes are no too good, Mathematics of
Computation 63, no. 207, 329–334 (1994)

8. Dietmann, R.: Small solutions of quadratic Diophantine equations. Proceedings of
the London Mathematical Society, III. Ser. 86(3), 545–582 (2003)

9. Erdős, P., Nicolas, J.-L.: Sur la fonction: Nombre de facteurs premiers de n. Ens-
Math2 27, 3–27 (1981)

10. Fouvry, É., Klüners, J.: On the 4-rank of class groups of quadratic number fields
(2006) (preprint)

11. Gauß, C.F.: Untersuchungen über höhere Arithmetik (Disquisitiones Arithmeti-
cae). Springer, Heidelberg (1889) (German translation by H. Maser)

12. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

13. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: Digital signatures using the NTRU lattice, Topics in cryptology –
CT-RSA 2003. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140.
Springer, Heidelberg (2003)

14. Hoffstein, J., Pipher, J., Silverman, J.H.: A ring-based public key cryptosystem.
In: Buhler, J.P. (ed.) Algorithmic number theory. 3rd international symposium,
ANTS-III, LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

15. NSS: an NTRU lattice-based signature scheme, Advances in cryptology - EURO-
CRYPT 2001. 20th international conference on theory and application of cryp-
tographic techniques, Innsbruck, Austria, May 6-10, 2001 (Birgit Pfitzmann, ed.),
Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, pp. 211–228 (2001)

16. Gerth III, F.: The 4-class ranks of quadratic fields. Inventiones Mathematicae 77(3),
489–515 (1984)

17. Gerth III, F.: Extension of conjectures of Cohen and Lenstra. Expositiones Math-
ematicae 5(2), 181–184 (1987)

18. Ivanyos, G., Szánto, Á.: Lattice basis reduction for indefinite forms and an appli-
cation. Journal on Discrete Mathematics 153(1–3), 177–188 (1996)

19. Lenstra, H.W. jun., Lenstra, A.K., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515–534 (1982)

20. Khot, S.: Hardness of approximating the shortest vector problem in lattices. Jour-
nal of the ACM 52(5), 789–808 (2005)

21. Manders, K.L., Adleman, L.M.: NP -complete decision problems for binary
quadratics. Journal of Computer and System Sciences 16, 168–184 (1978)

22. Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic
perspective. In: The Kluwer International Series in Engineering and Computer Sci-
ence, Boston, Massachusetts, March 2002, vol. 671, Kluwer Academic Publishers,
Dordrecht (2002)

23. Mitrinović, D.S., Sándor, J., Crstici, B. (eds.): Handbook of number theory. Math-
ematics and Its Applications, vol. 351. Kluwer Academic Publishers, Dordrecht
(1996)

24. O’Meara, O.T.: Introduction to quadratic forms. Grundlehren der mathematischen
Wissenschaften, vol. 117. Springer, Heidelberg (1963) (reprinted in 2000)

25. Schnorr, C.-P.: Progress on LLL and lattice reduction. In: Proceedings LLL+25,
June 29–July 1, 2007, Caen, France (to appear, 2007)

26. Simon, D.: Solving quadratic equations using reduced unimodular quadratic forms.
Mathematics of Computation 74(251), 1531–1543 (2005)

Public Key Identification Based on the Equivalence of Quadratic Forms 343

27. Tennenhouse, M., Williams, H.C.: A note on the class-number one in certain real
quadratic and pure cubic fields. Mathematics of Computation 46(173), 333–336
(1986)

A Proof of Proposition 44

Let Φ be a Boolean formula in 3-CNF which contains each possible clause at
most once, and no clause of Φ contains any variable both complemented and
uncomplemented. Let � be the number of variables in Φ. Choose an enumera-
tion σ1, . . . , σm of all clauses in the variables x1, . . . , x� with exactly three literals
containing no variable both complemented and uncomplemented, such that both
the bijection i #→ σi and its inverse are polynomial-time (e. g. a suitable lexi-
cographic enumeration). Denote by σ ∈ Φ the assertion that clause σ occurs
in Φ, and by xj ∈ σ (x̄j ∈ σ) that the j-th variable occurs uncomplemented
(complemented) in clause σ. Let n = 2m + �.

For a fixed assignment to the boolean variables xi, we define ri = 1 if xi =true
and ri = 0 otherwise. Moreover, for a clause σ, define

W (σ, r) =
∑

i:xi∈σ

ri +
∑

i:x̄i∈σ

(1− ri). (2)

For k = 1, . . . ,m, let furthermore

Rk :=
{
yk −W (σk, r) + 1 if σk∈ Φ,
yk −W (σk, r) if σk /∈ Φ,

(3)

where yk are new variables, for k = 1, . . . ,m. Since Φ is in 3-CNF, we have
W (σk, r) = 0 if assignment r does not render clause σ true, and 1 ≤W (σk, r) ≤ 3
otherwise. Hence the equation system

Rk = 0, k = 1, . . . ,m (4)

has a solution with
r ∈ {0, 1}�, y ∈ {0, 1, 2, 3}m (5)

if and only if Φ is satisfiable. Now choose a prime p ≥ 11 not dividing the M
from the statement of the theorem. As −3 ≤ Rk ≤ 4 for all choices (5) of the
variables, (4) is equivalent with

m∑

k=1

Rkp
k = 0. (6)

We may estimate
∣∣∑m

k=1 Rkp
k
∣∣ ≤ 4

∑m
k=1 p

k < pm+1 − 2 as p ≥ 11; hence (6) is
equivalent with

∑m
k=1 Rkp

k ≡ 0 mod pm+1, or, equivalently, as p is odd, with

m∑

k=1

(2Rk)pk ≡ 0 mod pm+1. (7)

344 R.J. Hartung and C.-P. Schnorr

Now replace the yk, k = 1, . . . ,m and the ri, i = �, by new variables αi, i =
1, . . . , n, each ranging independently over {1,−1}, by the formula

yk =
1
2
(
(1 − α2k−1) + 2((1− α2k)

)
,

ri =
1
2

(1 − α2m+i),
(8)

which obviously induces a bijection between the sets over which the two se-
quences of variables range.

After this change of variables the left hand side of (7) is still integral, and thus
the congruence notation makes sense. Collecting terms, (7) can be rephrased as

n∑

j=1

cjαj ≡ τ ′ mod pm+1 (9)

for some cj , τ
′ ∈ Z; explicitly, we have

−τ ′ =
m∑

k=1

(5 −
∑

i:xi∈σk

1 + 1σk∈Φ)pk,

c2k−1 = −pk,
c2k = −4pk,

c2m+i =
m∑

k=1

(1xi∈σk
− 1x̄i∈σk

)pk,

(10)

where k = 1, . . . ,m, i = 1, . . . , �, and 1Ψ = 1 if Ψ is true and 1Ψ = 0 otherwise.
Without affecting solvability or the number of solutions, we may as well in-

troduce an extra variable α0, define c0 := 1 and τ := τ ′ + 1, and write
n∑

j=0

cjαj ≡ τ mod pm+1. (11)

Thus we have learnt that Φ was satisfiable if and only if (11) is solvable for
α ∈ {−1, 1}n+1. For later use, we verify that p � |τ : Indeed, the constant term
(i. e. independent of the αi) of W (σk, r), with the ri replaced according to (8),
equals wk :=

∑
xi∈σk

1 +
∑

x̄i∈σk
1. Now τ ′ is obviously divisible by p; and thus

τ = τ ′ + 1 ≡ 1 mod p. (12)

Now define p0 to be some prime exceeding 4 · pm+1(n+ 1), and let pj be some
prime exceeding pj−1, for j = 1, . . . , n, both of polynomial size in pm. They can
be found by sampling integers uniformly at random in intervals of the shape
[N, 2N(lnN)2] and testing them for primality [1].

Choose θj , for j = 1, . . . , n, as the smallest positive integer satisfying

θj

⎧
⎨

⎩

≡ cj mod pm+1,
≡ 0 mod

∏
i
=j pi,

�≡ 0 mod pj .
(13)

Public Key Identification Based on the Equivalence of Quadratic Forms 345

Finally, set K :=
∏n

j=0 pj and c :=
∑n

j=0 θj . Then we can reformulate (11) as
follows: Φ is satisfiable if and only if there is α ∈ {1,−1}n+1 s. t.

n∑

j=0

θjαj ≡ τ mod pm+1, (14)

and the number of solutions still has not changed.
Now we claim: For x ∈ Z, |x| ≤ c and c2 ≡ x2 mod K hold if and only if

x =
n∑

j=0

θjαj (15)

for some α ∈ {1,−1}n+1.
The proof of this claim is analogous to a lemma in [21] and therefore omitted.
Combining (15) and (14), we obtain that the 3SAT formula Φ has a satisfying

truth assignments if and only if there is a number x ∈ Z, |x| ≤ c s. t.

c2 − x2 ≡ 0 mod K,

x ≡ τ mod pm+1.
(16)

It is easily seen that (τ − ξ) (τ + ξ) = τ2 − ξ2 ≡ 0 mod pm+1 is equivalent with
ξ ≡ τ mod pm+1 or ξ ≡ −τ mod pm+1. So Φ has a satisfying truth assignment
if and only if there is an integer x with |x| ≤ c s. t.

c2 − x2 ≡ 0 mod K,

τ2 − x2 ≡ 0 mod pm+1.
(17)

By the Chinese Remainder Theorem, the equations (17) are jointly equivalent
to the equation pm+1(c2−x2) +K(τ2−x2) ≡ 0 mod pm+1K. But as K is prime
to p by the construction of the pj , and pm+1 +K is prime to K, we finally reach
the equation

x2 ≡ a mod b (18)

where
a ≡ (pm+1 + K)−1(Kτ2 + pm+1c2) mod pm+1K (19)

and b = pm+1K. Then (18) has a solution x ∈ Z with |x| ≤ c if and only if Φ had a
satisfying truth assignment. Now by construction, K is odd and squarefree, and a
is odd and coprime to b. Now it suffices to note that the arithmetic progression
(19) contains sufficiently many squarefree numbers so that one of them can
be selected randomly in expected polynomial time. By the Page-Siegel-Walfisz
theorem (see [23, §VIII.6]), polynomially many random selections suffice to find
a prime a in the arithmetic progression (19), and primes can be efficiently tested
as above. Of course, a is then squarefree as well. By construction, it is no problem
to output the prime factorization as well.

Reachability Problems in Quaternion Matrix

and Rotation Semigroups

Paul Bell and Igor Potapov

Department of Computer Science,
University of Liverpool, Ashton Building,

Ashton St, Liverpool L69 3BX, UK
{pbell,igor}@csc.liv.ac.uk

Abstract. We examine computational problems on quaternion matrix
and rotation semigroups. It is shown that in the ultimate case of quater-
nion matrices, in which multiplication is still associative, most of the
decision problems for matrix semigroups are undecidable in dimension
two. The geometric interpretation of matrix problems over quaternions
is presented in terms of rotation problems for the 2 and 3-sphere. In
particular, we show that the reachability of the rotation problem is un-
decidable on the 3-sphere and other rotation problems can be formulated
as matrix problems over complex and hypercomplex numbers.

1 Introduction

Quaternions have long been used in many fields including computer graphics,
robotics, global navigation and quantum physics as a useful mathematical tool
for formulating the composition of arbitrary spatial rotations and establishing
the correctness of algorithms founded upon such compositions.

Many natural questions about quaternions are quite difficult and correspond
to fundamental theoretical problems in mathematics, physics and computational
theory. Unit quaternions actually form a double cover of the rotation group
SO3, meaning each element of SO3 corresponds to two unit quaternions. This
makes them expedient for studying rotation and angular momentum and they
are particularly useful in quantum mechanics. The group of unit quaternions
form the group SU2 which is the special unitary group. The large number of
applications has renewed interest in quaternions and quaternion matrices ([1],
[8], [15], [18], [19]).

Quaternions do not commute and this leads to many problems with their
analysis. In particular, defining the determinant and finding the eigenvalues and
the inverse of a quaternion matrix are unexpectedly difficult problems [19]. In
this paper we study decision questions about semigroups of quaternions, quater-
nion matrices and rotations, such as several reachability questions, membership
problems, freeness problems, etc. There are two major points of this work that
we would like to highlight.

First, we investigated classical matrix decision problems for low-dimensional
quaternion matrices. The results for matrices over Z,Q,C are not easily trans-
ferable to the case of quaternions and thus there are no results on computational

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 346–358, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reachability Problems in Quaternion Matrix and Rotation Semigroups 347

problems for quaternions and quaternion matrices. Most of the problems for 2×2
matrices were open for any number field. In this paper, we show that all standard
reachability problems are undecidable for 2 × 2 quaternion matrix semigroups.
Moreover, our construction uses unitary quaternions that have a special interest
in terms of rotations. After the quaternions, the hypercomplex numbers lose the
associativity property and thus no longer form a semigroup. Due to this fact
we think that our current research on quaternion matrices gives a more com-
plete picture of decision problems for matrix semigroups. Then we study these
problems for a case of Lipschitz integers and state several open problems.

The second important point of the paper is establishing connections between
classical matrix semigroup problems and reachability problems for semigroups
of rotations. In fact, using unit quaternions for encoding computational prob-
lems gives us an opportunity to formulate and prove several interesting results in
terms of 3 and 4 dimensional rotations defined by quaternions. In particular, we
show that the point-to-point rotation problem for the 3-sphere is undecidable.
The same problem for the 2-sphere is open and can be formulated as a special
case of the scalar reachability problem for matrix semigroups that we show is un-
decidable in general. As an additional benefit, the results on rotation semigroups
give immediate corollaries for a class of orthogonal matrix semigroups.

The paper is organized as follows. In the second section we give all definitions
about quaternions and their matrix representation and a mapping between words
and quaternions that will be used in our proofs. The third section contains
the main results of the paper on undecidable problems (freeness, membership,
reachability) in quaternion matrix semigroups. We prove that the membership
for 2× 2 rational quaternion matrix semigroups is undecidable. We use a novel
technique of PCP encoding, allowing us to encode pairs of words by separate
matrices and force them to appear in the right order for a specific product. Then
we show that the problem of deciding if any diagonal matrix is in a quaternion
matrix semigroup, that has its own interest in a context of control theory, is
undecidable. Then we study these problems for the case of Lipschitz integers. In
the last section, the geometric interpretation of matrix problems over quaternions
is presented in terms of rotation problems for the 2 and 3-sphere.

2 Preliminaries

We use the standard denotations N,Z+,Q to denote the natural numbers, posi-
tive integers and rational numbers respectively.

In a similar style to complex numbers, rational quaternions, which are hy-
percomplex numbers, can be written ϑ = a + bi + cj + dk where a, b, c, d ∈ Q.
To ease notation let us define the vector: μ = (1, i, j,k) and it is now clear that
ϑ = (a, b, c, d) · μ where · denotes the inner or ‘dot’ product. We denote rational
quaternions by H(Q). Quaternions with real part 0 are called pure quaternions
and denoted by H(Q)0.

Quaternion addition is simply the componentwise addition of elements. It is
well known that quaternion multiplication is not commutative. Multiplication

348 P. Bell and I. Potapov

is completely defined by the equations i2 = j2 = k2 = −1 , ij = k = −ji,
jk = i = −kj and ki = j = −ik. Thus for two quaternions ϑ1 = (a1, b1, c1, d1)μ
and ϑ2 = (a2, b2, c2, d2)μ, we can define their product as ϑ1ϑ2 = (a1a2 − b1b2 −
c1c2−d1d2)+(a1b2 + b1a2 + c1d2−d1c2)i+(a1c2− b1d2 + c1a2 +d1b2)j+(a1d2 +
b1c2 − c1b2 + d1a2)k.

In a similar way to complex numbers, we define the conjugate of ϑ = (a, b, c, d)·
μ by ϑ = (a,−b,−c,−d) · μ. We can now define a norm on the quaternions by
||ϑ|| =

√
ϑϑ =

√
a2 + b2 + c2 + d2. Any non zero quaternion has a multiplicative

(and obviously an additive) inverse [11]. The other properties of being a division
ring can be easily checked.

A unit quaternion has norm 1 and corresponds to a rotation in three dimen-
sional space. Given a unit vector r = (r1, r2, r3) and a rotation angle 0 ≤ θ < 2π,
we would like to find a quaternion transformation to represent a rotation of θ ra-
dians of a point P ′ = (x, y, z) ∈ Q3 about the r axis. To facilitate this, we require
an encoding of P ′ as a pure quaternion P , namely P = (0, x, y, z) · μ ∈ H(Q)0.

Let us define a function ψq : H(Q) #→ H(Q) by ψq(P) = qPq−1 where q, P ∈
H(Q) and ||q|| = 1. If q is correctly chosen to represent a rotation of θ about a unit
axis r, then this function will return a pure quaternion of the form (0, x′, y′, z′)·μ
where (x′, y′, z′) ∈ Q3 is the correctly rotated point.

It is well known (see, for example, [11]) that: ϑ =
(
cosθ

2 , r sin θ
2

)
·μ represents

a rotation of angle θ about the r axis. Therefore using ψϑ(P) as just described
rotates P as required. This will be used in the next section.

All possible unit quaternions correspond to points on the 3-sphere. Any pair
of unit quaternions p, q represent a four-dimensional rotation. Given a point
x ∈ H(Q), we define a rotation of x, by pxq [17]. Also we use the notation SU2

to denote the special unitary group, the double cover of the rotation group SO3.
The length of quaternions is multiplicative and the semigroup of Lipschitz

integers with multiplication is closed. The fact that ||q1q2|| = ||q1|| · ||q2|| follows
since the determinant of the matrix representation of a quaternion we define in
Section 2.2 corresponds to the modulus and is multiplicative. This result will be
required later.

2.1 Word Morphisms

Let Σ = {a, b} be a binary alphabet, u = (1, 0, 0) and v = (0, 1, 0). We define
the homomorphism ϕ : Σ∗ ×Q #→ H(Q) by:

ϕ(a, θ) = (cos(θ
2),u sin(θ

2)) · μ and ϕ(b, θ) = (cos(θ
2),v sin(θ

2)) · μ

where θ ∈ Q ∈ [0, 2π), i.e. ϕ(a, θ) is a rotation of angle θ about the u axis and
ϕ(b, θ) is a rotation of angle θ about the v axis. ϕ(ε, θ) = ϑI is the multiplicative
identity element of the division ring of rational quaternions. Note that u · v = 0
and ||u|| = ||v|| = 1, thus these two vectors are orthonormal.

Let us define a specific instance of this morphism. Let α = 2 arccos(3
5) ∈ R.

Now we define γ : Σ∗ #→ H(Q) where γ(a) = ϕ(a, α), γ(b) = ϕ(b, α) and
γ(ε) = (1, 0, 0, 0)μ = ϑI . This gives the homomorphism:

Reachability Problems in Quaternion Matrix and Rotation Semigroups 349

γ(a) = (cos(arccos(3
5)),u sin(arccos(3

5))) · μ = (3
5 ,

2
5 , 0, 0) · μ (1)

γ(b) = (cos(arccos(3
5)),v sin(arccos(3

5))) · μ = (3
5 , 0,

2
5 , 0) · μ (2)

which follows from the identity cos2θ + sin2θ = 1 since
√

1− (3
5)2 = 2

5 .
We can see that the quaternions in the image of γ are unit, i.e. ∀w ∈ Σ∗,

||γ(w)|| = 1 since quaternion length is multiplicative (||q1q2|| = ||q1|| · ||q2||,
which we proved in Section 2) and γ(a), γ(b) have unit length.

Lemma 1. The mapping γ : Σ∗ #→ H(Q) is a monomorphism.

Proof. It was proven in [16] that if cos(θ) ∈ Q then the subgroup of SO3(R) gen-
erated by rotations of angle θ about two perpendicular axes is free iff cos(θ) �=
0,± 1

2 ,±1. We note that in the definition of γ we use a rotation about two or-
thonormal axes u,v. We use a rotation of α = 2 arccos3

5 . From basic trigonome-
try, cos(2 arccos(3

5)) = − 7
25 and sin(2 arccos(3

5)) = 24
25 thus the cosine and sine of

both angles are rational and not equal to 0,± 1
2 ,±1 (we only require this of the

cosine) as required. We showed that all elements of the quaternions are rational,
thus we have a free subgroup of SO3(Q) generated by γ(a), γ(b) ∈ H(Q). Note
that the conditions mentioned are guaranteed to give a free group but are not
necessary for freeness, see [8]. �
Post’s Correspondence Problem (PCP) - Given two (finite) alphabets Γ,Σ
and two morphisms h, g : Γ ∗ #→ Σ∗, it is undecidable in general whether there
exists a solution w ∈ Γ+ such that h(w) = g(w). We can assume without loss of
generality that Σ is binary by using a straightforward encoding. It was shown
that the problem is undecidable when the instance size |Γ | ≥ 7 in [13]. We denote
by np the smallest instance size for which PCP is undecidable (thus, np ≤ 7).

2.2 Matrix Representations

It is possible to represent a quaternion H(Q) by a matrix M ∈ C2×2. For a general

quaternion ϑ = (a, b, c, d) · μ we define the matrix M =
(

a + bi c + d i
−c + di a− bi

)
.

Corollary 1. There is a class of 2× 2 complex unitary matrices forming a free
group.

Proof. We can define a morphism similar to γ which instead maps to two di-
mensional complex matrices:

ζ(a) =
(

3
5 + 4

5 i 0
0 3

5 −
4
5 i

)
, ζ(b) =

(
3
5

4
5

− 4
5

3
5

)
, ζ(ε) =

(
1 0
0 1

)
.

Note that these matrices are unitary, therefore let ζ(a−1) = ζ(a)−1 = ζ(a)∗

and ζ(b−1) = ζ(b)−1 = ζ(b)∗ where ∗ denotes the Hermitian transpose.
Thus we have an injective morphism ζ : (Σ ∪ Σ)∗ #→ C2×2. Since γ forms a

free group of quaternions, ζ forms a free group over C2×2. �
Also note that we can define such matrices for any three orthonormal vectors
where the rotation angle θ satisfies cos(θ)∈ Q and cos(θ) �= 0,± 1

2 ,±1.

350 P. Bell and I. Potapov

3 Quaternion Matrix Semigroups

We will now show an undecidability result similar to one considered by
A. Markov, where he showed undecidability for two sets of unimodular 2 × 2
integral matrices, see [12] and [9].

Theorem 1. Given two sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn},
where A,B ⊂ H(Q), it is undecidable whether there exists a non-empty sequence
of indices (r1, r2, . . . , rm) such that ar1ar2 · · ·arm = br1br2 · · · brm , this holds for
n = np.

Proof. We use a reduction of Post’s correspondence problem and the morphism
γ defined in Section 2. Given two alphabets Γ,Σ, such that Σ is binary, and
an instance of the PCP, (h, g) : Γ ∗ #→ Σ∗. We proved in Lemma 1 that γ
is a monomorphism between Σ∗ and H(Q). Thus let us define a new pair of
morphisms (ρ, τ) to map Γ+ × Γ+ directly into H(Q)× H(Q) (we can think of
this as SU2 × SU2 since each of these unit quaternions represents an element of
S3 (the 3-sphere)). For any w ∈ Γ+, let ρ(w) = γ(h(w)) and τ(w) = γ(g(w)).

Thus for an instance of PCP, Γ = {a1, a2, . . . , am}, (h, g), we instead use
the pair of morphisms (ρ, τ). Define two semigroups S1, S2 which are generated
respectively by {ρ(a1), ρ(a2), . . . , ρ(am)} and {τ(a1), τ(a2), . . . , τ(am)}. We see
their exists a solution to the given instance of PCP iff ∃w ∈ Γ+ such that
ρ(w) = τ(w). �

We now move to an extension of the Theorem 1 where it is no longer necessary
to consider the index sequence. Markov obtained a similar result by extending
the dimension of the integral matrices to 4 × 4 [12]. See also [3,9], where the
authors improve Markov’s results to 3× 3 integral matrices.

Theorem 2. Given two semigroups S, T , generated by A,B respectively, such
that A = {A1, A2, . . . , An} and B = {B1, B2} where A,B ⊂ H(Q)2×2, it is un-
decidable if S ∩ T = ∅. Furthermore, all matrices in A,B can be taken to be
diagonal.

Proof. Given an instance of PCP, (h, g) where h, g : Γ ∗ #→ Σ∗. We use the
monomorphisms ρ, τ : Γ ∗ #→ H(Q) introduced in Theorem 1. For each a ∈ Γ we
define:

Aa =
(
ρ(a) 0

0 τ(a)

)

and these matrices form the generator for the semigroup S. For the second
semigroup, T , we simply wish to encode each symbol from Σ in the [1, 1] and
[2, 2] elements using the morphism γ : Σ∗ #→ H(Q) which was shown to be
injective in Lemma 1:

B1 =
(
γ(a) 0

0 γ(a)

)
, B2 =

(
γ(b) 0

0 γ(b)

)
.

We see that there exists M ∈ A such that M[1,1] = M[2,2] iff there exists a
solution w ∈ Γ+ to the instance of the PCP. This follows since element [1, 1]

Reachability Problems in Quaternion Matrix and Rotation Semigroups 351

of M encodes h(w) and element [2, 2] encodes g(w). Clearly any such matrix
M is also in T since every matrix in T corresponds to an encoding of all words
over Σ+ in the top left and bottom right elements. Note that all matrices are
diagonal and unitary. �

The previous two theorems used two separate semigroups. It is more natural
to ask whether a particular element is contained within a single semigroup. For
example, the mortality problem asks if the zero matrix is contained in an integral
matrix semigroup and was shown to be undecidable in dimension 3 (see [14]).
We showed that in dimension 4 the membership for any k-scalar matrix in an
integral (resp. rational) matrix semigroup is undecidable where k ∈ Z \ {0,±1}
(resp. k ∈ Q \ {0,±1}), (see [4]).

Now we show that the membership problem in 2×2 unitary quaternion matrix
semigroups in undecidable. The proof uses our new approach of encoding PCP
proposed in [4]. The main idea is to store all words of the PCP separately and
use an index coding to ensure they are multiplied in the correct way.

Theorem 3. Given a unitary quaternion matrix semigroup S which is generated
by X = {X1, X2, . . . , Xn} ⊆ H(Q)2×2, it is undecidable for a matrix Y whether
Y ∈ S.

Proof. Given an instance of the PCP (h, g) where h, g : Γ ∗ #→ Σ∗. Then w ∈ Γ+

is a solution to the PCP iff h(w) = g(w). Assume now that ∀x ∈ Γ ∗, g(x) has an
inverse, g(x)−1. In terms of words over Σ, this means that if g(x) = y for some
y ∈ Σ∗ then g(x)−1 = y−1 where y−1 ∈ Σ

∗
which is a new alphabet containing

the inverse of each element of Σ. Formally we say a ∈ Σ ⇔ a−1 ∈ Σ.
For example, if g(w) = aabab where w ∈ Γ+ and aabab ∈ Σ∗ then g(w)−1 =

(aabab)−1 = b−1a−1b−1a−1a−1 ∈ Σ
∗
.

If there exists a solution to the PCP, w ∈ Γ+, such that h(w) = g(w) then
it can be observed that h(w) · g(w)−1 = ε. We shall give an example of this
simple fact. Let w = w1w2 . . . wk ∈ Γ+ be a solution to the PCP. Then h(w) =
g(w) = u for some u = u1u2 . . . um ∈ Σ+. It is now clear that h(w) · g−1(w) =
(u1u2 . . . um) · (u−1

m u−1
m−1 . . . u

−1
1) = ε.

We call this type of word an inverse palindrome. This allows us to calculate
the solution to the PCP instead as a single word. For each new symbol a ∈ Γ
we wish to add to the existing word w ∈ Γ ∗, we concatenate h(a) to the left
and g(a)−1 to the right of the current word v ∈ Σ∗, i.e. v′ = h(a) · v · g(a)−1. A
solution then exists iff v′ = ε after a positive number of steps.

Within a semigroup this constraint is difficult to impose; we cannot say “mul-
tiply to the left by Ui and the right by Vi”. Such a constraint is possible however
by encoding two words simultaneously. In the first word we store the main word
corresponding to the PCP itself such as described above. In the second word, we
store the index of the word or its inverse.

Given some ai ∈ Γ , we define two matrices in the semigroup generator Yi1, Yi2

corresponding to this symbol. In Yi1 we store the two words h(ai) and σ(i) where
σ is an injective morphism for each i ∈ Z+, σ(i) = aib where a, b ∈ Σ. In Yi2, we

352 P. Bell and I. Potapov

store the two words g(ai)−1 and μ(i) where μ(i) = aib (a = a−1, b = b−1 and γ
is the injective group morphism).

We need to store two words separately in one matrix. Let Γ = {a1, a2, . . . , am}
and (h, g) be an instance of the PCP. Then for each 1 ≤ i ≤ m, define

Yi1 =
(
γ(h(ai)) 0

0 γ(σ(i))

)
, Yi2 =

(
γ(g(ai))−1 0

0 γ(μ(i))

)

Note that all quaternions used are unit. Now define two special matrices:

M =
(
γ(h(a1)) 0

0 γ(b)

)
, N =

(
γ(g(a1))−1 0

0 γ(b)−1

)

We store the mapping of symbol a1 in M,N , using the modified PCP to ensure
that if there is a solution then there exists a solution using this symbol first.
This avoids the pathological case of a product with only M and N in it.

Note that if matrix N appears once in a product equal to I2 then matrix M
appears once also due to the above construction (For the bottom right element
to equal 1, γ(b) must multiply with γ(b)−1 at some point, see also [10]). Thus if
we consider a semigroup, S, generated by {Yi1, Yi2,M} where 1 ≤ i ≤ m, then
N−1 ∈ S iff the instance of PCP has a solution, thus membership is undecidable.
All matrices are diagonal and unitary quaternion matrices which are equivalent
to double quaternions. Thus the membership for a semigroup of double quater-
nions is undecidable. �

Corollary 2. The vector reachability problem for a semigroup of 2 × 2 quater-
nion matrices is undecidable.

Proof. The vector reachability question for quaternions is defined as: “Given two
vectors a, b ∈ H(Q)n and a semigroup of matrices S ⊂ H(Q)n×n, does there exist
some M ∈ S such that Ma = b?”. The undecidability is straightforward from
the Theorem 3. Let x, y ∈ H(Q)2 and x = (1, 1)T , y = N−1(1, 1)T . Then, for
some R ∈ S, it is clear that Rx = y iff R = N−1 = Y since we use only diagonal
matrices. Since determining if Y ∈ S is undecidable, the vector reachability
problem is undecidable. �

The next problem was given as an open problem over matrices of natural numbers
N in any dimension [5]. We show it is undecidable over H(Q)2×2.

Theorem 4. It is undecidable for a finitely generated semigroup S ⊆ H(Q)2×2

whether there exists any diagonal matrix D ∈ S.

Proof. As before, let h, g : Γ ∗ #→ Σ∗ be an instance of the PCP where |Σ| = 2.
We use the morphisms ρ, τ : Γ ∗ #→ H(Q) defined for any w ∈ Γ ∗ as ρ(w) =
γ(h(w)) and τ(w) = γ(g(w)). Thus u, v ∈ Γ ∗, ρ(u) = τ(v) iff u = v. For any two

quaternions q, r ∈ H(Q) we define Ψ(q, r) = 1
2

(
q + r q − r
q − r q + r

)
.

Reachability Problems in Quaternion Matrix and Rotation Semigroups 353

It is clear that this is still homomorphic [6], since Ψ(q1, r1) · Ψ(q2, r2) =
Ψ(q1q2, r1r2) which is verified easily via:

1
2

(
q1 + r1 q1 − r1
q1 − r1 q1 + r1

)
· 1
2

(
q2 + r2 q2 − r2
q2 − r2 q2 + r2

)
=

1
2

(
q1q2 + r1r2 q1q2 − r1r2
q1q2 − r1r2 q1q2 + r1r2

)

It is now obvious that Ψ(u, v) is diagonal iff u = v since the top right and
bottom left elements of the matrix equal 0 only if the two quaternions are equal.

Thus we can create one such matrix for each pair of images of letters from Γ
using τ and ρ. S contains a diagonal matrix iff a PCP solution exists.

Unfortunately this does not hold when we convert the matrices to four di-
mensional rational matrices since we only get a block diagonal matrix. Thus the
decidability for whether any matrix in a semigroup is diagonal remains open for
integers, rationals and complex rational numbers. �
Another problem which can be stated is that of freeness of quaternion matrix
semigroups. We use an almost identical proof to that in [7] to show undecidabil-
ity, but we obtain the result for matrices over H(Q)2×2 rather than (Z+)3×3:

Theorem 5. Given a semigroup S, finitely generated by M = {M1, . . . ,Mn} ⊂
H(Q)2×2, deciding whether S is free is algorithmically undecidable.

Proof. Since we can store two words within a matrix Mi ∈ H(Q)2×2 we can use
an almost identical proof that was used in [7]. We will give very brief sketch of
the proof and refer to [7] for details.

The mixed modification PCP (or MMPCP) is a variant of the standard Post
correspondence problem. As in the original PCP, we are given two (finite) al-
phabets Σ,Δ and two morphisms h, g : Σ+ → Δ+. The MMPCP asks whether
there exists a word w = w1w2 · · ·wm ∈ Σ+ such that:

h1(w1)h2(w2) · · ·hm(wm) = g1(w1)g2(w2) · · · gm(wm)

where each hi, gi ∈ {h, g} and hj �= gj for some 1 ≤ j ≤ m. Now, define the set
of 2× 2 quaternion matrices:

M =
{(

γ(a) 0
0 h(a)

)
,

(
γ(a) 0

0 g(a)

)
; a ∈ Σ

}

and it can be seen that if S is not free then there is a word w = w1w2 · · ·wn ∈ Σ+

such that h1(w1)h2(w2) · · ·hm(wm) = g1(w1)g2(w2) · · · gm(wm) since any equal
matrix product in S must have the same word w in the top left element and the
same element in the bottom right which was generated by different matrices.
Thus the problem of freeness for 2× 2 rational quaternion matrix semigroups is
undecidable. See [7] for fuller details of the proof method.

Note that an alphabet size of |Σ| = 7 was required for the undecidability of
MMPCP (see [10]), thus the problem is undecidable for 7 matrices. �
We now consider a problem which is decidable over complex numbers, but unde-
cidable over rational quaternions. This gives a bound between the computational
power of complex numbers and quaternions. We must first state the following
lemma.

354 P. Bell and I. Potapov

Lemma 2. [2] Given a semigroup S of commutative matrices of any dimension,
then the membership problem for S is decidable.

Corollary 3. The problems for diagonal matrices stated in Theorems 1, 2 and
3 are decidable when taken instead over any field up to the complex numbers.

Proof. In Theorem 1, for each 1 ≤ k ≤ n let us define Mk =
(
qik 0
0 qjk

)
∈ C2×2,

and define a semigroup S generated by {M1,M2, . . . ,Mn}. The problem thus
becomes “Does there exist a matrix X in S such that X[1,1] = X[2,2]?”. This is
decidable since the matrices commute by Lemma 2.

Theorem 2 concerns the emptiness testing of the intersection of two semi-
groups A,B. However, B is just the set of matrices with equal elements on the
diagonal generated by γ(a) and γ(b). Thus the problem when taken for complex
numbers is simply: “Does there exist some matrix, X ∈ A with X[1,1] = X[2,2]” as
in the previous paragraph. Again, since the matrices are diagonal and complex,
they commute and the problem is decidable.

For Theorem 3, all matrices in the semigroup commute since they are diagonal
with complex entries. By Lemma 2 we can decide if any Y is in the semigroup
(in polynomial time) thus concluding the proof. �

3.1 Computational Problems in Lipschitz Integers

We also consider decision problems on the Lipschitz integers denoted by H(Z)
which are quaternions with integral parts.

Corollary 4. The problems stated in Theorems 1 and 2 are undecidable when
taken instead over the Lipschitz integers H(Z).

Proof. Note that in Lemma 1 we showed γ is injective and in Section 2.2
we showed an isomorphism between quaternions and a subgroup of the 2 di-
mensional complex matrices, H(Q) ∼= C2×2. If we examine the definition of
ζ in 2.2 we see that all elements have 5 as their denominator thus we can
multiply ζ(a), ζ(b) by the scalar matrix with element 5 thus giving 2 dimen-
sional matrices over the Gaussian integers. This will still be free and is equiv-
alent to the (non-unit) quaternions q1 = 5(3

5 ,
4
5 , 0, 0) · μ = (3, 4, 0, 0) · μ and

q2 = 5(3
5 , 0,

4
5 , 0) · μ = (3, 0, 4, 0) · μ which will now form a free semigroup. We

therefore define λ : Σ∗ #→ H(Z) by

λ(x) =
{

5 · γ(x) if x �= ε
γ(x) if x = ε

Thus in Theorems 1 and 2 we can replace the definitions of ρ, τ to use λ and
this will give a free morphism over the Lipschitz integers H(Z). This cannot be
extended to Theorem 3 since the inverse of a non-identity Lipschitz integer is
not itself a Lipschitz integer (obviously it must have rational coefficients). �

Reachability Problems in Quaternion Matrix and Rotation Semigroups 355

Theorem 6. Given a set of Lipschitz integers S ∈ H(Z) forming a semigroup
〈S, 〉, the problem of deciding for an arbitrary L ∈ H(Z) if L ∈ 〈S, ·〉 is decidable.

Proof. Note that all non-zero quaternions have modulus d ∈ R+. Furthermore,
it is obvious that for any non-zero Lipschitz integer L ∈ H(Z), that d ≥ 1, with
equality iff L ∈ Φ = {(±1, 0, 0, 0)·μ, (0,±1, 0, 0)·μ, (0, 0,±1, 0)·μ, (0, 0, 0,±1)·μ}.
We have named this set for ease of explanation.

We see that ∀q ∈ Φ that q is of unit length i.e. ||q|| = qq =
√
a2 + b2 + c2 + d2

= 1. It can be also noted that their fourth powers are all equal to the identity
element: ∀q ∈ Φ, q4 = ϑI = (1, 0, 0, 0) · μ which is easily checked.

For a given L whose membership in S we wish to check, it will have a mag-
nitude ||L|| = m ∈ R. If m < 1 then L cannot be a product a Lipschitz integers
since the modulus must be at least 1 by definition of the quaternion modulus.
If m = 1 then L can only be a product of elements from Φ and membership is
trivial. Otherwise, m > 1. Let S′ = S \ Φ (i.e. the generator set S minus any
elements of Φ). We can see that there exists only a finite number of products to
check since m > 1 and for all x ∈ [S′] we have that ||x|| > 1.

Thus, excluding Φ we have a finite set of products of finite length to check.
However if a (non-identity) element of Φ is in the generator, we must include
these in the products. For each product P = p1p2 · · · pn ∈ S′ whose magnitude
equals m, i.e. ||P || = m, we define the set of products:

{
P =

(n∏

t=1

rtpt

)
rn+1 |rt, pt ∈ H(Z)

}
,

where each rt varies over all elements of [(Φ ∩ S) ∪ ϑI] for 1 ≤ t ≤ n + 1. We
must simply prove that [Φ] (the semigroup over elements of Φ) is finite. This
is true since the only Lipschitz integers with moduli 1 are in Φ, the quaternion
moduli is multiplicative and the product of two Lipschitz integers is a Lipschitz
integer, all of which are very easy to prove. Thus [Φ] is a finite semigroup and
there exists a finite set of products to check for equality to L ∈ H(Q) and thus
this is a decidable problem. �

4 Geometric Interpretations

In this section, we will move from algebraic point of view to geometric interpre-
tations of quaternion matrix semigroup problems. This leads to an interesting
set of problems which we shall now outline.

Problem 1. - Point Rotation Problem (PRP(n)) - Given points x, y ∈ Qn

on the unit length (n− 1)-sphere and a semigroup S of n-dimensional rotations.
Does there exist M ∈ S such that M rotates x to y?

In general, we can consider PRP(n) with a semigroup of n-dimensional rotation
matrices (i.e. orthogonal matrices with determinant 1). In 3-dimensions, we may
take S to be a semigroup of quaternions and define the rotation problem to be
qx′q−1 = y′ where q ∈ S and x′, y′ ∈ H(Q)0 are pure quaternions with imaginary
components corresponding to the vectors x, y.

356 P. Bell and I. Potapov

We shall show that this problem is decidable for 2-dimensions. Further, it is
undecidable in 4-dimensions, and its decidability status is open in 3-dimensions.

Theorem 7. The Point Rotation Problem, PRP(2) is decidable.

Proof. Since the rotation of two-dimensional points is commutative, we can rep-
resent the problem as a vector reachability problem with a semigroup S ⊂ Q2×2.
Since S is commutative, there exists a polynomial time algorithm to solve the
membership problem [2]. �

Problem 2. - Quaternion Scalar Reachability Problem (QSRP(n)) -
Given vectors u, v ∈ H(Q)n a scalar r ∈ H(Q) and a semigroup of matrices
S′ ⊂ H(Q)n×n. Does there exist M ∈ S′ such that uTMv = r?

Theorem 8. The Point Rotation Problem PRP(3) is reducible to the Quater-
nion Scalar Reachability Problem QSRP(2).

Proof. Since we are using 3-dimensional rotations, we can convert all elements
of the PRP(3) instance to quaternions. We define x′, y′ ∈ H(Q)0 to be pure
quaternions with imaginary parts corresponding to x, y vectors respectively. We
convert each 3D rotation, R in S to an equivalent unit quaternion q i.e. such
that the imaginary vector in qx′q−1 is equivalent to Rx for example.

Each quaternion q in the PRP is unit length it is invertible, thus if qxq−1 = y
we may write qx = yq. Let G = {q0, q1, . . . , qm} = S′ \ S′2 be the generator of
S′. Define α = (y, 1) and β = (−1, x)T and let G′ = {M0,M1, . . . ,Mm} where

Mi =
(
qi 0
0 qi

)
and let T = 〈G′, ·〉 be a new semigroup. Then there exists M ∈ T

such that αMβ = 0 iff ∃q ∈ S such that qxq−1 = y. To see this, note that

αMβ = qx − qy where M =
(
q 0
0 q

)
and qx − yq = 0 ⇒ qx = yq ⇒ qxq−1 = y

as required. �

In fact we know that QSRP(2) is undecidable in general:

Theorem 9. Quaternion Scalar Reachability Problem is undecidable for a semi-
group S generated by 5 two-dimensional diagonal quaternion matrices.

Proof. Let γ : Σ∗ #→ H(Q) be defined as previously and {(u1, v1), (u2, v2), . . . ,

(un, vn)} be a Claus instance of PCP. Then we see that if Mi =
(
γ(ui) 0

0 γ(vi)

)

for each 2 ≤ i ≤ n− 1 and α = (γ(u1), γ(v1)), β = (γ(un),−γ(vn))T and r = 0
then:

αMwβ = γ(u1uwun)− γ(v1vwvn) = 0 ⇔ u1uwun = v1vwvn

where Mw = Mw1Mw2 · · ·Mwk
and 1 ≤ wi ≤ n − 1 for each 1 ≤ i ≤ k. Since

there exists a Claus instance of PCP which is undecidable for n = 7 [10], the
problem is undecidable for 5 matrices (putting the first and last elements inside
α, β). �

Reachability Problems in Quaternion Matrix and Rotation Semigroups 357

But the decidability status of PRP(3) remains open (since the reduction is one
way). We next show that PRP(4) is undecidable.

Theorem 10. The four-dimensional Point Rotation Problem is undecidable.

Proof. The set of all unit quaternions forms a 3-dimensional sphere (3-sphere)
and any pair of unit quaternions a and b can represent a rotation in 4D space.
We can rotate a point x = (x1, x2, x3, x4) on the 3-sphere, represented by a
quaternion qx = (x1, x2, x3, x4), in the following way: aqxb−1.

Given a finite set of rotations, {(a1, b1), . . . , (an, bn)}, represented by pairs
of quaternions. The question of whether a point x on the 3-sphere can be
mapped to itself by the above set of rotations is equivalent to the problem
whether there exists a non-empty sequence of indices (r1, . . . , rm) such that
ar1 · · · armqxb

−1
rm
· · · b−1

r1 = qx.
If x is a point represented by quaternion (1, 0, 0, 0)·μ, then the above equation

only holds when ar1ar2 · · ·arm = br1br2 · · · brm . According to Theorem 1 we have
that the four-dimensional Point Rotation Problem is undecidable for 7 rotations.
Moreover it is easy to see that PRP(4) is undecidable even for 5 rotations using
the idea of Claus instances of PCP [10] where two of the rotations (the first and
the last one) can be fixed and used only once. �

Corollary 5. The vector reachability problem for n×n rational orthogonal ma-
trix semigroups is decidable when n ≤ 2 and undecidable for n ≥ 4 with at least
5 matrices in the semigroup generator.

Open Problem 1. Given a semigroup of rational quaternions, S, generated by
a finite set Q ⊂ H(Q), is membership decidable for S? I.e. can we decide if x ∈ S
for any x ∈ H(Q)?. Also, is the freeness of semigroup S decidable?

References

1. Au-Yeung, Y.H.: On the Eigenvalues and Numerical Range of a Quaternionic Ma-
trix (1994) (Preprint)

2. Babai, L., Beals, R., Cai, J., Ivanyos, G., Luks, E.M.: Multiplicative Equations over
Commuting Matrices. In: Proc. 7th ACM-SIAM Symp. on Discrete Algorithms, pp.
498–507. ACM, New York (1996)

3. Bell, P.: A Note on the Emptiness of Semigroup Intersections. Fundamenta Infor-
maticae 79, 1–4 (2007)

4. Bell, P., Potapov, I.: On the Membership of Invertible Diagonal and Scalar Matri-
ces. Theoretical Computer Science, 37–45 (2007)

5. Blondel, V., Megretski, A.: Unsolved problems in Mathematical Systems and Con-
trol Theory. Princeton University Press, Princeton, NJ (2004)

6. Blondel, V., Jeandel, E., Koiran, P., Portier, N.: Decidable and undecidable prob-
lems about quantum automata. SIAM Journal on Computing 34(6), 1464–1473
(2005)

7. Cassaigne, J., Harju, T., Karhumäki, J.: On the Undecidability of Freeness of
Matrix Semigroups. Intern. J. Alg. & Comp. 9, 295–305 (1999)

358 P. Bell and I. Potapov

8. D’Alessandro, F.: Free Groups of Quaternions. Intern. J. of Alg. and Comp.
(IJAC) 14(1) (February 2004)

9. Halava, V., Harju, T.: On Markov’s Undecidability Theorem for Integer Matrices,
TUCS Technical Report Number 758 (2006)

10. Halava, V., Harju, T., Hirvensalo, M.: Undecidability Bounds for Integer Matrices
using Claus Instances, TUCS Technical Report 766 (2006)

11. Lengyel, E.: Mathematics for 3D Game Programming & Computer Graphics,
Charles River Media (2004)

12. Markov, A.: On Certain Insoluble Problems Concerning Matrices. Doklady Akad.
Nauk SSSR, 539-542 (1947)

13. Matiyasevich, Y., Senizergues, G.: Decision Problems for Semi-Thue Systems with
a Few Rules. Theoretical Computer Science 330(1), 145–169 (2005)

14. Paterson, M.: Unsolvability in 3 × 3 Matrices. Studies in Applied Mathematics 49
(1970)

15. So, W., Thomson, R.C., Zhang, F.: Numerical Ranges of Matrices with Quaternion
Entries. Linear and Multilinear Algebra 37, 175–195 (1994)

16. Swierczkowski, S.: A Class of Free Rotation Groups. Indag. Math. 5(2), 221–226
(1994)

17. Velichova, D., Zacharias, S.: Projection from 4D to 3D. Journal for Geometry and
Graphics 4(1), 55–69 (2000)

18. Wiegmann, N.A.: Some Theorems on Matrices with Real Quaternion Elements.
Can. Jour. Math. 7 (1955)

19. Zhang, F.: Quaternions and Matrices of Quaternions. Linear Algebra Appl. 251,
21–57 (1997)

VPSPACE and a Transfer Theorem over the

Complex Field

Pascal Koiran and Sylvain Perifel

LIP�, École Normale Supérieure de Lyon
{Pascal.Koiran,Sylvain.Perifel}@ens-lyon.fr

Abstract. We extend the transfer theorem of [15] to the complex field.
That is, we investigate the links between the class VPSPACE of families
of polynomials and the Blum-Shub-Smale model of computation over C.
Roughly speaking, a family of polynomials is in VPSPACE if its coeffi-
cients can be computed in polynomial space. Our main result is that if
(uniform, constant-free) VPSPACE families can be evaluated efficiently
then the class PARC of decision problems that can be solved in parallel
polynomial time over the complex field collapses to PC. As a result, one
must first be able to show that there are VPSPACE families which are
hard to evaluate in order to separate PC from NPC, or even from PARC.

1 Introduction

In algebraic complexity theory, two main categories of problems are studied:
evaluation and decision problems. The evaluation of the permanent of a matrix
is a typical example of an evaluation problem, and it is well known that the
permanent family is complete for the class VNP of “easily definable” polynomial
families [19]. Deciding whether a system of polynomial equations has a solution
over C is a typical example of a decision problem. This problem is NP-complete
in the Blum-Shub-Smale model of computation over the complex field [1,2].

The main purpose of this paper is to provide a transfer theorem connecting
the complexity of evaluation and decision problems. This paper is therefore in
the same spirit as [13] and [15] (see also [4]). In the present paper we work with
the class of polynomial families VPSPACE introduced in [15]. Roughly speaking,
a family of polynomials (of possibly exponential degree) is in VPSPACE if its co-
efficients can be evaluated in polynomial space. For instance, it is shown in [15]
that resultants of systems of multivariate polynomial equations form a VPSPACE
family. The main result in [15] was that if (uniform, constant-free) VPSPACE fam-
ilies can be evaluated efficiently then the class PARR of decision problems that
can be solved in parallel polynomial time over the real numbers collapses to PR.

Here we extend this result to the complex field C. At first glance the result
seems easier because the order ≤ over the reals does not have to be taken into
account. The result of [15] indeed makes use of a clever combinatorial lemma
of [10] on the existence of a vector orthogonal to roughly half a collection of
� UMR 5668 ENS Lyon, CNRS, UCBL, INRIA.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 359–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

360 P. Koiran and S. Perifel

vectors. More precisely, it relies on the constructive version of this lemma [6].
On the complex field, we do not need this construction.

But the lack of an order over C makes another part of the proof more difficult.
Indeed, over R testing whether a point belongs to a real variety is done by testing
whether the sum of the squares of the polynomials is zero, a trick that cannot be
used over the complex field. Hence one of the main technical developments of this
paper is to explain how to decide with a small number of tests whether a point
is in the complex variety defined by an exponential number of polynomials. This
enables us to follow the nonconstructive proof of [12] for our transfer theorem.

Therefore, the main result of the present paper is that if (uniform, constant-
free) VPSPACE families can be evaluated efficiently then the class PARC of deci-
sion problems that can be solved in parallel polynomial time over the complex
field collapses to PC (this is precisely stated in Theorem 2). The class PARC plays
roughly the same role in the theory of computation over the complex field as
PSPACE in discrete complexity theory. In particular, it contains NPC [1] (but the
proof of this inclusion is much more involved than in the discrete case). It follows
from our main result that in order to separate PC from NPC, or even from PARC,
one must first be able to show that there are VPSPACE families which are hard
to evaluate. This seems to be a very challenging lower bound problem, but it is
still presumably easier than showing that the permanent is hard to evaluate.

Organization of the Paper. We first recall in Section 2 some usual no-
tions and notations concerning algebraic complexity (Valiant’s model, the Blum-
Shub-Smale model) and quantifier elimination. The class VPSPACE is defined in
Section 3 and some properties proved in [15] are given. Section 4 explains how
to decide with a polynomial number of VPSPACE tests whether a point belongs
to a variety. The main difficulty here is that the variety is given as a union of
an exponential number of varieties, each defined by an exponential number of
polynomials. Finally, Section 5 is devoted to the proof of the transfer theorem.
Sign conditions are the main tool in this section. We show that PARC problems
are decided in polynomial time if we allow Uniform VPSPACE0 tests. The transfer
theorem follows as a corollary.

2 Notations and Preliminaries

2.1 The Blum-Shub-Smale Model

In contrast with boolean complexity, algebraic complexity deals with other struc-
tures than {0, 1}. In this paper we will focus on the complex field (C,+,−,×,=).
Although the original definitions of Blum, Shub and Smale [2,1] are in terms of
uniform machines, we will follow [18] by using families of algebraic circuits to
recognize languages over C, that is, subsets of C∞ =

⋃
n≥0 Cn.

An algebraic circuit is a directed acyclic graph whose vertices, called gates,
have indegree 0, 1 or 2. An input gate is a vertex of indegree 0. An output gate is
a gate of outdegree 0. We assume that there is only one such gate in the circuit.
Gates of indegree 2 are labelled by a symbol from the set {+,−,×}. Gates of

VPSPACE and a Transfer Theorem over the Complex Field 361

indegree 1, called test gates, are labelled “= 0?”. The size of a circuit C, in
symbols |C|, is the number of vertices of the graph. A circuit with n input gates
computes a function from Cn to C. On input ū ∈ Cn the value returned by the
circuit is by definition equal to the value of its output gate. The value of a gate
is defined inductively in the usual way: the value of input gate number i is the
i-th input ui; a +, − or × gate respectively adds, subtracts or multiplies its
inputs; the value taken by a test gate is 0 if the value of its entry is �= 0 and
1 otherwise. Since we are interested in decision problems, we assume that the
output is a test gate: the value returned by the circuit is therefore 0 or 1.

The class PC is the set of languages L ⊆ C∞ such that there exists a tuple
ā ∈ Cp and a P-uniform family of polynomial-size circuits (Cn) satisfying the
following condition: Cn has exactly n + p inputs, and for any x̄ ∈ Cn, x̄ ∈ L⇔
Cn(x̄, ā) = 1. The P-uniformity condition means that Cn can be built in time
polynomial in n by an ordinary (discrete) Turing machine. Note that ā plays the
role of the machine constants of [1,2].

As in [5], we define the class PARC as the set of languages over C recognized
by a PSPACE-uniform (or equivalently P-uniform) family of algebraic circuits of
polynomial depth (and possibly exponential size), with constants ā as for PC.
Note at last that we could also define similar classes without constants ā. We
will use the superscript 0 to denote these constant-free classes, for instance P0

C

and PAR0
C.

We end this section with a theorem on the first-order theory of the complex
numbers: quantifiers can be eliminated without much increase of the coefficients
and degree of the polynomials. We give a weak version of the result of [9]:
in particular, we do not need efficient elimination algorithms. Note that the
only allowed constants in our formulae are 0 and 1 (in particular, only integer
coefficients can appear). For notational consistency with the remainding of the
paper, we denote by 2s, 2d and 22M

the number of polynomials, their degree
and the absolute value of their coefficients respectively. This will simplify the
calculations and emphasize that s, d and M will be polynomial. Note furthermore
that the polynomial p(n, s, d) in the theorem is independent of the formula φ.

Theorem 1. Let φ be a first-order formula over (C, 0, 1,+,−,×,=) of the form
∀x̄ψ(x̄), where x̄ is a tuple of n variables and ψ a quantifier-free formula where
2s polynomials occur. Suppose that their degrees are bounded by 2d and their
coefficients by 22M

in absolute value.
There exists a polynomial p(n, s, d), independent of φ, such that the formula φ

is equivalent to a quantifier-free formula ψ in which all polynomials have degree
less than D(n, s, d) = 2p(n,s,d), and their coefficients are integers strictly bounded
in absolute value by 22MD(n,s,d).

2.2 Valiant’s Model

In Valiant’s model, one computes polynomials instead of recognizing languages.
We thus use arithmetic circuits instead of algebraic circuits. A book-length treat-
ment of this topic can be found in [3].

362 P. Koiran and S. Perifel

An arithmetic circuit is the same as an algebraic circuit but test gates are not
allowed. That is to say we have indeterminates x1, . . . , xu(n) as input together
with arbitrary constants of C; there are +, − and ×-gates, and we therefore
compute multivariate polynomials.

The polynomial computed by an arithmetic circuit is defined in the usual way
by the polynomial computed by its output gate. Thus a family (Cn) of arithmetic
circuits computes a family (fn) of polynomials, fn ∈ C[x1, . . . , xu(n)]. The class
VPnb defined in [16] is the set of families (fn) of polynomials computed by a
family (Cn) of polynomial-size arithmetic circuits, i.e., Cn computes fn and there
exists a polynomial p(n) such that |Cn| ≤ p(n) for all n. We will assume without
loss of generality that the number u(n) of variables is bounded by a polynomial
function of n. The subscript nb indicates that there is no bound on the degree
of the polynomial, in contrast with the original class VP of Valiant where a
polynomial bound on the degree of the polynomial computed by the circuit is
required. Note that these definitions are nonuniform. The class Uniform VPnb

is obtained by adding a condition of polynomial-time uniformity on the circuit
family, as in Section 2.1.

We can also forbid constants from our arithmetic circuits in unbounded-degree
classes, and define constant-free classes. The only constant allowed is 1 (in order
to allow the computation of constant polynomials). As for classes of decision
problems, we will use the superscript 0 to indicate the absence of constant: for
instance, we will write VP0

nb (for bounded-degree classes, we are to be more
careful: the “formal degree” of the circuits comes into play, see [16,17]).

3 The Class VPSPACE

The class VPSPACE was introduced in [15]. Some of its properties are given there
and a natural example of a VPSPACE family coming from algebraic geometry,
namely the resultant of a system of polynomial equations, is provided. In this
section, after the definition we give some properties without proof and refer
to [15] for further details.

3.1 Definition

We fix an arbitrary field K. The definition of VPSPACE will be stated in terms
of coefficient function. A monomial xα1

1 · · ·xαn
n is encoded in binary by α =

(α1, . . . , αn) and will be written x̄α.

Definition 1. Let (fn) be a family of multivariate polynomials with integer co-
efficients. The coefficient function of (fn) is the function a whose value on input
(n, α, i) is the i-th bit a(n, α, i) of the coefficient of the monomial x̄α in fn. Fur-
thermore, a(n, α, 0) is the sign of the coefficient of the monomial x̄α. Thus fn
can be written as

fn(x̄) =
∑

α

(
(−1)a(n,α,0)

∑

i≥1

a(n, α, i)2i−1x̄α
)
.

VPSPACE and a Transfer Theorem over the Complex Field 363

The coefficient function is a function a : {0, 1}∗ → {0, 1} and can therefore be
viewed as a language. This allows us to speak of the complexity of the coefficient
function. Note that if K is of characteristic p > 0, then the coefficients of our
polynomials will be integers modulo p (hence with a constant number of bits).
In this paper, we will focus only on the field C (which is of characteristic 0).

Definition 2. The class Uniform VPSPACE0 is the set of all families (fn) of
multivariate polynomials fn ∈ K[x1, . . . , xu(n)] satisfying the following require-
ments:

1. the number u(n) of variables is polynomially bounded;
2. the polynomials fn have integer coefficients;
3. the size of the coefficients of fn is bounded by 2p(n) for some polynomial p;
4. the degree of fn is bounded by 2p(n) for some polynomial p;
5. the coefficient function of (fn) is in PSPACE.

We have chosen to present only Uniform VPSPACE0, a uniform class without
constants, because this is the main object of study in this paper. In keeping
with the tradition set by Valiant, however, the class VPSPACE is nonuniform
and allows for arbitrary constants. See [15] for a precise definition.

3.2 An Alternative Characterization and Some Properties

Let Uniform VPAR0 be the class of families of polynomials computed by a
PSPACE-uniform family of constant-free arithmetic circuits of polynomial depth
(and possibly exponential size). This in fact characterizes Uniform VPSPACE0.
The proof is given in [15].

Proposition 1. The two classes Uniform VPSPACE0 and Uniform VPAR0 are
equal.

We see here the similarity with PARC, which by definition are those languages
recognized by uniform algebraic circuits of polynomial depth. But of course there
is no test gate in the arithmetic circuits of Uniform VPAR0.

We now turn to some properties of VPSPACE. The following two propositions
come from [15]. They stress the unlikeliness of the hypothesis that VPSPACE has
polynomial-size circuits.

Proposition 2. Assuming the generalized Riemann hypothesis (GRH), VPnb =
VPSPACE if and only if [P/poly = PSPACE/poly and VP = VNP].

Proposition 3. Uniform VPSPACE0 = Uniform VP0
nb =⇒ PSPACE =

P-uniform NC.

Remark 1. To the authors’ knowledge, the separation “PSPACE �= P-uniform
NC” is not known to hold (by contrast, PSPACE can be separated from logspace-
uniform NC thanks to the space hierarchy theorem).

Let us now state the main result of this paper.

Theorem 2 (main theorem). If Uniform VPSPACE0 = Uniform VP0
nb then

PAR0
C = P0

C.

364 P. Koiran and S. Perifel

Note that the collapse of the constant-free class PAR0
C to P0

C implies PARC = PC:
just replace constants by new variables so as to transform a PARC problem into
a PAR0

C problem, and then replace these variables by their original values so as
to transform a P0

C problem into a PC problem.
The next section is devoted to the problem of testing whether a point belongs

to a variety. This problem is useful for the proof of the theorem: indeed, follow-
ing [12], several tests of membership to a variety will be made; the point here is
to make them constructive and efficient. The main difficulty is that the variety
can be defined by an exponential number of polynomials.

4 Testing Membership to a Union of Varieties

In this section we explain how to perform in Uniform VPSPACE0 membership
tests of the form “x̄ ∈ V ”, where V ⊆ Cn is a variety. We begin in Section 4.1 by
the case where V is given by s polynomials. In that case, we determine after some
precomputation whether x̄ ∈ V in n + 1 tests. We first need two lemmas given
below in order to reduce the number of polynomials and to replace transcendental
elements by integers.

Then, in Section 4.2, we deal with the case where V is given as a union of
an exponential number of such varieties, as in the actual tests of the algorithm
of Section 5. Determining whether x̄ ∈ V still requires n + 1 tests, but the
precomputation is slightly heavier.

Let us first state two useful lemmas. Suppose a variety V is defined by
f1, . . . , fs, where fi ∈ Z[x1, . . . , xn]. We are to determine whether x̄ ∈ V with
only n + 1 tests, however big s might be. In a nonconstructive manner, this is
possible and relies on the following classical lemma already used (and proved)
in [12]: any n + 1 “generic” linear combinations of the fi also define V (the
result holds over any infinite field but here we need it only over C). We state
this lemma explicitly since we will also need it in our constructive proof.

Lemma 1. Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials and V be the variety
of Cn they define. Then for all coefficients (αi,j)i=1..s,j=1..n+1 ∈ Cs(n+1) alge-
braically independent over Q, the n + 1 linear combinations gj =

∑s
i=1 αi,jfi

(for j from 1 to n + 1) also define V .

Unfortunately, in our case we cannot use transcendental numbers and must re-
place them by integers. The following lemma from [11] asserts that integers
growing sufficiently fast will do. Once again, this is a weaker version adapted to
our purpose.

Lemma 2. Let φ(α1, . . . , αr) be a quantifier-free first-order formula over the
structure (C, 0, 1,+,−,×,=), containing only polynomials of degree less than
D and whose coefficients are integers of absolute value strictly bounded by C.
Assume furthermore that φ(ᾱ) holds for all coefficients ᾱ = (α1, . . . , αr) ∈ Cr

algebraically independent over Q.
Then φ(β̄) holds for any sequence (β1, . . . , βr) of integers satisfying β1 ≥ C

and βj+1 ≥ CDjβD
j (for 1 ≤ j ≤ r − 1).

VPSPACE and a Transfer Theorem over the Complex Field 365

The proof can be found in [11, Lemma 5.4] and relies on the lack of big integer
roots of multivariate polynomials.

Let us sketch a first attempt to prove a constructive version of Lemma 1,
namely that n + 1 polynomials with integer coefficients are enough for defin-
ing V (this first try will not work but gives the idea of the proof of the next
section). The idea is to use Lemma 2 with the formula φ(ᾱ) that tells us that
the n + 1 linear combinations of the fi with αi,j as coefficients define the same
variety as f1, . . . , fs. At first this formula is not quantifier-free, but over C we
can eliminate quantifiers while keeping degree and coefficients reasonably small
thanks to Theorem 1. Lemma 1 asserts that φ(ᾱ) holds as soon as the αi,j are
algebraically independent. Then Lemma 2 tells us that φ(β̄) holds for integers
βi,j growing fast enough. Thus V is now defined by n+ 1 linear combinations of
the fi with integer coefficients.

In fact, this strategy fails to work for our purpose because the coefficients
involved are growing too fast to be computed in polynomial space. That is why
we will proceed by stages in the proofs below: we adopt a divide-and-conquer
approach and use induction. Proofs of this section are omitted due to space.
They can be found in the long version [14].

4.1 Tests of Membership

The base case of our induction is the following lemma, whose proof is sketched
in the end of the preceding section. We only consider here a small number of
polynomials, therefore avoiding the problem of too big coefficients mentioned in
the preceding section. Then by induction, Proposition 4 follows.

Lemma 3. There exists a polynomial q(n, d) such that, if V ⊆ Cn is a variety
defined by 2(n + 1) polynomials f1, . . . , f2(n+1) ∈ Z[x1, . . . , xn] of degree ≤ 2d

and of coefficients bounded by 22M

in absolute value, then:

1. the variety V is defined by n+ 1 polynomials g1, . . . , gn+1 ∈ Z[x1, . . . , xn] of
degree ≤ 2d and of coefficients bounded by 22M+q(n,d)

in absolute value;
2. furthermore, the coefficients of the gi are bitwise computable from those of

the fj in working space Mq(n, d).

Proposition 4. There exists a polynomial p(n, s, d) such that, if V is a vari-
ety defined by 2s polynomials f1, . . . , f2s ∈ Z[x1, . . . , xn] of degree ≤ 2d and of
coefficients bounded by 22M

in absolute value, then:

1. the variety V is defined by n+ 1 polynomials g1, . . . , gn+1 ∈ Z[x1, . . . , xn] of
degree ≤ 2d and of coefficients bounded by 22M+p(n,s,d)

in absolute value;
2. moreover, the coefficients of the gi are bitwise computable from those of the

fj in working space Mp(n, s, d).

4.2 Union of Varieties

In our case, however, the tests made by the algorithm of Section 5 are not exactly
of the form studied in the previous section: instead of a single variety given by
s polynomials, we have to decide “x ∈ W?” when W ⊆ Cn is the union of k

366 P. Koiran and S. Perifel

varieties. Of course, since the union is finite W is also a variety, but the encoding
is not the same as above: now, k sets of s polynomials are given.

A first naive approach is to define W = ∪iVi by the different products of the
polynomials defining the Vi, but it turns out that there are too many products to
be dealt with. Instead, we will adopt a divide-and-conquer scheme as previously.

Lemma 4. There exists a polynomial q(n, d) such that, if V1 and V2 are two
varieties of Cn, each defined by n + 1 polynomials in Z[x1, . . . , xn], respectively
f1, . . . , fn+1 and g1, . . . , gn+1, of degree ≤ 2d and of coefficients bounded by 22M

in absolute value, then:

1. the variety V = V1 ∪ V2 is defined by n + 1 polynomials h1, . . . , hn+1 in
Z[x1, . . . , xn] of degree ≤ 2d+1 and of coefficients bounded by 22M+q(n,d)

in
absolute value;

2. the coefficients of the hi are bitwise computable from those of the fj and gk
in space Mq(n, d).

The next proposition now follows by induction.

Proposition 5. There exists a polynomial r(n, s, k, d) such that, if V1, . . . , V2k

⊆ Cn are 2k varieties, Vi being defined by 2s polynomials f
(i)
1 , . . . , f

(i)
2s ∈

Z[x1, . . . , xn] of degree ≤ 2d and of coefficients bounded by 22M

in absolute value,
then:

1. the variety V = ∪2k

i=1Vi is defined by n + 1 polynomials g1, . . . , gn+1 in
Z[x1, . . . , xn] of degree ≤ 2d+k and whose coefficients are bounded in ab-
solute value by 22M+r(n,s,k,d)

;
2. moreover, the coefficients of the gi are bitwise computable from those of the

f
(j)
j′ in space Mr(n, s, k, d).

Here is the main consequence on membership tests to a union of varieties.

Corollary 1. Let p(n) and q(n) be two polynomials. Suppose (fn(x̄, ȳ, z̄)) is a
Uniform VPSPACE0 family with |x̄| = n, |ȳ| = p(n) and |z̄| = q(n). For an integer
0 ≤ i < 2p(n), call V (n)

i ⊆ Cn the variety defined by the polynomials fn(x̄, i, j)
for 0 ≤ j < 2q(n) (in this notation, i and j are encoded in binary).

Then there exists a Uniform VPSPACE0 family gn(x̄, ȳ, z̄), where |x̄| = n,
|ȳ| = p(n) and |z̄| = 	log(n + 1)
, such that

∀x̄ ∈ Cn, ∀k < 2p(n),

⎛

⎝x̄ ∈
k⋃

i=0

V
(n)
i ⇐⇒

n∧

j=0

gn(x̄, k, j) = 0

⎞

⎠ .

5 Proof of the Main Theorem

Sign conditions are the main ingredient of the proof. Over C, we define the
“sign” of a ∈ C by 0 if a = 0 and 1 otherwise. Let us fix a family of polynomials
f1, . . . , fs ∈ Z[x1, . . . , xn]. A sign condition is an element S ∈ {0, 1}s. Hence
there are 2s sign conditions. Intuitively, the i-th component of a sign condition
determines the sign of the polynomial fi.

VPSPACE and a Transfer Theorem over the Complex Field 367

5.1 Satisfiable Sign Conditions

The sign condition of a point x̄ ∈ Cn is the tuple Sx̄ ∈ {0, 1}s defined by
Sx̄
i = 0 ⇐⇒ fi(x̄) = 0. We say that a sign condition is satisfiable if it is the

sign condition of some x̄ ∈ Cn. As 0-1 tuples, sign conditions can be viewed as
subsets of {1, . . . , s}. Using a fast parallel sorting algorithm (e.g. Cole’s, [7]),
we can sort satisfiable sign conditions in polylogarithmic parallel time in a way
compatible with set inclusion (e.g. the lexicographic order). We now fix such
a compatible linear order on sign conditions and consider our satisfiable sign
conditions S(1) < S(2) < . . . < S(N) sorted accordingly.

The key point resides in the following theorem, coming from the algorithm
of [9]: there is a “small” number of satisfiable sign conditions and enumerating
them is “easy”.

Theorem 3. Let f1, . . . , fs ∈ Z[x1, . . . , xn] and d be their maximal degree. Then
the number of satisfiable sign conditions is N = (sd)O(n), and there is a uniform
algorithm working in space

(
n log(sd)

)O(1) which, on boolean input f1, . . . , fs (in
dense representation) and (i, j) in binary, returns the j-th component of the i-th
satisfiable sign condition.

When log(sd) is polynomial in n, as will be the case, this yields a PSPACE
algorithm. If furthermore the coefficients of fi are computable in polynomial
space, we will then be able to use the satisfiable sign conditions in the coefficients
of VPSPACE families, as in Lemma 5 below.

Let us explain why we are interested in sign conditions. An arithmetic circuit
performs tests of the form f(x̄) = 0 on input x̄ ∈ Cn, where f is a polynomial.
Suppose f1, . . . , fs is the list of all polynomials that can be tested in any possible
computation. Then two elements of Cn with the same sign condition are simul-
taneously accepted or rejected by the circuit: the results of the tests are indeed
always the same for both elements.

Thus, instead of finding out whether x̄ ∈ Cn is accepted by the circuit, it is
enough to find out whether the sign condition of x̄ is accepted. The advantage
resides in handling only boolean tuples (the sign conditions) instead of complex
numbers (the input x̄). But we have to be able to find the sign condition of
the input x̄. This requires first the enumeration of all the polynomials possibly
tested in any computation of the circuit.

5.2 Enumerating All Possibly Tested Polynomials

In the execution of an algebraic circuit, the values of some polynomials at the
input x̄ are tested to zero. In order to find the sign condition of the input x̄, we
have to be able to enumerate in polynomial space all the polynomials that can
ever be tested to zero in the computations of an algebraic circuit. This is done
level by level as in [8, Th. 3] and [15].

Proposition 6. Let C be a constant-free algebraic circuit with n variables and
of depth d.

368 P. Koiran and S. Perifel

1. The number of different polynomials possibly tested to zero in the computa-
tions of C is 2d2O(n).

2. There exists an algorithm using work space (nd)O(1) which, on input C and
integers (i, j) in binary, outputs the j-th bit of the representation of the i-th
polynomial.

Together with Theorem 3, this enables us to prove the following result which will
be useful in the proof of Proposition 7: in Uniform VPSPACE0 we can enumerate
the polynomials as well as the satisfiable sign conditions.

Lemma 5. Let (Cn) be a uniform family of polynomial-depth algebraic circuits
with polynomially many inputs. Call d(n) the depth of Cn and i(n) the number
of inputs. Let f (n)

1 , . . . , f
(n)
s be all the polynomials possibly tested to zero by Cn

as in Proposition 6, where s = 2O(nd(n)2). There are therefore N = 2O(n2d(n)2)

satisfiable sign conditions S(1), . . . , S(N) by Theorem 3.
Then there exists a Uniform VPSPACE0 family (gn(x̄, ȳ, z̄)), where |x̄| = i(n),

|ȳ| = O(n2d(n)2) and |z̄| = O(nd(n)2), such that for all 1 ≤ i ≤ N and 1 ≤ j ≤
s, we have:

gn(x̄, i, j) =

{
0 if S(i)

j = 1
f

(n)
j (x̄) otherwise.

5.3 Finding the Sign Condition of the Input

In order to find the sign condition Sx̄ of the input x̄ ∈ Cn, we will give a
polynomial-time algorithm which tests some VPSPACE family for zero. Here is
the formalized notion of a polynomial-time algorithm with VPSPACE tests.

Definition 3. A polynomial-time algorithm with Uniform VPSPACE0 tests is
a Uniform VPSPACE0 family (fn(x1, . . . , xu(n))) together with a uniform fam-
ily (Cn) of constant-free polynomial-size algebraic circuits endowed with spe-
cial test gates of indegree u(n), whose value is 1 on input (a1, . . . , au(n)) if
fn(a1, . . . , au(n)) = 0 and 0 otherwise.

Observe that a constant number of Uniform VPSPACE0 families can be used in
the preceding definition instead of only one: it is enough to combine them all in
one by using “selection variables”.

The precise result we show now is the following. By the “rank” of a satisfiable
sign condition, we merely mean its index in the fixed order on satisfiable sign
conditions.

Proposition 7. Let (Cn) be a uniform family of algebraic circuits of polynomial
depth and with a polynomial number i(n) of inputs. There exists a polynomial-
time algorithm with Uniform VPSPACE0 tests which, on input x̄ ∈ Ci(n), returns
the rank i of the sign condition S(i) of x̄ with respect to the polynomials g1, . . . , gs
tested to zero by Cn given by Proposition 6.

Proof. Take the Uniform VPSPACE0 family (gn(x̄, ȳ, z̄)) as in Lemma 5: in
essence, gn enumerates all the polynomials f1, . . . , fs possibly tested to zero
in Cn and enumerates the N satisfiable sign conditions S(1) < . . . < S(N). The

VPSPACE and a Transfer Theorem over the Complex Field 369

idea now is to perform a binary search in order to find the rank i of the sign
condition of the input x̄.

Let S(j) ∈ {0, 1}s be a satisfiable sign condition. We say that S(j) is a candi-
date whenever ∀m ≤ s, S(j)

m = 0 ⇒ fm(x̄) = 0. Remark that the sign condition
of x̄ is the smallest candidate. Call Vj the variety defined by the polynomi-
als {fm|S(j)

m = 0}: by definition of gn, Vj is also defined by the polynomials
gn(x̄, j, k) for k = 1 to s. Note that S(j) is a candidate if and only if x̄ ∈ Vj .

Corollary 1 combined with Lemma 5 asserts that tests of the form x̄ ∈ ∪k≤jVk

are in Uniform VPSPACE0. They are used to perform a binary search by making
j vary. In a number of steps logarithmic in N (i.e. polynomial in n), we find the
rank i of the sign condition of x̄. ��

5.4 A Polynomial-Time Algorithm for PARC Problems

Lemma 6. Let (Cn) be a uniform family of constant-free polynomial-depth al-
gebraic circuits. There is a (boolean) algorithm using work space polynomial in
n which, on input i, decides whether the elements of the i-th satisfiable sign
condition S(i) are accepted by the circuit Cn.

Proof. We follow the circuit Cn level by level. For test gates, we compute the
polynomial f to be tested. Then we enumerate the polynomials f1, . . . , fs as
in Proposition 6 for the circuit Cn and we find the index j of f in this list.
By consulting the j-th bit of the i-th satisfiable sign condition with respect to
f1, . . . , fs (which is done by the polynomial-space algorithm of Theorem 3), we
therefore know the result of the test and can go on like this until the output
gate. ��

Theorem 4. Let A ∈ PAR0
C. There exists a polynomial-time algorithm with

Uniform VPSPACE0 tests that decides A.

Proof. A is decided by a uniform family (Cn) of constant-free polynomial-depth
algebraic circuits. On input x̄, thanks to Proposition 7 we first find the rank i of
the sign condition of x̄ with respect to the polynomials f1, . . . , fs of Proposition 6.
Then we conclude by a last Uniform VPSPACE0 test simulating the polynomial-
space algorithm of Lemma 6 on input i. ��

Theorem 2 follows immediately from this result. One could obtain other ver-
sions of these two results by changing the uniformity conditions or the role of
constants.

References

1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, Heidelberg (1998)

2. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society 21(1), 1–46 (1989)

370 P. Koiran and S. Perifel

3. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Al-
gorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)

4. Bürgisser, P.: On implications between P-NP-hypotheses: Decision versus compu-
tation in algebraic complexity. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS
2001. LNCS, vol. 2136, pp. 3–17. Springer, Heidelberg (2001)

5. Chapuis, O., Koiran, P.: Saturation and stability in the theory of computation over
the reals. Annals of Pure and Applied Logic 99, 1–49 (1999)

6. Charbit, P., Jeandel, E., Koiran, P., Perifel, S., Thomassé, S.: Finding a vector or-
thogonal to roughly half a collection of vectors. Accepted in Journal of Complexity
(2006) available from http://prunel.ccsd.cnrs.fr/ensl-00153736

7. Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)
8. Cucker, F., Grigoriev, D.: On the power of real Turing machines over binary inputs.

SIAM J. Comput. 26(1), 243–254 (1997)
9. Fitchas, N., Galligo, A., Morgenstern, J.: Precise sequential and parallel complexity

bounds for quantifier elimination over algebraically closed fields. Journal of Pure
and Applied Algebra 67, 1–14 (1990)

10. Grigoriev, D.: Topological complexity of the range searching. Journal of Complex-
ity 16, 50–53 (2000)

11. Koiran, P.: Randomized and deterministic algorithms for the dimension of algebraic
varieties. In: Proc. 38th FOCS, pp. 36–45 (1997)

12. Koiran, P.: Circuits versus trees in algebraic complexity. In: Reichel, H., Tison, S.
(eds.) STACS 2000. LNCS, vol. 1770, pp. 35–52. Springer, Heidelberg (2000)

13. Koiran, P., Perifel, S.: Valiant’s model: from exponential sums to exponential prod-
ucts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 596–
607. Springer, Heidelberg (2006)

14. Koiran, P., Perifel, S.: VPSPACE and a transfer theorem over the
complex field. Technical report, LIP, ENS Lyon (2007) Available from
http://prunel.ccsd.cnrs.fr/ensl-00153701

15. Koiran, P., Perifel, S.: VPSPACE and a transfer theorem over the reals. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 417–428.
Springer, Heidelberg (2007). Long version available from http://prunel.ccsd.
cnrs.fr/ensl-00103018

16. Malod, G.: Polynômes et coefficients. PhD thesis, Université Claude Bernard Lyon
1 (July, 2003), available from http://tel.archives-ouvertes.fr/tel-00087399

17. Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. In:
Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 704–716.
Springer, Heidelberg (2006)

18. Poizat, B.: Les petits cailloux. Aléas (1995)
19. Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium

on Theory of Computing, pp. 249–261. ACM Press, New York (1979)

http://prunel.ccsd.cnrs.fr/ensl-00153736
http://prunel.ccsd.cnrs.fr/ensl-00153701
http://prunel.ccsd.cnrs.fr/ensl-00103018
http://prunel.ccsd.cnrs.fr/ensl-00103018
http://tel.archives-ouvertes.fr/tel-00087399

Efficient Provably-Secure

Hierarchical Key Assignment Schemes

Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci

Dipartimento di Informatica ed Applicazioni, Università di Salerno
84084 Fisciano (SA), Italy

Abstract. A hierarchical key assignment scheme is a method to assign
some private information and encryption keys to a set of classes in a
partially ordered hierarchy, in such a way that the private information
of a higher class can be used to derive the keys of all classes lower down
in the hierarchy.

In this paper we design and analyze hierarchical key assignment
schemes which are provably-secure and support dynamic updates to the
hierarchy with local changes to the public information and without re-
quiring any private information to be re-distributed.
– We first show an encryption based construction which is provably

secure with respect to key indistinguishability, requires a single com-
putational assumption and improves on previous proposals.

– Then, we show how to reduce key derivation time at the expense of
an increment of the amount of public information, by improving a
previous result.

– Finally, we show a construction using as a building block a public-key
broadcast encryption scheme. In particular, one of our constructions
provides constant private information and public information linear
in the number of classes in the hierarchy.

1 Introduction

The hierarchical access control problem is defined in a scenario where the users
of a computer system are organized in a hierarchy formed by a certain number
of disjoint security classes. Hierarchical structures arise from the fact that some
users have more access rights than others, and are widely employed in many
different application areas, including database management systems, computer
networks, operating systems, military, and government communications.

In 1983, Akl and Taylor [1] suggested the use of cryptographic techniques to
enforce access control in hierarchical structures. In particular, they designed a
hierarchical key assignment scheme where each class is assigned an encryption
key that can be used, along with some public parameters, to compute the key
assigned to all classes lower down in the hierarchy. This assignment is carried
out by a Trusted Authority (TA), which is active only at the distribution phase.
A recent work by Crampton et al. [10] provides a detailed classification of many
schemes proposed in the last twenty years and evaluates their merits. Atallah

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 371–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

372 A. De Santis, A.L. Ferrara, and B. Masucci

et al. [3,4] first addressed the problem of formalizing security requirements for
hierarchical key assignment schemes. They proposed a first construction based
on pseudorandom functions and a second one requiring the use of a symmetric
encryption scheme secure against chosen-ciphertext attacks.

In this paper we design and analyze hierarchical key assignment schemes
which are provably-secure and efficient. We consider security with respect to
key indistinguishability, which corresponds to the requirement that an adversary
is not able to learn any information about a key that it should not have ac-
cess to. We propose two constructions for hierarchical key assignment schemes.
Both constructions support updates to the access hierarchy with local changes
to the public information and without requiring any private information to be
re-distributed. The first construction, which is based on symmetric encryption
schemes, is simpler than the one proposed by Atallah et al. [4], requires a single
computational assumption, and offers more efficient procedures for key deriva-
tion and key updates. We also focus on improving efficiency of key derivation in
hierarchical key assignment schemes. Such a problem has been recently consid-
ered by Atallah et al. [4,5], who proposed two different techniques requiring an
increment of public information. We show how to further reduce key derivation
time by improving one of their techniques. Finally, we show how to construct
a hierarchical key assignment scheme by using only a public-key broadcast en-
cryption scheme. In particular, by plugging in the scheme proposed by Boneh et
al. [8] we obtain a hierarchical key assignment scheme offering constant private
information and public information linear in the number of classes.

The full version of this paper, including a complete analysis and proofs, can
be found in [11].

2 Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security
classes. A binary relation 9 that partially orders the set of classes V is defined
in accordance with authority, position, or power of each class in V . The poset
(V,9) is called a partially ordered hierarchy. For any two classes u and v, the
notation u 9 v is used to indicate that the users in v can access u’s data. Clearly,
since v can access its own data, it holds that v 9 v, for any v ∈ V . We denote
by Av the set {u ∈ V : u 9 v}, for any v ∈ V . The partially ordered hierarchy
(V,9) can be represented by the directed graph G∗ = (V,E∗), where each class
corresponds to a vertex in the graph and there is an edge from class v to class
u if and only if u 9 v. We denote by G = (V,E) the minimal representation of
the graph G∗, that is, the directed acyclic graph corresponding to the transitive
and reflexive reduction of the graph G∗ = (V,E∗). Such a graph G has the same
transitive and reflexive closure of G∗, i.e., there is a path (of length greater than
or equal to zero) from v to u in G if and only if there is the edge (v, u) in E∗.

A hierarchical key assignment scheme for a family Γ of graphs, corresponding
to partially ordered hierarchies, is defined as follows.

Efficient Provably-Secure Hierarchical Key Assignment Schemes 373

Definition 1. A hierarchical key assignment scheme for Γ is a pair (Gen,Der)
of algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.
It takes as inputs the security parameter 1τ and a graph G = (V,E) in Γ ,
and produces as outputs
(a) a private information su, for any class u ∈ V ;
(b) a key ku, for any class u ∈ V ;
(c) a public information pub.
We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and
G, where s and k denote the sequences of private information and of keys,
respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes
as inputs the security parameter 1τ , a graph G = (V,E) in Γ , two classes
u ∈ V and v ∈ Au, the private information su assigned to class u and the
public information pub, and produces as output the key kv assigned to class v.

We require that for each class u ∈ V , each class v ∈ Au, each private infor-
mation su, each key kv, each public information pub which can be computed
by Gen on inputs 1τ and G, it holds that Der(1τ , G, u, v, su, pub) = kv.

A hierarchical key assignment scheme is evaluated according to several param-
eters, such as the amount of private information held by each user, the amount
of public data, the complexity of key derivation, and the resistance to collusive
attacks. In order to evaluate the security of the scheme, we consider a static ad-
versary which wants to attack a class u ∈ V and which is able to corrupt all users
not allowed to compute the key ku. We define an algorithm Corruptu which, on
input the private information s generated by the algorithm Gen, extracts the
secret values sv associated to all classes in the set Fu = {v ∈ V : u �∈ Av}.
We denote by corr the sequence output by Corruptu(s). Two experiments are
considered. In the first one, the adversary is given the key ku, whereas, in the
second one, it is given a random string ρ having the same length as ku. It is the
adversary’s job to determine whether the received challenge corresponds to ku or
to a random string. We require that the adversary will succeed with probability
only negligibly different from 1/2.

If A(·, ·, . . .) is any probabilistic algorithm then a ← A(x, y, . . .) denotes the
experiment of running A on inputs x, y, . . . and letting a be the outcome, the
probability being over the coins of A. Similarly, if X is a set then x← X denotes
the experiment of selecting an element uniformly from X and assigning x this
value. If w is neither an algorithm nor a set then x← w is a simple assignment
statement. A function ε : N → R is negligible if for every constant c > 0 there
exists an integer nc such that ε(n) < n−c for all n ≥ nc.

Definition 2. [IND-ST] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der) be a hierar-
chical key assignment scheme for Γ and let STATu be a static adversary which
attacks a class u. Consider the following two experiments:

374 A. De Santis, A.L. Ferrara, and B. Masucci

Experiment ExpIND−1
STATu

(1τ , G) Experiment ExpIND−0
STATu

(1τ , G)
(s, k, pub)← Gen(1τ , G) (s, k, pub)← Gen(1τ , G)
corr ← Corruptu(s) corr ← Corruptu(s)

d ← STATu(1τ , G, pub, corr, ku) ρ ← {0, 1}length(ku)

return d d ← STATu(1τ , G, pub, corr, ρ)
return d

The advantage of STATu is defined as

AdvIND
STATu

(1τ , G) = |Pr[ExpIND−1
STATu

(1τ , G) = 1]− Pr[ExpIND−0
STATu

(1τ , G) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G =
(V,E) in Γ and each u ∈ V , the function AdvIND

STATu
(1τ , G) is negligible, for each

static adversary STATu whose time complexity is polynomial in τ .

In Definition 2 we have considered a static adversary attacking a class. A different
kind of adversary, the adaptive one, could also be considered. In [6] it has been
proven that security against adaptive adversaries is (polynomially) equivalent
to security against static adversaries. Hence, in this paper we will only consider
static adversaries.

3 An Encryption Based Construction

In this section we consider the problem of constructing a hierarchical key as-
signment scheme by using as a building block a symmetric encryption scheme.
A simple way to realize an encryption based scheme would be to assign a key
ku to each class u ∈ V and a public information p(u,v), for each edge (u, v) ∈ E,
corresponding to the encryption of kv with the key ku. This would allow any
user in a class u to compute the key kv held by any class v lower down in the
hierarchy, by performing distG(u, v) decryptions, where distG(u, v) denotes the
length of the shortest path from u to v in G.

Unfortunately, the simple solution described above is not secure with respect
to key indistinguishability. Indeed, consider an adversary attacking a class u and
corrupting a class v such that (u, v) ∈ E. The adversary, on input a challenge
ρ, corresponding either to the key ku or to a random value, is able to tell if ρ
corresponds to the encryption key ku simply by checking whether the decryption
of the public value p(u,v) with key ρ corresponds to the key kv held by class v.
In order to avoid the above attack, we propose a new construction, described in
Figure 1 and referred to as the Encryption Based Construction (EBC), where the
key assigned to a class is never used to encrypt the keys assigned to other classes.
In particular, in the EBC each class u ∈ V is assigned a private information su, an
encryption key ku, and a public information π(u,u), which is the encryption of the
key ku with the private information su; moreover, for each edge (u, v) ∈ E, there
is a public value p(u,v), which allows class u to compute the private information sv
held by class v. Indeed, p(u,v) consists of the encryption of the private information
sv with the private information su. This allows any user in a class u to compute
the key kv held by any class v lower down in the hierarchy, by performing

Efficient Provably-Secure Hierarchical Key Assignment Schemes 375

Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G =
(V, E) ∈ Γ and let Π = (K, E ,D) be a symmetric encryption scheme.

Algorithm Gen(1τ , G)

1. For any class u ∈ V , let su ← K(1τ) and ku ← {0, 1}τ ;
2. Let s and k be the sequences of private information and keys, respectively, com-

puted in the previous step;
3. For any two classes u, v ∈ V such that (u, v) ∈ E, compute the public information

p(u,v) = Esu(sv);
4. For any class u in V , compute the public information π(u,u) = Esu(ku);
5. Let pub be the sequence of public information computed in the previous two steps;
6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Consider a path (w0, w1), . . . , (wm−1, wm) ∈ E, from u = w0 to v = wm. For
any i = 1, . . . , m, extract the public value p(wi−1,wi) from pub and compute the
private information swi = Dswi−1

(p(wi−1,wi));

2. Extract the public value π(v,v) from pub and output the key kv = Dsv (π(v,v)).

Fig. 1. The Encryption Based Construction (EBC)

distG(u, v) + 1 decryptions. We will show that an adversary attacking a class u
is not able to distinguish the key ku from a random string of the same length
unless it is able to break the underlying encryption scheme. We first recall the
definition of a symmetric encryption scheme.

Definition 3. A symmetric encryption scheme is a triple Π = (K, E ,D) of
algorithms satisfying the following conditions:

1. The key-generation algorithm K is probabilistic polynomial-time. It takes as
input the security parameter 1τ and produces as output a string key.

2. The encryption algorithm E is probabilistic polynomial-time. It takes as in-
puts 1τ , a string key produced by K(1τ), and a message m ∈ {0, 1}∗, and
produces as output the ciphertext y.

3. The decryption algorithm D is deterministic polynomial-time. It takes as
inputs 1τ , a string key produced by K(1τ), and a ciphertext y, and produces
as output a message m. We require that for any string key which can be
output by K(1τ), for any message m ∈ {0, 1}∗, and for all y that can be
output by E(1τ , key,m), we have that D(1τ , key, y) = m.

Before analyzing the security of the EBC we first need to define what we mean by a
secure symmetric encryption scheme. We formalize security with respect to plain-
text indistinguishability, which is an adaption of the notion of polynomial security
as given in [13]. We consider an adversary A = (A1, A2) running in two stages.
In advance of the adversary’s execution, a random key key is chosen and kept hid-
den from the adversary. During the first stage, the adversary A1 outputs a triple

376 A. De Santis, A.L. Ferrara, and B. Masucci

(x0, x1, state), where x0 and x1 are two messages of the same length, and state is
some state information which could be useful later. One message between x0 and
x1 is chosen at random and encrypted to give the challenge ciphertext y. In the sec-
ond stage, the adversary A2 is given y and state and has to determine whether y
is the encryption of x0 or x1. Informally, the encryption scheme is said to be se-
cure with respect to a non-adaptive chosen plaintext attack (IND-P1-C0), if every
polynomial-timeadversaryA, whichhas access to the encryption oracleonlyduring
thefirst stageof the attackandhasnever access to thedecryption oracle, succeeds in
determining whether y is the encryption of x0 orx1 with probability only negligibly
different from 1/2. The proof of the next theorem can be found in [11].

Theorem 1. If the encryption scheme Π = (K,D, E) is secure in the sense of
IND-P1-C0, then the EBC is secure in the sense of IND-ST.

The EBC requires |E| + |V | public values; on the other hand, each class has to
store a single secret value, corresponding to its private information. As for key
derivation, a class u ∈ V which wants to compute the key held by a class v ∈ Au

is required to perform distG(u, v) + 1 decryption operations. The EBC supports
insertions, but not deletions, of classes and edges in the hierarchy without re-
distributing private information to the classes affected by such changes. However,
in the full version of this paper [11] a simple modification of the scheme, which
avoids such a re-distribution, has been proposed. The modified scheme, referred
to as the Dynamic Encryption Based Construction (DEBC), requires |E|+ 2|V |
public values, whereas, each class has to store a single secret value. Moreover,
the number of decryptions needed by class u to compute the key of class v ∈ Au

is distG(u, v) + 2.

4 Improving Key Derivation Time

In the EBC, as well as in the schemes proposed by Atallah et al. [3,4], the number
of steps that a class u has to perform, in order to compute the key of another
class v lower down in the hierarchy, is proportional to the length of the shortest
path from u to v. Atallah et al. [3,4,5] analyzed the problem of reducing key
derivation time by modifying the graph representing the hierarchy, in order to
reduce its diameter, where the diameter of a directed graph is defined as the
maximum distance between a pair of vertices in the graph connected by a path.
To this aim, they proposed some constructions to add additional edges, called
shortcut edges, as well as dummy vertices, to the hierarchy.

4.1 The Shortcutting Technique

The shortcutting of a directed graph G = (V,E) consists into inserting shortcut
edges in E, without changing the transitive closure of G. The goal is to obtain an-
other directed graph, called a shortcut graph, having a smaller diameter than G.

The shortcutting technique is quite old, indeed it has been first considered in
1982 by Yao [17]. In particular, Yao considered the problem in a quite different

Efficient Provably-Secure Hierarchical Key Assignment Schemes 377

context, where the n elements of V belong to a given semigroup (S, ◦) and one
is interested in answering queries of the form “what is the value of vi ◦vi+1 ◦ · · ·◦
vj−1 ◦ vj?” for any 1 ≤ i ≤ j ≤ n. In the following we translate to our scenario
the main existing results concerning the shortcutting technique when applied to
particular kinds of graphs. We start discussing chains, then we analyze trees and
finally general graphs.

Chains. By using the techniques proposed by Yao [17] we can add shortcut
edges to a chain (v1, . . . , vn) of n vertices. The techniques proposed by Alon and
Schieber [2] in 1987 and Bodlaender et al. [7] in 1994 are essentially the same
as the ones proposed by Yao, but their description is easier to illustrate. The
details of the constructions, translated to our scenario, can be found in [11]. The
parameters of such constructions are summarized in Figure 2, where log∗ n, is
the iterated logarithmic function.

Trees. In 1987 Chazelle [9], as well as Alon and Schieber [2], considered the
problem of reducing the diameter of free trees, i.e., indirected connected acyclic
graphs, by adding shortcut edges. Their results, which are summarized in
Figure 2, were also shown to hold for directed trees [16].

Diameter Minimal number
� of shortcut edges

1 Θ(n2)

2 Θ(n · log n)

3 Θ(n · log log n)

4 Θ(n · log∗ n)

O(log∗ n) Θ(n)

Fig. 2. Minimal number of shortcut edges to be added to chains and trees with n
vertices in order to obtain a shortcut graph with diameter �

General Graphs. Thorup [15] conjectured that for any directed graph G =
(V,E) one can obtain a shortcut graph with diameter polylogarithmic in |V |,
i.e., (log |V |)O(1), by adding at most |E| shortcut edges. He also showed his
conjecture to be true for planar directed graphs [16]. However, Hesse [14] gave
a counterexample to Thorup’s conjecture. He showed how to construct a direct
graph requiring the addition of Ω(|E| · |V |1/17) shortcut edges to reduce its
diameter below Θ(|V |1/17). By extending his construction to higher dimensions,
it is possible to obtain graphs with |V |1+ε edges that require the addition of
Ω(|V |2−ε) shortcut edges to reduce their diameter.

All constructions described in this section can be used to reduce key derivation
time in hierarchical key assignment schemes. However, the result by Hesse [14]
implies that key derivation time cannot be reduced essentially below Ω(|V |2) for
some kinds of graphs by adding only shortcut edges.

378 A. De Santis, A.L. Ferrara, and B. Masucci

4.2 The Shortcutting and Point-Inserting Technique

Atallah et al. [5] also proposed a different technique to reduce the diameter of an
access hierarchy. Such a technique consists of the addition of dummy vertices, as
well as new edges, to the hierarchy. The idea is to obtain a new hierarchy such that
there exists a path between two classes u and v in the old hierarchy if and only if
there exists a path between u and v in the new one. The addition of dummy vertices
results in a smaller number of new edges to be added to the hierarchy.

The technique makes use of the concept of dimension of a poset, originally de-
fined by Dushnik and Miller [12]. The dimension of a poset (V,9) is the minimum
number of total orders on V whose intersection is (V,9). It can also be seen as the
smallest nonnegative integer d for which each u ∈ V can be represented by a d-
vector (xu,1, . . . , xu,d) of integers such that u 9 v if and only if xu,i ≤ xv,i, for
any i = 1, . . . , d, and any u, v ∈ V . There are efficient algorithms to test if a poset
has dimension 1 or 2, but the problem of determining if a poset has dimension 3 is
NP-complete. A poset has dimension one if and only if it is a total order.

When applied to a hierarchy with n classes and dimension d, the technique
allows to reduce key derivation time to 2d + 1, by adding O(n · d · (log n)d−1 ·
log logn) dummy classes and new edges. In the following we show how to further
reduce key derivation time. Our technique performs a further shortcutting of the
graph obtained by Atallah et al.’s technique and allows key derivation time to
be independent on d.

4.3 The Improved Shortcutting and Point-Inserting Technique

In this section we consider the problem of reducing the diameter of the graph
obtained by the shortcutting and point-inserting technique, on input a poset
(V,9) with dimension d. Our construction, which we refer in the following as
the Improved Shortcutting and Point-Inserting Technique (ISPIT) is recursive,
and for the base case d = 1 reduces to the construction proposed by Yao [17].
The construction for the case d ≥ 2 is described in Figure 3. The input is a set
of n d-dimensional points corresponding to the vertices in V ; for each vertex
v ∈ V , let P (d)

v be the corresponding point and let V (d) = {P (d)
v : v ∈ V }.

The number DP (n, d) of dummy points added by the ISPIT is DP (n, d) =
2 ·DP (n/2
, d) +DP (n, d− 1) +Θ(n), where DP (n, 1) = 0 and DP (1, d) = 0.
Indeed, in order to construct G(d), the algorithm adds n dummy points, corre-
sponding to the projections of the points in V (d) on the (d− 1)-dimensional hy-
perplane M , plus DP (n, d−1) dummy points for the construction of G(d−1), and
then is recursively called on the two sets V (d)

1 and V
(d)
2 . The solution of the above

recurrence is DP (n) = Θ(n ·d · (logn)d−1). On the other hand, the number T (n)
of new edges added by the ISPIT is T (n, d) ≤ 2·T (n/2
, d)+3·T (n, d−1)+Θ(n),
where T (n, 1) denotes the number of shortcut edges added by Yao’s construction
[17] for the case d = 1 in order to obtain a shortcut graph having a certain diam-
eter, whereas, T (1, d) = 0. Indeed, at most 3 · |E(d−1)|+n new edges are added in
steps 7. and 8. and then the algorithm is recursively called on the two sets V (d)

1

and V
(d)
2 . Clearly, the solution of T (n, d), as well as the diameter of the graph

Efficient Provably-Secure Hierarchical Key Assignment Schemes 379

Let (V,�) be a poset with dimension d ≥ 2, let V (d) be the set of points in the
vectorial representation of the Hasse diagram associated to (V,�) and based on its d
total orders, and let � ≥ 1.

1. If |V (d)| = 1, then output V (d).
2. If |V (d)| ≥ 2, compute a (d− 1)-dimensional hyperplane M perpendicular to the

d-th dimension that partitions the set of points in V (d) into two sets V
(d)
1 and V

(d)
2

of �n/2� and �n/2	 points, respectively, where V
(d)
1 is the set on the smaller side

of the hyperplane (according to the d-th coordinate). Such points are projected

on M . Denote by P
(d−1)
v the projection of P

(d)
v on M . Let V

(d−1)
1 and V

(d−1)
2 be

the projections of V
(d)
1 and V

(d)
2 .

3. If d = 2, use Yao’s construction on the chain whose vertices are the points in the
set V (1), in order to obtain a shortcut graph G(1) = (V (1), E(1)), having diameter
at most �. The set of dummy points added by the algorithm is D(1) = ∅ (no
dummy points are added).

4. If d ≥ 3, recursively call the algorithm on the set of points in V (d−1) = V
(d−1)
1 ∪

V
(d−1)
2 , corresponding to a (d−1)-dimensional hyperplane; let G(d−1) = (V (d−1)∪

D(d−1), E(d−1)) be the corresponding output.
5. Let D(d) = V (d−1) ∪D(d−1).
6. Let E(d) = E(d−1).
7. Add edges between points in V (d) and corresponding projections:

(a) For each point P
(d)
v ∈ V

(d)
1 , add an edge (P

(d−1)
v , P

(d)
v) to E(d).

(b) For each point P
(d)
v ∈ V

(d)
2 , add an edge (P

(d)
v , P

(d−1)
v) to E(d).

8. Add shortcut edges between points in V (d) and dummy points:
(a) For each edge (P

(d−1)
u , P

(j)
v) ∈ E(d−1), add an edge (P

(d)
u , P

(j)
v) to E(d).

(b) For each edge (P
(j)
u , P

(d−1)
v) ∈ E(d−1), add an edge (P

(j)
u , P

(d)
v) to E(d).

9. Recursively call the algorithm on the two sets of points in V
(d)
1 and V

(d)
2 .

10. Output the graph G(d) = (V (d) ∪D(d), E(d)).

Fig. 3. The Improved Shortcutting and Point-Inserting Technique (ISPIT)

G(d), depends on the the number T (n, 1) of shortcut edges added by Yao’s con-
struction. If T (n, 1) = Θ(n), then T (n, d) = O(n · d · (3 logn)d−1). On the other
hand, if T (n, 1) = Θ(n · log logn), then T (n, d) = O(n · d · (3 logn)d−1 · log logn)
and the diameter of the graph G(d) is three, i.e., it is independent on d. It is easy
to see that, for any two vertices u, v ∈ V such that u 9 v, there exists a path
from P

(d)
v to P

(d)
u in G(d) which has length at most the diameter of the graph

G(1) obtained by solving the 1-dimensional problem on V (1).
Compared to the technique in [5], the ISPIT allows a further reduction of the

diameter, but in each recursive call, it adds at most three times the number of
new edges added by that algorithm. In the following we show a trade-off between
the number of edges added by the ISPIT and the diameter of the resulting graph.
The idea behind the construction is the following: Assume the 1-dimensional
problem is solved by adding Θ(n log logn) shortcut edges. For each j = 2, . . . , d,
the j-dimensional problem could be solved either with the technique in [5] or with

380 A. De Santis, A.L. Ferrara, and B. Masucci

ours. Let 1 ≤ t ≤ d and assume, for example, that for j = 2, . . . , t, the technique
in [5] is used to solve the j-dimensional problem, whereas, our technique is used to
solve the problems with dimensions from t+1 to d. It is easy to see that the graph
resulting by the above construction has diameter 2t+1. Moreover, the number of
new edges added by the modified algorithm is O(3d−t ·n · t · (log n)d−1 · log logn).

5 A Broadcast Encryption Based Construction

In this section we show how to construct a hierarchicalkeyassignment schemeusing
as a building block a broadcast encryption scheme. A broadcast encryption scheme
allows a sender tobroadcast an encryptedmessage toa setof users in suchaway that
only legitimate users can decrypt it. Broadcast encryption schemes can be either
public key or symmetric key based. In the symmetric key setting, only a trusted
authority can broadcast data to the receivers. In contrast, in the public key setting a
public key publishedby a trusted authority allows anybody to broadcast amessage.
We first recall the definition of a public-key broadcast encryption scheme [8].

Definition 4. A public-key broadcast encryption scheme for a set U of users
is a triple of algorithms (Set, Enc,Dec) satisfying the following conditions:

1. The setup algorithm Set is probabilistic polynomial-time. It takes as input
a security parameter 1τ and the set of users U and produces as output a
private key sku, for each user u ∈ U , and a public key pk.

2. The encryption algorithm Enc is probabilistic polynomial-time. It takes as
inputs 1τ , a subset X ⊆ U , and the public key pk, and produces as output a
pair (Hdr, k), where Hdr is called the broadcast header and k is a encryption
key. Let m be a message to be broadcast in such a way that only users in X are
allowed to obtain m and let y be the encryption of m under the symmetric key
k. The broadcast message consists of (X,Hdr, y), where the pair (X,Hdr)
is called the full broadcast header and y is called the broadcast body.

3. The decryption algorithm Dec is deterministic polynomial-time. It takes as
inputs 1τ , a subset X ⊆ U , a user u ∈ X and its private key sku, a broadcast
header Hdr, and the public key pk, and produces as output the key k. Such
a key can be used to decrypt the broadcast body y in order to obtain m.

We require that for all subsets X ⊆ U , all users u ∈ X, all public keys and
private keys which can be output by Set(1τ ,U), all pairs (Hdr, k), which can be
output by Enc(1τ , X, pk), we have that Dec(1τ , X, u, sku, Hdr, pk) = k.

The idea behind our construction, referred in the following as the Broadcast
Encryption Based Construction (BEBC), is to compute the private and public
information by using the broadcast encryption scheme; more precisely, the pub-
lic information will contain a broadcast header Hdru, which corresponds to an
encryption of the key ku, for each class u ∈ V . Such a broadcast header can be de-
crypted by all classes in the set Iu = {v ∈ V : there is a path from v to u in G},
allowing them to compute the key ku. The Broadcast Encryption Based Con-
struction is described in Figure 4.

Efficient Provably-Secure Hierarchical Key Assignment Schemes 381

Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G =
(V, E) ∈ Γ and let (Set,Enc, Dec) be a public-key broadcast encryption scheme for
users in V .

Algorithm Gen(1τ , G,)

1. Run Set(1τ , V) to generate a public key pk and a secret key sku for any u ∈ V ;
2. For each class u ∈ V , let su = sku;
3. For each class u ∈ V , run Enc(1τ , Iu, pk) to obtain the pair (Hdru, ku);
4. Let s and k be the sequences of private information and keys computed in the

previous two steps;
5. Let pub be the sequence constituted by the public key pk along with the header

Hdru, for any u ∈ V ;
6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Extract the public key pk and the header Hdrv from pub.
2. Output kv = Dec(1τ , Iv, u, su, Hdrv, pk).

Fig. 4. The Broadcast Encryption Based Construction

Before analyzing the security of the BEBC we first need to define what we
mean by a secure public-key broadcast encryption scheme. The security of a
public-key broadcast encryption scheme is defined through a game between an
adversary A and a challenger. According to the capabilities of the adversary
and the security goal, several types of security notions for public-key broad-
cast can be defined. We consider the definition of semantic security given by
Boneh et al. [8], where the adversary is not allowed to issue decryption queries
to the challenger. We consider the following game: First, algorithm A outputs a
set X ⊆ U of receivers that it wants to attack. Then, the challenger first runs
Set(1τ ,U) to obtain a private key sku for each user u ∈ U and a public key
pk. Afterwards, it gives the public key pk and all private keys skv for which
v �∈ X to A. The challenger runs Enc(1τ , X, pk) to obtain (Hdr, k). Then, it
picks a random bit b ∈ {0, 1}, sets kb = k and chooses kb as a random key. The
challenge (Hdr, k0, k1) is given to A. Algorithm A outputs its guess b′ ∈ {0, 1}
for b and wins the game if b = b′. The advantage of the adversary A is defined as
AdvA,U(1τ) = |Pr[b′ = b] − 1/2|. The scheme is said to be semantically secure
if the function AdvA,U (1τ) is negligible, for any adversary A whose time com-
plexity is polynomial in τ . The proof of the next theorem can be found in [11].

Theorem 2. If the public-key broadcast encryption scheme (Set, Enc,Dec) is
semantically secure, then the BEBC is secure in the sense of IND-ST.

Boneh et al. [8] showed how to construct a semantically secure public-key broad-
cast encryption scheme for a set of n users, assuming the intractability of the
n-Bilinear Decisional Diffie-Hellman Exponent (n-BDDHE). The use of such a

382 A. De Santis, A.L. Ferrara, and B. Masucci

broadcast encryption scheme allows us to obtain a hierarchical key assignment
scheme where the public information consists of 4|V |+1 group elements, whereas,
the private information has constant size. Moreover, key derivation requires a
single (complex) decryption operation, which involves at most |V |− 2 group op-
erations. The above scheme supports dynamic changes to the hierarchy without
requiring re-distribution of private information to the classes affected by such
changes. Details of the construction can be found in [11].

References

1. Akl, S.G., Taylor, P.D.: Cryptographic Solution to a Problem of Access Control in
a Hierarchy. ACM Trans. on Comput. Syst. 1(3), 239–248 (1983)

2. Alon, N., Schieber, B.: Optimal Preprocessing for Answering On-line Product
Queries, Tech. Rep, TR 71/87, Inst. of Comput. Sci., Tel-Aviv Univ. (1987)

3. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and Efficient Key Management
for Access Hierarchies. In: Proc. of ACM CCS 2005, pp. 190–201(2005)

4. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and Efficient Key
Management for Access Hierarchies, CERIAS Tech. Rep. TR 2006-09, Purdue
Univ. (2006)

5. Atallah, M.J., Blanton, M., Frikken, K.B.: Key Management for Non-Tree Access
Hierarchies. In: Proc. of ACM SACMAT 2006, pp. 11–18, Full version avail at
http://www.cs.purdue.edu/homes/mbykova/papers/key-derivation.pdf

6. Ateniese, G., De Santis, A., Ferrara, A.L.,Masucci, B.: Provably-SecureTime-Bound
Hierarchical KeyAssignment Schemes. In:Proc. of ACMCCS 2006, pp. 288–297. Full
version avail. as Rep. 2006/225 at the IACR Cryptology ePrint Archive (2006)

7. Bodlaender, H.L., Tel, G., Santoro, N.: Trade-offs in Non-reversing Diameter.
Nordic J. on Comput. 1, 111–134 (1994)

8. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

9. Chazelle, B.: Computing on a Free Tree via Complexity-Preserving Mappings. Al-
gorithmica 2, 337–361 (1987)

10. Crampton, J., Martin, K., Wild, P.: On Key Assignment for Hierarchical Access
Control. In: Proc. of IEEE CSFW, pp. 98–111 (2006)

11. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient Provably-Secure Hierarchical Key
Assignment Schemes, avail. asRep. 2006/479 at the IACRCryptology ePrint Archive
(2006)

12. Dushnik, B., Miller, E.W.: Partially Ordered Sets. American Journal of Mathe-
matics 63, 600–610 (1941)

13. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Comp. and System
Sci. 28, 270–299 (1984)

14. Hesse, W.: Directed Graphs Requiring Large Number of Shortcuts. In: Proc. of
ACM-SIAM SODA 2003, pp. 665–669 (2003)

15. Thorup, M.: On Shortcutting Digraphs. In: Mayr, E.W. (ed.) WG 1992. LNCS,
vol. 657, pp. 205–211. Springer, Heidelberg (1993)

16. Thorup, M.: Shortcutting Planar Digraphs. Combinatorics, Probability & Com-
put. 4, 287–315 (1995)

17. Yao, A.C.: Space-Time Tradeoff for Answering Range Queries. In: Proc. of ACM
STOC 1982, pp. 128–136 (1982)

Nearly Private Information Retrieval�

Amit Chakrabarti and Anna Shubina

Department of Computer Science, Dartmouth College
Hanover, NH 03755, USA

{ac,ashubina}@cs.dartmouth.edu

Abstract. A private information retrieval scheme is a protocol whereby
a client obtains a record from a database without the database operators
learning anything about which record the client requested. This concept
is well studied in the theoretical computer science literature. Here, we
study a generalization of this idea where we allow a small amount of
information about the client’s intent to be leaked.

Despite having relaxed the privacy requirement, we are able to prove
three fairly strong lower bounds on such schemes, for various parameter
settings. These bounds extend previously known lower bounds in the
traditional setting of perfect privacy and, in one case, improve upon the
previous best result that handled imperfect privacy.

1 Introduction

Private information retrieval (PIR) schemes have been a substantial focus of
theoretical research in computer science, beginning with the highly influential
work of Chor, Goldreich, Kushilevitz, and Sudan [4]. In that paper, as in most
subsequent work, a PIR scheme means a communication protocol that specifies
an interaction between a client or user and one or more database servers. The
user wishes to obtain a record from the database without the servers learning
anything about which record the user seeks.

A clean and concrete version of this problem, as proposed by Chor et al.,
is as follows: the database y is a string of n bits. The client has an index
j ∈ {1, 2, . . . , n} and wishes to obtain the jth bit of y, without the servers
obtaining any information about j. As shown by Chor et al., this strong privacy
requirement means that if there is only one server that holds the database, the
trivial protocol in which the client simply downloads the entire database is op-
timal in terms of the number of bits communicated. However, as shown in the
same paper, if one allows the database to be replicated and copies held by two
or more servers that do not talk to each other, the problem can be solved using
sublinear communication.

Almost all past work on PIR schemes has required that the servers learn zero
information about the client’s index j. Here, we ask the question: what happens if
we allow the protocol to leak a small amount of information about j? To the best
of our knowledge, the only other work to have considered this question is that
� This work was supported in part by an NSF CAREER Award CCF-0448277 and

startup funds from Dartmouth College.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 383–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 A. Chakrabarti and A. Shubina

of Goldreich, Karloff, Schulman, and Trevisan [5]. It is a priori conceivable that
relaxing the privacy requirement might decrease the communication required in
PIR protocols. However, in this work, we prove three lower bounds that show that
previously known lower bounds for traditional (perfect privacy) PIR protocols
extend to this relaxed setting, up to constant factor losses. One of our bounds
improves an earlier result of Goldreich et al. from the aforementioned paper.
We also show that another of our bounds is essentially optimal by exhibiting an
appropriate upper bound.

To explain our results in detail and compare them to previously known results,
we begin with some necessarily definitions.

1.1 Preliminaries

We begin by introducing some notation. For an integer n, we let [n] denote the
set {1, 2, . . . , n}. For random variables X and Y that take values in the same set
S, we write X ≈δ Y to denote the fact that the L1 distance (i.e., twice the varia-
tional distance) between the distributions of X and Y is at most δ. To be precise,

∑

a∈S

|Pr[X = a]− Pr[Y = a]| ≤ δ .

Definition 1.1. Let s, �q, �a be positive integers and ε, δ be reals in [0, 1]. An
s-server (�q, �a; ε, δ)-PIR protocol P is a communication protocol between a single
client, who holds an index j ∈ [n], and s servers, each of whom holds a string
y ∈ {0, 1}n. Formally, P is specified by a triple (Q,A,Rec) of functions, where
Q : [s]× [n]×{0, 1}ρ→ {0, 1}�q, A : [s]×{0, 1}n×{0, 1}�q → {0, 1}�a, and Rec :
[n]× {0, 1}ρ × ({0, 1}�a)s → {0, 1} for some positive integer ρ. For compactness
of notation, we shall write Qi(j, R) instead of Q(i, j, R) and Ai(y, z) instead
of A(i, y, z). Also, we shall drop the subscript on Qi and Ai altogether when
s = 1. The protocol operates as follows: the client generates a random string
R distributed uniformly in {0, 1}ρ and, for each i ∈ [s], sends a query string
Qi(j, R) to server i. Upon receiving a query string z, server i sends an answer
string Ai(y, z) to the client. The client then outputs a recovered bit

Out(j, y, R) := Rec(j, R,A1(y,Q1(j, R)), . . . , As(y,Qs(j, R))) ,

which is her guess at the value of yj. The protocol must satisfy the following two
conditions.

Correctness: ∀ j ∈ [n], y ∈ {0, 1}n : PrR[Out(j, y, R) = yj] ≥ 1− ε.
Privacy: ∀ i ∈ [s], j, k ∈ [n] : Qi(j, R) ≈δ Qi(k,R).

The parameter �q is called the query length, �a the answer length, ε the recovery
error, and δ the privacy parameter of the protocol P. The communication cost
of P is cost(P) = s(�q + �a), the total number of bits communicated.

The goal in designing PIR protocols is to simultaneously reduce ε, δ, and cost(P).
We shall require that all servers receive queries of the same length and return
answers of the same length. Since we only deal with constant values of s, this
requirement causes no asymptotic loss.

Nearly Private Information Retrieval 385

When ε = 0, the protocol is said to have perfect recovery, and when δ = 0, it is
said to have perfect privacy. The bulk of theoretical research on PIR has focused
on the case ε = δ = 0. The work of Goldreich et al. [5] and that of Kerenidis and
de Wolf [6] did consider the ε > 0 case. But relatively little attention has been
paid to the δ > 0 case, except for one result of Goldreich et al. mentioned below.

1.2 Our Results and Previous Work

We prove three lower bounds that allow δ > 0. Let P be a 1-server (�q, �a; ε, δ)-
PIR protocol. With the privacy requirement relaxed, even the 1-server case be-
comes nontrivial and it is not a priori clear that sublinear communication PIR
is not possible. However, we show that for ε = 0, we must have cost(P) ≥
(1− δ/2)n = Ω(n). We also show, via an upper bound, that this dependence to
δ is essentially tight, up to terms quadratic in δ.

We also consider the more general case when both ε and δ can be nonzero. In
this case, we show that cost(P) ≥ (1−H(ε+δ/2))n for sufficiently small ε and δ.
Here H is the binary entropy function given by H(x) := −x lg x−(1−x) lg(1−x);
“lg” denotes logarithm to the base 2.

Finally, we consider 2-server schemes for nearly private information retrieval.
It is known that, using two servers, O(n1/3) communication can be achieved,
even with ε = δ = 0, via a number of different schemes; see, e.g., Chor et
al. [4], Beimel, Ishai, and Malkin [3], and Woodruff and Yekhanin [11]. No strong
general lower bound is known that comes close to matching this upper bound.
However, a recent result of Razborov and Yekhanin [10] provides an Ω(n1/3)
bound for protocols whose computation is restricted in a certain way. With
arbitrary computations allowed, there are strong lower bounds known provided
the answer length �a is short. The cleanest of these results are for the �a =
1 case. In this case, Kerenidis and de Wolf [6] prove a lower bound of (1 −
H(11/14−4ε/7))n−2 on the communication cost when δ = 0. Beigel, Fortnow,
and Gasarch [2] prove a tight n− 2 lower bound when ε = δ = 0.

Here, we prove a lower bound of (1−H(3/4+2δ/3−
√

2δ−ε))n−2 when �a = 1,
for sufficiently small positive ε and δ. A lower bound handling positive ε and δ
was proven by Goldreich et al. [5]. Their bound, for �a = 1, is (1−2ε−δ)n/24−4.
(Note that our use of ε and δ is different from theirs; we have translated their
bound into our notation.) To see that our bound is an improvement, consider
the limiting case ε → 0, δ → 0: our lower bound then approaches 0.19n − 2,
whereas the bound of [5] approaches 0.04n− 4.

It is worth noting that the issue of lower bounds for PIR schemes with 3
or more servers has recently been largely settled, in a most dramatic way, by
Yekhanin [12]: surprisingly low upper bounds hold.

2 Simple Upper Bounds

Here, we show simple improvements to the known upper bounds on the commu-
nication cost of PIR schemes by allowing imperfect privacy. As we shall see later,

386 A. Chakrabarti and A. Shubina

the 1-server upper bound we obtain below is essentially optimal in the perfect
recovery case.

Theorem 2.1. For any δ > 0, there is a PIR protocol with perfect recovery, pri-
vacy parameter δ, and communication cost at most 	lgn
+	(1− δ/(2 + δ))n
 =
(1− δ/2 + O(δ2))n + O(log n).

Proof. Let δ′ = δ/(2 + δ). For each integer j ∈ [n], define the sets

Sj := {k ∈ [n] : 0 ≤ (k − j) mod n ≤ (1− δ′)n} ,
Tj := {k ∈ [n] : 0 ≤ (j − k) mod n ≤ (1− δ′)n} .

It is important to keep in mind that [n] denotes the set {1, 2, . . . , n} whereas
x mod n takes values in {0, 1, . . . , n− 1}.

Design the function Q so that, when R is a uniform random string, Q(j, R)
is uniformly distributed on Sj. For k ∈ [n] and y ∈ {0, 1}n, let A(y, k) return
the concatenation, in some canonical order, of all yj such that j ∈ Tk. It is easy
to see that k ∈ Sj ⇔ j ∈ Tk; therefore A(y,Q(j, R)) is guaranteed to contain
the desired bit yj and we can design Rec so as to recover yj from Q(j, R) and
A(y,Q(j, R)). Clearly, the PIR protocol given by (Q,A,Rec) has perfect recovery
and communication cost at most 	lg n
+ |Tk| ≤ 	lgn
+ 	(1− δ′)n
.

For all j ∈ [n], we have |Sj | ≥ (1 − δ′)n and for i �= j, we have |Si \ Sj | +
|Sj \ Si| ≤ 2 · |[n] \ Sj | ≤ 2δ′n. Therefore, we can bound the protocol’s privacy
parameter as follows:

Q(i, R) ≈δ′′ Q(j, R), where δ′′ ≤ 2δ′n
(1 − δ′)n

= δ .

Thus, the protocol has all the desired properties.

A 2-Server Upper Bound. In a similar manner to the 1-server case, it is possible
to add a δ-dependent coefficient to the O(n1/3) upper bound for 2-server PIR.
The idea is to suitably modify the covering codes scheme of Chor et al. [4]. The
details are straightforward and hence omitted from this version.

3 1-Server Lower Bounds

3.1 Perfect Privacy and Recovery

Chor et al. [4] prove that, in the 1-server case with perfect privacy, n bits must
be exchanged. Their argument goes as follows. A communication C (the string
of exchanged bits) is said to be possible for (y, j) if there is a positive probability
for C to happen when the database is y, and the user tries to obtain the jth bit.
C is said to be possible for j if it is possible for some pair (y, j). Let us fix a j
and assume that the number of possible communications for j is less than 2n.
Then there exist different databases y, y′ and C such that C is possible for both
(y, j) and (y′, j). But by the privacy requirement, for every k ∈ [n], C must also

Nearly Private Information Retrieval 387

be possible for (y, k) and (y′, k), since the queries are distributed equally, and
the responses are determined by the queries. Pick an index j such that yj �= y′j .
We know that C is possible for both (y, j) and (y′, j), but C determines the
output of the protocol, thus the protocol must yield the same bit, and we get a
contradiction.

This argument fails in the almost secure case, since there is no requirement
that the same communication be possible for all indices if it is possible for one.
However, we can still obtain strong lower bounds, as we now show.

3.2 Nearly Private Schemes

Theorem 3.1. Let P be a 1-server (�q, �a; 0, δ)-PIR protocol, where δ > 0. Then
�a ≥ (1 − δ/2)n. In particular, cost(P) ≥ (1− δ/2)n.

Proof. For j ∈ [n] and z ∈ {0, 1}�q , let pjz = PrR[Q(j, R) = z]. Let Jz = {j :
pjz > 0}. It is easy to verify that

|Jz|p1z ≥
n∑

j=1

min{p1z, pjz} =
n∑

j=1

(
p1z + pjz

2
− |p1z − pjz |

2

)
.

This implies

∑

z∈{0,1}�q

|Jz|p1z ≥
n∑

j=1

∑

z∈{0,1}�q

(
p1z + pjz

2
− |p1z − pjz |

2

)

≥
n∑

j=1

(
1 + 1

2
− δ

2

)
= (1− δ/2)n ,

where the final inequality follows from the privacy guarantee of P . Since we have∑
z∈{0,1}�q p1z = 1, there must exist a z ∈ {0, 1}�q such that |Jz| ≥ (1 − δ/2)n.

Fix such a z.
Suppose �a < |Jz|. Let Y := {y ∈ {0, 1}n : yj = 0 for j /∈ Jz}. Then

|Y | = 2|Jz|. Meanwhile, the string A(y, z) has length �a, so it lies in a set of size
2�a < 2|Jz|. By the pigeonhole principle, there exist distinct strings y, y′ ∈ Y
such that A(y, z) = A(y′, z). Let j be an index such that yj �= y′j . Then j ∈ Jz .
Therefore, pjz > 0, i.e., there exists an R such that Q(j, R) = z. Since P has
perfect recovery, for this R we must have

yj = Rec(j, R,A(y, z)) = Rec(j, R,A(y′, z)) = y′j ,

which is a contradiction. This proves that �a ≥ |Jz| ≥ (1− δ/2)n.

3.3 Nearly Private Schemes with Imperfect Recovery

We now turn to the imperfect recovery case. We prove our lower bound for this
case by a reduction from a communication problem with a well known lower
bound. Later, we use a much more sophisticated version of the same idea for a
2-server lower bound.

388 A. Chakrabarti and A. Shubina

The problem indexn is a communication problem involving two players: Alice,
who holds an n-bit string x = x1x2 . . . xn (with each xi ∈ {0, 1}), and Bob, who
holds an index i ∈ [n]. A one-way communication protocol for this problem op-
erates as follows: Alice sends Bob a message based on x after which Bob outputs
his guess at the bit xi. Both players may use a public random string in making
their decisions, i.e., the protocol is allowed to be public coin. Ablayev [1] proved
the following sharp lower bound on the communication cost of such a protocol.

Fact 3.2. Any public coin one-way communication protocol for indexn with
error at most ε must communicate at least (1−H(ε))n bits.

Theorem 3.3. Let ε and δ be positive reals with ε + δ/2 < 1/2. Then any 1-
server (�q, �a; ε, δ)-PIR protocol has �a ≥ (1 −H(ε + δ/2))n. In particular, the
communication cost of such a protocol is at least (1 −H(ε + δ/2))n.

Proof. Suppose P is a 1-server (�q, �a; ε, δ)-PIR protocol that uses ρ bits of ran-
domness. Let Djz denote the conditional distribution of R given that Q(j, R) = z

and let Gen : [n]× {0, 1}�q × {0, 1}ρ′ → {0, 1}ρ be such that Gen(j, z, R′) is dis-
tributed according to Djz when R′ is distributed uniformly in {0, 1}ρ′

. Further,
define f : [n]× {0, 1}n × {0, 1}�q × {0, 1}ρ′ → {0, 1} as follows.

f(j, y, z, r′) :=
{

0 , if Rec(j,Gen(j, z, r′), A(y, z)) = yj ,
1 , otherwise .

The correctness condition for P implies

ER,R′ [f(j, y,Q(j, R), R′)] = Pr
R,R′

[Rec(j,Gen(j,Q(j, R), R′), A(y,Q(j, R))) �= yj]

= Pr
R

[Rec(j, R,A(y,Q(j, R))) �= yj]

≤ ε .

Now, using the privacy condition Q(j, R) ≈δ Q(1, R) and the fact that R and
R′ are independent, we have

ER,R′ [f(j, y,Q(1, R), R′)] ≤ ε +
δ

2
.

In other words, the following is a public coin one-way communication protocol
for the problem indexn, with error at most ε+ δ/2. Alice and Bob share a pair
of random strings (R,R′) distributed uniformly in {0, 1}ρ×{0, 1}ρ′

. Alice, upon
receiving y, sends Bob the message μ := A(y,Q(1, R)). Bob, upon receiving
j and μ, outputs Rec(j,Gen(j,Q(1, R), R′), μ) as his guess at yj . Clearly, this
protocol has cost at most �a. By Fact 3.2, we have �a ≥ (1−H(ε+δ/2))n, which
completes the proof.

4 2-Server Lower Bounds

We now turn to the case of 2-server PIR protocols. As mentioned earlier, much
less is known about lower bounds for such protocols. In particular, the only
strong lower bounds known for protocols that may make arbitrary computations
are when the answer size is restricted to be quite small. In particular, there are

Nearly Private Information Retrieval 389

strong results known for the case of one-bit answers. Here, we prove an asymp-
totically optimal lower bound for the case of one-bit answers, with imperfect
privacy allowed.

Our proof uses a quantum computation framework first used by Kerenidis and
de Wolf [6]. Below, we quickly review the basics of quantum computation and
communication and the Kerenidis - de Wolf framework and argument. We then
show how to extend the framework to allow imperfect privacy. For an in-depth
explanation of quantum computation we refer the reader to the textbooks by
Nielsen and Chuang [9] and by Kitaev, Shen and Vyalyi [7].

4.1 Quantum Communication

For our purposes, a quantum state is to be thought of as analogous to the classical
notion of a probability distribution over fixed-length bit strings. A distribution
over n-bit strings can be thought of a vector in [0, 1]2

n

with unit �1-norm. Anal-
ogously, an n-qubit state is a vector in C2n

= (C2)⊗n with unit �2-norm. We fix
an orthonormal basis for the Hilbert space (C2)⊗n and label the 2n basis vectors
(called basis states) by the 2n n-bit strings: it is customary to use Dirac notation
and denote the vector labeled by the string a as |a〉. It is also customary to write,
e.g., |5〉 for the 3-qubit state |101〉 because “101” is the binary representation of 5.

An n-qubit quantum state can evolve by the application of a unitary transfor-
mation in U(2n). It can also be measured in a variety of ways whose details need
not concern us here. For our purposes, we need only consider the following type
of measurement. Suppose we have a decomposition (C2)⊗n = W1⊕W2⊕· · ·⊕Wk,
and suppose Wj denotes the projection onto Wj . Then we can measure an n-
qubit state |φ〉 according to this decomposition: we will obtain a random outcome
in the set [k], with the probability of outcome j being ‖Wj |φ〉‖22 = 〈φ|Wj |φ〉.

A quantum communication protocol is like a (classical) communication pro-
tocol except that the communicating parties may send qubits (i.e., quantum
states) to each other. The communication cost of a protocol is the number of
qubits sent.

4.2 Perfect Privacy

Kerenidis and de Wolf prove a number of communication lower bounds for
2-server PIR schemes. However, their arguments only handle the perfect pri-
vacy case, although they do handle imperfect recovery. Their arguments are
cast in a quantum communication framework whose key observation can be
expressed thus: “a single quantum query can simulate two classical queries.”
Using this observation, they build a 1-server “quantum PIR scheme” and then
prove lower bounds on its communication in a way analogous to our 1-server
lower bounds. In particular, the appropriate quantum analog of Ablayev’s lower
bound (Fact 3.2) turns out to be a lower bound for quantum random access
codes, due to Nayak [8].

We now outline Kerenidis and de Wolf’s argument, using our own terminol-
ogy. We find it convenient to remove the intermediate steps of a quantum PIR

390 A. Chakrabarti and A. Shubina

scheme and a quantum random access code; instead, we show that a 2-server PIR
scheme with good enough parameters implies a one-way quantum communica-
tion protocol for indexn with low communication cost. The desired PIR lower
bound then follows from the aforementioned result of Nayak [8], which can be
restated thus.

Fact 4.1. A one-way quantum communication protocol for indexn with error
probability ε must communicate at least (1−H(ε))n qubits.

We now fill in some details. Suppose P is a 2-server (�q, 1; ε, δ)-PIR protocol,
given by (Q,A,Rec), that uses ρ bits of randomness. We associate with P a
certain collection {|φjy〉} of (ρ + 4 + �a)-qubit quantum states. To define these,
we use the basis states {|r, i, i, z〉 : r ∈ {0, 1}ρ, i ∈ {0, 1, 2}, z ∈ {0, 1}�q}. We
set c := 1/

√
3 · 2ρ and, for notational convenience, we define Q0(j, r) = 0�q and

A0(y, z) = 0 for all j ∈ [n], r ∈ {0, 1}ρ, y ∈ {0, 1}n and z ∈ {0, 1}�q . Also,
for (i, j, z) ∈ {0, 1, 2} × [n] × {0, 1}�q , we define the set Sijz := {r ∈ {0, 1}ρ :
Qi(j, r) = z}. Finally, we define |φjy〉 as follows:

|φjy〉 :=
∑

r∈{0,1}ρ

c |r〉
(
|0, 0, 0�q〉+ (−1)A1(y,Q1(j,r))|1, 1, Q1(j, r)〉+

(−1)A2(y,Q2(j,r))|2, 2, Q2(j, r)〉
)
.

The significance of this quantum state is brought out by the following fact,
implicit in the work of Kerenidis and de Wolf.

Fact 4.2 (Kerenidis and de Wolf [6]). By measuring |φjy〉 appropriately,
one can obtain a random 2-bit outcome (β1, β2) such that

Pr [(β1, β2) = (A1(y,Q1(j, r)), A2(y,Q2(j, r)))] ≥ 3/4 .

Therefore, by applying the function Rec to the measured outcome, one can obtain
a bit that equals yj with probability at least 3/4 − ε. In fact, the probability
of correctly recovering yj can be further improved to 11/14 − 4ε/7 by using a
(classical) postprocessing trick.

To see how this fact can be used to obtain the desired communication protocol,
note that

|φjy〉 =
∑

r∈{0,1}ρ

2∑

i=0

(−1)Ai(y,Qi(j,r))c |r, i, i, Qi(j, r)〉

=
2∑

i=0

∑

z∈{0,1}�q

∑

r∈Sijz

(−1)Ai(y,z)c |r, i, i, z〉

=
2∑

i=0

∑

z∈{0,1}�q

|χijz〉 · (−1)Ai(y,z)c
√
|Sijz | |i, z〉 ,

Nearly Private Information Retrieval 391

where |χijz〉 := |Sijz |−1/2
∑

r∈Sijz
|r, i〉. Let Uj be a unitary transformation that

maps |0ρ, 0, i, z〉 to |χijz〉|i, z〉. The protocol for indexn works as follows. Alice,
on input y, prepares the quantum state

|ψjy〉 :=
2∑

i=0

∑

z∈{0,1}�q

(−1)Ai(y,z)c
√
|Sijz | |i, z〉 (1)

and sends it to Bob. Although it seems at first glance that |ψjy〉 depends on j,
it in fact doesn’t, because the perfect privacy guarantee of P implies that for
j, k ∈ [n],

|Sijz |
2ρ

= Pr
R

[Qi(j, R) = z] = Pr
R

[Qi(k,R) = z] =
|Sikz |

2ρ
. (2)

Bob, upon receiving |ψjy〉, constructs the state |0ρ, 0〉|ψjy〉 using ρ qubits of his
own and applies Uj to it. By definition of Uj , the state that Bob obtains is |φjy〉.
He then uses the procedure implied by Fact 4.2 to compute his output bit, which
is correct with probability at least 11/14− 4ε/7. Since |ψjy〉 is a (2 + �q)-qubit
state, the communication cost of this protocol is 2 + �q. Fact 4.1 now implies
that �q ≥ (1−H(11/14− 4ε/7))n− 2, giving us a lower bound on cost(P).

4.3 The Nearly Private Case

Without perfect privacy, the argument above does not work. This is because
Eq. (2) no longer holds, which makes the above quantum communication protocol
ill-defined: Alice can no longer prepare the state |ψjy〉 because it might depend
on j, which Alice does not know. However, we shall show that Alice can get
away with sending Bob the state |ψ1y〉, provided a sufficiently strong privacy
guarantee holds.

Theorem 4.3. Let ε and δ be sufficiently small positive reals. Then any 2-server
(�q, 1; ε, δ)-PIR protocol has �q ≥ (1−H(3/4+2δ/3−

√
2δ−ε))n−2. In particular,

the communication cost of such a protocol is at least Ωε,δ(n).

Proof. We use the framework and notation of Section 4.2. Suppose P is a 2-
server (�q, 1; ε, δ)-PIR protocol. Consider the following one-way communication
protocol for indexn: Alice, on input y, sends Bob the (2 + �q)-qubit quantum
state |ψ1y〉. Bob, upon receiving it, constructs the state |0ρ〉|ψ1y〉 defined by
Eq. (1) and applies the unitary transformation Uj to it. He then measures the
resulting state |φ′jy〉 as mentioned in Fact 4.2.

Let us eschew the additional “11/14 trick” referred to in Fact 4.2 and instead
consider the probability p that Bob obtains the “correct” outcome — i.e., the pair
of bits (A1(y,Q1(j, r)), A2(y,Q2(j, r))) — when he uses the same measurement
on the state |φ′jy〉. Let W be the projection operator corresponding to the desired
outcome, so that ‖W |φjy〉‖22 ≥ 3/4 and p = ‖W |φ′jy〉‖22. Then

‖W |φ′jy〉‖2 ≥ ‖W |φjy〉‖2−‖W (|φjy〉−|φ′jy〉)‖2 ≥
√

3
2
−‖|φjy〉−|φ′jy〉‖2 . (3)

392 A. Chakrabarti and A. Shubina

Now,

‖|φjy〉 − |φ′jy〉‖22 = ‖|0ρ, 0〉|φjy〉 − |0ρ, 0〉|φ′jy〉‖22
= ‖|ψjy〉 − |ψ1y〉‖22 (4)

=
2∑

i=0

∑

z∈{0,1}�q

c2
(√

|Sijz | −
√
|Si1z|

)2

(5)

≤
2∑

i=0

∑

z∈{0,1}�q

c2
∣∣|Sijz | − |Si1z |

∣∣

where Eq. (4) holds because Uj is unitary, and Eq. (5) is obtained by invoking
Eq. (1). Since P has privacy parameter δ, for i ∈ {1, 2} we have

∑
z∈{0,1}ρ ||Sijz |

−|Si1z || ≤ 2ρδ. Also, by design, S0jz = S01z for all z. Putting these facts together
and using Eq. (3) gives

p = ‖W |φ′jy〉‖22 ≥
(√

3
2
−
√

2c22ρδ

)2

=
3
4

+
2δ
3
−
√

2δ .

Since Bob eschews the classical postprocessing (the “11/14 trick”), the prob-
ability that he correctly outputs yj is at least the above quantity minus the
probability that the PIR scheme errs, i.e., at least 3/4 + 2δ/3 −

√
2δ − ε. The

theorem follows.

5 Conclusion

We have found that, in the 1-server case and in the binary 2-server case, relaxing
the privacy requirements on a private information retrieval (PIR) scheme by
allowing it to leak a small amount of information about the client’s index does
not allow more than a constant factor improvement in the communication cost.
The question of whether improvements can be obtained for the general 2-server
case remains open.

References

1. Ablayev, F.: Lower bounds for one-way probabilistic communication complexity
and their application to space complexity. Theoretical Computer Science 175(2),
139–159 (1996)

2. Beigel, R., Fortnow, L., Gasarch, W.: A tight lower bound for restricted PIR pro-
tocols. Comput. Complexity 15(1), 82–91 (2006)

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 56–74. Springer, Heidelberg (2000)

4. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–982 (1998)

Nearly Private Information Retrieval 393

5. Goldreich, O., Karloff, H., Schulman, L., Trevisan, L.: Lower bounds for linear
locally decodable codes and private information retrieval. In: Proc. 17th Annual
IEEE Conference on Computational Complexity, pp. 175–183. IEEE Computer
Society Press, Los Alamitos (2002)

6. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable
codes. J. Comput. Syst. Sci. 69(3), 395–420 (2004) (Preliminary version in Proc.
35th Annual ACM Symposium on the Theory of Computing, pp.106–115 (2003))

7. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation.
American Mathematical Society (2002)

8. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.
In: Proc. 40th Annual IEEE Symposium on Foundations of Computer Science, pp.
124–133. IEEE Computer Society Press, Los Alamitos (1999)

9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

10. Razborov, A., Yekhanin, S.: An Ω(n1/3) lower bound for bilinear group based pri-
vate information retrieval. In: Proc. 47th Annual IEEE Symposium on Foundations
of Computer Science, pp. 739–748. IEEE Computer Society Press, Los Alamitos
(2006)

11. Woodruff, D., Yekhanin, S.: Towards 3-query locally decodable codes of subexpo-
nential length. In: Proc. 20th Annual IEEE Conference on Computational Com-
plexity, 2005, pp. 275–284. IEEE Computer Society Press, Los Alamitos (2005)

12. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
In: Proc. 39th Annual ACM Symposium on the Theory of Computing, 2007, ACM
Press, New York (to appear, 2007)

Packing and Squeezing Subgraphs

into Planar Graphs

Fabrizio Frati1, Markus Geyer2, and Michael Kaufmann2

1 Dipartimento di Informatica e Automazione – Università Roma Tre, Italy
2 Wilhelm-Schickard-Institut für Informatik – Universität Tübingen, Germany

frati@dia.uniroma3.it, {geyer,mk}@informatik.uni-tuebingen.de

Abstract. We consider the following problem: Given a set S of graphs,
each of n vertices, construct an n-vertex planar graph G containing all
the graphs of S as subgraphs. We distinguish the variant in which any
two graphs of S are required to have disjoint edges in G (known as
’packing’) from the variant in which distinct graphs of S can share edges
in G (called ’squeezing’). About the packing variant we show that an
arbitrary tree and an arbitrary spider tree can always be packed in a
planar graph, improving in this way partial results recently given on this
problem. Concerning the squeezing variant, we consider some important
classes of graphs, like paths, trees, outerplanar graphs, etc. and establish
positive and negative results.

1 Introduction and Motivation

A number of graph algorithms require to find subgraphs satisfying certain prop-
erties in a larger graph. Moreover, some of the most studied and attracting topics
in graph theory are strictly related to the problem of determining relationships
between a graph and its subgraphs. The subgraph isomorphism problem asks for
finding a subgraph H in a graph G [15,7,3]. The graph thickness problem asks
for the minimum number of planar subgraphs in which the edges of a graph can
be partitioned [12]. The arboricity problem asks for determining the minimum
number of forests in which a graph can be partitioned [2]. Every planar graph
(maximal planar graph) can be partitioned in at most three forests (in three
edge-disjoint trees [14]) and it has been recently proved [9] that every planar
graph can be partitioned in two edge-disjoint outerplanar graphs.

The study of the relationships between a graph and its subgraphs can be also
tackled from the opposite side: Given the n-vertex graphs G1, . . . , Gk, the re-
quirement is to find a graph G satisfying certain properties and containing all the
Gi’s as subgraphs. This topic occurs with different flavors in the computational
geometry and graph drawing literature, motivated by visualization aims, like the
display of evolving networks and the simultaneous visualization of relationships
involving the same entities. In the simultaneous embedding problem [1,8,4] G
is given and the goal is to draw it so that the drawing of each Gi is planar.
The simultaneous embedding without mapping problem [1] is to find a graph G
such that: (i) G contains all the Gi’s as subgraphs, and (ii) G can be drawn with

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 394–405, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Packing and Squeezing Subgraphs into Planar Graphs 395

(a) (b)

Fig. 1. (a) A caterpillar. (b) A spider tree.

straight-line edges so that the drawing of each Gi is planar. The packing problem
is the one of finding a graph G containing G1, . . . , Gk as edge-disjoint subgraphs.
Hedetniemi [10] showed that any two trees with diameter greater than 2, that is
with more than three nodes in their longest paths, can be packed in a subgraph
of Kn and Maheo et al. [11] gave a characterization of which triples of trees can
be packed in Kn.

The planar packing problem is the variant of the packing problem in which
G is required to be planar. Garćıa et al. in [6] conjectured that there exists a
planar packing of any two non-star trees, that is of any two trees with diameter
greater than 2. Notice that the hypothesis that each tree is different from a star
is necessary, since any mapping between the vertices of a star and the vertices
of an arbitrary tree leads to at least one common edge. Garćıa et al. proved the
conjecture for the cases (1) if the trees are isomorphic and (2) if one of the trees
is a path respectively. Recently it has been shown in [13] that (3) there exists a
planar packing of any two trees if one of them is a caterpillar. In [13] it was also
shown the conjecture (4) if one of the trees is a spider with diameter at most 4.
A caterpillar is a tree which becomes a path when all its leaves are deleted (see
Fig. 1.a) and a spider is a tree with at most one vertex of degree greater than 2
(see Fig. 1.b).

In this paper we contribute to the state of the art on the planar packing
problem, by extending some of the results in [6] and [13]. Namely, in Section 3
we show that there exists a planar packing of any two trees of diameter greater
than 2 if one of them is a spider tree. Notice that this result implies results (2)
and (4) cited above. The study of the possibility of obtaining a planar packing of
a spider tree and an arbitrary tree is motivated by the observation that a spider
tree is a subdivision of a star, and hence spider trees are natural candidates for
finding counter-examples of the above cited conjecture.

In Section 4 we consider the relaxed version of the planar packing problem in
which the subgraphs are not required to be edge-disjoint in the graph containing
them. We call such a problem the planar squeezing problem and we formally
define it as follows: Given the n-vertex graphsG1, . . . , Gk, find an n-vertex planar
graph G containing all the Gi’s as subgraphs. We consider some classes of graphs
most commonly investigated in the computational geometry and planar graph
drawing literature, and we fully determine which ones of them can be generally
squeezed in a planar graph. Namely, we show that: (i) there exist a planar graph
and a path (a planar graph and a star) that cannot be squeezed in a planar
graph; (ii) every two outerplanar graphs (every two trees) can be squeezed in
a planar graph; (iii) there exist three caterpillars (three trees) that cannot be
squeezed in a planar graph; (iv) there exist two trees that cannot be squeezed

396 F. Frati, M. Geyer, and M. Kaufmann

in an outerplanar graph; and (v) any number of paths, stars and cycles can be
squeezed in an outerplanar graph. Finally, in Section 5 we conclude and suggest
some open problems.

2 Definitions

A drawing of a graph is a mapping of each vertex to a distinct point in the
plane and of each edge to a Jordan curve between the endpoints of the edge. A
drawing is planar if no two edges intersect but possibly at common endpoints.
A planar graph is a graph that admits a planar drawing. Two planar drawings
of a graph G are equivalent if the corresponding circular ordering of the edges
incident to each vertex of G is the same for both drawings. An embedding of a
planar graph G is an equivalence class of planar drawings. An outerplanar graph
is a planar graph that admits a planar drawing with all its vertices on the same
face. An embedding is outerplanar if all the vertices lie on the same face. The
diameter of a tree is the length of the longest path in the tree. A star is a tree
with diameter 2, that is a tree where every vertex, but for one, is a leaf, which
is a vertex of degree one. A caterpillar is a tree such that the graph obtained by
deleting its leaves is a path. A spider is a tree with at most one vertex, called
root, of degree greater than 2. The paths starting at the root are called legs of
the spider. Observe that by definition a star is also a spider and a caterpillar, a
path is also a spider and a caterpillar, a caterpillar is also a tree, and a tree is
also an outerplanar graph.

Given the n-vertex planar graphs G1, . . . , Gk, a planar packing of G1, . . . , Gk

is an n-vertex planar graph containing all the Gi’s as edge-disjoint subgraphs
(see also [6]). Given the n-vertex planar graphs G1, . . . , Gk, a planar squeezing
of G1, . . . , Gk is an n-vertex planar graph containing all the Gi’s as subgraphs.
In the following, unless otherwise specified, packing and squeezing will always
stand for planar packing and planar squeezing, respectively.

3 Packing Trees in Planar Graphs

In this section we give an algorithm to pack any n-vertex non-star spider tree
S and non-star tree T in a planar graph. Observe that we can suppose w.l.o.g.
that the diameter of T is greater or equal than 4. In fact, since T is not a star its
diameter is greater than 2 and if the diameter of T is 3 then T is a caterpillar,
implying that there is a planar packing of T and S [13].

The algorithm we present consists of a Preprocessing step and of an Embedding
step that we sketch here and detail in the following. In the Preprocessing step
we root the trees and we fix their embeddings. We also assign a level to each
vertex of T . In the Embedding step we embed S on T to obtain a packing of
the two trees. After having mapped the root of S to a vertex of T , the legs of S
are embedded one at a time sorted by increasing length. For each leg its vertices
are embedded one at a time in the order they appear on the leg starting from
the nearest to the root and ending with the leaf of the leg. Let vcur denote the

Packing and Squeezing Subgraphs into Planar Graphs 397

vertex of S that has to be embedded. We call the vertex a of S that comes before
vcur in the leg of vcur active vertex. By the order in which the vertices of S are
embedded, a has been already mapped to a vertex of T when vcur is embedded.
At every step vcur is mapped to an ’unchosen vertex’, that is a vertex of T to
which no vertex of S has been yet mapped. We analogously call a vertex of T to
which a vertex of S has been already mapped ’chosen vertex’. At every step of
the algorithm T and the already embedded edges of S form an embedded graph
E . We call the border of the outer face of E active border F . The same vertex of T
can have several occurrences in F , since E is generally a single-connected graph.
We denote by F(→, b, c) (by F(←, b, c)) the sequence of vertices occurrences
that are encountered walking clockwise (resp. counter-clockwise) on F from an
occurrence of a vertex b to an occurrence of a vertex c. When vcur is embedded,
edge (a, vcur) is drawn inside the outer face of E .

Preprocessing Step. Pick a leaf l of T such that all the neighbors of the unique
neighbor p of l are leaves, but for exactly one vertex r1. Note that such l always
exists since T is different from a star. Let T ′ denote the tree obtained from T
by deleting p and its adjacent leaves. We choose r1 to be the root of T and the
root of T ′ as well. The root r2 of S is chosen as usually (see Section 2). Assign
a level l(v) to each vertex v of T ′ so that the root is assigned level 0, all its
children are assigned level 1, and so on. Embed T ′ so that for each vertex v the
children of v are in clockwise order v1, v2, . . . , vk such that vi < vj implies that
the subtree rooted at vj contains a vertex w with l(w) ≥ l(u), for every vertex u
in the subtree rooted at vi. In the following we will suppose that the children of
each node of T ′ are ordered in clockwise direction. Augment the embedding of
T ′ into an embedding of T by inserting p before the first child of r1 in T ′, and
by ordering the neighbors of p in clockwise direction so that l is the first vertex
and r1 is the second one. Map r2 to l. Let r2 be the first active vertex a.

Embedding Step. This step is repeated until all the vertices and edges of S
are embedded on the embedding of T constructed in the Preprocessing step. The
legs of S are embedded one at a time sorted by increasing length. For each leg its
vertices are embedded one at a time in the order they appear on the leg starting
from the nearest to r2 and ending with the leaf of the leg. Let p(v) denote the
parent of a vertex v in T ′ and T (v) denote the subtree of T ′ rooted at v. While p
has unchosen neighbors, the algorithm will map vcur to the first unchosen vertex
in the counter-clockwise order of the neighbors of p starting at r2. Hence, when
vcur is set equal to r1, all the other neighbors of p will be chosen vertices. Every
time vcur has to be embedded, do the following: (i) map vcur to an unchosen
vertex u of T ; (ii) draw the edge between a and vcur into the outer face of E ,
and (iii) choose a new vertex of T to be the new active vertex. The choice of
the new active vertex a is always done in the following way: If the next vcur is
on the same leg of the just embedded vcur, then a = u, otherwise a = r2. The
choice of the vertex u to which vcur is mapped and the drawing of edge (a, vcur)
vary according to several cases:

398 F. Frati, M. Geyer, and M. Kaufmann

r2=a r1

u

r2

a u

r1
r2

1
1

12 au

r1

(a) (b) (c)

r2

2

1

1

11

a

u

r1

r2

a

b

c

r1
r2

a

p

u

r1

(d) (e) (f)

Fig. 2. Illustrations for the different cases of the Embedding step. The dashed edges
with arrows represent the searches for unchosen vertices that are done in F and the
drawings of the edges (a, u), where u is the unchosen vertex for which it is set u = vcur.
(a) Case 1. (b) Case 2 (i). (c) Case 2 (ii): The search labelled by 1 corresponds to
the clockwise search for unchosen vertices in F , that does not succeed. The search
labelled by 2 corresponds to the counter-clockwise search for unchosen vertices in F ,
not considering the vertices in T (a). Edge (a, u) will be drawn as the dashed edge
labelled by 2. (d) Case 3.1 (ii): The search labelled by 1 corresponds to the clockwise
search for unchosen vertices in F , that does not succeed. The search labelled by 2
corresponds to the counter-clockwise search for unchosen vertices in F , considering
also the vertices in T (a). Edge (a, u) will be drawn as the dashed edge labelled by 2.
(e) Case 3.2, where the dashed edge represents the drawing of (a, c). (f) Case 3.3, where
the dashed edges represent the drawing of (a, p) and the drawing of (p, u). Notice that
the second edge is drawn only if p is the active vertex after setting vcur = p.

Case 1: (refer to Figure 2.a) If a coincides with r2 or with any other neighbor of
p not in T ′, then walk counter-clockwise on F , starting from the only occurrence
of r2, until an unchosen vertex u is found. Map vcur to u. Draw edge (a, vcur)
following the counter-clockwise walk done on F .

Case 2: (refer to Figures 2.b and 2.c) If a does not coincide with r2 and there
is at least one unchosen vertex in the tree T ′ \ T (a) that does not belong to the
path from r1 to a in T ′, then walk on F(→, a, r2) not considering the vertices
in T (a).

(i) If an unchosen vertex u �= p(a) has been encountered then map vcur to u
and draw the edge (a, vcur) following the clockwise walk done on F .

(ii) If the last occurence of p(a) in F(→, a, r2) has been encountered and p(a)
is not yet chosen or if no unchosen vertex has been found in F(→, a, r2),
then reverse the search direction and map vcur to the first unchosen vertex
u in F(←, a, p), not considering the vertices in T (a). Draw the edge (a, u)
following the counter-clockwise walk done on F .

Packing and Squeezing Subgraphs into Planar Graphs 399

Case 3: If a does not coincide with r2, and if there are no unchosen vertices in
T ′ \T (a), but eventually for those in the path from r1 to a in T ′, we distinguish
three subcases:

Case 3.1: (refer to Figure 2.d) If no unchosen child of a exists and if T (a)
contains unchosen vertices of level l(a) + 2 or higher, then search in F(→, a, r2)
not considering the vertices in T (a).

(i) If an unchosen vertex u �= p(a) has been reached then map vcur to u and
draw edge (a, vcur) following the clockwise walk done on F .

(ii) If the last occurence of p(a) in F(→, a, r2) has been reached and p(a) is
not yet chosen or if no unchosen vertex has been found in F(→, a, r2), then
reverse the search direction and map vcur to the first unchosen vertex u in
F(←, a, p) starting from the first occurrence of a in F(←, r2, p). In this case
the vertices of T (a) are considered first. Draw edge (a, vcur) following the
counter-clockwise walk done on F .

Case 3.2: (refer to Figure 2.e) If there are unchosen children of a and if T (a)
contains unchosen vertices of level l(a)+2 or higher, then consider the last child
b of a in clockwise order. Select the clockwise first child c of b. We will prove
later that c is an unchosen vertex. Map vcur to c and draw edge (a, vcur) passing
just before edge (a, b) in the clockwise order of the children of a.

Case 3.3: (refer to Figure 2.f) If T (a) does not contain unchosen vertices of level
l(a)+2 or higher, then we are in the final phase of our algorithm. Notice that the
only unchosen vertices in T ′, but for p, are either at distance one from a or lie on
the path from a to r1. We will prove later that all the unchosen vertices on such
a path are pairwise non-adjacent. Map vcur to p draw edge (a, vcur) by walking
counter-clockwise on F starting from the first occurrence of a in F(→, p, r2).
After that, if a = p then search in F(→, a, r2) until an unchosen vertex u is
found. Map vcur to u and draw edge (a, vcur) following the clockwise walk done
on F . At this point, or if it was a = r2, only Cases 1, 2, and 3.1 will be applied,
until all the remaining vertices of S are mapped to unchosen vertices of T . Notice
that Case 3.3 is applied exactly once in one application of the algorithm.

In the following we give some lemmas that will be helpful to prove that the
described algorithm constructs a planar packing of S and T . The proofs of such
lemmas are in the full version of the paper [5].

Lemma 1. Let v and p(v) be unchosen vertices in T ′. Then all vertices in T (v)
are unchosen.

Corollary 1. Let v ∈ T ′ be a chosen vertex and let P = (r1 = v1, v2, . . . , vl−1,
vl = v) be the path connecting r1 and v in T ′, with l ≥ 2. There exist no two
consecutive unchosen vertices vi and vi+1 in P.

Lemma 2. If v is the j-th child of p(v) in T ′, if p(v) is unchosen, and if vcur
has been mapped to v in the current step of the algorithm, then during the last
j steps of the application of the algorithm Case 3.2 was applied once to draw an
edge from p(p(v)) to the first child f of p(v) and Case 2 (i) was applied in the
following j − 1 steps to draw j − 1 edges connecting the first j children of p(v).

400 F. Frati, M. Geyer, and M. Kaufmann

Corollary 2. Let a be an active vertex in T ′ and let p(a) be unchosen. There
exists no occurrence of p(a) in F(←, a, p).

Lemma 3. Let v ∈ T ′ be an occurrence of a vertex in F . In F(→, v, r2) there
exists at least one occurrence of every unchosen vertex belonging to the path
connecting r1 and v in T ′. Moreover, all the unchosen vertices of T appear at
least once in F .

Theorem 1. There exists an algorithm that in polynomial time constructs a
planar packing of any n-vertex non-star spider tree S and any n-vertex non-star
tree T .

Proof. Apply the algorithm described in this section to T and S. First, notice
that the algorithm can be easily implemented to run in polynomial time. We
claim that the constructed embedding E is a planar packing of T and S. More
precisely, we will prove that: (1) E is planar, (2) every two vertices of S are
mapped to distinct vertices of T , (3) there are no common edges between S and
T , and finally (4) all the vertices of S are mapped to vertices of T .

(1): The planarity of E follows from the fact that at every step all the unchosen
vertices are incident to the outer face (by Lemma 3) and that by construction
every inserted edge is placed inside the outer face of E .

(2): When one of the Cases 1, 2, 3.1, and 3.3 of the Embedding step is applied,
by the description of the algorithm vcur is mapped to an unchosen vertex of T .
Hence, we have only to show that when Case 3.2 has to be applied in a step s∗

of the algorithm the first child c of the last child b of a is unchosen. If before s∗

vertex b is chosen, then by Lemma 2 all the children of a were chosen when it
was set vcur = b, hence Case 3.2 would not be applied in s∗. Otherwise, prior to
the choice of a before step s∗, both b and a were unchosen and so, by Lemma 1,
all the vertices in T (b), including c, are unchosen at the beginning of s∗.

(3): Consider the different cases of the Embedding step. In Case 1 a common
edge is inserted only if it is set vcur = p. If a �= r2 then setting vcur = p would
imply that T is a star, contradicting the hypoteses. Notice that vertices of S are
mapped to all the neighbors of p by applications of Case 1 before any other case
of the Embedding step is applied. If a = r2 then, since p is the last vertex in
F(←, r2, p), setting vcur = p implies that no other vertex of F is unchosen and,
by Lemma 3, that no other vertex of T is unchosen. Hence, the current leg of S
is the last one. Since this leg should have length 1 and since the legs of S are
ordered by increasing length, S would be a star, contradicting the hypoteses. In
Case 2, the only neighbor of a in T ′ that belongs to T ′ \ T (a) is p(a). However,
in Case 2 (i) it is clear that vcur = u is chosen for a vertex u �= p(a). In Case 2
(ii) the algorithm chooses for vcur the first unchosen vertex u in F(←, a, p). By
Corollary 2 there exists no occurrence of p(a) in such a visit and so u �= p(a).
In Case 3.1 (i) the same considerations done for Case 2 (i) hold. In Case 3.1 (ii)
for vcur is a vertex u chosen, that belongs to T (a). Since all the children of a
are already chosen, then no common edge is inserted. In Case 3.2 a and c are
not neighbors in T . Finally, consider Case 3.3. Since a belongs to T ′, then a and
p are neighbors only if a = r1. However, if a = r1 and there are no unchosen

Packing and Squeezing Subgraphs into Planar Graphs 401

vertices in T ′, but for the children of a, then the diameter of T would be at most
2, contradicting the hypoteses. Concerning edge (p, u) all the neighbors of p are
already chosen before applying Case 3.3, so u cannot be a neighbor of p.

(4): We have to prove that while there are unchosen vertices in T the algorithm
applies one of the cases in the Embedding step to map vcur to a vertex of T . All the
neighbors of p are chosen at the beginning of the Embedding step by applications
of Case 1. After that phase only p and the vertices in T ′\r1 are still unchosen. Now
let a be the current active vertex. Suppose Case 1 has to be applied. By Lemma 3
at every step of the algorithm all the unchosen vertices are on F , so Case 1 finds
an unchosen vertex u to set vcur = u. Suppose Case 2 has to be applied. If there
are occurrences of unchosen vertices in F(←, a, r2) not belonging to T (a) or to
the path connecting r1 and a in T ′, then even if Case 2 (i) fails, then Case 2 (ii)
would find such occurrences. Otherwise, suppose that the only unchosen vertices
not belonging to T (a) or to the path connecting a and r1 in T ′ appear before a
in F(←, r2, p). If p(a) is already chosen, then Case 2 (i) would always succeed.
If p(a) is unchosen and if a is the j-th child of p(a), then T (p(p(a))) contains
the only unchosen vertices remaining, but for p and for the vertices in the path
from r1 to p(p(a)) in T ′, since Case 3.2 was applied j steps before the current one
when p(p(a)) was the active vertex (by Lemma 2). Since p(a) is the last child of
p(p(a)), then the only vertices that can have occurrences before a in F(←, r2, p)
are the vertices in T (p(a)). Such occurrences are clearly encountered before the
last occurrence of p(a) in F(→, a, p), hence Case 2 (i) finds them and succeeds.
Suppose Case 3.1 has to be applied. Then either Case 3.1 (i) succeeds, or Case 3.1
(ii) finds an unchosen vertex in T (a). Such vertex exists by the hypoteses of Case
3.1. Suppose Case 3.2 has to be applied. We have already shown in part (2) of
the proof, that if vertex c exists, then it is unchosen. Now we only have to prove
the existence of such a vertex. By the construction of the embedding of T ′ the
children of a are clockwise ordered by increasing depth of the subtrees rooted at
them; observing that in T (a) there are vertices of level l(a) + 2 or higher, then
vertex c exists. Finally if Case 3.3 has to be applied, then no problem arises, since
p is unchosen and it is on F before the only application of Case 3.3. Notice that
by Corollary 1 and Lemma 3 after Case 3.3 is applied all the remaining unchosen
vertices of T are disconnected and are on F . Therefore, Cases 1, 2, and 3.1 can
be applied until all the vertices of S are mapped to vertices of T . �

4 Squeezing Planar Graphs in Planar Graphs

When dealing with the planar packing problem, it can be easily observed that
two sufficiently dense planar graphs cannot be packed in the same planar graph.
For instance, two maximal outerplanar graphs have 2n − 3 edges each, and a
packing of them contains 4n − 6 edges, that are more than the ones that a
planar graph can have.

If you want to obtain planar squeezings of planar graphs, edges of different
graphs can overlap, and so edge-counting arguments do not work. However, the
following two results are just slightly more than trivial:

402 F. Frati, M. Geyer, and M. Kaufmann

Lemma 4. There exist a planar graph G and a path P that cannot be squeezed
in a planar graph.

Proof. Let G be an n-vertex triangulated planar graph that does not contain
any Hamiltonian path, and let P be an n-vertex path. Observe that since G is
maximal no edge can be added to it without violating its planarity. However,
when squeezing G and P , at least one edge of P is not common to an edge of
G, otherwise G would contain an Hamiltonian path. �

Lemma 5. There exist a planar graph G and a star S that cannot be squeezed
in a planar graph.

Proof. Let G be an n-vertex triangulated planar graph that does not contain a
vertex of degree greater than n − 2, and let S be an n-vertex star. Since G is
maximal no edge can be added to it without violating its planarity. However,
when squeezing G and S, at least one edge of S is not common to an edge of G,
otherwise G would contain a vertex of degree n− 1. �
Turning the attention from planar to outerplanar graphs, we have:

Lemma 6. Any two outerplanar graphs can be squeezed in a planar graph.

Proof. Let O1 and O2 be two outerplanar graphs. Assume w.l.o.g. that both O1

and O2 are biconnected. Hence O1 and O2 contain Hamiltonian cycles, say C1

and C2, respectively. Now map the vertices of O1 and O2 so that C1 and C2

are coincident. Furthermore, embed the edges of O1 that do not belong to C1

inside C1, and embed the edges of O2 that do not belong to C2 and that are not
common to edges of O1 outside C1. By the outerplanarity of O1 (of O2) there
are no intersections between edges inside C1 (resp. outside C1). Further, there
are no intersections between edges inside C1 and edges outside C1, since they
are separated by C1. �

Corollary 3. Any two trees can be squeezed in a planar graph.

Corollary 3 shows that the problem of determining whether for any two trees
there exists a planar graph containing them as subgraphs, that has been tackled
in [6], in [13] and in Section 3, is easily solvable if common edges are allowed.

However, if one augments the number of trees that must be squeezed, then a
planar squeezing is not generally possible. Namely, in the following we provide
three caterpillars that cannot be squeezed in the same planar graph.

Theorem 2. There exist three caterpillars that cannot be squeezed in the same
planar graph.

Proof. Let C1 be a star with center u and n− 1 leaves (see Fig. 3.a), let C2 be a
caterpillar with two adjacent vertices v1 and v2 of degree n/2 and n − 2 leaves
(see Fig. 3.b), and let C3 be a caterpillar with five vertices w1, . . ., w5 of degree
at most n/5+1 forming a path and with n−5 leaves. Each vertex wi has n/5−1
adjacent leaves (see Fig. 3.c).

Packing and Squeezing Subgraphs into Planar Graphs 403

u v1

n/2 -1 n/2 -1

v2 w1 w5w3w2

n/5 -1 n/5 -1 n/5 -1 n/5 -1 n/5 -1

w4

v*

u

(a) (b) (c) (d)

Fig. 3. (a) Star C1. (b) Caterpillar C2. (c) Caterpillar C3. (d) Embedding EA.

We will try to construct a planar embedding that contains embeddings of C1,
C2, and C3 and we will show that this goal is not achievable. Observe that C1

has a unique embedding E1 up to a relabelling of its leaves. First, construct a
planar embedding E2 by embedding C2 on E1 in any way. Let G2 denote the
planar graph obtained by such a squeezing. Notice that there exists one out of
v1 and v2, say v∗, that has not been mapped to u and that shares with u exactly
n/2− 1 common neighbors. In fact, if vertex v1 (vertex v2) has been mapped to
u, then v2 (resp. v1) has been mapped to a leaf of C1 and all the n/2− 1 leaves
adjacent to v2 (resp. to v1) have been mapped to leaves of C1, that are neighbors
of u. Otherwise, if both vertices v1 and v2 have been mapped to leaves of C1,
then v1 (or v2) has exactly n/2 − 2 adjacent leaves that have been mapped to
leaves of C1, that are neighbors of u, and v2 (resp. v1) is a neighbor of both u
and v1 (resp. of both u and v2). Consider the set A of vertices that are neighbors
of both u and v∗. Vertex u, vertex v∗, and the vertices in A induce an embedded
subgraph EA of E2 that is done by at least one and at most two nested triangles
sequences, all sharing edge (u, v∗) (see Fig. 3.d).

Now consider any embedding E3 of C3 on E2. Let us discuss how many vertices
of C3 can be mapped to vertices in A, while preserving the planarity of E3. Since
the degree of each vertex wi is at most n/5 + 1, at most 2n/5 + 2 vertices of A
could be neighbors of u and v∗ in C3. Vertices w1, . . ., w5 of C3 that are not
mapped to u and v∗ can have at most two vertices of A as adjacent leaves. In
fact, if vertex wi is mapped to a vertex of A, then it is incident to two adjacent
faces of EA that have at most two vertices distinct from u, from v∗, and from
wi itself. If vertex wi is mapped to a vertex not in A and inside any face of
EA, then it can be a neighbor of the at most two vertices of that face that
are in A. Hence, for every vertex wi three vertices internal to EA can have a
mapping, two with leaves adjacent to wi and one with wi itself. Hence less than
2n/5 + 2 + 3 · 5 = 2n/5 + 17 vertices of A can have a mapping with a vertex of
C3 while preserving the planarity of E3. Choosing |A| = n/2 − 1 > 2n/5 + 17
(i.e. choosing n > 180) implies that the vertices of C3 cannot be mapped to all
the vertices in A while preserving the planarity of E3 and hence that there is no
planar squeezing of C1, C2, and C3 �

Corollary 4. There exist three trees that cannot be squeezed in the same planar
graph.

If one wants to squeeze trees in trees, trees in outerplanar graphs, or outerplanar
graphs in outerplanar graphs, then very few is allowed. Namely, we show two

404 F. Frati, M. Geyer, and M. Kaufmann

caterpillars that cannot be squeezed in any outerplanar graph. Let C1 be a
star with center u and seven leaves and let C2 be a caterpillar consisting of
two vertices of degree four and six leaves. We claim that C1 and C2 cannot
be squeezed in the same outerplanar graph. This is proved by showing that
any planar embedding of an 8-vertex planar graph that contains embeddings of
C1 and C2 cannot be an outerplanar embedding. First, observe that C1 has a
unique embedding up to a relabelling of its leaves. So consider it as embedded.
Now embed C2. Since there is just one non-leaf vertex in C1, at least one of
the vertices of C2 with degree 4 must be mapped to a leaf of C1. Let v be
such a vertex. Again, since there is one non-leaf vertex in C1, at least three
of the neighbors of v must be mapped in leaves of C1. This implies that in
any embedding containing embeddings of C1 and C2 there is a cycle formed
by v, u and a neighbor of v enclosing a neighbor of v. Hence there exists no
outerplanar embedding containing embeddings of C1 and C2 and so there exists
no outerplanar graph containing C1 and C2.

Theorem 3. There exist two caterpillars that cannot be squeezed in the same
outerplanar graph.

Corollary 5. There exist two trees that cannot be squeezed in the same outer-
planar graph.

We conclude this section observing that any number of paths, cycles and stars
can be squeezed in an outerplanar graph having one vertex of degree n− 1.

5 Conclusions and Open Problems

We have considered the problem of packing and squeezing subgraphs in planar
graphs. Concerning the planar packing problem, the previous works on this topic
[6,13] contain algorithms that construct embeddings of the trees by observing
the ’separation principle’, i.e. by separating the edges of the two trees in two
different portions of the embedding plane, established in advance. This allows to
mind only to the presence of common edges for obtaining a planar packing. As
far as we know, our algorithm is the first one that does not bind the embeddings
of the trees to be separated as described. Also the tree embeddings produced by
our algorithm could not be separated in different parts of the plane, since there
are vertices with a sequence [T1, T2, T1, T2] of consecutive edges, where T1 (T2)
indicates an edge belonging to the first (resp. the second) tree.

Problem 1. Does a planar packing of any two non-star trees with the further
constraint of having an embedding where the two trees can be separated by a
simple line that intersects the embedding only at vertices of the graph exist?

For the squeezing problem, we considered combinations of important classes of
planar graphs like paths, caterpillars, trees, outerplanar graphs and established
which combinations can generally be squeezed and which cannot. However, the
following open problem is worth of interest:

Packing and Squeezing Subgraphs into Planar Graphs 405

Problem 2. Which is the time complexity of determining if two planar graphs
can be squeezed in a planar graph?

The last question seems to be strictly related to some of the most important
problems in graph theory, like graph isomorphism and subgraph isomorphism.

References

1. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Com-
put. Geom. 36(2), 117–130 (2007)

2. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information
Processing Letters 51(4), 207–211 (1994)

3. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms & Applications 3(3), 1–27 (1999)

4. Frati, F.: Embedding graphs simultaneously with fixed edges. Graph Drawing,
108–113 (2006)

5. Frati, F., Geyer, M., Kaufmann, M.: Packing and squeezing subgraphs into planar
graphs. Tech. Report RT-DIA-114-2007, Dept. of Computer Science and Automa-
tion, University of Roma Tre (2007)

6. Garćıa, A., Hernando, C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar
graphs. J. Graph Theory, 172–181 (2002)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

8. Geyer, M., Kaufmann, M., Vrtó, I.: Two trees which are self-intersecting when
drawn simultaneously. In: Graph Drawing, pp. 201–210 (2005)

9. Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In:
STOC, pp. 504–512 (2005)

10. Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.: A note on packing two trees into
KN . Ars Combin. 11, 149–153 (1981)

11. Maheo, M., Saclé, J.-F., Woźniak, M.: Edge-disjoint placement of three trees. Eu-
ropean J. Combin. 17(6), 543–563 (1996)

12. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey.
Graphs and Combinatorics 14(1), 59–73 (1998)

13. Oda, Y., Ota, K.: Tight planar packings of two trees. In: European Workshop on
Computational Geometry, pp. 215–216 (2006)

14. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
15. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42

(1976)

Dynamic Matchings in Convex Bipartite Graphs

Gerth Stølting Brodal1,�, Loukas Georgiadis2, Kristoffer Arnsfelt Hansen3,
and Irit Katriel4,��

1 University of Aarhus, Århus, Denmark
gerth@daimi.au.dk

2 Hewlett-Packard Laboratories, Palo Alto, CA, USA
loukas.georgiadis@hp.com

3 University of Chicago, Chicago, IL, USA
arnsfelt@cs.uchicago.edu

4 Brown University, Providence, RI, USA
irit@cs.brown.edu

Abstract. We consider the problem of maintaining a maximum match-
ing in a convex bipartite graph G = (V, E) under a set of update opera-
tions which includes insertions and deletions of vertices and edges. It is
not hard to show that it is impossible to maintain an explicit represen-
tation of a maximum matching in sub-linear time per operation, even in
the amortized sense. Despite this difficulty, we develop a data structure
which maintains the set of vertices that participate in a maximum match-
ing in O(log2 |V |) amortized time per update and reports the status of a
vertex (matched or unmatched) in constant worst-case time. Our struc-
ture can report the mate of a matched vertex in the maximum matching
in worst-case O(min{k log2 |V |+log |V |, |V | log |V |}) time, where k is the
number of update operations since the last query for the same pair of ver-
tices was made. In addition, we give an O(

√
|V | log2 |V |)-time amortized

bound for this pair query.

1 Introduction

Let G = (V,E) be a finite undirected graph. A subset M ⊆ E of the edges is
a matching if each vertex is incident with at most one edge in M . A matching
of maximum cardinality is called a maximum matching. In this paper we study
the problem of maintaining a maximum matching in a convex bipartite graph;
G is bipartite if V can be partitioned to subsets X and Y such that E ⊆ X×Y .
A bipartite graph G = (X ∪ Y,E) is convex if there is a linear arrangement
y1, . . . , ym of the nodes of Y such that the neighborhood of every node in X is
an interval of the nodes of Y . Given a linear order for Y we can represent G in
O(|V |) = O(n+m) space (instead of O(|V |+ |E|)), where n = |X | and m = |Y |,
since it suffices to specify the smallest and largest neighbor in Y for each x ∈ X .

� MADALGO - Center for Massive Data Algorithmics, a Center of the Danish National
Research Foundation.

�� Supported in part by NSF award DMI-0600384 and ONR Award N000140610607.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 406–417, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Matchings in Convex Bipartite Graphs 407

Matchings in convex bipartite graphs correspond to a basic variant of the ubiq-
uitous job scheduling problem. Namely, the case of unit-length tasks that need
to be scheduled on a single disjunctive resource (i.e., one at a time) and where
we are given, for each job, a release time and a deadline. Another application for
convex matching is in constraint programming, where filtering algorithms for the
AllDifferent constraint [21] essentially identify edges in a bipartite graph which
do not belong to any maximum matching. The vertices of X then represent vari-
ables of the program while the vertices of Y represent the values in their domains
and the edges connect every variable with every value in its domain. In some
cases, the domains are intervals and the graph is convex. In other cases, the con-
straint solver assumes that they are intervals as a heuristic that speeds up com-
putations. Motivated by this application, and to avoid confusion, in the rest of
the paper we call the vertices of X variables and the vertices of Y values. Further-
more, we sometimes refer to the interval of neighbors of a variable as its domain.

The problem of finding a maximum matching has a rich history [5]. Currently,
the best upper bound for both bipartite and general matchings is randomized
O(|V |ω) [13], where ω is the exponent of matrix multiplication (ω < 2.376 [2]). A
simpler randomized algorithm with the same bound was presented recently [9].
The best deterministic bound is O(|E|

√
|V |) both for bipartite graphs [10] and

general graphs [12].
Finding maximum matchings in convex bipartite graphs has also been exten-

sively studied. Glover [7] showed that a maximum matching in such a graph can
be found by traversing the values in increasing order and matching each value
y ∈ Y with the variable whose domain ends earliest, among those that have y in
their domain and were not matched with smaller values, breaking ties according
to a predetermined lexicographic order of the variables. Such a matching is called
a greedy matching. This algorithm runs in O(m+n log logn) time with the use of
a fast priority queue [20]. Lipski and Preparata [11] presented an O(n+mα(m))-
time algorithm. (Here α is a functional inverse of Ackermann’s function.) This
running time was reduced to O(n + m) in [4]. Further research [6,18] aimed at
decreasing the dependence on m, finally leading to an O(n)-time algorithm by
Steiner and Yeomans [19].

In this paper we study the problem of maintaining a maximum matching
in a dynamic convex bipartite graph. In the job scheduling view, this problem
amounts to maintaining an optimal schedule for a dynamic set of unit-length
jobs. Notice that Glover’s algorithm can easily be adapted to operate in a dy-
namic setting where a job may be deleted or its release time and deadline may be
available before the job is actually released. But still we cannot infer the service
time of a given job (or even whether the job will eventually be serviced) before
it is either actually dispatched or its deadline elapses.

Intuitively it is clear that maintaining a maximum matching dynamically must
be hard; even a single edge insertion can change all the edges in the matching.
Apparently, due to this difficulty, this problem has not received much attention.
To the best of our knowledge, the only related previous work is presented in
[16,17]. In [16], Sankowski considers dynamic graphs, modified by edge insertions

408 G.S. Brodal et al.

delete [1,1], insert [7,7]

[2, 2] [3, 5] [4, 4] [5, 7] [7, 7][6, 6] [1, 1]

1 2

[2, 2] [1, 3]

3 4

[4, 4] [3, 5]

5 6

[6, 6] [5, 7]

731 2 5 6 7

[1, 3]

4

delete [7,7], insert [1,1]

Fig. 1. Sequence of operations inducing linear number of changes in any explicit rep-
resentation of a convex matching. Only edges in the maximum matching are shown.

and deletions, that maintain the invariant that a perfect matching exists, i.e.,
all vertices are matched. He shows how to update the graph in O(n1.495) time
per operation and support queries asking whether a given edge is contained in
any perfect matching. The same asymptotic update bound is achieved in [17]
for maintaining the size of a maximum matching in general dynamic graphs
(modified by edge insertions and deletions). The running time in both results
depends on the value of the the exponent ω of matrix multiplication.

The situation is similar in the case of convex bipartite graphs; it is not hard
to construct examples where a single update changes all the matching edges.
Still, due to the special structure of the convex graphs it is less obvious that any
representation of a maximum matching can change dramatically due to a small
change in the input. For example, since the values in Y are ordered, a matching
can be described by giving a corresponding order for X (together with a dummy
variable ε for each unmatched value). To measure the difference between two
convex matchings more accurately we can count the number of inversions be-
tween pairs of successive variables in the two corresponding orderings of X .
Figure 1 shows that even with respect to this measure, the difference between
two matchings after O(1) updates can be Θ(|V |), also in the amortized sense.
Such problematic cases rule out the possibility of maintaining any explicit repre-
sentation of a maximum matching in sub-linear time, even for convex bipartite
graphs. On the other hand, it is easy to verify that the sets of matched vertices
in X (and Y) can change only by one element per update. (This fact holds also
for general graphs modified by edge insertions and deletions, since a matching
M is maximum iff there is no augmenting path relative to M [1].) The structure
we develop is based on the previous observation and on a parallel algorithm of
Dekel and Sahni for convex bipartite matchings [3]. We review their algorithm
in Section 2.1.

2 Dynamic Convex Matchings

Recall that Y is totally ordered and the input graph G = (X∪Y,E) is represented
succinctly by giving an interval [s(x), t(x)], for each x ∈ X ; s(x) (t(x)) is the
first (last) vertex in Y adjacent to x. For convenience, we identify the vertices
in Y by their rank in the underlying linear arrangement, and henceforth assume

Dynamic Matchings in Convex Bipartite Graphs 409

Y = {1, . . . ,m}. We allow G to be modified by a collection U composed of the
following update operations:

• Insert a vertex x into X together with an interval [s(x), t(x)]; make x adjacent
to every y ∈ Y such that s(x) ≤ y ≤ t(x).

• Delete a vertex x from X ; remove all edges incident to x.
• Insert a vertex y into Y ; make y adjacent to any x ∈ X such that s(x) <
y < t(x).

• Delete a vertex y from Y if there is no x ∈ X such that s(x) = y or t(x) = y;
remove all edges adjacent to y.

Clearly, the above operations maintain the convexity of G, and also maintain the
given order of Y . As a result, we do not need to test if G remains convex after each
operation (in fact we are not aware of any efficient dynamic algorithm for this
test), but this also implies that we cannot support arbitrary edge updates. Re-
stricted edge updates are possible by deleting a variable and re-inserting it with
a different interval. Given a dynamic convex bipartite graph G that is modified
subject to U , we wish to support a collection Q of the following query operations:

• Given a vertex x ∈ X or y ∈ Y , return the status matched or unmatched of
this vertex.

• Given a matched vertex u (u ∈ X ∪ Y), return its mate w in the maximum
matching; the pair {u,w} is an edge of the maximum matching.

Our results are summarized in the following theorems.

Theorem 1. We can maintain a maximum matching of a convex bipartite graph
G = (X ∪ Y,E), under the update operations in U , in O(log2 |X |) amortized
time per update and O(|Y |+ |X | log |X |) space. A status query can be answered
in constant worst-case time. A pair query for a vertex u can be answered in
O(min{k log2 |X |+ log |X |, |X | log |X |}) worst-case time, where k is the number
of update operations that occurred since the last pair query for u or its mate.

Theorem 2. The amortized running time for a pair query is O(
√
|X | log2 |X |).

Also, there is an update sequence which forces our structure to spend Ω(
√
|X |)

amortized time for each pair query.

2.1 The Dekel-Sahni Algorithm

Let S = {s1, . . . , sk} be the set of start-points of the n variable domains (si =
s(xi)). The base structure in the algorithm of Dekel and Sahni [3] is a balanced
binary search tree T over S. Each leaf si is associated with the interval of values
[si, si+1 − 1]; each internal node is associated with the interval of values formed
by the union of the intervals of its children in T . We denote the interval of
values associated with a node P in T by values(P); we let s(P) and t(P) be,
respectively, the smallest and largest value in values(P). We let variables(P)
denote the set of variables x ∈ X such that s(x) ∈ values(P). Also, define
matched(P) to be the set of variables that belong to the greedy matching of
the subgraph induced by variables(P) ∪ values(P). Let transferred(P) be the

410 G.S. Brodal et al.

variables x in variables(P) \ matched(P) such that t(x) > t(P), i.e., their end-
points extend beyond values(P); these variables, although not matched at P ,
may become matched at an ancestor of P in T and thus participate in the
final (global) matching, computed at the root of T . The remaining variables in
variables(P) form a set infeasible(P) and are discarded from later computations.

Now let P be an internal node of T with left child L and right child R.
Assume that matched(L), transferred(L), matched(R) and transferred(R) were
already computed. Dekel and Sahni show that matched(P) and transferred(P)
can be computed as follows: Let variables’(R) = transferred(L) ∪ matched(R).
First compute a greedy matching in the subgraph G′

R induced by variables’(R)∪
values(R). Let matched’(R) be the subset of variables’(R) in that matching,
and let transferred’(R) = {x | x ∈ variables’(R) \ matched’(R) and t(x) >
t(R)}. Then, matched(P) = matched(L) ∪ matched’(R) and transferred(P) =
transferred(R) ∪ transferred’(R). The key theorem of Dekel and Sahni [3, Theo-
rem 2.1], shows that there is a simple way to compute matched’(R): It is safe to
assume that the start-point of every interval in variables’(R) is s(R). Although
the matching produced this way may not be feasible in G′

R, the set of matched
variables that are identified is correct, i.e., there is a greedy matching in this
graph that matches exactly this set of variables.

After identifying the matched vertices in X , the algorithm of Dekel and Sahni
performs a top-down phase that constructs a feasible matching. For each node P
of T , it constructs the set matching(P), containing the variables that are matched
with a value in values(P). Although matched(P) is a subset of variables(P), this is
not true, in general, for matching(P). Clearly, if P is the root of T , matching(P) =
matched(P). The matching sets for the children L and R of P are constructed by
partitioning matching(P) as follows. Let W be the subset of matching(P) con-
sisting of variables x such that s(x) < s(L) or x ∈ matched(P). (Note that W
does not contain any variable in transferred(L).) If |W | ≤ |values(L)|, then set
matching(L) = W . Otherwise, pick |values(L)| variables x ∈ W with the small-
est t(x) and insert them in matching(L). The remaining variables are inserted into
matching(R). Finally, we notice that for any leaf F , each x ∈ matching(F) satis-
fies s(x) ≤ s(F). (Because we cannot have s(F) < s(x) ≤ t(F) for any x ∈ X .)
Hence, sorting matching(F) by increasing right endpoint, gives us the matching
at F ; the variable with rank i in the sorted order is matched to the ith value.

2.2 Overview of the Dynamic Algorithm

We achieve an efficient dynamization of the Dekel-Sahni algorithm by showing
(1) how to perform logarithmic-time local updates of the sets matched(P) and
transferred(P), for each node P ∈ T , and (2) that each operation in U requires
a logarithmic number of local updates. These updates will allow us to report
the status of any vertex in O(1) worst-case time. The construction of this data
structure is described in Section 3. In order to report the mate of a matched
vertex we also need to update the matching sets. These updates are performed
just-in-time, as required by a pair query. We analyze the performance of this
method in Section 4.

Dynamic Matchings in Convex Bipartite Graphs 411

3 Data Structure Supporting Status Queries

Here we present a structure supporting the update operations in U in O(log2 n)
amortized time, and answers status queries in O(1) worst-case time. Due to
the limited space, we only consider the case of the insertion of a new variable.
The remaining update operations are performed in a similar manner. Our first
building block is a structure which allows us to maintain a greedy matching in
O(log n) time per update, for the special case where all intervals have the same
starting point. We describe this in Section 3.1. Then, in Section 3.2, we show
how an update can propagate bottom-up in T and give the new set of matched
vertices in X . Given this set, we can update the set of matched vertices in Y in
O(log n) time, using the same ideas as in Section 3.1. (Due to limited space we
omit this last part.)

3.1 The Equal Start-Points Case

Suppose we wish to maintain a greedy matching when all intervals have the
same start-point. That is, the input graph G = (X ∪ Y,E) is such that s(x) = 1
for all x ∈ X , and Y = {1, . . . ,m}. We say that an x ∈ X has higher priority
than an x′ ∈ X if t(x) < t(x′). Define ni as the number of variables whose
interval is [1, i]. Also define ai to be the number of matched variables x ∈ X ,
such that t(x) ≤ i. These quantities satisfy the recurrence ai = min{ai−1+ni, i},
for 1 ≤ i ≤ m and a0 = 0. Inserting (deleting) a variable x with domain [1, k]
amounts to incrementing (decrementing) nk. Let n′i (a′i) be the value of ni (ai)
after the update (insertion or deletion of [1, k]).

Consider the insertion of the variable [1, k]. For the given k we have n′k = nk+1
and for i �= k, n′i = ni. Let j be the smallest integer such that j ≥ k and aj = j,
if such a j exists, and let j = m + 1 otherwise. If j = k then all the first k
values are matched with variables that have the same priority as x or higher,
and nothing changes. Otherwise, ak < k and the new variable will be matched;
this happens because we always maintain a greedy matching and [1, k] has higher
priority than any interval that ends after k. Thus, a′i = ai + 1 if k ≤ i < j, and
a′i = ai otherwise. The remaining update operations are analyzed similarly. In
every update operation, we are interested in the quantities bj = j − aj − nj+1

for all j ∈ Y . When we insert a variable with domain [1, k], we need to locate
the first j ≥ k with aj = j. Then, by the definition of aj we have aj−1 +nj ≥ j,
so j′ − aj′ − nj′+1 ≤ −1 for j′ = j − 1. Similar inequalities are derived for the
remaining update operations.

We construct a data structure that maintains the bi quantities implicitly.
This implicit representation is necessary because a single update can change
many bi’s. The data structure consists of a balanced binary search tree T (e.g.,
a red-black tree [8]) over Y with each leaf corresponding to a value. Leaf i stores
ni and a number b̂i; an internal node v stores the numbers add(v) and min(v).
We define these quantities later. Given a node or leaf u and an ancestor v of u in
T , define sum(u, v) to be the sum of add(w) for all nodes w on the tree path from
u to v, excluding v. Given a node or leaf u, define sum(u) to be sum(u, root),

412 G.S. Brodal et al.

where root is the root of T . Let leaves(v) be the set of leaves contained in the
subtree rooted at v. The numbers stored in the tree will satisfy the invariants:
(a) bj = b̂j + sum(j), and (b) min(v) = min{b̂j + sum(j, v) | j ∈ leaves(v)}.
Combining (a) and (b) we get min{bj | j ∈ leaves(v)} = min{b̂j + sum(j, v) | j ∈
leaves(v)}+ sum(v) = min(v) + sum(v). Initially add(v) = 0 for all nodes v ∈ T .
As T is modified after an update operation the values add(v) keep track of the
changes that have to be applied to the affected bj values. By its definition add(v)
affects the bj values of all the leaves j ∈ leaves(v). Also, b̂j is simply the value
of bj before the update. We note that the numbers stored at the internal nodes
are easy to maintain in constant time for each restructuring operation of the
balanced tree (e.g., rotation).

We sketch how T is updated when we insert a variable with domain [1, k].
After locating leaf k we increment nk. Since this affects bk−1, we increment b̂k−1

and update min(v) for the ancestors v of k − 1 in T bottom-up. As we ascend
the path toward the root we calculate sum(k− 1, v) at each node v, which takes
constant time per node. Next we locate the first leaf j ≥ k such that bj < 0. To
that end we perform a top-down search on the appropriate subtree of T . Note
that as we descend the tree we can compute sum(v) at each node v that we
visit, and thus compute min(v) + sum(v) (in constant time per node). So, let
P = (v0 = root, v1, . . . , k) be the search path for k in T . Let P ′ = (u1, u2, . . .) be
the subsequence of P composed of the nodes vi such that vi+1 is the left child
of vi; let ri′ be the right child of ui′ . Then, j is located at the subtree rooted
at ri∗ where i∗ is the largest index i′ that satisfies min(ri′) + sum(ri′) < 0. We
can locate ri∗ in O(logm) time. Then the search for j proceeds top-down in
the subtree of ri∗ as follows: Let v be the current node, and let u be its left
child. If min(u) + sum(u) < 0 then the search continues in the subtree of u.
Otherwise, we move to the right child of v. The last step is to subtract one from
bi, for k ≤ i ≤ j. Since the involved leaves may be too many, we perform the
decrements implicitly using the add quantities. Let η be the nearest common
ancestor of k and j in T ; we can locate η easily in O(logm) time since T is
balanced. Let Pk be the path from η to k, excluding the end-points, and let Pj

be the path from η to j excluding the end-points. Let v be a node on Pk such
that its right child u is not on Pk. If u is a leaf then decrement b̂u; otherwise
decrement add(u). Perform the symmetric steps for Pj (visiting the left children
of nodes on this path). Finally, decrement b̂k and b̂j and update min for all
O(logm) nodes on Pk, Pj and on the path from root to η; each update takes
constant time if we process the paths bottom-up.

Notice that by storing at each leaf i the variables x with t(x) = i, we can
locate a variable that is replaced in the maximum matching by the newly inserted
variable. This is a variable stored in the leaf j that satisfies αj = j and j ≥ k.
Similarly, after a deletion we can locate a variable that replaces the deleted one
in the maximum matching. We will use this capability in the next section. Also,
we note that by grouping successive empty leaves (i.e., leaves j with nj = 0) we
can reduce the number of leaves in T to min{m,n}. Thus, we get:

Dynamic Matchings in Convex Bipartite Graphs 413

Lemma 1. Updates of variables and values in the equal start-points case take
worst-case O(log n) time.

3.2 The Complete Data Structure

The complete data structure maintains the matched and transferred sets of all
nodes of T . Its building block is the special-case structure of Section 3.1 which
maintains these sets, assuming that all start-points of variables are equal. By
[3, Theorem 2.1], such a data structure can be used to maintain the matching
matched’(R) for every internal node and the complete matching for every leaf.
Hence, each node P in T is associated with such a local structure TP , as follows.
First, the interval [s(R), t(R)] of available values for matching with variables’(R)
is translated to [1, s(R)−t(R)+1], and every variable in variables’(R) is assumed
to have start-point equal to one. Also, each such variable with end-point t(x) >
t(R) is stored in the leaf of TP that corresponds to value s(R)−t(R)+1. When we
have an update in variables’(R) we use the structure TP to update matched’(R)
accordingly. As noted in Section 3.1, this process will also return the variables
that enter or leave matched’(R), so we can propagate the changes towards the
root of T .

For simplicity, we assume that the base tree T is fixed (i.e., we do not insert
and delete leaves). Given this, we show that the global data structure can be
updated upon the insertion or deletion of a variable or value in O(log2 n) time,
by proving the next lemma.

Lemma 2. Each operation in U causes O(log n) operations on local data struc-
tures of the nodes of T .

The fully-dynamic data structure can be obtained by applying standard tech-
niques, e.g., maintaining T as a (weight-balanced) BB[α]-tree [14,15]. As a result,
however, our update bounds become amortized.

Insertion of a Variable. Assume that we insert a new variable x with domain
[s, t] (s, t ∈ Y). Then s determines the leaf F of T where the variable is inserted.
After inserting x into TF , the sets matched(F) and transferred(F) may change.
The changes to these sets need to be propagated to the parent of F in T , in turn
causing new changes to the parent of the parent of F , and so on; potentially,
changes occur at all nodes on the path from F to the root of T . We will show
that at each node, only a constant number of update operations is necessary.

Consider the two possible results of inserting x to the leaf F . The first is that
x entered matched(F) and, possibly, some other variable x′ left matched(F).
The insert operation on TF will report if x has entered matched(F) and will
return x′ if it exists. If this x′ exists, it either entered transferred(F) or not,
depending on its end-point, which can be tested in constant time. The second
case is that x did not enter matched(F), and depending on its end-point either
entered transferred(F) or not. In both cases, the information that needs to be
propagated to the parent of F in T is a triplet of the form (a, b, c), where each of
a and b is either a variable or the symbol ε which is a place-holder that represents

414 G.S. Brodal et al.

nothing, and c is either transferred or infeasible. Such a triplet is interpreted to
mean “a is inserted into matched(F), b is deleted from matched(F) and inserted
into c”. Note that a and b are not necessarily distinct. For instance, the case in
which the inserted variable x is not matched and is inserted into transferred(F)
is encoded as (x, x, transferred).

We now show by induction on the height of the nodes in T , that the infor-
mation that needs to be propagated from an internal node to its parent can also
be represented as a triplet of this form. To that end, let P be a node of T with
left child L and right child R. By the induction hypothesis, P received a triplet
(a, b, c) from one of its children, indicating the changes that have occurred at
this child. We analyze the two possible cases separately.

First, assume that it was the left child who sent the triplet (a, b, c). This
implies a was inserted into matched(L) and b was removed from matched(L) and
inserted into c. The effects of these changes on matched(P) and transferred(P)
are as follows. The first part of matched(P) is simply matched(L), so it changes in
the same manner. The second half is the matching obtained from variables’(R).
If c is equal to infeasible, neither of these sets has changed and the changes that P
needs to report to its parent are (a, b, infeasible). If c is equal to transferred, then
b may belong to the second part of matched(P), possibly replacing some other
variable b′ which was matched there before. Again, notice that b′ is returned
after the update operation on TP . Now, the important point to note is that P
does not need to report anything about b to its parent; b was and remains in
matched(P). The changes that P needs to report are summarized in the triplet
(a, b′, c′), where c′ is transferred or infeasible, depending on the end-point of b′.

Now, assume that the triplet (a, b, c) was reported to P from its right child. In
this case a was inserted into matched(R) and may or may not need to be inserted
into matched(P). If not, then b was not in matched(P) before and will not be
in matched(P) afterwards; since a replaced b in matched(R), we know that its
end-point is smaller than b’s, hence, it cannot be that b ∈ matched(P) if a was
not inserted. Therefore, P does not report any change to its parent. On the other
hand, if a was inserted into matched(P), then if b was in matched(P) before the
update it becomes unmatched, and if b was not in matched(P) before the update
then some other variable b′ may have become unmatched to make space for a. In
the first case, the change reported by P to its parent is the triplet (a, b, c′) where
c′ depends on the end-point of b. In the second case, P sends the triplet (a, b′, c′)
where c′ depends on the end-point of b′, and b′ is found during the update in TR.
It is important to note that even if b was inserted into transferred(R) after the
update, it is not inserted into transferred(P). This is implied by the fact that b
is not in matched(P): If b is in transferred(P) after the update then b must have
already been in transferred(P) before the update.

4 Pair Queries

Now we augment the structure of Section 3 in order to support the pair query. As
Figure 1 suggests, we cannot afford to change all the affected matching sets after

Dynamic Matchings in Convex Bipartite Graphs 415

an update operation. (In this example we would need to change O(n) such sets.)
However, we can get a more efficient solution, based on the following observation:

Observation 3. An update operation in U can change only one member of a
matching(P) set, for any P ∈ T .

A pair query will need to visit the nodes of a root-to-leaf path Tq of T , and our
plan is to update the matching(P) sets of the nodes P on this path. If the query
vertex is y ∈ Y then Tq is simply the path from the root to the leaf corresponding
to y. Otherwise, the query vertex is x ∈ X and Tq is discovered as we decide at
each node P if x belongs to matching(L) or matching(R), where L and R are the
children (left and right respectively) of P . To make this decision fast, we store
at node P a list �(P) representing the set W defined in Section 2.1. This list is
sorted by the end-points t(x) of the variables x ∈ W . A variable x ∈ matching(P)
belongs to matching(L) iff it appears in �(P) and its rank in W is at most
|values(L)|. Otherwise, x ∈ matching(R). Hence the decision of whether to fol-
low the left or the right child of P can be made in O(log n) time if the lists
matching(P) and �(P) are updated. To handle the updates in matching(P) (and
�(P)), node P also maintains a list of variables update(P), which keeps track of
the operations that need to be performed to bring matching(P) back to date.
This list is arranged in the order the variables were inserted. The meaning of
x ∈ update(P) is that x has to be inserted into matching(P) if it does not al-
ready appear there, otherwise x has to be deleted. Notice that we can construct
matching(P) in O(|values(P)|) time, using the lists maintained at its parent
in T . Therefore, in our analysis we can assume that the size of update(P) is
O(|values(P)|). We use this assumption in the amortized analysis in Section 4.1.

Now consider what happens after an update operation. Observation 3 implies
that at most one variable has to be inserted into matching(P) and at most one
variable has to be deleted. If P is the root of T then these are exactly the changes
in matched(P). Hence, the updates can be performed immediately at the root.
Let L and R be, respectively, the left and right child of P . Using �(P) we can
find the variables that change in matching(L) and matching(R) and insert them
into update(L) and update(R), all in O(log n) time. (At most two variables are
inserted in each of these lists.) To update matching(P) for any non-root node
of T , we process the variables in update(P) one by one. Each variable can be
processed in the same way an update for the root of T was performed. After each
update we insert the appropriate variables in the update lists of the children of
P in T , and so the changes propagate downwards the tree. As noted earlier, the
time spent per variable in update(P) is O(log n), and every update list contains a
number of variables at most twice the number of update operations in U . To get
a bound on the pair query that is always O(n logn), we note that we can rebuilt
the whole structure for T in O(n log n) time. If we do that after O(n/ logn) total
updates, each update list will have O(n/ logn) variables at any time. Rebuilding
T results to an additional O(log2 n) amortized cost for the updates in U , so the
asymptotic update bound is not affected and the bounds stated in Theorem 1
follow. Next we sketch the proof of Theorem 2.

416 G.S. Brodal et al.

4.1 Amortized Cost of Pair Queries

Lower Bound. We begin with T being a full binary tree with n leaves, where
each leaf stores a unique variable: The ith leaf stores a variable with domain
[i, n]. For simplicity we take m = n. Next we insert

√
n variables with domains

[1, j], j = 1, . . . ,
√
n. These variables will shift the matching by

√
n positions,

and the last
√
n variables will become infeasible. Consider the

√
n nodes of T

at height log
√
n. For each such node Pi we make a pair query for a leaf in Pi’s

subtree. The corresponding query paths intersect only above the Pi’s. To get
the claimed bound it suffices to count the work done at each Pi. When the pair
query algorithm visits Pi, update(Pi) will have Θ(

√
n) variables, so it will spend

Ω(
√
n) time to process these variables. Hence the total work for all nodes at

height log
√
n is Ω(n). By deleting the variables [1, j] and reinserting them, we

can repeat this process
√
n times. This implies an amortized cost of Ω(

√
n) for

a pair query.

Upper Bound. For simplicity, we consider T to be a full binary tree with n leaves,
each storing a single variable. Informally, having more variables in some leaves
cannot increase the asymptotic cost bound because both the height of the tree de-
creases and also each pair query updates the matching for more than one variable.
We analyze the worst case running time of a sequence of operations composed of ν
updates, followed by μ pair queries. This will give us the worst-case scenario, be-
cause the total cost for querying a set of paths is maximized after all updates are
performed. At any node P , processing update(P) takes O(2i logn) if the height
i of P is at most log ν, and O(ν logn) for i > log ν. We calculate separately
the cost for processing the nodes at height above log ν (top subtree) and below
log ν (bottom subtrees). First, for the top subtree of T we observe that each pair
query visits logn/ν of its nodes and at each node it spends at most O(ν logn)
time. Hence, if μ ≤ n/ν, the total cost is O(μν logn/ν logn) = O(μν log2 n),
so the amortized cost is O(μν

ν+μ log2 n) = O(
√
n log2 n). For μ > n/ν, the total

cost is O(n log n + μ logn), because the top subtree has O(n/ν) nodes. So, in
this case, the amortized cost is O(n

ν+μ logn+ μ
ν+μ log n) = O(nν

ν2+n logn+logn),
which is O(

√
n logn). We now turn to the bottom subtrees. The contribution of

a path inside a bottom subtree is O(ν logn). Hence, if μ ≤ n/ν, the total cost
is O(μν logn), which gives O(

√
n logn) amortized cost. The total contribution

of a bottom subtree to a pair query is O(ν logn), because the total number of
variables in all update lists is O(ν). Since we have O(n/ν) bottom subtrees, for
μ > n/ν the total cost is O(n logn + μ logn), i.e., O(

√
n logn) amortized cost.

Acknowledgement. We thank Willem-Jan van Hoeve for useful references.

References

1. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. 43, 842–844 (1957)
2. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation 9(3), 251–280 (1990)

Dynamic Matchings in Convex Bipartite Graphs 417

3. Dekel, E., Sahni, S.: A parallel matching algorithm for convex bipartite graphs
and applications to scheduling. Journal of Parallel and Distributed Computing 1,
185–205 (1984)

4. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences 30(2), 209–221 (1985)

5. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Com-
put. Surv. 18(1), 23–38 (1986)

6. Gallo, G.: An O(n log n) algorithm for the convex bipartite matching problem.
Operations Research Letters 3(1), 31–34 (1984)

7. Glover, F.: Maximum matching in convex bipartite graphs. Naval Research Logistic
Quarterly 14, 313–316 (1967)

8. Guibas, L., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proc.
19th IEEE Symp. on Foundations of Computer Science, pp. 8–21 (1978)

9. Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid
problems. In: Proc. 47th IEEE Symp. on Foundations of Computer Science, pp.
531–542 (2006)

10. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

11. Lipski, W., Preparata, F.P.: Efficient algorithms for finding maximum matchings
in convex bipartite graphs and related problems. Acta Informatica 15, 329–346
(1981)

12. Micali, S., Vazirani, V.: An O(
√
|V | · |E|) algorithm for finding maximal matching

in general graphs. In: Proc. 21st IEEE Symp. on Foundations of Computer Science,
pp. 17–27 (1980)

13. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: Proc.
45th IEEE Symp. on Foundations of Computer Science, pp. 248–255 (2004)

14. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: Proc.
4th ACM Symp. on Theory of Computing, pp. 137–142 (1972)

15. Nievergelt, J., Wong, C.K.: Upper bounds for the total path length of binary trees.
Journal of the ACM 20(1), 1–6 (1973)

16. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Proc.
45th IEEE Symp. on Foundations of Computer Science, pp. 509–517 (2004)

17. Sankowski, P.: Faster dynamic matchings and vertex connectivity. In: Proc. 18th
ACM-SIAM Symp. on Discrete Algorithms, pp. 118–126 (2007)

18. Scutellà, M.G., Scevola, G.: A modification of Lipski-Preparata’s algorithm for the
maximum matching problem on bipartite convex graphs. Ricerca Operativa 46,
63–77 (1988)

19. Steiner, G., Yeomans, J.S.: A linear time algorithm for determining maximum
matchings in convex, bipartite graphs. Computers and Mathematics with Applica-
tions 31(12), 91–96 (1996)

20. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters 6(3), 80–82 (1977)

21. van Hoeve, W.-J.: The AllDifferent Constraint: A Survey. In: Proceedings of the
Sixth Annual Workshop of the ERCIM Working Group on Constraints (2001)

Communication in Networks with Random

Dependent Faults

Evangelos Kranakis1, Michel Paquette1, and Andrzej Pelc2

1 School of Computer Science, Carleton University,
Ottawa, Ontario, K1S 5B6, Canada

kranakis@scs.carleton.ca, michel.paquette@polymtl.ca
2 Département d’informatique et d’ingénierie, Université du Québec en Outaouais.

Gatineau, Québec, J8X 3X7, Canada
pelc@uqo.ca

Abstract. The aim of this paper is to study communication in networks
where nodes fail in a random dependent way. In order to capture fault de-
pendencies, we introduce the neighborhood fault model, where damaging
events, called spots, occur randomly and independently with probability
p at nodes of a network, and cause faults in the given node and all of its
neighbors. Faults at distance at most 2 become dependent in this model
and are positively correlated. We investigate the impact of spot prob-
ability on feasibility and time of communication in the fault-free part
of the network. We show a network which supports fast communication
with high probability, if p ≤ 1/c log n. We also show that communica-
tion is not feasible with high probability in most classes of networks, for
constant spot probabilities. For smaller spot probabilities, high proba-
bility communication is supported even by bounded degree networks. It
is shown that the torus supports communication with high probability
when p decreases faster than 1/n1/2, and does not when p ∈ 1/O(n1/2).
Furthermore, a network built of tori is designed, with the same fault-
tolerance properties and additionally supporting fast communication. We
show, however, that networks of degree bounded by a constant d do not
support communication with high probability, if p ∈ 1/O(n1/d). While
communication in networks with independent faults was widely studied,
this is the first analytic paper which investigates network communication
for random dependent faults.

Keywords: Fault-tolerance, dependent faults, communication, crash
faults, network connectivity.

1 Introduction

As interconnection networks grow in size and complexity, they become increas-
ingly vulnerable to component failures. Links and nodes of a network may fail,
and these failures often result in delaying, blocking, or even distorting transmit-
ted messages. It becomes important to design networks in such a way that the
desired communication task be accomplished efficiently in spite of these faults,

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 418–429, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Communication in Networks with Random Dependent Faults 419

usually without knowing their location ahead of time. Such networks are called
fault-tolerant.

The fundamental questions of network reliability have received much atten-
tion in past research under the assumption that components fail randomly and
independently (cf., e.g. [1,2,3,4] and the survey [5]). On the other hand, empirical
work has shown that positive correlation of faults is a more reasonable assump-
tion for networks [6,7,8]. In [8], the authors provide empirical evidence that data
packets losses are spatially correlated in networks, and in [7], the authors use
the assumption of failure spatial correlation to enhance network traffic manage-
ment. Furthermore, in [6], the authors simulate failures in a sensor network using
a model much like that of the present paper; according to these authors, the en-
vironment provides many spatially correlated phenomena resulting in such fault
patterns. Physical and logical phenomena generally affect physical components,
causing failures in a positively correlated way. E.g., on August 14, 2003, faults
cascaded on the power distribution network and deprived part of North America
of electricity. Logical phenomena, like computer viruses and worms, also cause
dependent faults. Lightning strikes hitting one node of an electric network cause
power outages in entire city blocks.

As our society is increasingly dependent on information networks, it becomes
essential to study questions relating to tolerance of dependent positively corre-
lated faults. However, no analytic work has been done for communication net-
works under this assumption about faults.

In this paper, we consider the problem of feasibility and time of communica-
tion in networks with dependent positively correlated faults. To the best of our
knowledge, this is the first analytic paper which provides this type of results for
network communication.

1.1 Model and Problem Definition

A communication network is modeled as an undirected graph G = (V,E) with
a set of nodes V connected by a set of undirected links E. We say that two
nodes are adjacent (or neighbors) if they share a link. The distance between
nodes u, v ∈ V is the minimum number of links which must be traversed from
u to reach v; it is denoted by dist(u, v). In a network, Γ (u) is the set of nodes
adjacent to u; Γi(u) is the set of nodes v ∈ V whose distance from u is i; we also
denote by Γ≤i(u) the set of nodes v ∈ V whose distance from u is at most i. A
node is said to be functional, or fault-free, when it executes only its predefined
algorithm without any deviation, and doing so, transmits all messages correctly,
in a timely manner and without any loss; a node which is not functional is said
to be faulty. Faults can be of different types: at opposite ends of the spectrum
are crash and Byzantine faults. Faults of the crash type cause faulty components
to stop all communication; these components can neither send, receive nor relay
any message. Faulty nodes of the Byzantine type may behave arbitrarily (even
maliciously) as transmitters. We say that faults are permanent when they affect
the nodes for the entire duration of a communication process; otherwise, the
faults are said to be transient. In this paper, we assume that faults are permanent

420 E. Kranakis, M. Paquette, and A. Pelc

and of crash type. Throughout the paper, log means logarithm with base 2 and
ln means the natural logarithm.

We consider communication in the fault-free part of the network, where all
nodes exchange messages with each other. Communication among functional
nodes is feasible if the fault-free part of the network is connected and contains
at least two nodes. We measure communication time under the all-port message
passing model, where nodes can communicate with all their neighbors in one
round, and under the 1-port model, in which every node can send a message to at
most one neighbor in one round. Under the all-port model, communication can be
completed in time D if the fault-free part of the network has diameter D. Hence,
we study the connectivity and diameter of the fault-free part of the network.
Moreover, we seek networks of low maximum degree Δ. Since in the 1-port
model communication can be completed in time DΔ, networks of low maximum
degree and low diameter of the fault-free part support fast communication also
in the 1-port model.

In order to capture fault dependencies, we introduce the neighborhood fault
model, where damaging events, called spots, occur randomly and independently
at nodes of a network, with probability p, and cause permanent crash faults
in the given node and all of its neighbors. Faults at distance at most 2 become
dependent in this model and are positively correlated. We investigate the impact
of spot probability on feasibility and time of communication in the fault-free part
of the network.

We design general networks and bounded degree networks which support fast
and highly reliable communication despite relatively high spot probabilities. We
also prove bounds on spot probability such that highly reliable communication
is not supported.

We focus attention on the problem of feasibility and time of communication,
guaranteed with high probability, i.e., with probability converging to 1 as the size
of the network grows. Under the all-port model, in which time of communication
is proportional to the diameter, this problem reduces to the question for what
spot probability the fault-free part of the network is connected and when it has
diameter at most D, with high probability. Under the 1-port model, the same
reduction is valid for networks of a given degree.

1.2 Related Work

Dependent fault models were introduced in the study of integrated circuit man-
ufacturing yields. This research models defects as the result of impurities, po-
sitioned randomly and independently, affecting nearby circuit components in a
dependent way. Results were proposed mainly according to the quadrat-based
and center-satellite approaches. In [9], the author proposed a coarse approach
to analyzing production yields based on the assumption that faults occurred in
clusters inside a defined grid pattern on Very Large Scale Integration (VLSI)
wafers; this quadrat-based model offered provably good results and ease of use
required by the industry. Then, in [10], the authors introduced a detailed model
of manufacturing defects in VLSI wafers based on the center-satellite concept

Communication in Networks with Random Dependent Faults 421

for ecological sampling [11]. Later on, in [12], the authors proposed a simplified
center-satellite model of manufacturing defects on VLSI wafers for the study of
the memory array reconfiguration problem. In fact, both the center-satellite and
quadrat-based approaches are still in use for System on Chip (SoC) (cf., e.g.,
[13]) and VLSI (cf., e.g., [14,15]) applications. Throughout this field of literature,
the consensus is that results originating from the center-satellite approach, as
opposed to quadrat-based approaches, are more difficult to apply but provide
better prediction quality.

The above approach should be contrasted with the literature on fault-tolerant
communication in networks. Many results concerned random link and/or node
failures (cf., e.g. [1,2,3,4] and the survey [5]) but, to the best of our knowledge,
in all cases faults were assumed to be independent. In [1], the author shows
the existence of networks in which O(log n)-time broadcast can be done, under
the 1-port model, with high probability, despite links which fail randomly and
independently with positive constant probability. In [2], the authors design a
network of logarithmic degree which can support high probability communica-
tion in time O(log n) when faults occur randomly and independently on links
and nodes with any constant probabilities smaller than 1. In [4], the authors de-
sign a similar network which can support communication with high probability
in time O(log2 n) with Byzantine faults.

Our present research focuses on communication network failures which occur
in a dependent way. We consider networks modeled by arbitrary graphs, hence
the geometry-dependent, quadrat-based approach to fault dependencies is not
appropriate. Our neighborhood fault model, more appropriate for general graphs,
is a simplified version of the center-satellite approach.

1.3 Our Results

All our results address the general problem for which spot probabilities p there
exist networks supporting communication with high probability, and if so, if this
communication is fast in the all-port and 1-port models. Hence we ask for which
spot probabilities the fault-free part of the network is connected of size larger
than 1, and if so, does it have a small diameter. Moreover, in our positive results
we seek networks of low maximum degree.

In Section 2, we address the questions regarding general networks. We first
show that there exists a constant c, such that for spot probability p ≤ 1/c logn,
there exists an n-node graph whose fault-free part has logarithmic diameter and
logarithmic degree, with high probability. Hence it supports high probability
communication in time O(log n) in the all-port model and in time O(log2 n) in
the 1-port model. On the negative side, we show that for constant spot proba-
bility p, there exist constants c1 and c2 such that: if all degrees in a graph are at
most c1 logn then the graph is disconnected with high probability; if all degrees
in a graph are at least c2 logn then the graph has all nodes faulty with high
probability. In either case, highly reliable communication is not possible. This
leaves some very particular networks undecided. For example, this negative re-
sult does not cover the important case of the hypercube, for some constant spot

422 E. Kranakis, M. Paquette, and A. Pelc

probabilities. Therefore, we study the hypercube separately and prove that, for
any constant spot probability 0 < p ≤ 1, this network does not support high
probability communication. The above should be contrasted with the results
from [2,3] showing that, for independent faults, fast highly reliable communica-
tion is possible for arbitrary constant fault probabilities in some graphs and for
small constant fault probability, even in the hypercube.

In Section 3, we investigate communication in bounded degree networks. We
show that the torus supports communication with high probability when p ∈
1/ω(n1/2). (As usual, ω(f) denotes the set of functions g such that g/f → ∞.)
However, the diameter of an n-node torus is at least Θ(

√
n) and the fault-

free part has the same large diameter. Hence we seek networks with the same
fault-tolerance properties, but with small diameter. We construct a bounded de-
gree network built of tori, whose fault-free part has diameter O(log n) whenever
p ∈ 1/ω(n1/2). Hence this network supports high probability communication in
logarithmic time, both in the all-port and in the 1-port models. On the negative
side, we show that neither the torus nor the above network can support highly
reliable communication when p ∈ 1/O(n1/2). Finally, we prove that networks
of degree bounded by a constant d cannot support communication with high
probability when p ∈ 1/O(n1/d). Due to lack of space, many proofs are deferred
to the journal version of this paper.

2 General Networks

In this section, we focus on general networks. We first design a network which
supports communication with high probability when the spot probability is at
most 1/c logn, for some positive constant c. We then establish two bounds on
node degrees showing that a large class of networks cannot support communica-
tion with high probability when spot probability is a positive constant.

2.1 Upper Bounds

This section is dedicated to proving the following result.

Theorem 1. There exists an n-node graph whose fault-free part has diameter
O(log n) and logarithmic degree, with high probability, for spot probability p ≤
1/c logn, where c is some positive constant.

The network construction is based on a binary tree structure where each node
of the tree represents a group of nodes and each link of the tree represents a
random set of links between nodes in adjacent groups. To be more precise, for a
fixed m, we define a random n-node graph G(n,m). Let x = 	n/m
. Partition
the set of all nodes into subsets S1, . . . , Sx, of size m, (Sx of size at most m)
called supernodes. Let S = {S1, . . . , Sx} be the set of all supernodes.

Let L = 5log x6. Arrange all supernodes into a binary tree T with L+ 1 levels
0, 1, . . . , L, placing each supernode Si on level 5log i6. Level 0 contains the root
and levels L− 1 and L contain leaves of T . The supernode S1, is the root of T .

Communication in Networks with Random Dependent Faults 423

For every 1 ≤ i ≤ 5x/26, S2i is the left child of Si and S2i+1 is the right child of
Si in T (S2i+1 exists if x ≥ 2i+ 1). For every 1 < i ≤ x, supernode S�i/2� is the
parent of Si. If a supernode is a parent or a child of another supernode, we say
that these supernodes are adjacent in T .

The set of edges of G(n,m) is defined as follows. If supernodes Si and Sj are
adjacent in T , then there is an edge in G(n,m) between any node in Si and any
node in Sj with probability pl. Moreover, supernodes have no interior links. The
graph G(n,m) is called a Random Binary Thick Tree (RBTT).

In the remainder of this section, we analyze RBTT and show that, if p ≤
1/c logn, for some constant c > 0 to be defined below, then it supports commu-
nication with high probability in time O(log n). We consider the n-node RBTT
with link probability pl = 1/18 lnn and m = 	1152 ln2 n
 nodes per supernode,
when spot probability is p ≤ 1/(768 lnn). Hence, we take c = 768/ ln2.

Let C1 be the event that all supernodes in RBTT contain less than 6 lnn+ 1
spots.

Lemma 1. The event C1 occurs with probability at least 1− 1/n.

For a given constant 0 < ε ≤ 1, let C2 be the event that all supernodes in RBTT
have more than 288(1− ε) ln2 n functional nodes.

Lemma 2. The event C2 occurs with probability at least 1−1/nd logn, for some
positive constant d.

Using the previous results, we now present two connectivity lemmas in prepara-
tion for the proof of the main theorem of this section.

Lemma 3. All functional nodes are connected to at least one functional node
in each supernode adjacent to their own, with probability exceeding 1− 1/n13.

Proof. Fix a node u. Let N(u) denote the set of supernodes adjacent to the
supernode containing u. Consider the event γu,Sk

that u has a link to at least
one functional node in a given supernode Sk ∈ N(u). The event γu,Sk

occurs
unless all links from u to functional nodes in Sk do not exist. From Lemma 2,
we get for any constants 0 < ε′, ε′′ ≤ 1

Pr[γu,Sk
] ≥ Pr[γu,Sk

∧C2] = Pr[C2] Pr[γu,Sk
| C2]

≥ Pr[C2]
(

1− (1− 1/18 lnn)288(1−ε′)(1−ε′′) ln2 n
)

≥
(
1− n−d lnn

)(
1− n−16(1−ε′)(1−ε′′)

)
,

and hence Pr[γu,Sk
] ≥ 1− n−15. Furthermore, since the graph contains at most

n functional nodes, which should be connected to at least one functional node
in at most 3 supernodes, the estimated probability is at least

Pr[(∀u ∈ V (∀Sk ∈ N(u))) γu,Sk
] ≥ 1−

∑

u∈V

∑

Sk∈N(u)

Pr[¬γu,Sk
]

≥ 1− 3nn−15 > 1− n−13. ��

424 E. Kranakis, M. Paquette, and A. Pelc

Lemma 4. All functional node pairs in supernodes at distance 3 are connected
by a fault-free path with probability at least 1− 1/n1.9.

Proof. This lemma is proven in steps, defining connection probabilities and lower
bounds on the number of connected nodes at distances 1, 2, and 3.

Fix 4 supernodes, Su, Si, Sj , Sk, which form a simple path in RBTT. I.e., Su

is adjacent to Si, which is adjacent to Sj , which is adjacent to Sk.
Fix a node u in Su. Let Xi be the random variable which counts the number

of functional nodes i ∈ Γ (u) located in Si. From Lemma 2, each supernode
contains more than 288(1 − ε) ln2 n fault-free nodes, for any 0 < ε ≤ 1 with
probability 1−1/nd logn, for some positive constant d. Since the link probability
is pl = 1/18 lnn,

E[Xi] ≥ Pr[C2]
288(1− ε) ln2 n

18 lnn
= (1− n−d logn)16(1− ε) lnn ≥ 16(1− ε′) lnn,

with some 1 > ε′ > ε. We also have that a fixed functional node has at most
16(1−

√
3/8(1− ε′))(1 − ε′) lnn such neighbors with probability

Pr

[
Xi ≤ 16

(
1−

√
3

8(1− ε′)

)
(1 − ε′) lnn

]
≤ e

−
(√

3
8(1−ε′)

)2 16(1−ε′) ln n
2 = n−3.

Let A be the event that node u has at least 16(1 −
√

3/(8(1− ε′)))(1 − ε′) lnn
functional neighbors in Si.

Assume event A occurs. Now, fix a node x in Sj . Fix a subset S ⊆ Γ (u) ∩ Si

of functional nodes, with size 16(1−
√

3/(8(1− ε′)))(1− ε′) lnn. Denote by PSx

the event that there exists a link between the node x and any node from S. This
event occurs unless x has no link to some node in S. Hence,

Pr[PSx|A] = 1− (1 − 1/18 lnn)16
(
1−
√

3/(8(1−ε′))
)
(1−ε′) lnn

≥ 1− e
−8

(
1−
√

3/(8(1−ε′))
)
(1−ε′)/9 ≥ 1/4

for some small ε′.
Let Xj be the random variable which counts the number of functional nodes

j ∈ Sj which are adjacent to some node in S. We have that E[Xj] ≥ (1/4)·288(1−
ε′) ln2 n, assuming that A holds. Let B be the event that Xj ≥ 72(1− ε′′) ln2 n,
for some small ε′′ > ε′. Since all events PSx, for fixed S and varying x, are
independent, we use a Chernoff bound to show that, if event A occurs, event B
occurs with probability 1− 1/nk′ logn, for some positive constant k′.

Assume event A ∩ B. Fix a functional node k in Sk. Fix a subset S′ ⊆ Sj of
functional nodes, each of which is a neighbor of some element of S, with size
72(1− ε′′) ln2 n. Denote by PS′k the event that there exists a link between node
k and some node in S′. This event occurs unless k has no link to any node in
S′. Hence,

Pr[PS′k|B ∩A] =
(

1− (1− 1/18 lnn)72(1−ε′′) ln2 n
)

≥ 1− e−72(1−ε′′) ln2 n/(18 lnn) ≥ 1− n−4(1−ε′′).

Communication in Networks with Random Dependent Faults 425

Consider the event Puijk that there exists a fault-free path of the form uijk from
a fixed node u to a fixed node k. Clearly, Puijk is a subset of the event detailed
in the above argument. Hence,

Pr[Puijk] ≥ Pr[PS′k ∩B ∩A] = Pr[A] Pr[B|A] Pr[PS′k|B ∩A]

≥
(
1− n−3

)(
1− 1/nk′ log n

)(
1− n−4(1−ε′′)

)
≥
(

1− n−3+ε′′′
)
,

for some 0 < ε′′′ < 0.1.
There are at most n functional nodes in RBTT , each with O(log2 n) other

functional nodes in supernodes at distance 3. Hence, there are O(n log2 n) func-
tional node pairs in supernodes at distance 3. It follows that all node pairs in
supernodes at distance 3 are connected with probability at least 1− n−1.9. ��

Combining the previous lemmas, we are now ready to prove Theorem 1.

Proof of Theorem 1. The RBTT contains O(n/ log2 n) supernodes connected in a
binary-tree structure of diameter D ∈ O(log n). It follows from the construction
that the maximum degree of the RBTT is O(log n), with high probability. By
Lemma 4, all functional node pairs in supernodes at distance 3 are connected
by at least one fault-free path of length 3 with probability greater than 1 −
1/n1.9. Therefore, all functional nodes in the subgraph RBTT ′ composed of
the root supernode S1 and of all supernodes at distances multiple of 3 from
S1 are connected with this probability. Clearly, functional nodes not in RBTT ′

are in supernodes adjacent to supernodes in RBTT ′. Thus, by Lemma 3, all
these functional nodes are also connected to at least one functional node in
RBTT ′ with probability exceeding 1−1/n13. Hence, with probability exceeding
1− 1/n1.8, the fault-free part of RBTT is connected.

We now investigate the diameter of the fault-free part of RBTT . From the
above argument, we observe that 1) nodes in supernodes at distances multiple of
3 are connected with high probability by a path of length equal to the distance of
the supernodes; 2) functional nodes in all other supernodes are connected with
high probability by a path of length at most 2 longer than the distance of the
supernodes. This leads to the conclusion that the diameter of the fault-free part
of RBTT is also in O(log n), with high probability. ��

2.2 Lower Bounds

We have shown that it is possible to build a logarithmic-degree graph which
supports communication with high probability in spite of spot probabilities p ≤
1/c logn, for some positive constant c. The natural question then is whether it
is possible to build arbitrarily large networks which can support communication
with high probability despite larger spot probabilities. In what follows, we show
that for constant spot probabilities, most networks do not have this property.
More formally, the following theorem holds.

Theorem 2. For any constant spot probability p > 0, there exist constants c1
and c2 such that: if all degrees in a graph are at most c1 logn then the fault-free

426 E. Kranakis, M. Paquette, and A. Pelc

part of the graph is disconnected with high probability; if all degrees in a graph
are at least c2 logn then the graph has all nodes faulty with high probability. In
either case, highly reliable communication is not possible.

The preceding theorem leads to the conclusion that high probability commu-
nication is not possible, for a large class of graphs, when spot probability is
a positive constant. However, the bounds c1 logn and c2 logn do not coincide.
Since c1 < 1

log(1/(p(1−p))) and c2 > 1
log(1/(1−p)) , we have c1 < c2 for all positive

values of p. It remains open whether or not there exists an arbitrarily large graph
which supports reliable communication despite constant spot probabilities.

We will now attempt to provide insight into the question of what happens
when node degrees lie between these bounds. For example, when p = 1/2, we
have c1 < 1/2 and c2 > 1. Thus, with degree logn, the important case of the
n-node hypercube is not covered by Theorem 2. We will investigate this case in
the following section.

2.3 Communication in the Hypercube

The hypercube Hk of dimension k is a 2k-node graph with the set of nodes with
identifiers from {0, 1}k and the set of links between nodes whose identifiers have
a Hamming distance of 1. Hence the n-node hypercube Hk has dimension logn.

Theorem 3. The n-node hypercube Hk does not support high probability com-
munication for any constant spot probability 0 < p ≤ 1.

We first show that for constant 0 < p < 1/2, the fault-free part of the graph
is disconnected with high probability. We then show that for 1/2 < p ≤ 1, the
graph has all nodes faulty with high probability, and that for p = 1/2, the graph
has all nodes faulty with constant probability. This will prove Theorem 3.

3 Bounded Degree Networks

The RBTT presented in Section 2 remained connected despite relatively high
spot probabilities. However, its degree is unbounded. For certain applications,
smaller-degree networks may be preferred as they are easier to implement and
give shorter communication time in the 1-port model. Therefore, it is natural to
ask if bounded-degree networks can also support high-probability communication
with comparable spot probabilities.

In this section we construct bounded-degree networks which tolerate inverse
polynomial spot probabilities and which support high-probability communica-
tion with optimal time complexity. Furthermore, we prove that bounded-degree
networks can tolerate at most inverse polynomial spot probabilities.

3.1 Upper Bounds

We now study the properties of two networks: the torus and a torus-based tree-
like network that we call the toroidal tree. We show that the torus supports

Communication in Networks with Random Dependent Faults 427

high-probability communication for spot probability in 1/ω(n1/2). However, the
diameter of the torus is quite large, which prohibits fast communication. Thus
we design a tree-like structure based on the torus which provides the same fault-
tolerance properties and supports communication in time O(log n), even in the
1-port model.

The Torus. In this section, we show an upper bound on the spot probability
such that the fault-free part of the torus remains connected. Denote by Tm×k

the m × k torus with m, k ≥ 4. The torus has the set of nodes {u = (ux, uy) :
ux ∈ {0, 1, . . . ,m − 1}, uy ∈ {0, 1, . . . , k − 1}} and the set of links {(u, v) :
|ux − vx| mod m + |uy − vy| mod k = 1}.
Theorem 4. The fault-free part of the n-node torus Tm×k is connected with high
probability for p ∈ 1/ω(n1/2).

The Toroidal Tree. We now design a network which provides the same fault-
tolerance as the torus, while also providing optimal-order communication time
for bounded-degree graphs. Since the diameter of a bounded-degree graph is at
least logarithmic, our aim is to construct a network whose fault-free part has
logarithmic diameter. Such a network supports highly reliable communication
in optimal time O(log n), even in the 1-port model. The network construction
is based on two binary trees, T and T ′, connected by a link between their root
nodes. Each node of T, T ′ represents a group of nodes, and groups adjacent in
T, T ′ have a subset of nodes in common. More precisely, for constant k ≥ 4, we
define a n-node graph G(n, k). Assume that the set of nodes can be partitioned
exactly as described below; this is easy to modify in the general case, by adding
nodes to a leaf group.

Let the sets T1, . . . , Tx and T ′
1 . . . , T ′

x′ be tori with 2k rows {0, 1, . . .2k − 1}
and k columns {0, 1, . . . k − 1}; |x − x′| ≤ 1. We describe the construction for
the tree T ; the same construction is applied for the tree T ′. Arrange all Ti as
the nodes of T , with L+ 1 levels 0, 1, 2, . . . , L, placing each Ti on level 5log i6 of
T . Level 0 contains the root of T and levels L− 1 and L contain the leaves. For
every 1 ≤ i ≤ 5x/26, T2i is the left child of Ti in T and T2i+1 is the right child
of Ti in T (T2i+1 exists if x ≥ 2i + 1). For every 1 < i ≤ x, T�i/2� is the parent
of Ti. Use row 0 of each child torus to connect it to its parent in T . Use row k
of each parent torus to connect it to both its children in T . Use row 0 of both
roots in T, T ′ to connect them together. Connections between tori adjacent in
T, T ′ are done by identifying the respective rows.

It follows from the above description that x+x′ = 5(n−2k2)/((2k−1)k)6+1
tori are located on L = 5log(x + x′ + 1)6 levels in G(n, k). The graph G(n, k) is
called a Toroidal Tree. It has bounded maximal degree.

Theorem 5. For p ∈ 1/ω(n1/2), the n-node Toroidal Tree supports high proba-
bility communication in time O(log n).

3.2 Lower Bounds

In this section, we show that bounded-degree graphs do not support high prob-
ability communication even for relatively small spot probabilities. We first show

428 E. Kranakis, M. Paquette, and A. Pelc

that the bounds on spot probability provided in Theorem 4 and Theorem 5 are
tight for tori and toroidal trees. We then show that for general bounded-degree
networks, if spot probability is the inverse of some polynomial, then high prob-
ability communication is not supported.

The Torus and Toroidal Tree. The following lower bounds match the upper
bounds from Theorem 4 and Theorem 5, thus showing that the results are tight.

Theorem 6. For spot probability p ∈ 1/O(n1/2), the n-node torus Tm×k does
not support high probability communication.

Theorem 7. For spot probability p ∈ 1/O(n1/2), the n-node Toroidal Tree does
not support high probability communication.

General Bounded Degree Graphs. We showed in the preceding section
that in the case of the torus and the Toroidal Tree, spot probabilities at most
1/ω(n1/2) can be tolerated if these graphs support high-probability communica-
tion. In the following theorem, we show that a similar phenomenon occurs for
all graphs whose degree is bounded by a constant.

Theorem 8. For spot probability p ∈ 1/O(n1/d), no n-node graph with degree
bounded above by d ∈ Θ(1) supports high probability communication.

4 Conclusion

We provided what is, to the best of our knowledge, the first analytic results on
fault-tolerance of networks in the presence of dependent, positively correlated
faults. To do so, we introduced the neighborhood fault model where damaging
events, called spots, occur randomly and independently at nodes of a network
with probability p, and cause faults in the affected node and its neighbors.

We addressed questions regarding the connectivity and diameter of the fault-
free part of networks in this fault model, as these characteristics of the network
are responsible for the feasibility of communication and for its time. Our results
show clear differences between the assumption of independent faults and that
of the neighborhood fault model. For example, while under independent faults
with small constant fault probability p > 0 the fault-free part of the hypercube
remains connected with high probability [3], this is not the case under the neigh-
borhood fault model with any positive constant spot probability. Likewise, the
fault-free part of the torus is connected with high probability for fault probabil-
ity p ∈ 1/Ω(n1/4) when faults are independent, but this is not the case for such
spot probabilities under the neighborhood fault model.

It remains open whether or not there exists a network, which, under the
neighborhood fault model, has the fault-free part connected with high probability
despite constant spot probabilities. We conjecture that this is not the case.

The neighborhood fault model is the first step in modeling dependent pos-
itively correlated faults in networks. It would be interesting to analyze more
precise center-satellite based models in which independent spots yield faults in
nodes with probability decreasing with the distance of the node from the spot.

Communication in Networks with Random Dependent Faults 429

Acknowledgements. Evangelos Kranakis and Michel Paquette were supported
by NSERC and MITACS. Andrzej Pelc was supported by NSERC and the Re-
search Chair in Distributed Computing of the Université du Québec en
Outaouais.

References

1. Bienstock, D.: Broadcasting with random faults. Discr. Appl. Math. 20, 1–7 (1988)
2. Chlebus, B.S., Diks, K., Pelc, A.: Sparse networks supporting efficient reliable

broadcasting. Nordic Journal of Computing 1, 332–345 (1994)
3. Chlebus, B.S., Diks, K., Pelc, A.: Reliable broadcasting in hypercubes with random

link and node failures. Comb., Prob. and Computing 5, 337–350 (1996)
4. Paquette, M., Pelc, A.: Fast broadcasting with byzantine faults. International Jour-

nal of Foundations of Computer Science 17(6), 1423–1439 (2006)
5. Pelc, A.: Fault-tolerant broadcasting and gossiping in communication networks.

Networks 28(6), 143–156 (1996)
6. Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-resilient, energy-efficient

multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Comput-
ing and Communications Review 5(4), 11–25 (2001)

7. Thottan, M., Ji, C.: Using network fault predictions to enable IP traffic manage-
ment. J. Network Syst. Manage 9(3), 327–346 (2001)

8. Yajnik, M., Kurose, J., Towsley, D.: Packet loss correlation in the MBone multicast
network. Proceedings of IEEE Global Internet (May 27, 1996)

9. Stapper, C.H.: On yield, fault distributions and clustering of particles. IBM Journal
of Research and Development 30(3), 326–338 (1986)

10. Meyer, F.J., Pradhan, D.K.: Modeling defect spatial distribution. IEEE Trans.
Computers 38(4), 538–546 (1989)

11. Warren, W.: The center-satellite concept as a basis for ecological sampling. Stat.
Ecol. 2, 87–118 (1971)

12. Blough, D.M., Pelc, A.: A clustered failure model for the memory array reconfig-
uration problem. IEEE Trans. Computers 42(5), 518–528 (1993)

13. Meyer, F.J., Park, N.: Predicting defect-tolerant yield in the embedded core con-
text. IEEE Trans. Computers 52(11), 1470–1479 (2003)

14. Choi, A., Park, N., Meyer, F.J., Lombardi, F., Piuri, V.: Reliability measurement
of fault-tolerant onboard memory system under fault clustering. In: Proceedings
of 19th Instrumentation and Measurement Technology Conference, 2002. IMTC,
vol. 2, pp. 1161–1166. IEEE Computer Society Press, Los Alamitos (2002)

15. Yu, F., Tsai, C.H., Huang, Y.W., Lee, D.T., Lin, H.Y., Kuo, S.Y.: Efficient exact
spare allocation via boolean satisfiability. In: 20th IEEE Int. Symp. on Defect and
Fault Tolerance in VLSI Systems (DFT’05), pp. 361–370. IEEE Computer Society
Press, Los Alamitos (2005)

Optimal Gossiping in Directed Geometric Radio
Networks in Presence of Dynamical Faults�

(Extended Abstract)

Andrea E.F. Clementi1, Angelo Monti2, Francesco Pasquale1,��,
and Riccardo Silvestri2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”
{clementi,pasquale}@mat.uniroma2.it

2 Dipartimento di Informatica, Università di Roma “La Sapienza”
{monti,silvestri}@di.uniroma1.it

Abstract. We study deterministic fault-tolerant gossiping protocols in directed
Geometric Radio Networks (in short, directed GRN). Unpredictable node and link
faults may happen during every time slot of the protocol’s execution.

We first consider the single-message model where every node can send at most
one message per time slot. We provide a protocol that, in any directed GRN G of n
nodes, completes gossiping in O(nΔ) time (where Δ is the maximal in-degree of
G) and has message complexity O(n2). Both bounds are then shown to be optimal.

As for the combined-message model, we give a protocol working in optimal
completion time O(DΔ) (where D is the maximal source eccentricity) and mes-
sage complexity O(Dn). Finally, our protocol performs the (single) broadcast
operation within the same optimal time and optimal message complexity O(n).

1 Introduction

In a radio network, every node (station) can directly transmit to some subset of the
nodes depending on the power of its transmitter and on the topological characteristics
of the surrounding region. When a node u can directly transmit to a node v, we say
that there is a (wireless) directed link (u, v). The set of nodes together with the set
of these links form a directed communication graph that represents the radio network.
In the radio network model [BGI92, CGR02, CGGPR00, CR06], the communication
is assumed to be synchronous: this allows to focus on the impact of the interference
phenomenon on the network performance. When a node sends a message, the latter is
sent in parallel on all outgoing links. However, since a single radio frequence is used
(see [ABLP89, BGI92, CGGPR00]), when two or more neighbors of a node transmit
at the same time slot, a collision occurs (due to interference) and the message is lost.
So, a node can recover a message from one of its incoming links if and only if this link
is the only one bringing in a message. The broadcast task consists of sending a source
message from a given source node to all nodes of the network. The completion time of
a broadcast protocol is the number of time slots required by the protocol to inform all
(reachable) nodes. A node is informed if it has received the source message.

� Research partially supported by the EU under the EU/IST Project 15964 AEOLUS.
�� Corresponding author.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 430–441, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Gossiping in Directed GRN in Presence of Dynamical Faults 431

Another important task in radio networks is gossiping, i.e., n simultaneous and inde-
pendent broadcast operations, each one from a different node [CGR02, CMS03, GPX05].
The completion time of a gossiping protocol is the number of time slots the proto-
col requires so that every source message m is received by all nodes reachable from
the source of m. We will consider two transmission models: the single-message model
[BII93] and the combined-message one [CGR02]: in the former every node can transmit
and receive at most one source message per time-slot while, in the latter, source mes-
sages can be arbitrarily combined and sent/received in one time slot [CGR02, GPX05].
Broadcasting and gossiping are fundamental communication tasks in radio networks
and they are the subject of several research works in both algorithmic and networking
areas [BGI92, CGR02, CGGPR00, PR97, R96]. It is reasonable to claim that almost
all major theoretical questions related to such tasks can be considered closed as far as
static networks are considered: the network never changes during the entire protocol’s
execution (see Subsection 1.1).

However, radio networks are typically adopted in scenarios where unpredictable
node and link faults happen very frequently. Node failures happen when some hard-
ware or software component of a station does not work, while link failures are due to
the presence of a new (artificial or natural) hurdle that does not allow the communica-
tion along that link. In ad-hoc networking, while it is sometimes reasonable to assume
that nodes (thus the protocol) know the initial topology, nothing is known about the
duration and the location of faults. Such faults may clearly happen even during the ex-
ecution of a protocol. In the sequel, such kind of faults will be called dynamical faults
or, simply, faults.

Theoretical results on broadcast and gossiping protocols in any scenario where the
network topology may change during the protocol’s execution are very few (see Sub-
section 1.1).

The Model of Faulty Networks. We follow a high-level approach by considering ad-
versarial networks [AS98, ABBS01, CMS04, P02, S01]. Arbitrary dynamical faults are
decided by a deterministic adaptive adversary. We analyze the completion time and the
message complexity (i.e. maximum number of transmitted messages) of broadcast and
gossiping protocols with respect to worst-case adversary’s strategies.

The (worst-case) completion time of a Fault-tolerant Broadcast (in short, FB) pro-
tocol on a network G is defined as the maximal number (with respect to any possi-
ble adversarial strategy) of time slots required to inform all nodes reachable from the
source in the unpredictable fault-free part of the network. More precisely, according
to the fault-tolerance model adopted in [KKP98, P02, CMS04], a fault pattern F is a
function (managed by the adaptive adversary) that maps every time-slot t to the subset
F (t) of nodes and links that are faulty during time slot t. The residual subgraph GF is
the graph obtained from G by removing all those nodes and links that belong to F (t),
for some time-slot t during the protocol’s execution. Then, a FB protocol for a graph G
is a broadcast protocol that, for any source s, and for any fault pattern F , guarantees
that every node, which is reachable from s in the residual subgraphGF , will receive the
source message. The residual eccentricity of a node v is its eccentricity in the residual
graph. The eccentricity of v is the maximal oriented distance (i.e. number of hops) from
v to a reachable node.

432 A.E.F. Clementi et al.

The above definitions can be easily extended to Fault-tolerant Gossiping (in short
FG) protocols: For any source s, message ms must be received by every node reachable
from s in GF , for any choice of fault pattern F .

It is important to remark that if a node v is not reachable from a source in the residual
subgraph, then the arrival of ms to v is not considered in the analysis of the completion
time. This assumption might be considered too strong but it is necessary. Indeed, it is
easy to see that any attempt to consider larger residual subgraphs makes the worst-case
completion time of any deterministic FG protocol infinite. This is well-explained by the
following simple game. Consider k informed nodes that are in the in-neighborhood of a
non informed node w. It is easy to see that any deterministic protocol, trying to inform
w, fails forever against the following simple adversary’s strategy: if at least two of the
k in-neighbors transmit then the adversary leaves all edges on, while if there is exactly
one of them transmitting, then the adversary makes only this link faulty. Observe that
w is always connected to the informed part of the network but it will never receive the
message (w is indeed not in the residual graph).

On the other hand, broadcasting and gossiping (and their analysis) in the residual
graph is much harder than the same operation in fault-free radio networks. This is
mainly due to the presence of unknown collisions that the adversary can produce at any
time-slot on the residual graph too. As a matter of fact, while the completion time of
broadcast on general fault-free radio networks of source eccentricityD is O(D+log3 n)
[GPX05], it turns out that there is a class of radio networks of constant source eccen-
tricity where the same operation, in the above fault model, requires Θ(n

√
n) time slots

[CMS04]. So, in general graphs of “small” source eccentricity, the completion time gap
may be exponential. The lower bound Ω(n

√
n) in [CMS04] provides also a strong ev-

idence of the significant difference between dynamical faults (on the residual graph)
and permanent faults: in the latter network scenario, worst-case broadcasting time is
O(n log2 n) [CGR02].

Our Results. We investigate directed Geometric Radio Networks, in short directed
GRN [ENW00, KKKP00, CKOZ03, CCPRV01, DP07]. A directed GRN G(V,E) is
constructed by arbitrarily placing n nodes on the Euclidean plane; then, to each node v
a transmission range rv ≥ 0 is assigned. These transmission ranges uniquely determine
the set E of directed links: (u, v) ∈ E iff d(u, v) ≤ ru, where d(u, v) denotes the
Euclidean distance between u and v. When all nodes have the same transmission range,
the resulting graph is symmetric: this restriction is denoted as symmetric GRN.

We provide the first optimal bounds on the completion time and message complexity
of FG protocols (and FB ones) in directed GRN for both single-message and combined-
message models. More precisely, for the first model, given any directed GRN G of n
nodes and maximal in-degree Δ, our FG protocol works in O(nΔ) time-slots and it has
message complexity O(n2). Such bounds are then shown to be optimal.

Then, we consider the combined-message model and provide an FG protocol that
works in optimal O(DΔ) time-slots (D denotes the maximal residual source eccentric-
ity) and it has message complexity O(n2). We emphasize that this is the first FG proto-
col whose completion-time does not (explicitly) depend on n. Furthermore, the protocol
can be easily analyzed for the (single) broadcast task: in this case, the completion time
is still O(DΔ) while the message complexity reduces to O(n). Both upper bounds are

Optimal Gossiping in Directed GRN in Presence of Dynamical Faults 433

again optimal and, as for time complexity, it improves over the best (polynomial-time
constructible) FB upper bound for general graphs by an O(log3 n) factor ([CMS04] -
see Subsection 1.1).

Adopted Techniques. Since the fault pattern is unpredictable, an FG protocol must
have the following “connectivity” property: it must consider all possible paths from a
source to any node reachable from that source. To this aim, our protocols make an itera-
tive use of collision-free families. A collision-free family is a set family (defined on the
out-neighborhoods of the input graph - see Definition 2.1) that induces a transmission
scheduling that somewhat guarantees the above connectivity property and yields no col-
lision. So, when a node is scheduled as transmitter, its message is safely received by all
its out-neighbors in the residual graph. This important fact is one of the key ingredients
to get optimal message complexity (and thus energy efficiency) of our protocols. On
the other hand, the size of the collision-free family is a linear factor in the completion
time of our FG protocols. A crucial step in our protocol design is thus the efficient con-
struction of a collision-free family for the input graphs. We indeed provide an algorithm
that constructs an optimal-size collision-free family for any directed GRN working in
time O(n2).

We observe that, given access to a collision-free family for the input graph, our pro-
tocols run in a fully-distributed fashion. However, in order to construct such optimal
collision-free family it is necessary to know the initial graph topology. In Section 3,
we also provide an efficient distributed construction of collision-free families under a
much weaker knowledge condition: each node construct its own scheduling (so, “its”
component of the collision-free family) by assuming that it only knows its position and
a good approximation of the minimal distance among nodes. We then prove that if the
(unknown) initial topology is well spread [CPS04], the returned collision-free family
has optimal size, thus yielding the same protocol’s performance given by the central-
ized construction. Well spread instances (see Definition 3.8) are a natural and broad
generalization of grid networks. Due to lack of space, some proofs are omitted and they
are available in the full version [CMPS07].

1.1 Related Works

Permanent Faults. In [KKP98], the authors consider the broadcast operation in pres-
ence of permanent unknown node faults for two restricted classes of networks. They
derive a Θ(D+log min{Δ, t}) bound where D is the source eccentricity in the residual
graph and t is the number of faults. More recently, the issue of permanent-fault-tolerant
broadcasting in general networks has been studied in [CGGPR00, CGR02, CMS03]. In
these papers, several lower and upper bounds on the completion time of broadcasting are
obtained in the unknown fault-free network model. We observe that the results obtained
in unknown networks apply to general networks with permanent faults. In particular, in
[CMS03], an Ω(n logD) lower bound for the broadcast completion time is proved. The
best general upper bound is O(n log2 n) [CGR02]. In [CMS03], the authors provide a
protocol having O(DΔ log2 n) completion time.

In [GL02], a gossiping protocol for unknown networks is given that works in
O(n1.5 log2 n) time. [CMS03] provides a permanent-fault tolerant gossiping protocol

434 A.E.F. Clementi et al.

having O(DΔ2 log2 n) completion time. The above results work for the combined-
message model. As for the single-message model, in [CMS03], a deterministic gossip-
ing protocol is given that has O(nΔ2 log3 n) completion time. We also mention the pro-
tocol for unknown directed GRN working in O(n) time given in [DP07], even though
it does not work for faulty networks.

Dynamical Faults. We emphasize that all the above protocols do not work in presence
of dynamical faults. As mentioned before, this is mainly due to the collisions yielded
by any unpredictable wake-up of a faulty node/link during the protocol execution. Our
dynamical fault model has been studied in [CMS04] where the round robin strategy is
proved to be optimal for general graphs. Then, they show the existence of a determinis-
tic FG protocol having O(DΔ log n) completion time. The protocol is based on a prob-
abilistic construction of ad-hoc strongly-selective families [CMS03, I02] for general
graphs. Such families have a weaker property than collision-free ones: this weakness
yields a not efficient message complexity. By adopting the efficient construction of such
families in [I97], they can efficiently construct a FG protocol having O(DΔ log3 n)
completion time. These protocols only hold for the combined-message model. In [PP05]
an initial graph is given and, at each time slot, every node is faulty with probability p,
where p is a fixed positive constant such that 0 < p < 1. They prove an O(opt logn)
bound for the broadcast completion time where opt is the optimal completion time in
the fault-free case. They also prove that it is impossible to achieve O(opt + logn) com-
pletion time.

It is not hard to see that, when the graph is symmetric, any distance-2 coloring
[C06] of size k yields a collision-free family of size k and viceversa. For some classes
of undirected graphs, there are efficient constant-factor approximation algorithms that
find a distance-2 coloring. In particular, for unit disk graphs [C06, CCJ90, SM97] a 7-
approximation algorithm is presented in [SM97]. Since symmetric GRN in the plane are
equivalent to unit disk graphs, the latter algorithm can be used to construct a collision-
free family for this class of symmetric radio networks. However, this coloring algorithm
does not work for directed GRN.

2 Collision-Free Families and Fault-Tolerant Gossiping

In this section we introduce collision-free families and we show how to exploit them to
design fault-tolerant gossiping protocols.

Definition 2.1 (Collision-free families). Let G(V,E) be a directed graph and let V ′

be the set of nodes that have at least one out-neighbor. A collision-free family S for G
is a partition S = {S1, . . . , Sk} of V ′, such that, for each S ∈ S and for each x, y ∈ S
with x �= y, Nout(x) ∩Nout(y) = ∅.

In the sequel, we assume that, given any directed graph G(V,E), we have at hand a
collision-free family S = {S1, S2, . . . , Sk} for G. In Section 3 we will then show how
to construct collision-free families of small size.

Single-Message Model. In this model every transmission can contain only one of the
source messages. We assume that each message contains the unique ID number of its

Optimal Gossiping in Directed GRN in Presence of Dynamical Faults 435

source so that different messages have different ID’s. The following FG protocol makes
use of message IDs to define a priority queue in every node.

Protocol PRIO-SELECT(S) consists of a sequence of consecutive phases. Each phase
consists of k = |S| time-slots. At the very beginning, the priority queue of every node
u contains only mu. At the beginning of every phase, every node v extracts (if any) the
message m̂ of highest priority (i.e. the maximal ID number) from its priority queue.
Then, at time-slot j of a phase, node v acts according to the following rules

- If v ∈ Sj and m̂ exists then v transmits m̂.
- In all other cases, v acts as receiver. If v receives a message m for the first time then
m is enqueued, otherwise it is discarded.

Theorem 2.2. Given a collision-free family S of size k for a directed graph G,
PRIO-SELECT(S) completes fault-tolerant gossiping in G within O(nk) time slots and
message complexity O(n2).

Combined-Message Model. In this model, source messages can be arbitrarily com-
bined and sent in one transmission.

Protocol MULTI-SELECT(S). Each node v keeps the set Mold(v) of the messages al-
ready sent by node v and the set Mnew(v) of the messages that node v has to send. At
the beginning of the protocol,Mnew(v) contains only the source message of node v and
the set Mold(v) is empty. The protocol consists of a sequence of consecutive phases.
Each phase consists of k = |S| time-slots. All phases are identical. At time slot j of a
phase, node v acts according to the following rules

- If v ∈ Sj and Mnew(v) is not empty then v transmits all the messages in Mnew(v)
and moves all these messages to the set Mold(v);

- In all other cases, v acts as receiver. When v receives a message m, if it is not in
Mold(v) then it is added to Mnew(v). Otherwise m is discarded.

Theorem 2.3. Given a collision-free family S of size k for a directed graph G,
MULTI-SELECT(S) completes fault-tolerant gossiping in G within O(Dk) time-slots
and message complexity O(Dn), where D is the maximal residual source eccentricity.
Moreover, an easy adaptation of MULTI-SELECT(S) for the broadcast operation works
with the same completion time while the message complexity reduces to O(n).

3 Explicit Constructions of Collision-Free Families

Centralized Construction. Given a set V of points (i.e. nodes) in R2 and a range
assignment r : V → R+, the directed GRN is uniquely determined and it will be
denoted as Gr(V). Indeed, for each node v ∈ V , let B(v) be the closed disk of center
v and radius r(v), i.e., B(v) = {x ∈ R2 : d(v, x) � r(v)}. We define the in-
neighborhood of a node v ∈ V as the set N in(v) = {w ∈ V : v ∈ B(w)}. We define
Δ(v) = |N in(v)| and the maximal in-degree of Gr(V) as Δ = maxv∈V Δ(v).

We will show that, given any directed GRN Gr(V) as input, the following algorithm
CFF returns a collision-free family S for Gr(V) of size O(Δ). Since Ω(Δ) is a trivial
lower bound for such families, the one returned by CFF is asymptotically optimal.

436 A.E.F. Clementi et al.

The algorithm constructs every set of S by inserting nodes whose range disks are
pairwise disjoint. Nodes are inserted in a non increasing order w.r.t. their ranges. This
set construction is repeated until no node of V ′ is left outside S.

Algorithm CFF (a finite set V ⊆ R2, a function r : V → R+)
1 Let X := V ′ = {v ∈ V : Nout(v) �= ∅}; S := ∅; i := 0;
2 while X �= ∅ do
3 i := i + 1; Si := ∅; U := ∅; Y := X;
4 while Y �= ∅ do
5 Choose v ∈ Y such that r(v) is maximum;
6 if U ∩ B(v) = ∅ then
7 Si := Si ∪ {v}; U := U ∪ B(v);
8 Y := Y − {v};
9 S := S ∪ {Si}; X := X − Si;
10 return S .

It is easy to see that, by using standard data structures, the algorithm works in O(n2)
time. Moreover, family S returned by the algorithm is collision free by construction.
We now provide a preliminary bound on the size of S. For every v ∈ V ′, we define the
set I(v) of all nodes of V ′ that could interfere with v and that have range not smaller
than the range of v, i.e., I(v) = {w ∈ V ′ : B(v) ∩B(w) �= ∅ and r(w) � r(v)}.

Lemma 3.1. Family S has size at most maxv∈V ′ |I(v)|.

Proof. At every iteration of the external loop (line 2), a new set of S is constructed.
Consider the i-th iteration and let v ∈ V ′ be any node not yet inserted in any of sets
S1, S2, . . . , Si−1 constructed in the previous iterations. For every j = 1, 2, . . . , i − 1,
Sj must contain at least one node in I(v). Indeed, assume by contradiction that there
exists j � i − 1 such that Sj ∩ I(v) = ∅. Then, for every w ∈ Sj with r(w) � r(v),
it holds that B(w) ∩ B(v) = ∅. When the algorithm selects v in line 5, the condition
at line 6 is true, so v should be inserted in Sj : a contradiction. Since the sets of S
are pairwise disjoints, the number of iterations of the external loop does not exceed
maxv∈V ′ |I(v)|. ��

Our next goal is to prove that maxv∈V ′ |I(v)| ∈ O(Δ). To this aim, we will show that,
for every v ∈ V ′, we can partition R2 into a constant number of regions so that each
region contains at most Δ nodes of I(v).

Lemma 3.2. For every v ∈ V ′, it holds that |B(v) ∩ I(v)| � Δ.

Proof. Nodes in I(v) have range at least r(v). Hence, all nodes of I(v) in B(v) are
points of N in(v), i.e., I(v) ∩B(v) ⊆ N in(v). ��

We now consider the region outside disk B(v) and define the circular crown

Cλ(v) = {y ∈ R2 : r(v) < d(v, y) � λr(v)}, where λ > 1.

Lemma 3.3. Let 1 < λ < 2 and let k ∈ N be large enough such that cos 2π
k � λ/2.

Then, for any v ∈ V ′, Cλ(v) contains at most kΔ nodes of I(v).

Optimal Gossiping in Directed GRN in Presence of Dynamical Faults 437

Proof. Consider a polar coordinate system centered in v and consider the partition
of Cλ(v) defined by the regions]r(v), λr(v)] × [ϑi, ϑi+1[where ϑi = 2πi

k for i =
0, 1, . . . , k−1. Then, since cos 2π

k � λ/2, it is easy to see that the square of the maximal
distance between two points in the same region is r(v)2 +λ2r(v)2− 2λr(v)2 cos 2π

k �
r(v)2. For any w ∈ I(v), it holds that r(w) � r(v), so w is in the in-neighborhood of
all points in the same region of w. So, in every region there are at most Δ points of I(v)
and, since there are k regions in Cλ(v), the thesis follows. ��

Consider the function g(λ) = λ2+2λ−1
2λ2 and observe that 1/2 < g(λ) < 1, for any

λ > 1. It is possible to prove that, if k is such that cos 2π
k � g(λ), then for any a � b �

λ it holds that

a2 + b2 − 2ab cos
2π
k

� (a− 1)2. (1)

We will use this fact in proving next Lemma.

Lemma 3.4. Let λ > 1 and let k ∈ N be large enough such that cos 2π
k � g(λ). Then,

for any v ∈ V ′, there are at most kΔ nodes of I(v) outside B(v) ∪ Cλ(v).

Proof. Consider a polar coordinate system centered in v, and define a partition of the
space outside B(v) ∪ Cλ(v) in the regions [λr(v),+∞[× [ϑi, ϑi+1[where ϑi = 2πi

k
for i = 0, 1, . . . , k − 1. Let x = (x, ϕx) and y = (y, ϕy) two nodes of I(v) that lie
in the same region and suppose wlog that x � y . Then, two constants a, b ∈ R exist
with a � b � λ such that x = a · r(v) and y = b · r(v). We thus get

d(x, y)2 = 2
x + 2

y − 2 x y cos (ϕx − ϕy) � r(v)2
(
a2 + b2 − 2ab cos

2π
k

)

where in the inequality we used the fact that x and y lie in the same region. From (1),
we get d(x, y)2 � r(v)2(a− 1)2 = (a · r(v)− r(v))2 = (x− r(v))2. Since x ∈ I(v),
it must hold that B(x) ∩ B(v) �= ∅, so x − r(v) � r(x), and d(x, y)2 � r(x)2.
Therefore, y lies in B(x) and, thus, x ∈ N in(y). It follows that, for every region T , if
y ∈ T ∩ I(v) is a node with minimum distance from v, i.e, a node with minimum y ,
then T ∩ I(v) ⊆ N in(y). This implies that in every region there are at most Δ points
of I(v): since the regions are k, the thesis follows. ��

Lemma 3.5. Let 1 < λ < 2 and let k ∈ N be such that cos 2π
k � max

{
λ
2 , g(λ)

}
.

Then, for any v ∈ V ′, it holds that |I(v)| � (1 + 2k)Δ.

Proof. Consider the partition of R2 into the three sets: B(v), Cλ(v), and the com-
plement of B(v) ∪ Cλ(v). By combining Lemmas 3.2, 3.3, and 3.4, we get |I(v)| �
(1 + k + k)Δ. ��

Theorem 3.6. Algorithm CFF returns a collision-free family S for Gr(V) of size at
most cΔ, where c � 33.

Proof. Family S is collision-free for Gr(V) by construction. Let λ be such that 1 <
λ < 2. From Lemmas 3.1 and 3.5, we obtain |S| � maxv∈V ′ |I(v)| � (1 + 2k)Δ,
with k ∈ N such that cos(2π/k) � max{λ/2, g(λ)}. Then, in order to minimize k,

438 A.E.F. Clementi et al.

we choose λ such that λ/2 = (λ2 + 2λ − 1)/(2λ2). Consider the function f(λ) =
λ3 − λ2 − 2λ + 1. Then f(1) = −1 and f(2) = 1, so there exists a solution between 1
and 2. By numerical arguments, we can set λ ≈ 1.8 and get

cos
2π
k

� max
{
λ

2
,
λ2 + 2λ− 1

2λ2

}
, for any k � 16. ��

Distributed Construction. Let us consider GRN Gr(V) where r(v) = R for each
v ∈ V (so Gr(V) is symmetric). Directed GRN will be discussed at the end of this
section. Our distributed construction of a collision-free family for Gr(V) is based on
the following idea. Consider a partition of R2 into squares small enough to guarantee
that in each square there is at most one node of V . Then we partition the set of such
small squares so that the distance between two squares in the same set of the partition
is at least 2R. Finally, consider the subsets of V obtained by collecting all nodes in the
same set of squares.

Let γ = min{d(u, v) : u, v ∈ V, u �= v}. For any x ∈ R we define [x] as
the nearest integer to x. We now assume that each node knows its own position, the
transmission range R and the minimum distance γ. In the following protocol, ε > 0 is
an arbitrary small constant: we need it in order to have strict inequalities.

PROTOCOL FOR NODE u (position (xu, yu), transmission range R, min distance γ)
1 Define λ = γ/

√
2− ε;

2 Define k = 	(2R + ε)/λ
+ 1;
3 Define x̂u = [xu/λ] and ŷu = [yu/λ];
4 Return f(u) = (x̂u mod k, ŷu mod k);

Let us consider the family S = {Si,j}i,j=0,1,...,k−1 where Si,j = {u ∈ V : f(u) =
(i, j)}. We now show that S is a collision-free family.

Theorem 3.7. Family S is collision-free family of size O(R2/γ2) for Gr(V).

Sketch of the Proof. By definition of k (line 2 of Protocol) we have that |S| = k2 ∈
O(R2/γ2). Let u, v ∈ Si,j with u �= v. Assume, by contradiction, that Nout(u) ∩
Nout(v) �= ∅ and let w ∈ Nout(u) ∩ Nout(v). So d(u,w) � R and d(v, w) � R.
By triangular inequality we get d(u, v) � 2R, but this is a contradiction, because since
u, v are two different nodes in the same set of the family, by construction it must be
d(u, v) > 2R. ��
We now show that when nodes are well spread, the size of the family is asymptotically
optimal.

Definition 3.8 (Well spread instances). Let V ⊆ R2 be a set of n points in the Eu-
clidean plane. Let γ and Γ be respectively the minimal and the maximal distance be-
tween two points in V . Let c be any positive constant, set V is said c-well spread if
Γ/γ � c

√
n.

Observe that square-grid networks are the most regular case of c-well spread instances
where c =

√
2 [CPS04].

Optimal Gossiping in Directed GRN in Presence of Dynamical Faults 439

Theorem 3.9. If V ⊆ R2 is a c-well spread instance, then R2/γ2 ∈ O(c2Δ), where Δ
is the maximal degree of Gr(V).

Proof. There exists a disk of radius Γ that contains all the n nodes. That disk can be
covered with O(Γ 2/R2) disks of radius R. Then there exists a disk U with radius R

such that it contains Ω
(

nR2

Γ 2

)
nodes. Since V is c-well spread, n/Γ 2 ∈ Ω(1/c2γ2)

and so disk U contains Ω(R2/c2γ2) nodes. It follows that R2/γ2 ∈ O(c2Δ). ��

Our distributed construction also works for directed GRN where parameter R is re-
placed by the maximal node range Rmax. Theorem 3.7 holds with Rmax in place of R
and Theorem 3.9 holds with Rmin in place of R, where Rmin is the minimal node range.
Thus if Rmax ∈ O(Rmin) the construction is still optimal.

4 Optimal Bounds

The results obtained in the previous two sections allow us to get optimal bounds for
fault-tolerant protocols.

Single-Message Model

Corollary 4.1. Given a directed GRN Gr(V), there exists an explicit FG protocol hav-
ing completion time O(nΔ) and message complexity O(n2), where Δ is the maximal
in-degree of Gr(V).

There exists a distributed FG protocol that, on any c-well spread symmetric GRN
Gr(V), completes gossiping in O(nc2Δ) time slots and has message complexity O(n2).
The protocol requires the knowledge of the minimal distance γ.

Theorem 4.2. For any sufficiently large n and Δ, such that n−Δ ∈ Ω(n), there exists
a GRN Gr(V) of n nodes and maximal in-degree Δ such that, for any FG protocol for
Gr(V), an adversary’s fault-pattern F exists such that the protocol is forced to execute
Ω(nΔ) time-slots and to have message complexity Ω(n2).

Combined-Message Model

Corollary 4.3. Given a directed GRN Gr(V), there exists an explicit FG protocol hav-
ing completion time O(DΔ) and message complexity O(Dn), where D is the maximal
residual source eccentricity.

There exists a distributed FG protocol that, on any c-well spread symmetric GRN
Gr(V), completes gossiping in O(Dc2Δ) time slots and has message complexity
O(Dn). The protocol requires the knowledge of the minimal distance γ.

As for the (single) broadcast operation, the same protocols work in the same com-
pletion time while the message complexity reduces to O(n) that is optimal.

Theorem 4.4. For any n, Δ and D such that DΔ � n, there exists a GRN Gr(V) of
n nodes and maximal in-degree Δ such that, for any FB protocol for Gr(V), there are
a source s ∈ V and an adversary’s fault-pattern F , yielding source eccentricity D,
such that the protocol is forced to execute Ω(DΔ) time-slots and to have message
complexity Ω(n).

440 A.E.F. Clementi et al.

As for the case D ·Δ > n, we observe that a lower bound Ω(n
√
n) holds for FB proto-

cols on directed GRN of unbounded maximal in-degree and residual source eccentricity
D = Θ(

√
n). This result is an easy consequence of the lower bound for arbitrary graphs

proved in [CMS04]: The graph yielding such lower bound is indeed a GRN of maximal
in-degree Δ = Θ(n).

5 Open Questions

It is an open question whether the O(Dn) bound for the FG message complexity is op-
timal. Another future work is that of extending our distributed construction of collision-
free families to other important classes of radio networks. Finally, an interesting issue
is that of designing randomized FG protocols. Such protocols may yield a much better
completion time on the residual graph and, more importantly, they might have good
performances outside the residual graph too.

References

[AS98] Adler, M., Scheideler, C.: Efficient communication strategies for ad hoc wireless
networks. Proc. of 10th ACM SPAA, pp. 259–268 (1998)

[ABLP89] Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast.
Journal of Computer and System Science 43, 290–298 (1991)

[ABBS01] Awerbuch, B., Berenbrink, P., Brinkmann, A., Scheideler, C.: Simple routing strate-
gies for adversarial systems. In: Proc. of 42th IEEE FOCS, pp. 158–167 (2001)

[BGI92] Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Science 45, 104–126 (1992)

[BII93] Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multi-hop radio
networks. SICOMP 22(4), 875–887 (1993)

[C06] Calamoneri, T.: The L(h, k)-Labeling problem: Survey and Annotated Bibliogra-
phy. The Computer Journal 49, 585–608 (2006)

[CKOZ03] Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network Life Time and
Power Assignment in ad hoc Wireless Networks. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)

[CGGPR00] Chlebus, B., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broad-
casting in unknown radio networks. In: Proc. of 11th ACM-SIAM SODA, pp. 861–
870 (2000)

[CGR02] Chrobak, M., Gasieniec, L., Rytter, W.: Fast Broadcasting and Gossiping in Radio
Networks. Journal of Algorithms 43(2), 177–189 (2002)

[CCJ90] Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86, 165–177 (1990)

[CCPRV01] Clementi, A.E.F., Crescenzi, P., Penna, P., Vocca, P.: On the complexity of minimum
energy consumption broadcast subgraphs. In: Proc of 11th STACS, pp. 121–131
(2001)

[CMS03] Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks
of unknown topology. Theoretical Computer Science 302, 337–364 (2003)

[CMS04] Clementi, A.E.F., Monti, A., Silvestri, R.: Round Robin is optimal for fault-tolerant
broadcasting on wireless networks. Journal of Parallel and Distributed Comput-
ing 64(1), 89–96 (2004)

Optimal Gossiping in Directed GRN in Presence of Dynamical Faults 441

[CMPS07] Clementi, A.E.F., Monti, A., Pasquale, F., Silvestri, R.: Optimal gossiping in di-
rected geometric radio networks in presence of dynamical faults (2007), available at
www.mat.uniroma2.it/∼pasquale

[CPS04] Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in radio
networks. MONET (9), 125–140 (2004)

[CR06] Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms 60(2), 115–143 (2006)

[DP07] Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Dis-
crete Algorithms 5, 187–201 (2007)

[ENW00] Ephremides, A., Nguyen, G., Wieselthier, J.: On the construction of energy-efficient
broadcast and multi-cast trees in wireless networks. In: Proc. of 19th IEEE INFO-
COM, pp. 585–594 (2000)

[GL02] Gasieniec, L., Lingas, A.: On adaptive deterministic gossiping in ad-hoc radio net-
works. Information Processing Letters 2, 89–93 (2002)

[GPX05] Gasieniec, L., Peleg, D., Xin, Q.: Faster Communication in Known Topology Radio
Networks. In: Proc. of 24th ACM PODC, pp. 129–137 (2005)

[I97] Indyk, P.: Deterministic Superimposed Coding with Application to Pattern Match-
ing. In: Proc. of 38th IEEE FOCS, pp. 127–136 (1997)

[I02] Indyk, P.: Explicit constructions of selectors and related combinatorial structures,
with applications. In: Proc of 13th ACM-SIAM SODA, pp. 697–704 (2002)

[KKKP00] Kirousis, L., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio
networks. Theoretical Computer Science 243, 289–305 (2000)

[KKP98] Kranakis, E., Krizanc, D., Pelc, A.: Fault-Tolerant Broadcasting in Radio Networks.
In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 283–294. Springer, Heidelberg (1998)

[P02] Pelc, A.: Broadcasting in radio networks. In: Handbook of Wireless Networks and
Mobile Computing, pp. 509–528. John Wiley and Sons, Inc., Chichester (2002)

[PP05] Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random trans-
mission failures. In: Proc. of 24th ACM PODC, pp. 334–341 (2005)

[PR97] Pagani, E., Rossi, G.: Reliable Broadcast in Mobile Multihop Packet Networks. In:
Proc. of 3rd ACM-IEEE MOBICOM, pp. 34–42 (1997)

[R96] Rappaport, T.S.: Wireless Communications: Principles and Practice. Prentice-Hall,
Englewood Cliffs (1996)

[SM97] Sen, A., Malesinska, E.: On Approximation algorithms for packet radio scheduling.
In: Proc. of 35th Allerton Conference on Communication, Control and Computing,
Allerton, pp. 573–582 (1997)

[S01] Scheideler, C.: Models and Techniques for Communication in Dynamic Networks.
In: Proc. of 18th STACS, pp. 27–49 (2001)

www.mat.uniroma2.it/~pasquale

A Linear Time Algorithm for the

k Maximal Sums Problem

Gerth Stølting Brodal and Allan Grønlund Jørgensen�

BRICS��, MADALGO���, Department of Computer Science,
University of Aarhus, Denmark
{gerth,jallan}@daimi.au.dk

Abstract. Finding the sub-vector with the largest sum in a sequence
of n numbers is known as the maximum sum problem. Finding the k
sub-vectors with the largest sums is a natural extension of this, and is
known as the k maximal sums problem. In this paper we design an opti-
mal O(n+k) time algorithm for the k maximal sums problem. We use this
algorithm to obtain algorithms solving the two-dimensional k maximal
sums problem in O(m2 ·n+ k) time, where the input is an m×n matrix
with m ≤ n. We generalize this algorithm to solve the d-dimensional
problem in O(n2d−1 +k) time. The space usage of all the algorithms can
be reduced to O(nd−1 + k). This leads to the first algorithm for the k
maximal sums problem in one dimension using O(n + k) time and O(k)
space.

1 Introduction

To solve the maximum sum problem one must locate the maximal sum sub-
vector of an array A of n numbers. The maximal sub-vector of A is the sub-
vector A[i, . . . , j] maximizing

∑j
s=i A[s]. The problem originates from Ulf

Grenander who defined the problem in the setting of pattern recognition [1].
Solutions to the problem also have applications in areas such as Data Mining [2]
and Bioinformatics [3].

The problem, and an optimal linear time algorithm credited to Jay Kadane,
are described by Bentley [1] and Gries [4]. The algorithm they describe is a
scanning algorithm which remembers the best solution, max1≤i≤j≤t

∑j
s=i A[s],

and the best suffix solution, max1≤i≤t

∑t
s=i A[s], in the part of the input ar-

ray, A[1, . . . , t], scanned so far. Both values are updated in O(1) time in each
step yielding a linear time algorithm using O(1) space.

The problem can be extended to any number of dimensions. In two dimensions
the input is an m× n matrix of numbers and the task is to find the connected

� Supported in part by an Ole Roemer Scholarship from the Danish National Science
Research Council.

�� Basic Research in Computer Science, research school.
��� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 442–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Linear Time Algorithm for the k Maximal Sums Problem 443

Table 1. Previous and new results for the k maximal sums problem

Paper Time complexity

Bae & Takaoka [8] O(n · k)

Bengtson & Chen [9] O(min{k + n log2 n, n
√

k})
Bae & Takaoka [10] O(n log k + k2)

Bae & Takaoka [11] O((n + k) log k)

Lie & Lin [12] O(n log n + k) expected

Cheng et al. [13] O(n + k log k)

Liu & Chao [14]1 O(n + k)

This paper O(n + k)

sub-matrix with the largest aggregate. The two-dimensional version was the
original problem, introduced as a method for maximum likelihood estimations
of patterns in digitized images [1].

With m ≤ n, the problem can be solved by a reduction to
(
m
2

)
+ m one-

dimensional problems resulting in an O(m2 ·n) time algorithm. The same reduc-
tion technique can be applied iteratively to solve the problem in any dimension.
But unlike the one dimensional case these algorithms are not optimal. In [5]
and [6] asymptotically faster algorithms for the two-dimensional problem are
described. In [6] Takaoka designed an O(m2n

√
log logm/ logm) time algorithm

by a reduction to (min,+) matrix multiplication [7].
A simple extension of the maximum sum problem is to compute the k largest

sub-vectors for 1 ≤ k ≤
(
n
2

)
+ n. The sub-vectors are allowed to overlap, and

the output is k triples of the form (i, j, sum) where sum =
∑j

s=i A[s]. This
extension was introduced in [8]. The solution for k = 1 described above does
not seem to be extendable in any simple manner to obtain a linear algorithm for
any k. Therefore, different solutions to this extended problem has emerged over
the past few years. These results are summarized in Table 1.

A lower bound for the k maximal sums problem is Ω(n+k), since an adversary
can force any algorithm to look at each of the n input elements and the output
size is Ω(k).

1.1 Results

In this paper we close the gap between upper and lower bounds for the k maximal
sums problem. We design an algorithm computing the k sub-vectors with the
largest sums in an array of size n in O(n+ k) time. We also describe algorithms
solving the problem extended to any dimension. We begin by solving the two-
dimensional problem where we obtain an O(m2 ·n+k) time algorithm for an m×n
input matrix with m ≤ n. This improves the previous best result [13], which was

1 The k maximal sums problem can also be solved in O(n + k) time by a reduction
to Eppstein’s solution for the k shortest paths problem [15] which also makes es-
sential use of Fredericksons heap selection algorithm. This reduction was observed
independently by Hsiao-Fei Liu and Kun-Mao Chao [14].

444 G.S. Brodal and A.G. Jørgensen

an O(m2 · n + k log k) time algorithm. This solution is then generalized to solve
the d dimensional problem in O(n2d−1 +k) time, assuming for simplicity that all
sides of the d-dimensional input matrix are equally long. Furthermore we describe
how to minimize the additional space usage of our algorithms. The additional
space usage of the one dimensional algorithm is reduced from O(n+ k) to O(k).
The input array is considered to be read only. The additional space usage for the
algorithm solving the two-dimensional problem is reduced from O(m2 · n + k)
to O(n+k) and for the general algorithm solving the d dimensional problem the
space is reduced from O(n2(d−1) + k) to O(nd−1 + k).

The main contribution of this paper is the first algorithm solving the k max-
imal sums problem using O(n + k) time and O(k) space. The result is achieved
by generating a binary heap that implicitly contains the

(
n
2

)
+ n sums in O(n)

time. The k largest sums from the heap are then selected in O(n+k) time using
the heap selection algorithm of Frederickson [16]. The heap is build using partial
persistence [17]. The space is reduced by only processing k elements at time.
The resulting algorithm can be viewed as a natural extension of Kadane’s linear
time algorithm for solving the maximum sum problem introduced earlier.

1.2 Outline of Paper

The remainder of the paper is structured as follows. In Section 2 the over-
all structure of our solution is explained. Descriptions and details regarding
the algorithms and data structures used to achieve the result are presented in
Sections 3, 4 and 5. In Section 6 we combine the different algorithms and data
structures completing our algorithm. This is followed by Section 7 where we
show how to use our algorithm to solve the problem in d dimensions. Finally in
Section 8 we explain how to reduce the additional space usage of the algorithms
without penalizing the asymptotic time bounds.

2 Basic Idea and Algorithm

In this paper the term heap denotes a max-heap ordered binary tree. The basic
idea of our algorithm is to build a heap storing the sums of all

(
n
2

)
+n sub-vectors

and then use Fredericksons binary heap selection algorithm to find the k largest
elements in the heap.

In the following we describe how to construct a heap that implicitly stores
all the

(
n
2

)
+ n sums in O(n) time. The triples induced by the

(
n
2

)
+ n sums

in the input array are grouped by their end index. The suffix set of triples
corresponding to all sub-vectors ending at position j we denote Qj

suf, and this
is the set {(i, j, sum) | 1 ≤ i ≤ j ∧ sum =

∑j
s=i A[s]}. The Qj

suf sets can be
incrementally defined as follows:

Qj
suf = {(j, j, A[j])} ∪ {(i, j, s + A[j]) | (i, j − 1, s) ∈ Qj−1

suf }. (1)

As stated in equation (1) the suffix set Qj
suf consists of all suffix sums in Qj−1

suf

with the element A[j] added as well as the single element suffix sum A[j].

A Linear Time Algorithm for the k Maximal Sums Problem 445

H2
suf H3

suf H4
suf H5

suf H6
suf H7

suf

∞

∞∞

∞

H1
suf

∞

∞

Fig. 1. Example of a complete heap H constructed on top of the Hj
suf heaps. The input

size is 7.

Using this definition, the set of triples corresponding to all
(
n
2

)
+ n sums in

the input array is the union of the n disjoint Qj
suf sets. We represent the Qj

suf

sets as heaps and denote them Hj
suf. Assuming that for each suffix set Qj

suf, a
heap Hj

suf representing it has been build, we can construct a heap H containing
all possible triples by constructing a complete binary heap on top of these heaps.
The keys for the n − 1 top elements is set to ∞ (see Figure 1). To find the k
largest elements, we extract the n−1 +k largest elements in H using the binary
heap selection algorithm of Frederickson [16] and discard the n − 1 elements
equal to ∞.

Since the suffix sets contain Θ(n2) elements the time and space required is
still Θ(n2) if they are represented explicitly. We obtain a linear time construction
of the heap by constructing an implicit representation of a heap that contains all
the sums. We make essential use of a heap data structure to represent the Qj

suf

sets that supports insertions in amortized constant time.
Priority queues represented as heap ordered binary trees supporting insertions

in constant time already exist. One such data structure is the self-adjusting
binary heaps of Tarjan and Sleator described in [18] called Skew Heaps. The
Skew heap is a data structure reminiscent of Leftist heaps [19,20]. Even though
the Skew heap would suffice for our algorithm it is able to do much more than
we require. Therefore, we design a simpler heap which we will name Iheap. The
essential properties of the Iheap are that it is represented as a heap ordered
binary tree and that insertions are supported in amortized constant time.

We build Hj+1
suf from Hj

suf in O(1) time amortized without destroying Hj
suf

by using the partial persistence technique of [17] on the Iheap. This basically
means that the Hj

suf heaps become different versions of the same Iheap. To make
our Iheap partially persistent we use the node copying technique [17]. The cost
of applying this technique is linear in the number of changes in an update. Since
only the insertion procedure is used on the Iheap, the extra cost of using partial
persistence is the time for copying amortized O(1) nodes per insert operation.
The overhead of traversing a previous version of the data structure is O(1) per
data/pointer access.

446 G.S. Brodal and A.G. Jørgensen

3 Binary Heaps

The main data structure of our algorithm is a heap supporting constant time
insertions in the amortized sense. The heap is not required to support operations
like deletions of the minimum or an arbitrary element. All we do is insert elements
and traverse the structure top down during heap selection. We design a simple
binary heap data structure Iheap by reusing the idea behind the Skew heap and
perform all insertions along the rightmost path of the tree starting from the
rightmost leaf.

T1

T2

T3

T4

T1

T2

T3

T4

5

4

2

9 9

7

5

4

2

Insert 7

Fig. 2. An example of an insertion in the Iheap. The element 7 is compared to 2,4 and
5 in that order, and these elements are then removed from the rightmost path.

A new element is inserted into the Iheap by placing it in the first position
on the rightmost path where it satisfies the heap order. This is performed by
traversing the rightmost path bottom up until a larger element is found or the
root is passed. The element is then inserted as a right child of the larger element
found (or as the new root). The element it is replacing as a right child (or as
root) becomes the left child of the inserted element. An insertion in an Iheap is
illustrated in Figure 2. If O(�) time is used to perform an insertion operation
because � elements are traversed, the rightmost path of the heap becomes �− 1
elements shorter. Using a potential function on the length of the rightmost path
of the tree we get amortized constant time insertions for the Iheap. Each element
is passed on the rightmost path only once, since it is then placed on the left-hand
side of element passing it, and never returns to the rightmost path.
Lemma 1. The Iheap supports insertion in amortized constant time.

4 Partial Persistence and Hj
suf Construction

As mentioned in Section 2 the Hj
suf heaps are build based on equation (1) using

the partial persistence technique of [17] on an Iheap.

A Linear Time Algorithm for the k Maximal Sums Problem 447

Data structures are usually ephemeral, meaning that an update to the data
structure destroys the old version, leaving only the new version available for use.
An update changes a pointer or a field value in a node. Persistent data structures
allow access to any version old or new. Partially persistent data structures allow
updates to the newest version, whereas fully persistent data structures allow
updates to any version. With the partial persistence technique known as node
copying, linked ephemeral data structures, with the restriction that for any node
the number of other nodes pointing to it is O(1), can be made partially persis-
tent [17]. The Iheap is a binary tree and therefore trivially satisfies the above
condition. The amortized cost of using the node copying technique is bounded
by the cost of copying and storing O(1) nodes from the ephemeral structure per
update.

The basic idea of applying node copying to the Iheap is the following (see [17]
for further details). Each persistent node contains one version of each information
field in an original node, but it is able to contain several versions of each pointer
(link to other node) differentiated by time stamps (version numbers). However,
there are only a constant number of versions of any pointer, why each partially
persistent Iheap node only uses constant space. Accessing relatives of a node in a
given version is performed by finding the pointer associated with the correct time
stamp. This is performed in constant time making the access time in the partially
persistent Iheap asymptotically equal to the access time in an ephemeral Iheap.

According to equation (1), the set Qj+1
suf can be constructed from Qj

suf by
adding A[i + 1] to all elements in Qj

suf and then inserting an element represent-
ing A[i + 1]. To avoid adding A[i + 1] to each element in Qj

suf, we represent
each Qj

suf set as a pair 〈δj , Hj
suf〉, where Hj

suf is a version of a partial persistent
Iheap containing all sums of Qj

suf and δj is an element that must be added to
all elements. With this representation a constant can be added to all elements
in a heap implicitly by setting the corresponding δ. Similar to the way the Qj

suf

sets were defined by equation (1) we get the following incremental construction
of the pair 〈δj+1, H

j+1
suf 〉:

〈δ0, H0
suf〉 = 〈0, ∅〉 , (2)

〈δj+1, H
j+1
suf 〉 = 〈δj + A[i + 1], Hj

suf ∪ {−δj}〉 . (3)

Let 〈δj , Hj
suf〉 be the latest pair built. To construct 〈δj+1, H

j+1
suf 〉 from this pair,

an element with −δj as key is inserted into Hj
suf. We insert this value, since δj has

not been added to any element in Hj
suf explicitly, and because the sum A[i + 1]

that the new element are to represent must be added to all elements in Hj
suf to ob-

tain Hj+1
suf . Since we apply partial persistence on the heap, Hj

suf is still intact after
the insertion, and a new version of the Iheap with the inserted element included
has been constructed. Hj+1

suf is this new version and δj+1 is set to δj + A[i + 1].
Therefore, the newly inserted element represents the sum −δj + δj + A[i + 1]
= A[i + 1]. This ends the construction of the new pair 〈δj+1, H

j+1
suf 〉. Since

448 G.S. Brodal and A.G. Jørgensen

all sums from Hj
suf gets A[i+ 1] added because of the increase of δj+1 compared

to δj and the new element represents A[i + 1] we conclude that 〈δj+1, H
j+1
suf 〉

represents the set Qj+1
suf . The time needed for constructing Hj+1

suf is the time for
inserting an element into a partial persistent Iheap. Since the size of an Iheap
node is O(1), by Lemma 1 and the node copying technique, this is amortized
constant time

Lemma 2. The time for constructing the n pairs 〈δj , Hj
suf〉 is O(n).

5 Fredericksons Heap Selection Algorithm

The last algorithm used by our algorithm is the heap selection algorithm of
Frederickson, which extracts the k largest2 elements in a heap in O(k) time.
Input to this algorithm is an infinite heap ordered binary tree. The infinite part is
used to remove special cases concerning the leafs of the tree, and is implemented
by implicitly appending nodes with keys of −∞ to the leafs of a finite tree. The
algorithm starts at the root, and otherwise only explores a node if the parent
already has been explored.

The main part of the algorithm is a method for locating an element, e,
with k ≤ rank(e) ≤ ck for some constant c3. After this element is found the
input heap is traversed and all elements larger than e are extracted. Standard se-
lection [21] is then used to obtain the k largest elements from the O(k) extracted
elements. To find e, elements in the heap are organized into appropriately sized
groups named clans. Clans are represented by their smallest element, and these
are managed in classic binary heaps [22].

By fixing the size of clans to log k one can obtain an O(k log log k) time algo-
rithm as follows. Construct the first clan by locating the 5log k6 largest elements
and initialize a clan-heap with the representative of this clan. The children of
the elements in this clan are associated with it and denoted its offspring.

A new clan is constructed from a set of log k nodes in O(log k log log k) time
using a heap. However, not all the elements in an offspring set are necessarily
put into such a new clan. The leftover elements are then associated to the newly
created clan and are denoted the poor relatives of the clan.

Now repeatedly delete the maximum clan from the clan heap, construct two
new clans from the offspring and poor relatives, and insert their representa-
tives into the clan-heap. After 	k/5log k6
 iterations an element of rank at
least k is found, since the representative of the last clan deleted, is the smallest
of 	k/5log k6
 representatives. Since 2	k/5log k6
+ 1 clans are created at most,
each using time O(log k log log k), the total time becomes O(k log log k).

By applying this idea recursively and then bootstrapping it Frederickson ob-
tains a linear time algorithm.

Theorem 1 ([16]). The k largest elements in a heap can be found in O(k) time.

2 Actually Frederickson [16] considers min-heaps.
3 The largest element has rank one.

A Linear Time Algorithm for the k Maximal Sums Problem 449

6 Combining the Ideas

The heap constructed by our algorithm is actually a graph because the Hj
suf

heaps are different versions of the same partially persistent Iheap. Also, the
roots of the Hj

suf heaps include additive constants δj to be added to all of their
descendants. However, if we focus on any one version, it will form an Iheap. This
Iheap we can construct explicitly in a top down traversal starting from the root
of this version, by incrementally expanding it as the partial persistent nodes are
encountered during the traversal. Since the size of a partially persistent Iheap
node is O(1), the explicit representation of an Iheap node in a given version can
be constructed in constant time.

However, the entire partially persistent Iheap does not need to be expanded
into explicit heaps, only the parts actually visited by the selection algorithm.
Therefore, we adjust the heap selection algorithm to build the visited parts
of the heap explicitly during the traversal. This means that before any node
in a Hj

suf heap is visited by the selection algorithm, it is build explicitly, and
the newly built node is visited instead. We remark that the two children of an
explicitly constructed Iheap node, can be nodes from the partially persistent
Iheap.

The additive constants associated with the roots of the Hj
suf are also moved

to the expanding heaps, and they are propagated downwards whenever they are
encountered. An additive constant is pushed downwards from node v by adding
the value to the sum stored in v, removing it from v, and instead inserting
it into the children of v. Since nodes are visited top down by Fredericksons
selection algorithm, it is possible to propagate the additive constants downwards
in this manner while building the visited parts of the partially persistent Iheap.
Therefore, when a node is visited by Fredericksons algorithm the key it contains
is equal to the actual sum it represents.

Lemma 3. Explicitly constructing t connected nodes in any fixed version of a
partially persistent Iheap while propagating additive values downwards can be
done in O(t) time.

Theorem 2. The algorithm described in Section 2 is an O(n+k) time algorithm
for the k maximal sums problem.

Proof. Constructing the pairs 〈δj , Hj
suf〉 for i = 1, . . . , n takes O(n) time by

Lemma 2. Building a complete heap on top of these n pairs, see Figure 1,
takes O(n) time. By Lemma 3 and Theorem 1 the result follows.

7 Extension to Higher Dimensions

In this section we use the optimal algorithm for the one-dimensional k maximum
sums problem to design algorithms solving the problem in d dimensions for any
natural number d. We start by designing an algorithm for the k maximal sums
problem in two dimensions, which is then extended to an algorithm solving the
problem in d dimensions for any d.

450 G.S. Brodal and A.G. Jørgensen

Theorem 3. There exists an algorithm for the two-dimensional k maximal sums
problem, where the input is an m×n matrix, using O(m2 ·n+k) time and space
with m ≤ n.

Proof. Without loss of generality assume that m is the number of rows and n the
number of columns. This algorithm uses the reduction to the one-dimensional
case mentioned in Section 1 by constructing

(
m
2

)
+m one-dimensional problems.

For all i, j with 1 ≤ i ≤ j ≤ m we take the sub-matrix consisting of the rows
from i to j and sum each column into a single entrance of an array. The array
containing the rows from i to j can be constructed in O(n) time from the array
containing the rows from i to j−1. Therefore, we for each i = 1, . . . ,m construct
the arrays containing rows from i to j for j = i, . . . ,m in this order.

For each one-dimensional instance we construct the n heaps Hj
suf. These heaps

are then merged into one big heap by adding nodes with ∞ keys, by the same
construction used in the one-dimensional algorithm, and use the heap selection
algorithm to extract the result. This gives (

(
m
2

)
+ m) · (n − 1) +

(
m
2

)
+ m − 1

extra values equal to ∞.
It takes O(n) time to build the Hj

suf heaps for each of the
(
m
2

)
+ m one-

dimensional instances and O(m2 · n + k) time to do the final selection. ��

The above algorithm is naturally extended to an algorithm for the d-dimensional
k maximum sums problem, for any constant d. The input is a d-dimensional
vector A of size n1 × n2 × · · · × nd.

Theorem 4. There exists an algorithm solving the d-dimensional k maximal
sums problem using O(n1 ·

∏d
i=2 ni

2) time and space.

Proof. The dimension reduction works for any dimension d, i.e. we can reduce
an d-dimensional instance to

(
nd

2

)
+nd instances of dimension d−1. We iteratively

use this dimension reduction, reducing the problem to one-dimensional instances.
Let Ai,j be the d − 1-dimensional matrix, with size n1 × n2 × · · · × nd−1 and
Ai,j [i1] · · · [id−1] =

∑j
s=i A[i1] · · · [id−1][s].

We obtain the following incremental construction of a d − 1-dimensional in-
stance in the dimension reduction, Ai,j = Ai,j−1 +Aj,j . Therefore, we can build
each of the

(
nd

2

)
+nd instances of dimension d−1 by adding

∏d−1
i=1 ni values to the

previous instance. The time for constructing all these instances is bounded by:

T (1) = 1

T (d) =
((

nd

2

)
+ nd

)
·
(
T (d− 1) +

d−1∏

i=1

ni

)
,

which solves to O(n1 ·
∏d

i=2 ni
2) for ni ≥ 2 and i = 1, . . . , d. This adds up

to
∏d

i=2(
(
ni

2

)
+ ni) = O(

∏d
i=2 ni

2) one-dimensional instances in total. For each
one-dimensional instance the n1 heaps, Hj

suf, are constructed. All heaps are as-
sembled into one complete heap using n1 ·

∏d
i=2

((
ni

2

)
+ ni

)
−1 infinity keys (∞)

and heap selection is used to find the k largest sums. ��

A Linear Time Algorithm for the k Maximal Sums Problem 451

8 Space Reduction

In this section we explain how to reduce the space usage of our linear time
algorithm from O(n + k) to O(k). This bound is optimal in the sense that at
least k values must be stored as output.

Theorem 5. There exists an algorithm solving the k maximal sums problem
using O(n + k) time and O(k) space.

Proof. The original algorithm uses O(n + k) space. Therefore, we only need to
consider the case where k ≤ n. Instead of building all n heaps at once, only k
heaps are built at a time. We start by building the k first heaps, H1

suf , . . . ,H
k
suf,

and find the k largest sums from these heaps using heap selection as in the
original algorithm. These elements are then inserted into an applicant set. Then
all the heaps except the last one are deleted. This is because the last heap
is needed to build the next k heaps. Remember the incremental construction
of Hj+1

suf from Hj
suf defined in equation (3) based on a partial persistent Iheap.

We then build the next k heaps and find the k largest elements as before.
These elements are merged with the applicant set and the k smallest are deleted
using selection [21]. This is repeated until all Hj

suf heaps have been processed.
The space usage of the last heap grows by O(k) in each iteration, ruining the
space bound if it is reused. To remedy this, we after each iteration find the k
largest elements in the last heap and build a new Iheap with these elements using
repeated insertion. The old heap is then discarded. Only the k largest elements
in the last heap can be of interest for the suffix sums not yet constructed, thus
the algorithm remains correct.

At any time during this algorithm we store an applicant set with k elements
and k heaps which in total contains O(k) elements. The time bound remains the
same since there are O(n

k) iterations each performed in O(k) time. ��

In the case where k = 1, it is worth noticing the resemblance between the
algorithm just described and the optimal algorithm of Jay Kadane described
in the introduction. At all times we remember the best sub-vector seen so far.
This is the single element residing in the applicant set. In each iteration we scan
one entrance more of the input array and find the best suffix of the currently
scanned part of the input array. Because of the rebuilding only two suffixes are
constructed in each iteration and only the best suffix is kept for the next iteration.
We then update the best sub-vector seen so far by updating the applicant set.
In these terms with k = 1 our algorithm and the algorithm of Kadane are the
same and for k > 1 our algorithm can be seen as a natural extension of it.

The original algorithm solving the two-dimensional version of the problem
requires O(m2 · n + k) space. Using the same ideas as above, we design an
algorithm for the two-dimensional k maximal sums problem using O(m2 ·n+ k)
time and O(n + k) space.

Theorem 6. There exists an algorithm for the k maximal sums problem in two
dimensions using O(m2 ·n+k) time where m ≤ n and O(n+k) additional space.

452 G.S. Brodal and A.G. Jørgensen

Proof. Using O(n) space for a single array we iterate through all
(
m
2

)
+ m one-

dimensional instances in the standard reduction creating each new instance from
the last one in O(n) time. We only store in memory

⌈
k
n

⌉
instances at a time.

We start by finding the k largest sub-vectors from the first
⌈
k
n

⌉
instances by

concatenating them into a single one-dimensional instance separated by −∞ val-
ues and use our one-dimensional algorithm. No returned sum will contain values
from different instances because that would imply that the sum also included a
−∞ value. The k largest sums are saved in the applicant set. We then repeat-
edly find the k largest from the next

⌈
k
n

⌉
instances in the same way and update

the applicant set in O(k) time using selection. When all instances have been
processed the applicant set is returned.

If k ≤ n we only consider one instance in each iteration. The k largest
sums from this instance is found and the applicant set is updated. This can
all be done in O(n + k) = O(n) time using the linear algorithm for the one-
dimensional problem and standard selection. There are

(
m
2

)
+ m iterations re-

sulting in an O(m2 · n) = O(m2 · n + k) time algorithm.
If k > n each iteration considers

⌈
k
n

⌉
≥ 2 instances. These instances are

concatenated using
⌈
k
n

⌉
− 1 extra space for the ∞ values. The k largest sums

from these instances are found from the concatenated instance using the linear
one-dimensional algorithm in O((

⌈
k
n

⌉
· n) + k) = O(k) time. The number of

iterations is (
(
m
2

)
+ m)/

⌈
k
n

⌉
≤ (

(
m
2

)
+ m) · n

k , leading to an O(m2 · n + k) time
algorithm.

For both cases the additional space usage is at most O(n + k) at any point
during the iteration since only the applicant set,

⌈
k
n

⌉
instances, and

⌈
k
n

⌉
− 1

dummy values are stored in memory at any one time. ��

The above algorithm is extended naturally to solve the problem for d dimensional
inputs of size n1 × n2 × · · · × nd.

Theorem 7. There exists an algorithm solving the d-dimensional k maximal
sums problem using O(n1 ·

∏d
i=2 ni

2) time and O(
∏d−1

i=1 ni + k) additional space.

Proof. As in Theorem 4, we apply the dimension reduction repeatedly, using d−1
vectors of dimension 1, 2, . . . , d − 1 respectively, to iteratively construct each
of the

∏d
i=2(

(
ni

2

)
+ ni) = O(

∏d
i=2 ni

2) one-dimensional instances. Every time
a d− 1-dimensional instance is created we recursively solve it. Again only 	 k

n1

one-dimensional instances and the applicant set is kept in memory at any one
time and the algorithm proceeds as in the two-dimensional case. The space
required for the arrays is

∑d−1
i=1

∏i
j=1 nj = O(

∏d−1
i=1 ni) with ni ≥ 2 for all i. ��

References

1. Bentley, J.: Programming pearls: algorithm design techniques. Commun.
ACM 27(9), 865–873 (1984)

2. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with opti-
mized two-dimensional association rules. ACM Trans. Database Syst. 26(2), 179–
213 (2001)

A Linear Time Algorithm for the k Maximal Sums Problem 453

3. Allison, L.: Longest biased interval and longest non-negative sum interval. Bioin-
formatics 19(10), 1294–1295 (2003)

4. Gries, D.: A note on a standard strategy for developing loop invariants and loops.
Sci. Comput. Program. 2(3), 207–214 (1982)

5. Tamaki, H., Tokuyama, T.: Algorithms for the maximum subarray problem based
on matrix multiplication. In: Proceedings of the ninth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 446–452. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (1998)

6. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electr. Notes Theor. Comput. Sci. 61 (2002)

7. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path
problem. Inf. Process. Lett. 43(4), 195–199 (1992)

8. Bae, S.E., Takaoka, T.: Algorithms for the problem of k maximum sums and a vlsi
algorithm for the k maximum subarrays problem. In: 7th International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN 2004), Hong Kong,
SAR, China, 10-12 May 2004, pp. 247–253. IEEE Computer Society, Los Alamitos
(2004)

9. Bengtsson, F., Chen, J.: Efficient algorithms for k maximum sums. In: Fleischer, R.,
Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 137–148. Springer, Heidelberg
(2004)

10. Bae, S.E., Takaoka, T.: Improved algorithms for the k-maximum subarray problem
for small k. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 621–631.
Springer, Heidelberg (2005)

11. Bae, S.E., Takaoka, T.: Improved algorithms for the k-maximum subarray problem.
Comput. J. 49(3), 358–374 (2006)

12. Lin, T.-C., Lee, D.T.: Randomized algorithm for the sum selection problem. In:
Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 515–523. Springer,
Heidelberg (2005)

13. Cheng, C.-H., Chen, K.-Y., Tien, W.-C., Chao, K.-M.: Improved algorithms for
the k maximum-sums problems. Theoretical Computer Science 362(1-3), 162–170
(2006)

14. Chao, K.M., Liu, H.F.: Personal communication (2007)
15. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1999)
16. Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Com-

put. 104(2), 197–214 (1993)
17. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures

persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)
18. Sleator, D.D., Tarjan, R.E.: Self adjusting heaps. SIAM J. Comput. 15(1), 52–69

(1986)
19. Crane, C.A.: Linear lists and priority queues as balanced binary trees. Technical

Report STAN-CS-72-259, Dept. of Computer Science, Stanford University (1972)
20. Knuth, D.E.: The art of computer programming, sorting and searching, 2nd ed.,

vol. 3 Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA
(1998)

21. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

22. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7(6),
347–348 (1964)

A Lower Bound of 1 + φ for Truthful Scheduling

Mechanisms�

Elias Koutsoupias and Angelina Vidali

Department of Informatics, University of Athens
{elias,avidali}@di.uoa.gr

Abstract. We give an improved lower bound for the approximation ra-
tio of truthful mechanisms for the unrelated machines scheduling prob-
lem. The mechanism design version of the problem which was proposed
and studied in a seminal paper of Nisan and Ronen is at the core of the
emerging area of Algorithmic Game Theory. The new lower bound 1+φ ≈
2.618 is a step towards the final resolution of this important problem.

1 Introduction

We study the classical scheduling problem on unrelated machines [15,21,16] from
the mechanism-design point of view. There are n machines and m tasks each with
different execution times on each machine. The objective of the mechanism is to
schedule the tasks on the machines to minimize the makespan, i.e. to minimize
the time we have to wait until all tasks are executed. In the mechanism-design
version of the problem, the machines are selfish players that want to minimize the
execution time of the tasks assigned to them. To overcome their “laziness” the
mechanism pays them. With the payments, the objective of each player/machine
is to minimize the time of its own tasks minus the payment. A loose interpreta-
tion of the payments is that they are given to machines as an incentive to tell
the truth. A mechanism is called truthful when telling the truth is a dominant
strategy for each player: for all declarations of the other players, an optimal
strategy of the player is to tell the truth. A classical result in mechanism de-
sign, the Revelation Principle, states that for every mechanism, in which each
player has a dominant strategy, there is a truthful mechanism which achieves the
same objective. The Revelation Principle allows us to concentrate on truthful
mechanisms (at least for the class of centralized mechanisms).

A central question in the area of Algorithmic Mechanism Design is to deter-
mine the best approximation ratio of mechanisms. This question was raised by
Nisan and Ronen in their seminal work [23] and remains wide open today. The
current work improves the lower bound on the approximation to 1 + φ ≈ 2.618,
where φ is the golden ratio.

A lower bound on the approximation ratio can be of either computational or
information-theoretic nature. A lower bound is computational when it is based
on some assumption about the computational resources of the algorithm, most
� Supported in part by IST-15964 (AEOLUS) and the Greek GSRT.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 454–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms 455

commonly that the algorithm is polynomial-time. It is of information-theoretic
nature when the source of difficulty is not computational but is imposed by the
restrictions of the mechanism framework and more specifically by the truthful-
ness condition. Our lower bound is entirely information-theoretic: No (truthful)
mechanism—including exponential and even recursive algorithms—can achieve
approximation ratio better than 2.618.

When we consider the approximation ratio of a mechanism, we ignore the
payments and care only about the allocation part of the mechanism. A natural
question then arises: Which scheduling (allocation) algorithms are part of truth-
ful mechanisms? There is an elegant and seemingly simple characterization of
these mechanisms: Monotone Algorithms. The characterizing property of these
algorithms, the Monotonicity Property, implies that when we increase the time
of some tasks on a specific machine, the machine will not get any new tasks.
Similarly when we decrease the time of some tasks of a specific machine the
machine can only get more tasks. In a loose sense, the Monotonicity Property is
a combination of these two facts and can be expressed very succinctly. Despite
its simplicity, we do not know how to take full advantage of the Monotonicity
Property and in this work (as in all previous works on this problem) we apply a
very restricted variant of it (Lemma 1).

1.1 Related Work

The scheduling problem on unrelated machines is one of the most fundamental
scheduling problems [15,16]. The problem is NP-complete, it can be approxi-
mated within a factor of 2, and it is known that no polynomial-time algorithm
can have approximation ratio better than 3/2, unless P=NP [21].

Here we study its mechanism-design version and we improve the results of [8],
where we (together with George Christodoulou) gave a lower bound of 1 +

√
2.

The current work can be considered a continuation of it as we use similar tools,
in particular Lemma 1; this is essentially the only known tool (used also in the
seminal work of Nisan and Ronen [23]), and from this perspective it is unavoid-
able that we use it again here. However, our techniques are completely different
and much more sophisticated than the ones used in [8], where we used simple
instances of 3 players and 5 tasks. In this work on the other hand, we use ar-
bitrarily many players and tasks and we obtain the bound of 1 + φ only as the
limit when the number of players tends to infinity.

Surprisingly, we are not using anything about the geometrical structure of
the mechanism, even though it seemed as if the use of a geometric lemma was
a crucial part of the proof in [8]. The main connection between the proof of the
2.61 and the 2.41 lower bound is the use of the second part of Lemma 1 which,
albeit being a very simple observation seems very powerful.

Nisan and Ronen [23,24], who introduced the problem and initiated the algo-
rithmic theory of Mechanism Design gave a truthful n-approximate (polynomial-
time) algorithm; they also showed that no mechanism (polynomial-time or not)
can achieve approximation ratio better than 2. They conjectured that there is
no deterministic mechanism with approximation ratio less than n.

456 E. Koutsoupias and A. Vidali

Recent work by Lavi and Swamy [20] improves the upper bound for a special
case of the same problem—namely when the processing times have only two
possible values low or high—and devise a deterministic 2-approximation truthful
mechanism.

Archer and Tardos [4] considered the variant of the problem for related ma-
chines. In this case, for each machine there is a single value (instead of a vector),
its speed. They provided a characterization of all truthful algorithms in this
class, in terms of a monotonicity condition. Using this characterization, they
showed that there is an optimal algorithm which is truthful (albeit exponential-
time). They also gave a polynomial-time randomized 3-approximation mecha-
nism, which was later improved to a 2-approximation, in [2]. This mechanism is
truthful in expectation. Andelman, Azar and Sorani [1] gave a 5-approximation
deterministic truthful mechanism, in the same framework, which was then im-
proved by Kovacs [18] to 3-approximation deterministic truthful mechanism,
while finally the ratio was reduced to 2.8.

For randomized mechanisms, Nisan and Ronen [23] gave a randomized truthful
mechanism for two players, that achieves an approximation ratio of 7/4. Recently,
Mu’alem and Schapira [22] extended this result and showed a 7n/8 upper bound.
They also proved a lower bound of 2− 1

n for any randomized truthful mechanism
for n machines.

Very recently Koutsoupias, Christodoulou and Kovacs [12] gave a more general
result. They considered the fractional variant of the same problem and showed a
lower bound of 2− 1

n (which naturally extends to randomized algorithms). They
also gave a n+1

2 fractional approximation algorithm.
Related is also some work which has been done in the context of combinato-

rial auctions which is a generalization of the scheduling problem (see for example
[3,6,7,10,5,11] and the references within). Saks and Yu [25] proved that for con-
vex domains the Monotonicity Property characterizes the class of social choice
functions implementable by truthful mechanisms, generalizing results of [14,19].

2 Problem Definition

We recall here the definitions of the scheduling problem, of the concept of mech-
anisms, as well as some fundamental properties of them (see [8] for more details,
references, and proofs).

Definition 1 (The unrelated machines scheduling problem). The input
to the scheduling problem is a nonnegative matrix t of n rows, one for each
machine-player, and m columns, one for each task. The entry tij (of the i-th
row and j-th column) is the time it takes for machine i to execute task j. Let ti
denote the times for machine i, which is the vector of the i-th row. The output
is an allocation x = x(t), which partitions the tasks into the n machines. We
describe the partition using indicator values xij ∈ {0, 1}: xij = 1 iff task j is
allocated to machine i. We should allocate each task to exactly one machine, or
more formally

∑m
j=1 xij = 1.

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms 457

In the mechanism-design version of the problem we consider direct-revelation
mechanisms. That is, we consider mechanisms that work according to the fol-
lowing protocol:

– Each player i declares the values in row ti, which is known only to player i.
– The mechanism, based on the declared values, decides how to allocate the

tasks to the players.
– The mechanism, based on the declared values, and the allocation of the

previous step, decides how much to pay each player.

The mechanism consists of two algorithms, an allocation algorithm and a
payment algorithm. The cost of a player (machine) is the sum of the times of
the tasks allocated to it minus the payment. One way to think of it is as if the
players are lazy and don’t want to execute tasks, and the mechanism pays them
enough to induce them to execute the tasks. On the other hand, the players
know both the allocation and the payment algorithm and may have an incentive
to lie in the first step. The class of mechanisms for which the players have no
incentive to lie are called truthful mechanisms. Here we consider the strictest
version of truthfulness which is the class of dominant truthful mechanisms: In
these mechanism truth telling is a dominant strategy, i.e., for every possible
declaration of the other players, an optimal strategy of a player is to reveal its
true values. This restricts significantly the set of possible algorithms.

On the other hand every mechanism can be turned into an equivalent truthful
mechanism. This fact, known in the literature as the Revelation Principle, allows
as to concentrate only on truthful mechanisms.

Here we care only about the approximation ratio of the allocation part of the
mechanisms. So when we refer to the approximation ratio of a mechanism, we
mean the approximation ratio of its allocation part. Since payments are of no
importance in this consideration, it would be helpful if we could find a necessary
and sufficient condition which characterizes which allocations algorithms are
ingredients of truthful mechanisms. Fortunately such condition exists:

Definition 2 (Monotonicity Property). An allocation algorithm is called
monotone if it satisfies the following property: for every two sets of tasks t and
t′ which differ only on some machine i (i.e., on the i-the row) the associated
allocations x and x′ satisfy

∑m
j=1(xij − x′ij)(tij − t′ij) ≤ 0, which can be written

more succinctly as a dot product:

(xi − x′i) · (ti − t′i) ≤ 0.

The Monotonicity Property characterizes the allocation part of truthful mech-
anisms. The fact that is necessary and sufficient was shown in [23] and [25]
respectively. Although this is a complete characterization, it is not easy to use
it and we don’t know how to take complete advantage of it.

One fundamental open problem is to find a useful characterization of truthful
mechanisms for the scheduling problem. For the much more general problem
of mechanism design in arbitrary domains, there is simple characterization by

458 E. Koutsoupias and A. Vidali

Roberts [17]: The only truthful mechanisms are generalized VCG mechanisms
[26,9,13]. The scheduling problem is at the other end of the spectrum, where the
domain is restricted yet general enough to allow for interesting mechanisms.

Not only we lack such a nice characterization as Roberts Characterization for
the domain of the scheduling problem, but we also employ a very specific way
to apply the Monotonicity Property. In particular, the only known way to take
advantage of the Monotonicity Property is the following lemma [8], which will
be the main ingredient of our proof. For completeness we also include the proof
of this lemma.

Lemma 1. Let t be a matrix of processing times and let x = x(t) be the allo-
cation produced by a truthful mechanism. Suppose that we change only the tasks
of machine i and in such a way that t′ij > tij when xij = 0, and t′ij < tij
when xij = 1. The mechanism does not change the allocation to machine i, i.e.,
xi(t′) = xi(t). (However, it may change the allocation of other machines).

Moreover for mechanisms with bounded approximation ratio, suppose that
there exists a task with ∞ processing time in all machines except machine i.
Suppose further that we change the processing time of this task on machine i to
some bounded value and the processing times of the remaining tasks on machine
i as above. Then again the allocation of machine i is not affected.

Proof. By the Monotonicity Property, we have

m∑

j=1

(tij − t′ij)(xij(t)− xij(t′)) ≤ 0.

If a task can only be processed by machine i then we must have xij(t) = xij(t′) =
1 and consequently the corresponding term is 0.

For a task j with xij(t) = 0 we have xij(t) − x′ij(t) ≤ 0 (whichever the
allocation xij(t′) ∈ {0, 1} is). Raising the value of such a tasks means tij−t′ij ≤ 0.
On the other hand if xij(t) = 1 we have xij(t) − x′ij(t) ≥ 0. Lowering the value
of such a task we get tij − t′ij ≥ 0.

In either case the corresponding product satisfies (xij(t)−x′ij(t))(tij−t′ij) ≥ 0.
Every term of this sum is nonnegative and consequently the only way to satisfy
the inequality is with equality, by setting xij(t) = xij(t′) for all j.

To simplify the presentation, when we apply Lemma 1, we will increase or de-
crease only some values of a machine, not all its values. The understanding will
be that the rest of the values increase or decrease appropriately by a tiny amount
which we omit to keep the expressions simple.

3 A Lower Bound of 1 + φ for n → ∞ Machines

The main result of this work is

Theorem 1. There is no deterministic mechanism for the scheduling problem
with n→∞ machines with approximation ratio less than 1 + φ.

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms 459

We shall build the proof of the theorem around the instance
⎛

⎜⎜⎜⎜⎜⎝

0 ∞ · · · ∞ ∞ 1 a · · · an−2

∞ 0 · · · ∞ ∞ a a2 · · · an−1

. . .
∞∞ · · · 0 ∞ an−2 an−1 · · · a2n−4

∞∞ · · · ∞ 0 an−1 an · · · a2n−3

⎞

⎟⎟⎟⎟⎟⎠
,

where a ≥ 1 is a parameter and ∞ denotes an arbitrarily high value. Eventually,
we will set a = φ when n→ ∞. We let however a to be a parameter for clarity
and for obtaining better bounds for finite n.

The lower bound will follow from the fact (which we will eventually prove)
that every truthful mechanism with approximation ratio less than 1 + a must
allocate all n− 1 rightmost tasks to the first player. The proof of this fact is by
induction. However, the induction needs a stronger induction hypothesis which
involves instances of the form

T (i1, . . . , ik) =

⎛

⎜⎜⎜⎝

0 ∞ · · · ∞ ai1 ai2 · · · aik

∞ 0 · · · ∞ ai1+1 ai2+1 · · · aik+1

...
. . .

...
. . .

...
∞∞ · · · 0 ai1+n−1 ai2+n−1 · · · aik+n−1

⎞

⎟⎟⎟⎠ ,

where 0 ≤ i1 < i2 < . . . < ik are natural numbers and k ≤ n − 1. We allow
these instances to have additional tasks for which some value is 0, i.e., additional
columns with at least one 0 entry in each one. This is only for technical reasons
and will play no significant role in the proof (and it definitely does not affect the
optimal cost).

We will call the first n tasks dummy. Observe that every mechanism with
bounded approximation ratio must allocate the i-th dummy task to player i.

Remark 1. Notice that the optimal allocation has cost aik . Furthermore, if i1, i2,
. . . , ik are all successive natural numbers, then the optimal allocation is unique
and coincides with the diagonal assignment. Otherwise there are more than one
allocations with optimal cost. For example the allocations indicated by stars:

⎛

⎜⎜⎜⎜⎝

0∗ ∞ ∞∞∞ 1 a a3∗
∞ 0∗ ∞ ∞ ∞ a a2∗ a4

∞∞ 0∗ ∞ ∞ a2∗ a3 a5

∞∞∞ 0∗ ∞ a3 a4 a6

∞∞∞∞ 0∗ a4 a5 a7

⎞

⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎝

0∗ ∞ ∞∞∞ 1 a a3∗
∞ 0∗ ∞ ∞∞ a a2 a4

∞∞ 0∗ ∞ ∞ a2 a3∗ a5

∞∞∞ 0∗ ∞ a3∗ a4 a6

∞∞∞∞ 0∗ a4 a5 a7

⎞

⎟⎟⎟⎟⎠

both have the optimal cost a3.

We will now show the main technical lemma of the proof.

Lemma 2. Suppose that a truthful mechanism on T (i1, . . . , ik), does not allocate
all non-dummy tasks to the first player. Then we can find another instance for
which the approximation ratio is at least 1 + a.

460 E. Koutsoupias and A. Vidali

Proof. Fix a truthful mechanism and suppose that the first player does not get
all non-dummy tasks. In the first part, we manipulate the tasks (by changing
their values and using the tools from the previous section) in such a way that
we obtain an instance with equal or fewer tasks for which in the allocation of
the mechanism

– the first player gets no non-dummy task, and
– every other player gets at most one non-dummy task.

In the second part, we show that instances which satisfy the above two con-
ditions, can be changed to obtain an instance with approximation ratio at
least 1 + a.

1st Part: Suppose that the first of the above conditions is not satisfied. That is,
suppose that the first player gets some non-dummy task. We can then decrease its
value (for the first player) to 0. By the Monotonicity Property and in particular
by Lemma 1, the same set of tasks will be allocated to the first player, so he still
does not get all non-dummy tasks.

Suppose that the second condition is not satisfied, i.e., there is a player in
{2, . . . , n} who gets at least two tasks. We can then lower all the non-zero values
allocated to this player to 0 except for one. By the Monotonicity Property and
in particular by Lemma 1, the same tasks will be allocated to the player. This
guarantees that the first player still does not get all non-dummy tasks.

By repeating the above operations, we decrease the number of non-dummy
tasks. We will end up with an instance in which the first player gets no non-
dummy task and every other player will get at most one non-dummy task. This
process will definitely stop when there is only one non-dummy task left.

Notice that the tasks whose value was changed to 0 remain part of the instance
but they will play no particular role in the induction. This is exactly the reason
for which we allowed T (i1, . . . , ik) to have additional tasks with at least one 0
entry.

2nd Part: We can now assume that there is some T (i1, . . . , ik) for which the
above two conditions are satisfied, i.e, the mechanism allocates no non-dummy
task to the first player and at most one non-dummy task to each of the other
players.

The optimal cost is aik . Our aim is to find a task which is allocated to some
player j with value at least aik+1; we will then increase player j’s dummy 0 value
to aik . Then by Lemma 1, player j will get both tasks with total value at least
aik+1 + aik . If the optimal value is still aik , then the approximation ratio is at
least 1 + a. However, when we raise the dummy 0 to aik we may increase the
optimal value. The crux of the proof is that there is always an allocated value
of at least aik+1 for which this bad case does not occur. To find such a value we
consider two cases:

Case 1: The algorithm assigns a task with value at least aik+1 to one of the
last n− k players. This is the easy case, because we increase the dummy 0 value

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms 461

of this player to aik and the optimum is not affected. The reason is that we can
allocate the non-dummy tasks to the first k players with cost aik .

Example 1. Consider the following instance with n = 5 and k = 3. Suppose that
the mechanism has the allocation indicated by the stars.

⎛

⎜⎜⎜⎜⎝

0∗ ∞ ∞ ∞∞ 1 a a3

∞ 0∗ ∞ ∞∞ a a2 a4∗
∞ ∞ 0∗ ∞ ∞ a2∗ a3 a5

∞∞∞ 0∗ ∞ a3 a4∗ a6

∞∞∞∞ 0∗ a4 a5 a7

⎞

⎟⎟⎟⎟⎠

Then we can raise the dummy 0 of the 4-th player to a3. This does not affect
the optimum (which is a3) but raises the cost of the 4-th player to a4 + a3.

Case 2: The value of all tasks assigned to the last n− k players is at most aik .
Consequently the indexes i�s are not successive integers (Remark 1). Let q be
the length of the last block of successive indexes, i.e., k−q is the maximum index
where there is a gap in the i�’s. More precisely, let k− q be the maximum index
for which ik−q + 1 < ik−q+1. Since player 1 gets no non-dummy task, there is a
player p ∈ {q + 1, . . . , n} such that some of the last q tasks is allocated to p. We
raise the dummy 0 value of player p to aik .

We have to show two properties: First that the allocated value to p was at least
aik+1 and that the optimum is not affected. Indeed, the first property follows
from the fact that p > q (and by the observation that all values of the last q tasks
for the players in {q + 1, . . . , n} are at least aik+1). To show that the optimal
solution is not affected consider the allocation which assigns

– the �-th from the end non-dummy task to the �-player, for � < p
– the �-th from the end non-dummy task to the (� + 1)-player, for � ≥ p

Notice that this allocation assigns no non-dummy task to the p-th player, as it
should. The p-th player is allocated the dummy task which was raised from 0 to
aik . Also, since there is a gap at the k − q position, all allocated values are at
most aik .

Example 2. Consider the following instance with n = 5, k = 3, and q = 2.
Suppose that the mechanism has the allocation indicated by the stars.

⎛

⎜⎜⎜⎜⎝

0∗ ∞ ∞ ∞∞ 1 a2 a3

∞ 0∗ ∞ ∞∞ a a3∗ a4

∞∞ 0∗ ∞ ∞ a2 a4 a5∗
∞ ∞∞ 0∗ ∞ a3∗ a5 a6

∞∞∞∞ 0∗ a4 a6 a7

⎞

⎟⎟⎟⎟⎠

Then p = 3, and we can raise the dummy 0 of the 3-rd player to a3. This does
not affect the optimum (which allocates the a3 values), but raises the cost of the
4-th player to a5 + a3 ≥ a4 + a3.

462 E. Koutsoupias and A. Vidali

With the above lemma, we can easily prove the main result:

Proof (Proof of Theorem 1). Consider the instance
⎛

⎜⎜⎜⎜⎜⎝

0 ∞ · · · ∞ ∞ 1 a · · · an−2

∞ 0 · · · ∞ ∞ a a2 · · · an−1

. . .
∞∞ · · · 0 ∞ an−2 an−1 · · · a2n−4

∞∞ · · · ∞ 0 an−1 an · · · a2n−3

⎞

⎟⎟⎟⎟⎟⎠
.

By the previous lemma, either the approximation ratio is at least 1 + a or all
non-dummy tasks are allocated to the first player. In the latter case, we raise
the dummy 0 of the 1-st player to an−1. The optimal cost becomes an while the
cost of the first player is 1 + a + a2 + . . . + an−1.

The approximation ratio is at least

min{1 +
1
a

+
1
a2

+ . . . +
1

an−1
, a + 1}.

We select a so that

1 +
1
a

+
1
a2

+ . . . +
1

an−1
= 1 + a. (1)

For n→∞, this gives
1

1−
1
a

= 1 + a.

Thus a2 = 1 + a, and the solution to this equation is a = φ. So the approx-
imation ratio of any mechanism is at least 1 + φ. For fixed number of players
n, the solution of Equation 1 determines a lower bound for the approximation
ratio. For small values of n, the approximation ratio is less than 1 + φ but it
converges to it rapidly, as shown in Table 1.

Table 1. The lower bound given by Theorem 1 for a small number of machines

n 2 3 4 5 6 7 8 . . . ∞
1 + a 2 2.324 2.465 2.534 2.570 2.590 2.601 . . . 1 + φ

References

1. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for
scheduling selfish related machines. In: 22nd Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pp. 69–82 (2005)

2. Archer, A.: Mechanisms for Discrete Optimization with Rational Agents. PhD
thesis, Cornell University (January 2004)

A Lower Bound of 1 + φ for Truthful Scheduling Mechanisms 463

3. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In: Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 205–214. ACM Press, New York (2003)

4. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: 42nd
Annual Symposium on Foundations of Computer Science (FOCS), pp. 482–491
(2001)

5. Babaioff, M., Lavi, R., Pavlov, E.: Mechanism design for single-value domains. In:
Proceedings, The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI),
pp. 241–247 (2005)

6. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi unit combinatorial
auctions. In: Proceedings of the 9th Conference on Theoretical Aspects of Ratio-
nality and Knowledge (TARK), pp. 72–87 (2003)

7. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-
anism design. In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC), pp. 39–48. ACM Press, New York (2005)

8. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 1163–1169. ACM Press, New York (2007)

9. Clarke, E.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971)
10. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial

auctions with complement-free bidders. In: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing (STOC), pp. 610–618. ACM Press, New York
(2005)

11. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combi-
natorial auctions. In: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing (STOC), pp. 644–652. ACM Press, New York (2006)

12. Christodoulou, E.K.G., Kovacs, A.: Mechanism design for fractional scheduling on
unrelated machines. In: ICALP’07 (to appear, 2007)

13. Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)
14. Gui, H., Müller, R., Vohra, R.V.: Dominant strategy mechanisms with multidi-

mensional types. In: Computing and Markets (2005)
15. Hochbaum, D.S.: Approximation algorithms for NP-hard problems. PWS Publish-

ing Co. Boston, MA, USA (1996)
16. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-

tical processors. J. ACM 23(2), 317–327 (1976)
17. Kevin, R.: The characterization of implementable choice rules. Aggregation and

Revelation of Preferences, 321–348 (1979)
18. Kovacs, A.: Fast monotone 3-approximation algorithm for scheduling related ma-

chines. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 616–
627. Springer, Heidelberg (2005)

19. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combina-
torial auctions. In: 44th Symposium on Foundations of Computer Science (FOCS),
pp. 574–583 (2003)

20. Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling
via cycle-monotonicity. In: Proceedings 8th ACM Conference on Electronic Com-
merce (EC), ACM Press, New York (2007)

21. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46(1), 259–271 (1990)

464 E. Koutsoupias and A. Vidali

22. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1143–1152. ACM Press, New York (2007)

23. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Computing
(STOC), pp. 129–140. ACM Press, New York (1999)

24. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35, 166–196 (2001)

25. Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.
In: Proceedings 6th ACM Conference on Electronic Commerce (EC), pp. 286–293.
ACM Press, New York (2005)

26. Vickrey, W.: Counterspeculations, auctions and competitive sealed tenders. Journal
of Finance 16, 8–37 (1961)

Analysis of Maximal Repetitions in Strings�

Maxime Crochemore1,�� and Lucian Ilie2,���,†

1 Institut Gaspard-Monge, Université de Marne-la-Vallée
77454 Marne-la-Vallée, Cedex 2, France

mac@univ-mlv.fr
2 Department of Computer Science, University of Western Ontario

N6A 5B7, London, Ontario, Canada
ilie@csd.uwo.ca

Abstract. The cornerstone of any algorithm computing all repetitions
in strings of length n in O(n) time is the fact that the number of maximal
repetitions (runs) is linear. Therefore, the most important part of the
analysis of the running time of such algorithms is counting the number
of runs. Kolpakov and Kucherov [FOCS’99] proved it to be cn but could
not provide any value for c. Recently, Rytter [STACS’06] proved that
c ≤ 5. His analysis has been improved by Puglisi et al. to obtain 3.48
and by Rytter to 3.44 (both submitted). The conjecture of Kolpakov and
Kucherov, supported by computations, is that c = 1. Here we improve
dramatically the previous results by proving that c ≤ 1.6 and show how
it could be improved by computer verification down to 1.18 or less. While
the conjecture may be very difficult to prove, we believe that our work
provides a good approximation for all practical purposes.

For the stronger result concerning the linearity of the sum of expo-
nents, we give the first explicit bound: 5.6n. Kolpakov and Kucherov
did not have any and Rytter considered “unsatisfactory” the bound that
could be deduced from his proof. Our bound could be as well improved
by computer verification down to 2.9n or less.

Keywords: Combinatorics on words, repetitions in strings, runs, maxi-
mal repetitions, maximal periodicities, sum of exponents.

1 Introduction

Repetitions in strings constitute one of the most fundamental areas of string com-
binatorics with very important applications to text algorithms, data compres-
sion, or analysis of biological sequences. They have been studied already in the
papers of Axel Thue [20], considered as having founded stringology. While Thue
was interested in finding long sequences with few repetitions, one of the most
important problems from the algorithmic point of view was finding all repetitions

� This work has been done during the second author’s stay at Institut Gaspard-Monge.
�� Research supported in part by CNRS.

��� Corresponding author.
† Research supported in part by CNRS and NSERC.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 465–476, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

466 M. Crochemore and L. Ilie

fast. A major obstacle for a linear-time algorithm was finding a way to encode
all repetitions in linear space. The problem was studied first by Crochemore [2]
where maximal (non-extendable) integer powers were introduced and an (opti-
mal) O(n logn) algorithm for finding them all was given. Moreover, the bound
was shown to be optimal as it is reached by the Fibonacci strings.

Occurrences of fractional repetitions were considered next, of right-maximal
(non-extendable to the right) repetitions by Apostolico and Preparata [1] and
then of maximal (non-extendable both ways, called runs for the rest of the
paper) repetitions by Main [15] who gave a linear-time algorithm for finding all
leftmost occurrences of runs. Iliopoulos et al. [9] showed that for Fibonacci strings
the number of maximal repetitions is linear. Even if their result applies to a
particular class of strings, it is important since the Fibonacci strings were known
to contain many repetitions. The breakthrough came in the paper of Kolpakov
and Kucherov [12], where it was finally proved that encoding all occurrences of
repetitions into runs was the right way to obtain a linear-sized output. They
modified Main’s algorithm to compute all runs in linear time; see [11]. For more
details on various algorithms computing repetitions, see Chapter 8 of [14].

Kolpakov and Kucherov [12] showed that the number of runs in a string of
length n is at most cn but their proof could not provide any value for the constant
c. Another breakthrough came very recently, when Rytter [17] proved that c ≤ 5.
Puglisi et al. [16] improved Rytter’s analysis to bring the constant down to 3.48
and then Rytter [18] produced his own version of the improved analysis with a
constant factor of 3.44. The fact that the two bounds are so close may show that
the ideas in Rytter’s initial paper have been well squeezed.

The conjecture in [12] is that c = 1 for binary alphabets, as supported by
computations for string lengths up to 31. A stronger conjecture is proposed in
[6] where a family of strings is given with the number of runs equal to 3

2φ =
0.927 . . . (φ is the golden ratio), thus proving c ≥ 0.927 The authors of [6]
conjectured that this bound is optimal. Some reasons which might indicate that
the optimal bound may be less than n are discussed in Section 7. The proof
of [12] is extremely long and complex and the one of [17] is still very intricate.
(The improvements in [16] and [18] only make a careful analysis of the ideas of
[17].) A simple proof for the linearity is given by the authors in [3] where an
improvement of the notion of neighbors of [17] is introduced.

It is interesting to note that the number of runs having the same starting
point is logarithmic, due to the three-square lemma of [4], that is, they are not
uniformly distributed, which makes proving linearity hard. The situation is even
worse for centers (beginning of the second period of the run – see next section
for details) where linearly many runs can share the same center. However, while
Rytter [17] counted runs by their beginnings, we count them by centers and
obtain much better results. A more detailed comparison of the two approaches
is included in Section 3.

In this paper we improve significantly the previous results by proving the
bound 1.6n on the number of runs in a string of length n. This bound can
be lowered a bit by extra effort for the runs with short periods, but we show

Analysis of Maximal Repetitions in Strings 467

also how it could be improved by computer verification down to 1.18n or even
further. Note that this bound has an important direct impact on the running
time of all algorithms computing all repetitions since it says how many runs we
expect the algorithm to output. It is important as well from mathematical point
of view, that is, to find the best upper bound on the number of runs, and from
algorithm-design point of view, as it may lead to simpler algorithms for finding
all repetitions (the algorithm of [11] uses relatively complicated data structures
such as suffix trees). While the conjecture may be very difficult to solve, we
believe that our work provides a good approximation for all practical purposes.

The approach in [3] is used also to give a simple proof for the stronger result
concerning the linearity of the sum of exponents. This result has been proved
by Kolpakov and Kucherov [10]. (It follows also from Rytter’s construction in
[17].) It has applications to the analysis of various algorithms, such as computing
branching tandem repeats: the linearity of the sum of exponents solves a conjec-
ture of [19] concerning the linearity of the number of maximal tandem repeats
and implies that all can be found in linear time. For other applications, see [10].

But the proof of [10] is very complex and could not provide a constant. A
bound can be derived from the proof of Rytter [17] but he mentioned only that
the bound that he obtains is “unsatisfactory.” It seems to be 25n. The improved
analysis in [18] does not mention the sum of exponents at all. We provide here
the first explicit bound, which is 5.6n. As with the other bound, extra effort
for the runs with short periods can lower the bound, but we show how it could
be improved by computer verification down to 2.9n or further. As mentioned in
[10], computations seem to indicate a 2n bound.

The paper is organized as follows. In the next section we give the basic def-
initions needed in the paper. The new bound is given in the Section 3 which
contains also a comparison between our approach and the one of Rytter [17,18].
Our approach is more accurate for both long and short periods. The analyses
needed for the new bound are presented in Section 4, for runs with arbitrarily
long periods, and Section 5, for runs with periods 9 or less. The sum of expo-
nents in discussed in Section 6. Some comments on both bounds, as well as ways
to improve them further by computer verification are included in Section 7. We
conclude with a discussion on several other related problems. Some proofs are
omitted due to lack of space.

2 Definitions

Let A be an alphabet and A∗ the set of all finite strings over A. We denote by |w|
the length of a string w, its ith letter by w[i] and the factor w[i]w[i + 1] . . . w[j]
by w[i . . j]. We say that w has period p iff w[i] = w[i+p], for all i, 1 ≤ i ≤ |w|−p.
The shortest period of w is called the period of w. The ratio between the length
and the period of w is called the exponent of w.

For a positive integer n, the nth power of w is defined inductively by w1 = w,
wn = wn−1w. A string is primitive if it cannot be written as a proper (two or
more) integer power of another string. Any string can be uniquely written as

468 M. Crochemore and L. Ilie

an integer power of a primitive string, called its primitive root. The following
well-known synchronization property will be useful for us: if w is primitive, then
w appears as a factor of ww only as a prefix and as a suffix (not in-between).
Another property we use is Fine and Wilf ’s periodicity lemma: If w has periods
p and q and |w| ≥ p + q, then w has also period gcd(p, q). (This is a bit weaker
than the original lemma which works as soon as |w| ≥ p + q − gcd(p, q), but
it is good enough for our purpose.) We refer the reader to [13,14] for further
information on all concepts used here.

For a string w, a run1 (or maximal repetition) is an interval [i . . j] such
that both (i) the factor w[i . . j] has its shortest period at most j−i+1

2 and
(ii) w[i − 1 . . j] and w[i . . j + 1], if defined, have a strictly higher shortest
period. As an example, consider w = abbababbaba; [3 . . 7] is a run with pe-
riod 2 and exponent 2.5; we have w[3 . . 7] = babab = (ba)2.5. Other runs are
[2 . . 3], [7 . . 8], [8 . .11], [5 . . 10] and [1 . . 11].

By definition, a run is a maximal occurrence of a repetition of exponent at
least two. Therefore, it starts with a square and continues with the same period.
But the square is the only part of the run we can count on. Therefore, for a
run starting at i and having period |x| = p, we shall call w[i . . i + 2p− 1] = x2

the square of the run. Note that x is primitive and the square of a run is not
left-extendable (with the same period) but may be extendable to the right. The
center of the run is the position c = i + p. We shall denote the beginning of the
run by ix = i, the end of its square by jx = ix + 2p− 1, and its center by cx = c.

3 The Bound

The idea is to group together the runs having close centers and similar periods
and then prove that we have only one on the average in each group. For any δ > 0,
two runs having squares x2 and y2 are δ-close if both (i) |cx − cy| ≤ δ and (ii)
2δ ≤ |x|, |y| ≤ 3δ. Abusing the language, we shall sometimes say that the squares,
instead of the runs, are δ-close. Another notion that we shall use frequently is
that of runs with the periods between 2δ and 3δ; we shall call those δ-runs.

We prove (Section 4) that the number of runs is highest when, for all δ, any
interval of length δ contains only one center of a δ-run. That means that the
number of δ-runs in a string of length n is at most n

δ . We could then sum up
for a sequence δ1, δ2, . . . of values of δ such that the corresponding intervals
[2δi . . 3δi] collectively cover the set of all possible periods but we make one
further improvement. Since any bound for arbitrarily long runs performs poorly
on runs with short periods, we bound separately the number of runs with short
periods; precisely we prove that there are at most n runs with period at most 9
in any string of length n (Section 5).

Summing up the above for all values δi = 10
2

(
3
2

)i, i ≥ 0, to cover all periods
greater than 9, we obtain the following upper bound for the number of runs in
a string of length n, which is the main result of our paper:
1 Runs were introduced in [15] under the name maximal periodicities; they are called

m-repetitions in [12] and runs in [9].

Analysis of Maximal Repetitions in Strings 469

n +
∞∑

i=0

n

δi
= n +

(
2
10

∞∑

i=0

(2
3

)i
)
n = 1.6n . (1)

Theorem 1. The number of runs in a string of length n is less than 1.6n.

Our approach differs from the one of Rytter [17] in several respects. First, our
notion of δ-closeness is different from his notion of neighbors. We consider the
case when the centers of the runs are close to each other as opposed to beginnings
as this gives us a better overlap between the runs. Thus we can choose a better
interval length for the periods. Second, we make a combinatorially finer analysis
of the close runs which enables us to count all runs together; [17] splits them into
weekly and highly periodic. Doing so, the proof becomes conceptually simpler.
For runs with long periods we can say that our approach is about ten times
better than Rytter’s. He explicitly states that the number of runs with periods
larger than 87 is at most 0.67n. With our approach, this number is about ten
times smaller:

(
2
87

∑∞
i=0

(
2
3

)i)
n ≤ 0.06897n . Third, our approach for runs with

short periods is different from the one of [17]. We essentially verify that the
conjecture is true up to a certain threshold for the periods of the runs. Due to
the complexity of the analysis, we restricted this threshold to 9 but it can be
checked automatically for higher thresholds, every time improving the bound.
More on this is in Section 7.

4 Runs with Close Centers

In this section we show that, for a given δ, each interval of positions of length δ
contains at most 1 center of a δ-run on the average. The result is used for runs
having a period greater than 9 in the sum (1).

We investigate what happens when two (or, sometimes, three) runs in a string
w are δ-close. Denote their squares by x2, y2, z2, their root lengths by |x| = p,
|y| = q, |z| = r, and assume p ≤ q ≤ r.

We discuss below all ways in which occurrences of x2 and y2 can be positioned
relative to each other and see that long factors of both runs have short periods.
When we have only two δ-close runs, synchronization properties show that the
next (to the right) interval of length δ (as counted in (1)) does not contain any
center of a δ-run.

When we have three δ-close runs, z2 has to synchronize the short periods men-
tioned above, which restricts the beginning of z2 to only one choice as otherwise
some run would be left extendable (which is not possible). Stronger periodicity
properties are implied by the existence of the third run and we can find an inter-
val of length at least 4δ which contains no other center of δ-runs. Such an interval
covers at least three intervals of length δ no matter how the decomposition of
[1 . . n] into such intervals is done. Thus, less runs than in (1) are obtained.

It is also possible to have arbitrarily many δ-close runs, that is, when they all
have the same center; case (i). A similar global counting approach is performed
in this case. The existence of such runs implies strong periodicity properties of

470 M. Crochemore and L. Ilie

�

xx

x

J

y y

�′

Fig. 1. The runs with the same center in case (i)

a factor of w and we exhibit a long interval without any center of runs with
certain periods. In total, less runs than in (1) are obtained.

There can exist several δ-close runs such that some of them only share the
same center. Therefore, we shall discuss the case of many runs having the same
center first. It helps solving some situations in the other cases.

(i) cx = cy. First, both x and y have the same small period � = q−p; see Fig. 1.
If we denote c = cy then we have h = 	 q

q−p
 runs xαj

j , 2 ≤ αj ∈ Q, for 1 ≤ j ≤ h,
having period |xj | = (j − 1)� + �′ and beginning at ixj = c − ((j − 1)� + �′).
If we set xj = uj−1u′, with |u| = �, |u′| = �′, then the last letters of u and
u′ are different, as otherwise x would be left-extendable. As an example, take
w = (ab)6aa(ba)6, where c = 14, h = 7, � = 2, �′ = 1, u = ab, and u′ = a.

We show that for h ≥ 6 we have less runs than in (1). Note that only for h ≥ 7
we can have three of the x

αj

j s mutually δ-close. Therefore, we may assume for
cases ((ii)–(v)) that there are no three δ-close runs with the same center.

There exists δi0 such that �
2 ≤ δi0 ≤ 3�

4 , that is, this δi0 is considered in (1).
The periods corresponding to δi0 are between � and 9

4�.
We claim that there is no run in w with period between � and 9

4� and center
inside the interval J = [c+ �+1 . . c+(h−2)�+ �′]. Indeed, assume there is a run
with the initial square t2, ct ∈ J . If it ≥ c, then the prefixes of length � of the
first and second occurrences of t, respectively, must synchronize. If it > c, then
t2 is left-extendable, a contradiction. If it = c, then � divides |t| and hence t is
not primitive, a contradiction. If it < c, then synchronization is obtained (either
the prefixes or the suffixes of length � of the two occurrences of t synchronize)
and we get that the last letters of u and u′ are the same, a contradiction.

Then, the length of J is larger than (h − 3)� which in turn is larger than
(h− 2)δi0 (since 3� ≥ 4δi0 and h ≥ 6). Thus J covers at least h− 3 intervals of
length δi0 that would contain, if considered in (1), h− 3 runs. This is enough as
we need to account, for each δ from (1), for the extra runs, that is, all but one.
At least three δs are needed for all our h runs, so we need to account for at most
h− 3 runs, which we already did.

We need also mention that these h intervals of length δi0 are not reused by
a different center with multiple runs since such centers cannot be close to each
other. Indeed, assume we have two centers cj with the above parameters hj , �j ,
j = 1, 2. Then the periods satisfy �j

2 ≤ δi0 ≤
3�j

4 , j = 1, 2, and so �j ≤ 3
2�3−j ,

j = 1, 2. As soon as the longest runs with centers at c1 and c2, respectively,
overlap over �1 + �2 positions, we have �1 = �2, due to Fine and Wilf’s lemma.
Thus, the closest positions of J1 and J2 cannot be closer than �1 = �2 ≥ δi0 as
otherwise some of the runs become non-primitive, a contradiction.

Analysis of Maximal Repetitions in Strings 471

z

cz is here

δ
δI

J

I + r

x x

x

y y

z

Fig. 2. Relative position of x2, y2 and z2 in case (ii)

(ii) (iy < ix) < cy ≤ cx < ex ≤ ey. Then x and the suffix of length cy − ix +
(q − p) of y have period q − p; see Fig. 2. (Only the periods to the left of ey are
implied by x2 and y2, the ones to the right of ey are obtained in the case when
a third run, z2, exists – see below.) We may assume this period is a primitive
string as otherwise we can make the same reasoning with its primitive root.

It is not difficult to see that no δ-run can have its center in the interval
[cy + δ . . cy + 2δ] as it would be left extendable. This argument is sufficient for
the case when no third δ-close run exists.

If there is a third run, z2, then we need a stronger argument to account
for the three centers in the same interval of length δ. Since z2 is δ-close to
both x2 and y2, it must be that cz ∈ [cx − δ . . cy + δ]. Consider the interval
of length q − p that ends at the leftmost possible position for cz, that is, I =
[cx − δ − (q − p) . . cx − δ − 1]; see Fig. 2. The following arguments show that it
is included in the first period of z2, that is, [iz . . cz − 1], and in [ix . . cy − 1]. It
is clear that I ends before both cz − 1 and cy − 1. The other two inequalities
are proved as follows. First iz = cz − r ≤ cy + δ − q ≤ cx + p − δ − q. Then
ix = cx − p ≤ cx − δ − q + p. Subsequently, all such inequalities can be proved
similarly and are left as exercises.

Thus w[I] is primitive and equal, due to z2, to w[I + r] which is contained in
[cx . . ey]. Therefore, the periods inside the former must synchronize with the ones
in the latter. It follows, in the case iz > ix − (q − p), that w[iz − 1] = w[cz − 1],
that is, z2 is left extendable, a contradiction. If iz < ix−(q−p), then w[cx−1] =
w[ix− (q−p)−1] = w[ix−1], that is, x2 is left extendable, a contradiction. The
only possibility is that iz = ix − (q − p) and r equals q plus a multiple of q − p.
Here is an example that this is indeed possible: w = baabababaababababaab,
x2 = w[5 . . 14], y2 = w[1 . . 14], and z2 = w[3 . . 20].

The existence of z2 implies that the period of the second occurrence of y
extends past ey, as seen in Fig. 2. Consider the interval J = [iz + 2(q− p) . . ez−
2(q− p)]. The existence of a fourth δ-run with center inside J but different from
cx would imply that either x2 or z2 is left extendable, a contradiction. (Note that
we allowed the length of two (q−p)-periods at either end of J so that the hiccup
of the period ending at cx does not cause any problems.) On the other hand, such
a run can have cx as its center. If so, then all such runs are accounted for by case
(i) since we have at least three periods at cx between 2δ and 3δ: q, q − (q − p),
and q−2(q−p). The length of J is 2r−4(q−p) ≥ 2(q+q−p)−4(q−p) = 2p ≥ 4δ

472 M. Crochemore and L. Ilie

and therefore it covers at least three intervals of length δ. In total, we have at
most the number of runs as counted in (1).

The three remaining cases are similar with (ii). We proved

Proposition 1. There is at most 1 center of a δ-run on average in each interval
of length δ.

5 Microruns

We prove in this section that the number of runs with periods at most 9, which
we call microruns,2 in a string of length n is at most n. All runs we are talking
about in this proof have periods at most 9.

The idea of the proof is as follows. We pick an arbitrary position i and con-
sider all possible microruns with center at i. Then we show that the number of
microruns with centers in an interval [i − j . . i] is at most j where j can vary
but is always less than 5. Put otherwise, any position with two or more centers
of microruns is amortized within up to 4 previous positions to its left.

For the analysis, the number of possible subsets of periods is very high (29 =
512) but we have the following lemma to help. It not only reduces significantly
the number of cases but it helps with the analysis of each case as well.

Assume we have a string w. We shall say that w has p at i if there is a run
with period p and center at position i in w. Denote also C(i) = {p | p at i}.
(This set depends also on w but we shall consider w implicit and omit it.)

Note that there are two differences between (a run of period) p (and center)
at i and a period p centered at i: the former is not left-extendable and its root
is primitive whereas the latter may have none of the two properties.

Lemma 1. Consider a string w and the periods p and p − �, 0 < � < p. Let h
be the smallest integer such that h� ≥ p (h = 	p/�
).

(i) (periods) If w has the period p − � at i and the period p at i + j or i− j
with j ≤ �, then w has the also periods p− k�, 2 ≤ k ≤ h− 1, at i.

(ii) (runs) If w has p− � at i and either (a) p at i + j with j ≤ �− 1, or (b)
p at i− j with j ≤ �, then w has p− k� at i, for 2 ≤ k ≤ h− 3 (that is, all but
the shortest two).

Another useful remark, with an obvious proof, is next.

Remark 1. If p at i, then there is not p at j for any j, i− p ≤ j ≤ i + p, j �= i.

It is also obvious how Remark 1 is used. As far as Lemma 1 is concerned, it can
be used in many ways. The first is, as already announced, to reduce as much as
possible sets of periods of microruns with the same center. For instance, if we
do not have periods 1,2,3 at i but do have 5, then we cannot have anything else:
having 4 would imply having 1,2,3; 6 implies 1,2,3,4; 7 implies 1,3; 8 implies 2;
9 implies 1. This way our potential 512 cases are reduced to 24.
2 By analogy with the microsatellites in bioinformatics; these correspond to the con-

catenation of short DNA sequences (1 to 4 nucleotides) that are similar.

Analysis of Maximal Repetitions in Strings 473

The lemma helps also with the analysis. For example, consider the case when
C(i) = {1, 3}. We shall use many times the lemma without mentioning. What
we know so far about w is that w[i − 4 . . i + 2] = aabaaba, where a �= b and a
means any letter different from a. The smallest element of C(i − 1) is 5. If we
have 5 at i− 1, then w[i− 7 . . i + 3] = baababaabab. Thus, C(i − 1) = {5} and
C(i− 2) = ∅, which means that the two centers at i are amortized, in this case,
within the previous two positions, since the total number of centers inside the
interval [i− 2 . . i] is 3. If there is not 5 at i− 1, then the next that can be is 7
and the reasoning is identical. If there is not 7 at i− 1, the next can be 8. If so,
then C(i− 1) = {8} and the only possible (but not necessary) candidate at i− 2
is 2. If there is 2 at i− 2 then C(i− 2) = {2}, C(i− 3) = ∅, and in this case the
two centers at i are amortized within the previous three positions.

The reasoning continues like this until all possibilities are completely analyzed.
Actually the case C(i) = {1, 3} has the longest analysis and there are very few
comparable ones. This is the reason why we proved the result for periods up to
9. For higher numbers it gets quickly too complicated. It proves the result we
claimed at the beginning of the section:

Lemma 2. The number of runs with periods at most 9 in a string of length n
is bounded by n.

6 Sum of Exponents

We give in this section our bound on the sum of exponents which relies heavily
on the results we have proved so far. The strategy is similar. We show that the
sum of exponents of runs with periods four or less is at most 2n.

Lemma 3. The sum of exponents of runs with periods at most 4 in a string of
length n is bounded by 2n.

For runs with periods higher than 4, we shall use the discussion in Section 4
and Fine and Wilf’s lemma. The lemma can be rephrased as follows: For two
primitive strings x and y, any powers xα and yβ , α ≥ 2 and β ≥ 2, cannot have
a common factor longer than |x| + |y| as such a factor would have also period
gcd(|x|, |y|), contradicting the primitivity of x and y.

Next consider a fixed δ and two δ-runs, xα and yβ , α, β ∈ Q, and denote
their periods |x| = p and |y| = q. The strings xα and yβ cannot overlap more
than 2.5 min(p, q) as otherwise Fine and Wilf’s lemma would imply that x and
y are not primitive, a contradiction. Therefore, their suffixes xα−2.5 and yβ−2.5

(assuming the exponents large enough) cannot overlap at all. Therefore, the sum
of exponents of δ-runs is at most 2.5 times the number of runs plus whatever
exponent is left of each run after removing the prefix of exponent 2.5. For xα,
that means α−2.5 = |xα−2.5|

|x| ≤ |xα−2.5|
2δ and when summing up all these, as they

cannot overlap, we obtain n
2δ .

Assuming that the number of runs as above is at most n
δ and using Lemma 3,

we obtain the following bound on the sum of exponents, where δi = 5
2

(
3
2

)i
, i ≥ 0:

474 M. Crochemore and L. Ilie

2n +
∞∑

i=2

(
2.5

n

δi
+

n

2δi

)
= 2n +

(
3
2
5

∞∑

i=2

(2
3

)i
)
n = 5.6n . (2)

Note however, that in our analysis from Section 4, for the case (i) of many
runs with the same center, we accounted for some of the runs using other runs
with periods belonging to a different δ-class. That means the number of runs for
each δ need not be n

δ . Still our bound is exact because the runs we account for
in case (i) have very small exponents. Recall that we need to account, for each δ,
for all runs but one. Using the notation from case (i), any run x

αj

j , 2 ≤ j ≤ h−1,
cannot extend its period |xj | by more than � positions to the right past the end of
the initial square, and therefore has αj ≤ 2+ 1

j ≤ 2.5. The runs with the shortest
and the longest periods, xα1

1 and xαh

h , respectively, may have arbitrarily large
exponents but we need not account for either one. The bound in (2) therefore
holds and we proved

Theorem 2. The sum of exponents in a string of length n is less than 5.6n.

7 Comments

A small improvement of our main result in Theorem 1 can be rather easily
obtained as follows. We can make a better choice of the δis to cover all periods:

δ0 = 10
2 – covers the periods between 10 and 15,

δ1 = 16
2 – covers the periods between 16 and 24,

δi = 25
2

(
3
2

)i−2, for all i ≥ 2 – cover all periods larger than or equal to 25.

The bound becomes: n+
(

2
10 + 2

16 + 2
25

∑∞
i=2

(
2
3

)i−2
)
n = 1.565n . The method of

choosing values can be extended in the same manner to all δis but the improve-
ments to the final bound are less and less significant. One would have to modify
the proof of Theorem 1 to accommodate these changes, which is not difficult to
do, but we preferred to keep the proof simpler.

The proof technique in Section 5 can be automatized so that larger periods for
microruns can be considered. If one can prove it, for instance, for microruns with
periods up to 32, then the bound improves to 1.18n. A similar computer-aided
approach can be applied to the bound on the sum of exponents which could be
improved down to 2.9n, assuming one can verify that the result in Lemma 3
holds for runs with periods up to 20.

Actually solving the conjecture using the above approach may be possible but
certainly not easy. For instance, one could attempt to verify by computer that
the number of runs with periods less than 40 is at most 0.85n (the remaining
ones are less than 0.15n by our reasoning) but this seems very difficult.

We need to comment a bit more here. Our approach essentially approximates
the number of runs, as it is very difficult, if not impossible, to account for all
runs in this way. Therefore, the fact that we can attempt solving the conjecture
shows, on the one hand, that our approach must be very close to reality, that

Analysis of Maximal Repetitions in Strings 475

is, the approximation we obtain is very good, yet, on the other, we believe that
the bound n is not optimal as we seem to be able to get too close to it. Recall
however, that it has to be more than 0.92n, according to the lower bound of [6],
that means, not too far away.

A promising approach is extending Lemma 1 to cover all periods. Of course,
removing the bound on the length of periods of microruns in Lemma 1 makes it
identical to the conjecture but we believe that the proof supporting the result
can be extended. Precisely, we conjecture that each position with two or more
centers can be amortized within at most half of the length of the longest possible
period of a run, that is, at most a quarter of the length of the string.

8 Further Research

We discuss here several related problems. The first one is old but the others are
proposed here.
Squares. As the number of all square occurrences in a string may be quadratic
and that of primitively rooted square occurrences can still be superlinear, as
already mentioned in the Introduction, it is natural to count squares, that is,
each square is counted only once no matter how many occurrences it has. As
proved by Fraenkel and Simpson [5], there are at most 2n squares in a string
of length n. A simple proof has been given by Ilie [7]. Based on the numerical
evidence, it has been conjectured that this number is actually less than n; see
also Chapter 8 of [14]. The best bound to date is 2n−Θ(log n) due to Ilie [8].

Runs. In this paper we counted in fact occurrences of repetitions because the runs
are defined as intervals. Inspired by the square problem, we may look at their
associated strings and count only the number of runs associated with different
strings. Note that the number of nonequivalent runs and that of squares do not
seem to be obviously related to each other. The same run may contain several
distinct squares (e.g., ababa contains the squares abab and baba) but we can
have also different runs corresponding to a single squares (e.g., aa and aaa can
be different runs but only the square aa is involved).

(2 + ε)+-Repetitions. A way to weaken the conjecture on the number of squares
is to increase the exponent of the repetition. Given a non-negative ε, one could
count only the number of repetitions of exponent 2 + ε or higher. We need
first to make it precise what we are talking about. We count primitively rooted
repetitions of exponent at least 2 + ε and having distinct roots. That is, xα and
yβ, x and y primitive, α ≥ 2 + ε, β ≥ 2 + ε, are different if and only if x �= y.

This conjecture might be easier to prove. At least for 2 + ε = 1 + φ, where φ
is the golden ratio, we can prove it immediately. We count each square at the
position where its rightmost occurrence starts and show that no two distinct
squares can have the same rightmost starting position. Assume x1+φ is a prefix
of y1+φ and denote |x| = p < q = |y|. Then necessarily |x1+φ| = (1+φ)p > φq =
|yφ| as otherwise x1+φ would have another occurrence to the right. That means
φ2p = (1+φ)p > φq, or φp > q. Therefore, the overlap between the two runs has

476 M. Crochemore and L. Ilie

the length |x1+φ| = (1 + φ)p = p + φp > p + q. Fine and Wilf’s lemma implies
that x and y are powers of the same string, thus not primitive, a contradiction.

References

1. Apostolico, A., Preparata, F.: Optimal off-line detection of repetitions in a string.
Theoret. Comput. Sci. 22(3), 297–315 (1983)

2. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inform. Proc. Letters 12, 244–250 (1981)

3. Crochemore, M., Ilie, L.: A simple proof that the number of runs in a word is linear
(manuscript, 2006)

4. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13, 405–425 (1995)

5. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Com-
bin. Theory, Ser. A 82, 112–120 (1998)

6. Franek, F., Simpson, R.J., Smyth, W.F.: The maximum number of runs in a string.
In: Miller, M., Park, K. (eds.) Proc. 14th Australasian Workshop on Combinatorial
Algorithms, pp. 26–35 (2003)

7. Ilie, L.: A simple proof that a word of length n has at most 2n distinct squares.
J. Combin. Theory, Ser. A 112(1), 163–164 (2005)

8. Ilie, L.: A note on the number of squares in a word. Theoret. Comput. Sci. 380(3),
373–376 (2007)

9. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a
Fibonacci string. Theoret. Comput. Sci. 172, 281–291 (1997)

10. Kolpakov, R., Kucherov, G.: On the sum of exponents of maximal repetitions in a
word, Tech. Report 99-R-034, LORIA (1999)

11. Kolpakov, R., Kucherov,G.: Finding maximal repetitions in a word in linear time. In:
Proc. of FOCS’99, pp. 596–604. IEEE Computer Society Press, Los Alamitos (1999)

12. Kolpakov, R., Kucherov, G.: On maximal repetitions in words. J. Discrete Algo-
rithms 1(1), 159–186 (2000)

13. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge Univ. Press, Cam-
bridge (2002)

14. Lothaire, M.: Applied Combinatorics on Words. Cambridge Univ. Press, Cam-
bridge (2005)

15. Main, M.G.: Detecting lefmost maximal periodicities. Discrete Applied Math. 25,
145–153 (1989)

16. Puglisi, S.J., Simpson, J., Smyth, B.: How many runs can a string contain? (sub-
mitted, 2006)

17. Rytter, W.: The number of runs in a string: improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

18. Rytter, W.: The number of runs in a string (submitted, 2006)
19. Stoye, J., Gusfield, D.: Simple and flexible detection of contiguous repeats using a

suffix tree. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 140–152.
Springer, Heidelberg (1998)

20. Thue, A., Zeichenreihen, Ü.u.: Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl. Cris-
tiana 7 (1906)

Series-Parallel Languages on Scattered and

Countable Posets

Nicolas Bedon and Chloé Rispal

Université de Paris-Est, CNRS
Laboratoire d’informatique de l’Institut Gaspard Monge, UMR CNRS 8049

5, boulevard Descartes, Champs-sur-Marne
77454 Marne-la-Vallée Cedex 2, France

Nicolas.Bedon@univ-mlv.fr, Chloe.Rispal@univ-mlv.fr

Abstract. We initiate a study on automata recognizing labelled posets
constructed from scattered and countable linear orderings. More pre-
cisely, the class of labelled posets considered in this paper is the smallest
containing letters, closed under finite parallel operation and sequential
product indexed by all countable and scattered linear orderings. The first
result of this paper establishes that those labelled posets are precisely
the N-free ones. The second result is a Kleene-like theorem, which estab-
lishes that the class of languages of labelled posets accepted by branching
automata is exactly the class of rational languages. This generalizes both
the finite [9] and ω-labelled posets [2,6] cases, and the Kleene-like theo-
rem on words on linear orderings [3].

1 Introduction

In concurrency theory, actions are partially ordered and the order in which in-
dependent actions are executed is irrelevant or unknown. Several theoretical
frameworks are used in order to model concurrency. Let us cite, as examples,
Petri nets, Mazurkiewicz’s traces, or rational posets. In Mazurkiewicz and traces
theory, the sequences of actions are modeled as linear words in which some let-
ters commute: if the action a commutes with b, then the word abc is identified
with bac. An other approach consists in modeling a sequence of actions with a
partially ordered set (poset), where two incomparable elements represent actions
that can be concurrently executed. Thus, a sequence of actions which contains a
and b with indifferent order and ends with c is modeled indifferently by (a ‖ b)c
or (b ‖ a)c. The class of labelled posets used in this approach, usually named
series-parallel labelled posets, is the smallest containing the letters and closed un-
der finite union (also named parallel product) and sequential (or series) product.
This class has also been characterized in other terms, by an examination of the
relation order between all 4-tuples of elements: the series-parallel labelled posets
are exactly the N -free labelled posets [12,13]. Lodaya and Weil defined branching
automata for the recognition of languages of such finite labelled posets. They
also introduced rational expressions equivalent to automata [9], and studied rec-
ognizability by algebra [7,8]. Automata and algebra are not in general equivalent

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 477–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

478 N. Bedon and C. Rispal

as in the sequential word case: the two formalisms coincide only for languages
of bounded-width. Those results on finite labelled posets have been generalized
to ω-labelled posets. The class of ω-series-parallel labelled posets is obtained
from the series-parallel finite labelled posets with an ω-product operation. It
has been studied in [2] in the special case where the ω-product is the infinite
repetition of a given finite labelled posets, and more generally in [6,5]. Again,
the ω-series-parallel labelled posets are precisely the N -free ω-labelled posets.
Rational expressions, automata and algebra adapted to the ω case have been
introduced, and the results from the finite case extended.

In this paper, these notions are generalized again to a wider class of infinite
labelled posets. Actually, we are interested in labelled posets constructed from
the letters and closed under finite parallel product and J-sequential product,
where J is any scattered (nowhere dense) and countable linear ordering. This
includes in particular the finite and ω cases. We first prove that the class of
such labelled posets coincides again with the N -free labelled posets. Then, we
introduce branching automata adapted to such labelled posets, rational expres-
sions, and prove that a language of labelled posets is defined by an automaton
if and only if it is rational. The automata and rational expressions used are a
mixture between those of Lodaya and Weil for finite labelled posets, and those
introduced by Bruyère and Carton for words on linear orderings [3]. This could
be a first step in the study of algebraic and logical theories including both those
for linear orderings and finite posets.

The paper is organized as follows. Section 2 is devoted to notation and ba-
sic definitions. Section 3 contains several equivalent definitions of series-parallel
posets. In particular, we generalize the Hausdorff characterization of countable
and scattered linear orderings to series-parallel posets, and prove that a poset
is series-parallel if and only if it is N -free. This extends the well-known result
on finite and ω-posets. Words on posets and rational languages are defined in
Section 4, while branching automata are introduced in Section 5. A Kleene-like
theorem is proved in Section 6.

2 Notation and Basic Definitions

Let E be a set. We denote by P(E), P∗(E) and P+(E) respectively the set of
subsets of E, the set of non-empty subsets of E and the set of subsets of E with
at least two elements. For any integer n, the group of permutations of {1, . . . , n}
is denoted by Sn. Let J be a set equipped with an order <. The ordering J is
linear if all elements are comparable : for any distinct j and k in J , either j < k
or k < j. A linear ordering J is dense if for any j and k in J such that j < k,
there exists an element i of J such that j < i < k. It is scattered if it contains
no dense subordering. The ordering ω of natural integers and the ordering ζ of
all the integers (negative, 0 and positive) are scattered. More generally, ordinals
are scattered orderings. We denote by N the subclass of finite linear orderings,
O the class of countable ordinals and by S the class of countable scattered linear
orderings. We refer to [11] for more details on linear orderings and ordinals.

Series-Parallel Languages on Scattered and Countable Posets 479

3 Posets

A poset is a partially ordered set. A subset P ′ of a poset P is independent if all
elements of P ′ are incomparable. The width of P is

wd(P) = max{|E| : E is an independent subset of P} − 1

In the following, we restrict to countable scattered posets which are thus par-
tially ordered sets without any dense sub-ordering.

Let (P,<P) and (Q,<Q) be two disjoint posets.
The union of P and Q is the set P ∪ Q equipped with the orderings on P

and Q such that the elements of P and Q can not be compared. It is defined as
(P ∪Q,<) where x < y if and only if:

– x, y ∈ P and x <P y or
– x, y ∈ Q and x <Q y.

The sum of P and Q, denoted by P + Q is the poset (P ∪ Q,<) such that
x < y if and only if one of the following condition is true:

– x ∈ P , y ∈ P and x <P y;
– x ∈ Q, y ∈ Q and x <Q y;
– x ∈ P and y ∈ Q.

The finite sum of two posets can be generalized to any linearly ordered sequence
of posets: if J is a linear ordering and ((Pj , <j))j∈J is a sequence of posets,
then

∑
j∈J Pj = (∪j∈JPj , <) such that x < y if and only if one of the following

condition is true:

– x ∈ Pj , y ∈ Pj and x <j y;
– x ∈ Pj and y ∈ Pk and j < k.

Definition 1. The set SP � is defined as the smallest set containing the posets
with zero and one element and closed under finite union and sum indexed by
countable scattered linear orderings.

Note that any poset of SP � is countable, scattered and of finite width.
Hausdorff characterized the countable and scattered linear orderings using an

induction on ordinals: any such ordering can be obtained from the finite linear
orderings using finite sums, ω-sums and −ω-sums. We adapt such a characteri-
zation to countable and scattered posets:

Theorem 1. Let Ssp be the class of countable and scattered posets defined by
Ssp = ∪

α∈O
Wα where Wα is inductively defined by

V0 = {0, 1}
W0 = C∪,+(V0)

Vα = {
∑

i∈J

pi : J ∈ {ω,−ω} and ∀i ∈ J, pi ∈ ∪
β<α

Wβ}
⋃ ⋃

β<α

Wβ

Wα = C∪,+(Vα)

480 N. Bedon and C. Rispal

where 0 and 1 denote respectively the empty set and the poset with one element,
and C∪,+(E) denotes the closure of E under finite union and finite sum. Then
Ssp = SP �.

The rank r(p) of a countable and scattered poset p ∈ Ssp is the smallest ordinal
α such that p ∈Wα.

Posets can also be thought as oriented graphs, where the nodes are the ele-
ments of the posets and the edges represent the ordering relation. It is a well-
known result that the finite posets of SP � are precisely the N -free finite posets.
A poset P is N-free if it does not contain N as a subposet, that is if it does
not contain elements p, q, r, s ∈ P such that the ordering relations between those
four elements are precisely p < r, q < r and q < s. The poset N is pictured by
Figure 1.

r

p

s

q

Fig. 1. The poset N

Note that there exist two definitions of N -freeness in the literature. The reader
must be aware that the definition used in this paper is not the same as in [10].

The class of all scattered, countable and N-free posets of finite width is denoted
by NF �. Actually, if a poset P is represented as an oriented graph, the N-free
property can be expressed in terms of paths. Let p, q ∈ P and let n be an integer.
A path p → q from p to q of length n is a sequence (qi)i<n such that q0 = p,
qn−1 = q and either qi < qi+1 or qi > qi+1 for any i < n− 1. The poset P is said
to be connected if for any p, q ∈ P there exists a path from p to q. Otherwise, P
is disconnected.

Lemma 1. Let P be a N-free poset, let p and q be elements of P and let (qi)i<n

be a shortest path from p to q. Then n < 3.

The result on finite N -free [12,13] posets also extends to our case:

Theorem 2. NF � = SP �.

The proof of this theorem is based on the following property:

Remark 1. Any scattered, countable and N-free poset P of finite width can be
written as a sum indexed by a linear ordering of trivial or disconnected posets:

P =
∑

j∈J

Pj where J ∈ S and ∀j ∈ J

(|Pj | = 1) ∨ ∃m ∈ N, ∃(Pi,j)1<i≤m such that Pj = ∪
1<i≤m

Pi,j

Furthermore, the linear ordering J and the posets (Pj)j∈J are unique.

Series-Parallel Languages on Scattered and Countable Posets 481

p q

r

s t

u

v

w

Fig. 2. A N-free poset

Example 1. Let (P,<) be the poset represented by the graph of Figure 2. The
edges represent the relation “is an immediate predecessor of” induced by <.
Then P =

∑
j∈{0,1,2,3} Pj with P0 = {p}, P1 = {q}, P2 = {r, s, t, u, v}, P3 =

{w}, and P2 can be decomposed into P2 = P1,2 ∪ P2,2 with P1,2 = {r} and
P2,2 = {s, t, u, v}. Observe that P2,2 can also be decomposed using the same
principle.

Remark 2. The hypothesis “scattered” and “countable” on the elements of SP �

and NF � are not necessary in the statement of Theorem 2. Thus NF � = SP �

also holds for classes of posets with dense or uncountable parts, for example.

4 Rational Languages

Let A be a finite alphabet. A poset P labelled by A is a map which associates a
letter of A to any element of P . This generalizes the definition of words and such
a labelled poset is called a word of length P over A. The length of u is denoted
by |u| = P . We denote by SP �(A) the set of words over A whose lengths belong
to SP �.

4.1 Operations on Words

The operations of finite union and sum defined for posets correspond respectively
to the parallel and sequential product on words. Let u and v be two words of
SP �(A) of length respectively P and Q. The parallel product of u and v denoted
by u ‖ v is of length P ∪Q. It is defined as the map from the poset P ∪Q into
A such that its restriction to P is u and its restriction to Q is v. The sequential
product of u and v, denoted by u · v is of length P +Q. More generally, let J be
a linear ordering and let (uj)j∈J be words of respective length Pj for any j ∈ J .
The sequential product u =

∏
j∈J

uj obtained by concatenation of the words uj

with respect to the ordering on J has length P =
∑
j∈J

Pj . The sequence (uj)j∈J

of words is called a J-factorization of the word u =
∏
j∈J

uj .

A word u ∈ SP �(A) is a sequential word if it admits a J-factorization where J
contains more than one element. It is a parallel word otherwise. Using Remark 1,
any word u ∈ SP �(A) admits a unique factorization u =

∏
j∈J

uj such that J ∈ S

482 N. Bedon and C. Rispal

and ∀j ∈ J , uj is a parallel word. This factorization is called the maximal
sequential factorization of u.

A language over an alphabet A is a subset of SP �(A). The sequential and
parallel product of words can naturally be extended to languages. If L1, L2 ⊆
SP �(A), then L1 · L2 = {u ∈ SP �(A) : ∃v ∈ L1 ∃w ∈ L2 such that u = v · w}
and L1 ‖ L2 = {u ∈ SP �(A) : ∃v ∈ L1 ∃w ∈ L2 such that u = v ‖ w}.

4.2 Rational Languages

Let A and B be two alphabets and let u ∈ SP �(A), L ⊆ SP �(B) and ξ ∈ A. The
word u in which the letter ξ is replaced by the language L is denoted by L ◦ξ u.
This substitution is a language over the alphabet A ∪B defined inductively on
wd(|u|) by:

– if wd(|u|) = 0 and u is a letter, then either u = ξ and L ◦ξ u = L, or u is
a letter a �= ξ and L ◦ξ u = {u}. If wd(|u|) = 0 and u is not a letter, then
there exists J such that u =

∏
j∈J uj and uj is a letter for every j ∈ J . Then

L ◦ξ u =
∏

j∈J (L ◦ξ uj);
– if wd(|u|) > 0, and there exists n such that u =‖i<n ui, then L ◦ξ u =‖i<n

(L ◦ξ ui). Otherwise, by Remark 1, there exist a linear ordering J and a
factorization u =

∏
j∈J uj such that uj is either a letter or a parallel word.

Then L ◦ξ u =
∏

j∈J (L ◦ξ uj).

Using the previous definition of substitution on words, we define the substitu-
tion and the iterated substitution on languages. By the way the usual rational
operations on linear orderings are recalled. Let L and L′ be languages of SP �(A):

L ◦ξ L′ = {v ∈ SP �(A) : ∃u ∈ L′ such that v ∈ L ◦ξ u}
L∗ξ = ∪

i∈N
Liξ with L0ξ = {ξ} and L(i+1)ξ = ∪

j≤i
Ljξ ◦ξ L

L∗ = {
∏

j∈n

uj|n ∈ N , uj ∈ L}

Lω = {
∏

j∈ω

uj |uj ∈ L}, L−ω = {
∏

j∈−ω

uj |uj ∈ L}

L = {
∏

j∈α

uj|α ∈ O, uj ∈ L}, L− = {
∏

j∈−α

uj |α ∈ O, uj ∈ L}

For technical reasons, we do not define the � operator as in the original article of
Bruyère and Carton [3] on the extension of Kleene’s theorem on linear orderings.
We use instead an equivalent definition extracted from [1]. Informally speaking,
the words of L1 � L2 are obtained by alternating labelled posets of L1 and L2.

Lemma 2. Let L1 and L2 be two languages. Then u ∈ L1 � L2 if and only if
there exist a scattered and countable linear ordering K �= ∅, a sequence (uk)k∈K

of words and a map f : K → {1, 2} such that the following conditions are true:

Series-Parallel Languages on Scattered and Countable Posets 483

1. u =
∏

k∈K uk;
2. if f(k) = i and k + 1 ∈ K then f(k + 1) �= i;
3. if k ∈ K, k is not the last element of K, and k has no successor, then

f(k) = 2;
4. if k ∈ K, k is not the first element of K, and k has no predecessor, then

f(k) = 2;
5. if k is the first or the last element of K, then f(k) = 1;
6. K is complete;
7. f(k) = i implies uk ∈ Li.

The previous rational operators are illustrated by examples in the following
section with automata. A language L ⊆ SP �(A∪{ξ}) is rational if it is obtained
from the letters of the alphabet A ∪ {ξ} using usual rational operators : finite
union ∪, finite concatenation ·, and finite iteration ∗, using rational operations on
linear words: ω and −ω-products, iteration on ordinals & and reverse iteration on
ordinals −& as well as diamond operator �, and using also the rational operators
of finite parallel product ‖, substitution ◦ξ and iterated substitution ∗ξ, provided
that the letter ξ appears only inside parallel factors.

Note that the rational expressions are precisely those of Bruyère and Car-
ton [3] over words on scattered and countable linear orderings, with two addi-
tional operators ‖ and ∗ξ for parallelism and substitution.

5 Automata

Automata on countable, scattered and N-free posets are a generalization of au-
tomata on finite N-free posets [8], N-free ω-posets [6] and automata on linear
orderings [3].

A branching automaton over an alphabet A is a tuple A = (Q,A,E,Efork,
Ejoin, I, F) where Q is a finite set of states, I ⊆ Q is the set of initial states,
F ⊆ Q the set of final states, and E ∪ Efork ∪ Ejoin is the set of transitions of
A. The transitions of E ⊆ (Q×A×Q)∪ (Q×P∗(Q))∪ (P∗(Q)×Q) are named
sequential, while Efork ⊆ Q× P+(Q) and Ejoin ⊆ P+(Q) ×Q are respectively
the sets of fork and join transitions.

Let p and q be two states of an automaton A and let u ∈ SP �(A). The
existence of a path from p to q labelled by u of content C ⊆ Q is defined by
induction on the rank of |u| = P :

– P ∈ V0: There exists a ∈ A such that u = a, and there exists a path from p
to q labelled by u of content C = {p, q} if (p, a, q) ∈ E;

– P ∈ W0: In this case u is a finite word and we suppose that u is not a
letter. There are two cases: either u has a parallel factorization, or u has a
sequential factorization.
• If u has a parallel factorization u =‖i<n ui for some integer n > 1 then

there exists a partition {A0, . . . , Aj} of {0, . . . , n− 1} and j + 1 pairs of
states (pk, qk)k<j+1 such that (p, {p0, . . . , pj}) ∈ Efork, ({q0, . . . , qj}, q)
∈ Ejoin and there exists a path γk from pk to qk labelled by ‖l∈Ak

ul

484 N. Bedon and C. Rispal

for each k < j + 1. In this case the content of the path labelled u is the
set {p, q}. Note that this content does not depend on the contents of the
smaller parallel paths γk.

• If u has a sequential factorization u =
∏

i<n ui for some integer n > 1,
then there exist n+1 states (qi)i<n+1 such that there exists a path from
qi to qi+1 labelled by ui of content Ci for each i < n and q0 = p, qn = q
and C = ∪

i<n
Ci.

– P ∈ Vα for some countable ordinal α > 0:
If P ∈

⋃
β<α

Wβ then the path is already defined by induction.

Suppose that P =
∑
i∈ω

Pi where ∀i ∈ ω, Pi ∈
⋃

β<α

Wβ . Let u =
∏
i∈ω

ui be the

corresponding factorization of u :∀i ∈ ω, |ui| = Pi. There exists a path from
p to q labelled u of content C if the following conditions holds:
• there exist states (pi)i∈ω with p = p0 such that for any i ∈ ω, there is a

path from pi to pi+1 labelled ui of content Ci;
• If P = {q ∈ Q : ∀i ∈ ω, ∃j > i, q ∈ Cj} then ∃q ∈ Q such (P, q) ∈ E and
C = (∪

i<n
Ci) ∪ {q}.

The −ω case is treated symmetrically.
– P ∈Wα for some countable ordinal α > 0:

This case is similar to the W0 case.

A path from p to q labelled by u of content C is denoted by p
u=⇒
C

q. The states

p and q are respectively the source (or origin) and destination of the path. When
the content is not useful, the path is simply denoted by p

u=⇒ q, or p=⇒ q when
the label is unuseful too. A word is accepted by an automaton if it is the label
of a successful path leading from an initial state to a final state. The language
L(A) is the set of words accepted by the automaton A.

Note that branching automata without fork and join transitions are precisely
the automata on scattered and countable linear orderings defined by Bruyère
and Carton [3].

Example 2. The automaton of Figure 3 with the initial state 0 and final state 6
accepts the word ((a ‖ b)c)ω. It has one fork transition 0 → {1, 2}, one join tran-
sition {3, 4} → 5 and four sequential transitions: the three successor transitions
denoted by 1 a→ 3, 2 b→ 4 and 5 c→ 0 and the transition {0, 5} → 6. Let B be the
automaton pictured in Figure 3 where the final state 6 is deleted, the new final
state is 0 and the limit transition {0, 5} → 6 is replaced by {0, 5} → 0. Then B
accepts the language ((a ‖ b)c) .

Example 3. An automaton accepting the language (a ‖ b) � c is pictured in
Figure 4.

In order to simplify the proofs, we use branching automata with the property of
behavedness :

Definition 2. A branching automaton is misbehaved if one of the following
conditions holds:

Series-Parallel Languages on Scattered and Countable Posets 485

– there exists a fork transition (q, {p1, · · · , pn}) and there exists 1 ≤ i ≤ n
such that there is a path from pi to some final state;

– there exists a join transition ({p1, · · · , pn}, q) and there exists 1 ≤ i ≤ n
such that there is a path from some initial state to pi.

Note that this definition does not exactly correspond to the definition given
in [9]. An automaton which is not misbehaved is said to be behaved. The proof
of the following Proposition is adapted from the case of finite posets (see [9]):

Proposition 1. Let L be a language of SP �(A). If L is accepted by a branching
automaton then L is accepted by a behaved automaton.

6 A Kleene Theorem for Scattered Posets

In this section, we give an extension of Kleene’s theorem for words indexed by
countable scattered and N-free posets. This generalizes both the theorem of Weil
and Lodaya [9] for words on finite posets, that of Kuske [6] for ω-posets and that
of Bruyère and Carton [3] for words on scattered linear orderings.

Proposition 2. Any rational language L ⊆ SP �(A) is accepted by a branching
automaton.

Proof. Since the letters of the alphabet A are obviously languages accepted by
branching automata, it suffices to prove that the set of languages accepted by a
branching automaton is closed under the rational operations. Let L and L′ be two
languages of SP �(A) accepted by branching automata. Concerning operators on
linear orderings, that is the constructions of automata accepting L ∪ L′, L · L′,

0

1

2

3

4

5 6

a

b

c

{0, 5} → 6

Fig. 3. An automaton accepting ((a ‖ b)c)ω

0

1

2

3

4

5

a

b

c

{0, 5} → 5

0 → {0, 5}

Fig. 4. An automaton accepting (a ‖ b) � c

486 N. Bedon and C. Rispal

L∗, Lω, L−ω, L , L− and L � L′, we refer the reader to [3]. For the parallel
operators, the method used in [9] for the constructions of automata accepting
L ‖ L′ and L ◦ξL′ also works but the construction for L∗ξ is modified as follows:

Let A = (Q,A,E,Efork, Ejoin, I, F) be a branching automaton accepting L.
According to Proposition 1, A can be chosen behaved. Let K = {(p, q) ∈ Q2 :
(p, ξ, q) ∈ E}. For each element (p, q) ∈ K build two copies A1,p,q and A2,p,q of
A. For each c ∈ ({1, 2} ×K), the set of states of Ac is denoted by Qc and the
copy of a state s ∈ Q in Ac is sometime denoted by sc. The automaton B is
defined as a disjoint union of A denoted by A0 and all the copies (Ac)c∈{1,2}×K ,
with the following additional transitions:

– for each sequential transition (i, a, s) of A starting from an initial state i ∈ I,
for each (p, q) ∈ K and each copy c ∈ {0} ∪ ({1, 2} ×K), add a transition
(pc, a, s1,p,q), except if c = (1, p, q) (i.e. the new transition would loop into
the same copy); instead, in this case, add a new transition (pc, a, s2,p,q).
Informally speaking, those new transitions make a move to the copy Aj,p,q

when a transition (p, ξ, q) is encountered to start a substitution. The copy
A2,p,q can only be reached from A1,p,q, whereas A1,p,q can be reached from
any other copy (except itself). Operate similarly for fork and limit transitions
from an initial state of A. The set of all transitions constructed in this step
and whose destinations belong to Qc is denoted by Inc;

– operate symmetrically for sequential, fork and limit transitions going to a
final state of A. Those new transitions go back to previous copy when the
substitution is complete. Thus, each transition of the form (p, ξ, q) is replaced
by a successful path of Aj,p,q for some j ∈ {1, 2}. The set of all transitions
constructed in this step whose sources belong to Qc is denoted by Outc;

– in order to take into account a possible replacement of an infinite sequence
of transitions labelled by ξ some additional limit transitions are necessary.
For instance, consider a path in A ending with a transition (P, r), and using
an infinity of transitions labelled by ξ. Now consider the same path where all
transitions labelled by ξ are replaced by successful paths in different copies.
These replacements may change infinitely often the content of the path.
Thus, the transition (P, r) must be replaced by a transition (P ∪ P ′, r),
where P ′ contains some states visited in the copies. Formally, for any copy
Ac and any transition (P, r) in this copy, if P contains at least one pair
of K, that is, if ∃(p, q) ∈ K such that pc, qc ∈ P then add a transition
(P ∪ R, r) for any set R of states of other copies which do not contain any
pair of K: R ⊆ QB \ (Qc ∪ {pc′ , qc′ : (p, q) ∈ K, c �= c′}) where QB denotes
the set of states of B. This last condition is justified by the fact that nested
substitutions do not change the content. Symmetrical transitions are added
for limit transitions of the form (r, P).

– for each transition of the form (i, a, f) of A, where i ∈ I and f ∈ F , and for
each transition (p, ξ, q) of one of each copy, add a transition (p, a, q). The set
of such new transitions is denoted by InOut.

The initial and final states of B are those of A. In order to ensure the acceptance
of ξ, add a new initial state i and new final state f with a new transition (i, ξ, f).

Series-Parallel Languages on Scattered and Countable Posets 487

It can be proved that B accepts the language L∗ξ. Informally speaking, every
transition p

ξ→ q can be replaced by p
u=⇒ q, where u ∈ L. �

Let us turn to the converse:

Proposition 3. Any language L ⊆ SP �(A) accepted by a branching automaton
is rational.

Proof. LetA = (Q,A,E,Efork, Ejoin, I, F) be a branching automaton accepting
a language L ⊆ SP �(A). The automaton A′ = (Q,A′, E′, ∅, ∅, I, F) on linear
ordering is defined such that:

– for every pair (f, j) ∈ Efork × Ejoin such that f and j have the same arity,
add a new letter af,j into A′, and a transition (q, af,j , p), where q and p are
respectively the source of f and the destination of j;

– A′ contains all the letters of A;
– all the fork and join transitions have been removed.

Denote by Lp,q(A) the set of labels of paths leading from p to q in A. Then
Lp,q(A) is the set Lp,q(A′) in which any letter ar,s is replaced by the set Mr,s of
parallel labels of paths leading from r to s.

Lp,q(A) = ◦
r,s∈Q

(Mr,s◦ar,s)(Lp,q(A′))

where

Mr,s =
⋃

(r,{r1,...,rn})∈Efork

⋃

({s1,...,sn},s)∈Ejoin

⋃

σ∈Sn

Lr1,sσ(1)(A) ‖ · · · ‖ Lrn,sσ(n)(A)

Since A′ is an automaton on linear ordering without any fork or join transition,
it coincides with automata studied in [3]. The extended Kleene theorem [3] gives
that, for any p, q ∈ Q, Lp,q(A′) is rational. Moreover, Lp,q(A) is an equation
which contains variables Lp′,q′(A) for some p′, q′ ∈ Q, which appear only in
parallel parts of the equation. The finite system of equations can be solved using
substitution and the ∗ξ operation to eliminate recursivity. A rational expression
is obtained for each Lp,q(A) once all variables have been eliminated thus L is
rational. �

Propositions 2 and 3 prove the extended Kleene theorem:

Theorem 3. A language L ⊆ SP �(A) is accepted by a branching automaton if
and only if it is rational.

7 Conclusion

In this paper, we proved that a countable and scattered poset of finite width is
series-parallel if and only if it is N -free and we have established a Kleene-like

488 N. Bedon and C. Rispal

theorem for those posets. It would be interesting to investigate the algebraic and
logic counterparts of branching automata. For the finite posets case, Lodaya and
Weil have established [8,7] that automata and recognition by finite semigroups
extended with a commutative operation for parallelism are not equivalent in
general. However, the equivalence holds when the width of the posets recognized
by the automaton is bounded. In this case, the equivalence between monadic
second-order logic, bounded-width automata and adapted algebra also holds.
Those equivalence results were obtained also for ω-posets (obtained like the
finite posets but with an infinite serial product allowed) (see [6,5] or [2]). There
remains to explore the case of SP �.

References

1. Bedon, N., Rispal, C.: Recognizable languages and decidability of the monadic
second-order logic on countable scattered linear orderings. In: Logical Methods in
Computer Science (Submitted, 2006)

2. Bloom, S.L., Ésik, Z.: Shuffle binoids. Theoretical Informatics and Applica-
tions 32(4–5–6), 175–198 (1998)

3. Bruyère, V., Carton, O.: Automata on linear orderings. In: Ito, M., Toyama, M.
(eds.) DLT 2002. LNCS, vol. 2450, pp. 103–115. Springer, Heidelberg (2003)

4. Ésik, Z., Németh, Z.L.: Automata on series-parallel biposets. In: Kuich, W., Rozen-
berg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 217–227. Springer,
Heidelberg (2002)

5. Kuske, D.: Infinite series-parallel posets: logic and languages. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 648–662. Springer,
Heidelberg (2000)

6. Kuske, D.: Towards a language theory for infinite N-free pomsets. Theoret. Com-
put. Sci. 299, 347–386 (2003)

7. Lodaya, K., Weil, P.: Series-parallel posets: algebra, automata and languages. In:
Meinel, C., Morvan, M. (eds.) STACS 98. LNCS, vol. 1373, pp. 555–565. Springer,
Heidelberg (1998)

8. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theoret. Comput. Sci. 237(1–2), 347–380 (2000)

9. Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Information
and Computation, 269–293 (2001)

10. Rival, I.: Optimal linear extension by interchanging chains. Proc. AMS 89(3), 387–
394 (1983)

11. Rosenstein, J.G.: Linear Orderings. Academic Press, London (1982)
12. Valdes, J.: Parsing flowcharts and series-parallel graphs. Technical Report STAN-

CS-78-682, Computer science departement of the Stanford University, Standford,
Ca. (1978)

13. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.
SIAM J. Comput. 11, 298–313 (1982)

Traces of Term-Automatic Graphs

Antoine Meyer

LIAFA – Université Paris Diderot – Paris 7
Case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France

ameyer@liafa.jussieu.fr

Abstract. In formal language theory, many families of languages are
defined using grammars or finite acceptors like pushdown automata and
Turing machines. For instance, context-sensitive languages are the lan-
guages generated by growing grammars, or equivalently those accepted
by Turing machines whose work tape’s size is proportional to that of
their input. A few years ago, a new characterisation of context-sensitive
languages as the sets of traces, or path labels, of rational graphs (infinite
graphs defined by sets of finite-state transducers) was established.

We investigate a similar characterisation in the more general frame-
work of graphs defined by term transducers. In particular, we show that
the languages of term-automatic graphs between regular sets of vertices
coincide with the languages accepted by alternating linearly bounded
Turing machines. As a technical tool, we also introduce an arborescent
variant of tiling systems, which provides yet another characterisation of
these languages.

Introduction

In classical language theory, context-sensitive languages, one of the families of the
Chomsky hierarchy [Cho59], are defined as the languages generated by growing
grammars. They were later characterised as the languages accepted by linearly
space-bounded Turing machines [Kur64], i.e. Turing machines whose runs on any
input word of length n use at most k · n work tape cells, for some constant k.
In [LS97], it was shown that context-sensitive languages also coincide with the
languages accepted by bounded tiling systems.

In 2001, [MS01] provided yet another characterisation of this family as the
set of path languages of rational graphs [Mor00], i.e. infinite graphs whose ver-
tices are words and whose sets of edges are defined by finite transducers. This
result was later extended in [Ris02] to the more restricted family of automatic
graphs (Cf. [KN95]), and even to synchronous rational graphs when an infinite
number of initial and final vertices are considered (see also [MR05]). In a way,
this provides a “forward”, automata-based characterisation of context-sensitive
languages, as opposed to linearly bounded machines which are essentially a two-
way mechanism. To prove the inclusion of context-sensitive languages in the set
of path languages of these families of graphs, these papers use a normal form
for growing grammars, due to Penttonen [Pen74]. In [CM06], these results were

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 489–500, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

490 A. Meyer

reformulated using simpler proof techniques based on tiling systems. This also al-
lowed to investigate interesting sub-cases, in particular concerning deterministic
context-sensitive languages or various sub-classes of rational graphs.

The aim of this work is to extend the results of [LS97] and [CM06] to the
more general family ETIME of languages accepted by deterministic Turing ma-
chines working in time less than 2O(n), or equivalently by alternating linearly
bounded machines. This family lies between context-sensitive and recursively-
enumerable languages in the Chomsky hierarchy. We obtain two new character-
isations of ETIME, first as the languages accepted by arborescent tiling systems
and second as the traces of infinite graphs defined by various classes of term
transducers, namely term-synchronous and term-automatic (or tree-automatic)
graphs [BG00].

After recalling definitions and notations in Section 1, we introduce the no-
tion of arborescent tiling systems in Section 2 and prove that they characterise
ETIME. Finally, we extend previously mentioned proofs over rational graphs to
the family of term-automatic graphs in Section 3.

1 Notations

1.1 Words, Terms and Trees

A word u over alphabet Σ can be seen as a tuple (a1, . . . , an) of elements of Σ,
usually written a1 . . . an. Its i-th letter is denoted by u(i) = ai. The set of all
words over Σ is written Σ∗. The number of letters occurring in u is its length,
written |u| (here |u| = n). The empty word is written ε. The concatenation of
two words u = a1 . . . an and v = b1 . . . bm is the word uv = a1 . . . anb1 . . . bm.
The concatenation operation extends to sets of words: for all A,B ⊆ Σ∗, AB
stands for the set {uv | u ∈ A and v ∈ B}.

Let F =
⋃

n≥0 Fn be a finite ranked alphabet, each Fn being the set of symbols
of F of arity n, and X be a finite set of variables disjoint from F (all sets Fn

are also disjoint). We denote the arity of a symbol f ∈ F by a(f). Variables are
considered of arity 0. The set of finite first-order terms on F with variables in X ,
written T (F,X), is the smallest set including X such that f ∈ Fn ∧ t1, . . . , tn ∈
T (F,X) ⇒ ft1 . . . tn ∈ T (F,X). Words can be seen as terms over a ranked
alphabet whose symbols have arity exactly 1 and whose last symbol is a variable
or a special constant. To improve readability, ft1 . . . tn will sometimes be written
f(t1, . . . , tn).

A finite ordered tree t over a set of labels Σ is a mapping from a prefix-closed
set dom(t) ⊆ N∗ into Σ. Elements of dom(t) are called positions, and for every
p ∈ dom(t), t(p) is the label of the node at position p. The node at position ε
is called the root of the tree, nodes at maximal positions (i.e. positions x such
that �y �= ε, xy ∈ dom(t)) are called leaves, other nodes are called internal.

Any term t over a ranked alphabet F and set of variables X can be represented
as a finite ordered ranked tree, whose leaves are labelled with constants in F0

or variables in X and whose internal nodes are labelled with symbols of arity

Traces of Term-Automatic Graphs 491

equal to the number of children of that node. In that case, the domain of t,
additionally to being prefix-closed, also has the following properties:

1. ∀p ∈ dom(t), t(p) ∈ Fn≥1 =⇒ {j | pj ∈ dom(t)} = [1, n],
2. ∀p ∈ dom(t), t(p) ∈ F0 ∪X =⇒ {j | pj ∈ dom(t)} = ∅.

In such a tree, position pi with i ∈ N always denotes the i-th child of node p.
Conversely, any finite ordered tree t labelled over Σ can be represented as a
ranked tree t′, and hence as a term, by mapping each node label a to a set of
symbols (a, n) in Σ×N, with a(a, n) = n, and by renumbering all positions such
that dom(t′) verifies the above properties. This will usually be left implicit.

A finite tree (or term) automaton is a tuple A = 〈Q,F, q0, δ〉, where Q is a
set of control states, F a ranked alphabet, q0 the initial set and δ the set of
transition rules of A of the form (q, f, q1, . . . , qn) with a(f) = n. A run of A over
a tree t is a mapping ρ from dom(t) to Q such that ρ(ε) = q0 and for all node
u ∈ dom(t) of arity a(u) = n, (ρ(u), t(u), ρ(u1), . . . , ρ(un)) ∈ δ. If A has a valid
run on t, we say that t is accepted by A. The set of trees accepted by a finite
automaton is called its language, and all such languages are said to be regular.

1.2 Graphs

A labelled, directed and simple graph is a set G ⊆ V ×Σ×V where Σ is a finite
set of labels and V an arbitrary countable set. An element (s, a, t) of G is an
edge of source s, target t and label a, and is written s

a→
G

t or simply s
a→ t if G

is understood. An edge with the same source and target is called a loop. The set
of all sources and targets of a graph form its support VG, its elements are called
vertices. A sequence of edges (s1

a1→ t1, . . . , sk
ak→ tk) with ∀i ∈ [2, k], si = ti−1

is called a path. It is written s1
u→ tk, where u = a1 . . . ak is the corresponding

path label. Vertex s1 is called the origin of the path, tk its destination. A path
is called a cycle if its origin and destination are the same vertex. The language,
or set of traces of a labelled graph between two sets I and F of vertices is the
set of all words w such that there exists a path labelled by w whose origin is in
I and destination in F .

1.3 Turing Machines

A Turing machine is a tuple M = 〈Γ,Σ, Q, q0, F, δ〉 where Σ is the input alpha-
bet, Γ the tape or work alphabet (with Σ ⊆ Γ), Q is a set of states among which
q0 is an initial state and F is a set of final states, and δ is a set of transition
rules of the form pA → qBε where p, q ∈ Q, A,B ∈ Γ ∪ {�} (� being a blank
symbol not in Γ) and ε ∈ {+,−}.

Configurations of M are denoted as words upv, where uv is the content of
the work tape (where prefix and suffix blank symbols are omitted), p is the
current control state and the head scans the cell containing the first letter of
v. A transition d = pA → qBε is enabled on any configuration c of the form
upAv, and yields a new configuration d(c) = uBqv′ (with v′ = v if v �= ε, or �

492 A. Meyer

otherwise) if ε = + and u′qCBv (with u′C = u if u �= ε or u′ = ε and C = �
otherwise) if ε = −. If d is not enabled on c, then d(c) is left undefined.

An alternating Turing machine M is defined similarly, with the exception that
rules are of the form d = pA →

∧
i∈[1,n] qiBiεi. The alternation degree n of d

is written a(d), by analogy with the notion of arity. For all i ≤ a(d), we write
di the non-alternating transition pA → qiBiεi. A run of M on input word w is
a tree whose root is labelled by configuration q0w, and such that the children
of any node labelled by configuration c are labelled by c1, . . . , cn if and only if
there exists a transition d ∈ δ enabled on c such that a(d) = n and ∀i ∈ [1, n],
ci = di(c). Such a run is successful if all its leaves are labelled by configurations
whose control state is in F .

A Turing machine is linearly bounded if on every run the total work tape space
it uses is at most proportional to the length of its input word. By standard coding
techniques, it is sufficient to consider machines whose tape is limited to the cells
initially containing the input word. This may be enforced by forbidding transition
rules to rewrite the blank symbol �. The languages of non-alternating linearly
bounded machines form the complexity class SPACE(O(n)), which is equivalent
to context-sensitive languages [Kur64]. Adding alternation, one obtains the more
general class ASPACE(O(n)). By classical complexity results [CKS81], it is also
equivalent to the class DTIME(2O(n)), also called ETIME.

2 Arborescent Tiling Systems

To facilitate the proofs of our main results, this section provides an important
technical tool, which was also central to some versions of the corresponding
proofs on rational graphs and context-sensitive languages (Cf. [CM06]).

Tiling systems were originally defined to recognise or specify picture lan-
guages, i.e. sets of two-dimensional words on finite alphabets [GR96], called local
picture languages. However, by only looking at the words contained in the first
row of each picture of a local picture language, one obtains a context-sensitive
language, and the converse is true : for any context-sensitive language there ex-
ists a local picture language (and a tiling system accepting it) whose set of upper
frontiers is that language [LS97].

In this section, we extend this result to an arborescent extension of tiling
systems, and prove that this new formalism characterises precisely the class
ETIME.

2.1 Definitions

Instead of planar pictures, we consider so-called arborescent pictures, which are
to ordinary pictures what terms are to words.

Definition 1 (Arborescent picture). Let Γ be a finite alphabet, an arbores-
cent picture p over Γ is a mapping from the set X× [1,m] to Γ , where X ⊆ N+

∗

is a finite, prefix-closed set of sequences of positive integers (called positions in
the framework of trees) and m is a positive integer called the width of p. The set

Traces of Term-Automatic Graphs 493

dom(p) = X × [1,m] is the domain of p. The set of arborescent pictures over
X × [1,m] is written AP(X,m).

Like in the case of trees, we assume that X is not only prefix-closed but also
left-closed, i.e. ∀i > 0, ui ∈ X =⇒ ∀j < i, uj ∈ X . For a given picture
p ∈ AP(X,m), we write fr(p) the word w ∈ Γm such that w(i) = p(ε, i), which
we call the (upper) frontier of p.

Arborescent pictures of domain X × [1,m] are isomorphic to ordered trees
of domain X with nodes labelled over the set Γm. As such, if m = 1 they are
isomorphic to Γ -labelled ordered trees. One can observe that any branch of an
arborescent picture seen as a Γm-labelled tree, as well as any arborescent picture
whose set of positions X is a subset of 1∗, is an ordinary, planar picture.

Definition 2 (Sub-picture). For any arborescent picture p ∈ AP(X,m), the
sub-picture p′ = p|x,i,Y,n of p at offset o = (x, i) with x ∈ X and i ∈ [0,m− 1] is
the arborescent picture of domain Y × [1, n] such that Y is prefix- and left-closed
and ∀(y, j) ∈ Y × [1, n], (xy, i + j) ∈ X × [1,m] and p′(y, j) = p(xy, i + j).

We can now define arborescent tiling systems, which allow the specification of
sets of arborescent pictures. Similarly to planar tiling systems, in order to be
able to recognise meaningful sets of pictures, we first add a border or frame to
each picture using a new symbol #.

Definition 3 (Framed picture). Let p be an arborescent picture of domain
X × [1,m] over Γ and # �∈ Γ a new symbol, we define the #-framed picture
p# as the picture of domain X ′ × [1,m + 2] with X ′ = {ε} ∪ {1}X ∪ X ′′ and
X ′′ = {1x1 | x ∈ X ∧ �y ∈ N, xy ∈ X} such that

p#(ε, i) = # for all i ∈ [1,m + 2],
p#(1x, 1) = # and p#(1x,m + 2) = # for all x ∈ X,

p#(x, i) = # for all x ∈ X ′′, i ∈ [1,m + 2],
p#(1x, i + 1) = p(x, i) for all x ∈ X, i ∈ [1,m].

An arborescent tiling system is then defined as a set of tiling elements of width
and height 2, which can then be combined to form larger framed pictures.

Definition 4 (Arborescent tiling system). An arborescent tiling system (or
ATS) S is a triple (Γ,#, Δ), where Γ is a finite alphabet, # �∈ Γ a frame symbol
and Δ is a set of arborescent tiling elements (tiles) in {Γ̄ × Γ̄ × Γ̄n× Γ̄n | n > 0}
with Γ̄ = Γ ∪ {#}.

Each tiling element d ∈ Δ is of the form d = (A,B, C̄, D̄) with A,B ∈ Γ̄
and C̄, D̄ ∈ Γ̄n for some positive integer n. We define additional notations
to conveniently manipulate tiling elements. Let d = (A,B, C̄, D̄) with C̄ =
C1 . . . Cn and D̄ = D1 . . . Dn, we write a(d) = n to denote the arity of d, and di
with i ∈ [1, a(d)] to denote the (planar) tile (A,B,Ci, Di).

Note that any tiling element d = (A,B, C̄, D̄) of arity n is isomorphic to an
arborescent picture pd of domain X× [1, 2], where X = {ε, 1, . . . , n} and pd(ε, 1),

494 A. Meyer

pd(ε, 2), pd(i, 1) and pd(i, 2) are respectively equal to A, B, Ci and Di (for all
i ∈ [1, n]). In general we do not distinguish pd from d and write simply d.

Well-formed tiling systems should obey a certain number of restrictions over
their set of tiles, regarding in particular the occurrences of the frame symbol #
inside tiles. For all d = (A,B, C̄, D̄),

1. (A,B) = (#,#) =⇒ a(d) = 1 ∧ (C1, D1) �= (#,#),
2. ∃i, (Ci, Di) = (#,#) =⇒ a(d) = 1 ∧ (A,B) �= (#,#),
3. ∃i, Ci = # ∧Di �= # =⇒ A = # ∧ ∀i, Ci = #,
4. ∃i,Di = # ∧ Ci �= # =⇒ B = # ∧ ∀i,Di = #,

Before defining the set of pictures and the word language accepted by an
arborescent tiling system, we define for any arborescent picture p of domain
X × [1,m] over Γ the set T(p) of tiling elements of p as the set of all sub-
pictures p|x,j,X′,2 of p such that x is an internal position in X , j ∈ [1,m−1] and
X ′ = {ε} ∪ {i′ > 0 | xi′ ∈ X}.

Definition 5 (Language of a tiling system). The set of arborescent pictures
accepted by an arborescent tiling system S = (Γ,#, Δ) is the set P(S) = {p ∈
AP | T(p#) ⊆ Δ}. The (word) language accepted by S is the set L(S) = {w ∈
Γ ∗ | ∃p ∈ P(S), w = fr(p)} of all upper frontiers of pictures of P(S).

As previously, note that arborescent tiling systems are a syntactical generalisa-
tion of planar tiling systems : framed pictures with a domain X ⊆ 1∗ or branches
of framed arborescent pictures are planar framed pictures, and arborescent tiling
systems whose elements all have arity 1 are ordinary, planar tiling systems.

a a a b b b c c c

× × × b b + + c c

× × × b + + + + c

× × × + + + + + +

a a + + b b × × ×
a + + + + b × × ×
+ + + + + + × × ×

#

a a a b b b c c c

× × × b b + + c c

× × × b + + + + c

× × × + + + + + +

#

a a + + b b × × ×

a + + + + b × × ×

+ + + + + + × × ×

#

Fig. 1. Arborescent picture p and the corresponding framed picture p#

Traces of Term-Automatic Graphs 495

Example 1. Figure 2.1 represents an arborescent picture p whose frontier is the
word a3b3c3, as well as the corresponding framed picture. For the sake of clarity,
the tree-structure of p is denoted by dashed lines only where the arity is greater
than 1. By considering all sub-pictures of height and width 2 of that framed pic-
ture, one obtains a set of tiling elements Δ, which contains, among others, tiling
elements (#,#, a, b), (a,+,+,+) and (+,+,#,#) of arity 1 and (b, c, b+,×+)
of arity 2, but not (b, c, b+, c+) or (#,+,#,+) for instance.

One can see that the tiling system S = ({a, b, c,+,×},#, Δ) accepts all ar-
borescent pictures similar to p whose frontiers are words of the form anbncn

with n ≥ 2 : the left branch of each such picture ensures that the number of
a’s and b’s is equal by replacing at each successive row one occurrence of a and
one occurrence of b by some symbol +. Occurrences of c are irrelevant and are
replaced with symbol ×. A lower frame borders can only be generated once all
occurrences of a and b have been replaced. A similar check is performed by the
right branch for symbols b and c.

Note that S does not accept the word abc, since accepting a similar picture
with frontier abc would require some additional tiling elements, like for instance
(a, b,+×,++) and (b, c,++,×+). Consequently, the language L(S) is {anbncn |
n ≥ 2}.

2.2 Languages of Arborescent Tiling Systems

In this section, we prove that arborescent tiling systems and alternating linearly
bounded machines define the same family of languages, namely ASPACE(O(n)),
also equal as previously mentioned to DTIME(2O(n)) = ETIME.

Proposition 1. For every arborescent tiling system S, there exists an alternat-
ing linearly bounded machine M such that L(M) = L(S).

Proof sketch. Let S = (Γ,#, Δ) be an arborescent tiling system. We build an
alternating linearly bounded machine M = (Γ, Γ ′, Q, q#, f, δ) accepting L(S). Its
work alphabet Γ ′ is the union of all Γ̄ k for k ∈ [1, a(S)], where Γ̄ = Γ ∪{#} and
a(S) = max{a(d) | d ∈ Δ}. We informally describe M ’s behaviour as follows:

1. M starts in configuration [q#w], where w ∈ Γ ∗ is the input word. In a first
sweep, it checks that w is a possible frontier of a picture accepted by S.

2. In the next sweep, M generates a n-tuple of possible next rows based on the
current configuration and the tiles in Δ. M then uses universal branching to
evaluate the sub-pictures whose upper frontiers are each of these rows.

3. The last generated row consists in a sequence of frame symbols # if and only
if the last written symbol is #. If this is the case on the current computation
branch, reach accepting state f . Otherwise, repeat the previous step.

Steps 2 and 3 are repeated until all computation branches have reached the
accepting state f . ��

Proposition 2. For every alternating linearly bounded machine M , there exists
an arborescent tiling system S such that L(S) = L(M).

496 A. Meyer

Proof sketch. Let M = (Σ,Γ,Q, q0, F, δ) be an alternating linearly bounded
machine. We build an arborescent tiling system S = (Γ ′,#, Δ) such that L(S) =
[L(M)], where [and] are two new symbols. The set of tiling elements Δ is built
in order to conform to the following informal specification.

S first needs to set an input word w as the upper frontier of any picture it
accepts. It then encodes the initial configuration of M on w as the second row.
Subsequent tiles simulate the application of a transition of M on the configu-
ration encoded by the current row, and check that the previous transition was
correctly simulated. This requires additional information, in particular about the
position of the head and the index of the last simulated transition, to be added
to the picture alphabet. Arity n tiling elements are used when the simulated
rule is of alternation degree n. This process goes on until an accepting state is
reached by M on a given execution branch. In that case, a bottom border is
generated by S on the corresponding picture branch. ��

From Propositions 1 and 2, we deduce the announced theorem.

Theorem 1. The languages of arborescent tiling systems form the complexity
class ETIME.

Note that the language accepted by the tiling system of Example 1 is a context-
sensitive language, which could also be accepted by a non-arborescent tiling
system.

3 Traces of Term-Automatic Graphs

We now turn to the main result of this paper, which is the study of languages
of graphs characterised by automata-defined binary relations over terms, and in
particular term-automatic graphs. We define these relations and the graphs they
generate, then present a two-steps proof that the languages of term-automatic
graphs indeed coincide with ASPACE(O(n)). First, we establish this result for
the simpler term-synchronous graphs in Section 3.2, then generalise it to term-
automatic graphs in Section 3.3.

3.1 Definitions

Let s = f(s1 . . . sm) and t = g(t1 . . . tn) be two terms over some ranked alphabet
F . We define the overlap [st] of s and t as a term over domain dom(s) ∪ dom(t)
and extended alphabet (F ∪ {⊥})2 (each element (f, g) of this alphabet being
written simply fg), such that ∀p ∈ dom(s) ∪ dom(t), [st](p) = fg with f = s(p)
if p ∈ dom(s) or ⊥ otherwise, and g = t(p) if p ∈ dom(t) or ⊥ otherwise. This
notation is extended to sets in the natural way.

We can now define term-automatic and term-synchronous relations. We say a
binary relation R is term- (or tree-)automatic if the term language [R] = {[st] |
(s, t) ∈ R} is regular. If furthermore for all (s, t) ∈ R, dom(s) = dom(t), it
is called synchronous. In other words, a synchronous relation is an automatic
relation which only associates terms with the same domain. Both families of

Traces of Term-Automatic Graphs 497

relations are closed under relational composition. Term-automatic and term-
synchronous relations are syntactical extensions of the corresponding families of
relations over words. As such, they also define extended families of graphs.

Definition 6. A Σ-graph G is term-automatic (resp. term-synchronous) if it is
isomorphic to a graph {u a→ v | a ∈ Σ, (u, v) ∈ Ra}, where (Ra)a∈Σ is a family
of term-automatic (resp. term-synchronous) relations.

3.2 Term-Synchronous Graphs

This section presents direct simulations of alternating tiling systems by syn-
chronous graphs and conversely, showing that the languages of term-synchronous
graphs between regular sets of vertices form the class ETIME.

Proposition 3. For every term-synchronous graph G and regular sets I and F
there exists an arborescent tiling system S such that L(S) = L(G, I, F).

Proof sketch. Let G = (Ra)a∈Σ be a synchronous graph, and I, F two regular
sets of vertices of G. We build a tiling system S = (Γ,#, Δ) such that L(S) =
L(G, I, S).

For all a ∈ Σ, let Aa be a finite top-down term automaton accepting the
language [Ra] (as defined in Section 3.1), and AI , AF similar automata for I and
F respectively. For every a ∈ Σ, we also define relations RI◦a = IdI ◦ Ra and
Ra◦F = Ra ◦ IdF , where IdL denotes the identity relation over some set L. Let
also AI◦a and Aa◦F be two automata accepting the languages [RI◦a] and [Ra◦F]
respectively. The control state sets of all these automata are supposed disjoint.

The idea of this construction is that, for every path t0
a1→ t1 . . .

an→ tn in G with
t0 ∈ I, tn ∈ F and ∀i, dom(ti) = X , S should accept an arborescent picture p
whose upper frontier is w and whose successive vertical “slices” correspond to
encodings of runs of AI◦a1 , Aa2 , . . . , Aan−1 and Aan◦F respectively. Conversely,
S should only accept all such pictures which correspond to paths in G between
I and F . These conditions are sufficient for L(S) to be equal to L(G, I, F). To
ensure they indeed hold, we define Δ in order to be able to check that the i-th
and (i + 1)-th “slices” are indeed compatible. ��

Proposition 4. For every arborescent tiling system S, there exists a term-syn-
chronous graph G and regular sets I and F such that L(G, I, F) = L(S).

Proof sketch. Let S = (Γ,#, Δ) be an arborescent tiling system. We build a
term-synchronous graph G such that L(S) = L(G, I, F) for some regular sets
I and F . In the following, symbol # is overloaded to make the notation less
cumbersome, and represents functional symbols of varying arities, which can be
deduced from the context. In particular, we write #X for a given prefix-closed
set X the term of domain X whose nodes are all labelled with #.

Let Ra, a ∈ Σ, be the binary relation between all terms #(s) and #(t) (i.e.
s and t with an additional unary # at the root) such that a labels the root
of t and for a given p ∈ P (S), either s = p|ε,i,X,1 and t = p|ε,i+1,X,1 for some

498 A. Meyer

i > 0 or s = #X and t = p|ε,0,X,1. Let G be the graph defined by (Ra)a∈Σ , we
show that G is term-synchronous by constructing automata (Aa)a∈Σ such that
L(Aa) = [Ra] = {[st] | (s, t) ∈ Ra}. For all a, Aa has transitions:

q0## → qAB,1 if (#,#, A,B) ∈ Δ,

qĀB̄,iAB → qC̄D̄,1 . . . qC̄D̄,k if d = (Ai, Bi, C̄, D̄) ∈ Δ, k = a(d),

Ai = Ā(i) and Bi = B̄(i),
qĀB̄,iAiBi → ε if (Ai, Bi,#,#) ∈ Δ,

Ai = Ā(i) and Bi = B̄(i).

We define I as the regular set of all terms labelled over {#}, and F as the set
of all possible rightmost columns of pictures accepted by S. This set of terms is
accepted by an automaton AF whose construction is straightforward.

By construction of I, AF and each of the Aa, there is a path in G labelled
by a word w between a vertex in I and a vertex in F iff the vertices along that
path are the successive columns of a picture in P (S) with frontier w. ��

3.3 Term-Automatic Graphs

In this section, we show that the more general family of term-automatic graphs
defines the same family of languages as their synchronous counterparts.

Proposition 5. For every term-automatic graph G and regular sets of terms I
and F , there exists a term-synchronous graph G′ and regular sets I ′ and F ′ such
that L(G′, I ′, F ′) = L(G, I, F).

Proof sketch. Let G be a term-automatic graph defined by a family (Ra)a∈Σ of
automatic relations and I, F be two regular languages, each [Ra] being accepted
by an automaton Aa, I by AI and F by AF . We define a synchronous graph
G′ = (R′

a)a∈Σ and two regular sets I ′ and F ′ such that L(G, I, F) = L(G′, I ′, F ′).
Recall that term-automatic relations are defined using a notion of overlap

between terms (Cf. Section 3.1). Two terms s and t with different domains
belong to a term-automatic relation R defined by automaton A if the overlap
[st] of s and t is accepted by A. This notion of overlap consists in “unifying” the
domains of s and t, and padding undefined positions with a special symbol ⊥.

We wish to reuse this idea, but instead of unifying the domains of two terms
only, we have to unify the domains of all vertices along a given path. Indeed,
in a term-synchronous graph, edges can only exist between terms with precisely
the same domain. For every term s standing for a vertex in G, we will thus have
to consider an infinite set of “versions” of s in G′, one for each possible term
domain larger than that of s.

Let Γ be a ranked alphabet, we define alphabet Γ ′ as Γ ′ = Γ0 ∪ Γn with
Γ ′

0 = #0 and Γ ′
n = Γ ∪#n, where n is the maximal arity of symbols in Γ . Let

φ be a mapping from T (Γ) to 2T (Γ ′) such that for any term t ∈ T (Γ),

φ(t) =
{
t′ ∈ T (Γ ′) | dom(t) ⊂ dom(t′), ∀p ∈ dom(t), t′(p) = t(p)

and ∀p ∈ dom(t′) \ dom(t), t′(p) ∈ {#0,#n}
}
.

Traces of Term-Automatic Graphs 499

In other words, to any term t, φ associates the set of all terms obtained by
“padding” t with silent symbols #0 and #n. This mapping is extended to sets of
terms in the natural way. Note that, given any t′ ∈ F (Γ ′), there exists at most
one term t ∈ T (Γ) such that t′ ∈ φ(t).

We now define, for every a ∈ Σ, relation R′
a as {(s′, t′) | (s, t) ∈ Ra, s′ ∈

φ(s), t′ ∈ φ(t) and dom(s′) = dom(t′)}. This synchronous relation can be char-
acterised by a finite tree automaton A′

a defined from Aa. We also let I ′ = φ(I)
and F ′ = φ(F), for which automata can be similarly defined from AI and AF .

Let G′ be the term-synchronous graph defined by (R′
a)a∈Σ . One can show that

for every path labelled w in G′ between some i′ ∈ I ′ and f ′ ∈ F ′, there exists a
unique path between I and F in G with the same label, and that conversely for
every w-path between I and F in G there must exist at least one corresponding
path in G′ between I ′ and F ′. This ensures that L(G, I, F) and L(G′, I ′, F ′) are
indeed equal. ��

Remark 1. Note that for every term-automatic graph G and regular sets I and
F , there exists a term-automatic graph G′ and finite sets I ′ and F ′ such that
L(G′, I ′, F ′) = L(G, I, F). Indeed, for any regular I and F and finite I ′ and F ′

the relations I ′ × I and F × F ′ are automatic. Since term-automatic relations
are closed under union and composition, this can be used to build G′ from G.

This, however, does not hold in the term-synchronous case. Indeed, since each
connected component of a term-synchronous graph is finite, the language of any
such graph from a finite set of initial vertices is regular.

Combining Theorem 1, Propositions 3, 4 and 5, as well as Remark 1, we ob-
tain the following result concerning the family of languages accepted by term-
synchronous and term-automatic graphs.

Theorem 2. The languages of term-synchronous graphs between regular sets of
vertices and of term-automatic graphs between regular or finite sets of vertices
form the complexity class ETIME.

4 Conclusion

We have proved that the class of languages accepted by alternating linearly
bounded machines (ETIME) can also be characterised as the sets of first rows
of pictures accepted by arborescent tiling systems, as well as the sets of path
labels of term-automatic graphs between regular or finite sets of initial and final
vertices.

A natural extension of this work would be to generalise Theorem 2 to graphs
defined by more expressive classes of tree transducers, in order to fully extend
the existing results on rational graphs. In practice, this would require extending
the construction for Proposition 5 to more general padding techniques.

Further points of interest concern the extension of other results from [CM06]
to term-automatic graphs, in particular regarding structural restrictions of these
graphs, like finite or bounded degree, or the restriction to a single initial vertex,
as well as a similar study of related complexity classes or families of languages.

500 A. Meyer

References

[BG00] Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of the
15th IEEE Symposium on Logic in Computer Science (LICS 2000), pp. 51–
62. IEEE, Los Alamitos (2000)

[Cho59] Chomsky, N.: On certain formal properties of grammars. Information and
Control 2, 137–167 (1959)

[CKS81] Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of the
ACM 28(1), 114–133 (1981)

[CM06] Carayol, A., Meyer, A.: Context-sensitive languages, rational graphs and de-
terminism. Logical Methods in Computer Science 2(2) (2006)

[GR96] Giammarresi, D., Restivo, A.: Handbook of Formal Languages. In: Two-
dimensional languages, vol. 3, Springer, Heidelberg (1996)

[KN95] Khoussainov, B., Nerode, A.: Automatic presentations of structures. In:
Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Hei-
delberg (1995)

[Kur64] Kuroda, S.: Classes of languages and linear-bounded automata. Information
and Control 7(2), 207–223 (1964)

[LS97] Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable
picture languages. Information and Computation 138(2), 160–169 (1997)

[Mor00] Morvan, C.: On rational graphs. In: Tiuryn, J. (ed.) ETAPS 2000 and FOS-
SACS 2000. LNCS, vol. 1784, pp. 252–266. Springer, Heidelberg (2000)

[MR05] Morvan, C., Rispal, C.: Families of automata characterizing context-sensitive
languages. Acta Informatica 41(4-5), 293–314 (2005)

[MS01] Morvan, C., Stirling, C.: Rational graphs trace context-sensitive languages.
In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp.
548–559. Springer, Heidelberg (2001)

[Pen74] Penttonen, M.: One-sided and two-sided context in formal grammars. Infor-
mation and Control 25(4), 371–392 (1974)

[Ris02] Rispal, C.: The synchronized graphs trace the context-sensitive languages.
In: Proceedings of the 4th International Workshop on Verification of Infinite-
State Systems (INFINITY 2002). Electronic Notes in Theoretical Computer
Science, vol. 68 (2002)

State Complexity of Basic Operations on

Suffix-Free Regular Languages

Yo-Sub Han1,� and Kai Salomaa2,��

1 Intelligence and Interaction Research Center,
Korea Institute of Science and Technology
P.O.BOX 131, Cheongryang, Seoul, Korea

emmous@kist.re.kr
2 School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. We investigate the state complexity of basic operations for
suffix-free regular languages. The state complexity of an operation for
regular languages is the number of states that are necessary and sufficient
in the worst-case for the minimal deterministic finite-state automaton
that accepts the language obtained from the operation. We establish
the precise state complexity of catenation, Kleene star, reversal and the
Boolean operations for suffix-free regular languages.

1 Introduction

Codes are useful in many areas such as information processing, data compression,
cryptography and information transmission [16]. Some of well-known codes are
prefix codes, suffix codes, bifix codes and infix codes. People use different codes
for different applications based on the characteristic of each code [1,16]. Since
codes are sets of strings over an alphabet, they are closely related to formal
languages: a code is a language. Thus, the condition defining a class of codes
defines a corresponding subfamily of each language family. For regular languages,
for example, suffix-freeness defines suffix-free regular languages, which constitute
a subfamily of regular languages.

There are different ways to define the complexity of a regular language L.
One classical definition is the total number of states in the minimal determinis-
tic finite-state automaton (DFA) for L since the minimal DFA for L is unique
(up to isomorphism) [13,21]. Based on this definition, Yu and his co-authors [24]
defined the state complexity of an operation for regular languages to be the
number of states that are necessary and sufficient in the worst-case for the mini-
mal DFA that accepts the language obtained from the operation. Yu [23] gave a
comprehensive survey of the state complexity of regular languages. Salomaa et
al. [20] studied classes of languages for which the reversal operation reaches the
� Han was supported by the KIST Research Grants 2E20050 and 2Z03050.

�� Salomaa was supported by the Natural Sciences and Engineering Research Council
of Canada Grant OGP0147224.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 501–512, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

502 Y.-S. Han and K. Salomaa

exponential upper bound. As special cases of the state complexity, researchers
examined the state complexity of finite languages [3,8], the state complexity of
unary language operations [19] and the nondeterministic descriptional complex-
ity of regular languages [11,12]. There are several other results with respect to
the state complexity of different operations [4,5,6,14,15,18].

Recently, Han et al. [9] examined the state complexity of prefix-free regu-
lar languages. They tackled the problem based on the structural property of
prefix-free DFAs: A prefix-free DFA must be non-exiting assuming all states
are useful [10]. It turns out that the state complexity for the prefix-free case is
strictly less than the corresponding state complexity for regular languages over
some basic operations. We know that if a language L is prefix-free, then its rever-
sal LR is suffix-free by definition. Moreover, if L is regular and non-empty, then
the start state of a DFA for LR should not have any in-transitions. However, this
condition is necessary but not sufficient. Due to this fact, the state complexity of
suffix-free regular languages is not symmetric to the prefix-free case. This leads
us to investigate the state complexity of basic operations on suffix-free regular
languages. Interestingly, the results for catenation and Kleene star turn out to
be of a totally different order than in the case of prefix-free regular languages.

In Section 2, we define some basic notions. In Section 3, we examine the state
complexity of Kleene star and reversal of suffix-free regular languages. We then
look at the catenation of two suffix-free minimal DFAs in Section 4. Next, we
investigate the state complexity of intersection and union of suffix-free regular
languages based on the Cartesian product of states in Section 5. We present the
comparison table of the state complexity on different types of regular languages
and conclude the paper in Section 6.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over
Σ is any subset of Σ∗. Given a set X , 2X denotes the power set of X . For a
string x ∈ Σ∗ and a character a, |x|a denotes the number of symbol a occurrences
in x. We say that a string x is a suffix of a string y if y = ux for some string u.
We define a set X of strings to be a suffix-free set if a string from X is not a
suffix of any other string in X . Given a string x from a set X , let xR be the
reversal of x, in which case XR = {xR | x ∈ X}.

The symbol ∅ denotes the empty language and the character λ denotes the
null string. A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F),
where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is a
transition function, s ∈ Q is the start state and F ⊆ Q is a set of final states.
If F consists of a single state f , we use f instead of {f} for simplicity. |Q|
denotes the number of states in Q. We define a state d to be a sink state if d
is reachable from s of A and, for any a ∈ Σ, δ(d, a) = d and d /∈ F . Since all
sink states are always equivalent, we can assume that A has a unique sink state.
For a transition δ(p, a) = q in A, we say that p has an out-transition and q has

State Complexity of Basic Operations on Suffix-Free Regular Languages 503

an in-transition. Furthermore, p is a source state of q and q is a target state of
p. The transition function δ can be extended to a function Q × Σ∗ → 2Q that
reflects sequences of inputs. A string x over Σ is accepted by A if there is a
labeled path from s to a state in F such that this path spells out the string x.
Namely, δ(s, x) ∩ F �= ∅. The language L(A) of an FA A is the set of all strings
that are spelled out by paths from s to a final state in F . We say that A is
non-returning if the start state of A does not have any in-transitions and A is
non-exiting if all out-transitions of every final state in A go to the sink state.

Given an FA A = (Q,Σ, δ, s, F), we define the right language Lq of a state q
to be the set of strings that are spelled out by some path from q to a final state in
A; namely, Lq is the language accepted by the FA obtained from A by changing
the start state to q. We say that two states p and q are equivalent if Lp = Lq.

We define an FA A to be a DFA if the number of target states for each pair
of a state q and a character a ∈ Σ is one: namely, |δ(q, a)| = 1. Given a DFA A,
we assume that A is complete; namely, each state has |Σ| out-transitions. If A
has m states, then we say that A is an m-state DFA.

We define a (regular) language L to be suffix-free if L is a suffix-free set. A
regular expression E is suffix-free if L(E) is suffix-free. Similarly, an FA A is
suffix-free if L(A) is suffix-free. Moreover, if L(A) is suffix-free and non-empty,
then A must be non-returning. Similarly, we can define prefix-free regular ex-
pressions and languages. Note that if a language L is suffix-free, then LR is
prefix-free.

For complete background knowledge in automata theory, the reader may refer
to textbooks [13,21].

Due to the limit on the number of pages, we omit all the proofs in the following
sections. The proofs can be found in a full version [7].

3 Kleene Star and Reversal

Before examining the state complexity of various operations, we establish that
any suffix-free (complete) DFA must always have a sink state. Recall that the
state complexity of a regular language L is the number of states in its minimal
DFA. If L is a regular language, its minimal DFA does not necessarily have have
a sink state. However, if L is prefix-free, then its minimal DFA A must have a
sink state since A is non-exiting. Therefore, we have to verify the existence of the
sink state in a suffix-free minimal DFA before investigating the state complexity
for each operation. This is crucial for computing the correct state complexity.

Lemma 1. Let A = (Q,Σ, δ, s, F) be a minimal DFA for a suffix-free language
and k = |Q|. Then, A has a sink state d ∈ Q and for every string w ∈ Σ+,
δ(s, wk) = d.

Lemma 1 shows that we must always consider the sink state for computing the
state complexity of suffix-free regular languages. From now, we assume that a
suffix-free minimal DFA has the unique sink state.

504 Y.-S. Han and K. Salomaa

3.1 Kleene Star of Suffix-Free Regular languages

We first start with the Kleene star operation.

Lemma 2. Given an m-state suffix-free minimal DFA A = (Q,Σ, δ, s, F),
2m−2 + 1 states are sufficient for L(A)∗.

We now define a DFA A such that L(A) is suffix-free and the state complexity
of L(A)∗ reaches the upper bound in Lemma 2. Let A = (Q,Σ, δ, s, F), where
Q = {0, 1, . . . ,m−1}, for m ≥ 4, Σ = {a, b, c, d}, s = m−2, F = {0} and δ is
defined as follows:

(i) δ(m−2, c) = 0,
(ii) δ(i, a) = i+1, for 0 ≤ i ≤ m−4, and δ(m−3, a) = 0,

(iii) δ(i, d) = i, for 1 ≤ i ≤ m−3,
(iv) δ(m−2, b) = 1, δ(0, b) = 0, δ(i, b) = i for 2 ≤ i ≤ m−3,
(v) all transitions not defined above go to the sink state m−1.

Fig. 1 depicts the DFA A. The figure omits the sink state m−1.

0

2

3

m−4

m−3

d

b, d

c

a a

1

b, d

b, d
b, d

aa

a

a a

m−2
b

b

Fig. 1. The DFA A for the worst-case lower bound for the Kleene star of L(A), for
m ≥ 4. Note that we omit the sink state m−1.

Lemma 3. Let A be the DFA in Fig. 1 for m ≥ 4.

1. The language L(A) is suffix-free.
2. The state complexity of L(A)∗ is 2m−2 + 1.

Combining Lemma 2 and Lemma 3, we have the following result.

Theorem 1. Given an m-state suffix-free minimal DFA A, 2m−2 + 1 states are
necessary and sufficient in the worst-case for the minimal DFA of L(A)∗.

The proof of Lemma 3 uses a four character alphabet. It remains an open question
whether the bound of Theorem 1 can be reached using an alphabet of size 2 or 3.

State Complexity of Basic Operations on Suffix-Free Regular Languages 505

a

b

b

a, b

a

b

a

b

b

a, b

a

b

#

a, b

#

#

#a

a, b, #

s′

d

A A#

#

a

Fig. 2. An example of a minimal DFA A in Proposition 1. Note that A# is also a
minimal DFA and L(A#) is suffix-free.

3.2 Reversal of Suffix-Free Regular Languages

We examine the reversal operation of suffix-free regular languages. First, we re-
call the state complexity of reversal on regular languages. If a regular language L
is accepted by an m-state minimal DFA, then its reversal LR is accepted by an
m-state NFA. By the well-known subset argument, we can conclude that the
state complexity of LR is at most 2m.

Proposition 1 (Leiss [17] and Salomaa et al. [20]). There are classes of
regular languages for which 2m states are necessary and sufficient for the reversal
of an m-state minimal DFA. Note that such an m-state minimal DFA does not
have the sink state.

Given a suffix-free minimal DFA A = (Q,Σ, δ, s, F), we flip all transition direc-
tions in A and obtain a new FA AR for L(A)R. If we apply the subset construction
on AR, then the resulting DFA is the minimal DFA for L(AR) [2,22].

Lemma 4. Given an m-state suffix-free minimal DFA A, 2m−2 + 1 states are
sufficient in the worst-case for the minimal DFA of L(A)R.

Next, we show that 2m−2 + 1 states are necessary for the reversal of a suffix-
free minimal DFA. Given a (regular) language L over Σ, #L is suffix-free if the
character # is not in Σ.

We construct a suffix-free minimal DFA that has m states as follows: Let A =
(Q,Σ, δ, s, F) be a minimal DFA as in Proposition 1 over Σ, which is not suffix-
free in general. We introduce a new start state s′ and a new transition δ(s′,#) =
s. We also introduce a sink state d. Note that a minimal DFA for a regular
language in Proposition 1 does not have a sink state. Consequently, d is not
equivalent with any of the states of A. Then, the new FA A# is deterministic
and minimal by construction. Furthermore, L(A#) is suffix-free. Thus, if A has
m− 2 states, then A# has m states. See Fig. 2 for an example.

506 Y.-S. Han and K. Salomaa

Lemma 5. Given an m-state suffix-free minimal DFA A# as shown in Fig. 2,
2m−2 + 1 states are necessary for the minimal DFA of L(A#)R, where # /∈ Σ.

We establish the following theorem from Lemmas 4 and 5. Note that Salomaa
et al. [20] established that the result of Proposition 1 holds also for binary
alphabets.

Theorem 2. Given an m-state suffix-free minimal DFA A over Σ, 2m−2 + 1
states are necessary and sufficient in the worst-case for the minimal DFA of
L(A)R, where |Σ| ≥ 3.

4 Catenation

We investigate the state complexity of the catenation of two suffix-free regular
languages. We first compute the upper bound and after that present a matching
lower bound example.

Lemma 6. Given two suffix-free minimal DFAs A = (Q1, Σ, δ1, s1, F1) and B =
(Q2, Σ, δ2, s2, F2), (m−1)2n−2 + 1 states are sufficient for the minimal DFA of
L(A) · L(B), where m = |Q1| and n = |Q2|.

We present two suffix-free minimal DFAs A and B such that the state complexity
of L(A)L(B) reaches the upper bound in Lemma 6. In the following, let Σ =
{a, b, c, d}. We define

A = (Q1, Σ, δ1, s1, F1), (1)

where Q1 = {0, 1, . . . ,m−1}, m ≥ 3, s1 = 0, F1 = {1} and δ1 is defined as
follows:

(i) δ1(0, c) = 1,
(ii) δ1(i, a) = i + 1, 1 ≤ i ≤ m−3, δ1(m−2, a) = 1,
(iii) δ1(i, b) = i, 1 ≤ i ≤ m−2,
(iv) δ1(1, d) = 1,
(v) all transitions not defined above go to the sink state m−1.

The DFA A is depicted in Fig. 3. The figure does not show the sink state m−1
or the transitions into the sink state.

Next we define
B = (Q2, Σ, δ2, s2, F2), (2)

where Q2 = {0, 1, . . . , n−1}, n ≥ 3, s2 = 0, F2 = {1}, and δ2 is defined by the
following:

1. δ2(0, d) = 1,
2. δ2(i, b) = i + 1, 1 ≤ i ≤ n−3, δ2(n−2, b) = 1,
3. δ2(i, a) = δ2(i, c) = i, 1 ≤ i ≤ n−2,
4. δ2(i, d) = i, 2 ≤ i ≤ n−2,
5. all transitions not defined above go to the sink state n−1.

State Complexity of Basic Operations on Suffix-Free Regular Languages 507

1

2 3

m−2

b

c

a

a

0
b, d

b
a

a

b

a

Fig. 3. The DFA A for the worst-case lower bound for catenation

1

2 3

n−2

a, c, d

d
0

a, c

b

a, c, d

b

b

b

b

a, c, d

Fig. 4. The DFA B for the worst-case lower bound for catenation

The DFA B is depicted in Fig. 4. Again the figure does not show the sink
state n−1.

Lemma 7. Let A be as in (1) and B as in (2), for m,n ≥ 3.

1. The languages L(A) and L(B) are suffix-free.
2. The state-complexity of L(A) · L(B) is (m− 1)2n−2 + 1.

Lemma 7 shows that the upper bound in Lemma 6 is tight when |Σ| ≥ 4.

Theorem 3. For arbitrary m,n ≥ 3, (m− 1)2n−2 + 1 states are necessary and
sufficient in the worst-case for the catenation of, respectively, an m-state and an
n-state suffix-free minimal DFAs.

508 Y.-S. Han and K. Salomaa

The worst-case example in Lemma 7 uses an alphabet with 4 characters. We
do not know whether the upper bound can be reached using an alphabet of
size 2 or 3.

5 Intersection and Union

Note that for the complement operation of an m-state suffix-free DFA, it is easy
to verify that m states are necessary and sufficient. In the following, we consider
the operations of intersection and union.

5.1 Intersection of Suffix-Free Regular Languages

Given two DFAs A and B, we can construct a DFA for the intersection of L(A)
and L(B) based on the Cartesian product of states. For details on the Cartesian
product construction, refer to Hopcroft and Ullman [13].

Proposition 2. Given two DFAs A = (Q1, Σ, δ1, s1, F1) and B = (Q2, Σ, δ2, s2,
F2), let M = (Q1 ×Q2, Σ, δ, (s1, s2), F1 × F2), where for all p ∈ Q1 and q ∈ Q2

and a ∈ Σ,
δ((p, q), a) = (δ1(p, a), δ2(q, a)).

Then, L(M) = L(A) ∩ L(B).

Since the automaton M constructed in Proposition 2 is deterministic, it follows
that mn states are sufficient for the intersection of L(A) and L(B), where |A| =
m and |B| = n. Note that mn is a tight bound for the intersection of two regular
languages [24].

We assign a unique number for each state from 1 to m in A and from 1 to n
in B, where |A| = m and |B| = n. Assume that the mth state and the nth state
are the sink states in A and B, respectively. Let A ∩c B denote the resulting
intersection automaton that we compute using the Cartesian product of states.
By the construction, A ∩c B is deterministic since A and B are deterministic.
Therefore, we obtain a DFA for L(A) ∩ L(B). Next, we minimize A ∩c B by
merging all equivalent states and removing unreachable states from the start
state.

Proposition 3 (Han et al. [9]). For a state (i, j) in A ∩c B, the right lan-
guage L(i,j) of (i, j) is the intersection of Li in A and Lj in B.

Since a suffix-free DFA A has the sink state as proved in Lemma 1, L(m,i) = ∅,
for 1 ≤ i ≤ n, by Proposition 3, where m is the sink state of A. Therefore, we
can merge all these states. Similarly, all states (j, n), for 1 ≤ j ≤ m, of A ∩c B
are equivalent and, therefore, can be merged.

Observation 1. Given suffix-free minimal DFAs A and B, all states (m, i) for
1 ≤ i ≤ n and all states (j, n) for 1 ≤ j ≤ m of A ∩c B are equivalent.

State Complexity of Basic Operations on Suffix-Free Regular Languages 509

1,1 1,2 1,3 1,4 1,n-1 1,n

3,1

2,1

m-1,1

m,1

m-1,n-1

m,n

these states are not reachable from (1,1).

these states are all equivalent.

Fig. 5. The figure depicts the intersection automaton A∩cB constructed for two suffix-
free minimal DFAs A and B. Note that, by Observation 1, all states in the last row and
in the last column are equivalent. Similarly, by Observation 2, all states, except for the
start state (1,1), in the first row and in the first column are unreachable from (1,1).

Consider all states (1, i), for 1 < i ≤ n, of A ∩c B. Since L(A) is suffix-free, the
start state of A has no in-transitions. It implies that (1, i) is not reachable from
(1, 1) in A ∩c B and, therefore, these states are useless as shown in Fig. 5. We
can establish a similar result for the the states (j, 1), for 1 < j ≤ m.

Observation 2. Given suffix-free minimal DFAs A and B, all states (1, i), for
1 < i ≤ m, and all states (j, 1), for 1 < j ≤ n, are useless in A ∩c B.

Once we minimize A∩c B based on Observations 1 and 2, the resulting minimal
DFA has mn− 2(m + n) + 6 states.

Theorem 4. Given two suffix-free minimal DFAs A and B, mn− 2(m+n) + 6
states are necessary and sufficient in the worst-case for the minimal DFA of
L(A) ∩ L(B), where |Σ| ≥ 3.

5.2 Union of Suffix-Free Regular Languages

We now investigate the union of two suffix-free regular languages. We compute
the union DFA for L(A) and L(B) using the Cartesian product of states. Given

510 Y.-S. Han and K. Salomaa

two suffix-free minimal DFAs A = (Q1, Σ, δ1, s1, F1) and B = (Q2, Σ, δ2, s2, F2),
let M = (Q1 ×Q2, Σ, δ, (s1, s2), F), where for all p ∈ Q1 and q ∈ Q2 and a ∈ Σ,

δ((p, q), a) = (δ(p, a), δ(q, a))

and F = (F1 × Q2) ∪ (Q1 × F2). Then, L(M) = L(A) ∪ L(B) and M is deter-
ministic. Let A ∪c B denote M . Consider the right language of a state (i, j) in
A ∪c B.

Proposition 4 (Han et al. [9]). For a state (i, j) in A ∪c B, the right lan-
guage L(i,j) of (i, j) is the union of Li in A and Lj in B.

Note that the two constructions for A ∩c B and A ∪c B are different. This
implies that we may not be able to apply the same approach that we used for
A ∩c B for computing the upper bound for L(A) ∪ L(B). For example, since
L(n,j) = Ln ∪ Lj �= ∅ by Proposition 4, all states (m, i) and (j, n) for 1 ≤ i ≤ n
and 1 ≤ j ≤ m, in A ∪c B are not necessarily equivalent. Thus, these states
cannot be merged. On the other hand, we observe that all states (1, i) and (j, 1),
for 1 < i ≤ n and 1 < j ≤ m, are useless since L(A) and L(B) are suffix-free.
Therefore, we minimize A ∪c B by removing these m + n− 2 states.

Theorem 5. Given two suffix-free minimal DFAs A and B, mn− (m + n) + 2
states are necessary and sufficient in the worst-case for the minimal DFA of
L(A) ∪ L(B), where |Σ| ≥ 5.

6 Conclusion

The state complexity of an operation for regular languages is the number of
states that are necessary and sufficient for the minimal DFA that accepts the
language obtained from the operation. Yu et al. [24] studied the operational
state complexity of general regular languages and Han et al. [9] examined the
state complexity of basic operations on prefix-free regular languages. Since suffix-
freeness is reversal of prefix-freeness, it was a natural problem to examine the
state complexity of basic operations on suffix-free regular languages.

operation regular languages prefix-free case suffix-free case

L∗
1 2m−1 + 2m−2 m 2m−2 + 1

LR
1 2m 2m−2 + 1 2m−2 + 1

L1 · L2 (2m− 1)2n−1 m + n− 2 (m− 1)2n−2 + 1
L1 ∩ L2 mn mn− 2(m + n) + 6 mn− 2(m + n) + 6
L1 ∪ L2 mn mn− 2 mn− (m + n) + 2

Fig. 6. Operational state complexity of general, prefix-free and suffix-free regular lan-
guages

State Complexity of Basic Operations on Suffix-Free Regular Languages 511

Based on the structural property that a suffix-free minimal DFA must be
non-returning, we have tackled Kleene star, reversal, catenation, intersection
and union cases and obtained the tight bound for each operation.

Fig. 6 shows the comparison table of the state complexity on regular lan-
guages, prefix-free regular languages and suffix-free regular languages. We have
established the tight state complexity bounds for each of the operations using
languages over a fixed alphabet. However, the constructions usually require an
alphabet of size 3 or 4 and, then, for most operations, it is open whether or not
the upper bound for the state complexity of each operation can be reached using
a small size alphabet such as |Σ| = 2 or 3.

References

1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Inc., London (1985)

2. Brzozowski, J.: A survey of regular expressions and their applications. IEEE Trans-
actions on Electronic Computers 11, 324–335 (1962)

3. Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

4. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity
of shuffle of regular languages. Journal of Automata, Languages and Combina-
torics 7(3), 303–310 (2002)

5. Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455–468 (2002)

6. Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal
of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)

7. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Technical Report Technical Report 2007-534, Queen’s University (2007)
http://www.cs.queensu.ca/TechReports/Reports/2007-534.pdf

8. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. In: Proceedings of DLT’07. LNCS, vol. 4588, pp. 217–228 (2007)

9. Han, Y.-S., Salomaa, K., Wood, D.: State complexity of prefix-free regular lan-
guages. In: Proceedings of DCFS’06, pp. 165–176 (2006) (Full version is submitted
for publication)

10. Han, Y.-S., Wood, D.: The generalization of generalized automata: Expression
automata. International Journal of Foundations of Computer Science 16(3), 499–
510 (2005)

11. Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic
state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp.
162–172. Springer, Heidelberg (2003)

12. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. International Journal of Foundations of Computer Science 14(6), 1087–1102
(2003)

13. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation, 2nd edn. Addison-Wesley, Reading, MA (1979)

14. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages
and descriptional complexity. In: Proceedings of DCFS’05, pp. 170–181 (2005)

http://www.cs.queensu.ca/TechReports/Reports/2007-534.pdf

512 Y.-S. Han and K. Salomaa

15. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation of regular languages. In: Domaratzki, M., Okhotin, A., Salomaa, K.,
Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)

16. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.)
Word, Language, Grammar. Handbook of Formal Languages, vol. 1, pp. 511–607.
Springer, Heidelberg (1997)

17. Leiss, E.L.: Succint representation of regular languages by boolean automata. The-
oretical Computer Science 13, 323–330 (1981)

18. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

19. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. International Journal of Foundations of Computer Science 13(1),
145–159 (2002)

20. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular
languages. Theoretical Computer Science 320(2-3), 315–329 (2004)

21. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York, NY (1987)
22. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language,

Grammar. Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg
(1997)

23. Yu, S.: State complexity of regular languages. Journal of Automata, Languages
and Combinatorics 6(2), 221–234 (2001)

24. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

Exact Algorithms for L(2, 1)-Labeling of Graphs

Jan Kratochv́ıl1, Dieter Kratsch2, and Mathieu Liedloff2

1 Department of Applied Mathematics, and Institute for Theoretical Computer
Science�, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

honza@kam.ms.mff.cuni.cz
2 Laboratoire d’Informatique Théorique et Appliquée,

Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
{kratsch,liedloff}@univ-metz.fr

Abstract. The notion of distance constrained graph labelings, moti-
vated by the Frequency Assignment Problem, reads as follows: A map-
ping from the vertex set of a graph G = (V, E) into an interval of integers
[0..k] is an L(2, 1)-labeling of G of span k if any two adjacent vertices
are mapped onto integers that are at least 2 apart, and every two ver-
tices with a common neighbor are mapped onto distinct integers. It is
known that for any fixed k ≥ 4, deciding the existence of such a la-
beling is an NP-complete problem. We present exact exponential time
algorithms that are faster than the naive O((k + 1)n) algorithm that
would try all possible mappings. The improvement is best seen in the
first NP-complete case of k = 4 – here the running time of our algorithm
is O(1.3161n).

1 Introduction

The Frequency Assignment Problem asks for assigning frequencies to transmit-
ters in a broadcasting network with the aim of avoiding undesired interference.
One of the graph theoretical models of FAP which is well elaborated is the notion
of distance constrained labeling of graphs. An L(2, 1)-labeling of a graph G is a
mapping from the vertex set of G into nonnegative integers such that the labels
assigned to adjacent vertices differ by at least 2, and labels assigned to vertices of
distance 2 are different. The span of such a labeling is the maximum label used.
In this model, the vertices of G represent the transmitters and the edges of G
express which pairs of transmitters are too close to each other so that an unde-
sired interference may occur, even if the frequencies assigned to them differ by 1.
This model was introduced by Roberts [15] and since then the concept has been
intensively studied. Undoubtedly, distance constrained graph labelings provide
a graph invariant of significant theoretical interest. Let us mention a few of the
known results and open problems: Griggs and Yeh [11] proved that determining
the minimum possible span of G – denoted by L2,1(G) – is an NP-hard problem.

� Supported by Research grant 1M0021620808 of the Czech Ministry of Education.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 513–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

514 J. Kratochv́ıl, D. Kratsch, and M. Liedloff

Fig. 1. (a) The graph H = P5. (b) A graph G with an L(2, 1)-labeling of span 4 as a
locally injective homomorphism into H .

Fiala et al. [4] later proved that deciding L2,1(G) ≤ k remains NP-complete for
every fixed k ≥ 4, while Bodlaender et al. [1] proved NP-hardness for planar
inputs for k = 8. (For 4 ≤ k ≤ 7 and planar inputs, the complexity is still
open.) When the span k is part of the input, the problem is nontrivial even
for trees – though a polynomial time algorithm based on bipartite matching
was presented in [2], existence of a linear time algorithm for trees is still open.
Moreover, somewhat surprisingly, the problem becomes NP-complete for series-
parallel graphs [3], and thus the L(2, 1)-labeling problem belongs to a handful of
problems known to separate graphs of tree-width 1 and 2 by P/NP-completeness
dichotomy. From the structural point of view, Griggs and Yeh [11] conjectured
that every graph of maximum degree Δ satisfies L2,1(G) ≤ Δ2. The so far best
published upper bound L2,1(G) ≤ Δ2 + Δ − 2 was proved by Gonçalves [10].
However, for Δ > 2, the Moore graphs are the only graphs known to require
span Δ2, and it is an open problem if there are infinitely many graphs satisfying
L2,1(G) > Δ2 − o(Δ).

Generalizations have been considered, both in the direction of taking into
account larger distances and in the direction of allowing a more complicated
structure of the frequency space. Circular metric was considered by Leese et al.
[13] and Liu et al. [14], showing that in certain sense the circular metric is easier
than the linear one (e.g., the circular span of a tree is uniquely determined
by its maximum degree and can thus be determined in linear time). Fiala and
Kratochv́ıl consider in [5] the utmost generalization for the case when the metric
in the frequency space can be described by a graph, say H . They define the
notion of an H(2, 1)-labeling of G, which is a mapping from the vertex set of
G into the vertex set of H such that vertices adjacent in G are mapped onto
nonadjacent (distinct) vertices of H , and vertices with a common neighbor (in G)
are mapped onto distinct vertices of H . They also show that H(2, 1)-labelings are
exactly locally injective homomorphisms from G to H , the complement of H . In
particular, an L(2, 1)-labeling of span k is a locally injective homomorphism into
the complement of the path of length k. (The complement of the path of length
4 is depicted in Figure 1.) The complexity of locally injective homomorphisms
was considered in [5,6,7] where a number of NP-complete cases were identified,
but the complete characterization is still open.

The goal of this paper is to explore exact exponential time algorithms for the
L(2, 1)-labeling problem of fixed span. Since one cannot hope for polynomial time
algorithms (unless P = NP), our aim is to design algorithms with running time

Exact Algorithms for L(2, 1)-Labeling of Graphs 515

O∗(cn) and minimizing the constant c.1 First we show that it is not difficult to
beat the trivial bound c ≤ k+1 (which follows from merely checking all possible
mappings from V (G) into {0, 1, . . . , k}) by presenting an algorithm of running
time O∗((k−1)n) which can also be generalized to the H(2, 1)-labeling problem.
Then we refine the branching algorithm for the case of span 4 to achieve an
algorithm of running time O∗(1.3161n) (which beats not only c = k−1 = 3, but
also k− 2 = 2). Finally, a running time of O∗(1.3006n) of the same algorithm is
established using a refined analysis.

Throughout the paper we consider finite undirected graphs without multiple
edges or loops. The vertex set (edge set) of a graph G is denoted by V (G) (E(G),
respectively). The open neighborhood of a vertex u in G is denoted by NG(u).
The symbol n is reserved for the number of vertices of the input graph, which
will always be denoted by G.

2 Exact Algorithm for Locally Injective Homomorphisms

A graph homomorphism is an edge preserving vertex mapping between two
graphs. More formally, a mapping f : V (G) → V (H) is a homomorphism from
G to H if f(u)f(v) ∈ E(H) whenever uv ∈ V (G). Such a mapping is sometimes
referred to as an H-coloring of G since homomorphisms provide a generalization
of the concept of graph colorings – k-colorings of G are exactly homomorphisms
from G to the complete graph Kk. Hell and Nešetřil proved that from the compu-
tational complexity point of view, homomorphisms admit a complete dichotomy
– deciding existence of a homomorphism into a fixed graph H is polynomial when
H is bipartite and NP-complete otherwise [12]. The study of exact algorithms
for graph homomorphisms was initiated in [9].

A homomorphism f : G → H is called locally injective if for every vertex
u ∈ V (G), its neighborhood is mapped injectively into the neighborhood of f(u)
in H , i.e., if every two vertices with a common neighbor in G are mapped onto
distinct vertices in H . When deciding the existence of a locally injective homo-
morphism, one might try to utilize the known algorithms that list all possible
homomorphisms and then check if any of them is locally injective. It is not
surprising that using the local injectivity, one can often do much better. The
known algorithms for H-homomorphism relate the base of the exponential func-
tion that expresses the running time to the number of vertices of H [9], while
we prove in Theorem 1 that H-locally-injective-homomorphism can be solved in
time O∗((Δ(H) − 1)n), where Δ(H) is the maximum degree of a vertex of H .
This, in most cases considerable, speed-up is achieved when we label the vertices
consecutively using the fact that a neighbor of an already labeled vertex has only
a limited number of candidate labels.

Without loss of generality we may assume that G is a connected graph, since
otherwise we solve the problem on each connected component of G separately.

1 Here we use the so called O∗ notation: f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for
some polynomial p(n).

516 J. Kratochv́ıl, D. Kratsch, and M. Liedloff

In the algorithm, f denotes a partial labeling of the vertices of G by vertices of
H which is a candidate for a locally injective homomorphism from G to H .

Algorithm-H-LIH(G)
if ∃v ∈ V (G) s.t. v is unlabeled and v has at least one neighbor u which
was already labeled then

foreach c ∈ NH(f(u)) \ f(NG(u)) do
set f(v) = c
Algorithm-H-LIH(G)

else
if ∃u ∈ V (G) s.t. u is unlabeled then

foreach c ∈ V (H) do
set f(u) = c
Algorithm-H-LIH(G)

else
if the labeling f is a locally injective homomorphism from G to H
then

return the labeling

Theorem 1. The H-Locally-Injective-Homomorphism problem is solved in time
O∗((Δ(H)− 1)n) by Algorithm-H-LIH.

Proof. In the first step the algorithm picks an unlabeled vertex, say u, and labels
it in |V (H)| ways. In the second step, the first rule is used and a neighbor v of u is
labeled in degH(f(u)) ≤ Δ(H) ways. From this time on, the algorithm branches
each time into at most Δ(H) − 1 ways. To see this, let T = (V (G), E(T))
be an auxiliary graph which contains the edges uv from the application of the
first rule. The loop invariant of the algorithm is that T is an acyclic graph
consisting of one connected component – containing the so far labeled vertices
– and remaining isolated (and unlabeled) vertices. Also, f(u)f(v) ∈ E(H) for
every edge uv ∈ E(T). From the third round on, the first rule is always applied,
and one edge uv is added to T . And since u had another neighbor w in T ,
f(w) ∈ NH(f(u)) and so NH(f(u)) \ f(NG(u)) has at most Δ(H)− 1 available
labels for v. ��

Corollary 1. The L(2, 1)-labeling problem of span k can be decided in time
O∗((k − 1)n). Hence, L(2, 1)-labeling of span 4 can be solved in time O∗(3n).

Proof. The maximum degree of a vertex in the complement of the path of length
k is Δ(Pk+1) = k − 1. ��

3 A Branching Algorithm for L(2, 1)-Labeling of Span 4

In this section we present a significantly faster algorithm for the case of L(2, 1)-
labeling of span 4. The main idea is the same as for Algorithm-H-LIH – in the

Exact Algorithms for L(2, 1)-Labeling of Graphs 517

first two steps we label two adjacent vertices in all possible (i.e., at most 12)
ways. Then we keep labeling the vertices one by one (and branching into several
possibilities when necessary) so that the so far labeled part of the input graph G
remains connected. It follows that every newly labeled vertex has (at least) one
labeled neighbor, and this labeled neighbor has another (at least one) labeled
neighbor. The key idea of the speed-up is two-fold. First, we list several rules and
apply them in order of their preferences, thus aiming at reducing the number of
branching steps. Secondly, we often label several vertices at a time which leads
to a more convenient recurrence for the upper bound of the running time.

Before we describe the details of the algorithm, we introduce a technical def-
inition and a lemma. Throughout this section, we assume that we are in the
middle of a run of our algorithm and that f : X → {0, 1, 2, 3, 4} is a partial
L(2, 1)-labeling of G such that the labeled vertices X ⊆ V (G) induce a con-
nected subgraph. Note that in order to have a chance to admit a valid labeling,
G must have maximum degree at most 3. It is also clear that every vertex of
degree 3 must be labeled by 0 or 4, and we will keep checking that this condition
is satisfied by each candidate labeling f . To avoid trivial cases we assume that
G has at least one vertex of degree 3.

Definition 1. A path in G is called an extension path if all inner vertices are
unlabeled and of degree 2, at least one endpoint is labeled and the unlabeled
endpoint (if there is one) has either degree 1 or 3. (With a slight abuse of notation
we allow that the endpoints are the same vertex, so such an extension path is in
fact a cycle and the endpoint is labeled).

Lemma 1. Let P = v0v1 . . . vk be an extension path such that v0 is labeled
and vk has degree 1 (and is unlabeled). Let G′ = G[V (G) \ {v1, . . . , vk}] be the
subgraph obtained by deleting the path P and let f ′ : V (G′) → {0, 1, 2, 3, 4} be a
valid extension of f to an L(2, 1)-labeling of G′. Then f ′ can be extended to an
L(2, 1)-labeling of the entire graph G.

Proof. Since deg(v0) ≤ 3 and f ′(v0) ∈ {0, 4} if deg(v0) = 3, there is always a
label, say �, available for v1. The edge f ′(v0)� belongs to a cycle in P5, and we
label the path P wrapping around this cycle. ��

Now we describe the rules and discuss their effect on the running time. When
a rule is applied to a partially labeled graph it has at least two labeled vertices
and its labeled vertices induce a connected subgraph. Note that only Rules 4
and 5 use branchings.

Rule 1 - Forced Extensions

– If u is an unlabeled vertex whose labeled neighbor v has two labeled neigh-
bors, then the possible label of u is uniquely determined by the labels of v
and its neighbors;

– if u is an unlabeled vertex with a neighbor v labeled by 1, 2 or 3, then, since
v has another labeled neighbor, the label of u is uniquely determined by the
labels of v and its neighbor;

518 J. Kratochv́ıl, D. Kratsch, and M. Liedloff

Fig. 2. Forced extensions. (a) An unlabeled vertex u whose labeled neighbor v has two
labeled neighbors. (b) An unlabeled vertex u with a neighbor v having label 1,2 or 3. (c)
An unlabeled vertex u of degree 3 with a labeled neighbor v. (d) An unlabeled vertex u of
degree 2 with one labeled neighbor v and one (possibly unlabeled) neighbor of degree 3.

– if u is an unlabeled vertex of degree 3 with a labeled neighbor v, then the
label of u is either 0 or 4 and is uniquely determined by the label of v and
its other labeled neighbor;

– if u is an unlabeled vertex of degree 2 such that one of its neighbors is labeled
and the other one is a (possibly unlabeled) degree 3 vertex, then the label
of u is uniquely determined by the labels of its neighbor(s).

Note that if Rule 1 cannot be applied, every unlabeled vertex that is adjacent
to a labeled one has degree at most 2 and each of its adjacent labeled vertices is
labeled by 0 or 4.

Rule 2 - Easy Extension

– If P is an extension path with one endpoint of degree 1, Lemma 1 says
that the unlabeled vertices of P are irrelevant – we delete them from G and
continue with the reduced graph.

If neither Rule 1 nor Rule 2 can be applied, every unlabeled vertex that is
adjacent to a labeled one has degree 2.

Fig. 3. Easy extension. An extension path with one unlabeled endpoint of degree 1.

Rule 3 - Cheap Extensions

– If P is an extension path with both endpoints labeled and of degree 2,
we can decide by dynamic programming whether P has an L(2, 1)-labeling

Exact Algorithms for L(2, 1)-Labeling of Graphs 519

compatible with the labeling of the labeled neighbors of its endpoints. In the
affirmative case we just delete the unlabeled vertices and continue with the
reduced graph, otherwise we reject the current f as allowing no extension.

– If P is an extension path with identical endpoints, we again decide by dy-
namic programming if the path has an L(2, 1)-labeling compatible with the
label of the endpoint and its labeled neighbor. And we either reduce G or
reject f , depending on the outcome.

Fig. 4. Cheap extensions. (a) An extension path with both endpoints labeled and of
degree 2. (b) An extension path with indentical endpoints.

The dynamic programming consumes only time polynomial in the length of the
path, and so does not affect the base of the exponential function bounding the
running time. (To be honest, it only consumes constant time – it can be shown by
case analysis that if the path is long enough, then any combination of labelings
of its terminal edges is feasible, and so the dynamic programming is only applied
to short paths of constant length).

Rule 4 - Extensions with Strong Constraints

– Let P be an extension path with both endpoints labeled, each with 0 or 4,
such that each endpoint has only one labeled neighbor and at least one of
them has another unlabeled neighbor that does not belong to P . In this case
we branch along possible labelings of the (at most 4) unlabeled neighbors of
the endpoints of P , while extending each of these labelings to entire P (by
dynamic programming approach).

Now we discuss the details of this branching rule and the consequences for the
running time. The illustrative Fig. 5 (a) will be helpful. Let b and c be the labeled
endpoints of P , b of degree 3 and c of degree 2 or 3, and let a and d, respectively,

Fig. 5. Extensions with strong (a) and weak (b) constraints

520 J. Kratochv́ıl, D. Kratsch, and M. Liedloff

be their labeled neighbors. Let further x and y be the unlabeled neighbors of b
and c, respectively, on the path P , and let u �= x be the other unlabeled neighbor
of b; and let v �= y be the other unlabeled neighbor of c, if it exists.

Length 1. If the length of P (measured by the number of unlabeled vertices) is
1, then the label of x = y is uniquely determined (in fact, it has to be 2), and
we do not really branch.

Length 2. If the length of P is 2, we have the following possible labelings of
ab..cd and their extensions to abxycd (up to the symmetric labeling f ′ = 4− f):

40xy40→ 403140 40xy42→ 403142 40xy02→ 402402
40xy03→ 402403 20xy03→ 204203 20xy04→ 204204
20xy40→ 203140 20xy42→ 203142 30xy02→ 302402
30xy04→ 304204 30xy03→ 302403, 304203.

We see that most cases allow only one extension of the labeling to P , except for
the last case, where branching into two cases occurs. If this happens, we gain at
least three newly labeled vertices (x, y, u and possibly also v).

To analyze the running time of our algorithm we determine an upper bound
on the maximum number T (n) of leaves in the search tree corresponding to an
execution of the algorithm on an input with n unlabeled vertices. The overall
running time will then be O∗(T (n)) since the application of every rule takes only
polynomial time and reduces the number of unlabeled vertices by at least one.

From our above analysis for Rule 4, we obtain two recurrences: T (n) = 2T (n−
3) (if c does not have another unlabeled neighbor v or if v = u) and T (n) =
2T (n − 4) (if the neighbor v exists and is distinct from u). The solution of a
recurrence T (n) = αT (n− β) is of the form Θ(cn) for c = β

√
α. Here we obtain

c = 3
√

2 for the first recurrence and c = 4
√

2 for the second one.

Length 3. The maximum number of possible extensions of the labelings of an
extension path P of length 3 can be established from exhaustive search trees
giving all L(2, 1)-labelings.

Table 1 summarizes the numbers of extensions and corresponding upper
bounds for T (n) for extension paths of lengths 1 to 3.

Length at least 4. If the path is longer, we have two possible extensions of
the labeling to the vertices x and u, and two extensions to y and v. For each
of these 4 cases we check (in polynomial time, by dynamic programming) if it
extends to a labeling of P . If v exists and v �= u, we gain length(P) + 2 newly
labeled vertices (the unlabeled vertices of P plus u and v), which leads to the
recurrence T (n) = 4T (n− length(P)− 2) and T (n) = O(4

n
6) = O(1.2600n).

If v does not exist, it may seem to mind that we only gain length(P) + 1
newly labeled vertices at the same cost of branching. However, in this case we
only consider two possible labelings of the pair x and u, and for each of them
we only check if it extends to a labeling of P or not. The actual label of y is
irrelevant since c has degree 2 in this case. This leads to the recurrence T (n) =
2T (n− length(P)− 1) and T (n) = O(2

n
5) = O(1.1487n).

Exact Algorithms for L(2, 1)-Labeling of Graphs 521

If v = u then u would be treated by Rule 1 since u is adjacent to c and in
that case c has degree 3. Thus v = u is not possible when applying Rule 4.

Comparing all cases we see that the worst case is achieved when deg(c) = 2 and
length(P) = 2. Thus using any branching of Rule 4 leads to T (n) = O(1.2600n).

Table 1. Branching on extension paths of length ≤ 3 with strong constraints

length
l of the
path P

maximum
number of
branchings t1
if deg(c) = 2

solution of the
recurrence

T (n) = t1T (n− l − 1)

maximum
number of
branchings t2
if deg(c) = 3

solution of the
recurrence

T (n) = t2T (n− l − 2)

1 1 no branching 1 no branching

2 2 O(2
n
3) = O(1.2600n) 2 O(2

n
4) = O(1.1893n)

3 2 O(2
n
4) = O(1.1893n) 2 O(2

n
5) = O(1.1487n)

If none of Rules 1-4 can be applied, then every unlabeled vertex that is adja-
cent to a labeled one belongs to an extension path with one unlabeled endpoint
of degree 3. This is treated by the last branching rule.

Rule 5 - Extensions with Weak Constraints

– Let P be an extension path with one unlabeled endpoint v of degree 3. Let
w be the neighbor of v in P , let the labeled endpoint of P be b, let its
labeled neighbor be a and let u be (if it exists) the unlabeled neighbor of b
not belonging to P (see Fig. 5 (b)). In this case we branch along possible
labelings of v, w and (possibly) u, while extending each of these labelings to
entire P (by dynamic programming).

The table below summarizes the numbers of branchings for paths of length at
most 8 (these numbers can be established from exhaustive search trees giving all
such possible L(2, 1)-labelings) Again, when deg(b) = 2, we only count the num-
ber of labelings of v and w that extend to a labeling of P compatible with the
labeling of a and b, since the actual label used on the neighbor of b in P is irrel-
evant. On the other hand, when deg(b) = 3, we count the number of labelings of
v, w and u that allow an extension to a labeling of P compatible with the labels
of a and b. Note that in either case both v and b may only receive labels 0 or 4.

In the case of a longer path, we have at most 6 possible labelings of v and w,
yielding the recurrence T (n) = 6T (n− length(P)) if deg(b) = 2. If deg(b) = 3,
we have at most 12 possible labelings of v, w and u, yielding the recurrence
T (n) = 12T (n− length(P)− 1).

Since 8
√

6 < 4
√

3 and 9
√

12 < 4
√

3, the overall worst case for Rule 5 is
achieved when b is a degree 2 vertex and the extension path has length 4. Hence
T (n) = O(1.3161n).

Summarizing the analysis of the algorithm, we obtain

Theorem 2. The existence of an L(2, 1)-labeling of span 4 can be decided in time
O∗(1.3161n). If such a labeling exists it can be computed within the same time.

522 J. Kratochv́ıl, D. Kratsch, and M. Liedloff

Table 2. Branching on extension paths of lengths ≤ 8 with weak constraints

length
l of the
path P

maximum
number of
branchings t1
if deg(b) = 2

solution of the
recurrence

T (n) = t1T (n− l)

maximum
number of
branchings t2
if deg(b) = 3

solution of the
recurrence

T (n) = t2T (n− l − 1)

1 1 no branching 1 no branching
2 1 no branching 1 no branching

3 2 O(2
n
3) = O(1.2600n) 2 O(2

n
4) = O(1.1893n)

4 3 O(3
n
4) = O(1.3161n) 3 O(3

n
5) = O(1.2458n)

5 3 O(3
n
5) = O(1.2458n) 3 O(3

n
6) = O(1.2010n)

6 5 O(5
n
6) = O(1.3077n) 6 O(6

n
7) = O(1.2918n)

7 5 O(5
n
7) = O(1.2585n) 6 O(6

n
8) = O(1.2511n)

8 5 O(5
n
8) = O(1.2229n) 7 O(7

n
9) = O(1.2414n)

4 A Refined Time Analysis

In this section we report on an attempt to improve upon the upper bound of
O∗(1.3161n) for the running time of our algorithm. To do this we use a Measure
& Conquer approach (see e.g. [8]). To each graph G with a partial labeling f we
assign the following measure

μ = μ(G, f) = ñ + εn̂

where ñ is the number of unlabeled vertices with no labeled neighbor and n̂ is
the number of unlabled vertices having a labeled neighbor. Furthermore, ε is a
constant to be chosen later such that 0 ≤ ε ≤ 1.

This means that the weight of a vertex is 0 if it is already labeled, it is ε if it is
unlabeled with a labeled neighbor, and it is 1 otherwise. Note that μ(G, f) ≤ n,
where n is the number of vertices of G.

Theorem 3. The existence of an L(2, 1)-labeling of span 4 can be decided in
time O∗(1.3006n).

Proof. Let G = (V,E) be a graph with a partial labeling f . We consider the
measure μ = μ(G, f) for analysing the running time of the algorithm presented
in Section 3. The analysis of the running time is quite similar to the one provided
in Section 3, but since the measure involves the use of different weights (i.e., 1
or ε) depending on the status –labeled or unlabeled– of the vertices and their
neighborhood, we obtain new recurrences. To simplify the notation, given a
vertex v we denote by w(v) the weight of v. Namely w(v) = 1 for each unlabeled
vertex v with no labeled neighbor, w(v) = ε for each unlabled vertex v with a
labeled neighbor and w(v) = 0 for each labeled vertex v. Thus summing over all
vertices of G the equality μ(G, f) =

∑
v∈V w(v) holds.

Rule 1, 2 and 3. The application of rules 1,2 and 3 needs only a polynomial
time and cannot increase the measure μ.

Exact Algorithms for L(2, 1)-Labeling of Graphs 523

Rule 4 - Extensions with strong constraints. We consider an extension
path P with both endpoints labeled and we branch on the possible labelings of
the unlabeled neighbors of the endpoints of P (see Section 3 and Figure 6 (a)).

Fig. 6. Extensions with strong (a) and weak (b) constraints

Note that by application of Rule 1 and Rule 2, the degrees of u and v (if it
exists) are precisely 2. Let u′ be the unlabeled neighbor of u. The weight w(u′)
can be either equal to 1 or equal to ε. We distinguish two cases:

– If w(u′) = 1, labeling u would decrease the weight of u′ to ε.
– If w(u′) = ε then denote by u′′ a labeled neighbor of u′. Due to Rule 1, it

follows that u′ has degree 2 and thus labeling u would create an extension
path P ′ = uu′u′′ of length one (u′ is the unlabeled vertex of P ′) that can be
labeled without any branching by Rule 4 (see analysis of Rule 4 in Section 3).
Thus, labeling u would decrease the weight of u′ to 0.

If v exists, we can assume that u and v are different since otherwise if u = v,
Rule 1 would label u. However, in the case that v exists it is possible that u′ = v.
Consequently, labeling the path P and the vertices u and v would decrease the
measure by at least (2ε + (length(P) − 2) + 2ε) if v exists, and by at least
(2ε + (length(P)− 2) + ε + min(1− ε, ε)) otherwise. We recall that length(P) is
the number of unlabeled vertices of P .

Rule 5 - Extensions with weak constraints. We consider an extension
path P with one unlabeled endpoint of degree 3 and we branch on the possible
labelings of v, w and (possibly) u (see Section 3 and Figure 6 (b)).

Let v1 and v2 be the two neighbors of v which do not belong to P . Note that
due to Rule 1, neither v1 nor v2 are labeled or adjacent to a labeled vertex.

If u exists, we can assume that u and vi, i ∈ {1, 2}, are different since otherwise
if u = vi, Rule 1 would label u. Thus, labeling the path P and the vertex u would
decrease the measure by at least (ε + (length(P) − 1) + 2 − 2ε + ε) if u exists,
and by at least (ε + (length(P)− 1) + 2− 2ε) otherwise.

Setting ε = 0.8190 and solving the corresponding recurrences establish a run-
ning time bounded by O(1.3006n). ��

It is an interesting question whether a more clever choice of the measure can
help to prove a more significant improvement of the running time of the
algorithm.

524 J. Kratochv́ıl, D. Kratsch, and M. Liedloff

References

1. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for
lambda-Colorings of Graphs. Computer Journal 47, 193–204 (2004)

2. Chang, G.J., Kuo, D.: The L(2, 1)-labeling problem on graphs. SIAM Journal of
Discrete Mathematics 9, 309–316 (1996)

3. Fiala, J., Golovach, P., Kratochv́ıl, J.: Distance Constrained Labelings of Graphs
of Bounded Treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg
(2005)

4. Fiala, J., Kloks, T., Kratochv́ıl, J.: Fixed-parameter complexity of λ-labelings.
Discrete Applied Mathematics 113, 59–72 (2001)

5. Fiala, J., Kratochv́ıl, J.: Complexity of partial covers of graphs. In: Eades, P.,
Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg
(2001)

6. Fiala, J., Kratochv́ıl, J.: Partial covers of graphs. Mathematicae Graph Theory 22,
89–99 (2002)

7. Fiala, J., Kratochv́ıl, J., Pór, A.: On the computational complexity of partial covers
of theta graphs. Electronic Notes in Discrete Mathematics 19, 79–85 (2005)

8. Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: Domination - A case
study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 192–203. Springer, Heidelberg (2005)

9. Fomin, F., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms.
In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 161–171.
Springer, Heidelberg (2005)

10. Gonçalves, D.: On the L(p, 1)-labelling of graphs. In: DMTCS Proceedings, vol. AE,
pp. 81–86

11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM
Journal of Discrete Mathematics 5, 586–595 (1992)

12. Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial
Theory Series B 48, 92–110 (1990)

13. Leese, R.A., Noble, S.D.: Cyclic labellings with constraints at two distances. Elec-
tronic Journal of Combinatorics, Research paper 16, 11, (2004)

14. Liu, D., Zhu, X.: Circular Distance Two Labelings and Circular Chromatic Num-
bers. Ars Combinatoria 69, 177–183 (2003)

15. Roberts, F.S.: Private communication to J. Griggs

On (k, �)-Leaf Powers

Andreas Brandstädt and Peter Wagner�

Institut für Informatik, Universität Rostock, D-18051 Rostock, Germany
{ab,Peter.Wagner}@informatik.uni-rostock.de

Abstract. We say that, for k ≥ 2 and � > k, a tree T is a (k, �)-leaf
root of a graph G = (VG, EG) if VG is the set of leaves of T , for all edges
xy ∈ EG, the distance dT (x, y) in T is at most k and, for all non-edges
xy �∈ EG, dT (x, y) is at least �. A graph G is a (k, �)-leaf power if it has
a (k, �)-leaf root. This new notion modifies the concept of k-leaf power
which was introduced and studied by Nishimura, Ragde and Thilikos
motivated by the search for underlying phylogenetic trees. Recently, a
lot of work has been done on k-leaf powers and roots as well as on their
variants phylogenetic roots and Steiner roots. For k = 3 and k = 4,
structural characterisations and linear time recognition algorithms of k-
leaf powers are known, and, recently, a polynomial time recognition of
5-leaf powers was given. For larger k, the recognition problem is open.

We give structural characterisations of (k, �)-leaf powers, for some k
and �, which also imply an efficient recognition of these classes, and in
this way we also improve and extend a recent paper by Kennedy, Lin
and Yan on strictly chordal graphs and leaf powers.

Keywords: (k, �)-leaf powers, leaf powers, leaf roots, strictly chordal
graphs, linear time algorithms.

1 Introduction

Nishimura, Ragde and Thilikos [20] introduced the notion of k-leaf power and
k-leaf root, motivated by the following: “. . . a fundamental problem in compu-
tational biology is the reconstruction of the phylogeny, or evolutionary history,
of a set of species or genes, typically represented as a phylogenetic tree . . .”. The
species occur as leaves of the phylogenetic tree.

Let G = (VG, EG) be a finite undirected graph. For k ≥ 2, a tree T is a k-leaf
root of G if VG is the leaf set of T and two vertices x, y ∈ VG are adjacent in
G if and only if their distance dT (x, y) in T is at most k, i.e., xy ∈ EG ⇐⇒
dT (x, y) ≤ k. The graph G is a k-leaf power if it has a k-leaf root. Obviously,
a graph is a 2-leaf power if and only if it is the disjoint union of cliques, i.e.,
it contains no induced P3. See [17] for the related notions of phylogenetic root
and Steiner root and [2,3,4,6,9,11,14,15,16,21] for recent work on leaf powers
(including characterisations of 3- and 4-leaf powers) and their variants. It is

� Supported by DFG research grant BR 2479/7-1.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 525–535, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

526 A. Brandstädt and P. Wagner

well known that every k-leaf power is a strongly chordal graph. For k ≥ 6, no
characterisation of k-leaf powers and no efficient recognition is known.

In this paper, we modify the notion of k-leaf power and k-leaf root in the fol-
lowing natural way: For k ≥ 2 and � > k, a tree T is a (k, �)-leaf root of a graph
G = (VG, EG) if VG is the set of leaves of T , for all edges xy ∈ EG, dT (x, y) ≤ k
and, for all non-edges xy �∈ EG, dT (x, y) ≥ �. A graph G is a (k, �)-leaf power if
it has a (k, �)-leaf root. Thus, every k-leaf power is a (k, k + 1)-leaf power, and
every (k, �)-leaf power is an (i, j)-leaf power, for all i and j with k ≤ i < j ≤ �.
In particular, every (k, �)-leaf power is simultaneously a k′-leaf power, for all k′

with k ≤ k′ ≤ �−1. In a similar way, Steiner roots and powers can be generalised.
In [16], Kennedy, Lin and Yan study so-called strictly chordal graphs which

were originally defined via (rather complicated) hypergraph properties but finally
turn out to be exactly the (dart,gem)-free chordal graphs [14]. It is not hard to see
that a graph is (dart,gem)-free chordal if and only if it results from substituting
cliques into the vertices of a block graph (i.e., a graph whose blocks are cliques).
We will show that these graphs are exactly the (4, 6)-leaf powers which explains
various of their properties, and the same class appears as (k, �)-leaf powers for
infinitely many other values of k and �, e.g., as (6, 10)-leaf powers and in general
as (4 + 2i, 6 + 4i)-leaf powers, for i ≥ 0. Moreover, it is known from [2,11,21]
that 3-leaf powers (i.e., (3, 4)-leaf powers) are exactly the (bull,dart,gem)-free
chordal graphs which in turn result from substituting cliques into the vertices
of a tree. By a simple argument, every class of (3 + 2i, 4 + 4i)-leaf powers, for
i ≥ 0, is also exactly the same class of (bull,dart,gem)-free chordal graphs.

We give structural characterisations of (k, �)-leaf powers, for some k and �
(and in particular for (8,11)-leaf powers) which also imply efficient recognition
of these classes. Most of the proofs are omitted due to space constraints of this
extended abstract.

2 Basic Notions and Results

Throughout this paper, let G = (V,E) be a finite undirected graph without
loops and multiple edges and with vertex set V and edge set E, and let |V | = n,
|E| = m. For a vertex v ∈ V , let NG(v) = N(v) = {u | uv ∈ E} denote the (open)
neighbourhood of v in G, and let NG[v] = N [v] = {v} ∪ {u | uv ∈ E} denote the
closed neighbourhood of v in G. A clique is a set of vertices which are mutually
adjacent. A stable set is a set of vertices which are mutually non-adjacent.

A vertex subset U ⊆ V is a module in G if, for all v ∈ V \ U , either v is
adjacent to all vertices of U or v is adjacent to none of them. A clique module in
G is a module which induces a clique in G. A vertex z ∈ V distinguishes x, y ∈ V
if zx ∈ E and zy /∈ E. Two vertices x, y ∈ V are true twins in G if they have
the same neighbors in G and are adjacent to each other.

Let dG(x, y) (or d(x, y) for short if G is understood) be the length, i.e., number
of edges, of a shortest path in G between x and y. Let Nk

G(x) = {y | dG(x, y) = k}
and let Gk = (V,Ek) with xy ∈ Ek if and only if dG(x, y) ≤ k denote the k-th
power of G.

On (k, �)-Leaf Powers 527

For U ⊆ V , let G[U] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges,
and, for k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. A
diamond (or K4−e, see Figure 1) consists of four vertices a, b, c, d and five edges
ab, ac, bc, bd and cd.

��������	
���� �
�

Fig. 1. Diamond, bull, dart and gem

For k ≥ 2, let Sk denote the (complete) sun with 2k vertices u1, . . . , uk and
w1, . . . , wk such that u1, . . . , uk is a clique, w1, . . . , wk is a stable set and, for
i ∈ {1, . . . , k}, wi is adjacent to ui and ui+1 (index arithmetic modulo k).

A graph is chordal if it contains no induced Ck, k ≥ 4. A graph is strongly
chordal if it is chordal and sun-free - see e.g. [5] for various characterisations of
chordal and strongly chordal graphs. In particular, in a chordal graphG, the max-
imal cliques of G can be arranged in a tree TG (a so-called clique tree of G) such
that for every vertex v, the maximal cliques containing v form a subtree of TG.

In [10,18,22], it is shown that the class of strongly chordal graphs is closed
under powers:

Proposition 1 ([10,18,22]). If G is strongly chordal then, for every k ≥ 1, Gk

is strongly chordal.

A graph is a block graph if its 2-connected components (which are also called
blocks) are cliques. It is well known that the following holds:

Proposition 2. A graph G is a block graph if and only if G is diamond-free
and chordal.

In [17], the notion of k-th Steiner root of an undirected graph G, k ≥ 1, is defined
as follows: A tree T = (VT , ET) is a k-th Steiner root of the graph G = (VG, EG)
if VG ⊆ VT and xy ∈ EG if and only if dT (x, y) ≤ k. In this case, G is a k-th
Steiner power. The vertices in VT \ VG are called Steiner nodes in T .

In [6], we say that a graph G is a basic k-leaf power if G has a k-leaf root
T such that no two leaves of T are attached to the same parent vertex in T (a
so-called basic k-leaf root). Obviously, for k ≥ 2, the set of leaves having the
same parent node in T form a clique, and G is a k-leaf power if and only if G
results from a basic k-leaf power by substituting cliques into its vertices. If T is
a basic k-leaf root of G then T minus its leaves is a (k− 2)-th Steiner root of G.
Summarising, the following obvious equivalence holds:

528 A. Brandstädt and P. Wagner

Proposition 3. For a graph G, the following conditions are equivalent for all
k ≥ 2:

(i) G has a k-th Steiner root.
(ii) G is an induced subgraph of the k-th power of a tree.
(iii) G is a basic (k + 2)-leaf power.

Similar to basic k-leaf roots, we say that a (k, l)-leaf root T is basic if no two
leaves x and y of T have a distance satisfying 2 ≤ dT (x, y) ≤ l − k + 1.

3 Some Basic Facts on (k, �)-Leaf Powers

The following facts are well known for k-leaf powers (see, e.g., [2]) and can easily
be shown for (k, l)-leaf powers.

Proposition 4

(i) Every induced subgraph of a (k, l)-leaf power is a (k, l)-leaf power.
(ii) A graph is a (k, l)-leaf power if and only if each of its connected components

is a (k, l)-leaf power.

Let T be a k-leaf root of a graph G. Then, by definition, G is isomorphic to the
subgraph of T k induced by the leaves of T . Since trees are strongly chordal and
induced subgraphs of strongly chordal graphs are strongly chordal, Proposition 1
implies:

Proposition 5. For every k ≥ 1, k-leaf powers are strongly chordal.

This strengthens the fact that k-leaf powers are chordal, which is observed in
some previous papers dealing with k-leaf powers, and also implies that (k, �)-leaf
powers are strongly chordal. The converse implication is not true: In [1], based
on [7], an example of a strongly chordal graph is given which is no k-leaf power,
for any k ≥ 2.

The following simple facts are helpful:

Proposition 6

(i) For k ≤ k′ < �, if G is a (k, �)-leaf power then it is a (k′, �)-leaf power.
(ii) For k < �′ ≤ �, if G is a (k, �)-leaf power then it is a (k, �′)-leaf power.

(iii) If G is a (k, �)-leaf power then it is a (k+2i, �+2i)-leaf power, for all i ≥ 1.
(iv) If G is a (k, �)-leaf power then it is a (k + i(k− 2), �+ i(�− 2))-leaf power,

for all i ≥ 1.

Proof. (i) and (ii) are obviously true, by definition. (iii) is shown by subdividing
each edge of a (k, l)-leaf root T of G containing a leaf of T . (iv) is shown by
subdividing each edge of T not containing a leaf of T . ��

Thus, obviously every k-leaf power is also a (k + 2)-leaf power but it is not
known whether every k-leaf power is also a (k+ 1)-leaf power. For 3-leaf powers,
however, it is noted in [2]:

On (k, �)-Leaf Powers 529

Proposition 7. Every 3-leaf power is a k-leaf power, for all k ≥ 3.

By the proof of Proposition 6 (iv), every 3-leaf power is a (4,6)-leaf power. By
Proposition 6 (iii), we get the next proposition which also implies Proposition 7:

Proposition 8. Every (4, 6)-leaf power is a k-leaf power, for all k ≥ 4, and, in
general, every (k, k + 2)-leaf power is an �-leaf power, for all k ≤ �.

A graph H = (VH , EH) results from a graph G = (VG, EG) by substituting a
clique Q into a vertex v ∈ VG (or substituting a vertex v by a clique Q), if VH is
the union of VG\{v} and the vertices in Q, and EH results from EG by removing
all edges containing v, adding all clique edges in Q and adding all edges between
vertices in Q and in NG(v).

Proposition 9. For every graph G and for every k ≥ 2 and � > k, G is a
(k, �)-leaf power if and only if every graph resulting from G by substituting its
vertices by cliques is a (k, �)-leaf power.

Proof. If T is a (k, �)-leaf root for the (k, �)-leaf power G = (V,E), and G′ is the
result of substituting a clique Q into a vertex u ∈ V , then attach all vertices in
Q at the same parent in T as u and skip u; the resulting tree T ′ is a (k, �)-leaf
root for G′. The converse direction obviously holds. ��

4 Metric Properties of (k, �)-Leaf Powers

Obviously, a graph is P3-free if and only if it is the disjoint union of cliques, and
G is a 2-leaf power if and only if it is P3-free.

Proposition 10. Let G be a (k, �)-leaf power.

(i) If � > 2k − 2 then G is P3-free.
(ii) If � = 2k − 2 then P3 has a unique (k, �)-leaf root.

Proof. Let T be a (k, �)-leaf root of G, and suppose that G contains a P3 with
vertices a, b, c and edges ab and bc. Then dT (a, b) ≤ k and dT (b, c) ≤ k, i.e.,
dT (a, c) ≤ 2k−2. On the other hand, dT (a, c) ≥ � since ac �∈ E. Thus, � ≤ 2k−2.
If � = 2k − 2 then a (k, �)-leaf root of the P3 has distance exactly � between a
and c, and the leaf b is attached to the central vertex of the path between a and
c. This is obviously the only (k, �)-leaf root of the P3 abc. ��

A well known fact for distances in trees found by Buneman [8] (respectively, for
block graphs found by Howorka [13]) is the following characterisation in terms
of a four-point condition:

Theorem 1. Let G = (V,E) be a connected graph.

(i) G is a tree if and only if G contains no triangles and G satisfies the following
four-point condition: For all u, v, x, y ∈ V ,

(∗) dG(u, v) + dG(x, y) ≤ max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}.
(ii) G is a block graph if and only if G satisfies (∗), for all u, v, x, y ∈ V .

530 A. Brandstädt and P. Wagner

From now on, let G be a (k, �)-leaf power with (k, �)-leaf root T . We apply this
four-point condition to various induced subgraphs of G such as P4 as well as
diamond, dart and gem (see Figure 1).

Proposition 11. Let the four vertices a, b, c, d with non-edge ad induce a dia-
mond in G. Then dT (b, c) ≤ 2k − �.

Proof. According to condition (∗), dT (a, d) +dT (b, c) ≤ max{dT (a, b) +dT (c, d),
dT (a, c) + dT (b, d)} ≤ 2k holds since ab, cd, ac, bd ∈ E. Since ad /∈ E, we have
dT (a, d) ≥ �. Thus dT (b, c) ≤ 2k − �. ��

Proposition 12. Let the four vertices a, b, c, d with edges ab, ac, bc, bd and cd
induce a diamond in G such that b and c can be distinguished in G. Then 2� ≤
3k − 2.

Proof. According to Proposition 11, dT (b, c) ≤ 2k − �. Let z be a vertex which
distinguishes b and c, say bz ∈ E and cz �∈ E. Then dT (b, z) ≤ k and dT (c, z) ≥ �.
The T -paths Pbz between b and z and Pbc between b and c have at least two
vertices in common, namely b and its parent, say b′. Let x be the last common
vertex of Pbz and Pbc. Then dT (x, b) + dT (x, c) ≤ 2k− �, by Proposition 11, and
dT (x, b)+dT (x, z) ≤ k, which implies that dT (x, c)+dT (x, z)+2dT (x, b) ≤ 3k−�.
On the other hand, 2dT (x, b) ≥ 2 and dT (x, c) + dT (x, z) ≥ �, which implies
� + 2 ≤ 3k − �, i.e., 2� ≤ 3k − 2. ��

Corollary 1. If dart or gem is a (k, �)-leaf power then 2� ≤ 3k − 2.

Proposition 13. Let the four vertices a, b, c, d with edges ab, bc and cd induce
a P4 in G. Then dT (a, d) ≥ 2�− k.

Proof. According to condition (∗), dT (a, c) +dT (b, d) ≤ max{dT (a, b) +dT (c, d),
dT (a, d) + dT (b, c)} holds. Since ac /∈ E and bd /∈ E and T is a (k, �)-leaf root of
G, we have dT (a, c)+dT (b, d) ≥ 2�. On the other hand, since ab ∈ E and cd ∈ E,
we have dT (a, b) + dT (c, d) ≤ 2k, and this sum cannot be the maximum of the
two sums on the right hand side of inequality (∗). Thus dT (a, c) + dT (b, d) ≤
dT (a, d) + dT (b, c) holds, which implies that dT (a, d) ≥ 2�− k. ��

Proposition 14. If 2� ≤ 3k − 2 then dart and gem are (k, �)-leaf powers.

5 Characterisations of (4, 6)-Leaf Powers

The characterisation of (4, 6)-leaf powers given in this section is very similar to
the following one for 3-leaf (i.e., (3, 4)-leaf) powers:

Theorem 2 ([2,11,21]). The following conditions are equivalent:

(i) G is a 3-leaf power.
(ii) G is (bull, dart, gem)-free chordal.

(iii) G results from substituting cliques into the vertices of a tree.

Now we consider the class of (4, 6)-leaf powers. Recall that every (4, 6)-leaf power
is a k-leaf power, for all k ≥ 4. In [16], the authors study so-called strictly chordal

On (k, �)-Leaf Powers 531

graphs which are defined via (rather complicated) hypergraph properties but
finally turn out to be exactly the (dart,gem)-free chordal graphs as Corollary
2.2.2. in [14] says:

Proposition 15 ([14]). G is strictly chordal if and only if it is (dart, gem)-free
chordal.

The next theorem has been our motivation for defining and investigating the
notion of (k, l)-leaf powers:

Theorem 3. The following conditions are equivalent:

(i) G is a (4, 6)-leaf power.
(ii) G is (dart, gem)-free chordal (i.e., strictly chordal).

(iii) G results from substituting cliques into the vertices of a block graph.

For the proof of Theorem 3 (which is omitted due to space constraints) we use:

Proposition 16. Every block graph is a (basic) (4, 6)-leaf power, and a (basic)
(4, 6)-leaf root of a given block graph can be determined in linear time.

Now Theorem 3 together with Proposition 16 implies:

Corollary 2. Strictly chordal graphs are k-leaf powers for all k ≥ 4, and a k-leaf
root of G can be determined in linear time.

Corollary 2 is one of the main results (namely Theorem 4.1) in [16]. It has also
been mentioned in [16] that strictly chordal graphs can be recognised in linear
time. We give a simpler proof for it.

Corollary 3. (4, 6)-leaf powers (and thus also strictly chordal graphs) can be
recognised in linear time.

Proof. By Theorem 3, we know that a graph G is a (4, 6)-leaf power if and only
if G results from substituting cliques into the vertices of a block graph, and we
check the last condition in the following way. For a given graph G, first check
whether G is chordal. If not then G is not a (4, 6)-leaf power, else determine a
clique tree of G (which can be done in linear time, see, e.g., [23]). It is well known
(see, e.g., [19]) that the minimal separators of G are given as the intersections
of cliques which are adjacent in the clique tree.

In a block graph, the minimal separators are the cut vertices. If G results
from substituting cliques into the vertices of a block graph, then the cliques
which replace cut vertices are pairwise disjoint minimal separators (which are
also clique modules).

Thus, determine the minimal separators in G, check whether they are pairwise
disjoint (if not, G is no (4, 6)-leaf power), shrink them to one vertex, respectively,
and check whether the resulting graph G′ is a block graph. If yes, G results from
substituting cliques into the (cut) vertices of the block graph G′, otherwise G is
no (4, 6)-leaf power. ��

532 A. Brandstädt and P. Wagner

6 The Main Results

Very similar to Proposition 16, we obtain:

Proposition 17. Every block graph is a (5, 7)-leaf power, and a (5, 7)-leaf root
of a given block graph can be determined in linear time.

Theorem 4

(i) For all k, � with k ≥ 2 and � > 2k − 2, the class of (k, �)-leaf powers is the
class of P3-free graphs, i.e., disjoint unions of cliques.

(ii) For all k, � with odd k = 2i + 1, i ≥ 1, and � = 4i, the class of (k, �)-leaf
powers is the class of 3-leaf powers, i.e., graphs obtained from substituting
cliques into trees.

(iii) For all k, � with k ≥ 2 and 2� > 3k− 2 but � ≤ 2k− 2 and not the situation
of (ii), the class of (k, �)-leaf powers is the class of (4, 6)-leaf powers, i.e.,
graphs obtained from substituting cliques into block graphs.

Proof.
(i): This follows from Proposition 10 and the obvious fact that disjoint
unions of cliques have (k, �)-leaf roots with k ≥ 2 and � > 2k − 2 by simply
connecting the central vertices of stars realising cliques by paths which are long
enough.

(ii): The case k = 3 and thus i = 1 is the case of 3-leaf powers, and we can
refer to Theorem 2. For larger odd k, we first have to show that every (3,4)-
leaf power is a (2i + 1,4i)-leaf power; to show this we subdivide the internal
edges of a (3,4)-leaf root T , more precisely, we replace every internal edge of a
(3,4)-leaf root T by a P4 (P6, respectively) and obtain a (5,8)-leaf root ((7,12)-
leaf root, respectively), and we perform in the same way for larger k. Conversely,
(2i+1,4i)-leaf powers are dart- and gem-free, by Corollary 1, since, for k = 2i+1
and � = 4i, the inequality 2� ≤ 3k − 2 in Corollary 1 is not fulfilled. We claim
that (2i+ 1,4i)-leaf powers are also bull-free: By Proposition 10, every P3 has a
unique (2i + 1,4i)-leaf root since � = 4i = 2(2i + 1)− 2 = 2k − 2. Let a, b, c, d, e
induce a bull with the P4 abcd with edges ab, bc, cd and vertex e adjacent to
b and c. Then the unique (2i + 1,4i)-leaf root for the P4 is a path of length
6i−1 between a and d, and b and c are attached as leaves to this path such that
dT (a, b) = 2i+ 1, dT (b, c) = 2i+ 1 and dT (c, d) = 2i+ 1. Now a, b, e induce a P3,
and e, c, d induce a P3, whose roots are unique and require that dT (b, e) = 2i+ 1
and dT (e, c) = 2i+1, which leads to a contradiction. Thus, (2i+1,4i)-leaf powers
are bull-, dart- and gem-free chordal, and, by Theorem 2, they are 3-leaf powers.

(iii): For k = 2 and k = 3 there is nothing to prove. As 2� > 3k − 2, by
Corollary 1, (k, l)-leaf powers in this case are dart- and gem-free. As they are
also chordal, by Theorem 3, they are (4, 6)-leaf powers. For the other direction,
again by Theorem 3, it suffices to show that every block graph has a basic (k, l)-
leaf root. And, by Proposition 6, it suffices to show this for the largest possible
l, for every k, i.e., for the (k, l)-pairs (4, 6), (5, 7), (6, 10), (7, 11) and so on, i.e.,

On (k, �)-Leaf Powers 533

for the (k, l)-pairs (4 + 2i, 6 + 4i), (5 + 2i, 7 + 4i), for all i ≥ 0. Proposition 16
and Proposition 17 together with their proofs deal with the case i = 0. In the
case i = 0, we start with block roots which are stars whose edges are subdivided
exactly once. For a general i ≥ 0, we use the same construction with stars whose
edges are subdivided exactly i + 1 times. ��

For the graphs H1, . . . , H8 in Theorem 5 see Figure 2. Rautenbach [21] has shown
that a graph without true twins is a 4-leaf power if and only if it is (H1, . . . , H8)-
free chordal. In [6], the following more detailed characterisation is shown:

Theorem 5. G is a basic 4-leaf power if and only if G is (H1, . . . , H8)-free
chordal. In particular, G is the square of a tree if and only if G is 2-connected
(H1, . . . , H5)-free chordal.

In fact, the forbidden subgraphs H1, . . . , H5 are responsible for the blocks of a
basic 4-leaf power, and H6, H7, H8 represent the gluing conditions of blocks.

In Theorem 6 characterising the (8, 11)-leaf powers, we additionally need graph
H9 which is given in Figure 2 and replaces the role of H8 as a gluing condition.

�� ��
�� �� ��

�� �� �� ��

Fig. 2. Some forbidden subgraphs; the graphs H1, . . . , H8 characterise basic 4-leaf
powers.

Theorem 6. The (8, 11)-leaf powers are exactly the graphs obtained from substi-
tuting cliques into (H1, . . . , H7, H9)-free chordal graphs, i.e., the basic (8, 11)-leaf
powers are exactly the (H1, . . . , H7, H9)-free chordal graphs.

Corollary 4. (8, 11)-leaf powers can be recognised in polynomial time.

7 Conclusion

In this paper, we gave structural characterisations of (k, �)-leaf powers, for some
k and � which imply efficient recognition of these classes, and in this way we
improve and extend a recent paper [16] by Kennedy, Lin and Yan on strictly
chordal graphs and leaf powers. Our main results are presented in Theorem 4

534 A. Brandstädt and P. Wagner

and 6. Other characterisations can be expected for “limit” classes (i.e., for every
k, the largest l which is not yet covered by Theorem 4) such as (12,17)-leaf
powers. We expect that our new notion of (k, �)-leaf powers will shed new light
on the open problem of characterising and recognising k-leaf powers for k ≥ 6. We
also have a characterisation of (6, 8)-leaf powers in terms of induced subgraphs
of squares of block graphs as well as in terms of forbidden induced subgraphs
which will be described in a forthcoming paper.

References

1. Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discrete
Applied Math. 98, 133–138 (2006)

2. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Information Processing Letters 98, 133–138 (2006)

3. Brandstädt, A., Le, V.B.: Dieter Rautenbach. Exact leaf powers, manuscript (sub-
mitted, 2006)

4. Brandstädt, A., Le Dieter, V.B.: Rautenbach, Distance-hereditary 5-leaf powers,
manuscript (submitted, 2006)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications 3 (1999)

6. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of
4-leaf powers, manuscript (submitted, 2006)

7. Broin, M.W., Lowe, T.J.: A dynamic programming algorithm for covering problems
with (greedy) totally balanced constraint matrices. SIAM J. Alg. Disc. Meth. 7,
348–357 (1986)

8. Buneman, P.: A note on the metric properties of trees. J. Combin. Th. 1(B), 48–50
(1974)

9. Chang, M.-S., Ko, T.: The 3-Steiner Root Problem. In: Proceedings WG 2007.
LNCS, manuscript, as extended abstract (to appear, 2007)

10. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24 B,
23–30 (1987)

11. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root
problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp.
363–381. Springer, Heidelberg (2004), Algorithmica 44(4), 363–381(2006)

12. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border
for closest leaf powers. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, Springer,
Heidelberg (2005)

13. Howorka, E.: On metric properties of certain clique graphs. J. Combin. Th. 27(B),
67–74 (1979)

14. Kennedy, W.: Strictly chordal graphs and phylogenetic roots, Master Thesis, Uni-
versity of Alberta (2005)

15. Kennedy, W., Lin, G.: 5-th phylogenetic root construction for strictly chordal
graphs, extended abstract. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS,
vol. 3827, pp. 738–747. Springer, Heidelberg (2005)

16. Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. J. Discrete
Algorithms 4, 511–525 (2006)

17. Lin, G.-H., Jiang, T., Kearney, P.E.: Phylogenetic k-root and Steiner k-root, Ex-
tended abstract. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969,
pp. 539–551. Springer, Heidelberg (2000)

On (k, �)-Leaf Powers 535

18. Lubiw, A.: Γ -free matrices, Master Thesis, Dept. of Combinatorics and Optimiza-
tion, University of Waterloo, Canada (1982)

19. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM Mono-
graphs on Discrete Mathematics and Applications 2 (1999)

20. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees.
J. Algorithms 42, 69–108 (2002)

21. Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306(13), 1456–1461
(2006)

22. Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars
Combinatoria 34, 147–160 (1992)

23. Spinrad, J.P.: Efficient Graph Representations, Fields Institute Monographs,
American Mathematical Society, Providence, Rhode Island (2003)

An Improved Claw Finding Algorithm
Using Quantum Walk

Seiichiro Tani1�2

1 Quantum Computation and Information Project, ERATO-SORST, JST
2 NTT Communication Science Laboratories, NTT Corporation

���������	
��	����������

Abstract. The claw finding problem has been studied in terms of query com-
plexity as one of the problems closely connected to cryptography. For given two
functions, f and g, as an oracle which have domains of size N and M (N � M),
respectively, and the same range, the goal of the problem is to find x and y such
that f (x) � g(y). This paper describes a quantum-walk-based algorithm that
solves this problem; it improves the previous upper bounds. Our algorithm can
be generalized to find a claw of k functions for any constant integer k � 1, where
the domains of the functions may have di�erent size.

Keywords: Quantum computing, query complexity, oracle computation.

1 Introduction

The most significant discovery in quantum computation would be Shor’s polynomial-
time quantum algorithms for factoring integers and computing discrete logarithms [14],
both of which are believed to be hard to solve in classical settings and are thus used
in arguments for the security of the widely used cryptosystems. Another significant
discovery is Grover’s quantum algorithm for the problem of searching an unstructured
set [10]; it has yielded a variety of generalization approaches [3,11]. Grover’s algorithm
and its generalizations assume the oracle computation model, in which a problem in-
stance is given as a black box (called an oracle) and any algorithm needs to issue queries
to the black box to get suÆcient information on the instance.

One of the earliest applications of Grover’s algorithm was the bounded-error algo-
rithm of Brassard, Høyer and Tapp [4]; it addressed the collision problem in a crypto-
graphic context, i.e., finding pair (x� y) such that f (x) � f (y), in a given 2-to-1 function
f of domain size N. Their quantum algorithm requires O(N1�3) queries, whereas any
bounded-error classical algorithm needs �(N1�2) queries. Subsequently, Aaronson and
Shi [1] proved the matching lower bound. Brassard et al. [4] considered two more re-
lated problems: the element distinctness problem and the claw finding problem. These
problems are also important in a cryptographic sense. Furthermore, studying these prob-
lems has deepened our understanding of the power of quantum computation.

The element distinctness problem is to decide whether or not given N integers are
all distinct. Buhrman et al. [7] gave a bounded-error algorithm for the problem, which
makes O(N3�4) queries (strictly, they assumed a comparison oracle, which returns just

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 536–547, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

An Improved Claw Finding Algorithm Using Quantum Walk 537

the result of comparing the function values for two specified inputs, and, in this case,
the number of required queries, i.e., the query complexity, is O(N3�4 log N)). Subse-
quently, Ambainis [2] gave an improved upper bound O(N2�3) by introducing a new
framework of quantum walk (his quantum walk algorithm was reviewed from a slightly
more general point of view in [13,9], and a much more general framework was given
by Szegedy [15]). This upper bound matches the lower bound proved by Aaronson and
Shi [1].

The claw finding problem is defined as follows. Given two functions f : X � Z and
g : Y � Z as an oracle, find a pair (x� y) � X � Y, called a claw, such that f (x) � g(y)
if it exists, where X and Y are domains of size N and M (N � M), respectively. By
clawfinding(N� M), we mean this problem. Unlike the collision problem and the element
distinctness problem, there is still a big gap between the upper and lower bounds of the
query complexity for the claw finding problem.

After Brassard et al. [4] considered a special case of the claw finding problem,
Buhrman et al. [6] gave a quantum algorithm that requires O(N1�2M1�4) queries for
N � M � N2 and O(M1�2) queries for M � N2 (strictly, they assumed a comparison
oracle, and, in this case, the query complexity is multiplied by log N). They also proved
that any algorithm requires �(M1�2) queries by reducing the search problem over an
unstructured set to the claw finding problem. Thus, while their bounds of the query
complexity are tight when M � N2, there is still a big gap when N � M � N2. Fur-
thermore, they gave a quantum algorithm that finds a claw for k functions (called the
k-claw finding problem) of the common domain of size N with O(N1�1�2k

) queries. In
the case of three functions, Iwama and Kawachi [12] gave a quantum algorithm that is
more eÆcient than that of Buhrman et al. [6], if the number of claws of two functions
among the three is at most N7�8. In fact, it is shown in [13] that the algorithm in [2] for
the element distinctness problem is so general that it can be applied to the claw find-
ing problem with slight modification; it yields Õ((N � M)2�3) � Õ(M2�3) queries for
the two-function case. This upper bound is better than the previous upper bounds only
when M � O(N6�5�poly(log N)).

This paper gives a bounded-error quantum algorithm for the claw finding prob-
lem that achieves a better bound when N � M � N2 than the previous best bound
(even when M � N2, our algorithm can work well with the optimal query complexity
O(M1�2)). More precisely,

Q2(clawfinding(N� M)) �

�������
O
�
(NM)1�3

�
(N � M � N2)

O
�
M1�2

�
(M � N2)�

where Q2(P) means the number of queries required to solve problem P with bounded
error. Our algorithm can easily be modified to solve the more general problem of finding
a tuple (x1� � � � � xp� y1� � � � � yq) � Xp � Yq such that xi � x j and yi � y j for any i � j, and
(f (x1)� � � � � f (xp)� g(y1)� � � � � g(yq)) � R, for given R � Zp�q, where p and q are positive
constant integers; the query complexity is O((Np Mq)1�(p�q�1)) for N � M � N1�1�q and
O(Mq�(1�q)) for M � N1�1�q.

Our algorithm first finds subsets X�� � X and Y�� � Y of size O(1) such that there
is a claw in X�� � Y��, by using binary and 4-ary searches over X and Y; in order to
decide which branch we should proceed at each visited node in the search trees, we

538 S. Tani

use a subroutine that detects the existence of a claw of two functions f and g with
bounded error. The algorithm then classically searches X�� � Y�� for a claw. If we use
the bounded-error subroutine in a straight-forward manner in the search trees, a “log”
factor would be multiplied to the total query complexity to guarantee bounded error
as a whole. Instead, at the sth node of the search trees, we repeat the subroutine O(s)
times to amplify success probability. This achieves bounded error as a whole, while
pushing up the query complexity by just a constant multiplicative factor. (Høyer et al.
[11] introduced an error reduction technique with a similar flavor; however, their tech-
nique is used in an algorithmic context di�erent from ours: their error reduction is per-
formed at each recursion level while ours is sequentially used at each step of the search
tree).

The subroutine is developed around the Szegedy’s quantum walk framework [15]
over a Markov chain on the graph categorical product of two Johnson graphs, which
correspond to the two functions (with an idea similar to the one used in [8]).

We also prove a lower bound, which is better than the known lower bound �(M1�2)
given in [6] when M � o(N3�2), by a simple reduction from the element distinctness
problem: Q2(clawfinding(N� M)) � �(N1�2M1�6)� This bound together with the previous
bound �(M1�2) implies that our algorithm is optimal when M � �(N) or M � �(N2).
As a by-product, an optimal quantum algorithm of O(N2�3) queries for the element
distinctness problem can be obtained by combining the above reduction with our claw
finding algorithm (note that the first O(N2�3)-query algorithm was presented in [2]).

Our algorithm can be generalized to the k-claw finding problem. For any constant
integer k � 1, let k-clawfinding(N1� � � � � Nk) denote the k-claw finding problem for k
functions fi : Xi :� [Ni] � Z (i � 1� � � � � k) given as an oracle, where Ni � Nj for i � j,

Q2(k-clawfinding(N1� � � � � Nk)) �

�����������
O
���k

i�1 Ni

� 1
k�1

	
if
�k

i�2 Ni � O(Nk
1)�

O
�
�k

i�2 Ni�Nk�2
1

	
otherwise.

No nontrivial bounds were known in the case where the domain sizes of the given
functions are not linearly correlated.

Our algorithms can work with slight modification even against a comparison oracle
(i.e., against an oracle that, for a given pair of inputs (xi� x j) � Xi � X j, only decides
which is the larger of two function values fi(xi) and f j(x j)); the query complexity in-
creases by a multiplicative factor of log N1 for the k-function case (log N for the two-
function case).

2 Preliminaries

This section defines problems and introduces some useful techniques. We denote the
set of positive integers by ��, the set of �i � j � i � k for i� j� k � ��	 by [j�k], and [1�k]
by [k] for short.

Problem 1 (Claw Finding Problem). Given two functions f : X :� [N] � Z and
g : Y :� [M] � Z as an oracle for N � M, where Z � [�Z�], find a pair (x� y) � X � Y
such that f (x) � g(y) if such a pair exists.

An Improved Claw Finding Algorithm Using Quantum Walk 539

In a quantum setting, the two functions are given as quantum oracle O f �g which is de-
fined as O f �g : �p� z�w
 �� �p� z � P(p) (mod �Z�)�w
� where p � X Y, z � Z, w is
work space, P(p) is defined as f (p) if p � X and g(p) if p � Y (note that it easy to know
whether p is in X or Y by using one more bit to represent p). This kind of oracle, which
returns the value of the function(s), is called a standard oracle.

Another type of oracle is called the comparison oracle, which, for given two inputs,
only decides which is the larger of the two function values corresponding to the inputs.
More formally, comparison oracle O f �g is defined as O f �g : �p� q� b�w
 �� �p� q� b �
[P(p) � Q(q)]�w
� where p� q � X Y, b � �0� 1	, w and P are defined as in the standard
oracle, Q is defined in the same way as P, and [P(p) � Q(q)] is the predicate such that
its value is 1 if and only if P(p) � Q(q).

It is obvious that, if we are given a standard oracle, we can realize a comparison ora-
cle by issuing O(1) queries to the standard oracle. Thus, upper bounds for a comparison
oracle are those for a standard oracle, and lower bounds for a standard oracle are those
for a comparison oracle, if we ignore constant multiplicative factors.

Buhrman et al. [6] generalized the claw finding problem to a k-function case.

Problem 2 (k-Claw Finding Problem). Given k functions fi : Xi :� [Ni] � Z (i � [k])
as an oracle, where Ni � Nj if i � j, and Z :� [�Z�], find a k-claw, i.e., a k-tuple
(x1� � � � � xk) � X1 � � � � � Xk such that fi(xi) � f j(x j) for any i� j � [k], if it exists.

Standard and comparison oracles are defined in almost the same way as in the two-
function case, except that inputs p and q belong to one of Xi’s, respectively, for i � [k].

The next theorem describes Szegedy’s framework, which we use to prove our upper
bounds.

Theorem 1 ([15]). Let � be a symmetric Markov chain with state set V and transition
matrix P and let Æ� be the spectral gap of P, i.e., 1 � maxi ��i� for the eigenvalues
�i’s of P. For a certain subset V � � V with the promise that �V �� is either 0 or at
least 	�V � for 0 � 	 � 1, any element in V � is marked. For T � O(1�

�
	Æ�), the next

quantum algorithm decides whether �V �� is 0 (“false”) or at least 	�V � (“true”) with
one-sided bounded error with cost O(CU � (CF � CW)�

�
Æ�), where C �

�
i �ci
�ci�

for �ci
 �
�

j

�
Pi� j�i
� j
 and R �

�
j �r j
�r j� for �r j
 �

�
i

�
P j�i�i
� j
:

1. Prepare �0
 in a one-qubit register R0, and prepare a uniform superposition �
0
 :�
1�
r�V �

�
i� j�V�Pi� j�0 �i
� j
 in a register R1 with cost at most CU, where r is the number

of adjacent states (of any state) in �.
2. Apply the Hadamard operator to R0.
3. For randomly and uniformly chosen 1 � t � T, apply the next operation W t times

to R1 if the content of R0 is “1.”
(a) To any �i
� j
, perform the next steps: (i) Check if i � V � with cost at most CF,

(ii) If i � V �, apply di�usion operator 2C � I with cost at most CW .
(b) To any �i
� j
, perform the next steps: (i) Check if j � V � with cost at most CF,

(ii) If j � V �, apply di�usion operator 2R � I with cost at most CW .
4. Apply the Hadamard operator to R0, and measure registers R0 and R1 with respect

to the computational basis.
5. If the result of measuring R0 is 1 or a marked element is found by measuring R1,

output “true”; otherwise output “false.”

540 S. Tani

3 Claw Detection

In this section, we describe “claw-detection” algorithms that detect the existence of a
claw. The claw-detection algorithms will be used as subroutines in the “claw-search”
algorithms presented in the next section that find a claw.

Before presenting the claw-detection algorithm, we introduce some notions. The
Johnson graph J(n� k) is a connected regular graph with

�
n
k

�
vertices such that ev-

ery vertex is a subset of size k of [n]; two vertices are adjacent if and only if the
symmetric di�erence of their corresponding subsets has size 2. The graph categor-
ical product G � (VG� EG) of two graphs G1 � (VG1 � EG1) and G2 � (VG2 � EG2),
denoted by G � G1 � G2, is a graph having vertex set VG � VG1 � VG2 such that
((v1� v2)� (v�1� v

�
2)) � EG if and only if (v1� v�1) � EG1 and (v2� v�2) � EG2 .

The next two propositions are useful in analyzing the claw-detection algorithms we
will describe.

Proposition 1. For Markov chains �, �1� � � � ��k, the spectral gap Æ of � is the
minimum of those Æ1� � � � � Æk of �1� � � � ��k, i.e., Æ � mini�Æi	, if the underlying graph
of � is the graph categorical product of those of �1� � � � ��k.

The eigenvalues of the Markov chain on J(n� k) are (k� j)(n�k� j)� j
k(n�k) for j � [0�k] [5, pages

255–256], from which the next proposition follows.

Proposition 2. The Markov chain on Johnson graph J(n� k) has spectral gap Æ � �(1
k),

if 2 � k � n�2.

We will first describe a claw-detection algorithm against a comparison oracle, from
which we can almost trivially obtain a claw-detection algorithm against a standard
oracle. Let Claw Detect denote the algorithm. To construct Claw Detect, we apply
Theorem 1 on the graph categorical product of two Johnson graphs J f � J(�X�� l) and
Jg � J(�Y ��m) for the domains X and Y of functions f and g, respectively, where l and
m (l � m) are integers fixed later.

More precisely, let F and G be any vertices of J f and Jg, respectively, i.e., any
l-element subset and m-element subset of X and Y, respectively. Then (F�G) is a ver-
tex in J f � Jg. Similarly, for any edges (F� F�) and (G�G�) of J f and Jg, respectively,
((F�G)� (F��G�)) is an edge connecting two vertices (F�G) and (F��G�) in J f � Jg. We
next define “marked vertices” as follows. Vertex (F�G) is marked if there is a pair of
(x� y) � F � G such that f (x) � g(y). To check if (F�G) is marked or not, we just sort
all elements in F G on their function values. Although we have to sort all elements in
the initial vertex, we have only to change a small part of the sorted list we have already
had when moving to an adjacent vertex. For every vertex (F�G), we maintain a repre-
sentation LF�G of the sorted list of all elements in F G on their function values, and
we identify (F�G� LF�G) as a vertex of J f � Jg. Here, we want to guarantee that LF�G is
uniquely determined for any pair (F�G) in order to avoid undesirable quantum interfer-
ence; we have just to introduce some appropriate rules that break ties, i.e., the situation
where there are multiple elements in F G that have the same function value.

An Improved Claw Finding Algorithm Using Quantum Walk 541

As the state �
0
 in Theorem 1, we prepare

�
0
 �
1
�

N
l

��
M
m

�
l(N � l)m(M � m)

�F�F� ���G�G� ��2
F�F� �X��F���F� ��l

G�G��Y��G���G� ��m

�F�G� LF�G
�F��G�� LF� �G�
�

in register R1. The number 1 � t � c�
Æ�

of repeating W is chosen randomly and uni-
formly for some constant c, Æ :� �(1�m) and 	 :� lm�(NM).

We next describe the implementation of operation W. Since di�usion operator 2C �
I depends on LF�G’s, it cannot be performed without queries to the oracle. We thus
divide operator 2C � I into a few steps. For every unmarked vertex (F�G� LF�G), we
first transform �F�G� LF�G
�F��G�� LF� �G�
 into �F�G� LF�G
�F��G�� LF�G
 with queries to
the oracle. We then perform a di�usion operator on the registers where the contents
“F�G” and “F��G�” are stored, to obtain a superposition of �F�G� LF�G
�F���G��� LF�G

over all (F���G��) adjacent to (F�G). Finally, we transform �F�G� LF�G
�F���G��� LF�G

into �F�G� LF�G
�F���G��� LF�� �G��
. Operator 2R � I can be implemented in a similar way.

Lemma 1. Let Q2(clawdetect(N� M)) be the number of queries needed to decide whether
there is a claw or not for functions f : X :� [N] � Z and g : Y :� [M] � Z given as a
comparison oracle. Then,

Q2(clawdetect(N� M)) �

�������
O((NM)1�3 log N) (N � M � N2)

O(M1�2 log N) (M � N2)�

Proof. We will estimate CU , CF and CW for Claw Detect, and then apply Theorem 1.
To generate �
0
, we first prepare the uniform superposition of �F�G
�F��G�
 over all

F� F��G�G� such that (F� F�) and (G�G�) are edges of J f and Jg, respectively. Obviously,
this requires no queries. We then compute LF�G and LF� �G� for each basis state by issuing
O((l � m) log(l � m)) queries to oracle O f �g. Thus, CU � O((l � m) log(l � m)).

We can check if there is a pair of (x� y) � F � G such that f (x) � g(y) by looking
through LF�G (without any queries). Thus, CF � 0.

For every unmarked (F�G� LF�G), step (a).ii of operation W transforms
�F�G� LF�G
�F��G�� LF� �G�
 into a superposition over all �F�G� LF�G
�F���G��� LF�� �G��
 such
that �F�F��� � �G�G��� � 2. This can be realized by insertion and deletion of O(1)
elements to�from the sorted list of O(l � m) elements, and di�usion operators without
queries. Each insertion or deletion can be performed with O(log(l�m)) queries by using
binary search. Similarly, step (b).ii of operation W needs O(log(l � m)) queries. Thus,
we have CW � O(log(l � m)).

We set 	 to l
N � m

M , since the probability that a state is marked is minimized when
only one claw exists for f and g, in which case the probability is l

N � m
M . Since, from

Proposition 2, the spectral gaps of the Markov chains on J(N� l) and J(M�m) are �(1
l)

and �(1
m), respectively, the spectral gap of the Markov chain on J(N� l) � J(M�m) is

�(min� 1
l �

1
m) � �(1

m) due to l � m and Proposition 1.
From Theorem 1, the total number of queries is Q2(clawdetect(N� M)) � O((l �

m) log(l �m) � log(l �m)
�

m(NM�(lm))) � O((l �m) log(l �m) �
�

NM�l log(l �m)).

542 S. Tani

When N � M � N2, we set l � m � �((NM)1�3)� which satisfies condition l � N.
The total number of queries is Q2(clawdetect(N� M)) � O((NM)1�3 log N)� When M �
N2, we set l � m � N, implying that Q2(clawdetect(N� M)) � O(M1�2 log N)� ��

The standard oracle case can be handled by using almost the same approach.

Corollary 1. Let Q2(clawdetect(N� M)) be the number of queries needed to decide
whether there is a claw or not for functions f : X � [N] � Z and g : Y � [M] � Z
given as a standard oracle. Then,

Q2(clawdetect(N� M)) �

�
O((NM)1�3) (N � M � N2)
O(M1�2) (M � N2)�

The claw-detection algorithm against a standard oracle can easily be modified in order
to solve the more general problem of detecting a tuple (x1� � � � � xp� y1� � � � � yq) � Xp � Yq

such that xi � x j and yi � y j for any i � j, and (f (x1)� � � � � f (xp)� g(y1)� � � � � g(yq)) � R,
for given R � Zp�q, where p and q are any constant positive integers. A modification
is made to the part of the algorithm that decides whether a vertex of the underlying
graph is marked or not; the modification can be made without changing the number
of queries. The query complexity can be analyzed by using almost the same approach
as used in claw detection with 	 �

�
N�p
l�p

�
�
�

N
l

�
�
�

M�q
m�q

�
�
�

M
m

�
� lpmq(1 � o(1))�(NpMq);

the query complexity is O((NpMq)1�(p�q�1)) for N � M � N1�1�q and O(Mq�(1�q)) for
M � N1�1�q. The problem of finding such a tuple can also be solved with the same order
of complexity as above by using the algorithm for detecting it as a subroutine.

Our algorithm for detecting a claw can easily be generalized to the case of k functions
of domains of size N1� � � � � Nk, respectively. More concretely, we apply Theorem 1 to the
Markov chain on the graph categorical product of the k Johnson graphs, each of which
corresponds to one of the k functions. We denote this “k-claw detection” algorithm by
k-Claw Detect in the next section.

Lemma 2. For any positive integer k � 1, let Q2(k-clawdetect(N1� � � � � Nk)) be the
number of queries needed to decide whether there is a k-claw or not for functions
fi : Xi :� [Ni] � Z (i � [k]) given as a comparison oracle, where Ni � Nj if i � j. If k
is constant,

Q2(k-clawdetect(N1� � � � � Nk)) �

�����������
O
���k

i�1 Ni

� 1
k�1 log N1

	
if
�k

i�2 Ni � O(Nk
1)�

O
�
�k

i�2 Ni�Nk�2
1 log N1

	
otherwise.

Proof (Sketch). In a way similar to the case of two functions, we apply Theorem 1 on the
graph categorical product of k Johnson graphs J fi :� J(�Xi�� li) (i � [k]) for the domains
Xi’s of functions fi’s, where li’s are integers fixed later such that li � l j for i � j.

To generate �
0
, we first prepare the uniform superposition of �F1� � � � � Fk

�F�

1� � � � � F�
k
 over all Fi and F�

i such that (Fi� F�
i) is an edge of J fi for every i. This re-

quires no queries. As in the case of two functions, define LF1 �����Fk for any F1� � � � � Fk

as a representation of the sorted list of all elements in
�k

i�1 Fi so that it can be
uniquely determined for each tuple (F1� � � � � Fk). We then compute LF1 �����Fk and LF�

1 �����F
�
k

An Improved Claw Finding Algorithm Using Quantum Walk 543

for each basis state by issuing O
�
(l1 � � � � � lk) log(l1 � � � � � lk)

�
queries to the oracle.

Thus, CU � O
�
(l1 � � � � � lk) log(l1 � � � � � lk)

�
. CF and CW can be estimated as 0 and

O
�
log(l1 � � � � � lk)

�
, respectively, in a way similar to the case of two functions. We set

	 to
�k

i�1 li�Ni and Æ to mini�1�li	 � 1�lk.

When
�k

i�2 Ni � O(Nk
1), we set li :� �

���k
i�1 Ni

� 1
k�1

	
for every i � [k], which

satisfies condition li � N1 � Ni for every i � [k]. When
�k

i�2 Ni � �(Nk
1), we set

li :� �(N1) for every i � [k]. ��

Against a standard oracle, we obtain a similar result.

Corollary 2. For any positive integer k � 1, let Q2(k-clawdetect(N1� � � � � Nk)) be the
number of queries needed to decide whether there is a k-claw or not for functions fi :
Xi :� [Ni] � Z (i � [k]) given as a standard oracle, where Ni � Nj if i � j. If k is
constant,

Q2(k-clawdetect(N1� � � � � Nk)) �

�����������
O
���k

i�1 Ni

� 1
k�1

	
if
�k

i�2 Ni � O(Nk
1)�

O
�
�k

i�2 Ni�Nk�2
1

	
otherwise.

4 Claw Finding

We now describe an algorithm, Claw Search, that finds a claw. The algorithm consists
of three stages. In the first stage, we find an O(N)-sized subset Y� of Y such that there is
a claw in X � Y�, by performing binary search over Y with Claw Detect. In the second
stage, we perform 4-ary search over X and Y� with Claw Detect to find O(1)-sized
subsets X�� and Y�� of X and Y�, respectively, such that there is a claw in X�� � Y��. In
the final stage, we search X�� � Y�� for a claw by issuing classical queries. To keep the
error rate moderate, say, at most 1�3, Claw Detect is repeated O(s) times against the
same pair of domains at the sth node of the search tree at each stage. This pushes up the
query complexity by only a constant multiplicative factor.

Figure 1 precisely describes Claw Search. Steps 2, 3 and 4 in the figure correspond
to the first, second and final stages, respectively.

Theorem 2. Let Q2(clawfinding(N� M)) be the number of queries needed to locate a claw
if it exists for functions f : X � [N] � Z and g : Y � [M] � Z given as a comparison
oracle. Then,

Q2(clawfinding(N� M)) �

�������
O
�
(NM)1�3 log N

�
N � M � N2

O(M1�2 log N) M � N2�

Proof. We will analyze Claw Search in Fig. 1.
When there is no claw, Claw Search always outputs the correct answer. Suppose that

there is a claw. The algorithm may output a wrong answer if at least one of the following
two cases happens. In case (1), one of O(log M�N) runs of step 2.(b) errs; in case (2),
one of O(log N) runs of step 3.(b) errs.

544 S. Tani

Algorithm Claw Search

Input: Integers M and N such that M � N; Comparison oracle Of �g for functions f : X � Z and
g : Y � Z, respectively, such that X :� [N] and Y :� [M].

Output: Claw pair (x� y) � X � Y such that f (x) � g(y) if such a pair exists; otherwise (�1��1).

1. Set X̃ :� X and Ỹ :� Y .
2. Set s :� 1, and repeat the next steps until uỸ � lỸ � �X̃�, where uỸ and lỸ are the largest and

smallest values, respectively, in Ỹ .
(a) Set �Y :� �[lỸ �mỸ � 1]� [mỸ �uỸ]	, where mỸ :�
(lỸ � uỸ)�2�.
(b) For every Ỹ � � �Y , do the following.

If all Ỹ � � �Y are examined, output (�1��1) and halt.
i. Apply Claw Detect (s � 2) times to f and g restricted to domains X̃ and Ỹ, respec-

tively.
ii. If at least one of the (s � 2) results is “true,” set Ỹ :� Ỹ �, and break (leave (b)).

(c) Set s :� s � 1.
3. Set s :� 1, and repeat the next steps until uD � lD � c for every D � �X̃� Ỹ	 and some constant

c, say, 100, where uD and lD are the largest and smallest values, respectively, in D.
(a) For every D � �X̃� Ỹ	, set �D :� �[lD�uD]	 if uD � lD � c, and

otherwise, set �D :� �[lD�mD � 1]� [mD�uD]	 where mD :�
(lD � uD)�2�.
(b) For every pair (X̃�� Ỹ �) � �X̃ � �Ỹ , do the following.

If all the pairs are examined, output (�1��1) and halt.
i. Apply Claw Detect (s � 3) times to f and g restricted to domains X̃� and Ỹ �, re-

spectively.
ii. If at least one of the (s � 3) results is “true,” set X̃ :� X̃� and Ỹ :� Ỹ �, and break

(leave (b)).
(c) Set s :� s � 1.

4. Classically search X̃ � Ỹ for a claw.
5. Output claw (x� y) � X̃ � Ỹ if it exists; otherwise output (�1��1).

Fig. 1. Algorithm Claw Search

Without loss of generality, the error probability of Claw Detect can be assumed to be
at most 1�3. The error probability of each single run of step 2.(b).i is at most 1

3s�2 . The
error probability of each run of step 2.(b) is at most 2

3s�2 � 1
3s�1 . The error probability of

case (1) is thus at most
��log M�N	

s�1
1

3s�1 � 1
6 . The error probability of case (2) is also at

most
��log N1	

s�1
1

3s�1 � 1
6 by similar calculation. Therefore, the overall error probability is

at most 1�6�1�6�1�3.
We next estimate the number of queries. If N � M � N2, the size of Ỹ is always at

most quadratically di�erent from that of X̃. Thus, the sth repetition of step 2 requires
O(s(NM�2s)1�3 log N) queries by Lemma 1. Similarly, the sth repetition of step 3 re-
quires O(s(N�2s)2�3 log N) queries by Lemma 1.

The total number of queries is

O

��������
�log(M�N)	�

s�1

�
s
�
N

M
2s

	1�3

log N

�
�

�log N	�
s�1

�
s(N�2s)2�3 log N

��������� � O
�
(NM)1�3 log N

�
�

An Improved Claw Finding Algorithm Using Quantum Walk 545

If M � N2, the sth repetition of step 2 requires O(s((NM�2s)1�3 � (M�2s)1�2) log N)
by Lemma 1. Thus, similar calculation gives O(M1�2 log N) queries. ��

We can easily obtain the standard-oracle version of the above theorem by using Corol-
lary 1 instead of Lemma 1.

Corollary 3. Let Q2(clawfinding(N� M)) be the number of queries needed to locate a
claw if it exists for functions f : X :� [N] � Z and g : Y :� [M] � Z given as a
standard oracle. Then,

Q2(clawfinding(N� M)) �

�������
O
�
(NM)1�3

�
N � M � N2

O(M1�2) M � N2�

Similarly, we can find a k-claw by using k-Claw Detect as a subroutine. First, we find
O(N1)-sized subset X�

i of Xi for every i � [2�k] such that there is a k-claw in X1 � X�
2 �

� � � � X�
k, by performing 2k�1-ary search over X�

i ’s for all i � [2�k] with k-Claw Detect.
Let X�

1 :� X1. We then perform 2k-ary search over X�
i s for all i � [k] with k-Claw Detect

to find O(1)-sized subset X��
i of X�

i for every i � [k] such that there is a k-claw in
X��

1 �� � ��X��
k . Finally, we search X��

1 �� � ��X��
k for a k-claw by issuing classical queries.

A more precise description of the algorithm, k-Claw Search, is given in Fig. 2.

Theorem 3. For any positive integer k � 1, let Q2(k-clawfinding(N1� � � � � Nk)) be the
number of queries needed to locate a k-claw if it exists for k functions fi : Xi :� [Ni] �
Z (i � [k]) given as a comparison oracle, where Ni � Nj if i � j. If k is constant,

Q2(k-clawfinding(N1� � � � � Nk)) �

�����������
O
���k

i�1 Ni

� 1
k�1 log N1

	
if
�k

i�2 Ni � O(Nk
1)�

O
�
�k

i�2 Ni�Nk�2
1 log N1

	
otherwise.

We can easily obtain the standard-oracle version of the above theorem by using Corol-
lary 2 instead of Lemma 2.

Corollary 4. For any positive integer k � 1, let Q2(k-clawfinding(N1� � � � � Nk)) be the
number of queries needed to locate a k-claw if it exists for k functions fi : Xi :� [Ni] �
Z (i � [k]) given as a standard oracle, where Ni � Nj if i � j. If k is constant,

Q2(k-clawfinding(N1� � � � � Nk)) �

�����������
O
���k

i�1 Ni

� 1
k�1

	
if
�k

i�2 Ni � O(Nk
1)�

O
�
�k

i�2 Ni�Nk�2
1

	
otherwise.

5 Lower Bound

We reduce the element distinctness problem ED(N) to the claw finding problem to
obtain a lower bound. We define ED(N) as follows.

Problem 3 (Element Distinctness Problem (ED(N))). Given function h : V � [N] � Z
as an oracle, is there a pair (x� y) � V � V such that h(x) � h(y)?

546 S. Tani

Algorithm k-Claw Search

Input: k integers N1� � � � � Nk such that Ni � Nj if i � j.
Comparison oracle Of1 ����� fk for functions fi : Xi � Z such that Xi :� [Ni] for every i � [k].

Output: k-claw (x1� � � � � xk) � X1�� � ��Xk such that fi(xi) � f j(xj) for every i� j � [k] if it exists;
otherwise (�1� � � � ��1).

1. Set X̃i :� Xi for every i � [k].
2. Set s :� 1, and repeat the next steps until ui � li � �X̃1� for all i � [2�k], where ui and li are the

largest and smallest values, respectively, in X̃i.
(a) For every i � [2�k], set �i :� �[li�ui]	 if ui � li � �X̃1�, and

otherwise, set �i :� �[li�mi � 1]� [mi�ui]	 where mi :�
(li � ui)�2�.
(b) For every tuple (X̃�

1� X̃�

2� � � � � X̃�

k) � �X̃1	 � �2 � � � � � �k, do the following.
If all the tuples are examined, output (�1� � � � ��1) and halt.

i. Apply k-Claw Detect (s � 1) �
log3 2k�1� times to the k functions fi restricted to
domains X̃�

i , respectively, for every i � [k].
ii. If at least one of the (s � 1) �
log3 2k�1� results is “true,” set X̃i :� X̃�

i for every
i � [2�k], and break (leave (b)).

(c) Set s :� s � 1.
3. Set s :� 1, and repeat the next steps until ui � li � c for all i � [k] and some constant c, say,

100, where ui and li are the largest and smallest values, respectively, in X̃i.
(a) For every i � [k], set �i :� �[li�ui]	 if ui � li � c, and

otherwise, set �i :� �[li�mi � 1]� [mi�ui]	 where mi �
(li � ui)�2�.
(b) For every tuple (X̃�

1� X̃�

2� � � � � X̃�

k) � �1 � � � � � �k, do the following.
If all the tuples are examined, output (�1� � � � ��1) and halt.

i. Apply k-Claw Detect (s � 1) �
log3 2k� times to the k functions fi restricted to
domains X̃�

i for every i � [k].
ii. If at least one of the (s�1)�
log3 2k� results is “true,” set X̃i :� X̃�

i for every i � [k],
and break (leave (b)).

(c) Set s :� s � 1.
4. Classically search X̃1 � � � � � X̃k for a k-claw.
5. Output k-claw (x1� � � � � xk) � X�

1 � � � � � X�

k if it exists; otherwise output (�1� � � � ��1).

Fig. 2. Algorithm k-Claw Search

For problem ED(N), Aaronson and Shi [1] proved the tight lower bound of the bounded
error quantum query complexity against a standard oracle: �(N2�3). This lower bound
holds for a comparison oracle up to a constant multiplicative factor. Ambainis [2] gave
an algorithm that needs O(N2�3) queries for a search version of ED(N). Thus, ED(N)
has query complexity �(N2�3) for both the search and decision versions.

The reduction is as follows. Suppose that we are given an instance of ED(N � M) as
comparison oracle Oh�h : �p� q� b�w
 �� �p� q� b � [h(p) � h(q)]�w
� where p� q � V ,
b � �0� 1	, [h(p) � h(q)] is the predicate such that it is 1 if and only if h(p) � h(q), and
w is work space. Let A be any bounded-error quantum algorithm for the claw finding
problem for functions f and g of domains X and Y, respectively, such that �X� � N
and �Y � � M. We will construct an algorithm to solve ED(N � M) by using A. First,
we randomly divide the domain of ED(N � M) into two disjoint subdomains of sizes
N and M, respectively, and we then apply A to the sub-domains. If A finds a claw, the
answer to ED(N�M) is no; otherwise the answer is yes. Finally, we amplify the success

An Improved Claw Finding Algorithm Using Quantum Walk 547

probability of this procedure by using the quantum amplitude amplification [3]. Then
we have the next lemma.

Lemma 3. Q2(clawfinding(N� M)) is �(N1�2M1�6).

This bound together with the previous bound �(M1�2) given in [6] implies that our
algorithm for the claw finding problem is optimal when M � �(N) or M � �(N2).

As a by-product, an optimal quantum algorithm of O(N2�3) queries for the element
distinctness problem, which is di�erent from the first optimal algorithm in [2], can be
obtained by combining the above reduction in the case of N � M with our claw finding
algorithm.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness
problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proc. 45th IEEE FOCS,
pp. 22–31. IEEE Computer Society Press, Los Alamitos (2004)

3. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estima-
tion, Quantum Computation and Quantum Information: A Millennium Volume. AMS Con-
tem. Math. 305, 53–74 (2002)

4. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In:
Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer,
Heidelberg (1998)

5. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. In: Brouwer, A.E.,
Cohen, A.M., Neumaier, A. (eds.) A series of Modern Surveys in Mathematics, Springer,
Heidelberg (1989)

6. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quan-
tum algorithms for element distinctness. In: Proc. 16th IEEE Conference on Computational
Complexity, pp. 131–137. IEEE Computer Society Press, Los Alamitos (2001)

7. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.:
Quantum algorithms for element distinctness. SIAM J. Comput. 34(6), 1324–1330 (2005)

8. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proc. 17th
ACM�SIAM SODA, pp. 880–889 (2006)

9. Childs, A.M., Eisenberg, J.M.: Quantum algorithms for subset finding. Quantum Information
and Computation 5(7), 593–604 (2005)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of 28th
ACM STOC, pp. 212–219. ACM Press, New York (1996)

11. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp.
291–299. Springer, Heidelberg (2003)

12. Iwama, K., Kawachi, A.: A new quantum claw-finding algorithm for three functions. New
Generation Computing 21(4), 319–327 (2003)

13. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In:
Proc. 16th ACM�SIAM SODA, pp. 1109–1117 (2005)

14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

15. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proc. 45th IEEE
FOCS, pp. 32–41. IEEE Computer Society Press, Los Alamitos (2004)

Complexity Upper Bounds for Classical Locally
Random Reductions Using a Quantum Computational

Argument�

Rahul Tripathi

Department of Computer Science and Engineering, University of South Florida,
Tampa, FL 33620, USA

tripathi@cse.usf.edu

Abstract. We use a quantum computational argument to prove, for any integer
k ≥ 2, a complexity upper bound for nonadaptive k-query classical locally ran-
dom reductions (LRRs) that allow bounded-errors. Extending and improving a
recent result of Pavan and Vinodchandran [PV], we prove that if a set L has a
nonadaptive 2-query classical LRR to functions g and h, where both g and h can
output O(log n) bits, such that the reduction succeeds with probability at least
1/2 + 1/poly(n), then L ∈ PPNP/poly. Previous complexity upper bound for
nonadaptive 2-query classical LRRs was known only for much restricted LRRs:
LRRs in which the target functions can only take values in {0, 1, 2} and the error
probability is zero [PV]. For k > 2, we prove that if a set L has a nonadaptive
k-query classical LRR to boolean functions g1, g2, . . ., gk such that the reduction
succeeds with probability at least 2/3 and the distribution on (k/2+

√
k)-element

subsets of queries depends only on the input length, then L ∈ PPNP/poly. Previ-
ously, for no constant k > 2, a complexity upper bound for nonadaptive k-query
classical LRRs was known even for LRRs that do not make errors.

Our proofs follow a two stage argument: (1) simulate a nonadaptive k-query
classical LRR by a 1-query quantum weak LRR, and (2) upper bound the com-
plexity of this quantum weak LRR. To carry out the two stages, we formally
define nonadaptive quantum weak LRRs, and prove that if a set L has a 1-query
quantum weak LRR to a function g, where g can output polynomial number of
bits, such that the reduction succeeds with probability at least 1/2 + 1/poly(n),
then L ∈ PPNP/poly.

1 Introduction

1.1 Background

A locally random reduction (LRR) of a set L to a database f is an efficient compu-
tational procedure that allows to determine the membership of any instance x in L
by using random queries to the database. The concept of LRR is motivated from the
standpoint of cryptographic security and can be understood from the following exam-
ple. Suppose Alice holds an object (encoded as a binary string) and wants to efficiently

� Research supported by the New Researcher Grant of University of South Florida.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 548–558, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Complexity Upper Bounds for Classical LRRs 549

retrieve some information about the object by using queries to Bob (database f). How-
ever for security reasons, Alice cannot reveal her object to Bob. Therefore, she makes
random queries to Bob so that Bob gets no clue about the object from the queries. An
LRR is an efficient computational procedure that allows Alice to retrieve the informa-
tion without leaking Bob anything more than the size of the object. (See Section 2.4 for
a more general definition of LRR.) An LRR where the set L and the database f are the
same, i.e., f is the characteristic function of L, is called a random self-reduction (RSR).

In general, one can define an LRR of a set L to several databases f1, f2, . . ., fk
such that the reduction (1) is an efficient randomized procedure, (2) allows determin-
ing the membership of any instance x in L with bounded-error probability by using
random queries α1, α2, . . ., αk to f1, f2, . . ., fk, respectively, and (3) leaks no detail
more than |x| to an adversary even if the adversary is revealed any subset of at most t
queries, for some fixed t ≥ 1. For the special case f1 = f2 = . . . = fk = f , Beaver
et al. [BFKR97] called this reduction a (t, k)-locally random reduction of L to f . This
general notion of LRR subsumes earlier studied notions of random reductions known as
single-oracle [AFK89] and multioracle [Riv86] instance-hiding schemes. Here “leak-
ing no detail more than |x| to an adversary even if the adversary is revealed any subset
of t queries” has the following interpretation: If instances x and y are such that |x| =
|y|, then for any i1, i2, . . . , it, the distribution on the t queries 〈αi1 , αi2 , . . . , αit〉 in-
duced by the randomized reduction on input x is identical to the distribution induced
by the randomized reduction on input y. Thus, from the viewpoint of an adversary who
has access to some subset of t queries, any instance y of length |x| is equally likely to
be the input of the reduction.

Both LRR and RSR have proved to be useful at several places in computational
complexity theory. They have found implicit or explicit applications in worst-case to
average-case reductions [Lip91], random oracle separations [Bab87], interactive
proof systems [BFL91, LFKN92, Sha92], program checkers and self-testing/
correcting pairs [BK95, Lip91, BLR93], probabilistically checkable proof systems
[AS98, ALM+98, FGL+96], cryptography [GM84, BM84], instance hiding schemes
[Riv86, AFK89, BF90, BFKR97], zero knowledge proofs on committed bits [BFKR97],
private information retrieval [BFG06], and locally decodable codes [PV].

1.2 Related Work

A direct consequence of a result of Beaver and Feigenbaum [BF90] is that for every
set L, there is a function f such that L is (n + 1)-query locally random reducible to
f . Beaver, Feigenbaum, Kilian, and Rogaway [BFKR97] extended and improved this
result: For any constant c > 0 and any function t : N → N, every set L is t5n/c logn6-
query locally random reducible to some function f , where the distribution on t-element
subsets of queries depends only on n and where the lengths of answers from f could be
Θ(log n + log t).

There have been work on understanding the complexity of functions that can be lo-
cally random reduced via k queries to some function f , for constants k ≥ 1. Abadi,
Feigenbaum, and Kilian [AFK89] proved that if a set L is 1-query locally random

550 R. Tripathi

reducible to some function, then L is in NP/poly ∩ coNP/poly. Yao [Yao90] proved
that if a set L is 2-query locally random reducible to some boolean function, then L is in
PSPACE/poly. Fortnow and Szegedy [FS92] improved upon Yao’s result and showed
that any such set in fact belongs to NP/poly ∩ coNP/poly. Pavan and Vinodchan-
dran [PV] addressed the question whether the results of Yao, and Fortnow and Szegedy
can be extended for LRRs where the reductions are to functions other than the boolean
functions. Building on the work of Yao [Yao90] and Fortnow and Szegedy [FS92], they
proved that if a set L is 2-query locally random reducible to functions g and h that take
values in {0, 1, 2}, then L is in PSPACE/poly. The LRRs considered in the last three
papers, i.e., in [Yao90, FS92, PV] do not allow errors.

1.3 Our Results

A comparison of our results with previously known results is summarized in Table 1.
The notations “(t, k, �, ε)-clr” and “(t, k, �, ε)-qwlr,” used in Table 1, capture general-
izations of previously studied notions of classical LRRs. They are defined as follows:
(a) A nonadaptive (t, k, �, ε)-clr is an LRR of a set L to some functions g1, g2, . . ., gk
such that (1) the reduction makes k nonadaptive queries α1, α2, . . ., αk to g1, g2, . . .,
gk, respectively, (2) the distribution on t-element subsets of queries 〈αi1 , αi2 , . . . , αit〉
is dependent only on the input length n to the reduction, (3) each gi returns �(n) bits on
input length n to the reduction, and (4) the reduction succeeds with probability at least
1/2+ε(n), and (b) A nonadaptive (t, k, �, ε)-qwlr is a quantum analog of (t, k, �, ε)-clr,
where the reduction can be a bounded-error quantum polynomial-time algorithm that
can make quantum queries. (See Definition 3 and Definition 4 for a formal definition of
these notions.) For notational convenience, if the answers returned by the target func-
tions in LRRs can only take values in {0, 1, 2}, then for such reductions we define the
number of answer bits � to be 3/2 (see, for instance, the second column of Table 1 in
the entry corresponding to [PV]).

Note that our proofs for classical LRRs use quantum computational arguments. The
application of quantum arguments in proving results related to classical computing is
a surprising phenomenon witnessed only in the last few years. See, for instance, the

Table 1. Summary of results showing complexity upper bounds for various nonadaptive LRRs

Papers Type of nonadaptive LRRs Complexity Upper Bound
(t, k, �, ε)-clr / (t, k, �, ε)-qwlr

[AFK89] (1, 1, poly(n), 1/poly(n))-clr NP/poly ∩ coNP/poly

[Yao90] (1, 2, 1, 1/2)-clr PSPACE/poly

[FS92] (1, 2, 1, 1/2)-clr NP/poly ∩ coNP/poly

[BFKR97] (t, t�n/O(log n)�, O(log n + log t), 1/2)-clr None
[PV] (1, 2, 3/2, 1/2)-clr PSPACE/poly

This paper (1, 2, O(log n), 1/poly(n))-clr PPNP/poly
This paper (k/2 +

√
k, k, 1, 1/6)-clr PPNP/poly

This paper (1, 1, poly(n), 1/poly(n))-qwlr PPNP/poly

Complexity Upper Bounds for Classical LRRs 551

papers [KdW04, WdW05, AR03, AR05, Aar05, dW06, Ker05, LLS05, Aar06] where
quantum computational arguments have been used to prove classical complexity re-
sults.) This paper fits in this growing body of research on proving classical complexity
results using quantum computational arguments. Our results also shed light on the role
of quantum computational arguments in the understanding of classical computation.

2 Preliminaries

2.1 Notations

Let N denote the set of all positive integers. Our alphabet is Σ = {0, 1}. For a binary
string b ∈ Σ�, we use bi to denote its i’th bit. We identify a binary string b ∈ Σ� alter-
natively as a bit vector b = (b1, b2, . . . , b�). Given two binary strings a, b ∈ Σ�, their
inner product a ·b is the integer a ·b =df

∑�
i=1 ai · bi, and their xor is the binary string

a⊕b obtained by taking the xor of the individual bits of a and b, i.e., a⊕b =df (a1⊕b1)
. . . (a�⊕ b�). For a string a ∈ Σ�, we use |a| to denote the number of 1’s in a and for a
set A, we use |A| to denote the cardinality of A (which sense is being used for “| · |” will
be clear from the context). For a binary string b ∈ Σ�, let int(b) ∈ {0, 1, . . . , 2� − 1}
denote the integer representation of b. Let [n] =df {1, 2, . . . , n} for all n ∈ N.

2.2 Basics of Quantum Computing

Let H denote a two-dimensional Hilbert space, i.e., a complex vector space equipped
with an inner product 〈· | ·〉 operation. A qubit |u〉 =df (α, β)T represent the states
|0〉 and |1〉, respectively, associated with a qubit. The states |0〉 and |1〉 are called the
computational basis states. We can express the qubit |u〉 as a linear combination of the
computational basis states: |u〉 = α|0〉 + β|1〉. Here α and β are complex numbers,
called the amplitudes of |u〉. Since |u〉 is a unit vector, the amplitudes (of |u〉) must
satisfy |α|2 + |β|2 = 1.

An m-qubit is a unit vector in the 2m-dimensional Hilbert spaceH⊗m =df H⊗· · ·⊗
H, the m-fold tensor product ofH with itself. A multiple qubit is an m-qubit for some
integer m > 1. The computational basis states ofH⊗m are the m-fold tensor product of
the computational basis states ofH. That is, they are |b1〉 ⊗ · · · ⊗ |bm〉, where for each
1 ≤ i ≤ m, bi ranges over 0 and 1. The vector representation of a computational basis
state |b1〉 ⊗ · · · ⊗ |bm〉 is the column vector with 2m rows in which the only row con-
taining 1 is at location 1 + int(b1b2 . . . bm) and all other rows contain 0. We sometimes
use the standard abbreviation |a〉|b〉 for |a〉 ⊗ |b〉, where |a〉 and |b〉 can be arbitrary
multiple qubits. An m-qubit |u〉 =df (α0m , α0m−11, . . . , α1m)T can be expressed as
a linear combination of the computation basis states of H⊗m: |u〉 =

∑
i∈Σm αi|i〉.

Here, the complex numbers αis are the amplitudes of |u〉. These amplitudes satisfy∑
i∈Σm |αi|2 = 1 because |u〉 is a unit vector in H⊗m.
The conjugate transpose of a vector |u〉, i.e., |u〉†, is denoted by 〈u|. The inner prod-

uct 〈·|·〉 of vectors |u〉 and |v〉 can be expressed as: 〈u|v〉 = 〈u| · |v〉, i.e., the matrix
product of 〈u| and |v〉. The vectors |u〉 and |v〉 are orthogonal if their inner product
〈u|v〉 is zero. The norm of |u〉 is ||u|| =df

√
〈u|u〉.

552 R. Tripathi

A quantum system that can take one of a number of states |ψi〉with respective proba-
bilities pi is said to be in a mixed state. A quantum system whose state is known exactly
is said to be in pure state. (Thus, a pure quantum state is also a mixed quantum state,
but not the vice-versa.) A mixed quantum state is described by an ensemble {pi, |ψi〉}
of pure quantum states. We can equivalently describe this mixed quantum state in terms
of the density operator ρ: ρ =

∑
i pi|ψi〉〈ψi|. In particular, for a pure quantum state

|ψ〉, the density operator is |ψ〉〈ψ|.
Any operation on a quantum system is either a unitary operation or a measurement

operation. A unitary operation is described by a linear transformation U , which pre-
serves the �2 norm: for any state |ψ〉, ||ψ|| = ||U |ψ〉||. When a unitary operation U
is performed on a state |ψ〉, the resulting state is U |ψ〉. In the terminology of density
operators, U transforms the state ρ into state UρU †.

The most general measurement in quantum mechanics is the POVM measurement,
which is described by a collection of positive semidefinite measurement operators
Em = M †

mMm satisfying
∑

m Em = I . If a measurement described by the measure-
ment operators Em is performed on a quantum system in state |ψ〉, then the probability
p(m) of getting outcome m is given by p(m) =df 〈ψ|M †

mMm|ψ〉 = 〈ψ|Em|ψ〉 and the
resulting state is Mm|ψ〉√

p(m)
. In the terminology of density operators ρ, the probability p(m)

is given by p(m) =df Tr(MmρM †
m) = Tr(Emρ) and the resulting state is MmρM†

m

p(m) .

By measuring in the computational basis of a 2m-dimensional Hilbert spaceH⊗m, we
mean that we perform a measurement whose measurement operators Em are given by
Em = Mm = |ψm〉〈ψm|, where |ψm〉s are the computational basis states ofH⊗m.

A bipartite quantum system consists of two subsystems. Let H and K be Hilbert
spaces and let ρ be the density operator of a bipartite quantum system over the Hilbert
space H ⊗ K. A partial trace TrK of ρ over K is the following mapping: TrK(ρ) =∑n

j=1(I ⊗ 〈ej |)ρ(I ⊗ |ej〉), where {|e1〉, |e2〉, . . ., |en〉} is any orthonormal basis of
K. Intuitively, the partial trace TrK(ρ) of a mixed state ρ of a bipartite system over
the Hilbert space H ⊗ K is the density operator of the first part (i.e., H) of the system
obtained by discarding the second part (i.e., K) of the system.

We will consider quantum queries whose answers are � bits long, for some � ≥ 1.
A quantum query to an oracle O : Σm → Σ� is the unitary transformation given by
|s〉|z〉 −→ |s〉|z⊕O(s)〉, where z ∈ Σ� is called the target register. For convenience, we
store the query answer in the phase of the quantum state instead of storing it in the target
register. To store the answer in the phase, define for any R ∈ Σ�, the quantum state
|zR〉 = 1√

2�

⊗�
i=1(|0〉 + (−1)Ri |1〉). A quantum query to an oracle O : Σm −→ Σ�

then, for any R ∈ Σ�, maps |s〉|zR〉 to (−1)R·O(s)|s〉|zR〉.
Finally, we refer the reader to the excellent textbook [NC00] for any relevant concept

in quantum computing that is not explained here.

2.3 Complexity Classes

The quantum complexity class BQP/qpoly is the class of all sets decidable by a
polynomial-time quantum computer when given a polynomial-size quantum advice
state, which depends only on the input length.

Complexity Upper Bounds for Classical LRRs 553

Definition 1. BQP/qpoly is the class of all sets L for which there exist a polynomial-
size quantum circuit family {Cn}n∈N and a polynomial-size family of quantum states
{|Ψn〉}n∈N such that for all n ∈ N and x ∈ Σn,

1. if x ∈ L, then Cn accepts |x〉|Ψn〉 with probability at least 2/3, and
2. if x �∈ L, then Cn accepts |x〉|Ψn〉 with probability at most 1/3.

We will require the following result of Aaronson [Aar04] on the power of BQP/qpoly.
This result holds in every relativized world.

Theorem 2. [Aar04] BQP/qpoly ⊆ PP/poly.

2.4 Locally Random Reduction

Beaver et al. [BFKR97] formally introduced the notion of LRRs. They defined LRRs
that reduce a function f to a single function g using k random queries, succeed with
probability at least 3/4, and leak no detail more than |x| even if any t-element subset of
queries is revealed.

We present a more general definition of (nonadaptive) LRRs in Definition 3. This
new definition also takes into account the number of answer bits returned by the target
functions and the success probability of the reduction.

Definition 3 (Nonadaptive Classical Locally Random Reduction). Let t, k ∈ N, � :
N → N, and ε : N → (0, 1/2]. A set L is nonadaptively (t, k, �, ε)-classically-locally-
random (or, “nonadaptively (t, k, �, ε)-clr” in short) reducible to functions g1, g2, . . .,
gk, where each gi outputs �(n) bits on inputs of length n to the reduction, if there exist a
classical bounded-error probabilistic polynomial-time algorithm A, a polynomial-time
function σ, and a polynomial p(·) such that:

1. [Query Reduction] For all n ∈ N, x ∈ Σn, and r ∈ Σp(n), A makes k nonadap-
tive queries σ(1, x, r), σ(2, x, r), . . ., σ(k, x, r) to g1, g2, . . ., gk, respectively.

2. [Local Randomness] For all n ∈ N and {i1, i2, . . . , it} ⊆ [k], if r ∈ Σp(n) is cho-
sen uniformly at random, then for any x, y ∈ Σn, the distribution on 〈σ(i1, x, r),
σ(i2, x, r), . . . , σ(it, x, r)〉 is identical to that on 〈σ(i1, y, r), σ(i2, y, r), . . . ,
σ(it, y, r)〉.

3. [Correctness] For all n ∈ N and x ∈ Σn, it holds that

Probr [A(x, r, g1(σ(1, x, r)), . . . , gk(σ(k, x, r))) = L(x)] ≥ 1
2

+ ε,

where the probability is over the uniform random choice of r ∈ Σp(n).

If the algorithm A receives h(n) bits of advice on input length n, then we say that L
is nonuniformly nonadaptively (t, k, �, ε)-clr reducible to functions g1, g2, . . ., gk with
h(n) bits of advice.

Our proofs of complexity upper bounds for nonadaptive classical LRRs use (as a tool)
the notion of nonadaptive quantum weak LRRs, defined in Definition 4. We mention

554 R. Tripathi

that our notion may not fully capture the most general notion of nonadaptive quantum
LRRs.1

Definition 4 (Nonadaptive Quantum Weak Locally Random Reduction). Let t, k ∈
N, � : N → N, and ε : N → (0, 1/2]. A set L is nonadaptively (t, k, �, ε)-quantumly-
weakly-locally-random (or, “nonadaptively (t, k, �, ε)-qwlr” in short) reducible to
functions g1, g2, . . ., gk, where each gi outputs �(n) bits on inputs of length n to the
reduction, if there exist a bounded-error quantum polynomial-time algorithm A, and
polynomials p(·) and q(·) such that:

1. [Query Reduction] For all n ∈ N, x ∈ Σn, A uniformly at random selects a string
r ∈ Σp(n), deterministically computes k sets of strings T 1

x,r, T 2
x,r, . . ., T k

x,r ⊆
Σq(n), and makes k quantum queries of the form: |Q(x, r)〉 =

1√∏k
i=1 |T i

x,r|

∑

sj1∈T 1
x,r

∑

sj2∈T 2
x,r

· · ·
∑

sjk
∈Tk

x,r

|sj1 , sj2 , . . . , sjk
〉⊗|ψ〉⊗k,

where |ψ〉 = 1√
2�

∑
R∈Σ� |zR〉. Also, each T i

x,r ⊆ Σq(n) depends only on i, x, and

r, and |T i
x,r| depends only on i and n.

2. [Local Randomness] For all n ∈ N and {i1, i2, . . . , it} ⊆ [k], and for any x ∈
Σn, the distribution on strings at locations i1, i2, . . ., it induced by measuring the
query state 1√

2p(n)

∑
r∈Σp(n) |r〉|Q(x, r)〉 in the computational basis is independent

of x, but may perhaps depend on n. In other words, if r ∈ Σp(n) is chosen uniformly
at random, then for any x, y ∈ Σn and for all s1, s2, . . ., st ∈ Σq(n), it holds that

Probr

[
s1 ∈ T i1

x,r ∧ . . . ∧ st ∈ T it
x,r

]
= Probr

[
s1 ∈ T i1

y,r ∧ . . . ∧ st ∈ T it
y,r

]
.

1 Definition 4 may not fully capture nonadaptive quantum LRRs in the most general way for
the following two reasons: (1) In the query reduction property, we require the quantum algo-
rithm A, on input x, to randomly select r ∈ Σp(n) and generate a superposition over strings
belonging to the polynomial-time computable sets T i

x,r , for 1 ≤ i ≤ k. Meaning, the quan-
tum state describing the quantum queries just before their answers are received is given by
|Φ〉 =df

1√
2p(n)

∑
r∈Σp(n) |r〉|Q(x, r)〉. While this requirement on the form of |Φ〉 helps

to serve our purpose, which is obtaining complexity upper bounds for nonadaptive classical
LRRs, it may not be an essential requirement for the most general definition of quantum LRRs.
(2) In the local randomness property, we consider measurements only in the computational ba-
sis. Again, we restrict to only such measurements because they suffice to obtain complexity
upper bounds for nonadaptive classical LRRs. If we consider general (POVM) measurements,
then the local randomness property may be stated as follows:

Let ρx denote the density operator describing the state |Φ〉 of the quantum queries just
before their answers are received, i.e., ρx = |Φ〉〈Φ|.
[Local Randomness] For all n ∈ N, {i1, i2, . . . , it} ⊆ [k], and for any x, y ∈ Σn, it
holds that

Trr,[k]−{i1,i2,...,it}(ρx) = Trr,[k]−{i1,i2,...,it}(ρy),

where Trr,[k]−{i1,i2,...,it}(ρx) denotes the reduced density operator obtained by taking
the partial trace of ρx over the qubits storing r and the qubits corresponding to the query
locations [k]− {i1, i2, . . . , it}.

Complexity Upper Bounds for Classical LRRs 555

3. [Correctness] For all n ∈ N and x ∈ Σn, it holds that

Probr,A [A (x, r, g1 ◦ g2 ◦ · · · ◦ gk(|Q(x, r)〉)) = L(x)] ≥ 1
2

+ ε,

where the probability is over the uniform random choice of r ∈ Σp(n) and over the
inherent randomness of A. Here g1 ◦ g2 ◦ · · · ◦ gk(|Q(x, r)〉) denotes

1√∏k
i=1 |T i

x,r|

∑

sj1∈T1
x,r

· · ·
∑

sjk
∈Tk

x,r

|sj1 , . . . , sjk〉⊗

⎛

⎝
k⊗

i=1

1√
2�

∑

R∈Σ�

(−1)R·gi(sji
)|zR〉

⎞

⎠,

i.e., the outcome of the queries to the functions g1, . . . , gk.

If the algorithm A receives h(n) bits (qubits) of advice on input length n, then we say
that L is nonuniformly nonadaptively (t, k, �, ε)-qwlr reducible to functions g1, g2, . . .,
gk with h(n) bits (respectively, qubits) of classical (respectively, quantum) advice.

3 Results

3.1 The Case of Two Queries

Theorem 5 shows that a nonadaptive 2-query classical LRR with answer length � and
success probability at least 1/2 + ε can be simulated by a 1-query quantum weak LRR
with success probability at least 1/2 + ε/2�. This simulation of nonadaptive 2-query
classical LRRs by 1-query quantum weak LRRs along with Theorem 6, which proves
a complexity upper bound for 1-query quantum weak LRRs, allow us to obtain a com-
plexity upper bound for nonadaptive 2-query classical LRRs.

The proofs of Theorem 5 and Theorem 6 are inspired from those in the papers by
Kerenidis and de Wolf [KdW04] and Wehner and de Wolf [WdW05]. However, there
are at least two technical features that indicate that our proofs are conceptually dif-
ferent from those in [KdW04, WdW05]. First, efficiency of algorithms is an issue in
our proofs (since LRRs are required to be efficient algorithms), whereas efficiency is
not an issue in the papers [KdW04, WdW05] (since algorithms in these papers are for
information-theoretic LDCs and PIRs). Second, we do not require any major result from
quantum information theory in our proofs, whereas the proofs in [KdW04, WdW05] use
Nayak’s [Nay99] linear lower bound on the length of quantum random access codes.
Nayak’s [Nay99] lower bound proof in turn requires some deep results from quantum
information theory.

Theorem 5. Let �(n) = poly(n) and ε(n) ∈ (0, 1/2]. If a set L is nonadaptively
(1, 2, �, ε)-clr reducible to functions g1 and g2, then L is (1, 1, �, ε

2�)-qwlr reducible to
some function g. Here, each of g1, g2, and g outputs �(n) bits on inputs of length n to
their corresponding reductions.

Theorem 6 shows that any set that has a 1-query quantum weak LRR in which the target
function outputs polynomial number of bits and the reduction succeeds with probability
at least 1/2 + 1/poly(n) is in BQPNP/qpoly.

556 R. Tripathi

Theorem 6. Let �(n) = poly(n) and ε(n) = 1/poly(n) ∈ (0, 1/2]. If a set L is
(1, 1, �, ε)-qwlr reducible to a function g, where g outputs �(n) bits on inputs of length
n to the reduction, then L is in BQPNP/qpoly.

Aaronson [Aar04] gave a relativizable proof of the inclusion BQP/qpoly ⊆ PP/poly.
As a consequence, we obtain the following corollary of Theorem 5 and Theorem 6.

Corollary 7. Let �(n) = O(log n) and ε(n) = 1/poly(n) ∈ (0, 1/2]. If a set L is
nonadaptively (1, 2, �, ε)-clr reducible to functions g1, g2, where each gi outputs �(n)
bits on inputs of length n to the reduction, then L ∈ PPNP/poly.

Note that Theorem 6 holds even if the reduction is nonuniform and requires a
polynomial-size quantum advice state. Thus, we get the following strengthening of
Theorem 6.

Theorem 8. Let � = poly(n) and ε(n) = 1/poly(n) ∈ (0, 1/2]. If a set L is nonuni-
formly (1, 1, �, ε)-qwlr reducible to a function g with a polynomial-size quantum ad-
vice, then L is in BQPNP/qpoly. Here g outputs �(n) bits on inputs of length n to the
reduction.

3.2 The Case of More Than Two Queries and Binary Answers

Theorem 5 shows that a nonadaptive 2-query classical LRR can be simulated by a
1-query quantum weak LRR. We show in Theorem 9 that, for any constant k > 2,
a nonadaptive k-query classical LRR can also be simulated by a 1-query quantum weak
LRR provided that in the classical LRR, the target functions are boolean and the distri-
bution on sufficiently large subsets of queries depends only on the input length.

Theorem 9. Let k > 2 be some fixed integer and let ε ∈ (0, 1/2] be a fixed constant. If a
set L is nonadaptively (k/2+O(

√
k), k, 1, ε)-clr reducible to boolean functions g1, g2,

. . ., gk, then L is nonuniformly (1, 1, 1, ε/2)-qwlr reducible to some boolean function
g with k qubits of quantum advice. (The constant inside the O-notation depends only
on ε.)

In the statement of Theorem 9, the constant inside the O-notation depends only on ε.
In particular, it can be shown that for any ε ≥ 0.055 and integer k > 2, if a set L
is nonadaptively (k/2 +

√
k, k, 1, ε)-clr reducible to boolean functions g1, g2, . . ., gk,

then L is nonuniformly (1, 1, 1, ε/2)-qwlr reducible to some boolean function g with k
qubits of quantum advice.

The following corollary is an immediate consequence of Theorem 8 and Theorem 9.

Corollary 10. Let ε ∈ (0, 1/2] be a fixed constant. If a set L is nonadaptively (k/2 +
O(
√
k), k, 1, ε)-clr reducible to boolean functions g1, g2, . . ., gk, thenL ∈ PPNP/poly.

Acknowledgment. We thank Aduri Pavan and Vinodchandran Variyam for several in-
sightful comments during an early stage of this work.

Complexity Upper Bounds for Classical LRRs 557

References

[Aar04] Aaronson, S.: Limitations of quantum advice and one-way communication. In: Pro-
ceedings of the 19th Annual IEEE Conference on Computational Complexity, pp.
320–332. IEEE Computer Society Press, Los Alamitos (2004)

[Aar05] Aaronson, S.: Quantum computing, postselection, and probabilistic polynomial-
time. Technical Report 05-003, Electronic Colloquium on Computational Complex-
ity (ECCC) (January 2005), http://www.eccc.uni-trier.de/eccc/

[Aar06] Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM Journal
on Computing 35(4), 804–824 (2006)

[AFK89] Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. Journal
of Computer and System Sciences 39(1), 21–50 (1989)

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the
hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

[AR03] Aharonov, D., Regev, O.: A lattice problem in quantum NP. In: Proceedings of the
44th IEEE Symposium on Foundations of Computer Science, pp. 210–219. IEEE
Computer Society Press, Los Alamitos (2003)

[AR05] Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. Journal of the
ACM 52(5), 749–765 (2005)

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM 45(1), 70–122 (1998)

[Bab87] Babai, L.: A random oracle separates PSPACE from the Polynomial Hierarchy. In-
formation Processing Letters 26(1), 51–53 (1987)

[BF90] Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: Choffrut,
C., Lengauer, T. (eds.) STACS 90. LNCS, vol. 415, pp. 37–48. Springer, Heidelberg
(1990)

[BFG06] Beigel, R., Fortnow, L., Gasarch, W.: A tight lower bound for restricted PIR proto-
cols. Computational Complexity 15, 82–91 (2006)

[BFKR97] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally random reductions:
Improvements and applications. Journal of Cryptology 10(1), 17–36 (1997)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity 1(1), 3–40 (1991)

[BK95] Blum, M., Kannan, S.: Designing programs that check their work. Journal of the
ACM 42(1), 269–291 (1995)

[BLR93] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to nu-
merical problems. Journal of Computer and System Sciences 47(3), 549–595 (1993)

[BM84] Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13(4), 850–864 (1984)

[dW06] de Wolf, R.: Lower bounds on matrix rigidity via a quantum argument. In: Proceed-
ings of the 33rd International Colloquium on Automata, Languages, and Program-
ming, pp. 62–71 (2006)

[FGL+96] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. Journal of the ACM 43, 268–292 (1996)

[FS92] Fortnow, L., Szegedy, M.: On the power of two-local random reductions. Informa-
tion Processing Letters 44(6), 303–306 (1992)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer Secu-
rity 28, 270–299 (1984)

[KdW04] Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable
codes via a quantum argument. Journal of Computer and System Sciences 69(3),
395–420 (2004)

http://www.eccc.uni-trier.de/eccc/

558 R. Tripathi

[Ker05] Kerenidis, I.: Quantum multiparty communication complexity and circuit lower
bounds. Technical Report quant-ph/0504087, Los Alamos e-Print Quantum Physics
Technical Report Archive (April 12, 2005)

[LFKN92] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. Journal of the ACM 39(4), 859–868 (1992)

[Lip91] Lipton, R.: New directions in testing. In: Feigenbaum, J., Merritt, M. (eds.) Dis-
tributed Computing and Cryptography. DIMACS series in Discrete Mathematics
and Theoretical Computer Science, pp. 191–202. American Mathematical Society
(1991)

[LLS05] Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical
formula size lower bounds. In: Proceedings of the 20th Annual IEEE Conference on
Computational Complexity, pp. 76–90. IEEE Computer Society Press, Los Alamitos
(2005)

[Nay99] Nayak, A.: Optimal lower bounds for quantum automata and random access codes.
In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science,
pp. 369–377. IEEE Computer Society Press, Los Alamitos (1999)

[NC00] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

[PV] Pavan, A., Vinodchandran, N.: 2-local random reductions to 3-valued functions.
Computational Complexity (to appear)

[Riv86] Rivest, R.: Workshop on communication and computing. MIT, Cambridge (1986)
[Sha92] Shamir, A.: IP=PSPACE. Journal of the ACM 39(4), 869–877 (1992)
[WdW05] Wehner, S., de Wolf, R.: Improved lower bounds for locally decodable codes and

private information retrieval. In: Proceedings of the 32nd International Colloquium
on Automata, Languages, and Programming. LNCS, pp. 1424–1436. Springer, Hei-
delberg (2005)

[Yao90] Yao, A.: An application of communication complexity to cryptography. In: Lecture
at DIMACS Workshop on Structural Complexity and Cryptography (1990)

On the Complexity of Game Isomorphism�

(Extended Abstract)

Joaquim Gabarró, Alina Garćıa, and Maria Serna

LSI Dept. Universitat Politècnica de Catalunya, Barcelona
{gabarro,agarcia,mjserna}@lsi.upc.edu

Abstract. We consider the question of when two games are equiva-
lent and the computational complexity of deciding such a property for
strategic games. We introduce three types of isomorphisms depending on
which structure of the game is preserved: strict, weak, and local. We show
that the computational complexity of the game isomorphism problem de-
pends on the level of succinctness of the description of the input games
but it is independent of the way the isomorphism is defined. Utilities
or preferences in games can be represented by Turing machines (general
form) or tables (explicit form). When the games are given in general
form, we show that the game isomorphism problem is equivalent to the
circuit isomorphism problem. When the games are given in explicit form,
we show that the game isomorphism problem is equivalent to the graph
isomorphism problem.

Keywords: Game isomorphism, succinct representations, boolean for-
mulas, computational complexity, boolean isomorphism, graph
isomorphism.

1 Introduction

We are interested in the computational aspects of game equivalence. Surpris-
ingly there is not a fully accepted definition of game equivalence in game theory
books. In 1951, J. Nash [11] gave a definition of automorphism between strategic
games. More recently, B. Peleg, J. Rosemuller and P. Sudhölter [13,16] consider
isomorphisms for strategic and extensive games with incomplete information.
J.C Harsanyi and R. Selten have introduced other definitions of isomorphism [8].
Equivalence by the way of transformations to a common form have been consid-
ered in [4].

We consider the case of strategic games. Our motivation is twofold. First, a
strategic game is a special type of combinatorial structure and a natural question
is to study the computational effort needed to decide when two such structures
are isomorphic. Secondly, we can ask if such a question is interesting to the

� Partially supported by Network of Excellence CoreGRID (IST-2002-004265), FET
Proactive IP 001907 (DELIS) and by the spanish project TIN2005-09198-C02-02
(ASCE). The second author is supported by a FPI Spanish grant.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 559–571, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

560 J. Gabarró, A. Garćıa, and M. Serna

game theory community. In practice strategic games are used as ingredient of
more complicated games, but usually there is a way to transform any game into
a strategic game. Furthermore, in [4] equivalence between extensive games is
defined in terms of strategic games. Therefore strategic games are the first game
structure to start analyzing game equivalence.

In defining a concrete equivalence we have to pay attention to the structural
properties that are preserved in equivalent games. We consider three versions
of isomorphisms. A strong isomorphism preserves utilities corresponding to the
notion introduced in [11]. A weak isomorphism preserves preferences. A local iso-
morphism preserves preferences defined only on “close” strategy profiles. Each
of them requires to preserve less information about the relative structure of pro-
files while preserving part of the structure of the Nash equilibria. More precisely,
strong isomorphisms preserve pure and mixed Nash equilibria, while weak and
local isomorphisms only preserve pure Nash equilibria.

In this paper we are interested in the computational complexity of deciding
whether two games are equivalent. We consider four problems related to isomor-
phisms. In the IsIso problem, given two games Γ and Γ ′ and a mapping ψ we
have to decide whether ψ is an isomorphism. In the IsAuto problem, given Γ
and ψ we have to decide whether ψ is an automorphism. In the Iso problem
we decide whether two games are isomorphic. Finally in Auto we ask to decide
when a game has an automorphism different from the identity. In order to study
the computational aspects of problems on strategic games and isomorphisms, we
need first to decide how to represent games and morphisms as inputs.

For games we consider the two levels of succinctness proposed in [2]. When a
game is given in general form the actions are listed explicitly but utilities and
mappings are given by deterministic Turing machines. In the explicit case util-
ities are stored in tables. In both cases morphisms are always represented by
tables. This is not a restriction as in polynomial time we can pass a represen-
tation by Turing machines into a representation by tables. The main results of
the paper are

– The IsIso and the IsAuto problems are coNP-complete, for games given in
general form, and NC when games are given in explicit form.

– The Iso and the Auto problems belong to Σp
2, for games given in general

form, and to NP when games are given in explicit form.
– The Iso problem is equivalent to boolean circuit isomorphism, for games in

general form, and to graph isomorphism, for games given in explicit form.

The above results hold independently of the type of isomorphism considered,
observe that boolean circuit isomorphism is believed not to be Σp

2-hard [1], as
well as graph isomorphism is conjectured not to be NP-hard [9]. Therefore the
same result applies for the Iso.

In our presentation we consider games defined by utilities, preferences, or local
preferences to present our complexity results as general as possible and matching
the corresponding definition of morphism. However a game defined by utilities
can be defined by preferences or local preferences. All the results hold for games
defined through utilities when the isomorphism is required to preserve utilities

On the Complexity of Game Isomorphism 561

(strong), the induced preference relation (weak) or the induced local preferences
(local).

The paper is organized as follows. In Section 2, we consider games defined
through utilities and define the notion of strong morphisms. In this perspective
we introduce the different problems on game isomorphism and formalize the
different levels of succinctness for the representation of games and morphisms. In
Section 3 we develop the complexity results for strong isomorphisms. In Section 4
we study the complexity results for strategic games defined through preferences
in the case of weak isomorphisms and we introduce the idea local preferences
(well adapted to the notion of Nash equilibrium). In Section 5 we study the
structure of the Nash equilibria in the case of two player games, each player with
two actions using weak isomorphisms. We conclude in Section 6, with additional
comments and open problems.

Due to the lack of space all the proofs are omitted we refer the interested
reader to the full version [6] for details. However, before formulating a hardness
result we provide a definition of the transformation used in the reduction.

2 Games, Isomorphisms, Problems, and Representations

We start stating the mathematical definition of strategic games given in [12].

Definition 1. A strategic game Γ = (N, (Ai)i∈N , (ui)i∈N) is a tuple. The set
of players is N = {1, . . . , n}. Player i ∈ N has a finite set of actions Ai, we note
ai any action belonging to Ai. The elements a = (a1, . . . , an) ∈ A1× . . .×An are
the strategy profiles. The utility (or payoff) function ui for each player i ∈ N is
a mapping from A1 × . . .×An to the rationals.

First of all we consider game mappings which do not consider utilities. We adapt
notations and definitions given in [13,16].

Definition 2. Given Γ = (N, (Ai)i∈N , (ui)i∈N) and Γ ′ = (N, (A′
i)i∈N , (u′i)i∈N),

a game mapping ψ from Γ to Γ ′ is a tuple ψ = (π, (ϕi)i∈N) where π is a bijection
from N to N , the player’s bijection, and for any i ∈ N , ϕi is a bijection from
Ai to A′

π(i), the i-th actions bijection.

Observe that the player bijection identifies player i ∈ N with player π(i) and
the corresponding actions bijection ϕi maps the set of actions of player i to the
set of actions of player π(i). A game mapping ψ from Γ to Γ ′ induces, in a
natural way, a function from A1 × · · · × An to A′

1 × · · · × A′
n where strategy

profile (a1, . . . , an) is mapped into the strategy profile (a′1, . . . , a
′
n) defined as

a′π(i) = ϕi(ai), for all 1 ≤ i ≤ n. We note, overloading the use of ψ, this mapping
as ψ(a1, . . . , an) = (a′1, . . . , a′n). A mixed strategy profile p = (p1, . . . , pi, . . . pn)
is given by probabilities pi on Ai (such that

∑
ai∈Ai

pi(ai) = 1) for 1 ≤ i ≤ n. A
game mapping ψ also induces a mapping ψ(p1, . . . , pn) = (p′1, . . . , p

′
n) such that

p′π(i) is a probability on A′
π(i) defined by p′π(i)(ϕi(ai)) = pi(ai). Isomorphisms

are game mappings fulfilling some extra restrictions about utilities or prefer-
ences. We start defining the stronger version of an isomorphism introduced by
J. Nash [11], look also [13,16].

562 J. Gabarró, A. Garćıa, and M. Serna

Player 1

Player 2
l r

t 0, 0 0, 1
b 1, 1 1, 0

Γ

ψ−→ Player 1

Player 2
l′ r′

t′ 1, 0 0, 1
b′ 0, 0 1, 1

Γ ′

The strong isomorphism ψ : Γ → Γ ′ is ψ = (π, ϕ1, ϕ2) where π = (1 → 2, 2 → 1),
ϕ1 = (t → l′, b → r′) and ϕ2 = (l → b′, r → t′). This strong isomorphism maps strategy
profiles as ψ(t, l) = (b′, l′), ψ(t, r) = (t′, l′), ψ(b, l) = (b′, r′) and ψ(b, r) = (t′, r′).

Player 1

Player 2
l r

t 0, 1 1, 0
b 1, 0 0, 1

Γ

ψ′−→ Player 1

Player 2
l r

t 0, 1 1, 0
b 1, 0 0, 1

Γ

The strong automorphism is ψ′ = (π′, ϕ′
1, ϕ

′
2) where π′ = (1 → 2, 2 → 1) and the

action bijections are ϕ′
1 = (t → r, b → l) and ϕ′

2 = (l → t, r → b).

Fig. 1. Example of a strong isomorphism ψ and of an automorphism ψ′

Definition 3. Given Γ =(N, (Ai)i∈N , (ui)i∈N) and Γ ′=(N, (A′
i))i∈N , (u′i)i∈N),

a game mapping ψ : Γ → Γ ′ with ψ = (π, (ϕi)i∈N) is called a strong isomor-
phism ψ : Γ → Γ ′ when, for any player 1 ≤ i ≤ n and any strategy profile
a, it holds u′π(i)(ψ(a)) = ui(a). In the particular case that Γ ′ is Γ a strong
isomorphism is called a strong automorphism.

In Figure 1 we provide an example of strong isomorphism and another of strong
automorphism. Given a strong isomorphism ψ between Γ and Γ ′, observe that
a strategy profile a is a pure Nash equilibrium in Γ iff ψ(a) is a pure Nash
equilibrium in Γ ′ and the same holds for mixed Nash equilibria.

We consider the following computational problems related to games and mor-
phisms.

Is Game Isomorphism (IsIso). Given two games Γ , Γ ′ and a game mapping
ψ : Γ → Γ ′, decide whether ψ is a strong isomorphism.

Game Isomorphism (Iso). Given two games Γ , Γ ′, decide whether there exists a
strong isomorphism between Γ and Γ ′.

Is Game Automorphism (IsAuto). Given a game Γ and a game mapping ψ : Γ →
Γ , decide whether ψ is a strong automorphism.

Game Automorphism (Auto). Given a game Γ , decide whether Γ has a non
trivial (different from the identity) strong automorphism.

In the context of computational complexity it is very important to fix how
games and morphisms are represented. We take the representations of games

On the Complexity of Game Isomorphism 563

given in [2]. We assume a pre-fixed alphabet. Hence, we can describe the pay-off
functions of a game by a tuple 〈M, 1t〉 where M is a deterministic tm and t is a
natural number bounding its computation time on any input. The idea is that
given a strategy profile a and a natural number i, the output of M on input
〈a, i〉 is the value of the pay-off function of the i−th player on input a. From the
three levels of succinctness in the representations introduced in [2] we consider
only two.

Strategic games in general form. A game is given by a tuple

Γ = 〈1n, A1, . . . , An,M, 1t〉.

It has n players, and for each player i, where 1 ≤ i ≤ n, their set of actions Ai

is given by listing all its elements. The description of their pay-off functions is
given by 〈M, 1t〉.
Strategic games in explicit form. A game is given by a tuple

Γ = 〈1n, A1, . . . , An, T 〉,

where T is a table such that ui(a) = T [a][i].

In Definition 1 a game Γ is defined in an abstract way using set theory. When
the computational aspects of Γ have to be studied, Γ has to be encoded. Here
we consider two encodings with different levels of succinctness, the general form
and the explicit form. We use the same symbol Γ to denote both, the abstract
game and the encoded version. Observe that in the explicit form, games are
described as it is done in elementary books, just giving explicitly the tables
of utility functions. In order to describe a game mapping, we consider the less
succinct approach.

Game mapping in explicit form. All is given explicitly, actions are given
listing all its elements and mappings are given by tables, then

ψ = 〈1n, A1, . . . , An, A
′
1, . . . , A

′
n, Tπ, Tϕ1 , . . . , Tϕn〉

where Tπ, Tϕ1, . . . , Tϕn are tables such that Tϕi [ai] = a′Tπ [i].

We have not considered the description of a mapping by Turing machines,

ψ = 〈1n, A1, . . . , An, A
′
1, . . . , A

′
n,Mπ,Mϕ1 , . . . ,Mϕn , 1

t〉

because in such a case we can construct an explicit coding of ψ with size bounded
by 2|ψ| in time |ψ|2.

3 Complexity Results for Strong Isomorphism

First we consider the IsIso and IsAuto problems and later on the Iso prob-
lem. Our coNP hardness results follow from reductions from the following coNP-
complete problem [7]:

564 J. Gabarró, A. Garćıa, and M. Serna

Validity problem(Validity): Given a boolean formula F decide whether F is
satisfiable by all truth assignments.

We also consider the following problems on boolean circuits. Recall that two
circuits C1(x1, . . . , xn) and C2(x1, . . . , xn) are isomorphic if there is a per-
mutation π of {1, . . . , n} such that, for any truth assignment x ∈ {0, 1}n,
C1(x) = C2(π(x)).

Boolean circuit isomorphism problem (CircuitIso): Given two boolean
circuits C1 and C2 decide whether C1 and C2 are isomorphic.

A related problem is based on the notion of congruence. A congruence between
two circuits on n variables, C1(x1, . . . , xn) and C2(x1, . . . , xn) is a mapping ψ =
(π, f1, . . . , fn), where π is a permutation of {1, . . . , n} and, for any 1 ≤ i ≤ n,
fi is a permutation on {0, 1} (either the identity or the negation function). As
in the case of game morphism, the image ψ(x) is obtained by permuting the
positions of the input bits, according to permutation π, and then applying to
any bit i the permutation fi.

Boolean circuit congruence problem (CircuitCong): Given two circuits
C1 and C2 decide whether C1 and C2 are congruent.

The CircuitIso problem has been studied by B. Borchert, D. Ranjan and
F. Stephan in [3], among many other results they show that CircuitIso and
CircuitCong are equivalent. It is known that CircuitIso ∈ Σp

2, but it cannot
be Σp

2-hard unless the polynomial hierarchy collapses [1].
Two graphs are isomorphic if there is a one-to-one correspondence between

their vertices and there is an edge between two vertices of one graph if and only
if there is an edge between the two corresponding vertices in the other graph.

Graph isomorphism (GI): Given two graphs, decide whether they are
isomorphic.

It is well known that GI is not expected to be NP-hard [9]. Let us start with
the complexity for IsIso problem in the case of strategic games.

Theorem 1. The IsIso and the IsAuto problems for strong morphisms are
coNP-complete when the games are given in general form. Both problems belong
to NC whenever the games are given in explicit form. The strong isomorphism
is given in both cases in explicit form.

Our next step is to provide upper bounds for the complexity of the Iso and the
Auto problems. Later on we show that the bounds are best possible for the Iso

problems.

Theorem 2. The Iso and the Auto problems for strong morphisms belong to
Σp

2 when the games are given in general form. Both problems belong to NP when
the games are given in explicit form.

We prove that Iso is equivalent to CircuitIso for games in general form. This is
done through a series of reductions transforming the game while preserving the
existence of strong isomorphism. First, we show how to construct a game in which
the set of actions for each player is {0, 1}, which we call a binary action game.

On the Complexity of Game Isomorphism 565

Second, we show how to construct from a binary action game another binary
action game in which the utility functions range is {0, 1}, which we call a binary
game. Finally, we show the equivalence with the Boolean circuit congruence. All
the transformations presented in the paper can be computed in polynomial time,
thus we avoid to mention this fact all through the paper. Let us start with the
first transformation.

Let Γ = (N, (Ai)i∈N , (ui)i∈N) be a game and let μΓ = min{ui(a)|a ∈ A, i ∈
N} be the smaller payoff obtained by any player, take μ < μΓ and call such
value μ a “penalty payoff”. Without loss of generality we assume that N =
{1, . . . , n} and that, for any i ∈ N , Ai = {1, . . . , ki} for suitable values. Given
Ai = {1, . . . , ki} we “binify” an action j ∈ Ai coding it with ki bits, de-
fined by binify(j) = 0j−110ki−j . Moreover we associate with Ai a block Bi of
ki players each one taking care of one bit. In this case we get k =

∑
i∈N ki

players partitioned into B1, . . . , Bn blocks. Given i ∈ Bj we say that i be-
longs to block j of players and write block(i) = j. The binify process can be
used in a strategy profile to clarify notation, given a = (a1, . . . , an), we write
binify(a) = (binify(a1), . . . , binify(an)). Often we look at binify(a) as a k tuple of
bits. For instance, given Γ with 3 players A1 = A3 = {1, 2} and A2 = {1, 2, 3}
we have binify(1, 2, 2) = (10, 010, 01) = (1, 0, 1, 0, 0, 1). Set A′ = {0, 1}k, as for
any a ∈ A it holds binify(a) ∈ A′, we can define good(A′) = {binify(a)|a ∈ A}
and bad(A′) = A′ \ good(A). When a′ ∈ good(A) we say that a′ is good, other-
wise is bad. Note that binify : A→ good(A′) is a bijection, therefore the inverse
function is also a bijection, for instance binify−1(1, 010, 01) = (1, 2, 2).

BinaryAct(Γ, μ) is defined as

BinaryAct(Γ, μ) = (N ′, (A′
i)i∈N′ , (u′

i)i∈N′)

where N ′ = {1, . . . , k} and, for any i ∈ N ′, A′
i = {0, 1} and thus the set of

action profiles is A′ = {0, 1}k. The utilities are defined by

u′
i(a

′) =

{
ublock(i)(binify−1(a′)) if a′ ∈ good(A′),

μ if a′ ∈ bad(A′).

Notice that, for a ∈ A, u′i(binify(a)) = ublock(i)(a), furthermore, all the players
in a given block have the same utility. Each strategy profile a′ in
BinaryAct(Γ, μ) can be factorized giving the actions taken by the k players
as a′ = (a′1, . . . , a

′
k) or grouping the actions according to teams B1, . . . , Bn as

a′ = (b1, . . . , bn) where bi is a strategy profile for Bi. The big gap in the utility
function is used to created a gap that separates the profiles in BinaryAct(Γ, μ)
that codify correctly a profile of Γ from those that do not.

Lemma 1. Let Γ1, Γ2 be two games given in general form and set t =
max{t1, t2}, ti for 1 ≤ i ≤ 2, is the time allowed to the utility tm of the game
Γi. There is a strong isomorphism between Γ1 and Γ2 iff there is a strong iso-
morphism between the games BinaryAct(Γ1, μ) and BinaryAct(Γ2, μ) where
μ = −2t.

566 J. Gabarró, A. Garćıa, and M. Serna

Let us now transform a binary actions game into a binary game. Given a game
Γ = (N, (Ai)i∈N , (ui)i∈N) in which Ai = {0, 1}, for any i ∈ N , and N =
{1, . . . , n}. Given positive values t and m such that, for any action profile a and
any player i, |ui(a)| ≤ t and m ≥ {n, t}. We set k = n + tn + m + 2.

Binary(Γ, t, m) is defined as

Binary(Γ, t,m) = (N ′, (A′
i)i∈N′ , (u′

i)i∈N′)

where N ′ = {1, . . . , k} and, for any i ∈ N ′, A′
i = {0, 1}.

Before defining the utilities we need some additional notation. The set
N ′ is partitioned into n + 2 consecutive intervals B0, . . . , Bn, Bn+1 so that
the interval B0 has exactly n players, for 1 ≤ i ≤ n, the block Bi has t
players, finally block Bi+1 has m + 2 players. Inside the blocks we use relative
coordinates to identify the players. In all the blocks coordinates start at 1
except for the last block that starts with 0. In this situation a strategy profile
a is usually factorized as a = x b1 . . . bn z where x = x1 . . . xn, bi = bi1 . . . bit

and z = z0 . . . zm+1. We define the utility function by properties of the strategy
profile, assume that a = x b1 . . . bn z is a strategy profile of Binary(Γ, t, m).

– In the case that, for some �, 0 ≤ � ≤ m+1, the last � bits of z are 1, all the
players except the last � get utility 0. The remaining players get utility 1.

– In the case that, for some j, 1 ≤ j ≤ t, the j-th bit of z is the unique 1
in z, all the players in blocks B1, . . . , Bn that do not occupy position j in
their block get utility 0, all the players in blocks B0 and Bn+1 get utility
1, all the remaining players get as utility their action.

– In the case that, the 0-th bit of z is the unique 1 in z, for any i, 1 ≤ i ≤ n,
player i and all the players in block Bi get utility 1 when ui(x) = bi. All
the players in block Bn+1 get utility 0.

– In the remaining cases all the players get utility 1.

Notice that the utilities for all the players are either 0 or 1.

Lemma 2. Let Γ1, Γ2 be two games given in general form, set t =
max{t1, t2, 3}, where ti is the time allowed to the utility tm of game Γi, and
m = max{t, n1, n2}, where ni is the number of players in game Γi. There is a
strong isomorphism between Γ1 and Γ2 iff there is a strong isomorphism between
Binary(Γ1, t,m) and Binary(Γ2, t,m).

Given a binary game Γ = (N, (Ai)i∈N , (ui)i∈N) with n players, such that for any
1 ≤ i ≤ n, utility ui has range {0, 1} and Ai = {0, 1}. We construct a circuit CΓ

on 4n+ 2 variables. Remind that, when ui(x) is computed by a Turing machine
in polynomial time, Ladner’s construction [15] gives us a polynomial size circuit.

Circuit CΓ . The variables in CΓ are grouped in four blocks, the X-block con-
tains the first n-variables, the Y -block is formed by the variables in positions
n + 1 to 2n, the C-block contain the following n + 2 variables, and the D-
block the remaining variables. For sake of readability we split the set of vari-
ables into four parts a = (x, y, c, d) where x = (x1, . . . , xn), y = (y1, . . . , yn),
c = (c1, . . . cn+2), and d = (d1, . . . , dn).

On the Complexity of Game Isomorphism 567

We define CΓ with the help of n + 2 following circuits.

C1(x, y, d) = [(x1 = d1) ∧ · · · ∧ (xn = dn) ∧ (u1(x) = y1) ∧ · · · ∧ (un(x) = yn)]

C2(y) = [y1 ∨ · · · ∨ yn]

Ci+2(xi, yi, di) = [yi ∧ (xi = di)] for 1 ≤ i ≤ n.

Finally

CΓ (x, y, c, d) =

{
0 if

∑
1≤i≤n+2 ci = 0 or

∑
1≤i≤n+2 ci > 1

Cj if
∑

1≤i≤n+2 ci = 1 and cj = 1

The previous construction is used to reduce the Iso problem to the Circuit-

Cong problem.

Lemma 3. Let Γ and Γ ′ be two games in general form with at least two players
each, boolean utilities and actions {0, 1}. There is a congruence isomorphism
between CΓ and CΓ ′ iff there is a strong isomorphism between Γ and Γ ′.

Proving NP-completeness in the case of explicit form appears to be a difficult
task. Observe, that a game in explicit form can be seen as a graph with edge
labels and weights. As the total number of different weights appearing in both
games is polynomial the problem can be reduced to the Graph isomorphism (GI)
problem [17]. Therefore the NP-hardness of Iso will imply the NP-hardness of
GI. Our proof provides a reduction that shows that the opposite direction is
true. It is easy to show that CircuitCong is reducible to Iso, just consider a
game with as many players as variables in which the utilities for all the players
are identical and coincide with the evaluation of the circuit. Taking into account
that CircuitCong is equivalent to CircuitIso and putting all together we
have:

Theorem 3. The Iso problem for strong isomorphism and games given in gen-
eral form is equivalent to the circuit isomorphism problem. In the case of games
given in extensive form the problem is equivalent to graph isomorphism.

4 Weak and Local Isomorphism

There are several ways to relax the notion of strong isomorphism while main-
taining the structure of Nash equilibria. For instance, Harsanyi and Selten [8]
substitute uπ(i)(ψ(a)) = ui(a) for uπ(i)(ψ(a)) = αiui(a) + βi. In order to gener-
alize this approach we consider, following [12], games in which utility functions
are replaced by preference relations (9i)i∈N . All the preference relations must
be total, that is, given any pair a, a′ holds a 9i a

′ or a′ 9i a. In this case, a game
is a tuple Γ = (N, (Ai)i∈N , (9i)i∈N). We note strict preference as usual, a ≺i a

′

iff a 9i a
′ but not a′ 9i a. We note indifference by a′ ∼i a

′, as usual indifference
occurs when a 9i a

′ and a′ 9i a holds. The definition of isomorphism can be
adapted to respect preference relations instead of utility functions.

568 J. Gabarró, A. Garćıa, and M. Serna

Definition 4. A weak isomorphism ψ : Γ → Γ ′ is a mapping ψ = (π, (ϕi)i∈N)
such that any triple a, a′ and i verifies:

Preserve(a, a′, ψ, i) ≡
(a ≺i a

′ ⇒ ψ(a) ≺π(i) ψ(a′)) ∨ (a ∼i a
′ ⇒ ψ(a) ∼π(i) ψ(a′)).

Preference relations can be defined using utility functions, a ≺i a′ iff ui(a) <
ui(a′) and a ∼i a

′ iff ui(a) = ui(a′).
Weak isomorphisms preserves preferences for any pair of strategy profiles and

therefore maintains the structure of pure Nash equilibria. However, if we are
interested to maintain this structure through isomorphisms we need to consider
only preferences a 9i a′ such that a−i = a′−i. We call these preferences local
preferences.

Definition 5. A local isomorphism ψ : Γ → Γ ′ is a mapping ψ such that for
any triple a, a′ and i such that a−i = a′−i verifies Preserve(a, a′, ψ, i).

It is easy to see that weak and local isomorphisms preserve pure Nash equilibria.
In order to describe games in general form with total or local preferences we

consider the following tm

M�(i, a, a′i) =

⎧
⎪⎨

⎪⎩

i if a ∼i (a−i, a
′
i) (indifference case)

b if a ≺i (a−i, a
′
i) (better case)

w if a :i (a−i, a
′
i) (worse case)

Given Γ = 〈1n, A1, . . . , An,M, 1t〉 such that M(i, a) = ui(a) we can easily build
Γ = 〈1n, A1, . . . , An,M�, 1t〉 in polynomial time. In order to describe games in
explicit form we consider a tuple Γ = 〈1n, A1, . . . , An, L≺, L∼〉 where L≺ and
and L∼ are two adjacency lists. The list L≺[a][i] = (a′i1 , a

′
i2 , . . . , a

′
i�

) stores all
the actions aij ∈ Ai such that a ≺i (a−i, a

′
ij

). and L∼ store the elements aij
such that a ∼i (a−i, a

′
ij

). Replacing strict by weak or local isomorphisms does
not modify complexity bounds.

Theorem 4. In the case of weak or local isomorphisms, the IsIso is coNP-
complete, for games given in general form, and it belongs to NC when the games
are given in explicit form. The Iso problem belongs to Σp

2, when the games are
given in general form and it belongs to NP when the games are given in explicit
form.

In the case of Iso we can also prove

Theorem 5. The Iso problem for weak and local isomorphism and games given
in general form is equivalent to the circuit isomorphism problem. In the case of
games given in explicit form the problem is equivalent to graph isomorphism.

On the Complexity of Game Isomorphism 569

5 Small Case Study

An interesting problem is to have a classification of strategic games with the
same number of players according to the structure of the pure Nash equilibria.
This requires the development of acceptable definitions of equivalence between
games. A first naive approach is to consider games as equivalent if they have
the same number of Nash equilibria. This approach has been undertaken via
probabilistic analysis by I. Y. Powers [14]. She studied the limit distributions
of the number of pure strategies Nash equilibria for n players strategic games.
Further results in [10].

Observe that for 2-players each one with m actions we get a bimatrix with m2

positions. As numbers {0, . . . ,m2 − 1} are enough to encode preferences, there
are m4m2

different bimatrix games. In the particular case of 2 players and 2
actions the games can be grouped, according to the number of Nash equilibria,
as follows:

Number of PNE 0 1 2 3 4 total
Number of Games 2592 29376 27936 5376 256 65536

The above table has been obtained by exhaustive computation. For bigger m
this analysis becomes quickly intractable.

This simple approach has limitations because games with different structure
can have the same number of Nash equilibria. Therefore there is a need to provide
a better answer to the question: When are two games the same? The obvious
mathematical setting to deal with equivalence is through isomorphisms. When
games are defined with preferences, we consider weak isomorphisms. Two games
are equivalent iff they are weakly isomorphic and we partition the set of 65536
games into equivalence classes.

In the case of games with two players and two actions, the set of strategy
profiles is {00, 01, 10, 11}. This set can be represented as the set of nodes of a
square where edges represent the preferences. We note, for instance 00 ↔ 01 to
mean 00 ∼2 01 and 00 → 01 iff 00 ≺2 01 (when dealing with local preferences, the

� �

�
�

(0− PNE)

�� �

�

� ��

�

�� �

��
�

� �

��

(1− PNE)

�

��

�
�

��

��
�

�

�
��

�

� �

��

�

�

�� �

��
�

��

�
��

�

�

�

�

� �

(2− PNE)

�

��

�

�

� �
�

�

�

�

��

(3− PNE)

�

� ��

��
�

�
(4− PNE)

Fig. 2. Different game classes

570 J. Gabarró, A. Garćıa, and M. Serna

subindex 2 can be avoided). Therefore, each class of equivalence is represented
by a square fulfilling some conditions about preferences. In figure 2 we provide
all the equivalence classes, giving information about the possible structure of the
Nash equilibria. In fact, as one can see, the number is much smaller than 65536.

Number of PNE 0 1 2 3 4
Number of classes 1 4 7 2 1

Therefore we have more concise information about the structure of the Nash
equilibria. The graphs appearing in Figure 2 are close to the Nash dynamics
graphs defined in [5], observe that here we are considering double connections
between equally likely profiles.

6 Comments and Open Questions

The equivalence betwen the Iso problem for games in general form and boolean
circuit equivalence, has been obtained using the simulation of Turing machines
by circuits. For families of games whose utility functions are defined by boolean
formulas, the Iso problem turns out to be equivalent to boolean formula equiva-
lence. Recall that boolean formula equivalence is not believed to be Σp

2-hard [1],
and that it is still open whether the formula isomorphism is equivalent to circuit
isomorphism.

We are working towards extending the definitions of game isomorphism to
extensive games avoiding the use of strategic forms. An interesting open question
is defining game isomorphisms for games without perfect information.

References

1. Agrawal, M., Thierauf, T.: The formula isomorphism problem. SIAM Journal on
Computing 30(3) (2000)

2. Àlvarez, C., Gabarro, J., Serna, M.: Pure Nash equilibrium in strategic games with
a large number of actions. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005.
LNCS, vol. 3618, pp. 95–106. Springer, Heidelberg (2005)

3. Borchet, B., Ranjan, D., Stephan, F.: On the computational complexity of some
classical equivalence relations on boolean functions. Theory Comput. Systems 31,
679–693 (1998)

4. de Bruin, B.: Game transformations and game equivalence. Technical Report X-
1999-01, IIL Technical Note (1999)

5. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equi-
libria. In: STOC, pp. 604–612 (2004)

6. Gabarró, J., Garćıa, A., Serna, M.: On the complexity of game isomorphism. Tech-
nical Report LSI TR-07-19-R, Technical University of Catalunya (2007)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-completeness. W.H.Freeman and Co. (1979)

8. Harsanyi, J., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT
Press, Cambridge, MA (1988)

On the Complexity of Game Isomorphism 571

9. Kobler, J., Schoning, U., Torán, J.: The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhauser (1993)

10. McLennan, A., Berg, J.: Asymptotic expected number of Nash equilibria of two-
player normal form games. Games and Economic Behavior 51, 264–295 (2005)

11. Nash, J.: Non-cooperative games. In: Classics in Game Theory, pp. 14–26 (1997)
12. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
13. Peleg, B., Rosenmüller, J., Sudhölder, P.: The canonical extensive form of a game

form: Part I symmetries. In: Current Trends in Economics, Advancement of Studies
in Economics, pp. 367–387 (1999)

14. Powers, I.: Limiting distribution of the number of pure strategy Nash equilibria in
n-person games. International Journal of Game Theory 19(3), 277–286 (1990)

15. Greenlaw, J.J.R., Ruzzo, W.: Limits to Parallel Computation. Oxford (1995)
16. Sudhölter, P., Rosenmüller, J., Peleg, B.: The canonical extensive form of a game

form. Part II. Representation. Journal of Mathematical Economics 33(3), 299–338
(2000)

17. Torán, J.: Personal Communication

Hardness Results for Tournament Isomorphism

and Automorphism

Fabian Wagner�

Institut für Theoretische Informatik,
Universität Ulm, 89073 Ulm, Germany

fabian.wagner@uni-ulm.de

Abstract. A tournament is a graph in which each pair of distinct ver-
tices is connected by exactly one directed edge. Tournaments are an
important graph class, for which isomorphism testing seems to be eas-
ier to compute than for the isomorphism problem of general graphs.
We show that tournament isomorphism and tournament automorphism
is hard under DLOGTIME uniform AC

0 many-one reductions for the
complexity classes NL, C=L, PL (probabilistic logarithmic space), for
logarithmic space modular counting classes ModkL with odd k ≥ 3 and
for DET, the class of problems, NC

1 reducible to the determinant. These
lower bounds have been proven for graph isomorphism, see [21].

1 Introduction

The graph isomorphism problem (GI) consists in determining whether there is a
bijection between the vertices of two graphs, preserving the edge-relations. Until
today, it is open whether GI is contained in P or complete for NP. A proof of the
NP-completeness for GI would cause a collapse of the polynomial time hierarchy
to its second level, see [7],[20]. Concerning lower bounds, DET ≤AC

0

m GI [21].
For many graph classes, polynomial time algorithms for isomorphism testing

are known, e.g. for graphs of bounded degree [16], or planar graphs [13]. Even
fast parallel algorithms for isomorphism testing have been developed, e.g. for
planar graphs [18], trees [15], [9] or graphs with bounded color-class size [17].

A tournament is a directed graph with exactly one arc between every pair of
distinct vertices. Tournaments comprise a large and important class of directed
graphs and can be found in many applications, see e.g. [12]. The tournament
isomorphism problem (TI) is GI restricted to tournaments. The best known al-
gorithm for TI takes nlog(n) time [6] and for GI takes exp(

√
cn log(n)) time

(Luks, Zemlyachenko, cf. [6]). Arvind et al. [1] reduced TI onto Mod2GA which
is an intermediate problem between GA and GI and contains the class of graphs
with an even number of automorphisms. Thus TI seems to be an easier problem
than GI. Since the relation between GI and TI is not clear, we contribute to ana-
lyze the complexity status of tournament isomorphism. We show that TI and the
tournament automorphism problem (TA) are hard for NC

1, L, NL, ModkL with

� Supported by DFG grant TO 200/2-1.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 572–583, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hardness Results for Tournament Isomorphism and Automorphism 573

k ≥ 3 odd integer, #L and DET under AC
0 many-one reductions. For proving

that GI is hard for ModkL , we need a graph gadget with subgraphs, having
orbits of size k to encode an integer in Zk. Since the order of automorphism
groups of tournaments always are odd [14], we cannot directly encode an integer
in Zk with even k ≥ 2. In order to encode Boolean values, we need another graph
gadget. We encode value 0 as the identical mapping and value 1 as the switching
of two subgraphs. which again leads to orbits of even size.

Since TA ≤AC
0

m TI (see Corollary 1, TA is prefix-TA without prefix) and the
converse direction is unknown, proving DET ≤AC

0

m TA is a stronger result.
Due to space reasons some proofs are missing and would be included in the

final version. We refer to the authors home page for the complete proofs.
The layout of this paper is as follows: In Section 2 we denote complexity

classes and graph isomorphism problems. Section 3 contains hardness results for
TI, that is DET ≤AC

0

m TI. In Section 4, we prove these results for TA.

2 Preliminaries

Complexity Classes. We assume familiarity with basic notions of complexity
theory such as can be found in standard textbooks. NL is the class of languages
accepted by nondeterministic Turing machines using a work tape bounded by
logarithmic space. #L [4] is the class of functions f : Σ∗ → N that counts the
number of accepting paths of a NL machine on a input. Based on #L we define:

PL = {A : ∃p ∈ Poly, f ∈# L , ∀x ∈ Σ∗ x ∈ A⇔ f(x) ≥ 2p(|x|)} [11] [19]
C=L = {A : ∃p ∈ Poly, f ∈# L , ∀x ∈ Σ∗ x ∈ A⇔ f(x) = 2p(|x|)} [3]
ModkL = {A : ∃f ∈# L , ∀x ∈ Σ∗ x ∈ A⇔ f(x) ≡ 1 mod k} [8]

Modk circuits (k ≥ 2) are circuits with input variables over Zk and gates
computing addition in Zk. The evaluation problem for such circuits (given fixed
values for the inputs, testing if the output is 1) is complete for ModkL under
AC

0 many-one reductions.
DET (also denoted NC

1(#L)) is the class of functions NC
1 Turing reducible

to the determinant. That is the class of problems, solvable by NC
1 circuits with

additional oracle gates for computing the determinant of an integer matrix.
The known relations among the considered classes are: ModkL ⊆ DET and

NL ⊆ C=L ⊆ PL ⊆ DET. Therefore, the hardness of GI for DET implies
hardness with respect to the other classes. We denote AC

0 many-one reductions
by ≤AC

0

m and logspace Turing reductions by ≤L
T .

Graph Isomorphism Problems. Let G = (V,E) be a graph with a set of vertices
V = V (G) and edges E = E(G). A directed edge or arc is denoted (v1, v2) and
an undirected edge {v1, v2}. G[X] is a subgraph of G induced on vertex set X .
Let H be a subgraph of G then G\H = G[V (G)\V (H)]. Let E′ ⊆ E(G) then
G\E′ = (V (G), E(G)\E′).

For shorter notations we write [k, n] = {k, . . . , n} for integers k < n and
[n] if k = 1. Let ⊕ denote the modulo addition in Zn. The set Sym(V) is the
symmetric group over a set V and Sn = Sym([n]).

574 F. Wagner

An automorphism of graph G is a permutation φ : V (G) #→ V (G) preserving
adjacency: (u, v) ∈ E(G) ⇔ (φ(u), φ(v)) ∈ E(G). The automorphisms except
the identity are called nontrivial. A rigid graph contains no nontrivial automor-
phisms. The graph automorphism problem (GA) decides, whether a graph is rigid
or not. The automorphism group Aut(G) is the set of automorphisms of G.

An isomorphism between graphs G and H is a bijective mapping of vertices in
G onto vertices in H that preserves adjacency. Both graphs are isomorphic if such
an isomorphism exists. The graph isomorphism problem (GI) is the problem of
deciding, whether two given graphs G,H are isomorphic, write G ∼= H . Further,
define the tuple of graph pairs PGI = { ((G,H)(I, J)) | G ∼= H ⇔ I �∼= J } with
the promise that exactly one pair is isomorphic [21].

Let H be a subgraph of G. Define AutG(H) ⊆ Aut(H) as the set of automor-
phisms, which can be extended to an automorphism in Aut(G). An automor-
phism φ ∈ Sym(V) acts cyclically on a vertex set V = {v0, . . . , vn−1}, if there
exists a ∈ [0, n− 1] such that φ(vi) = vi⊕a for all i ∈ [0, n− 1]. We further say
φ ∈ Sym(V (G)) acts cyclically on subgraphs G[V0], . . . , G[Vk−1], if there exists
a ∈ [0, k − 1] such that φ(v) ∈ Vi⊕a for all v ∈ Vi and i ∈ [0, k − 1].

Let S1, . . . , Sk ⊆ V (G) be a set of distinct vertices of graph G. The set of
automorphisms, mapping for all i ∈ [k] vertices in Si onto vertices in Si in any
order, are called setwise stabilizer of S1, . . . , Sk. G[S1,...,Sk] denotes graph G with
S1, . . . , Sk setwise stabilized in automorphism group of G.

Let k be a fixed integer. A coloring of a graph G is a function f : V (G) #→ [k].
For any isomorphism between colored graphs, the color relations have to be
preserved. The decision problem is called the isomorphism problem for colored
graphs (color-GI). Observe that color-GI ≤AC

0

m GI [14].
Let {x1, . . . , xk}, {y1, . . . , yk} ⊆ V (G) be vertex sets of graph G. The prefix

automorphism problem (prefix-GA) as denoted in [14] is to find an automorphism
φ ∈ Aut(G) such that φ(xi) = yi ∀i ∈ [k]. Observe that prefix-GA ≤AC

0

m GI [21].
If the vertex sets are given as mapping φ with φ(xi) = yi, i ∈ [k] then (G,φ) is
an instance for prefix-GA.

A tournament is a directed graph with one arc between each pair of distinct
vertices. A cyclic tournament T is a tournament on n vertices x0, . . . , xn−1 such
that (xi, xi⊕j) ∈ E(T) for all i ∈ [0, n − 1], j ∈ [1, 5n2 6]. The tournament iso-
morphism problem (TI) is the same as GI, if the input-graphs are tournaments.
Then we also write color-TI, TA, prefix-TA instead of color-GI, GA, prefix-GA.
Arvind et.al. [2] showed that color-TI is polynomial-time many-one reducible
to TI without coloring. By verifying the proof, we observe that it is an AC

0

many-one reduction. Adapting the proof of prefix-GA ≤AC
0

m GI [21], we obtain
the following chain of reductions. Thus we prove lower bounds for prefix-TA.

Corollary 1. prefix-TA ≤AC
0

m color-TI ≤AC
0

m TI.

In some reductions, we construct graph gadgets G(C) for simulating the evalu-
ation of circuits C. By G(Ci) we denote the simulation of a gate Ci of circuit C
with index i. We also denote this way vertex sets or vertices, e.g. v(C) ∈ U(C) ⊆
V (G(C)). If the context is clear then (C) will be omitted.

Hardness Results for Tournament Isomorphism and Automorphism 575

3 Hardness Results for Tournament Isomorphism

In this section we show that TI is hard for some complexity classes under AC
0

many-one reductions.

3.1 Hardness Results of TI for Modular Counting Classes

GI is hard for the logarithmic space modular counting classes ModkL for all
k ≥ 2 [21]. In the proof, a graph gadget is defined for encoding input values over
Zk and simulating a circuit gate for modulo addition, see Definition 3.1 in [21].
Since the circuit value problem restricted to modulo addition gates over Zk for
k ≥ 2 is complete for ModkL and with Corollary 1, we prove that TI is hard for
ModkL with odd k ≥ 3. Lemma 1 describes automorphism properties of this
graph gadget.

Lemma 1. [21] Fix k ≥ 2. Then for any a, b ∈ [0, k − 1] there is a unique
automorphism φab ∈ Aut(Gk) with φab(xi) = xa⊕i and φab(yi) = yb⊕i for
i ∈ [0, k − 1] and with φab(ui) = ua⊕i,b⊕j and φab(zi) = za⊕b⊕i.

With this graph gadget, we construct a graph G(C), simulating a circuit C of
wired modulo addition gadgets.

Definition 1. [21] Let C be a circuit of m modulo addition gates C1, . . . , Cm

and k ≥ 2. Define G(C) with

V (G(C)) =
⋃

p∈[m] V (Gk(Cp)),
E(G(C)) =

⋃
p∈[m] E(Gk(Cp)) ∪

⋃
p,q∈[m],p<q Ep,q with

Ep,q =

⎧
⎨

⎩

{zi(Cp), xi(Cq)} if Cp and left input of Cq are wired,
{zi(Cp), yi(Cq)} if Cp and right input of Cq are wired,
∅ if Cp, Cq are not wired directly.

Furthermore, color vertices in U(Cj), X(Cj), Y (Cj), Z(Cj) with colors (u, j),
(x, j), (y, j), (z, j) in this order for all j ∈ [m].

The reduction of this decision problem for circuit C to prefix-GA is as follows:
compute a graph G(C) and define prefixes for input- and output values. Thus
ModkL ≤AC

0

m GI. We will show, how far hardness for ModkL also holds for TI.

Theorem 1. ModkL ≤AC
0

m TI with k ≥ 3 an odd integer.

The main proof idea is to transform the graph gadgets Gk and the circuit G(C)
(containing graph gadgets Gk as subgraphs) into tournaments. For this task, we
first describe how graphs can be modified without changing the automorphism
group.

Lemma 2. Let H be an induced subgraph of a graph G with Aut(G) setwise
stabilizing vertices in H. Let H ′ be a graph with V (H ′) = V (H) and let G′

be G after replacing the induced subgraph H by subgraph H ′, setwise stabilizing
vertices in H ′. If AutG(H) ⊆ Aut(H ′) ⊆ Aut(H) then Aut(G) = Aut(G′).

576 F. Wagner

The next lemma shows, how to connect two subgraphs with arcs, such that each
vertex in the first graph is connected to every vertex in the second graph.

Lemma 3. Let G[X], G[Y] be vertex-disjoint and setwise stabilized subgraphs of
G. Suppose that in G all the edges with one endpoint in X and one endpoint in Y
point from X to Y . Then G can be transformed with an AC

0 computable function
into a graph G′ over the same vertex set such that Aut(G′

[X,Y]) = Aut(G[X,Y]).
If G[X], G[Y] are tournaments then G′ is a tournament.

With Lemmas 2 and 3, we can now transform graph gadgets into tournaments
and prove that they obey the same automorphism properties as the modulo ad-
dition graph gadget. Now we define a tournament with the same automorphism
properties as Gk.

Definition 2. Fix k ≥ 3 odd integer. The tournament modulo addition graph
gadget T k is defined by vertex set V (T k) = { xa, ya, za, ua,b | a, b ∈ [0, k − 1] }.
Let U,X, Y, Z ⊆ V (T k) contain vertices denoted by indexed lower case letters
each. Let Ua = { ua,b | b ∈ [0, k − 1] } for any a ∈ [0, k − 1]. E(T k) unifies

1. { (xa, xa⊕i), (ya, ya⊕i), (za, za⊕i) | a ∈ [0, k − 1], i ∈ [1, 5k26] },
2. { (ua,b, ua,b⊕i) | a, b,∈ [0, k − 1], i ∈ [1, 5k2 6] },
3. { (ua,b, ua⊕i,b⊕b′) | a, b, b′ ∈ [0, k − 1], i ∈ [1, 5k26] },
4. { (xa, ua,b), (ui,b, xa) | a, b ∈ [0, k − 1], i ∈ [0, k − 1]\{a} },
5. { (yb, ua,b), (ua,i, yb) | a, b ∈ [0, k − 1], i ∈ [0, k − 1]\{b} },
6. { (ua,b, za⊕b), (zi, ua,b) | a, b ∈ [0, k − 1], i ∈ [0, k − 1]\{a⊕ b} },
7. { (xa, yb), (xa, zb), (ya, zb) | a, b ∈ [0, k − 1] }.

Remark that V (T k) = V (Gk). In item 1 we define cyclic tournaments for
induced subgraphs on vertex sets X , Y and Z. In item 2 we define cyclic tour-
naments T k[Ua] induced on vertices Ua = { ua,b | b ∈ [0, k − 1] } for any fixed

YX

U

x1 y1

z1

y0

z0

x2 y2

u0,0 u0,1 u0,2 u1,0

x0

u1,2 u2,0 u2,1 u2,2

Z

z2

u1,1

Fig. 1. Sketch of tournament modulo addition graph gadget T 3

Hardness Results for Tournament Isomorphism and Automorphism 577

a ∈ [0, k − 1]. In item 3 we describe the connection between subgraphs T k[Ua],
such that automorphisms in Aut(T k) act cyclically on subgraphs T k[Ua] for all
a ∈ [0, k−1]. Items 4 to 7 describe complete bipartite edge sets among U,X, Y, Z.
Figure 1 shows T 3 and contains edge sets of items 4 to 7 partially.

Lemma 4. There is an AC
0 computable function that transforms Gk with odd

k ≥ 3 into the tournament modulo addition graph gadget T k containing unique
automorphisms as described in Lemma 1.

Proof . In Lemma 1 the unique automorphisms act cyclically on vertex sets
Gk[X],Gk[Y] and Gk[Z]. First, regard Gk[X]; Aut(Gk[X]) = Sym(Gk[X]) and
AutGk(Gk[X]) is generated by permutation (x0 . . . xk−1).

Clearly, Aut(T k[X]) ⊆ Aut(Gk[X]) and because of T k[X] containing cyclic
automorphisms, AutGk(Gk[X]) ⊆ Aut(T k[X]). Apply Lemma 2 and replace
Gk[X] by T k[X] in Gk, without changing the automorphism group. The same
holds for Gk[Y] and Gk[Z]. Second, regard Gk[U]. Aut(Gk[U]) = Sym(Gk[U])
and AutGk(Gk[U]) is generated by φ, ψ, which are defined by the relation:

φ(ui,j) → ui,j⊕1 and ψ(ui,j) → ui⊕1,j for all i, j ∈ [0, k − 1].

It follows that AutGk(Gk[U]) ⊆ Aut(T k[U]). Apply Lemma 2 and replace Gk[U]
by T k[U] in Gk, without changing the automorphism group. Third, the edge
sets of item 4 to item 7 in definition of E(T k) can be described as exchanging
undirected edges between stabilized vertex sets X,Y, Z, U by arcs. By Lemma
3, this also keeps the automorphism group unchanged. Thus T k is the union of
all these modifications on Gk which can be computed in AC

0 . �
With Lemma 4 we can prove that the replacement of gadgets Gk in G(C) by
tournament gadgets T k does not change the automorphism group of G(C). With
Lemma 5, we complete the proof of Theorem 1.

Lemma 5. Let C be a circuit of modulo addition gates in Zk, with odd k ≥ 3
and output value s ∈ [0, k − 1]. Construct under AC

0 many-one reductions a
tournament T (C) containing nontrivial prefix automorphisms,iff C outputs s.

Transform G(C) (of Definition 1) into a tournament T (C), such that Aut(G(C))
= Aut(T (C)) and T (C) contains a nontrivial prefix automorphism, iff G(C) does.
Therefore, we apply Lemmas 2 and 4.

3.2 Hardness Results of TI for NL, #L , C=L and PL

Now we introduce graph gadgets for simulation of AND- and OR-gates in cir-
cuits. We transform them into tournament gadgets, to get the same hardness
results for TI which hold for GI. A NC

1 circuit can be simulated by a bal-
anced DLOGTIME uniform family of circuits with fan-out 1, logarithmic depth,
polynomial size and alternating layers of and-gates and or-gates [5].

Definition 3. Let ((G∧, H∧)(I∧, J∧)) ∈ PGI be the graph tuple for simula-
tion of conjunction and ((G∨, H∨)(I∨, J∨)) ∈ PGI of disjunction, containing
((G0, H0)(I0, J0)), ((G1, H1)(I1, J1)) ∈ PGI as in proof of Theorem 4.3 in [21].

578 F. Wagner

The graph tuples for conjunction have the following properties: G∧ ∼= H∧ iff
G0
∼= H0 and G1

∼= H1; I∧ ∼= J∧ iff G0 �∼= H0 or G1 �∼= H1 (in this case I0 ∼= J0

or I1 ∼= J1). Similarly, the graph tuples for disjunction: exchange ∧ with ∨, also
exchange ’and’ with ’or’ and vice versa. For clear notation, we will apply prefixes
e.g. PGI-G∧, PGI-G∨. If the context is clear, we omit these prefixes. Now we
transform PGI-tuples into tuples of tournaments.

Lemma 6. There is an AC
0 computable function for translation of graph gad-

gets PGI-G∨ and PGI-H∨ into tournament graph gadgets PTI-G∨, PTI-H∨ (see
Definition 4) having the same isomorphism properties as in Definition 3.

Definition 4. A PTI-graph tuple is a tuple of rigid tournaments ((G,H), (I, J))
with G ∼= H, iff I �∼= J . Let PTI be the set of all such tuples. Define for con-
junction ((G∧, H∧)(I∧, J∧)) ∈ PTI (write e.g. PTI-G∧) and for disjunction
((G∨, H∨)(I∨, J∨)) ∈ PTI (write e.g. PTI-G∨) as follows:

First, PTI-G∧ contains tournaments G0, G1 and a set of arcs, pointing from
every vertex in G0 to every vertex in G1. Replace G0, G1 in PTI-G∧ by H0, H1

for obtaining PTI-H∧, by I0, I1 for PTI-I∨ and by J0, J1 for PTI-J∨.
Second, let i ∈ [0, 1] and j ∈ [0, 2]. Let X be a graph as in Figure 2. PTI-G∨

contains subgraphs X,G0, G
′
0, G1, G

′
1, H0 and H1 with G′

0, G
′
1 copies of G0, G1.

Let E(PTI-G∨) = E1 ∪ . . . ∪E4. E1 unifies edges of all subgraphs. E2 contains
edges (xi,0, v) for all v ∈ Gi (call Gi associated to xi,0), and similar edge sets
with xi,1 associated to G′

i and xi,2 to Hi. E3 contains the following arcs: If
(x, x′) ∈ E(X) then connect every vertex of the subgraph associated to x with
arcs, pointing to every vertex of the subgraph associated to x′. E4 contains (u, v)
for all u ∈ V (PTI-G∨ \X), v ∈ V (X), iff (v, u) /∈ E2. Now construct PTI-
H∨ with minor changes. Associate x1,1 with H1 and x1,2 with G′

1. The rest of
the construction is the same. Now replace subgraphs G0, G1, H0, H1 in PTI-G∨
(and PTI-H∨) by I0, I1, J0, J1 in this order and obtain PTI-I∧ (and PTI-J∧).

x11 x12

x02x01x00

x10

G0 G′
0 H0 G0 G′

0 H0

G1 H1 G1 H1 G′
1G′

1

X PTI-G∨ \X PTI-H∨ \X

Fig. 2. Construction of tournaments simulating ∧ and ∨ gates

Lemma 7. There is an AC
0 computable function, such that any of the PGI-

tuples simulating and-gates and or-gates can be transformed into PTI-tuples with
the same isomorphism properties.

Hardness Results for Tournament Isomorphism and Automorphism 579

With all the graph gadgets (Gk, PGI-G∧, PGI-G∨, . . .) as defined so far, Torán
proved that GI is hard for NL,#L , C=L and PL under AC

0 many-one reductions
[21]. We prove that the same lower bounds hold for TI.

Theorem 2. Tournament isomorphism is hard for NL, #L , C=L and PL un-
der AC

0 many-one reductions.

Proof . For proving all the hardness bounds, graph gadgets are needed as de-
scribed above. Regard Theorems 4.1, 4.4 and Corollaries 4.5, 4.6 in [21] for
details. First, ModkL circuits are needed to compute the result of a#L function
f(x) mod k. These gadgets encode f(x) mod k for a set of r different primes
k ∈ { k1, . . . , kr | 3 ≤ k1 < · · · < kr } (in Chinese remainder representation).
The results are inputs to a NC

1 -circuit, which compute bits of f(x). Since
tournament modulo addition gadgets for even k are not defined, the prime 2
cannot be chosen. In every step, the graph gadgets serve as subgraphs in new
PGI-tuples. Applying Lemma 5 and 7, the graph gadgets can be transformed
into tournaments under AC

0 many-one reductions. �

3.3 Hardness Results of TI for DET

Observe that DET ≤AC
0

m GI (Theorem 4.9 in [21]) and that the complexity
class DET coincides with NC

1(#L) . We already described, how NC
1 -circuits

and #L -functions can be reduced to graph gadgets. For implementing oracle
questions, with another graph gadget every#L function f can be transformed in
AC

0 into a sequence of PGI-tuples, encoding the bits of f(x). The input x ∈ Σn

is also encoded as PGI-tuples. For details see proof of Lemma 4.7 in [21].

Definition 5. [21] The oracle graph gadget Gadk contains subgraphs Ga, H
h
a ,

Iia, J
i,j
a with h ∈ [1, k − 1], i, j ∈ [0, k − 1], which are copies of graphs in

((Ga, Ha)(Ia, Ja)) ∈ PGI, encoding bit xa of f(x) mod k. Let W = {w0, . . . ,
wk−1}, Z = {z0, . . . , zk−1} ⊆ V (Gadk). Henceforth, for simplifying notations,
let W 0 = Ga and Wh = Hh

a . We also denote Z[i, j] = J i,j
a for j �= i and

Z[i, i] = Iia for i, j ∈ [0, k − 1]. Let Zi =
⋃

j∈[0,k−1] Z[i, j]. We now describe the
edge set E(Gadk) as the union of the following edge sets

1. E(Ga), E(Hh
a), E(Iia), E(J i,j

a),
2. { {u, v} | u = zi, v ∈ Zi or u ∈ W i, v = wi },
3. { {u, v} | u ∈ Z[i, j], v ∈W j },
4. { (u, v) | u = wi, v = wi⊕1 or u = zi, v = zi⊕1 }.

For properties of Gadk see Lemma 4.8 in [21]. Observe that any automorphism
of Gadk acts cyclically on W,Z. Therefore, we can introduce arcs as in item 4,
to restrict the automorphism group of Gadk and for simplifying proofs.

We need all graph gadgets described so far to prove that GI is hard for DET.
We want to show the same result for TI.

Theorem 3. DET ≤AC
0

m TI.

580 F. Wagner

More precisely, we show hardness of TI for NC
1(#L) . Oracle questions will be

implemented by using oracle graph gadgets like Gadk. We transform Gadk into
a tournament and consider its automorphism properties.

Definition 6. Let k ≥ 3 be an odd integer and i, j ∈ [0, k − 1]. The oracle
tournament gadget TGadk has vertex set V (TGadk) = V (Gadk) and edge set
E(TGadk) as the union of the following edge sets (see also Figure 3)

1. E(Gadk) but write ’(u,v)’ for items 2, 3 in Definition 5 of E(Gadk),
2. E(W) ∪E(Z) = { (wi, wi⊕h), (zi, zi⊕h) | h ∈ [1, 5k2 6] },
3. { (u, v) | u ∈W i, v ∈W j, iff (wi, wj) ∈ E(W) },
4. { (u, v) | u ∈ Zi, v ∈ Zj, iff (zi, zj) ∈ E(Z) },
5. { (u, v) | u ∈ Z[i, j], v ∈ Z[i, j ⊕ h] with h ∈ [1, 5k2 6] },
6. { (u, v) | u ∈ Zi, v = zj with j �= i },
7. { (u, v) | u ∈W i, v ∈ Zj with j �= i },
8. { (u, v) | u = wi, v ∈W j with j �= i }.

J02
a J10

a I1
a J12

a J20
a J21

a I2
a

W 0 W 1 W 2

W

H1
a H2

a

w0 w1 w2

z2z1z0

Ga

I0
a J01

a

Z0 Z1

Z

Z2

Fig. 3. Graph gadget TGad3 after performing edge sets of items 1 to 5

Lemma 8. If Gadk contains tournaments (PTI-tuples) as subgraphs of item 1
in Definition 5, then Gadk with odd k ≥ 3 can be transformed into a tournament
TGadk under AC

0 many-one reductions, without changing the automorphism
group.

In the proof we transform Gadk into TGadk and apply Lemmas 2 and 3 to
construct each subset of edges in E(TGadk).

Our aim is to construct a graph G∗ with prefixes, which contains nontrivial
prefix automorphisms, iff an NC

1 circuit with #L oracle questions outputs true.
The oracle questions thereby must have the same size. This makes it possible to
use exactly one type of oracle graph gadget Gadk (for exactly one value of k).
For more details we refer to [21]. Any subgraph like Gadk inside of G∗ is setwise

Hardness Results for Tournament Isomorphism and Automorphism 581

stabilized in Aut(G∗). By Lemma 2 and 8, transform any subgraph in G∗ iso-
morphic to Gadk into a tournament TGadk without changing the automorphism
group of G∗. Then apply Lemma 3 in order to connect this graph gadget with
any other graph gadget. Since G∗ contains only graph gadgets as described in
this chapter and every graph gadget is setwise stabilized in automorphism group
of G∗, replace them all by tournaments and connect them with each other as
described in Lemma 3. Thus we can transform G∗ into a tournament T ∗ under
AC

0 many-one reductions. It follows that TI is hard for NC
1 (#L) and thus

for DET. Corollary 2 follows by the fact that the ModkL hierarchy is logspace
Turing reducible to DET.

Corollary 2. ModkL ≤L
T TI for any k ≥ 2.

4 Hardness Results for Tournament Automorphism

GA is many-one hard for the ModkL hierarchy (Theorem 5.1 [21]). Transform
a circuit C into a rigid graph G(C) as in Definition 1, having a unique automor-
phism satisfying prefixes, iff the output value of the circuit is 1. Take two copies
G1 and G2 of graph G and apply colorings Col(G1), Col(G2) to the vertices
which represent the input and output values of the circuit in order to encode the
prefixes the same way as for prefix-GA. Thus the graph G1∪G2 has a nontrivial
automorphism, iff the output of the original circuit is 1. We show how this result
also holds for TA.

Theorem 4. ModkL ≤AC
0

m TA with k ≥ 3 odd integer.

Proof . First, transform G(C) into a tournament T (C) as described in proof
of Lemma 5. Instead of taking two copies we need three copies T0, T1, T2 of
T (C) and apply the colorings Col(G1) to T0 and Col(G2) to T1 and T2. Then
include complete bipartite edge sets { (u, v) | u ∈ V (Ti), v ∈ V (Ti⊕1), i ∈ [0, 2] }.
Thus T (C) is a tournament and contains two nontrivial automorphisms (that is
mapping T0 onto T1 or T2), iff G(C) contains one nontrivial automorphism.

�
Now we discuss the counterpart of PGI and PTI tuples, in order to prove lower
bounds for TA. Therefore, we define the following graph tuples.

Theorem 5. DET ≤AC
0

m TA.

Definition 7. [21] A PGA-graph tuple is a tuple of rigid graphs ((G,H), (I, J))
with G ∼= H ⇔ I �∼= J . Let PGA be the set of all such tuples. The graph tuple
(G∧, H∧)(I∧, J∧)) ∈ PGA (write e.g. PGA-G∧) for simulating conjunction and
(G∨, H∨)(I∨, J∨)) ∈ PGA (write e.g. PGA-G∨) for disjunction. For a detailed
definition and its properties see proof of Theorem 5.3 in [21].

If all the subgraphs are rigid then the new graphs forming tuples are rigid as
well. We transform now these PGA-tuples into tuples of tournaments.

582 F. Wagner

Lemma 9. There is an AC
0 computable function, such that the PGA graph tu-

ples can be transformed into tournaments, having the same automorphism prop-
erties and rigidity properties as in Definition 7.

Definition 8. A PTA-graph tuple is a tuple of rigid tournaments ((G,H),
(I, J)) with G ∼= H ⇔ I �∼= J . Let PTA be the set of all such tuples.

The graph tuple (G∧, H∧)(I∧, J∧)) ∈ PTA (write e.g. PTA-G∧) for simulating
conjunction and (G∨, H∨)(I∨, J∨)) ∈ PTA (write e.g. PTA-G∨) for disjunction
is defined as follows:

The graph PTA-G∨ contains subgraphs X,G0, G
′
0, H0, A0, A1, A2. Let sub-

graphs G′
0, G

′
1, I

′
0 be copies of G0, G1, I0. Let X be defined as shown in Figure 4.

A0 contains subgraphs I0 and G1, with vertices in I0 pointing to all vertices in
G1. A1 is a copy of A0. A2 is constructed like A0, containing J0 instead of I0
and H1 instead of G1. Let subgraph G0 be associated to x0,0, G′

0 to x0,1 and H0

to x0,2 and let the Ai be associated to x1,i for i ∈ [0, 2]. Concerning edge sets,
the rest of the construction is similar to that of PTI-G∨.

The subgraph H∨, is constructed like G∨ but with A1 associated to x1,2 and
A2 to x1,1. Obtain I∧ from G∨ and J∧ from H∨, if subgraphs Gi, Hi, Ii, Ji will
be replaced by Ii, Ji, Gi, Hi for i ∈ [0, 1] in this order.

I ′0
x11 x12

x02x01x00

x10

G0

I0 G1

H0

H1J0
A2A1A0

G′
1

PTA-G∨\XX

G′
0

Fig. 4. PTA-tuples simulating ∧ and ∨ functions

The proof is like that of Lemma 7, simulate the alternating layers of AND’s
and OR’s of an NC

1 circuit with certain PTA-tuples. The main difficulty is to
preserve the rigidity of the tuple components.

It immediately follows, that TA is hard for NC
1 under AC

0 many-one re-
ductions. By applying Theorem 4, it is possible to prove hardness of TA for
complexity class DET. The proof of this result follows (similar to that in [21])
exactly the same lines as that for Theorem 3 taking in consideration that the
tournament graph pairs produced in the reduction from Theorem 1 are rigid and
that the gadgets in the proof of Theorem 3 also preserve rigidity. Similar to the
Corollary 2, the Corollary 3 immediately follows:

Corollary 3. ModkL ≤L
T TA for any k ≥ 2.

Acknowledgments. I am grateful to my supervisor Jacobo Torán , Sebastian
Dörn, Thanh Minh Hoang for helpful discussion and the anonymous referees for
helpful comments and suggestions.

Hardness Results for Tournament Isomorphism and Automorphism 583

References

1. Arvind, V., Beigel, R., Lozano, A.: The Complexity of Modular Graph Automor-
phism. Symp. on Theoret. Aspects of Computer Sci., 172–182 (1998)

2. Arvind, V., Das, B., Mukhopadhyay, P.: On Isomorphism and Canonization of
Tournaments and Hypertournaments. In: Asano, T. (ed.) ISAAC 2006. LNCS,
vol. 4288, pp. 449–459. Springer, Heidelberg (2006)

3. Allender, E., Ogihara, M.: Relationships among PL, #L and the determinant.
RAIRO Inform. Theor. Appl. 30, 1–21 (1996)

4. Alvarez, C., Jenner, B.: A very hard logspace counting class. Theoretical Computer
Science 107, 3–30 (1993)

5. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC
1 .

J. Comput. System Sci. 41, 274–306 (1990)
6. Babai, L., Luks, E.: Canonical labeling of graphs. Proceedings of the 15th Annual

ACM Symposium on Theory of Computing, 171–183 (1983)
7. Boppana, R., Hastad, J., Zachos, S.: Does co-NP have short interactive proofs?

Inform. Process. Lett. 25, 27–32 (1987)
8. Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of

logspace-MOD-classes. Math. System Theory 25, 223–237 (1992)
9. Buss, S.R.: Alogtime algorithms for tree isomorphism, comparison, and canoniza-

tion. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289,
pp. 18–33. Springer, Heidelberg (1997)

10. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Information
and Control 64, 2–22 (1985)

11. Gill, J.: Computational complexity of probabilistic Turing machines. SIAM J. Com-
put. 6, 675–695 (1977)

12. Gross, J.L., Yellen, J.: Discrete Mathematics and its Applications - Handbook of
Graph Theory. CRC Press LLC (2004)

13. Hopcroft, J.E., Tarjan, R.E.: A V 2 algorithm for determining isomorphism of pla-
nar graphs, pp. 32–34 (1971)

14. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem - Its Struc-
tural Complexity. In: Prog. Theor. Comp.Sci., Birkhaeuser, Boston, MA (1993)

15. Lindell, S.: A logspace algorithm for tree canonization. Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, 400–404 (1992)

16. Luks, E.: Isomorphism of bounded valence can be tested in polynomial time. J.
Comput. System Sci. 25, 42–65 (1982)

17. Luks, E.: Parallel algorithms for perumtation groups and graph isomorphism. Proc
of the 27th IEEE Symp. on Found. of Comp. Sci., 292–302 (1986)

18. Miller, G.L., Reif, J.H.: Parallel tree contraction Part 2: further applications. SIAM
Journal on Computing 20(6), 1128–1147 (1991)

19. Ruzzo, W., Simon, J., Tompa, M.: Space bounded hierarchies and probabilistic
computations. J. Comput. System Sci. 28, 216–230 (1984)

20. Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. System
Sci. 37, 312–323 (1988)

21. Torán, J.: On the Hardness of Graph Isomorphism. SIAM J. Comput. 33(5), 1093–
1108 (2004)

Relating Complete and Partial Solution for

Problems Similar to Graph Automorphism

Takayuki Nagoya1 and Seinosuke Toda2

1 Department of Mathematical Sciences, Tokyo Denki University
nagoya@r.dendai.ac.jp

2 Department of Computer Science and System Analysis,
College of Humanities and sciences, Nihon University

toda@cssa.chs.nihon-u.ac.jp

Abstract. It is known that, given a graph G, finding a pair of vertices
(vi, vj) such that vi is mapped to vj by some non-trivial automorphism
on G is as hard as computing a non-trivial automorphism. In this paper,
we show that, given a graph G, computing even a single vertex that is
mapped to a different vertex by a non-trivial automorphism is as hard
as computing a non-trivial automorphism. We also show that RightGA
has the same property. On the other hand, we show that if PrefixGA has
this property then GI ≤p

T GA.

Keywords: Computational complexity, reducibility, graph auto-
morphism, partial solution.

1 Introduction

Graph Isomorphism problem (GI) is to determine whether two given graphs are
isomorphic or not. Closely related to GI is the Graph Automorphism problem
(GA) : given a graph G, decide whether its automorphism group contains a
non-trivial automorphism. These problems are trivially in NP, but the problems
are not known to be in P and not known to be NP-complete either [9], [4]. In
spite of their similarity, there seem to be differences between the computational
structures of these problems. For example, although GI has a polynomial-time
computable and-function [5], it is not known whether there exists such function
for GA. Actually, GA seems to be computationally easier than GI. Although GA
is polynomial-time many-one reducible to GI [5], it is not known whether GI is
reducible to GA or not. Lubiw [6] has left this problem as an open question.
There are many problems similar to GA. It is known that the prefix set of GA
(PrefixGA) is polynomial-time many-one equivalent to GI. Lozano and Toran
[5] have shown that the left set of GA (LeftGA) is polynomial-time many-one
equivalent to GI. On the other hand, they also prove that the right set of GA
(RightGA) is polynomial-time many-one equivalent to GA. Other discussions
between GI and GA are found in e.g. [1], [4], [6], [7], [10].

For several NP problems, Gál et al.[3] proved that it is enough for solving their
corresponding search problems to provide an efficient algorithm for computing

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 584–595, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Relating Complete and Partial Solution for Problems Similar to GA 585

only a small part of a solution. Große et al. [2] proved that an isomorphism on
given graph can be computed by using any oracle that gives a single pair of
vertices that are mapped onto each other by an isomorphism between them. In
[8], it has been proved that a non-trivial automorphism on a given graph can
be computed by using any oracle that gives a single pair (vi, vj) of vertices such
that vi is mapped to vj by a non-trivial automorphism on the graph.

In this paper, we prove that a non-trivial automorphism on a given graph can
be computed in polynomial time by using any oracle that gives a single vertex
that is mapped to a different vertex by a non-trivial automorphism. We notice
that the result is quite a contrast to known results of GI and GA, because our
oracle returns only a single vertex but not a pair. We prove that the same result
holds for RightGA. That is, the search version of RightGA can be computed
by using any oracle that gives a single-vertex solution. These results indicate
that, for GA and RightGA, computing a single-vertex solution is as hard as
computing a (complete) solution. On the other hand, we prove that computing a
single-vertex solution of PrefixGA is reducible to GA. This indicates an evidence
that, for PrefixGA, computing a single-vertex solution is apparently easier than
computing a (complete) solution, since PrefixGA is many-one equivalent to GI.
This also seems to indicate a structural difference between GA and GI.

2 Computing Graph Automorphism from Single-Vertex
Solutions

Throughout this paper, we suppose that all graphs are undirected and simple.
For a graph G, its vertex set and its edge set are denoted by V (G) and E(G),
respectively. We sometimes identify a graph with its vertex set if there is no fear
of confusion. For a vertex v ∈ V (G), we define NG(v) = {w ∈ V (G)|(v, w) ∈
E(G)} and define G\{v} to be a graph obtained by removing v and all edges
incident to v. For a graph G, MG is the maximum number of vertices in a
connected component of G. For two graphs G and H , G∪H is the disjoint union
of G and H . We denote by idG the identity automorphism of a graph G. A
labeled graph is a graph with labels assigned to its vertices. In this paper, we
assume that each label is a set of distinct positive integers. For two functions
f : A→ B and g : C → D, if A∩C = φ then we define f �g by, for all v ∈ A∪C,
f �g(v) = f(v) if v ∈ A and f �g(v) = g(v) otherwise. For a function f : A→ B
we denote f |X to be the restriction of f whose domain is X ⊆ A. The following
theorems was proved in [2] and [8].

Theorem 1. [2] Let f be any oracle that, given any two graphs Ĝ and Ĥ, out-
puts a pair of vertices (vi, wj), vi ∈ V (Ĝ), wj ∈ V (Ĥ) such that if there exists
an isomorphism from Ĝ to Ĥ, then ϕ(vi) = wj for some isomorphism ϕ from
Ĝ to Ĥ. Then there is an algorithm such that, given any two graphs G and H,
it uses the oracle f and correctly determines whether G and H are isomorphic,
and if so, it constructs an isomorphism from G to H in polynomial time.

586 T. Nagoya and S. Toda

Theorem 2. [8] Let f be any oracle that, given any graph Ĝ, outputs a pair of
vertices (vi, vj) such that if there exists a non-trivial automorphism on Ĝ then
vi is mapped to vj by some non-trivial automorphism on Ĝ. Then there is an
algorithm such that, given any graph G, it uses the oracle f and correctly deter-
mines whether a non-trivial automorphism on G exists, and if so, it constructs
a non-trivial automorphism on G in polynomial time.

These results indicates that computing a pair of vertices that is a piece of a
(complete) solution is as hard as computing a (complete) solution. In this section,
we prove that computing a single vertex that is moved by some non-trivial
automorphism is as hard as computing a non-trivial automorphism. To prove
the claim, we first focus our attention on labeled graphs. Then the claim is
obtained by using a fact that the labels on the vertices of a labeled graph can be
simulated in an unlabeled graph by attaching suitable gadgets to the vertices.
We state the detail of the fact at the end of this section.

The next theorem is the result on labeled graphs.

Theorem 3. Let f l
GA be any oracle that, given any labeled graph Ĝ, outputs a

vertex vi such that if there exists a non-trivial automorphism on Ĝ then vi is
mapped to a different vertex by some non-trivial automorphism on Ĝ. Then there
is an algorithm such that, given any labeled graph G, it uses the oracle f l

GA and
correctly determines whether a non-trivial automorphism on G exists, and if so,
it constructs a non-trivial automorphism on G in polynomial time.

Before proving the above theorem, we would like to state some properties of f l
GA.

If a queried graph does not have a non-trivial automorphism, then f l
GA returns

an arbitrary vertex without revealing that the graph does not have a non-trivial
automorphism. If we query f l

GA on the same graph repeatedly, then f l
GA could

keep returning the same vertex. We also emphasize that f l
GA does not seem to be

powerful enough to solve GI. For, f l
GA is trivially reducible to the search version

of GA and GA has self-computable solutions (refer to [4] for the definition of
self-computability). So, f l

GA is reducible to (the decision version of) GA. This
indicates that f l

GA does not seem to be available to compute GI-complete prob-
lems, like AUTOMORPHISM WITH 1 RESTRICTION that was introduced in
[6], i.e. given a graph G and a vertex v ∈ V (G), determining whether there is
a non-trivial automorphism that maps v to a different vertex. In spite of the
similarity between f l

GA and AUTOMORPHISM WITH 1 RESTRICTION, f l
GA

is reducible to GA and AUTOMORPHISM WITH 1 RESTRICTION is GI-
complete. So, f l

GA does not seem to be available to solve AUTOMORPHISM
WITH 1 RESTRICTION.

As stated above, if a queried graph does not have a non-trivial automor-
phism, then f l

GA returns an arbitrary vertex without revealing that the graph
does not have a non-trivial automorphism. Thus, in general, it seems difficult
to determine, by only using information from the oracle, whether a graph has a
non-trivial automorphism. However, in some special case, we can take notice of
the lack of a non-trivial automorphism by checking simple conditions.

Relating Complete and Partial Solution for Problems Similar to GA 587

Definition 1. Let G be a labeled graph and let v1, v2, (v1 �= v2) be vertices
of G. Let W1 and W2 be the connected components of G containing v1 and
v2 respectively. We say that v2 is a candidate for v1 if these vertices have the
same label, |NW1(v1)| = |NW2(v2)|, and W1\{v1} is disconnected if and only if
W2\{v2} is disconnected.

Note that if the oracle returns a vertex that has no candidate vertex, then, by
the property of the oracle, there is no non-trivial automorphism on the graph.

Definition 2. Let X1, . . . , Xa, Y1, . . . , Ya be 2a connected labeled graphs such
that |X1| = . . . = |Xa| = |Y1| = . . . = |Ya|. We denote by 〈(X1, Y1), . . . , (Xa, Ya)〉
the labeled graph constructed as follows: Let l1, l2, . . . , la be integers which are not
used in the labels of vertices in X1∪. . .∪Xa∪Y1∪. . .∪Ya. For each s (1 ≤ s ≤ a),
add ls to the label of every vertex in Xs ∪ Ys. Let X̂1, . . . , X̂a, Ŷ1, . . . , Ŷa be the
resulting graphs. Then, the labeled graph 〈(X1, Y1), . . . , (Xa, Ya)〉 is the disjoint
union of X̂1, . . . , X̂a, Ŷ1, . . . , Ŷa.

Note that any automorphism on 〈(X1, Y1), . . . , (Xa, Ya)〉 maps Xs∪Ys to Xs∪Ys.
Now, we are ready to prove two lemmas that state the detail of the algorithm

for Theorem 3 and that guarantee the correctness of Theorem 3.

Lemma 1. Let G be a connected labeled graph and let V (G) = {v1, v2, . . . , vn},
n ≥ 2. Let vi be a vertex resulting from a query f l

GA(G). If there exists a can-
didate for vi in G then there exists a labeled graph Ĝ that satisfies the following
conditions.

1. MĜ < MG and |V (Ĝ)| ≤ 4M2
G.

2. Ĝ can be constructed in polynomial time.
3. G has a non-trivial automorphism if and only if Ĝ has a non-trivial auto-

morphism. Furthermore, if a non-trivial automorphism ψ on Ĝ is given then
a non-trivial automorphism on G can be constructed from ψ in polynomial
time.

Proof. We construct a labeled graph Ĝ from G as follows: Let l be an integer
that is not used in the labels of vertices of G. Let vj1 , vj2 , . . . , vja ∈ V (G) be
the candidates for vi. Then we create 2a copies X1, X2, . . . , Xa, Y1, Y2, . . . , Ya of
G. For each Xs (1 ≤ s ≤ a), add l to the label of each neighbor of vi, and then
remove the vertex vi and all edges incident to vi. For each Ys (1 ≤ s ≤ a), add
l to the label of each neighbor of vjs , and then remove the vertex vjs and all
edges incident to vjs (see Figure 1). Since every vjs is a candidate for vi, G\{vi}
is disconnected if and only if each constructed graph Xs and Ys is disconnected.
If G\{vi} is disconnected then we consider the complement Ḡ instead of G, and
then construct Xs and Ys from Ḡ in the same manner1. As a consequence, we
can assume that each constructed labeled graph X1, X2, . . .Xa, Y1, Y2, . . . , Ya is
connected. Finally, let Ĝ be the labeled graph 〈(X1, Y1), . . . , (Xa, Ya)〉.
1 Note that the complement of a disconnected graph is always connected.

588 T. Nagoya and S. Toda

Fig. 1. Construction of Xs and Ys in Lemma 1. Large black circles are the vertices to
which l is added.

We easily see that the first and the second conditions are satisfied. We bellow
prove the third condition is satisfied. Assume that there exists a non-trivial
automorphism on G. Then, by the property of the oracle, there exists a non-
trivial automorphism ϕ on G that maps vi to a different vertex. Therefore, there
exists a candidate vjs ∈ V (G) of vi such that ϕ(vi) = vjs . We easily see that,
using ϕ, we can construct an isomorphism ξ from Xs to Ys. So we have that
ξ � ξ−1 is a non-trivial automorphism on Xs ∪ Ys. Now we have a non-trivial
automorphism ψ on Ĝ defined as follow:

ψ(v) =
{
ξ � ξ−1(v) if v ∈ Xs ∪ Ys

v otherwise. (1)

Conversely, we assume that there exists a non-trivial automorphism ψ on Ĝ.
By the construction of Ĝ, for each s, (1 ≤ s ≤ a), ψ must map Xs ∪ Ys to
Xs ∪ Ys. Since ψ is a non-trivial automorphism on Ĝ, we have that there exists
s, (1 ≤ s ≤ a) such that ψ|Xs∪Ys is a non-trivial automorphism on Xs ∪Ys. Now
we have the following two cases.

1. ψ(Xs) = Xs. In this case, we have that either ψ|Xs is a non-trivial automor-
phism on Xs or ψ|Ys is a non-trivial automorphism on Ys. If ψ|Xs is a non-
trivial automorphism on Xs then ψ|Xs can be considered as a non-trivial au-
tomorphism on G that fixes vi. If ψ|Ys is a non-trivial automorphism on Ys

then ψ|Ys can be considered as a non-trivial automorphism on G that fixes vjs .
2. ψ(Xs) = Ys. In this case, ψ|Xs is an isomorphism from Xs to Ys. So, using

ψ|Xs , we can construct a non-trivial automorphism on G that maps vi to vjs .

We conclude that there exists a non-trivial automorphism on G. Furthermore,
such an automorphism on G can be constructed from ψ in polynomial time. This
completes the proof of Lemma 1.

Lemma 2. Let G =< (X1, Y1), . . . , (Xa, Ya) > be a labeled graph constructed
from 2a connected labeled graphs X1, X2, . . . , Xa, Y1, Y2, . . . , Ya such that |X1| =
. . . = |Xa| = |Y1| = . . . = |Ya| ≥ 2. Let vi be a vertex resulting from a query
f l
GA(G). If there exists a candidate for vi in G then there exists a labeled graph
Ĝ that satisfy the following conditions.

Relating Complete and Partial Solution for Problems Similar to GA 589

1. MĜ < MG and |V (Ĝ)| ≤ 4M2
G.

2. Ĝ can be constructed in polynomial time.
3. G has a non-trivial automorphism if and only if Ĝ has a non-trivial auto-

morphism. Furthermore, if a non-trivial automorphism ψ on Ĝ is given then
a non-trivial automorphism on G can be constructed from ψ in polynomial
time.

Proof. By symmetry, we below assume that some Xs contains vi. For the case
that some Ys contains vi, we can prove the claim similarly. We construct a
labeled graph Ĝ (only) from Xs ∪ Ys as follows: Let l be an integer that is
not used in the labels of vertices of Xs ∪ Ys. Let vj1 , vj2 , . . . , vjb

∈ Xs be the
candidates for vi in Xs. Then we create 2b copies U1, . . . , Ub,W1, . . . ,Wb of Xs.
For each Ut, (1 ≤ t ≤ b), add l to the label of each neighbor of vi, and then
remove the vertex vi and all edges incident to vi. For each Wt, (1 ≤ t ≤ b),
add l to the label of each neighbor of vjt , and then remove the vertex vjt and
all edges incident to vjt (see the left of Figure 2). Let vk1 , vk2 , . . . , vkc ∈ Ys be
the candidates for vi in Ys. Then we create c copies S1, . . . , Sc of Xs and create
c copies T1, . . . , Tc of Ys. For each Su, (1 ≤ u ≤ c), add l to the label of each
neighbor of vi and then remove the vertex vi and all edges incident to vi. For
each Tu, (1 ≤ u ≤ c), add l to the label of each neighbor of vku and then remove
the vertex vku and all edges incident to vku (see the right of Figure 2). By the
similar argument of the proof of Lemma 1, we can assume that each constructed
labeled graph Ut,Wt, Su, and Tu is connected. Finally, let Ĝ be the labeled graph
< (U1,W1), . . . , (Ub,Wb), (S1, T1), . . . , (Sc, Tc) >.

Fig. 2. Construction of the labeled graph Ut, Wt (the left of the figure) and St, Tu

(the right of the figure) in Lemma 2. Large black circles are the vertices to which l is
added.

We easily see that the first and second conditions are satisfied. Note that Ĝ
is constructed from Xs and Ys, and we do not use other connected components
of G to construct Ĝ. Therefore, we see that |V (Ĝ)| ≤ (2b + 2c)MG ≤ 4M2

G.
We will bellow prove the third condition is satisfied. Assume that there exists

a non-trivial automorphism on G. Then, by the property of the oracle, there
exists a non-trivial automorphism ϕ on G that maps vi to a different vertex.
Therefore, we have that ϕ|Xs∪Ys is a non-trivial automorphism on Xs ∪Ys. Now
we have the following two cases.

590 T. Nagoya and S. Toda

1. ϕ(Xs) = Xs. In this case, ϕ|Xs is a non-trivial automorphism on Xs that
maps vi to a different vertex. So there exists a candidate vjt ∈ Xs of vi such
that vjt = ϕ(vi). Since, using ϕ|Xs , we can construct an isomorphism ξ from
Ut to Wt, ξ � ξ−1 is a non-trivial automorphism on Ut ∪Wt. Now we have a
non-trivial automorphism ψ on Ĝ defined as follows:

ψ(v) =
{
ξ � ξ−1(v) if v ∈ Ut ∪Wt

v otherwise. (2)

2. ϕ(Xs) = Ys. In this case, ϕ|Xs is an isomorphism from Xs to Ys. Further-
more, there exists a candidate vku ∈ Ys for vi such that vku = ϕ(vi). Since
ϕ|Xs can be considered as an isomorphism ξ from Su to Tu, we have that
ξ � ξ−1 is a non-trivial automorphism on Su∪Tu. Now we have a non-trivial
automorphism ψ on Ĝ defined as follows:

ψ(v) =
{
ξ � ξ−1(v) if v ∈ Su ∪ Tu

v otherwise. (3)

Conversely, we assume that there exists a non-trivial automorphism ψ on Ĝ.
We have the following cases.

1. There exists t, (1 ≤ t ≤ b) such that ψ|Ut∪Wt is a non-trivial automorphism
on Ut ∪Wt. In this case, we have the following two cases.
(a) ψ(Ut) = Ut. In this case, either ψ|Ut is a non-trivial automorphism on

Ut or ψ|Wt is a non-trivial automorphism on Wt. If ψ|Ut is a non-trivial
automorphism on Ut then ψ|Ut can be considered as a non-trivial auto-
morphism ξ on Xs that fixes vi. If ψ|Wt is a non-trivial automorphism
on Wt then ψ|Wt can be considered as a non-trivial automorphism ξ on
Xs that fixes vjt . In both cases, using ξ, we can construct a non-trivial
automorphism τ on G defined as follows:

τ(v) =
{
ξ(v) if v ∈ Xs

v otherwise. (4)

(b) ψ(Ut) = Wt. In this case, ψ|Ut is an isomorphism from Ut to Wt and it
can be considered as a non-trivial automorphism ξ on Xs that maps vi
to vjt . So we have a non-trivial automorphism τ on G defined as follows:

τ(v) =
{
ξ(v) if v ∈ Xs

v otherwise. (5)

2. There exists u, (1 ≤ u ≤ c) such that ψ|Su∪Tu is a non-trivial automorphism
on Su ∪ Tu. In this case, we can consider ψ|Su∪Tu to be a non-trivial auto-
morphism ξ on Xs ∪ Ys that fixes vi and vku or exchanges vi and vku . Now,
we have a non-trivial automorphism τ on G defined as follows:

τ(v) =
{
ξ(v) if v ∈ Xs ∪ Ys

v otherwise. (6)

Relating Complete and Partial Solution for Problems Similar to GA 591

We conclude that there exists a non-trivial automorphism on G. Furthermore,
such an automorphism on G can be constructed from ψ in polynomial time. This
completes the proof of Lemma 2.

The algorithm of Theorem 3 is as follows. The algorithm computes a bijection on
G such that if there exists a non-trivial automorphism on G then the bijection
is a non-trivial automorphism.

Algorithm 1 (labeled graph G)

1. Query f l
GA on G. Let vi be the returned vertex.

2. If there is no candidate for vi in G then return an arbitrary bijection on
V (G).

3. Otherwise, construct Ĝ from G and vi as in Lemma 1.
4. Call Algorithm 2(Ĝ). Let ψ be the returned bijection on V (Ĝ).
5. If ψ is a non-trivial automorphism on Ĝ then compute a non-trivial auto-

morphism ϕ on G from ψ as in Lemma 1, and return ϕ as a non-trivial
automorphism on G. Otherwise, return an arbitrary bijection on V (G).

Algorithm 2 (labeled graph G =< (X1, Y1), . . . , (Xa, Ya) >)

1. If |X1| = . . . = |Xa| = |Y1| = . . . = |Ya| = 1 then, look for s (1 ≤ s ≤ a)
such that the vertex of Xs and the vertex of Ys have the same label. If there
exists such s then return a non-trivial automorphism on G that exchanges
the only vertex of Xs and the only vertex of Ys but fixes the other vertices.
Otherwise, return an arbitrary bijection on V (G).

2. Query f l
GA on G. Let vi be the returned vertex.

3. If there is no candidate for vi in G then return an arbitrary bijection on
V (G).

4. Otherwise, construct Ĝ from G and vi as in Lemma 2.
5. Recursively call Algorithm 2(Ĝ). Let ψ be the returned bijection on Ĝ.
6. If ψ is a non-trivial automorphism on Ĝ then compute a non-trivial auto-

morphism ϕ on G from ψ as in Lemma 2, and return ϕ as a non-trivial
automorphism on G. Otherwise, return an arbitrary bijection on G.

Lemma 3. The algorithm terminates in polynomial time. Furthermore, if there
exists a non-trivial automorphism on a given labeled graph then the bijection that
is computed by the algorithm is a non-trivial automorphism on the graph.

Proof. By the construction of Lemma 1 and Lemma 2, the constructed labeled
graph Ĝ =< (X1, Y1), . . . , (Xa, Ya) > satisfies the condition |X1| = . . . = |Xa| =
|Y1| = . . . = |Ya|. Furthermore, Lemma 1 and 2 decrease MG by one. So, we have
that the algorithm decreases the number of vertices of each connected component
to one. We also have that the number of recursive calls of Algorithm 2 is
|MG| − 1. Furthermore, we see |V (Ĝ)| ≤ 4M2

G. We conclude that the algorithm
terminates in polynomial time.

Next, we prove that if there exists a non-trivial automorphism on a given la-
beled graph then the bijection that is computed by the algorithm is a non-trivial

592 T. Nagoya and S. Toda

automorphism on the graph. Let G be a labeled graph < (X1, Y1), . . . , (Xa, Ya) >
such that |X1| = . . . = |Xa| = |Y1| = . . . = |Ya| = 1. If G has a non-trivial au-
tomorphism then there exists s (1 ≤ s ≤ a) such that both the only vertex of
Xs and the only vertex of Ys have the same label and the bijection on V (G)
that exchanges these two vertices but fixes the other vertices is a non-trivial
automorphism on G. Together with Lemma 1 and Lemma 2, we have the claim
immediately.

Theorem 3 has dealt with labeled graphs. By using a well known gadget tech-
nique, we will prove that the oracle of Theorem 3 can be computed by using the
unlabeled version of the oracle. This fact leads to the result for unlabeled graphs
similar to Theorem 3.

Lemma 4. Let fGA be any oracle that, given any unlabeled graph Ĥ, outputs
a vertex wi such that if there exists a non-trivial automorphism on Ĥ then wi

is mapped to a different vertex by some non-trivial automorphism on Ĥ. Then,
there is an algorithm that, given any labeled graph G, uses the oracle fGA to
compute a vertex vi ∈ G such that if there exists a non-trivial automorphism on
G then vi is mapped to a different vertex by some non-trivial automorphism on
G in polynomial time.

Proof. Let G be a labeled graph. Let L(vi) be the label of vertex vi. We can
assume that every integer that is used in the labels of vertices in G is be-
tween 1 and |V (G)|c for some constant c. Let m be the maximum integer in⋃

vi∈V (G) L(vi) ∪ {|V (G)|}.
Firstly, the algorithm constructs an unlabeled graph H from the labeled graph

G as follows. For each vertex vi ∈ V (G), construct a gadget of Figure 3. 2m+ 3
vertices of the gadget form a chain that is connected to vi. For each lj ∈ L(vi),
a chain of lj vertices starts from the (m + 2)-th vertex of the above chain. We
easily see that, for every non-trivial automorphism ϕ on H , ϕ|G is a non-trivial
automorphism on G.

Secondly, the algorithm queries fGA about H . Let wi be the returned vertex.
If wi is a vertex in V (G), then the algorithm outputs wi. If wi is a vertex in a
gadget that was attached to some vertex vj of G, then the algorithm outputs vj .

Fig. 3. The gadget attached to vi whose label is {l1, . . . , lk}

Relating Complete and Partial Solution for Problems Similar to GA 593

It is easy to see that the computed vertex is a vertex in V (G) and satisfies
that if there exists a non-trivial automorphism on G then the vertex is mapped
to a different vertex by some non-trivial automorphism on G. This completes
the proof of Theorem 4.

From Theorem 3 and Lemma 4, we have the following theorem.

Theorem 4. There is an algorithm such that, given any unlabeled graph H,
it uses the oracle fGA and correctly determines whether a non-trivial automor-
phism on H exists, and if so, it constructs a non-trivial automorphism on H in
polynomial time.

3 Other Problems Related to Graph Automorphism

In this section, we consider some problems related to GA. To state the problems,
we need the following definitions.

An injective function σ : {1, . . . , t} #→ {1, . . . , n} is represented by a string
σ(1) · · ·σ(t) over the alphabet {1, . . . , n}. In this way, two functions
σ, ϕ : {1, . . . , t} #→ {1, . . . n} represented by the strings σ(1) · · ·σ(t) and ϕ(1) · · ·
ϕ(t) can be compared and we say that σ is smaller than ϕ if the string
σ(1) · · ·σ(t) is smaller than ϕ(1) · · ·ϕ(t) in lexicographical order.

We consider the following problems related to graph automorphism. The sym-
bol ≤ refers to lexicographical order and the symbol ϕi refers to the subsequence
ϕ(1) · · ·ϕ(i) of ϕ.

RightGA = {(G, σ) : V (G) = {1, . . . , n}, σ : {1, . . . , t} #→ {1, . . . , n} for some
t ≤ n, and there is a non-trivial automorphism ϕ on G such that ϕt ≤ σ}.

PrefixGA = {(G, σ) : V (G) = {1, . . . , n}, σ : {1, . . . , t} #→ {1, . . . , n} for some
t ≤ n, and there exists a non-trivial automorphism ϕ on G such that ϕt = σ}.

Lozano and Torán [5] proved the following theorem.

Theorem 5. [5] RightGA ≡p
m GA.

The following proposition is noted in [1].

Proposition 1. PrefixGA ≡p
m GI.

In the previous section, we have shown that a non-trivial automorphism can be
computed by using any oracle that gives us a single-vertex solution. Our interest
in this section is whether or not those automorphisms related to the above
problems have a similar property. We will show that those in RightGA have
the property. On the other hand, those in PrefixGA do not have the property
unless GI ≤p

T GA.

Definition 3. Let fRightGA be any oracle that, given any pair (G, σ), V (G) =
{1, . . . , n}, σ : {1, . . . , t} #→ {1, . . . , n}, outputs a vertex vi such that if (G, σ) ∈
RightGA then vi is mapped to a different vertex by some non-trivial automor-
phism ϕ on G such that ϕt ≤ σ.

594 T. Nagoya and S. Toda

Definition 4. Let fPrefixGA be any oracle that, given any pair (G, σ), V (G) =
{1, . . . , n}, σ : {1, . . . , t} #→ {1, . . . , n}, outputs a vertex vi such that if (G, σ) ∈
PrefixGA then vi is mapped to a different vertex by some non-trivial automor-
phism ϕ on G such that ϕt = σ.

We first prove that the search version of RightGA can be computed by using
fRightGA.

Theorem 6. There is an algorithm such that, given any pair (G, σ), it uses the
oracle fRightGA and correctly determines whether (G, σ) ∈ RightGA, and if so,
it constructs a non-trivial automorphism ϕ on G such that ϕt ≤ σ.

Proof. We first prove that fGA is reducible to fRightGA. Let G be a query for fGA

and let V (G) = {1, . . . , n}. We consider a pair (G, σ) with σ(1) = n. Let vi be
the vertex resulting from a query fRightGA((G, σ)). It is easy to see that if there
exists a non-trivial automorphism on G then vi is mapped to a different vertex
by some non-trivial automorphism on G. We have that fGA can be computed
by using fRightGA. Now, together with Theorem 5 and Theorem 4, we have that
(the decision version of) RightGA is reducible to fRightGA. Our remaining task
is to prove that RightGA has self-computable solutions. However, we omit the
proof of this fact because of a lack of the space.

Finally, we prove that PrefixGA is not reducible to fPrefixGA unless GI ≤p
T GA.

Theorem 7. If there exists a polynomial time algorithm such that, given any
pair (G, σ), it uses the oracle fPrefixGA and correctly determines whether (G, σ)
∈ PrefixGA, then GI ≤p

T GA.

Proof. We prove that there exists a polynomial-time algorithm that computes
fPrefixGA by using GA. This indicates that, together with the result of Propo-
sition 1, if an algorithm mentioned above exists, then GI is polynomial time
Turing reducible to GA. Let (G, σ) be an input for fPrefixGA such that V (G) =
{1, . . . , n}, σ : {1, . . . , t} #→ {1, . . . , n} for some t ≤ n. The algorithm computes
fPrefixGA by using GA as follows.

CASE 1: There exists k, (1 ≤ k ≤ t) such that σ(k) �= k. In this case, if there
exists a non-trivial automorphism ϕ on G that is an extension of σ, then ϕ must
map the vertex k to a different vertex. So, the algorithm outputs k.

CASE 2: σ(i) = i for every 1 ≤ i ≤ t. Let G[1,...,j] denote the graph obtained
from G by labeling vertex 1 with label l1, vertex 2 with label l2, · · ·, vertex j with
label lj . Note that every non-trivial automorphism on G[1,...,t] is a non-trivial
automorphism on G that is an extension of σ and vice-versa. The algorithm first
queries GA on G[1,...,t]. If the answer is “NO”, then we have that there is no non-
trivial automorphism on G that is an extension of σ. So, the algorithm outputs
an arbitrary vertex. Otherwise, for each i = t + 1, t + 2, · · · , n in this order, the
algorithm asks GA on G[1,...,i]. Let k = min{i | t+1 ≤ i ≤ n and G[1,...,i] �∈ GA}.
Such k must exists because G[1,...,n] �∈ GA. Now, we have that there exists a

Relating Complete and Partial Solution for Problems Similar to GA 595

non-trivial automorphism on G[1,...,k−1] that maps k to a different vertex. This
automorphism is an extension of σ. So, the algorithm outputs k.

It is easy to see that the algorithm computes fPrefixGA. Note that the algo-
rithm outputs an arbitrary vertex if there is no non-trivial automorphism on G
that is an extension of σ. This completes the proof of Theorem 7.

References

1. Agrawal, M., Arvind, V.: A note on decision versus search for graph automorphism.
Information and computation 131, 179–189 (1996)

2. Große, A., Rothe, J., Wechung, G.: Computing complete graph isomorphisms and
hamiltonian cycles from partial ones. Theory of Computing Systems 35, 81–93
(2002)

3. Gál, A., Halevi, S., Lipton, R., Petrank, E.: Computing from partial solutions. In:
Proceedings of the 14th Annual IEEE Conference on Computational Complexity,
May 1999, pp. 34–45. IEEE Computer Society Press, Los Alamitos (1999)

4. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhauser (1993)

5. Lozano, A., Torán, J.: On the nonuniform complexity of the graph isomorphism
problem. In: Proceedings of the 7th Structure in Complexity Theory Conference,
1992, pp. 118–129 (1992)

6. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM Jour-
nal on Computing 10, 11–21 (1981)

7. Mathon, R.: A note on the graph isomorphism counting problem. Information
Processing Letters 8(3), 131–132 (1979)

8. Nagoya, T.: Computing graph automorphism from partial solutions. Theory of
Computing Systems (to appear)

9. Read, R.C., Corneil, D.G.: The graph isomorphism disease. Journal of Graph The-
ory 1, 339–363 (1977)

10. Toran, J.: On the hardness of graph isomorphism. SIAM Journal on Computing 33,
1093–1108 (2004)

Well Supported Approximate Equilibria in

Bimatrix Games: A Graph Theoretic Approach�

Spyros C. Kontogiannis1,2 and Paul G. Spirakis2

1 Dept. of Comp. Sci., Univ. of Ioannina, 45110 Ioannina, Greece
kontog@cs.uoi.gr

2 Research Academic Computer Technology Institute, N. Kazantzaki Str.,
Univ. Campus, 26500 Rio-Patra, Greece

{kontog,spirakis}@cti.gr

Abstract. We study the existence and tractability of a notion of approx-
imate equilibria in bimatrix games, called well supported approximate
Nash Equilibria (SuppNE in short). We prove existence of ε−SuppNE for
any constant ε ∈ (0, 1), with only logarithmic support sizes for both play-
ers. Also we propose a polynomial–time construction of SuppNE, both
for win lose and for arbitrary (normalized) bimatrix games. The quality
of these SuppNE depends on the girth of the Nash Dynamics graph in
the win lose game, or a (rounded–off) win lose image of the original nor-
malized game. Our constructions are very successful in sparse win lose
games (ie, having a constant number of (0, 1)−elements in the bimatrix)
with large girth in the Nash Dynamics graph. The same holds also for
normalized games whose win lose image is sparse with large girth.

Finally we prove the simplicity of constructing SuppNE both in ran-
dom normalized games and in random win lose games. In the former case
we prove that the uniform full mix is an o(1)−SuppNE, while in the case
of win lose games, we show that (with high probability) there is either a
PNE or a 0.5-SuppNE with support sizes only 2.

1 Introduction

One of the most appealing concepts in game theory is the notion of a Nash
equilibrium: A collection of strategies from which no player has an incentive to
unilaterally deviate from its own strategy. The nice thing about Nash equilibria
is that they always exist in any finite k−person game in normal form [18]. This is
one of the most important reasons why Nash equilibria are considered to be the
prevailing solution concept for finite games in normal form. The problem with
Nash equilibria is that there can be exponentially many of them, of quite different
characteristics, even for bimatrix games. Additionally, it is not yet known if one
of them can be found in subexponential time. Therefore, k−NASH, the problem
of computing an arbitrary Nash equilibrium of a finite k−person game in normal
form, is considered as a fundamental problem in algorithmic game theory [19].
� Partially supported by the Future and Emerging Technologies Unit of EC (IST pri-

ority - 6th FP), under contract no. FP6-021235-2 (ARRIVAL) and 001907 (DELIS).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 596–608, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Well Supported Approximate Equilibria in Bimatrix Games 597

Its complexity has been a long standing open problem, since the introduction of
the pioneering (pivoting) algorithm of Lemke and Howson [16]. Unfortunately, it
was recently shown by Savani and von Stengel [20] that this algorithm requires
an exponential number of steps; it is also known that the smoothed complexity of
the algorithm is likely to be superpolynomial [4]. Moreover, many (quite natural)
refinements of k−NASH are known to be NP−complete problems [11,6].

Due to the (recently proved) completeness even of 2−NASH, approximate
solutions have attracted the attention of the research community. There are
two different notions of approximate Nash equilibria: Those which require that
each player gets the maximum possible payoff, within some additive constant
ε (denoted here by ApproxNE), and those which require that each player is
allowed to adopt wpp1 only actions that are approximate best responses to the
opponent’s strategy, within an additive constant ε (denoted here by SuppNE).
ApproxNE are the dominant notion of approximate equilibria in the literature,
while SuppNE is a rather new notion (eg, see [4,5,8]). As will be explained later,
SuppNE seem to be also harder to construct. On the other hand they might
be more naturally motivated by the players’ selfish behavior : Each player is
assumed to choose approximate best responses, within some additive constant,
(rather than exact best responses) against the other player’s strategy. This is in
contrast to the notion of ApproxNE, in which the two players have no restriction
in what kind of actions they choose to play wpp, so long as their payoffs are close
to their best response payoffs. We would like to argue that SuppNE is a quite
interesting notion of approximate equilibrium, due to both its mathematical
challenge and also its highly intuitive property that the players are assumed to
avoid playing actions that are indeed meaningless to them. The present paper
tries to shed some light on this new notion of approximate equilibria.

Related Work. The most popular algorithm for computing NE in bimatrix
games, is the algorithm of Lemke and Howson [16] (LH in short), a special case
of Lemke’s algorithm for finding solutions (if such exist) for arbitrary instances
of the Linear Complementarity Problem. It has been proved [20] that LH may
require an exponential number of steps before reaching a NE. Moreover, it is
well known that various (quite natural) restrictions of k−NASH (eg, uniqueness,
bounds on support sizes, etc) lead to NP−hard problems [11,6].

A very recent series of research papers within the last two years deal
with the complexity of k−NASH. Initially [7,12] proved that 4−NASH is
PPAD−complete. This result was extended to 3−player games [10]. Surpris-
ingly, [3] proved the same complexity result even 2−NASH. In view of all
these hardness results for the k−NASH, understanding the limitations of the
(in)approximability of the problem is quite important. To our knowledge, the
first result that provides ε−ApproxNE within subexponential time is [17]. In par-
ticular, for any constant ε > 0, they prove the existence of an ε−ApproxNE for
arbitrary n× n bimatrix games, which additionally is a uniform profile that has
supports of size at most

⌈
logn
ε2

⌉
. This obviously implies a simple subexponential

1 With positive probability.

598 S.C. Kontogiannis and P.G. Spirakis

algorithm for constructing ε−ApproxNE for [0, 1]−bimatrix games. This ap-
proach still remains the fastest strategy to date, for the general problem of
providing ε−ApproxNE for any constant ε > 0. [15] shows a similar existential
argument of ε−SuppNE with logarithmic support sizes, for any constant ε > 0.

With respect to the tractability of a FPTAS for NE, [4] proved that providing
a FPTAS for 2−NASH is also PPAD−complete. Namely, they proved that
unless PPAD ⊆ P, there is no algorithm that constructs ε−ApproxNE in time
poly(n, 1/ε), for any ε = n−Θ(1). Moreover, they proved that unless PPAD ⊆
RP, there is no algorithm that constructs a NE in time poly(n, 1/σ), where σ is
the size of the deviation of the elements of the bimatrix.

Two independent results [8,14] have recently made progress in the direction of
providing the first ε−ApproxNE and ε−SuppNE for [0, 1]−bimatrix games and
some constant 1 > ε > 0. In particular, [8] gave a nice and simple 1

2−ApproxNE
for [0, 1]−bimatrix games, involving only two strategies per player. Very recently
they improved this upper bound to 0.38 [9]. In [8] an algorithm for SuppNE
was proposed, which, under a graph theoretic conjecture, would construct in
polynomial time a (2/3)−SuppNE. The status of this conjecture is still un-
known. [8] made also a quite interesting connection of the problem of construct-
ing 1+ε

2 −SuppNE in an arbitrary [0, 1]−bimatrix game, to that of constructing
ε−SuppNE for a properly chosen win lose game of the same size. As for [14],
based on linear programming techniques, they provided a 3

4−ApproxNE, as well
as a parameterized 2+λ

4 −ApproxNE for arbitrary [0, 1]−bimatrix games, where
λ is the minimum payoff of a player at a NE.

Concerning random [0, 1]−bimatrix games, the work of Bárány, Vempala and
Vetta [2] considers the case where all the cells of the payoff matrices are (either
uniform, or normal) iid2 random variables in [0, 1]. They analyze a simple Las
Vegas algorithm for finding a NE in such a game, by brute force on the sup-
port sizes, starting from smaller ones. The running time of their algorithm is
O
(
m2n log logn + n2m log logm

)
, whp3.

Contribution and Roadmap. In [15] we adopted a methodology for con-
structing SuppNE in bimatrix games, based on Linear Programming (the LP
approach). In particular, we constructed in polynomial time a 0.5−SuppNE for
win lose games and a 0.658−SuppNE for [0, 1]−bimatrix games. Here we start by
proving existence of SuppNE with logarithmic support sizes, and then we adopt
an alternative, graph theoretic approach (the GT approach). We also consider
random win lose and random [0, 1]−bimatrix games. Table 1 summarizes our
results for SuppNE in these two papers.

The structure (and contribution) of this paper is the following: Section 2
provides some preliminaries and notation. In Section 3 we prove existence of
uniform ε−SuppNE with logarithmic support sizes, for any constant ε > 0. In
Section 4 we present the GT approach for constructing SuppNE in both win lose
and normalized games. We prove (Theorem 3) that every win lose game contains

2 Independent, identically distributed.
3 With high probability, ie, with probability 1−m−c, for some constant c > 0.

Well Supported Approximate Equilibria in Bimatrix Games 599

Table 1. Synopsis of results for ε−SuppNE

GT LP [15] Random

Win Lose

1− 2/g

λ−sparse with large
girth g, ie, λ = o(g) o(1) 0.5

whp, either ∃ PNE
or ∃ 0.5−SuppNE

with support sizes 2

Normalized

1− 1/g

λ−sparse win lose image
with large girth

1+o(1)
2

0.658
Uniform full mix is whp

O
(√

log m
m

)
−SuppNE

either a PNE, or a subgame that is a g
2−MP game (a generalization of the

Matching Pennies game, to be defined later), where g ≥ 4 is the girth of the Nash
Dynamics graph. Based on this, we construct (Theorem 4) in polynomial time a(

1− 2
g

)
−SuppNE for the whole game. Our technique provides a o(1)−SuppNE

(Theorem 5) for λ − sparse games with girth g for some λ = o(g), and an
exact NE for 1−sparse games. The supports of such a NE can be arbitrary and
the rank of the payoff matrices can be arbitrary as well. Thus, an alternative
attack (eg, by support enumeration, or exploitation of small ranks) would not
necessarily work in such a game. We extend these results to

(
1− 1

g

)
−SuppNE

for any [0, 1]−bimatrix game (Theorem 6), exploiting an observation of [8] that
connects SuppNE of a bimatrix game to SuppNE of a properly constructed win
lose game. For [0, 1]−bimatrix games whose win lose image (as defined in [8]) is
λ−sparse and girth g such that λ = o(g), we get a

(
1+o(1)

2

)
−SuppNE.

Finally, we explore the tractability of SuppNE in random bimatrix games
(Section 5). We propose two random models, one for [0, 1]−bimatrix games and
one for random win lose games. For [0, 1]−bimatrix games, we propose a random
model that is more general than that of [2]. We prove (Theorem 7) that the strict
uniform full mix

(
1 1

m ,1 1
n

)
is an ε−SuppNE whp, for any ε = Ω

(√
logm/m

)
.

The proposed solution is straightforward to construct, and the analysis of our
model is quite simple, only based on Hoeffding bounds. For the case of win lose
games, we consider a random model that (at least whp) disallows the existence
of PNE. We prove (Theorem 8) that, when no PNE appears, a 1

2−SuppNE with
support size 2 for both strategies exists whp. We show that inexistence of PNE
can happen only for a very restricted family of (sparse) random win lose games.

2 Preliminaries

Mathematical Notation. For any k ∈ N, let [k] ≡ {1, 2, . . . , k}. M ∈ Fm×n

denotes a m × n matrix (denoted by capital letters) whose elements belong
to set F . We call a pair (A,B) ∈ (F × F)m×n (ie, an m × n matrix whose
elements are ordered pairs of values from F) a bimatrix. A k × 1 matrix is

600 S.C. Kontogiannis and P.G. Spirakis

also considered to be an k-vector. Vectors are denoted by bold small letters
(eg, x). ei denotes a vector having a 1 in the i-th position and 0 everywhere
else. 1k (0k) is the k-vector having 1s (0s) in all its coordinates. The k × k
matrix E = 1k ·1k

T ∈ {1}k×k has value 1 in all its elements. For any x,y ∈ Rn,
x ≥ y implies their component–wise comparison: ∀i ∈ [n], xi ≥ yi. For any m×n
(bi)matrix M , Mj is its j-th column (as an m × 1 vector), M i is the i-th row
(as a (transposed) 1× n vector) and Mi,j is the (i, j)-th element.

For any integer k ≥ 1, Δk = {z ∈ Rk : z ≥ 0; (1k)T z = 1} is the (k − 1)-
simplex. For any point z ∈ Δk, its support is the set of coordinates with positive
value: supp(z) ≡ {i ∈ [k] : zi > 0}. For an arbitrary logical expression E , we
denote by P {E} the probability of this expression being true, while I{E} is the
indicator variable of whether E is true or false. For any random variable x, E {x}
is its expected value (wrt some probability measure).

Game Theoretic Definitions and Notation. For 2 ≤ m ≤ n, an m × n
bimatrix game 〈A,B〉 is a 2−person game in normal form, determined by the
bimatrix (A,B) ∈ (R×R)m×n as follows: The first player (the row player) has
an m−element action set [m], and the second player (the column player) has
an n−element action set [n]. Each row (column) of the bimatrix corresponds to
a different action of the row (column) player. The row and the column player’s
payoffs are determined by the m× n real matrices A and B respectively. 〈A,B〉
is a zero sum game, if B = −A. In that case the game is solvable in polyno-
mial time using linear programming. If both payoff matrices belong to [0, 1]m×n

then we have a [0, 1]−bimatrix (aka normalized) game. The special case of
bimatrix games in which all elements of the bimatrix belong to {0, 1} × {0, 1},
is called a {0, 1}−bimatrix (aka win lose) game. A win lose game having
(for integer λ ≥ 1) at most λ (1, 0)−elements per row and at most λ number
(0, 1)−element per column of the bimatrix, is called a λ−sparse game. Any
point x ∈ Δm is a mixed strategy for the row player: She determines her ac-
tion independently from the column player, according to the probability vector
x. Similarly, any point y ∈ Δn is a mixed strategy for the column player. Each
extreme point ei ∈ Δm (ej ∈ Δn), that enforces the use of the i-th row (j-th
column) by the row (column) player, is a pure strategy for her. Any element
(x,y) ∈ Δm × Δn is a (mixed in general) strategy profile for the players.
The notion of approximate best responses will help us simplify the forthcoming
definitions:

Definition 1 (Approximate Best Response). Fix any bimatrix game 〈A,B〉
and 0 ≤ ε ≤ 1. The sets of approximate (pure) best responses of the
column (row) player against x ∈ Δm (y ∈ Δn) are: BR(ε,BT ,x) = {y ∈
Δn : yTBTx ≥ zTBTx − ε, ∀z ∈ Δn}, BR(ε,A,y) = {x ∈ Δm : xTAy ≥
zTAy−ε, ∀z ∈ Δm}, PBR(ε,BT ,x) = {j ∈ [n] : BT

j x ≥ BT
s x−ε, ∀s ∈ [n]} and

PBR(ε,A,y) = {i ∈ [m] : Aiy ≥ Ary − ε, ∀r ∈ [m]} .

Definition 2 (Approximate Nash Equilibria). For any bimatrix game
〈A,B〉 and 0 ≤ ε ≤ 1, (x,y) ∈ Δm × Δn is: (1) An ε−approximate Nash

Well Supported Approximate Equilibria in Bimatrix Games 601

Equilibrium (ε−ApproxNE) iff each player chooses an ε−approximate best re-
sponse against the opponent: [x ∈ BR(ε,A,y)] ∧

[
y ∈ BR(ε,BT ,x)

]
. (2) An

ε−well–supported Nash Equilibrium (ε−SuppNE) iff each player assigns
positive probability only to ε−approximate pure best responses against the strat-
egy of the opponent: ∀i ∈ [m], xi > 0 ⇒ i ∈ PBR(ε,A,y) and ∀j ∈ [n], yj >
0 ⇒ j ∈ PBR(ε,BT ,x) .

To see the difference between the two notions of approximate equilibria, con-
sider the Matching Pennies game with payoffs (A,B)1,1 = (A,B)2,2 = (1, 0)
(row player wins) and (A,B)1,2 = (A,B)2,1 = (0, 1) (column player wins).(
e1,

1
2 · (e1 + e2)

)
is a 0.5−ApproxNE, but only a 1−SuppNE for the game.

Any NE is both a 0−ApproxNE and a 0−SuppNE. Moreover, any ε−SuppNE
is also an ε−ApproxNE, but not necessarily vice versa, as was shown in the pre-
vious example. Indeed, the only thing we currently know towards this direction
is that from an arbitrary ε2

8n−ApproxNE one can construct an ε−SuppNE in
polynomial time [4]. Note that both notions of approximate equilibria are de-
fined wrt an additive error term ε. Although (exact) NE are known not to be
affected by any positive scaling of the payoffs, approximate notions of NE are
indeed affected. Therefore, from now on we adopt the commonly used assump-
tion in the literature (eg, [17,8,14,3,4]) that, when referring to ε−ApproxNE or
ε−SuppNE, we consider a [0, 1]−bimatrix game.

Definition 3 (Uniform Profiles). x ∈ Δr is a k−uniform strategy iff x ∈
Δr(k) = Δr∩

{
0, 1

k ,
2
k , . . . ,

k−1
k , 1

}r
. If x ∈ Δ̂r(k) = Δr∩

{
0, 1

k

}r
, then we refer

to a strict k−uniform strategy. (x,y) ∈ Δm ×Δn for which x is a (strict)
k−uniform strategy and y is a (strict) �−uniform strategy, is called a (strict)
(k, �)−uniform profile.

3 Existence of Uniform SuppNE

Existence of uniform ε−ApproxNE with small support sizes is already known
from [17]. We prove here a similar result for SuppNE, based solely on the Ap-
proximation Lemma of Althöfer [1]:

Theorem 1 (Approximation Lemma [1]). Fix any real matrix C ∈
[0, 1]m×n and any constant ε > 0. For any p ∈ Δm, there exists a k−uniform
strategy p̂ ∈ Δr(k) with k =

⌈
log(2n)

2ε2

⌉
, such that |pTCj − p̂TCj | ≤ ε, ∀j ∈ [n] .

Proposition 1. Fix any real matrix C ∈ Rm×n and any p ∈ Δm. For p̂ ∈ Δm

indicated by the Approximation Lemma, it holds that supp(p̂) ⊆ supp(p).

Proof. See full version of the paper.

We now demonstrate how the Approximation Lemma guarantees the existence
of a k−uniform (2ε)−SuppNE where k =

⌈
log(2n)

2ε2

⌉
, for any constant ε > 0:

602 S.C. Kontogiannis and P.G. Spirakis

Theorem 2. Fix any positive constant ε > 0 and an arbitrary [0, 1]−bimatrix
game 〈A,B〉. There is at least one (k, �)−uniform profile which is also a
(2ε)−SuppNE for this game, where k ≤

⌈
log(2n)

2ε2

⌉
and � ≤

⌈
log(2m)

2ε2

⌉
.

Proof. Consider any (exact) NE (p,q) of 〈A,B〉, which exists for any fi-
nite game in normal form [18]. By the Approximation Lemma, there is some
k−uniform strategy p̂ ∈ Δm with |supp(p̂)| ≤ k =

⌈
log(2n)

2ε2

⌉
, such that

|pTBj − p̂TBj | ≤ ε, ∀j ∈ [n]. and some �−uniform strategy q̂ ∈ Δn with

|supp(q̂)| ≤ � =
⌈

log(2m)
2ε2

⌉
, such that |Aiq − Aiq̂| ≤ ε, ∀i ∈ [m]. Observe that

p̂TB − ε1T ≤ pTB ≤ p̂TB + ε1T and Aq̂ − ε1 ≤ Aq ≤ Aq̂ + ε1. Exploit-
ing supp(p̂) ⊆ supp(p), the Nash Property of (p,q) and the Approximation
Lemma, we have: ∀i ∈ [m], p̂i > 0 ⇒ pi > 0 ⇒ Aiq ≥ Arq, ∀r ∈ [m] ⇒ Aiq̂ ≥
Arq̂ − 2ε, ∀r ∈ [m]. The argument for the column player is identical. We thus
conclude that (p̂, q̂) is a (k, �)−uniform (2ε)−SuppNE for 〈A,B〉.

In the following Lemma we show that what we really should look for, is a
polynomial–time algorithm for strict (k, �)−uniform (2ε)−SuppNE for 〈A,B〉:

Lemma 1. Fix ε > 0, k =
⌈

log(2n)
2ε2

⌉
and � =

⌈
log(2m)

2ε2

⌉
. For any m ×

n [0, 1]−bimatrix game 〈A,B〉, there is some (km) × (�n) [0, 1]−bimatrix
game 〈A′, B′〉 that is polynomial–time equivalent with 〈A,B〉 with regard to
(k, �)−uniform ε−SuppNE. That is, there are polynomial–time computable maps
FI : Δm #→ Δkm and FII : Δn #→ Δ�n such that for any ε−SuppNE (p,q) ∈
Δm × Δn of 〈A,B〉 there is a unique ε−SuppNE (p̃, q̃) = (FI(p), FII(q)) ∈
Δkm×Δ�n of 〈A′, B′〉. Conversely, there are polynomial–time computable maps
HI : Δkm #→ Δm and HII : Δ�n #→ Δn such that for any ε−SuppNE (p̃, q̃) ∈
Δkm × Δ�n of 〈A,B〉, there is a unique (p̂, q̂) = (HI(p̃), HII(q̃)) ∈ Δm × Δn

ε−SuppNE of 〈A,B〉. Finally, the proposed mappings assign (k, �)−uniform pro-
files of 〈A,B〉 to strict (k, �)−uniform profiles of 〈A′, B′〉 and vice versa.

Proof. See full version of the paper.

4 A Graph Theoretic Approach for Constructing
SuppNE

SuppNE in Win Lose Games. We now focus on SuppNE for win lose bimatrix
games. This is particularly interesting because of a result of [8] that connects
the construction of SuppNE for win lose games to the construction of SuppNE
for [0, 1]−bimatrix games. We distinguish the case in which there is a PNE in
the game, because such a PNE can be easily detected in polynomial time. The
following lemma characterizes all the win lose bimatrix games having no PNE.

Lemma 2. An m × n {0, 1}−bimatrix game 〈A,B〉 has no PNE if and only
if all the following conditions hold: (PNE1) ∀(i, j) ∈ [m] × [n], Ai,j +

Well Supported Approximate Equilibria in Bimatrix Games 603

Bi,j ≤ 1. (PNE2) ∀i ∈ [m],
(∑

j∈[n] Bi,j ≥ 1
)
∨
(∑

j∈[n] Ai,j = 0
)
. (PNE3)

∀j ∈ [n],
(∑

i∈[m] Ai,j ≥ 1
)
∨
(∑

i∈[m] Bi,j = 0
)
. (PNE4) ∀(i, j) ∈ [m] ×

[n],
(∑

r∈[m] Ar,j ≥ 1
)
∨
(∑

s∈[n] Bi,s ≥ 1
)
.

Proof. See full paper.

We now show the existence of a special kind of subgame, in any win lose game
complying with (PNE1)–(PNE4) of Lemma 2. We first define this subgame:

Definition 4 (Generalized Matching Pennies). For any integer k ≥ 2 and
any (R,C) ∈ ({0, 1} × {0, 1})k×k, 〈R,C〉 is a k-Matching Pennies game
(k−MP) iff there are permutations πr : [k] #→ [k] of the rows and πc : [k] #→ [k]
of the columns of (R,C), s.t.: (a) ∀i ∈ [k], (R,C)πr(i),πc(i) is (1, 0)−element; (b)
∀i ∈ [k]\{1}, (R,C)πr(i−1),πc(i), as well as (R,C)πr(k),πc(1) are (0, 1)−elements;
(c) all the remaining elements of (R,C) are (0, 0)−elements.

Exploiting the existence of such a subgame, we shall propose a polynomial–time
construction of SuppNE for both win lose and [0, 1]−bimatrix games. But first
we prove the existence of such a subgame, in win lose games without PNE. The
next proposition is a simple observation that will help us in our argument:

Proposition 2. For any (A,B) ∈ ({0, 1} × {0, 1})m×n that complies
with (PNE1)–(PNE4), it holds that: (a) Any row of (A,B) containing a
(1, 0)−element, must also contain a (0, 1)−element. (b) Any column of (A,B)
containing a (0, 1)−element, must also contain an (1, 0)−element.

Proof. A simple consequence of Lemma 2, see full version of the paper.

Consider now the (directed) graph G that we get from the Nash Dynamics graph
of a game 〈A,B〉 that complies with (PNE1)–(PNE4) when we remove all the
vertices corresponding to (0, 0)−elements. By Proposition 2, each (1, 0)−element
of G has an outgoing arc (a horizontal arc) towards every (0, 1)−element of
the same row in (A,B). Similarly, each (0, 1)−element of (A,B) has an out-
going arc (a vertical arc) towards every (1, 0)−element of the same column
in (A,B). Obviously, horizontal arcs represent selfish movements of the column
player, while the vertical arcs represent selfish movements of the row player.
Observe that each cycle in the Nash Dynamics graph is also a cycle of G, since
(0, 0)−elements cannot participate in a cycle. The following properties of G are
easy to prove:

Lemma 3. The following statements are true for any m × n {0, 1}−bimatrix
(A,B) that complies with (PNE1)–(PNE4): (a) Any (1, 0)−element of (A,B)
has at least one outgoing horizontal arc in G, and any (0, 1)−element of (A,B)
has at least one outgoing vertical arc in G. (b) Any cycle in G alternates vertical
and horizontal arcs and has even length. (c) G contains at least one cycle.

Proof. See full version of the paper.

604 S.C. Kontogiannis and P.G. Spirakis

Having proved the existence of cycles in G, our next step is to determine in a
submatrix of (A,B) that comprises a k−MP, for some 2 ≤ k ≤ m.

Theorem 3. Consider an arbitrary m×n win lose game 〈A,B〉 whose bimatrix
complies with (PNE1)–(PNE4). There is a k × k submatrix (A′, B′) of (A,B)
that comprises a k-Matching Pennies subgame, for some 2 ≤ k ≤ m.

Proof. We prove this by determining in polynomial time such a submatrix of
(A,B). First we determine a directed cycle K of G of minimum total length
(assuming that each arc has length exactly 1). This can be done easily in poly-
nomial time, eg, by determining for each arc (v, u) of G a shortest path γ from
u to v (if such paths exist) in the graph (V,E \ {(v, u)}). γ along with (v, u)
comprise a shortest–length cycle containing (v, u) in G. By Lemma 3 we already
know that there is at least one cycle in G. Then we compare the lengths of all
the produced directed cycles and choose a cycle K of minimum total length.
Obviously, the girth g = |K| ≥ 4 of G is an even number.

Proposition 3. There are permutations of the rows and columns of (A,B)
such that, wrt K, all the (1, 0)−elements lie in the main diagonal and all the
(0, 1)−elements lie in the diagonal just above it, plus the element (A,B)g/2,1.

Proof. See full version of the paper.

Given these permutations of the rows and columns of (A,B), we consider the
(g/2)×(g/2) submatrix M of (A,B) consisting of the first g/2 rows and the first
g/2 columns of (A,B). The following proposition ensures that the positions of
M not involved in our cycle, are indeed (0, 0)−elements.

Proposition 4. The elements of M not involved in K are all (0, 0)−elements.

Proof. See full version of the paper.

M has the shape of a (g/2)−MP and this completes the proof of Theorem 3.

Our next theorem exploits the existence of a g
2−MP subgame, in order to con-

struct a
(

1− 2
g

)
−SuppNE for the whole win lose game:

Theorem 4. For any m × n win lose bimatrix game 〈A,B〉, it is possible to
construct in polynomial time either a PNE, or else a

(
1− 2

g

)
−SuppNE, where

g the girth of the Nash Dynamics graph.

Proof. Consider the following algorithm (call it SuppNE4WinLose): Check
whether the conditions (PNE1)–(PNE4) are violated, and if this is the case,
return a PNE. Otherwise, find a shortest cycle K in the Nash Dynamics graph,
and return a uniform full mix of the rows and columns involved in this cycle
(rows and columns not involved get a zero probability mass).

It is trivial to verify that for k = g
2 , the k−MP subgame induced by the

rows and columns of (A,B) involved in K, the equiprobable fully mixed profile(
1
k1, 1

k1
)
∈ Δk × Δk is a NE (for the subgame). Additionally, each used row

Well Supported Approximate Equilibria in Bimatrix Games 605

(column) ensures for the row (column) player a payoff of 1/k, provided that the
opponent adopts the proposed strategy. The same holds if we extend the profile
with zero probabilities to all the rows and columns not involved in K. Let (x,y)
be the resulting profile from this extension. Any other row r of (A,B) (chosen
with zero probability by the row player) may ensure a profit Ary ≤ 1. Therefore,
no row may ensure more than 1− 1

k positive gain for the row player, given that
the column player chooses strategy x. The argument is identical for the column
player. We conclude that the proposed profile is a

(
1− 2

g

)
−SuppNE.

As for the time complexity, checking the existence of a PNE requires
O(m · n) elementary operations. The exploration of a shortest cycle can be
performed in polynomial time: Run an All Pairs Shortest Path algo-
rithm for directed graphs with integer weights. [13] ensures a running time of
O
(
|E| · |V |+ |V |2 log log |V |

)
for a graph G = (V,E) with integer arc lengths.

Observe that G has at most mn2/4 horizontal arcs and at most nm2/4 vertical
arcs. Since m ≤ n, |E| = O

(
n3
)

and |V | = m · n = O
(
n2
)
. So, this step needs

O
(
n5
)

operations and dominates the time complexity of SuppNE4WinLose.

Unfortunately the quality of the produced SuppNE depends on the girth of the
Nash Dynamics graph. Thus, we have no guarantee that our algorithm provides
an ε−SuppNE for some 0 ≤ ε < 1 that is far away from 1 (as the number of
strategies grows). Nevertheless, the following theorem proves that our algorithm
is quite efficient for sparse win lose games with large girth:

Theorem 5. For any λ−sparse win lose game 〈A,B〉 complying with (PNE1–
PNE4), SuppNE4WinLose provides a

(
min{g,2λ}−2

g

)
−SuppNE, where g is the

girth of the Nash Dynamics graph. If additionally λ = o(g), then we get an
o(1)−SuppNE. For 1−sparse games SuppNE4WinLose returns an exact NE.

Proof. The uniform profile over the rows and columns involved in the shortest
cycle ensure profit of 2

g per used row and column of the bimatrix, while any
unused row or column of the bimatrix may provide (given the strategy of the
opponent does not change) a profit of at most min{1, 2λ

g }. Therefore, our al-

gorithm produces in polynomial time a
(

min{g,2λ}−2
g

)
−SuppNE. In the special

case of 1−sparse game, since there is no row (column) of (A,B) having more
than one (1, 0)−elements (respectively (0, 1)−elements), the uniform full mix on
the rows and columns of the (g/2)−MP that we compute is indeed an exact NE.

SuppNE for Normalized Games. We now generalize our result for SuppNE
in win lose games to SuppNE in arbitrary [0, 1]−bimatrix games, by exploiting
a recent observation of [8]:

Lemma 4 ([8], Lemma 4.6). For any [0, 1]−bimatrix game 〈A,B〉, and its re-
laxed win lose image 〈Ã, B̃〉 defined by Ãi,j = I{Ai,j≥1/2}, B̃i,j = I{Bi,j≥1/2},
∀(i, j) ∈ [m] × [n], if (x,y) ∈ Δm × Δn is an ε−SuppNE for 〈Ã, B̃〉 then it is
also an 1+ε

2 −SuppNE for 〈A,B〉.

606 S.C. Kontogiannis and P.G. Spirakis

Theorem 6. There exists a polynomial–time algorithm which constructs
a
(

1− 1
g

)
−SuppNE for any [0, 1]−bimatrix game 〈A,B〉. If the relaxed

win lose image of 〈A,B〉 is λ−sparse, then this algorithm returns a(
1
2 + min{ 1

2 ,
λ
g } −

1
g

)
−SuppNE for 〈A,B〉.

Proof. The algorithm (call it SuppNE4Normalized) is the quite simple: First
construct the relaxed win lose game 〈A′, B′〉, and then return the profile that
computed by SuppNE4WinLose(A′, B′). The proof of its quality is a rather
straightforward application of Theorem 4 and Lemma 4. Step (2) returns ei-
ther a 1

2−SuppNE for 〈A,B〉 (if the relaxed win lose image has a PNE), or a(
1− 1

g

)
−SuppNE (if no PNE exist in the win lose image). In case of a λ−sparse

game, step (2) returns a
(

1
2 + min{ 1

2 ,
λ
g } −

1
g

)
−SuppNE for 〈A,B〉.

5 SuppNE in Random Games

Random Normalized Games. Consider [0, 1]−bimatrix games where the m×
n bimatrix is constructed randomly: The row player chooses the payoff matrix
A so that all its entries are independent (not necessarily iid) random variables
in [0, 1]. The column player chooses its payoff matrix B so that all its entries are
independent random variables in [0, 1]. We denote by Āi ≡ 1

n ·
∑

j∈[n] Aij = Ai·1
n

(resp. B̄j ≡ 1
m ·

∑
i∈[m] Bij = BT

j ·1
m) the average value of a cell in the ith row of

A (jth column of B).

Theorem 7. Consider a [0, 1]−bimatrix game 〈A,B〉, where the cells of A are
independent random variables such that ∀i ∈ [m],E

{
Āi
}
∈ [α − γ, α + γ] and

the cells of B are independent random variables such that ∀j ∈ [n],E
{
B̄j

}
∈

[β − γ, β + γ], for some sufficiently small deviation parameter γ ≥ 0.
(
1 1

m ,1 1
n

)

is a 2(γ + ε)−SuppNE with probability 1−m−δ for any constant δ > 0, and any
ε ≥

√
[logn + δ logm + log 4]/(2m).

Proof. See full version of the paper.

Random Win Lose Games. We finally study the construction of SuppNE for
random win lose games. Since the game is trivial when any of (PNE1)–(PNE4)
is violated, we are interested only in random models that are unlikely to violate
any of these conditions. Additionally, we assume that the random elements are
the entries of the bimatrix itself, rather than the payoff matrices of the two
players (otherwise the random game would be trivial to solve): For each entry of
the bimatrix, there is a probability pαβ that it becomes an (α, β)−element, for
any α, β ∈ {0, 1}. If p00 = p11 = 0 then we get a (solvable in polynomial time)
constant sum game. If additionally a (1, 1)−element appears, this is trivially a
PNE. Therefore, we consider the case in which 0 > p00 > p11 = 0.

Well Supported Approximate Equilibria in Bimatrix Games 607

Theorem 8. For a random win lose game with 0 > p00 > p11 = 0 if p01p10 =
o
(√

(logm)/(mn)
)
, then whp there is a PNE. If p01p10 = Ω

(√
(logm)/(mn)

)
,

then whp there is a 0.5−SuppNE with support size 2 for both players.

Proof. See full version of the paper.

Acknowledgements. We wish to thank Panagiota Panagopoulou for contribut-
ing to this work an earlier version of Theorem 7.

References

1. Althöfer, I.: On sparse approximations to randomized strategies and convex com-
binations. Linear Algebra and Applications 199, 339–355 (1994)

2. Bárány, I., Vempala, S., Vetta, A.: Nash equilibria in random games. In: Proc. of
the 46th IEEE Symp. on Found. of Comp. Sci (FOCS ’05), pp. 123–131. IEEE
Computer Society Press, Los Alamitos (2005)

3. Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc.
of the 47th IEEE Symp. on Found. of Comp. Sci (FOCS ’06), pp. 261–272. IEEE
Computer Society Press, Los Alamitos (2006)

4. Chen, X., Deng, X., Teng, S.: Computing nash equilibria: Approximation and
smoothed complexity. In: Proc. of the 47th IEEE Symp. on Found. of Comp. Sci
(FOCS ’06), pp. 603–612. IEEE Computer Society Press, Los Alamitos (2006)

5. Chen, X., Deng, X., Teng, S.: Sparse games are hard. In: Spirakis, P.G., Mavron-
icolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273.
Springer, Heidelberg (2006)

6. Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: Proc. of
the 18th Int. Joint Conf. on Art. Intel (IJCAI ’03), pp. 765–771 (2003)

7. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
nash equilibrium. In: Proc. of the 38th ACM Symp. on Th. of Comp (STOC ’06),
pp. 71–78. ACM Press, New York (2006)

8. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate equilibria.
In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS,
vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

9. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate nash equi-
librium. In: Proc. of the 8th ACM Conf. on El. Comm (EC ’07), ACM Press, New
York (2007)

10. Daskalakis, C., Papadimitriou, C.: Three player games are hard. Technical Report
TR05-139, Electr. Coll. on Comp. Compl (ECCC) (2005)

11. Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considera-
tions. Games & Econ. Behavior 1, 80–93 (1989)

12. Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In:
Proc. of the 38th ACM Symp. on Th. of Comp (STOC ’06), pp. 61–70. ACM
Press, New York (2006)

13. Hagerup, T.: Improved shortest paths on the word ram. In: Welzl, E., Monta-
nari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 61–72. Springer,
Heidelberg (2000)

608 S.C. Kontogiannis and P.G. Spirakis

14. Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for ap-
proximating nash equilibria in bimatrix games. In: Spirakis, P.G., Mavronicolas,
M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer,
Heidelberg (2006)

15. Kontogiannis, S., Spirakis, P.: Efficient algorithms for constant well supported ap-
proximate equilibria in bimatrix games. In: Proc. of the 34th Int. Col. on Aut.,
Lang. and Progr (ICALP ’07). LNCS, vol. 4596, pp. 595–606. Springer, Heidelberg
(2007)

16. Lemke, C., Howson, J.T.: Equilibrium points of bimatrix games. Journal of the
Society for Industrial and Applied Mathematics 12, 413–423 (1964)

17. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proc. of the 4th ACM Conf. on El. Comm (EC ’03), pp. 36–41. ACM Press,
New York (2003)

18. Nash, J.: Noncooperative games. Annals of Mathematics 54, 289–295 (1951)
19. Papadimitriou, C.: Algorithms, games and the internet. In: Proc. of the 33rd ACM

Symp. on Th. of Comp (STOC ’01), pp. 749–753. ACM Press, New York (2001)
20. Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74(2),

397–429 (2006)

Selfish Load Balancing Under Partial

Knowledge�

Elias Koutsoupias1, Panagiota N. Panagopoulou2,3, and Paul G. Spirakis2,3

1 Department of Informatics and Telecommunications, University of Athens, Greece
elias@di.uoa.gr

2 Computer Engineering and Informatics Department, Patras University, Greece
3 Research Academic Computer Technology Institute, Greece

{panagopp,spirakis}@cti.gr

Abstract. We consider n selfish agents or players, each having a load,
who want to place their loads to one of two bins. The agents have an
incomplete picture of the world: They know some loads exactly and only
a probability distribution for the rest. We study Nash equilibria for this
model, we compute the Price of Anarchy for some cases and show that
sometimes extra information adversely affects the Divergence Ratio (a
kind of subjective Price of Anarchy).

1 Introduction

We consider a simple version of load balancing in which n agents or players,
each having a load, want to place their loads to one of two bins. We assume
that the players are selfish and each one wants to minimize their own expected
load of their own bin. This is a typical problem in the study of the Price of
Anarchy. What distinguishes our approach here is that we aim at studying how
the information regime affects the Price of Anarchy. We consider local strategies
for the players in which a player has exact knowledge about the loads only
of some players and statistical knowledge about the rest. Such a situation can
practically arise in distributed situations, especially when there is not sufficient
time for the n agents to communicate and coordinate.

There are n selfish players (agents) and m = 2 bins. Each player i has a load
wi and has to select a bin in {0, 1} to place her load. The cost ci of player i is the
total load of the bin she selects, i.e., ci =

∑
k : bk=bi

wk. The cost is apparently
influenced by the decision of the other players which suggests that game theory
is a proper framework to study this situation. However, before we are able to
analyze the situation, we need to specify what kind of information is available
to the players. What does player i know about the load of some other player j?
Among the many possibilities, we will concentrate on two extreme cases: Player
� Partially supported by the EU within the 6th Framework Programme under con-

tracts 001907 “Dynamically Evolving, Large Scale Information Systems” (DELIS)
and 015964 “Algorithmic Principles for Building Efficient Overlay Computers” (AE-
OLUS), and by the General Secretariat for Research and Technology of the Greek
Ministry of Development within the Programme PENED 2003.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 609–620, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

610 E. Koutsoupias, P.N. Panagopoulou, and P.G. Spirakis

1 2

3

1

Fig. 1. Some information regime graph for 3 players

i knows either the exact value wj (a real number in [0, 1]) or a probability
distribution on wj (the uniform distribution in [0, 1]). We can represent the
information regimes by directed graphs which we will call information regime
graphs (example in Fig. 1). An edge (i, j) denotes that player i knows the value
wj , while its absence denotes that the player i knows only that the value wj is
a random variable uniformly distributed in [0, 1].

At the one extreme, when every player knows all wj ’s (which corresponds to a
complete graph), the problem has been studied before as selfish task allocation
[8]. At the other extreme, when each player knows only the distributions of the
other players but not their actual values, the situation is very similar to the model
studied by Papadimitriou and Yannakakis [11] for the purpose of quantifying the
value of information. There are two main differences between our consideration
and the model of [11]: First, we take the game-theoretic approach and assume
that the players are selfish and care only about their own objective, while in the
model of [11] the players want to optimize the global objective. Second, the cost
in [11] was the probability of overflow, but in this work, the cost of a player is
the total load of the bin she selects.

The main motivation of our work is to study the effects of information hiding
on selfish systems. What happens to the Price of Anarchy in the more general
case when players know only some values wi?

In this work, we consider only pure Nash equilibria. A trivial observation
is that when we allow mixed Nash equilibria, there is always the fully-mixed
equilibrium in which every player selects uniformly at random a bin. This Nash
equilibrium has been studied extensively. For example, it was shown in [8] that
the Price of Anarchy is 3/2 in this case even when there are only 2 players.

To be able to compute the Price of Anarchy, we need to decide about the
social cost and the optimal cost, that is the numerator and denominator of the
Price of Anarchy. We consider the social cost to be either the sum (equivalent to
the average) of the cost of all players or the maximum cost among players (which
is equal to the makespan). The definition of the optimal cost is clear for the com-
plete information regime, but in the case of incomplete information there are at
least two natural choices. Either the optimal algorithm is a centralized one which
knows all wi’s, or the optimal algorithm is a distributed algorithm which knows
exactly as much as the players of the game. In the latter case, each node knows
only the wi’s indicated by the information regime graph. The objective of each
node, unlike the selfish objective that contributes to the numerator of the Price
of Anarchy, is to minimize the global objective, the social cost. In this work, we
will compute the Price of Anarchy using a distributed optimal algorithm.

Selfish Load Balancing Under Partial Knowledge 611

Related Work. The game of n non-cooperating agents and m parallel links (or
bins) was defined in [8] and has an extended literature e.g., [2,3,4,7,9,10]. In
particular, the work of Monien et al [6] is closer in spirit to this work since they
consider Bayesian games. Their model though is very different than ours.

The load balancing problem studied in this work was originally introduced by
Papadimitriou and Yannakakis [11] in an effort to understand the crucial eco-
nomic value of information [1] as a computational resource in a distributed sys-
tem (e.g. in the context of Computational Complexity [12]). That work considered
only n = 3 agents. In order to understand how the optimum solution achieved by
the agents varies as a function of the amount of information available to them, Pa-
padimitriou and Yannakakis [11] considered each possible communication pattern
and discovered the corresponding optimal decision protocol to be unexpectedly
sophisticated. For the special case where no communication is allowed, i.e. when
each agent i is aware of only her own load wi, it was conjectured that the simple
decision rule: “if wi ≤ 1− 1√

7
then put wi on bin 0 else put wi on bin 1” is optimal;

the conjecture is still open. Georgiades et al. [7] studied the extension of the load
balancing problem to the case of n agents. Their work was focused on the special
cases of oblivious decision rules, for which agents do not “look at” their inputs,
and non-oblivious decision rules, for which they do. In either case, optimality con-
ditions were derived in the form of combinatorial polynomial equations.

Our Results. We study the Nash equilibria of these games and give some results
about the Divergence Ratio and the Price of Anarchy. In particular since the
players have incomplete picture of the world, the cost that they compute may
differ from the actual cost. To capture this situation, we define the Divergence
Ratio, a kind of subjective Price of Anarchy. We show that for the regime of total
lack of information, the Divergence Ratio is (n+1)/n for even n and 1 for odd n.
For the regime of complete information the Divergence Ratio is 4/3. In contrast,
the Divergence Ratio is Θ(n) for some intermediate information regimes. We
also estimate the Price of Anarchy for the total lack of information regime.

2 The Model

Consider a set N = {1, 2, . . . , n} of n selfish agents. Each agent i has a load
wi ∈ [0, 1]. Let w = (wi)i∈N denote a vector of input loads, one per agent. For
any pair of agents (i, j) ∈ N ×N , agent i knows either (a) the exact value of wj

or (b) that wj is uniformly distributed on [0, 1]. For each i ∈ N let Ii = {j ∈ N :
agent i knows the exact value of wj}, and thus for each j /∈ Ii, agent i knows
that wj is uniformly distributed on [0, 1]. Denote by I = (Ii)i∈N the collection
of Ii for all i ∈ N . Let’s also denote the cardinality of Ii by γi.

Each agent i ∈ N has to select one of two available bins (bin 0 and bin 1)
to put her load. The bin is selected based on the values of wi’s in Ii. Thus, a
strategy for agent i is a function si from [0, 1]γi to {0, 1}: si((wj)j∈Ii).

Of particular interest are the single-threshold strategies where each agent i
places her load to the first bin iff wi is below a threshold value ti. This threshold
value depends on the known loads of the agents, i.e. ti is a function of (wj)j∈Ii .

612 E. Koutsoupias, P.N. Panagopoulou, and P.G. Spirakis

Here we study threshold strategies, but most of our results can be extended
easily to all strategies. The reason is simple: What matters in most of our con-
siderations is the expected load that a player places in one bin. In particular, for
a threshold ti, the expected load that player i places in bin 0 is

∫ ti

0
widwi = t2i /2

and in bin 1 it is
∫ 1

ti
widwi = 1/2 − t2i /2. From the point of view of the other

players that do not know the value wi, only the expected value t2i /2 matters.
But this, in general, can be achieved with many strategies (for example, by the
inverse threshold strategy that places the load wi in bin 0 when its value is
greater that ti where t

2
i /2 = 1/2− t2i /2).

A strategy profile s = (s1, . . . , sn) is a collection of strategies, one for each
agent. Denote by (s′i, s−i) the strategy profile that is identical to s except for agent
i, who chooses strategy s′i instead of si. Since we will mainly consider threshold
strategies, we will denote such a strategy profile by t = (t1, . . . , tn) ∈ [0, 1]n.

For weights w and strategies s, we define two costs of each player i. The
subjective cost of a player is the expected cost that player computes based on
her knowledge of the weights in Ii and assuming that the other weights are
uniformly (and independently) distributed in [0, 1]. The (objective) cost is the
actual cost which can be computed from the full knowledge of w and s. The
social cost is the cost of the system for these weights and strategies and it is
either the sum of the cost of all agents or the maximum cost among agents; the
latter corresponds to the makespan. In analogy to the costs of the players, we
have the subjective social cost and the (objective) social cost. We will denote
the subjective cost by costi(s; w; Ii).

Definition 1. The strategy profile s = (s1, . . . , sn) is a Nash equilibrium if and
only if, for all w, i ∈ N , and s′i, costi(s; w; Ii) ≤ costi ((s′i, s−i); w; Ii) .

3 The Structure of Nash Equilibria

Lemma 1. For any threshold strategy profile t ∈ [0, 1]n and for all i ∈ N ,

i /∈ Ii ⇒ costi(t;w; Ii) = ti

⎛

⎝
∑

j∈Ii:wj≤tj

wj −
∑

j∈Ii:wj>tj

wj +
∑

j /∈Ii,j �=i

t2j −
n− γi − 1

2

⎞

⎠

+
1

2
+

∑

j∈Ii:wj>tj

wj +
n− γi − 1

2
− 1

2

∑

j /∈Ii,j �=i

t2j (1)

i ∈ Ii ⇒ costi(t;w; Ii) =

{∑
j∈Ii:wj≤tj

wj + 1
2

∑
j /∈Ii

t2j if wi ≤ ti∑
j∈Ii:wj>tj

wj + n−γi
2 − 1

2

∑
j /∈Ii

t2j if wi > ti
. (2)

Proof. Fix a strategy profile t ∈ [0, 1]n and an agent i ∈ N . Assume that i /∈ Ii.
Then i does not know the exact value of her own load, so she expects that her
load will be put in bin 0 with probability ti and in bin 1 with probability 1− ti.

Therefore (i) with probability ti, the cost for agent i is her own expected
load, plus the sum of the loads of all j ∈ Ii such that wj ≤ tj , plus the expected
load that every other agent j /∈ Ii puts on bin 0 (that is, t2j/2), and (ii) with

Selfish Load Balancing Under Partial Knowledge 613

probability 1− ti, the cost for agent i is her own expected load, plus the sum of
the loads of all j ∈ Ii such that wj > tj , plus the expected load that every other
agent j /∈ Ii puts on bin 1 (that is, 1/2− t2j/2).

Agent’s i expected load is 1/2 (i.e.
∫ 1

0 widwi). Therefore, if i /∈ Ii, then the
cost of agent i ∈ N in the strategy profile t is

costi(t; w; Ii) =
1
2

+ ti

⎛

⎝
∑

j∈Ii :wj≤tj

wj +
∑

j /∈Ii,j
=i

t2j
2

⎞

⎠

+(1− ti)

⎛

⎝
∑

j∈Ii :wj>tj

wj +
∑

j /∈Ii,j
=i

1− t2j
2

⎞

⎠

= ti

⎛

⎝
∑

j∈Ii :wj≤tj

wj −
∑

j∈Ii:wj>tj

wj +
∑

j /∈Ii,j
=i

t2j −
n− γi − 1

2

⎞

⎠

+
1
2

+
∑

j∈Ii:wj>tj

wj +
n− γi − 1

2
− 1

2

∑

j /∈Ii,j
=i

t2j .

Now, if i ∈ Ii, i.e. i knows the exact value of her load, then

costi(t; w; Ii) =

{∑
j∈Ii :wj≤tj

wj +
∑

j /∈Ii
t2j/2 if wi ≤ ti∑

j∈Ii :wj>tj
wj +

∑
j /∈Ii

(1/2− t2j/2) if wi > ti

=

{∑
j∈Ii :wj≤tj

wj + 1
2

∑
j /∈Ii

t2j if wi ≤ ti∑
j∈Ii :wj>tj

wj + n−γi

2 − 1
2

∑
j /∈Ii

t2j if wi > ti
. ��

3.1 The Total Lack of Information Case, Ii = ∅

Assume Ii = ∅ for all i ∈ N . From Equation 1 of Lemma 1, the cost of any agent
i ∈ N for a strategy profile t = (t1, . . . , tn) ∈ [0, 1]n is

costi(t; w; Ii) = ti

⎛

⎝
∑

j
=i

t2j −
n− 1

2

⎞

⎠+
n

2
− 1

2

∑

j
=i

t2j . (3)

Proposition 1. Consider the case where Ii = ∅ for all i ∈ N . Then the strategy
profile t ∈ [0, 1]n is a Nash equilibrium if and only if, for all i ∈ N ,

ti = 0 ⇒
∑

j
=i

t2j ≥
n− 1

2

ti = 1 ⇒
∑

j
=i

t2j ≤
n− 1

2

ti ∈ (0, 1)⇒
∑

j
=i

t2j =
n− 1

2
.

614 E. Koutsoupias, P.N. Panagopoulou, and P.G. Spirakis

Proof. Fix a strategy profile t ∈ [0, 1]n. By Definition 1, t is a Nash equilibrium
if and only if, for all i ∈ N , costi(t; w; Ii) = mint′

i∈[0,1] costi((t′i, t−i); w; Ii).
Now fix an agent i ∈ N . From Equation 3, costi(t; w; Ii) is an affine function of
ti. Therefore, it is minimized at ti = 0 only if it is non-decreasing, i.e. only if∑

j
=i t
2
j ≥ n−1

2 . It is minimized at ti = 1 only if it is non-increasing, i.e. only if∑
j
=i t

2
j ≤ n−1

2 . Finally, it is minimized at some ti ∈ (0, 1) only if it is a constant
function, i.e. only if

∑
j
=i t

2
j = n−1

2 . ��

Observe that, in a Nash equilibrium, all i ∈ N such that ti ∈ (0, 1) must have
equal ti’s. This is because, for all i ∈ N such that ti ∈ (0, 1),

∑
j
=i t

2
j = n−1

2

which implies that t2i =
∑

j∈N t2j − n−1
2 .

With this, we can now characterize all the Nash equilibria of the total lack of
information case.

Theorem 1. Consider the case where Ii = ∅ for all i ∈ N . Then the strategy
profile t ∈ [0, 1]n is a Nash equilibrium if and only if κ agents choose threshold
1, λ agents choose threshold tA ∈ (0, 1), n− κ−λ agents choose threshold 0 and

(1) n−1
2 − λ ≤ κ ≤ n−1

2 , λ > 1, t2A = n−1
2(λ−1) −

κ
λ−1 or

(2) n is even, κ = n
2 , λ = 0 or

(3) n is odd, κ = n+1
2 , λ = 0 or

(4) n is odd, κ = n−1
2 , λ = 0 or

(5) n is odd, κ = n−1
2 , λ = 1.

Moreover, the maximum, over all Nash equilibria, Social Cost is n+1
4 .

Proof. In order to find all Nash equilibria we have to find all the possible parti-
tions of the set of agents into three sets A, B and C so that

– For all i ∈ A, ti = tA for some tA ∈ (0, 1) and
∑

j
=i t
2
j = n−1

2 , or equivalently

(|A| − 1) · t2A + |B| · 0 + |C| · 1 =
n− 1

2

(|A| − 1)t2A + |C| =
n− 1

2
.

– For all i ∈ B, ti = 0 and
∑

j
=i t
2
j ≥ n−1

2 , or equivalently

|A|t2A + |C| ≥ n− 1
2

.

– For all i ∈ C, ti = 1 and
∑

j
=i t
2
j ≤ n−1

2 , or equivalently

|A|t2A + |C| − 1 ≤ n− 1
2

.

Selfish Load Balancing Under Partial Knowledge 615

We consider the following cases.

1. |A| = 0. Then there is a Nash equilibrium if and only if n−1
2 ≤ |C| ≤ n+1

2 .
Since |B| = n−|C|, it must also hold that n−1

2 ≤ |B| ≤ n+1
2 . This is possible

if and only if (1) n is even and |B| = |C| = n/2, in which case the cost for
any agent is n/4, or (2) if n is odd, |B| = n+1

2 and |C| = n−1
2 , in which

case the cost for any agent that chooses threshold 0 is n+1
4 and the cost for

any agent that chooses threshold 1 is n−1
4 or if (3) n is odd, |B| = n−1

2 and
|C| = n+1

2 , in which case the cost for any agent that chooses threshold 0 is
n−1

4 and the cost for any agent that chooses threshold 1 is n+1
4 .

2. |A| = 1. Then there is a Nash equilibrium if and only if |C| = n−1
2 and

0 < tA < 1. Then |B| = n − 1 − n−1
2 = n−1

2 . So in this case we have a
Nash equilibrium if and only if n is odd, |B| = |C| = n−1

2 and 0 < tA < 1.

Moreover, the cost for any agent that chooses threshold 0 is n+1
4 − t2A

2 , the

cost for any agent that chooses threshold 1 is n−1
4 + t2A

2 , and the cost for the
agent that chooses tA ∈ (0, 1) is n+1

4 .
3. |A| > 1. Then there is a Nash equilibrium if and only if

(|A| − 1)t2A + |C| =
n− 1

2
and

|A|t2A + |C| ≥ n− 1
2

and

|A|t2A + |C| − 1 ≤ n− 1
2

.

Simple calculations yield that the above are equivalent to |C| ≤ n−1
2 and

|C| ≥ n+1
2 − |A| and t2A = n−1

2(|A|−1) −
|C|

|A|−1 . Furthermore, the cost for any
agent i ∈ N such that ti = 0 is

costi(t; w; Ii) =
n

2
− 1

2
(λt2A + κ) <

n + 1
4

,

the cost for any agent i ∈ N such that ti = 1 is

costi(t; w; Ii) = κ− 1 + λt2A −
n− 1

2
+

n

2
− 1

2
(κ− 1 + λt2A) <

n + 1
4

,

and the cost for any agent i ∈ N such that ti = tA is

costi(t; w; Ii) =
n

2
− 1

2
(
(λ− 1)t2A + κ

)
=

n + 1
4

. ��

4 The Divergence Ratio

In order to study the impact that the information regime plays on the perfor-
mance of the system, we first consider the Divergence Ratio. This is essentially
the subjective Price of Anarchy and it is the worst-case ratio of the system cost
at a Nash equilibrium over the minimum system cost.

We first define the social cost SC(t, I) to be the maximum subjective selfish
cost over all agents, i.e. SC(t, I) = maxi∈N costi(t; w; Ii). Notice that here con-
sider the social cost as the maximum among the costs of all players. We could

616 E. Koutsoupias, P.N. Panagopoulou, and P.G. Spirakis

define it also as the sum of the costs of all players. All results in this section ex-
tend easily to this social cost as well, although we omit them from this abstract
for lack of space.

The Players’ Optimum PO(I) is the minimum, over all possible strategy pro-
files t ∈ [0, 1]n, Social Cost: PO(I) = mint∈[0,1]n SC(t, I). That is, the Players’
Optimum corresponds to a strategy profile that minimizes the maximum cost
seen by the agents.

The Divergence Ratio DR(I) is the worst-case, over all weights w and Nash
equilibria t, of the ratio SC(t,I)

PO(I) :

DR(I) = max
w

max
t:t N.E.

SC(t, I)
PO(I)

.

4.1 The Case of Ii = ∅
We will now show that the Divergence Ratio for the total lack of information
regime is small. Recall from Theorem 1 that the Social Cost for this information
regime is (n + 1)/4. We now need to compute the Players’ Optimum for this
regime.

Lemma 2. Consider the case where Ii = ∅ for all i ∈ N . Then PO(I) = n
4 if n

is even and PO(I) = n+1
4 if n is odd.

Proof (Sketch). Let t∗ denote the strategy profile that corresponds to the Play-
ers’ Optimum. We consider the following cases:

– Case 1: t∗i ∈ {0, 1} for all i ∈ N . In this case, the set of agents N is partitioned
into 2 subsets N0 and N1 such that t∗i = 0 for all i ∈ N0 and t∗i = 1 for
all i ∈ N1, |N0| + |N1| = n and the Social Cost is minimized, i.e. PO(I) =
minN0⊆N max

{
|N0|

2 , n−|N0|
2

}
. If n is even, then |N0| = n/2 and PO(I) = n

4 .

If n is odd, then |N0| = (n− 1)/2 or |N0| = (n + 1)/2 and PO(I) = n+1
4 .

– Case 2: There exists some i ∈ N such that t∗i ∈ (0, 1). By contradiction,
it can be shown that in this case there must be some agent j such that
costj(t∗; w; I) ≥ n+1

4 if n is odd or some agent j such that costj(t∗; w; I) ≥ n
4

if n is even. ��

Theorem 1 and Lemma 2 immediately yield:

Theorem 2. Consider the case where Ii = ∅ for all i ∈ N . Then DR(I) = 1+ 1
n

if n is even and DR(I) = 1 if n is odd.

4.2 The Case of Ii = N

Assume that Ii = N for all i ∈ N . From Equation 2 of Lemma 1, the cost of any
agent i ∈ N for a strategy profile t = (t1, . . . , tn) ∈ [0, 1]n is

costi(t; w; Ii) =

{∑
j∈N :wj≤tj

wj if wi ≤ ti∑
j∈N :wj>tj

wj if wi > ti
.

Selfish Load Balancing Under Partial Knowledge 617

An important observation in this case is that, since each agent knows the exact
values of the loads of all other agents, it suffices to consider single-threshold
strategies of the form ti = 0 or ti = 1, for all i ∈ N . For example, consider
a Nash equilibrium t such that 0 < tk < 1 for some k ∈ N . Assume that
wk ≤ tk. All agents know that wk ≤ tk, so all agents know that wk goes on
bin 0. Therefore, all strategy profiles (t′k, t−k) such that wk ≤ t′k ≤ 1 are Nash
equilibria, which are equivalent (as regards the selfish costs of the agents) to the
Nash equilibrium t. Similar arguments apply for the case wk > tk. Therefore
the Nash equilibria in this case correspond to the pure Nash equilibria of the
KP model [8] with n agents and 2 links. So in this case the Divergence Ratio
is identical to the pure Price of Anarchy in the KP model with n agents and 2
links. In [5] (Theorem 7.1), it is shown that the pure Price of Anarchy in this
setting is at most 4

3 and this bound is tight. We give an alternative proof of this
bound:

Theorem 3. Consider the case where Ii = N for all i ∈ N . Then DR(I) = 4
3 .

Proof. Consider an arbitrary Nash equilibrium t∗. Then there is an equivalent,
with respect to the costs and the Divergence Ratio, Nash equilibrium t such that
for all i ∈ N , ti = 0 or ti = 1. The total load on bin 0 is B0(t) =

∑
i:ti=1 wi and

the total load on bin 1 is B1(t) =
∑

i:ti=1 wi. Therefore the cost for agent i ∈ N is

costi(t; w; Ii) =
{
B0(t) if ti = 1
B1(t) if ti = 0 .

Without loss of generality, assume that B0(t) ≥ B1(t). Thus SC(t, I) = B0(t).
Moreover, PO(I) ≥

∑
i∈N wi

2 = B0(t)+B1(t)
2 . Now if only one agent, say agent i,

places her load on bin 0 (i.e. ti = 1 and tj = 0 for all j �= i) then PO(I) = B0(t)
and DR(I) = 1.

Otherwise, there are at least two loads on bin 0. Thus there exists an agent i
that chooses bin 0 (i.e. with ti = 1) such that wi ≤ B0(t)

2 . Since t is a Nash equi-
librium, it holds that B0(t) ≤ B1(t) + wi, implying that B0(t) ≤ B1(t) + B0(t)

2

and that B1(t) ≥ B0(t)
2 . Therefore, PO(I) ≥ B0(t)+B1(t)

2 ≥ 3B0(t)
4 and DR(I) =

maxt:t N.E.
SC(t,I)
PO(I) ≤

4
3 .

Now consider the case where n is even and n > 2, w1 = w2 = (n − 2)α and
wi = α for all i �= 1, 2, for some α ∈

(
0, 1

n−2

]
. Then the strategy profile t where

t1 = t2 = 1 and ti = 0 for all i �= 1, 2 is a Nash equilibrium which gives a
Social Cost equal to 2(n−2)α. In this case however PO(I) = 3

2 (n−2)α and thus
DR(I) ≥ 2(n−2)α

3
2 (n−2)α

= 4
3 . ��

4.3 The Case of Arbitrary Ii

We have shown that, in the case where the agents have no information about
the exact value of their weights, then the Divergence Ratio is very close to 1.

618 E. Koutsoupias, P.N. Panagopoulou, and P.G. Spirakis

The same holds when the agents have complete information. In contrast, we will
next show that if i ∈ Ii and the cardinality of Ii is sufficiently small, then the
Divergence Ratio grows significantly.

Theorem 4. If γi = γ ≤ n−2
3 and i ∈ Ii for all i ∈ N , then DR(I) ≥ n+γ+2

4γ+4 .

Proof. For the proof, we focus on the instance where wi = 1 for all i ∈ N . Our
goal is to find (a) a Nash equilibrium t of low Social Cost, so as to upper bound
the Players’ Optimum, and (b) a Nash equilibrium t′ of high Social Cost, so as
to lower bound the worst possible Social Cost:

(a) Consider the strategy profile t such that ti = 1 − 1
n−γ for all i ∈ N . Then

the cost for any agent i ∈ N is

costi(t; w; Ii) = γ +
n− γ

2
− n− γ

2

(
1− 1

n− γ

)2

= γ + 1− 1
2(n− γ)

.

The profile t is a Nash equilibrium, since the cost for i if she chose bin 0
would be

1 +
n− γ

2

(
1− 1

n− γ

)2

≥ γ + 1 +
1

2(n− γ)
> costi(t; w; Ii).

The Social Cost of t is SC(t, I) = maxi∈N costi(t; w; I) ≤ γ + 1.

(b) Now consider the profile t′ where t′i =
√

1
2 + γ−1

n−γ for all i ∈ N (since γ ≤
n−2

3 , t′i ∈ (0, 1)). Then the cost for any agent i ∈ N is

costi(t′; w; Ii) = γ +
n− γ

2
− n− γ

2
(t′i)

2 =
n + γ + 2

4
.

The profile t′ is also a Nash equilibrium, since the cost for i if she chose bin
0 would be

1 +
n− γ

2
(t′i)

2 =
n + γ + 2

4
= costi(t′; w; Ii).

The Social Cost of t′ is SC(t′, I) = maxi∈N costi(t′; w; I) = n+γ+2
4 .

Thus the Divergence Ratio is

DR(I) = max
t̂:̂t N.E.

SC(̂t, I)
PO(I)

≥ SC(t′, I)
SC(t, I)

≥
n+γ+2

4

γ + 1
=
n + γ + 2
4γ + 4

. ��

Corollary 1. If γi = γ = o(n) and i∈Ii for all i∈N , then limn→∞ DR(I)=∞.

Interestingly, the above observations hold also for the case of the social cost
which is the sum of the costs of all players and it is an easy consequence of the
symmetry of the Nash equilibria in this section.

Selfish Load Balancing Under Partial Knowledge 619

5 The Price of Anarchy

We now consider the objective cost and the Price of Anarchy for the total lack of
information regime. In particular, for a given strategy profile t (or more general
strategy profile s), we define the objective cost of player i to be the expected load
of the bin selected by i. The expectation is over uniformly distributed w ∈ [0, 1]n.
Accordingly, we define the social cost as the sum of the costs of all players. Notice
that the social cost here is the sum of the cost of all players. The case of max
social cost is more complicated and we leave it as an interesting open problem.

The Price of Anarchy is the worst-case ratio of the social cost at a Nash
equilibrium over the expected optimum. To compute the optimum, we assume
that the optimal algorithm is distributed and has the same information as the
agents. In the total lack of information regime, this is easy to define when we
consider only pure strategies: 	n/2
 of the agents select bin 0 and the rest select
bin 1. The expected optimal cost of each agent is either 1

2	n/2
 or 1
25n/26. The

sum of the costs of all agents is

OPT =

{
n2

4 for even n
n2+1

4 for odd n
.

Theorem 5. The Price of Anarchy for the total lack of information regime is

PA =

{
n+1
n for even n

n(n+1)
n2+1 for odd n

.

Proof. From the characterization of the Nash equilibria in Theorem 1, we can
compute the cost for each agent. For the non-deterministic agents, i.e., the agents
that have a threshold in (0, 1), the cost is exactly (n + 1)/4. This follows either
by computing the cost explicitly: 1/2, which is the expected cost of her own load,
plus the expected cost of bin 0 due to other agents κ/2 + t2A/(λ− 1) = (n+ 1)/4
(the notation is from Theorem 1). A more direct way follows from the definition
of the Nash equilibrium: The expected load on the bins due to other agents
should be the same which happens when the load is (n − 1)/4. Adding the
expected load 1/2 of her own, the cost of agent i is (n + 1)/4.

By similar considerations, for the deterministic agents the cost is at most
(n + 1)/4. The worst case happens when all agents are non-deterministic. The
total cost of all players is n(n + 1)/4. The Price of Anarchy follows by dividing
by the optimal OPT. ��

References

1. Arrow, K.: The Economics of Information. Harvard University Press (1984)
2. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In:

Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

620 E. Koutsoupias, P.N. Panagopoulou, and P.G. Spirakis

3. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

4. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash Equi-
libria in Discrete Routing Games with Convex Latency Functions. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
645–657. Springer, Heidelberg (2004)

5. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Structure and
Complexity of Extreme Nash Equilibria. Theoretical Computer Science 343(1-2),
133–157 (2005)

6. Gairing, M., Monien, B., Tiemann, K.: Selfish routing with incomplete information.
SPAA 2005 , 203–212 (2005)

7. Georgiades, S., Mavronicolas, M., Spirakis, P.: Optimal, Distributed Decision-
Making: The Case of No Communication. In: Proceedings of the 12th International
Symposium on Fundamentals of Computation Theory, pp. 293–303 (1999)

8. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Ti-
son, S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

9. Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which
is the Worst-case Nash Equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 551–561. Springer, Heidelberg (2003)

10. Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: Mavronicolas, M.,
Spirakis, P. (eds.) Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing, July 2001, pp. 510–519 (2001), Also, accepted to Algorithmica

11. Papadimitriou, C.H., Yannakakis, M.: On the Value of Information in Distributed
Decision-Making. In: Proceedings of the 10th Annual ACM Symposium on Princi-
ples of Distributed Computing, pp. 61–64. ACM Press, New York (1991)

12. Yao, A.C.: Some Complexity Questions Related to Distributive Computing. In:
Proceedings of the 11th ACM Symposium on Theory of Computing (STOC 1979),
pp. 209–213. ACM Press, New York (1979)

Extending the Notion of Rationality of Selfish

Agents: Second Order Nash Equilibria

Vittorio Bilò1 and Michele Flammini2

1 Dipartimento di Matematica “Ennio De Giorgi”, Università del Salento
Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy

vittorio.bilo@unile.it
2 Dipartimento di Informatica, Università di L’Aquila

Via Vetoio, Loc. Coppito, 67100 L’Aquila, Italy
flammini@di.univaq.it

Abstract. Motivated by the increasing interest of the Computer Sci-
ence community in the study and understanding of non-cooperative sys-
tems, we present a novel model for formalizing the rational behavior of
agents with a more farsighted view of the consequences of their actions.
This approach yields a framework creating new equilibria, which we call
Second Order equilibria, starting from a ground set of traditional ones.
By applying our approach to pure Nash equilibria, we define the set of
Second Order Nash equilibria and present their applications to the Pris-
oner’s Dilemma game, to an instance of Braess’s Paradox in the Wardrop
model and to the KP model with identical machines.

1 Introduction

Central to the theory and study of multiplayer non-cooperative games is the no-
tion of Nash equilibrium [33,34], due to its ability to model the rational behavior
of selfish agents. All the agents (players) participating in a game have a set of
strategies they can adopt and, for any combination of the strategies adopted by
everyone, they obtain a certain payoff. A Nash equilibrium is a particular com-
bination of strategies such that none of the players can improve his payoff by
changing his strategy. It is well known that Nash equilibria fail in optimizing the
overall satisfaction of the players in several games, the pragmatic example being
the Prisoner’s Dilemma. One of the reasons for this suboptimality lies in the fact
that players always perform deviations from a particular strategy only motivated
by a transient improvement on their payoffs, without considering what will be
their final payoffs when the game eventually reaches a Nash equilibrium.

This observation naturally yields the following question: “Can we really con-
sider rational an agent taking decisions only based on what will be their short
term consequences, without considering what these decisions will cause tomor-
row?”. In this paper we propose a novel model for formalizing the rational behav-
ior of agents with a more farsighted view of the consequences of their deviations.
We achieve this purpose by defining a framework yielding new notions of equi-
libria which we call Second Order equilibria. They can be based upon different

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 621–632, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

622 V. Bilò and M. Flammini

notions of traditional non-cooperative equilibria. Throughout the paper we will
deal with Second Order Nash equilibria leaving the discussion of other extensions
to future works.

Games, Equilibria and Optimality. A strategic game G = (P, S, ω) is defined
as follows. There is a set of n players P . Any player pi ∈ P has a set of strategies
Si and the set S = S1 × . . . × Sn is called the set of all possible states of the
game. The payoff function ωi : S → ; defines the cost that player pi has to incur
when the game is on state s ∈ S. Usually, each game has an associated global
function γ : S → ;, called the social function, that is required to be optimized.

Let s = (s1, . . . , si, . . . , sn) and s′ = (s1, . . . , s
′
i, . . . , sn) be two states of G such

that ωi(s′) < ωi(s). We call the transition of game G from s to s′ an improving
step performed by player pi. A pure Nash equilibrium is a state in which no
player possesses an improving step. Unfortunately, pure Nash equilibria are not
guaranteed to exist for all games, thus Nash himself generalized this definition
by introducing the concept of mixed strategy. A mixed strategy for player pi
is a probability distribution on the set of strategies Si. The payoff obtained by
pi is now defined as the expected value of the related random variable and the
definition of mixed Nash equilibrium is obtained consequently. The property of
mixed Nash equilibria, stated by Nash’s famous Theorem, is that they exist
for any game. However, there are cases in which the use of mixed strategies is
unrealistic or unacceptable. Throughout the paper we will only deal with pure
Nash equilibria and will refer to them simply as Nash equilibria.

The evolution of a game G resulting from the interactions among players
performing improving steps can be easily captured by a graph GG = (N,A),
called the state graph of G, where N = S and A is such that there exists an edge
between s and s′ if and only if there exists an improving step from s to s′. An
important issue related to the notion of Nash equilibrium is that of convergence
towards such an equilibrium point. A game G is said to be convergent if for
any s ∈ S, any sequence of improving steps starting from s ends in a Nash
equilibrium, or, analogously, G does not admit an infinite sequence of improving
steps. By using the representation of G through its state graph, we have that G
is convergent if and only if GG is acyclic.

Example 1 (Prisoner’s Dilemma). Two suspects in a major crime are held in
separate cells. There is enough evidence to convict each of them of a minor
offense, but not enough evidence to convict either of them of the major crime
unless one of them acts as an informer against the other (finks). If they both
stay quiet, each will be convicted of the minor offense and spend one year in
prison. If one and only one of them finks, he will be freed and used as a witness
against the other, who will spend three years in prison. If they both fink, each
will spend two years in prison.

This situation can be modeled as a strategic game in which we have two
players p1 and p2. The set of strategies is the same for both of them and is
Si = {Quiet, F ink}, for i ∈ {1, 2}. Finally, the payoff function is shown in the
table depicted in Figure 1.

Extending the Notion of Rationality of Selfish Agents 623

Fig. 1. The Prisoner’s Dilemma Game

As it can be easily seen by inspection, the game admits one Nash equilibrium
represented by the state {Fink, F ink}. This non-cooperative solution contrasts
with the state {Quiet,Quiet} in which both players enjoy a better payoff.

Two metrics have been introduced in the literature in order to capture the loss
of optimality yielded by non-cooperative equilibria, that is the price of anarchy
[35] and the price of stability [1]. Let N (G) be the set of equilibria of game G
and s∗ be a state optimizing the social function γ. The price of anarchy of G is
defined as PA(G) = sups∈N (G)

γ(s)
γ(s∗) , while the price of stability of G is defined

as PS(G) = infs∈N (G)
γ(s)
γ(s∗) .

Network Games and Selfish Routing. In recent years a considerable re-
search effort has been devoted to the estimation of the price of anarchy of differ-
ent network games. The reasons of such an interest in network games come from
the affirmation of the Internet and, in general, of huge unregulated networks,
where the traffic generated by their users is not controlled by some central au-
thority, but it is rather the outcome resulting from the interaction of the users
when routing their traffic selfishly and independently on the network. Two ma-
jor models have been deeply investigated by researchers: the KP model [28] and
the Wardrop model [13,41], both being convergent games.

In the KP model there are n players and m parallel links. Each player owns
a certain unsplittable traffic and wants to route it on one of the links. This
game can also be interpreted as the non-cooperative version of the problem of
scheduling n jobs on m parallel machines. The payoff obtained by a player is the
completion time of the chosen machine. The social function is the makespan,
that is the maximum completion time of all the machines.

In the Wardrop model there are infinitely many players who want to route
their traffic over an arbitrary network. There is a convex latency function associ-
ated with each link which is defined in terms of its load. The traffic can be split
into arbitrary pieces each being handled by a selfish player, so that unregulated
traffic can be modeled as a network flow. The payoff obtained by a player is the
sum of the latencies experienced on the edges he uses. The social function is the
sum of the products between the payoff of each player and the amount of traffic
he owns. The Wardrop model can also be seen as a congestion game [36] where
all the players own the same infinitesimal small amount of traffic.

Related Work. The KP model was introduced by [28] and then has been fur-
ther studied in [11,12,14,16,17,18,21,27,31,32]. The Wardrop model was defined

624 V. Bilò and M. Flammini

in [41] and then studied in [4,5,9,13]. Recent papers interested in the price of
anarchy of this model include [37,38,39]. Several other works have dealt with the
study of the price of anarchy of pure and/or mixed Nash equilibria in different
network games [2,6,7,8,15,19,20,30].

Other equilibrium concepts have been introduced and studied in the literature.
We recall here perfect equilibria [40], sequential equilibria [29], stable equilibria
[26], stochastic adjustment models [25], correlated equilibria [3], Bayesian equi-
libria [24] and, recently, sink equilibria [23]. In particular, correlated and sink
equilibria are generalizations of mixed and pure Nash equilibria respectively,
while the others are refinements of mixed (and consequently also pure) Nash
equilibria.

Our Contribution. Critics and improvements upon the classical notion of
pure Nash equilibrium have had different targets such as existence, as in the
case of correlated and sink equilibria, stability, as in the case of stable equilibria
and stochastic adjustment models, irrationality, as in the case of perfect and
sequential equilibria, and need of complete information, as in the case of Bayesian
equilibria. However, to the best of our knowledge, no effort has been done in order
to model the rational behavior of players on a longer range basis.

We thus introduce a new definition of selfish agents by giving them a more
farsighted view of their actions. An agent knows he is part of a multiplayer game
and also knows that the game will not stop right after he has performed an
improving step. In this scenario the agent will be mostly interested in evaluating
the fairness of the current state with respect to the equilibrium that the game
will reach after he has performed his improving step. When more than just
one equilibrium can be reached from a particular state, by following a classical
worst-case analysis, we assume that the agent will compare the current state
with the equilibrium yielding the worst payoff for him. Such a view point is
clearly based upon the definition of a ground set of equilibria the agents will
compare a generic state with. According to these comparisons, a possible non
empty set of new equilibria may arise and the process may be iterated recursively
until a fixed point is reached and the final set of desired equilibria is created. We
call such a set the set of Second Order equilibria. Using different definitions of
equilibrium for defining the ground set, we can achieve different sets of Second
Order equilibria. In this paper we concentrate our attention on the definition
and the evaluation of Second Order Nash equilibria, that is with a ground set
given by the set of Nash equilibria. In particular, we present applications of these
equilibria to the Prisoner’s Dilemma, to an instance of Braess’s Paradox [9] in
the Wardrop model and to the KP model with identical machines. We want
to stress here that the approaches pursued so far in the literature always try to
prune unwanted solutions from the set of Nash equilibria. Thus, our approach is
novel in the sense that it provides an expanded set of equilibria.

Paper Organization. In the next section we give the formal definition of
Second Order Nash equilibria, while in Section 3 we present their applications.
In Section 4 we discuss other possible models of farsighted selfish agents and

Extending the Notion of Rationality of Selfish Agents 625

finally, in the last section we give conclusive remarks and open questions. Due
to space limitations several details have been omitted and will be given in the
full version of the paper.

2 Second Order Nash Equilibria

We first propose a generalization of the state graph related to a game G. Given a
set of equilibria states E ⊆ S, let GG,E = (N,A) be the directed graph in which
N = S and A is such that there exists an edge between s and s′ if and only if
there exists an improving step from s to s′ and s /∈ E. Clearly, GG,∅ coincides
with the state graph GG . If pi is the unique player changing his strategy from s
to s′, we label the arc 〈s, s′〉 with the index i.

We define ρE(s)ki as the set of all the states of G that can be reached starting
from s by following a path of length at most k whose first arc is labeled with
index i in the graph GG,E . The set ρE(s)k =

⋃n
i=1 ρE(s)ki will denote the set of

all states that can be reached from s by following a path of length at most k in
the graph GG,E . When E = ∅, we will simply remove the subscript E from the
notation. We also define P (s) as the set of players that can perform an improving
step starting from state s.

We now give a recursive definition of the new set of equilibria that will be
further clarified in the following.

Definition 1. Let G be a convergent game. The set Nk(G) = {s ∈ S : ∀pi ∈
P (s) and ∀s′ ∈ ρ(s)1i , ∃s′′ ∈ Nk(G) such that s′′ ∈ ρNk(G)(s′)k and ωi(s) <
ωi(s′′)} is the set of all the Second Order k-Nash equilibria of game G, for any
integer k ≥ 0.

Intuitively, this rather involved definition says that a state s is a Second Order
k-Nash equilibrium, for some integer k ≥ 0, if all the players who can perform
an improving step in s would experience, in one of the Second Order k-Nash
equilibria resulting from an evolutive process of at most k improving steps taking
place after their first defection, a payoff which is worse than the one they get
in state s. Such a definition is clearly recursive. However, in the following we
show that it is well posed, in the sense that it admits a unique set of solutions
or fixed point. First of all, we prove that N0(G) coincides with the set of the
Nash equilibria of G and that each Nash equilibrium is a Second Order k-Nash
equilibrium, for any integer k ≥ 1.

Lemma 1. N0(G) = {s ∈ S : s is a Nash equilibrium} and N0(G) ⊆ Nk(G),
for any integer k ≥ 1.

We now define an algorithm constructing a set of states Ñk(G) that we will after
show to coincide with Nk(G). To this aim, we first introduce some necessary
notation. Given a directed graph G = (N,A) and a set of vertices T ⊆ N , we
define leaves(T) as the maximal subset of T such that for any s ∈ leaves(T)
and s′ ∈ T there exists no (s, s′)-directed path in G.

626 V. Bilò and M. Flammini

Lemma 2. For any acyclic directed graph G = (N,A) and any non empty subset
of vertices T ⊆ N , leaves(T) is unique and leaves(T) �= ∅.

Corollary 1. For any acyclic directed graph G = (N,A), leaves(T) = ∅ if and
only if T = ∅.
The algorithm Construct Ñk(G) for determining Ñk(G) is defined as follows.

Construct Ñk(G):

1. Ñk(G) ← N0(G)
2. T (k) ← {s ∈ S \Ñk(G) : ∀pi ∈ P (s) and ∀s′ ∈ ρ(s)1i , ∃s

′′ ∈ Ñk(G) such that s′′ ∈ ρ
Ñk(G)(s

′)k

and ωi(s) < ωi(s
′′)}

3. if T (k)
= ∅
(a) Ñk(G) ← Ñk(G) ∪ leaves(T (k))
(b) goto 2

4. else return Ñk(G)

Clearly, since at each step Ñk(G) grows, the algorithm terminates. Moreover,
because of Lemma 2, we have that Ñk(G) is unique. In the following theorem we
show that Nk(G) = Ñk(G) for any integer k ≥ 0, thus proving the uniqueness
of Nk(G).

Theorem 1. Let G be a convergent game then Nk(G) = Ñk(G) for any integer
k ≥ 0.

In the following lemma we show that there exists a value k∗ for which all the
sets Nk(G) become the same for any k ≥ k∗.

Lemma 3. Let G be a convergent game and let k∗ be the diameter of GG minus
1, then Nk∗

(G) = Nk(G) for any integer k ≥ k∗.

We can now define the general notion of Second Order Nash equilibrium as
follows.

Definition 2. Given a convergent game G, each state s ∈ Nk∗
(G) =def N(G)

is a Second Order Nash equilibrium.

3 Applications of Second Order Nash Equilibria

The power of Second Order equilibria lies in the fact that they introduce a sort
of cooperation among the players in the following particular sense: the players
are interested in not hurting each other, that is, in not leading the game to a
state that is worse than the current one for each of them. By quoting a classical
Italian proverb we can say that they “do not awake the sleeping dog”.

Quantitatively speaking, the effects of the introduction of Second Order Nash
equilibria are the following.

Proposition 1. The price of stability of Second Order k-Nash equilibria is not
worse than that of Nash equilibria, while the price of anarchy of Nash equilibria
is not worse than that of Second Order k-Nash equilibria, for any k ≥ 1.

Proof. Since N0(G) ⊆ Nk(G) for any k ≥ 1, the claim holds trivially. ��

Extending the Notion of Rationality of Selfish Agents 627

In particular, a good behavior of Second Order Nash equilibria can be appreci-
ated by considering applications to some well-known paradoxes arising in Game
Theory, such as the Prisoner’s Dilemma and Braess’s paradox in the Wardrop
model.

3.1 The Prisoner’s Dilemma

It can be easily shown that N(G) = {{Fink, F ink}, {Quiet,Quiet}}. In
fact we have {Fink, F ink} ∈ N(G) as {Fink, F ink} ∈ N0(G) and
{Quiet,Quiet} ∈ N(G) since {Fink, F ink} ∈ ρ({Quiet,Quiet})1i for i ∈ {1, 2}
and ωi({Fink, F ink}) > ωi({Quiet,Quiet}) for i ∈ {1, 2} and no other state
belongs to N(G).

Theorem 2. The price of stability of Second Order Nash equilibria for the Pris-
oner’s Dilemma is 1.

3.2 Braess’s Paradox

Suppose one unit of traffic needs to be routed from s to t in the first network
of Figure 2, where each edge is labelled with its latency function of the link
congestion x. In the unique flow at Nash equilibrium, which coincides with the
optimal flow, half of the traffic takes the upper path and the other half travels
along the lower path, and thus all agents are routed on a path of latency 3

2 . Next
suppose a fifth edge of latency 0 (independent of the congestion) is added to the
network, with the result shown on Figure 2(b). The optimal flow is unaffected
by this augmentation (there is no way to use the new link to decrease the total
latency) while in the new (unique) flow at Nash equilibrium all traffic follows the
path s→ v → w → t; here, the latency experienced by each agent is 2. Thus, the
intuitively helpful (or at least innocuous) action of adding a new zero-latency
link may negatively impact on the payoffs all of the agents.

Let Π1 be the path s → v → t, Π2 be the path s → w → t, Π3 be the path
s→ v → w → t and define fi as the amount of flow routed on path Πi. We can
thus denote a state s ∈ S as s = (f1, f2, f3) by specifying the amount of flow
routed on the three different paths.

Since our model of Second Order equilibria, based on the structure of the state
graph, is clearly a discrete one, we consider the instance of the Braess’s Paradox

Fig. 2. Braess’s Paradox

628 V. Bilò and M. Flammini

in which the unitary flow representing the traffic on the network is split into
infinitely many atomic pieces all having the same infinitesimal dimension ε > 0
and denote this game by Gε. This assumption does not change the properties of
the Wardrop model as well as those of Braess’s Paradox. In particular, the set of
the Nash equilibria becomes N0(Gε) = {(0, 0, 1), (ε, 0, 1− ε), (0, ε, 1− ε), (ε, ε, 1−
2ε)}. However letting ε go to zero, the two games become essentially the same.
The set of Nash equilibria, for example, collapses to N0(G) = {(0, 0, 1)}.

The main result of this section is the characterization of the set of Second
Order Nash equilibria for Gε.

Theorem 3. N(Gε) = N0(Gε)∪ {((�+ 3j)ε, �ε, 1− (2�+ 3j)ε), (�ε, (�+ 3j)ε, 1−
(2� + 3j)ε)|j = 0, . . . , 5 1−4ε

3ε 6 and � = 3, . . . , 5 1−3jε
2ε 6}.

Corollary 2. The price of stability of the Second Order Nash equilibrium for
Gε is 1.

In this problem, as well as in other non trivial multiplayer games, we have seen
that the structure of the state graph can be really intricate thus making the
definition of Second Order Nash equilibria a very challenging task. In order to
ease the computation one can work on a simplified version of the state graph by
considering, for example, the existence of a particular ordering in which improv-
ing steps are performed during the evolution of the game. Such a scenario seems
perfectly reasonable and different ordering strategies can be considered indeed
as some sort of coordination mechanisms [10] that can be adopted during the
game in order to lead the players towards a desired behavior.

To this aim consider the following ordering mechanismM: at each state s, the
player pi ∈ P (s) using the most congestioned path is the one allowed to change
his strategy (breaking ties arbitrarily).

We can state the following result.

Theorem 4. When mechanism M is adopted N(Gε) = N0(Gε) ∪ {((2i+1 −
1)ε, (2i+1 − 1)ε, 1− 2(2i+1 − 1)ε)|i = 1, . . . 5log2(1+2ε

2ε)6 − 1}.

Corollary 3. When mechanismM is adopted the price of stability of the Second
Order Nash equilibrium of Gε falls in the interval [1; 13

12].

Thus, if from one hand the introduction of the ordering mechanism M has
simplified the set of Second Order Nash equilibria, on the other hand it has
worsened its price of stability.

We argue here that even when ε goes to zero the results of Corollary 2 and
3 still hold since �ε = 1

2 when j = 0 and � = 5 1−3jε
2ε 6 in the claim of Theorem

3 and (2�log2(
1+2ε
2ε)� − 1)ε ∈ [14 ; 1

2] in the claim of Theorem 4 respectively. Hence
our analysis carries over also to the general Wardrop model.

3.3 Selfish Load Balancing

In this section we analyze the applications of Second Order Nash equilibria to
the load balancing game, the special case of the KP model when all the machines
have identical speed.

Extending the Notion of Rationality of Selfish Agents 629

We show that no proper Second Order Nash equilibrium exists for the load
balancing game, i.e., N(G) collapses to the set of Nash equilibria.

Theorem 5. Let G be any load balancing game, it holds N(G) = N0(G).

4 Other Notions of Selfish Farsighted Behavior

What we have seen so far are agents always comparing the current situation with
the worst Second Order equilibrium the game can reach after their improving
steps. We will call these agents prudent agents because if there is a chance of
worsening their payoffs they will stay quiet and will not perform any improving
step. Clearly, it is also possible to consider rash agents choosing to perform
improving steps when there is a chance of reaching a good equilibrium for them,
thus comparing with the best Second Order equilibrium. When considering rash
agents, the definition of Second Order Nash equilibria becomes the following.

Definition 3. Let G be a convergent game. The set Nk(G) = {s ∈ S : ∀pi ∈
P (s) and ∀s′ ∈ ρ(s)1i and ∀s′′ ∈ Nk(G) such that s′′ ∈ ρNk(G)(s′)k it holds
ωi(s) ≤ ωi(s′′)} is the set of all the Second Order k-Nash equilibria of game G,
for any integer k ≥ 0.

The notion of Nash equilibrium and that of improving steps are strictly related.
Moreover, improving steps are the fundamental argument needed to understand
how good the process of convergence towards Nash equilibria is, by measuring
the speed of convergence and the quality of the reached equilibrium. To this aim,
we will define in this section the notion of Second Order improving step as well as
that of patient and impatient agents. In particular, according to our definitions
of Second Order equilibria, we will have four types of selfish agents (patient
prudent agents, patient rash agents, impatient prudent agents and impatient
rash agents) characterized by how and when they perform improving steps. We
formalize this discussion in the following definition.

Definition 4. Let G be a convergent game. An improving step from s /∈ N(G)
to s′ is a Second Order improving step for player pi ∈ P (s) if

• (Impatient prudent agents) ∀s′′ ∈ N(G) such that s′′ ∈ ρN(G)(s′)k
∗
, it

holds ωi(s) ≥ ωi(s′′).
• (Impatient rash agents) ∃s′′ ∈ N(G) such that s′′ ∈ ρN(G)(s′)k

∗
and

ωi(s) > ωi(s′′).
• (Patient prudent agents) worst(s′) ≤ worst(s, s′), where
worst(s′) = maxs′′∈N(G):s′′∈ρN(G)(s′)k∗{ωi(s′′)} and worst(s, s′) =
maxs′′∈N(G):s′′∈ρN(G)∪{s′}(s)k∗{ωi(s′′)}.

• (Patient rash agents) best(s′) < best(s, s′), where
best(s′) = mins′′∈N(G):s′′∈ρN(G)(s′)k∗{ωi(s′′)} and best(s, s′) =
mins′′∈N(G):s′′∈ρN(G)∪{s′}(s)k∗{ωi(s′′)}.

630 V. Bilò and M. Flammini

5 Conclusion

In this paper we try to give an impulse towards the definition of a better model
for selfish rational agents by exploiting a simple and intuitive observation. If
starting from a state s in which a set of players P (s) are unhappy of their
payoffs, the game can reach an equilibrium s′ in which for any pi ∈ P (s) it holds
ωi(s) < ωi(s′), then it is rational to consider s as an equilibrium state, since all
players who have an incentive in deviating from s discover that such an incentive
is just illusory. This view point lead us to Second Order Nash equilibria which,
in spite of a simple intuitive nature, required not trivial arguments in order to
be captured in a formal definition.

A well studied problem in Game Theory has been that of reducing the set of
Nash equilibria of a game by eliminating those which can be considered in some
sense “irrational”. This process can surely provide an improvement on the price
of anarchy of Nash equilibria. However, no benefits can be achieved in all those
games in which the price of stability of Nash equilibria is too high. Our definition
of Second Order Nash equilibria has the property of expanding the set of Nash
equilibria thus being able to potentially improve on the price of stability.

We provided different types of applications of Second Order Nash equilibria to
games such as the Prisoner’s Dilemma, the Wardrop model and the KP model.
We believe that our work can open a new window on this young and fascinating
research field, by widening the notion of rationality of players.

A lot of open questions are thus introduced by this vision. The first one is
certainly that of giving further validation of Second Order equilibria by using
them together with other known equilibria and presenting good applications. To
this aim, the definition of Second Order Sink equilibria seems to be a promising
research direction. Moreover, there is the important issue of understanding the
power of different ordering strategies in influencing the performances of Second
Order equilibria. An interesting question can be also that of trying to understand
if the use of Second Order equilibria can lead sequences of improving steps
towards better states. In the paper we have only considered impatient prudent
agents. A final open issue is certainly that of analyzing the other three possible
definitions for rational agents as well as the Second Order equilibria yielded by
rash agents.

Acknowledgements. The authors would like to thank an anonymous referee
for pointing out an error on an earlier version of Theorem 3.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The Price of Stability for Network Design with Fair Cost Allocation. In: Pro-
ceedings of FOCS’04, pp. 295–304. IEEE Computer Society Press, Los Alamitos
(2004)

2. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-Optimal Network De-
sign with Selfish Agents. In: Proceedings of STOC’03, pp. 511–520. ACM Press,
New York (2003)

Extending the Notion of Rationality of Selfish Agents 631

3. Aumann, R.J.: Subjectivity and Correlation in Randomized Strategies. Journal of
Mathematical Economics 1, 67–96 (1974)

4. Beckmann, M.J.: On the theory of Traffic Flow in Networks. Traffic Quart 21,
109–116 (1967)

5. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Trans-
portation. Yale University Press (1956)

6. Bilò, V.: On the Packing of Selfish Items. In: Proceedings of IPDPS’06, IEEE
Computer Society Press, Los Alamitos (2006)

7. Bilò, V., Flammini, M., Moscardelli, L.: On Nash Equilibria in Non-cooperative All-
Optical Networks. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 448–459. Springer, Heidelberg (2005)

8. Bilò, V., Flammini, M., Melideo, G., Moscardelli, L.: On Nash Equilibria for Mul-
ticast Transmissions in Ad-Hoc Wireless Networks. In: Fleischer, R., Trippen, G.
(eds.) ISAAC 2004. LNCS, vol. 3341, pp. 172–183. Springer, Heidelberg (2004)

9. Braess, D.: Uber ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12,
258–268 (1968)

10. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 345–357. Springer, Heidelberg (2004)

11. Czumaj, A., Vocking, B.: Tight Bounds for Worst-Case Equilibria. In: Proceedings
of SODA’02, pp. 413-420, ACM-SIAM (2002)

12. Czumaj, A., Krysta, P., Vocking, B.: Selfish Traffic Allocation for Server Farms.
In: Proceedings of STOC’02, pp. 287–296. ACM Press, New York (2002)

13. Dafermos, S.C., Sparrow, F.T.: The Traffic Assignment Problem for a General Net-
work. Journal of Research of the National Bureau of Standards - B. Mathematical
Sciences 73B(2), 91–118 (1969)

14. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence Time to Nash Equilibria.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)

15. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a
Network Creation Game. In: Proceedings of PODC’03, pp. 347–351. ACM Press,
New York (2003)

16. Feldmann, R., Gairing, M., Lúcking, T.: Nashification and the Coordination Ratio
for a Selfish Routing Game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woegin-
ger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg
(2003)

17. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

18. Gairing, M., Lucking, T., Mavronicolas, M., Monien, B.: Computing nash equilibria
for scheduling on restricted parallel links. In: Proceedings of STOC’04, pp. 613–622.
ACM Press, New York (2004)

19. Gairing, M., Lucking, T., Mavronicolas, M., Monien, B.: The price of anarchy for
polynomial social cost. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 574–585. Springer, Heidelberg (2004)

20. Gairing, M., Lucking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria
in discrete routing games with convex latency functions. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657.
Springer, Heidelberg (2004)

632 V. Bilò and M. Flammini

21. Gairing, M., Lucking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Extreme
Nash Equilibria. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841,
pp. 1–20. Springer, Heidelberg (2003)

22. Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market Sharing Games Ap-
plied to the Content Distribution in Ad-Hoc Networks. In: Proceedings of Mobi-
Hoc’04, pp. 55–66. ACM Press, New York (2004)

23. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink Equilibria and Convergence. In:
Proceedings of FOCS’05, pp. 142–154. IEEE Computer Society Press, Los Alamitos
(2005)

24. Harsanyi, J.C.: Games with Incomplete Information Played by ‘Bayesian’ Players.
Management Science, 14:159–182, 320–334, 486–502 (1967)

25. Kandori, M., Mailath, G., Rob, R.: Learning, Mutation and Long-Run Equilibria
in Games. Econometrica 61, 29–56 (1993)

26. Kohlberg, M., Mertens, J.: On the Strategic Stability of Equilibria. Economet-
rica 54(5), 1003–1037 (1986)

27. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball
Fusion. In: Proceedings of SIROCCO’02. Proceedings in Informatics. Carleton Sci-
entific, vol. 13, pp. 223–235 (2002)

28. Koutsoupias, E., Papadimitriou, C.H.: Worst-case Equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

29. Kreps, D., Wilson, R.: Sequential Equilibria. Econometrica 50, 863–894 (1982)
30. Lucking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish

routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–
558. Springer, Heidelberg (2004)

31. Lucking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which
is the Worst-case Nash Equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 551–561. Springer, Heidelberg (2003)

32. Mavronicolas, M., Spirakis, P.: The Price of Selfish Routing. In: Proceedings of
STOC’01, pp. 510–519. ACM Press, New York (2001)

33. Nash, J.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences 36, 48–49 (1950)

34. Nash, J.: Non-cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)
35. Papadimitriou, C.H.: Algorithms, Games, and the Internet. In: Proceedings of

STOC’01, pp. 749–753. ACM Press, New York (2001)
36. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria.

International Journal of Game Theory 2, 65–67 (1973)
37. Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology.

In: Proceedings of STOC’02, pp. 428–437. ACM Press, New York (2002)
38. Roughgarden, T.: Selfish Routing. Ph. D. Thesis, Department of Computer Science,

Cornell University (May 2002)
39. Roughgarden, T., Tardos, E.: How Bad is Selfish Routing? Journal of ACM 49,

236–259 (2002)
40. Selten, R.: Reexamination of the Perfectness Concept for Equilibrium Points in

Extensive Games. International Journal of Game Theory 4, 25–55 (1975)
41. Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proceedings

of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1956)

Congestion Games with Player-Specific Constants�

Marios Mavronicolas1, Igal Milchtaich2,
Burkhard Monien3, and Karsten Tiemann3,��

1 Department of Computer Science,
University of Cyprus, 1678 Nicosia, Cyprus

mavronic@cs.ucy.ac.cy
2 Department of Economics,

Bar-Ilan University, Ramat Gan 52900, Israel
milchti@mail.biu.ac.il

3 Faculty of Computer Science, Electrical Engineering, and Mathematics,
University of Paderborn, 33102 Paderborn, Germany

{bm,tiemann}@uni-paderborn.de

Abstract. We consider a special case of weighted congestion games with player-
specific latency functions where each player uses for each particular resource a
fixed (non-decreasing) delay function together with a player-specific constant.
For each particular resource, the resource-specific delay function and the player-
specific constant (for that resource) are composed by means of a group operation
(such as addition or multiplication) into a player-specific latency function. We
assume that the underlying group is a totally ordered abelian group. In this way,
we obtain the class of weighted congestion games with player-specific constants;
we observe that this class is contained in the new intuitive class of dominance
weighted congestion games. We obtain the following results:

Games on parallel links:

– Every unweighted congestion game has a generalized ordinal potential.
– There is a weighted congestion game with 3 players on 3 parallel links that

does not have the Finite Best-Improvement Property.
– There is a particular best-improvement cycle for general weighted congestion

games with player-specific latency functions and 3 players whose outlaw im-
plies the existence of a pure Nash equilibrium. This cycle is indeed outlawed
for dominance weighted congestion games with 3 players – and hence for
weighted congestion games with player-specific constants and 3 players.

Network congestion games:
For unweighted symmetric network congestion games with player-specific addi-
tive constants, it is PLS-complete to find a pure Nash equilibrium.

Arbitrary (non-network) congestion games:
Every weighted congestion game with linear delay functions and player-specific
additive constants has a weighted potential.

� This work was partially supported by the IST Program of the European Union under contract
number IST-15964 (AEOLUS).

�� Supported by the International Graduate School of Dynamic Intelligent Systems (University
of Paderborn, Germany).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 633–644, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

634 M. Mavronicolas et al.

1 Introduction

Motivation and Framework. Originally introduced by Rosenthal [15], congestion
games model resource sharing among (unweighted) players. Here, the strategy of each
player is a set of resources. The cost for a player on resource e is given by a latency func-
tion for e, which depends on the total weight of all players choosing e. In congestion
games with player-specific latency functions, which were later introduced by Milch-
taich [13], players are weighted and each player chooses her own latency function for
each resource, which determines her own player-specific cost on the resource. These
choices reflect different preferences, beliefs or estimates by the players; for example,
such differences occur in multiclass networks or in networks with uncertain parameters.

In this work, we introduce a special case of (weighted) congestion games with
player-specific latency functions [13], which we call (weighted) congestion games with
player-specific constants. Here, each player-specific latency function is made up of a
resource-specific delay function and a player-specific constant (for the particular re-
source); the two are composed by means of a group operation. We will be assuming that
the underlying group is a totally ordered abelian group (see, for example, [9, Chapter
1]). Note that this new model of congestion games restricts Milchtaich’s one [13] since
player-specific latency functions are no longer completely arbitrary; simultaneously,
it generalizes the weighted generalization of Rosenthal’s model [15] since it allows
composing player-specific constants into each (resource-specific) latency function. For
example, (weighted) congestion games with player-specific additive constants (resp.,
multiplicative constants) correspond to the case where the group operation is addition
(resp., multiplication).

We will sometimes focus on network congestion games, where the resources and
strategies correspond to edges and paths in a (directed) network, respectively; network
congestion games offer an appropriate model for some aspects of routing problems.
In such games, each player has a source and a destination node and her strategy set
is the set of all paths connecting them. In a symmetric network congestion game, all
players use the same pair of source and destination; else, the network congestion game
is asymmetric. The simplest symmetric network congestion game is the parallel links
network with only two nodes.

The Individual Cost for a player is the sum of her costs on the resources in her
strategy. In a (pure) Nash equilibrium, no player can decrease her Individual Cost by
unilaterally deviating to a different strategy. We shall study questions of existence of,
computational complexity of, and convergence to pure Nash equilibria for (weighted)
congestion games with player-specific constants.

For convergence, we shall consider sequences of improvement and best-improvement
steps of players; in such steps, a player improves (that is, decreases) and best-improves
her Individual Cost, respectively. A game has the Finite Improvement Property [14]
(resp., the Finite Best-Improvement Property, also called Finite Best-Reply Property
[13]) if all improvement paths (resp., best-improvement paths) are finite. Both properties
imply the existence of a pure Nash equilibrium [14]; clearly, the first property implies
the second. Also, the existence of a generalized ordinal potential is equivalent to the
Finite Improvement Property [14] (and hence it implies the Finite Best-Improvement
Property and the existence of a pure Nash equilibrium as well). A weighted potential

Congestion Games with Player-Specific Constants 635

[14] is a particular case of a generalized ordinal potential; an exact potential [14] is a
particular case of a weighted potential.

We observe that the class of (weighted) congestion games with player-specific con-
stants is contained in the more general, intuitive class of dominance (weighted) conges-
tion games that we introduce (Proposition 1). In this more general class, it holds that
for any pair of players, the preference of some of the two players with regard to any ar-
bitrary pair of resources necessarily induces an identical preference for the other player
(Definition 2).

State-of-the-Art. It is known that every unweighted congestion game has a pure Nash
equilibrium [15]; Rosenthal’s original proof uses an exact potential [14]. It is possible
to compute a pure Nash equilibrium for an unweighted symmetric network congestion
game in polynomial time by reduction to the min-cost flow problem [3]. However, the
problem becomes PLS-complete for either (arbitrary) symmetric congestion games
[3] or asymmetric network congestion games where the edges of the network are either
directed [3] or undirected [1]. Weighted asymmetric network congestion games with
affine latency functions are known to have a pure Nash equilibrium [6]; in contrast, there
are weighted symmetric network congestion games with non-affine latency functions
that have no pure Nash equilibrium (even if there are only 2 players) [6,12]. Weighted
(network) congestion games on parallel links have the Finite Improvement Property
(and hence a pure Nash equilibrium) if all latency functions are non-decreasing; in this
setting, [5] proves that a pure Nash equilibrium can be computed in polynomial time
by using the classical LPT algorithm due to Graham [10] when latency functions are
linear. (This is the well-known setting of related parallel links, which is equivalent to
using the identity function for all delay functions in a weighted congestion game with
multiplicative constants.) In the general case, it is strongly NP-complete to determine
whether a given weighted network congestion game has a pure Nash equilibrium [2].

For weighted congestion games with (non-decreasing) player-specific latency func-
tions on parallel links, there is a counterexample to the existence of a pure Nash equi-
librium with only 3 players and 3 links [13]. This result is tight since such games with 2
players have the Finite Best-Improvement Property [13]. Unweighted congestion games
with (non-decreasing) player-specific latency functions have a pure Nash equilibrium
but not necessarily the Finite Best-Improvement Property [13].

The special case of (weighted) congestion games with player-specific linear latency
functions (without a constant term) was studied in [7,8]. Such games have the Finite Im-
provement Property if players are unweighted [7], while there is a game with 3 weighted
players that does not have it [7]. For the case of 3 weighted players, every congestion
game with player-specific linear latency functions (without a constant term) has a pure
Nash equilibrium but not necessarily an exact potential [8]. For the case of 2 links, there
is a polynomial time algorithm to compute a pure Nash equilibrium [8]. A larger class
of (incomplete information) unweighted congestion games with player-specific latency
functions that have the Finite Improvement Property has been identified in [4]; the spe-
cial case of our model where the player-specific constants are additive is contained in
this larger class.

636 M. Mavronicolas et al.

Contribution and Significance. We partition our results on congestion games with
player-specific constants according to the structure of the strategy sets in the congestion
game:

Games on parallel links:

– Every unweighted congestion game with player-specific constants has a generalized
ordinal potential (Theorem 1). (Hence, every such game has the Finite Improvement
Property and a pure Nash equilibrium.) The proof employs a potential function in-
volving the group operation; the proof that this function is a generalized ordinal
potential explicitly uses the assumption that the underlying group is a totally or-
dered abelian group. We remark that Theorem 1 does not need the assumption that
the (resource-specific) delay functions are non-decreasing.

Theorem 1 simultaneously broadens two corresponding state-of-the-art results
for two very special cases: (i) each delay function is the identity function and the
group operation is multiplication [7] and (ii) the group operation is addition [4]. We
note that, in fact, the potential function we used is a generalization of the potential
function used in [4] (for addition) to an arbitrary group operation. However, [4]
applies to all unweighted congestion games.

– It is not possible to generalize Theorem 1 to weighted congestion games (with
player-specific constants): there is such a game with 3 players on 3 parallel links
that does not have the Finite Best-Improvement Property – hence, neither the Finite
Improvement Property (Theorem 2). To prove this, we provide a simple counterex-
ample for the case of player-specific additive constants.

– Note that Theorem 2 does not outlaw the possibility that every weighted congestion
game with player-specific constants has a pure Nash equilibrium. Although we do
not know the answer for the general case with an arbitrary number of players, we
have settled the case with 3 players: every weighted congestion game with player-
specific constants and 3 players has a pure Nash equilibrium (Corollary 3). The
proof proceeds in two steps.

First, we establish that there is a particular best-improvement cycle whose out-
law implies the existence of a pure Nash equilibrium (Theorem 3). We remark
that an identical cycle had been earlier constructed by Milchtaich for the more
general class of weighted congestion games with player-specific latency functions
[13, Section 8].

Second, we establish that this particular best-improvement cycle is indeed out-
lawed for the more specific class of dominance weighted congestion games (Theo-
rem 4). Since a weighted congestion game with player-specific constants is a dom-
inance weighted congestion game, the cycle is outlawed for weighted congestion
games with player-specific constants as well; this implies the existence of a pure
Nash equilibrium for them (Corollary 3). This implies, in particular, a separation of
this specific class from the general class of congestion games with player-specific
latency functions with respect to best-improvement cycles.

We remark that Corollary 3 broadens the earlier result by Georgiou et al. [8,
Lemma B.1] for congestion games with player-specific multiplicative constants and
identity delay functions.

Congestion Games with Player-Specific Constants 637

Network congestion games:
Recall that every unweighted congestion game with player-specific additive constants
has a pure Nash equilibrium [4]. Nevertheless, we establish that it is PLS-complete to
compute one (Theorem 5) even for a symmetric network congestion game. The proof
uses a simple reduction from the PLS-complete problem of computing a pure Nash
equilibrium for an unweighted asymmetric network congestion game [3].

Arbitrary (non-network) congestion games:
Note that Theorem 2 outlaws the possibility that every weighted congestion game with
player-specific constants has the Finite Best-Improvement Property. Nevertheless, we
establish that every weighted congestion game with player-specific constants has a
weighted potential for the special case of linear delay functions and player-specific
additive constants (Theorem 6). (Hence, every such game has the Finite Improvement
Property and a pure Nash equilibrium).

The proof employs a potential function and establishes that it is a weighted potential.
For the special case of weighted asymmetric network congestion games with affine
latency functions (which are not player-specific), the potential function we used reduces
to the potential function introduced in [6] for the corresponding case.

Theorems 1 and 3 suggest that the class of congestion games with player-specific
constants provides a vehicle for reaching the limit of the existence of potential functions
towards the direction of player-specific costs.

2 Framework and Preliminaries

Totally Ordered Abelian Groups. A group (G,<) consists of a ground set G together
with a binary operation< : G×G→ G; < is associative and allows for an identity el-
ement and inverses. The group (G,<) is abelian if< is commutative. We will consider
totally ordered abelian groups with a total order on G [9] which satisfies translation
invariance: for all triples r, s, t ∈ G, if r ≤ s then r < t ≤ s < t. Examples of totally
ordered abelian groups include (i) (R>0, ·) under the usual number-ordering, and (ii)
(R2,+) under the lexicographic ordering on pairs of numbers. We will often focus on
the case where G is R (the set of reals).

Congestion Games. For all integers k ≥ 1, we denote [k] = {1, . . . , k}. A weighted
congestion game with player-specific latency functions [13] is a tuple Γ = (n,E,
(wi)i∈[n], (Si)i∈[n], (fie)i∈[n],e∈E). Here, n is the number of players and E is a finite
set of resources. For each player i ∈ [n], wi > 0 is the weight and Si ⊆ 2E is the strat-
egy set of player i. For each pair of player i ∈ [n] and resource e ∈ E, fie : R>0 → R>0

is a non-decreasing player-specific latency function. In the unweighted case, wi = 1 for
all players i ∈ [n].

In a (weighted) network congestion game (with player-specific latency functions),
resources and strategies correspond to edges and paths in a directed network. In such
games, each player has a source and a destination node, each of her strategies is a path
from source to destination and all paths are possible. In a symmetric network conges-
tion game, all players use the same pair of source and destination; else, the network
congestion game is asymmetric. In the parallel links network, there are only two nodes;
this gives rise to symmetric network congestion games.

638 M. Mavronicolas et al.

Definition 1. Fix a totally ordered abelian group (G,<). A weighted congestion game
with player-specific constants is a weighted congestion game Γ with player-specific
latency functions such that (i) for each resource e ∈ E, there is a non-decreasing delay
function ge : R>0 → R>0, and (ii) for each pair of a player i ∈ [n] and a resource
e ∈ E, there is a player-specific constant cie > 0, so that for each player i ∈ [n] and
resource e ∈ E, fie = cie < ge.

In a weighted congestion game with player-specific additive constants (resp., player-
specific multiplicative constants), G is R and < is + (resp., G is R>0 and < is ·). The
special case of weighted congestion games with player-specific constants where for all
players i ∈ [n] and resources e ∈ E, cie = ε (the identity element of G) yields the
weighted congestion games generalizing the unweighted congestion games introduced
by Rosenthal [15]. So, (weighted) congestion games with player-specific constants fall
between the weighted generalization of congestion games [15] and (weighted) conges-
tion games with player-specific latency functions [13].

We now prove that, in fact, congestion games with player-specific constants are con-
tained within a more restricted class of congestion games with player-specific latency
functions that we introduce. Fix a weighted congestion game Γ with player-specific
latency functions. Consider a pair of (distinct) players i, j ∈ [n] and a pair of (distinct)
resources e, e′ ∈ E. Say that i dominates j for the ordered pair 〈e, e′〉 if for every pair
of positive numbers x, y ∈ R>0, fie(x) > fie′(y) implies fje(x) > fje′ (y). Intuitively,
i dominates j for 〈e, e′〉 if the decision of i to switch her strategy from e to e′ always
implies a corresponding decision for j; in other words, j always follows the decision of
i (to switch or not) for the pair 〈e, e′〉.

Definition 2. A weighted congestion game with player-specific latency functions is a
dominance (weighted) congestion game if for all pairs of players i, j ∈ [n], for all
pairs of resources e, e′ ∈ E, either i dominates j for 〈e, e′〉 or j dominates i for 〈e, e′〉.

We prove:

Proposition 1. A (weighted) congestion game with player-specific constants is a dom-
inance (weighted) congestion game.

Proof. Fix a pair of players i, j ∈ [n] and a pair of resources e, e′ ∈ E. We proceed by
case analysis. Assume first that cie < cje′ ≥ cie′ < cje. We will show that j dominates
i for 〈e, e′〉. Fix a pair of numbers x, y ∈ R>0. Assume that fje(x) > fje′ (y) or
cje < ge(x) > cje′ < ge′(y). By translation-invariance, it follows that cie < cje <
ge(x) > cie < cje′ < ge′(y). The assumption that cie < cje′ ≥ cie′ < cje implies that
cie < cje′ < ge′(y) ≥ cie′ < cje < ge′(y). It follows that cie < ge(x) > cie′ < ge′(y) or
fie(x) > fie′ (y). Hence, j dominates i for 〈e, e′〉.

Assume now that cie′ < cje > cie< cje′ . We will show that i dominates j for 〈e, e′〉.
Fix a pair of numbers x, y ∈ R>0. Assume that fie(x) > fie′(y) or cie<ge(x) > cie′<
ge′(y). By translation-invariance, it follows that cje< cie<ge(x) > cje< cie′<ge′(y).
The assumption that cie′ < cje > cie < cje′ implies that cje < cie′ < ge′(y) > cje′ <
cie < ge′(y). It follows that cje < ge(x) > cje′ < ge′(y) or fje(x) > fje′(y). Hence, i
dominates j for 〈e, e′〉. ��

Congestion Games with Player-Specific Constants 639

Profiles and Individual Cost. A strategy for player i ∈ [n] is some specific si ∈ Si.
A profile is a tuple s = (s1, . . . , sn) ∈ S1 × . . . × Sn. For the profile s, the load
δe(s) on resource e ∈ E is given by δe(s) =

∑
i∈[n] | si"e wi. For the profile s, the

Individual Cost of player i ∈ [n] is given by ICi(s) =
∑

e∈si
fie (δe(s)) =

∑
e∈si

cie<
ge(δe(s)).

Pure Nash Equilibria. Fix a profile s. A player i ∈ [n] is satisfied if she cannot de-
crease her Individual Cost by unilaterally changing to a different strategy; else, player
i is unsatisfied. So, an unsatisfied player i can take an improvement step to decrease
her Individual Cost; if player i is satisfied after the improvement step, the improvement
step is called a best-improvement step. An improvement cycle (resp., best-improvement
cycle) is a cyclic sequence of improvement steps (resp., best-improvement steps). A
game has the Finite Improvement Property (resp., Finite Best-Improvement Property) if
all sequences of improvement steps (resp., best-improvement steps) are finite; clearly,
the Finite Improvement Property (resp., the Finite Best-Improvement Property) outlaws
improvement cycles (resp., best-improvement cycles). Clearly, the Finite Improvement
Property implies the Finite Best-Improvement Property. A profile is a (pure) Nash equi-
librium if all players are satisfied. Clearly, the Finite Improvement Property implies
the existence of a pure Nash equilibrium (as also does the Finite Best-Improvement
Property), but not vice versa [14].

A generalized ordinal potential for the game Γ [14] is a function Φ : S1 × . . . ×
Sn → R that decreases when a player takes an improvement step. Say that a function
Φ : S1 × . . .× Sn → R is a weighted potential for the game Γ [14] if there is a weight
vector b = (bi)i∈[n] such that for every player k ∈ [n], for every profile s, and for every
strategy tk ∈ Sk that transforms s to t, it holds that ICk(s)− ICk(t) = bk ·(Φ(s)−Φ(t)).
If this even holds for the vector b with bi = 1 for all i ∈ [n], the function Φ is an exact
potential [14]. A game has a generalized ordinal potential if and only if it has the Finite
Improvement Property (and hence the Finite Best-Improvement Property and a pure
Nash equilibrium) [14].

PLS(-complete) Problems.PLS [11] includes optimization problems where the goal
is to find a local optimum for a given instance; this is a feasible solution with no feasible
solution of better objective value in its well-determined neighborhood. A problem Π in
PLS has an associated set of instances IΠ . There is, for every instance I ∈ IΠ , a set
of feasible solutions F(I). Furthermore, there are three polynomial time algorithms A,
B and C. A computes for every instance I a feasible solution S ∈ F(I); B computes for
a feasible solution S ∈ F(I), the objectice value; C determines, for a feasible solution
S ∈ F(I), whether S is locally optimal and, if not, it outputs a feasible solution in the
neighborhood of S with better objective value.

A PLS-problem Π1 is PLS-reducible [11] to a PLS-problem Π2 if there are two
polynomial time computable functions F1 and F2 such that F1 maps instances I ∈ IΠ1

to instances F1(I) ∈ IΠ2 and F2 maps every local optimum of the instance F1(I) to
a local optimum of I . A PLS-problem Π is PLS-complete [11] if every problem in
PLS is PLS-reducible to Π .

640 M. Mavronicolas et al.

3 Congestion Games on Parallel Links

We now introduce a function Φ : S1 × . . .× Sn → R with

Φ(s) =
⊙

e∈E

δe(s)⊙

i=1

ge(i)<
n⊙

i=1

cisi .

for any profile s. We prove that this function is a generalized ordinal potential:

Theorem 1. Every unweighted congestion game with player-specific constants on par-
allel links has a generalized ordinal potential.

Proof. Fix a profile s. Consider an improvement step of player k ∈ [n] to strategy tk,
which transforms s to t. Clearly, ICk(s) > ICk(t) or

gsk
(δsk

(s)) < cksk
> gtk

(δtk
(t))< cktk

.

Note also that δsk
(t) = δsk

(s)− 1 and δtk
(t) = δtk

(s) + 1, while δe(t) = δe(s) for all
e ∈ E \ {sk, tk}. Hence,

Φ(s)

=
⊙

e∈E\{sk,tk}

δe(s)⊙

i=1

ge(i)<
⊙

i∈[n]\{k}
cisi <

δsk
(s)⊙

i=1

gsk
(i)<

δtk
(s)⊙

i=1

gtk
(i)< cksk

=
⊙

e∈E\
{sk,tk}

δe(s)⊙

i=1

ge(i)<
⊙

i∈[n]
\{k}

cisi <
δsk

(s)−1⊙

i=1

gsk
(i)<

δtk
(s)⊙

i=1

gtk
(i)< gsk

(δsk
(s))< cksk

>
⊙

e∈E\
{sk,tk}

δe(s)⊙

i=1

ge(i)<
⊙

i∈[n]
\{k}

cisi <
δsk

(s)−1⊙

i=1

gsk
(i)<

δtk
(s)⊙

i=1

gtk
(i)< gtk

(δtk
(t))< cktk

=
⊙

e∈E\{sk,tk}

δe(t)⊙

i=1

ge(i)<
⊙

i∈[n]\{k}
cisi <

δsk
(t)⊙

i=1

gsk
(i)<

δtk
(t)⊙

i=1

gtk
(i)< cktk

= Φ(t),

so that Φ is a generalized ordinal potential. ��

Theorem 1 immediately implies:

Corollary 1. Every unweighted congestion game with player-specific constants on par-
allel links has the Finite Improvement Property and a pure Nash equilibrium.

We continue to prove:

Theorem 2. There is a weighted congestion game with additive player-specific con-
stants and 3 players on 3 parallel links that does not have the Finite Best-Improvement
Property.

Congestion Games with Player-Specific Constants 641

Proof. By construction. The weights of the 3 players are w1 = 2, w2 = 1, and w3 = 1.
The player-specific constants and resource-specific delay functions are as follows:

cie Link 1 Link 2 Link 3
Player 1 0 ∞ 5
Player 2 0 0 ∞
Player 3 ∞ 0 2

Link 1 Link 2 Link 3
ge(1) 1 2 1
ge(2) 8 13 2
ge(3) 14 ∞ 10

Notice that the profiles 〈1, 2, 3〉 and 〈3, 1, 2〉 are both Nash equilibria. Consider now the
cycle 〈1, 1, 3〉 → 〈1, 1, 2〉 → 〈1, 2, 2〉 → 〈3, 2, 2〉 → 〈3, 2, 3〉 → 〈3, 1, 3〉 → 〈1, 1, 3〉.
The Individual Cost of the deviating player decreases in each of these steps:

IC1 IC2 IC3

〈1, 1, 3〉 14 3
〈1, 1, 2〉 14 2

IC1 IC2 IC3

〈1, 2, 2〉 8 13
〈3, 2, 2〉 7 13

IC1 IC2 IC3

〈3, 2, 3〉 2 12
〈3, 1, 3〉 15 1

So, this is an improvement cycle. Furthermore, note that each step in this cycle is a best-
improvement step, so this is actually a best-improvement cycle. The claim follows. ��

We continue to consider the special case of 3 players but for the general case of weighted
congestion games with player-specific constants. We prove:

Theorem 3. Let Γ be a weighted congestion game with player-specific latency func-
tions and 3 players on parallel links. If Γ does not have a best-improvement cycle
〈l, j, j〉 → 〈l, l, j〉 → 〈k, l, j〉 → 〈k, l, l〉 → 〈k, j, l〉 → 〈l, j, l〉 → 〈l, j, j〉 (where
l �= j, j �= k, l �= k are any three links and w1 ≥ w2 ≥ w3), then Γ has a pure Nash
equilibrium.

We now continue to prove:

Theorem 4. Every dominance weighted congestion game with 3 players on parallel
links does not have an improvement cycle of the form 〈l, j, j〉 → 〈l, l, j〉 → 〈k, l, j〉 →
〈k, l, l〉 → 〈k, j, l〉 → 〈l, j, l〉 → 〈l, j, j〉 where l �= j, j �= k, l �= k are any three links
and w1 ≥ w2 ≥ w3.

Proof. Assume, by way of contradiction, that there is a dominance congestion game
with such a cycle. Since all steps in the cycle are improvement steps, one gets for player
2 that f2j(w2 + w3) > f2l(w1 + w2) and f2l(w2 + w3) > f2j(w2). In the same way,
one gets for player 3 that f3j(w3) > f3l(w2 +w3) and f3l(w1 +w3) > f3j(w2 +w3).
We proceed by case analysis on whether 2 dominates 3 or 3 dominates 2 for 〈j, l〉.

Assume first that 2 dominates 3 for 〈j, l〉. Then, the first inequality for player 2
implies that f3j(w2 +w3) > f3l(w1 +w2) ≥ f3l(w1 +w3) (since f3l is non-decreasing
and w2 ≥ w3), a contradiction to the second inequality for player 3. Assume now that 3
dominates 2 for 〈j, l〉. Then, the first inequality for player 3 implies that f2l(w2+w3) <
f2j(w3) ≤ f2j(w2) (since f2j is non-decreasing and w2 ≥ w3), a contradiction to the
second inequality for player 2. ��

Since dominance (weighted) congestion games are a subclass of (weighted) congestion
games with player-specific latency functions, Theorems 3 and 4 immediately imply:

642 M. Mavronicolas et al.

Corollary 2. Every dominance weighted congestion game with 3 players on parallel
links has a pure Nash equilibrium.

By Proposition 1, Corollary 2 immediately implies:

Corollary 3. Every weighted congestion game with player-specific constants and 3
players on parallel links has a pure Nash equilibrium.

4 Network Congestion Games

Theorem 5. It is PLS-complete to compute a pure Nash equilibrium in an unweighted
symmetric network congestion game with player-specific additive constants.

Proof. Clearly, the problem of computing a pure Nash equilibrium in an unweighted
symmetric congestion game with player-specific additive constants is a PLS-problem.
(The set of feasible solutions is the set of all profiles and the neighborhood of a profile is
the set of profiles that differ in the strategy of exactly one player; the objective function
is the generalized ordinal potential since a local optimum of this functions is a Nash
equilibrium [14].) To provePLS-hardness, we use a reduction from thePLS-complete
problem of computing a pure Nash equilibrium for an unweighted, asymmetric network
congestion game [3]. For the reduction, we construct the two functions F1 and F2:

F1: Given an unweighted, asymmetric network congestion game Γ on a network G,
where (ai, bi)i∈[n] are the source and destination nodes of the n players and (fe)e∈E

are the latency functions, F1 constructs a symmetric network congestion game Γ ′ with
n players on a graph G′, as follows:

– G′ includes G, where for each edge e of G, g′e := fe and c′ie = 0 for each i ∈ [n].
– G′ contains a new common source a′ and a new common destination b′; for each

player i ∈ [n], we add an edge (a′, ai) with g′(a′,ai)
(x) := 0, c′i(a′,ai)

:= 0, and
c′k(a′,ai)

:= ∞ for all k �= i; in addition we add for each player i ∈ [n] an edge
(bi, b′) with g′(bi,b′)(x) := 0, c′i(bi,b′) := 0, and c′k(bi,b′) := ∞ for all k �= i.

F2: Consider now a pure Nash equilibrium t for Γ ′. The function F2 maps t to a profile
s for Γ (which, we shall prove, is a Nash equilibrium for Γ) as follows:

– Note first that for each player i ∈ [n], ti (is a path that) includes both edges (a′, ai)
and (bi, b′) (since otherwise ICi(t) = ∞). Construct si from ti by eliminating the
edges (a′, ai) and (bi, b′).

It remains to prove that s = F2(t) is a Nash equilibrium for Γ . By way of contradiction,
assume otherwise. Then, there is a player k that can decrease her Individual Cost in Γ
by changing her path sk to s′k. But then player k can decrease her Individual Cost in Γ ′

by changing her path tk = (a′, ak), sk, (bk, b′) to t′k = (a′, ak), s′k, (bk, b
′). So, t is not

a Nash equilibrium for Γ ′. A contradiction. ��

We remark that Theorem 5 holds also for unweighted symmetric network congestion
games with player-specific additive constants and undirected edges since the problem of
computing a pure Nash equilibrium for an unweighted, asymmetric network congestion
game with undirected edges is also PLS-complete [1].

Congestion Games with Player-Specific Constants 643

5 Arbitrary Congestion Games

We now restrict attention to weighted congestion games with player-specific additive
constants cie and linear delay functions fe(x) = ae · x. This gives rise to weighted
congestion games with player-specific affine latency functions fie(x) = ae · x + cie,
where i ∈ [n] and e ∈ E. For this case, we introduce a function Φ : S1× . . .×Sn → R
with Φ(s) =

∑n
i=1

∑
e∈si

wi · (2 · cie + ae · (δe(s) + wi)), for any profile s. For any
pair of player i ∈ [n] and resource e ∈ E, define φ(s, i, e) = wi · (2 · cie + ae ·
(δe(s) + wi)), so that Φ(s) =

∑n
i=1

∑
e∈si

φ(s, i, e). We now prove that this function
is a weighted potential:

Theorem 6. Every weighted congestion game with player-specific affine latency func-
tions has a weighted potential.

Proof. Fix a profile s. Assume that player k ∈ [n] unilaterally changes to the strategy
tk, which transforms s to t. Clearly,

Φ(s)− Φ(t)

=
∑

i∈[n]

∑

e∈si

φ(s, i, e)−
∑

i∈[n]

∑

e∈ti

φ(t, i, e)

= +
∑

e∈sk

φ(s, k, e)−
∑

e∈tk

φ(t, k, e) +
∑

i∈[n]\{k}

(
∑

e∈si

φ(s, i, e)−
∑

e∈ti

φ(t, i, e)

)

We treat separately the first and the second part of this expression. On one hand,
∑

e∈sk

φ(s, k, e)−
∑

e∈tk

φ(t, k, e) =
∑

e∈sk\tk

φ(s, k, e)−
∑

e∈tk\sk

φ(t, k, e)

=
∑

e∈sk\tk

wk(2 · cke + ae · (δe(s) + wk))−
∑

e∈tk\sk

wk(2 · cke + ae · (δe(t) + wk)).

On the other hand,

∑

i∈[n]\{k}

(
∑

e∈si

φ(s, i, e)−
∑

e∈ti=si

φ(t, i, e)

)
=

∑

i∈[n]\{k}

∑

e∈si

(φ(s, i, e)− φ(t, i, e))

=
∑

i∈
[n]\{k}

⎛

⎝
∑

e∈si∩(sk\tk)

(φ(s, i, e)− φ(t, i, e))+
∑

e∈si∩(tk\sk)

(φ(s, i, e)− φ(t, i, e))

⎞

⎠

=
∑

e∈sk\tk

∑

i∈[n]\{k}
| e∈si

(φ(s, i, e)− φ(t, i, e))+
∑

e∈tk\sk

∑

i∈[n]\{k}
| e∈si

(φ(s, i, e)− φ(t, i, e))

=
∑

e∈
sk\tk

∑

i∈[n]\{k}
| e∈si

(wi · ae · (δe(s)− δe(t)))+
∑

e∈
tk\sk

∑

i∈[n]\{k}
| e∈si

(wi · ae · (δe(s)− δe(t)))

= wk ·
∑

e∈sk\tk

ae · (δe(s)− wk)− wk ·
∑

e∈tk\sk

ae · (δe(t)− wk) .

644 M. Mavronicolas et al.

Putting these together yields that Φ is a weighted potential with weight vector b having
bi = 1

2wi
, i ∈ [n]. ��

Theorem 6 immediately implies:

Corollary 4. Every weighted congestion game with player-specific affine latency func-
tions has the Finite Improvement Property and a pure Nash equilibrium.

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the Impact of Combinatorial Structure on Con-
gestion Games. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 613–622. IEEE Computer Society Press, Los Alamitos (2006)

2. Dunkel, J., Schulz, A.: On the Complexity of Pure-Strategy Nash Equilibria in Congestion
and Local-Effect Games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.)
WINE 2006. LNCS, vol. 4286, pp. 50–61. Springer, Heidelberg (2006)

3. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The Complexity of Pure Nash Equilibria. In:
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 604–612.
ACM Press, New York (2004)

4. Facchini, G., van Megan, F., Borm, P., Tijs, S.: Congestion Models and Weighted Bayesian
Potential Games. Theory and Decision 42, 193–206 (1997)

5. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Struc-
ture and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

6. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. Theoretical Computer
Science 348(2–3), 226–239 (2005)

7. Gairing, M., Monien, B., Tiemann, K.: Routing (Un-)Splittable Flow in Games with Player-
Specific Linear Latency Functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg (2006)

8. Georgiou, C., Pavlides, T., Philippou, A.: Network Uncertainty in Selfish Routing. In: CD-
ROM Proceedings of the 20th IEEE International Parallel & Distributed Processing Sympo-
sium, p. 105. IEEE Computer Society Press, Los Alamitos (2006)

9. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. American Mathemat-
ical Society (1986)

10. Graham, R.L.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal of Applied
Mathematics 17(2), 416–429 (1969)

11. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How Easy is Local Search? Journal of
Computer and System Sciences 37(1), 79–100 (1988)

12. Libman, L., Orda, A.: Atomic Resource Sharing in Noncooperative Networks. Telecommu-
nication Systems 17(4), 385–409 (2001)

13. Milchtaich, I.: Congestion Games with Player-Specific Payoff Functions. Games and Eco-
nomic Behavior 13(1), 111–124 (1996)

14. Monderer, D., Shapley, L.S.: Potential Games. Games and Economic Behavior 14(1), 124–
143 (1996)

15. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International
Journal of Game Theory 2, 65–67 (1973)

Finding Patterns in Given Intervals

Maxime Crochemore1,2, Costas S. Iliopoulos1,�, and M. Sohel Rahman1,��,���

1 Algorithm Design Group
Department of Computer Science

King’s College London
Strand, London WC2R 2LS, England

Maxime.Crochemore@kcl.ac.uk,
{csi,sohel}@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/adg
2 Institut Gaspard-Monge

University of Marne-la-Vallée, France

Abstract. In this paper, we study the pattern matching problem in
given intervals. Depending on whether the intervals are given a priori for
pre-processing, or during the query along with the pattern or, even in
both cases, we develop solutions for different variants of this problem.
In particular, we present efficient indexing schemes for each of the above
variants of the problem.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P = P [1..m] of length m in a text T = T [1..n] of length n, both being
sequences of characters drawn from a finite character set Σ. This problem is in-
teresting as a fundamental computer science problem and is a basic need of many
applications, such as text retrieval, music retrieval, computational biology, data
mining, network security, to name a few. Several of these applications require,
however, more sophisticated forms of searching. As a result, most recent works in
pattern matching has considered ‘inexact matching’. Many types of differences
have been defined and studied in the literature, namely, errors (Hamming dis-
tance, LCS [10,17], edit distance [10,20]), wild cards or don’t cares [10,11,14,23],
rotations [3,7], scaling [4,5], permutations [9] among others.

Contemporary research on pattern matching has taken many other different
and interesting directions ranging from position restricted pattern matching [21]
to pattern matching with address error [2] and property matching [6]. In this
paper, we are interested in pattern matching in given intervals and focus on
building an index data structure to handle this problem efficiently. This partic-
ular variant of the classic pattern matching problem is motivated by practical

� Supported by EPSRC and Royal Society grants.
�� Supported by the Commonwealth Scholarship Commission in the UK under the

Commonwealth Scholarship and Fellowship Plan (CSFP).
��� On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 645–656, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

646 M. Crochemore, C.S. Iliopoulos, and M.S. Rahman

applications depending on different settings. For example, in many text search
situations one may want to search only a part of the text collection, e.g. re-
stricting the search to a subset of dynamically chosen documents in a document
database, restricting the search to only parts of a long DNA sequence, and so on.
In these cases we need to find a pattern in a text interval where the intervals are
given with the query pattern. On the other hand, in a different setting, the inter-
val or a set thereof may be supplied with the text for preprocessing. For example,
in molecular biology, it has long been a practice to consider special genome areas
by their structure. Examples are repetitive genomic structures [18] such as tan-
dem repeats, LINEs (Long Interspersed Nuclear Sequences) and SINEs (Short
Interspersed Nuclear Sequences) [19]. In this setting, the task may be to find
occurrences of a given pattern in a genome, provided it appears in a SINE, or
LINE. Finally a combination of these two settings is also of particular interest:
find occurrences of a given pattern in a particular part of a genome, provided it
appears in a SINE, or LINE.

Note that, if we consider the ‘normal’ (non-indexing) pattern matching sce-
nario, the pattern matching in given intervals become straightforward to solve:
we solve the classic pattern matching problem and then output only those that
belong to the given intervals. However, the indexing version of the problem seems
to be much more complex. Depending on whether the intervals are given a priori
for pre-processing (Problem PMGI), or during the query along with the pattern
(Problem PMQI) or, even in both the cases (Problem PMI), we develop solu-
tions for different variants of this problem. A slightly different variant of Problem
PMGI was studied in [6], whereas Problem PMQI was introduced and handled
in [21] (See Section 2 for details).

The contribution of this paper is as follows. We first handle the more gen-
eral problem PMI (Section 3) and present an efficient data structure requiring
O(n log3 n) time and O(n log2 n) space with a query time of O(m+log logn+K)
per query, where K is the size of the output. We then solve Problem PMGI
(Section 4) optimally (O(m + K) query time on a data structure with O(n)
time and O(n log n)-bit space complexity). Finally, we improve the query time
of [21] for Problem PMQI (Section 5) to optimal i.e. O(m + K) per query. The
corresponding data structure, however, requires O(n2) time due to a costly pre-
processing of an intermediate problem, which remains as the bottleneck in the
overall running time.

The rest of the paper is organized as follows. In Section 2, we present the
preliminary concepts. The contributions of this paper are presented in Section 3
to 5. We conclude briefly in Section 6.

2 Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet
Σ. A text T of length n is denoted by T [1..n] = T1T2 . . . Tn, where Ti ∈ Σ for
1 ≤ i ≤ n. The length of T is denoted by |T | = n. A string w is a factor or
substring of T if T = uwv for u, v ∈ Σ∗; in this case, the string w occurs at

Finding Patterns in Given Intervals 647

position |u| + 1 in T . The factor w is denoted by T [|u|+ 1..|u| + |w|]. A prefix
(suffix) of T is a factor T [x..y] such that x = 1 (y = n), 1 ≤ y ≤ n (1 ≤ x ≤ n).

In traditional pattern matching problem, we want to find the occurrences of a
given pattern P [1..m] in a text T [1..n]. The pattern P is said to occur at position
i ∈ [1..n] of T if and only if P = T [i..i+m− 1]. We use OccPT to denote the set
of occurrences of P in T .

The problems we handle in this paper can be defined formally as follows.

Problem “PMQI” (Pattern Matching in a Query Interval). Suppose we
are given a text T of length n. Preprocess T to answer following form of queries.

Query: Given a pattern P and a query interval [�..r], with 1 ≤ � ≤ r ≤ n,
construct the set

OccPT [�..r] = {i | i ∈ OccPT and i ∈ [�..r]}.

Problem “PMGI” (Pattern Matching in Given Intervals). Suppose we
are given a text T of length n and a set of disjoint intervals π = {[s1..f1], [s2..f2],
. . . , [s|π|..f|π|]} such that si, fi ∈ [1..n] and si ≤ fi, for all 1 ≤ i ≤ |π|. Preprocess
T to answer following form of queries.

Query: Given a pattern P construct the set

OccPT ,π = {i | i ∈ OccPT and i ∈ � for some � ∈ π}.

Problem “PMI” (Generalized Pattern Matching with Intervals). Su-
ppose we are given a text T of length n and a set of intervals π={[s1..f1], [s2..f2],
. . . , [s|π|..f|π|]} such that si, fi ∈ [1..n] and si ≤ fi, for all 1 ≤ i ≤ |π|. Preprocess
T to answer following form of queries.

Query: Given a pattern P and a query interval [�..r] such that �, r ∈ [1..n] and
� ≤ r, construct the set

OccPT [�..r],π = {i | i ∈ OccPT and i ∈ [�, r]
⋂

� for some � ∈ π}.

Problem PMQI was studied extensively in [21]. The authors in [21] presented
a number of algorithms depending on different trade-offs between the time and
space complexities. The best query time they achieved was O(m + log logn +
|OccPT [�..r]|) against a data structure exhibiting O(n log1+ε n) space and time
complexity, where 0 ≤ ε ≤ 1. A slightly different version of Problem PMGI
was studied in [6]1. In particular, the difference lies in the fact that the problem
handled in [6], looks for the occurrences of the given pattern completely confined
in the given set of intervals, π, whereas in Problem PMGI, only the occurreces
that starts in π are of interest. Problem PMI, as is evident from the definition,
is the combination of Problem PMQI and PMGI and hence is a more general
problem in this regard.

1 In [6] a data structure requiring O(n log Σ+n log log n) time was presented to support
O(m + K) time query, where K is the output size.

648 M. Crochemore, C.S. Iliopoulos, and M.S. Rahman

In traditional indexing problem one of the basic data structures used is the
suffix tree data structure. In our indexing problem, we make use of this suffix
tree data structure. A complete description of a suffix tree is beyond the scope
of this paper, and can be found in [22,25] or in any textbook on stringology
(e.g. [12,16]). However, for the sake of completeness, we define the suffix tree
data structure as follows. Given a string T of length n over an alphabet Σ, the
suffix tree STT of T is the compacted trie of all suffixes of T $, where $ /∈ Σ.
Each leaf in STT represents a suffix T [i..n] of T and is labeled with the index i.
We refer to the list (in left-to-right order) of indices of the leaves of the subtree
rooted at node v as the leaf-list of v; it is denoted by LL(v). Each edge in STT
is labeled with a nonempty substring of T such that the path from the root to
the leaf labeled with index i spells the suffix T [i..n]. For any node v, we let �v
denote the string obtained by concatenating the substrings labeling the edges on
the path from the root to v in the order they appear. Several algorithms exist
that can construct the suffix tree STT in O(n logΣ) time2 [22,25,13]. The space
requirement of suffix tree is O(n logn) bits. Given the suffix tree STT of a text
T we define the “locus” μP of a pattern P as the node in STT such that �μP

has the prefix P and |�μP | is the smallest of all such nodes. Note that the locus
of P does not exist, if P is not a substring of T . Therefore, given P , finding
μP suffices to determine whether P occurs in T . Given a suffix tree of a text
T , a pattern P , one can find its locus and hence the fact whether T has an
occurrence of P in optimal O(|P|) time.In addition to that, all such occurrences
can be reported in constant time per occurrence.

3 Problem PMI

In this section, we handle Problem PMI. Since this is a more general problem
than both PMQI and PMGI, any solution to PMI would also be a solution to
both PMQI and PMGI. Our basic idea is to build an index data structure that
would solve the problem in two steps. First, it will (implicitly) give us the set
OccPT . Then, the index would ‘select’ some of the occurrences to provide us with
our desired set OccPT [�..r],π.

We describe now the idea we employ. We first construct a suffix tree STT .
According to the definition of suffix tree, each leaf in STT is labeled by the
starting location of its suffix. We do some preprocessing on STT as follows. We
maintain a linked list of all leaves in a left-to-right order. In other words, we
realize the list LL(R) in the form of a linked list, where R is the root of the
suffix tree. In addition to that, we set pointers v.left and v.right from each tree
node v to its leftmost leaf v� and rightmost leaf vr (considering the subtree
rooted at v) in the linked list. It is easy to realize that, with these set of pointers
at our disposal, we can indicate the set of occurrences of a pattern P by the two
leaves μP� and μPr because all the leaves between and including μP� and μPr in
LL(R) correspond to the occurrences of P in T . In what follows, we define the
terms �T and rT such that LL(R)[�T] = μP� and LL(R)[rT] = μPr , where R is
the root of STT .
2 For bounded alphabet the running time remains linear, i.e. O(n).

Finding Patterns in Given Intervals 649

Now recall that our data structure has to be able to somehow “select” and
report only those occurrences that lies in the intersection of the query interval
and one of the given intervals. To solve this we use the following two interesting
problems.

Problem “CRSI” (Colored Range Set Intersection Problem). Suppose
V [1..n] and W [1..n] are two permutations of [1..n]. Also, assume that each
i ∈ [1..n] is assigned a not necessarily distinct color. Preprocess V and W to
answer the following form of queries.

Query: Find the distinct colors of the intersection of the elements of V [i..j] and
W [k..�], 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ � ≤ n.

Problem “CRSG” (Colored Range Search Problem on Grid). Suppose
A[1..n] is a set of n colored points on the grid [0..U] × [0..U]. Preprocess A to
answer the following form of queries.

Query: Given a query rectangle q ≡ (a, b)× (c, d), find the set of distinct colors
of points contained in q.

Our idea is to first reduce Problem PMI to Problem CRSI and then to the
much more studied Problem CRSG. Recall that, we have an array LL(R) and
an interval [�T ..rT], which implicitly gives us the set OccPT . Recall also that, our
goal is to select those i ∈ OccPT such that i occurs in one of the intervals of π
and also in [�..r]. We first construct an array M = M[1..n], such that for all
k ∈ [1..n],M[k] = k. Also, we construct a ‘color array’ C to assign colors to each
k ∈ [1..n] as follows. For each k ∈ [1..n] we assign C[k] = ck, if there exists an
i such that si ≤ k ≤ fi, [si..fi] ∈ π; we then say that the color of k is ck. Any
other k ∈ [1..n] is assigned a fixed different color, say cfixed. In other words, all
the positions of the text T , not covered by any of the intervals of π are given a
fixed color cfixed and every other position carries a distinct color each. We also
realize the inverse relation in the form of the array, C−1, such that C−1[ck] = k,
if and only if, C[k] = ck and ck �= cfixed. Note that, there may exist more than
one positions having color cfixed. We define C−1(cfixed) = ∞.

Now we can reduce our problem to Problem CRSI as follows. We have two
arrays LL(R) and M and, respectively, two intervals [�T ..rT] and [�..r]. Also
we have color array C, which associates a (not necessary distinct) color to each
i ∈ [1..n]. Now it is easy to see that, if we can find the distinct colors in the set
of intersections of elements of LL(R)[�T ..rT] and M[�..r], then we are (almost)
done. The only additional thing we need to take care of is that if we have the
color cfixed in our output, we need to discard it. So, the Problem PMI is reduced
to Problem CRSI.

On the other hand, we can see that Problem CRSI is just a different formu-
lation of the Problem CRSG. This can be realized as follows. We set U = n.
Since V and W in Problem CRSI are permutations of [1..n], every number in
[1..n] appears precisely once in each of them. We define the coordinates of every
number i ∈ [1..n] to be (x, y), where V [x] = W [y] = i. Thus we get the n col-
ored points (courtesy to C) on the grid [0..n]× [0..n], i.e. the array A of Problem

650 M. Crochemore, C.S. Iliopoulos, and M.S. Rahman

CRSG. The query rectangle q is deduced from the two intervals [i..j] and [k..�] as
follows: q ≡ (i, k)× (j, �). It is straightforward to verify that the above reduction
is correct and hence we can solve Problem CRSI using the solution of Problem
CRSG.

Algorithm 1. Algorithm to build IDS PMI
1: Build a suffix tree STT of T . Let the root of STT is R.
2: Label each leaf of STT by the starting location of its suffix.
3: Construct a linked list L realizing LL(R). Each element in L is the label of the

corresponding leaf in LL(R).
4: for each node v in STT do
5: Store v.left = i and v.right = j such that L[i] and L[j] corresponds to, respec-

tively, (leftmost leaf) v� and (rightmost leaf) vr of v.
6: end for
7: for i = 1 to n do
8: Set M[i] = i
9: end for

10: for i = 1 to n do
11: Set C[i] = cfixed

12: end for
13: for i = 1 to |π| do
14: for j = si to fi do
15: C[j] = cj

16: end for
17: end for
18: for i = 1 to n do
19: Set A[i] = ε
20: end for
21: for i = 1 to n do
22: if there exists (x, y) such that M[x] = L[y] = i then
23: Set A[i] = A[i]

⋃
(x, y)

24: end if
25: end for
26: Preprocess A (and C) for Colored Range Search on a Grid [0..n] × [0..n].

To solve Problem CRSG, we are going to use the data structure of Agar-
wal et al. [1]3. This data structure can answer the query of Problem CRSG in
O(log logU + K) time, where K is the number of points contained in the query
rectangle q. The data structure can be built in O(n log n log2 U) time and re-
quires O(n log2 U) space. Algorithm 1 formally states the steps to build our data
structure. In the rest of this paper, we refer to this data structure as IDS PMI.
One final remark is that, we can use the suffix array instead of suffix tree as well
with some standard modifications in Algorithm 1.

3 To the best of our knowledge, this is the only data structure that handles the colored
range query exploiting the grid property to gain efficiency.

Finding Patterns in Given Intervals 651

3.1 Analysis

Let us now analyze the cost of building the index data structure IDS PMI. To
build IDS PMI, we first construct a traditional suffix tree requiring O(n logΣ)
time. The preprocessing on the suffix tree can be done in O(n) by traversing
STT using a breadth first or in order traversal. The color array C can be setup
in O(n) because π is a set of disjoint intervals and it can cover, at most, n points.
The construction of the set A of points in the grid [0..n]× [0..n], on which we will
apply the range search, can also be done in O(n) as follows. Assume that L is the
linked list realizing LL(R). Each element in L is the label of the corresponding
leaf in LL(R). We construct L−1 such that L−1[L[i]] = i. It is easy to see that
with L−1 in our hand we can easily construct A in O(n). After A is constructed
we build the data structure to solve Problem CRSG which requires O(n log3 n)
time and O(n log2 n) space because U = n. Since, we can assume Σ ≤ n, the
index IDS PMI can be constructed in O(n log3 n) time.

Algorithm 2. Algorithm for Query Processing
1: Find μP in STT .
2: Set i = μP .left, j = μP .right.
3: Compute the set B, where B is the set of distinct colors in the set of points

contained in q ≡ (i, �)× (j, r)
4: return OccP

T [�..r],π = {C−1[x] | x ∈ B and x �= cfixed}

3.2 Query Processing

So far we have concentrated on the construction of IDS PMI. Now we discuss
the query processing. Suppose we are given a query pattern P along with a
query interval [�..r]. We first find the locus μP in STT . Let i = μP .left and
j = μP .right. Then we perform a colored range search query on A with the
rectangle q ≡ (i, �)×(j, r). Let B is the set of those colors as output by the query.
Then it is easy to verify that OccPT [�..r],π = {C−1[x] | x ∈ B and x �= cfixed}.
The steps are formally presented in the form of Algorithm 2.

The running time of the query processing is deduced as follows. Finding the
locus μP requires O(m) time. The corresponding pointers can be found in con-
stant time. The construction of the set B is done by performing the range query
and hence requires O(log logn + |B|) time. Note that |B| is either equal to
|OccPT [�..r],π| or just one unit more than that. The latter happens when we have
cfixed ∈ B. So, in total the query time is O(m + log logn + |OccPT [�..r],π|+ 1) =
O(m + log logn + |OccPT [�..r],π|). We state the results of this section in the form
of following theorem.

Theorem 1. For Problem PMI, we can construct the IDS PMI data structure
in O(n log3 n) time and O(n log2 n) space and we can answer the relevant queries
in O(m + log logn + |OccPT [�..r],π|) time per query.

652 M. Crochemore, C.S. Iliopoulos, and M.S. Rahman

4 Problem PMGI

In Section 3, we have presented an efficient index data structure, namely
IDS PMI, to solve Problem PMI. In this section, we consider Problem PMGI.
Since PMI is a generalized version of PMGI, we can easily use the solution in
Section 3 to solve PMGI. We use the same data structure IDS PMI. During the
query, since PMGI doesn’t have any query interval, we just need to assume the
query interval to be [1..n]. So we have the following theorem.

Theorem 2. For Problem PMGI, we can construct the IDS PMI data structure
in O(n log3 n) time and O(n log2 n) space and we can answer the relevant queries
in O(m + log logn + |OccPT ,π|) time per query.

However, as it turns out, we can achieve better results for Problem PMGI. And in
fact, as we show below, we can solve Problem PMGI optimally. We first discuss
how we construct the data structure, namely IDS PMGI, to solve PMGI. As
before, we start by constructing a suffix tree (or suffix array) STT . Then we
do all the preprocessing done on STT as we did to construct IDS PMI. We
also construct the color array C. This time however, we do a slightly different
encoding as follows. For each k ∈ [1..n], we assign C[k] = −1, if there exists an i
such that si ≤ k ≤ fi, [si..fi] ∈ π. For all other k ∈ [1..n] we assign C[k] = 0. In
other words, all the positions of the text T , not covered by any of the intervals
of π gets 0 as their color and every other positions gets the color −1. Now we
make use of the following interesting problem.

Problem “RMIN” (Range Minima Query Problem). We are given an
array A[1..n] of numbers. We need to preprocess A to answer following form of
queries:

Query: Given an interval I = [is..ie], 1 ≤ is ≤ ie ≤ n, the goal is to find the
index k (or the value A[k] itself) with minimum (maximum, in the case of Range
Maxima Query) value A[k] for k ∈ I.

Problem RMIN has received much attention in the literature and Bender and
Farach-Colton showed that we can build a data structure in O(n) time us-
ing O(n logn)-bit space and can answer subsequent queries in O(1) time per
query [8]4. Recently, Sadakane [24] presented a succinct data structure which
achieves the same time complexity using O(n) bits of space.

Now, we preprocess the array C to answer the range minima queries (RMQ).
Note that, in C, we have only two values. So to define a unique value in case
of a tie, we consider the index along with the value. More formally, we define
C[i] ≺ C[j], 1 ≤ i �= j ≤ n if and only if C[i] ≤ C[j] and i < j. And we employ
RMQ using the relation ≺. This can be easily done in O(n) slightly modifying
the preprocessing used in [8]5. Finally, for each C[i] = −1, we maintain a pointer

4 The same result was achieved in [15], albeit with a more complex data structure.
5 In particular, the only modification needed is in the construction of the Cartesian

tree.

Finding Patterns in Given Intervals 653

to C[j] = −1 such that j > i and j is the smallest index with this property; if
there doesn’t exist any such C[j], then C[i] points to ‘NULL’. More formally, we
maintain another arrayD[1..n] such that for all i ∈ [1..n] with C[i] = −1, we have
D[i] = j, if and only if, C[j] = −1 and C[k] = 0, i < k < j. For all other index
the D is given a ‘NULL’ value. This completes the construction of IDS PMGI.
Note that, the overall running time to construct IDG PMGI remains dominated
by the construction of the suffix tree STT . As a result, the construction time is
O(n) for bounded alphabet and O(n logΣ) otherwise.

Now we discuss how we perform the query on IDS PMGI. Suppose we are
given a query pattern P . We first find the locus μP in STT . Let i = μP .left and
j = μP .right. Now we basically have the set OccPT in L[i..j]. Now we perform a
range minima query on C with the query interval [i..j]. This gives us, in constant
time [8], the first index k ∈ [i..j] such that C[k] = −1. Then we follow the
linked list realized by D to report all the indices in the range [i..j] having color
−1. More formally, we construct the set B = {k | k ∈ [i..j] and C[k] = −1}.
With the help of D this can be done in O(|B|) time. And it is easy to realize
that OccPT ,π = {L[i] | i ∈ B}. Therefore we can perform the query in optimal
O(m+ |OccPT ,π|) time. The following theorem present the results achieved in this
section.

Theorem 3. For Problem PMGI, we can construct the IDS PMGI data struc-
ture in O(n logΣ) time and O(n logn) bits of space and the relevant queries can
be answered optimally in O(m + |OccPT ,π|) time per query.

For bounded alphabets, we have the following result.

Theorem 4. For Problem PMGI, we can construct the IDS PMGI data struc-
ture in O(n) time and O(n logn) bits of space and the relevant queries can be
answered optimally in O(m + |OccPT ,π|) time per query.

5 Problem PMQI

This section is devoted to Problem PMQI. As is mentioned above, PMQI was
studied extensively in [21]. The best query time achieved in [21] was O(m +
log logn + |OccPT [�..r]|) against a data structure exhibiting O(n log1+ε n) space
and time complexity, where 0 ≤ ε ≤ 1. Note that, we can easily use IDS PMI to
solve PMQI by assuming π = {[1..n]}. So, with a slightly worse data structure
construction time, we can achieve the same query time of [21] to solve PMQI
using our data structure IDS PMI to solve a more general problem, namely
PMI. However, as pointed out in [21], it would be really interesting to get an
optimal query time for this problem. In this section, we attain an optimal query
time for PMQI. However, the optimal query time is achieved against a O(n2)
preprocessing time.

The data structure, namely IDS PMQI, is constructed as follows. As before,
we start by constructing a suffix tree (or suffix array) STT . Then we do all the
preprocessing done on STT as we did to construct IDS PMI and IDS PMGI.

654 M. Crochemore, C.S. Iliopoulos, and M.S. Rahman

Recall that, with STT in our hand, preprocessed as above, we can have the set
OccPT in the form of L[i..j] in O(m) time. To achieve the optimal query time
we now must ‘select’ k ∈ L[i..j] such that k ∈ [�..r] without spending more
than constant time per selection. To achieve this goal we introduce the following
interesting problem.

Problem “RNV” (Range Next Value Query Problem). We are given
an array A[1..n], which is an permutation of [1..n]. We need to preprocess A to
answer the following form of queries.

Query: Given an integer k ∈ [1..n], and an interval [i..j], 1 ≤ i ≤ j ≤ n, the goal
is to return the index of the immediate higher (or equal) number (‘next value’)
than k from A[i..j] if there exists one. More formally, we need to return � (or
A[�] as the value itself) such that i ≤ � ≤ j and A[�] = min{A[q] | A[q] ≥
k and i ≤ q ≤ j}

Despite extensive results on various range searching problems we are not aware
of any result that directly addresses this problem. Recall that our goal now is
to answer the RNV queries in O(1) time per query. We below give a solution
where we can preprocess A in O(n2) time and then can answer the subsequent
queries in O(1) time per query. The idea is is as follows. We maintain n arrays
Bi, 1 ≤ i ≤ n. Each array, Bi has n elements. So we could view B as a two
dimensional array as well. We fill each array Bi depending on A as follows. For
each 1 ≤ i ≤ n we store in Bi the difference between i and the corresponding
element of A and then replace all negative entries of Bi with ∞. More formally,
for each 1 ≤ i ≤ n and for each 1 ≤ j ≤ n we set Bi[j] = A[j] − i if A[j] ≥ i;
otherwise we set Bi[j] = ∞. Then we preprocess each Bi, 1 ≤ i ≤ n for range
minima query [8]. This completes the construction of the data structure. It is
clear that it will require O(n2) time. The query processing is as follows. Suppose
the query parameters are k and [i..j]. Then we simply apply range minima query
in Bk for the interval [i..j]. So we have the following theorem.

Theorem 5. For Problem RNV, we can construct a data structure in O(n2)
time and space to answer the relevant queries in O(1) time per query.

Now we show how we can use the result of Theorem 5 to answer the queries
of Problem PMQI optimally. To complete the construction of IDS PMQI, we
preprocess the array L for Problem RNV. The query processing is as follows.
Recall that, we can have the set OccPT in the form of L[i..j] in O(m) time. Recall
also that as part of the PMQI query, we are given an interval [�..r]. Now we
perform an RNV query on L with the parameters � and [i..j]. Suppose the query
returns the index q. It is easy to see that if L[q] ≤ r, then L[q] ∈ OccPT [�..r]. And
then we repeat the RNV query with parameters L[q] and [i..j]. We stop as soon
as a query returns an index q such that L[q] > r. So, in this way, given L[i..j],
we can get the set OccPT [�..r] in O(|OccPT [�..r]|) time. So we have the following
theorem.

Finding Patterns in Given Intervals 655

Theorem 6. For Problem PMQI, we can construct a data structure, namely
IDS PMQI, in O(n2) time and space to answer the relevant query in optimal
O(m + |OccPT [�..r]|) time.

It is clear that the bottleneck in the construction time lies in the preprocessing
of Problem RNV. So any improvement on Theorem 5 would improve Theorem 6
as well. One interesting fact is that, the occurrences in OccPT [�..r] as output by
our algorithm will always remain sorted according to their position in T , which
in many applications may turn out to be useful.

6 Conclusion

In this paper, we have considered the problem of pattern matching in given
intervals and focused on building index data structure to handle different ver-
sions of this problem efficiently. We first handled the more general problem
PMI and presented an efficient data structure requiring O(n log3 n) time and
O(n log2 n) space with a query time of O(m+log logn+ |OccPT [�..r],π|) per query.
We then solved Problem PMGI optimally (O(n) time and O(n log n)-bits space
data structure and O(m+ |OccPT ,π|) query time). Finally, we improved the query
time of [21] for Problem PMQI to optimal i.e. O(m + |OccPT [�..r]|) per query,
although, at the expense of a more costly data structure requiring O(n2) time
and space. It would be interesting to improve the preprocessing time of both
Problem PMI and PMQI and also the query time of the former. Of particular
interest is the improvement of the O(n2) data structure of PMQI without sacri-
ficing the optimal query time. Furthermore, we believe that Problem RNV is of
independent interest and could be investigated further.

References

1. Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.: Range searching in categor-
ical data: Colored range searching on grid. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)

2. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: rearrangement distances. In:
SODA, pp. 1221–1229. ACM Press, New York (2006)

3. Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps, M.: Two-
dimensional pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173–
187 (2004)

4. Amir, A., Butman, A., Lewenstein, M.: Real scaled matching. Inf. Process.
Lett. 70(4), 185–190 (1999)

5. Amir, A., Chencinski, E.: Faster two dimensional scaled matching. In: Lewenstein,
M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 200–210. Springer, Hei-
delberg (2006)

6. Amir, A., Chencinski, E., Iliopoulos, C., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. In: CPM, pp. 1–15 (2006)

656 M. Crochemore, C.S. Iliopoulos, and M.S. Rahman

7. Amir, A., Kapah, O., Tsur, D.: Faster two dimensional pattern matching with
rotations. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 409–419. Springer, Heidelberg (2004)

8. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Latin American
Theoretical INformatics (LATIN), pp. 88–94 (2000)

9. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf.
Process. Lett. 92(6), 293–297 (2004)

10. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Babai, L. (ed.) STOC, pp. 91–100. ACM Press, New
York (2004)

11. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: STOC, pp. 592–601 (2002)

12. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
13. Farach, M.: Optimal suffix tree construction with large alphabets. In: FOCS, pp.

137–143 (1997)
14. Fischer, M., Paterson, M.: String matching and other products. In: Karp, R.M.

(ed.) Complexity of Computation. SIAM AMS Proceedings, vol. 7, pp. 113–125
(1974)

15. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry
problems. In: Symposium on the Theory of Computing (STOC), pp. 135–143 (1984)

16. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

17. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24(4), 664–675 (1977)

18. Jurka, J.: Human repetitive elements. In: Meyers, R.A. (ed.) Molecular Biology
and Biotechnology

19. Jurka, J.: Origin and evolution of alu repetitive elements. In: Maraia, R. (ed.) The
impact of short interspersed elements (SINEs) on the host genome

20. Levenshtein, V.: Binary codes capable of correcting, deletions, insertions and re-
versals. Soviet Phys. Dokl. 10, 707–710 (1966)

21. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: LATIN, pp.
1–12 (2006)

22. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

23. Rahman, M.S., Iliopoulos, C., Lee, I., Mohamed, M., Smyth, W.: Finding patterns
with variable length gaps or don’t cares. In: Chen, D.Z., Lee, D.T. (eds.) COCOON
2006. LNCS, vol. 4112, pp. 146–155. Springer, Heidelberg (2006)

24. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

25. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

The Power of Two Prices:
Beyond Cross-Monotonicity�

Yvonne Bleischwitz1,2, Burkhard Monien1, Florian Schoppmann1,2,
and Karsten Tiemann1,2

1 Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{yvonneb,bm,fschopp,tiemann}@uni-paderborn.de
2 International Graduate School of Dynamic Intelligent Systems

Abstract. Assuming strict consumer sovereignty (CS*), when can cost-
sharing mechanisms simultaneously be group-strategyproof (GSP) and
β-budget-balanced (β-BB)? Moulin mechanisms are GSP and 1-BB for
submodular costs. We overcome the submodularity requirement and in-
stead consider arbitrary—yet symmetric—costs:

– Already for 4 players, we show that symmetry of costs is not sufficient
for the existence of a GSP and 1-BB mechanism. However, for only
3 players, we give a GSP and 1-BB mechanism.

– We introduce two-price cost-sharing forms (2P-CSFs) that define
players’ cost shares and present a novel mechanism that is GSP
given any such 2P-CSF. For subadditive costs, we give an algorithm
to compute 2P-CSFs that are

√
17+1
4 -BB (≈ 1.28). This result is then

shown to be tight for 2P-CSFs. Yet, this is a significant improvement
over 2-BB, which is the best Moulin mechanisms can achieve.

– We give applications to the minimum makespan scheduling problem.

A key feature of all our mechanisms is a preference order on the set of
players. Higher cost shares are always payed by least preferred players.

1 Introduction and Model

1.1 Motivation

Consider a computing center with a large cluster of parallel machines that offers
(uninterrupted) processing times. First, potential customers submit a maximum
payment they would be willing to contribute for having their jobs processed.
Then, solely based on these messages, the computing center uses a (commonly
known) algorithm to determine both the served customers and their eventual
payments. In addition, it computes a schedule for the accepted jobs.

Deciding on prices only after receiving binding bids by customers enables the
computing center to determine an outcome that both ensures recovery of its own
cost as well as competitive prices in that its surplus is always relatively small.
� This work was partially supported by the IST Program of the European Union under

contract number IST-15964 (AEOLUS).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 657–668, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

658 Y. Bleischwitz et al.

In fact, if the computing center is a public institution, this budget-balance might
even be a legal requirement. Since prices are bid-dependent, selfishness of cus-
tomers elevates the computing center’s scheduling problems to a game-theoretic
context: How can the service provider ensure group-strategyproofness such that
(coalitional) strategic bidding corresponds to submitting true valuations?

The above scenario is an example for cost sharing: A service provider offers
some service which n ∈ N selfish players are interested in. This interest is defined
by a player’s true valuation vi ∈ Q for being served, which is private information.
The protocol used for negotiation is simple: The service provider elicits bids
bi ∈ Q from the players that are supposed to indicate their (alleged) valuations
for being served. It uses these bids bi as a proxy for the true vi’s and employs
a commonly known cost-sharing mechanism to determine both the set of served
players and their payments, referred to as cost shares in the following.

1.2 The Model

Notation. For n ∈ N0, let [n] := {1, . . . , n} and [n]0 := [n]∪{0}. For all A ⊆ [n]
and all i ∈ A, let Rank(i, A) := |{j ∈ A | j ≤ i}|. Given x,y ∈ Qn and A ⊆ [n],
let xA := (xi)i∈A ∈ Q|A| and x−A := x[n]\A. Let (x−A,yA) ∈ Qn denote the
vector where the components in x for A are replaced by the respective ones
from y. For z ∈ Qm, (x; z) ∈ Qn+m is the vector containing the components of
both x and z. By convention, the vector of the players’ true valuations is always
v ∈ Qn, whereas an actual bid vector is denoted b ∈ Qn.

Definition 1. A cost-sharing mechanism M = (Q × x) : Qn → 2[n] × Qn is a
function where Q(b) ∈ 2[n] is the set of players to be served and x(b) ∈ Qn is
the vector of cost shares.

All cost-sharing mechanisms are required to fulfill three standard properties:

– No positive transfers (NPT): Players never get paid, i.e., xi(b) ≥ 0.
– Voluntary participation (VP): Players never pay more than they bid and are

only charged when served, i.e., if i ∈ Q(b) then xi(b) ≤ bi, else xi(b) = 0.
– Consumer sovereignty (CS): For any player i ∈ [n] there is a threshold bid

b+i ∈ Q≥0 such that i is served if bidding at least b+i , regardless of the other
players’ bids; i.e., there is a b+i ∈ Q≥0 such that if bi ≥ b+i then i ∈ Q(b).

Note that in our model, VP implies that players may opt to not participate (by
submitting a negative bid). This property together with CS is referred to as
strict consumer sovereignty (CS*).

We assume the utility ui : Qn → Q of any player i ∈ [n] to be quasi-linear, i.e.,
ui(b) := vi − xi(b) if i ∈ Q(b) and 0 otherwise. Under this premise, mechanisms
should elicit truthful bids (b = v) even if players may collude:

Definition 2. A mechanism is group-strategyproof (GSP) if for every true val-
uation vector v ∈ Qn and any coalition K ⊆ [n] there is no bid vector b ∈ Qn

with b−K = v−K such that ui(b) ≥ ui(v) for all i ∈ K and ui(b) > ui(v) for at
least one i ∈ K.

The Power of Two Prices: Beyond Cross-Monotonicity 659

The provider’s cost of serving a set of players Q ⊆ [n] is defined by a cost function
C : 2[n] → Q≥0 with C(A) = 0 ⇐⇒ A = ∅. Of particular interest are:

– Symmetric costs: Costs depend only on the cardinality, i.e., for all A,B ⊆ [n]
with |A| = |B|: C(A) = C(B). In this case, we usually define costs solely by
a function of the cardinality, c : [n]0 → Q≥0, where C(A) := c(|A|).

– Subadditive costs: The marginal cost of adding a set of players is never more
than the stand-alone cost of this set. That is, for any two sets A,B ⊆ [n] :
C(A) + C(B) ≥ C(A ∪B).

– Submodular costs: For all A,B ⊆ [n]: C(A) +C(B) ≥ C(A∪B) +C(A∩B).

A mechanism should be budget-balanced with respect to the incurred cost:

Definition 3. A mechanism M = (Q × x) is β-budget-balanced (β-BB, for
β ≥ 1) w.r.t. cost C if for all b ∈ Qn : C(Q(b)) ≤

∑
i∈Q(b) xi(b) ≤ β · C(Q(b)).

GSP is a strong property in that cost shares selected by a GSP mechanism only
depend on the set of served players and not on the bids [13]. This gives rise to:

Definition 4. A cost-sharing method is a function ξ : 2[n] → Qn
≥0 that maps

each set of players to a vector of cost shares.

Clearly, every GSP mechanism induces a unique cost-sharing method ξ, by set-
ting ξ(A) := x(b) where bi < 0 if i /∈ A and bi = b+i if i ∈ A. Three special
properties of a cost-sharing method ξ are of importance in this work:

– β-Budget-balance (w.r.t. C): For all A ⊆ [n] : C(A) ≤
∑

i∈A ξi(A) ≤ β·C(A).
– Cross-monotonicity: For any player i ∈ [n], cost shares are non-increasing as

the set of players gets larger, i.e., for all A,B ⊆ [n] : ξi(A ∪B) ≤ ξi(A).
– Preference order (for symmetric costs): ξ has a succinct representation by

vectors ξj ∈ Qj
≥0 for all j ∈ N: ξi(A) := ξ

|A|
Rank(i,A) if i ∈ A and 0 otherwise.

Example: If n = 5, A = {2, 4}, and ξ2 = (2, 1), then ξ(A) = (0, 2, 0, 1, 0).

While the first two properties are standard in the realm of cost sharing, the third
one is essentially “new” and crucial for our results. A preference order ensures
that the cost share of any player i in a set of served players A ⊆ [n] only depends
on the rank of i in A and the cardinality of A.

In his seminal work [13], Moulin gave the straightforward mechanism Moulinξ

that is GSP given any cross-monotonic cost-sharing method ξ. Moulinξ repeat-
edly rejects players whose bids are below their current cost shares until all re-
maining players can afford their payments. For any GSP mechanism M with
induced cross-monotonic cost shares ξ, Moulinξ produces the same utility for
each player as M . Therefore, we call any GSP mechanism with cross-monotonic
cost shares a Moulin mechanism.

1.3 Related Work

Moulin [13] completely characterizes the impact of submodular costs on GSP and
1-BB: Any GSP mechanism that is 1-BB w.r.t. submodular costs is a Moulin

660 Y. Bleischwitz et al.

mechanism. Conversely, for any submodular cost function C : 2[n] → Q≥0, a
cross-monotonic 1-BB cost-sharing method always exists. Besides this result,
characterizations have also been obtained for so-called upper-continuous mech-
anisms [8,14], which are a superclass of Moulin mechanisms.

Essentially all known GSP mechanisms are Moulin mechanisms; confer, e.g.,
[1,7,11,2,9,10,3,6,4]. For scheduling, when costs are defined as the optimal make-
span, Bleischwitz and Monien [3] give 2m

m+1 -BB cross-monotonic cost-sharing
methods in case of identical jobs (m is the number of machines). They show
that no Moulin mechanism can perform better. For arbitrary processing times,
they give a 2d-BB cross-monotonic cost-sharing method, where d is the number
of different processing times, and show tightness up to a factor of 2.

In the (implausible) case that players have no means of refusing service (tech-
nically: when bids are required to be non-negative and CS* is not required),
Immorlica et al. [8] present simple 1-BB and GSP mechanisms.

Recently, trading off social cost and BB has become an active direction of
research. For details and a definition confer [12,4,6] and their references.

1.4 Contribution

Assuming strict consumer sovereignty (CS*), we obtain the following results:
1. In the vein of previous characterization attempts [13,8], we study the impact

of symmetric costs on GSP and 1-BB in Section 3: Already for 4 players, we
show that symmetry of costs is not sufficient for the existence of a GSP and
1-BB mechanism any more. However, for only 3 players, we give a GSP and
1-BB mechanism (based on the techniques from Section 2).

2. For symmetric costs, we introduce two-price cost-sharing forms (2P-CSFs)
in Section 2 that define players’ cost shares. The attribute ‘two-price’ is to
indicate that for any set of served players, there are at most two different cost
shares. For any 2P-CSF F , we present a novel mechanism MechCSF F that is
GSP. This is analogous to Moulinξ which is GSP if the cost-sharing method
ξ is cross-monotonic. The usefulness of our new technique lies in the fact that
2P-CSFs do not necessarily represent cross-monotonic cost-sharing methods.
Hence, for certain classes of cost functions, 2P-CSFs allow for better budget
approximations than cross-monotonic cost-sharing methods. In particular,
for symmetric and subadditive costs, we give an algorithm to compute 2P-
CSFs that are

√
17+1
4 -BB. We show that, in general, this is the best 2P-

CSFs can yield. Yet, this significantly improves over 2-BB, which is the best
possible for cross-monotonic cost shares [3].

3. We apply our technique to the scheduling problem of minimizing makespan
on related machines in Section 2.3. We obtain a quadratic-time algorithm
for computing GSP and (

√
17+1
4 · d)-BB mechanisms, where d is the number

of different processing times. This beats the previously best-known BB of
2d [3]. We are able to extend our techniques to guarantee GSP and 1-BB
for the case of identical jobs and identical machines and a specific (non-
symmetric) scheduling setting on 3 identical machines and processing times
1 and 2. Unfortunately, the same approach fails for 4 identical machines.

The Power of Two Prices: Beyond Cross-Monotonicity 661

All our algorithms are based on one basic idea: They compute mechanisms with
preference-ordered cost shares. Most players are charged a reasonable lower cost
share (at least the minimum average per-player cost over all possible sets of
players) while some less preferred players have to reimburse the remaining cost.

Omitted proofs are given in the extended version of this paper.

2 Two Price Cost-Sharing Forms

Before looking at two prices, we state what can be achieved with one price:

Lemma 1. For any non-decreasing, symmetric, and subadditive cost function
c : [n]0 → Q>0, there is a GSP and 2-BB mechanism that always charges all
served players equally. If c is also submodular, this mechanism is even 1-BB.
However, for any ε > 0, there is a non-decreasing, symmetric, and subadditive
cost function for which no such GSP and (2− ε)-BB mechanism exists.

In the following, we give GSP mechanisms that perform better with respect to
BB. They use at most two different cost shares for any set of served players.

Definition 5. A two-price cost-sharing form (2P-CSF) is a tuple F =(n,h, l,d)
where for each cardinality i ∈ [n]0 of the set of served players

– hi ∈ Q>0 is the higher, li ∈ Q>0 (with li < hi) is the lower cost share, and
– di ∈ [i]0 is the number of disadvantaged players paying hi.

Note that d0 = 0 by definition and neither h0 nor l0 are actually used; cardinality
0 is included only to avoid undesired case analyses later on. A 2P-CSF (n,h, l,d)
is a succinct representation of vectors ξi ∈ Qi, i ∈ [n], which define the preference
ordered cost-sharing method ξ : 2[n] → Qn by

ξi := (hi, . . . , hi︸ ︷︷ ︸
di

, li, . . . , li︸ ︷︷ ︸
i−di elements

) .

We call a contiguous range {s, s + 1, . . . , t} ⊆ [n]0 of cardinalities with ds =
dt+1 = 0 (let dt+1 := 0 if t = n), and dk > 0 for k ∈ {s+1, . . . , t} a segment. That
is, only at the beginning of a segment there is no disadvantaged player paying
the higher cost share. Furthermore, a segment is maximal with this property.

Definition 6. A 2P-CSF (n,h, l,d) is valid if for each cardinality i ∈ [n]:

– Lower cost shares are non-increasing (in the cardinality) and stay the same
within a segment, i.e., li ≤ li−1 and (li < li−1 =⇒ di = 0).

– Higher cost shares may only increase at the beginning of a segment, i.e.,
hi > hi−1 =⇒ di = 0.

– Adding a single player may not increase the number of disadvantaged players
by more than 1. Moreover, if the higher cost share decreases, only one disad-
vantaged player may remain, i.e., di ≤ di−1 + 1 and (hi < hi−1 =⇒ di ≤ 1).

We define γ : [n]0 → Q≥0, γ(i) := di · hi + (i− di) · li as the recovered cost.

662 Y. Bleischwitz et al.

2.1 GSP Mechanisms for Two-Price Cost-Sharing Forms

Algorithm 1 (Computing mechanism MechCSF F , for a 2P-CSF F)
Input: 2P-CSF F = (n,h, l,d), bid vector b ∈ Qn

Output: set of players Q ∈ 2[n], vector of cost shares x ∈ Qn
≥0

1: k := max
{
i ∈ [n]0

∣∣∣ |{j ∈ [n] | bj ≥ li}| ≥ i
}
; l := lk (Find segment

2: Q := {i ∈ [n] | bi ≥ l} (Players still in the game
3: I := {i ∈ [n] | bi = l} (Indifferent players
4: D := ∅ (Disadvantaged players with higher cost share
5: loop
6: q := max{i ∈ [|Q|]0 | di = |D|} (Max # players if players in D pay > l
7: if q ≥ |Q \ I| then (Possible to serve all non-indifferent players?
8: Q := Q \ {|Q| − q smallest elements of I} (Remove “excess”
9: break

10: � := min(Q \D) (Least preferred player not yet in D
11: if b� ≥ h|Q| then D := D ∪ {�} (Make disadvantaged
12: else Q := Q \ {�}; I := I \ {�}
13: xi := h|Q| for i ∈ D; xi := l for i ∈ Q \D; xi := 0 for i ∈ [n] \Q

Informally, Algorithm 1 works as follows.

1. Find largest k ∈ N such that there are k players who bid at least the respec-
tive lower cost share lk =: l. Note that k is already in the correct segment.

2. Reject all players who do not even bid l.
3. If possible, include all players still in the game with bid bi > l for price l, by

rejecting a suitable subset of the indifferent players (bi = l); then stop.
4. Otherwise, include the least preferred player (with lowest number) for the

current higher cost share or, if she bids less than that, reject her. Go to 3.

The intuition is that including the least preferred player for the current higher
cost share never harms the other players. Instead, it may even benefit in that
more players can be served for l afterwards. Once a player is included for a higher
cost share, this cost share remains fixed during the further execution.

Theorem 1. Let F = (n,h, l,d) be a valid 2P-CSF. Then MechCSFF is GSP
and can be computed by Algorithm 1 in time O(n2).

Proof (Sketch). For any input b ∈ Qn, denote by k(b) and l(b) the values of k
and l in line 1 of Algorithm 1. Moreover, set s(b) := max{j ∈ [k(b)]0 | dj = 0}
to the beginning of the segment that k(b) is in. Note that s(b) ≤ |Q(b)| ≤ k(b).

Denote by v ∈ Qn the true valuation vector and let K ⊆ [n] be a successful
coalition, i.e., there is a bid vector b ∈ Qn with b−K = v−K such that uj(b) ≥
uj(v) for all j ∈ K and ui(b) > ui(v) for at least one i ∈ K.

First assume s(b) > s(v). Then also s(b) > k(v), thus |Q(b)| > k(v). Hence,
there is a player j ∈ Q(b) with vj < l(b) because k(v) would not have been
maximal in line 1 otherwise. Since j ∈ Q(b), it holds that bj ≥ xj(b) ≥ l(b) > vj ,
so we have j ∈ K and uj(b) < 0 ≤ uj(v), a contradiction.

The Power of Two Prices: Beyond Cross-Monotonicity 663

Now consider s(b) < s(v). Then also k(b) < s(v). Define L := {j ∈ [n] |
bj ≥ l(v)}. Clearly, |L| < s(v) as k(b) would not have been maximal in line 1
otherwise. Now, let M be a set of s(v) − |L| players j ∈ [n] \ L with l(v) ≤ vj .
Such a set M exists. Define a new bid vector b′ ∈ Qn by b′j := l(v) for j ∈ M

and b′j := bj otherwise. Then s(b′) = |Q(b′)| = k(b′) = s(v) and uj(b′) ≥ uj(b)
for all players j ∈ [n]. W.l.o.g., we may thus assume s(b) = s(v) in the following.
For clarity let l := l(b) = l(v).

Since ui(b) > ui(v), we have i ∈ Q(b) and xi(b) < h|Q(v)| and (i /∈ Q(v) or
xi(v) = h|Q(v)|). At least one of the following has to be fulfilled:

– The number of disadvantaged players paying the higher cost share increased
from v to b. That is, ∃j ∈ [i− 1] : bj ≥ h|Q(b)| and h|Q(v)| > vj .

– A player j that the mechanism prefers to i (and who got the service for l)
waived being served. That is, ∃j ∈ {i+ 1, . . . , n} : bj ≤ l < vj and j /∈ Q(b).

– The total number of players served for the lower cost share l increased. That
is, ∃j ∈ [n] : bj ≥ l > vj and j ∈ Q(b).

In either case, player j is part of the coalition K and uj(b) < uj(v). ��

2.2
√

17+1
4

-BB Two-Price Cost-Sharing Forms for Subadditive Costs

Theorem 2. Let ε > 0. For any non-decreasing, symmetric, and subadditive
cost function c : [n]0 → Q≥0, there is a

(√
17+1
4 + ε

)
-BB 2P-CSF. Moreover (if

c is given as an array of n function values), it can be computed in time O(n).

Proof. Algorithm 2 computes a 2P-CSF for increasing cardinalities. Fix an ar-
bitrary β ≥

√
17+1
4 . The ε in the formulation of the theorem is solely to account

for the fact that we require bids and cost shares to be rational.

Algorithm 2 (Computing a 2P-CSF for subadditive costs)
Input: subadditive cost function c : [n]0 → Q≥0

Output: valid 2P-CSF (n,h, l,d)
1: l0 := l1 := β · c(1); h0 := h1 := ∞; d0 := d1 := 0; f := 1
2: for i := 2, . . . , n do
3: if β · c(i)

i ≤ lf then li := β · c(i)
i ; hi := ∞; di := 0 ; f := i

4: else
5: li := li−1; hi := min{β · c(i)− (i− 1) · li, hi−1}
6: if hi + (i− 1) · li < c(i) then
7: di := 2
8: else if hi + (i− 1) · li ≥ 2 · c(f) then
9: di := 1

10: else if hi ≥ (β2 − β) · c(f) then
11: di := 1
12: if (β2 − β) · c(f) + (i− 1) · li ≥ c(i) then hi := (β2 − β) · c(f)
13: else
14: di := 0; hi := ∞

664 Y. Bleischwitz et al.

Here, “∞” is a placeholder for any “sufficiently large” value (a value strictly
larger than β · c(f) is sufficient) to simplify the presentation. Let (n,h, l,d)
be the output 2P-CSF. Since d0 = 0 and γ(0) = c(0), consider an arbitrary
cardinality i ∈ [n]. We first show validity. Clearly, di ∈ {0, 1, 2}.

– li ≤ li−1 and (li < li−1 =⇒ di = 0) since li �= li−1 only if li was set in line 3.
– Moreover, line 5 ensures di > 0 =⇒ hi ≤ hi−1.
– di ≤ di−1 + 1 and (di = 2 =⇒ hi = hi−1). Clearly, we only need to consider

di = 2: Then hi < c(i)− (i− 1) · li because line 6 evaluated to true and thus
hi = min{β · c(i)− (i− 1) · li, hi−1} = hi−1. Now assume di > di−1 + 1, i.e.,
di−1 = 0. Then, hi = hi−1 = ∞, a contradiction to hi < c(i)− (i− 1) · li.

We now prove β-BB. If di = 1, c(i) ≤ γ(i) ≤ β · c(i) due to lines 5 and 6. For
di ∈ {0, 2}, we define f := max{j ∈ [i] | β · c(j)

j = li} to be the last cardinality
previous or equal to i for which the lower cost share was set in lines 1 or 3.
Furthermore, let g := min({j ∈ {i+1, i+2, . . . , n} | β · c(j)j ≤ l}∪{n+1}) be the
next such cardinality after i (or g = n+1 if f is the largest such cardinality). It is
f ≤ i < g ≤ 2f . Otherwise, f would not be maximal, due to c(2f)

2f ≤ 2·c(f)
2f = c(f)

f

because of subadditivity. Since c is non-decreasing, c(i) ≤ c(2f) ≤ 2 · c(f). Set
h′i := min{β · c(i)− (i− 1) · li, hi−1}. We will make use of the following property:

di−1 = 1 and γ(i− 1) ≥ 2 · c(f) =⇒ ∀j ∈ {i, i + 1, . . . , g − 1} : dj = 1 . (1)

Proof of (1): If h′i = hi−1, then h′i+(i−1)·li = γ(i−1)+li. If h′i = β·c(i)−(i−1)·li,
then h′i +(i−1) · li = β ·c(i) ≥ β ·c(i−1) ≥ γ(i−1). In any case, h′i +(i−1) · li ≥
γ(i−1) ≥ 2 ·c(f) ≥ c(i), so hi = h′i and di = 1 by line 8. Inductively, (1) follows.
Consider now di = 2 and di = 0:

For di = 2, we first show hi = (β2 − β) · c(f). Define i′ := max{j ∈ [i] |
dj = 1}. By validity, f < i′ < i and hi′ = hi. Since line 8 evaluated to false
for cardinality i′ because of (1), line 10 must have evaluated to true, implying
hi = h′i ≥ (β2 − β) · c(f). Now assume “>”. Let s := max{j ∈ [i] | di = 0} be
the start of the segment that i is in. By validity, f ≤ s ≤ i − 2, ds+1 = 1, and
hs+1 ≥ hi. Lines 8 and 12 evaluated to false for cardinality (s+1), meaning that
β2 · c(f) ≤ (β2 − β) · c(f) + s · ls+1 < c(s + 1). Then, however, hs+1 + s · ls+1 =
β · c(s + 1) > β3 · c(f) > 2 · c(f), a contradiction. Hence,

γ(i) = 2hi + (i− 2) · β · c(f)
f

≥ (2β2 − β) · c(f) ≥ 2 · c(f) ≥ c(i) .

On the other hand, β · c(f) < β2 · c(f) = hi + β · c(f) < hi + (i− 1) · li < c(i),
where the last inequality holds since line 6 evaluated to true. Hence,

γ(i) = 2hi + (i− 2) · li < hi + c(i) < (β − 1) · c(i) + c(i) = β · c(i) .

Now let di = 0. Since line 10 evaluated to false, h′i < (β2 − β) · c(f). We first
show that h′i = β · c(i) − (i − 1) · li. Assume otherwise. Then, h′i = hi−1 and
di−1 = 1 since hi−1 /∈ {∞, (β2−β) ·c(f)}. Yet, line 8 evaluated to false for (i−1)
because of (1). Thus, h′i = hi−1 ≥ (β2 − β) · c(f) by line 10. Contradiction.

The Power of Two Prices: Beyond Cross-Monotonicity 665

Now β · c(i) < (β − 1) · β · c(f) + (i− 1) · li. Furthermore, β · c(f) ≤ γ(i) and
(i− 1) · li ≤ γ(i). Putting everything together gives

c(i) =
β · c(i)

β
≤ (β − 1) · γ(i) + γ(i)

β
= γ(i) .

Moreover, γ(i) = i · li ≤ β · c(i) as otherwise lf = li > β · c(i)
i . ��

Theorem 3. For all ε > 0, there is a non-decreasing, symmetric, and subaddi-
tive cost function c : [n]0 → Q≥0 for which no valid

(√
17+1
4 − ε

)
-BB 2P-CSF

exists.

Proof (Sketch). Fix α :=
√

17+1
4 . W.l.o.g., let 0 < ε ≤ α− 1 and set β := α− ε.

Finally, let k, l ∈ N with l > lnα
α−1
ε and k > (l+1)·β

ε = (l+1)·α
ε − (l + 1). Set

m := k + l + 1 and n := m + 1 and consider the cost function c : [n]0 → Q≥0:

i 1 · · · k k + 1 k + 2 · · · k + l m n

c(i) 1 · · · 1 α− α−1
α1 α− α−1

α2 · · · α− α−1
αl α 2

Clearly, c is subadditive. Now assume there is a valid 2P-CSF (n,h, l,d) which
is β-BB. It can be shown that dm ≥ 1 and dn = dm + 1. Let s := max{j ∈
[n] | dj = 0} be the start of the segment that cardinality n is in. Clearly, s < m
and hn ≤ hs+1. By case analysis, hs+1 ≤ β · c(s + 1) − c(s) < α2 − α. Thus
γ(n) ≤ hn + β · α < 2 · α2 − α = 2 = c(n), a contradiction to β-BB. ��

2.3 Applications to Scheduling

We apply our technique to the scheduling problem of minimizing makespan on
related machines. To keep the service provider’s task computationally tractable,
we want algorithms to be polynomial-time in the size of the scheduling instance
plus the players’ bids. An instance is given by a tuple (n,m,p, s), where n ∈ N
is the number of players, m ∈ N the number of machines, s ∈ Qm

>0 a vector
containing the machine speeds, and p ∈ Qn

>0 a vector with the processing times.
For identical jobs, computing the (symmetric) optimal makespan cost function
c : [n]0 → Q≥0 in time O(n · logm) is straightforward using lpt [5]. If jobs are
not identical, an optimal schedule is in general NP-hard to compute and costs are
not symmetric any more. Let d be the number of different processing times. We
treat each processing time separately: First compute the costs c : [n]0 → Q≥0

of an optimal schedule when all processing times are 1. Second, compute the
corresponding 2P-CSF F in time O(n). Finally, for each processing time φ ∈⋃
{pi}, compute MechCSFF (though cost shares from F multiplied with φ) with

just the bids of all players i with pi = φ. Each run with nj players takes O(n2
j)

time. Return the union of all selected players. Since ∀(n1, . . . , nd) ∈ [n]d0 with∑
nj = n:

∑
n2
j ≤ n2, this algorithm is quadratic-time, GSP, and (

√
17+1
4 ·d)-BB

both w.r.t. the actual and the optimal scheduling cost:

666 Y. Bleischwitz et al.

Lemma 2. For sharing the makespan cost on related machines, there is always
a quadratic-time computable, GSP, and

(√
17+1
4 · d

)
-BB cost-sharing mechanism

where d is the number of different processing times.

In particular, dividing all cost shares by mini∈[n]{ γ(i)
c(i) } leads to:

Lemma 3. For sharing the makespan cost of identical jobs on identical ma-
chines there is always a quadratic-time, GSP, and 1-BB mechanism.

Extending our techniques in order to achieve 1-BB for non-symmetric costs seems
to be very challenging. For 3 identical machines and processing times either 1 or
2, we manage to construct 1-BB and GSP mechanisms by generalizing the notion
of a preference order and making cost shares dependent on the rank as well as
the cardinalities of both classes of served players. Unfortunately, this approach
is not directly extendable to more than three machines.

Theorem 4. For sharing the makespan cost on 3 identical machines and jobs
with processing times 1 or 2, there is always a GSP and 1-BB mechanism.

Finally, we find it interesting that the costs used for Theorem 2 are optimal
makespan costs for n = m + 1 identical jobs and speed 1

c(i) for machine i ∈ [m].

3 The Impact of Symmetric Costs on GSP and 1-BB

Theorem 5. There is no GSP mechanism that is 1-BB w.r.t. c : [4]0 → Q≥0

with c(1) := 1, c(2) := 3, c(3) := 6, and c(4) := 7.

Theorem 6. For any cost function c : [3]0 → Q≥0, there is a 1-BB and GSP
mechanism.

Proof. In the following, we describe how the techniques from Section 2 can be
reused to construct an algorithm for computing GSP and 1-BB mechanisms,
given any arbitrary symmetric 3-player cost function c : [3]0 → Q≥0. It turns
out that only the case where marginal costs are strictly increasing needs special
treatment, i.e., the case c(3)− c(2) > c(2)− c(1) > c(1).

First, for i ∈ [3], vectors ξi ∈ Qi
>0 are computed, where ξ1 := c(1) and

ξ2 :=

{
(c(2)

2 , c(2)
2) if c(2)

2 ≤ ξ1
1 = c(1)

(c(2)− c(1); ξ1) otherwise

ξ3 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c(3)
3 , c(3)

3 , c(3)
3) if c(3)

3 ≤ ξ2
2

(c(3)− 2 · ξ2
2 , ξ

2
2 , ξ

2
2) otherwise, if c(3)− c(2) < ξ2

2

(ξ2
1 , c(3)− c(2), ξ2

2) otherwise, if c(3)− c(2) < ξ2
1

(c(3)− c(2); ξ2) otherwise.

It is a simple observation that the defined cost-sharing vectors correspond to a
valid 2P-CSF if at most two prices are used for each cardinality. Hence, we can
call Algorithm 1 as a subroutine. In the following, we consider the only remaining
case ξ3

1 > ξ3
2 > ξ3

3 . We distinguish:

The Power of Two Prices: Beyond Cross-Monotonicity 667

– ξ3
1 = ξ2

1 , i.e., ξ3
1 = c(2)− c(1) > ξ3

2 = c(3)− c(2) > ξ3
3 = c(1):

Here, we can actually reuse Algorithm 1 as well, by replacing references to
the cost-sharing form by their equivalent in terms of cost-sharing vectors:

• Replace line 1 by “ l := c(1)”
• In line 6, replace “di = |D|” with “ξi|D|+1 = l”.

• In line 11, replace h|Q| with ξ
|Q|
|D|+1.

With these modifications, the computed mechanism is GSP: Assume true
valuations v ∈ Q3 and that there is a player i ∈ [3] who improved for bid
vector b ∈ Q3. This can only happen if (i /∈ Q(v) or xi(v) > c(1)) and
maxQ(b) = i. Hence, there is a more preferred player j (i.e., j > i) with
bj ≤ c(1) < vj . Thus, j is part of the coalition and uj(b) < uj(v).

– ξ3
1 > ξ2

1 , i.e., ξ3
1 = c(3)− c(2) > ξ3

2 = c(2)− c(1) > ξ3
3 = c(1):

Here, including indifferent players never helps. Also, including less preferred
players does not help more preferred players. Hence, we can simply go
through the players in the order of preference and accept them if this gives
them a strictly positive utility and reject them otherwise:

1: Q := ∅
2: for i := 3, 2, 1 do
3: if bi > ξ

|Q|+1
1 then Q := Q ∪ {i}

This is GSP: Assume true valuations v ∈ Q3 and that there is a player i ∈ [3]
who improved for bid vector b ∈ Q3. This can only happen if some player
j > i bids bj < vi such that j /∈ Q(b) but j ∈ Q(v). Then, however, j is part
of the coalition and uj(b) < uj(v). ��

4 Conclusion and Future Work

We regard as the main asset of our work that it is a systematic first step for
finding GSP mechanisms that perform better than Moulin mechanisms. Further-
more, we continued the line of characterization efforts by specifically looking at
symmetric costs. It came as a surprise that despite their simplicity, these costs do
not necessarily allow for GSP and 1-BB mechanisms. While symmetric costs are
arguably of limited practical interest, we yet transferred our techniques to the
minimum makespan scheduling problem as an application and also to a setting
with non-symmetric costs. Clearly, our work has to leave open many issues:

– For symmetric and/or subadditive costs, we still need an exact characteriza-
tion with respect to the best possible BB that GSP mechanisms can achieve.

– Can our techniques be generalized to all/most non-symmetric cost functions?
What is the potential of Algorithm 1? What is achievable with more prices?
How would more general cost-sharing forms have to be like?

– Finally: Does the better BB (compared to Moulin mechanisms) come at the
price of increased social cost (which was not considered in this work)?

668 Y. Bleischwitz et al.

Acknowledgment. We would like to thank Marios Mavronicolas for many fruit-
ful discussions. Furthermore, we thank the anonymous referee who provided us
with thorough feedback and helpful suggestions.

References

1. Archer, A., Feigenbaum, J., Krishnamurthy, A., Sami, R.: Approximation and col-
lusion in multicast cost sharing. Games and Economic Behaviour 47, 36–71 (2004)

2. Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the cost more efficiently:
improved approximation for multicommodity rent-or-buy. In: Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 375–384. ACM
Press, New York (2005)

3. Bleischwitz, Y., Monien, B.: Fair cost-sharing methods for scheduling jobs on par-
allel machines. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006.
LNCS, vol. 3998, pp. 175–186. Springer, Heidelberg (2006)

4. Brenner, J., Schäfer, G.: Cost sharing methods for makespan and completion
time scheduling. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
Springer, Heidelberg (2007)

5. Graham, R.: Bounds on multiprocessing timing anomalies. SIAM Journal of Ap-
plied Mathematics 17(2), 416–429 (1969)

6. Gupta, A., Könemann, J., Leonardi, S., Ravi, R., Schäfer, G.: An efficient cost-
sharing mechanism for the prize-collecting Steiner forest problem. In: Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM Press,
New York (2007)

7. Gupta, A., Srinivasan, A., Tardos, E.: Cost-sharing mechanisms for network design.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and
APPROX 2004. LNCS, vol. 3122, pp. 139–152. Springer, Heidelberg (2004)

8. Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of cross-monotonic cost
sharing schemes. In: Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 602–611. ACM Press, New York (2005)

9. Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for
Steiner forests. In: Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 612–619. ACM Press, New York (2005)

10. Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.: From primal-dual to cost
shares and back: A stronger LP relaxation for the Steiner forest problem. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 930–942. Springer, Heidelberg (2005)

11. Leonardi, S., Schäfer, G.: Cross-monotonic cost-sharing methods for connected fa-
cility location games. In: Proceedings of the ACM Conference on Electronic Com-
merce, pp. 224–243. ACM Press, New York (2004)

12. Mehta, A., Roughgarden, T., Sundararajan, M.: Beyond Moulin mechanisms. In:
The Proceedings of the 8th ACM Conference on Electronic Commerce, ACM Press,
New York (to appear, 2007)

13. Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare 16(2), 279–320 (1999)

14. Penna, P., Ventre, C.: The algorithmic structure of group strategyproof budget-
balanced cost-sharing mechanisms. In: Durand, B., Thomas, W. (eds.) STACS
2006. LNCS, vol. 3884, pp. 337–348. Springer, Heidelberg (2006)

Semisimple Algebras of Almost Minimal Rank
over the Reals

Markus Bläser1 and Andreas Meyer de Voltaire2

1 Computer Science Department, Saarland University
2 Chair of Information Technology and Education, ETH Zurich

Abstract. A famous lower bound for the bilinear complexity of the multiplica-
tion in associative algebras is the Alder–Strassen bound. Algebras for which this
bound is tight are called algebras of minimal rank. After 25 years of research,
these algebras are now well understood. We here start the investigation of the
algebras for which the Alder–Strassen bound is off by one. As a first result, we
completely characterize the semisimple algebras over R whose bilinear complex-
ity is by one larger than the Alder–Strassen bound.

1 Introduction

A central problem in algebraic complexity theory is the question about the costs of mul-
tiplication in associative algebras. Let A be a finite dimensional associative k-algebra
with unity 1. By fixing a basis of A, say v1, . . . , vN , we can define a set of bilinear forms
corresponding to the multiplication in A. If vμvν =

∑N
κ=1 α

(κ)
μ,νvκ for 1 ≤ μ, ν ≤ N

with structural constants α(κ)
μ,ν ∈ k, then these constants and the identity

(
N∑

μ=1

Xμvμ

)(
N∑

ν=1

Yνvν

)
=

N∑

κ=1

bκ(X,Y)vκ

define the desired bilinear forms b1, . . . , bN . The bilinear complexity or rank of these
bilinear forms b1, . . . , bN is the smallest number of essential bilinear multiplications
necessary and sufficient to compute b1, . . . , bN from the indeterminates X1, . . . , XN

and Y1, . . . , YN . More precisely, the bilinear complexity of b1, . . . , bN is the smallest
number r of products pρ = uρ(Xi) · vρ(Yj) with linear forms uρ and vρ in the Xi

and Yj , respectively, such that b1, . . . , bN are contained in the linear span of p1, . . . , pr.
From this characterization, it follows that the bilinear complexity of b1, . . . , bN does not
depend on the choice of v1, . . . , vN , thus we may speak about the bilinear complexity
of (the multiplication in) A. For a modern introduction to this topic and to algebraic
complexity theory in general, we recommend [6].

A fundamental lower bound for the rank of an associative algebra A is the so-called
Alder–Strassen bound [1]. It states that the rank of A is bounded from below by twice
the dimension of A minus the number of maximal twosided ideals in A. This bound
is sharp in the sense that there are algebras for which equality holds. For instance, for
A = k2×2, we get a lower bound of 7, since k2×2 is a simple algebra and has only one

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 669–680, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

670 M. Bläser and A. Meyer de Voltaire

maximal twosided ideal (other than k2×2). 7 is a sharp bound, since we can multiply
2× 2–matrices with 7 multiplications by Strassen’s algorithm.

An algebra A has minimal rank if the Alder–Strassen bound is sharp, that is, the
rank of A equals twice the dimension minus the number of maximal two-sided ideals.
After 25 years of effort [7,8,5,9], the algebras of minimal rank were finally characterized
in terms of their algebraic structure [4]: An algebra over some field k has minimal rank
if and only if

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2 ×A′,

where C1, . . . , Cs are local algebras of minimal rank with dim(Cσ/ radCσ) ≥ 2 (as
characterized in [5]), #k ≥ 2 dimCσ − 2, and A′ is an algebra of minimal rank such
that A′/ radA′ ∼= kt for some t. Such an algebra A′ has minimal rank if and only if
there exist w1, . . . , wm ∈ radA with wiwj = 0 for i �= j such that

radA = LA + Aw1A + · · ·+ AwmA = RA + Aw1A + · · ·+ AwmA

and #k ≥ 2N(A)− 2. Here LA and RA denote the left and right annihilator of radA,
respectively, and N(A) is the largest natural number s such that (radA)s �= {0}.

Algebraic preliminaries. In this work, the term algebra always means a finite dimen-
sional associative algebra with unity 1 over some field k. The terms left module and
right module always means a finitely generated left module and right module, respec-
tively, over some algebra A. Every A-left module and A-right module is also a finite
dimensional k-vector space (by the embedding k #→ k · 1). If we speak of a basis of an
algebra or a module, we always mean a basis of the underlying vector space.

A left ideal I (and in the same way, a right ideal or twosided ideal) is called nilpotent,
if In = {0} for some positive integer n. For all finite dimensional algebras A, the
sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which contains every
nilpotent right ideal of A. This twosided ideal is called the radical of A.

We call an algebra A semisimple, if radA = {0}. The quotient algebra A/ radA is
semisimple. An algebra A is called simple, if there are no twosided ideals in A except
the zero ideal and A itself. Wedderburn’s theorem states that every semisimple algebra
A is isomorphic to a product of simple algebras and every simple algebra is of the form
Dn×n for some division algebra D.

Model of computation. In the remainder of this work, we use a coordinate-free defini-
tion of rank, which is more appropriate when dealing with algebras of minimal rank,
see [6, Chap. 14]. For a vector space V , V ∗ denotes the dual space of V , that is, the
vector space of all linear forms on V . For a set of vectors U , 〈U〉 denotes the linear
span of U , i.e., the smallest vector space that contains U .

Definition 1. Let k be a field, U , V , and W finite dimensional vector spaces over k,
and φ : U × V →W be a bilinear map.

1. A sequence β = (f1, g1, w1; . . . ; fr, gr, wr) such that fρ ∈ U∗, gρ ∈ V ∗, and
wρ ∈ W is called a bilinear computation of length r for φ if

φ(u, v) =
r∑

ρ=1

fρ(u)gρ(v)wρ for all u ∈ U, v ∈ V .

Semisimple Algebras of Almost Minimal Rank over the Reals 671

2. The length of a shortest bilinear computation for φ is called the bilinear complexity
or the rank of φ and is denoted byR(φ) orRk(φ) if we want to stress the underlying
field k.

3. If A is a finite dimensional associative k-algebra with unity, then the rank of A
is defined as the rank of the multiplication map of A, which is a bilinear map
A×A→ A. The rank of A is denoted by R(A) or Rk(A).

Equivalence of computations. Often, proofs become simpler when we normalize com-
putations. A simple equivalence transformation of computations is the permutation of
the products.

Trickier is the so-called sandwiching. Let β = (f1, g1, w1; . . . ; fr, gr, wr) be a com-
putation for an algebra A, i.e.,

xy =
r∑

ρ=1

fρ(x)gρ(y)wρ.

Let a, b, c be invertible elements of A. Then

xy = a(a−1xb)(b−1yc)c−1 =
r∑

ρ=1

fρ(a−1xb)gρ(b−1yc)awρc
−1.

Thus we can replace each fρ by f̂ρ defined by f̂ρ(x) = fρ(a−1xb), gρ by ĝρ defined by
ĝρ(y) = gρ(b−1yc), and wρ by ŵρ = awρc

−1.
For the next two equivalence transformations, we assume that A is a simple algebra,

that is, A ∼= Dn×n for some division algebra A. For an element x ∈ A, xT denotes the
transposed of x. Let β = (f1, g1, w1; . . . ; fr, gr, wr) be a computation for an algebra
A. Then

yTxT = (xy)T =
r∑

ρ=1

g̃ρ(yT)f̃ρ(xT)wT
ρ ,

where g̃ρ(y) is defined by g̃ρ(y) := gρ(yT) and f̃ρ(x) is defined by f̃ρ(x) := fρ(xT).
So we can change the f ’s with the g’s (at the cost of transposing the w’s but this will
not do any harm since in our proofs, we usually only care about the rank of the wρ and
other quantities that are invariant under transposing).

Finally, with every matrix x ∈ A, we can associate a linear form, namely, y #→
〈〈x, y〉〉, where 〈〈., .〉〉 denotes the standard inner product. (We here view x and y as
vectors in kn2·dimD.) In this way, we will often identify fρ with an element of A,
which we abusively call fρ again. For all x, y ∈ A we have

xy =
r∑

ρ=1

fρ(x)gρ(y)wρ iff 〈〈xy, z〉〉 =
r∑

ρ=1

〈〈fρ, x〉〉〈〈gρ, y〉〉〈〈wρ, z〉〉

for all z ∈ A. Since 〈〈xy, z〉〉 = 〈〈xyzT , 1〉〉 = trace(xyzT) and trace(xyzT) =
trace(zTxy) = trace(yzTx), we can cyclically shift the f ’s, g’s, and w’s in this way.
Altogether, the latter two equivalence transformations allow us to permute the f ’s, g’s,
and w’s in an arbitrary way.

672 M. Bläser and A. Meyer de Voltaire

Our results. It is a natural question to ask which are the algebras whose rank is exactly
one larger than the minimum.1 We say that an algebra has minimal rank plus one if

R(A) = 2 dimA− t + 1,

where t is the number of maximal twosided ideals in A. We completely solve this ques-
tion here for semisimple algebras over R. A semisimple R-algebra has minimal rank
plus one iff A = H × B where B is a semisimple algebra of minimal rank, that is,
B = C2×2 × · · · ×C2×2 ×C× · · · ×C×R× · · · ×R. Note that over R, there is only
one division algebra of dimension two, namely the complex numbers C (viewed as an
R-algebra), and one division algebra of dimension four, the Hamiltonian quaternions
H. There are no further nontrivial R-division algebras. C is also the only commutative
division algebra, that is, extension field over R.

Characterization results as the one that we prove in this paper are important, since
they link the algebraic structure of an algebra to the complexity. We can read off the
complexity of the algebra from its structure or get at least lower bounds by inspecting
the algebraic structure.

One result on the way of our characterization is a new lower bound of 17 for C2×2

(viewed as an R-algebra). This bound holds for any other extension field of dimension
two over arbitrary fields. This new bound improves the current best answer to an open
question posed by Strassen [10, Section 12, Problem 3].

Outline of the proof. A semisimple algebra A consists of simple factors of the form
Dn×n, where D is a division algebra. It follows from results by Alder and Strassen that
no factor of A can have rank≥ 2 dimDn×n + 1 and at least one factor has to have rank
2 dimDn×n, i.e., has minimal rank plus one. We show that the only simple R-algebra
that has minimal rank plus one is H, the Hamiltonian quaternions. In particular, we
show that C2×2 does not have minimal rank plus one in Section 3. (This is the “hardest
case”.) Next, we show that A cannot have two factors of the form H in Section 2. With
this, we show the characterization result in Section 4 (Theorem 3).

2 A Lower Bound for H × H over R

In this section, we will prove the the following theorem.

Theorem 1. We have RR(H ×H) = 16.

Proof. It is well known that RR(H) = 8, which implies that RR(H × H) ≤ 16. To
prove the lower bound, we first will show the following claim:

Claim. If x, y ∈ H are such that x, y, and 1 are linearly independent over R, then
〈1, x, y, x·y〉 = H.

Let x, y ∈ H have the above mentioned properties. The inner automorphisms act
on H via rotation in R3 on the last three coordinates of each quaternion. Hence, we
can assume w.l.o.g. that x = x1·1 + x2·i and y = y1·1 + y2·i + y3·j, xν , yν ∈ R.

1 This already characterizes the algebras in terms of complexity. Of course, we seek a charac-
terization in terms of their algebraic structure.

Semisimple Algebras of Almost Minimal Rank over the Reals 673

Since 1, x, and y are still linearly independent, we know that x2 �= 0 �= y3 and hence
〈1, x, y〉 = 〈1, i, j〉. Furthermore, the last coordinate of x·y equals x2y3 and is hence
not equal to zero, which proves the claim.

Let β = (f1, g1, w1; . . . ; fr, gr, wr) be a computation for H × H. We can choose two
elements â = (a, a′) and b̂ = (b, b′) ∈ H × H such that their span is contained in
the intersection of at least six of the kernels of f1, . . . , fr and a and b are linearly
independent vectors in R4. W.l.o.g., assume that 〈â, b̂〉 ⊆ ker f1 ∩ · · · ∩ ker f6.

If for all possible choices a′ = 0 and b′ = 0, then we can split the computation into
two separate computations for H and get a lower bound of 8 + 8 = 16. Thus we can
assume that a′ �= 0. Via sandwiching, we can achieve that a = 1 and furthermore, by
letting inner automorphisms act, that b ∈ 〈1, i〉. Since a′ �= 0, it follows that g7, . . . , gr
generate (H × H)∗. Now, choose a vector ĉ = (c, c′), c �= 0, that is contained in the
intersection of the kernels of at least seven of the vectors g7, . . . , gr and use sandwiching
to achieve c = 1. W.l.o.g., let ĉ be contained in ker g7 ∩ · · · ∩ ker g13. Finally, we
can choose an element d̂ = (d, d′) in the intersection of the kernels of at least six of
g7, . . . , g13 such that 1, b, and d are linearly independent over R. W.l.o.g., assume that
〈ĉ, d̂〉 ⊆ ker g9 ∩ · · · ∩ ker g12. The above claim shows that a·c = 1, a·d = d, b·c = b,
and b·d span H. In particular, the products â·ĉ, â·d̂, b̂·ĉ, and b̂·d̂ span a four dimensional
vector space over R. On the other hand, we know that by construction, each of these
products lies in the span of 〈w13, . . . , wr〉. Hence, r has to be at least 16. ��

3 A Lower Bound for C2×2 over R

The goal of this section is to prove the following theorem.

Theorem 2. We have RR(C2×2) ≥ 17.

We will prove this theorem in two steps. We define the following property for com-
putations. A computation β := (f1, g1, w1; . . . ; fr, gr, wr) has the property (*) if the
following holds:

(*) Let x ∈ C2×2 \ {0} such that there exist three different indices ν1, ν2, and ν3 ∈
{1, . . . , r} such that

〈x, i·x〉 ⊆ ker fν1 ∩ ker fν2 ∩ ker fν3 or

〈x, i·x〉 ⊆ ker gν1 ∩ ker gν2 ∩ ker gν3 or

〈x, i·x〉 ⊆ 〈wν1 , wν2 , wν3〉⊥,

where V ⊥ is the space of all vectors u that fulfill 〈〈v, u〉〉 = 0 for all v ∈ V . Then x
is a matrix of rank two.

In Subsection 3.1 we show that a computation for C2×2 of length 16 must satisfy (*)
and in Subsection 3.2 we show that no such computation exists.

3.1 Computations Not Satisfying Property (*)

For a field k, let 〈e, h, l〉k denote the matrix multiplication tensor of dimensions e× h,
h× l, and e× l having coefficients in k.

674 M. Bläser and A. Meyer de Voltaire

Lemma 1. RR(〈1, 1, 2〉C) = 6.

Proof. This tensor has rank at most six, since the complex multiplication has rank three
over R. Assume that there exists a computation (f1, g1, w2; . . . ; f5, g5, w5) of length
five for 〈1, 1, 2〉. Then we can (possibly after permuting the products) assume that f1, f2

are a basis of C∗ and that g2, . . . , g5 form a basis of (C1×2)∗. Let x1, x2 and y1, . . . , y4

be the bases dual to f1, f2 and g2, . . . , g5, respectively. Then we can choose an index
ν ∈ {2, . . . , 4} such that y1 and yν are linearly independent over C, which means that
the span of 〈x1y1, x1yν , x2y1, x2yν〉 is a four dimensional vector space over R. But for
i ∈ {1, 2} and j ∈ {1, ν}, xiyj ∈ 〈w1, w2, wν〉. Since the latter is a vector space over
R with dimension at most three, we get a contradiction. ��

Lemma 2. Let u, v, and w ∈ C2×2 and assume that there exists a rank one matrix x
such that 〈x, ix〉 ⊂ 〈u, v, w〉⊥ over R. Then we can find invertible matrices a and b
such that (aub)11 = (avb)11 = (awb)11 = 0, where (.)11 denotes the entry in position
(1, 1).

Proof. Let x = (x11, x12, x21, x22), xνμ = (x′νμ, x
′′
νμ) ∈ C, be a matrix with the above

property. (To save some space, we write matrices occasionally as column vectors.) Let
z be any of the vectors u, v, or w. The vectors −ix (for convenience) and x being
perpendicular to z = (z11, z12, z21, z22), zνμ = (z′νμ, z′′νμ) ∈ C, means that we have

2∑

ν,μ=1

(
x′′νμ −x′νμ
x′νμ x′′νμ

)(
z′νμ
z′′νμ

)
=
(

0
0

)
. Since the matrix

(
x′′νμ −x′νμ
x′νμ x′′νμ

)

is the left multiplication matrix of x̂νμ = i·x̄νμ, we can also write the above sum as∑2
ν,μ=1 x̂νμ·zνμ = 0. Note that the matrix x̂ := (x̂11, x̂12, x̂21, x̂22) with x̂νμ :=

i·x̄νμ = (x′′νμ, x
′
νμ) has rank one, too. On the other hand, multiplying z from the left by

a = (a11, a12, a21, a22) an from the right by b = (b11, b12, b21, b22) yields (azb)11 =
a11b11z11 + a11b21z12 + a12b11z21 + a12b21z22. Hence, we have to find a11, a12, b11,
b21 ∈ C such that a11b11 = x̂11, a11b21 = x̂12, a12b11 = x̂21, and a12b21 = x̂22.
This is equivalent to finding two 2-dimensional vectors (a11, a12) and (b11, b21) with
complex entries such that

(a11, a12)⊗(b11, b21) =
(
x̂11 x̂12

x̂21 x̂22

)
.

This is possible if and only if x̂ has rank one, which had been one of our assumptions.
Furthermore, since x̂ �= 0, neither both a11 and a12 nor both b11 and b21 can be zero.
Hence, we can construct invertible matrices (a11, a12, a21, a22) and (b11, b12, b21, b22)
such that (azb)11 = 0 for all z ∈ {u, v, w}. ��

Proposition 1. Let β := (f1, g1, w1; . . . ; fr, gr, wr) be a computation that does not
satisfy (*). Then r ≥ 17.

Proof. Since β does not satisfy (*), we can find three indices ν1, ν2, ν3 ∈ {1, . . . , r}
and a rank one matrix x such that 〈x, i·x〉 ⊆ ker fν1 ∩ ker fν2 ∩ ker fν3 , 〈x, i·x〉 ⊆

Semisimple Algebras of Almost Minimal Rank over the Reals 675

ker gν1∩ker gν2∩ker gν3 , or 〈x, i·x〉 ⊆ 〈wν1 , wν2 , wν3 〉⊥. W.l.o.g., assume that ν1 = 1,
ν2 = 2, and ν3 = 3 and that 〈x, i·x〉 ⊆ 〈w1, w2, w2〉⊥, for otherwise, we could ex-
change the f ’s or g’s with the w’s.2 Then, by Lemma 2, we can achieve (via sandwich-
ing) that

W := 〈w1, w2, w3〉 ⊆
(

0 ∗
∗ ∗

)
.

Define the two left and two right ideals L1, L2, R1, and R2 as follows:

L1 :=
(
∗ 0
∗ 0

)
, L2 :=

(
0 ∗
0 ∗

)
, R1 :=

(
∗ ∗
0 0

)
, and R2 :=

(
0 0
∗ ∗

)

Each ideal is a four dimensional vector space over R. For the following claims, define
the computation β′ := (g̃1, f̃1, w

T
1 ; . . . ; g̃r, f̃r, wT

r), that is obtained by transposing as
described in Section 1.

Claim 1. The triple ({0}, L2,W) is separable (see [6, Notation 17.15]) by β and the
triple ({0}, L2,W

T) is separable by β′, where WT := {wT : w ∈W}.
Assume ({0}, L2,W) is not separable by β. By the Extension Lemma [6, Lemma

17.18], there exists an element l ∈ L2 \ {0} such that C2×2·l ⊆ {0}·l + W = W. But
C2×2·l = L2 is four dimensional (over R), whereas W has dimension at most three.
The second part of the claim is shown in a similar fashion.

Claim 2. The triple (R2, L2,W) is separable by β or the triple (R2, L2,W
T) is sepa-

rable by β′.
Assume (R2, L2,W) is not separable by β. By the Extension Lemma, there exists

an element r ∈ R2 \ {0} such that r·C2×2 ⊆ R2·L2 + W . Now, r·C2×2 = R2 and
R2·L2 contains exactly all matrices with a nonzero entry only in the lower right corner.
We distinguish three different cases:

(i) dim(W + R2) ≥ 6 : Then the image of the projection

π12 : W → C,

(
0 b
c d

)
#→ b,

is two dimensional and hence, the space W ∩R2 is at most one dimensional. Fur-
thermore, R2·L2 is two dimensional. Thus the four dimensional space R2 cannot
be contained in R2·L2 + W .

(ii) dim(W + L2) ≥ 6 : In this case, we can use the computation β′. But then from
dim(W + L2) ≥ 6 it follows that dim(WT + R2) ≥ 6 and hence, by case (i),
(R2, L2,W

T) is separable by β′.
(iii) dim(W + L2) ≤ 5 : Then the image of the projection

π21 : W → C,

(
0 b
c d

)
#→ c,

is at most one dimensional, which shows that the whole ideal R2 cannot lie in the
space R2·L2 + W . This proves Claim 2.

2 Strictly speaking, we can only exchange the adjoints of the f ’s and g’s with the w’s, see
Section 1. But since “having rank one” is invariant under transposing, this does not matter.

676 M. Bläser and A. Meyer de Voltaire

W.l.o.g., assume that (R2, L2,W) is separable by β and define the projection

π : C2×2 −→ C2×2,

(
a b
c d

)
#→
(
a 0
0 0

)
.

Let φ be the multiplication of C2×2. Since W ⊆ kerπ, it follows that

R(π ◦ φ/R2 × L2) + dim(R2 × L2) + dimW ≤ r

by [6, Lemma 17.17]. Hence R(π ◦ φ/R2 × L2) + 11 ≤ r. Now, the bilinear map
π ◦ φ/R2 × L2 is a map

π ◦ φ/R2 × L2 : C2×2/R2 × C2×2/L2 → C2×2/ kerπ.

But C2×2/R2 = R1, C2×2/L2 = L1, and C2×2/ kerπ =
(
∗ 0
0 0

)
. It follows that

π ◦ φ/R2 × L2
∼= 〈1, 2, 1〉, the complex matrix multiplication tensor 〈1, 2, 1〉 over R.

By Lemma 1, the tensor 〈1, 1, 2〉 has rank six. Since this tensor is isomorphic to the
tensor 〈1, 2, 1〉, we get r ≥ R(π ◦ φ/R2 × L2) + 11 = 6 + 11 = 17. ��

3.2 Computations Satisfying Property (*)

Lemma 3. Let β := (f1, g1, w1; . . . ; f16, g16, w16) satisfy (*). Then we can achieve
(possibly after permutation), that f1, . . . , f8 and w9, . . . , w16 are bases of R8.

Proof. We can assume that f1, . . . , f8 is a basis. We can also assume that g9, . . . , g16

and w9, . . . , w16 are linearly dependent (otherwise, after probably exchanging the g’s
and w’s, we are finished). Then the following claim holds:

Claim. g1, . . . , g8 and w1, . . . , w8 are bases of C2×2 and for all ν ∈ {1, . . . , 8},
dim〈g9, . . . , g16, gν〉 = dim〈w9, . . . , w16, wν〉 = 8.

Exchanging the f ’s andw’s (again we can skip the adjoints here) gives a computation
β′ := (w1, g1, f1; . . . ;w16, g16, f16) for the same tensor. Assume that a nonzero matrix
y ∈ ker g9 ∩ · · · ∩ ker g16 has rank one. We know that there is a rank one matrix x
such that x·y = 0 = ix·y. But this means that x·y =

∑8
ν=1 wν(x)gν(y)fν = 0 and

ix·y =
∑8

ν=1 wν(ix)gν(y)fν = 0. Since f1, . . . , f8 are linearly independent, we get
wν(x)gν(y) = wν(ix)gν(y) = 0 for ν ∈ {1, . . . , 8}. Now, the image of Ry , the right
multiplication with y, is four dimensional, hence, at least four of gν(y), ν ≤ 8, are
nonzero. But then at least for four indices ν ≤ 8 we have wν(x) = wν(ix) = 0, which
is a contradiction to property (*). This means that the matrix y has rank two and thus the
image of Ry =

∑8
ν=1 gν(y)wν⊗fν is full dimensional. On the one hand, this implies

that w1, . . . , w8 has to be a basis. On the other hand, we see that gν(y) has to be nonzero
for all ν ≤ 8, which proves the second part of the claim. (Note that dim〈g9, . . . , g16〉 ≥
7, since otherwise, we could find an invertible matrix in ker g8 ∩ · · · ∩ ker g16 with the
same arguments as above, which is a contradiction.) Similarly, after exchanging the g’s
and w’s, one can conclude the same assertions for the g’s. This proves the claim.

Showing that there exists a partition I , J ⊆ {1, . . . , 16} such that |I| = |J | = 8 and
{fi : i ∈ I} and {wj : j ∈ J} are both bases would prove the lemma.

Semisimple Algebras of Almost Minimal Rank over the Reals 677

Now, the claim above shows that if we choose an index set J ′ ⊂ {9, . . . , 16}, |J ′| =
7, such that {gj : j ∈ J ′} are linearly independent, every gν , ν ≤ 8, would lead to a
basis {gj : j ∈ Jν}, where Jν := J ′ ∪{ν}. Let μ be such that {μ} = {9, . . . , 16}−J ′.
Then, by Steinitz exchange, there has to be a ν ∈ {1, . . . , 8} such that

{wj : j ∈ ({1, . . . , 8} − {ν}) ∪ {μ}}

is a basis. Exchanging the g’s and the f ’s and setting I := ({1, . . . , 8} − {ν}) ∪ {μ}
and J := Jν gives a partition with the desired properties. ��

Lemma 4. Let x1, . . . , x5 ∈ C2×2 be five matrices that are linearly independent over
R. Then 〈x1, . . . , x5〉 contains a matrix of rank two.

Proof. Omitted. ��

Lemma 5. Let U ⊆ C2×2 be a three dimensional subspace of rank one matrices. Then
there exists an x ∈ U such that ix ∈ U .

Proof. Omitted. ��

Proposition 2. There does not exist any computation for C2×2 over R of length 16 that
satisfies (*).

Proof. Assume there exists such a computation β := (f1, g1, w1; . . . ; f16, g16, w16)
that satisfies (*). By Lemma 3, we can assume that f1, . . . , f8 and w9, . . . , w16 are
bases. Let x1, . . . , x8 be the basis dual to f1, . . . , f8.

Claim. For each j ≤ 8, the rank of xj is two.
Assume that the rank of xj is one. Since the rank of Lxj , the 8 × 8-matrix induced

by the left multiplication with xj , is four, there are four matrices y1, . . . , y4 that are
linearly independent over R such that xj ·yk = 0 for all k ≤ 4. Define the subspace
U := 〈y1, . . . , y4〉 ∩ ker gj . For each y ∈ U we then have

xj ·y =
16∑

ν=1

fν(xj)gν(y)wν =
16∑

ν=9

fν(xj)gν(y)wν = 0.

But w9, . . . , w16 is a basis. So (f9(xj)g9(y), . . . , f16(xj)g16(y)) must be the zero vec-
tor. Since the rank of Lxj is four, at least three of the fν(xj), ν ≥ 9, are nonzero. This
means that at least for three indices ν ≥ 9 we have gν(y) = 0 for every y ∈ U . But U
is at least three dimensional and contains only rank one matrices. Hence, Lemma 5 tells
us that we can find a vector x ∈ U such that ix ∈ U . Now x has rank one and 〈x, ix〉
is contained in intersection of at least three ker gν , which contradicts property (*) and
hence proves the claim.

This shows that via sandwiching we can achieve that x1 = I2 is the unit matrix and
x2 is in Jordan normal form. We consider three different cases depending on the Jordan
normal form of x2.

678 M. Bläser and A. Meyer de Voltaire

(i) x2 has two different eigenvalues λ1, λ2 ∈ C:
In this case, we use [2, Lemma 3.8]. For this, note that since
(
λ1 0
0 λ2

)(
x11 x12

x21 x22

)
−
(
x11 x12

x21 x22

)(
λ1 0
0 λ2

)
=
(

0 (λ1 − λ2)x12

(λ2 − λ1)x21 0

)
,

[x2, x] is invertible if x12 �= 0 �= x21.

Claim. There is an index ν ∈ {3, . . . , 8} such that [x2, xν] is invertible.
Assume that none of the matrices x3, . . . , x8 fulfills this property, i.e., that either
(xν)12 or (xν)21 is zero. Then we can find at least three matrices xν1 , xν2 , xν3 ,
νj ≥ 3, such that (xν1)12 = (xν2)12 = (xν3)12 = 0 or (xν1)21 = (xν2)21 =
(xν3)21 = 0. W.l.o.g., assume that we are in the first case and that ν1 = 3, ν2 = 4,
and ν3 = 5. Then consider the space U defined by

U := 〈x1, . . . , x5〉 ∩
〈((1, 0) (0, 0)

(0, 0) (0, 0)

)
,

(
(0, 1) (0, 0)
(0, 0) (0, 0)

)〉⊥
.

Since 〈x1, . . . , x5〉 is five dimensional, the dimension of U is at least three. Fur-
thermore, U contains only matrices where the entries in the first row are zero, i.e.,
only matrices of rank one. By Lemma 5, U contains a rank one matrix x such that
ix ∈ U . But, by construction, x and ix are in ker f6 ∩ ker f7 ∩ ker f8, which is a
contradiction to property (*).

W.l.o.g., let x3 be such that [x2, x3] is invertible. Then, choosingm = 8−3 = 5
in [2, Lemma 3.8], we get that the length of the computation is at least

m + 8 +
1
2

dim([x2, x3]C2×2) = 5 + 8 + 4 = 17.

(ii) x2 has twice the same eigenvalue λ and a nilpotent part:
This means, x2 is of the form x2 = λI2 + n, where n is the matrix that has a one
in the upper right corner and zeros elsewhere. But for any matrix x we then have

[x2, x] = [n, x] =
(

0 1
0 0

)(
x11 x12

x21 x22

)
−
(
x11 x12

x21 x22

)(
0 1
0 0

)
=
(
x21 x22 − x11

0 −x21

)
,

which is an invertible matrix if x21 �= 0. Since x1, . . . , x8 is a basis, we can find an
index ν ∈ {3, . . . , 8}, such that (xν)21 �= 0. W.l.o.g., let ν = 3 be such an index.
Then [x2, x3] is invertible and by [2, Lemma 3.8], we get that the computation
must have length at least 17 (as in case (i)).

(iii) x2 has twice the same eigenvalue without a nilpotent part:
Then, since x2 is also invertible and linearly independent from x1, we know
that 〈x1, x2〉 = 〈I2, i·I2〉. Since Lx1 is invertible, we know that g1, g9, . . . , g16

generate C2×2 as an R vector space. Hence, we can choose indices ν1 . . . , ν8∈
{1, 9, . . . , 16} such that gν1 , . . . , gν8 is a basis. Let y1, . . . , yn be the correspond-
ing dual basis. W.l.o.g. we can assume that y1, . . . , y4 generate C2×2 as a C-vector
space. This means that

〈xiyj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 4〉 = C2×2 (1)

Semisimple Algebras of Almost Minimal Rank over the Reals 679

over R. On the other hand, we have

xiyj = gi(yj)wi +
4∑

μ=1

fνμ(xi)gνμ(yj)wνμ + fl(xi)gl(yj)wl,

where l = {1, 9, . . . , 16} − {ν1, . . . , ν8}, and hence

xiyj ∈ 〈w1, w2, wν1 , wν2 , wν3 , wν4 , wl〉

for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4. But the latter is a vector space of dimension at most
seven, which is a contradiction to (1). ��

4 Semisimple Algebras of Minimal Rank Plus One

Theorem 3. Let A be a semisimple algebra over R of rank 2 dimA− t+ 1, where t is
number of maximal twosided ideals of A. Then A is of the form

A ∼= H× R2×2 × · · · × R2×2 × C× · · · × C× R× · · · × R.

Proof. Let A be a semisimple R-algebra. By Wedderburn’s Theorem, we know that A
is isomorphic to an algebraA1×· · ·×At, Aτ simple, i.e., Aτ

∼= Dnτ×nτ
τ , Dτ a division

algebra over R. By [6, Lemma 17.23] and using induction, we obtain

R(A) ≥ 2 dimA− t− (2 dimAτ − 1) + R(Aτ).

Since A is supposed to have rank 2 dimA− t + 1, we see that

R(Aτ) ≤ R(A)− 2 dimA + t + (2 dimAτ − 1) = 2 dimAτ . (2)

Hence, by [2, Theorem 1], no factor can be a matrix algebra of the form Dn×n, n ≥ 3
and dimD ≥ 2. If dimD = 1, i.e., D = R, then this follows from the lower bound for
matrix multiplication in [3]. Consider an algebra B = D2×2, D a finite dimensional
R-division algebra such that dimD ≥ 4. Then [2, Theorem 1] tells us that

R(B) ≥ 5
2

dimB − 6 = 10 dimR(D)− 6,

which is greater than 2 dimB, since dimD ≥ 4. Because of (2), this also excludes
algebras of the above form from being a factor of A. Furthermore, there is no real
division algebra of dimension three and Theorem 2 shows that also C2×2 cannot be one
of the factors.

This shows that the only factors can be R, C, R2×2, and H. From these factors, only
the latter one is an algebra that is not of minimal rank, hence it must be contained in A
at least once. On the other hand, from Theorem 1 it follows that

RR(H×H) = 16 > 2 dim(H ×H)− 1,

which shows that H×H cannot be a factor of A. ��

680 M. Bläser and A. Meyer de Voltaire

5 Conclusion

Two natural questions arise. First, can we extend our results to other fields than R? And
second, can we extend our results to arbitrary algebras (with radical)?

Over R, there are only two nontrivial division algebras, C and H. We used this fact
several times in our proofs. Over Q, there are more division algebras. The key question
to solve the problem over Q is the following. For any numbers a, b, we can define
quaternion algebras H(a, b). Over R, they are all either isomorphic to R2×2 or H. Over
Q, the situation is more complicated. Question: What is RQ(H(a, b)) (in dependence
on a, b)? If H(a, b) is a division algebra, then it is clear that its rank is ≥ 8, since it is
not a division algebra of minimal rank. The questions is whether 8 bilinear products are
also sufficient.

To the second question, we have the following partial answer: If A is an algebra of
minimal rank plus one and A/ radA contains one factor H, then A = H × B where
B is an algebra of minimal rank. If A/ radA does not contain the factor H, then A =
R2×2 × · · · ×R2×2 ×B where B is a superbasic algebra of minimal rank plus one. So
far, we do not have a complete characterization of the superbasic algebras of minimal
rank plus one.

Acknowledgements. We would like to thank the anonymous referees for their helpful
comments.

References

1. Alder, A., Strassen, V.: On the algorithmic complexity of associative algebras. Theoret. Com-
put. Sci. 15, 201–211 (1981)

2. Bläser, M.: Lower bounds for the bilinear complexity of associative algebras. Comput. Com-
plexity 9, 73–112 (2000)

3. Bläser, M.: On the complexity of the multiplication of matrices of small formats. J. Com-
plexity 19, 43–60 (2003)

4. Bläser, M.: A complete characterization of the algebras of minimal bilinear complexity.
SIAM J. Comput. 34(2), 277–298 (2004)

5. Büchi, W., Clausen, M.: On a class of primary algebras of minimal rank. Lin. Alg. Appl. 69,
249–268 (1985)

6. Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Heidel-
berg (1997)

7. de Groote, H.F.: Characterization of division algebras of minimal rank and the structure of
their algorithm varieties. SIAM J. Comput. 12, 101–117 (1983)

8. de Groote, H.F., Heintz, J.: Commutative algebras of minimal rank. Lin. Alg. Appl. 55, 37–68
(1983)

9. Heintz, J., Morgenstern, J.: On associative algebras of minimal rank. In: Poli, A. (ed.)
Applied Algebra, Algorithmics and Error-Correcting Codes. LNCS, vol. 228, pp. 1–24.
Springer, Heidelberg (1986)

10. Strassen, V.: Algebraic complexity theory. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. A, pp. 634–672. Elsevier Science Publishers B.V, Amsterdam (1990)

Structural Analysis of Gapped Motifs of a String

Esko Ukkonen�

Helsinki Institute for Information Technology
Helsinki University of Technology and University of Helsinki

P.O. Box 68 (Gustaf Hällströmin katu 2b)
FIN-00014 University of Helsinki
Esko.Ukkonen@cs.helsinki.fi

Abstract. We investigate the structure of the set of gapped motifs (re-
peated patterns with don’t cares) of a given string of symbols. A natural
equivalence classification is introduced for the motifs, based on their
pattern of occurrences, and another classification for the occurrence pat-
terns, based on the induced motifs. Quadratic–time algorithms are given
for finding a maximal representative for an equivalence class while the
problems of finding a minimal representative are shown NP–complete.
Maximal gapped motifs are shown to be composed of blocks that are
maximal non–gapped motifs. These can be found using suffix–tree tech-
niques. This leads to a bound on the number of gapped motifs that have
a fixed number of non–gapped blocks.

1 Introduction

A gapped pattern is a string of symbols consisting of regular alphabet symbols
and of joker (‘don’t care’) symbols. A regular symbol a matches only a itself
while the joker symbol matches any alphabet symbol. Given a string S of reg-
ular symbols, we are interested in finding gapped patterns, called the motifs of
S, that occur in S repeatedly. Such questions are of interest from the point of
view of better understanding of various forms of repetitions in strings. The ap-
plications in the analysis of DNA and other molecular biological sequences are
also important. For example, motifs can be used for modeling different putative
gene regulatory elements in DNA.

The number of different gapped motifs can be large. For example, string
ambam has Ω(2m) different gapped motifs [10]. If the joker is not allowed, the
situation becomes much simpler. Then we are dealing with non–gapped motifs
that are simply contiguous substrings of S, and hence their number is always at
most quadratic in the length of S. The suffix–tree of S is a powerful tool that
can be used for finding and completely enumerating and indexing the substring
motifs. This can even be accomplished in time that is linear in the length of S.

In this paper we continue the recent work on gapped motifs, e.g., in [1, 2, 3,
8, 9, 10]. We contribute to the problems of classifying and discovering gapped
motifs for S. We introduce equivalence classifications for motifs and for their
� Supported by the Academy of Finland under grant 21196 (From Data to Knowledge).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 681–690, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

682 E. Ukkonen

occurrence patterns that seem natural and helpful in clarifying the conceptual
basis of this very subtle domain. Finding maximal and minimal representatives
for an equivalence class are shown polynomial–time solvable and, respectively,
NP–complete. We also exhibit a connection between gapped and non–gapped
motifs, showing that a maximal gapped motif is composed of blocks, that by
themselves are maximal substring motifs and correspond to some internal nodes
of the suffix–tree.

We assume that the reader has basic familiarity with the core string match-
ing techniques (see, e.g., [4, 6]) such as the Aho–Corasick algorithm, suffix-tree
techniques as well as the Fast Fourier Transform based algorithm for string
matching with don’t cares in O(n log n) time [5]. It should be emphasized that
the conceptual framework introduced here is a major part of our contribution,
also simplifying the proofs of some earlier results.

2 Patterns and Motifs

A gapped pattern P is a string of symbols consisting of regular alphabet symbols
and of joker (also called don’t care) symbols. Denoting the regular alphabet by Σ
and the joker by ?, ? �∈ Σ, a gapped pattern is a string in alphabet Σ ∪{?}. We
additionally require that a pattern is either empty or its first and last symbols
are from Σ. Hence a pattern P is a string in Σ∗ ∪Σ+({?}+Σ+)+. Any regular
symbol a ∈ Σ of P matches only a itself while ? matches any symbol.

Pattern P = p1p2 . . . pm occurs at location i in a string S = s1s2 . . . sn over Σ,
if pj = s(i−1)+j for all j = 1, . . . ,m such that pj �= ?. The list of all occurrence
locations of P in S is denoted L(P) = (l1, . . . , lk) where l1 < . . . < lk are the
occurrence locations. Pattern P is called a motif of S if it occurs in S repeatedly.
We use throughout the mildest possible repetitiveness constraint by requiring
that to be a motif, P has to occur at least two times in S. Hence pattern P is a
motif if and only if |L(P)| ≥ 2.

Given pattern P and string S of length n, a basic task is to find all occurrences
of P in S. Here we can utilize the structure of P that is composed of alternating
blocks of regular symbols and joker symbols ?. Any nonempty P can uniquely
be decomposed as

P = A1J2A2 · · · JkAk

where each solid block Ai is in Σ+ and each joker block Ji is in {?}+. For example,
pattern AAB?A??BB has solid blocks AAB, A, and BB.

For completeness, we sketch three alternative algorithms for finding the oc-
currences of P , all based on well–known techniques. The basic on–line algorithm
builds an Aho–Corasick automaton for the solid blocks Ai and finds their occur-
rences in S with the automaton. A subsequent scan over the occurences finds
the locations where Ai, A2, . . . , Ak occur at the distances as given by P . All this
takes time O(kn) where k is the number of solid blocks.

Another possibility is to build a suffix–tree or a suffix–array for S, to find for
each Ai the list L(Ai) of its occurrences in S, and to build the occurrence list
for P by constructing the intersection ∩i(L(Ai)− di) where (L(Ai)− di) is the

Structural Analysis of Gapped Motifs of a String 683

list L(Ai) shifted to the left by the amount di where di is the distance between
the first symbol of A1 and the first symbol of Ai in P . The intersection can be
constructed in time O(

∑
i |L(Ai)|) which is always O(kn) but can in the best

case be much less.
The third possibility is to find the occurrences of P in time O(n log n) using

the FFT algorithm for pattern matching with don’t cares.
Unfortunately the number of different motifs of some S is very high. A well–

known example from Pisanti et al [10] is S = AmBAm. Any pattern P ∈ A(A ∪
?)m−2A is a motif of this S. There are 2m−2 such motifs.

3 Equivalence of Motifs with Similar Occurrences

The equivalence concept to be presented in this section captures what is invariant
of motifs that occur similarly.

Definition 1. Any two motifs A and B of S are occurrence–equivalent, denoted
A ∼S B, if the pattern of their occurrences in S is the same. That is, A ∼S B
if L(A) = L(B) + d for some constant d where L(A) and L(B) are the sets of
the occurrence locations of A and B in S.

Clearly, ∼S is really an equivalence relation (i.e., the relation is reflexive, sym-
metric, and transitive).

For example, for string HATTIVATTI the motifs T?I and A?T are occurrence–
equivalent as L(T?I) = {3, 8} and L(A?T) = {2, 7} = L(T?I)− 1.

Let us define a translation representation τ(L(P)) for the list L(P) of the oc-
currences of motif P as follows. Assume that L(P) = (l1, l2, . . . , lk) where the lo-
cations li are given in increasing order li < li+1. We define τ(L(P)) = (l2−l1, l3−
l1, . . . , lk − l1). Then it should be obvious that A ∼S B iff τ(L(A)) = τ(L(B)).
Translation representation is translation–invariant, i.e., it does not change if the
locations li are translated as li + d by some constant d.

Theorem 1. Given gapped patterns A and B, one can test whether or not A ∼S

B in time O(kn) or O(n log n) where k is the total number of solid blocks of A
and B.

Proof. Using the methods of the previous section, find the lists L(A) and L(B),
in sorted order. This takes time O(kn) or O(n logn). Then test in time O(n)
if the corresponding elements of the two lists differ by the same constant (or
construct τ(L(A)) and τ(L(B)) and test if τ(L(A)) = τ(L(B))). �

The content of a pattern or a motif P is defined as the number of its non–joker
symbols. For example, AA??A?A has content 4.

Definition 2. Motif P is a maximal motif of S if P has the largest content
among the motifs that belong to the equivalence class of P in the occurrence–
equivalence ∼S.

Motif P is a minimal motif of S if P has the smallest content among the
motifs that belong to the equivalence class of P in the occurrence–equivalence
∼S.

684 E. Ukkonen

For string HATTIVATTIHHT, we have ATTI??T ∼S ATTI ∼S I ∼S A where ATTI??T
is maximal and I and A are minimal motifs.

One easily sees that an occurrence–equivalence class has a unique maximal
motif; otherwise one could join two separate maximal motifs to get a motif with
larger content. The above example shows, however, that an equivalence class can
have several minimal motifs.

It is not difficult to see that our concept of a maximal motif coincides with
that of [10] although the definitions differ technically. Equivalence idea similar
to ours was used in [2,8] to introduce maximal motifs.

We describe the construction of the maximal motif for a given motif using an
illustrative technique based on multiple self–alignments of S. A self–alignment of
S with respect to translations I = (d1, . . . , dk), d1 < . . . < dk, is formed by taking
k+1 copies of S and translating them such that the locations 1, 1+d1, . . . , 1+dk
of copies 1, 2, . . . , k + 1, respectively, become on top of each other. With respect
to the first copy, the second copy is translated d1 units to the left and so on,
such that the last copy is translated dk units to the left. The aligned symbols
of different copies are called the columns of the self–alignment. For example,
the column of the first symbol s1 of the first copy contains s1, s1+d1 , . . . , s1+dk

.
The motif construction inspects the content of the full columns (the columns for
symbols s1, s2, . . . , sn−dk

of the first copy) that intersect all copies.
A quadratic–time algorithm for constructing the maximal occurrence–

equivalent motif M(P) for a given pattern P builds a self–alignment of S =
s1s2 . . . sn with respect to all occurrences of P , and then reads the maximal
equivalent motif by expanding P whenever the aligned strings agree on full
columns. Note that the occurrences of P become aligned and therefore the re-
sulting motif contains P . The operation is essentially the same as the extended
Merge of [10].

The construction proceeds as follows.

1. Find the occurrences L(P) of P in S. If |L(P)| < 2, stop as P is not a motif
of S.

2. Let τ(L(P)) = (d1, d2, . . . , dk) be the translation invariant presentation of
L(P).

3. Self–align S with respect to τ(L(P)) and build from the full columns of the
self–alignment a consensus motif C = c1 · · · cn−dk

where for i = 1, . . . , n−dk,
the symbol ci is defined as

ci =
{
si if si = si+d1 = . . . = si+dk

? otherwise

4. The maximal motif M(P), M(P) ∼S P , is the motif obtained from C by
removing the leading and trailing joker symbols ?, to get a syntactically
correct motif.

By the construction, τ(L(M(P))) = τ(L(P)) and M(P) has largest possible
content, hence M(P) ∼S P . Step 1 takes time O(kn) = O(n2). As |L(P)| =
O(n), Step 2 takes time O(n), and Step 3 time O(n2). Step 4 needs O(n), and
the total time hence becomes O(n2).

Structural Analysis of Gapped Motifs of a String 685

Summarized, we have obtained the following; c.f., Lemma 4 of [2].

Theorem 2. Given a gapped pattern P , the equivalent maximal motif M(P) of
S can be constructed in time O(n2).

To illustrate the above construction of M(P), let us consider a string S =
HATTIVAHATTIVHTTTIVAT and a pattern P = T??V. Then L(P) = {3, 10, 16}
and hence τ(L(P)) = (7, 13). The self–alignment becomes as follows, with the
consensus C of the full columns shown below the horizontal line:

HATTIVAHATTIVHTTTIVAT
HATTIVAHATTIVHTTTIVAT

HATTIVAHATTIVHTTTIVAT

H?TTIV??

Removing the leading and trailing jokers from the consensus gives M(T??V) =
H?TTIV.

Finding an equivalent motif with smallest content is hard:

Theorem 3. The problem of finding an occurrence–equivalent minimal gapped
motif for a given gapped motif of a binary string S is NP–complete.

Proof. We reduce the NP–hard Set Cover problem to the following decision
version of our problem.

Minimal Gapped Motif: Given a string S, a gapped motif P of S and an
integer κ, has S a motif P ′, P ′ ∼S P , such that the content of P ′ is ≤ κ?

Let (U, {C1, . . . , Ck},K) be an instance of Set Cover where each Cj is a
subset of the basic set U = {1, . . . , t} and K is an integer. The problem is to
decide whether or not there are K sets among {C1, . . . , Ck} such that their union
equals U .

This instance is transformed into an instance of Minimal Gapped Motif

as follows. String S is of the form S = B0B1 . . . BtBt+1 where the t + 2 blocks
Bi are strings of length k. The block Bi = bi1 · · · bik, 1 ≤ i ≤ t, tells which sets
Cj cover the element i ∈ U :

bij =
{

0 if i ∈ Cj

j if i ∈ U \ Cj

Moreover, the extra blocks B0 and Bt+1 are defined as B0 = Bt+1 = 12 · · ·k.
We may assume that each i ∈ U belongs to some Cj , hence blocks Bi, 1 ≤ i ≤ t,
differ from blocks B0 = Bt+1.

Claim: Collection {Cj1 , . . . , Cjs} where j1 < . . . < js is a cover of U if and only
if motif Q = j1?j2−j1j2?j3−j2 · · ·?js−js−1js is occurrence–equivalent with motif
P = 12 · · ·k of S.

Proof of Claim. Only if: First note that P and Q are really motifs of S: they
occur in B0 and Bt+1, P occurs at location 1 and Q at location j1 of the two

686 E. Ukkonen

blocks. Motif P does not occur elsewhere. To show that P ∼S Q, it suffices to
prove that Q does not occur somewhere else in S. To derive a contradiction,
assume Q has such an extra occurrence. Then Q must occur at location j1 of
some Bi, i �= 0, i �= t + 1. Hence bij = j for j = j1, . . . , js. This means, by the
construction of the block Bi, that the element i of U does not belong to Cj for
j = j1, . . . , js. But then the collection {Cj1 , . . . , Cjs} does not cover i, hence not
U , contradicting our assumption.

If: Assume P ∼S Q. Then no block Bi, 1 ≤ i ≤ t, has an occurrence of Q
meaning that none of these blocks contains all of j1, . . . , js. Hence bij = 0 for
some j = j1, . . . , js, which means by the construction of S that i ∈ Cj for some
j = j1, . . . , js, that is, {Cj1 , . . . , Cjs} is a cover of U . This completes the proof
of Claim.

NP–hardness of Minimal Gapped Motif now follows as by Claim, there is
a cover of size ≤ K if and only if there is Q, Q ∼S P , with content ≤ K. As
Minimal Gapped Motif clearly is in NP, Theorem 3 follows for strings S in
unlimited alphabet.

However, the reduction to Minimal Gapped Motif can be modified into
binary alphabet. To this end encode in the construction of S, P , and Q each
symbol ”0” by ”00”, each symbol �= ”0” by ”01”, and add at the end of each
block a separator string ”011”. Add the separator ”011” also at the end of
motif P . In motif Q, also replace each ”?” by ”0?” and add to the end the string
”(0?)k−js011” in which ”0?” is repeated k−js times. Checking that the required
properties are valid in the binary case is left to the reader. �

While the equivalence classification of ∼S reduces the number of essentially
different motifs, their number can still be high. The bad example AmBAm is still
bad as the number of equivalence classes (or equivalently, the number of different
maximal motifs) is > 2m−2.

4 Equivalence of Self–alignments

In Section 3 we constructed maximal and minimal motifs under equivalence ∼S

starting from a given motif P . The multiple self–alignment of S that aligns
all occurrences of P was used as a technical tool in the algorithm of Theo-
rem 2. Here we start from a given self–alignment. We define an equivalence for
self–alignments such that the classes of this equivalence will be in one–to–one
correspondence with the classes of ∼S.

Let I = (d1, . . . , dk), d1 < . . . < dk, be the translation representation of
some locations of S. The consensus defined by the multiple self–alignment of
S with respect to I is – as already defined in the previous section – string
C = c1 . . . cn−dk

where for i = 1, . . . , n− dk:

ci =
{
si if si = si+d1 = . . . = si+dk

? otherwise

By removing from the consensus C the possible ?’s before the first and after the
last regular symbol, we obtain a motif (which may also be the empty string). We

Structural Analysis of Gapped Motifs of a String 687

denote this motif by μ(I). It is easy to see that a non–empty μ(I) is a maximal
motif of equivalence ∼S (as also stated in Lemma 5 of [10]) but it may have
more occurrences than just those that give I.

Definition 3. Translation representations I and I ′ are motif–equivalent in S,
denoted I �S I ′, if μ(I) = μ(I ′).

Again, �S is an equivalence relation.
As an example, for string BABAACACCACA and for representations I = (3) and

I ′ = (8) we have I �S I ′ as μ(I) = μ(I ′) = A?A.
Note that the classes of the equivalences ∼S and �S correspond to each

other one–to–one via the maximal motifs: each maximal motif P has a unique
occurrence–equivalence class {P ′ | P ′ ∼S P} and a unique motif–equivalence
class {I | μ(I) = P}.

It is immediate from the construction of μ(I), that if μ(I) = μ(I ′) then also
μ(I ∪ I ′) = μ(I). This gives the following theorem. Here I ∪ I ′ is the merge of
the two lists.

Theorem 4. If I �S I ′ then I �S (I ∪ I ′).

Definition 4. A translation representation I is maximal if it is a largest ele-
ment of its class in the motif–equivalence �S, and I is minimal if it is a smallest
element in its class.

By Theorem 4, the maximal element of an motif–equivalence class is the union
(merge) of all members in the class. Therefore the maximal element is unique.
The example after Definition 3 shows that there can be several different minimal
elements.

Theorem 5. a) A translation representation has a unique motif–equivalent
maximal representation, and this representation can be found in time O(n2);
b) The problem of finding a minimal motif–equivalent translation representation
for a given translation representation is NP–complete for binary strings S.

Proof. a) Construct in time O(n2) the motif μ(I). Then find L(μ(I)) in time
O(n2), and finally construct the translation invariant presentation τ(L(μ(I))).
Obviously τ(L(μ(I))) is maximal, otherwise L(μ(I)) should be larger.

b) The membership in NP is clear. The hardness is shown again by reducing
Set Cover to the following decision version of our problem: Given a string S,
a translation representation I of some locations of S, and a constant κ, is there
a translation representation I ′ such that I ′ �S I and |I ′| ≤ κ.

Let (U, {C1, . . . , Ck},K) be an instance of Set Cover where U =
{1, 2, . . . , k}, each Cj ⊆ U , and K is an integer. Build a string S =
#B0#B1# · · ·#Bk#Bk+1# where each block Bi = bi1 · · · bi,t+2 is a string of
length t+ 2 and # is a separator. Block B0 is a special block defined as b0j = 0
for all j, and Bk+1 is a special block defined as bk+1,j = 0 for j = 1, . . . , t and

688 E. Ukkonen

bk+1,t+1 = bk+1,t+2 = 1. The remaining blocks Bi are bit–vector presentations
of sets Ci, defined as

bij =
{

1 if j ∈ Ci

0 if j ∈ U \ Ci

Moreover, bi,t+1 = 1 and bi,t+2 = 0. The translation representation I is I =
(t+2, 2(t+2), . . . , (k+ 1)(t+2)) which aligns all blocks Bi on top of each other.
Then μ(I) is the motif #?t+2# that contains t+ 2 joker symbols in the middle.

Now the NP–hardness is shown simply by verifying that the set cover instance
has a solution of size ≤ K if and only if there is a translation representation I ′,
I ′ �S I, such that |I ′| ≤ K + 1. Here representation I ′ will contain elements
i(t + 2) of I such that Ci belongs to the set cover. Moreover, I ′ must always
contain (k + 1)(t + 2) as this is the only possibility to get the last two jokers of
the motif μ(I) = μ(I ′) = #?t+2#. This forcing in the construction is necessary
to guarantee that μ(I ′) will not become longer than one block (plus the two
separators).

This proves NP–hardness when S is in alphabet of size 3. By replacing the
symbol # by binary string 01t+30 we obtain a binary variant for which the above
proof is still valid. �

Testing whether or not S has motifs with large content and many occurrences
is known to be hard [7]. However, if we do not pose constraints on the number
of occurrences, then the motif with largest content can be found fast. In fact,
let I ⊆ I ′ be translation invariant representations. Then the motif μ(I ′) is a
submotif of μ(I), and the content of μ(I ′) is ≤ the content of μ(I). To find a
motif with largest content it therefore suffices to consider representations I with
only one element, i.e., consider Id = (d) for d = 1, . . . , n− 1.

The motif μ(Id) has a solid symbol on locations where the two copies of S,
when shifted by d with respect to each other, match. Hence to find a motif with
largest content we have to count the matching symbols for each possible d, and
take the maximum. Let

C(d) = |{ i | si = si+d and 1 ≤ i ≤ n− d}|

be the match count of Id.

Theorem 6. The motif of S with largest content has maxd C(d) solid symbols,
and it can be constructed in time O(n log n).

Proof. The construction directly from the definition of C(d) would take O(n2)
time. However, match counts C(d) can also be evaluated in time O(n log n) using
FFT (see e.g. [6]). �

5 Representation by Maximal Non–gapped Motifs

In this section we give a representation for gapped motifs in terms of non–
gapped ones. This will also give an improved upper bound for the number of
gapped motifs, parametrized with the number blocks of the motif.

Structural Analysis of Gapped Motifs of a String 689

A non–gapped pattern P , also called a substring pattern, is a pattern that does
not contain any jokers, i.e., P is a string in Σ∗. The occurrence–equivalence ∼S

generalizes immediately for non–gapped motifs. A non–gapped P is maximal if
it has largest content in its occurrence–equivalence class of non–gapped motifs.
Note that an equivalence class may have more than one maximal non–gapped
motif.

For example, the maximal gapped motifs of string HATTIVATTIAA are ATTI?A,
TT, and A while its maximal non–gapped motifs are ATTI, TT, and A.

Given a non–gapped pattern P it is of interest to find the maximal non–
gapped pattern P ′ that contains P and is occurrence–equivalent to P . This can
be solved fast using the suffix–tree T (S) of S; recall that T (S) is the compacted
trie that represents all suffixes of S [6,4]. The so–called suffix links are important
tools in the linear–time suffix–tree construction as well as in many applications
of suffix–trees: if Y is a node of T (S) for string ax, a ∈ Σ, and X is the node
for string x, then there is a suffix link from Y to X .

First construct T (S) and find the internal node V (P) of T (S) such that

(i) P is a prefix of the string V (P) that spells out the path from the root to
V (P), and

(ii) V (P) is shortest possible.

Now, V (P) is a right–maximal substring pattern that contains P , that is, V (P)
cannot be expanded to the right without loosing some occurrence of P . To make
it also left–maximal, we must check whether or not it is possible to add something
to the beginning of V (P). If V (P) is on the path that spells out the entire S or
if there are at least two suffix links that point to V (P), we are done. In that case
an expansion to the left is not possible as there are at least two alternatives. If,
however, exactly one suffix link points to V (P), then we go to the source node
of the link and repeat this until a node W is found such that W is on the path
for the entire S or at least two suffix links enter W . Then the string W from
root to W is the maximal non–gapped motif that contains P .

This takes time O(n), and we have obtained the following.

Theorem 7. The maximal non–gapped motif of S that contains a given non–
gapped motif P and is occurrence–equivalent to P can be found in time O(n).

It is well-known that S has only Θ(n) right–maximal non–gapped motifs: each
internal node of T (S) gives one such motif. Maximality in both directions still
reduces the motifs:

Theorem 8. String S has ≤ n maximal non–gapped motifs; they can be found
in time O(n).

Proof. Construct T (S) in time O(n) and find the internal nodes W of T (S) that
correspond to the maximal non–gapped motifs using the criteria that either W
is on the path for S or the number of suffix links entering W is at least 2. This
can be accomplished by traversing the tree and its O(n) suffix links, taking time
O(n). The number of such nodes W is ≤ n as T (S) has ≤ n internal nodes. �

690 E. Ukkonen

The next representation theorem follows quite directly from our definitions.

Theorem 9. If B is a non–gapped block of a maximal gapped motif of S, then
B is a maximal non–gapped motif of S.

This leads to the following upper bound for the number of different gapped
motifs.

Corollary 1. String S has ≤ n2k−1 different maximal gapped motifs that have
k non–gapped blocks.

Proof. By Theorem 8, there are < n maximal non–gapped motifs, and each of
the k − 1 gaps between the k blocks must have length < n. �

References

1. Apostolico, A., Parida, L.: Incremental Paradigms of Motif Discovery. J. Compu-
tational Biology 11, 15–25 (2004)

2. Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for
enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 724–737. Springer, Heidelberg (2005)

3. Crochemore, M., Iliopoulos, C.S., Mohamed, M., Sagot, M.-F.: Longest repeats
with a block of k don’t cares. In: Theoretical Computer Science, vol. 362, pp.
248–254 (2006)

4. Crochemore, M., Rytter, W.: Jewels of Stringology, World Scientific (2002)
5. Fischer, M.J., Paterson, M.S.: String matching and other products. In: Complexity

of Computation. SIAM–AMS Proc, pp. 113–125 (1974)
6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, Cambridge (1997)
7. Michael, M., Nicolas, F., Ukkonen, E.: On the complexity of finding gapped motifs.

Submitted manuscript (2007)
8. Pelfrêne, J., Abdeddäım, S., Alexandre, J.: Extracting approximate patterns. J.

Discrete Algorithms 3, 293–320 (2005)
9. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.F.: A basis of tiling motifs for

generating repeated patterns and its complexity for higher quorum. In: Rovan, B.,
Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 622–631. Springer, Heidelberg
(2003)

10. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.F.: Bases of motifs for generating
repeated patterns with wild cards. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2, 40–50 (2005)

Online and Offline Access to Short Lists

Torben Hagerup

Institut für Informatik, Universität Augsburg, 86135 Augsburg, Germany
hagerup@informatik.uni-augsburg.de

Abstract. We consider the list-update problem introduced by Sleator
and Tarjan, specializing it to the case of accesses only and focusing on
short lists. We describe a new optimal offline algorithm, faster than the
best previous algorithm when the number of accesses is sufficiently large
relative to the number � of items. We also give a simple optimal offline
algorithm for � = 3. Taking c� to denote the best competitive ratio of a
randomized online algorithm for the list-access problem with � items, we
demonstrate that c3 = 6/5 and give new upper and lower bounds on c4.
Finally we prove a strengthened lower bound for general �.

1 Introduction

The List-Access Problem
In the list-access or LA problem, a list L containing the items in a finite set I is
to be maintained during a sequence of accesses to items in I. The set I is fixed,
but its items may be reordered in L in the course of the accesses to improve the
performance. An access is assumed to have a cost equal to the position in L, just
before the access, of the item x accessed, i.e., to one more than the number of
items preceding x in L at that time. As part of the access to an item x, x can
be moved at no cost to an earlier position in L, with the order in L of the other
items remaining unchanged. This is considered to happen in a number of free
exchanges, each of which interchanges x with the item currently preceding it in L.
In addition, at all times except during an access, it is possible to interchange two
arbitrary adjacent items in L with a paid exchange at a cost of 1. We formalize
the list L as a permutation of I, namely as the function from I to {1, . . . , |I|}
that maps each item to its position in L. An instance of the LA problem is given
by a pair (π0, σ), where, for some finite set I, π0 : I → {1, . . . , |I|} is the initial
permutation and σ ∈ I∗, called the request sequence, is the sequence of items to
be accessed. A solution to the instance (π0, σ) specifies, for each access requested
in σ, the free and paid exchanges to be carried out as part of the access and just
before it, respectively, starting from the initial permutation π0. The cost of the
solution is the total cost of the accesses plus the number of paid exchanges. A
solution to (π0, σ) whose cost is minimal, over those of all solutions to (π0, σ),
is said to be optimal, and we denote its cost by Opt(π0, σ). Similarly, the cost
of the solution produced by an algorithm A for the LA problem on the input
(π0, σ) is denoted by A(π0, σ). The algorithm A may be offline, in which case it
can base each of its decisions on knowledge of the entire sequence σ, or online,

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 691–702, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

692 T. Hagerup

in which case, when an item to be accessed is revealed to it, it must decide on
the paid and free exchanges to be carried out before that access and during it,
respectively, before it learns about the following item to be accessed, if any.

Previous Work
The more general (dynamic) list-update problem was formalized by Sleator and
Tarjan [8], who proposed to judge the quality of online algorithms by comparing
them with optimal offline algorithms, i.e., offline algorithms that always compute
an optimal solution. For c ≥ 1, a deterministic online algorithm A for the LA
problem is c-competitive if there is a constant α such that for every instance
(π0, σ) of the LA problem, A(π0, σ) ≤ c ·Opt(π0, σ) + α. If A is randomized, in
the definition A(π0, σ) is replaced by E(A(π0, σ)), the expected cost incurred by
A on the instance (π0, σ). If the constant α can be taken to be zero, A is strictly
c-competitive. The competitive ratio of A is the infimum of the set of those c for
which A is c-competitive (taken to be ∞ if this set is empty).

Sleator and Tarjan showed that the simple Move-To-Front or MTF algo-
rithm, which carries out all possible free exchanges and no paid exchanges, is
2-competitive, and that no deterministic online algorithm for the LA problem
has a competitive ratio smaller than 2. Later authors specialized the LA problem
to the LA� problem, for every � ∈ IN = {1, 2, . . .}, by fixing the number |I| of
items to be �. Irani [5] established that for all � ∈ IN, the smallest possible com-
petitive ratio of a deterministic online algorithm for the LA� problem (defined
in the obvious way) is exactly 2− 2/(� + 1).

In the case of randomized algorithms, our knowledge is less complete. For all
� ∈ IN, denote by c� the infimum of the set of competitive ratios of (random-
ized) online algorithms for the LA� problem, and take c∞ = sup�∈IN c�. The best
currently known randomized online algorithm for the LA problem, the COMB
algorithm of Albers, von Stengel and Werchner [1], has the competitive ratio 8/5
and therefore proves that c∞ ≤ 8/5. On the other hand, Teia [9] establishes the
lower bound c� ≥ 3/2 − 5/(� + 5) for all � ∈ IN and therefore c∞ ≥ 3/2. A
number of results for small values of � are mentioned in the literature. The lower
bound c2 ≥ 9/8 is attributed to Karp and Raghavan [4,7], and a matching up-
per bound c2 ≤ 9/8 was obtained by Chrobak and Larmore [4]. The bounds
c3, c4 ≤ 3/2 are stated in [1], and Reingold, Westbrook and Sleator [7] report the
bounds c3 ≥ 1.1998 and c4 ≥ 1.2467, obtained by iterative numerical methods. A
parenthetical remark in [7] also mentions the bounds c3 ≥ 1.2 and c4 ≥ 1.25, but
gives no proof or indication of how they were obtained. In addition to the stan-
dard so-called i or full cost model defined above, in which accessing a list item in
position i costs i, researchers have studied an i−1 or partial cost model, in which
an access to the item in position i is assumed to cost only i − 1. This model is
easier to analyze. If we define ĉ� as c� for all � ∈ IN, but with respect to the partial
cost model, Albers, von Stengel and Werchner [2] argue that ĉ2 = ĉ3 = ĉ4 = 3/2.

In the following, we will consistently use � to denote the number |I| of items
and n to denote the number |σ| of requests. The following simple optimal offline
algorithm for � = 2 was described by Reingold and Westbrook [6]: In every
access to the item x at the back of the list L, move x to the front of L exactly

Online and Offline Access to Short Lists 693

if the next request exists and is also to x; do no paid exchanges. For � ≥ 3, no
simple optimal offline algorithm was known prior to the work reported here, but
Reingold and Westbrook propose an algorithm based on dynamic programming
that runs in O(2�(� − 1)!n) time. The space needed by the algorithm is Θ(�!n)
or Θ(�!), depending on whether the solution itself or only its cost is needed.

New Results
The present paper deals mostly with the case of small values of �; specifically, � ∈
{2, 3, 4}. Clearly not too much practical interest is tied up with maintaining lists of
up to four items. However, since the associated problems are already theoretically
interesting and challenging, they seem a natural starting point for learning more
about the general list-access problem. In detail, our results are the following.

A new optimal offline algorithm. Building on the work of Reingold and
Westbrook [6], we propose a new optimal offline algorithm with a running time
of O(2��!f(�)+n+r), where r = O(�n) is the size of the output and f : IN → IN is
a certain function. The space needed is O((�+1)!f(�)+n) or O(�!f(�)), depending
on whether the solution itself or only its cost is needed. It is easy to establish
that f(�) ≤ �!3�! for all � ∈ IN, but f is likely to be significantly smaller. Formally
speaking, the new algorithm is incomparable with the algorithm of Reingold and
Westbrook, being faster if n is sufficiently large relative to � and slower in the
opposite case. From a practical point of view, the new algorithm is probably the
best algorithm known for � = 4, but it loses out rapidly for larger values of �
due to the growth of f(�).

A simple optimal offline algorithm for � = 3. The algorithm of Reingold
and Westbrook [6] works in O(n) time for each fixed value of �, but we describe
a new O(n)-time algorithm for � = 3 that is simple, intuitive and easy to execute
by hand, properties not shared by the dynamic-programming algorithm.

Improved bounds on c�. We determine that c3 = 6/5. This shows the lower
bound of 1.2 obtained by Reingold, Westbrook and Sleator [7] to be tight. We also
prove a bound of the form 5/4−ε ≤ c4 ≤ 4/3, where ε ≈ 3·10−5. Reingold, West-
brook and Sleator already indicated a lower bound of 1.25, but without giving
any details. Finally, we modify Teia’s proof [9] to obtain a slightly strengthened
lower bound of 3/2 − 2/(� + 3) for general values of �. The previous and new
bounds on c� are summarized in the following table.

Old New New Old
� lower bound upper bound

2 9/8 (Karp and Raghavan) — — 9/8 [4]
3 1.2 [7] 6/5 6/5 3/2 [5]
4 1.25 [7] 5/4− ε 4/3 3/2 [1]
5 1.2728 [7] 5/4 — 8/5 [1]
6 23/22 [9], 1.268 [7] 23/18 — 8/5 [1]
...

...
...

...
...

� 3/2− 5/(� + 5) [9] 3/2− 2/(� + 3) — 8/5 [1]

694 T. Hagerup

2 A New Optimal Offline Algorithm

Let an instance (π0, σ) of the LA problem be given, let I be the domain of
π0 and take � = |I| and n = |σ|. In the interest of simplicity, let us consider
only the problem of computing Opt(π0, σ). Write σ = r1 · · · rn, with ri ∈ I for
i = 1, . . . , n. Let Perm(I) be the set of permutations of I and, for π1, π2 ∈
Perm(I), denote by dist(π1, π2) the number of interchanges of adjacent items
needed to transform π1 into π2. Call π1 and π2 adjacent if dist(π1, π2) = 1. Let
IN0 = {0, 1, . . .}, let S be the semiring (IN0∪{∞},min,+,∞, 0), let V be the set
of column vectors with entries in S and indexed by permutations in Perm(I), and
letM be the set of square matrices with entries in S and with rows and columns
indexed by permutations in Perm(I). Reingold and Westbrook [6] observe that

Opt(π0, σ) = 0TArnArn−1 · · ·Ar1v0, (1)

where Ax ∈M for all x ∈ I, 0T is the transpose of the all-zero vector 0 ∈ V , and
v0 ∈ V maps each π ∈ Perm(I) to dist(π0, π) (i.e., the entry of π is dist(π0, π)).
The main thrust of their proof is to show that for all x ∈ I, Ax can be chosen
to have O(2�(�− 1)!) non-∞ entries that can be computed in O(2�(�− 1)!) time.
Because of this, Opt(π0, σ) can be found via (1) in O(2�(�− 1)!n) time.

Suppose that the product (1) is evaluated from left to right. For i = n +
1, n, . . . , 1, wT

i = 0TArn · · ·Ari is a row vector that maps each π ∈ Perm(I) to
Opt(π, ri · · · rn). Let us call wT

n+1, . . . , w
T
1 cost vectors. The general step in the

computation is to multiply a cost vector with one of the matrices A1, . . . , A� to
obtain another cost vector. The n + 1 cost vectors arising in the computation
are all distinct, but some of them differ in just an additive constant, which is
what we will exploit. Let ρ be the function that maps each w ∈ V to the pair
(minw,w − minw), where minw is the smallest entry in w and w − minw is
the vector obtained from w by subtracting minw from each of its entries. It is
easy to see that if A ∈ M, w ∈ V and ρ(w) = (m, z), then wTA = m+ zTA and
wTv0 = m + zTv0. Because of this, we can compute Opt(π0, σ) by initializing
zn+1 := 0 and mn+1 := 0 and then, for i = n, . . . , 1, if ρ(zT

i+1Ari) = (m, z),
taking zi := z and mi := mi+1 +m, with m1 + zT

1 v0 being the final answer. This
computation can be viewed as the processing of the input rn · · · r1 by a slightly
embellished deterministic finite automaton (DFA) GI that has elements of V as
its states and an edge (a transition) labeled (x,m) ∈ I × IN0 from z ∈ V to
z′ ∈ V if ρ(zTAx) = (m, z′). As concerns the finiteness of GI , it suffices for GI

to have the state 0 and all states reachable from it via edges defined as above.
But every such state, viewed as an element of V , has at least one entry equal to
zero, and the entries of adjacent permutations cannot differ by more than one.
Therefore the number of states in GI , which is what we call f(�), is bounded
by �!3�!. GI can be constructed in O(2�(�− 1)!) time per edge, after which the
request sequence can be processed in constant time per request. This leads to
the following result.

Theorem 1. Given an instance (π0, σ) of the LA problem, Opt(π0, σ) can be
computed in O(2��!f(�) + n) time using O(�!f(�)) space, where � is the number
of items and n = |σ| is the number of requests.

Online and Offline Access to Short Lists 695

By way of example, take I = {x, y}. We represent π ∈ Perm(I) by the sequence
π−1(1) · · ·π−1(�). For π ∈ Perm(I) and v ∈ V , let v[π] be the entry of π in v
and represent v by the sequence v[xy]v[yx]. Then GI takes the form shown in
Fig. 1.

01 00 10

(y, 2) (y, 1)

(x, 2)(x, 1)

(x, 1) (y, 1)

Fig. 1. The DFA Gxy for computing the optimal offline cost of sequences in {x, y}∗

To determine the optimal offline cost of processing the request sequence
yxyyxx, e.g., one can trace out the path taken by the DFA on the reverse se-
quence, starting from the state 0 = 00, and sum the second components of the
edges followed. The path ends in the state 10, and the sum of the second com-
ponents of the edge labels is 8. If the initial permutation is π0 = xy, a final
multiplication with the vector v0 = 01, which simply picks out the entry of π0,
yields the total cost of 9.

Let z1, . . . , zn+1 be defined as above, i.e., zi is the state of GI after the pro-
cessing of rn · · · ri, for i = 1, . . . , n + 1. One can prove the following:

Lemma 2. For � = 2, a solution of (π0, σ) is optimal if and only if it carries
out no paid exchanges after the last access and adheres to the following rule: For
i = 1, . . . , n,

(1) do not carry out a paid exchange, changing the current permutation from π
to π′, just before the access to ri unless zi[π′] < zi[π].

(2) carry out a free exchange, changing the current permutation from π to π′,
as part of the access to ri if zi+1[π′] < zi+1[π], but not if zi+1[π′] > zi+1[π].

3 A Simple Optimal Offline Algorithm for � = 3

Given a request sequence σ ∈ I∗ and two distinct items x, y ∈ I, the projection
of σ on {x, y} is the subsequence σxy of σ obtained from σ by deleting all
occurrences of items other than x and y. Similarly, a permutation π0 of I and
a solution to the instance (π0, σ) can be projected on {x, y}, simply by ignoring
all items other than x and y and all interchanges involving such items. The use
of projections in the analysis of algorithms for the LA problem is a standard
technique that goes back to Bentley and McGeoch [3] and Irani [5]. The cost
model of the LA problem can be thought of as assigning a cost of 1 to each item
that is in front of an item y when y is accessed and a cost of 1 to the access itself.
Because of this, if a solution to an instance with � = 3 is projected on each of
the three subsets of I of size 2, the resulting total cost of the three projections
will exceed the cost of the original solution by exactly n, the original number
of requests: Each “in front of” cost unit is counted in exactly one projection,

696 T. Hagerup

whereas each “access itself” cost unit is counted in exactly two projections, which
results in an “overcount” of n. In particular, this means that if each of the three
projections is optimal, the original solution is also optimal. Our goal, therefore,
is to show that at each point during the solution of an instance with � = 3 (in
the “forward” direction, but with “lookahead”), one can proceed in a way that
does not violate optimality in any of the three projections on pairs of items.

Suppose that the current list is xyz. It is easy to see that the only troublesome
case is that of an access to z in which the projection on {x, z} requires z to
move in front of x and the projection on {y, z} requires z to stay behind y. With
Lemma 2, this can be seen to imply that after the processing of the outstanding
requests in reverse order, not including the request to z, the DFA Gxz as in Fig. 1
is in the state 10, and Gyz is in the state 01. But forming the cross product of
the three DFAs Gxy, Gxz and Gyz, after first extending them to do nothing
upon receipt of the “foreign” symbol, shows that then Gxy must be in the state
10 before and after the processing of the request to z. By Lemma 2, this state
allows a paid exchange of x and y, after which z can move in front of x but stay
behind y, as required.

A formulation of the optimal offline algorithm for � = 3 that is imprecise, but
easy to remember, goes as follows: At an access to an item z, use the optimal
offline algorithm for � = 2 for z and each item preceding z to decide whether to
interchange z with that item. If a conflict arises, resolve it by interchanging the
two items in front of z and then move z between them.

The principle behind the algorithm above does not extend to � = 4. The
reason is that for � = 4, there are request sequences whose optimal solutions do
not have projections on pairs of items that are also optimal. A shortest example,
for the initial permutation abcd, is the request sequence dbccdad.

4 Randomized Lower Bounds for Small �

Fix � ∈ IN and, for definiteness, take I = {1, . . . , �}. Suppose that for some
n ∈ IN, Σ is a random sequence drawn from the uniform distribution over In.
Then for every (deterministic or randomized) online algorithmA, E(A(π0, Σ)) ≥
n(� + 1)/2 for every initial permutation π0 ∈ Perm(I) (with equality if the
algorithm carries out no paid exchanges). The reason is that no matter how
the algorithm orders its list before an access, the access will be to an item
whose position in the list is uniformly distributed over {1, . . . , �}. But with d� =
lim infn→∞E(Opt(π0, Σ))/n (the choice of π0 is immaterial), this means that
c� ≥ (� + 1)/(2d�). A similar observation was used to obtain lower bounds on c�
by Reingold, Westbrook and Sleator [7], who attribute it to Karp. The difference
to the work reported here is that whereas Reingold, Westbrook and Sleator
bound d� from above by means of an offline algorithm with bounded lookahead
found by an extensive search, here we compute the exact value of d� by analyzing
the optimal offline algorithm of Section 2.

Indeed, for � = 2, the random request sequence Σ sends the DFA of Fig. 1 on
a random walk of exactly n steps, each step of which chooses the next edge to
follow from the uniform distribution over the edges that leave the current state.

Online and Offline Access to Short Lists 697

The corresponding cost is the sum of the second components of the labels of the
edges traversed plus a quantity bounded by

(
�
2

)
, namely what was called zT

1 v0

in Section 2.
The graph of Fig. 1, considered as a Markov chain, is irreducible and aperiodic

and so has a unique stationary distribution, which, as is easy to verify, assigns
probability 1/3 to each of the three states. Because of this, d2 is the average of
the second components of the edges of the graph, i.e., 4/3. Together with the
formula c2 ≥ 3/(2d2), this reproves the result c2 ≥ 9/8 of Karp and Raghavan.

For general � ∈ IN, we can consider G� := GI as a Markov chain with some
state set V� and a probability of 1/� associated with each edge (note, however,
that G� in general contains parallel edges and loops). For each v ∈ V�, let rv be
the average of the second components of the labels of the edges that leave v.
One can prove that G� is irreducible and aperiodic. If its stationary distribution
assigns probability pv to v for each v ∈ V�, then d� =

∑
v∈VI

pvrv. Thus d� can
be computed automatically.

In practice, for the present purposes there is no need to distinguish between
states, such as 01 and 10 in Fig. 1, that can be transformed into each other
by permuting the elements of I (in the example, by interchanging x and y),
so each group of states that are equivalent in this sense can be merged into a
single state. Moreover, the label on each edge can be simplified to its second
component. For � = 3, this leads to the graph of Fig. 2. For a verification, it is
helpful to know that the vertex labels use the order 123, 213, 231, 321, 312, 132
of the permutations of I = {1, 2, 3}.

012210 001221

012321000111

000000

1

2

3

12

3

1

1

1

2 1

2/25

1/5

4/25

6/25

8/25

Fig. 2. The graph G3 after the merging of equivalent states

Each vertex is shown with its probability in the stationary distribution, and
an easy calculation demonstrates that d3 = 5/3 and therefore that c3 ≥ 6/5. The
corresponding Markov chain for � = 4 has 80 states. Computing its stationary
distribution proves that c4 ≥ p/q, where p = 457540227606779517467543455 and
q = 366039653585974411483932764, i.e., c4 > 5/4− ε with ε ≈ 2.5515 · 10−5.

698 T. Hagerup

5 An Optimal Randomized Online Algorithm for � = 2

This section introduces the randomized online odd-even algorithm for � = 2
and proves that it is optimal, i.e., has the smallest competitive ratio of any
online algorithm (whereas an offline algorithm is optimal if it always produces
an optimal solution). An optimal randomized online algorithm for � = 2 was
given previously by Chrobak and Larmore [4].

Let y0 be the item at the back of the initial list. The odd-even or oe algorithm
never carries out a paid exchange. At the first access to y0, it moves y0 to the front
of the list with probability 1/2 and initializes prev := y0 and even := true. At
every subsequent access, say to an item x, it does the following, where MTF(p),
for 0 ≤ p ≤ 1, denotes the action of moving the item accessed to the front of the
list (if it is not already there) with probability p.

if even then MTF(3/4);
if prev = x then even := false else even := ¬even ;
prev := x;
if even then MTF(3/7);

The key to analyzing the rather unintuitive algorithm and especially extensions
of it is to focus on what we will call the state of the execution. For � = 2, the state
is the probability that the previous access was to the item at the front of the
algorithm’s list. It is easy to see that immediately after the first access to y0, oe’s
state is 1/2 and even = true. Between accesses from then on, the state is 1/2 if
even = true and 7/8 if even = false . To see this, suppose that even = true before
an access. Then the access changes even to false and executes MTF(3/4), which
changes the state from 1/2 to (1/2)·(3/4)+(1/2)·1 = 7/8. If even = false before
an access, on the other hand, either (if the condition prev = x is satisfied) the
access changes neither even nor the state, or it changes even to true and executes
MTF(3/7), which changes the state from 7/8 to (7/8) · (3/7) + (1/8) · 1 = 1/2.

Suppose now that oe and an arbitrary offline algorithm A process a request
sequence σ in an interleaved fashion, starting from a common initial list π0 with
the item y0 at the back. We analyze the process using the potential function
Φ defined as follows: Until the first access to y0, Φ = 0. Between accesses after
that, Φ = 1/4 if even = true. If even = false, Φ = −1/8 if prev is at the front of
A’s list, and Φ = 1 otherwise. We will show that the inequality

E(oe(r)) + ΔΦ(r) ≤ 9
8
A(r) (2)

holds for each request r in σ, where ΔΦ(r) denotes the increase in Φ caused by
the processing of r by both oe and A. A paid exchange by A costs 1 to A and
increases Φ by at most 9/8, so we can disregard paid exchanges in the following.
The first access to y0, if there is one, costs 2 to both algorithms and increases Φ
by 1/4, in accordance with (2), and any earlier accesses cost the same to both
algorithms and leave Φ unchanged. Now let r be a request to an item x after the
first request to y0 and consider three cases, distinguished by the effect on even
of the processing of r by oe:

Online and Offline Access to Short Lists 699

Case 1: even changes from true to false . Because its state is 1/2, the expected
cost to oe of serving r is 3/2. If A has x at the back of its list after serving r, it
incurs a cost of 2 in doing so, and the potential increases by 3/4, namely from
1/4 to 1. Otherwise A incurs a cost of at least 1, and Φ decreases by 3/8, namely
from 1/4 to −1/8. In either case, (2) holds.

Case 2: even changes from false to true. The expected cost to oe is at most 15/8,
and the previous request was to the item y other than x. Either the potential
drops by 3/4, namely from 1 to 1/4, and the cost to A is 1, or the potential
increases from −1/8 to 1/4, i.e., by 3/8, and the cost to A is 2. In each case, (2)
holds.

Case 3: even is false before and after the processing of r. The previous request
was also to x, so the expected cost to oe is 9/8, and the potential cannot increase.
Once again, (2) holds.

Summing the inequality (2) over all requests r in σ and noting that the overall
decrease in Φ is bounded by 1/8 shows that

E(oe(π0, σ)) ≤ 9
8
A(π0, σ) +

1
8
.

Recalling that c2 ≥ 9/8, we obtain the following.

Theorem 3. oe is (9/8)-competitive, and this is optimal.

The proof leaves open the possibility that oe may not be strictly (9/8)-
competitive. This is indeed the case, as evidenced by the request sequence y0y0.
This effect can be viewed as caused by the impossibility of starting in the state
7/8. The strict competitive ratio of oe is 7/6, and this is the best possible for
any online algorithm for LA2. To see the latter, consider the initial list xy and
the two request sequences yx and yy.

6 An Optimal Randomized Online Algorithm for � = 3

Searching for a good randomized online algorithmR for � ≥ 3 whose competitive
ratio is demonstrated similarly as in the previous section can be formulated as
solving a linear program L�. Before the constraints of L� can be specified, we
need additional terminology.

Take I = {1, . . . , �} and let P be the set of unordered pairs of items in I. Let
F be the set of functions that map P to {0, 1}. A function f ∈ F represents
the values of the variable even in all

(
�
2

)
projections of R on elements of P .

More precisely, suppose that a permutation τ ∈ Perm(I), initially the identity
permutation id ∈ Perm(I), is maintained during the processing of a sequence of
requests to I such that each access moves the item x accessed to the front, i.e.,
replaces τ by MTF (τ, x), where MTF (τ, x) is the permutation τ ′ of I with

τ ′(y) =

⎧
⎨

⎩

1, if y = x,
τ(y) + 1, if τ(y) < τ(x),
τ(y), if τ(y) > τ(x).

700 T. Hagerup

We call τ the most-recently-accessed or MRA permutation. For all {i, j} ∈ P ,
f({i, j}) = 0 means that even = true in the projection of R on {τ−1(i), τ−1(j)},
and f({i, j}) = 1 means that even = false in that projection. For f, g ∈ F and
i ∈ I, we say that i changes f to g, written f

i→ g, if, informally, a request to
τ−1(i) changes the values of even in all projections of R in a way that corre-
sponds to stepping from f to g. More precisely, with π′ = MTF (id , i), f i→ g if
g({1, π′(j)}) = 1−f({i, j}) for all j ∈ I with j < i, g({1, π′(j)}) = 1 for all j ∈ I
with j > i, and g({π′(j), π′(k)}) = f({j, k}) for all {j, k} ∈ P with i �∈ {j, k}.
For f, h ∈ F , h is reachable from f if f = h or there is g ∈ F and i ∈ I such that
f

i→ g and h is reachable from g. Let F ′ be the subset of F of those functions
reachable from the function f0 in F that maps every element of P to 1. We call
the elements of F ′ parity vectors.

Some of the ideas expressed above were anticipated independently by Albers,
von Stengel and Werchner [2]. In particular, for every request sequence σ, they
defined a partial order 〈σ] on I that contains largely the same information as
conveyed here in the pair (τ, f) of the current MRA permutation and parity
vector after the processing of σ, starting from (τ, f) = (id , f0).

For all π ∈ Perm(I) and all x ∈ I, let ML(π, x) be the set of those permuta-
tions π′ ∈ Perm(I) that can be obtained from π by moving x part or all of the
way to the front as in a number of free exchanges, i.e., the set of those π′ with
π′(x) ≤ π(x) such that π′(y) = π(y) + 1 for all y ∈ I with π′(x) ≤ π(y) < π(x)
and π′(y) = π(y) for all y ∈ I with π(y) < π′(x) or π(y) > π(x).

For every parity vector f and every permutation π ∈ Perm(I), L� has a
nonnegative variable pf,π, intended to represent the probability with which π ◦ τ
is the list of R after the processing of a request sequence that leads to the
MRA permutation τ and the parity vector f , and an unrestricted variable qf,π,
intended to represent a potential associated with a situation in which the parity
vector is f and an adversary algorithm A has its list ordered as π ◦ τ , where τ is
the current MRA permutation. Finally, it has a variable c, which represents the
competitive ratio to be demonstrated, and the objective is to minimize c.
L� has the following linear constraints: For all f ∈ F ′,

∑

π∈Perm(I)

pf,π = 1, (3)

which ensures that for all parity vectors f , {pf,π}π∈Perm(I) is a probability dis-
tribution on Perm(I), called the state of f .

For all f, g ∈ F ′, all i ∈ I such that f i→ g and all π ∈ Perm(I),

∑

μ∈ML(π,i)

pf,μ ≤
∑

μ∈ML(π◦(MTF(id ,i))−1,1)

pg,μ, (4)

which ensures that for all parity vectors f and g and all items x, it is possible
to go from the state of f to that of g using only free exchanges when a request
to x changes f to g (seeing this takes some effort).

Online and Offline Access to Short Lists 701

For all f, g ∈ F ′, all i ∈ I such that f i→ g and all π1, π2 ∈ Perm(I) such that
π2 can be obtained from π1 by moving a subset of the items before the item i to
just after i without additional interchanges (see [6, Theorem 2]),

∑

π∈Perm(I)

π(i)pf,π + qg,π2◦(MTF(id ,i))−1 − qf,π1 ≤ c(dist(π1, π2) + π2(i)). (5)

The inequalities (5) are best understood by comparing them with the inequal-
ity (2). The term

∑
π∈Perm(I) π(i)pf,π is the expected cost to the online algorithm

of serving a request to τ−1(i) when the parity vector is f and the MRA permuta-
tion is τ , i.e., it corresponds to the term E(oe(r)) in (2). qg,π2◦(MTF(id ,i))−1−qf,π1

is the potential increase when the offline algorithm A changes its list from π1 ◦ τ
to π2 ◦ τ , while the parity vector changes from f to g and the MRA permutation
changes from τ to MTF (τ, τ−1(i)), i.e., it corresponds to the term ΔΦ(r) in (2).
Finally, dist(π1, π2) + π2(i) is the cost to A of changing its list from π1 ◦ τ to
π2 ◦τ and then serving a request to τ−1(i) without further interchanges of items,
i.e., it corresponds to the quantity A(r) in (2).

This concludes the description of the linear program L�. L3 and L4 have the
optimal values 6/5 and 4/3, respectively. Combining this with what was shown
in previous sections, we obtain the following.

Theorem 4. c3 = 6/5 and 5/4− ε < c4 ≤ 4/3 for ε = 2.5515 · 10−5.

7 A Strengthened Lower Bound for General �

In this section we show that the method of Teia [9] can yield the bound c� ≥
3/2− 2/(� + 3), which is slightly stronger than the bound c� ≥ 3/2− 5/(� + 5)
claimed by Teia.

Fix � ∈ IN and let π0 be a permutation of a set of � items. For an integer
r ∈ IN that can be chosen arbitrarily, Teia considers a random request sequence
Σr constructed by the following process that uses a list L, initially ordered as π0:
Move a pointer through L r times. As each item x is encountered, generate either
one or three successive requests to x, choosing each possibility with probability
1/2. If three requests to x are generated, move x to the front of L (after passing
the pointer to the next item). Teia observes that for every request sequence σ
that can be generated by this process, Opt(π0, σ) ≤ r�(� + 5)/2. Here we instead
use that E(Opt(π0, Σr)) ≤ r�(� + 3)/2. To see this, note that by keeping its list
an exact copy of L and moving each item requested three times in a row to the
front of the list during the first access to the item, an offline algorithm can serve
the requests generated during one pass over L at an average expected cost per
item equal to the average position in L of an item at the time just before its
processing, i.e., (� + 1)/2, plus the average number of accesses to an item x after
the first access to x, i.e., 1.

Teia proves that for every deterministic online algorithm A,

E(A(π0, Σr)) ≥ r

(
3�(�− 1)

4
+ 2�

)
−
(
�

2

)
, (6)

702 T. Hagerup

where the term
(
�
2

)
bounds the increase of a potential function. Because a

randomized algorithm can be viewed as a probability distribution over a set
of deterministic algorithms, (6) in fact holds for every randomized online al-
gorithm A, where the expectation is now taken both over the distribution
of Σr and over the random choices made by A. Combining (6) with the
upper bound on E(Opt(π0, Σr)) stated above, one obtains that for c ≥ 1,
E(A(π0, Σr) − c · Opt(π0, Σr)) ≥ r

4 (3�(� − 1) + 8� − 2c�(� + 3)) −
(
�
2

)
. If A

is c-competitive, the left-hand side must remain bounded as r → ∞. This is
possible only if 3�(�− 1) + 8�− 2c�(� + 3) ≤ 0, i.e., if c ≥ 3/2− 2/(� + 3).

Theorem 5. For all � ∈ IN, c� ≥ 3/2− 2/(� + 3).

References

1. Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP al-
gorithm for the list update problem. Inform. Process. Lett. 56, 135–139 (1995)

2. Albers, S., von Stengel, B., Werchner, R.: List update posets, Manuscript (1996)
3. Bentley, J.L., McGeoch, C.C.: Amortized analyses of self-organizing sequential

search heuristics. Comm. Assoc. Comput. Mach. 28, 404–411 (1985)
4. Chrobak, M., Larmore, L.L.: The server problem and on-line games. DIMACS Series

in Disc. Math. and Theoret. Comput. Sci. 7, 11–64 (1992)
5. Irani, S.: Two results on the list update problem. Inform. Process. Lett. 38, 301–306

(1991)
6. Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. Inform.

Process. Lett. 60, 75–80 (1996)
7. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for

the list update problem. Algorithmica 11, 15–32 (1994)
8. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Comm. Assoc. Comput. Mach. 28, 202–208 (1985)
9. Teia, B.: A lower bound for randomized list update algorithms. Inform. Process.

Lett. 47, 5–9 (1993)

Optimal Randomized Comparison Based

Algorithms for Collision

Riko Jacob�

Computer Science Department, Technische Universität München
jacob@in.tum.de

Abstract. We consider the well known problem of finding two identical
elements, called a collision, in a list of n numbers. Here, the (very fast)
comparison based algorithms are randomized and will only report exist-
ing collisions, and do this with (small) probability p, the success probabil-
ity. We find a trade-off between p and the running time t, and show that
this trade-off is optimal up to a constant factor. For worst-case running
time t, the optimal success probability is p = Θ (min{t/n, 1}t/(n log t)).
For expected running time t, the success probability is p = Θ (t/(n log n)).

1 Introduction

We consider the problem of finding two equal elements, called a collision, in a list
of numbers. This is a fundamental problem in computational complexity theory
and among the first decision problems for which non-trivial lower bounds were
known. It is usually formulated as the decision if all elements of a list are different,
and is hence called “element uniqueness” or “element distinctness.” One
way to guarantee that no element is repeated is to provide a linear sequence of
strict inequalities. Actually, in many models of computation where numbers are
treated as atoms, the lower bound of Ω(n logn) for sorting carries over to this
decision problem. The problem has been studied in all kinds of machine models,
for example in the stronger algebraic decision tree model [1], in a general decision
tree setting [2], or on a quantum computer [3,4].

Motivation. The investigation in this paper was triggered by a question in cryp-
tography, namely the precise complexity of computing discrete logarithms in a
cyclic group of roughly n ≈ 2h numbers, where the input can be specified us-
ing O(h) bits. Here, cryptographic primitives are build on the assumption that
exponentiation is a good one-way function, i.e., it is easy to compute x = az

mod n, but it is difficult to invert this function, namely to compute z from x,
the discrete logarithm of x to the base a.

One classical algorithm for the discrete logarithm is the so called baby-step
giant-step algorithm that produces two lists A,B of

√
n elements and determines

the discrete log from a collision between the lists, i.e., elements a ∈ A and b ∈ B
with a = b, a generalization of the collision problem considered here. If we allow
� Work done at ETH Zurich, Institute of Theoretical Computer Science, Switzerland.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 703–714, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

704 R. Jacob

the algorithm to use a hash table and assume that the algebraic operations
have unit cost, this algorithm takes O(

√
n) time, whereas a comparison based

algorithm, where a hash table is not allowed and is replaced by a balanced
search tree, takes O(

√
n logn) time. Now, in the cryptographic setting, of course

lower bounds for the discrete log computation are even more interesting than
upper bounds. Today, no good general lower bounds are known, which led to the
investigation of restricted classes algorithms. One such restriction are abstract
models of computation [5], that treat the group as a black box that allows
only the group operations and a comparison of elements. Now, one can show
a
√
n lower bound to compute the discrete log with constant probability if the

group order n is prime [5], matching the performance of the hash-table based
version of the baby-step giant-step algorithm. Here, we consider the situation
of allowing only comparisons, which makes a hash table impossible. We show
that this strengthens the lower bound by the logarithmic factor the algorithm is
slowed down, and that this remains the case for small success probabilities. This
setting also motivates to consider worst case running times which translate into
the assumption that a code-breaking algorithm can run only for a limited time,
which might be in contrast to its expected running time.

Randomized Algorithms. Here, we consider randomized algorithms (in the Monte-
Carlo sense) with one-sided error. Such an algorithm must announce an existing
collision with probability p, but never claim a collision for an input consisting of
distinct elements. We are interested in how the running time depends on the suc-
cess probability p. More precisely, we consider both the success probability p and
the running time t as functions of n, and are mainly interested in the asymptotic
behavior for large n.

Randomized Input. Intuitively, it is clear that a completely random input will
make it particularly difficult to find a collision, and, because the input is ran-
dom, even a deterministic algorithm has access to randomness. This idea directly
suggests two particular uniform distributions that are discussed in detail in Sec-
tion 1.2. First, there is the uniform distribution q of all inputs with precisely one
collision. This kind of input reveals the success probability of the algorithm. Sec-
ondly, there is the uniform distribution p of all inputs without collision. This is
useful to analyze the worst case running time of the algorithm. We analyze the
asymptotic worst-case and expected running time of deterministic algorithms
achieving success probability p. Using Yao’s Minimax-principle [6,7, p. 35], we
can transfer the obtained lower bound to randomized algorithms.

Output and allowed errors. For a comparison based algorithm, it is actually
equivalent to find a collision or to state the existence of a collision without
making an error. Certainly, if the algorithm needs to show a collision to have
success, it can as well just state that there is a collision. But also if a comparison
based algorithm announces the existence of a collision only if it is actually present
in the input, then it must have compared two identical elements, and hence is
in the position to report this collision.

Optimal Randomized Comparison Based Algorithms for Collision 705

It is also meaningful to consider only the decision problem and to allow the
algorithm to announce a non-existing collision with a certain probability q < p.
For a comparison based algorithm, this means that in some situations where
no comparison showed equality, the algorithm still announces a collision. By
eliminating this behavior one gets an algorithm that announces only existing
collisions and has success probability at least p− q.

New Results. We parametrize the algorithms by a goal running time func-
tion t(n). The deterministic Algorithm 1 achieves in worst-case O(t(n)) time
a success probability pt(n) = min{ t

n , 1}
t

n log t when input is drawn from distri-
bution q. Here, and throughout the paper, log stands for the binary logarithm.
In Section 2.3, this algorithm is randomized, resulting in an algorithm with the
same worst-case performance on arbitrary input. Additionally, we analyze the
above situation for expected running times (instead of worst-case). There we find
that success probability p(n) requires running time tp(n) = Θ(p(n) · n logn), or
put the other way around, that expected running time t(n) allows for success
probability pt(n) = Θ

(
t log t
n logn

)
.

Observe that in both situations, for any positive constant c we have pc·t(n) =
Θ(pt(n)). Vice versa, to change the success probability by a constant factor c,
it is always possible to choose a t′(n) = Θ(t(n)) with pt′ = c · pt. Hence, the
trade-off between running time and success probability can be formulated either
way, and it is meaningful to state that the mentioned algorithm is optimal up
to a constant factor.

On a side note, we also analyze the maximal number of random bits needed
by an algorithm to be Θ(− log p).

As is usual, the lower bounds are valid in a strong, non-uniform model of
computation (comparison trees), whereas the algorithms are quite general and
can be implemented in many uniform models of computation.

1.1 Related Work

The inverse setting, where a randomized comparison based algorithm solves “el-
ement uniqueness” (and not “collision”), has been studied by Snir [8]. There,
the algorithm needs to recognize that all elements are different with probabil-
ity p, but is not allowed to misclassify an input with collision. The result is a
lower bound of λn logn + λ log(p(1− λ)) for all 0 < λ < 1, which yields, for ex-
ample, for p = 1/ logn (with λ = 1/2) an Ω(n logn) lower bound. This shows an
important difference to collision, where this success probability can be achieved
in O(n) time. Grigoriev, Karpinski, Meyer auf der Heide, and Smolensky [9]
show that if the algorithm is allowed to misclassify with probability p < 1/2 in
both directions (two-sided errors), even for algebraic decision trees of constant
degree, there is an Ω(n logn) lower bound.

For the problem “collision”, or “element non-uniqueness” as they call it,
Manber and Tompa [10,11] give a lower bound of Ω(n log n) for comparison based
algorithms that are not allowed to announce a collision if there is none, and need
to announce an existing collision with probability 1/2. This is the special case

706 R. Jacob

of our result with p = 1/2. Similar to our main technical Lemma 3, they bound
the number of linear extensions of a graph, given that at least half of the edges
must be used, an idea going back to [12]. In contrast to the results presented
here, their estimate heavily depends on the success probability being 1/2, and
does not give a lower bound for smaller probabilities like 1/ logn.

Our Lemma 3 is an observation about the structure of the directed acyclic
graph Gc describing the outcomes of comparisons at a (leaf) node c of the com-
parison tree. The observation is that a high success probability can only be
achieved if the number of linear extensions is small. The permutations ending
at c describe linear extensions of Gc, and the success probability of one permu-
tation/linear extension π is given by the number of successor relations of π that
coincide with edges of G. This number is also known as π, the number of steps
in G [13], and often analyzed as the number of jumps n− 1− π.

1.2 Preliminaries

The input to Collisionn consists of a list of n numbers x1, . . . , xn. The answer
is YES if there exist i �= j such that xi = xj , and otherwise NO. The numbers
are assumed to be atomic to the algorithms, and the only operation on numbers
is the comparison x ≤ y. A set of inputs that are indistinguishable by such
comparisons are called an order type, and for Collisionn there is no loss of
generality in assuming that all xi ∈ {1, . . . , n}. An input without collision is
then a permutation π understood as xi = π(i). The variable j with xj = π(j) =
π(i)+1 is called the successor of i. The distribution p is defined to be the uniform
distribution over these n! different inputs.

Choosing uniformly from the inputs with precisely one collision is called the
distribution q. There are two interesting procedures to draw from this distribution.

The collision first procedure starts by choosing uniformly a pair i �= j of
indices. Set xi = xj , and then choose a random ordering (permutation) of the
values of the variables x1, . . . , xj−1, xj+1, . . . , xn. In this way, the (n− 1)!n(n−
1)/2 different order types with precisely one collision are created with equal
probability.

Alternatively, the permutation first procedure chooses a permutation π and
a pivot o ∈ {1, . . . , n − 1} of the collision, both with uniform probability. The
input is created by changing the value o to the value o+1, creating two elements
with value o + 1. More precisely, the input is given by xi = π(i) if π(i) �= o, and
xi = o + 1 = π(i) + 1 if π(i) = o. Consider the permutation π′ that is identical
to π, only the values of o and o + 1 are exchanged. Then the input (π, o) is
indistinguishable from the input (π′, o). Further, these two representations are
the only way to create this order-type. Again, the n!(n − 1)/2 different inputs
are created with equal probability.

We denote the uniform distribution of inputs without collision when the defin-
ing permutation is restricted to belong to S as p|S . With q|S we denote the
restriction of q where in the permutation first procedure π is restricted to the
set S. Note that q|S is not a uniform distribution because inputs can be created
from one or two permutations of S.

Optimal Randomized Comparison Based Algorithms for Collision 707

The focus of our considerations is the number of comparisons performed by
an algorithm. Hence, we model the algorithm as a family of comparison trees
of the following type: For every input size n (number of variables), there is a
comparison tree T , a rooted tree where every internal node c has a left and a
right child and is annotated by a pair (i, j). Every input x = x1, . . . , xn (with
or without collision) defines a path P (x) in T , the next node is given by the
outcome of the comparison, for xi < xj the left child, for xi > xj the right child.
If the comparison yields xi = xj , the path stops at the corresponding node.
Here, we assume that all nodes of the tree are reached for some input. This is a
non-uniform model of computation, the tree for n elements need not be similar
in any way to the trees for other n.

The success probability pT of T is the probability for an input x (with colli-
sion) drawn from distribution q that the last node of P (x) is an internal node,
and hence the collision is indeed detected. More precisely, we define the random
variable S(x) to be 1 if P (x) ends at an internal node, and 0 otherwise, i.e.,
P (x) ends at a leaf of T . For a given probability distribution on the input, we
define the success probability as E[S(x)].

This modeling reflects that we require our algorithms to have found the col-
lision if they answer YES. Indeed, any well defined comparison based algorithm
with this property can be described by a comparison tree T , with the same
success probability and performing not more comparisons than the original al-
gorithm.

By |P (x)| we denote the number of internal nodes on P (x), which is for
randomly chosen x a random variable, representing the number of comparisons
or running time on input x. We are interested in the expected running time
Cq = Eq[|P (x)|] and Cp = Ep[|P (x)|]. We are also interested in the worst-case
running time of T which is the maximal running time (number of comparisons)
for a possible input, which is given by the height of T .

2 The Algorithms

We start with the slightly simpler deterministic algorithms that rely upon ran-
dom input, then we also consider randomized algorithms. The connection be-
tween element uniqueness and sorting is well known for comparison based mod-
els of computation. Not surprisingly, all algorithms presented here are based on
sorting some subset of the input values. We use that the rank k element of a
list can be found in linear time [14], and that sorting k values takes O(k log k)
comparisons.

2.1 Deterministic or Worst-Case Time

Consider the following Algorithm 1 that is designed to run in worst-case O(t(n))
time. For t(n) = n logn time, this algorithm sorts the complete input and hence
finds the collision with probability 1. For t(n) = O(1) the success probability
is O(1

n2), comparable to testing a single edge. Note that for the interesting case
t(n) ≤ n logn we always have k = t(n)

log t(n) .

708 R. Jacob

Algorithm 1: Deterministic collision find
1 Determine r = min{n, t(n)} and k = min{r, t(n)/ log t(n)};
2 Select the k-smallest element xj of R = {x1, . . . , xr};

Determine S := {x ∈ R | x ≤ xj} /* |S| = k */
3 Sort S;

return the collision if two elements of S are equal;

Lemma 1. For a function t that can be computed in O(t(n)) time, Algorithm 1
runs in worst-case time O (t(n)) and computes Collisionn on input drawn from
distribution q with success probability at least p = min

{
t(n)
n , 1

}
t(n)

n log t .

Proof. The selection in Line 2 can be achieved in worst-case O(t(n) time [14].
Sorting k elements can be achieved in O(k log k) = O

(
t

log t log t
log t

)
= O(t)

worst-case time, for example with heap sort.
To compute the success probability of Algorithm 1, consider the “collision

first” procedure to draw an element from distribution q. The probability that
the collision is in the first variables (i < j ≤ r) is r

n
r−1
n−1 . The rank of the

value xi = xj within x1, . . . , xr is uniform between 1 and r − 1, hence the
probability for it to be ≤ k is k

r−1 . Hence, the success probability of Algorithm 1
is r

n
r−1
n−1

k
r−1 > kr

n2 . If t(n) > n logn, we have r = k = n and hence p = 1, as
stated in the lemma. For n ≤ t(n) ≤ n logn we have r = n and hence p = k

n .
Finally, for t(n) < n, we have r = t(n) and hence r

n < 1, leading to p = r
nkn. ��

In Section 3.4 Lemma 8 shows that the trade-off between success probability
and worst-case running time is asymptotically optimal if t(n) < n. Otherwise,
this follows from Section 3.3, Lemma 6 because the worst case running time is
an upper bound on the expected running time.

2.2 Expected Time

In comparison to the worst-case time, it is easier to achieve good expected run-
ning times because on some inputs the algorithm may be slow if it is fast on
others. More precisely, if a fraction p of the inputs is sorted completely, the
success probability is p, and the expected running time is O(pn log n), as long
as the expected running time of a non-successful input is O(1). If p ≤ 1/n2,
comparing x1 and x2 suffices.

To achieve this, we use that in distribution q and p, the outcomes of the
i-th canonical test, comparing x2i with x2i+1 are independent for different i ∈
{1, . . . , 5n/26}, and will be used to emulate random bits. Choose the integer k
such that 2−k ≥ p > 2−k−1. For p > 1/n2, we have k ≤ 2 logn < 5n/26 if n > 7.
The algorithm performs the canonical tests in the natural order. As soon as
one of the tests fails, the algorithm stops. Once test k succeeds, the algorithm
sorts the input and hence finds all collisions. Hence, the success probability is
at least 2−k ≥ p. The expected running time until a failing test is reached

Optimal Randomized Comparison Based Algorithms for Collision 709

is bounded by
∑k

i=1 i2
−i = O(1). Hence, the expected running time is O(1 +

pn logn).
This running time is asymptotically optimal, for distribution p this is shown

in Section 3.3 (Lemma 6), for distribution q in Section 3.5 (Lemma 9).

2.3 Randomized Algorithms

Expected time. Again, if only a good expected running time should be
achieved, the algorithm is very simple if we allow to toss an arbitrarily biased
coin. With probability p, we solve the problem deterministically in O(n log n)
time, otherwise we do nothing and declare that we find no collision. This algo-
rithm has expected success probability p and expected running time O(pn log n)
on any input. If only unbiased binary coins are allowed, p should be overesti-
mated as 2−k, leading to the same asymptotic performance, which is optimal by
Theorem 1.

Worst-case time. Now consider the case where the randomized algorithm
should never exceed a certain running time, and still find a collision with rea-
sonably high probability. The idea here is to use few random bits to “simulate”
distribution q in Algorithm 1.

Let t = t(n) ≤ n logn be the goal for a asymptotic worst-case running time.
We design an algorithm with running time O(t(n)) and high success probability.
For the case t < n/2 the variables are divided equally into k = 5n/t6 classes,
such that the size is 5n/k6 or 	n/k
. Now, choose uniformly at random two
different such classes and call the resulting set of variables R and define r = |R|.
Observe that 	n/k
 ≤ n/k + 1 ≤ n/(n/t− 1) + 1 = t/(1− t/n) + 1 ≤ 2t+ 1, and
hence r = O(t(n)). Divide the set [r] equally into ranges of length at least t/ log t
and at most 2t/ log t. Choose one such range [a, b], determine the rank-a element
of R and the rank-b element, such that another scan over R yields the set S
of elements whose rank is in the range [a, b], and sort this set S. By a similar
calculation as for Algorithm 1, the worst case running time of this algorithm
is O(t(n)).

To have success, the algorithm needs to randomly choose the two classes where
the variables of the collision are located, and it must randomly choose the rank
of this collision within the set R.

For the case t < n, there are k ≤ n/t classes, and at most log t ranges, such
that this success probability is at least p = (t/n)2(1/ log t). Otherwise, only
the choice of the range is random, the range with the collision is chosen with
probability at least t

log t
1
n .

We summarize the above discussion in the following Lemma.

Lemma 2. Let t be a function that can be computed in O(t(n)) time, then
there is a randomized algorithm that runs in worst-case time O (t(n)) and com-
putes Collisionn with success probability at least p = min

{
t
n , 1

}
t

n log t .

The performance of the described algorithm is asymptotically optimal as dis-
cussed in Section 3.

710 R. Jacob

3 The Lower Bound

The purpose of this section is to show that the four algorithms introduced in
Section 2 achieve an asymptotically optimal trade-off between running time and
success probability, for all functions t.

By Yao’s minimax principle, this task reduces to showing lower bounds for
deterministic algorithms working on random input, i.e., the two algorithms of
Section 2.1 and Section 2.2. It then follows that also the randomized algorithms
cannot be faster. For the sake of completeness, we summarize the results of this
section (in particular Lemma 8) in the following theorem. It also states a lower
bound on the amount of randomness required.

Theorem 1. Assume a randomized algorithm A solves Collisionn for all in-
puts in time t and with positive success probability. Then, with r = min{t, n}
and p ≤ pt = 8r2

(n−1)2 log(2t) , the success probability of A is at most p and there
exists an input where it uses at least − log pt random bits.

At the heart of the lower bound is the consideration about a single leaf of the
comparison tree that relates the fraction of the input ending at this leaf to
the success probability induced by this leaf. This basic trade-off is formulated
between success for input from q versus running time (fraction of input reaching
the leaf) of p, which is the worst-case running time of the tree. Transforming
this into bounds on the expected running time for q, and taking into account
that sublinear algorithms cannot access all the variables, requires some extra
work.

3.1 High-Probability DAGs

For the purposes of analyzing T , we annotate every node c of T by the directed
graph Gc that reflects the already performed comparisons. The vertices of G′

c

are the variables, and there is a directed arc from xi to xj if the variables were
compared, and xi < xj . By this definition, G′

c is a directed acyclic graph. Since
the order relation is transitive, and because we are interested in single collisions
we consider the irreducible core Gc of G′

c, i.e., the graph with the fewest edges
and the same transitive closure as G′

c.
This leads to an alternative way of computing the success probability of T

following the “permutation first” procedure to draw an input with collision.
Choose uniformly a permutation π. The corresponding input vector defines a
path to a leaf c of T , and π can be understood as a linear extension of Gc.
Actually, the node c is the only leaf of T with this property. Now, uniformly
choose the pivot o ∈ {1, . . . , n − 1} (identifying the value o and o + 1). This
collision is detected if and only if there is an arc between the vertex i with
π(i) = o of Gc and its successor in π, which is called the success probability
of the permutation π in T , and hence in Gc.

Define the success probability pc of Gc by the probability that a uniformly
chosen linear extension of Gc and a uniformly chosen collision is detected by Gc.
Let uc be the number of linear extensions of Gc, and define fc = u/n!. Then,

Optimal Randomized Comparison Based Algorithms for Collision 711

the probability of reaching (ending at) c with a uniformly chosen permutation
is fc, and we can express the success probability of T as the weighted sums of
the success probabilities of the leaves:

pT =
∑

c is leaf of T
fc · pc .

The following information theoretic consideration gives a precise relation be-
tween the success probability pc and the number of linear extensions fc.

Lemma 3. Let G = (V,E) be a directed acyclic graph with n vertices, V =
{1, . . . , n}. Then, the number of linear extensions of G with at least k arcs in G
is at most (

n

k

)
· n!
k!

Proof. Any linear extension with at least k arcs in G can be described by the
set A of additional arcs that need to be inserted into G to yield a directed
path (thinking of G as an order-relation, the additional comparisons that are
necessary to make all elements comparable). Since at least k arcs of G are used
we have |A| ≤ n− k− 1 < n− k. Define TA ⊆ V to be the starting points of the
arcs in A. Now, the arcs form an injective mapping γ : TA → {1, . . . , n}. There
are at most

(
n

n−k

)
=
(
n
k

)
possibilities for TA, and at most n!

k! possibilities for γ.
This leads to the claimed bound. ��

By Stirling’s formula, we get the following lemma.

Lemma 4. Given a graph G on n vertices and a set S of permutations on [n].
Assume that the success probability of G when drawing uniformly permutations
from S that are linear extensions of G and uniformly the collision is at least p ≥
n−

1
6 . Then the number u of permutations in S that are linear extensions of G

is bounded by − log u
|S| ≥

pn
6 logn− 3pn− logn

6 − 1 + log |S|
n! .

Proof omitted due to space limitations.

3.2 Easy Low-Probability Bound

If an algorithm runs in sublinear time, it cannot access all the input elements,
leading to a fairly small success probability. We make this precise as a mini-
mum number of accessed variables that is required to achieve a certain success
probability.

Lemma 5. Assume a leaf node c of a decision tree T for Collisionn has success
probability pc for q. Then the depth dc of c is at least dc ≥ n−1

2

√
pc. For pc ≤ n−

1
6

this implies dc ≥ pcn logn
6 − 3pcn− logn

6 − 1

Proof omitted due to space limitations.

712 R. Jacob

3.3 Expected Running Time Without Collisions

We want to show a lower bound of Ω(pn logn) for the expected running time.
As a first step, we consider the running time implied by input without collision
(drawn from p). This certainly implies the corresponding lower bound on the
worst-case running time, the depth of the tree.

Lemma 6. Let T be a comparison tree solving Collisionn, and S a set of per-
mutations. Assume an input drawn from q|S (uniform permutation in S and
uniform collision) has success probability at least p and expected running time D
for input from p|S, i.e., a uniformly chosen permutation from S without colli-
sion. Then D ≥ pn

6 logn− 3pn− logn
6 − 1 + log |S|

n!

Proof. Every leaf c of T has success probability pc, a depth dc, and a fraction fc
of the permutations from S that end at c. Now, by definition, D =

∑
fc · dc,

and p =
∑

fc · pc.
We define two classes of nodes, the high-probability nodes H = {c | pc >

n−
1
6 }, and the remaining nodes L. Define further for these two classes of per-

mutations in S the split fH =
∑

c∈H fc, and similarly fL =
∑

c∈L fc, such
that fH + fL = 1. The restricted probabilities pH and pL, and the restricted
expected running times DL and DH are defined by fH · pH =

∑
c∈H fc · pc,

fH ·DH =
∑

c∈H fc · dc, fL · pL =
∑

c∈L fc · pc, fL ·DL =
∑

c∈L fc · dc. These
values satisfy p = fH · pH + fL · pL, and D = fH ·DH + fL ·DL.

Define for c ∈ H the relative reach-probability by f ′c = fc/fH . Note that
the f ′c sum to 1, i.e., they form a probability distribution. Define ac = 2−dc ,
AH =

∑
c∈H ac, such that the values a′c = ac/aH sum to 1 and form a probability

distribution.
With this, we get

DH = −
∑

c∈H

f ′c log ac = − log aH −
∑

c∈H

f ′c log a′c (1)

≥ − log aH −
∑

c∈H

f ′c log f ′c (2)

= − log fH − log aH −
∑

c∈H

f ′c log fc (3)

≥ log−fH +
∑

c∈H

f ′c

(
pcn logn

6
− 3pcn−

logn
6

− 1 + log
|S|
n!

)
(4)

= − log fH +
pn

6
logn− 3pn− logn

6
− 1 + log

|S|
n!

. (5)

Where the inequality (2) is Gibbs’ inequality and the inequality (4) is the
statement of Lemma 4, together with the fact that − log aH ≥ 0. Now, consider
a node c ∈ L of T , i.e., with low probability pc ≤ n−

1
6 . By Lemma 5 we have the

depth-bound dc ≥ pcn
6 logn−3pn− logn

6 −1. This inequality yields DL =
∑

c∈L f ′c·
dc ≥

∑
c∈L f ′c ·

(
pcn
6 logn− 3pcn− log n

6 − 1
)

pLn
6 logn− 3pLn− log n

6 − 1. Now,

Optimal Randomized Comparison Based Algorithms for Collision 713

the lemma follows by D = fH ·DH +fL ·DL ≥ (fHpH +fLpL)
(
n
6 (log n− 18)

)
−

logn
6 − 1 + fH log fH |S|

n! ≥ pn
6 logn− 3pn− logn

6 − 1 + log |S|
n! . ��

3.4 Strong Low Probability Bound for Worst-Case Time

Certainly, the lower bound on the expected running time is also lower bound
on the worst-case running time. Still, for sub-linear time algorithms the success
probability is significantly lowered by the impossibility to touch all vertices.

Lemma 7. Let T be a comparison tree for Collisionn with maximal depth r <
n/2, and that input is drawn from p or q. Then there is a comparison tree T ′

with the same success probability, expected and worst-case running time as T ,
and T ′ uses only the variables x1, . . . , x2r.

Lemma 8. Any comparison tree T with worst-case running time t ≤ n has
success probability p ≤ pt = 16t2

(n−1)2 log(2t) when input is drawn from q.

Proof. With r = 2t, by Lemma 7 w.l.o.g. the comparison tree T solves Collisionr

in worst-case time t and success probability q. From Lemma 6 follows t ≥
qr
6 log r − 3pr − log r

6 − 1, which yields q ≤ 6(r/2 + log r
6 + 1)/r(log r − 18) <

(3r+log r+1)/r log r < 4/ log r = 4/ log(2t). Now, by the argument of Lemma 5
p ≤ r(r−1)

n(n−1)q ≤
16t2

(n−1)2 log(2t) . ��

3.5 Expected Time for Random Input with Collision

Finally, we can also conclude an asymptotic lower bound of Ω(pn logn) for the
expected running time when input is drawn according to q. By Yao’s Minimax
Principle, the same lower bound holds for the expected running time of random-
ized algorithms on input with collision.

Lemma 9. Let T be a linear decision tree solving Collisionn. Assume that
the success probability for input drawn according to distribution q is p, and the
expected running time is Cq. Then, Cq ≥ pn

48 (logn− 18)− logn
12 − 4.

Proof. Let S be the set of permutations that have success probability > 1/2.
With fS := |S|/n! we can express running time and probability as C = fSCS +
(1 − fS)CS̄ , where CS is the expected running time for permutations in S, and
CS̄ the expected running time for permutations not in S. Similarly, we can write
the success probability as p = fSpS + (1− fS)pS̄ .

For permutations not in S, half the contribution to the average running
times stems from undetected collision. Hence, it can be estimated using Cp,

by Lemma 6, we have CS̄ ≥
(

npS̄

6 (logn− 18)− logn
6 − 1 + log(1 − fS)

)
/2.

By a Markov inequality, at least half of the inputs in q|S stop at times
before 2CS . Cut T at depth (time) 2CS , leading to T ′ with success probabil-
ity p′S ≥ 1/4 ≥ pS/4. Now, because the expected running time of T ′ is less than
the worst-case running time 2CS of T ′, Lemma 6 yields 2CS ≥ pSn

4·6 (logn − 18)

714 R. Jacob

− logn
6 − 1 + log fS . It remains to take the weighted sums of the bounds on 2CS

and 2CS̄ , yielding 2C ≥ pn
4·6 (logn − 18) − log n

6 − 2. Here, the last term stems
from fS log fS + (1− fS) log(fS − 1) > −1. ��

Acknowledgment

I would like to thank Ueli Maurer and Dominik Raub for introducing me to
the problem and for several fruitful discussions, and an anonymous referee for
suggestions improving the introduction.

References

1. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th Annual
ACM Symposium on Theory of Computing, pp. 80–86. ACM Press, New York
(1983)

2. Boppana, R.B.: The decision-tree complexity of element distinctness. Inf. Process.
Lett. 52, 329–331 (1994)

3. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf,
R.: Quantum algorithms for element distinctness. SIAM J. Comput. 34, 1324–1330
(2005)

4. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51, 595–605 (2004)

5. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005)

6. Yao, A.C.C.: Probabilistic computations: towards a unified measure of complexity.
In: Proc. 18th FOCS, IEEE 1977, pp. 222–227. IEEE Computer Society Press, Los
Alamitos (1977)

7. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

8. Snir, M.: Lower bounds on probabilistic linear decision trees. Theoret. Comput.
Sci. 38, 69–82 (1985)

9. Grigoriev, D., Karpinski, M., Meyer auf der Heide, F.: A lower bound for random-
ized algebraic decision trees. Comput. Complexity 6, 357–375 (1996/1997)

10. Manber, U., Tompa, M.: Probabilistic, nondeterministic, and alternating decision
trees (preliminary version). In: STOC ’82: Proceedings of the fourteenth annual
ACM symposium on Theory of computing, New York, NY, USA, pp. 234–244.
ACM Press, New York (1982)

11. Manber, U., Tompa, M.: The complexity of problems on probabilistic, nondeter-
ministic, and alternating decision trees. J. Assoc. Comput. Mach. 32, 720–732
(1985)

12. Manber, U., Tompa, M.: The effect of number of Hamiltonian paths on the com-
plexity of a vertex-coloring problem. SIAM J. Comput. 13, 109–115 (1984)

13. Chein, M., Habib, M.: The jump number of DAGs and posets: An introduction.
Annals of Discrete Mathematics 9, 189–194 (1980)

14. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.
Journal of Computer and System Sciences 7, 448–461 (1973)

Randomized and Approximation Algorithms

for Blue-Red Matching

Christos Nomikos1, Aris Pagourtzis2,�, and Stathis Zachos2,3,�

1 Department of Computer Science, University of Ioannina
cnomikos@cs.uoi.gr

2 School of Electrical and Computer Engineering,
National Technical University of Athens

{pagour,zachos}@cs.ntua.gr
3 CIS Department, Brooklyn College, Cuny

Abstract. We introduce the Blue-Red Matching problem: given a
graph with red and blue edges, and a bound w, find a maximum match-
ing consisting of at most w edges of each color. We show that Blue-Red

Matching is at least as hard as the problem Exact Matching (Pa-
padimitriou and Yannakakis, 1982), for which it is still open whether it
can be solved in polynomial time. We present an RNC algorithm for this
problem as well as two fast approximation algorithms. We finally show
the applicability of our results to the problem of routing and assigning
wavelengths to a maximum number of requests in all-optical rings.

1 Introduction

We define and study a matching problem on graphs with blue and red edges;
we call the new problem Blue-Red Matching (BRM for short). The goal is
to find a maximum matching under the constraint that the number of edges of
each color in the matching does not exceed a given bound w.

We are motivated for this study by a problem that arises in all-optical
networks, namely DirMaxRWA [12]. In particular, it was implicit in [12]
that solving BRM exactly would imply an improved approximation ratio for
DirMaxRWA in rings. Moreover, BRM can capture several interesting scenar-
ios such as the following: Consider a team of friends that would like to play
chess or backgammon. Some pairs prefer to play chess, while other pairs prefer
backgammon. There could even exist pairs that would like to play either game.
Now, if the number of available boards for each game is limited we need to solve
BRM if we want to maximize the number of pairs that will manage to play the
game of their preference.

In this work we first show that BRM is at least as hard as Exact Matching,
a problem defined by Papadimitriou and Yannakakis [13], for which it is still
an open question whether it can be solved in polynomial time. Therefore, an
� Research supported in part by the General Secretariat of Research and Technology

of Greece, through ΠENEΔ 2003 program, grant nr. EΔ285.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 715–725, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

716 C. Nomikos, A. Pagourtzis, and S. Zachos

exact polynomial time algorithm for BRM would answer that question in the
affirmative.

Our main result is that BRM can be solved exactly by a polynomial time
randomized (in fact RNC2) algorithm, which uses ideas from [10]. Since the
sequential version of the randomized algorithm is quite slow, we also present
two approximation algorithms for BRM; the first is a fast and simple greedy
algorithm that achieves a 1

2 -approximation ratio, the second is a more involved
algorithm that achieves an asymptotic 3

4 -approximation ratio.
We finally demonstrate the relation between BRM and DirMaxRWA in

rings, by showing that an algorithm for BRM with (asymptotic) approximation
ratio a results in an algorithm for DirMaxRWA in rings with (asymptotic)
approximation ratio a+1

a+2 . Combining all the above results we obtain as a corol-
lary that DirMaxRWA in rings admits a randomized approximation algorithm
with ratio 2

3 and a (much faster) deterministic approximation algorithm with
asymptotic ratio 7

11 .
As far as we know BRM has not been studied before. As mentioned earlier, a

related problem is Exact Matching [13] which admits an RNC algorithm due
to Mulmuley, Vazirani and Vazirani [10]. Polynomial time algorithms for Exact

Matching are known only for special classes of graphs, e.g. complete graphs [7]
and complete bipartite graphs [7][17].

2 Problem Definition and Hardness

Let G = (V,Eblue ∪ Ered) be a graph in which each edge is colored either blue
or red; Eblue is the set of blue edges and Ered the set of red edges. A matching
M in G is called w-blue-red matching if M ∩Eblue ≤ w and M ∩Ered ≤ w, that
is, if it contains at most w edges of each color.

The notion of w-blue-red matching can be extended for multigraphs that
may contain edges of both colors between two vertices. It is easy to see that
in fact we do not have to use multigraphs; it suffices to specify a third set of
initially uncolored (white) edges as follows. Let G = (V,Eblue ∪ Ered ∪ Ewhite)
be a graph in which Eblue, Ered, and Ewhite are sets of blue, red, and white
edges respectively. A matching M in G is called w-blue-red matching if there
exists a partition {Ewb, Ewr} of Ewhite such that M ∩ (Eblue ∪ Ewb) ≤ w and
M ∩ (Ered ∪ Ewr) ≤ w. In other words M is a w-blue-red matching if we can
choose a color for each white edge in G so that M contains at most w edges of
each color.

We define BRM to be the following optimization problem: given a graph
G = (V,Eblue∪Ered∪Ewhite) and a positive integer w, find a w-blue-red matching
of maximum cardinality. In the decision version of this problem, denoted by
BRM(D), a bound B is also given and the question is whether G has a w-blue-
red matching of cardinality at least B.

It turns out that BRM(D) is closely related to a well known problem, namely
Exact Matching, defined in [13]. In this problem, the input is a graph G =
(V,E), a set of red edges E′ ⊆ E and a positive integer k and the question is

Randomized and Approximation Algorithms for Blue-Red Matching 717

whether G contains a perfect matching involving exactly k edges in E′. The next
theorem shows that BRM(D) is at least as hard as Exact Matching.

Theorem 1. There is a logarithmic space reduction from Exact Matching to
BRM(D).

Proof. Consider a graph G = (V,E), a set of red edges E′ ⊆ E and a positive
integer k.

If |V | is an odd number or k > |V |
2 , then G does not contain a perfect matching

involving exactly k edges in E′. In that case we construct a ‘no’ instance of
BRM(D) (for example, any instance with 2w < B).

Otherwise, let w = max(k, |V |2 − k) and r = w − min(k, |V |2 − k). Graph G∗

is obtained from G by adding 2r new vertices u1, . . . , ur, v1, . . . , vr and r edges
{u1, v1}, . . ., {ur, vr}. The additional edges are colored blue if k > |V |

2 − k,
otherwise they are colored red. Furthermore, edges in E − E′ are colored blue
and edges in E′ remain red in G∗. Let B = 2w.

The above construction requires logarithmic space. It is not hard to check
that G contains a perfect matching involving exactly k edges in E′ if and only
if G∗ contains a w-blue-red matching of cardinality B. ��

The above theorem indicates that it is probably not a trivial task to find a
polynomial time (deterministic) algorithm for BRM, since this would imply
polynomial time solvability for Exact Matching as well. Therefore, we will
restrict our attention to approximation and randomized algorithms.

3 Approximation Algorithms for Blue-Red Matching

We first observe that there exists a simple approximation algorithm for BRM,
which requires time linear in the number of edges. The algorithm, which we call
Greedy-BRM, constructs a w-blue-red matching M in a greedy manner: edges
are examined in an arbitrary order; an edge e is added to M if both endpoints
of e are unmatched and M contains fewer than w edges of the same color as e
(or M contains fewer than w edges of any color if e is white). It is not hard to
prove the following:

Theorem 2. Algorithm Greedy-BRM returns a solution with at least 1
2 · μOPT

edges, where μOPT is the cardinality of an optimal solution.

In the remaining of this section we present an approximation algorithm for BRM,
which achieves asymptotic approximation ratio 3

4 .
The algorithm first computes a maximum cardinality matching M (Step 1).

In Step 2, a color is assigned to each white edge of the graph. If after Step 2 M
contains more than w edges of one color and fewer than w edges of the other
color then Step 3 is executed in order to produce a more balanced matching.
Finally, Step 4 eliminates superfluous edges of any of the two colors.

718 C. Nomikos, A. Pagourtzis, and S. Zachos

Algorithm Balance-BRM

Input: graph G = (V, Eblue ∪Ered ∪Ewhite), integer w.
Output: a w-blue-red matching of G.

1. find a maximum matching M in G
2. for every white edge e do

color e with the color which is currently less used in M , breaking ties arbitrarily
let E′

red, E
′
blue be the sets of red and blue edges after coloring the white edges

3. if M contains > w edges of one color and < w edges of the other color then
(Assume w.l.o.g. that the majority color in M is blue—the other case is symmetric)
(a) find a maximum matching Mred in graph Gred = (V, E′

red)
(b) let G′ be the graph resulting by superimposing M and Mred

(c) let S be the set of all connected components in G, in which the number of
edges that belong to Mred is greater than the number of red edges that belong
to M

(d) while M contains more than w + 1 blue edges and fewer than w red edges
and S is not empty do
(i) choose (arbitrarily) a connected component F in S. Let bM , bF be the

number of blue edges in M , F respectively
(ii) if bM − w < bF then pick a chain F ′ of edges in F containing exactly

bM − w blue edges, such that F ′ begins and ends with a blue edge
else let F ′ = F

(iii) delete from M all edges that belong to F ′; add to M all edges in F ′ that
belong to Mred

(iv) delete F from S

4. if M contains more than w blue (red) edges then
choose arbitrarily w of them and eliminate the rest

5. return M

We will next prove that algorithm Balance-BRM achieves an asymptotic 3
4 -

approximation ratio. Let us first note that if after the first two steps there are
either at most w edges of each color in matching M or at least w edges of each
color in M , then M (after removing surplus edges, in the latter case, in Step 4)
is an optimal solution. Therefore, it remains to examine the case in which there
are more than w edges of one color and fewer than w edges of the other after
Step 2. W.l.o.g. we assume that the majority color is blue. We will first give two
lemmata concerning Step 3.

Each substitution in Step 3 increases the number of red edges in M . However,
it may decrease the number of blue edges. In the extreme case one red edge
replaces two blue edges. Therefore, we have:

Lemma 1. If Step 3 of algorithm Balance-BRM decreases the number of blue
edges by δ, then it increases the number of red edges by at least δ/2.

If M contains more than w + 1 blue edges, then Step 3 can always perform a
substitution, unless the number of red edges has reached its maximum possible
value. Therefore we have:

Randomized and Approximation Algorithms for Blue-Red Matching 719

Lemma 2. If after Step 3, M contains more than w + 1 blue edges, then algo-
rithm Balance-BRM returns an optimal solution.

We are now ready to state the main theorem of this section.

Theorem 3. Algorithm Balance-BRM returns a solution of cardinality at least
3
4μOPT − 1

2 , where μOPT is the cardinality of an optimal solution.

Proof. We prove the claim for the case in which the number of blue edges is
greater than the number of red edges. The other case is symmetric.

Let μSOL be the number of edges in the solution returned by Balance-BRM,
μr, μb be the number of blue and red edges respectively contained in M after
Step 2, and μred be the size of Mred. For convenience, let us also define z =
min(μred, w, μb + μr − w).

All red edges in an optimal matching belong to Ered ∪ Ewhite which is equal
to E′

red in the case in which blue is the majority color. Therefore μred is an
upper bound for the number of red edges in an optimal matching, which implies
μOPT ≤ w+μred. Since μb +μr is the size of the maximum cardinality matching
M , it also holds μOPT ≤ μb + μr = w + (μb + μr − w). Moreover, by definition
μOPT ≤ 2w. Combining the above inequalities we obtain:

μOPT ≤ w + z (1)

Lemma 2 implies that in any non-optimal solution, M contains at most w+ 1
blue edges after Step 3. Hence, in Step 3 the number of blue edges decreases by
at least μb −w− 1. By Lemma 1, the number of additional red edges is at least
(μb−w−1)

2 . Since after Step 3 the number of blue edges in M is at least w, we get
μSOL ≥ w + μr + (μb−w−1)

2 . Using the fact that, by definition, z ≤ μb + μr −w,
it turns out that:

μSOL ≥ w +
μb + μr − w

2
+

μr − 1
2

≥ w +
z

2
− 1

2
+

μr

2
≥ w +

z

2
− 1

2
(2)

From (2) and the fact that, by definition, z ≤ w we obtain:

μSOL ≥
3z
2
− 1

2
(3)

From (1) and (2) we get that:

μOPT ≤ μSOL +
z

2
+

1
2

(4)

Finally, from (3) and (4) it follows that μOPT ≤ μSOL + 1
3 (μSOL + 1

2) + 1
2 =

4
3 (μSOL + 1

2), which is equivalent to μSOL ≥ 3
4μOPT − 1

2 . ��

It can be shown that the above asymptotic approximation ratio is tight. The
complexity of the algorithm is O(n2.5): Steps 1 and 3 require O(n2.5) time to
construct M and Mred and all the remaining tasks require time that is linear in
the number of edges, which is at most O(n2).

720 C. Nomikos, A. Pagourtzis, and S. Zachos

4 A Randomized Algorithm for Blue-Red Matching

In this section we present a randomized polynomial time algorithm, called
Random-BRM that finds an optimal solution for BRM with high probability.
This algorithm makes use of some ideas proposed in [10].

Algorithm Random-BRM operates as follows: First, it augments G to a com-
plete graph G∗ by adding edges of a new color (say black). Then it assigns a
random weight to each edge of G∗ and constructs a variation of the Tutte ma-
trix of G∗, in which each indeterminate is replaced by a constant value or by
a monomial, depending on the weight and the color of the corresponding edge.
In particular the indeterminate that corresponds to a blue (red) edge eij of
weight wij is replaced by the monomial x2wij (resp. y2wij). Then, the algorithm
computes the Pfaffian of this matrix, which in this case is a polynomial in the
variables x, y. Finally, it uses the coefficients of this polynomial in order to find
a specific matching in G∗, from which it obtains an optimal solution for BRM.

The detailed algorithm is given at the end of the section; its correctness is
based on a series of lemmata which are stated below, together with some neces-
sary definitions.

Consider a graph G = (V,E), where V = {v1, v2, . . . , vn} and E = Eblue ∪
Ered ∪ Ewhite, and an positive integer w. Without loss of generality we may
assume that n is even (otherwise an isolated vertex can be added to G). Let G∗

be the complete graph with set of vertices V . We denote the edge {vi, vj} by eij .
We assume that edges not in E are colored black, i.e. G∗ = (V,E ∪ Eblack). A
perfect matching of G∗ with exactly p blue and q red edges is called (p, q)-perfect
matching. We denote by M (resp. Mpq) the set of all perfect matchings (resp.
(p, q)-perfect matchings) of G∗.

Perfect matchings in G∗ can be used in order to obtain w-blue-red matchings
in G. For fixed w, let us define a function solw(p, q, t) = min(2w,min(w, p) +
min(w, q) + t). The lemma below explains the use of function solw:

Lemma 3. Let M be a (p, q)-perfect matching of G∗ with t white edges. Then
there exists a w-blue-red matching Mw ⊆M of G of cardinality solw(p, q, t).

Proof. We can construct Mw as follows: we first select arbitrarily min(w, p) blue
edges and min(w, q) red edges from M and add them to Mw; then we repeatedly
select a white edge from M , color it with the color which is currently less used
by edges in Mw, and add it to Mw, until the cardinality of Mw becomes 2w or
we run out of white edges. In the latter case Mw = min(w, p)+min(w, q)+ t. ��

Suppose that a number sij is selected at random from {1, 2, . . . , n4}, for each
(i, j), 1 ≤ i < j ≤ n, and define the weight wij of eij as follows:

wij =
{
sij if eij ∈ E
n5 + sij if eij ∈ Eblack

The weight of a perfect matching M is WM =
∑

eij∈M wij . We denote by Wpq

the minimum weight of a matching among all matchings in Mpq. The number of

Randomized and Approximation Algorithms for Blue-Red Matching 721

white edges in a (p, q)-perfect matching with weight Wpq can be easily computed,
using the next lemma:

Lemma 4. Let p, q be integers, with 0 ≤ p, q ≤ n
2 and let Mpq be a minimum

weight (p, q)-perfect matching of G∗. Then the number of white edges in Mpq is
n
2 − p− q − 5Wpq

n5 6.

The following lemma can be used to compute the number of edges in an optimal
w-blue-red matching:

Lemma 5. The number of edges in an optimal w-blue-red matching of graph G
is

C = max
(p,q):Mpq
=∅

solw(p, q,
n

2
− p− q − 5Wpq

n5
6).

The Tutte matrix A of G∗ is defined as follows:1

aij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = j
2wij if i < j and eij ∈ Ewhite ∪ Eblack

x2wij if i < j and eij ∈ Eblue

y2wij if i < j and eij ∈ Ered

−aji if i > j

The canonical permutation for a perfect matching M ∈ M, denoted by πM ,
is the unique permutation of {1, 2, . . . , n} that satisfies the following properties:

– {vπM (2i−1), vπM (2i)} ∈M , for every i, 1 ≤ i ≤ n
2

– πM (2i− 1) < πM (2i), for every i, 1 ≤ i ≤ n
2

– πM (2i− 1) < πM (2i + 1), for every i, 1 ≤ i ≤ n
2 − 1

For every matching M , let sign(πM) = (−1)|{(i,j): i<j, πM (i)>πM (j)}| and
value(πM) =

∏n/2
i=1 aπM (2i−1),πM (2i) .

The Pfaffian of A is defined as follows: PF(A) =
∑

M∈M sign(πM) ·
value(πM). The Pfaffian of A is a polynomial of the form: PF(A) =∑n/2

p=0

∑n/2
q=0 cpqx

pyq and it can be computed by interpolation (see [6]), using
an algorithm that computes arithmetic Pfaffians [4,8] as a subroutine.

The term xpyq of PF(A) corresponds to the (p, q)-perfect matchings of G∗.
Therefore, if cpq is nonzero, then a (p, q)-perfect matching exists in G∗. The
converse does not necessarily hold: it is possible that the coefficient of cpq is
zero although G∗ contains (p, q)-perfect matchings, in the case where the terms
corresponding to these matchings are mutually cancelled. The following lemma
gives a sufficient condition so that the coefficient of cpq is nonzero.

Lemma 6. Let p, q be integers, with 0 ≤ p, q ≤ n
2 and suppose that there exists a

unique minimum weight (p, q)-perfect matching Mpq of G∗. Then the coefficient
cpq of PF(A) is nonzero. Furthermore, Wpq is the maximum power of 2 that
divides cpq.
1 Strictly speaking, A is a special form of the Tutte matrix of G∗, where each indeter-

minate has been replaced either by a specific value or by an indeterminate multiplied
by a specific value.

722 C. Nomikos, A. Pagourtzis, and S. Zachos

Proof. We have: cpq = sign(πMpq)·2Wpq +
∑

M∈Mpq−{Mpq} sign(πM)·2WM Since
Mpq is a unique minimum weight (p, q)-perfect matching, Wpq < WM for every
M ∈Mpq−{Mpq}. Therefore cpq mod 2Wpq = 0 and cpq mod 2Wpq+1 = 1, which
imply that cpq �= 0 and that W is the maximum power 2 that divides cpq. ��

For every edge eij of G∗ we define

Zij =
∑

M∈M:eij∈M

sign(πM) · value(πM)

(that is, Zij is the part of PF(A) that involves eij). The following lemma shows
how Zij can be computed up to sign.

Lemma 7. For every edge eij of G∗, Zij = σ · aij · PF(Aij) where σ ∈ {−1, 1}
and Aij is the matrix obtained from A by removing the i-th and j-th row and
the the i-th and j-th column.

If G∗ has a unique minimum weight (p, q)-perfect matching Mpq, we can decide
whether an edge belongs to Mpq, using the following lemma:

Lemma 8. Suppose that G∗ has a unique minimum weight (p, q)-perfect match-
ing Mpq. Let c be the coefficient of xpyq in Zij. Then eij ∈ Mpq if and only if
2Wpq+1 does not divide c.

In order to bound from below the probability that the algorithm returns an
optimal solution, we make use of the following strong version of the Isolating
Lemma:

Lemma 9. (Isolating Lemma [10]) Let B = {b1, b2, . . . , bk} be a set of
elements, let S = {S1, S2, . . . , S�} be a collection of subsets of B and let
a1, a2, . . . , a� be integers. If we choose integer weights w1, w2, . . . wk for the ele-
ments of B at random from the set {1, 2, . . . ,m}, and define the weight of set
Sj to be aj +

∑
bi∈Sj

wi then the probability that the minimum weight subset in
S is not unique is at most k

m .

Theorem 4. Algorithm Random-BRM returns an optimal solution with proba-
bility at least 1

2 .

Proof. If there exists a unique minimum weight element Mpq in every non-empty
set Mpq, 0 ≤ p, q ≤ n

2 then it follows from Lemmata 3, 5, 6, 7 and 8 that the
above algorithm returns an optimal w-blue-red matching.

The probability that Mpq contains at least two minimum weight elements for
fixed values p and q is at most 1

2n2 by the Isolating Lemma. Thus, the probability
that there exist values p, q such that Mpq contains at least two minimum weight
elements is at most (n

2 + 1)2 · 1
2n2 ≤ 1

2 . Therefore the algorithm returns a correct
solution with probability at least 1

2 . ��

Randomized and Approximation Algorithms for Blue-Red Matching 723

Algorithm Random-BRM

Input: graph G = (V, Eblue ∪ Ered ∪ Ewhite) with even number of vertices n, positive
integer w.
Output: maximum w-blue-red matching (with probability ≥ 1

2).

1. augment G to a complete graph G∗ by adding a set Eblack of black edges
2. for every eij ∈ G∗ do

– choose at random a number sij from {1, 2, . . . , n4}
– if eij ∈ Eblack then wij := n5 + sij

else wij := sij

3. construct the Tutte matrix A of G∗

4. compute PF(A); let cpq be the coefficient of xpyq in in PF(A), 0 ≤ p, q,≤ n
2

5. for every (p, q) ∈ {0, 1, . . . n
2 }

2 do
– if cpq �= 0 then let Wpq be the maximum power of 2 that divides cpq

else Wpq := ∞
find (p, q) ∈ {0, 1, . . . n

2 }
2 such that solw(p, q, n

2 − p− q − �Wpq

n5 �) is maximum
6. Mpq := ∅

for every eij ∈ G∗ do
– compute |Zij | := |aij · PF(Aij)|
– let c be the coefficient of xpyq in |Zij |
– if c mod 2Wpq+1 �= 0 then Mpq := Mpq ∪ {eij}

7. compute a w-blue-red matching M from Mpq , by a greedy coloring of white edges
8. return M

Complexity. Sequentially, the algorithm requires O(n7) time, since the compu-
tation of the symbolic Pfaffian requires O(n5) time, using the algorithm in [4]
which computes arithmetic Pfaffians in O(n3) time and Step 6 requires the com-
putation of O(n2) minor Pfaffians. However all steps can be parallelized resulting
in a RNC algorithm (in the parallel version, the algorithm from [8] is used to
compute arithmetic Pfaffians). In fact, it can be shown by careful analysis that
Random-BRM is an RNC2 algorithm.

5 Application to Optical Networking

In this section we show how solving BRM can help in approximately solv-
ing the Directed Maximum Routing and Wavelength Assignment

(DirMaxRWA) problem in rings.
DirMaxRWA is defined as follows [12]: Given are a directed symmetric graph

G, a set of requests (pairs of nodes) R on G, and an integer w (bound on the
number of available wavelengths). The goal is to find a routing and wavelength
assignment to an as large as possible set of requests R′ ⊆ R such that any two
requests routed via edge-intersecting paths receive different wavelengths and only
wavelengths from {1, . . . , w} are used.

It can be shown that the algorithm for DirMaxRWA in rings proposed in
[12] can be modified to make an explicit call to an algorithm for solving BRM

(instead of implicitly solving it, as was the case originally).

724 C. Nomikos, A. Pagourtzis, and S. Zachos

The following theorem relates the approximation ratio of the modified algo-
rithm to the approximation ratio achieved by the algorithm for BRM that is
employed. The proof is an adaptation of the analysis of the algorithm presented
in [12] and will appear in the full version.

Theorem 5. An algorithm for BRM which returns a w-blue-red matching con-
taining at least a ·μOPT − b edges, where μOPT is the size of an optimal solution
and a > 0, b ≥ 0 are constants, results in an algorithm for DirMaxRWA in
rings that satisfies at least a+1

a+2 ·OPT − b
a+2 requests, where OPT is the size of

an optimal solution for DirMaxRWA.

Therefore, by using the algorithms for BRM proposed in the previous sections
(Random-BRM and Balance-BRM) we obtain the following:

Corollary 1. DirMaxRWA in rings admits a randomized approximation algo-
rithm with ratio 2

3 and a deterministic approximation algorithm with asymptotic
ratio 7

11 .

Note that the 2
3 approximation ratio is tight, as can be shown by appropriate

examples.2 The deterministic algorithm is slightly worse in terms of approxima-
tion ratio, but is considerably faster. An even faster deterministic approximation
algorithm with ratio 3

5 is obtained if we use algorithm Greedy-BRM as a subrou-
tine. As regards time requirements, it can be shown that the complexity of the
algorithm for DirMaxRWA is dominated by the complexity of the algorithm
for BRM that is employed; therefore it is O(n7) if we use Random-BRM for
solving BRM, while it is O(n2.5) if we use Balance-BRM and O(n2) if we use
Greedy-BRM.

References

1. Caragiannis, I.: Wavelength Management in WDM Rings to Maximize the Number
of Connections. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 61–72. Springer, Heidelberg (2007)

2. Carlisle, M.C., Lloyd, E.L.: On the k-Coloring of Intervals. Discrete Applied Math-
ematics 59, 225–235 (1995)

3. Erlebach, T., Jansen, K.: The Complexity of Path Coloring and Call Scheduling.
Theoretical Computer Science 255(1-2), 33–50 (2001)

4. Galbiati, G., Maffioli, F.: On the Computation of Pfaffians. Discrete Applied Math-
ematics 51(3), 269–275 (1994)

5. Garey, M., Johnson, D., Miller, G., Papadimitriou, C.: The Complexity of Coloring
Circular Arcs and Chords. SIAM Journal on Algebraic Discrete Methods 1(2), 216–
227 (1980)

6. Horowitz, E., Sahni, S.: On Computing the Exact Determinant of Matrices with
Polynomial Entries. Journal of the ACM 22(1), 38–50 (1975)

2 The 2
3 approximation ratio improves upon the ratio obtained in [12] and has been the

best known so far for DirMaxRWA in rings until very recently, when Caragiannis
[1] gave a 0.708-approximation algorithm for the problem.

Randomized and Approximation Algorithms for Blue-Red Matching 725

7. Karzanov, A.V.: Maximum Matching of Given Weight in Complete and Complete
Bipartite Graphs. Kibernetika 23(1), 7–11 (1987) (English translation in CYBNAW
23(1), 8–13 (1987))

8. Mahajan, M., Subramanya, P.R., Vinay, V.: The Combinatorial Approach Yields
an NC Algorithm for Computing Pfaffians. Discrete Applied Mathematics 143(1-3),
1–16 (2004)

9. Micali, S., Vazirani, V.V.: An O(n2.5) Algorithm for Maximum Matching in Gen-
eral Graphs. In: Proceedings Twenty-first Annual Symposium on the Foundations
of Computer Science, pp. 17–27 (1980)

10. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as Easy as Matrix In-
version. Combinatorica 7(1), 105–113 (1987)

11. Nomikos, C., Pagourtzis, A., Zachos, S.: Satisfying a Maximum Number of Pre-
Routed Requests in All-Optical Rings. Computer Networks 42(1), 55–63 (2003)

12. Nomikos, C., Pagourtzis, A., Zachos, S.: Minimizing Request Blocking in All-
Optical Rings. In: Proceedings INFOCOM 2003, pp. 1771–1780 (2003)

13. Papadimitriou, C.H., Yannakakis, M.: The Complexity of Restricted Spanning Tree
Problems. Journal of the ACM 29(2), 285–309 (1982)

14. Raghavan, P., Upfal, E.: Efficient Routing in All-Optical Networks. In: Proceedings
of the 26th Annual ACM Symposium on the Theory of Computing STOC 1994,
pp. 134–143. ACM Press, New York (1994)

15. Stamoulis, G.: Maximum Matching Problems with Constraints (in Greek). Diploma
Thesis, Department of Computer Science, University of Ioannina (2006)

16. Wan, P.-J., Liu, L.: Maximal Throughput in Wavelength-Routed Optical Networks.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 46,
15–26 (1998)

17. Yi, T., Murty, K.G., Spera, C.: Matchings in Colored Bipartite Networks. Discrete
Applied Mathematics 121(1-3), 261–277 (2002)

Real Computational Universality:

The Word Problem for a Class of Groups
with Infinite Presentation

(Extended Abstract)

Klaus Meer1,� and Martin Ziegler2,��

1 IMADA, Syddansk Universitet, Campusvej 55,
5230 Odense M, Denmark

meer@imada.sdu.dk
2 University of Paderborn

ziegler@upb.de

Abstract. The word problem for discrete groups is well-known to be
undecidable by a Turing Machine; more precisely, it is reducible both to
and from and thus equivalent to the discrete Halting Problem.

The present work introduces and studies a real extension of the word
problem for a certain class of groups which are presented as quotient
groups of a free group and a normal subgroup. As main difference with
discrete groups, these groups may be generated by uncountably many
generators with index running over certain sets of real numbers. This in-
cludes a variety of groups which are not captured by the finite framework
of the classical word problem.

Our contribution extends computational group theory from the dis-
crete to the Blum-Shub-Smale (BSS) model of real number computation.
It provides a step towards applying BSS theory, in addition to semi-
algebraic geometry, also to further areas of mathematics.

The main result establishes the word problem for such groups to be
not only semi-decidable (and thus reducible to) but also reducible from
the Halting Problem for such machines. It thus gives the first non-trivial
example of a problem complete, that is, computationally universal for
this model.

1 Introduction

In 1936, Alan M. Turing introduced the now so-called Turing Machine and
proved the associated Halting Problem H , that is the question of termination of
a given such machine M , to be undecidable. On the other hand simulating a ma-
chine M on a Universal Turing Machine establishes H to be semi-decidable. In

� Partially supported by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778 and by the Danish Agency for
Science, Technology and Innovation FNU. This publication only reflects the author’s
views.

�� Supported by DFG (project Zi1009/1-1) and by JSPS (ID PE 05501).

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 726–737, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computational Universality of the Word Problem for Real Groups 727

the sequel, several other problems P were also revealed semi-, yet un-decidable.
Two of them, Hilbert’s Tenth and the Word Problem for groups, became particu-
larly famous, not least because they arise and are stated in purely mathematical
terms whose relation to computer science turned out considerable a surprise.
The according undecidability proofs both proceed by constructing from a given
Turing Machine M an instance xM of the problem P under consideration such
that xM ∈ P iff M terminates; in other words, a reduction from H to P . As P
is easily seen to be semi-decidable this establishes, conversely, reducibility to H
and thus Turing-completeness of P .

1.1 Real Computability

Turing Machines are still nowadays, 70 years after their introduction, considered
the appropriate model of computation for discrete problems, that is, over bits
and integers. For real number problems of Scientific Computation as for example
in Numerics, Computer Algebra, and Computational Geometry on the other
hand, several independent previous formalizations were in 1989 subsumed in a
real counterpart to the classical Turing Machines called the Blum-Shub-Smale,
for short BSS model [BSS89, BCSS98]. Essentially a (real) BSS-machine can be
considered as a Random Access Machine over R which is able to perform the
basic arithmetic operations at unit cost and whose registers can hold arbitrary
real numbers; its inputs are thus finite sequences over R of possibly unbounded
length. This model bears many structural similarities to the discrete setting like
for example the existence of a Universal Machine, the notion of (e.g. NP–)
completeness, or undecidable problems:

Definition 1.1. The real Halting Problem H is the following decision problem.
Given the code 〈M〉 ∈ R∞ of a BSS machine M, does M terminate its compu-
tation (on empty input) ?

Both the existence of a coding 〈 · 〉 for BSS machines and the undecidability of H
in the BSS model were shown in [BSS89]. Concerning BSS-complete problems P
however, not many are known so far. The Turing-complete ones for example and,
more generally, any discrete problem becomes decidable over the reals [BSS89,
Example §1.6]; and extending an undecidable discrete problem to the reals
generally does not work either:

Example 1.2. Hilbert’s Tenth Problem (over R) is the task of deciding, given a
multivariate polynomial equation over R, whether it has a solution in R. For
integers R = Z, this problem has been proven (Turing-) undecidable [Mati70].
For reals R = R however, it is (BSS-)decidable by virtue of Tarski’s Quantifier
Elimination [BCSS98, top of p.97]. ��

1.2 Subsumption of Our Results

Provably undecidable problems over the reals, such as the Mandelbrot Set or
the rationals Q are supposedly (concerning the first) or, concerning the latter,
have actually been established [MeZi05] not reducible from, and thus strictly

728 K. Meer and M. Ziegler

easier than, H. In fact the only BSS-complete P essentially differing from H we
are aware of is a certain countable existential theory in the language of ordered
fields [Cuck92, Theorem 2.13].

The present work closes this structural gap by presenting a real generalization
of the word problem for groups and proving it to be reducible both from and
to the real Halting Problem. (Such a result had been envisioned in Section 4
of [MeZi06].) On the way to that, we significantly extend notions from classical
and computational (discrete, i.e.) combinatorial group theory to the continu-
ous setting of BSS-computability. Several examples reveal these new notions as
mathematically natural and rich. They bear some resemblance to certain recent
presentations of continuous fundamental groups from topology [CaCo00] where,
too, the set of generators (‘alphabet’) is allowed to be infinite and in fact of
continuum cardinality. There however words generally have transfinite length
whereas we require them to consist of only finitely many symbols.

1.3 Further Related Work

We find our synthesis of computational group theory and real number com-
putability to also differ significantly from the usual problems studied in the BSS
model which typically stem from semi-algebraic geometry. Indeed, the papers
dealing with groups G in the BSS setting [Bour01, Gass01, Prun02] treat such G
as underlying structure of the computational model, that is, not over the reals R
and its arithmetic. [Tuck80] considers the question of computational realizing G
and its operation, not of deciding properties of (elements of) G. An exception,
[DJK05] does consider BSS-decidability (and complexity) of properties of a real
group; however without completeness results. There also the group is not fixed
nor presented but given by some matrix generators.

1.4 Overview

Section 2 starts with a review of the classical word problem in finitely pre-
sented groups. Then we introduce real counterparts called algebraically pre-
sented groups, the core objects of our interest. (Guiding examples of mathe-
matical groups that fit into this framework can be found in the full version. . .)
The word problem for these groups is defined and shown to be semi-decidable in
the BSS model of computation over the reals. Section 3 proves our main result:
The real Halting Problem can be reduced to the word problem of algebraically
presented real groups.

2 Word-Problem for Groups

Groups occur ubiquitously in mathematics, and having calculations with and in
them handled by computers constitutes an important tool both in their theo-
retical investigation and in practical applications as revealed by the flourishing
field of Computational Group Theory [FiKa91, FiKa95, HEoB05]. Unfortunately
already the simplest question, namely equality ‘a = b’ of two elements a, b ∈ G

Computational Universality of the Word Problem for Real Groups 729

is in general undecidable for groups G reasonably presentable to a digital com-
puter, that is, in a finite way — the celebrated result obtained in the 1950ies
independently by Novikov [Novi59] and Boone [Boon58]. In the BSS model
of real number decidability1 on the other hand, every discrete problem L ⊆ Σ∗

is solvable [BSS89, Example §1.6], rendering the word problem for finitely pre-
sented groups trivial.

However whenever we deal with computational questions involving groups of
real or complex numbers, the Turing model seems not appropriate anyway. As
an example take the unit circle in R2 equipped with complex multiplication.
There is a clear mathematical intuition how to compute in this group; such
computations can be formalized in the BSS model. We thus aim at a continuous
counterpart to the discrete class of finitely presented groups for which the word
problem is universal for the BSS model.

2.1 The Classical Setting

Here, the setting for the classical word problem is briefly recalled. A review of
the main algebraic concepts needed in our proofs is postponed to Section 3.

Definition 2.1. a) Let X be a set. The free group generated by X, denoted
by F = (〈X〉, ◦) or more briefly 〈X〉, is the set (X ∪ X−1)∗ of all finite
sequences w̄ = xε1

1 · · ·xεn
n with n ∈ N, xi ∈ X, εi ∈ {−1,+1}, equipped with

concatenation ◦ as group operation subject to the rules

x ◦ x−1 = 1 = x−1 ◦ x ∀x ∈ X (1)

where x1 := x and where 1 denotes the empty word, that is, the unit element.
b) For a group H and W ⊆ H, denote by

〈W 〉H :=
{
wε1

1 · · ·wεn
n : n ∈ N, wi ∈ W, εi = ±1

}

the subgroup of H generated by W . The normal subgroup of H generated by
W is 〈W 〉Hn := 〈{h · w · h−1 : h ∈ H,w ∈ W}〉H . For h ∈ H, we write
h/W for its W–coset {h · w : w ∈ 〈W 〉Hn} of all g ∈ H with g ≡W h.

c) Fix sets X and R ⊆ 〈X〉 and consider the quotient group G := 〈X〉/〈R〉n,
denoted by 〈X |R〉, of all 〈R〉–cosets of 〈X〉.

If both X and R are finite, the tuple (X,R) will be called a finite presenta-
tion of G; if X is finite and R recursively enumerable (by a Turing machine,
that is in the discrete sense; equivalently: semi-decidable), it is a recursive2

presentation; if X is finite and R arbitrary, G is finitely generated.

1 We remark that in the other major and complementary model of real (as opposed to
rational or algebraic [KMPSY04]) number computation, the concept of decidability
is inapplicable because, there, discontinuous functions are generally uncomputable
due to the so-called Main Theorem of Recursive Analysis [Weih00, Theorem 4.3.1].

2 This notion seems misleading as R is in general not recursive; nevertheless it has
become established in literature.

730 K. Meer and M. Ziegler

Intuitively, R induces further rules “w̄ = 1” (w̄ ∈ R) in addition to Equation (1);
put differently, distinct words ū, v̄ ∈ 〈X〉 might satisfy ū = v̄ in G, that is, by
virtue of R. Observe that the rule “wε1

1 · · ·wεn
n = 1” induced by an element

w̄ = (wε1
1 · · ·wεn

n) ∈ R can also be applied as “wε1
1 · · ·w

εk

k = w−εn
n · · ·w−εk+1

k+1 ”.

Definition 2.1 (continued)

d) The word problem for 〈X |R〉 is the task of deciding, given w̄ ∈ 〈X〉, whether
w̄ = 1 holds in 〈X |R〉.

The famous work of Novikov and, independently, Boone establishes the word
problem for finitely presented groups to be Turing-complete:

Fact 2.2. a) For any finitely presented group 〈X |R〉, its associated word prob-
lem is semi-decidable (by a Turing machine).

b) There exists a finitely presented group 〈X |R〉 whose associated word problem
is many-one reducible from the discrete Halting Problem H. ��

For the nontrivial Claim b), see e.g. one of [Boon58, Novi59, LySc77, Rotm95].

Example 2.3. H :=
〈
{a, b, c, d}

∣∣{a−ibai = c−idci : i ∈ H}
〉

is a recursively
presented group with word problem reducible from H ; compare the proof of
[LySc77, Theorem §IV.7.2]. ��

Fact 2.2b) requires the group to be finitely presented group. This step is provided
by the remarkable

Fact 2.4 (Higman Embedding Theorem). Every recursively presented
group can be embedded in a finitely generated one.

Proof. See, e.g., [LySc77, Section §IV.7] or [Rotm95, Theorem 12.18]. ��

Fact 2.4 asserts the word problem from Example 2.3 to be in turn reducible
to that of the finitely presented group H is embedded into, because any such
embedding is automatically effective:

Observation 2.5. Let G = 〈X〉/〈R〉n and
H = 〈Y 〉/〈S〉n denote finitely generated
groups and ψ : G → H a homomorphism.
Then, ψ is (Turing-) computable in the sense
that there exists a computable homomorphism
ψ′ : 〈X〉 → 〈Y 〉 such that ψ′(x̄) ∈ 〈S〉n when-
ever x̄ ∈ 〈R〉n; that is, ψ′ maps R-cosets to
S-cosets and makes Diagram (2) commute.

〈X〉 −−−−→
ψ′

〈Y 〉
⏐⏐Q

⏐⏐Q

〈X〉/〈R〉n
ψ−−−−→ 〈Y 〉/〈S〉n

(2)

Indeed, due the homomorphism property, ψ is uniquely determined by its values
on the finitely many generators xi ∈ X of G, that is, by ψ(xi) = w̄i/〈S〉n where
w̄i ∈ 〈Y 〉. Setting (and storing in the machine) ψ′(xi) := w̄i yields the claim.

Computational Universality of the Word Problem for Real Groups 731

2.2 Presenting Real Groups

Regarding that the BSS-machine is the natural extension of the Turing machine
from the discrete to the reals, the following is equally natural a generalization
of Definition 2.1c+d):

Definition 2.6. Let X ⊆ R∞ and R ⊆ 〈X〉 ⊆3 R∞. The tuple (X,R) is called
a presentation of the real group G = 〈X |R〉. This presentation is algebraically
generated if X is BSS-decidable and X ⊆ RN for some N ∈ N. G is termed
algebraically enumerated if R is in addition BSS semi-decidable; if R is even
BSS-decidable, call G algebraically presented. The word problem for the pre-
sented real group G = 〈X |R〉 is the task of BSS-deciding, given w̄ ∈ 〈X〉, whether
w̄ = 1 holds in G.

Classical discrete and our new real notions:

Turing BSS
finitely generated algebraically generated
recursively presented algebraically enumerated
finitely presented algebraically presented

Remark 2.7. a) Although X inherits from R algebraic structure such as ad-
dition + and multiplication ×, the Definition 2.1a) of the free group G =
(〈X〉, ◦) considers X as a plain set only. In particular, (group-) inversion in
G must not be confused with (multiplicative) inversion: 5 ◦ 1

5 �= 1 = 5 ◦ 5−1

for X = R. This difference may be stressed notationally by writing ‘abstract’
generators xā indexed with real vectors ā: x−1

5 �= x1/5.
b) Isomorphic (that is, essentially identical) groups 〈X |R〉 ∼= 〈X ′|R′〉 may have

different presentations (X,R) and (X ′, R′). Even when R = R′, X need not
be unique! Nevertheless we adopt from literature such as [LySc77] the con-
vention of speaking of “the group 〈X |R〉”, meaning a group with presentation
(X,R).

This however requires some care, for instance when w̄ is considered (as
in Definition 2.1d) both an element of 〈X〉 and of 〈X |R〉! For that reason we
prefer to write 〈W 〉H rather than, e.g., Gp(W): to indicate in which group
we consider a subgroup to be generated.

For a BSS-machine to read or write a word w̄ ∈ 〈X〉 = (X ∪ X−1)∗ of course
means to input or output a vector (w1, ε1, . . . , wn, εn) ∈ (RN×N)n. In this sense,
the Rules (1) implicit in the free group are obviously decidable and may w.l.o.g.
be included in R.

We first show that, parallel to Fact 2.2a), the word problem for any alge-
braically enumerated real group is not harder than the BSS Halting Problem:

Theorem 2.8. Let G = 〈X |R〉 denote a algebraically enumerated real group.
Then the associated word problem is BSS semi-decidable.

This and all further proofs will be available in the full version.
3 R is a set of vectors of vectors of varying lengths. By suitably encoding delimiters

we shall regard R as effectively embedded into single vectors of varying lengths.

732 K. Meer and M. Ziegler

3 Reduction from the Real Halting Problem

This section proves the main result of the paper and continuous counterpart
to Fact 2.2b): The word problem for algebraically presented real groups is in
general not only undecidable (cmp. [MeZi05]) in the BSS model but in fact as
hard as the real Halting Problem.

Theorem 3.1. There exists an algebraically presented real group H = 〈X |R〉
such that H is BSS-reducible to the word problem in H.

Our proof has been guided by, and borrows concepts from, that of the discrete
case [LySc77, Section §IV.7]. However a simple transfer fails because many
properties heavily exploited in the discrete case (e.g., that the homeomorphic
image of a finitely generated group is again finitely generated) are not imme-
diately clear how to carry over to the reals (Section 3.2). For instance, a proof
for the classical result may exploit Matiyasevich’s famous solution of Hilbert’s
Tenth Problem, namely a Diophantine formulation of H [Mati70], which is in-
feasible for H (recall Example 1.2).

3.1 Basics from Group Theory and Their Presentations

This subsection briefly recalls some constructions from group theory and their
properties which will heavily be used later on. For a more detailed exposition as
well as proofs of the cited results we refer to the two textbooks [LySc77, Rotm95].

Here, no (e.g. effectivity) assumptions are made concerning the set of genera-
tors nor relations presenting a group. To start with and just for the records, let
us briefly extend the standard notions of a subgroup and a homomorphism to
the setting of presented groups:

Definition 3.2. A subgroup U of the presented group G = 〈X |R〉 is a tuple
(V, S) with V ⊆ 〈X〉 and S = R ∩ 〈V 〉. This will be denoted by U = 〈V |RV 〉 or,
more relaxed, U = 〈V |R〉.

A realization of a homomorphism ψ : G → H between presented groups G =
〈X |R〉 and H = 〈Y |S〉 is a mapping ψ′ : X → 〈Y 〉 whose unique extension to a
homomorphism on 〈X〉 maps R-cosets to S-cosets, that is, makes Equation (2)
commute.

A realization of an isomorphism φ is a realization of φ as a homomorphism.

In the above notation, 〈ψ′(X)
∣∣S〉 is a presentation of the subgroup ψ(G) of H .

For an embedding ψ, G is classically isomorphic to ψ(G); Lemma 3.14 below
contains a computable variation of this fact.

Remark 3.3. The intersection A ∩ B of two subgroups A,B of G is again a
subgroup of G. For presented sub-groups A = 〈U |R〉 and B = 〈V |R〉 of G =
〈X |R〉 however, 〈U ∩ V |R〉 is in general not a presentation of A ∩B.

Definition 3.4 (Free Product). Consider two presented groups G = 〈X |R〉
and H = 〈Y |S〉 with disjoint generators X ∩ Y = ∅ — e.g. by proceeding to

Computational Universality of the Word Problem for Real Groups 733

X ′ := X × {1}, Y ′ := Y × {2}, R′ := R× {1}, S′ := S × {2}. The free product
of G and H is the presented group G ∗H :=

〈
X ∪ Y

∣∣ R ∪ S
〉
.

Similarly for the free product *i∈I
Gi with Gi = 〈Xi|Ri〉, I an arbitary index set.

In many situations one wants to identify certain elements of a free product
of groups. These are provided by two basic constructions: amalgamation and
Higman-Neumann-Neumann (or shortly HNN) extension, see [LySc77, Rotm95]
and in particular the nice illustration [Rotm95, Figure 11.9].

Definition 3.5 (Amalgamation). Let G = 〈X |R〉, H = 〈Y |S〉 with X ∩ Y =
∅. Let A = 〈V |R〉 and B = 〈W |S〉 be respective subgroups and φ′ : 〈V 〉 →
〈W 〉 realization of an isomorphism φ : A → B. The free product of G and H
amalgamating the subgroups A and B via φ is the presented group

〈G ∗H | φ(a) = a∀a ∈ A〉 :=
〈
X ∪ Y | R ∪ S ∪ {φ′(v̄)v̄−1 : v̄ ∈ V }

〉
. (3)

Definition 3.6 (HNN Extension). Let G = 〈X |R〉, A = 〈V |R〉, B = 〈W |R〉
subgroups of G, and φ′ a realization of an isomorphism between A and B. The
Higman-Neumann-Neumann (HNN) extension of G relative to A,B and φ is the
presented group

〈G; t | ta = φ(a)t∀a ∈ A〉 :=
〈
X ∪ {t} | R ∪ {φ′(v̄)tv̄−1t−1 : v̄ ∈ V }

〉
.

G is the base of the HNN extension, t �∈ X is a new generator called the stable
letter, and A and B are the associated subgroups of the extension. Similarly
for the HNN extension 〈G; (ti)i∈I | tia = φi(a)ti∀a ∈ Ai∀i ∈ I〉 with respect to a
family of isomorphisms φi : Ai → Bi and subgroups Ai, Bi ⊆ G, i ∈ I.

Both HNN extensions and free products with amalgamation admit simple and
intuitive characterizations for a word to be, in the resulting group, equivalent
to 1. These results are connected to some very famous names in group theory.
Proofs can be found, e.g., in [LySc77, Chapter IV] or [Rotm95, Chapter 11].

Fact 3.7 (Higman-Neumann-Neumann). Let G∗ := 〈G; t|ta = φ(a)t∀a ∈
A〉 be a HNN extension of G. Then, id : g #→ g is an embedding of G into G∗. ��

Fact 3.8 (Britton’s Lemma). Let G∗ := 〈G; t|ta = φ(a)t∀a ∈ A〉 be an HNN
extension of G. Consider a sequence (g0, t

ε1 , g1, . . . , t
εn , gn) with n ∈ N, gi ∈ G,

εi ∈ {−1, 1}. If it contains no consecutive subsequence (t−1, gi, t) with gi ∈ A
nor (t, gj, t−1) with gj ∈ B, then it holds g0 · tε1 · g1 · · · tεn · gn �= 1 in G∗. ��

Fact 3.9 (Normal Form). Let P = 〈G ∗H |φ(a) = a∀A〉 denote a free product
with amalgamation. Consider c1, . . . , cn ∈ G ∗H, 2 ≤ n ∈ N, such that i) each
ci is either in G or in H; ii) consecutive ci, ci+1 come from different factors;
iii) no ci is in A nor B. Then c1 · · · cn �= 1 in P . ��

734 K. Meer and M. Ziegler

3.2 First Effectivity Considerations

Regarding finitely generated groups, the cardinalities of the sets of generators
(that is their ranks) add under free products [LySc77, Corollary §IV.1.9].
Consequently, they can straight forwardly be bounded under both HNN exten-
sions and free products with amalgamation. Similarly for real groups, we have
easy control over the dimension N of set of generators according to Definition 2.6:

Observation 3.10. For groups Gi = 〈Xi|Ri〉 with Xi ⊆ RN for all i ∈ I ⊆ R,
the free product *i∈I Gi =

〈⋃
i∈I(X × {i})

∣∣ ⋃
i∈I(R × {i})

〉
is of

dimension at most N + 1. In the countable case I ⊆ N, the dimension can even
be achieved to not grow at all: by means of a bicomputable bijection R× N → R
like (x, n) #→ 〈5x6, n〉+ (x− 5x6).

Similarly for free products with amalgamation and for HNN extensions. . .

Moreover, free products, HNN extensions, and amalgamations of algebraically
generated/enumerated/presented groups are, under reasonable presumptions,
again algebraically generated/enumerated/presented:

Lemma 3.11. a) Let Gi = 〈Xi|Ri〉 for all i ∈ I ⊆ N. If I is finite and each
Gi algebraically generated/enumerated/presented, then so is *i∈I Gi.
Same for I = N, provided that Gi is algebraically generated/enumerated/
presented uniformly in i.

b) Let G = 〈X |R〉 and consider the HNN extension G∗ := 〈G; (ti)i∈I | tia =
φi(a)ti∀a ∈ Ai∀i ∈ I〉 w.r.t. a family of isomorphisms φi : Ai → Bi between
subgroups Ai = 〈Vi|R〉, Bi = 〈Wi|R〉 for Vi,Wi ⊆ 〈X〉, i ∈ I.
Suppose that I is finite, each Gi is algebraically enumerated/presented, Vi ⊆
R∞ is semi-/decidable, and finally each φi is effective as a homomorphism;
then G∗ is algebraically enumerated/presented as well. Same for I = N,
provided that the Vi are uniformly semi-/decidable and effectivity of the φi

holds uniformly.
c) Let G = 〈X |R〉 and H = 〈Y |S〉; let A = 〈V |R〉 ⊆ G and B = 〈W |S〉 ⊆ H be

subgroups with V ⊆ 〈X〉, W ⊆ 〈Y 〉, V ⊆ R∞ semi-/decidable, and φ : A →
B an isomorphism and effective homomorphism. Then the free product with
amalgamation (3) is algebraically enumerated/presented whenever G and H
are.

Remark 3.12. Uniform (semi-) decidability of a family Vi ⊆ R∞ of course means
that every Vi is (semi-)decidable not only by a corresponding BSS-machine Mi,
but all Vi by one common machine M; similarly for uniform computability of a
family of mappings. By virtue of (the proof of) [Cuck92, Theorem 2.4], a both
necessary and sufficient condition for such uniformity is that the real constants
employed by the Mi can be chosen to all belong to one common finite field
extension Q(c1, . . . , ck) over the rationals. ��

Recall (Observation 2.5) that a homomorphism between finitely generated groups
is automatically effective and, if injective, has decidable range and effective in-
verse. For real groups however, in order to make sense out of the prerequisites
in Lemma 3.11b+c), we explicitly have to specify the following

Computational Universality of the Word Problem for Real Groups 735

Definition 3.13. An homomorphism ψ : 〈X |R〉 → 〈Y |S〉 of presented real
groups is called an effective homomorphism if it admits a BSS-computable real-
ization ψ′ : X → 〈Y 〉 in the sense of Definition 3.2.

For ψ to be called an effective embedding, it must not only be an effective
homomorphism and injective; but ψ′ is also required to be injective and have
decidable image ψ′(X) plus a BSS-computable inverse χ′ : ψ′(X) ⊆ 〈Y 〉 → X.

Effective embeddings arise in Lemmas 3.14 and 3.17. For an injective effective
homomorphism φ as in Lemma 3.11c) on the other hand, a realization needs not
to be injective; for instance, φ′ might map two equivalent (w.r.t. the relations
R) yet distinct elements to the same image word.

Lemma 3.14. Let ψ : G = 〈X |R〉 → 〈Y |S〉 = K denote an effective embedding.

a) There is an effective embedding χ : ψ(G) → G (i.e. we have an effective
isomorphism).

b) If V ⊆ 〈X〉 is decidable, then the restriction ψ|H to H = 〈V |R〉 ⊆ G is an
effective embedding again.

c) If G is algebraically generated and K algebraically presented then ψ(G) is
algebraically presented.

3.3 Benign Embeddings

The requirement in Lemma 3.11b+c) that the subgroup(s) A be recursively
enumerable or even decidable, is of course central but unfortunately violated
in many cases. This suggests the notion of benign subgroups, in the classical
case (below, Item a). Recall that there, effectivity of an embedding drops off
automatically.

Definition 3.15. a) Let X be finite, V ⊆ 〈X〉. The subgroup A = 〈V |R〉 of
G = 〈X |R〉 is (classically) benign in G if the HNN extension 〈X ; t | ta =
at∀a ∈ A〉 can be embedded into some finitely presented group K = 〈Y |S〉.

b) Let X ⊆ R∞, V ⊆ 〈X〉. The subgroup A = 〈V |R〉 of G = 〈X |R〉 is effectively
benign in G if the HNN extension 〈G; t | ta = at∀a ∈ A〉 admits an effective
embedding into some algebraically presented group K = 〈Y |S〉.

c) Let I ⊆ N. A family (Ai)i∈I
of subgroups of G is uniformly effectively be-

nign in G if, in the sense of Remark 3.12, there are groups Ki uniformly
algebraically presented and uniformly effective embeddings φi : 〈G; ti|tiai =
aiti∀ai ∈ Ai〉 → Ki.

The benefit of benignity is revealed in the following

Remark 3.16. In the notation of Definition 3.15b), if A is effectively benign in
G then the word problem for A is reducible to that for K: Fact 3.7.
Moreover in this case, the membership problem for A in G — that is the question
whether given x̄ ∈ 〈X〉 is equivalent (w.r.t. R) to an element of A — is also
reducible to the word problem for K: According to Fact 3.8, a := x̄/R satisfies
t · a · t−1 · a−1 = 1 ⇔ a ∈ A. ��

736 K. Meer and M. Ziegler

The following fundamental properties extend corresponding results from
the finite framework. Specifically, Lemma 3.17b) generalizes [LySc77,
Lemma §IV.7.7(i)] and Claims d+e) generalize [LySc77, Lemma §IV.7.7(ii)].

Lemma 3.17. a) Let A = 〈V |R〉 ⊆ H = 〈W |R〉 ⊆ G = 〈X |R〉 denote a
chain of sub-/groups with V ⊆ 〈W 〉 and W ⊆ 〈X〉. If W is decidable and A
effectively benign in G, then it is also effectively benign in H.

b) If G = 〈X |R〉 is algebraically presented and subgroup A = 〈V |R〉 has decid-
able generators V ⊆ 〈X〉, then A is effectively benign in G.

c) If A is effectively benign in G and φ : G → H an effective embedding, then
φ(A) is effectively benign in φ(G).

d) Let A and B be effectively benign in algebraically presented G. Then A ∩ B
admits a presentation effectively benign in G.

e) Let A, B, G as in d); then 〈A∪B〉G admits a presentation (possibly different
from 〈V ∪W |R〉) effectively benign in G.

f) Let (Ai)i∈I be uniformly effectively benign in G (Definition 3.15c). Then
〈
⋃

i∈I Ai〉 admits a presentation effectively benign in G.
The above claims hold uniformly, corresponding effective embeddings do not in-
troduce new real constants.

3.4 Putting It All Together

Let H ⊆ R∞ denote the real Halting Problem, semi-decided by some (constant-
free) universal BSS Machine M. Denote by n #→ γn an effective enumeration
of all computational paths of M, An ⊆ H ∩ Rd(n) the set of inputs accepted
at path γn. Let X := {xr : r ∈ R} = {kn : n ∈ N} = {s}, G := 〈X〉, and
U := 〈k̄−1

n ·w#r ·kn : n ∈ N,)r ∈ An〉 where w̄r1,...,rd
:= x−1

rd
· · ·x−1

r1 · s ·xr1 · · ·xrd
.

Finally let V := 〈U ; (kn)〉 ∩ 〈s;xr : r ∈ R〉. Based on Lemma 3.17 we can show

Proposition 3.18. a) U is decidable. b) U and V are effectively benign in G.
c) The words k−1

n · w#r · kn freely generate U . d) V = 〈w̄#r : ∃n ∈ N :)r ∈ An〉.

Proof (Theorem 3.1). Let K denote the algebraically presented group which the
HNN extension 〈G; t|tv = vt∀v ∈ V 〉 effectively embeds into (Proposition 3.18b)
by some effective embedding ψ. Then, according to Fact 3.8 and by Proposi-
tion 3.18d), v̄ := ψ

(
t · w̄#r · t−1 · w̄−1

#r

)
equals 1 in K iff)r ∈ H =

⋃
n An. ��

References

[BCSS98] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Com-
putation. Springer, Heidelberg (1998)

[BSS89] Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Com-
plexity over the Real Numbers: NP-Completeness, Recursive Functions,
and Universal Machines. Bulletin of the American Mathematical Society
(AMS Bulletin), vol. 21, pp. 1–46 (1989)

[Boon58] Boone, W.W.: The word problem. Proc. Nat. Acad. Sci. 44, 265–269
(1958)

Computational Universality of the Word Problem for Real Groups 737

[Bour01] Bourgade, M.: Séparations et transferts dans la hiérarchie polynomiale
des groupes abéliens infinis. Mathematical Logic Quarterly 47 (4), 493–
502 (2001)

[CaCo00] Cannon, J.W., Conner, G.R.: The combinatorial structure of the Hawai-
ian earring group. Topology and its Applications 106, 225–271 (2000)

[Cuck92] Cucker, F.: The arithmetical hierarchy over the reals. Journal of Logic
and Computation 2(3), 375–395 (1992)

[DJK05] Derksen, H., Jeandel, E., Koiran, P.: Quantum automata and algebraic
groups. J. Symbolic Computation 39, 357–371 (2005)

[FiKa91] Finkelstein, L., Kantor, W.M. (eds.): Groups and Computation. The DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, AMS, vol. 11. AMS, Providence, RI (1991)

[FiKa95] Finkelstein, L., Kantor, W.M. (eds.): Groups and Computation II. The
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, AMS, vol. 28. AMS, Providence, RI (1995)

[Gass01] Gassner, C.: The P = DNP problem for infinite abelian groups. Journal
of Complexity 17, 574–583 (2001)

[HEoB05] Holt, D.F., Eick, B., O’Brien, E.: Handbook of Computational Group
Theory. Chapman&Hall/CRC (2005)

[KMPSY04] Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom
Examples of Robustness Problems in Geometric Computations. In: Al-
bers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713.
Springer, Heidelberg (2004)

[LySc77] Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer,
Heidelberg (1977)

[Mati70] Matiyasevich, Y.: Enumerable sets are Diophantine. Soviet Mathematics.
Doklady 11(2), 354–358 (1970)

[MeZi05] Meer, K., Ziegler, M.: An Explicit Solution to Post’s Problem over the
Reals. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623,
pp. 456–467. Springer, Heidelberg (2005), full version to appear in the
journal of complexity, see also arXiv:cs.LO/0603071

[MeZi06] Meer, K., Ziegler, M.: Uncomputability Below the Real Halting Problem.
In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006.
LNCS, vol. 3988, pp. 368–377. Springer, Heidelberg (2006)

[Novi59] Novikov, P.S.: On the algorithmic unsolvability of the word problem in
group theory. Trudy Mat. Inst. Steklov 44, 1–143 (1959)

[Prun02] Prunescu, M.: A model-theoretic proof for P �= NP over all infinite
abelian groups. The Journal of Symbolic Logic 67, 235–238 (2002)

[Rotm95] Rotman, J.J.: An Introduction to the Theory of Groups 4th Edition.
Springer, Heidelberg (1995)

[Tuck80] Tucker, J.V.: Computability and the algebra of fields. J. Symbolic
Logic 45, 103–120 (1980)

[Turi36] Turing, A.M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)

[Weih00] Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

Finding Paths Between Graph Colourings:

PSPACE-Completeness and Superpolynomial
Distances

Paul Bonsma1,� and Luis Cereceda2

1 Institut für Mathematik, Sekr. MA 6-1, Technische Universität Berlin,
Straße des 17. Juni 136, 10623 Berlin, Germany

bonsma@math.tu-berlin.de
2 Centre for Discrete and Applicable Mathematics

Department of Mathematics, London School of Economics
Houghton Street, London WC2A 2AE, U.K.

luis@maths.lse.ac.uk

Abstract. Suppose we are given a graph G together with two proper
vertex k-colourings of G, α and β. How easily can we decide whether it is
possible to transform α into β by recolouring vertices of G one at a time,
making sure we always have a proper k-colouring of G? This decision
problem is trivial for k = 2, and decidable in polynomial time for k = 3.
Here we prove it is PSPACE-complete for all k ≥ 4, even for bipartite
graphs, as well as for: (i) planar graphs and 4 ≤ k ≤ 6, and (ii) bipartite
planar graphs and k = 4. The values of k in (i) and (ii) are tight.

We also exhibit, for every k ≥ 4, a class of graphs {GN,k : N ∈ N∗},
together with two k-colourings for each GN,k, such that the minimum
number of recolouring steps required to transform the first colouring into
the second is superpolynomial in the size of the graph. This is in stark
contrast to the k = 3 case, where it is known that the minimum number
of recolouring steps is at most quadratic in the number of vertices. The
graphs GN,k can also be taken to be bipartite, as well as (i) planar for
4 ≤ k ≤ 6, and (ii) planar and bipartite for k = 4. This provides a
remarkable correspondence between the tractability of the problem and
its underlying structure.

Keywords: vertex-recolouring, colour graph, PSPACE-complete, super-
polynomial distance.

1 Introduction

We deal exclusively with finite, simple, loopless graphs. Most of our terminology
and notation is standard and can be found in any textbook on graph theory such
as, for example, [1]. A standard reference for complexity theory is [2].

� Supported by the Graduate School “Methods for Discrete Structures” in Berlin,
DFG grant GRK 1408.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 738–749, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Paths Between Graph Colourings 739

We regard a k-colouring of a graph G = (V,E) as proper; that is, as a function
α : V → {1, 2, . . . , k} such that α(u) �= α(v) for all uv ∈ E. For a positive
integer k and a graph G, we define the k-colour graph of G, denoted Ck(G), as
the graph that has the k-colourings of G as its node set, with two k-colourings
joined by an edge in Ck(G) if they differ in colour on just one vertex of G. We
assume throughout that k ≥ χ(G) ≥ 2, where χ(G) is the chromatic number
of G. Having defined the colourings as nodes of Ck(G), the meaning of a path
between two colourings should be clear. In addition, other graph-theoretical
notions such as distance and adjacency can now be used for colourings. If Ck(G)
is connected, we say that G is k-mixing. We use the term frozen for a k-colouring
of a graph G that forms an isolated node in Ck(G).

In [3], [4], some preliminary investigations into the connectedness of the k-
colour graph are made. In particular, [4] settles the computational complexity of
the following decision problem: given a 3-colourable graph G, is G 3-mixing? This
problem is proved to be coNP-complete for bipartite graphs but polynomial-time
solvable for bipartite planar graphs. For G a 3-chromatic graph, the answer is
always in the negative.

The question of when the k-colour graph is connected is not new: it has been
addressed by researchers when studying the Glauber dynamics for sampling k-
colourings of a given graph. This is a Markov chain used to obtain efficient al-
gorithms for approximately counting or almost uniformly sampling k-colourings
of a graph, and the connectedness of the k-colour graph is a necessary condition
for such a Markov chain to be rapidly mixing. For full details, see, for example,
[5] and references therein.

A related problem is that of recognising when two given k-colourings of a
graph G are in the same connected component of Ck(G). Formally, we have the
following decision problem:

k-Colour Path

Instance : Graph G, two k-colourings of G, α and β.
Question : Is there a path between α and β in Ck(G)?

The problem 2-Colour Path is trivial: the 2-colour graph of a connected
bipartite graph always consists of two isolated nodes. For 3-colourings, we have:

Theorem 1 ([6]). The decision problem 3-Colour Path is in P.

The proof of correctness of the polynomial-time algorithm for 3-Colour Path

given in [6] can be employed to exhibit a path between the 3-colourings, if such
a path exists. Moreover, such a path has length O(|V (G)|2), proving:

Theorem 2 ([6]). Let G be a 3-colourable graph with n vertices. Then the di-
ameter of any component of C3(G) is O(n2).

Our first main result settles the complexity of k-Colour Path:

Theorem 3. For every k ≥ 4, the decision problem k-Colour Path is
PSPACE-complete. Moreover, it remains PSPACE-complete for the following
restricted instances:

740 P. Bonsma and L. Cereceda

(i) bipartite graphs and any fixed k ≥ 4;
(ii) planar graphs and any fixed 4 ≤ k ≤ 6; and
(iii) bipartite planar graphs and k = 4.

In our second main result, we show that instances exist where a superpolynomial
number of recolourings is needed to go from the first colouring to the second.

Theorem 4. For every k ≥ 4, there exists a class of graphs {GN,k : N ∈ N∗}
with the following properties. The graphs GN,k have size O(N2), and for each of
them there exist two k-colourings α and β in the same component of Ck(GN,k)
which are at distance Ω(2N). Moreover,

(i) the graphs GN,k may be taken to be bipartite;
(ii) for every 4 ≤ k ≤ 6, the graphs GN,k may be taken to be planar (in such a

case the graphs have size O(N4)); and
(iii) for k = 4, the graphs GN,k may be taken to be planar and bipartite (in such

a case the graphs have size O(N4)).

We consider the construction of these instances to be of independent interest,
illustrating the complexity of the problem in a different way, particularly with
regard to sampling colourings via Glauber dynamics. But also because of its
relationship with the well-known NP �= PSPACE conjecture. A path between α
and β in Ck(G) constitutes a YES-certificate for the k-Colour Path instance G,
α, β. So if for any instance the distance between α and β were always polynomial,
k-Colour Path would lie in NP. Now, having established that k-Colour Path

is PSPACE-complete, asserting that NP �= PSPACE is equivalent to saying that
for every possible YES-certificate for k-Colour Path, there exist instances
for which the certificate cannot be verified in polynomial time. Hence proving
this statement for every possible certificate is a daunting task, but the above
theorem proves it for the most natural certificate, in some sense supporting the
conjecture.

The rest of the paper is organised as follows. In Section 2 we introduce the
notions that will be used in the proofs. In Section 3 we prove Theorem 3 and
also show that the values of k in parts (ii) and (iii) of the theorem are tight: for
larger values of k, the instance is always a YES instance. Section 4 is devoted to
the proof of Theorem 4.

Theorems 1 to 4 together suggest that the computational complexity of
k-Colour Path and the possible distance between k-colourings are intimately
linked. How strong is this connection between PSPACE-completeness and su-
perpolynomial distances in the colour graph? In particular, bearing in mind the
tightness of k in (ii) and (iii) of Theorem 3: is it true that for a planar graph G
and k ≥ 7, or G a bipartite planar graph and k ≥ 5, the components of Ck(G)
always have polynomial diameter? We formulate this question more generally
as a conjecture in Section 3.3, and give a partial answer. For completeness, we
remark that graph classes can be constructed for which k-Colour Path is easy,
but which still contain instances with colourings at superpolynomial distance;
using for example the graphs from Section 4.

Finding Paths Between Graph Colourings 741

Another situation where the results presented here and in [3], [4] find ap-
plication is that of radio-frequency reassignment. Given that the frequency as-
signment problem is often modelled as a graph-colouring problem, the task of
reassigning frequencies in a network, while avoiding interference and ensuring no
connections are lost, can initially be thought of as a graph recolouring problem.
See [7] for a discussion of these ideas in the context of cellular phone networks.

It is very interesting to compare the work presented in this paper and [3,4]
with [8], which contains remarkably similar results. For a given instance ϕ of the
Boolean satisfiability problem, the authors of [8] define the graph G(ϕ) as the
graph with vertex set the satisfying assignments of ϕ, and assignments adjacent
whenever they differ in exactly one bit. They consider the analogous question
to the one we address here, finding the same correspondence between PSPACE-
complete instance classes of the decision problem and possible superpolynomial
distances in the graph of satisfying assignments.

2 Preliminaries: List Colourings and Forbidding Paths

In Sections 3 and 4 we will construct particular k-Colour Path instances
G,α, β: first for the PSPACE-hardness proof, and then for the superpolynomial
distance proof. In both cases, it is easier to first define list-colouring instances:
for such instances we give every vertex v a colour list L(v) ⊆ {1, 2, 3, 4}. A
proper list-colouring is a proper vertex colouring with the additional constraint
that every vertex colour needs to be chosen from the colour list of the vertex. In
the same way as that in which we define the colour graph Ck(G) of G with nodes
corresponding to proper k-colourings, we define the list-colour graph C(G,L) of
G with nodes corresponding to proper list-colourings, where L represents the
colour lists. The problem List-Colour Path is now defined as follows.

List-Colour Path

Instance : Graph G, colour lists L(v) ⊆ {1, 2, 3, 4} for all v ∈ V (G), two proper
list-colourings of G, α and β.

Question : Is there a path between α and β in C(G,L)?

Whenever colour lists are given for the vertices of the graph, ‘proper list-
colouring’ should be read when we say ‘colouring’.

A List-Colour Path instance can be turned into an equivalent k-Colour

Path instance by adding a Kk on vertex set {u1, . . . , uk}, and extending the
colourings with α(ui) = β(ui) = i. Now κ(ui) = i holds for all colourings κ
obtainable from α and β. Adding edges vui if and only if i �∈ L(v) turns the
graph into a k-Colour Path instance, where in all k-colourings κ we consider,
κ(v) ∈ L(v). By using other frozen graphs that are planar and/or bipartite,
and introducing one or multiple copies of such graphs for every vertex, a similar
transformation that preserves planarity and/or bipartiteness can be obtained.
Figure 1 shows planar graphs with frozen 5- and 6-colourings. By removing a
perfect matching from Kk,k, a bipartite graph that has a frozen k-colouring is
obtained. The resulting graph is planar for k = 4. Hence we have:

742 P. Bonsma and L. Cereceda

3

2

5

4
5 3

24

1 1

4

65

1

2

3

1

24
6 5

3

Fig. 1. Planar graphs with respective frozen 5- and 6-colourings

Lemma 5. For any k ≥ 4, a List-Colour Path instance G,L, α, β with lists
L(v) ⊆ {1, 2, 3, 4} can be transformed into a k-Colour Path instance G′, α′, β′

such that the distance between α and β in C(G,L) (possibly infinite) is the same
as the distance between α′ and β′ in Ck(G′). Moreover,

(i) if G is bipartite, this can be done so that G′ is also bipartite, for all k ≥ 4;
(ii) if G is planar, this can be done so that G′ is also planar, when 4 ≤ k ≤ 6;

and
(iii) if G is planar and bipartite, this can be done so that G′ is also planar and

bipartite, when k = 4.

In all cases, this can be done so that |V (G′)| ≤ |V (G)|f(k) and |E(G′)| ≤
|E(G)|+ |V (G)|g(k), for some functions f(k) and g(k).

Proof. The transformation from a List-Colour Path instance G,L, α, β to a
k-Colour Path instance G′, α′, β′ is as follows. Let F be a graph with a frozen
k-colouring κ; F may be chosen to be bipartite and/or planar depending on k,
as shown above. For every vertex v ∈ V (G) and colour c ∈ {1, . . . , k}\L(v), we
add a copy of F to G, labelled Fv,c. We also add an edge between v and a vertex
u of Fv,c with κ(u) = c. This yields G′. The colourings α′ and β′ are obtained
by extending α and β using the colouring κ for every Fv,c.

It is easy to see that every k-colouring obtainable from α′ and β′ induces the
same frozen colouring on every copy of F . Also, because of the way the edges
between v and vertices of Fv,c are added, all these k-colourings of G′ correspond
to list colourings of G, and vice versa. This proves that the distance between α
and β in C(G,L) is exactly the same as the distance between α′ and β′ in Ck(G′).

When G and F are bipartite, the construction of G′ starts with a number of
bipartite components, and edges are added only between different components.
So in this case G′ is also bipartite. It can also be seen that G′ is planar when G
and F are planar: start with a planar embedding of G, and for each copy Fv,c

of F , consider a planar embedding that has a vertex with colour c on its outer
face. These embeddings of Fv,c can be inserted into a face of G that is incident
with v. Now adding an edge between v and a vertex of Fv,c with colour c can be
done without destroying planarity.

Finding Paths Between Graph Colourings 743

Since for all k ≥ 4 we can choose F to be bipartite, for 4 ≤ k ≤ 6 we can
choose F to be planar, and for k = 4 we can choose F to be both planar and
bipartite, we are done. �

The next important notion for our proofs is the following. For a, b ∈ {1, . . . , 4},
an (a, b)-forbidding path from u to v is a (u, v)-path with colour lists L, such
that for x ∈ L(u) and y ∈ L(v), a colouring κ with κ(u) = x and κ(v) = y exists
if and only if not both x = a and y = b. In addition, for every colouring κ of the
path with κ(v) = y, and every x ∈ L(u)\{κ(u)} with (x, y) �= (a, b), there exists
a sequence of recolourings of the vertices of the path that ends by changing the
colour of u to x, without earlier changing the colour of u or v. So when we add an
(a, b)-forbidding path between vertices u and v of an existing graph, this has no
effect on the possible colourings and recolourings of u and v other than restricting
them from simultaneously having colours a and b respectively. We may therefore
ignore internal vertices of the added paths when proving lower bounds for the
distance between colourings, or when asking whether two colourings lie in the
same component. The next lemma shows that we do not have to describe (a, b)-
forbidding paths in detail every time; as long as L(u), L(v) �= {1, 2, 3, 4}, such a
path always exists.

Lemma 6. For any Lu ⊂ {1, 2, 3, 4}, Lv ⊂ {1, 2, 3, 4}, a ∈ Lu and b ∈ Lv,
there exists an (a, b)-forbidding (u, v)-path P with L(u) = Lu, L(v) = Lv and all
other colour lists L(w) ⊆ {1, 2, 3, 4}. Moreover, we can insist P has even length
at most six.

Proof. Let c ∈ {1, 2, 3, 4}\L(u) and d ∈ {1, 2, 3, 4}\L(v). If c �= d then it can
be checked that a path of length four with the following colour lists along the
path is an (a, b)-forbidding path: Lu, {a, c}, {c, d}, {d, b}, Lv. If c = d, then
we choose a path of length six with the following colour lists along the path:
Lu, {a, c}, {c, e}, {e, f}, {f, c}, {c, b}, Lv, for some e ∈ {1, 2, 3, 4}\{a, c} and
f ∈ {1, 2, 3, 4}\{b, c} with e �= f . �

3 PSPACE-Completeness of k-Colour Path for k ≥ 4

3.1 A PSPACE-Complete Problem: Sliding Tokens

We first prove that List-Colour Path is PSPACE-complete by giving a reduc-
tion from Sliding Tokens, a PSPACE-complete problem described in [9]. We
need some definitions. A token configuration of a graph G is a set of vertices on
which tokens are placed, in such a way that no two tokens are adjacent. (Thus
a token configuration can be thought of as an independent set of vertices of G.)
A move between two token configurations is the displacement of a token from
one vertex to an adjacent vertex. (Note that a move must result in a valid token
configuration).

Sliding Tokens

Instance : Graph G, two token configurations of G, TA and TB.
Question : Is there a sequence of moves transforming TA into TB?

744 P. Bonsma and L. Cereceda

The reduction used to prove PSPACE-completeness of Sliding Tokens in [9]
actually shows that the problem remains PSPACE-complete for very restricted
graphs and token configurations. Our reduction to List-Colour Path is actu-
ally from a slightly wider class of restricted instances for which Sliding Tokens

remains PSPACE-complete, but we do not give a reduction from the general
problem. We proceed to describe the instances G, TA, TB of Sliding Tokens

that we will use for our reduction. For details, see [9].
The graphs G are made up of token triangles (copies of K3) and token edges

(this involves a slight abuse of terminology: when we say token edge, we actually
mean a copy of K2). Every vertex of G is part of exactly one token triangle
or token edge, and token triangles and token edges (disjoint in G) are joined
together by link edges. In addition, G has a planar embedding where every token
triangle bounds a face.

The token configurations TA and TB are such that every token triangle and
every token edge contains exactly one token on one of its vertices. Such token
configurations are called standard token configurations. In any sequence of moves
from TA or TB, a token may never leave its triangle or its edge: the first time a
token were to do so, it would become adjacent to another token. Therefore all
moves yield standard token configurations.

3.2 The Construction of Equivalent List-Colour Path Instances

Given a restricted instance G, TA, TB of Sliding Tokens as described in Sec-
tion 3.1, we construct an instance G′, L, α, β of List-Colour Path such that
standard token configurations of G correspond to list-colourings of G′, and slid-
ing a token in G corresponds to a sequence of vertex recolourings in G′.

We first label the vertices of G: the token triangles are labelled 1, . . . , nt, and
the vertices of triangle i are labelled ti1, ti2 and ti3. The token edges are labelled
1, . . . , ne, and the vertices of token edge i are labelled ei1 and ei2.

The construction of G′ is as follows: for every token triangle i we introduce a
vertex ti, with colour list L(ti) = {1, 2, 3}. For every token edge i we introduce a
vertex ei in G′, with colour list L(ei) = {1, 2}. Whenever a link edge of G joins
a vertex tia with a vertex ejb, we add an (a, b)-forbidding path of even length
between ti and ej in G′. We do the same for pairs tia and tjb, and pairs eia and
ejb. Note that this is a polynomial-time transformation that preserves planarity,
and that the resulting graph is bipartite.

The two colourings α and β that correspond to TA and TB are constructed as
follows: if the token of token edge i is on eij (j = 1, 2), we colour ei with colour j,
and analogously for tij . Because tokens are never adjacent, this does not violate
the constraints imposed by the (a, b)-forbidding paths, so we can extend these
colour choices to a full colouring.

Lemma 7. Let G, TA, TB be a resticted instance of Sliding Tokens as de-
scribed in Section 3.1, and let G′, L, α, β be the corresponding instance of List-

Colour Path as constructed above. Then G, TA, TB is a YES-instance if and
only if G′, L, α, β is a YES-instance.

Finding Paths Between Graph Colourings 745

Proof. Consider a sequence of token moves from TA to TB, if it exists. All inter-
mediate token configurations are standard token configurations, and therefore
correspond to some choice of colours for the vertices ti and ei. Every time a token
is moved from eij to eik, we recolour ei from j to k (analogously for token moves
from tij to tik). Before this can be done, it may be necessary to first recolour
internal vertices of incident (a, b)-forbidding paths, but this is always possible.

Similarly, for every sequence of recolourings from α to β we can describe a
sequence of token moves from TA to TB: whenever a vertex ti (ei) is recoloured
from colour a to colour b, we move the corresponding token from tia to tib (from
eia to eib). �

Lemma 7 shows that the instance G′, L, α, β of List-Colour Path we
constructed above is equivalent to the given instance of Sliding Tokens. In
addition, we saw that G′ is planar and bipartite. Now by Lemma 5 we can
construct equivalent k-Colour Path instances from G′, L, α, β. All of these
transformations are polynomial-time. The fact that k-Colour Path is in
PSPACE follows from the fact that a non-deterministic algorithm for k-Colour

Path will use a polynomial amount of space, and Savitch’s Theorem, which
states that PSPACE = NPSPACE (see [2], p.150 or [10] for details). This proves
Theorem 3.

3.3 Tightness of the Hardness Results

Recall that the colouring number col(G) of a graph G (also known as the degen-
eracy or the maximin degree) is defined as the largest minimum degree of any
subgraph of G. That is, col(G) = max

H⊆G
δ(H). The following result was proved in

[11]. (The proof is similar to that of Claim 11 below.)

Theorem 8. For any graph G and integer k ≥ col(G) + 2, G is k-mixing.

Recalling that the colouring number of a planar graph is at most 5, and that the
colouring number of a bipartite planar graph is at most 3, Theorems 1, 3 and 8
together yield:

Theorem 9. Restricted to planar graphs, the decision problem k-Colour Path

is PSPACE-complete for 4 ≤ k ≤ 6, and polynomial-time solvable for all other
values of k.
Restricted to bipartite planar graphs, the decision problem k-Colour Path is
PSPACE-complete for k = 4, and polynomial-time solvable for all other values
of k.

We observed in the introduction that the instance classes for which we can prove
k-Colour Path to be PSPACE-complete are exactly those for which we can
construct graphs with superpolynomial colour graph diameter, and that for one
of the classes for which the problem is known to be polynomial-time solvable
(k = 3), the diameter is always polynomial. Is the diameter also polynomial for
the other polynomial-time solvable instance classes mentioned in this section?

746 P. Bonsma and L. Cereceda

We speculate that this is indeed the case, and formulate a stronger conjecture
in terms of the colouring number:

Conjecture 10. For a graph G with n vertices and k ≥ col(G)+2, the diameter
of Ck(G) is O(n3).

For values of k ≥ 2 col(G) + 1, we are able to prove this statement, and even a
stronger bound:

Claim 11. For a graph G with n vertices and k ≥ 2 col(G) + 1, the diameter of
Ck(G) is O(n2).

Proof. We can label the vertices v1, . . . , vn so that every vertex has at most
col(G) neighbors with a lower index. Using this vertex ordering, we first prove
the following statement by induction over n.

Induction hypothesis
Let α and β be distinct k-colourings of G, and let i be the lowest index such
that α(vi) �= β(vi). There exists a recolouring sequence that starts with α and
ends with recolouring vi to β(vi), where every vj with j < i is never recoloured,
and every vj with j ≥ i is recoloured at most once.

The statement is trivial for n = 1. If i = n, then vn can be recoloured to β(vn)
because β is a proper colouring that coincides with α on all other vertices. Now
suppose i < n, and consider G′ = G−vn. Let α′ be the k-colouring of G′ induced
by α. By induction we can assume there exists a recolouring sequence starting
with α′ that ends with recolouring vi to β(vi), in which vertices vj with j < i
are not recoloured, and vertices vj with j ≥ i are recoloured at most once. So for
every vertex we can identify an old colour and a new colour in this recolouring
sequence (they may be the same). Because there are at least 2 col(G)+1 available
colours, and vn has at most col(G) neighbors, a colour c can be chosen for vn
that is not equal to the old colour or new colour of any of its neighbors. First
recolour vn to c if necessary, and then recolour the rest of the graph according
to the recolouring sequence for G′. By the choice of colour c, all intermediate
colourings are proper, so this is the desired recolouring sequence for G.

Now, we can keep repeating the above procedure, every time for a new ver-
tex vi which will have a higher index. This will yield β after at most O(n2)
recolouring steps. �

4 Graphs with Colourings at Superpolynomial Distance

4.1 The Construction of the Graphs

For every integer N ≥ 1, we construct a graph GN with colour lists L. (To avoid
cluttering the notation, we will denote the colour lists of each GN by L; which
graph these lists belong to will be clear from the context.) The graphs GN will
have size O(N2) and the C(GN , L) will have diameter Ω(2N).

Finding Paths Between Graph Colourings 747

For a given N , the graph GN is constructed as follows. Start with N triangles,
each consisting of vertices vi, v′i and v∗i with L(vi) = {1, 2}, L(v′i) = {1, 2, 3}
and L(v∗i) = {3, 4}, for i = 1, . . . , N . In a colouring κ where κ(v∗i) = 3, triangle
i is said to be locked, otherwise it is unlocked. Now between every pair v∗i and
v∗j with i �= j we add a (4, 4)-forbidding path. So:

Observation 12. At most one triangle can be unlocked in any colouring.

We complete the construction of GN by, for every i, adding a (4, 1)-forbidding
path from v∗i to vi−1, and adding (4, 2)-forbidding paths from v∗i to vj for all
j ≤ i− 2.

Observation 13. Triangle i can only be unlocked in a colouring κ when
κ(vi−1) = 2 and κ(vj) = 1 for all j ≤ i− 2.

4.2 Bounds on Size and Distance

Observation 14. The sizes of V (GN) and E(GN) are both bounded by O(N2).

To show that there exists a pair of colourings ofGN such that exponentially many
steps (exponential in N) are needed to go from one to the other, we need only
consider the colours of the vertices vi. These can be seen as N bits with value 1
or 2. We call a colouring κ of GN a (c1, c2, . . . , cN)-colouring if κ(vi) = ci for all
i. All (c1, c2, . . . , cN)-colourings together form the colour class (c1, c2, . . . , cN).
Observe that no colour class is empty.

Lemma 15. Let (x1, . . . , xN) and (y1, . . . , yN) be distinct tuples with all xi, yi ∈
{1, 2}.

(a) If the tuples differ only on position i, and xi−1 = 2, and xj = 1 for all
j < i− 1, then from any colouring in class (x1, . . . , xN) we can reach some
colouring in class (y1, . . . , yN) via a sequence of recolourings, without ever
leaving colour class (x1, . . . , xN) in the intermediate colourings.

(b) Otherwise, there is no colouring in class (x1, . . . , xN) that is adjacent to a
colouring in class (y1, . . . , yN).

Proof. Suppose the stated conditions on the tuples hold. We show that any
colouring κ in the class (x1, . . . , xN) can be recoloured to a colouring in class
(y1, . . . , yN). If in κ, a triangle j �= i is unlocked, it can be verified that (if neces-
sary) v′j and internal vertices of incident (a, b)-forbidding paths can be recoloured
so that triangle j can be locked, without ever leaving colour class (x1, . . . , xN).
At this point, triangle i can be unlocked; none of the (a, b)-forbidding paths in-
cident with v∗i pose any restriction by our assumption on the tuple, and since all
other triangles are locked. Then we can set κ(v′i) = 3 and κ(vi) = yi to obtain a
colouring in class (y1, . . . , yN). This proves the first statement.

Now let α be a (x1, . . . , xN)-colouring, let β be a (y1, . . . , yN)-colouring, and
suppose that α and β are adjacent. This means they differ only on one vertex,
and because the tuples are distinct, α and β must therefore differ precisely on

748 P. Bonsma and L. Cereceda

a vertex vi, for some i. This means triangle i is unlocked in both colourings.
Because of the (4, 1)- and (4, 2)-forbidding paths starting at v∗i , α(vi−1) = 2 and
α(vj) = 1 for all j < i− 1. This proves the second statement. �

Theorem 16. Every graph GN has two colourings α and β in the same com-
ponent of C(GN , L) which are at distance at least 2N − 1.

Proof. For the colouring α we choose a colouring in class (1, . . . , 1); such a
colouring exists since no colour class is empty. Colouring β will be a colouring
in class (1, . . . , 1, 2). We first prove by induction that such colourings can be ob-
tained from each other by recolourings, using the following induction hypothesis.

Induction hypothesis
There is a path in C(GN , L) from any colouring α′ in class (1, . . . , 1, x0, x1, . . . ,
xN−n) to some colouring β′ in class (1, . . . , 1, 3− x0, x1, . . . , xN−n).

The colourings differ on vertex vn: we have α′(vn) = x0 and β′(vn) =
3 − x0, while for all i �= n, we have α′(vi) = β′(vi). If n = 1, the state-
ment follows directly from Lemma 15. If n > 1, then from α′ we recolour
to a (1, . . . , 1, 2, x0, x1, . . . , xN−n)-colouring (which differs from the initial class
only in the (n − 1)-th position), using the induction hypothesis. Then we re-
colour to a (1, . . . , 1, 2, 3 − x0, x1, . . . , xN−n)-colouring, using Lemma 15. Fi-
nally, using the induction hypothesis again, we can recolour to a (1, . . . , 1, 1, 3−
x0, x1, . . . , xN−n)-colouring, which proves the statement.

Now we show that to go from a (1, . . . , 1)-colouring to a (1, . . . , 1, 2)-colouring,
at least 2N − 2 other colour classes need to be visited, using the following
induction hypothesis.

Induction hypothesis
To go from a (1, . . . , 1, 1, x1, . . . , xN−n)-colouring to a (1, . . . , 1, 2, y1, . . . , yN−n)-
colouring, at least 2n − 2 other colour classes need to be visited.

If n = 1, the statement is obvious. If n > 1, then consider a shortest path
between two colourings in these classes, if it exists. At some point in the
sequence of recolourings, the colour of vn is changed for the first time; before
this we must have a (1, . . . , 1, 2, 1, z1, . . . , zN−n)-colouring, by Lemma 15 (in
this colouring, vn−1 has colour 2). By the induction hypothesis, at least 2n−1−2
colour classes have been visited before this colour class was reached. Now
changing the colour of vn to 2 yields a (1, . . . , 1, 2, 2, z1, . . . , zN−n)-colouring.
Using the induction hypothesis again, at least 2n−1 − 2 colour classes need to
be visited before class (1, . . . , 1, 2, y1, . . . , yN−n) is reached. This means that in
total, at least 2n − 4 + 2 intermediate colour classes have been visited in the
recolouring procedure. This completes the proof. �

We conclude by remarking that the graphs constructed here can be made bipar-
tite without too much effort, and that they can be made planar using a suitable
crossing component. We omit the details because of space constraints. The bi-
partite graphs thus obtained have size O(N2) while the planar ones have size
O(N4); for both, the distance between α and β is again at least 2N−1. Lemma 5

Finding Paths Between Graph Colourings 749

now shows that they can be transformed into k-Colour Path instances, com-
pleting the proof of Theorem 4.

Acknowledgements. We are indebted to Moshe Vardi for initially suggesting
that the decision problem k-Colour Path might be PSPACE-complete for
k ≥ 4.

References

1. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
2. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
3. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph

of vertex-colourings. CDAM Research Report LSE-CDAM-2005-11(accepted
for publication in Discrete Math.) (2005), available from http://www.cdam.
lse.ac.uk/Reports/reports2005.html

4. Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite
graphs. CDAM Research Report LSE-CDAM-2007-06 (submitted, 2007), available
from http://www.cdam.lse.ac.uk/Reports/reports2007.html

5. Jerrum, M.: Counting, Sampling and Integrating : Algorithms and Complexity.
Birkhäuser Verlag, Basel (2003)

6. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colourings
(in preparation)

7. Billingham, J., Leese, R., Rajaniemi, H., et al.: Frequency reassignment in cellu-
lar phone networks, Smith Institute Study Group Report (2005), available from
http://www.smithinst.ac.uk/Projects/ESGI53/ESGI53-Motorola/index html

8. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The con-
nectivity of Boolean satisfiability: computational and structural dichotomies.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006), available from
http://arxiv.org/abs/cs.CC/0609072

9. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoret. Comput. Sci. 343, 72–96 (2005)

10. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

11. Dyer, M., Flaxman, A., Frieze, A., Vigoda, E.: Randomly colouring sparse random
graphs with fewer colours than the maximum degree. Random Struct. Algor. 29(4),
450–465 (2006)

http://www.cdam.lse.ac.uk/Reports/reports2005.html
http://www.cdam.lse.ac.uk/Reports/reports2005.html
http://www.cdam.lse.ac.uk/Reports/reports2007.html
http://www.smithinst.ac.uk/Projects/ESGI53/ESGI53-Motorola/index_html
http://arxiv.org/abs/cs.CC/0609072

Shuffle Expressions and Words with Nested Data

Henrik Björklund1,� and Miko�laj Bojańczyk2,��

1 University of Dortmund
2 Warsaw University

Abstract. In this paper, we develop a theory that studies words with
nested data values with the help of shuffle expressions. We study two
cases, which we call “ordered” and “unordered”. In the unordered case,
we show that emptiness (of the two related problems) is decidable. In the
ordered case, we prove undecidability. As a proof vehicle for the latter,
we introduce the notion of higher-order multicounter automata.

1 Introduction

A data word is a word where each position, in addition to its finite alphabet label,
carries a data value from an infinite domain. Recent times have seen a flurry of
research on data languages, motivated chiefly by applications in XML databases
and parameterized verification; see, e.g., [7,9,2,4,11,3,1]. One of the main results
is that satisfiability for first-order logic with two variables is decidable over data
words, as long as the only operation allowed on the data values is equality
testing [2]. The same paper also demonstrates a close connection between data
languages, shuffle expressions, and multicounter automata:

1. Multicounter automata. These are nondeterministic automata with many
counters, which can be incremented and decremented, but zero tests are
only allowed at the end of the word.

2. Shuffle expressions. These are regular expressions extended with intersection
and the shuffle operation.

3. Two-variable data languages. These are properties of data words that can
be expressed in certain two-variable logics.

The connection between multicounter automata (or Petri nets) and shuffle ex-
pressions was discovered in [5], while the connection between the first two and
data languages was discovered in [2].

In this paper, we develop and investigate extensions of the above. We focus on
nested data values and shuffle expressions. There are two principal motivations.

– When data values are only used to induce an equivalence relation on the
positions, such as in the logics mentioned above, one of the chief applications
is parameterized verification. A number of processes run in parallel, and in

� Supported by the Deutsche Forschungsgemeinschaft Grant SCHW678/3-1.
�� Supported by Polish government grant no. N206 008 32/0810.

L. Kučera and A. Kučera (Eds.): MFCS 2007, LNCS 4708, pp. 750–761, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Shuffle Expressions and Words with Nested Data 751

the resulting sequence of actions, the individual actions are annotated by
the unique id of the process that performed them. This data word can be
used to check global properties (by looking at the whole string) and local
properties (by considering the sequence of actions of a single process).

To model a system where processes can have subprocesses, and so on, we
would want a data word with nested data values: each action carries the id
of the subprocess which performed it as well as the id of the process that
spawned the subprocess, and so on.

– In [5], nesting of the shuffle operation was not considered. This runs con-
trary to the unrestricted nesting of other operations in regular expressions,
and begs the question what happens when unrestricted nesting of shuffles
is allowed. We discover that the resulting languages are actually intimately
related to languages with nested data. We also discover that this leads to
undecidability; and decidability can be recovered only after adding a form
of commutativity to the shuffle operation.

We note that our notion of shuffle expressions is different than the one used in
some of the literature–see, e.g.,[6]–since we consider four different shuffle opera-
tors and allow intersection with regular languages.

Our main topic is logics over words with nested data. We study two two-
variable fragments of first order, one with order and one without. The first
one is shown to be undecidable, while the second is decidable. Nested shuffle
expressions are the main proof vehicle, and an object of independent study. For
instance, the expressions we consider capture the language:

an1# · · ·#ank #bm1# · · ·#bmk# : n1, . . . , nk is a permutation of m1, . . . ,mk

It is our opinion that the two concepts—logic with nested data and shuffle
expressions—shed light on each other in a useful cross-fertilization.

Due to space restrictions, most proofs have been omitted, and will appear in
the full version of the paper.

2 A Logic for Words with Nested Data

Let A be a finite alphabet and Δ an infinite set, whose elements will be called
data values. For k ∈ N, a word with k layers of data is a word where every
position, apart from a label in A, has k labels d1, . . . , dk ∈ Δ. The label di is
called the i-th data value of the position. Therefore, such a word is an element
w ∈ (A × Δk)∗. In w, the data values can be seen as inducing k equivalence
relations ∼1, . . . ,∼k on the positions of w. That is, two positions are related by
∼i if they agree on the i-th data value.

We are interested in the data values only insofar as equality is concerned.
Therefore, the relations ∼1, . . . ,∼k supply all the information required about a
word; and could be used as an alternative definition. Adding more structure—
such as a linear order—to the data values leads very quickly to undecidable
decision problems, already with one layer, and even for very weak formalisms.

752 H. Björklund and M. Bojańczyk

A word with k layers of data is said to have nested data if for each i = 2, . . . , k
the relation ∼i is a refinement of ∼i−1. In other words, if two positions agree on
value i, then they also agree on value i− 1. For the rest of this section, we fix k
and only talk about words and languages with k layers of nested data. Instead of
”word with k nested layers of data”, we will just write ”word with nested data”.

In the spirit of Büchi’s sequential calculus, we will use logic to express proper-
ties of words with nested data. In this setting, a word with nested data is treated
as a model for logic, with the logical quantifiers ranging over word positions. The
data values are accessed via the relations ∼i. For instance, the formula

∀x∀y (x ∼2 y ⇒ x ∼1 y) ∧ · · · ∧ (x ∼k y ⇒ x ∼k−1 y)

states that the data values are nested. (This formula is a tautology in our setting,
where only models representing words with nested data values are considered.)
Each label a from the finite label set A can be accessed by a unary relation; for
instance ∀x a(x) is true in words where all positions have label a. The linear
order on word positions can be accessed via the relation <. For instance,

∀x (∀y y ≤ x) ⇒ (∀y < x y �∼1 x)

says that the last position has a different first (and consequently, all others as
well) data value than than the other positions. We also use the successor relation
x = y + 1. Although it can be defined in terms of the order, a third variable z
is required, which is too much for the two-variable fragments we considered. We
mainly consider satisfiability: given a formula, determine if there is a nested data
word that satisfies it. This problem is undecidable in general, but by restricting
the formulas, we can obtain decidable fragments.

Satisfiability is undecidable already for the following fragments, see [2]:

– There is only one layer of data. The formulas can use three variables; but
the order on word positions can be accessed only via x = y + 1 and not <.

– There are two layers of data, but these are not necessarily nested. The for-
mulas can use only two variables, x = y + 1, x = y + 2 and not <.

The largest known decidable fragment was presented in [2]:

– There is only one layer of data. The formulas can use only two variables,
and the positions can be accessed by both x = y + 1 and <.

We want to generalize the above result to words with multiple layers of nested
data. The result from [2] fails already for two layers:

Theorem 2.1. With two layers of nested data, satisfiability is undecidable for
two-variable first-order logic with the relations x = y + 1 and x < y.

Proof (Sketch). We encode computations of a two-counter machine with zero
tests. Consider words with two layers of nested data, where the labels are
A = {start, end, inc, dec} and the positions are labeled according to the regular
language (start(inc+dec)∗end)∗. This is easy to express in our two-variable logic.

Shuffle Expressions and Words with Nested Data 753

Next, we express that each block of the form start(inc + dec)∗end corresponds
to a single data value on layer 1:

∀x start(x) ⇒ ∀y < x x �∼1 y ∀x end(x) ⇒ ∀y > x x �∼1 y
∀x∃y ≥ x x ∼1 y ∧ end(y) ∀x∃y ≤ x x ∼1 y ∧ start(y) (1)

Finally, the we can use equivalence classes (sets of positions with the same data
value) on layer two to ensure that the operations inc and dec are balanced.

Consider a word with nested data that satisfies the above properties. This
word can be seen as a computation of a one counter machine without states,
where inc corresponds to a counter increment, dec corresponds to a counter
decrement, while start, end correspond to zero tests.

To get two counters instead of one, we expand the label alphabet from A to
{1, 2} ×A. The regular language we use is now

start1start2(inc1 + inc2 + dec1 + dec2 + end1start1 + end2start2)∗end2end1.

The rest of the construction also generalizes, by duplicating each formula, once
for each counters, and adding consistency constraints.

Even with the above result, however, not all hope is lost. Satisfiability is decidable
if we lose the order <, even with arbitrarily many layers of data.

Definition 1. FO2(+1,∼1, . . . ,∼k) is the fragment of first-order logic that uses
only the two variables x and y and the following predicates.

a(x) x has label a, where a is a label from A
y = x + 1 y is the position directly to the right of x
x ∼i y x and y have the same layer i data value, with i ∈ {1, . . . , k}

Theorem 2.2. Over words with nested data, satisfiability is decidable for
FO2(+1,∼1, . . . ,∼k).

The above result is a consequence of Theorem 3.4, which says that formulas of
the logic can be compiled into a type of shuffle expression, and Theorem 5.2,
which says that emptiness is decidable for these shuffle expressions.

3 Shuffle Expressions

Recall that a word w ∈ A∗ is called a shuffle of words w1, · · · , wm ∈ A∗ if the
positions of w can be colored using m colors so that the positions with color
i ∈ {1, . . . ,m}, when read from left to right, form the word wi. If K ⊆ A∗ is a
(possibly infinite) set of words, then shuffle(K) ⊆ A∗ is defined as

{w : w is a shuffle of some w1, . . . , wm ∈ K, for some m ∈ N}.

Note that the words w1, . . . , wm above may include repetitions. For instance,
shuffle({a}) contains all words a∗. Just as finite automata are connected to
regular expressions, multicounter automata are connected to shuffle expressions.
This is witnessed by the following result, essentially due to [5]:

754 H. Björklund and M. Bojańczyk

Theorem 3.1. The following language classes are equal, modulo morphisms:

1. Languages recognized by multicounter automata;
2. Languages of the form L ∩ shuffle(K), where L,K are regular.

The qualification “modulo morphisms” means that any language from class 1
is a morphic image of a language in class 2. (Class 2 is simply contained in
class 1, without need for morphisms.) The point of the morphism is to erase
bookkeeping, such as annotations with accepting runs.

We can now ask what we get if we add intersection and shuffle to regular
expressions. The answer is that we get more than we want:

Theorem 3.2. If regular expressions are extended with shuffle and intersection,
all recursively enumerable languages can be defined modulo morphisms.

In particular, emptiness is undecidable for such extended regular expressions.
Disallowing intersection trivializes the emptiness problem — which is the prob-
lem we are most interested in here — since shuffle(K) is nonempty if and only
if K is. Theorem 3.2 follows directly from Theorems 4.1 and 4.2 below.

In this paper, however, we are most interested in decidability results, especially
for logics with data values. It turns out that decidability can be recovered, if we
consider a weaker form of shuffling, which is partly commutative.

3.1 Cutting and Combining

To express our modification of the shuffle operation, it is most convenient to
decompose shuffle(L) into two operations:

shuffle(L) = combine(cut(L)) . (2)

The first cut operation sends a set of words L ⊆ A∗ to the set of traces obtained
by cutting a word from L into pieces:

cut(L) = {w1| · · · |wk : w1 · · ·wk ∈ L} ⊆ (A∗)∗.

In the above a trace is a sequence of finite words, which is written as w1| · · · |wk,
with | separating consecutive words, called segments. Traces are denoted by
θ or σ, and will be heavily used later on.

The second operation is called combine, and it sends a set of traces L ⊆ (A∗)∗

to the set of words that can be combined from these traces:

combine(L) = {w : w is a combination of θ1, . . . , θm ∈ L } ⊆ A∗.

By saying that w is a combination of traces θ1, . . . , θm we mean that positions
of w can be colored with m colors, so that for each color i = 1, . . . ,m, the
positions with color i give the trace θi. In the trace θi = w1| · · · |wn, the seg-
ments w1, . . . , wn correspond to maximal subwords of w that are assigned color
i. Consider the following example.

a b c c c b a c
1 1 2 1 3 1 2 2

θ1 = ab|c|b
θ2 = c|ac
θ3 = c

Shuffle Expressions and Words with Nested Data 755

By the maximality requirement, the trace θ2 cannot be replaced by c|a|c Given
the above definitions of cut and combine, it should be fairly clear that equa-
tion (2) holds. However, by tweaking the definitions of cut and combine, we will
arrive at variants of the shuffle operation that are decidable and, more impor-
tantly, relevant to our investigation of nested data values.

The first modification gives us more control on the way words from L ⊆ A∗

are cut into traces. Let K ⊆ A∗ be a language. We define

cutK(L) = {w1| · · · |wk : w1 · · ·wk ∈ L,w1, . . . , wk ∈ K} ⊆ (A∗)∗.

In other words, words from L are cut into traces where each segment belongs
to K. Setting K = A∗ allows us to recover the standard cut operation, so cutK
is a generalization of cut . We only consider the case when K is regular.

The second modification concerns the operation combine. An unordered trace
is a multiset of words, i.e. a trace where the order of segments is not impor-
tant (however, the ordering of letters inside the segments is). The operation
ucombine(L) treats the set of traces L as unordered traces:

ucombine(L) = {w : w is an unordered combination of θ1, . . . , θm ∈ L } ⊆ A∗.

In the above, w is an unordered combination of θ1, . . . , θm if w is a combination
of traces σ1, . . . , σm, such that σi is obtained from θi by rearranging the order of
segments. Thus abc is an unordered combination of traces θ1 = c|a and θ2 = b.

3.2 Four Kinds of Shuffle Expressions

From the above, we obtain four variants of the shuffle operation:

– Shuffle: shuffle(L) = combine(cut(L)).
– Controlled shuffle: cshuffleK(L) = combine(cutK(L)).
– Unordered shuffle: ushuffle(L) = ucombine(cut(L)).
– Unordered controlled shuffle: ucshuffleK(L) = ucombine(cutK(L)).

Each such operation gives rise to its own flavor of extended regular expressions.
We will investigate and compare these flavors with respect to decidability and
expressive power.

Definition 3.3. Controlled shuffle expressions (CSE) denote languages obtained
by nesting the following operations:

– Standard regular expression operations: single letters a ∈ A, the empty word
ε, concatenation, union and Kleene star.

– Intersection with regular languages.
– Controlled shuffle cshuffleK(L), where L is defined by a CSE, but K is a

regular word language.
– Images under morphisms f : A∗ → B∗.

Shuffle expressions (SE), unordered shuffle expressions (USE) and unordered
controlled shuffle expressions (UCSE) are defined analogously, by replacing the
type of shuffle operation allowed. All types of operations can be freely nested.

756 H. Björklund and M. Bojańczyk

The point of adding morphic images is to have a form of nondeterministic guess-
ing in the expressions (and therefore more power). This will be illustrated in the
following example. Note also that morphic images are necessary due to adding
the intersection and shuffle operations; in standard regular expressions the pro-
jection operation does not add any power and can be eliminated.

Example 1. In the shuffle operation shuffle(L), we have no control over the num-
ber of times the language L is used. In this example we show that we can enforce
that it is used an even number of times. Let then L ⊆ A∗ be defined by an SE.
The idea is to expand the alphabet A with a new symbol start; each word from
L will be prefixed by this symbol. Consider then the expression:

K = start · L .

If we now take the expression shuffle(K), we can use the marker start to see how
many times K was used. By intersecting with the regular language “even number
of occurrences of start”, we can make sure that it was used an even number of
times. Finally, the markers can be removed using the erasing morphism f :
(A ∪ {start})∗ → A∗ defined by f(start) = ε and f(a) = a for a ∈ A.

Example 2. Unordered shuffling is enough to express some counting properties:
ushuffle(ab) describes words in (a + b)∗ with the same number of a’s and b’s.
Using intersection with the regular language a∗b∗, we get the language {anbn}.

Example 3. Using the same idea as in the previous example, we can also get the
language L = {an#bn#}. Consider now the following expression:

(a∗#)∗(b∗#)∗ ∩ ucshuffleK(L) where K = a∗# + b∗#

This expression defines the set of words

an1# · · ·#ank#bm1# · · ·#bmk#,

such that n1, . . . , nk is a permutation of m1, . . . ,mk.

3.3 From Logic to Shuffle Expressions

In this section we state the reduction of satisfiability for FO2(+1,∼1, . . . ,∼k)
to the emptiness problem for unordered controlled shuffle expressions.

Theorem 3.4. For every FO2(+1,∼1, . . . ,∼k)-formula φ, a UCSE r can be
effectively computed such that the language of r is non-empty if and only if φ is
satisfiable.

Proof (Sketch). We can assume that φ is in data normal form; a normal form very
similar to the one used in [2]. This means that φ is a set of conjuncts, where each
conjunct is fairly simple. The conjuncts express properties of classes by referring
to types. When talking of types, these conjuncts only use the expressions ”at

Shuffle Expressions and Words with Nested Data 757

least one node”, ”has a node”, and ”at most one node”. Thus, the only relevant
information about a class string (where the class can be w.r.t. any of the k
equivalence relations), is the number of times each type appears. Furthermore,
if a type appears at least twice, the exact number of times is irrelevant.

If we have a footprint mapping f : T → {0, 1, 2}, where T is the set of types
appearing in φ, that tells us if a type appears 0, 1, or 2 or more times, we know
everything we need about the class string. We can easily compute the set F of
those footprints that are allowed by the conjuncts from φ. If we construct, for
each f ∈ F , a shuffle expression that accepts exactly those strings that have
footprint f , we can combine these expressions (using the + operator) into one
that accepts all correct class strings. Using the shuffle operator on this expression
gives an expression whose language is such that every word can be extended with
(level k) data values in such a fashion that the conjuncts of φ that use ∼k are
satisfied.

The idea is to use this construction inductively, starting with level k, until,
after using k shuffle operations, all conjuncts of φ are taken care of.

The corresondence between r and φ is actually stronger: r contains words ob-
tained from models of φ by erasing data values. We do not know if the converse
translation—from expressions to logic—can be done; possibly the expressions
are strictly stronger than the logic. A similar reduction, from logic with order
to CSE is possible, but the proof is omitted.

4 Ordered Shuffle Expressions

The following theorem relates CSE, SE and higher-order multicounter automata.
The latter, to our best knowledge, are a new model.

Theorem 4.1. The following language classes are equal:

1. Languages defined by controlled shuffle expressions (CSE);
2. Languages defined by shuffle expressions (SE);
3. Languages defined by higher-order multicounter automata;
4. Recursively enumerable languages.

We define higher-order multicounter automata in Section 4.1, and prove their
Turing completeness. The rest of the proof of Theorem 4.1 is omitted.

4.1 Higher-Order Multicounter Automata

A multiset over A is a function m : A → N. We only consider finite multisets
here, where all but a finite number of elements in A are assigned 0. We also
consider higher-level multisets (which are also multisets). A level 1 multiset over
A is a finite multiset over A. A level k + 1 multiset over A is a finite multiset of
level k multisets over A.

A level k multicounter automaton is defined as follows. It has a state space
Q, an input alphabet Σ, and a multiset alphabet A. All of these are finite. The

758 H. Björklund and M. Bojańczyk

automaton reads an input word w ∈ Σ∗ from left to right. At each moment,
its memory is a tuple (q,m1,m2, . . . ,mk), where q is one of the states in Q,
and each mi is a level i multiset over A, possibly undefined ⊥. (We distinguish
an empty multiset ∅ from an undefined one ⊥.) The initial configuration is
(qI ,⊥,⊥, . . . ,⊥), where qI is some designated initial state.

There is a finite set of transition rules, which say how the machine can modify
its memory upon reading an input symbol (or doing an ε-transition). Each such
transition rule is of the form: when in state q and upon reading the label a ∈
Σ∪{ε}, assume state p and do counter operation x. The counter operations are:

new i: Change mi from ⊥ to ∅.
inca: Add a ∈ A to the level 1 multiset m1.
deca: Remove a ∈ A from the level 1 multiset m1.

storei: Add mi to the level i + 1 multiset mi+1; then set mi to ⊥.
load i: Remove nondeterministically some element m from mi+1 and store it in

mi. This transition is enabled only when m1, . . . ,mi are all ⊥.

We use Counteropsk to denote the possible counter operations in a level k au-
tomaton. Note here that the automaton knows which mi are undefined, since this
is controlled by transitions new i and storei. On the other hand, the automaton
does not know if a defined multiset mi is empty, or not.

What is the accepting condition? We say a level k multiset is hereditarily
empty if it is empty, or it consists only of hereditarily empty level k−1 multisets.
The automaton accepts if m1, . . . ,mk are all hereditarily empty multisets in all
memory cells; and the control state belongs to a designated accepting set.

The above definition is similar, but not identical, to the notion of nested Petri
nets from, e.g., [8].

Here we show that the machines are Turing complete, already on level 2.

Theorem 4.2. Level 2 multicounter automata recognize all recursively enumer-
able languages.

Proof
We show that a level 2 multicounter automaton can simulate a two-counter
machine with zero tests. Since the latter type of machine is capable of recognizing
all recursively enumerable languages, the statement follows.

A configuration of the two-counter machine, where counter 1 has value i and
counter 2 has value j, will be represented by the following level 2 multiset:

{{x, . . . , x︸ ︷︷ ︸
i times

, a}, {x, . . . , x︸ ︷︷ ︸
j times

, b}, ∅, . . . , ∅︸ ︷︷ ︸
k times

} . (3)

The occurrences ∅ are used for bookkeeping; the number k will correspond to the
number of zero-tests that have been carried out in the run leading to this config-
uration. A configuration as above is called proper. Our automaton will have the
property that improper configurations always lead to improper configurations;
furthermore, a failed zero-test will lead to an improper configuration.

Shuffle Expressions and Words with Nested Data 759

We now show how to represent the operations of the simulated machine:

– Zero test on counter 1. We do the following sequence of operations:

load1 deca store1 new1 inca store1 .

If the configuration was improper, it will remain so. If it was proper, the
level 2 from (3) multiset will become:

{{a}, {x, . . . , x︸ ︷︷ ︸
j times

, b}, ∅, . . . , ∅︸ ︷︷ ︸
k times

, {x, . . . , x︸ ︷︷ ︸
i times

}} .

If i was not 0, the above configuration will be improper.
– Increment on counter 1. We do the following sequence of operations:

load1 deca incx inca store1 .

A decrement is done the same way.
– The operations on counter 2 are as above, except b is used instead of a.

One can easily see that the automaton can reach a proper configuration as in (3)
if and only if the simulated two-counter machine could have counter values (i, j).
Furthermore, the simulating machine can test (once, at the end of its run), if it
has reached a proper configuration of the form:

{{a}, {b}, ∅, . . . , ∅︸ ︷︷ ︸
k times

} .

This is done by load1 deca store1 load1 decb store1 and testing if all
memory cells are hereditarily empty. �

5 Unordered Shuffle Expressions

In this section, we state the decidability of the emptiness problems for un-
ordered shuffle expressions, controlled (UCSE) or not (USE). Since ushuffle(L) =
ucshuffleA∗(L) if A is the alphabet of L, it is clear that USE is a special case of
UCSE. Nevertheless, we chose to state the following independently:

Theorem 5.1. Emptiness for unordered shuffle expressions is decidable.

The reason is that the proof is considerably less involved than for the controlled
case. It uses a reduction to finite word automata equipped with a Presburger
counting condition.

As stated in the introduction, the main goal of this paper is to show de-
cidability of satisfiability for the 2-variable logic from Definition 1 over words
with nested data. Theorem 3.4 shows that this problem reduces to emptiness for
UCSE. We are now ready to complete the proof of Theorem 2.2, by stating the
main combinatorial result of the paper:

Theorem 5.2. Emptiness for unordered controlled shuffle expressions is
decidable.

760 H. Björklund and M. Bojańczyk

The proof is rather involved, and is based on a study of the Parikh images [10] of
languages defined by UCSE. Due to space limitiations, we can can only present
here a very brief outline of the key ideas.

The main technical result is the following Parikh-type theorem:

Theorem 5.3. The Parikh image of a language defined by a UCSE is
semilinear.

Furthermore, since the semilinear set is effectively obtained, it can be tested for
emptiness in a decision procedure for emptiness of UCSE, hence Theorem 5.2
follows. The proof of Theorem 5.3 is by induction, and only one step is nontrivial:
when the expression is of the form

ucshuffleM (L) ∩K, (4)

where L is defined by a UCSE and K,M are regular languages.
What follows is a very informal description of some of the ideas used in show-

ing that the Parikh image of the language above is semilinear. We first remind
the reader how the language (4) is defined. We begin with traces θ1, . . . , θn that
are obtained from cutting words from L into segments from M . In other words,
each trace θi ∈ (A∗)∗ must belong to cutM (L). Then, the segments of these
traces are rearranged and combined to get a word in the regular language K.

The basic idea for computing the Parikh image of (4) is as follows. To θ
we assign two vectors: its Parikh image π(θ) ∈ NA; and another vector ρ(θ) ∈
NB, called the footprint of θ. The idea behind the footprint is that it contains
information on the way θ can be combined with other traces to get a word in K.
By using the induction assumption of Theorem 5.3, we can show that these two
vectors are related in a semilinear way, i.e. the following vector set is semilinear:

Y = {(π(θ), ρ(θ)) : θ ∈ cutM (L)} ⊆ NA∪B.

Using the mappings π and ρ, the job of calculating the Parikh image of (4) can
be split into two phases. In the first phase, the question whether or not traces
θ1, . . . , θn can be combined into a word from K is rephrased as a condition (*)
on the footprints ρ(θ1), . . . , ρ(θn). In the second phase, the semilinear set Y is
used to go from the from the footprints to the Parikh images. More precisely,
we show that the following set is semilinear:

{π(θ1) + · · ·+ π(θn) : θ1, . . . , θn are traces such that
ρ(θ1), . . . , ρ(θn) satisfy condition (*)}

This concludes, since the above set is the Parikh image of (4). Note that in the
above, we do not need to quantify over the traces θi, since it is enough to verify
that two vectors π(θi) and ρ(θi) satisfy the semilinear property Y .

We conclude by summarizing the expressive power of the expressions:

USE � UCSE � SE = CSE.

The strictness of the first inequality is not shown due to lack of space. The second
inequality follows by undecidability of SE, while the equality was mentioned in
Theorem 4.1.

Shuffle Expressions and Words with Nested Data 761

References

1. Björklund, H., Schwentick, T.: On notions of regularity for data languages. In:
FCT’07 (to appear, 2007)

2. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: LICS’06, pp. 7–16 (2006)

3. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and
timed languages. Information and Computation 182(2), 137–162 (2003)

4. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In:
LICS’06, pp. 17–26 (2006)

5. Gischer, J.: Shuffle languages, petri nets, and context-sensitive grammars. Com-
munications of the ACM 24(9), 597–605 (1981)

6. Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. TCS 250, 31–53
(2001)

7. Kaminski, M., Francez, N.: Finite-memory automata. TCS 132(2), 329–363 (1994)
8. Lomazova, I.A., Schnoebelen, P.: Some decidability results for nested petri nets.

In: PSI’99, pp. 208–220 (2000)
9. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite

alphabets. ACM transactions on computational logic 15(3), 403–435 (2004)
10. Parikh, R.: On context-free languages. Journal of the ACM , 570–581 (1966)
11. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:

Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

Author Index

Adámek, Jǐŕı 240
Afrati, Foto 78
Asahiro, Yuichi 115

Bedon, Nicolas 477
Behle, Christoph 147
Bell, Paul 346
Bilò, Vittorio 621
Björklund, Henrik 750
Bläser, Markus 669
Bleischwitz, Yvonne 657
Bojańczyk, Miko�laj 750
Bonsma, Paul 738
Brandstädt, Andreas 525
Brodal, Gerth Stølting 406, 442

Carvajal, Rodolfo 218
Case, John 253
Cereceda, Luis 738
Cervelle, Julien 310
Chakrabarti, Amit 383
Chervet, Patrick 135
Chvátal, Vašek 1
Clementi, Andrea E.F. 430
Crochemore, Maxime 465, 645

Dawar, Anuj 2
De Santis, Alfredo 371
Delacourt, Martin 298
Demetrescu, Camil 194
Duckworth, William 56

Escoffier, Bruno 194

Ferrara, Anna Lisa 371
Flammini, Michele 621
Frati, Fabrizio 394

Gabarró, Joaquim 559
Gagie, Travis 206
Garćıa, Alina 559
Georgiadis, Loukas 406
Geyer, Markus 394
Guillon, Pierre 310

Hagerup, Torben 691
Han, Yo-Sub 501
Hansen, Kristoffer Arnsfelt 406
Hartung, Rupert J. 333

Ilie, Lucian 465
Iliopoulos, Costas S. 645
Imreh, Csanád 288

Jacob, Riko 703
Jansen, Klaus 103
Jonsson, Peter 228
Jørgensen, Allan Grønlund 442

Katriel, Irit 406
Kaufmann, Michael 394
Koiran, Pascal 359
Kontogiannis, Spyros C. 596
Koutsoupias, Elias 454, 609
Kranakis, Evangelos 418
Kratochv́ıl, Jan 513
Kratsch, Dieter 513
Krebs, Andreas 147
Kun, Gábor 171

Liedloff, Mathieu 513
Löding, Christof 67
Lokshtanov, Daniel 276
Longpré, Luc 182

Manzini, Giovanni 206
Masucci, Barbara 371
Matamala, Mart́ın 218
Mavronicolas, Marios 633
McKenzie, Pierre 182
Meer, Klaus 726
Mehlhorn, Kurt 13
Mercer, Mark 147
Meyer, Antoine 489
Meyer de Voltaire, Andreas 669
Milchtaich, Igal 633
Milius, Stefan 240
Miyano, Eiji 115
Moelius III, Samuel E. 253
Monien, Burkhard 633, 657
Monti, Angelo 430

764 Author Index

Moruz, Gabriel 194
Murata, Toshihide 115

Nagoya, Takayuki 584
Németh, Tamás 288
Nešetřil, Jaroslav 159, 171
Nikoletseas, Sotiris E. 44
Nomikos, Christos 715
Nordh, Gustav 228
Nowotka, Dirk 125

Ong, C.-H.L. 15
Ono, Hirotaka 115

Pagourtzis, Aris 715
Panagopoulou, Panagiota N. 609
Paquette, Michel 418
Pasquale, Francesco 430
Pedersen, Kasper 264
Pelc, Andrzej 418
Perifel, Sylvain 359
Potapov, Igor 346
Poupet, Victor 298

Rahman, M. Sohel 645
Rapaport, Ivan 218
Raptopoulos, Christoforos 44
Regnault, Damien 320
Ribichini, Andrea 194
Rispal, Chloé 477

Salamon, Gábor 90
Salomaa, Kai 501

Schabanel, Nicolas 218, 320
Schnorr, Claus-Peter 333
Schoppmann, Florian 657
Serna, Maria 559
Shubina, Anna 383
Siggers, Mark 159
Silvestri, Riccardo 430
Solis-Oba, Roberto 103
Spelten, Alex 67
Spirakis, Paul G. 44, 596, 609
Srba, Jǐŕı 125

Tani, Seiichiro 536
Thapper, Johan 228
Thierry, Éric 320
Tiemann, Karsten 633, 657
Toda, Seinosuke 584
Tripathi, Rahul 548

Ukkonen, Esko 681

Valiant, Leslie G. 22
Velebil, Jǐŕı 240
Vidali, Angelina 454

Wagner, Fabian 572
Wagner, Peter 525
Walukiewicz, Igor 135

Zachos, Stathis 715
Ziegler, Martin 726
Zito, Michele 56

	Title Page
	Preface
	Organization
	Table of Contents
	How To Be Fickle
	Finite Model Theory on Tame Classes of Structures
	Introduction
	Tame Classes of Structures
	Logic and Algorithms on Tame Classes
	Preservation Theorems
	Conclusion
	References

	Minimum Cycle Bases in Graphs Algorithms and Applications
	References

	Hierarchies of Infinite Structures Generated by Pushdown Automata and Recursion Schemes
	Pushdown Automata and Safe Recursion Schemes
	Recursion Schemes and Collapsible PushdownAutomata
	Practical Relevance to Semantics and Verification
	References

	Evolvability
	Introduction
	Many-Argument Functions
	Definition of Evolvability
	Limits to Evolvability
	Some Provably Evolvable Structures
	Discussion
	References

	Expander Properties and the Cover Time of Random Intersection Graphs
	Introduction
	Notation, Definitions and Properties of \Gn,m,p
	Expansion Properties of Random Intersection Graphs
	Bounds for the Second Eigenvalue and the Mixing Time
	A Useful Lemma
	An Upper Bound on the Cover Time
	Conclusions and Future Work
	References

	Uncover Low Degree Vertices and Minimise the Mess: Independent Sets in Random Regular Graphs
	Introduction
	Model and Main Result
	Greedy Algorithms for Independent Sets
	Analysis Method
	The Simple Case $\d = 3$
	Arbitrary $d \geq 4$

	References
	Appendix

	Transition Graphs of Rewriting Systems over Unranked Trees
	Introduction
	Preliminaries
	Partial Subtree Rewriting Systems
	Subtree and Flat Prefix Rewriting Systems
	Classification of Transition Graph Classes
	Reachability Via Saturation
	First-Order Theory Via Automatic Structures

	Summary and Outlook
	References

	Rewriting Conjunctive Queries Determined by Views
	Introduction
	Related Work

	Preliminaries
	Basic Definitions
	Determinacy
	Cases for Which CQ Is Complete for Rewriting

	Chain and Path Queries
	Chain Queries – Decidability
	Path Queries – CQ Is Almost Complete for Rewriting

	Determinacy and Query Equivalence
	Connectivity
	Conclusion
	References

	Approximation Algorithms for the Maximum Internal Spanning Tree Problem
	Introduction
	Notation and Basic Definitions
	Maximizing the Number of Internal Nodes
	Maximum Weighted Internal Spanning Tree
	General Graphs
	Claw-Free Graphs

	References

	New Approximability Results for 2-Dimensional Packing Problems
	Introduction
	Near-Optimum Packings with a Simple Structure
	Partitioning the Set of Rectangles
	Rounding the Lengths of the Long Rectangles
	Containers for Short Rectangles

	Rectangle Selection
	Selecting Long Rectangles
	Selecting Short-Wide and Short-Narrow Rectangles

	Positioning Long Rectangles and Containers
	Generating a Packing
	Packing the Long Rectangles
	Packing the Short-Narrow Rectangles
	Analysis of the Algorithm

	APTAS for Strip Packing Without Rotations
	References

	On Approximation of Bookmark Assignments
	Introduction
	Motivation and Formulation
	Previous and Our Results
	Related Work
	Organization

	Approximation Guarantee of a Greedy Algorithm
	Lower Bounds
	Conclusion
	References

	Height-Deterministic Pushdown Automata
	Introduction
	Preliminaries
	Height Determinism
	The General Case
	The Real-Time Case
	The Deterministic Case

	Other Language Classes — A Comparison
	Caucal’s Class
	Fisman and Pnueli’s Class

	Conclusion
	References

	Minimizing Variants of Visibly Pushdown Automata
	Introduction
	Visibly Pushdown Automata
	Call Driven Automata and Their Minimization
	Minimization of eCDA
	Minimization of CDA

	Comparison Between Different VPA Subclasses
	Other Results on MEVPA and SEVPA
	MEVPA
	SEVPA

	Block Visibly Pushdown Automata
	Conclusion
	References

	Linear Circuits, Two-Variable Logic and Weakly Blocked Monoids
	Introduction
	Definitions
	Logic
	Numerical Predicates
	Circuits

	Finitely Typed Groups
	Results
	Circuits to Logic
	Logic to Algebra
	Algebra to Circuits
	Discussion
	References

	Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete
	Introduction and Previous Work
	Definitions and Statement of Results
	The Fibre Construction
	Notation
	The Fibre Gadget
	The Fibre Construction
	Remark

	Applications
	Degree Bounded CSPs
	Girth Restricted H-Coloring
	Conservative CSPs

	Coloring Theorems - Combinatorial Background
	CSP Dichotomy Classification Conjecture
	References

	NP by Means of Lifts and Shadows
	Introduction, Background and Previous Work
	Preliminaries
	Statement of Results
	NP by Means of Finitely Many Forbidden Lifts
	Lifts and Shadows of Dualities

	Proofs
	Applications
	Classes with Bounded Expansion
	The Classes MMSNP and FP - A Characterization
	On the Local Chromatic Number

	Summary and Future Work
	References

	The Complexity of Solitaire
	Introduction
	Preliminaries
	Complexity Theory
	Klondike

	Klondike Is NP-Complete
	Complexity of Klondike Restrictions
	Conclusion
	References

	Adapting Parallel Algorithms to the W-Stream Model, with Applications to Graph Problems
	Introduction
	Simulating Parallel Algorithms in W-Stream
	Sorting
	GraphProblems
	Connected Components (CC)
	Minimum Spanning Tree (MST)
	Biconnected Components (BCC)
	Maximal Independent Set (MIS)

	Limits of the RPRAM Approach
	References

	Space-Conscious Compression
	Introduction
	Notation
	Compressing with Memory Independent of Length
	A Nearly Tight Upper Bound
	Lower Bounds
	Markov Sources
	Compressing with (Slowly) Growing Memory
	Window Size vs. Convergence Rate for\ LZ77

	Future Work
	References

	Small Alliances in Graphs
	Introduction
	The Depth of a Graph
	A Probabilistic Approach
	References
	Appendix: Alliance is$\ NP$-Complete

	The Maximum Solution Problem on Graphs
	Introduction
	Preliminaries
	Methods
	Algebraic Framework
	Basic Lemmas

	ResultsforMAX SOL
	Irreflexive Graphs with $\deg(v) \leq 2$
	Small Graphs

	ResultsforLIST MAX AW SOL
	Discussion and Future Work
	References

	What Are Iteration Theories
	Introduction
	Rational Theories
	Iteration Theories
	Conclusions and Future Research
	References

	Properties Complementary to Program Self-reference
	Introduction
	Notation and Preliminaries
	Denotational Control Structures and krt
	Control Structures Complementary to krt
	References

	Dobrushin Conditions for Systematic Scan with Block Dynamics
	Introduction
	Bounding the Mixing Time of Systematic Scan
	Application: Edge Scan on an Arbitrary Graph
	Application: Colouring a Tree
	References

	On the Complexity of Computing Treelength
	Introduction
	Notation, Terminology and Preliminaries
	Weighted \k -Treelength is NP-Complete
	\k-Treelength is NP-Complete
	Treelength Is Hard to Approximate
	An Exact Algorithm the Chordal Sandwich Problem
	Conclusion
	References

	On Time Lookahead Algorithms for the Online Data Acknowledgement Problem
	Introduction
	Preliminaries
	The $f_{\rm max}$ Objective Function
	Algorithm
	Lower Bound

	The Sum Objective Function
	Algorithms
	Lower Bounds

	References

	Real Time Language Recognition on 2D Cellular Automata: Dealing with Non-convex Neighborhoods
	Introduction
	Language Recognition by Cellular Automata
	Cellular Automata
	Two-Dimensional Language Recognition

	Iterated Neighborhoods
	General Form of Iterated Complete Neighborhoods

	MainTheorem
	General Behavior of \ACA'
	Propagation of Correct Assumptions
	The Real Time
	End of the Proof

	Conclusion
	References

	Towards a Rice Theorem on Traces of Cellular Automata
	Introduction
	Definitions
	Trace
	The Nilpotency Problem
	Subtrace Problems
	The Full Subtrace Problem
	Other Problems

	From Subtrace to Trace
	Conclusion
	References

	Progresses in the Analysis of Stochastic 2D Cellular Automata: A Study of Asynchronous 2D Minority
	Introduction
	Experimental Results
	Analysis of Fully Asynchronous 2D Minority
	Energy of a Configuration
	Coupling with Outer-Totalistic 976
	Convergence from an Arbitrary Initial Configuration
	Convergence from a Bounded Configuration

	Concluding Remarks
	References

	Public Key Identification Based on the Equivalence of Quadratic Forms
	Introduction
	The Equivalence Problem for Quadratic Forms
	Identification Based on the Equivalence Problem
	NP-Completeness
	Introduction and Results
	The Special Cohen-Lenstra Heuristics
	Sketch of Proofs

	References
	Proof of Proposition 44

	Reachability Problems in Quaternion Matrixand Rotation Semigroups
	Introduction
	Preliminaries
	Word Morphisms
	Matrix Representations

	Quaternion Matrix Semigroups
	Computational Problems in Lipschitz Integers

	Geometric Interpretations
	References

	VPSPACE and a Transfer Theorem over the Complex Field
	Introduction
	Notations and Preliminaries
	The Blum-Shub-Smale Model
	Valiant’s Model

	The Class VPSPACE
	Definition
	An Alternative Characterization and Some Properties

	Testing Membership to a Union of Varieties
	Tests of Membership
	Union of Varieties

	Proof of the Main Theorem
	Satisfiable Sign Conditions
	Enumerating All Possibly Tested Polynomials
	Finding the Sign Condition of the Input
	A Polynomial-Time Algorithm for PAR$_{\cc}$ Problems

	References

	Efficient Provably-Secure Hierarchical Key Assignment Schemes
	Introduction
	Hierarchical Key Assignment Schemes
	An Encryption Based Construction
	Improving Key Derivation Time
	The Shortcutting Technique
	The Shortcutting and Point-Inserting Technique
	The Improved Shortcutting and Point-Inserting Technique

	A Broadcast Encryption Based Construction
	References

	Nearly Private Information Retrieval
	Introduction
	Preliminaries
	Our Results and Previous Work

	Simple Upper Bounds
	1-Server Lower Bounds
	Perfect Privacy and Recovery
	Nearly Private Schemes
	Nearly Private Schemes with Imperfect Recovery

	2-Server Lower Bounds
	Quantum Communication
	Perfect Privacy
	The Nearly Private Case

	Conclusion
	References

	Packing and Squeezing Subgraphs into Planar Graphs
	Introduction and Motivation
	Definitions
	Packing Trees in Planar Graphs
	Squeezing Planar Graphs in Planar Graphs
	Conclusions and Open Problems
	References

	Dynamic Matchings in Convex Bipartite Graphs
	Introduction
	Dynamic Convex Matchings
	The Dekel-Sahni Algorithm
	Overview of the Dynamic Algorithm

	Data Structure Supporting Status Queries
	The Equal Start-Points Case
	The Complete Data Structure

	PairQueries
	Amortized Cost of Pair Queries
	References

	Communication in Networks with RandomDependent Faults
	Introduction
	Model and Problem Definition
	Related Work

	General Networks
	Upper Bounds
	Lower Bounds
	Communication in the Hypercube

	Bounded Degree Networks
	Upper Bounds
	Lower Bounds

	Conclusion
	References

	Optimal Gossiping in Directed Geometric Radio Networks in Presence of Dynamical Faults
	Introduction
	RelatedWorks

	Collision-Free Families and Fault-Tolerant Gossiping
	Explicit Constructions of Collision-Free Families
	Optimal Bounds
	Open Questions
	References

	A Linear Time Algorithm for the \k Maximal Sums Problem
	Introduction
	Results
	Outline of Paper

	Basic Idea and Algorithm
	BinaryHeaps
	Partial Persistence and \HU Construction
	Fredericksons Heap Selection Algorithm
	Combining the Ideas
	Extension to Higher Dimensions
	Space Reduction
	References

	A Lower Bound of $1+\phi$ for Truthful Scheduling Mechanisms
	Introduction
	Related Work

	Problem Definition
	A Lower Bound of $1+\phi$ for $n\rightarrow\infty$ Machines
	References

	Analysis of Maximal Repetitions in Strings
	Introduction
	Definitions
	The Bound
	Runs with Close Centers
	Microruns
	Sum of Exponents
	Comments
	FurtherResearch
	References

	Series-Parallel Languages on Scattered and Countable Posets
	Introduction
	Notation and Basic Definitions
	Posets
	Rational Languages
	Operations on Words
	Rational Languages

	Automata
	A Kleene Theorem for Scattered Posets
	Conclusion
	References

	Traces of Term-Automatic Graphs
	Introduction
	Notations
	Words, Terms and Trees
	Graphs
	Turing Machines

	Arborescent Tiling Systems
	Definitions
	Languages of Arborescent Tiling Systems

	Traces of Term-Automatic Graphs
	Definitions
	Term-Synchronous Graphs
	Term-Automatic Graphs

	Conclusion
	References

	State Complexity of Basic Operations on Suffix-Free Regular Languages
	Introduction
	Preliminaries
	Kleene Star and Reversal
	Kleene Star of Suffix-Free Regular languages
	Reversal of Suffix-Free Regular Languages

	Catenation
	Intersection and Union
	Intersection of Suffix-Free Regular Languages
	Union of Suffix-Free Regular Languages

	Conclusion
	References

	Exact Algorithms for$\ L$(2, 1)-Labeling of Graphs
	Introduction
	Exact Algorithm for Locally Injective Homomorphisms
	A Branching Algorithm for L(2, 1)-Labeling of Span 4
	A Refined Time Analysis
	References

	On (k,ℓ)-Leaf Powers
	Introduction
	Basic Notions and Results
	Some Basic Facts on (k,ℓ)-Leaf Powers
	Metric Properties of (k,ℓ)-Leaf Powers
	Characterisations of (4, 6)-Leaf Powers
	The Main Results
	Conclusion
	References

	An Improved Claw Finding Algorithm Using Quantum Walk
	Introduction
	Preliminaries
	Claw Detection
	Claw Finding
	Lower Bound
	References

	Complexity Upper Bounds for Classical Locally Random Reductions Using a Quantum Computational Argument
	Introduction
	Background
	RelatedWork
	Our Results

	Preliminaries
	Notations
	Basics of Quantum Computing
	Complexity Classes
	Locally Random Reduction

	Results
	The Case of Two Queries
	The Case of More Than Two Queries and Binary Answers

	References

	On the Complexity of Game Isomorphism
	Introduction
	Games, Isomorphisms, Problems, and Representations
	Complexity Results for Strong Isomorphism
	Weak and Local Isomorphism
	Small Case Study
	Comments and Open Questions
	References

	Hardness Results for Tournament Isomorphism and Automorphism
	Introduction
	Preliminaries
	Hardness Results for Tournament Isomorphism
	Hardness Results of TI for Modular Counting Classes
	Hardness Results of TI for NL, \sharpL, \CgleichL and PL
	Hardness Results of TI for DET

	Hardness Results for Tournament Automorphism
	References

	Relating Complete and Partial Solution for Problems Similar to Graph Automorphism
	Introduction
	Computing Graph Automorphism from Single-Vertex Solutions
	Other Problems Related to Graph Automorphism
	References

	Well Supported Approximate Equilibria in Bimatrix Games: A Graph Theoretic Approach
	Introduction
	Preliminaries
	Existence of Uniform SuppNE
	A Graph Theoretic Approach for Constructing SuppNE
	SuppNE in Random Games
	References

	Selfish Load Balancing Under Partial Knowledge
	Introduction
	The Model
	The Structure of Nash Equilibria
	TheDivergenceRatio
	The Total Lack of Information Case, $I_i=\emptyset$
	The Case of $I_i=\emptyset$
	The Case of Arbitrary I_i

	The Price of Anarchy
	References

	Extending the Notion of Rationality of Selfish Agents: Second Order Nash Equilibria
	Introduction
	Second Order Nash Equilibria
	Applications of Second Order Nash Equilibria
	The Prisoner’s Dilemma
	Braess’s Paradox
	Selfish Load Balancing

	Other Notions of Selfish Farsighted Behavior
	Conclusion
	References

	Congestion Games with Player-Specific Constants
	Introduction
	Framework and Preliminaries
	Congestion Games on Parallel Links
	Network Congestion Games
	Arbitrary Congestion Games
	References

	Finding Patterns in Given Intervals
	Introduction
	Preliminaries
	ProblemPMI
	Analysis
	Query Processing

	ProblemPMGI
	ProblemPMQI
	Conclusion
	References

	The Power of Two Prices: Beyond Cross-Monotonicity
	Introduction and Model
	Motivation
	The Model
	Related Work
	Contribution

	Two Price Cost-Sharing Forms
	GSP Mechanisms for Two-Price Cost-Sharing Forms
	\TheFactor-BB Two-Price Cost-Sharing Forms for Subadditive Costs
	Applications to Scheduling

	The Impact of Symmetric Costs on GSP and 1-BB
	Conclusion and Future Work
	References

	Semisimple Algebras of Almost Minimal Rank over the Reals
	Introduction
	A Lower Bound for $\HH\times\HH$ over \R
	A Lower Bound for $\C^{2\times 2}$ over \R
	Computations Not Satisfying Property (*)
	Computations Satisfying Property (*)

	Semisimple Algebras of Minimal Rank Plus One
	Conclusion
	References

	Structural Analysis of Gapped Motifs of a String
	Introduction
	Patterns and Motifs
	Equivalence of Motifs with Similar Occurrences
	Equivalence of Self–alignments
	Representation by Maximal Non–gapped Motifs
	References

	Online and Offline Access to Short Lists
	Introduction
	A New Optimal Offline Algorithm
	A Simple Optimal Offline Algorithm
for $\ell=3$
	Randomized Lower Bounds for Small ℓ
	An Optimal Randomized Online Algorithm for ℓ= 2
	An Optimal Randomized Online Algorithm for ℓ= 3
	A Strengthened Lower Bound for General ℓ
	References

	Optimal Randomized Comparison Based Algorithms for Collision
	Introduction
	Related Work
	Preliminaries

	The Algorithms
	Deterministic or Worst-Case Time
	Expected Time
	Randomized Algorithms

	The Lower Bound
	High-Probability DAGs
	Easy Low-Probability Bound
	Expected Running Time Without Collisions
	Strong Low Probability Bound for Worst-Case Time
	Expected Time for Random Input with Collision

	References

	Randomized and Approximation Algorithms for Blue-Red Matching
	Introduction
	Problem Definition and Hardness
	Approximation Algorithms for Blue-Red Matching
	A Randomized Algorithm for Blue-Red Matching
	Application to Optical Networking
	References

	Real Computational Universality: The Word Problem for a Class of Groups with Infinite Presentation
	Introduction
	Real Computability
	Subsumption of Our Results
	Further Related Work
	Overview

	Word-Problem for Groups
	The Classical Setting
	Presenting Real Groups

	Reduction$\ from$ the Real Halting Problem
	Basics from Group Theory and Their Presentations
	First Effectivity Considerations
	Benign Embeddings
	Putting It All Together

	References

	Finding Paths Between Graph Colourings: PSPACE-Completeness and Superpolynomial Distances
	Introduction
	Preliminaries: List Colourings and Forbidding Paths
	PSPACE-Completeness of \textnormal{\kcol}for $k \ge 4$
	A PSPACE-Complete Problem: Sliding Tokens
	The Construction of Equivalent List-Colour Path Instances
	Tightness of the Hardness Results

	Graphs with Colourings at Superpolynomial Distance
	The Construction of the Graphs
	Bounds on Size and Distance

	References

	Shuffle Expressions and Words with Nested Data
	Introduction
	A Logic for Words with Nested Data
	Shuffle Expressions
	Cutting and Combining
	Four Kinds of Shuffle Expressions
	From Logic to Shuffle Expressions

	Ordered Shuffle Expressions
	Higher-Order Multicounter Automata

	Unordered Shuffle Expressions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

