
Lower Bounds on Edge Searching

Brian Alspach1, Danny Dyer2, Denis Hanson1, and Boting Yang3

1 Department of Mathematics and Statistics, University of Regina
{alspach,dhanson}@math.uregina.ca

2 Department of Mathematics and Statistics, Memorial University of Newfoundland
dyer@math.mun.ca

3 Department of Computer Science, University of Regina
boting@cs.uregina.ca

Abstract. Searching a network for intruders is an interesting and diffi-
cult problem. Edge-searching is one such search model, in which intruders
may exist anywhere along an edge. Since finding the minimum number
of searchers necessary to search a graph is NP–complete, it is natural
to look for bounds on the search number. We show lower bounds on
the search number using minimum degree, girth, chromatic number, and
colouring number.

1 Introduction

Clearing a graph (or network) of an intruder or intruders has a natural division
into two classes of problem: those in which intruders may be located only at
vertices and those in which intruders may be located at vertices or anywhere
along edges. The latter situation is called edge-searching. Searching graphs serves
as a model for important applied problems (see [3], [4] and [6]). A survey of results
can be found in [1].

In this paper, we adopt the convention that multigraphs allow multiple edges,
reflexive graphs allow loops, and that graphs allow neither loops nor multiple
edges. A reflexive multigraph allows both loops and multiple edges. The specifics
of searching a reflexive multigraph G are as follows. Initially, all edges of G are
contaminated. To search G it is necessary to formulate and carry out a search
strategy. A strategy is a sequence of actions performed as consecutive steps
designed so that after the final step, all edges of G are uncontaminated (or
cleared). Only three actions are allowed at each step.

1. Place a searcher on a vertex.
2. Move a searcher on a vertex u along an edge uv to v.
3. Remove a searcher from a vertex.

An edge uv in G can be cleared in one of two ways. Either at least two searchers
are located on vertex u of edge uv, and one of them traverses the edge from u
to v while the others remain at u, or at least one searcher is located on vertex
u, where all edges incident with u, other than uv, are already cleared. Then the
searcher moves from u to v. A cleared edge may become recontaminated. This

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 516–527, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Lower Bounds on Edge Searching 517

happens if, at any time, there is a path from an endpoint of the cleared edge to
an endpoint of a contaminated edge that does not contain a searcher. We say a
vertex is cleared when all edges incident with it are cleared.

Knowing that our goal is a cleared graph, one in which all the edges are
cleared, a basic question is: what is the fewest number of searchers for which a
search strategy exists? We call this the search number, denoted s(G).

Let E(i) be the set of cleared edges after action i has occurred. A search
strategy for a graph G for which E(i) ⊆ E(i+1) for all i is said to be monotonic.
We may then define the monotonic search number, denoted ms(G). LaPaugh
[7] and Bienstock and Seymour [2] proved that for any connected graph G,
s(G) = ms(G). We will only consider connected graphs throughout this paper.

In general, determining the search number of a graph G is NP-complete [8].
As any successful search strategy gives an upper bound, our goal becomes first to
find the “right” way to clear the graph, using as few searchers as possible. Once
this strategy is found, we must then prove that no fewer searchers will suffice.
Here is where the true difficulty lies: most easily attainable lower bounds are quite
poor. We will prove several lower bound results using the graph parameters of
minimum degree, girth, and chromatic number.

The following three theorems (see [11]) give lower bounds for the search num-
ber of a graph G. The first uses the minimum degree δ(G), while the second uses
the clique number ω(G) of G, the order of a maximum order complete subgraph.

Theorem 1. If G is a connected graph then s(G) � δ(G). If δ(G) � 3, then
s(G) � δ(G) + 1.

Theorem 2. If G is a connected graph and ω(G) � 4, then ω(G) � s(G).

We also recall a well-known theorem on searching. In this paper, if H is minor
of G, we write H � G, and if H is a subgraph of G, we write H � G.

Theorem 3. If H � G, then s(H) � s(G).

2 Minimum Degree and Girth

Consider the graph K3,3. By Theorem 1, four searchers are necessary. However,
with four searchers it is impossible to clear more than two vertices! We introduce
the idea of girth to expand our repertoire of lower bounds.

Since the search number of a connected graph is equal to its monotonic search
number, we may investigate monotonic search strategies instead. Being able
to assume a search is monotonic is very useful. Moreover, Theorem 4 tells us
something about how such a search strategy may be formulated. However, we
must first introduce the following lemma. A vertex in a graph G is said to be
exposed if it has edges incident with it that are contaminated as well as edges
incident with it that are cleared. Following a search strategy S on G, we define
exS(G, i) to be the number of exposed vertices after the i-th step. We also define
the maximum number of exposed vertices to be mexS(G) = max

i
exS(G, i).

518 B. Alspach et al.

Lemma 1. If G is a connected reflexive multigraph, then for any monotonic
search strategy S using ms(G) searchers, mexS(G) � ms(G) � mexS(G) + 1.

Proof. The first inequality is straightforward; every exposed vertex must contain
a searcher, so there cannot be more exposed vertices than searchers.

For the second inequality, it suffices to show that if there is a monotonic search
strategy S which clears G using k searchers, and if mexS(G) � k − 2, then we
can formulate another monotonic search strategy T which clears G using only
k − 1 searchers, and mexT (G) = mexS(G).

Let S denote the set of all search strategies for G that use k searchers. For a
given search strategy S ∈ S, label the searchers in the order that they are first
placed in G. The first unlabelled searcher placed will be labelled γ1, the second
unlabelled searcher placed will be labelled γ2, and so on. Certainly, if any searcher
is not placed on the graph, then it may be removed from S without affecting the
search strategy. Thus, we may assume that every searcher is labelled, and every
searcher is at some point placed on the graph. We also shall index each action
using successive positive integers starting with 1, 2,

Whenever a vertex v is exposed, then there must be at least one searcher on
v in order to prevent recontamination of the edges incident with v. If there is
more than one searcher located at v, then we arbitrarily designate one of the
searchers as the guard for v. Of course, if there is only one searcher located at
v, then that searcher automatically is designated as the guard. We shall call a
searcher important if the searcher at some point either clears an edge or becomes
the guard on an exposed vertex.

Now consider the searcher γk. We first want to show that there is a strategy
in S for which γk is not important. To this end, we assume that S contains at
least one strategy for which γk is important. For any strategy S for which γk is
important, let L(S) denote the index of the last action in S and let k(S) denote
the index of the action that results in γk becoming important. In other words,
either action k(S) is the first time γk clears an edge, or action k(S) results in γk

first being a guard at some vertex.
Over all strategies S ∈ S for which γk is important, let L(S) − k(S) be

minimum. Suppose L(S) − k(S) > 0.
Consider the case that γk becomes important because action k(S) consists of

γk clearing an edge uv by traversing the edge from u to v. Define a new strategy
S′ as follows. We let S′ coincide with S for actions with indices 1, 2, . . . , k(S)−1.
At this point, γk is located at vertex u and in strategy S should move along uv
from u to v in order to clear it. Because mexS(G) � k − 2, there is at least one
searcher γi �= γk who is not being used to protect an exposed vertex. If γi also
is located on vertex u, then let γi traverse the edge uv from u to v as the action
indexed with k(S) in S′. From this point on, S′ is the same as S except that the
roles of γi and γk are interchanged. If γi is not located on vertex u, then remove
γi from its current vertex as the action indexed by k(S) in S′. Now place γi on u
as the action of S′ indexed k(S) + 1. Remove γk from u as the next action of S′

and replace γk on the vertex from which γi just came. These four actions have
interchanged the locations of γi and γk. From this point on, the action indexed

Lower Bounds on Edge Searching 519

t in S′ is the same as the action indexed t − 4 in S with the roles of γi and γk

interchanged.
In both subcases for which γk became important, it is easy to see that L(S′)−

k(S′) < L(S)−k(S). Now consider the remaining case that γk becomes important
because following action k(S), γk is a guard on an exposed vertex u. If there are
two or more searchers on u following action k(S), designate a searcher γi other
than γk to be the guard. Then interchange the roles of γi and γk from that point
on. The resulting strategy S′ certainly satisfies L(S′) − k(S′) < L(S) − k(S).
Hence, just before the action k(S) is carried out, there is just one searcher
on u, in addition to γk, and this searcher leaves u on action k(S). Because
mexS(G) � k −2, there is another non-guard searcher γj located at some vertex
v �= u. Take four steps to interchange γk and γj and then define S′ to be the initial
part of S, the four actions just concluded, and the completion of S with the roles
of γj and γk interchanged. Again it is easy to see that L(S′)−k(S′) < L(S)−k(S).

Therefore, if there exists a search strategy S with γk being important and
L(S) − k(S) > 0, there must be such a search strategy with L(S) = k(S).
Suppose S is such a strategy with L(S) = k(S). This means that γk becomes
important only on the last action of S, and this action must complete clearing
the graph. Hence, on the last action L(S), γk traverses an edge uv from u to v
clearing the last contaminated edge of G. Because γk is not important and u is
incident with a contaminated edge, there must be another searcher on u acting
as the guard. Have this searcher clear the edge uv instead of γk. This results in
a strategy for which γk is not important.

From this strategy, form a new strategy T which is exactly the same, but
with all of γk’s actions are removed. Since γk is unimportant, every edge is still
cleared, and the maximum number of exposed vertices is the same, but only
k − 1 searchers are used.

Theorem 4. If G is a connected reflexive graph with no vertices of degree 2,
then there exists a monotonic search S with ms(G) searchers such that ms(G) =
mexS(G) + 1.

Proof. Let G be a connected reflexive graph G with no vertices of degree 2. As-
sume that for every monotonic search strategy S on G, mexS(G) = ms(G) = k.
Since S is a search strategy, there is a moment when the number of exposed
vertices becomes mexS(G) for the last time. Let S′ be a monotonic search strat-
egy which has the minimum number of instances where the number of exposed
vertices goes from being less than k to being k and has the minimum number
of edge clearings after the last time the number of exposed vertices becomes k.
The only action which can increase the number of exposed vertices is clearing
an edge, which can expose at most two additional vertices. Let xy be the last
edge cleared before the number of exposed vertices becomes mexS(G) for the
last time. We consider four cases as to how xy can be cleared.
Case 1: The edge xy is a loop, with x = y. Since clearing xy can expose at
most one additional vertex, the number of exposed vertices must be k − 1. If
x was already exposed, clearing xy would not increase the number of exposed

520 B. Alspach et al.

vertices. Thus, x must not have been an exposed vertex. But since there must
be a searcher on each of the k − 1 exposed vertices, this leaves only one searcher
to clear the loop xy. But a single searcher cannot clear a loop, a contradiction.
Thus, xy cannot be a loop.
Case 2: The number of exposed vertices just before xy is cleared is k − 2, and
at this time neither x nor y is exposed. Label the k − 2 exposed vertices as
v1, v2, . . . vk−2, and assume that searcher γi rests on vertex vi, 1 � i � k − 2.
The edge xy must be such that neither x nor y is some vi. Assume that after xy
is cleared, searcher γk−1 is on x and γk is on y.

If there are any pendant edges or loops attached to some vi that are not
cleared, we can use searcher γk to clear these edges first. If this reduces the
number of exposed vertices, then at some later action k vertices must be ex-
posed because the number of exposed vertices increasing to k occurs a minimum
number of times in S′. This later point must have more cleared edges, contradict-
ing the minimality of S′. Thus, clearing such an edge cannot reduce the number
of exposed vertices. But then, clearing xy next would produce a search strategy
with fewer edges to be cleared after the number of exposed vertices becomes k
for the last time, again contradicting the minimality of S′. Similarly, if there are
any contaminated edges between vi and vj , γk may clear these edges first, and
then xy, again contradicting the minimality of S′. So we may assume that all
edges between the vi have already been cleared, as have all pendant edges and
loops incident with them.

If some vertex vi is incident with only one contaminated edge, then γi may
clear that edge first, and then γk may clear xy, again contradicting the mini-
mality of S′. Thus, each vi must have at least two contaminated edges incident
with it, and the γi, 1 � i � k − 2, must remain where they are as blockers.

Neither x nor y are exposed before xy is cleared so that all edges incident with
x and y are contaminated. After xy is cleared, both x and y are exposed. Thus,
each of them is incident with a contaminated edge. Since G has no vertices of
degree 2, both x and y must have at least two contaminated edges incident with
them, and thus neither γk−1 nor γk may move, contradicting that S′ is a search
strategy.
Case 3a: The number of exposed vertices just before xy is cleared is k − 1 and
one of the vertices of xy already is an exposed vertex. Label the exposed vertices
v1, v2, . . ., vk−1, and assume that they have searchers on them, with searcher γi

on vertex vi, 1 � i � k − 1. Without loss of generality, assume that x = vk−1.
Since the vertex vk−1 is still exposed, we may assume that γk−1 stays on vk−1,
that the remaining searcher γk clears vk−1y by traversing the edge from vk−1 to
y, and that there is another contaminated edge vk−1z incident with vk−1.

If there are any pendant edges or loops attached to some vi that are not
cleared, we use the remaining searcher γk to clear these edges first, and then
vk−1y, contradicting the minimality of S′. In particular, vk−1z is not pendant so
that z must have degree at least 3. Similarly, if there are any contaminated edges
between vi and vj , γk may clear these edges first, then vk−1y, again contradicting

Lower Bounds on Edge Searching 521

the minimality of S′. So we may assume that all edges between the vi already
have been cleared, as have all pendant edges and loops incident with them.

If some vertex vi is incident with only one contaminated edge, then γi may
clear that edge first, then γk may clear vk−1y, again contradicting the minimality
of S′. Thus, each vi must have at least two contaminated edges incident with it,
and all the γi, 1 � i � k − 2, must remain where they are as blockers. Note that
deg(y) > 1, as otherwise searching vk−1y does not expose a new vertex. Since
deg(y) � 3, we know that once γk clears vk−1y, γk must remain on y. After vk−1y
is cleared, if vk−1 has two or more contaminated edges incident with it, then γk−1
must remain at vk−1. Then no searchers may move, contradicting that S′ is a
search strategy. Thus, the only contaminated edge remaining incident with vk−1
must be vk−1z. Thus, the next action in S′ must be that γk−1 clears vk−1z. Since
deg(z) � 3, z must have at least two contaminated edges incident with it, and
thus γk−1 also cannot move, contradicting that S′ is a search strategy.
Case 3b: The number of exposed vertices is k − 1, and neither of the vertices
of xy is already exposed. Since the number of exposed vertices increases by 1
after xy is cleared, exactly one of x and y must have degree 1. (If both were
degree 1, the graph would be disconnected.) Without loss of generality, assume
that deg(x) = 1. Then deg(y) � 3. Assume that the k − 1 exposed vertices are
labelled vi and that the searcher γi is on vi, 1 � i � k − 1. Then the searcher γk

must clear xy.
As in the previous case, all edges between vi must be cleared, as must all

pendant edges and loops incident with them. Also, each vi must have at least
two contaminated edges incident with it. Thus, none of the γi, 1 � i � k − 1,
may move. Similarly, since deg(y) � 3, y must have at least two contaminated
edges incident with it, meaning that γk cannot move. This contradicts that S′

is a search strategy.

This theorem tells us that there exist search strategies for some graphs that
“save” searchers, in the sense we may keep a searcher in reserve, to never be
stationed at an exposed vertex, but instead to clear edges between stationed
searchers. If we consider the analogy of a graph filled with gas, we may always
keep a searcher from being exposed, or by rotating searchers reduce the amount
of “exposure” to a toxic substance.

The use of graph instead of multigraph in Theorem 4 is intentional. While it
is possible that the result may be extended to some multigraphs, this proof does
not suffice.

We first introduce a lemma from [10] to be used in the proof of Theorem 5.

Lemma 2. If G is a graph and δ(G) � 3, then the number of cycles with pairwise
distinct vertex sets is greater than 2

δ
2 .

Theorem 5. If G is a connected graph with δ(G) � 3, then s(G) � δ(G) +
g(G) − 2.

Proof. From Lemma 2, we know that the girth of G is finite, that g = g(G) � 3,
and that G has at least 3 cycles. Since δ = δ(G) � 3, it follows from Theorem 4

522 B. Alspach et al.

that there exists a monotonic search S with ms(G) = s(G) searchers such that
mexS(G) = ms(G) − 1. Let E0, E1, ..., Em be the sequence of cleared edge sets
corresponding to S. Let Gi be the graph induced by the cleared edges in Ei.
Case 1. δ � g = 3. Consider the smallest i such that G has one cleared vertex
u at step i. Since deg(u) � δ, G must have at least δ exposed vertices adjacent
to u. Since S exposes at most ms(G) − 1 vertices, δ � s(G) − 1, and thus
s(G) � δ + 1 = δ + g − 2.
Case 2. δ � g = 4. Let i be the least number such that G has at least two
cleared vertices u and v at step i. If u and v are adjacent, they can have no
common neighbours, and since deg(u) � δ and deg(v) � δ, they must both be
adjacent to at least δ−1 exposed vertices each. This accounts for 2δ−2 searchers,
and 2δ − 2 � δ + g − 2, as required. If u and v are not adjacent, then they may
share common neighbours. At worst, all their neighbours are common. Consider
the graph Gi−1. Since u and v are not adjacent, only one of them can become
cleared by the next move. Assume that v is already cleared at step i − 1, and
u becomes clear at step i. Then v has at least δ exposed vertices adjacent to
it, and certainly u itself is exposed at this point. Thus G must have at least
δ + 1 different exposed vertices at step i − 1. Since S exposes at most ms(G) − 1
vertices, δ + 1 � ms(G) − 1, and thus ms(G) � δ + 2 = δ + g − 2.
Case 3. δ � g � 5. Let i be the least number such that G has at least two
cleared vertices u and v at step i. If these two vertices are adjacent, then one
must have δ − 1 exposed vertices adjacent to it, and the other must have at
least δ − 2 exposed vertices adjacent to it (it may be adjacent to a third cleared
vertex). Thus 2δ − 3 � ms(G) − 1, and ms(G) � 2δ − 2 � δ + g − 2. If u and
v are not adjacent, they have at most one neighbour in common, and hence
again must have at least 2δ − 3 exposed vertices between them. Thus, as above,
ms(G) � δ + g − 2.
Case 4. g > δ = 3. Consider the smallest i such that Gi contains exactly one
cycle C. Then each vertex of this cycle is either exposed or cleared. (Since only
one edge was cleared, if Gi contained more than one cycle, then Gi−1 must
have contained a cycle.) Let u be a cleared vertex in C. Consider the graph H
obtained when the edges of C are removed from Gi. Certainly, H is a forest,
as Gi contained exactly one cycle. Then u is certainly in one of the non-trivial
component trees that make up H . Since there are no vertices of degree 1 in G,
any vertices of degree 1 in H must be exposed. Thus, there is an exposed vertex
in the tree containing u. Further, this exposed vertex cannot be an exposed
vertex in C, as this would mean that Gi contains two cycles. Thus, for every
cleared vertex in C, there is an exposed vertex in G. Certainly, for every exposed
vertex in C there is a corresponding exposed vertex (itself), and the number of
exposed vertices is at least g. Since the monotonic search strategy S exposes at
most ms(G) − 1 vertices, g � ms(G) − 1, and thus ms(G) � g + 1 � δ + g − 2.
Case 5. g > δ � 4. Let i1 be the smallest i such that Gi1 has two or more
cycles. Accordingly, we know Gi has at most one cycle for any i < i1. If C1 and
C2 are two of the cycles formed and are vertex-disjoint, then as before, there is

Lower Bounds on Edge Searching 523

an exposed vertex that corresponds to each vertex in each cycle. But at most
one exposed vertex may correspond to a vertex in both cycles. Thus the number
of exposed vertices is at least 2g − 1, and so ms(G) � 2g � δ + g − 2. If C1
and C2 share exactly one common vertex, then there are at least 2g − 2 exposed
vertices at step i2. Again, ms(G) � 2g − 1 � δ + g − 2. If C1 and C2 share more
than one vertex, then Gi2 contains exactly three cycles. In this case, we consider
step i2, the first moment that the graph Gi contains four or more cycles.

Let C be the subgraph of G formed by V (C) = V (C1) ∪ V (C2) and E(C) =
E(C1)∪E(C2), as shown in Figure 1(i). Let one of the new cycles formed be C3.
If C3 is vertex-disjoint from C, then Gi2 contains two vertex-disjoint cycles, and
as before, the number of exposed vertices is at least 2g −1. Thus, ms(G) � 2g �
δ + g − 2. If C3 and C share exactly one vertex, then there are at least 2g − 2
exposed vertices at step i2. Again, ms(G) � 2g − 1 � δ + g − 2. Otherwise, C
and C3 share two or more vertices. We consider some subcases (see Figure 1).

P2 P3

P6

P5

P1 P4

(ii)

P2

P3

P4

P6

P5
P1

(iii)(i)

Fig. 1. (i) The graph C; (ii) Case 5(a); (iii) Case 5(b)

Case 5(a). In this case, we consider four cycles: the cycle induced by the paths
P1 and P2; the cycle induced by P2, P3, P5, and P6; the cycle induced by P3 and
P4; and finally the cycle induced by P1, P4, P5, and P6. These cycles all have
length at least g. We note that either or both of P5 and P6 may be paths of length
zero. Summing the lengths of the cycles, we see that we count each path, and
hence each edge, exactly twice. Thus, in this subgraph G′, E′ = E(G′) � 2g. We
next consider how many vertices are in V ′ = V (G′). If neither P5 nor P6 are paths
of length zero, then summing vertex degrees over V ′ shows that 2(|V ′|−4)+3·4 =
2|E|, or that |V ′| = |E′| − 2 � 2g − 2. In this case, every vertex corresponds
to an exposed vertex, and so ms(G) � 2g − 1 � δ + g − 2. If exactly one of P5
or P6 is a path of length zero, then summing vertex degrees over V ′ shows that
2(|V ′|−3)+2 ·3+4 = 2|E′|, or that |V ′| = |E′|−2 � 2g−2. All but one of these
vertices must correspond to an exposed vertex, so ms(G) � 2g − 2 � δ + g − 2.
Finally, if both P5 and P6 are paths of length zero, then summing vertex degrees
over V ′ shows that 2(|V ′| − 2) + 2 · 4 = 2|E′|, or that |V ′| = |E′| − 2. In this
case, however, all but two vertices must correspond to an exposed vertex, so
the number of exposed vertices is at least |E′| − 4 � 2g − 4 � δ + g − 3, since
g � δ + 1. Thus, ms(G) � δ + g − 2.
Case 5(b). In this case, we again consider four cycles: the cycle induced by the
paths P1, P4, and P6; the cycle induced by the paths P2, P4, and P5; the cycle
induced by the paths P3, P5, and P6; and the cycle induced by the paths P1, P2,

524 B. Alspach et al.

and P3. Each cycle has length at least g. Consider the sum of the lengths of the
cycles. Each path is counted twice, as is each edge. Thus, in this subgraph G′,
the total number of edges |E′| � 2g. We sum the degrees of the vertices, and find
that 2(|V ′|−4)+4 ·3 = 2|E′|, or that |V ′| = |E′|−2 � 2g −2. Since each vertex
in G′ corresponds to an exposed vertex, we see that ms(G) � 2g − 1 � δ + g − 2.

In fact, this result is best possible. Recall that the complete bipartite graph
Ka,b on a + b distinct vertices, where 1 � a � b, is the graph with vertex set
V (Ka,b) = {v1, v2, . . . , va} ∪ {u1, u2, . . . , ub} and edge set E(Ka,b) = {uivj |1 �
i � b, 1 � j � a}. We now have sufficient tools to calculate the search number
of the complete bipartite graph for all possible values of a and b.

Corollary 1. Let 1 � a � b.

1. If a = 1 and 1 � b � 2, then s(Ka,b) = 1.
2. If a = 1 and b � 3, then s(Ka,b) = 2.
3. If a = b = 2, then s(Ka,b) = 2.
4. If a = 2 and b � 3, then s(Ka,b) = 3.
5. If 3 � a � b, then s(Ka,b) = a + 2.

A similar result can be shown for a complete multipartite graph.

Theorem 6. For a complete multipartite graph Km1,...,mk
, where m1 � ... �

mk, if mk � 3 and k � 3, then s(G) =
k−1∑

i=1

mi + 2.

Proof. Let
∑k−1

i=1 mi = x. It is easy to see that s(Km1,...,mk
) � x + 2. Suppose

Km1,...,mk
can be cleared by x+1 searchers. By Theorem 4, there exists a mono-

tonic search strategy S with ms(G) searchers such that mexS(G) = ms(G)−1 �
x. Let V1, ..., Vk be the k parts of the vertex set with |Vj | = mj , and v ∈ Vi

be the first cleared vertex using strategy S. Thus, all neighbours of v must be
exposed vertices. If mi < mk, v has at least x + 1 neighbours. This contradicts
that mexS(G) � x. If mi = mk, the x neighbours of v must be exposed vertices.
Since mexS(G) � x, each of other vertices in Vi must be contaminated. Since
mi = mk � 3, each of these exposed vertices has at least 2 contaminated edges
incident on it. When we use the only free searcher to clear any edge incident on a
vertex in Vi −{v}, we have x+1 exposed vertices, each of which is incident with
at least two contaminated edges. Thus, no searcher can move, a contradiction.

The Petersen graph P is a cubic graph with girth 5. Thus, s(P) � 6. In fact,
6 searchers are sufficient. To see this, place a searcher on each of the vertices
of a 5-cycle in P . Use a sixth searcher to clear the 5-cycle induced by these
vertices. Move each searcher from the vertex it is on along the single remaining
contaminated edge incident with it. This leaves searchers on every remaining
uncleared vertex, and the sixth searcher can then clear the 5-cycle induced by
these vertices, clearing the graph. In the same fashion, Theorem 5 implies that
the Heawood graph and the McGee graph, which have girths 6 and 7, respec-
tively, must have search numbers at least 7 and 8. In fact, it can be shown that
these numbers are also sufficient to clear these graphs. The search strategies are
similar to those for the Petersen graph.

Lower Bounds on Edge Searching 525

3 Chromatic Number

If a graph G has a clique of order k, then at least k colours are required for a
proper colouring. Thus, for any graph G, ω(G) � χ(G). Since we know that the
clique number is a lower bound on the search number, it is reasonable to wonder
whether Theorem 2 can be extended to the chromatic number.

Recall that the least number k such that the vertices of G can be ordered
from v1 to vn in which each vertex is preceded by less than k of its neighbours is
called the colouring number col(G) of G. Theorem 7 comes from [5]. Corollary 2
then follows directly from Theorems 7, 1, and 3.

Theorem 7. For every connected graph G, χ(G) � col(G) � max{δ(H)|H �
G} + 1.

Corollary 2. For every connected graph G, χ(G) − 1 � s(G).

We also offer a constructive proof for Corollary 2 which gives a proper colouring
of G using at most s(G) + 1 colours.

We begin by introducing the homeomorphic reduction of a reflexive multi-
graph X . Let V ′ = {u ∈ V (X) : deg(u) �= 2}. A suspended path in X is a path of
length at least 2 joining two vertices of V ′ such that all internal vertices of the
path have degree 2. A suspended cycle in X is a cycle of length at least 2 such
that exactly one vertex of the cycle is in V ′ and all other vertices have degree
2. Let V ′ = {u ∈ V (X) : deg(u) �= 2}. The homeomorphic reduction of X is the
reflexive multigraph X ′ obtained from X with vertex set V ′ and the following
edges. Any loop of X incident with a vertex of V ′ is a loop of X ′ incident with
the same vertex. Any edge of X joining two vertices of V ′ is an edge of X ′ joining
the same two vertices. Any suspended path of X joining two vertices of V ′ is
replaced by a single edge in X ′ joining the same two vertices. Any suspended
cycle of X containing a vertex u of V ′ is replaced by a loop in X ′ incident with
u. In the special case that X has connected components that are cycles, these
cycles are replaced by loops on a single vertex.

Lemma 3. If X is a connected reflexive multigraph and Y is its homeomorphic
reduction, then s(X) = s(Y).

To obtain a bound on the search number involving chromatic number, we return
to the idea of the maximum number of exposed vertices in a search.

Theorem 8. If G is a connected reflexive multigraph with homeomorphic re-
duction G′ and a monotonic search strategy S for G′ such that mexS(G′) � 3,
then χ(G) � mexS(G′) + 1.

Proof. Let mexS(G′) = k. We will show that G is (k + 1)-colourable. We first
show that G′ is (k + 1)-colourable. Following the monotonic search strategy S
that exposes at most k vertices in G′, we can design a colouring such that it can
colour G′ using at most k + 1 colours.

526 B. Alspach et al.

Initially, searchers are placed on G′. When a vertex first becomes exposed (or
in the case of vertices of degree 1, becomes cleared), the vertex is coloured. This
colour cannot be changed or erased in the following searching process. We now
consider how to colour a vertex v in the moment it becomes exposed (or cleared,
in the case of vertices of degree 1). Before this moment, v cannot be adjacent
to any cleared vertex. Thus, each coloured vertex that is adjacent to v must be
an exposed vertex. Since the number of exposed vertices is less then or equal
to k, we can always assign v a colour that is different from the colours of the
adjacent vertices of v. Thus, while S clears G′, we can assign a colour to each
vertex of G′ such that any pair of adjacent vertices has different colours. Thus,
G′ is (k + 1)-colourable.

We now show that G is (k +1)-colourable. For each vertex u in G′, assign the
colour of u in G′ to the corresponding vertex u in G. Any uncoloured vertex in G
must be on a suspended path or a suspended cycle. If it is on a suspended cycle,
one vertex in this cycle has already been coloured. At most two more colours are
needed to colour the remaining vertices of this cycle, but since k � 3, we have
a sufficient number of colours to do so. Similarly, if the vertex is in a suspended
path, the ends of the suspended path have already been coloured. Now at most
one more colour is needed to colour the remaining vertices of this path, but again,
we have sufficient colours to do so. Hence, G is (k + 1)-colourable. Therefore,
χ(G) � k + 1.

Combining Theorem 8 with Lemma 1, we obtain the following corollary, an
improvement on Corollary 2.

Corollary 3. If G is a connected reflexive multigraph and s(G) � 3, then χ(G)−
1 � s(G).

Of course, we can do better. As demonstrated in Theorem 4, there are graphs
where the maximum number of exposed vertices is one less than the search
number.

Corollary 4. If G is a connected reflexive graph with s(G) � 3 and the property
that its homeomorphic reduction is not a multigraph, then χ(G) � s(G).

Proof. Since G is not a multigraph, the homeomorphic reduction can only have
multiple edges if two or more suspended paths have the same end points. For-
bidding this, the homeomorphic reduction must be a graph with no vertices of
degree 2, as required by Theorem 4. The result follows.

We now demonstrate an infinite family of graphs for which Corollary 2 provides a
better bound than any of the others demonstrated here. Let P be the graph with
vertex set V (P) = {vi}p+1

i=1 , and edge set E(P) = {vivj |1 � i < j � p}∪{v1vp+1}.
Thus, the graph P is a complete graph on p vertices with an extra edge incident
with a vertex of degree 1.

We will employ the Mycielski construction [9]. Given a graph G, we form the
graph M(G), with vertex set V (M(G)) = V (G) ∪ V ′(G) ∪ {u}, where V ′(G)
contains the “twins” of V (G). That is, V ′(G) = {x′|x ∈ V (G)}. The edge set

Lower Bounds on Edge Searching 527

E(V (M)) = E(G)∪{x′y|xy ∈ E(G)}∪{x′u|x′ ∈ V ′(G)}. That is, for each vertex
v ∈ V , we introduce a new vertex v′ adjacent to the neighbours of v. Finally, we
add a new “super vertex” u which is adjacent to each new vertex v′. Similarly,
we may define an infinite family of graphs by repeatedly applying a Mycielski
construction. Define M0(G) = G, and M t(G) = M(M t−1(G)) for t � 1.

The Mycielski construction based on the 5-cycle C5 was introduced in [9] to
create an infinite family of triangle-free graphs with arbitrarily large chromatic
number. In fact, χ(M t(C5)) = t + 3 for t � 0. More generally, for any graph G,
it can be shown that ω(M t(G)) = ω(G), δ(M t(G)) = δ(G)+ t, and χ(M t(G)) =
χ(G) + t for t � 0.

Taking the graph P as defined above, it is clear that δ(P) = 1, ω(P) = p, and
χ(P) = p. Applying the Mycielski construction, we see that δ(M t(P)) = 1 + t,
ω(M t(P)) = p, and χ(M t(P)) = p+ t. As well, since P is a subgraph of M t(P),
we know that g(M t(P)) = 3 so long as p � 3. So for large p and t, Theorem 5
tells us that δ(M t(P)) + 1 � t + 2 � s(M t(P)). Similarly, Theorem 2 tells us
that ω(M t(P)) = p � s(M t(P)). But Corollary 2 tells us that χ(M t(P)) − 1 =
p + t − 1 � s(M t(P)), a clear improvement.

References

1. Alspach, B.: Searching and sweeping graphs: A brief survey. Combinatorics 04
(Catania, 2004) Matematiche (Catania) 59 (2004), Fasc. I–II, pp. 5–37 (2004)

2. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algo-
rithms 12, 239–245 (1991)

3. Fellows, M., Langston, M.: On search, decision and the efficiency of polynomial
time algorithm. In: 21st ACM Symp. on Theory of Computing, pp. 501–512 (1989)

4. Frankling, M., Galil, Z., Yung, M.: Eavesdropping games: A graph-theoretic ap-
proach to privacy in distributed systems. Journal of ACM 47, 225–243 (2000)

5. Halin, R.: Unterteilungen vollständiger Graphen in Graphen mit unendlicher chro-
matischer Zahl. Abh. Math. Sem. Univ. Hamburg 31, 156–165 (1967)

6. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theoret. Comput.
Sci. 47(2), 205–218 (1986)

7. LaPaugh, A.S.: Recontamination does not help to search a graph. Journal of
ACM 40, 224–245 (1993)

8. Megiddo, N., Hakimi, S.L., Garey, M., Johnson, D., Papadimitriou, C.H.: The
complexity of searching a graph. Journal of ACM 35, 18–44 (1988)

9. Mycielski, J.: Sur le coloriage des graphes. Coll. Math. 3, 161–162 (1955)
10. Tusa, Z.: Exponentially many distinguishable cycles in graphs. Graphs, designs

and combinatorial geometries (Catania, 1989). J. Combin. Inform. System Sci. 15,
281–285 (1990)

11. Yang, B., Dyer, D., Alspach, B.: Sweeping graphs with large clique number
(extended abstract). In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS,
vol. 3341, pp. 880–892. Springer, Heidelberg (2004)

	Lower Bounds on Edge Searching
	Introduction
	Minimum Degree and Girth
	Chromatic Number

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

