

Lecture Notes in Computer Science 4614
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bo Chen Mike Paterson Guochuan Zhang (Eds.)

Combinatorics, Algorithms,
Probabilistic and
Experimental Methodologies

First International Symposium, ESCAPE 2007
Hangzhou, China, April 7-9, 2007
Revised Selected Papers

13

Volume Editors

Bo Chen
University of Warwick, Warwick Business School
DIMAP - Centre for Discrete Mathematics and its Applications
Coventry, CV4 7AL, UK
E-mail: B.Chen@warwick.ac.uk

Mike Paterson
University of Warwick, Department of Computer Science
DIMAP - Centre for Discrete Mathematics and its Applications
Coventry CV4 7AL, UK E-mail: M.S.Paterson@warwick.ac.uk

Guochuan Zhang
Zhejiang University
Department of Mathematics
Hangzhou 310027, China
E-mail: zgc@zju.edu.cn

Library of Congress Control Number: 2007936169

CR Subject Classification (1998): F.2.1-2, F.1.2, H.2.8, I.2.8, C.2, J.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74449-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74449-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12111084 06/3180 5 4 3 2 1 0

Preface

With the Internet, bio-technology, video digital data processing, as well as global
geometric data applications, the enormous sizes of datasets have been pushing
our limits in data processing. Both theoreticians and practitioners are challenged
to an extent that has never been seen before. Growing pressure has been put
on different experts, such as computer scientists, combinatorics experts, and
statisticians, dealing with their own large data processing problems, to reach
out beyond their own disciplines, to search for ideas, methodologies, and tool
boxes, to find better, faster and more accurate solutions.

The International Symposium on Combinatorics, Algorithms, Probabilistic
and Experimental Methodologies (ESCAPE) is intended to provide an interdisci-
plinary forum for researchers across their discipline boundaries to exchange their
approaches, to foster innovative ideas as well as to develop a research agenda of
common interest. The novelty of ESCAPE is to study practical, large data pro-
cessing problems with different, and eventually converging, methodologies from
major important disciplines.

This volume contains the proceedings of the first ESCAPE symposium, which
was held in Hangzhou, China, April 7–9, 2007. We received a total of 362 submis-
sions, of which 184 (50.8%) entered the formal review process and the remaining
178 were declined at an initial screening process as being out-of-scope. Each of
the submitted papers that entered the formal review process was reviewed by at
least three members of the Program Committee or their deputies on the quality,
originality, soundness, and significance of its contributions. Finally 56 papers
were accepted: an overall acceptance rate of 15.5%. This proceedings volume
contains the 46 papers that were presented at the symposium.

Of the accepted papers, four were selected by the Award Panel as finalists
for the Best Paper Award, and these were presented in a special plenary session,
after which the final winner was identified. The winner also received a cash prize
of US$ 1,000. In this volume the winner’s paper appears first, followed by those
of the other three finalists.

The huge success of the workshop resulted from the input of many people. We
would like first of all to thank all the members of the Program Committee and
the Award Panel for their expert evaluation of the submissions. Their service
greatly helped raise the academic standard of the symposium.

The local organizers did an extraordinary job, for which we are very grateful.
We thank the Department of Mathematics, Zhejiang University, and the National
Natural Science Foundation of China for their financial support and for providing
an excellent location for the symposium.

April 2007 Bo Chen
Mike Paterson

Guochuan Zhang

Symposium Committees

Program Committee

Susanne Albers University of Freiburg, Germany
David Avis McGill University, Canada
Yossi Azar Tel-Aviv University, Israel and Microsoft

Research, USA
Allan Borodin University of Toronto, Canada
Rainer E. Burkard Technical University of Graz, Austria
Bo Chen (Chair) University of Warwick, UK
Guoliang Chen University of Science and Technology of China
Vladimir Deineko University of Warwick, UK
Xiaotie Deng City University of Hong Kong, China
Dingzhu Du University of Texas at Dallas, USA
Patrick Dymond York University, Canada
Peter Eades University of Sydney, Australia
Thomas Erlebach University of Leicester, UK
Mike Fellows University of Newcastle, Australia
Ronald Graham University of California at San Diego, USA
Peter Hammer Rutgers Center for Operations Research, USA
Winfried Hochstättler University of Hagen, Germany
Jeff Hong Hong Kong University of Science and

Technology, China
Hiroshi Imai University of Tokyo, Japan
Kazuo Iwama Kyoto University, Japan
Klaus Jansen University of Kiel, Germany
David Kirkpatrick University of British Columbia, Canada
Rolf Klein University of Bonn, Germany
Kim Skak Larsen University of Southern Denmark
Der-Tsai Lee Academia Sinica (Taipei)
Silvano Martello University of Bologna, Italy
Helen Meng The Chinese University of Hong Kong, China
See-Kiong Ng National University of Singapore
Mike Paterson University of Warwick, UK
Franz Rendl University of Klagenfurt, Austria
Mitsuhisa Sato University of Tsukuba, Japan
Jiri Sgall Academy of Sciences of Czech Republic
Martin Skutella University of Dortmund, Germany
Paolo Toth University of Bologna, Italy
Denis Trystram ID-IMAG, France
Emo Welzl ETH Zurich, Switzerland

VIII Organization

Gerhard Woeginger TU Eindhoven, The Netherlands
Masafumi Yamashita Kyushu University, Japan
Yinyu Ye Stanford University, USA
Guochuan Zhang (Co-chair) Zhejiang University, China

Award Panel

Rainer E. Burkard Technical University of Graz, Austria
Xiaotie Deng City University of Hong Kong, China
Ronald Graham University of California at San Diego, USA
Peter Hammer Rutgers Center for Operations Research, USA
Kazuo Iwama Kyoto University, Japan
Silvano Martello University of Bologna, Italy
Mike Paterson (Chair) University of Warwick, UK

Organizing Committee

Guangting Chen Hangzhou Dianzi University, China
Zhiyi Tan Zhejiang University, China
Enyu Yao Zhejiang University, China
Deshi Ye Zhejiang University, China
Guochuan Zhang (Chair) Zhejiang University, China

Table of Contents

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is
FFD(I) ≤ 11/9OPT (I) + 6/9. 1

György Dósa

Sequential Vector Packing . 12
Mark Cieliebak, Alexander Hall, Riko Jacob, and Marc Nunkesser

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 24
Peng Cui

A More Effective Linear Kernelization for Cluster Editing 36
Jiong Guo

CR-precis: A Deterministic Summary Structure for Update Data
Streams . 48

Sumit Ganguly and Anirban Majumder

An Effective Refinement Algorithm Based on Swarm Intelligence for
Graph Bipartitioning . 60

Lingyu Sun and Ming Leng

On the Complexity and Approximation of the Min-Sum and Min-Max
Disjoint Paths Problems . 70

Peng Zhang and Wenbo Zhao

A Digital Watermarking Scheme Based on Singular Value
Decomposition . 82

Chin-Chen Chang, Yih-Shin Hu, and Chia-Chen Lin

A New (t, n)−Threshold Scheme Based on Difference Equations 94
Chao-Wen Chan and Chin-Chen Chang

Clique-Transversal Sets in Cubic Graphs . 107
Zuosong Liang, Erfang Shan, and T.C.E. Cheng

On the L(h, k)-Labeling of Co-comparability Graphs 116
Tiziana Calamoneri, Saverio Caminiti, Stephan Olariu, and
Rossella Petreschi

An Approximation Algorithm for the General Mixed Packing and
Covering Problem . 128

Florian Diedrich and Klaus Jansen

Extending the Hardness of RNA Secondary Structure Comparison 140
Guillaume Blin, Guillaume Fertin, Irena Rusu, and
Christine Sinoquet

X Table of Contents

On the On-Line Weighted k -Taxi Problem . 152
Weimin Ma and Ke Wang

Model Futility and Dynamic Boundaries with Application in Banking
Default Risk Modeling . 163

Xiao Jun Shi

On the Minimum Risk-Sum Path Problem . 175
Xujin Chen, Jie Hu, and Xiaodong Hu

Constrained Cycle Covers in Halin Graphs . 186
Yueping Li

Optimal Semi-online Algorithms for Scheduling with Machine
Activation Cost . 198

Shuguang Han, Yiwei Jiang, and Jueliang Hu

A Fast Asymptotic Approximation Scheme for Bin Packing with
Rejection . 209

Wolfgang Bein, José R. Correa, and Xin Han

Online Coupon Consumption Problem . 219
Yiwei Jiang, An Zhang, and Zhiyi Tan

Application of Copula and Copula-CVaR in the Multivariate Portfolio
Optimization . 231

Manying Bai and Lujie Sun

Online Capacitated Interval Coloring . 243
Leah Epstein, Thomas Erlebach, and Asaf Levin

Energy Efficient Heuristic Scheduling Algorithms for Multimedia
Service . 255

Sungwook Kim and Sungchun Kim

Call Control and Routing in SONET Rings . 260
Shuqiang Chen and Qizhi Fang

Fast Matching Method for DNA Sequences . 271
Jin Wook Kim, Eunsang Kim, and Kunsoo Park

All-Pairs Ancestor Problems in Weighted Dags . 282
Matthias Baumgart, Stefan Eckhardt, Jan Griebsch,
Sven Kosub, and Johannes Nowak

Streaming Algorithms for Data in Motion . 294
M. Hoffmann, S. Muthukrishnan, and Rajeev Raman

Table of Contents XI

A Scheduling Problem with One Producer and the Bargaining
Counterpart with Two Producers . 305

Xiaobing Gan, Yanhong Gu, George L. Vairaktarakis,
Xiaoqiang Cai, and Quanle Chen

Phrase-Based Statistical Language Modeling from Bilingual Parallel
Corpus . 317

Jun Mao, Gang Cheng, and Yanxiang He

Optimal Commodity Distribution for a Vehicle with Fixed Capacity
Under Vendor Managed Inventory . 329

Xiaolin Xu, Xiaoqiang Cai, Chunlin Liu, and Chikit To

On-Line Bin Packing with Arbitrary Release Times 340
Yongqiang Shi and Deshi Ye

On the Complexity of the Max-Edge-Coloring Problem with Its
Variants . 350

Chang Wu Yu

Quantitative Analysis of Multi-hop Wireless Networks Using a Novel
Paradigm . 362

Chang Wu Yu

Inverse Min-Max Spanning Tree Problem Under the Weighted
Sum-Type Hamming Distance . 375

Longcheng Liu and Enyu Yao

Robust Optimization Model for a Class of Uncertain Linear
Programs . 384

Weimin Miao, Hongxia Yin, Donglei Du, and Jiye Han

An Efficient Algorithm for Solving the Container Loading Problem 396
Wenqi Huang and Kun He

A Bijective Code for k-Trees with Linear Time Encoding and
Decoding . 408

Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi

Market-Based Service Selection Framework in Grid Computing 421
Yanxiang He and Haowen Liu

Informative Gene Selection and Tumor Classification by Null Space
LDA for Microarray Data . 435

Feng Yue, Kuanquan Wang, and Wangmeng Zuo

Heuristic Search for 2D NMR Alignment to Support Metabolite
Identification . 447

Geun-Cheol Lee, Jeff de Ropp, Mark R. Viant,
David L. Woodruff, and Ping Yu

XII Table of Contents

A New Succinct Representation of RMQ-Information and Improvements
in the Enhanced Suffix Array . 459

Johannes Fischer and Volker Heun

Lagrangian Relaxation and Cutting Planes for the Vertex Separator
Problem . 471

Victor F. Cavalcante and Cid C. de Souza

Finding Pure Nash Equilibrium of Graphical Game Via Constraints
Satisfaction Approach . 483

Min Jiang

A New Load Balanced Routing Algorithm for Torus Networks 495
Jiyun Niu, Huaxi Gu, and Changshan Wang

Optimal Semi-online Scheduling Algorithms on a Small Number of
Machines . 504

Yong Wu, Zhiyi Tan, and Qifan Yang

Lower Bounds on Edge Searching . 516
Brian Alspach, Danny Dyer, Denis Hanson, and Boting Yang

Author Index . 529

The Tight Bound of First Fit Decreasing

Bin-Packing Algorithm Is
FFD(I) ≤ 11/9OPT (I) + 6/9

György Dósa

Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

Abstract. First Fit Decreasing is a classical bin packing algorithm: the
items are ordered into their nonincreasing order, and then in this order
the next item is always packed into the first bin where it fits. For an
instance I let FFD(I) and OPT (I) denote the number of the used bins
by algorithm FFD, and an optimal algorithm, respectively. We show in
this paper that

FFD(I) ≤ 11/9OPT (I) + 6/9, (1)

and that this bound is tight. The tight bound of the additive constant
was an open question for many years.

Keywords: first fit decreasing, tight bound.

1 Introduction

We can define the classical bin packing problem in the next way: There are
items with sizes y1, y2, ..., yn, which are positive real numbers, we are looking for
minimum number of unit capacity bins, so that each item is packed into exactly
one of the bins, and the sum of the sizes of the items being packed into a bin can
not be more than 1. The problem is NP -hard, and FFD (First Fit Decreasing) is
a classical bin packing algorithm: the items are ordered into their nonincreasing
order, and then in this order the next item is always placed into the first bin,
where it fits. For an instance I let FFD(I) and OPT (I) denote the number of
the used bins by algorithm FFD, and an optimal algorithm, respectively.

D.S. Johnson in his doctoral thesis in 1973 showed [5] that FFD(I) ≤
11/9OPT (I)+4. Later, B.S. Baker [2], in 1985 gave a slightly simpler proof, and
showed that the additive constant is not more than 3. Then, in 1991, Yue Minyi
[4] proved that FFD(I) ≤ 11/9OPT (I) + 1, but his proof has some problems.
It is not easy to understand, and leaves many gaps to be verified by the reader.
Later, in 1997, Li Rongheng and Yue Minyi [1] again tightened the additive con-
stant to be 7/9, but they do not prove the statement, only give a draft about
it. In that paper the authors also conjectured that the tight additive constant is
5/9. What is the least value of the additive constant was an open question for
many-many years. Now we show that

FFD(I) ≤ 11/9OPT (I) + 6/9, (2)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 G. Dósa

and prove that this bound is already the tight one, the additive constant can not
be further decreased. We follow mainly (but not completely) the proof of [4].

Since the tight upper bound was not known previously, even the next question,
which seems to be quite trivial, could not be answered: Is there an instance I
for the problem for which OPT (I) = 5 and FFD(I) = 7 hold? In the recent
work [6] we give a short proof that there is not such instance. (From statement
(2) follows that there can not be such instance, but if we know only FFD(I) ≤
11/9OPT (I) + 1, the question can not be answered.) The next example shows
that the additive constant can not be less than 6/9: (this example is a simple
modification of that being in [3], Chapter 2, page 16). The example consists
of six fully packed optimal bins, an the items are packed by FFD into eight
bins. Then the upper bound (2) is proven to be tight, since 11/9 · 6 + 6/9 =
72/9 = 8. The example is as follows: Let B1 = {1/2 + ε, 1/4 + ε, 1/4− 2ε}, and
B2 = {1/4 + 2ε, 1/4 + 2ε, 1/4− 2ε, 1/4− 2ε}. If there are 4 copies from B1 and
2 copies from B2 in the optimal packing, the number of FFD bins will be 8. We
also get the tight bound, if the number of the previous optimal bins are 6k + 4
and 3k + 2, respectively.

Can we now give (supposing that (2) really holds) for all integer m the biggest
possible number n, such that OPT (I) = m and FFD(I) = n? We need for this
purpose one more example: If there are 6k + 1 copies from B1 and 3k + 1 copies
from B2 in the optimal packing, the number of FFD bins will be 11k + 3. Then
we get the next table for the maximum possible values of n, (we denote the
difference of the n and m by d):

OPT(I)=m 1 2 3 4 5 6 7 8 9 10
FFD(I)=n 1 3 4 5 6 8 9 10 11 12

n-m=d 1 1 1 1 2 2 2 2 2
m 11 12 13 14 15 16 17 18 19
n 14 15 16 17 19 20 21 22 23
d 3 3 3 3 4 4 4 4 4
m 20 21 22 23 24 25 26 27 28
n 25 26 27 28 30 31 32 33 34
d 5 5 5 5 6 6 6 6 6

For higher values of m, n, and d the table follows in the same way.
For example, there exists such instance, for which the number of the bins in

an optimal packing is 5, and the number of bins used by FFD is 6, but this
latter value can not be bigger. Without the tight upper bound (2) and previous
examples we could not know the maximum value of n in infinite many cases.
Then now, it remained only to see the proof for the upper bound. Since the
complete detailed proof requires more than 30 pages and we have a page limit,
some details can not be treated here, but the author gladly send the manuscript
with the whole proof to the interested reader.

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm 3

2 Preliminaries

In this paper we show the next theorem:

Theorem 1. 9FFD(L) ≤ 11OPT (L) + 6.

Proof: It is trivial, that this statement is equivalent with (2), and since FFD(I)
and OPT (I) are integers, it suffices to show that there is not such instance for
which

9FFD(I) ≥ 11OPT (I) + 7 (3)

holds. Suppose to the contrary that I is a minimal counterexample, i.e. contains
minimum number of items, and (3) holds. It is trivial that then OPT (I) ≥ 2
and FFD(I) ≥ 3 must hold.

Let us denote the optimal bins as B∗
i for i = 1, ..., OPT (I), and the FFD bins

as Bi for i = 1, ..., FFD(I). The sum of the sizes of items being packed into a
bin will be denoted as Y (Bi), and Y (B∗

i), respectively. From the minimality of
the counterexample follows that the last FFD bin contains only one, i.e. the last
item. Let this item be denoted as X . (The size of this item also will be denoted
simply as X .) Let the size of the items be yk, for k = 1, ..., n, we also denote the
items as yk. We suppose w.l.o.g. that the size of the items are nonincreasing, i.e.
y1 ≥ y2 ≥ ... ≥ yn = X .

We also use the next denotations: Let the j-th item of the i-th optimal bin be
denoted as A∗

i,j for every i = 1, ..., OPT (I), and let the j-th item of the i-th FFD
bin be denoted as Ai,j for every i = 1, ..., FFD(I). (We use different denotations
for the same items). We assume without loss of the generality that for every i
and every j1 < j2 holds that A∗

i,j1
≥ A∗

i,j2
, and A∗

i,j1
comes before A∗

i,j2
in the

nonincreasing order of the items, and similarly, follows from the FFD rule that
for every i and every j1 < j2 holds that Ai,j1 ≥ Ai,j2 , and Ai,j1 comes before
Ai,j2 in the nonincreasing order of the items. A bin is called as i-bin, if it contains
exactly i items.

Because all items fit in the optimal packing into OPT (I) optimal bins, follows
that

∑n
k=1 yk ≤ OPT (I). Note that item X does not fit into any previous FFD

bin, thus we get

Y (Bi) + X > 1, i = 1, ..., FFD(I)− 1. (4)

Lemma 1. X > FFD(I)−OPT (I)−1
FFD(I)−2 ≥ 2/11.

Proof. The second inequality is equivalent by (3). From (4) follows that Y (Bi) >
1−X for all 1 ≤ i ≤ FFD(I)−1, and X+Y (B1) > 1. Applying these inequalities
we get

OPT (I) ≥
OPT (I)∑

k=1

yk =X+Y (B1)+
FFD(I)−1∑

i=2

Y (Bi) > 1+(1−X) (FFD(I)− 2) ,

from which the first inequality follows.

4 G. Dósa

Corollary 1. X > �11/9OPT (I)+7/9�−OPT (I)−1
�11/9OPT (I)+7/9�−2

Proof. We apply (3), the previous lemma, and the facts that FFD(I) is integer,
and the ratio FFD(I)−OPT (I)−1

FFD(I)−2 is increasing regarding FFD(I).

From now we know that each optimal or FFD bin can contain at most five items.

Definition 1. We say that bin Bi dominates the optimal bin B∗
j for some i and

j, if for every item yk being in B∗
j there exists an item yl being in Bi for which

yk ≤ yl and these items in Bi are different.

Lemma 2. There are no bins Bi and B∗
j such that Bi dominates B∗

j .

Proof. Swap one by one the items in B∗
j by items of Bi that dominate them.

Then omitting the elements of this bin we get a smaller counterexample, that is
a contradiction.

Lemma 3. Each optimal bin contains at least three items.

Proof. If an optimal bin contains one element, then by the domination lemma
we get a contradiction. Suppose that an optimal bin contains two items, Y and
Z, and Y ≥ Z. Consider the moment when Y is packed. If this item is packed
as a first item into an FFD bin, then Z fits into this bin, thus at least one more
item, not less than Z will be packed into this bin, which again contradicts to
Lemma 2. If Y is not a first item, then the first item is not less than Y , and the
second one (i.e. Y) is not less than Z, a contradiction again.

Lemma 4. Every FFD bin but the last one contains at least two items.

Proof. Suppose that Bi contains one element, for some 1 ≤ i ≤ FFD(I)− 1, let
this item be Y . Let this item be packed into the B∗

j optimal bin, then there is an
other item in this optimal bin, say Z. Then Y +Z ≤ 1, follows that Y +X ≤ 1,
thus the last item X fits into this bin, a contradiction.

Lemma 5. X ≤ 1/4.

Proof. Suppose that X > 1/4, then every optimal bin contains at most three
items. From Lemma 3 we get that every optimal bin contains exactly three items,
thus the number of the items is 3OPT (I), and all items are less than 1/2.

Suppose that there are two consecutive bins Bi and Bj , (then j = i + 1),
and Bi contains three, and Bj contains two elements. If Ai1 + Ai2 ≥ Aj1 + Aj2,
then because Ai3 fits into the i-th bin, and Ai3 ≥ X , follows that X fits into
the j-th bin, a contradiction. Thus Ai1 + Ai2 < Aj1 + Aj2. Because Ai1 ≥ Aj1,
follows that Ai2 < Aj2. Thus Aj2 is packed before Ai2, and it did not fit into
the i-th bin, thus Ai1 + Aj2 > 1, thus at least one of them is bigger than a half,
a contradiction.

Follows that the first some FFD bins contain two items, the next FFD bins
contain three items, and the last FFD bin contains only one item. Let ni be the
number of the FFD i-bins, for i = 2, 3. Then n2 + n3 + 1 = FFD(I), and the

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm 5

number of the items is 3FFD(I)− n2− 2. Since the sum of the sizes of any two
items is less than 1, the first 2n2 items (in the nonincreasing order) are packed
pairwise into the first n2 FFD bins, and follows that

y2n2−1 + y2n2 + X > 1. (5)

On the other hand, consider the first item in the nonincreasing order, which
is a second item in some optimal bin, i.e. consider the largest A∗

i,2 item. This
cannot be later than the (OPT (I) + 1)-th item, thus A∗

i,2 = yk2 for some k2 ≤
OPT (I) + 1. Let A∗

i,1 = yk1 and A∗
i,3 = yk3 , then k1 < k2 < k3, and

yOPT (I) + yOPT (I)+1 + X ≤ yk1 + yk2 + yk3 ≤ 1. (6)

Comparing (5) and (6) follows that OPT (I) ≥ 2n2. We get that the number of
items is

3OPT (I) = 3FFD(I)− n2 − 2 ≥ 3FFD(I)−OPT (I)/2− 2 (7)
≥ 3 (11/9OPT (I) + 7/9)−OPT (I)/2− 2 (8)

= 19/6OPT (I) + 1/3 > 3OPT (I), (9)

a contradiction.

At this point we already know that X must lie in interval (2/11; 1/4]. In the
remaining part of the paper we will divide our investigations into two parts, as
1/5 < X ≤ 1/4, or 2/11 < X ≤ 1/5.

Lemma 6. For the value of optimum bins holds that OPT (I) ≥ 6, and in case
X ≤ 1/5 a stronger inequality OPT (I) ≥ 10 also holds.

Proof. If 2 ≤ OPT (I) ≤ 4, then from Corollary 1 we get that X > 1/4, which
is contradiction. Reference [6] shows that in case OPT (I) = 5 follows that
FFD(I) ≤ 6, which contradicts to (3). Thus follows that OPT (I) ≥ 6. Similarly
we get that if X ≤ 1/5, then 6 ≤ OPT (I) ≤ 9 is not possible, thus OPT (I) ≥ 10.

We call a bin as open bin if there is at least one item already packed into the
bin. A bin is closed if no more item will be packed into this bin. An item which
is packed into the last opened bin called as regular item, otherwise the item
is called as a fallback item. Let A be an arbitrary regular item. We say, that
B is a further item, if it comes (in the nonincreasing order of the items) after
A, and will be packed into a later bin. An arbitrary bin is called as (A,B,C)
bin, if A, B, and C are items, and exactly these items are packed into that bin.
Similar denotations are also used if there are only two, or there are more than
three items in a bin. We often will use the next lemma from [4].

Lemma 7. Let xi be the last item in the nonincreasing order which is packed
into a (L, xi) FFD-bin, where L > 1/2. Then (i), it can be supposed that there
is not such item which has size bigger than xi and not bigger than 1− L, (ii) if
there is another item xk with the same size as xi, then it is packed into a (L′, xk)
FFD-bin where L′ precedes L and they have equal sizes.

6 G. Dósa

Proof. Suppose to the contrary that there is an item xk for which xi < xk ≤ 1−L
holds. Let xk be the last such item. This is packed by FFD into an earlier bin,
which contains exactly one more item L′ ≥ L > 1/2. Then decrease the size
of this item to be equal to xi. Then it will be packed into the same bin, and
there will no more item be packed into this bin. This means that we get a new,
appropriate counterexample. By induction we get a counterexample which meets
property (i). Regarding (ii): If there exists an xk with the same size as xi, then
it is packed into a (L′, xk) FFD-bin, where L′ ≥ L. Suppose that L′ > L, and
let L′ be the last such item. Then we can decrease the size of L′ to be equal to
L, and we get a new counterexample again.

Lemma 8. Let xi be the last item which is packed into a (B0, xi) FFD-bin where
1−X

2 < B0 ≤ 1/2, (xi comes after B0). Then (i), each previous item with size
between 1−X

2 and 1/2 has the same size as B0, (ii) all L items greater than half
have the same size, (iii) all L > 1/2 is packed into some (L, xk) FFD-bin where
xk = xi.

Proof. The proof is similar to the previous one.

3 Case 1/5 < X ≤ 1/4

We put the items into some classes according to their sizes. The classification
used here is not the same, only similar to one used in Yue’s paper. The classes are
large, big, medium, small, quite small, and very small items, the items
being in a class are denoted as L,B,M, S, U, V , respectively. We also add some
weights to the items, as follows:

Name Class Weight Or simply
Large 1

2 < L 23/36(1−X) 23
Big 1−X

2 < B ≤ 1
2 18/36(1−X) 18

Medium 1
3 < M ≤ 1−X

2 15/36(1−X) 15
Small 1−X

3 < S ≤ 1
3 12/36(1−X) 12

qUite small 1
4 < U ≤ 1−X

3 9/36(1−X) 9
Very small X ≤ V ≤ 1

4 9/36(1−X) 9
The classification of the items in case 1/5 < X ≤ 1/4.

Note, that the classes are well defined, furthermore 1−X
2 < 1+X

3 < 2X holds
since X > 1/5. Note, that since every optimal bin have at least three items,
follows that L + 2X ≤ 1 holds for any L item, thus in the FFD packing an M
item fits into an L-bin, if there is not other item packed yet into the bin. We use
the denotation c1L + c2B + c3M + c4S + c5U + c6V > c7, where ci are integers
or 0 for i = 1, ..., 7, and the inequality holds substituting the sizes of any large,
big, medium, small, quite small and very small items. For example L + 2U > 1
holds, since L > 1/2 and U > 1/4.

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm 7

We denote the weight of an item Z as w(Z), and the weight of an optimal or
FFD bin as w(B∗), or w(B), respectively. We define the reserve of an optimal
bin as r(B∗) = 44/36(1 − X) − w(B∗).. When we define the weights of the
classes, we do it in such a way, that no optimal bin will have weight more than
44/36(1 − X), i.e. the reserve of all optimal bins are nonnegative, and almost
all of the optimal bins have positive reserve. (This will not be true in one case,
then we will modify the weights of the items.) Define the surplus of an FFD
bin as sur(B) = w(B) − (1−X), if this value is nonnegative. Otherwise, let
short(B) = (1−X)−w(B) be called as shortage, (similarly, as in Yue’s paper).
If the weight of every FFD bin was at least 1 − X , (i.e. in case when there is
not shortage, also applying that the reserve of all optimal bin is nonnegative),
we could easily get that

(1−X)FFD(I) ≤
FFD(I)∑

k=1

w (Bk) = w(I) =
OPT (I)∑

k=1

w (B∗
k) ≤ 11/9(1−X)OPT (I),

and our proof would be ready. Unfortunately, such FFD bins that has less weight
(i.e. has some shortage) may exist. But we prove that all shortage can be covered
by the reserve of the optimal bins plus the surplus of the other FFD bins, plus the
required additive constant 27/36(1−X). In this section the weight of the smallest
class will is w(V) = w(X) = 9/36(1−X). Thus, the shortage of the last FFD
bin, which contains only the last item X , is just (1−X)−w(X) = 27/36(1−X),
thus the additive constant just covers the shortage of the last FFD bin. For the
simplicity, we will say that the weight of a V item is 9, (and similarly in case
of other items), and the shortage of a bin containing only X is 27, (instead
than 9/36(1−X), and 27/36(1−X), respectively), i.e. we say simple only the
numerator of the ratio.

Let sur(I) and res(I) be the total value of the surplus and reserve of all FFD
and optimal bins, respectively, let the required additive constant 27/36(1−X)
be denoted as rex(I), and finally let short(I) be the total value of the shortage
given by all FFD bins. Then we have

w(I) =
∑FFD(I)

k=1 w (Bk) = (1−X)FFD(I) + sur(I)− short(I), (10)

w(I) =
∑OPT (I)

k=1 w (B∗
k) = 11/9(1−X)OPT (I)− res(I). (11)

Suppose that
res(I) + sur(I) + rex(I) ≥ short(I) (12)

holds. Then then applying (10) and (11), we have

(1−X)FFD(I) = w(I) − sur(I) + short(I) (13)
≤ w(I) + res(I) + rex(I) (14)

= 11/9(1−X)OPT (I) + 27/36(1−X), (15)

and dividing by (1 − X), and considering that 27/36 < 7/9 we get our main
result. Thus in the remained part of this section we prove (12). First, let us

8 G. Dósa

see what bins are possible, according only to the definition of the classes. First
we list all possible optimal bins, then all possible FFD bins. In the last rows r
means the reserve of the optimal bins, while s denotes the value of the surplus or
shortage of the FFD bins. If s is positive, then it means surplus, if it is negative,
for example if it is −3 , it means that the shortage of that FFD bin is three. The
value of reserve, surplus of shortage of some bin can be easily computed by the
weights of the classes. (In case of (L,U) or (L,V) FFD bins we define the weights
of the classes in some other way.)

OPT
L
B
M
S
U
V
r

1 1 1
1 1 1 1 1 1 1 1 1
1 1 1

1 1 2 1 1
1 1 1 2 1

1 1 2 1 1 1 2
0 3 3 -1 2 2 2 5 5 8 8 8

2 2 2 1 1 1 1 1 1 1 1
1 2 1 1

1 1 2 1 1
1 1 2 1 3 2

2 5 5 5 8 8 11 2 11 2 11
S
U
V
r

3 2 2 2 2 1 1 1 1 1 1
1 1 2 2 1 1 3 3 2 2 1 1
1 2 1 1 2 1 3 2 1 2 1 3 2 4 3

8 2 11 2 11 5 14 5 14 5 14 8 17 8 17 8 17 8 17

FFD
L
B
M
S
U
V
s

1 1 1 1 1
1 2 1 1

1 1
1 1

1
1

5 2 -1 0 -3 -6

1 1 1
1 1 1 1 1 1 1 1 1
1 1 1

1 1 2 1 1
1 1 1 2 1

1 1 2 1 1 1 2
8 5 5 9 6 6 6 3 3 0 0 0

2 2 2 1 1 1 1 1 1 1 1
1 2 1 1

1 1 2 1 1
1 1 2 1 3 2

6 3 3 3 0 0 -3 6 -3 6 -3
S
U
V
s

3 2 2 2 2 1 1 1 1 1 1
1 1 2 2 1 1 3 2 1
1 2 1 1 2 1 3 2 1 2 3 4 1

0 6 -3 6 -3 3 -6 3 -6 3 -6 0 0 0 0 -27

Lemma 9. There can not be other optimal, nor FFD bins.

Proof. Each optimal bin contains three or four items, and each FFD bin can
contain at least two, and at most four items. Furthermore each bin has items
with total size at most one, and each FFD has items with size more than 1−X .
Using the next inequalities: L+2U > 1, 2B+V > 1, B+3V > 1, M+S+2V > 1,
3S + V > 1, B +U +X ≤ 1, 3U +X ≤ 1, (all of them can be shown easily), we
get that exactly the above bins are possible.

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm 9

We emphasize, that all types of the above FFD bins can not occur at the same
time! For example if there exists a (B,2S) FFD bin, then there can not be other
FFD bin which contains a big item and no large item, since then these two B
items would fit into one bin.

We use the next notation: If L is packed into (L,A) FFD bin, and (L,B,C)
optimal bin, where A, B, and C are items and L is a large item, we say that L
is packed into the {(L,A), (L,B,C)} bbin (to denote, that this is not really a
bin, but a bin-pair). The first and second part of a bbin are the FFD and the
optimal bins of item L, respectively. An arbitrary bin is denoted as (A,.) bin,
where A is a class, and the bin contains at least one item from class A, but does
not contain items from higher classes. For example, (M,.) denotes a bin, which
contain at least one M item, but does not contain L or B items.

Theorem 2. Suppose that there are not (L,U), (L,V) FFD bins, and there is
not {(L, S), (L, S, V)} bbin. Then statement (12) holds.

Proof. First suppose that there is not (B,M,S) optimal bin. Since there is not
{(L, S), (L, S, V)} bbin, follows that by every L item we get 2 reserve at least,
and the shortage caused by the (L,S) FFD bins are all covered. Also, since every
optimal not L-bin has at least 2 reserve, we have totally at least 12 reserve, since
there must be at least six optimal bins by Lemma 6. On the other hand, let us
count the possible shortage caused by not (L,S) bins. If there is (B,S) FFD bin,
then from Lemma 8 we know that there is not M item. Then it can not be (B,M)
FFD bin, and we have at most 12 shortage, since it can not be at the same time
two (S,.) FFD bins with shortage, and all shortage is covered. In the opposite
case, if there is not (B,S) FFD bin, then the total not covered shortage is at
most 3 (by a possible existing (B,M) FFD bin) plus 3 (by an (M,.) FFD bin)
plus 6 by an (S,.) FFD bin, this is altogether again 12, and it is again covered.

Now suppose that there is at least one (B,M,S) optimal bin. Then,.follows
that 1−X

2 + 1
3 + S < B + M + S ≤ 1 holds for the previous B, M, and S items,

from what we get that S < 1
6 + X

2 holds for the smallest S item. Let this smallest
S be denoted as S0. Again, since all S is greater than 1−X

3 , and all M is greater
than 1

3 , follows that there is such B item which is less than 1+X
3 . Then we

conclude the next things: (i), It can not be {(L,M), (L, S, V)} bbin, since then,
from Lemma 7 follows that all B items must be greater than the sum of these
two S and V items being in the (L,S,V) bin, thus B > 1−X

3 + X holds for all
B items, contradiction. (ii), M + S + S0 ≤ 1−X

2 + 1
3 + 1

6 + X
2 = 1 holds. From

this second property follows, that if there is (M,S,U) or (M,S,V) FFD bin, then
there is not further S item.

Now we are ready to finish the investigation of this case. We redefine the
weight of exactly those M items what are packed into (B,M,S) optimal bins as
12, let these M items be called as small M items. Then, as before we have at
least 12 reserve, since by all L items we get 2 reserve, and by all other optimal
bins we have 2 more reserve, and all shortage caused by the (L,S) or (L,M) FFD
bins are covered.

10 G. Dósa

How many shortage can cause the not L FFD bins? Let us realize, that both
M items in an (2M,U) or (2M,V) FFD bin can not be small M items, since a
small M item, plus an appropriate B item and the smallest S item fit into one
bin. Follows that by (2M,S), (2M,U) or (2M,V) FFD bins we get no shortage.
By a (B,M) or (B,S) FFD bin (they can not exist at the same time), by an (M,.)
FFD bin, and finally by an (S,.) FFD bin we can get at most 6 + 6 + 6 = 18
shortage. If there is not (B,M) nor (B,S) bin, then all shortage is covered. If
there is not (M,.) FFD bin with shortage, again, all shortage is covered, and this
is also true for the (S,.) FFD bins. Finally we can consider the next things:

Suppose that there is an (M,.) FFD bin which has no S item, then there is
not further S item, thus it can not be (S,.) bin with shortage, and all shortage is
covered. Also, we have seen that if there is (M,S,U) or (M,S,V) FFD bin, then
again, there is not further S item. Thus, if there is shortage caused by some (M,.)
bin, then the total not covered shortage is at most 6 + 6 + 0 = 12, otherwise, if
there is, again it is at most 6 + 0 + 6 = 12, and the statement is proved.

Theorem 3. If there is (L,V) or (L,U) FFD bin, or there is {(L, S), (L, S, V)}
bbin, then statement (12) also holds.

Proof. The proof can be made by case analysis. The details can not fit here, but
the author gladly send it to the interested reader.

Thus we proved that in case 1/5 < X ≤ 1/4 our statement holds. It only
remained the following case.

4 Case 2/11 < X ≤ 1/5

In this case we redefine the classes of the items and their weights, as follows:

Class Weight Or simply
1
2 < L 24

36 (1−X) 24
1−X

2 < B1 ≤ 1
2

18
36 (1−X) 18

3
8 −

X
8 < B2 ≤ 1−X

2
16
36 (1−X) 16

1
3 < M1 ≤ 3

8 −
X
8

15
36 (1−X) 15

1+X
4 < M2 ≤ 1

3
12
36 (1−X) 12

1
4 < S ≤ 1+X

4
10
36 (1−X) 10

1−X
4 < U ≤ 1

4
9
36 (1−X) 9

X ≤ V ≤ 1−X
4

8
36 (1−X) 8

The classification of the items in case 2/11 < X ≤ 1/5

Then the investigations are similar to that being in the previous section, but
there are more than 200 optimal, and also more than 200 possible FFD bins.

Acknowledgement. The author would like to thank Guochuan Zhang, Leah
Epstein and David S. Johnson for their valuable comments and help.

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm 11

References

1. Li, R., Yue, M.: The proof of FFD(L) ≤ 11/9OPT (L) + 7/9. Chinese Science
Bulletin 42(15) (August 1997)

2. Baker, B.S.: A new proof for the first-fit decreasing bin-packing algorithm. J. Algo-
rithms, 49–70 (1985)

3. Coffmann, E.G., Garey Jr., M.R., Johnson, D.S.: Approximation algorithms for bin
packing: A survey. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard
problems. PWS Publishing, Boston (1997)

4. Yue, M.: A simple proof of the inequality FFD(L) ≤ 11/9OPT (L) + 1, ∀L, for the
FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4), 321–331
(1991)

5. Johnson, D.S.: Near-optimal bin-packing algorithms. Doctoral Thesis. MIT Press,
Cambridge (1973)

6. Zhong, W., Dósa, Gy., Tan, Z.: On the machine scheduling problem with job delivery
coordination. European Journal of Operations Research, online (2006)

Sequential Vector Packing�

Mark Cieliebak2, Alexander Hall1, Riko Jacob1, and Marc Nunkesser1

1 Department of Computer Science, ETH Zurich, Switzerland
{alex.hall,riko.jacob,marc.nunkesser}@inf.ethz.ch

2 sd&m Schweiz AG, 8050 Zurich, Switzerland
mark.cieliebak@sdm.com

Abstract. We introduce a novel variant of the well known d-dimensional
bin (or vector) packing problem. Given a sequence of non-negative d-
dimensional vectors, the goal is to pack these into as few bins as possible
of smallest possible size. In the classical problem the bin size vector
is given and the sequence can be partitioned arbitrarily. We study a
variation where the vectors have to be packed in the order in which they
arrive and the bin size vector can be chosen once in the beginning. This
setting gives rise to two combinatorial problems: One in which we want
to minimize the number of used bins for a given total bin size and one in
which we want to minimize the total bin size for a given number of bins.
We prove that both problems are NP-hard and propose an LP based
bicriteria (1

ε
, 1

1−ε
)-approximation algorithm. We give a 2-approximation

algorithm for the version with bounded number of bins. Furthermore, we
investigate properties of natural greedy algorithms, and present an easy
to implement heuristic, which is fast and performs well in practice.

Suppose you want to spray a long text on a wall using stencils for the letters
and spray color. You start from the left and assemble as much of the beginning
of the text as you have matching stencils at your disposal. Then you mask the
area around the stencils and start spraying. Afterwards, you remove the stencils
again, so that you can reuse them in the next steps. You iterate this procedure
starting after the last letter that was sprayed until the whole text is finished.
The sequential unit vector packing problem can be formulated as the following
question: If you have bought enough material to produce at most B stencils
before you start, how many stencils bi of each letter i ∈ {A . . .Z} do you produce
in order to minimize the number of steps that you need to spray the whole text?

The problem can be seen as an inverse vector packing problem: The sequence
in which the items (characters, interpreted here as unit vectors) occur is fixed
and cannot be altered. On the other hand, the bin size vector (here (bA, . . . , bZ))
can be changed as long as its component-wise sum does not exceed a given
value B. An equivalent problem was posed to us by an industry partner from
the manufacturing industry, where exactly this question arises in a production

� Work partially supported by European Commission - Fet Open project DELIS IST-
001907 Dynamically Evolving Large Scale Information Systems, for which funding
in Switzerland is provided by SBF grant 03.0378-1.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 12–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Sequential Vector Packing 13

process. As a small letdown we are not allowed to give the details of this process.
In this paper we study both this problem and the slightly generalized version
where the vectors in the sequence are not restricted to unit vectors. Formally,
the sequential vector packing problem is defined as follows:

Definition 1 (Sequential vector packing, SVP)
Given: a sequence S = s1 · · · sn of demand vectors si = (si1, . . . , sid) ∈ Qd

+,
d ∈ N.
Evaluation: for a bin vector (or short: bin) b = (b1, . . . , bd) ∈ Qd

+ of total bin
size B = |b|1 =

∑d
j=1 bj, the sequence s1 · · · sn can be packed in this order into k

bins, if breakpoints 0 = π0 < π1 < · · · < πk = n exist, such that

πl+1∑

i=πl+1

si ≤ b for l ∈ {0, . . . , k − 1} ,

where the inequalities over vectors are component-wise.
We denote the minimum number of bins for given S and b by κ(b,S) = k.
This number can be computed in linear time. We denote the jth component,
j ∈ {1, . . . , d}, of the demand vectors and the bin vector as resource j, i.e., sij

is the demand for resource j of the ith demand vector. We also refer to si as
position i.
Goals: minimize the total bin size and the number of bins. We formulate this
bicriteria objective in the following two versions:

Bounded Size SVP for a given bin size B find a bin vector b with B = |b|1,
such that κ(b,S) is minimum.

Bounded Number SVP for a given number of bins k find a bin vector b with
κ(b,S) = k, such that the total bin size B = |b|1 is minimum.

The sequential unit vector packing (SUVP) problem considers the restricted vari-
ant where si, i ∈ {1, . . . , n}, contains exactly one entry equal to 1, all others are
zero. Note that any solution for this version can be transformed in such a way
that the bin vector is integral, i.e., b ∈ Nd, by potentially rounding down re-
source amounts to the closest integer (therefore one may also restrict the total
bin size to B ∈ N). The same holds if all vectors in the sequence are integral,
i.e., si ∈ Nd, i ∈ {1, . . . , n}.

Given the bicriteria objective function it is natural to consider bicriteria ap-
proximation algorithms: We call an algorithm a bicriteria (α, β)-approximation
algorithm for the sequential vector packing problem if it finds for each sequence
S and bin size β ·B a solution which needs no more than α times the number of
bins of an optimal solution for S and bin size B.

Related Work. There is an enormous wealth of publications both on the classical
bin packing problem and on variants of it. The two surveys by Coffman, Garey
and Johnson [2, 8] give many pointers to the relevant literature until 1997. In [3]

14 M. Cieliebak et al.

Coppersmith and Raghavan introduce the multidimensional (on-line) bin pack-
ing problem. There are also some variants that take into consideration precedence
relations on the items [13, 12] that remotely resemble our setting. Galambos and
Woeginger [6] give a comprehensive overview over the on-line bin-packing and
vector-packing literature. We like to stress though that our problem is not an
on-line problem, since we are given the complete (albeit immutable) sequence in
the beginning. We are unaware of any publication that deals with the sequential
vector packing problem. In the context of scheduling algorithms, allowing a cer-
tain relaxation in bicriteria approximations (here increasing the bin size) is also
called resource augmentation, cf. [9, 10].

New Contributions and Outline. In Section 1 we present approximation algo-
rithms for the sequential vector packing problem. These are motivated by the
strong NP-hardness results that we give in Section 2. The approximation algo-
rithms are based on an LP relaxation and two different rounding schemes, yielding
a bicriteria (1

ε ,
1

1−ε)-approximation and—as our main result—a 2-approximation
for the bounded number version of the problem. Recall that the former
algorithm, e.g., for ε = 1

3 , yields solutions with at most 3 times the optimal number
of bins while using at most 1.5 times the given total bin size B, the latter may use
at most the optimal number of bins and at most twice the given total bin size B.
In Section 3 we present two simple greedy strategies and argue why they perform
badly in the worst case. Furthermore, we give an easy to implement randomized
heuristic and present two optimizations concerning subroutines. In particular, we
show how to compute κ(b,S) in time O(κ(b,S) · d) after a preprocessing phase
which takes O(n) time.Due to space limitations, we omit some of the proofs in this
extended abstract. These proofs can be found in the technical report [1], in which
we also experimentally evaluate the presented algorithms with promising results
on real world data, in particular for the randomized heuristic.

1 Approximation Algorithms

We present an ILP formulation which we subsequently relax to an LP. We con-
tinue by describing a simple rounding scheme which yields a bicriteria (1

ε ,
1

1−ε)-
approximation for bounded size and bounded number SVP and then show how
to obtain a 2-approximation for bounded number SVP.

1.1 ILP Formulation

For a given sequence S, let wu,v :=
∑v

i=u+1 si, for u, v ∈ {0, . . . , n} and u < v,
denote the total demand (or total demand vector) of the subsequence Su,v :=
su+1 · · · sv. If wu,v ≤ b holds, we can pack the subsequence Su,v into bin b.
The following integer linear programming (ILP) formulation solves both versions
of the sequential vector packing problem. Let X := {xi|i ∈ {0, . . . , n}} and
Y := {yu,v|u, v ∈ {0, . . . , n}, u < v} be two sets of 0-1 variables.

Sequential Vector Packing 15

0 1 2 3 4 5 6 7 8 9 10position i
1 1 0 0

y0,3 = 1 y3,7 = 1 y7,8 = 1
y8,10 = 1

sequence

var xi

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

y-vars
y1,2 = 0 etc.

1 1 10 0 0 0

Fig. 1. An exemplary instance, its potential ILP solution, and its flow representation.
The solution needs 4 bins.

min k (or B)
s.t. x0 =1 (1)

i−1∑

u=0

yu,i =xi for i ∈ {1, . . . , n} (2)

n∑

v=i+1

yi,v =xi for i ∈ {0, . . . , n− 1} (3)

∑
u,v:

u<i≤v

wu,v · yu,v≤b for i ∈ {1, . . . , n} (4)

d∑

j=1

bj = B,

n∑

i=1

xi = k (5)

B ∈ Q+, (k ∈ N),b ∈ Qd
+, xi, yu,v ∈ {0, 1} for xi ∈ X, yu,v ∈ Y

The 0-1 variable xi indicates whether there is a breakpoint at position i ≥ 1.
The 0-1 variable yu,v can be seen as a flow which is routed on an edge from
position u ∈ {0, . . . , n− 1} to position v ∈ {1, . . . , n}, with u < v, see Figure 1.

The Constraints (2),(3) ensure that flow conservation holds for the flow rep-
resented by the yu,v variables and that xi is equal to the inflow (outflow) which
enters (leaves) position i. Constraint (1) enforces that only one unit of flow is
sent via the Y variables. The path which is taken by this unit of flow directly
corresponds to a series of breakpoints.

In Constraints (4) the bin vector b comes into play: for any two consecutive
breakpoints (e.g., xu = xv = 1) the constraint ensures that the bin vector is large
enough for the total demand between the breakpoints (e.g., the total demand
wu,v of the subsequence Su,v). Note that Constraints (4) sum over all edges that
span over a position i (in a sense the cut defined by position i), enforcing that
the total resource usage is bounded by b. For the two consecutive breakpoints xu

and xv this amounts to wu,v ·yu,v ≤ b. Finally, Constraints (5) ensure the correct
total size of the bin vector and the correct number of bins.

1.2 An Easy (1
ε
, 1

1−ε
)-Approximation

As a first step, we relax the ILP formulation to an LP: here this means to have
xi, yu,v ∈ [0, 1] for xi ∈ X, yu,v ∈ Y . The following Algorithm Eps Rounding

computes a (1
ε ,

1
1−ε)-approximation:

1. Solve the LP optimally with one of the two objective functions.
Let (X�, Y �,b�) be the obtained fractional solution.

16 M. Cieliebak et al.

is i′ i′′ ie

x̂is = 1 x̂i′′
x̂i′ x̂ie

< ε≥ ε

is i′ i′′ ie

x̂is = 1 x̂i′′ = 0
x̂i′ = 0 x̂ie = 1

Fig. 2. An example of the rerouting of flow in Lines 4 (a)-(c) of the algorithm

2. Set (X̂, Ŷ , b̂) = (X�, Y �, 1
1−ε · b�) and is = 0. Stepwise round (X̂, Ŷ)̂:

3. Let ie > is be the first position for which
∑ie

i=is+1 x̂i ≥ ε.
4. Set x̂i = 0 for i ∈ {is+1, . . . , ie−1}, set x̂ie = 1. Reroute the flow accordingly

(see also Figure 2): (a) Set ŷis,ie = 1. (b) Increase ŷie,i by
∑ie−1

i′=is
ŷi′,i, for

i > ie. (c) Set ŷis,i′ = 0 and ŷi′,i = 0, for i′ ∈ {is + 1, . . . , ie − 1}, i > i′.
5. Set the new is to ie and continue in Line 3, until is = n.

Theorem 1. The algorithm Eps Rounding is a (1
ε ,

1
1−ε)-approximation algo-

rithm for the sequential vector packing problem.

Note that one would not actually implement the algorithm Eps Rounding.
Instead it suffices to compute the bin vector b� with the LP and then multiply
it by 1

1−ε and evaluate the obtained bin vector, see Section 3.

1.3 A 2-Approximation for Bounded Number Sequential Vector
Packing

We prove some properties of the LP relaxation and then describe how they can
be applied to obtain the rounding scheme yielding the desired bicriteria ratio.

Properties of the Relaxation. Let (X,Y,b) be a fractional LP solution w.r.t.
one of the objective functions; recall that the Y variables represent a flow. Let
e1 = (u, v) and e2 = (u′, v′) denote two flow carrying edges, i.e., yu,v > 0 and
yu′,v′ > 0. We say that e1 is contained in e2 if u′ < u and v′ > v, we also call
(e1, e2) an embracing pair. We say an embracing pair (e1, e2) is smaller than an
embracing pair (ê1, ê2), if the length of e1 (for e1 = (u, v), its length is v − u)
is less than the length of ê1 and in case of equal lengths, if u < û (order by
left endpoint of e1, ê1). That is, for two embracing pairs with distinct e1 and ê1

we always have that one is smaller than the other. We show that the following
structural property holds:

Lemma 1 (no embracing pairs). Any optimal fractional LP solution (X�,
Y �,b�) can be modified in such a way that it contains no embracing pairs, without
increasing the number of bins and without modifying the bin vector.

Proof. We set Y = Y � and show how to stepwise treat embracing pairs contained
in Y , proving after each step that (X�, Y,b�) is still a feasible LP solution. We
furthermore show that this procedure terminates and in the end no embracing
pairs are left in Y .

Sequential Vector Packing 17

u v

u′ v′

u

vu′

v′

a b c d edd

e1

e2

e′1

e′2
pmin

is

e

· · · · · ·S
ie

Fig. 3. Left: Replacement of λ units of flow on e1 and e2 by λ units of flow on e′
1

and e′
2 in Lemma 1. Right: Extracting the integral solution. Edge e together with other

potential edges in Y � in Theorem 2.

Let us begin by describing one iteration step, assuming (X�, Y,b�) to be
a feasible LP solution which still contains embracing pairs. Let (e1, e2), with
e1 = (u, v) and e2 = (u′, v′), be an embracing pair. We now modify the flow Y
to obtain a new flow Y ′ by rerouting λ = min{yu,v, yu′,v′} units of flow from e1,
e2 onto the edges e′1 = (u, v′) and e′2 = (u′, v): y′u,v = yu,v −λ, y′u′,v′ = yu′,v′ −λ
and y′u′,v = yu′,v +λ, y′u,v′ = yu,v′ +λ; see also Figure 3 (left). The remaining flow
values in Y ′ are taken directly from Y . It is easy to see that the flow conservation
constraints (2),(3) still hold for the values X�, Y ′ (consider a circular flow of λ
units sent in the residual network of Y on the cycle u′, v, u, v′, u′). Since X� is
unchanged this also implies that the number of bins did not change, as desired.
It remains to prove that the Constraints (4) still hold for the values Y ′,b� and
to detail how to consecutively choose embracing pairs (e1, e2) in such a way that
the iteration terminates.

Feasibility of the Modified Solution. Constraints (4) are parameterized over i ∈
{1, . . . , n}. We argue that they are not violated separately for i ∈ {u′+1, . . . , u},
i ∈ {u+1, . . . , v}, and i ∈ {v +1, . . . , v′}, i.e., the regions b, c, and d in Figure 3
(left). For the remaining regions a and e it is easy to check that the values of
the affected variables do not change when replacing Y by Y ′. So let us consider
the three regions:

Region b (d). The only variables in (4) which change when replacing Y by Y ′

for this region are: y′u′,v′ = yu′,v′ −λ and y′u′,v = yu′,v +λ. This means that flow
is moved to a shorter edge, which can only increase the slack of the constraints:
With wu′,v < wu′,v′ it is easy to see that (4) still holds in region b. Region d is
analogous to b.

Region c. Here the only variables which change in (4) are: y′u,v = yu,v − λ,
y′u′,v′ = yu′,v′ −λ, y′u′,v = yu′,v +λ, and y′u,v′ = yu,v′ +λ. In other words, λ units
of flow were moved from e1 to e′1 and from e2 to e′2. Let us consider the fraction
of demand which is contributed to (4) by these units of flow before and after the
modification. Before (on e1 and e2) this was λ · (wu,v + wu′,v′) and afterwards
(on e′1 and e′2) it is λ · (wu′,v + wu,v′). Since both quantities are equal, the left
hand side of (4) remains unchanged in region c.

Choice of (e1, e2) and Termination of the Iteration. In each step of the iteration
we always choose the smallest embracing pair (e1, e2), as defined above. If there

18 M. Cieliebak et al.

are several smallest embracing pairs (which by definition all contain the same
edge e1), we choose one of these arbitrarily.

First we show that the modification does not introduce an embracing pair
which is smaller than (e1, e2). We assume the contrary and say w.l.o.g. that the
flow added to edge e′1 creates a new embracing pair (e, e′1) which is smaller
than the (removed) embracing pair (e1, e2). Clearly, e is also contained in e2.
Therefore, before the modification (e, e2) would have been an embracing pair
as well. Since (e, e2) is smaller than (e1, e2) it would have been chosen instead,
which gives the contradiction.

It follows that we can divide the iterations into a bounded number of phases:
in each phase all considered embracing pairs are with respect to the same e1-type
edge. As soon as a phase is finished (i.e., no embracing pairs with the phase’s
e1-type edge remain) this e1-type edge will never be considered again, since this
could only happen by introducing a smaller embracing pair later in the iteration.
Consider a single phase during which an edge e1 is contained in possibly several
other edges e2. By the construction of the modification for an embracing pair
(e1, e2) it is clear that e2 could not be chosen twice in the same phase. Therefore,
the number of modification steps per phase can also be bounded by O(n2). ��

Choose a Flow Carrying Path. We will use the structural insights from above
to prove that bin vector 2·b� yields a 2-approximation for bounded number SVP.

Due to Lemma 1 an optimal fractional LP solution (X�, Y �,b�) without em-
bracing pairs exists. Let pmin denote the shortest flow carrying path in (X�, Y �,
b�), where shortest is meant with respect to the number of breakpoints. Clearly,
the length of pmin is at most the number of bins

∑n
i=1 x�

i , since the latter can be
seen as a convex combination of the path lengths of an arbitrary path decompo-
sition. Below we show that the integral solution corresponding to pmin is feasible
for the bin vector 2 ·b�, and thus pmin and 2 ·b� give a 2-approximation. Observe
that the approximation algorithm does not actually need to transform an opti-
mal LP solution, given, e.g., by an LP solver, into a solution without embracing
pairs. The existence of path pmin in such a transformed solution is merely taken
as a proof that the bin vector 2 · b� yields less than

∑n
i=1 x�

i breakpoints. To
obtain such a path, we simply evaluate 2 · b� with the algorithm presented in
Section 3 (b� given by the LP solver).

Theorem 2. Given an optimal fractional LP solution (X�, Y �,b�) without em-
bracing pairs, let pmin denote the shortest flow carrying path. The integral solu-
tion corresponding to pmin is feasible for 2 · b�.

Proof. We only have to argue for the feasibility of the solution w.r.t. the doubled
bin vector. Again we will consider Constraints (4). Figure 3 (right) depicts an
edge e on path pmin and other flow carrying edges. We look at the start and end
position is and ie in the subsequence defined by e. Denote by Eis = {(u, v)|0 ≤
u < is ≤ v ≤ n} (and Eie , respectively) the set of all flow carrying edges
that cross is (ie) and by imin, (imax) the earliest tail (latest head) of an arc in
Eis , (Eie). Furthermore, let E′ = Eis ∪Eie . Summing up the two Constraints (4)
for is and ie gives 2b� ≥

∑
(u,v)∈Eis

y�
u,v ·wu,v +

∑
(u,v)∈Eie

y�
u,v ·wu,v =: A and

Sequential Vector Packing 19

thus 2b� ≥ A ≥
∑

imin<i≤imax

∑
(u,v)∈E′ :

u<i≤v

y�
u,v ·si ≥

∑
is<i≤ie

∑
(u,v)∈E′ :

u<i≤v

y�
u,v ·si =

∑
is<i≤ie

si = wis,ie . The second inequality is in general an inequality because
the sets Eis and Eie need not be disjoint. For the third inequality we rely on the
fact that there are no embracing pairs. For this reason, each position between
is and ie is covered by an edge that covers either is or ie. We have shown that
the demand between any two breakpoints on pmin can be satisfied by the bin
vector 2 · b�. ��

Observe that for integral resources the above proof implies that even �2b�	
has no more breakpoints than the optimal solution. Note also that it is easy
to adapt both approximation algorithms so that they can handle pre-specified
breakpoints. The corresponding xi values can simply be set to one in the ILP
and LP formulations.

2 NP-Completeness

For all considered problem variants it is easy to determine the objective value
once a bin vector is chosen. Hence, for all variants of the sequential vector packing
problem considered in this article, the corresponding decision problem is in NP .
Moreover, the decision problem of both the bounded size and bounded number
versions are identical. Therefore, we will not distinguish between the two versions
here. We now come to the NP-hardness result. To simplify the exposition, we
first consider a variant of the sequential unit vector packing problem where the
sequence of vectors has prespecified breakpoints, always after w positions. Then
the sequence effectively decomposes into a set of windows of length w, and for
each position in such a window i it is sufficient to specify the resource that is
used at position j ∈ {1, . . . , w}, denoted as si

j ∈ {1, . . . , d}. This situation can
be understood as a set of sequential unit vector packing problems that have
to be solved with the same bin vector. The objective is to minimize the total
number of (additional) breakpoints, i.e., the sum of the objective functions of the
individual problems. Then, we also show strong NP-hardness for the original
problem.

Lemma 2. Finding the optimal solution for sequential unit vector packing with
windows of length 4 (dimension d and bin size B as part of the input) is NP-
hard.

Proof. By reduction from the NP-complete problem Clique [7] or more gener-
ally from k-densest subgraph [5]. Let G = (V,E) be an instance of k-densest
subgraph, i.e., an undirected graph without isolated vertices in which we search
for a subset of vertices of cardinality k that induces a subgraph with the maximal
number of edges.

We construct a sequential unit vector packing instance (S, B) with windows
of length 4 and with d = |V | resources, i.e., V = {1, .., d}. There is precisely
one window per edge e = (u, v) ∈ E, the sequence of this window is se = uvuv.
The total bin size is set to B = d + k. This transformation can be carried out

20 M. Cieliebak et al.

in polynomial time and achieves, as shown in the following, that (S, B) can
be solved with at most |E| − � (additional) breakpoints if and only if G has
a subgraph with k vertices containing at least � edges. Because every window
contains at most two vectors of the same resource, having more than two units
of one resource does not influence the number of breakpoints. Every resource
has to be assigned at least one unit because there are no isolated vertices in G.
Hence, a solution to (S, B) is characterized by the subset R of resources to which
two units are assigned (instead of one). By the choice of the total bin size we
have |R| = k. A window does not induce a breakpoint if and only if both its
resources are in R, otherwise it induces one breakpoint.

If G has a node induced subgraph G′ of size k containing � edges, we chose R
to contain the vertices of G′. Then, every window corresponding to an edge of G′

has no breakpoint, whereas all other windows have one. Hence, the number of
(additional) breakpoints is |E| − �.

If (S, B) can be scheduled with at most |E| − � breakpoints, define R as the
resources for which there is more than one unit in the bin vector. Now |R| ≤ k,
and we can assume |R| = k since the number of breakpoints only decreases if
we change some resource from one to two, or decrease the number of resources
to two. The set R defines a subgraph G′ with k vertices of G. The number of
edges is at least � because only windows with both resources in R do not have a
breakpoint. ��

It remains to consider the original problem without pre-specified breakpoints.

Lemma 3. Let (S, B) be an instance of sequential (unit) vector packing of
length n with k pre-specified breakpoints and d resources (d ≤ B) where ev-
ery resource is used at least once. Then one can construct in polynomial time an
instance (S′, B′) of the (unit) vector packing problem with bin size B′ = 3B + 2
and d′ = d + 2B + 2 resources that can be solved with at most � + k breakpoints
if and only if (S, B) can be solved with at most � breakpoints.

Proof. The general idea is to use for every prespecified breakpoint some “stop-
ping” sequence Fi with the additional resources in such a way that the bound B′

guarantees that there is precisely one breakpoint in Fi. This sequence Fi needs to
enforce exactly one breakpoint, no matter whether or not there was a breakpoint
within the previous window (i.e., between Fi−1 and Fi).

We introduce two different stopping sequences F and G which we use alternat-
ingly. This ensures that between two occurrences of F there is at least one break-
point. The resources 1, . . . , d of (S′, B′) are one-to-one the resources of (S, B).
The 2B + 2 additional resources are divided into two groups f1, . . . , fB+1 for F
and g1, . . . , gB+1 for G. Every odd pre-specified breakpoint in S is replaced by
the sequence F := f1f2· · ·fB+1f1f2 · · · fB+1 and all even breakpoints by the
sequence G := g1g2· · ·gB+1g1g2· · ·gB+1.

To see the backward direction of the statement in the lemma, a bin b for (S, B)
resulting in � breakpoints can be augmented to a bin vector b′ for (S′, B′) by
adding one unit for each of the new resources. This does not exceed the bound B′.
Now, in (S′, B′) there will be the original breakpoints and a breakpoint in the

Sequential Vector Packing 21

middle of each inserted sequence. This shows that b′ results in �+k breakpoints
for (S′, B′), as claimed.

To consider the forward direction, let b′ be a solution to (S′, B′). Because
every resource must be available at least once, and B′−d′ = 3B+2−(d+2B+2) =
B − d, at most B − d < B entries of b′ can be more than one. Therefore, at
least one of the resources fi is available only once, and at least one of the
resources gj is available only once. Hence, there must be at least one breakpoint
within each of the k inserted stopping sequences. Let k + � be the number of
breakpoints induced by b′ and b the projection of b′ to the original resources.
Since all resources must have at least one unit and by choice of B′ and d′ we
know that b sums to less than B. Now, if a subsequence of S not containing
any f or g resources can be packed with the resources b′, this subsequence can
also be packed with b. Hence, b does not induce more than � breakpoints in the
instance (S, B) with pre-specified breakpoints. ��

Theorem 3. The sequential unit vector packing problem is strongly NP-hard.

Proof. By Lemma 2 and Lemma 3, with the additional observation that all used
numbers are polynomial in the size of the original graph. ��

For a discussion of polynomially solvable cases and issues related to fixed pa-
rameter tractibility, see [1].

3 Practical Algorithms

Both the problem presented in the introduction and the original industry prob-
lem are bounded size SUVP problems. For this reason, we focus on this variant
when considering practical algorithms.

Greedy Algorithms. We describe two natural greedy heuristics for sequential
unit vector packing. Recall that we denote by κ(b,S) the minimal number of
breakpoints needed for a fixed bin vector b and given (S, B). Observe that it
is relatively easy to calculate κ(b,S) in linear time (see end of this section).
The two greedy algorithms we discuss here are: Greedy-Grow and Greedy-

Shrink. Greedy-Grow grows the bin vector starting with the all one vector.
In each step it increases some resource by an amount of 1 until the total bin size
B is reached, greedily choosing the resource whose increment improves κ(b,S)
the most. Greedy-Shrink shrinks the bin vector starting with a bin vector
b =

∑n
i=1 si, which yields κ(b,S) = 0 but initially ignores the bin size B. In

each step it then decreases some resource by an amount of 1 until the total
bin size B is reached, greedily choosing the resource whose decrement worsens
κ(b,S) the least.

In the light of the following observations (for proofs see [1]) it is important to
specify the tie-breaking rule for the case that there is no improvement at all after
the addition of a resource. Greedy-Grow can be forced to produce a solution
only by this tie-breaking rule, which is an indicator for its bad performance.

22 M. Cieliebak et al.

Observation 1. Given any instance (S, B) to bounded size SVP, this instance
can be modified to an instance (S′, B′), with n′ = n, d′ = 2d,B′ = 2B such that
all of Greedy-Grow’s choices of which resource to add depend entirely on the
tie-breaking rule.

It follows that Greedy-Grow with an unspecified tie-breaking rule can be led
to produce arbitrarily bad solutions. Also Greedy-Shrink can produce bad
solutions depending on the tie-breaking scheme.

Observation 2. There are instances with d resources on which the solution pro-
duced by Greedy-Shrink is a factor of �d/2	 worse than the optimal solution,
if the tie-breaking rule can be chosen by the adversary.

For the experiments in [1] we use for both heuristics a round-robin tie-breaking
rule that cycles through the resources. Every time a tie occurs it chooses the
cyclic successor of the resource that was increased (decreased) in the last tie.

Enumeration Heuristic. We present an enumeration heuristic for integral
vectors si ∈ Nd, i ∈ {1, . . . , n}, that is inspired by a variant of Schöning’s 3-
SAT algorithm [11] that searches the complete hamming balls of radius �n/4	
around randomly chosen assignments, see [4]. The following algorithm uses a
similar combination of randomized guessing and complete enumeration of parts
of the solution space that are exponentially smaller than the whole solution
space. The idea is to guess uniformly at random (u.a.r.) subsequences Si1,i2 of
the sequence that do not incur a breakpoint in a fixed optimal solution bopt.
For such a subsequence we know that bopt ≥ wi1,i2 . In particular, if we know
a whole set W of such total demand vectors that all come from subsequences
without breakpoints for bopt, we know that bopt ≥ maxw∈W w must hold for
a component-wise maximum. This idea leads to the Randomized Heuristic

Enumeration (RHE):

Phase 1: Start with a “lower bound vector” t = 0. For a given subsequence
length ssl and a number p of repetitions, in each of p rounds choose σi =u.a.r

{0, . . . , n− ssl}, set σi = σi + ssl, and then set t = max{t,wσi,σi}.
Phase 2: Find a bin vector b of total size B with b ≥ t that minimizes κ(b,S).
Do this by enumerating all b ≥ t of total size B.

It is straight-forward to analyze the success probability of this algorithm if
we relate the subsequence length to an estimate k′ of the minimum number of
breakpoints k. We give experimental evidence that the algorithm performs well
and present an efficient algorithm for the enumeration in Phase 2, see [1].

Evaluation. For demand vectors si ∈ Qd
+, i ∈ {1, . . . , n}, the evaluation of a

given bin vector b, i.e., computing κ(b,S), can be done in the obvious way in
O(n · d) time. With a preprocessing phase and some algorithmic engineering we
can show the following theorem (see [1] for a complete discussion).

Theorem 4. Given a sequence S and a bin vector b we can construct a data
structure with O(n · d ·B) space and preprocessing time such that the evaluation

Sequential Vector Packing 23

of κ(b,S) for sequential vector packing takes O(κ(b,S) · d) time. For sequential
unit vector packing only O(n) space and preprocessing time is needed.

4 Conclusion

In this paper, we have introduced the sequential vector packing problem, pre-
sented NP-hardness proofs for different variants, approximation algorithms, and
several heuristics. The most interesting open challenges are probably to find an
approximation algorithm for bounded size SVP and inapproximability results.

References

[1] Cieliebak, M., Hall, A., Jacob, R., Nunkesser, M.: Sequential vector packing.
DELIS TR 0335, ETH Zurich (2006)

[2] Coffman Jr., E., Garey, M.R., Johnson, D.S.: Algorithm Design for Computer Sys-
tem Design. In: Approximation Algorithms for Bin Packing: An updated Survey,
pp. 49–106. Springer, Heidelberg (1984)

[3] Coppersmith, D., Raghavan, P.: Multidimensional on-line bin packing: Algorithms
and worst-case analysis. Operations Research Letters 4, 48–57 (1989)

[4] Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.M., Papadim-
itriou, C.H., Raghavan, P., Schöning, U.: A deterministic (2-2/(k+1))n algorithm
for k-sat based on local search. Theoretical Computer Science 289(1), 69–83 (2002)

[5] Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorith-
mica 29(3), 410–421 (2001)

[6] Galambos, G., Woeginger, G.J.: On-line bin packing—a restricted survey. Math-
ematical Methods of Operations Research 42(1), 25–45 (1995)

[7] Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Fran-
cisco (1979)

[8] Approximation Algorithms. In: Hochbaum, D.S. (ed.) Approximation Algorithms
For Bin Packing: A Survey, pp. 46–93. PWS Publishing Company (1997)

[9] Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of
the ACM 47, 617–643 (2000)

[10] Phillips, C., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. In: STOC. Proceedings of the 29th Annual ACM Sympo-
sium on Theory of Computing, pp. 140–149. ACM Press, New York (1997)

[11] Schöning, U.: A probabilistic algorithm for k-SAT based on limited local search
and restart. Algorithmica 32, 615–623 (2002)

[12] Wee, T.S., Magazine, M.J.: Assembly line balancing as generalized bin-packing.
Operations Research Letters 1, 56–58 (1982)

[13] Yang, J., Leung, J.Y.-T.: The ordered open-end bin-packing problem. Operations

Research 51(5), 759–770 (2003)

A Tighter Analysis of Set Cover Greedy

Algorithm for Test Set

Peng Cui

Renmin University of China, Beijing 100872, China
cuipeng@ruc.edu.cn

Abstract. Set cover greedy algorithm is a natural approximation algo-
rithm for test set problem. This paper gives a precise and tighter anal-
ysis of approximation ratio of this algorithm. The author improves the
approximation ratio 2 ln n directly derived from set cover to 1.14 ln n
by applying potential function technique of derandomization method. In
addition, the author gives a nontrivial lower bound (1+α) ln n of approx-
imation ratio, where α is a positive constant. This lower bound, together
with the matching bound of information content heuristic, confirms the
fact information content heuristic is slightly better than set cover greedy
algorithm in worst case.

1 Introduction

The test set problem is NP-hard. The polynomial time approximation algorithms
using in practice includes ”greedy” heuristics implemented by set cover criterion
or by information criterion[1]. Test set is not approximable within (1 − ε) lnn
for any ε > 0 unless NP ⊂ DTIME(nlog log n)[2,3]. Recently, the authors of [3]
design a new information type greedy algorithm, information content heuristic
(ICH for short), and prove its approximation ratio lnn+1, which almost matches
the inapproximability results.

The set cover greedy algorithm (SGA for short) is a natural approximation
algorithm for test set. In practice, its average performance is virtually the same
as information type greedy algorithms[1,4]. The approximation ratio 2 lnn of
SGA is obtained by transforming the test set problem as a set cover problem,
and the lower bound (1−o(1)) lnn of approximation ratio is derived by a reverse
reduction[2].

Oblivious rounding, a derandomization technique to derive simple greedy al-
gorithm for set cover problems by conditional probabilities is introduced in [5].
Young observes the number of elements uncovered is an ”potential function”
and the approximation algorithm only need to drive down the potential function
at each step, thus gives another proof of the well-known approximation ratio
lnn + 1.

In this paper, the author presents a tighter analysis of SGA. We uses the
potential function technique of derandomization method in [5] to improve the
approximation ratio 2 lnn directly derived from set cover to 1.14 lnn, and con-
struct instances to give nontrivial lower bound (1 + α) lnn of approximation

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 24–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 25

ratio, where α is a positive constant. The latter result confirms the fact ICH is
slightly better than SGA in worst case. In the analysis, the author refers to the
tight analysis of the greedy algorithm for set cover of [6].

In Section 2, some definitions, notations and basic facts are given. In Section 3,
the author analyzes differentiation distribution of test set and gives two propo-
sitions. In Section 4, the author uses the potential function method to prove
the improved approximation ratio. In Section 5, the author shows the nontrivial
lower bound of approximation ratio. Section 6 is some discussions.

2 Preliminaries

The input of test set problem consists of a set of items (called universe) S with
|S| = n, and T , a collection of subsets (called tests) of S. An item pair is a set
of two different items. A test T differentiates item pair a if |T ∩ a| = 1. T is a
test set of S if tests in T differentiate any item pair of S. The objective is to
find the test set T ′ ⊆ T with minimum cardinality.

Definition 1 (Test Set Problem)
Input: S, T ;
Feasible Solution: test set T ′, T ′ ⊆ T ;
Measure: |T ′|;
Goal: minimize.

In an instance of test set problem, there exist
(
n
2

)
different item pairs. Let i, j be

two different items, and S1, S2 are two disjoint sets. If i, j ∈ S1 , we say {i, j} is
an item pair inside of S1, and if i ∈ S1 and i ∈ S2, we say {i, j} is an item pair
between S1 and S2.

For any test T , let T+ = T and T− = S − T . Let T ∗ is an optimal test set,
denote m∗ = |T ∗|. We use a ⊥ T to represent the fact T differentiates a and
a ‖ T to represent the fact T does not differentiate a. We use a ⊥ T to represent
the fact at least one test in T differentiates a, a ‖ T to represent the fact any
test in T does not differentiate a, and ⊥ (a, T) to represent the number of tests
in T that differentiate a.

Fact 1. For three different items i, j and k, if {i, j} ‖ T and {i, k} ‖ T , then
{j, k} ‖ T .

Definition 2 (Equivalent Relation Induced by T̄)
Given T̄ , we define a binary relation �T̄ on S: for two item i, j, i �T̄ j iff {i, j} ‖
T̄ . By Fact 1, �T̄ is an equivalent relation. The equivalent classes containing i
is denoted as [i].

Fact 2. If T is a test set, then |T | ≥ log2 n.

Definition 3 (Compact Test Set)
Test set T with |T | = log2 n is called a compact test set.

26 P. Cui

Clearly, If T is a compact test set, then |S| = 2q, q ∈ Z+, and for any T1, · · · , Ti ∈
T , |T s1

1 ∩ · · · ∩ T si

i | = n/2i, where s1, · · · , si ∈ {+,−}.

Fact 3. If T is a minimal test set, then |T | ≤ n− 1.

Fact 4. For any S1∩S2 =∅, |S1| log2 |S1|+|S1| log2 |S1| ≤ |S1∪S2| log2 |S1 ∪ S2|.

Test set can be transformed to set cover in a natural way. Let (S, T) be an
instance of test set, we construct an instance (U, C) of set cover, where U =
{{i, j}|i, j ∈ S, i �= j}, and

C = {c(T)|T ∈ T }, c(T) = {{i, j}|i ∈ T, j ∈ T−}

Clearly, T ′ is a test set of S iff C′ = {c(T)|T ∈ T ′} is a set cover of U .

Definition 4 (Differentiation Measure)
The differentiation measure of T̄ , #(T̄), is defined as the number of item pairs
not differentiated by T̄ .

SGA can be described as:

Algorithm 1. SGA
Input: S,T ;
Output: a test set of S;
begin
T̄ ← ∅;
while #(T̄) > 0 do

select T in T − T̄ minimizing #(T̄ ∪ {T });
T̄ ← T̄ ∪ {T };

endwhile
return T̄

end

In SGA, we call T̄ the partial test set. The greedy algorithm for set cover has ap-
proximation ratio lnN− ln lnN +Θ(1) by [6]. Using the natural transformation,
we immediately obtain the approximation ratio 2 lnn of SGA.

We give two facts for proof of Section 4.

Fact 5. For any 0 < x < 1, (1− x)1/x < 1/e.

Denote φa(x) = 1
x (lnx− a).

Fact 6. For any x > 1, φ1(x) ≤ 1/e2 = 0.135 · · ·.

3 Differentiation Distribution

In this section, the author analyzes the distribution of times for which item pairs
are differentiated in instances of test set, especially the relationship between the
differentiation distribution and the size of the optimal test set.

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 27

Lemma 1. Given T ⊆ S, suppose T ′ is a test set for T and a test set for T− ,
then at most min(|T |, |T−|) item pairs between T and T− are not differentiated
by any test in T ′.

Proof. W.l.o.g, suppose |T | ≤ |T−|. We claim for any item i ∈ T , there exist at
most one item j in T− satisfying {i, j} ‖ T ′. Otherwise there exist two different
items j, k in T− such that {i, j} ‖ T ′ and {i, k} ‖ T ′, then by Fact 1 , {j, k} ‖ T ′,
which contradicts T ′ is a test set for T−. ��

Proposition 1. At most n log2 n item pairs are differentiated by exactly one
test in T ∗.

Proof. Let B be the set of item pairs that are differentiated by exactly one test
in T ∗. We prove |B| ≤ log2 n by induction. When n = 1, |B| = 0 = n log2 n.
Suppose the proposition holds for any n ≤ h− 1, we prove the proposition holds
for n = h.

Select T ∈ T ∗, then |T | ≤ h−1, |T−| ≤ h−1. Clearly, T ∗ is a test set of T . By
induction hypothesis, at most |T | log2 |T | item pairs inside of T are differentiated
by exactly one test in T ∗. Similarly, at most |T−| log2 |T−| item pairs inside of
T− are differentiated by exactly one test in T ∗.

By Lemma 1, at most min(|T |, |T−|) item pairs between T and T− are not
differentiated by any test in T ∗ − {T }. Therefore at most min(|T |, |T−|) item
pairs between T and T− are differentiated by exactly one test in T ∗.

W.l.o.g, suppose |T | ≤ |T−|, then

|B| ≤ |T | log2 |T |+ |T−| log2 |T−|+ T

≤ |T | log2(2|T |) + |T−| log2 |T−|
≤ |T | log2 |S|+ |T−| log2 |S|
≤ |S| log2 |S|.

��

Lemma 2. Given T ⊆ S, suppose T ′ is a test set for T and a test set for T−,
then at most |S| log2 |S| item pairs between T and T− are differentiated by exactly
one test in T ′.

Proof. Let B be the set of item pairs that are differentiated by exactly one test
in T ′. We prove that |B| ≤ |S| log2 |S| by induction. When |S| = 1, |B| = 0 =
|S| log2 |S|. Suppose the lemma holds for any |S| ≤ h − 1, we prove the lemma
holds for |S| = h.

Select T ′ ∈ T ′, then |T ′| ≤ h−1, |T ′−| ≤ h−1. Clearly, T ′−{T ′} is a test set
of T ∩T ′ and a test set of T−∩T ′. By induction hypothesis, at most |T ′| log2 |T ′|
item pairs between T ∩ T ′ and T− ∩ T ′ are differentiated by exactly one test in
T ′. Similarly, at most |T ′−| log2 |T ′−| item pairs between T ∩ T ′− and T− ∩ T ′−

are differentiated by exactly one test in T ′.
By Lemma 1, at most min(|T ∩ T ′|, |T− ∩ T ′−|) item pairs between T ∩

T ′ and T− ∩ T ′− are differentiated by exactly one test in T ′, and at most

28 P. Cui

min(|T−∩T ′|, |T∩T ′−|) item pairs between T−∩T ′ and T∩T ′− are differentiated
by exactly one test in T ′

W.l.o.g, suppose |T ′| ≤ |T ′−|, clearly

|T ′| ≥ min(|T ∩ T ′|, |T− ∩ T ′−|) + min(|T− ∩ T ′|, |T ∩ T ′−|).

Therefore

|B| ≤ |T ′| log2 |T ′|+ |T ′−| log2 |T ′−|+ T ′

≤ |T ′| log2(2|T ′|) + |T ′−| log2 |T ′−|
≤ |T ′| log2 |S|+ |T ′−| log2 |S|
≤ |S| log2 |S|.

��

Lemma 3. At most n log2 nm∗t−1 item pairs are differentiated by exactly t test
in T ∗, where t ≥ 2.

Proof. Let B∗
t be the set of item pairs that are differentiated by exactly t test

in T ∗. For any combination π of t − 1 tests in T ∗, let B∗
π be the subset of B∗

t

such that item pair in B∗
π is differentiated by any test in π.

Let �π be the equivalent relation induced by π. For any equivalent class
[i], there exists at most one equivalent class [j], such that any item pairs be-
tween [i] and [j] are differentiated by any test in π. By Lemma 2, at most
(|[i] ∪ [j]|) log2 |[i] ∪ [j]| item pairs between [i] and [j] are differentiated by ex-
actly one test in T ∗−π, i.e., are differentiated by exactly t tests in T ∗. To sum up,

|B∗
π| =

∑

[i],[j]

|[i] ∪ [j]| log2 |[i] ∪ [j]| ≤ n log2 n (Fact 4).

Therefore,

|B∗
t | ≤

∑

π

|Bπ| ≤
(

m∗

t− 1

)

n log2 n ≤ n log2 nm∗t−1.

��

Proposition 2. At most 2n log2 nm∗t−1 item pairs are differentiated by at most
t test in T ∗, where t ≥ 2.

Proof. Let Bt be the set of item pairs that are differentiated by at most t test
in T ∗. When m∗ ≥ 2, by Lemma 3 and Fact 2,

|Bt| = |B∗
1 |+ |B∗

2 |+ · · ·+ |B∗
t |

≤ n log2 n(1 + m∗ + · · ·+ m∗t−1)

≤ n log2 nm∗t−1(1 +
1

m∗ − 1
)

≤ 2n log2 nm∗t−1.

��

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 29

4 Improved Approximation Ratio

In this section, the author uses the potential function method to derive improved
approximation ratio of SGA for test set. Our proof is based on the idea to ”bal-
ance” the potential function by appending a negative term to the differentiation
measure.

Lemma 4 (Lemma 2 in [6]). The size of set cover returned by the greedy
algorithm is at most M∗(lnN − lnM∗ + 1), where N is the size of the universe,
and M∗ is the size of the optimal set cover.

Theorem 1. The approximation ratio of SGA for test set can be 1.14 lnn.

Proof. Let I is the integer satisfying

2n log2 nm∗I−1 <

(
n

2

)

≤ 2n log2 nm∗I ,

then I = �ln n−1
4 log2 n/ lnm∗�.

Let #0 = 1, #1 = n log2 n, #t = 2n log2 nm∗t−1, 2 ≤ t ≤ I, and #I+1 =
n(n− 1)/2.

We divide a run of the algorithm into I + 1 phases, from Phase I + 1 to
Phase 1. In Phase t, I + 1 ≥ t ≥ 1, the algorithm runs until #(T̄) < #t−1.

Let the set of selected tests in Phase t is Tt, and the partial test set when
Phase t stops is T̄t, 1 ≤ t ≤ I + 1. Then T̄t = ∪t≤u≤I+1Tu, 1 ≤ t ≤ I + 1, and
the returned test set is T ′ = ∪1≤t≤I+1Tt. Let T̄I+2 = ∅. If Tt �= ∅, let the last
selected test in Phase t is T ′

t .
Let kt = 1

t ln t#t

#t−1
m∗, 2 ≤ t ≤ I + 1.

In Phase t, for some t, I + 1 ≥ t ≥ 2, define the potential function be

f(T̄) = (#(T̄)− t− 1
t

#t−1)(1−
t

m∗)kt−|T̄ −T̄t+1|.

Given T̄ , let p denote the probability distribution on tests in T ∗: draw one test
uniformly from T ∗. For any T ∈ T ∗ , the probability of drawing T is p(T) = 1

m∗ .
For any item pair a,

∑

T :T∈T ∗−T̄ ,a⊥T

p(T) =
⊥ (a, T ∗)

m∗ .

By Fact 5,

f(T̄t+1) = (#t −
t− 1
t

#t−1)(1−
t

m∗)kt

< #t/
t#t

#t−1
=

#t−1

t
.

30 P. Cui

By the definition of f(T̄) and the facts p(T) ≥ 0 and
∑

T∈T ∗ p(T) = 1,

min
T∈T

f(T̄ ∪ {T })

≤ min
T∈T ∗

f(T̄ ∪ {T })

≤
∑

T∈T ∗

(p(T)f(T̄ ∪ {T }))

=
∑

T∈T ∗

(p(T)(#(T̄)−#(T, T̄)− t− 1
t

#t−1))(1−
t

m∗)kt−|T̄ −T̄t+1|−1

= (#(T̄)− t− 1
t

#t−1 −
∑

a‖T̄

∑

T :T∈T ∗,a⊥T

p(T))(1 − t

m∗)kt−|T̄ −T̄t+1|−1

and
∑

a‖T̄

∑

T :T∈T ∗,a⊥T

p(T)

=
∑

⊥(a,T ∗)≤t−1

∑

T :T∈T ∗,a⊥T

p(T) +
∑

⊥(a,T ∗)≥t

∑

T :T∈T ∗,a⊥T

p(T)

≥
∑

⊥(a,T ∗)≤t−1

1
m∗ +

∑

⊥(a,T ∗)≥t

t

m∗

=
∑

a‖T̄

t

m∗ −
∑

⊥(a,T ∗)≤t−1

t− 1
m∗

≥ (#(T̄)− t− 1
t

#t−1)
t

m∗ (Proposition 1 and Proposition 2).

Therefore,

min
T∈T

f(T̄ ∪ {T }) ≤ (#(T̄)− t− 1
t

#t−1)(1−
t

m∗)(1− t

m∗)kt−|T̄ −T̄t+1|−1 = f(T̄).

During Phase t, the algorithm selects T in T to minimize f(T̄ ∪ {T }). There-
fore, f(T̄t − {T ′

t}) ≤ f(T̄t+1) < #t−1
t .

By definition of Phase t, #(T̄t − {T ′
t}) ≥ #t−1. Hence

f(T̄t−{T ′
t}) ≥ (#t−1−

t− 1
t

#t−1)(1−
t

m∗)kt−|Tt−{T ′
t}| =

#t−1

t
(1− t

m∗)kt−|Tt−{T ′
t}|.

Therefore, (1− t
m∗)kt−|Tt−{T ′

t}| < 1, thus |Tt − {T ′
t}| < kt, and |Tt| < kt + 1 .

To sum up,
|T̄2| <

∑

2≤t≤I+1

kt + I.

When all Phase t, I +1 ≥ t ≥ 2, end, consider the instance of set cover (U, C),
where U = {a|a ‖ T̄2} and C = {c(T)|c(T) ∩ U �= ∅}. Clearly, |U | < #1.

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 31

Let M∗ be the size of the optimal set cover of this instance. Then |M∗| ≤ m∗.
Consider the following two cases: (a)|M∗| ≤ m∗/2; (b)|M∗| > m∗/2.

In case (a),

|T1| ≤M∗(ln #1 + 1) ≤ m∗(
1
2

+ o(1)) lnn,

and

|T̄2| = m∗(
∑

2≤t≤I+1

1
t

ln
#t

#t−1
+

∑

2≤t≤I+1

ln t

t
) + I

≤ m∗(
∑

2≤t≤I+1

1
2

ln
#t

#t−1
+

1
2

ln2(I + 2)) + I

= m∗(
1
2

+ o(1)) lnn.

Hence
|T ′| = |T̄2|+ |T1| = m∗(1 + o(1)) lnn.

In case (b), by Lemma 4,

|T1| ≤M∗(ln #1 − lnM∗ + 1)
≤ m∗(ln #1 − lnm∗ + ln 2 + 1)
≤ m∗((1 + o(1)) lnn− lnm∗),

and

|T̄2| ≤ m∗(
∑

2≤t≤I+1

lnm∗

t
+ ln 2 +

∑

2≤t≤I+1

ln t

t
) + I

≤ m∗(ln I lnm∗ + ln 2 +
1
2

ln2(I + 2)) + I

≤ m∗(ln
lnn

lnm∗ lnm∗ + o(1) lnn).

Hence
|T ′| = |T̄2|+ |T1| ≤ m∗(1 + φ1(

lnn

lnm∗) + o(1)) lnn.

By Fact 6,
|T ′| ≤ m∗(1.135 · · ·+ o(1)) lnn.

��

5 Lower Bound

First we consider set cover and show a lemma about the lower bound of approx-
imation ratio as a corollary of [6].

Lemma 5. Given N , the size of the universe N , and M∗, the size of the optimal
set cover, there exists instance of set cover such that the size of set cover returned
by the greedy algorithm is at least (M∗ − 1)(lnN − lnM∗).

32 P. Cui

Proof. The ”greedy numbers” N(k, l) is the size of smallest set U for which it is
possible to have a cover of U with M∗ = l and M ′ = k, where M ′ is the size of
the cover returned by the greedy algorithm.

By the recursive formulas N(k+1, l) = � l
l−1N(k, l)�, and N(l, l) = l, we have

N(k, l) ≤ (
l

l − 1
)k−lN(l, l) +

∑

1≤i≤k−l

(
l

l − 1
)i−1 ≤ 2e

k−l
l−1 l

which gives

k ≥ (lnN(k, l)− ln l− ln 2)(l− 1) + l ≥ (lnN(k, l)− ln l)(l − 1).

By [6], there exists an instance satisfying N = N(k, l), M∗ = l. ��

In this section, we discuss on a variation of test set problem for brevity. Given
disjoint sets S1, · · · , Sr and T , set of subsets of the universe S = S1∪· · ·∪Sr, we
seek T ′ ⊆ T with minimum cardinality which is test set of any Si for 1 ≤ i ≤ r.
We denote the instance as (Si; T).

We could use the copy-split trick in [1,2] to split S1, · · · , Sr such that the
splitting overhead could be ignored. Hence our preference does not affect the
lower bound result.

To prepare for constructing nontrivial instances, we consider the level t ”atom”
instances, and investigate SGA’s behavior on the ”atom” instances. Let the
instance be (Sz; T). The universe includes integral points in (t + 1)-dimension
Euclid space, Sz = {(x1, · · · , xt, z)|xi, z ∈ Z+, 1 ≤ xi ≤ 2q, 1 ≤ z ≤ r2q−2}.
T = T ∗ ∪ T ′, and T ∗ = T ∗

1 ∪ · · · ∪ T ∗
t . For any 1 ≤ i ≤ t,T ∗

i contains tests
T ∗

i,j , 1 ≤ j ≤ 2q each of which contains all the points in Sz with xi = j.
T ′ = T ′

1 ∪ · · · ∪ T ′
t . For any 1 ≤ i ≤ t, let T ′

i = T ′
i,1 ∪ · · · ∪ T ′

i,2q−2 . Suppose T̂i

is a compact test set for {xi|1 ≤ xi ≤ 2q}. For each 1 ≤ i ≤ t and 1 ≤ j ≤ 2q−2,
T ′

i,j contains test Ti,j,p for 1 ≤ p ≤ q each of which contains points in Sz with
z = j mod 2q−2 and xi in some test in T̂i.

Proposition 3. For the ”atom” instances, SGA could select all tests in T ′.

Proof. At the beginning of the algorithm, the differentiation measure of tests in
T ′ is r22qt−2, and the differentiation measure of tests in T ∗ is

2q(t−1)(2qt − 2q(t−1))r2q−2 = r22qt−2 − r22qt−q−2.

The algorithm could first select tests in T ′
1 . After that, the differentiation

measure of tests in T ′ − T ′
1 decreases by a factor 2, and the differentiation

measure of tests in T ∗ decreases by a factor at least 2. Hence, the algorithm
could subsequently select tests in T ′

2 , · · · , T ′
t . ��

Theorem 2. The approximation ratio of SGA for test set has a lower bound
(1 + α) lnn, where α is a positive constant.

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 33

Proof. We select N and M∗ such that M∗ = J !2q, M∗J+1|N , N �M∗J+1 and
N �M∗(1+γ)(J+1), where q ∈ Z+, J is a positive integer and γ is a arbitrarily
small positive constant. Let (U, C) be the instance in Lemma 5, U = {e1, · · · , eN},
C∗ is the optimal set cover, and C′ is the set cover returned by the greedy
algorithm. Let Si

0 = {ei, fi} for 1 ≤ i ≤ N . Construct instance (Si
0; T0) with

T0 = T ∗
0 ∪ T ′

0 , T ∗
0 = C∗ and T ′

0 = C′.
We construct a series of level t instances (Sy,z

t ; Tt), 1 ≤ t ≤ J , and combine
them to an instance with n = g(J)N and m∗ = M∗. We intend to prove approx-
imation ratio of (S, T) could be (1 − o(1) + Ω(φa(J))) lnn for fixed J . When J
is sufficiently large, the ratio is at least (1 + α) lnn, where n is the size of the
universe and α is a positive constant.

Construction of (Sy,z
t ; Tt). Given t, we define (Sy,z

t ; Tt) as assembly of ”atom”
instances. The universe includes (J!

t)ttt−1N integral points in (2t+1)-dimension
Euclid space.

Sy,z
t = {(x1, · · · , xt, y1, · · · , yt, z)|xi, yi, z ∈ Z+, 1 ≤ xi ≤ 2q, 1 ≤ yi ≤ J!

t , 1 ≤
z ≤ tt−1N

2qt }.
Tt = T ∗

t ∪ T ′
t , T ∗

t = T ∗
t,1 ∪ · · · ∪ T ∗

t,t, and T ∗
t,i =

⋃
1≤yi≤ J!

t
T ∗yi

t,i for 1 ≤ i ≤ t.
T ∗yi

t,i contains tests T ∗yi

t,i,j for 1 ≤ j ≤ 2q each of which contains all the points in

S
y(yi),z
t with xi = j. Clearly, |T ∗| = M∗.
T ′

t = T ′
t,1 ∪ · · · ∪ T ′

t,t, T ′
t,i =

⋃
1≤yi≤ J!

t
T ′yi

t,i for 1 ≤ i ≤ t. Let T ′yi

t,i = T ′yi

t,i,1 ∪
· · · ∪ T ′yi

t,i,2q−2 . Suppose T̂i is a compact test set for {xi|1 ≤ xi ≤ 2q}. For each
1 ≤ i ≤ t and 1 ≤ j ≤ 2q−2, T ′yi

t,i,j contains test T yi

t,i,j,p for 1 ≤ p ≤ q each of

which contains points in S
y(yi),z
t with z = j mod 2q−2 and xi in some test in T̂i.

Clearly |T ′
t,i| = qM∗

4t for 1 ≤ i ≤ t.

It is easy to prove for (Sy,z
t ; Tt) the algorithm could select all the tests in T ′

t,t

before selecting any test in T ∗
t (along the line of the proof of Proposition 3), and

the differentiation measure of selected tests ranges from #begin
t = M∗t−1N to

#end
t = 2tM∗t−2N , for t ≥ 1.
In addition, for (Si

0; T0), the algorithm could select all the tests in T ′
0 , the the

differentiation measure of selected tests ranges from #begin
0 = N/M∗ to #end

0 = 1
by [6].

Consequently, we combine (Sy,z
t ; Tt), 1 ≤ t ≤ J and (Si

0; T0) to (Sy,z
t , S0

i ; T).
The size of universe is n = N +

∑J
1 (J!

t)ttt−1N ≤ (1 + J !J)N . Let T = T ∗ ∪T ′,
and T ′ = T ′

0 ∪ · · · ∪ T ′
J . We join tests in T ∗

t for 0 ≤ t ≤ J one-by-one to
obtain one test T ∗. Suppose T ∗

t = {T ∗
t,1, · · · , T ∗

t,M∗}, 0 ≤ t ≤ J , then T ∗ =
{T ∗

0,1 ∪ · · · ∪ T ∗
J,1, · · · , T ∗

0,M∗ ∪ · · · ∪ T ∗
J,M∗}.

We modify (Sy,z
t , Si

0; T) by two operations: Expansion and Join. Tests in T ′
t,t

for any 1 ≤ t ≤ J are expanded by a factor 2, and tests in T ′
u,v for u > v are

joined to tests in T ′
t,t .

Expansion. We modify the definition of T ′
t,t. T ′

t,t =
⋃

yt
T ′yt

t,t . Let T ′yt

t,t =
T ′yt

t,t,1 ∪ · · · ∪ T
′yt

t,t,2q−3 . Suppose T̂t is a compact test set for {xt|1 ≤ xt ≤ 2q}.

34 P. Cui

For each 1 ≤ j ≤ 2q−3, T ′yt

t,t,j contains test T yt

t,t,j,p for 1 ≤ p ≤ q each of which

contains points in S
y(yt),z
t with z = j mod 2q−3 and xt in some test in T̂t.

Join. For any 1 ≤ u ≤ J and u ≥ v ≥ 1, T ′
u,v =

⋃
yv
{T yv

u,v,j,p|1 ≤ j ≤ 2q−2,
1 ≤ p ≤ q}. For any 2 ≤ u ≤ J , join tests in T ′

u,v for 1 ≤ v ≤ u−1 one-by-one to
tests in T ′

u−1,u−1, T ′
u−2,u−2, · · · , T ′

1,1 according to the lexical order of (v, yv, p, j)
(v decreasing and yv, p, j increasing) until these tests are exhausted.

First, for J ≥ t ≥ 2, we compare the differentiation measure of tests in T ′
t,t to

that of tests in T ′
t−1,t−1. Number of item pairs inside of any Sy,z

u for J ≥ u > t
contributing to the former is no less than the latter. Let the number of item
pairs inside of Sy,z

t contributing to the former is #t, number of item pairs inside
of Sy,z

t contributing to the latter is #′, and number of item pairs inside of Sy,z
t−1

contributing to the latter is #t−1.
We have

#t = 2#′ ≥ #′ + #end
t ≥ #′ + 2#begin

t−1 ≥ #′ + #t−1.

Hence the differentiation measure of tests in T ′
t,t is no less than that of tests

in T ′
t−1,t−1 for t ≥ 2. In addition, since #end

1 = 2N/M∗ > N/M∗ = #begin
0 , the

differentiation measure of tests in T ′
1,1 is no less than that of tests in T ′

0 .
Next, for J ≥ t ≥ 1, we compare the differentiation measure of tests in T ′

t,t

to that of tests in T ∗. Number of item pairs inside of any Sy,z
u for J ≥ u > t

contributing to the former is no less than the latter. Let the number of item
pairs inside of Sy,z

t contributing to the former is #t, number of item pairs inside
of Sy,z

t contributing to the latter is #∗, and number of item pairs inside of Sy,z
i

contributing to the latter is #∗
i , 1 ≤ i ≤ t− 1.

We have

#t ≥ 2#∗ ≥ #∗ +
t−1∑

i=1

#∗

2t−i
≥ #∗ +

t−1∑

i=1

#∗
i .

Hence the differentiation measure of tests in T ′
t,t is no less than that of any

tests in T ∗ for t ≥ 1.
We conclude the algorithm could selects all tests in T ′

t,t instead of any tests
in T ′

t−1,t−1 and any tests in T ∗. We conclude the algorithm could select all qM∗

8t
tests in T ′

t,t, for J ≥ t ≥ 1, and select all tests in T ′
0 .

The size of returned test set is

|T ′| = M∗((1 − o(1))(lnN − lnM∗) +
qHJ

8
)

= M∗((1 − o(1)) lnN + (
HJ

8 ln 2
− 1) lnM∗)

= m∗(1− o(1) + Ω(φa(J))) lnn,

where a = 8 ln 2. ��

A Tighter Analysis of Set Cover Greedy Algorithm for Test Set 35

6 Discussion

We note this is the first time to distinguish precisely the worst case performance
guarantees of two type ”greedy algorithm” implemented by set cover criterion
and by information criterion. In fact, we definitely show the pattern of instances
on which ICH performs better than SGA.

In an preceding paper[7], we prove the approximation ratio of SGA can be
(1.5 + o(1)) lnn. Unlike this paper, the proof can be extended to weighted case,
where each test is assigned a positive weight, and the objective is to find a test
set with minimum total weight.

In the minimum cost probe set problem[8] of bioinformatics, tests are replaced
with partitions of items. The objective is to find a set of partitions with smallest
cardinality to differentiate all item pairs. It is easily observed that the improved
approximation ratio is still applicable to this generalized case.

Acknowledgements. The author would like to thank Tao Jiang and Tian Liu
for their helpful comments.

References

1. Moret, B.M.E., Shipiro, H.D.: On minimizing a set of tests. SIAM Journal on Sci-
entific and Statistical Computing 6, 983–1003 (1985)

2. De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J.,
Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithm for the test cover
problems. Mathematical Programming-B 98, 477–491 (2003)

3. Berman, P., DasGupta, B., Kao, M.: Tight approximability results for test set prob-
lems in bioinformatics. Journal of Computer and System Sciences 71, 145–162 (2005)

4. DasGupta, B., Konwar, K., Mandoiu, I., Shvartsman, A.: Highly scalable algorithms
for robust string barcoding. International Journal of Bioinformatics Research and
Applications 1, 145–161 (2005)

5. Young, N.E.: Randomized rounding without solving the linear program. In: SODA
95. Sixth ACM-SIAM Symposium on Discrete Algorithms, pp. 170–178. ACM Press,
New York (1995)

6. Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. Journal of Algo-
rithms 25, 237–254 (1997)

7. Cui, P., Liu, H.: Deep Approximation of Set Cover Greedy Algorithm for Test Set
(in Chinese). Journal of Software 17, 1494–1500 (2006)

8. Borneman, J., Chrobak, M., Vedova, G.D., Figueora, A., Jiang, T.: Probe selection
algorithms with applications in the analysis of microbial communities. Bioinformat-
ics 17(Suppl. 1), S39–S48 (2001)

A More Effective Linear Kernelization for

Cluster Editing

Jiong Guo�

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

guo@minet.uni-jena.de

Abstract. In the NP-hard Cluster Editing problem, we have as input
an undirected graph G and an integer k ≥ 0. The question is whether
we can transform G, by inserting and deleting at most k edges, into
a cluster graph, that is, a union of disjoint cliques. We first confirm a
conjecture by Michael Fellows [IWPEC 2006] that there is a polynomial-
time kernelization for Cluster Editing that leads to a problem kernel
with at most 6k vertices. More precisely, we present a cubic-time algo-
rithm that, given a graph G and an integer k ≥ 0, finds a graph G′ and
an integer k′ ≤ k such that G can be transformed into a cluster graph
by at most k edge modifications iff G′ can be transformed into a cluster
graph by at most k′ edge modifications, and the problem kernel G′ has at
most 6k vertices. So far, only a problem kernel of 24k vertices was known.
Second, we show that this bound for the number of vertices of G′ can
be further improved to 4k. Finally, we consider the variant of Cluster

Editing where the number of cliques that the cluster graph can contain
is stipulated to be a constant d > 0. We present a simple kernelization
for this variant leaving a problem kernel of at most (d+2)k + d vertices.

1 Introduction

Problem kernelization has been recognized as one of the most important con-
tributions of fixed-parameter algorithmics to practical computing [12,16,20]. A
kernelization is a polynomial-time algorithm that transforms a given instance I
with parameter k of a problem P into a new instance I ′ with parameter k′ ≤ k
of P such that the original instance I is a yes-instance with parameter k iff the
new instance I ′ is a yes-instance with parameter k′ and |I ′| ≤ g(k) for a func-
tion g. The instance I ′ is called the problem kernel. For instance, the derivation
of a problem kernel of linear size, that is, function g is a linear function, for the
Dominating Set problem on planar graphs [2] is one of the breakthroughs in
the kernelization area. The problem kernel derived there consists of at most 335k
vertices, where k denotes the domination number of the given graph, and this
was subsequently improved by further refined analysis and some additional re-
duction rules to a size bound of 67k [6]. In this work, we are going to improve a
� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research

group PIAF (fixed-parameter algorithms), NI 369/4.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 36–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A More Effective Linear Kernelization for Cluster Editing 37

size bound of 24k vertices for a problem kernel for Cluster Editing to a size
bound of 4k. Moreover, we present improvements concerning the time complexity
of the kernelization algorithm.

The edge modification problem Cluster Editing is defined as follows:

Input: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Can we transform G, by deleting and adding at most k edges,
into a graph that consists of a disjoint union of cliques?

We call a graph consisting of disjoint cliques a cluster graph.
The study of Cluster Editing can be dated back to the 1980’s. Křivánek

and Morávek [18] showed that the so-called Hierarchical-Tree Clustering

problem is NP-complete if the clustering tree has a height of at least 3. Cluster

Editing can be easily reformulated as a Hierarchical-Tree Clustering

problem where the clustering tree has height exactly 3. After that, motivated by
some computational biology questions, Ben-Dor et al. [4] rediscovered this prob-
lem. Later, Shamir et al. [22] showed the NP-completeness of Cluster Editing.
Bansal et al. [3] also introduced this problem as an important special case of the
Correlation Clustering problem which is motivated by applications in ma-
chine learning and they also showed the NP-completeness of Cluster Editing.
It is also worth to mention the work of Chen et al. [7] in the context of phylo-
genetic trees; among other things, they also derived that Cluster Editing is
NP-complete.

Concerning the polynomial-time approximability of the optimization version
of Cluster Editing, Charikar et al. [5] proved that there exists some con-
stant ε > 0 such that it is NP-hard to approximate Cluster Editing within
a factor of 1 + ε. Moreover, they also provided a polynomial-time factor-4 ap-
proximation algorithm for this problem. A randomized expected factor-3 ap-
proximation algorithm has been given by Ailon et al. [1]. The first non-trivial
fixed-parameter tractability results were given by Gramm et al. [15]. They pre-
sented a kernelization for this problem which runs in O(n3) time on an n-vertex
graph and results in a problem kernel with O(k2) vertices. Moreover, they also
gave an O(2.27k + n3)-time algorithm [15] for Cluster Editing. A practical
implementation and an experimental evaluation of the algorithm given in [15]
have been presented by Dehne et al. [8]. Very recently, the kernelization result of
Gramm et al. has been improved by two research groups: Protti et al. [21] pre-
sented a kernelization running in O(n+m) time on an n-vertex and m-edge graph
that leaves also an O(k2)-vertex graph. In his invited talk at IWPEC’06, Fel-
lows [12,13] presented a polynomial-time kernelization algorithm for this problem
which achieves a kernel with at most 24k vertices. This kernelization algorithm
needs to solve an LP-formulation of Cluster Editing. Fellows conjectured that
a 6k-vertex problem kernel should exist.

In this paper, we also study the variant of Cluster Editing, denoted as
Cluster Editing[d], where one seeks for a set of at most k edge modifications
that transform a given graph into a disjoint union of exactly d cliques for a con-
stant d. For each d ≥ 2, Shamir et al. [22] showed that Cluster Editing[d] is
NP-complete. A simple factor-3 approximation algorithm has been provided by

38 J. Guo

Bansal et al. [3]. As their main technical contribution, Giotis and Guruswami [14]
proved that there exists a PTAS for Cluster Editing[d] for every fixed d ≥ 2.
More precisely, they showed that Cluster Editing[d] can be approximated
within a factor of 1 + ε for arbitrary ε > 0 in nO(9d/ε2) · logn time. To our best
knowledge, the parameterized complexity of Cluster Editing[d] was unex-
plored so far.

Here, we confirm Fellows’ conjecture by presenting an O(n3)-time combinato-
rial algorithm which achieves a 6k-vertex problem kernel for Cluster Editing.
This algorithm is inspired by the “crown reduction rule” used in [12,13]. How-
ever, by way of contrast, we introduce the critical clique concept into the study
of Cluster Editing. This concept played a key role in the fixed-parameter al-
gorithms solving the so-called Closest Leaf Power problem [9,10] and it goes
back to the work of Lin et al. [19]. It also turns out that with this concept the
correctness proof of the algorithm becomes significantly simpler than in [12,13].
Moreover, we present a new O(nm2)-time kernelization algorithm which achieves
a problem kernel with at most 4k vertices. Finally, based on the critical clique
concept, we show that Cluster Editing[d] admits a problem kernel with at
most (d + 2) · k + d vertices. The corresponding kernelization algorithm runs
in O(m + n) time.

2 Preliminaries

In this work, we consider only undirected graphs without self-loops and multiple
edges. The open (closed) neighborhood of a vertex v in graph G = (V,E) is
denoted by NG(v) (NG[v]), while with N2

G(v) we denote the set of vertices in G
which have a distance of exactly 2 to v. For a vertex subset V ′ ⊆ V , we use G[V ′]
to denote the subgraph of G induced by V ′, that is, G[V ′] = (V ′, {e = {u, v} |
(e ∈ E) ∧ (u ∈ V ′) ∧ (v ∈ V ′)}). We use � to denote the symmetric difference
between two sets, that is, A�B = (A\B)∪ (B \A). A set C of vertices is called
a clique if the induced graph G[C] is a complete graph. Throughout this paper,
let n := |V | and m := |E|.

In the following, we introduce the concepts of critical clique and critical clique
graph which have been used in dealing with leaf powers of graphs [19,10,9].

Definition 1. A critical clique of a graph G is a clique K where the vertices
of K all have the same sets of neighbors in V \K, and K is maximal under this
property.

Definition 2. Given a graph G = (V,E), let K be the collection of its critical
cliques. Then the critical clique graph C is a graph (K, EC) with

{Ki,Kj} ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : {u, v} ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two nodes
are connected iff the corresponding critical cliques together form a larger clique.

A More Effective Linear Kernelization for Cluster Editing 39

G C

Fig. 1. A graph G and its critical clique graph C. Ovals denote the critical cliques of G.

See Figure 1 for an example of a graph G and its critical clique graph. Note
that we use the term nodes for the vertices in C. Moreover, we use K(v) to
denote the critical clique containing vertex v and use V (K) to denote the set of
vertices contained in a critical clique K ∈ K.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [11,20]. One dimension is the input size n
(as in classical complexity theory), and the other one is the parameter k (usually
a positive integer). A problem is called fixed-parameter tractable (fpt) if it can
be solved in f(k) ·nO(1) time, where f is a computable function only depending
on k. This means that when solving a combinatorial problem that is fpt, the
combinatorial explosion can be confined to the parameter.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction. Here, the goal is for a given problem
instance x with parameter k to transform it into a new instance x′ with pa-
rameter k′ such that the size of x′ is upper-bounded by some function only
depending on k, the instance (x, k) is a yes-instance iff (x′, k′) is a yes-instance,
and k′ ≤ k. The reduced instance, which must be computable in polynomial
time, is called a problem kernel, and the whole process is called reduction to a
problem kernel or simply kernelization.

3 Data Reduction Leading to a 6k-Vertex Kernel

Based on the concept of critical cliques, we present a polynomial-time kerneliza-
tion algorithm for Cluster Editing which leads to a problem kernel consisting
of at most 6k vertices. In this way, we confirm the conjecture by Fellows that
Cluster Editing admits a 6k-vertex problem kernel [12,13]. Our data reduc-
tion rules are inspired by the “crown reduction rule” introduced in [12,13]. The
main innovation from our side is the novel use of the critical clique concept.

The basic idea behind introducing critical cliques is the following: suppose that
the input graph G = (V,E) has a solution with at most k edge modifications.
Then, at most 2k vertices are “affected” by these edge modifications, that is,
they are endpoints of edges added or deleted. Thus, in order to give a size bound
on V depending only on k, it remains to upper-bound the size of the “unaffected”
vertices. The central observation is that, in the cluster graph obtained after
making the at most k edge modifications, the unaffected vertices contained in
one clique must form a critical clique in the original graph G. By this observation,

40 J. Guo

(a)

(b) (c)

Gopt

C1 C2

K1 K1

K1

K2 K2

K2

C1
1

C1
1

C1
1 C2

1

C2
1

C2
1 C1

2C1
2

C1
2

C2
2C2

2

C2
2

G′

Case |C1
1 | + |C2

2 | ≤ |C2
1 | + |C1

2 | Case |C1
1 | + |C2

2 | > |C2
1 | + |C1

2 |

Fig. 2. An illustration of the proof of Lemma 1. The dashed lines indicate edge dele-
tions, the thick lines indicate edge insertions, and the thin lines represent the edges
unaffected.

it seems easier to derive data reduction rules working for the critical cliques and
the critical clique graph than to derive rules directly working on the input graph.

The following two lemmas show the connection between critical cliques and
optimal solution sets for Cluster Editing:

Lemma 1. There is no optimal solution set Eopt for Cluster Editing on G
that “splits” a critical clique of G. That is, every critical clique is entirely con-
tained in one clique in Gopt = (V,E�Eopt) for every optimal solution set Eopt.

Proof. We show this lemma by contradiction. Suppose that we have an optimal
solution set Eopt for G that splits a critical clique K of G, that is, there are
at least two cliques C1 and C2 in Gopt with K1 := C1 ∩ K �= ∅ and K2 :=
C2 ∩K �= ∅. Furthermore, we partition C1 \K1 (and C2 \K2) into two subsets,
namely, set C1

1 (and C1
2) containing the vertices from C1\K1 (and C2\K2) which

are neighbors of the vertices in K in G and C2
1 := (C1 \ K1) \ C1

1 (and C2
2 :=

(C2 \K2)\C1
2). See part (a) in Figure 2 for an illustration. Clearly, Eopt deletes

A More Effective Linear Kernelization for Cluster Editing 41

the edges EK1,K2 between K1 and K2. In addition, Eopt has to delete the edges
between K1 and C1

2 and the edges between K2 and C1
1 , and, moreover, Eopt

has to insert the edges between K1 and C2
1 and the edges between K2 and C2

2 .
In summary, Eopt needs at least

|EK1,K2 |+ |K1| · |C1
2 |+ |K2| · |C1

1 |+ |K1| · |C2
1 |+ |K2| · |C2

2 |

edge modifications.
In what follows, we construct solution sets that are smaller than Eopt, giving

a contradiction. Consider the following two cases: |C1
1 |+ |C2

2 | ≤ |C2
1 |+ |C1

2 | and
|C1

1 | + |C2
2 | > |C2

1 | + |C1
2 |. In the first case, we remove K1 from C1 and merge

it to C2. Herein, we need the following edge modifications: deleting the edges
between K1∪K2 and C1

1 and inserting the edges between K1∪K2 and C2
2 . Here,

we need |K1| · |C1
1 |+ |K2| · |C1

1 |+ |K1| · |C2
2 |+ |K2| · |C2

2 | edge modifications. See
part (b) in Figure 2 for an illustration. In the second case, we remove K2 from C2

and merge it to C1. Herein, we need the following edge modifications: deleting
the edges between K1 ∪ K2 and C1

2 and inserting the edges between K1 ∪ K2

and C2
1 . Here, we need |K1| · |C1

2 | + |K2| · |C1
2 | + |K1| · |C2

1 | + |K2| · |C2
1 | edge

modifications. See part (c) in Figure 2 for an illustration. Comparing the edge
modifications needed in these two cases with Eopt, we can each time observe
that Eopt contains some additional edges, namely EK1,K2 . This means that, in
both cases |C1

1 |+ |C2
2 | ≤ |C2

1 |+ |C1
2 | and |C1

1 |+ |C2
2 | > |C2

1 |+ |C1
2 |, we can find

a solution set E′ that causes less edge modifications than Eopt, a contradiction
to the optimality of Eopt. ��

Lemma 2. Let K be a critical clique with |V (K)| ≥ |
⋃

K′∈NC(K) V (K ′)|. Then,
there exists an optimal solution set Eopt such that, for the clique C in Gopt =
(V,E � Eopt) containing K, it holds C ⊆

⋃
K′∈NC[K] V (K ′).

Proof. By Lemma 1, the critical clique K is contained entirely in a clique C
in Gopt = (V,E�Eopt) for any optimal solution set Eopt. Suppose that, for an
optimal solution set Eopt, C contains some vertices that are neither from V (K)
nor adjacent to a vertex in V (K), that is, D := C \ (

⋃
K′∈NC[K] V (K ′)) �= ∅.

Then, Eopt has inserted at least |D| · |V (K)| many edges into G to obtain
the clique C. Then, we can easily construct a new solution set E′ which leaves
a cluster graph G′ having a clique C′ with C′ = C \ D. That is, instead of
inserting edges between V (K) and D, the solution set E′ deletes the edges
between C ∩ (

⋃
K′∈NC(K) V (K ′)) and D. Since |V (K)| ≥ |

⋃
K′∈NC(K) V (K ′)|,

Eopt cannot be better than E′ and, hence, E′ is also an optimal solution. Thus,
in the cluster graph that results from performing the modifications corresponding
to E′, the clique C containing K satisfies C ⊆

⋃
K′∈NC[K] V (K ′). This completes

the proof. ��

The following data reduction rules work on both the input graph G and its crit-
ical clique graph C. Note that the critical clique graph can be easily constructed
in O(m + n) time [17].

42 J. Guo

Rule 1: Remove all isolated critical cliques K from C and remove V (K)
from G.

Lemma 3. Rule 1 is correct and can be carried out in O(m + n) time.

Rule 2: If, for a node K in C, it holds |V (K)| > |
⋃

K′∈NC(K) V (K ′)|+
|
⋃

K′∈N2
C(K) V (K ′)|, then remove nodes K and NC(K) from C and re-

move the vertices in
⋃

K′∈NC[K] V (K ′) from G. Accordingly, decrease
parameter k by the sum of the number of edges needed to transform
subgraph G[

⋃
K′∈NC(K) V (K ′)] into a complete graph and the number

of edges in G between the vertices in
⋃

K′∈NC(K) V (K ′) and the vertices
in
⋃

K′∈N2
C(K) V (K ′). If k < 0, then the given instance has no solution.

Lemma 4. Rule 2 is correct and can be carried out in O(n3) time.

Proof. Let K denote a critical clique in G that satisfies the precondition of
Rule 2. Let A := {K ′ ∈ NC(K)} and B := {K ′ ∈ N2

C (K)}. Let V (A) :=⋃
K′∈A V (K ′) and V (B) :=

⋃
K′∈B V (K ′). From the precondition of Rule 2,

we know that |V (K)| > |V (A)| + |V (B)|. We show the correctness of Rule 2
by proving the claim that there exists an optimal solution set leaving a cluster
graph where there is a clique having exactly the vertex set V (K) ∪ V (A).

From Lemmas 1 and 2, we know that there is an optimal solution set Eopt
such that K is contained entirely in a clique C in Gopt = (V,E � Eopt) and
clique C contains only vertices from V (K)∪V (A), that is, V (K) ⊆ C ⊆ V (K)∪
V (A). We show the claim by contradiction. Suppose that C � V (K) ∪ V (A).
By Lemma 1, there is a non-empty subset A1 of A whose critical cliques are not
in C. Let A2 := A \ A1. Moreover, let EA2,B denote the edges between V (A2)
and V (B) and EA1,A2 denote the edges between V (A1) and V (A2). Clearly, Eopt
comprises EA2,B and EA1,A2 . Moreover, Eopt causes the insertion of a set EA2

of edges to transform G[V (A2)] into a complete graph and causes the deletion
of a set EK,A1 of edges between K and A1. This means that Eopt needs at least

|EA1,A2 |+|EA2,B|+|EA2 |+|EK,A1 | = |EA1,A2 |+|EA2,B|+|EA2 |+|V (K)|·|V (A1)|

edge modifications to obtain clique C.
Now, we construct a solution set that is smaller than Eopt, giving a contra-

diction. Consider the solution set E′ that leaves a cluster graph G′ where K and
all critical cliques in A form a clique C′ and the vertices in V \(V (K)∪V (A)) are
in the same cliques as in Gopt. To obtain clique C′, the solution set E′ contains
also the edges in EA2 and the edges in EA2,B. In addition, E′ causes the insertion
of all possible edges between the vertices in V (A1), the insertion of all possible
edges between V (A1) and V (A2), and the deletion of the edges between V (A1)
and V (B). However, these additional edge modifications together amount to at
most |V (A1)| · (|V (A)| + |V (B)|). To create other cliques which do not contain
vertices from V (K) ∪ V (A), the set E′ causes at most as many edge modifica-
tions as Eopt. From the precondition of Rule 2 that |V (K)| > |V (A)|+ |V (B)|,

A More Effective Linear Kernelization for Cluster Editing 43

we know that even if EA1,A2 = ∅, Eopt needs more edge modifications than E′,
which contradicts the optimality of Eopt. This completes the proof of the cor-
rectness of Rule 2.

The running time of Rule 2 is easy to prove: The construction of C is doable
in O(m+n) time [17]. To decide whether Rule 2 is applicable, we need to iterate
over all critical cliques and, for each critical clique K, we need to compute the
sizes of

⋃
K′∈NC(K) V (K ′) and

⋃
K′∈N2

C(K) V (K ′). By applying a breadth-first
search, these two set sizes for a fixed critical clique can be computed in O(n)
time. Thus, we can decide the applicability of Rule 2 in O(n2) time. Moreover,
since every application of Rule 2 removes some vertices from G, it can be applied
at most n times. The overall running time follows. ��

An instance to which none of the above two reduction rules applies is called
reduced with respect to these rules. The proof of the following theorem works in
analogy to the one of Theorem 3 showing the 24k-vertex problem kernel in [13].

Theorem 1. If a reduced graph for Cluster Editing has more than 6k ver-
tices, then it has no solution with at most k edge modifications.

4 Data Reduction Leading to a 4k-Vertex Kernel

Here, we show that the size bound for the number of vertices of the problem
kernel for Cluster Editing can be improved from 6k to 4k. In the proof of
Theorem 3 in [13], the size of the set V2 of the unaffected vertices is bounded by
a function of the size of the set V1 of the affected vertices. Since |V1| ≤ 2k and
each affected vertices could be counted twice, we have then the size bound 4k
for V2. In the following, we present two new data reduction rules, Rules 3 and 4,
which, combined with Rule 1 in Section 3, enable us to show that |V2| ≤ 2k.
Note that we achieve this smaller number of kernel vertices at the cost of an
additional factor of O(m) in the running time.

Rule 3: Let K denote a critical clique in the critical clique graph C
with |V (K)| ≥ |

⋃
K′∈NC(K) V (K ′)|. If, for a critical clique K ′ in NC(K),

it holds EK′,N2
C(K) �= ∅ and |V (K)| · |V (K ′)| ≥ |EK′,NC(K)|+ |EK′,N2

C(K)|,
where EK′,NC(K) denotes the set of edges needed to connect the ver-
tices in V (K ′) to the vertices in all other critical cliques in NC(K)
and EK′,N2

C(K) denotes the set of edges between V (K ′) and the vertices
in the critical cliques in N2

C (K), then we remove all edges in EK′,N2
C(K)

and decrease the parameter k accordingly. If k < 0, then the given in-
stance has no solution.

Lemma 5. Rule 3 is correct and can be carried out in O(nm2) time.

Proof. Let K be a critical clique with |V (K)| ≥ |
⋃

K′∈NC(K) |V (K ′)|. Suppose
that there is a critical clique K ′ in NC(K) for which the precondition of Rule 3
holds. By Lemma 1, an optimal solution splits neither K nor K ′, that is, every

44 J. Guo

optimal solution either deletes all edges between V (K) and V (K ′) or keeps all
of them. In the first case, any optimal solution needs to delete |V (K)| · |V (K ′)|
edges to separate K and K ′. In the second case, we know by Lemma 2 that there
is an optimal solution Eopt such that the clique C in Gopt = (V,E�Eopt) con-
taining V (K)∪ V (K ′) has no vertices from V \ (

⋃
K′∈NC[K] V (K ′)). This means

that Eopt has to remove the edges in EK′,N2
C(K). In addition, Eopt has to insert

the edges between V (K ′) and the vertices in (C ∩(
⋃

K′′∈NC(K) V (K ′′)))\V (K ′).
Obviously, these additional edge insertions amount to at most |EK′,NC(K)|. By
the precondition of Rule 3, that is, |V (K)| · |V (K ′)| ≥ |EK′,NC(K)|+ |EK′,N2

C(K)|,
an optimal solution in the second case will never cause more edge modifications
than in first case. Thus, we can safely remove the edges in EK′,N2

C(K) and Rule 3
is correct.

Given a critical clique graph C and a fixed critical clique K, we can compute,
for all critical cliques K ′ ∈ NC(K), the sizes of the two edge sets EK′,NC(K)

and EK′,N2
C(K) as defined in Rule 3 in O(m) time. To decide whether Rule 3

can be applied, one iterates over all critical cliques K and computes EK′,NC(K)

and EK′,N2
C(K) for all critical cliques K ′ ∈ NC(K). Thus, the applicability of

Rule 3 can be decided in O(nm) time. Clearly, Rule 3 can be applied at most m
times; this gives us an overall running time of O(nm2). ��

Rule 4: Let K denote a critical clique with |V (K)| ≥ |
⋃

K′∈NC(K)V (K ′)|
and N2

C (K) = ∅. Then, we remove the critical cliques in NC [K] from C
and their corresponding vertices from G. We decrease the parameter k by
the number of the missing edges between the vertices in

⋃
K′∈NC(K)V(K ′).

If k < 0, then the given instance has no solution.

Lemma 6. Rule 4 is correct and can be carried out in O(n3) time.

Based on these two data reduction rules, we achieve a problem kernel of 4k
vertices for Cluster Editing.

Theorem 2. If a graph G that is reduced with respect to Rules 1, 3, and 4 has
more than 4k vertices, then there is no solution for Cluster Editing with at
most k edge modifications.

Proof. Suppose that there is a solution set Eopt of the reduced instance with
at most k edge modifications that leads to a cluster graph with � cliques,
C1, C2, . . . , C�. We partition V into two sets, namely set V1 of the affected ver-
tices and set V2 of the unaffected vertices. Obviously, |V1| ≤ 2k. We know that
in each of the � cliques the unaffected vertices must form exactly one criti-
cal clique in G. Let K1,K2, . . . ,K� denote the critical cliques formed by these
unaffected vertices. These critical cliques can be divided into two sets, K1 con-
taining the critical cliques K for which |V (K)| < |

⋃
K′∈NC(K) V (K ′)| holds,

and K2 := {K1,K2, . . . ,K�} \ K1.
First, we consider a critical clique Ki from K1. Since G is reduced with respect

to Rule 1,
⋃

K′∈NC(Ki)
V (K ′) �= ∅ and all vertices in

⋃
K′∈NC(Ki)

V (K ′) must be

A More Effective Linear Kernelization for Cluster Editing 45

affected vertices. Clearly, the size of
⋃

K′∈NC(Ki)
V (K ′) can be bounded from

above by 2|E+
i |+ |E−

i |, where E+
i is the set of the edges inserted by Eopt with

both their endpoints being in Ci, and E−
i is the set of the edges deleted by Eopt

with exactly one of their endpoints being in Ci. Hence, |V (Ki)| < 2|E+
i |+ |E−

i |.
Second, we consider a critical clique Ki from K2. Since G is reduced with

respect to Rules 1 and 4, we know that NC(Ki) �= ∅ and N2
C (Ki) �= ∅. Moreover,

since G is reduced with respect to Rule 3, there exists a critical cliques K ′

in NC(Ki) for which it holds that EK′,N2
C(Ki) �= ∅ and |V (Ki)| · |V (K ′)| <

|EK′,NC(Ki)| + |EK′,N2
C(Ki)|, where EK′,NC(Ki) denotes the set of edges needed

to connect V (K ′) to the vertices in the critical cliques in NC(Ki) \ {K ′} and
EK′,N2

C(Ki) denotes the set of edges between V (K ′) and the vertices in the critical
cliques in N2

C (Ki). Then we have

|V (Ki)| < (|EK′,NC(Ki)|+ |EK′,N2
C(Ki)|)/|V (K ′)| ≤ |E+

i |+ |E−
i |

where E+
i and E−

i are defined as above.
To give an upper bound of |V2|, we use E+ to denote the set of edges inserted

by Eopt and E− to denote the set of edges deleted by Eopt. We have

|V2| =
�∑

i=1

|V (Ki)|
(∗)
≤

�∑

i=1

(2|E+
i |+ |E−

i |)
(∗∗)
= 2|E+|+

�∑

i=1

|E−
i |

(∗∗∗)
= 2|E+|+ 2|E−| = 2k.

The inequality (∗) follows from the analysis in the above two cases. The fact
that E+

i and E+
j are disjoint for i �= j gives the equality (∗∗). Since an edge

between two cliques Ci and Cj that is deleted by Eopt has to be counted twice,
once for E−

i and once for E−
j , we have the equality (∗ ∗ ∗). Together with |V1| ≤

2k, we thus arrive at the claimed size bound. ��

5 Cluster Editing with a Fixed Number of Cliques

In this section, we consider the Cluster Editing[d] problem. The first obser-
vation here is that the data reduction rules from Sections 3 and 4 do not work
for Cluster Editing[d]. The reason is that Lemma 1 is not true if the number
of cliques is fixed: in order to get a prescribed number of cliques, one critical
clique might be split into several cliques by an optimal solution. However, based
on the critical clique concept, we can show that Clique Editing[d] admits a
problem kernel with at most (d + 2)k + d vertices.

The kernelization is based on a simple data reduction rule.

Rule: If a critical clique K contains at least k + 2 vertices, then remove
the critical cliques in NC [K] from the critical clique graph C and remove
the vertices in

⋃
K′∈NC[K] V (K ′) from the input graph G. Accordingly,

decrease the parameter k by the number of the edges needed to transform

46 J. Guo

the subgraph G[
⋃

K′∈NC[K] V (K ′)] into a complete graph. If k < 0, then
the given instance has no solution.

Lemma 7. The above data reduction rule is correct and can be executed in
O(m + n) time.

Next, we show a problem kernel for Cluster Editing[d].

Theorem 3. If a graph G that is reduced with respect to the above data reduction
rule has more than (d + 2) · k + d vertices, then it has no solution for Cluster

Editing[d] with at most k edge modifications allowed.

Proof. As in the proofs of Theorem 2, we partition the vertices into two sets.
The set V1 of affected vertices has a size bounded from above by 2k. It remains
to upper-bound the size of the set V2 of unaffected vertices. Since in Cluster

Editing[d] the goal graph has exactly d cliques, we can have at most d unaffected
critical cliques. Since the graph G is reduced, the maximal size of a critical clique
is upper-bounded by k + 1. Thus, |V2| ≤ d · (k + 1) and |V | ≤ (d+ 2) · k + d. ��

Based on Theorem 3 and the fact that a problem is fixed-parameter tractable iff
it admits a problem kernel [11,20], we get the following corollary.

Corollary 1. For fixed constant d, Cluster Editing[d] is fixed-parameter
tractable with the number k of allowed edge modifications as parameter.

6 Open Problems and Future Research

In this paper, we have presented several polynomial-time kernelization algo-
rithms for Cluster Editing and Cluster Editing[d]. We propose the fol-
lowing directions for future research.

– Can the running time of the data reduction rules be improved to O(n+m)?
– Can we apply the critical clique concept to derive a problem kernel for the

more general Correlation Clustering problem [3]?
– Can the technique from [6] be applied to show a lower bound on the problem

kernel size for Cluster Editing?

Acknowledgment. I thank Rolf Niedermeier (Universität Jena) for inspiring
discussions and helpful comments improving the presentation.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. In: Proc. 37th ACM STOC, pp. 684–693. ACM Press, New
York (2005)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial time data reduction for Dom-
inating Set. Journal of the ACM 51(3), 363–384 (2004)

A More Effective Linear Kernelization for Cluster Editing 47

3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1),
89–113 (2004)

4. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal
of Computational Biology 6(3/4), 281–297 (1999)

5. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71(3), 360–383 (2005)

6. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. In: Diekert, V., Durand, B. (eds.)
STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005)

7. Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded de-
grees and errors. SIAM Journal on Computing 32(4), 864–879 (2003)

8. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The Clus-
ter Editing problem: Implementations and experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Hei-
delberg (2006)

9. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border
for closest leaf powers. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 397–
408. Springer, Heidelberg (2005)

10. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf power
problems. Algorithmica 44(4), 363–381 (2006)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

12. Fellows, M.R.: The lost continent of polynomial time: Preprocessing and kerneliza-
tion. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 276–277. Springer, Heidelberg (2006)

13. Fellows, M.R., Langston, M.A., Rosamond, F., Shaw, P.: Polynomial-time linear
kernelization for Cluster Editing. Manuscript (2006)

14. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters.
In: Proc. 17th ACM-SIAM SODA, pp. 1167–1176. ACM Press, New York (2006)

15. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–
392 (2005)

16. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

17. Hsu, W., Ma, T.: Substitution decomposition on chordal graphs and applications.
In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer,
Heidelberg (1991)

18. Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta
Informatica 23(3), 311–323 (1986)

19. Lin, G., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In: Lee,
D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer,
Heidelberg (2000)

20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

21. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to
parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IW-
PEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006)

22. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144, 173–182 (2004)

CR-precis: A Deterministic Summary Structure

for Update Data Streams

Sumit Ganguly1 and Anirban Majumder2,�

1 Indian Institute of Technology, Kanpur
2 Lucent Technologies, Bangalore

Abstract. We present deterministic sub-linear space algorithms for
problems over update data streams, including, estimating frequencies
of items and ranges, finding approximate frequent items and approxi-
mate φ-quantiles, estimating inner-products, constructing near-optimal
B-bucket histograms and estimating entropy. We also present improved
lower bound results for several problems over update data streams.

1 Introduction

The data streaming model [2,26] presents a computational model for a variety of
monitoring applications, for example, network monitoring, sensor networks, etc.,
where data arrives rapidly and continuously and has to be processed in an online
fashion using sub-linear space. Some examples of popular data stream queries
include, estimating the frequency of items (point queries) and ranges (range-
sum queries), finding approximate frequent items, approximate quantiles and
approximate hierarchical heavy hitters, estimating inner-product, constructing
approximately optimal B-bucket histograms, estimating entropy, etc.. A data
stream in the general update model is viewed as a sequence of records of the
form (pos, i, δ), where, pos is the current sequence position, i is an item index
from the domain [n] = {1, 2, . . . , n} and δ ∈ Z. δ denotes the increment or
decrement in the frequency of i, that is, δ > 0 signifies that i has been inserted δ
times and δ < 0 signifies |δ| deletions of i. The frequency fi of i ∈ [n] is defined
as the sum of the δ’s over all the records in the stream that contain i, that is,
fi =

∑
(pos,i,δ)∈stream δ. A special case of this model is the strict update model,

where, deletions always correspond to prior insertions, that is, item frequencies
defined by every prefix of the input stream is non-negative. The insert-only
model refers to data streams that have no deletions.

Randomized algorithms dominate the landscape of sub-linear space algorithms
for problems over update streams. There are no deterministic sub-linear space al-
gorithms known for a variety of basic problems over update streams, including,
estimating the frequency of items and ranges, finding approximate frequent items
and approximate φ-quantiles, finding approximate hierarchical heavy hitters, con-
structing approximately optimalB-bucket histograms, estimating inner-products,
estimating entropy, etc.. Deterministic algorithms are often indispensable, for ex-
ample, in a marketing scenario where frequent items correspond to subsidized

� Work done while at IIT Kanpur.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 48–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

CR-precis: A Deterministic Summary Structure for Update Data Streams 49

customers, a false negative would correspond to a missed frequent customer, and
conversely, in a scenariowhere frequent items correspond topunishablemisuse [21],
a false positive results in an innocent victim.

We now review a data structure introduced by Gasieniec and Muthukrishnan
[26] (page 31) that we use later. We refer to this structure as the CR-precis

structure, since the Chinese Remainder theorem plays a crucial role in the anal-
ysis. The structure is parameterized by a height k and width t. Choose t consec-
utive prime numbers k ≤ p1 < p2 < . . . < pt and keep a collection of t tables Tj ,
for j = 1, . . . , t, where, Tj has pj integer counters, numbered from 0, 1, . . . , pj−1.
Each stream update of the form (pos, i, δ) is processed as follows.

for j := 1 to t do { Tj[i mod pj] := Tj [i mod pj] + δ }
Lemma 1 presents the space requirement of a CR-precis structure and is
implicit in [26] (pp. 31) and is proved by a direct application of the prime number
theorem [27]. Let L1 =

∑
i|fi|.

Lemma 1. The space requirement of a CR-precis structure with height param-
eter k ≥ 12 and width parameter t ≥ 1 is O(t(t + k

ln k) log(t + k
lnk)(logL1)) bits.

The time required to process a stream update is O(t) arithmetic operations. ��
[26] (pp. 31) uses the CR-precis structure to present a k-set structure [15] using
space O(k2(log k)(logL1)) bits. k-set structures using space O(k(logN)(logN +
logL1)) bits are presented in [15].

Contributions. We present deterministic, sub-linear space algorithms for each
of the problems mentioned above in the model of update streams using the
CR-precis structure. We also present improved space lower bounds for some
problems over update streams, namely, (a) the problem of estimating frequencies
with accuracy φ over strict update streams is shown to require Ω(φ−1(logm) log
(φn)) space (previous bound was Ω(φ−1 log(φn)) [4]), and, (b) all the above
problems except for the problems of estimating frequencies of items and range-
sums, are shown to require Ω(n) space in the general update streaming model.

2 Review

In this section, we review basic problems over data streams. For strict update
streams, let m =

∑
i fi and for general update streams, L1 =

∑
i|fi|.

The point query problem with parameter φ is the following: given i ∈ D, obtain
an estimate f̂i such that |f̂i−fi| ≤ φL1. For insert-only streams, the Misra-Gries
algorithm [25], rediscovered and refined in [12,4,22], uses �φ−1� logm bits and
satisfies fi ≤ f̂i ≤ fi + φm. The Lossy Counting algorithm [23] for insert-only
streams returns f̂i satisfying fi ≤ f̂i ≤ fi + φm using �φ−1� log(φm) logm bits.
The Sticky Sampling algorithm [23] extends the Counting Samples algorithm
[16] and returns f̂i satisfying fi − φm ≤ f̂i ≤ fi with probability 1 − δ using
space O(�φ−1� log(δ−1) logm) bits. The Count-Min sketch algorithm returns
f̂i that satisfies (a) fi ≤ f̂i ≤ fi + φm with probability 1 − δ for strict up-
date streams, and, (b) |f̂i − fi| ≤ φL1 using O(�φ−1�(log δ−1) logL1) bits. The

50 S. Ganguly and A. Majumder

Countsketch algorithm [6] satisfies |f̂i − fi| ≤ (�φ−1�F res
2 (�φ−1�))1/2 ≤ φL1

with probability 1 − δ using space O(�φ−1�(log δ−1 logL1) bits, where, F res
2 (s)

is the sum of the squares of all but the top-s frequencies in the stream. [4] shows
that any algorithm satisfying |f̂i − fi| ≤ φm must use Ω(�φ−1� logφn) bits.

Given a parameter 0 < φ < 1, an item i is said to be φ-frequent if |fi| ≥
φL1. [11,22] show that finding all and only frequent items requires Ω(n) space.
Therefore low-space algorithms find ε-approximate frequent items, where, 0 <
ε < 1 is another parameter: return i such that |fi| ≥ φL1 and do not return any
i such that |fi| < (1 − ε)φL1 [6,11,9,12,16,22,25,23,28]. Algorithms for finding
frequent items with parameters φ and ε typically use point query estimators
with parameter εφ

2 and return all items i such that f̂i > (1− ε
2)φL1. A superset

of ε-approximate frequent items is typically found using the technique of dyadic
intervals [10,9], reviewed below.

A dyadic interval at level l is an interval of size 2l from the family of intervals
{[i2l, (i + 1)2l − 1], 0 ≤ i ≤ n

2l − 1}, for 0 ≤ l ≤ logn, assuming that n is a
power of 2. The set of dyadic intervals at levels 0 through logn form a complete
binary tree, whose root is the level logn dyadic interval [0, n − 1] and whose
leaves are the singleton intervals. Each dyadic interval Il with level 1 ≤ l ≤ logn
has two children that are dyadic intervals at levels l−1. If Il = [i2l, (i+1)2l−1],
for 0 ≤ i ≤ n

2l , then, the left child of Il is [2i n
2l+1 , (2i + 1) n

2l+1 − 1] and the
right child is [(2i + 1) n

2l+1 , (2i + 2) n
2l+1 − 1]. Given a stream, one can naturally

extend the notion of item frequencies to dyadic interval frequencies. The fre-
quency of a dyadic interval Il at level l is the aggregate of the frequencies of
the level 0 items that lie in that interval , that is, fIl

=
∑

x∈Il
fx. The effi-

cient solution to a number of problems over strict update streams, including the
problem of finding approximate frequent items, is facilitated by using summary
structures for each dyadic level l = 0, 1, . . . , �logφn� [10]. For the problem of
ε-approximate φ-frequent items, we keep a point query estimator structure cor-
responding to accuracy parameter εφ for each dyadic level l = 0, . . . , �log(φn)�.
An arrival over the stream of the form (pos, i, δ) is processed as follows: for each
l = 0, 1, . . . , �logφn	, propagate the update (pos, (i % 2l), δ) to the structure at
level l. Since, each item i belongs to a unique dyadic interval at each level l,
the sum of the interval frequencies at level l is m. If an item i is frequent (i.e.,
fi ≥ φm), then for each 1 ≤ l ≤ logn, the unique dyadic interval Il that contains
i at level l has frequency at least fi and is therefore also frequent at level l. To
find ε-approximate φ-frequent items, we start by enumerating O(�φ−1�) dyadic
intervals at level �logφn	. Only those candidate intervals are considered whose
estimated frequency is at least (1− ε

2)φn. We then consider the left and the right
child of these candidate intervals, and repeat the procedure. In general, at level
l, there are O(�φ−1�) candidate intervals, and thus, the total number of intervals
considered in the iterations is O(�φ−1� log(φn)).

The hierarchical heavy hitters problem [8,13] is a useful generalization of the
frequent items problem for domains that have a natural hierarchy (e.g., domain
of IP addresses). Given a hierarchy, the frequency of a node X is defined as the
sum of the frequencies of the leaf nodes (i.e., items) in the sub-tree rooted at

CR-precis: A Deterministic Summary Structure for Update Data Streams 51

X . The definition of hierarchical heavy hitter node (HHH) is inductive: a leaf
node x is an HHH node provided fx > φm. An internal node is an HHH node
provided that its frequency, after discounting the frequency of all its descendant
HHH nodes, is at least φm. The problem is, (a) to find all nodes that are HHH
nodes, and, (b) to not output any node whose frequency, after discounting the
frequencies of descendant HHH nodes, is below (1 − ε)φm. This problem has
been studied in [8,10,13,21]. As shown in [8], this problem can be solved by
using a simple bottom-up traversal of the hierarchy, identifying the frequent
items at each level, and then subtracting the estimates of the frequent items at
a level from the estimated frequency of its parent [8]. Using Count-Min sketch,
the space complexity is O((εφ2)−1(log((δεφ2)−1 logn))(log n)(logm)) bits. [21]
presents an Ω(φ−2) space lower bound for this problem, for fixed ε ≤ 0.01.

Given a range [l, r] from the domain D, the range frequency is defined as
f[l,r] =

∑r
x=l fx. The range-sum query problem with parameter φ is: return

an estimate f̂[l,r] such that |f̂[l,r] − f[l,r]| ≤ φm. The range-sum query problem
can be solved by using the technique of dyadic intervals [19]. Any range can be
uniquely decomposed into the disjoint union of at most 2 logn dyadic intervals
of maximum size (for e.g., over the domain {0, . . . , 15}, the interval [3, 12] =
[3, 3]+ [4, 7]+ [8, 11]+ [12, 12]). The technique is to keep a point query estimator
corresponding to each dyadic level l = 0, 1, . . . , logn−1. The range-sum query is
estimated as the sum of the estimates of the frequencies of each of the constituent
maximal dyadic intervals of the given range. Using Count-Min sketch at each
level, this can be accomplished using space O(φ−1 log(log(δ−1n))(log n)(logm))
bits and with probability 1− δ [10].

Given 0 ≤ φ ≤ 1 and j = 1, 2, . . . , �φ−1�, an ε-approximate jth φ-quantile
is an item aj such that (jφ − ε)m ≤

∑n−1
i=aj

fi ≤ (jφ + ε)m. The problem has
been studied in [10,20,18,24]. For insert-only streams, [20] presents an algorithm
requiring space O((log(εφ)−1) log(εφm)). For strict update streams, the problem
of finding approximate quantiles can be reduced to that of estimating range sums
[18] as follows. For each k = 1, 2, . . . , φ−1, a binary search is performed over the
domain to find an item ak such that the estimated range sum f̂[ak,n−1] lies
between (kφ− ε)m and (kφ+ ε)m. [10] uses Count-Min sketches and the above
technique to find ε-approximate φ-quantiles with confidence 1 − δ using space
O(εφ−1 log2 n((log (εφδ)−1) + log log n)).

A B-bucket histogram h divides the domain D = {0, 1, . . . , n−1} into B non-
overlapping intervals, say, I1, I2, . . . , IB and for each interval Ij , chooses a value
vj . Then h[0 . . . n − 1] is the vector defined as hi = vj , where, Ij is the unique
interval containing i. The cost of a B-bucket histogram h with respect to the
frequency vector f is defined as ||f − h||. Let hopt denote an optimal B-bucket
histogram satisfying ||f − hopt|| = minB-bucket histogram h ||f − h||. The problem
is to find a B-bucket histogram ĥ such that ||f − ĥ|| ≤ (1 + ε)||f − hopt||. An
algorithm for this problem is presented in a seminal paper [17] using space and
time poly (B, 1

ε , logm, logn) (w.r.t. L2 distance ‖f − h‖2).
Given two streams R and S with item frequency vectors f and g respectively,

the inner product f · g is defined as
∑

i∈D fi · gi. The problem is to return an

52 S. Ganguly and A. Majumder

estimate P̂ satisfying |P̂ − f · g| ≤ φmRmS . The problem finds applications
in database query processing. The work in [1] presents a space lower bound of
s = Ω(φ−1) for this problem. Randomized algorithms [1,7,14] match the space
lower bound, up to poly-logarithmic factors. The entropy of a data stream is
defined as H =

∑
i∈D|fi| log L1

|fi| . The problem is to return an ε-approximate

estimate Ĥ satisfying |Ĥ −H | ≤ εH . For insert-only streams, [5] presents a ran-
domized estimator that uses space O(ε−2(log δ−1) log3 m) bits and also shows an
Ω(ε−2(log(ε−1))−1) space lower bound for estimating entropy. [3] presents a ran-
domized estimator for update streamsusing spaceO(ε−3 log5 m(log ε−1)(log δ−1)).

We note that sub-linear space deterministic algorithms over update streams
are not known for any of the above-mentioned problems.

3 CR-precis Structure for Update Streams

In this section, we use the CR-precis structure to present algorithms for a
family of problems over update streams.

An application of the Chinese Remainder Theorem. Consider a CR-precis

structure with height k and width t. Fix x, y ∈ {0, . . . , n − 1} where x �= y.
Suppose x and y collide in the tables indexed by J , where, J ⊂ {1, 2, . . . , t}.
Then, x ≡ y mod pj, for each j ∈ J . By the Chinese Remainder theorem, x ≡ y
mod

(∏
j∈J pj

)
. Therefore, |J | < logk n, otherwise,

∏
j∈J pj ≥ klogk n = n, which

is a contradiction, since, x, y ∈ {0, 1, . . . , n− 1} and are distinct. Therefore, for
any given x, y ∈ {0, 1, . . . , n− 1} such that x �= y,

|{j | y ≡ x mod pj and 1 ≤ j ≤ t}| ≤ logk n− 1 . (1)

3.1 Algorithms for Strict Update Streams

In this section, we use the CR-precis structure to design algorithms over strict
update streams.

Point Queries. Consider a CR-precis structure with height k and width t. The
frequency of x ∈ D is estimated as: f̂x = mint

j=1 Tj [x mod pj]. The accuracy
guarantees are given by Lemma 2.

Lemma 2. For 0 ≤ x ≤ n− 1, 0 ≤ f̂x − fx ≤ (logk n−1)
t (m− fx).

Proof. Clearly, Tj[x mod pj] ≥ fx. Therefore, f̂x ≥ fx. Further,

tf̂x ≤
t∑

j=1

Tj [x mod pj] = tfx +
t∑

j=1

∑

y �=x
y≡x mod pj

fy .

CR-precis: A Deterministic Summary Structure for Update Data Streams 53

Thus, t(f̂x − fx) =
t∑

j=1

∑

y �=x
y≡x mod pj

fy =
∑

y �=x

∑

j:y≡x mod pj

fy

=
∑

y �=x

fy|{j : y ≡ x mod pj}| ≤ (logk n− 1)(m− fx), by (1) . ��

If we let k = �φ−1� and t = �φ−1� log�φ−1� n, then, the space requirement of the
point query estimator is O(φ−2(log�φ−1� n)2(logm)) bits. A slightly improved
guarantee that is often useful for the point query estimator is given by Lemma
3, where, mres(s) is the sum of all but the top-s frequencies [3,6].

Lemma 3. Consider a CR-precis structure with height s and width 2s logs n.
Then, for any 0 ≤ x ≤ n− 1, 0 ≤ f̂x ≤ mres(s)

s .

Proof. Let y1, y2, . . . , ys denote the items with the top-s frequencies in the stream
(with ties broken arbitrarily). By (1), x conflicts with each yj �= x in at most
logs n buckets. Hence, the total number of buckets at which x conflicts with any
of the top-s frequent items is at most s logs n. Thus there are at least t−s logs n
tables where, x does not conflict with any of the top-s frequencies. Applying the
proof of Lemma 2 to only these set of t− s logs n ≥ s logs n tables, the role of m
is replaced by mres(s). ��

We obtain deterministic algorithms for estimating range-sums, finding approx-
imate frequent items, finding approximate hierarchical heavy hitters and ε-
approximate quantiles over strict update streams, by using the corresponding
well-known reductions to point query estimators. The only change is that the
use of randomized summary structures is replaced by a CR-precis structure.
Theorem 4 summarizes the space versus accuracy guarantees for these problems.

Theorem 4. There exist deterministic algorithms over the strict update stream-
ing model for the problems mentioned in Figure 1 using the space and per-update
processing time depicted there. ��

Estimating inner product. Let mR =
∑

i∈D fi and let mS =
∑

i∈D gi. We main-
tain a CR-precis structure for each of the streams R and S, that have the
same height k, same width t and use the same prime numbers as the table sizes.
For j = 1, 2, . . . , t, let Tj and Uj respectively denote the tables maintained for
streams R and S corresponding to the prime pj respectively. The estimate P̂ for
the inner product is calculated as P̂ = mint

j=1

∑pj

b=1 Tj [b]Uj[b].

Lemma 5. f · g ≤ P̂ ≤ f · g +
(

logk n−1
t

)
mRmS.

Proof. For j = 1, . . . , t,
∑pj−1

b=0 Tj [b]Uj[b] ≥
∑pj−1

b=0

∑
x≡b mod pj

fxgx = f · g.
Thus, P̂ ≥ f · g. Further,

54 S. Ganguly and A. Majumder

tP̂ ≤
t∑

j=1

pj∑

b=1

Tj[b]Uj [b] = t(f · g) +
t∑

j=1

∑

x �=y
x≡y mod pj

fxgy

= t(f · g) +
∑

x,y:x �=y

fxgy

∑

j:x≡y mod pj

1

≤ t(f · g) + (logk n− 1)(mRmS − f · g), by (1). ��

Problem Space Time

1. ε-approx. φ-frequent O(λ2(logλ n)(log λ) O(λ logλ n log n)
items (λ = �(εφ)−1�) log(λ−1n) (log m))

2. Range-sum: parameter O(ρ2(logρ n) (log ρ O(ρ(logρ n) (log n))
φ, (ρ = �φ−1�) + log logρ n))(log m) log n)

3. ε-approx. φ-quantile O(λ2(log5 n)(log m) O
�
λ(log2 n)

(λ = �(εφ)−1�) (log log n + log λ)−1) (log log n + log λ)−1)
�

4. ε-approx. φ-hierarchical O(τ 2(logτ n)2 O(τ (log n)(logτ n))
heavy hitters. h = height, (log τ + log log n) log m)
(τ = (εφ2)−1h)

5. ε-approx. B-bucket O
�
(ε−2B2)(log3 n) O((ε−1B)(log2 n)

histogram (log−1(ε−1B))(log m) (log−1(ε−1B))

Fig. 1. Space and time requirement for problems using CR-precis technique

Estimating entropy. We use the CR-precis structure to estimate the entropy
H over a strict update stream. For parameters k and t to be fixed later, a
CR-precis structure of height k ≥ 2 and width t is maintained. Also, let
0 < ε < 1 be a parameter. First, we use the point query estimator to find all
items x such that f̂x ≥ m

εt . The contribution of these items, called dense items,
to the estimated entropy is given by Ĥd =

∑
x:f̂x> m

εt
f̂x log m

f̂x
. Next, we remove

the estimated contribution of the dense items from the tables. To ensure that
the residues of dense frequencies remain non-negative, the estimated frequency
is altered. Since, 0 ≤ f̂x−fx ≤ (m−fx)

t , fx ≥ f̂x−m−f̂x

t−1 = f ′
x (say), the tables are

modified as follows: Tj [x mod pj] := Tj [x mod pj]− f ′
x, for each x s.t. f̂x ≥

m
εt and j = 1, . . . , t. Ĥs estimates the contribution to H by the non-dense or
sparse items: Ĥs = avgt

j=1

∑
1≤b≤pj and Tj [b]≤ m

ε2t
Tj[b] log m

Tj [b]
. The final esti-

mate is returned as Ĥ = Ĥd + Ĥs.

Analysis. The main part of the analysis concerns the accuracy of the estima-
tion of Hs. Let Hd and Hs denote the (true) contributions to entropy due
to dense and sparse items respectively, that is, Hd =

∑
x dense fx log m

fx
and

Hs =
∑

x sparse fx log m
fx

. A standard case analysis [3,5] (Case 1: fx ≤ m/e and

Case 2: fx > m/e, where, e = 2.71828..) is used to show that |Ĥd −Hd| ≤ 2
t Hd.

Define gx = fx, if x is a sparse item and gx = fx − f ′
x, if x is a dense item. Let

CR-precis: A Deterministic Summary Structure for Update Data Streams 55

m′ =
∑

x gx and let H(g) =
∑

x:fx>0 gx log m
gx

. Suppose x maps to a bucket b in
table Tj . Then, fx ≤ Tj[b] and

pj∑

b=1

Tj [b] log
m

Tj [b]
≤

pj∑

b=1

∑

x mod pj=b

gx log
m

Tj[b]
= H(g) .

Thus, Ĥs ≤ H(g). Since, H(g) may contain the contribution of the residues of
the dense items, Hs ≤ H(g). The contribution of the residues of dense items to
H(g) is bounded as follows. Let x be a dense item. Define h(a) = y log m

y . For

t > 1
ε2 , and since, fx ≥ m

εt , h(gx

m) ≤ h
(

m−fx

mt

)
≤ εh(fx). Since, Therefore,

H(g)=
∑

x

g(x) log
m

gx
= Hs+

∑

x dense

mh(gx) ≤ Hs +
∑

x dense

mεh(fx) = Hs + εHd.

Further, for 0 ≤ x ≤ n− 1, let Sx =
∑t

j=1(Tj [x mod pj]− gx). Then

Sx =
t∑

j=1

∑

y �=x
y≡x mod pj

gy =
∑

y �=x

fy|{j : y ≡ x mod pj}| ≤ (m′ − gx)(log n− 1) (2)

Define a bucket b in a table Tj to be dense if Tj[b] > m
ε2t and c = ε2t. Then,

tĤs =
t∑

j=1

∑

1≤b≤pj

b not dense

Tj[b] log
m

Tj[b]

≥
t∑

j=1

∑

1≤b≤pj

b not dense

∑

x:x≡b mod pj and gx≥1

gx log c

= tm′ log c−
∑

x

gx log c |{j : Tj[x mod pj] is dense }|

= tm′ log c−
∑

x

gx(log c) �Sx/(c−1m− gx)	

≥ tm′ log c−
∑

x

gxc(1− ε)−1(log c)(logk N) by (2) and since, gx ≤ εc−1m

≥ tm′ log c−m′c(1− ε)−1(log c)(logk N)

≥ tm′ log c
(
1− ε2(1− ε)−1 logk N

)
(3)

Lemma 6. For each 0 < ε < 1 and α > 1, there exists a deterministic algorithm
over strict update streams that returns Ĥ satisfying H(1−ε)

α ≤ H ≤ (1+ ε√
log N

)H

using space O(log2 N
ε4 m

2
α (logm + log ε−1)(logm)) bits.

Proof. By earlier argument,

Ĥd + Ĥs ≤ (1 + 2t−1)Hd + H(g) ≤ (1 + 2t−1)Hd + εHd + Hs

≤ (1 + 2t−1 + ε)(Hd + Hs) .

56 S. Ganguly and A. Majumder

Further, since, H(g) ≤ m′ logm, using (3) we have,

Ĥd + Ĥs ≥ (1− 2t−1)Hd + Hs
log c

logm
(1 − ε2(1− ε)−1 logk N) .

The lemma follows by letting ε = ε
2
√

log N
and t = m1/α

ε2 . ��

Lower Bounds for Computation Over Strict Update Streams. In this
section, we improve on the existing space lower bound of Ω(φ−1 log(φn)) for
point query estimation with accuracy parameter φ [4].

Lemma 7. For φ > 8√
n
, a deterministic point query estimator with parameter

φ over strict update streams requires Ω(φ−1(logm) log(φn)) space.

Proof. Let s = �φ−1�. Consider a stream consisting of s2 distinct items, organized
into s levels 1, . . . , s with s items per level. The frequency of an item at level l is set
to tl = 2l−1. Let φ′ = φ

16 and let A be a deterministic point query estimator with
accuracy parameter φ′. We will apply A to obtain the identities of the items, level
by level. Initially, the stream is inserted into the data structure of A. At iteration
r = 1, . . . , s in succession, we maintain the invariant that items in levels higher
than s− r + 1 have been discovered and their exact frequencies are deleted from
A. Let l = s − r + 1. At the beginning of iteration r, the total frequency is m =
ml =

∑l
u=1(stu) ≤ s

∑l
u=1 2l−1 < s2l. At iteration r, we use A to return the set

of items x such that f̂x ≥ Ul = 2l−1 − 2l−4. Therefore, (a) estimated frequencies
of items in level l cross the threshold Ul, since, f̂x ≥ fx−φ′m ≥ 2l−1− φ2ls

16 ≥ Ul,
and, (b) estimated frequencies of items in level l−1 or lower do not cross Ul, since,
f̂y ≤ fy+φ′m ≤ 2l−2+2l−3 < Ul. After s iterations, the level by level arrangement
of the items can be reconstructed. The number of such arrangements is

(
n

s s... s

)

and therefore A requires space log
(

n
s s... s

)
= Ω(s2 log n

s) = Ω(s(logm)(log n
s)),

since, n > 64s2 and m = ms = s2s+1. ��

Lemma 8. For φ > 8n−1/2, any point query estimator for strict update streams
with parameter φ and confidence 0.66 requires Ω(φ−1(logm)(log(φn))) bits.

Proof. We reduce the bit-vector indexing problem to a randomized point query
estimator. In the bit-vector indexing problem, bit vector v of size |v| is presented
followed by an index i between 1 and |v|. The problem is to decide whether
v[i] = 1. It is known to require space Ω(|v|) by a randomized algorithm that
gives the correct answer with probability 2

3 . Let s = �φ−1�, |v| = s2�log(�n
s �)�

and ρ = �log�n
s ��. We can isomorphically view the vector v[1 . . . |v|] as a set

of contiguous segments τ of size ρ each, starting at positions 1 modulo ρ. The
s2 possible starting positions can be represented as (aτ , bτ), where, aτ , bτ ∈
{0, 1, . . . , s− 1}. Map each such segment to an item from the domain s22ρ with
2�log s�+ ρ bit binary address aτ ◦ bτ ◦ τ , where, ◦ represents bit concatenation.
The frequency of the item is set to 2aτ . The bit vector is isomorphically mapped
to a set of s2 items of frequencies between 1 and 2s−1, such that there are exactly
s items with frequency 2l, for l = 0, 1, . . . , s − 1. If the error probability of the

CR-precis: A Deterministic Summary Structure for Update Data Streams 57

point estimator is at most 1− 1
3s2 , then, using the argument of Lemma 7, the set of

all the s2 items and their frequencies are correctly retrieved with error probability
bounded by s2

3s2 = 1
3 . That is, the bit vector is effectively reconstructed and the

original bit vector index query can be answered. The above argument holds
for every choice of the 1-1 onto mappings of the s2 starting positions of ρ-size
segments to (aτ , bτ). In particular, it holds for the specific map when the query
index i belongs to a segment τ0 whose starting position is mapped to the highest
level, i.e., bτ0 = s−1. In this case, a single invocation of the point query suffices.
Thus the space required is Ω(s2 log n

s) = Ω(φ−1(logm)(log φn)). ��

3.2 General Update Streaming Model

In this section, we consider the general update streaming model. Lemma 9
presents the property of point query estimator for general update streams.

Lemma 9. Consider a CR-precis structure with height k and width t. For
x ∈ D, let f̂x = 1

t

∑t
j=1 Tj [x mod pj]. Then, |f̂x − fx| ≤ (logk n−1)

t (L1 − |fx|).

Proof. tf̂x =
∑t

j=1 Tj [x mod pj] = tfx+
∑t

j=1

∑
{fy |y �= x and y ≡ x mod pj}.

Thus, t|f̂x − fx| = |
t∑

j=1

∑

y �=x
y≡x mod pj

fy| = |
∑

y �=x

∑

j:y≡x mod pj

fy|

≤
∑

y �=x

∑

j:y≡x mod pj

|fy| ≤ (logk n− 1) (F1 − |fx|) , by (1) ��

Similarly, we can obtain an estimator for the inner-product of streams R and S.
Let L1(R) and L1(S) be the L1 norms of streams R and S respectively.

Lemma 10. Consider a CR-precis structure of height k and width t. Let
P̂ = 1

t

∑t
j=1

∑pj

b=1 Tj[b]Uj [b]. Then, |P̂ − f · g| ≤ (logk n−1)
t L1(R)L1(S). ��

Lower Bounds for Computations Over General Update Streams. We
now present space lower bounds for problems over general update streams.

Lemma 11. Deterministic algorithms for the following problems in the general
update streaming model requires Ω(n) bits: (1) finding ε-approximate frequent
items with parameter s for any ε < 1

2 , (2) finding ε-approximate φ-quantiles for
any ε < φ/2, (3) estimating the kth norm Lk = (

∑n−1
i=0 |fi|k)1/k, for any real

value of k, to within any multiplicative approximation factor, and (4) estimating
entropy to within any multiplicative approximation factor.

Proof. Consider a family F of sets of size n
2 elements each such that the intersec-

tion between any two sets of the family does not exceed n
8 . It can be shown1 that

1 Number of sets that are within a distance of n
8 from a given set of size n

2 is
�n

8
r=0

�
n/2

r

�2 ≤ 2
�

n/2
n/8

�2
. Therefore, |F| ≥ (n

n/2)

2(n/2
n/8)

2 ≥ 2n/2

2(3e)n/8 = 1
2

� 16
3e

�n/8
.

58 S. Ganguly and A. Majumder

there exist such families of size 2Ω(n). Corresponding to each set S in the family,
we construct a stream str(S) such that fi = 1 if i ∈ S and fi = 0, otherwise.
Denote by str1 ◦ str2 the stream where the updates of stream str2 follow the
updates of stream str1 in sequence. Let A be a deterministic frequent items algo-
rithm. Suppose that after processing two distinct sets S and T from F , the same
memory pattern of A’s store results. Let Δ be a stream of deletions that deletes
all but s

2 items from str(S). Since, L1(str(S) ◦ Δ) = s
2 , all remaining s

2 items
are found as frequent items. Further, L1(str(T)◦Δ) ≥ n

2 −
s
2 , since, |S∩T | ≤ n

8 .
If s < n

3 , then, F1
s > 1, and therefore, none of the items qualify as frequent.

Since, str(S) and str(T) are mapped to the same bit pattern, so are str(S) ◦Δ
and str(T) ◦Δ. Thus A makes an error in reporting frequent items in at least
one of the two latter streams. Therefore, A must assign distinct bit patterns to
each str(S), for S ∈ F . Since, |F| = 2Ω(n), A requires Ω(log(|F|)) = Ω(n) bits,
proving part (1) of the lemma.

Let S and T be sets from F such that str(S) and str(T) result in the same
memory pattern of a quantile algorithm Q. Let Δ be a stream that deletes all
items from S and then adds item 0 with frequency f0 = 1 to the stream. now
all quantiles of str(S) ◦Δ = 0. str(T) ◦Δ has at least 7n

8 distinct items, each
with frequency 1. Thus, for every φ < 1

2 and ε ≤ φ
2 the kth φ quantile of the

two streams are different by at least kφn. Part (3) is proved by letting Δ be an
update stream that deletes all elements from str(S). Then, Lk(str(S) ◦Δ) = 0
and Lk(str(T) ◦Δ) = Ω(n1/k).

Proceeding as above, suppose Δ is an update stream that deletes all but one
element from str(S). Then, H(str(S) ◦ Δ) = 0. str(T) ◦ Δ has Ω(n) elements
and therefore H(str(T) ◦Δ) = logn + Θ(1). The multiplicative gap logn : 0 is
arbitrarily large—this proves part (4) of the lemma. ��

References

1. Alon, N., Gibbons, P.B., Matias, Y., Szegedy, M.: Tracking Join and Self-Join Sizes
in Limited Storage. In: Proc. ACM PODS, ACM Press, New York (1999)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in
Data Stream Systems. In: Proc. ACM PODS, ACM Press, New York (2002)

3. Bhuvanagiri,L.,Ganguly,S.:EstimatingEntropyoverDataStreams. In:Azar,Y.,Er-
lebach,T. (eds.)ESA2006.LNCS,vol. 4168,pp. 148–159.Springer,Heidelberg (2006)

4. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Bounds for Frequency Estimation of
Packet Streams. In: SIROCCO, pp. 33–42 (2003)

5. Chakrabarti, A., Cormode, G., McGregor, A.: A Near-Optimal Algorithm for Com-
puting the Entropy of a Stream. In: Proc. ACM SODA, ACM Press, New York
(2007)

6. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

7. Cormode, G., Garofalakis, M.: Sketching Streams Through the Net: Distributed
Approximate Query Tracking. In: Proc. VLDB (September 2005)

8. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Finding Hierarchical
Heavy Hitters in Data Streams. In: Proc. VLDB (2003)

CR-precis: A Deterministic Summary Structure for Update Data Streams 59

9. Cormode, G., Muthukrishnan, S.: What’s New: Finding Significant Differences in
Network Data Streams. In: IEEE INFOCOM, IEEE Computer Society Press, Los
Alamitos (2004)

10. Cormode, G., Muthukrishnan, S.: An Improved Data Stream Summary: The
Count-Min Sketch and its Applications. J. Algorithms 55(1), 58–75 (2005)

11. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

12. Demaine, E.D., López-Ortiz, A., Munro, J.I: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, Springer, Heidelberg (2002)

13. Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource
consumption in network traffic. In: Proc. ACM SIGCOMM, pp. 137–148. ACM
Press, New York (2003)

14. Ganguly, S., Kesh, D., Saha, C.: Practical Algorithms for Tracking Database Join
Sizes. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, Springer,
Heidelberg (2005)

15. Ganguly, S., Majumder, A.: Deterministic K-set Structure. In: Proc. ACM PODS,
ACM Press, New York (2006)

16. Gibbons, P.B., Matias, Y.: New Sampling-Based Summary Statistics for Improving
ApproximateQueryAnswers. In:Proc.ACMSIGMOD,ACMPress,NewYork (1998)

17. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast
Small-space Algorithms for Approximate Histogram Maintenance. In: Proc. ACM
STOC, ACM Press, New York (2002)

18. Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.: How to Summarize the
Universe: Dynamic Maintenance of Quantiles. In: Bressan, S., Chaudhri, A.B., Lee,
M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590,
Springer, Heidelberg (2003)

19. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Surfing Wavelets on
Streams: One-pass Summaries for Approximate Aggregate Queries. In: Jonker, W.
(ed.) VLDB-WS 2001 and DBTel 2001. LNCS, vol. 2209, Springer, Heidelberg (2001)

20. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: SIGMOD (2001)

21. Hershberger, J., Shrivastava, N., Suri, S., Toth, C.D.: Space Complexity of Hierar-
chical Heavy Hitters in Multi-Dimensional Data Streams. In: Proc. ACM PODS,
ACM Press, New York (2005)

22. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A Simple Algorithm for Finding
Frequent Elements in Streams and Bags. ACM TODS 28(1), 51–55 (2003)

23. Manku, G., Motwani, R.: Approximate Frequency Counts over Data Streams. In:
Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002
and VLDB 2002. LNCS, vol. 2590, pp. 346–357. Springer, Heidelberg (2003)

24. Manku, G., Rajagopalan, S., Lindsay, B.: Random sampling techniques for space
efficient online computation of order statistics of large datasets. In: Proc. ACM
SIGMOD, ACM Press, New York (1999)

25. Misra,J.,Gries,D.:Findingrepeatedelements.Sci.Comput.Programm.2,143–152(1982)
26. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foundations and

Trends in Theoretical Computer Science 1(2) (2005)
27. Rosser, J.B.: Explicit bounds on some functions on prime numbers. Amer. J.

Math. 63 (1941)
28. Schweller, R., Li, Z., Chen, Y., Gao, Y., Gupta, A., Zhang, Y., Dinda, P., Kao,

M-Y., Memik, G.: Monitoring Flow-level High-speed Data Streams with Reversible
Sketches. In: IEEE INFOCOM, IEEE Computer Society Press, Los Alamitos (2006)

An Effective Refinement Algorithm Based on

Swarm Intelligence for Graph Bipartitioning

Lingyu Sun1 and Ming Leng2

1 Department of Computer Science,
Jinggangshan College, Ji’an, PR China 343009
2 School of Computer Engineering and Science,

Shanghai University, Shanghai, PR China 200072
sunlingyu@jgsu.edu.cn, lengming@shu.edu.cn

Abstract. Partitioning is a fundamental problem in diverse fields of
study such as VLSI design, parallel processing, data mining and task
scheduling. The min-cut bipartitioning problem is a fundamental graph
partitioning problem and is NP-Complete. In this paper, we present an
effective multi-level refinement algorithm based on swarm intelligence
for bisecting graph. The success of our algorithm relies on exploiting
both the swarm intelligence theory with a boundary refinement policy.
Our experimental evaluations on 18 different benchmark graphs show
that our algorithm produces high quality solutions compared with those
produced by MeTiS that is a state-of-the-art partitioner in the literature.

1 Introduction

Partitioning is a fundamental problem with extensive applications to many ar-
eas, including VLSI design [1], parallel processing [2], data mining [3] and task
scheduling [4]. The problem is to partition the vertices of a graph into k roughly
equal-size sub-domains, such that the number of the edges connecting vertices
in different sub-domains is minimized. The min-cut bipartitioning problem is
a fundamental partitioning problem and is NP-Complete. It is also NP-Hard
to find good approximate solutions for this problem [5]. The survey by Alpert
and Kahng [1] provides a detailed description and comparison of various such
schemes which can be classified as move-based approaches, geometric represen-
tations, combinatorial formulations, and clustering approaches.

Because of its importance, the problem has attracted a considerable amount of
research interest and a variety of algorithms have been developed over the last
thirty years [6],[7]. Most existing partitioning algorithms are heuristics in na-
ture and they seek to obtain reasonably good solutions in a reasonable amount
of time. For example, Kernighan and Lin (KL) [6] proposed an iterative im-
provement algorithm for partitioning graphs that consists of making several im-
provement passes. Fiduccia and Mattheyses (FM) [7] proposed a fast heuristic
algorithm for bisecting a weighted graph by introducing the concept of cell gain
into the KL algorithm. These algorithms belong to the class of move-based ap-
proaches in which the solution is built iteratively from an initial solution by ap-
plying a move or transformation to the current solution. Move-based approaches

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 60–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Effective Refinement Algorithm Based on Swarm Intelligence 61

are the most frequently combined with stochastic hill-descending algorithms such
as those based on Simulated Annealing [8], Tabu Search [8], Genetic Algorithms
[9], Neural Networks [10], which allow movements towards solutions worse than
the current one in order to escape from local minima. For example, Leng and Yu
[11],[12] proposed a boundary Tabu Search refinement algorithm that combines
an effective Tabu Search strategy with a boundary refinement policy.

As the problem sizes reach new levels of complexity recently, a new class
of graph partitioning algorithms have been developed that are based on the
multi-level paradigm. The multi-level graph partitioning schemes consist of three
phases [13],[14],[15]. During the coarsening phase, a sequence of successively
coarser graph is constructed by collapsing vertex and edge until its size is smaller
than a given threshold. The goal of the initial partitioning phase is to compute
initial partition of the coarsest graph such that the balancing constraint is sat-
isfied and the partitioning objective is optimized. During the uncoarsening and
refinement phase, the partitioning of the coarser graph is successively projected
back to the next level finer graph and an iterative refinement algorithm is used
to optimize the objective function without violating the balancing constraint.

In this paper, we present a multi-level refinement algorithm which combines
the swarm intelligence theory with a boundary refinement policy. Our work is
motivated by the multi-level ant colony algorithm(MACA) of Koros̃ec who runs
basic ant colony algorithm on every level graph in [16] and Karypis who proposes
the boundary KL (BKL) refinement algorithm in [14] and supplies MeTiS [13],
distributed as open source software package for partitioning unstructured graphs.
We test our algorithm on 18 graphs that are converted from the hypergraphs of
the ISPD98 benchmark suite [17]. Our algorithm has shown encouraging perfor-
mance in the comparative experiments which produce excellent partitions that
are better than those produced by MeTiS in a reasonable time.

The rest of the paper is organized as follows. Section 2 provides some defi-
nitions and describes the notation that is used throughout the paper. Section
3 briefly describes the motivation behind our algorithm. Section 4 presents an
effective multi-level swarm intelligence refinement algorithm. Section 5 experi-
mentally evaluates our algorithm and compares it with MeTiS. Finally, Section
6 provides some concluding remarks and indicates the directions for further re-
search.

2 Mathematical Description

A graph G=(V,E) consists of a set of vertices V and a set of edges E such that
each edge is a subset of two vertices in V. Throughout this paper, n and m denote
the number of vertices and edges respectively. The vertices are numbered from 1
to n and each vertex v ∈ V has an integer weight S (v). The edges are numbered
from 1 to m and each edge e ∈ E has an integer weight W (e). A decomposition
of a graph V into two disjoint subsets V 1 and V 2, such that V 1 ∪ V 2=V and
V 1 ∩ V 2=∅, is called a bipartitioning of V. Let S (A)=

∑

v∈A
S(v) denotes the size

of a subset A ⊆ V. Let IDv be denoted as v ’s internal degree and is equal to

62 L. Sun and M. Leng

the sum of the edge-weights of the adjacent vertices of v that are in the same
side of the partition as v, and v ’s external degree denoted by EDv is equal to
the sum of edge-weights of the adjacent vertices of v that are in different sides.
The cut of a bipartitioning P={V 1,V 2} is the sum of weights of edges which
contain two vertices in V 1 and V 2 respectively. Naturally, vertex v belongs at
the boundary if and only if EDv > 0 and the cut of P is also equal to 0.5

∑

v∈V
EDv.

Given a balance constraint r, the min-cut bipartitioning problem seeks a solution
P={V 1,V 2} that minimizes cut(P) subject to (1 -r)S (V)/2 ≤ S(V 1),S(V 2) ≤
(1+r)S (V)/2. A bipartitioning is bisection if r is as small as possible. The task
of minimizing cut(P) can be considered as the objective and the requirement that
solution P will be of the same size can be considered as the constraint.

3 Motivation

Over the last decades, researchers have been looking for new paradigms in op-
timization. Swarm intelligence arose as one of the paradigms based on natural
systems and its five basic principles are proximity, quality, diverse response, sta-
bility and adaptability [18]. Formally, the term swarm can be defined as a group
of agents which communicate with each other, by acting on their local environ-
ment. Although the individuals of the swarm are relatively simple in structure,
their collective behavior is usually very complex. The complex behavior of the
swarm, as distributive collective problem-solving strategies, is a result of the
pattern of interactions between the individuals of the swarm over time. Swarm
intelligence is the property of a system whereby the collective behaviors of un-
sophisticated agents interacting locally with their environment cause coherent
functional global patterns to emerge.

The ant colony optimization (ACO) and the particle swarm optimization
(PSO) are two attractive topics for researchers of swarm intelligence. ACO is
a population-based meta-heuristic framework for solving discrete optimization
problems [19]. It is based on the indirect communication among the individuals of
a colony of agents, called ants, mediated by trails of a chemical substance, called
pheromone, which real ants use for communication. It is inspired by the behavior
of real ant colonies, in particular, by their foraging behavior and their commu-
nication through pheromone trails. PSO is also a population-based optimization
method first proposed by Kennedy and Eberhart [20]. It has been shown to be
effective in optimizing difficult multidimensional discontinuous problems. PSO
is initialized with a random population of candidate solutions that are flown
in the multidimensional search space in search for the optimum solution. Each
individual of the population, called particle, has an adaptable velocity according
to which it moves in the search space. Moreover, each particle has a memory,
remembering the best position of the search space it has ever visited. Thus,
its movement is an aggregated acceleration towards its best previously visited
position and towards the best particle of a topological neighborhood.

In [21], Langham and Grant proposed the Ant Foraging Strategy (AFS) for
k-way partitioning. The basic idea of the AFS algorithm is very simple: We have

An Effective Refinement Algorithm Based on Swarm Intelligence 63

k colonies of ants that are competing for food, which in this case represents the
vertices of the graph. At the end the ants gather food to their nests, i.e. they
partition the graph into k subgraphs. In [16], Koros̃ec presents the MACA ap-
proach that is enhancement of the AFS algorithm with the multi-level paradigm.
However, since Koros̃ec simply runs the AFS algorithm on every level � graph
Gl(Vl,El), most of computation on the coarser graphs is wasted. Furthermore,
MACA comes into collision with the key idea behind the multi-level approach.
The multi-level graph partitioning schemes needn’t the direct partitioning algo-
rithm on Gl(Vl,El) in the uncoarsening and refinement phase, but the refinement
algorithm that improves the quality of the finer graph Gl(Vl,El) partitioning
PGl

={V1
l ,V

2
l } which is projected from the partitioning PGl+1={V1

l+1,V
2
l+1}of

the coarser graph Gl+1(Vl+1,El+1).
In this paper, we present a new multi-level swarm intelligence refinement

algorithm(MSIR) that combines the swarm intelligence theory with a boundary
refinement policy. It employs swarm intelligence in order to select two subsets of
vertices V1′

l ⊂ V1
l and V2′

l ⊂ V2
l such that {(V1

l −V1′

l) ∪ V2′

l , (V2
l −V2′

l) ∪ V1′

l }
is a bisection with a smaller edge-cut. It has distinguishing features which are
different from the MACA algorithm. First, MACA exploits two or more colonies
of ants to compete for the vertices of the graph, while MSIR employs one swarm
to find V1′

l and V2′

l such that moving them to the other side improves the
quality of partitioning. Second, MACA is a partitioning algorithm while MSIR
is a refinement algorithm. Finally, MSIR is a boundary refinement algorithm
whose runtime is significantly smaller than that of a non-boundary refinement
algorithm, since the vertices moved by MSIR are boundary vertices that straddle
two sides of the partition and only the gains of boundary vertices are computed.

4 MSIR: The Framework

Informally, the MSIR algorithm works as follows: At time zero, an initializa-
tion phase takes place during which initial values for pheromone trail are set
on the vertices of graph G and a population of agents is initialized, using the
initial partitioning as the individual’s best partition. In the main loop of MSIR,
each agent’s tabu list is emptied and each agent chooses (V1′

,V2′
) by repeat-

edly selecting boundary vertices of each part according to a state transition rule
given by Equation(1)(2), moving them into the other part, updating the gains of
the remaining vertices and etc. After constructing its solution, each agent also
modifies the amount of pheromone on the moved vertices by applying the local
updating rule of Equation(3). Once all agents have terminated their solutions, the
amount of pheromone on vertices is modified again by applying the global updat-
ing rule of Equation(4). The process is iterated until the cycles counter reaches
the maximum number of cycles NCmax, or the MSIR algorithm stagnates.

The pseudocode of the MSIR algorithm is shown in Algorithm 1. The cycles
counter is denoted by t. Best represents the best partitioning seen by the swarm
so far and Bestk represents the best partitioning visited by agent k. The initial
values for pheromone trail is denoted by τ0=1/ε, where ε is total number of

64 L. Sun and M. Leng

agents. At cycle t, let τv(t) be the pheromone trail on the vertex v and tabuk(t)
be the tabu list of agent k, Bestk(t) represents the best partitioning found by
agent k and the current partitioning of agent k is denoted by Pk(t), the agent k
also stores the internal and external degrees of all vertices and boundary vertices
independently which be denoted as IDk(t), EDk(t) and boundaryk(t) respectively.
Let allowedk(t) be denoted as the candidate list which is a list of preferred vertices
to be moved by agent k at cycle t and is equal to {V− tabuk(t)}

⋂
boundaryk(t).

Algorithm 1 (MSIR)

MSIR(initial bipartitioning P, maximum number of cycles NCmax,
balance constraint r, similarity tolerance ϕ, maximum steps smax)

/***Initialization***/
t = 0
Best = P
For every vertex v in G = (V,E) do
τv(t) = τ0
IDv =

∑

(v,u)∈E∧P [v]=P [u]

W (v,u)

EDv =
∑

(v,u)∈E∧P [v] �=P [u]

W (v,u)

Store v as boundary vertex if and only if EDv > 0;
End For
For k = 1 to ε do

Constrcut agent k and Store Bestk = P independently;
End For
/***Main loop***/
For t = 1 to NCmax do

For k = 1 to ε do
tabuk(t) = ∅
Store Pk(t) = P and Bestk(t) = P independently;
Store IDk(t), EDk(t), boundaryk(t) of G = (V,E) independently;
For s = 1 to smax do

Decide the move direction of the current step s;
If exists at least one vertex v ∈ allowedk(t) then

Choose the vertex v to move as follows

v =

{
arg max

v∈allowedk(t)

[
ψk

v (t)
]α ·

[
ηk
v (t)

]β if q ≤ q0

w if q > q0

(1)

Where the vertex w is chosen according to the probablity

pk
w(t) =

⎧
⎪⎨

⎪⎩

[ψk
w(t)]α·[ηk

w(t)]β
∑

u∈allowedk(t)

[ψk
u (t)]α·[ηk

u (t)]β
if w ∈ allowedk(t)

0 otherwise
(2)

Else

An Effective Refinement Algorithm Based on Swarm Intelligence 65

Break;
End If
Update Pk(t) by moving the vertex v to the other side;
Lock the vertex v by adding to tabuk(t);
original cut Minus its original gain as the cut of Pk(t);
Update IDk

u(t), EDk
u(t), gain of its neighboring vertices u and boundaryk(t);

If (cut(Pk(t)) < cut(Bestk(t)) and P k(t) satisfies constraints r) then
Bestk(t) = Pk(t)

End If
End For /*s ≤ smax*/
Apply the local update rule for the vertices v moved by agent k

τv(t)← (1− ρ) · τv(t) + ρ · �τk
v (t) (3)

Update Bestk and cut(Bestk) if cut(Bestk(t)) < cut(Bestk);
End For /*k ≤ ε*/
Apply the global update rule for the vertices v moved by global-best agent

τv(t)← (1− ξ) · τv(t) + ξ · �τgb
v (4)

Update Best and cut(Best) if min
1≤k≤ε

cut(Bestk) < cut(Best);

For every vertex v in G = (V,E) do
τv(t+1) = τv(t)

End For
End For /*t ≤ NCmax*/
Return Best and cut(Best)

In the MSIR algorithm, a state transition rule given by Equation(1)(2) is
called pseudo-random-proportional rule, where q is a random number uniformly
distributed in [0. . . 1] and q0 is parameter (0 ≤ q0 ≤ 1) which determines the
relative importance of exploitation versus exploration. To avoid trapping into
stagnation behavior, MSIR adjusts dynamically the parameter q0 based on the
solutions similarity between (V1′

,V2′
)k and (V1′

,V2′
)(k-1) found by agent k and

k-1. In Equation(1)(2), α and β denote the relative importance of the revised
pheromone trail and visibility respectively. ηk

v(t) represents the visibility of agent
k on the vertex v at cycle t and is given by:

ηk
v(t) =

⎧
⎨

⎩

√
1.0 + EDk

v(t)− IDk
v(t) if (EDk

v(t)− IDk
v(t)) ≥ 0

√
1.0/(IDk

v(t)− EDk
v(t)) otherwise

(5)

ψk
v (t) represents the revised pheromone trail of agent k on the vertex v at cycle

t and is given by:

ψk
v (t) = ω · τv(t) + (λ1 · rand() · δ1 + λ2 · rand() · δ2) · ηk

v(t)
2/cut(P) (6)

66 L. Sun and M. Leng

δ1 =
{

1 if Bestk[v] �= P k[v]
−1 if Bestk[v] = P k[v]

δ2 =
{

1 if Best[v] �= P k[v]
−1 if Best[v] = P k[v] (7)

where ω is called inertia weight and regulates the trade-off between the global
and local exploration abilities of the swarm; λ1, called cognitive parameter, is a
factor determining how much the agent is influenced by Bestk; λ2, called social
parameter, is a factor determining how much the agent is influenced by Best; The
difference between the agent’s previous best and current partitioning on vertex v
is denoted by δ1; δ2 denotes the difference between the global best partitioning
and current partitioning on vertex v.

In Equation(3), ρ is a coefficient and represents the local evaporation of
pheromone trail between cycle t and t+1 and the term �τk

v (t) is given by:

�τk
v (t) =

{
cut(Bestk(t))−cut(P)

cut(P)·ε if v was moved by agent k at cycle t
0 otherwise

(8)

In Equation(4), ξ is a parameter and represents the global evaporation of
pheromone trail between cycle t and t+1 and the term �τgb

v is given by:

�τgb
v =

{
cut(Best)−cut(P)

cut(P) if v was moved by global-best agent
0 otherwise

(9)

5 Experimental Results

We use the 18 graphs in our experiments that are converted from the hypergraphs
of the ISPD98 benchmark suite [17] and range from 12,752 to 210,613 vertices.
Each hyperedge is a subset of two or more vertices in hypergraph. We convert
hyperedges into edges by the rule that every subset of two vertices in hyperedge
can be seemed as edge [11],[12] and store 18 edge-weighted and vertex-weighted
graphs in format of MeTiS [13]. The characteristics of these graphs are shown
in Table 1.

We implement the MSIR algorithm in ANSI C and integrate it with the
leading edge partitioner MeTiS. In the evaluation of our algorithm, we must
make sure that the results produced by our algorithm can be easily compared
against those produced by MeTiS. First, we use the same balance constraint
r and random seed in every comparison. Second, we select the sorted heavy-
edge matching (SHEM) algorithm during the coarsening phase because of its
consistently good behavior in MeTiS. Third, we adopt the greedy graph growing
partition algorithm during the initial partitioning phase that consistently finds
smaller edge-cuts than other algorithms. Finally, we select the BKL algorithm
to compare with MSIR during uncoarsening and refinement phase because BKL
can produce smaller edge-cuts when coupled with the SHEM algorithm. These
measures are sufficient to guarantee that our experimental evaluations are not
biased in any way.

The quality of partitions produced by our algorithm and those produced by
MeTiS are evaluated by looking at two different quality measures, which are the

An Effective Refinement Algorithm Based on Swarm Intelligence 67

Table 1. The characteristics of 18 graphs to evaluate our algorithm

benchmark vertices hyperedges edges

ibm01 12752 14111 109183
ibm02 19601 19584 343409
ibm03 23136 27401 206069
ibm04 27507 31970 220423
ibm05 29347 28446 349676
ibm06 32498 34826 321308
ibm07 45926 48117 373328
ibm08 51309 50513 732550
ibm09 53395 60902 478777
ibm10 69429 75196 707969
ibm11 70558 81454 508442
ibm12 71076 77240 748371
ibm13 84199 99666 744500
ibm14 147605 152772 1125147
ibm15 161570 186608 1751474
ibm16 183484 190048 1923995
ibm17 185495 189581 2235716
ibm18 210613 201920 2221860

Table 2. Min-cut bipartitioning results with up to 2% deviation from exact bisection

benchmark
Metis(α) MSIR(β) ratio(β:α)

MinCut AveCut MinCut AveCut MinCut AveCut

ibm01 517 1091 505 758 0.977 0.695
ibm02 4268 11076 2952 7682 0.692 0.694
ibm03 10190 12353 4452 6381 0.437 0.517
ibm04 2273 5716 2219 3464 0.976 0.606
ibm05 12093 15058 12161 14561 1.006 0.967
ibm06 7408 13586 2724 7715 0.368 0.568
ibm07 3219 4140 2910 3604 0.904 0.871
ibm08 11980 38180 11038 15953 0.921 0.418
ibm09 2888 4772 2857 3524 0.989 0.738
ibm10 10066 17747 5915 9966 0.588 0.562
ibm11 2452 5095 2421 4218 0.987 0.828
ibm12 12911 27691 10303 16609 0.798 0.600
ibm13 6395 13469 5083 10178 0.795 0.756
ibm14 8142 12903 8066 12959 0.991 1.004
ibm15 22525 46187 12105 31399 0.537 0.680
ibm16 11534 22156 10235 14643 0.887 0.661
ibm17 16146 26202 15534 20941 0.962 0.799
ibm18 15470 20018 15536 17521 1.004 0.875

average 0.823 0.713

minimum cut (MinCut) and the average cut (AveCut). To ensure the statistical
significance of our experimental results, two measures are obtained in twenty
runs whose random seed is different to each other. For all experiments, we use a

68 L. Sun and M. Leng

49-51 bipartitioning balance constraint by setting r to 0.02 and set the number of
vertices of the current level graph as the value of smax. Furthermore, we adopt the
experimentally determined optimal set of parameters values for MSIR, α=2.0,
β=1.0, ρ=0.1, ξ=0.1, q0=0.9, ϕ=0.8, ε=10, ω=2, λ1=1, λ2=1, NCmax=80.

Table 2 presents min-cut bipartitioning results allowing up to 2% deviation from
exact bisection and gives the MinCut and AveCut comparisons of two algorithms
on 18 graphs. As expected, our algorithm reduces the AveCut by -0.4% to 58.2%
and reaches 28.7% average AveCut improvement. In the MinCut evaluation, we
obtain 17.7% average improvement and between -0.6% and 63.2% improvement.
All evaluations that twenty runs of two algorithms on 18 graphs are run on an
1800MHz AMD Athlon2200 with 512M memory and can be done in two hours.

6 Conclusions

In this paper, we have presented an effective multi-level algorithm based on
swarm intelligence. The success of our algorithm relies on exploiting both the
swarm intelligence theory with a boundary refinement policy. We obtain excel-
lent bipartitioning results compared with those produced by MeTiS. Although
it has the ability to find cuts that are lower than the result of MeTiS in a rea-
sonable time, there are several ways in which this algorithm can be improved.
In MSIR, we have a set of parameters (α, β, ρ, ξ, q0, ϕ, ε, ω, λ1, λ2, NCmax) to
balance the relative importance of exploitation versus exploration, to regulate
the trade-off between the global and local exploration abilities and etc. However,
in the MinCut evaluation of benchmark ibm05 and ibm18, our algorithm is 0.6%
worse than MeTiS. Therefore, the question is to guarantee find good approxi-
mate solutions by setting optimal set of parameters values for MSIR. Ultimately,
we may wonder if it is possible to let the algorithm determine the right value of
parameters in a preprocessing step.

Acknowledgments

This work was supported by the international cooperation project of Ministry
of Science and Technology of PR China, grant No. CB 7-2-01, and by “SEC
E-Institute: Shanghai High Institutions Grid” project. Meanwhile, the authors
would like to thank professor Karypis of university of Minnesota for supplying
source code of MeTiS. The authors also would like to thank Alpert of IBM
Austin Research Laboratory for supplying the ISPD98 benchmark suite.

References

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning. Integration,
the VLSI Journal 19, 1–81 (1995)

2. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm
for mapping parallel computations. SIAM Journal on Scientific Computing 16,
452–469 (1995)

An Effective Refinement Algorithm Based on Swarm Intelligence 69

3. Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A Min-Max cut algorithm for graph
partitioning and data clustering. In: Proc. IEEE Conf Data Mining, pp. 107–114.
IEEE Computer Society Press, Los Alamitos (2001)

4. Khannat, G., Vydyanathant, N.: A hypergraph partitioning based approach for
scheduling of tasks with batch-shared I/O. In: IEEE International Symposium on
Cluster Computing and the Grid, pp. 792–799 (2005)

5. Bui, T., Leland, C.: Finding good approximate vertex and edge partitions is NP-
hard. Information Processing Letters 42, 153–159 (1992)

6. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal 49, 291–307 (1970)

7. Fiduccia, C., Mattheyses, R.: A linear-time heuristics for improving network par-
titions. In: Proc. 19th Design Automation Conf., pp. 175–181 (1982)

8. Tao, L., Zhao, Y.C., Thulasiraman, K., Swamy, M.N.S.: Simulated annealing and
tabu search algorithms for multiway graph partition. Journal of Circuits, Systems
and Computers, 159–185 (1992)

9. Żola, J., Wyrzykowski, R.: Application of genetic algorithm for mesh partitioning.
In: Proc. Workshop on Parallel Numerics, pp. 209–217 (2000)

10. Bahreininejad, A., Topping, B.H.V., Khan, A.I.: Finite element mesh partitioning
using neural networks. Advances in Engineering Software, pp. 103–115 (1996)

11. Leng, M., Yu, S., Chen, Y.: An effective refinement algorithm based on multi-level
paradigm for graph bipartitioning. In: The IFIP TC5 International Conference on
Knowledge Enterprise. IFIP Series, pp. 294–303. Springer, Heidelberg (2006)

12. Leng, M., Yu, S.: An effective multi-level algorithm for bisecting graph. In: Li, X.,
Zäıane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 493–500.
Springer, Heidelberg (2006)

13. Karypis, G., Kumar, V.: MeTiS 4.0: Unstructured graphs partitioning and sparse
matrix ordering system. Technical Report, Department of Computer Science, Uni-
versity of Minnesota (1998)

14. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20, 359–392 (1998)

15. Selvakkumaran, N., Karypis, G.: Multi-objective hypergraph partitioning algo-
rithms for cut and maximum subdomain degree minimization. IEEE Trans. Com-
puter Aided Design 25, 504–517 (2006)

16. Koros̃ec, P., S̃ilc, J., Robic̃, B.: Solving the mesh-partitioning problem with an
ant-colony algorithm. Parallel Computing, 785–801 (2004)

17. Alpert, C.J.: The ISPD98 circuit benchmark suite. In: Proc. Intel Symposium of
Physical Design, pp. 80–85 (1998)

18. Millonas, M.: Swarms, phase transitions, and collective intelligence. In: Langton,
C. (ed.) Artificial Life III, Addison-Wesley, Reading (1994)

19. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of
cooperating agents. IEEE Trans on SMC, 29–41 (1996)

20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Conf Neu-
ral Networks IV, pp. 1942–1948. IEEE Computer Society Press, Los Alamitos
(1995)

21. Langham, A.E., Grant, P.W.: Using competing ant colonies to solve k-way parti-
tioning problems with foraging and raiding strategies. In: Floreano, D., Mondada,
F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 621–625. Springer, Heidelberg (1999)

On the Complexity and Approximation of the

Min-Sum and Min-Max Disjoint Paths Problems

Peng Zhang� and Wenbo Zhao��

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.O. Box 8718, Beijing, 100080, China
Graduate University of Chinese Academy of Sciences, Beijing, China

zhangpeng04@iscas.cn, zwenbo@gcl.iscas.ac.cn

Abstract. GivenagraphG = (V, E) andk source-sinkpairs{(s1, t1), . . . ,
(sk, tk)} with each si, ti ∈ V , the Min-Sum Disjoint Paths problem asks
k disjoint paths to connect all the source-sink pairs with minimized total
length, while the Min-Max Disjoint Paths problem asks also k disjoint
paths to connect all source-sink pairs but with minimized length of the
longest path. In this paper we show that the weighted Min-Sum Disjoint
Paths problem is FPNP-complete in general graph, and the uniform
Min-Sum Disjoint Paths and uniform Min-Max Disjoint Paths problems
can not be approximated within Ω(m1−ε) for any constant ε > 0 even
in planar graph if P �= NP, where m is the number of edges in G.
Then we give at the first time a simple bicriteria approximation algo-
rithm for the uniform Min-Max Edge-Disjoint Paths and the weighted
Min-Sum Edge-Disjoint Paths problems, with guaranteed performance
ratio O(log k/ log log k) and O(1) respectively. Our algorithm is based
on randomized rounding.

1 Introduction

1.1 The Problems

Disjoint paths problem is a classical problem in combinatorial optimization and
graph theory. This problem finds its practical applications in network routing,
VLSI-design and other areas. Nowadays disjoint paths problem has being paid
more and more attention due to the rapid development of the network technol-
ogy. See Kleinberg’s remarkable thesis for background and motivation [4]. The
classical disjoint paths problem is to find disjoint paths to connect as many
as possible source-sink pairs in a graph, see [4,2,5]. We consider the Min-Sum
Disjoint Paths problem and the Min-Max Disjoint Paths problem in this paper.

Two paths are said to be vertex-disjoint if they do not share any vertex,
and are said to be edge-disjoint if they do not share any edge. In the Min-Sum

� Supported by NSFC grants No. 60325206 and No. 60310213. This work is part of the
author’s Ph.D. thesis prepared at Institute of Software, CAS under the supervision
of Prof. Angsheng Li.

�� Supported by NSFC grants No. 60325206 and No. 60310213.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 70–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Complexity and Approximation of the Min-Sum and Min-Max 71

Disjoint Paths problem (Min-Sum DP), given a graph G = (V,E), k source-
sink pairs {(s1, t1), . . . , (sk, tk)} with each si, ti ∈ V , and a weight we ≥ 0 for
every e ∈ E, the goal of the problem is to find k disjoint paths to connect every
source-sink pair, while the total length of these paths is minimized. The instance
of the Min-Max Disjoint Paths problem (Min-Max DP) is the same as that of
Min-Sum DP, but the goal is to find k disjoint paths to connect every source-
sink pair with minimized length of the longest path. Throughout this paper, we
always use n to denote |V |, and use m to denote |E|. If the weights are identical
for all edges (without loss of generality, we may assume that we = 1 for every
edge e), then we call the problem uniform. We also use EDP to denote the
term “Edge-Disjoint Paths”, and use VDP to denote the term “Vertex-Disjoint
Paths”. When we talk about DP, we mean both EDP and VDP. Source and sink
are also called terminal, meanwhile a source-sink pair is also called a demand. We
call an instances of the problem feasible if all source-sink pairs can be connected
by disjoint paths. As usual, let I denote an instance of some problem, and let
OPT (I) denote the value of an optimal solution to I.

1.2 Related Work

Suurballe and Tarjan gave a polynomial-time algorithm for the Min-Sum prob-
lem that finds the shortest pair of edge-disjoint and vertex-disjoint paths from
one source to one sink both in undirected and directed graph [10]. Yang and
Zheng extended the algorithm in [10] to solve the problem that finds all short-
est disjoint path pairs from one source s to every sink pairs (t1, t2) in a graph
[12]. For the problem that finds two normalized Min-Sum s–t disjoint paths,
Yang, Zheng and Lu proved that the problem is NP-hard and gave a (1+α)/2α-
approximation algorithm [11], where α is the normalization parameter given by
the problem. Li, Thomas and Simchi-Levi considered the Min-Max problem of
finding two disjoint paths from one source to one sink such that the length of
the longer path is minimized [6]. They showed that both of the four versions
of the problem, i.e., the graph may be directed or undirected, and the paths
may be edge-disjoint or vertex-disjoint, are strongly NP-hard. They also gave
a pseudo-polynomial time algorithm for the problem in directed acyclic graph.
Brandes, Neyer and Wagner proved that the uniform Min-Sum EDP problem
and the uniform Min-Max EDP problem are NP-hard in planar graph [1], even
if the graph fullfils the Eulerian condition and the maximum degree is four.

1.3 Our Results

We systematically study the Min-Sum DP and Min-Max DP problems. The main
contribution of the paper is the new and strong complexity and hardness results
and better approximate solutions to the problems, although the problems are
very hard in terms of approximation hardness as we prove.

Specifically, we show that the weighted Min-Sum DP problem is FPNP-
complete both in undirected and directed graphs, and the uniform Min-Sum DP
and uniform Min-Max DP problems can not be approximated within Ω(m1−ε)

72 P. Zhang and W. Zhao

for any constant ε > 0 even in planar graph, unless P = NP. It is well known
that to decide whether the input instance is feasible (i.e., all the source-sink
pairs can be connected by disjoint paths) is NP-hard. Our results are strong
since we prove all of the above complexity and hardness results even if the given
instances are known to be feasible. Recall that FPNP is the class of all func-
tions from strings to strings that can be computed by a polynomial-time Turing
machine with a SAT oracle. If an optimization problem is FPNP-complete, then
it is NP-hard. But the opposite direction is not true. So, FPNP-complete is a
stronger conception than NP-hard. Then we give at the first time a simple bicri-
teria approximation algorithm for the uniform Min-Max EDP problem and the
weighted Min-Sum EDP problem, with approximation factor (O(log k/ log log k),
O(log n/ log logn)) and (O(1), O(log n/ log logn)) respectively, where the first
parameter is the performance ratio, and the second parameter is the number
of congestion, that is, the number of paths allowed per edge. Our algorithm is
based on randomized rounding and runs in polynomial time. In fact, our algo-
rithm shows that whenever the LP relaxation of the instance has a fractional
solution, the instance has an approximate integer solution with congestion of at
most O(log n/ log logn). Since solving linear program tells whether the fractional
feasible solution exists, our algorithm avoids to decide whether the instance is
feasible, which is NP-hard.

2 Complexity of the Weighted Min-Sum DP Problem

In this section we prove that the weighted Min-Sum DP problem is FPNP-
compete in general graph. It is known that the problem Max Weight SAT is
FPNP-complete. In Max Weight SAT, we are given a CNF formula φ with posi-
tive integer weights for all clauses, and the problem is to find a truth assignment
that satisfies a set of clauses with the most total weight. We shall reduce Max
Weight SAT to Min-Sum DP by the reduction between function problems (refer
to [8] for the definition).

Theorem 1. Both in undirected and directed graph, the weighted Min-Sum VDP
and weighted Min-Sum EDP problems are FPNP-complete.

Proof. First, we show that Min-Sum DP is in class FPNP. It is easy to see that
the decision version of this problem (that is, given a graph G, k source-sink pairs
and length bound B, is there k vertex-disjoint (or edge-disjoint) paths with total
length less than B which connect each source-sink pair?) is in NP. Therefore,
by binary search, using a SAT oracle, we can find the minimum total length of
such k vertex-disjoint (or edge-disjoint) paths. Then we can find these paths by
removing every edge and making a query to the resulted decision problem one
by one.

Next we reduce Max Weight SAT to Min-Sum EDP. Suppose that the instance
of Max Weight SAT is I1. We assign a gadget to each variable xi. For example,
if variable x1 appears positively in clauses ci1 and ci2 , and appears negatively
in clauses cj1 , cj2 and cj3 , then we assign to it the gadget in Figure 1. For each

On the Complexity and Approximation of the Min-Sum and Min-Max 73

clause cj , there is a source-sink pair (sj , tj). And for each source-sink pair there
is a thick edge connecting sj and tj with weight wj , called survival edge. All
other edges have weight zero. In all these variable gadgets, the sources and sinks
corresponding to the same clause are identical. This gives the graph G′ (not
including the survival edges).

Fig. 1. Gadget for variable

Notice that in G′ there may be some terminals with degree strictly great than
2, leading to that the path for some demand may traverse between different
variable gadgets. Say that one such a terminal is v. By recursively applying on
v the transformation in Figure 2, which is proposed in [7], we may decrease the
degree of v to 2. The dashed edge (not belonging to the graph) in Figure 2,
called demand edge, indicates that the two endpoints form a source-sink pair.
Any path through v before the transformation must still pass through v after the
transformation, if all the demands introduced in the transformation are satisfied.
Since the degree of v is 2 in the final transformation and v is a terminal, this
implies that the path through v that serves other demand is impossible. So for
every source-sink pair corresponding to some clause, the path connects them is
restricted within just one variable gadget. Denote by G̃ the resulted graph after
the transformation. Then G̃ together with all survival edges form the final graph
G. This gives the reduced instance I2 of weighted Min-Sum EDP.

Then we conduct the second step of the reduction, that is, recovering an op-
timal solution to I1 from an optimal solution to I2. Denote by Wtot the total
weight of clauses in formula φ. Suppose that O is an optimal solution to I2
with value OPT (I2). For variable xi, if O uses the horizontal zigzag paths in
its corresponding gadget, then xi � 1. If O uses the vertical zigzag paths, then
xi � 0. Otherwise xi is assigned an arbitrary truth value. This gives a truth
assignment τ for formula φ. Consider the source-sink pair (sj , tj) corresponding
to clause cj . If (sj , tj) is connected by zigzag path in some gadget of variable
xi contained in cj , then (sj , tj) consumes zero weight in the optimal solution O.

74 P. Zhang and W. Zhao

Fig. 2. Decreasing the degree of vertex v

Without loss of generality, suppose that (sj , tj) is connected by the horizontal
zigzag path. By the construction of the gadget, variable xi appears positively in
clause cj . Since xi is assigned true, cj is satisfied under τ . Conversely, if (sj , tj)
is not connected by zigzag path in any gadget corresponding to the variables
in cj , then (sj , tj) is connected by the path weighted wj . So, in each gadget
corresponding to variables in cj , there must be other source-sink pairs that use
the zigzag paths, which are opposite to that of cj . Then we know that all the
literals in cj are false, and hence cj is unsatisfied under τ . So, the total weight
of satisfied clauses of formula φ under truth assignment τ is Wtot −OPT (I2).

Furthermore, τ must be the optimal solution to I1, otherwise O is not optimal.
Notice that since every vertex has degree at most 3 in graph G, the edge-disjoint
paths are identical to the vertex-disjoint paths in G. So far we have completed
the proof in the case of undirected graph.

For the directed case, it is easy to assign a direction for every edge in the
variable gadget. Since each source has in-degree 0 and each sink has out-degree
0, we do not need the transformation in Figure 2. Again, in the resulted graph
the vertex-disjoint paths are identical to the edge-disjoint paths, and we also
have OPT (I1) = Wtot −OPT (I2). The theorem follows. ��

3 Approximation Hardness of the Min-Sum DP and
Min-Max DP Problems

We first prove the approximation hardness for the uniform Min-Sum DP problem
in planar graph, and then extend the result to the uniform Min-Max DP problem.
Our proof is based on the work in [7] about the NP-completeness of the EDP
and VDP problems in undirected planar graph.

Theorem 2. Even in planar graph, uniform Min-Sum DP can not be approxi-
mated within Ω(m1−ε) for any constant ε > 0, unless P = NP.

Proof. Let us first focus on the vertex-disjoint case. We reduce the NP-complete
problem planar E3SAT(3) to the uniform Min-Sum VDP problem by
gap-introducing reduction. Suppose that the instance of planar E3SAT(3) is
I1. In the CNF formula φ of I1, each clause contains exactly 3 literals, and each

On the Complexity and Approximation of the Min-Sum and Min-Max 75

variable appears at most 3 times. Suppose that there are M clauses and N vari-
ables in φ. Without loss of generality, assume that each variable has at most two
positive occurrences and at most one negative occurrence (otherwise we flip all
the occurrences of the variable).

We assign the variable gadget Gv in Figure 3 to each variable xi, and assign
the clause gadget Gc in Figure 3 to each clause cj. Fix any constant c > 1.
There is a path from source aj to sink bj in the clause gadget, called survival
path, which is depicted by thick line in the gadget. The length of the survival
path is �N c�.

Fig. 3. Gadgets for variables and clauses

The dashed line in variable and clause gadgets means that its two endpoints
is a source-sink pair. The variable gadget Gv has three literal vertices. The left
vertex corresponds to the negative occurrence ¬xi, and the right two vertices
correspond to the two positive occurrences xi. The clause gadget has three literal
vertices, corresponding to the three literals in the clause respectively. Note that
the literal vertices in Gv and Gc for the same literal are identical. This gives the
whole graph G̃ (not including all the survival paths and demand edges). Graph
G̃ together with all the survival paths form the graph G. Since φ is planar, it is
clear that G is also planar.

Denote by G̃c the gadget resulted by removing the survival path from Gc.
One can verify the following properties hold: 1) G̃c remains feasible if any two
literal vertices are removed from G̃c, but turns infeasible if all the three literal
vertices are removed; 2) If other source-sink pair not in G̃c uses one of the paths
between any two literal vertices of G̃c, G̃c turns infeasible.

Suppose that there is a truth assignment satisfying φ. Then each source-
sink pair (si, ti) in Gv can be connected by the path corresponding to false
literal. Since φ is satisfiable, each clause gadget has at least one literal vertex
not traversed. By property 1, every G̃c is feasible and no survival path is used.

76 P. Zhang and W. Zhao

Conversely, Suppose that G̃ is feasible. Property 2 guarantees that the path
connecting source-sink pair (si, ti) in Gv has to be entirely in Gv. This gives
a truth assignment for every variable. The fact that G̃c is feasible shows that
at least one literal vertex in G̃c is not used by the paths belonging to variable
gadgets. Since the literal corresponding to this vertex is true, we know that the
clause corresponding to G̃c is satisfiable. Thus φ is satisfiable. On the other hand,
no matter whether φ is satisfiable, G is always feasible due to the survival paths.
So in general the following claim holds.

Claim 1. The reduced graph G is feasible. Moreover, φ is satisfiable if and only
if no any survival path is used.

It is easy to see that the maximum degree in G is 4. By applying the transfor-
mation in Figure 2, we can decrease the degree of non-terminal vertex to 3 and
decrease the degree of terminal vertex to 2. Denote by I2 the reduced instance
of Min-Sum VDP.

Since φ is a CNF expression with each clause contains exactly 3 literals and
each variable appears at most 3 times, we know that N/3 ≤M ≤ N . By Claim
1, if φ is satisfiable, then

OPT (I2) ≤ c1M + c2N ≤ c0N,

where c0 = c1 + c2, c1M is the total length of vertex-disjoint paths to connect
the source-sink pairs in all clause gadgets, and c2N is the total length of vertex-
disjoint paths to connect the source-sink pairs in all vertex gadgets. We charge
the length of paths used to connect source-sink pairs introduced in the transfor-
mation on the literal vertices into c2N (by carefully counting, one can see that
c1 ≤ 55 and c2 ≤ 15). If φ is unsatisfiable, then

OPT (I2) > �N c� ≥ (
1
c0

N c−1)c0N.

Since m = Θ(N c+1), where m is the number of edges in G, we know that
N = Θ(m1/(c+1)). This gives the gap 1

c0
N c−1 = Θ(m1−2/(c+1)). Then, for any

constant ε > 0, we can set c = 2/ε − 1. So we have approximation hardness
Ω(m1−ε) for uniform Min-Sum VDP in undirected planar graph.

Since in graph with maximum degree 2 for terminals and maximum degree
3 for other vertices the vertex-disjoint paths are identical to the edge-disjoint
paths, we also obtain approximation hardness of Ω(m1−ε) for uniform Min-Sum
EDP in undirected planar graph. And by the well known transformation from
undirected graph to directed graph for disjoin paths, the hardness result can be
extended to directed case. The theorem follows. ��

Theorem 3. Even in planar graph, uniform Min-Max DP can not be approxi-
mated within Ω(m1−ε) for any constant ε > 0, unless P = NP.

Proof. Similar as that in Theorem 2 and omitted. ��

On the Complexity and Approximation of the Min-Sum and Min-Max 77

In addition, it is easy to see that since assuming m = Ω(n) does not lose gener-
ality, the uniform Min-Sum DP and uniform Min-Max DP problems also have
approximation hardness Ω(n1−ε) for any constant ε > 0 even in planar graph.

4 The Randomized Approximation Algorithms

The complexity and approximation hardness of the Min-Sum DP and Min-
Max DP problems show that efficient heuristic for the problems may be use-
ful in practice. Several heuristics and experimental results for Min-Sum EDP
are given in [1]. Other than experimental results, we give at the first time
efficient approximation algorithm with guaranteed performance ratio for the
problems, allowing that some constraints are slightly violated. Such approxima-
tion algorithm is often called bicriteria approximation algorithm. Although the
problems are very hard in terms of complexity and approximation hardness, we
can get (O(log k/ log log k), O(log n/ log logn))-factor approximation and (O(1),
O(log n/ log logn))-factor approximation to the uniform Min-Max EDP problem
and the weighted Min-Sum EDP problem respectively. Note that the congestion
is only O(log n/ log logn), a super-constant. Our analysis about the congestion
of the algorithm is almost tight. Our algorithm is based on randomized rounding,
which was introduced at the first time in [9].

4.1 LP Formulation and Algorithm for Uniform Min-Max EDP

The LP relaxation for uniform Min-Max EDP can be written as (1) to (6),
denoted by LP1. The underlying graph can be either undirected or directed.

(LP1) min L (1)
s. t.

∑

p : e∈p

f(p) ≤ 1, ∀e ∈ E (2)

∑

p∈Pi

f(p) = 1, ∀i ∈ [k] (3)

∑

p∈Pi

|p|f(p) ≤ L, ∀i ∈ [k] (4)

f(p) ≥ 0, ∀p ∈ P (5)
L ≥ 0 (6)

In the linear program LP1, Pi denotes the set of all the possible paths from
si to ti. P is the union of all Pi. For each path p ∈ Pi, we define a variable
f(p) ∈ [0, 1] which denotes the flow value on p for demand i. Consider the
integral program version (that is, f(p) ∈ {0, 1} and L ∈ {1, 2, . . . ,m}) of LP1.
Then (2) specifies capacity constraint for every edge, (3) specifies the requirement
for every demand, and (4) specifies the maximum length of flow path for every
demand should not exceed L. The symbol |p| in constraint (4) means the length
of the path p.

78 P. Zhang and W. Zhao

Notice that although LP1 has exponential size, we can obtain a solution to
LP1 in polynomial time, since there is a polynomial-size linear program which
is equivalent to LP1. The polynomial-size linear program for uniform Min-Max
EDP can be obtained by the method introduced in [3], and is omitted here due
to the space restriction. We can first solve the equivalent polynomial-size LP,
then get an optimal solution to LP1 using the flow decomposition method. Now
we give the randomized algorithm for the uniform Min-Max EDP problem.

Algorithm A

1. Find an optimal solution f to LP1. If LP1 has no solution, then output
“Unfeasible”.

2. Repeat the following for r = �2 logn� times. In the jth time, do
3. Sj ← ∅.
4. For each i ∈ [k] do
5. Choose p ∈ Pi exclusively with probability f(p).
6. Sj ← Sj ∪ {p}.
7. End
8. End
9. Return the best S among S1, S2, . . . , Sr.

Algorithm A first solves LP1 to get an optimal solution f , then rounds f to
an integer solution S by picking a path p ∈ Pi as casting a |Pi|-side die. The
best solution in step 9 means the solution with first the minimum length of the
longest path and then the least number of congestion. About algorithm A we
have Theorem 4.

Theorem 4. Algorithm A is a randomized bicriteria approximation algorithm
for the uniform Min-Max EDP problem in general graph G. In polynomial time
A outputs a solution S that connects all the source-sink pairs, and with high
probability satisfies that (1) the value of S is at most O(log k/ log log k)OPT (I);
and (2) the congestion of S is at most O(log n/ log logn).

Proof. Since we pick a path p ∈ Pi as casting a |Pi|-side die for each demand i,
obviously S connects all the source-sink pairs. Then we turn to the property 1.

Fix any demand i. For every edge e ∈ q for some path q ∈ Pi, define random
variable Ze

i to be 1 if there exist some chosen path p ∈ Pi such that e ∈ p, and
to be 0 otherwise. Then define random variable

Zi =
∑

e : e∈q
q∈Pi

Ze
i

to be the length of the path in S connecting the source-sink pair (si, ti). Then
we know that

E[Ze
i] =

∑

p : e∈p
p∈Pi

f(p)

On the Complexity and Approximation of the Min-Sum and Min-Max 79

and
E[Zi] =

∑

e : e∈q
q∈Pi

E[Ze
i] =

∑

e : e∈q
q∈Pi

∑

p : e∈p
p∈Pi

f(p) =
∑

p∈Pi

f(p)|p| ≤ L.

Set δ = 2 ln k · L/(E[Zi] ln ln k)− 1. Since E[Zi] ≤ L, we have that δ > 0. By
the Chernoff bound, we have

Pr[Zi >
2 lnk

ln ln k
L] = Pr[Zi > (1 + δ)E[Zi]] <

(e

1 + δ

)(1+δ)E[Zi]

=
(e · E[Zi] ln ln k

2 ln k · L

)2 ln k·L/ ln ln k

≤
(1

4k

)L

≤ 1
4k

when k is sufficiently large, where the last inequality is due to

L ≥
∑

p∈Pi

f(p)|p| ≥ min
p∈Pi

{|p|}
∑

p∈Pi

f(p) = min
p∈Pi

{|p|} ≥ 1.

Define random variable Z to be the value of S, and denote by B1 the event
that Z > (2 ln k/ ln ln k)OPT (I). Then we know that

Pr[B1] ≤ Pr[Z >
2 ln k

ln ln k
L] = Pr[∃i, Zi >

2 ln k

ln ln k
L]

≤
k∑

i=1

Pr[Zi >
2 lnk

ln ln k
L] ≤ 1

4
. (7)

There may be some edges used for several times under the solution S. For the
analysis of the property 2, fix any edge e. For each p ∈ P such that e ∈ p, define
random variable Xp

e to be 1 if p is chosen and to be 0 otherwise. Then define
random variable

Xe =
∑

p : e∈p

Xp
e

to be the number of times that e is used in the procedure of randomized rounding
for all demands. Then we know that E[Xp

e] = f(p) and

E[Xe] =
∑

p : e∈p

E[Xp
e] =

∑

p : e∈p

f(p) ≤ 1.

Set δ = 3 lnn/(E[Xe] ln lnn)− 1. Since E[Xe] ≤ 1, we have that δ > 0. Again
by the Chernoff bound, we have

Pr[Xe >
3 lnn

ln lnn
] = Pr[Xe > (1 + δ)E[Xe]] <

(e

1 + δ

)(1+δ)E[Xe]

=
(e · E[Xe] ln lnn

3 lnn

)3 ln n/ ln ln n

≤
(e · ln lnn

3 lnn

)3 lnn/ ln lnn

<
1

4n2

when n is sufficiently large.

80 P. Zhang and W. Zhao

Denote by B2 the event that there is an edge e ∈ E such that Xe > 3
lnn/ ln lnn. Then we know

Pr[B2] ≤
∑

e∈E

Pr[Xe >
3 lnn

ln lnn
] <

1
4
. (8)

From (7) and (8), we have Pr[B1 + B2] < 1/2. By repeating the procedure
of randomized rounding for �2 logn� times, we get a solution to the problem
satisfying all the properties in the theorem with probability at least 1 − 1/n2.
This completes the proof. ��

4.2 LP Formulation and Algorithm for Weighted Min-Sum EDP

The LP relaxation for the weighted Min-Sum EDP problem, given by (9) to (12)
and denoted by LP2, is similar to that of the uniform Min-Max EDP problem.

(LP2) min
∑

p∈P
|p|f(p) (9)

s. t.
∑

p : e∈p

f(p) ≤ 1, ∀e ∈ E (10)

∑

p∈Pi

f(p) = 1, ∀i ∈ [k] (11)

f(p) ≥ 0, ∀p ∈ P (12)

The symbol |p| in objective function (9) means the total weight of edges in
path p. Algorithm A also applies to the weighted Min-Sum EDP problem. For
weighted Min-Sum EDP we have Theorem 5.

Theorem 5. Algorithm A is a randomized bicriteria approximation algorithm
for the weighted Min-Sum EDP problem in general graph G. In polynomial time
A outputs a solution S that connects all the source-sink pairs, and with high
probability satisfies that (1) the value of S is at most O(1)OPT (I); and (2) the
congestion of S is at most O(log n/ log logn).

Proof. We only prove the property 1. Define random variable Y to be the value
of S. Then,

E[Y] =
∑

p∈P
|p|Pr[p ∈ S] =

∑

p∈P
|p|f(p) = OPTf (I) ≤ OPT (I),

where OPTf (I) denotes the value of the optimal fractional solution to LP2.
Notice that the expected value of S is always lower than OPT (I). In order to

show that algorithm A outputs a solution satisfying all the properties with high
probability, we introduce a constant factor, say 4. Denote by B1 the event that
Y > 4OPT (I). By Markov’s inequality, we get

Pr[B1] = Pr[Y > 4OPT (I)] ≤ 1
4
.

On the Complexity and Approximation of the Min-Sum and Min-Max 81

Combining with the analysis for property 2 in Theorem 4 completes the proof.
��

5 Discussion

We systematically study the complexity and approximation hardness of the Min-
Sum DP and Min-Max DP problems. We also give randomized bicriteria ap-
proximation algorithm for the weighted Min-Sum DP and uniform Min-Max DP
problems in general graph. We suspect that the weighted Min-Sum DP problem
is FPNP-complete even in planar graph. Or can one get an approximation algo-
rithm for Min-Sum DP, or Min-Max DP, with slightly relaxed performance ratio
but constant bound on the congestion? Both the problems are still interesting.

References

1. Brandes, U., Neyer, G., Wagner, D.: Edge-disjoint paths in planar graphs with
short total length. Technical Report, in Konstanzer Schriften in Mathematik und
Informatik, No. 19, Germany (1996)

2. Chekuri, C., Khanna, S.: Edge disjoint pahts revisited. In: Proc. of the 14th ACM-
SIAM Symposium on Discrete Algorithms, pp. 628–637. ACM Press, New York
(2003)

3. Garg, N., Vazirani, V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing 25, 235–251 (1996)

4. Kleinberg, J.: Approximation algorithms for disjoint paths problems. PhD Thesis,
Department of EECS, MIT, Cambridge, MA (1996)

5. Kleinberg, J.: An Approximation Algorithm for the Disjoint Paths Problem in
Even-Degree Planar Graphs. In: Proc. of the 46th Annual IEEE Symposium on
Foundations of Computer Science, pp. 627–636. IEEE Computer Society Press, Los
Alamitos (2005)

6. Li, C., McCormick, T., Simchi-Levi, D.: The complexity of finding two disjoint
paths with min-max objective function. Discrete Applied Mathematics 26, 105–
115 (1990)

7. Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint paths problem.
Combinatorica 13(1), 97–107 (1993)

8. Papadimitriou, C.: Computational complexity. Addison-Wesley Publishing Com-
pany, Reading (1994)

9. Raghavan, P., Thompson, C.: Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

10. Suurballe, J., Tarjan, R.: A quick method for finding shortest pairs of disjoint
paths. Networks 14, 325–336 (1984)

11. Yang, B., Zheng, S.Q., Lu, E.Y.: Finding two disjoint paths in a network with
normalized α+-min-sum objective function. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 954–963. Springer, Heidelberg (2005)

12. Yang, B., Zheng, S.Q.: Finding min-sum disjoint shortest paths from a single source
to all pairs of destinations. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006.
LNCS, vol. 3959, pp. 206–216. Springer, Heidelberg (2006)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 82–93, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Digital Watermarking Scheme Based on Singular
Value Decomposition

Chin-Chen Chang1,2, Yih-Shin Hu2, and Chia-Chen Lin3

1 Department of Information Engineering and Computer Science,
Feng Chia University, Taichung, 40724, Taiwan

2 Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, 621, Taiwan

{ccc, hyhs91}@cs.ccu.edu.tw
3 Department of Computer Science and Information Management,

Providence University, Taichung 43301, Taiwan
mhlin3@pu.edu.tw

Abstract. Recently, digital watermarking techniques have been extensively
applied on protecting rightful ownership of digital images. Some novel
watermarking schemes which are based on SVD (Singular Value Decomposition)
are being developed in some literatures [1, 15] nowadays. All of these SVD-based
watermarking schemes have good embedding quality and high robustness, but
they must depend on an original image or store some extra tables to extract
watermarks. In this paper, we will propose an SVD-based watermarking scheme
in order to reduce the load of the SVD-based watermarking system. Our proposed
scheme can directly extract watermarks in the watermarked images without extra
information. Furthermore, in our proposed scheme, we use a secure pseudo
random number generator to decide embedded position in order to promote its
security. According to the experimental results, our system can also maintain
good embedding quality and high robustness.

Keywords: digital watermark, rightful ownership, singular value decomposition.

1 Introduction

Because of the huge rapid growth of the Internet, the traditional business has been
expanded to deal in on the Internet nowadays. It is quite convenient for businessmen
and consumers to sell or buy some commodities in this way. However, dealing in on
the Internet also brings about some problems on information security, such as
corruption, stealing, and assuming another’s name to exchange. These problems
usually can be solved by encryption. Besides, on the Internet, the transmission of
digital multimedia, such as image, audio, and video can also settle the problem of
protecting rightful ownership. Digital watermarking techniques are used to solve this
problem. The digital watermark of rightful owner is hidden into the protected
multimedia to avoid others’ detection. Because the little distortional multimedia data
is acceptable, most digital watermarking techniques exploited this property of
multimedia data to hide watermark.

 A Digital Watermarking Scheme Based on Singular Value Decomposition 83

Generally, digital watermarking techniques must conform to some following
requirements. (1) Invisibility: the difference between watermarked and original
multimedia must not be noticed by naked eyes, namely, the quality of watermarked
multimedia must be good. (2) Security: everyone except rightful one cannot detect
watermark which is hidden in multimedia. Furthermore, watermarking algorithm must
be public, namely, the security of the watermarking system should not build on
attackers who do not know how the system works. (3) Efficiency: in order to be
implemented efficiently, the watermarking algorithm must have good executing
efficiency, and it does not need original multimedia to extract watermark. (4)
Robustness: after the embedded multimedia is processed by digital signal processing
(such as filtering, compressing, cropping, sharpening, blurring, etc.), the watermark
still can be extracted when the quality of the multimedia is acceptable.

Digital watermarking schemes are usually classified into two categories: one is in
spatial domain [9, 12, 13, 14, 17]. It directly changes digital data to hide watermark.
The advantage of this kind is low computational complexity. But, it is weak to be
against digital signal processing. Another is in frequency domain [2, 4, 7, 8, 10]. It
must first transform digital data to be in frequency domain with transformation (such
as Fast Fourier Transformation or Discrete Cosine Transformation or Discrete
Wavelet Transformation, etc.). Then, it changes the coefficients which are obtained
by transformation to hide watermarks. Finally, it inversely transforms these changed
coefficients to be in spatial domain. Compared with the fist one, it needs more
computation, but it can provide better robustness.

Besides, the SVD- (Singular Value Decomposition) based watermarking schemes
are novel techniques [1, 15]. It is similar to frequency-domain-based scheme, and the
SVD can be considered as a transformation. For example, Liu and Tan proposed an
SVD-based watermarking scheme [15]. Although this scheme owns good embedding
quality and high robustness, it needs to store three matrices whose sizes are equal to
these of the original image to extract the watermark. In addition, Chandra also
proposed two SVD-based watermarking schemes [1]. One is a global-based scheme,
and another is a blocked-based scheme. Their robustness and embedding quality are
good. However, Chandra’s global-based scheme also needs to store three matrices to
extract watermarks, while Chandra’s block-based scheme needs the original images to
extract the embedded watermarks. These schemes will add the load for the
watermarking system. In next section, we will show the details of these related
schemes.

The purpose of this paper is to propose a new SVD-based watermarking scheme.
Our proposed method is block-based, and it does not need original image or storing
additional matrices to extract the watermarks, that is, our proposed method can
directly extract the watermarks from the watermarked images. Furthermore, it also
maintains high robustness and good embedding quality.

The remainder of this paper is organized as follows. In Section 2, we will review
the related works which we have just mentioned above, namely Liu and Tan’s and
Chandra’s schemes. Besides, we will also shortly describe the SVD at the beginning
of this section. In Section 3, we will present our proposed scheme. Then, in Section 4,
the experimental results and discussions will be shown. Finally, the conclusions of
this paper will be given in Section 5.

84 C.-C. Chang, Y.-S. Hu, and C.-C. Lin

2 Related Works

In this section, we will briefly describe the SVD and then review these related
schemes whose efficiency will be improved by our proposed method.

2.1 SVD

SVD is a linear algebra scheme, which is developed for a variety of applications,
particularly in least-squares problems [5]. Recently, it has been also used in image
processing applications including image compressing [18], image hiding [3], noise
reducing [6, 11], and image watermarking [1, 15], because the singular values of an
image do not change greatly when a small interference is added to an image.

Assume that the rank of an image matrix A whose size is N × N is r, and Nr ≤ .
The SVD of A is defined as

A = TVSU = [] []TN

N

N vvvuuu ,...,,

00

000

00

00

,...,, 21
2

1

21 ×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

σ

σ
σ

 = T
ii

r

i
i vu∑

=1

σ ,
(1)

where U and V are N × N orthogonal matrices, S is an N × N diagonal matrix,
iu and

iv are U’s and V’s column vectors, respectively, and
iσ ’s are singular values

satisfying 0121 ====≥≥≥ + Nrr σσσσσ . Furthermore, the columns of U

are called left singular vectors, and the columns of V are called right singular vectors.

2.2 Liu and Tan’s Watermarking Scheme

Liu and Tan proposed an SVD-based watermarking scheme [15]. Suppose that A
represents the original image whose size is N × N and W is the watermark image
whose size is P × P. To start work, W must be resized to N × N. In the embedding
process, the SVD of A is computed to obtain U, S, and V. Then, a watermark, W, is
added into S and compute the SVD of new matrix S + aW to obtain

WU ,
WS , and

WV ,

where a is a parameter which controls the quality of the watermarked image. Finally,
the watermarked image,

WA , is obtained by T
W VSU .

In watermark extraction, the system must save three matrices which are
WU , S, and

WV , and input the possible distorted image,
WA . First, the SVD of

WA is computed to

obtain
WS . Then, the extracted watermark is obtained by aSVSU T

WWW /)(− .

2.3 Chandra’s Watermarking Scheme

Chandra proposed two SVD-based watermarking schemes [1]. One is global-based
scheme, and another is block-based scheme. These two schemes will be stated in

 A Digital Watermarking Scheme Based on Singular Value Decomposition 85

Subsection 2.3.1 and 2.3.2, respectively. Suppose that A is the original image whose
size is N × N, and W is the watermark whose size is P × P.

2.3.1 Global-Based Scheme
For the embedding process, A and W must first be computed their SVD which are

T
a VSU and T

www VSU , respectively. The diagonal elements of
aS and

wS are

represented by
aσ = [

aNaa σσσ ,,, 21 …] and
wσ = [

wNww σσσ ,,, 21 …]. Then, the

watermark is hidden into the singular values of A by the following formula,

wiaibi ασσσ += , (2)

where α is a parameter which is chosen to maintain the quality of the watermarked
image. Let

bS be the diagonal matrix whose diagonal elements are represented by

biσ . Finally, the watermarked image is obtained by T
b VSU .

For the extracting process, the extracting algorithm needs the original image’s
aS

and the watermark’s
wU and

wV . First, the computed SVD of the watermarked image

is T

b VSU . Then, the diagonal matrix,
wS , of the extracted watermark is computed as

follows.

α/)(abw SSS −= . (3)

Finally, the extracted watermark is obtained by T
www VSU .

2.3.2 Block-Based Scheme
The original image is divided into non-overlapping blocks, XA , whose size is k × k.

To add security, the watermark must be permuted by using a secret key before
embedding. For the embedding process, the SVD of each block is computed first. Let

XS represent the diagonal matrix for XA . Then, embed the watermark bit, XW , into

the largest singular value, X
a1σ , of the block as follows.

X
X
a

X
b Wασσ += 11 (4)

Here, α is a parameter which is chosen to maintain the quality of the watermarked
image, and X

b1σ is the largest singular value of the watermarked block. Finally,

reconstruct the watermarked block and image.
The extracting process needs the original image to extract the watermark according

to Equation (4). First, the watermarked image which is processed by image processing
scheme is also divided into non-overlapping block,

XB , whose size is k × k. Then,

compute the SVD of each watermarked block to obtain every largest singular value,
X
bw 1σ . The watermark bit is obtained by ασσ /)(11

X
a

X
bw − where X

a1σ is computed

from the original block. Finally, the watermark is re-permuted by using the original
secret key.

86 C.-C. Chang, Y.-S. Hu, and C.-C. Lin

3 The Proposed Scheme

Our proposed watermarking scheme for binary logo is based on the SVD of image
blocks. Suppose that the sizes of an image and a binary watermark are N × N and P ×
P, respectively. This image is divided into (N / 4) × (N / 4) non-overlapping blocks
whose size is 4 × 4.

To start work, we exploit a one-way hash function [9] based on Rabin’s scheme
[18] to decide the embedding block’s position. First, choose two large prime number,
p and q. Let Z = p × q, where p and q are secret and Z is public. Then, randomly

choose two values, 1k and 2k , as secret seeds to compute embedding block’s position
as follows.

ZXX ii mod2
1−= , ZkX mod2

10 = , (5)

ZYY ii mod2
1−= , ZkY mod2

20 = , (6)

),4/(mod NXx ii = and (7)

)4/(mod NYy ii = (8)

),(ii yx is the embedding block’s position of the ith bit in the bit stream of the

watermark. In addition, two arbitrary positions must be different. The above process
can be considered as a secure pseudo random number generator.

Then, the algorithms of the watermark embedding and extracting will be described
in the following two subsections.

3.1 Embedding Process

According to the previous statement, there are (N / 4) × (N / 4) non-overlapping
blocks. The size is 4 × 4 for each block. And there are P × P binary values that need
to be hidden. In order to achieve high robustness, every binary value of the watermark
should be hidden in three different blocks. The reason why we do so will be explained
in next subsection. Therefore, the bit stream of the watermark must be copied three
times to get P × P × 3 binary values, and there must be P × P × 3 different positions
which are generated by pseudo random number generator, that is, 31 ××≤≤ PPi .
Assume that

jB , where j =
ii yNx +×)4/(and ≤≤ j1 (N / 4) × (N / 4), is the

corresponding block of),(ii yx in this image and
iW is the ith binary value in the bit

stream of three original watermarks. So, (N / 4) × (N / 4) must be larger than P × P × 3.
The algorithm of our block-based SVD watermarking scheme is as follows.

[The Embedding Algorithm]
Input: Coordinate),(ii yx , block jB , and watermark bit iW

Output: a watermarked image

 A Digital Watermarking Scheme Based on Singular Value Decomposition 87

Step 1: Let i = 1.

Step 2: Compute the SVD of the corresponding block, jB , of),(ii yx . Obtain three

matrices which are jU , jS , and jV . Assume that jS =

j

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

000

000

000

000

σ
σ

σ
σ

Step 3: Let 3σ be equal to 2σ . Obtain '
jS which is

j

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

'
3

2

1

000

000

000

000

σ
σ

σ
σ

.

Step 4: Let 2σ be equal to 2σ + iW×δ , where δ is a constant. If 1σ < 2σ +

iW×δ , 1σ = 2σ + iW×δ . Obtain "
jS which is

j⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4

'
3

'
2

'
1

000

000

000

000

σ
σ

σ
σ

.

Step 5: Reconstruct the watermarked block,
jBW , which is equal to T

jjj VSU ×× " .

Step 6: Let i = i + 1. Go to Step 2 until i = P × P × 3.

According to our proposed embedding algorithm, the number of the singular values
that are modified is at most 3. In addition, the largest singular value, 1σ , is usually

greatly larger than 2σ for a block in an image. So, the condition of 1σ < 2σ +

iW×δ seldom occurs. In our proposed algorithm, the difference between the

watermarked block and the original block is small. The reason is that we almost only
modify the second and the third singular values when

iW = 1 and only modify the

third singular value when
iW = 0.

By the experimental results in Section 4, the quality of the watermarked image is
still good when δ is set to 20. The quality of the watermarked image is measured by
PSNR (Peak Signal-to-Noise Ratio). And the formula of PSNR is illustrated as
follows.

MSE
PSNR

2

10

255
log10 ×= , (9)

where MSE is the mean square error between the original and the corresponding
watermarked pixel values. In general, it is acceptable that PSNR is greater than 30dB.

3.2 Extracting Process

In extracting process, we can directly extract watermark from the watermarked image,
and extract the watermark accurately if the watermarked image is not modified by

88 C.-C. Chang, Y.-S. Hu, and C.-C. Lin

some image processing techniques. To begin the extracting process, we must give
original secret key which is),(21 kk to get),(ii yx by Equations (5) to (8), and

assume that the corresponding block of),(ii yx is '
jBW which is possibly distorted

from
jBW in the watermarked image.

In our proposed embedding algorithm, the difference between the second and the

third singular values is set to 0 or δ . So, if the difference between the second and the
third singular values that are computed from the watermarked image is larger than a
threshold, the bit of the watermark will be considered as 1, otherwise it will be
considered as 0. According to the results of the experiments, it is better that this

threshold is set to δ / 2. Furthermore, because of three times’ embedding watermark,
the watermark can be simply determined by these three extracted watermarks. We can
determine .the binary value of the extracted watermark by a heavy vote in “1” or “0”
from these three extracted watermarks. So, the correction rate of the extracted
watermark will be promoted. The correction rate of the extracted watermark is
measured by BCR (Bit Correction Ratio). The formula of BCR is demonstrated as
follows.

BCR = %1001

'

×
×
⊕∑ ×

=

PP

WW
PP

i ii (10)

where iW is the ith binary value in the bit stream of the original watermark, '
iW is

the ith binary value in the bit stream of the extracted watermark, and ⊕ represents an
operator of exclusive-OR. Obviously, when BCR is larger, the similarity between
original and extracted watermark is higher.

The algorithm of watermark extraction is stated as follows.

[The Extracting Algorithm]

Input:),(ii yx and '
jBW

Output: the watermark

Step 1: Let i = 1.

Step 2: Compute the SVD of the corresponding block, '
jBW , of),(ii yx . Obtain

three matrices which are jUW , jSW , and jVW . Assume that jSW =

j
w

w

w

w

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

000

000

000

000

σ
σ

σ
σ

.

Step 3: If 2/32 δσσ >− ww , let 1=iWT ; Otherwise, let 0=iWT .

Step 4: Let i = i + 1. Go to Step 2 until i = P × P × 3.

 A Digital Watermarking Scheme Based on Singular Value Decomposition 89

Step 5: Let i = 1.

Step 6: If 22 ≥++ ××+×+ ppippii WTWTWT , let 1' =iW ; Otherwise, let 0' =iW .

Step 7: Let i = i + 1. Go to Step 6 until i = P × P .

Because the singular values of a block in an image do not change greatly when a
small interference is added to an image, by using the extraction algorithm, the
watermark can still be extracted from the watermarked image that is processed by
some image processing schemes. In addition, the robustness of our proposed
watermarking scheme will be shown in the experimental results in the next section.

4 Experimental Result and Discussions

The experiments were achieved on seven gray-level images whose size is 512 × 512 and
a binary watermark image whose size is 64 × 64. These images are shown in Fig. 1.
All of our experiments were executed on a personal computer with 256 KB RAM by
using a Pentium III 1 GHz CPU. Photoshop 7.0 was the tool of image processing
exploited in our experiments.

(a) Lena (b) Airplane (c) Baboon (d) Lenna

(e) Pepper (f) Babala (g) Gold Hill (h) logo of NCC

Fig. 1. Seven test images and a binary watermark

This watermark image was embedded into these seven gray-level images by using
our proposed watermarking scheme. The constant, δ , in our algorithm was set to 20.

Obviously, if δ is larger, PSNR of the watermarked image will be smaller, and the
robustness of this watermarking scheme will be higher. Table 1 shows the embedding
and extracting results of every original image. According to Table 1, we can find that
the quality of the watermarked image is acceptable and the BCR of our proposed
scheme is 100%.

90 C.-C. Chang, Y.-S. Hu, and C.-C. Lin

Table 1. The embedding and extracting results of every original image

 Result
Original

Image

PSNR of the watermarked
image

BCR of the watermark

Lena 35.37 dB 100%
Airplane 35.44 dB 100%
Baboon 31.34 dB 100%
Lenna 35.24 dB 100%
Pepper 35.94 dB 100%
Babala 32.19 dB 100%
Gold Hill 35.50 dB 100%

The robustness of our proposed watermarking scheme was tested under five image
processing techniques which are JPEG compressing, sharpening, blurring, cropping,
and adding noise, respectively. Table 2 shows the robustness test of our method
against JPEG compressing for every watermarked image. We can find that the
watermark is still extracted correctly from JPEG compressed image.

Table 2. The compression and extracting results of every watermarked image after JPEG
compression

 Result
Watermarked

image

PSNR of the JPEG
compressed image

BCR of the
watermark

Lena 35.87 dB 87.92%
Airplane 36.82 dB 90.16%
Baboon 35.08 dB 86.45%
Lenna 37.86 dB 94.07%
Pepper 36.81 dB 91.82%
Babala 35.73 dB 88.82%
Gold Hill 35.27 dB 88.77%

Table 3 shows the results of the robustness test against the sharpening process for
every watermarked image. So, we can find that our proposed scheme can still detect
correct watermark after image sharpening. Table 4 displays the experimental results of
the robustness test against image blurring for every watermarked image. From Table 4,
we know that our proposed method can also resist the distortion of burring process.

Table 3. The sharpening and extracting results of every watermarked image

 Result
Watermarked

image

PSNR of the sharpened
image

BCR of the
watermark

Lena 29.93 dB 95.73%
Airplane 30.46 dB 95.83%
Baboon 23.51 dB 81.49%
Lenna 31.91 dB 90.11%
Pepper 31.43 dB 97.17%
Babala 24.29 dB 88.13%
Gold Hill 28.44 dB 89.84%

 A Digital Watermarking Scheme Based on Singular Value Decomposition 91

Table 4. The blurring and extracting results of every watermarked image

 Result
Watermarked

image

PSNR of the blurred
image

BCR of the
watermark

Lena 35.60 dB 92.41%
Airplane 36.39 dB 94.68%
Baboon 29.23 dB 84.42%
Lenna 37.76 dB 95.39%
Pepper 37.19 dB 93.48%
Babala 29.43 dB 86.99%
Gold Hill 34.40 dB 86.82%

Table 5 displays the results of the robustness to image cropping for every
watermarked image. From Table 5, we can clearly see that the BCR of every
extracted watermark is the same.

Table 5. The cropping and extracting results of every watermarked image

 Result
Watermarked

image

PSNR of the cropped
image

BCR of the
watermark

Lena 10.11 dB 90.19%
Airplane 14.65 dB 90.19%
Baboon 10.95 dB 90.19%
Lenna 11.19 dB 90.19%
Pepper 10.83 dB 90.19%
Babala 11.27 dB 90.19%
Gold Hill 11.76 dB 90.19%

Table 6. The noisy and extracting results of every watermarked image

 Result
Watermarked

image

PSNR of the noisy
image

BCR of watermark

Lena 32.54 dB 89.28%
Airplane 32.48 dB 87.96%
Baboon 32.50 dB 83.15%
Lenna 32.53 dB 88.01%
Pepper 32.49 dB 89.04%
Babala 32.50 dB 86.65%
Gold Hill 32.50 dB 86.67%

Furthermore, we compare our proposed scheme with a spatial-domain-based
scheme [9] and three SVD-based schemes [1,15]. The comparison results are shown
in Table 7. The scheme of Hwang et al. [9] is implemented in spatial domain. Its
embedding quality is very high, while its computational complexity is quite low.
Though the watermark can still be extracted from the watermarked image after
randomly changing every pixel’s least significant 3 bits, it cannot be extracted clearly
from the watermarked image after other image processing attacks.

92 C.-C. Chang, Y.-S. Hu, and C.-C. Lin

Table 7. Comparison between our proposed scheme and other schemes

 Scheme

Items

Hwang et al.
[9]

Liu and Tan
[15]

Chandra
(Global-based)

[1]

Chandra
(Block-based)

[1]

Proposed
scheme

Processing domain
Spatial

domain
SVD domain SVD domain SVD domain SVD domain

Extracting watermarks

with original image
No No No Yes No

Storing some matrices

to extract watermark
No Yes Yes No No

Robustness Low High High High High

Embedding quality Very high High High High High

Both these four SVD-based watermarking schemes and our proposed one all own
good embedding quality and high robustness. Liu and Tan’s watermarking scheme is
global based [15]. For its embedding process, the watermark must be resized to the
size of the original image for the computation of matrices. For its extracting process,
the system must store three matrices whose size is the same as that of original image.
Chandra’s global-based watermarking scheme [1] also needs to store three matrices to
extract watermark. Finally, Chandra’s block-based watermarking scheme must use the
original image to extract watermark. As is shown, these three schemes do not make
their watermarking systems own good efficiency. However, our proposed scheme can
extract watermarks correctly without any additional information including the original
image. Therefore, our proposed scheme has better efficiency.

5 Conclusions

In this paper, we proposed a watermarking scheme based on SVD for binary logo.
Our proposed scheme has good efficiency because it can directly extract watermarks
from the watermarked image without storing extra matrices and the original image.
In addition, we also exploited a secure pseudo random number generator to decide the
embedded block’s position in order to enhance security of our watermarking system.
According to our experimental results, our proposed scheme still maintains good
embedding quality and high robustness against some image processing distortions.
The PSNR values of the watermarked images are all greater than 31 dB for every
original image. And the embedding quality of our proposed scheme is good because
the difference between the original and watermarked images is unnoticeable in vision.
In addition, even though the watermarked image is modified as a little distorted
image, our system can still extract the watermark correctly. Therefore, our
watermarking system is very suitable for the protection of rightful ownership of
digital images.

 A Digital Watermarking Scheme Based on Singular Value Decomposition 93

References

1. Chandra, D.V.S.: Digital Image Watermarking Using Singular Value Decomposition. In:
MWSCAS 2002. Proceedings of 45th Midwest Symposium on Circuits and Systems,
August 4-7, 2002, vol. 3, pp. 264–267 (2002)

2. Chu, W.C.: DCT-Based Image Watermarking Using Subsampling. IEEE Transactions on
Multimedia 5(1), 34–38 (2003)

3. Chung, K.L., Shen, C.H., Chang, L.C.: A Novel SVD- and VQ-Based Image Hiding
Scheme. Pattern Recognition Letters 22(9), 1051–1058 (2001)

4. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure Spread Spectrum Watermarking
for Multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687 (1997)

5. Golub, G.H., Reinsch, C.: Singular Value Decomposition and Least Squares Solutions.
Numerische Mathematik 14, 403–420 (1970)

6. Hou, Z.: Adaptive Singular Value Decomposition in Wavelet Domain for Image
Denoising. Pattern Recognition 36(8), 1747–1763 (2003)

7. Hsieh, M.S., Tseng, D.C., Huang, Y.H.: Hiding Digital Watermarks Using Multiresolution
Wavelet Transform. IEEE Transactions on Industrial Electronics 48(5), 875–882 (2001)

8. Hsu, C.T., Wu, J.L.: Hidden Digital Watermarks in Images. IEEE Transactions on Image
Processing 8(1), 58–68 (1999)

9. Hwang, M.S., Chang, C.C., Hwang, K.F.: A Watermarking Technique Based on One-Way
Hash Functions. IEEE Transactions on Consumer Electronics 45(2), 286–294 (1999)

10. Iwata, M., Shiozaki, A.: Watermarking Method for Embedding Index Data into Images
Utilizing Features of Wavelet Transform. IEICE Transactions on Fundamentals E84-A(7),
1772–1778 (2001)

11. Konstantinides, K., Natarajan, B., Yovanof, G.S.: Noise Estimation and Filtering Using
Blocked-Based Singular Value Decomposition. IEEE Transactions on Image
Processing 10(3), 479–483 (1997)

12. Kutter, M., Jordan, F., Bossen, F.: Digital Watermarking of Color Images Using
Amplitude Modulation. Journal of Electronic Imaging 7(2), 326–332 (1998)

13. Langelaar, G.C., van der Lubbe, J.C.A., Lagendijk, R.L.: Robust Labeling Methods for
Copy Protection of Images. In: Proceedings of SPIE Electronic Imaging ’97, Storage and
Retrieval for Image and Video Database V, February 1997, pp. 298–309. San Jose, CA
(1997)

14. Lee, C.H., Lee, Y.K.: An Adaptive Digital Watermarking Technique for Copyright
Protection. IEEE Transactions on Consumer Electronics 45(4), 1005–1015 (1999)

15. Liu, R., Tan, T.: An SVD-Based Watermarking Scheme for Protecting Rightful
Ownership. IEEE Transactions on Multimedia 4(1), 121–128 (2002)

16. Rabin, M.O.: Digitalized Signatures and Public-Key Functions as Intractable as
Factorization. Technical Report MIT/LCS/TR212, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (January 1979)

17. Voyatzis, G., Pitas, I.: Embedding Robust Watermarks by Chaotic Mixing. In: DSP’97.
Proceedings of 13th International Conference on Digital Signal Processing, vol. 1, pp.
213–216 (1997)

18. Yang, J.F., Lu, C.L.: Combined Techniques of Singular Value Decomposition and Vector
Quantization for Image Coding. IEEE Transactions on Image Processing 4(8), 1141–1146
(1995)

A New (t, n)−Threshold Scheme Based on

Difference Equations

Chao-Wen Chan1 and Chin-Chen Chang2

1 Graduate School of Computer Science and Information Technology
National Taichung Institute of Technology, 129 Sec. 3, Sanmin Rd., Taichung 404,

Taiwan R.O.C
ccwen@ntit.edu.tw

2 Department of Information Engineering and Computer Science
Feng Chia University, No. 100 Wenhwa Rd. Seatwen, Taichung, Taiwan 40724, R.O.C

ccc@cs.ccu.edu.tw

Abstract. In the paper, we propose three threshold secret sharing sche-
mes that are based on difference equations. The first scheme is a (t, n)−
threshold scheme which is an ideal perfect secure. The other two schemes
add the restricted order structure to the set of shadows and the access
structure of secret sharing policy. The basis of the access structure of one
scheme allows that only subsets that contain consecutive shadows can
compute the broken secret, but no other subset of shadows can do so.
The basis of the access structure of the other scheme allows that shadow
subsets contain an imperfect consecutive shadow subset that has one gap
of size 1, and can compute the original secret.

1 Introduction

Suppose that a company has a vault in which the company stores the business
secrets. All business operations require the secrets that are stored in the vault.
The company employs n employees and it does not trust any single employee to
access the secrets. However, the company must perform the everyday business
operations. Thus, the company requires a secret sharing system to realize its
secret sharing policy and control the retrieval of the business secret by these
employees.

Assume that the secret sharing policy established by the company is any t
employees can retrieve the business secret but no t′ employees can do so where
t′ < t. In such a situation, the company may apply the Shamir’s (t, n)−threshold
scheme ([1],[2]) to implement the secret sharing system.

In general, employees take vacations but the company can control how many
employees will be one of rotation at any given time. Thus, we may assume that
the set {1, 2, · · · , n} denotes the order structure of vacations employees being
taking. We also suppose that everyday business operations of the company are
performed by at least t consecutive employees who are on duty. The company
therefore establishes the secret sharing policy, and every t consecutive employees
can retrieve the business secret. Because the Shamir’s (t, n)−threshold scheme

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 94–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A New (t, n)−Threshold Scheme Based on Difference Equations 95

doesn’t impose order structure into its access structure, such a policy is not
easily implemented. A secret sharing scheme having the access structure we will
call it a (0, t, n)−threshold scheme.

Another situation may happen in the company. Some of the t consecutive
employees may need to make business trips thus causing more absent employees.
If this happens, the business secret is not likely be retrieved from the vault
to perform everyday business operations. Thus the company may allow any t
employees of t + i consecutive employees retrieving the secret. A secret sharing
scheme with such access structure is called an (i, t, n)−threshold scheme. With
the same reason as before, such a secret sharing policy is not easily implemented
using the Shamir’s (t, n)−threshold scheme.

In Section II, we review some important notions relative to secret sharing
schemes and some important results of them. We introduce the notions of differ-
ence equations and present our main idea in Section III. The proposed schemes
based on difference equations are presented in Section IV. In Section V, we will
analyze the securities of the proposed schemes. Section VI is our conclusions to
the research.

2 Preliminary

In a practical view, a secret sharing system is a method for breaking a secret into
a set of shadows such that any legal subset of shadows can recover the original
secret but no single shadow can recover it completely. Let K be the key space.
K ∈ K is the secret to be broken into a set of shadows SK . If SK ⊂ K, we call
the corresponding secret sharing system ideal. The legal subsets of shadows are
defined by the access structure Γ ⊂ 2SK of the secret sharing system. That is,
Γ defines the secret sharing policy of a secret sharing system. We therefore need
to study the description ability of Γ . A secret sharing scheme for breaking K
into SK is designed to perform the access structure Γ .

In general, Γ should satisfy the monotone property:

if A ∈ Γ and A ⊆ B, then B ∈ Γ.

If Γ is a monotone access structure, it can be depicted by a subset Γ0 of 2SK

called the basis of Γ . A ∈ Γ is called a minimal legal subset if any proper subset
of A is not a member of Γ . The basis Γ0 of Γ is defined by the set of minimal
subsets of Γ . Because Γ is monotone, we have

Γ = closure(Γ0) = {B ∈ 2SK : A ⊆ B,A ∈ Γ0}.

If Γ0 = {A ∈ 2SK : |A| = t}, we say that Γ is a threshold access structure.
A threshold scheme therefore is a counting scheme which decides whether the
number of shadows is equal to or larger than the threshold. In addition, we
require that |SK | = n for all K ∈ K, Γ is called (t, n)−threshold access structure.
A well-known (t, n)−threshold scheme is Shamir’s (t, n)−threshold scheme which
is based on the theory of interpolating polynomials over Zp, where p is a prime

96 C.-W. Chan and C.-C. Chang

number. Because a polynomial of degree t − 1 can be uniquely determined by
exactly t distinct points of itself and t − 1 points compute nothing about the
original polynomial, Shamir’s (t, n)−threshold scheme is a perfect secret sharing
scheme.

A perfect secret sharing scheme realizes an access structure Γ if any A ∈ Γ
contains sufficient information to compute K and any B /∈ Γ computes nothing
about K.

Because SK will be distributed to participants, SK therefore may have order
structure. That is, SK = {y1, y2, · · · , yn} for some positive integer n. For the
order structure of shadows, we may define an access structure by the language of
order structure. For example, the basis Γ0 is the set of all t consecutive shadows.
That is,

Γ0 = {{yi, yi+1, · · · , yi+t−1} : all possible integer i}.
Shamir’s (t, n)−threshold scheme realizes (t, n)−threshold access structure but
does not easily create access structure with an order structure description. In
this paper, we propose threshold schemes based on difference equations whose
access structure can contain some order structure description.

3 Main Idea

In this section, we investigate the “initial value problem” of the linear difference
equations over a finite field. Let p represent a prime number and t ∈ Zp. Consider
the following linear difference equation of order t over Zp:

atf(x + t) + at−1f(x + t− 1) + · · ·+ a0f(x) ≡ b (mod p), (1)

where b, a0, · · · , at ∈ Zp and at ∈ Z∗
p. Let x0, y0, y1, · · · , yt−1 ∈ Zp. Suppose that

yi ≡ f(x0 + i) (mod p), for all, i = 0, 1, · · · , t− 1. Then we have

f(x0 + t) ≡ (b − at−1yt−1 − at−2yt−2 − · · · − a0y0)a−1
t (mod p). (2)

We can therefore compute the value of f(x) for all x ∈ Zp by Equation (2). In
addition, if a0 ∈ Z∗

p, we have

f(x0) ≡ (b − atyt − at−1yt−1 − · · · − a1y1)a−1
0 (mod p). (3)

By Equations (2) and (3), we have the following theorem about the “initial value
problem” of linear difference equation over Zp:

Theorem 3.1. Let p be a prime number and t < p be a positive integer. As-
sume that a0, a1, · · · , at ∈ Zp and at ∈ Z∗

p. Then for any x0 ∈ Zp and any
y0, y1, · · · , yt−1 ∈ Zp, there exists a unique function f(x) over Zp that satisfies
Equation (1) for x ∈ Zp and f(x0 + i) ≡ yi (mod p), for all,i = 0, 1, · · · , t− 1.

Corollary 3.2. Suppose that ai �= 0 for all i. Let g be a solution of Equation
(1). Then, for every x0, any t points of the set {(x0 + i, g(x0 + i))|0 ≤ i ≤ t}
can recover g with Equation (1).

A New (t, n)−Threshold Scheme Based on Difference Equations 97

It is easy to see that fo r any b, a0, a1, · · · , at ∈ Zp and at ∈ Z∗
p, Equation (1)

defines a family of functions over Zp. To characterize the general solution of
Equation (1), we associate it with a homogeneous equation by letting b ≡ 0
(mod p) as follows:

atg(x + t) + ax−1g(x + t− 1) + · · ·+ a0g(x) ≡ 0 (mod p). (4)

Then we have the following theorem about the properties of Equations (1) and
(4)’s solutions:

Theorem 3.3. Below, all functions are defined over Zp.

1. If g1(x) and g2(x) solve Equation (4), then so does αg1(x) + βg2(x) for all
α, β ∈ Zp.

2. If f(x) solves Equation (1) and g(x) solves Equation (4), then f(x) + g(x)
solves Equation (1).

3. If f1(x) and f2(x) solve Equation (1), then f1(x)−f2(x) solve Equation (4).

Part 1 of Theorem 3.3 points out that the set of solutions for Equation (4) is
a subspace of the function space of Zp. By the fact and Theorem 3.1, we may
guess the dimension of the solution subspace of Equation (4) is t. To find the
dimension and basis of the subspace, we need the following operators:

Definition 3.4. Below, all functions are defined over the number field Zp.

1. The identity operator I is defined by the equation

I(g(x)) ≡ g(x) (mod p).

2. The shift operator E is defined by the equation

E(g(x)) ≡ g(x + 1) (mod p).

3. The difference operator Δ is defined by the equation

Δ(g(x)) ≡ g(x + 1)− g(x) (mod p).

It is easy to see that the operators, I, E, and Δ satisfy the following relations:

Δ = E − I.

or
E = Δ + I.

Based on function composition and mathematic induction, we have:

Definition 3.5. Let i be a positive integer.

1. Ei =
{

I if i = 0, and
E ◦ Ei−1 if i > 0.

2. Δi =
{

I if i = 0, and
Δ ◦Δi−1 if i > 0.

98 C.-W. Chan and C.-C. Chang

Therefore, Ei(g(x)) = g(x + i). Thus, Equation (4) can be rewritten as

(atE
t + at−1E

t−1 + · · ·+ a0I)(g(x)) ≡ 0 (mod p). (5)

We call the polynomial

atX
t + at−1X

t−1 + · · ·+ a1X + a0 (6)

the characteristic polynomial for Equation (4). The roots of the characteristic
polynomial are called the characteristic roots of Equation (5).

Since at �= 0, without loss generality, we may consider the following linear
difference equation

(Et + at−1E
t−1 + · · ·+ a0I)(g(x)) ≡ 0 (mod p), (7)

and the corresponding characteristic polynomial is:

Xt + at−1X
t−1 + · · ·+ a1X + a0. (8)

Suppose that we choose the coefficients ai’s such that

Xt + at−1X
t−1 + · · ·+ a0 = (X − λ1)m1(X − λ2)m2 · · · (X − λk)mk ,

where
∑k

i=1 mi = t. Then Equation (7) can be rewritten as:

(E − λ1I)m1(E − λ2I)m2 · · · (E − λk)mkg(x) ≡ 0 (mod p). (9)

Note that since a0 ∈ Z∗
p and p is a prime number, we have λi ∈ Z∗

p for all i.
Consider the following equation:

(E − λ1I)m1g(x) ≡ 0 (mod p). (10)

It is observed that any solution of Equation (10) will also be a solution of
Equation (9). If m1 = 1, then function λx

1 is a solution of Equation (10). If
m1 > 1, λx

1 , xλ
x
1 , · · · , xm1−2λx and xm1−1λx

1 are m1 functional linear indepen-
dent solutions of Equation (10). Hence, if Equation (5) has characteristic roots
λ1, λ2 · · · , λk with multiplicities m1,m2 · · · ,mk, respectively, then the functions
λx

1 , · · · , xm1−1λx
1 ,· · · ,λx

k , · · · , xmk−1λx
k are t functional linear independent solu-

tions of Equation (5). By Theorem 3.1, these functions are the basis of the
solution space of Equation (5). That is, we have the following theorem:

Theorem 3.6. Suppose that Equation (5) has k distinct characteristic roots
λ1, λ2, · · · , λk with multiplicities m1,m2, · · · ,mk. Then the general solution of
Equation (5) is

c1,0λ
x
1 + · · ·+ c1,m1−1x

m1−1λx
1 + · · ·+ ck,mk−1x

mk−1λx
k (mod p),

where the t ci,j ’s are constants to be determined with the initial conditions of
Equation (5).

A New (t, n)−Threshold Scheme Based on Difference Equations 99

With the same setting as the coefficients in Equation (1), the homogeneous
Equation (1) can be rewritten as:

(E − λ1I)m1(E − λ2I)m2 · · · (E − λkI)mk ≡ b (mod p). (11)

Because b is a constant, i.e. Δb = (E − I)(b) = 0. Thus, Equation (11) can be
transformed into a homogeneous one:

(E − I)(E − λ1I)m1(E − λ2I)m2 · · · (E − λkI)mk ≡ 0 (mod p). (12)

Thus, we have the following theorem:

Theorem 3.7. Let Equation (1) have k distinct characteristic roots λ1, λ2, · · · ,
λk with multiplicities m1,m2, · · · ,mk. Then the general solution of Equation (1) is

c0 + c1,0λ
x
1 + · · ·+ c1,m1−1x

m1−1λx
1 + · · ·+ ck,mk−1x

mk−1λx
k (mod p),

where c0 can be determined by Equation (1) and the t ci,j’s are constants to be
determined by the initial conditions of Equation (1).

In conclusion, the characteristic roots λ1, λ2, · · · , λk and their multiplicities
m1,m2, · · · ,mk, define the coefficients of Equation (5), where m1 + m2 + · · ·+
mk = t. In addition, the parameter c0 defines the constant coefficient b in Equa-
tion (1). In such a setting, the parameters ci,j ’s are one-one correspondence to
the initial conditions of the Equation (1). Based on Theorem 3.1, we can break
a secret, some parameter ci,j , into a set of shadows, the function values of the
solution of Equation (1), such that any t of t+1 consecutive shadows can recover
the secret by solving Equation (1).

In the next section, we will present three secret sharing schemes. Two of the
three schemes are special cases of traditional (t, n)−threshold scheme. One is a
secret sharing scheme with the access structure where any t of t+ 1 consecutive
shadows can recover the original secret. Another is a secret sharing scheme with
the access structure where only t of consecutive shadows can recover the original
secret.

4 Proposed Schemes

Recall the case that the company with its vault of secrets. Suppose that the
company employs n employees, denoted by P but they do not trust the com-
bination to any individual employee. These employees take their vacations in
turns. Suppose that each employee is assigned an ID that corresponds with the
order of vacations he will take. The company may require that any t employees
can open the vault to perform the business procedure. The corresponding secret
sharing scheme is called (t, n)−threshold scheme. Or, the company may require
that any t consecutive employees of P can open the vault to perform the business
procedure. We call the corresponding secret sharing scheme a (0, t, n)−threshold
scheme. Another possibility is the company may require that any t employees

100 C.-W. Chan and C.-C. Chang

of any t + 1 consecutive employees can open the vault to execute their jobs.
Hence, we would like to design a system to fulfill the company’s secret sharing
policies. The corresponding secret sharing scheme we will introduce is called
a (1, t, n)−threshold scheme. The informal definitions of these schemes are as
follows.

Definition 4.1. A (t, n)−threshold scheme is a method of sharing a key K
among a set of n participants with the access structure that any subset of t
or more than than t participants can compute the value K, but no other subset
of participants can do so.

Definition 4.2. A consecutive (0, t, n)-threshold scheme is a restricted (t, n)-
threshold scheme. It is a method of sharing a key K among an ordered set of
n participants with the access structure that only certain subsets of participants
that contain any t or more than t consecutive participants can compute the value
K, but no other subset of participants can do so.

Definition 4.3. A consecutive (1, t, n)-threshold scheme is a restricted (t, n)-
threshold scheme. It is a method of sharing a key K among an ordered set of
n participants with the access structure that only certain subsets of participants
that contain any t participants of any t+1 or more consecutive participants can
compute the value K, but no other subset of participants can do so.

We will design threshold schemes based on difference equations. First, a
(t, n)−threshold scheme will be presented. Second, a (1, t, n)−threshold scheme
is presented. Third, a (0, t, n)−threshold scheme is presented. Let n and t rep-
resent two positive integers with t ≤ n. The ordered set {1, 2, · · · , n} represents
the set of participant’s IDs. The dealer selects a large prime p, where n� p. Let
K represent the key which will be broken into n shadows. Below, we present a
(t, n)−threshold scheme.

A (t, n)−Threshold scheme

1. The dealer randomly selects integers λ1, λ2, · · · , λk ∈ Z∗
p and selects positive

integers m1,m2, · · · ,mk such that
∑k

i=1 mi = t.
2. The dealer computes the polynomial F (X), where

F (X) =(X − λ1)m1(X − λ2)m2 · · · (X − λk)mk

=atX
t + at−1X

t−1 + · · ·+ a0.

3. The dealer randomly selects t + 1 secret integers c0, c1,0, · · · , c1,m1−1, · · · ,
ck,0, · · · , ck,mk−1 ∈ Zp such that c1,m1−1 = K.

4. The dealer constructs the function f ,

f(x) = c0 +
m1−1∑

i1=0

c1,i1x
i1λx

1 + · · ·+
mk−1∑

ik=0

ck,ik
xikλx

k (mod p). (13)

A New (t, n)−Threshold Scheme Based on Difference Equations 101

5. The dealer uses the function f(x) and the following difference equation to
compute the constant b:

atf(x + t) + at−1f(x + t− 1) + · · ·+ a0f(x) ≡ b (mod p). (14)

6. The dealer computes the shadows y1, y2, · · · , yn, where

yi = f(i) (mod p) for all i = 1, · · · , n.
7. The dealer broadcasts Equation (14) with the unknown function f(x). Then

the dealer distributes these shadows y1, y2, · · · , yn to the participants sepa-
rately and secretly.

Suppose that there are t participants polling their shadows yj1 , yj2 , · · · , yi,t.
They can use the following procedure to recover the function f(x), and then
retrieve the key K.

1. They use Equation (12) to construct the polynomial F (X), and then com-
pute λ1, λ2, · · · , λk and m1,m2, · · · ,mk.

2. They construct the following system of linear equations:

c0 +
m1−1∑

i1=0

c1,iij1
i1λj1

1 + · · ·+
mk−1∑

ik=0

ck,ik
j1

ikλj1
k ≡ yj1 (mod p)

c0 +
m1−1∑

i1=0

c1,iij2
i1λj2

1 + · · ·+
mk−1∑

ik=0

ck,ik
j2

ikλj2
k ≡ yj2 (mod p)

...

c0 +
m1−1∑

i1=0

c1,iijt
i1λjt

1 + · · ·+
mk−1∑

ik=0

ck,ik
jt

ikλjt

k ≡ yjt (mod p)

Then, they solve c0, ci,j ’s. And obtain K = c1,m1−1.

Both the key space and the shadow space of the proposed (t, n)−threshold
scheme are the number field Zp. Let Γ 1 represent the access structure of the
proposed (t, n)−threshold scheme and Γ 1

0 represent the basis of Γ 1. Then, by
the theory of linear equation systems, we have

Γ 1
0 = {A ∈ 2Zp : |A| = t}.

Thus, the proposed (t, n)−threshold scheme is the same as the Shamir’s (t, n)−
threshold scheme.

Next, we present a (1, t, n)−threshold scheme as below:

The (1, t, n)−Threshold Scheme

1. The dealer selects a polynomial F (X) over Zp,

F (X) = atX
t + at−1X

t−1 + · · ·+ a1X + a0,

such that at, at−1, · · · , a0 ∈ Z∗
p and F (X) contains an irreducible factor of

degree d over Zp, where d ≥ 2.

102 C.-W. Chan and C.-C. Chang

2. The dealer constructs the following difference equation by randomly selecting
an integer b:

atf(x + t) + at−1f(x + t− 1) + · · ·+ a0f(x) ≡ b (mod p). (15)

3. The dealer randomly selects an integer M ∈ Z∗
p \ {1, 2, · · · , n} and t − 1

secret integers z1, z2, · · · , zt−1.
4. The dealer uses f(M) = K, f(M + 1) = z1, · · · , f(M + t− 1) = zt−1 as the

initial conditions of Equation (15) to compute the shadows y1 = f(1), y2 =
f(2), · · · , yn = f(n).

5. The dealer broadcasts Equation (15) and the parameter M , and distributes
the shadows to participants separately and secretly.

Suppose that there are t participants of t+ 1 consecutive participants polling
their shadows. Then, they can use the following procedure to recover the key K.

1. They use Equation (2) to compute the lost initial value. Hence, they will
have t + 1 consecutive initial values of the function f(x). Let yi, yi+1, · · · ,
y̆i+j , · · · , yi+t be the t initial values of f(x), where y̆i+j denotes the absence
of yi+j . Then,

yj ≡ (b− atyi+t − at−1yi+t−1 − · · · − y̆i+j − · · · − a0yi)a−1
i+j .

2. Use Equation (2) to compute the function value f(M).
3. K = f(M).

It is easy to see that both the key space and the shadow space of the proposed
(1, t, n)−threshold scheme are the number field Zp. Let Γ 2 represent the access
structure of the proposed (1, t, n)−threshold scheme and Γ 2

0 represent the basis
of Γ 2. Thus,

Γ 2
0 = {yi+1, yi+2, · · · , y̆j , · · · , yi+t+1 : for suitable i},

where y̆j denotes the absence of yj .
We can transform a (1, t, n)−threshold scheme into a (0, t, n)−threshold

scheme by modifying the generation of shadows.

The (0, t, n)−Threshold Scheme

1. The dealer selects a polynomial F (X) over Zp,

F (X) = atX
t + at−1X

t−1 + · · ·+ a1X + a0,

such that at, at−1, · · · , a0 ∈ Z∗
p and F (X) contains an irreducible factor of

degree d over Zp, where d ≥ 2.
2. The dealer constructs the following difference equation by randomly selecting

an integer b:

atf(x + t) + at−1f(x + t− 1) + · · ·+ a0f(x) ≡ b (mod p). (16)

A New (t, n)−Threshold Scheme Based on Difference Equations 103

3. The dealer randomly selects an integer M ∈ Z∗
p \ {1, 2, · · · , n} and t − 1

secret integers z1, z2, · · · , zt−1.
4. The dealer uses f(M) = K, f(M + 1) = z1, · · · , f(M + t− 1) = zt−1 as the

initial conditions of Equation (16) to determine the function f(x) uniquely.
Let i ∈ {1, 2, · · · , n}. Then the shadow yi is computed as yi = f(i + � i

t−1).
5. The dealer broadcasts Equation (16) and the parameter M , keeps z1, z2,
· · · , zt−1 secret, and distributes the shadows to participants separately and
secretly.

It is easy to see that no subset of participants can contain t consecutive initial
conditions of Equation (16). The best possible case is that a participant subset
contains t initial conditions with t− 1 consecutive initial conditions of Equation
(16) and the other initial condition with a gap of size 1 to the consecutive initial
condition. Suppose that there is a participant subset satisfying this threshold
condition. They can compute K as follows:

1. They use Equation (2) to compute the lost initial value. Hence, they will have
t consecutive initial values of the function f(x). The computation of the lost
initial value of f(x) is the as same as the case in the (1, t, n)−Threshold
Scheme.

2. Use Equation (2) to compute the function value f(M).
3. K = f(M).

Let Γ 3 denote the access structure of the proposed scheme (0, t, n)−threshold
scheme and Γ 3

0 denote the basis of Γ 3. Then,

Γ 3
0 = {yi, yi+1, · · · , yi+t−1| for suitable i}.

In the next section, we will present the security analysis of the proposed
schemes.

5 Analysis

First, we shall show that all proposed threshold schemes are ideal secret sharing
schemes. Because K, y1, · · · , yn ∈ Zp, the size of the shadow yi is the same as the
size of the key K. By the definition of ideal secret sharing schemes, all proposed
schemes are ideal secret sharing schemes.

It is easy to see that for any choice of λ1, λ2, · · · , λk ∈ Z∗
p and m1,m2, · · · ,mk

such that
∑k

i=1 mi = t, the set of functions 1, λx
1 , xλ

x
1 , x

2λx
1 , · · · , xm1−1λx

1 , · · · ,
λx

k, · · · , xmk−1λx
k is functional linear independent. Thus, any t linear independent

initial conditions uniquely determines a solution of Equation (1). We need to
guess an initial condition in addition to t−1 linear independent initial conditions
to solve Equation (1). However, this also determines a unique solution. This is not
easier than guessing the key K directly. The proposed (t, n)−threshold scheme
is therefore perfect and secure. The proof of the following theorem is shown.

104 C.-W. Chan and C.-C. Chang

Theorem 5.1. The proposed (t, n)−threshold scheme is an ideal perfect secret
sharing scheme.

Proof. Suppose that the characteristic polynomial of Equation (1) is

F (X) =
k∏

i=1

(X − λiI)mi ,

where
∑k

i=1 mi = t. Then, the general solution of Equation (1) is

c0 + c1,0λ
x
1 + c1,1xλ

x
1 + · · ·+ ck,0λ

x
k + · · · ck,mk−1x

mk−1λx
mk−1,

where the t coefficients, ci,j ’s, are constants to be determined and c0 can be
determined from Equation (1). Note that the set of t + 1 functions 1, λx

1 , xλx
1 ,

· · · , xmk−1λx
k is linear independent.

Suppose that yi0 = f(xi0), yi1 = f(xi1), · · · , yit−1 = f(xt−1) are t function
values of f(x). Then, we have the following system of linear equations

yi0 = c0 + c1,0λ
xi0
1 + · · ·+ ck,mk−1xi0

mk−1λ
xi0
k ,

yi1 = c0 + c1,0λ
xi1
1 + · · ·+ ck,mk−1xi1

mk−1λ
xi1
k ,

...

yit−1 = c0 + c1,0λ
xit−1
1 + · · ·+ Ck,mk−1xit−1

mk−1λ
xit−1
k .

There are t unknowns and t linear independent equations. By the theory of
linear algebra, there is a unique solution (c1,0, c1,1, · · · , ck,mk−1) to determine
the function f(x). And K = c1,m1−1. Suppose that we only have t−1 yi’s. Then
we can only get t − 1 linear equations with t unknowns. Because, we can’t use
t − 1 linear independent equations to construct the one more required linear
equation for (c1,0, c1,1, · · · , ck,mk−1). Thus, we need to guess a function value
to have the required linear equation. However, there is no help to the original
solution f(x) by Theorem 3.1. Thus, having only t − 1 shadows, we can not
compute any information to the original solution f(x). The proposed scheme
therefore is perfect secure.

In the other two proposed threshold schemes, we choose the polynomial F (X) =
atX

t + at−1X
t−1 + · · ·+ a0 containing an irreducible factor of degree d over Zp,

where d ≥ 2. The explicit form of the basis of the solution space to Equation (4)
is unknown. That is, the general solution of Equation (1) is unknown. It has a
general solution or not, one can use Equation (2) or Equation (3) to define the
solution f(x) and compute its values completely. Thus, we assume the following
hypothesis.

Hypothesis
Equation (1) with the polynomial F (X) and having an irreducible factor of
degree d, which is greater than or equal to 2, has no explicit general solution
over Zp.

A New (t, n)−Threshold Scheme Based on Difference Equations 105

Now, we have the following proposition:

Proposition 5.2. Suppose that F (X) = atX
t + at−1X

t−1 + · · ·+ a0 containing
an irreducible factor of degree d over Zp, where d ≥ 2. If there is no closed form
for the general solution of Equation (1), then the proposed (0, t, n)−threshold
scheme and the (1, t, n)−threshold scheme are perfect and secure.

It is observed that Equation (2) and Equation (3) are linear dependent. That is,
they are the same linear equation. However, they are equivalent to Equation (1).
In the following, we assume that F (X) contains an irreducible factor of degree
d, where d ≥ 2. To prove Proposition 5.2, we need to define the following notion:

Definition 5.3. Given a set I of initial conditions of Equation (1), we call
the member of I a known function value. An absent function value f(x′) is 1-
recoverable using Equation (1), if {f(i), f(i+1), · · · , f(x′−1), f(x′+1), · · · , f(i+
t)}, {f(x′ + 1), · · · , f(x′ + t)}, or {f(x′− t), · · · , f(x′ − 1)} are known for some
i ∈ Zp. And, we say that I admits the 1-recoverable absent function value f(x′).

According to Theorem 3.1 and Theorem 3.3, it is easy to see that f(x) is re-
coverable from Equation (1) if we have an absent function value f(x′) that is
1-recoverable from Equation (1). Note that an initial condition contains a value
of f(x), so we will use the notion, initial condition and initial value interchange-
able for convenience. Because the set of initial values to Equation (1) is a subset
of the function values of the solution f(x), we call it an initial value set that is
recoverable if it admits a 1-recoverable absent function value from I. Or, we say
that f(x) is recoverable from I. A set of initial values admitting an 1-recoverable
absent function value is a certificate of f(x) that is recoverable. The following
lemma is obvious.

Lemma 5.4. Let F (X) contain an irreducible factor of degree d, where d ≥ 2.
Suppose that I is a set of initial values to the Equation (1). Then, I admits an
1-recoverable absent function value if and only if f(x) is recoverable from I.

Proof. (Proposition 5.2) It is easy to see that the (0, t, n)-threshold scheme can
be reduced to a (1, t, n)−threshold scheme. If the (1, t, n)−threshold scheme is
true, then the (0, t, n)−threshold scheme is also true. Thus, we will only consider
(1, t, n)−threshold scheme.

Suppose that a shadow subset S1 contains the shadows yi = f(x0 + i) for all
i = 0, 1, · · · , t− 1. By the assumption at, a0 ∈ Z∗

p, we may use Equation (2) and
Equation (3) to compute all the values of the function f(x). And, these values
uniquely determine the function f(x). Thus, the shadow subset S1 can compute
the secret K uniquely.

Suppose that a shadow subset S2 contains the shadows yi = f(x0 + i) for all
i = 0, 1, · · · , j − 1, j + 1, · · · , t. By the assumption at, a0 ∈ Z∗

p, we can repeat-
edly use Equation (2) or Equation (3) to compute the value yj = f(x0 + j).
That is yj is a 1-recoverable absent function value. Then, we may use Equation
(2) and Equation (3) to compute all the values of the function f(x). These values

106 C.-W. Chan and C.-C. Chang

uniquely determine the function f(x). Thus, the shadow subset S2 can compute
the secret K uniquely.

The basis Γ 2
0 of the (1, t, n)−threshold scheme can be defined as:

Γ 2
0 = {{yi, yi+1, · · · , yi+t−1} : all possible integer i ∈ Zp}

∪ {{yi, yi+1, · · · , yj−1, yj+1, · · · , yj+t} : all possible integer i ∈ Zp}.

Let Γ = closure(Γ0). Suppose that S3 /∈ Γ and S3 admits a 1-recoverable absent
function value f(j). Because we can use the initial values in S3 to recover the ab-
sent value f(j), S3 must have a subset A ∈ Γ0. Thus, S3 ∈ Γ a contradiction.
S3 therefore can’t admit an absent function value. Thus, we need to guess some
initial values to combine S3 for f(x). But such guessing is no different from the
guessing of K directly. Thus, the proposed scheme is a perfect and secure scheme.

6 Conclusions

There are many business situations in which secret sharing schemes can apply.
There is a special case of secret sharing schemes called threshold schemes. A
threshold scheme defines a threshold as any number of independent shadows
larger than or equal to the threshold that can compute the original secret K,
but no other number of shadows can do so. Thus, traditional threshold secret
sharing schemes count the number of legal shadows to decide that the polled
shadow set can compute the secret. However, there are also many secret sharing
policies which need to use order structure of some form to depict themselves.
One may impose the checking procedure of the order restriction for the legal
shadow subset to the upper layer of the (t, n)−threshold scheme. But, it would
be better that the secret sharing scheme may contains the ability to describe the
order structure restriction into the definition of the legal shadow subsets.

In the proposed schemes, the order structure of the shadow set plays an im-
portant role under the hypothesis in the previous section. If the solving pro-
cedures of difference equations or recurrent equations are only depend on the
order structure of their initial values, then the proposed schemes can impose the
order structure into the descriptions of the access structures of secret sharing
policies. Based on the hypothesis, the proposed schemes use the order structure
of shadow set to depict the order restriction of the legal shadow subset.

The proposed (0, t, n)−threshold scheme and (1, t, n)−threshold scheme re-
quire consecutive shadows to recover the secret K. This is very different from
the traditional schemes. In the future, we will investigate whether there is a
(i, t, n)−threshold scheme for all possible i.

References

1. Shamir, A.: how to share a secret. Communications of the ACM (22), 612–613 (1979)
2. Stinson, D.R.: cryptography–theory and practice. CRC Press, Boca Raton, London,

Tokyo (1995)

Clique-Transversal Sets in Cubic Graphs�

Zuosong Liang1, Erfang Shan1,2,��, and T.C.E. Cheng2

1 Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
efshan@shu.edu.cn

2 Department of Logistics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong

lgtcheng@inet.polyu.edu.hk

Abstract. A clique-transversal set S of a graph G is a set of vertices
of G such that S meets all cliques of G. The clique-transversal number,
denoted τc(G), is the minimum cardinality of a clique-transversal set in
G. In this paper we present an upper bound and a lower bound on τc(G)
for cubic graphs, and characterize the extremal cubic graphs achieving
the lower bound. In addition, we present a sharp upper bound on τc(G)
for claw-free cubic graphs.

Keywords: Clique-transversal number; Cubic graph; Claw-free; Bound.

1 Introduction

All graphs considered here are finite, simple and nonempty. For standard graph
theory terminology not given here we refer the reader to [5].

Let G = (V,E) be a graph with vertex set V and edge set E. For a vertex
v ∈ V , the degree of v is denoted by d(v) and a vertex of degree 0 is said to be an
isolated vertex. If d(v) = k for all v ∈ V , then we call G k-regular. In particular,
a 3-regular graph is also called a cubic graph. For a subset S ⊆ V , the subgraph
induced by S is denoted by G[S], and let dS(v) denote the number of vertices
in S that are adjacent to v. For two disjoint subsets T and S of V , write e[T, S]
for the number of edges between T and S.

The matching number of G is the maximum cardinality among the indepen-
dent sets of edges of G and is denoted by α1(G). A perfect matching in G is a
matching with the property that every vertex in G is incident with an edge of
the matching. A set U ⊆ V is called a vertex cover of G if every edge of G is
incident with a vertex in U . The covering number, denoted by α0(G), is the min-
imum cardinality of a vertex cover of G. A subset S of V is called a dominating
set if every vertex of V − S is adjacent to some vertex in S. The domination

� This research was partially supported by The Hong Kong Polytechnic University un-
der grant number G-YX69, the National Nature Science Foundation of China under
grant 10571117, the ShuGuang Plan of Shanghai Education Development Founda-
tion under grant 06SG42 and the Development Foundation of Shanghai Education
Committee under grant 05AZ04.

�� Corresponding author.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 107–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 Z. Liang, E. Shan, and T.C.E. Cheng

number γ(G) of G is the minimum cardinality taken over all dominating sets of
G. Domination in graphs has been well studied (see [12]).

The concept of the clique-transversal set in graphs can be regarded as a special
case of the transversal set in hypergraph theory, which is closely related to
domination and seems to have been introduced in [1]. A clique C of a graph G
is a complete subgraph maximal under inclusion and |C| ≥ 2. A set D ⊆ V in
G is called a clique-transversal set if for every clique C of G, D ∩ V (C) �= ∅.
The clique-transversal number, denoted τc(G), is the minimum cardinality of a
clique-transversal set of G. By definitions, each clique-transversal set in G is
clearly a dominating set, so γ(G) ≤ τc(G).

To motivate the study of the clique-transversal set in graphs, we present two
examples of application where this concept may be used. An application is in
terms of communication networks. Consider a graph associated with a commu-
nication network where the vertices in the graph correspond to the sites of the
network, a clique usually represents a cluster of sites that has the best possible
ability to rapidly exchange information among the members of the cluster. The
clique-transversal set in the graph is faster to control all clusters and keeps the
ability of dominating the whole network. Another application may be found in
social networks theory. Every vertex of a graph represents an actor and an edge
represents a relationship between two actors. A clique can be viewed as a max-
imal group of members that have the same property, while a clique-transversal
set can be regarded as some kind of organization in the social networks. Then
a clique-transversal set claims that each clique in the social networks owns at
least one position in this organization.

Erdős, Gallai and Tuza [10] observed that the problem of finding a minimum
clique-transversal set for an arbitrary graph is NP-hard. Further, it has been
proved that the problem is still NP-hard on split graphs (a subclass of chordal
graphs) [7], cocomparability, planar, line and total graphs [11], undirected path
graphs, and k-trees with unbounded k [6]. However, there are polynomial time
algorithms to find τc for comparability graphs [4], strongly chordal graphs [7],
Helly circular-arc graphs [16], and distance-hereditary graphs [14]. In [10], Erdős
et al. investigated the bounds on τc, and showed that every graph of order n has
clique-transversal number at most n−

√
2n + 3

2 , and if all cliques are relatively
large, then a sightly better upper bound can be obtained. However, they also
observed that τc(G) can be very close to n = |V (G)|, namely τc = n− o(n) can
hold. It is interesting to note that τc drastically decreases when some assumptions
are put on the graph G. From this point of view, Tuza [17] and Andreae [2]
established upper bounds on τc for chordal graphs. Andreae et al. [3] studied
classes of graphs G of order n for which τc(G) ≤ n/2. They showed that (i) all
connected line graphs with the exception of odd cycles, and (ii) all complements
of line graphs with the exception of five small graphs have clique-transversal
numbers at most one-half their orders. For other investigations on the clique-
transversal number of graphs, we refer the reader to [6, 8, 9, 13, 15, 18].

In this paper we shall focus on cubic graphs. We show that if G is any cubic
graph, then 5n/14 ≤ τc(G) ≤ 2n/3, and the extremal graphs attaining the lower

Clique-Transversal Sets in Cubic Graphs 109

bound are characterized. Also, we show that a claw-free cubic graph has clique-
transversal number at most one-half its order, and the upper bound is sharp.

2 Clique-Transversal Number in Cubic Graphs

In this section we give lower and upper bounds on the clique-transversal number
of a cubic graph in terms of its order and we characterize the graph attaining the
lower bound. For this purpose, we define a family F of graphs as follows: For each
integer k ≥ 1, let J0 be the graph obtained from a complete graph K4 on four
vertices by deleting one edge, and let J be the disjoint union of J1, J2, . . . , J3k of
3k copies of J0. Let Fk be a family of cubic graphs obtained from J by adding
2k new vertices and 6k edges that join each new vertex exactly to three vertices
of degree 2 of J so that each vertex has degree 3. Let F = {Fk | k ≥ 1}. The
graph F1 is shown in Fig. 1.

For notational convenience, every clique of order m of a graph G is called a
Km-clique of G, and a component of G is called a H-component if it is isomorphic
to a given graph H .

Theorem 1. If G is a cubic graph of order n ≥ 5, then

5
14

n ≤ τc(G) ≤ 2
3
n

with the left equality if and only if G ∈ F .

Proof. We may assume that G is connected, otherwise we look at each (con-
nected) component separately. Since n ≥ 5, G contains only K2-cliques and
K3-cliques. Let D be a minimum clique-transversal set of G. We have the fol-
lowing claims.

Claim 1. Each component of G[V −D] is a Pi-component, where 1 ≤ i ≤ 3.

Let v be a vertex in V −D. If dD(v) = 3, then v is an isolated vertex in G[V −D],
so v is a P1-component of G[V − D]. If dD(v) = 2, then there exists another
vertex v′ of V − D such that v and v′ are adjacent. Since every clique of G is
dominated by some vertex of D, it follows that the edge e = vv′ lies in at least
one K3-clique and there exists one vertex vD of D that is adjacent to both v and
v′. So if dD(v′) = 2, then the vertices v, v′ induce a P2-component of G[V −D].
If dD(v′) = 1, then there is another vertex v′′ of V −D that is adjacent to v′.
Clearly, the edge v′v′′ is contained in a K3-clique, and thus v′′ is adjacent to
vD as dD(v′) = 1. This implies that the third neighbor of v′′ is distinct from
v′, and vD belongs to D, so the vertices v, v′ and v′′ induce a P3-component of
G[V −D]. If dD(v) = 1, following the discussion similar to the case dD(v′) = 1,
we can show that there exist two vertices v′ and v′′ of G[V −D] such that v is
adjacent to both v′ and v′′ and there exist one vertex vD of D such that vD is
adjacent to v, v′ and v′′. Then the third neighbor of v′ as well as v′′ distinct from
v, vD lies in D, so the vertices v, v′ and v′′ induce a P3-component of G[V −D]
and Claim 1 follows.

110 Z. Liang, E. Shan, and T.C.E. Cheng

� � �� � �

� � �

� � �

�

�

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 1. The graph F1 with τc(F1) = 5
14 |V (F1)|

Claim 2. For every vertex v of D, dD(v) ≤ 2.

The minimality of D implies that v is adjacent to some vertex of V − D for
otherwise D − {v} would be a clique-transversal set of G, so Claim 2 follows.

First, we present a lower bound on τc(G). Let li be the number ofPi-components
of G[V −D] for i = 1, 2, 3. So |V −D| = l1 + 2l2 + 3l3. By counting the number
of edges between D and V −D, we immediately have

e[D,V −D] = 3l1 + 4l2 + 5l3 ≤ 3|D|, (1)

hence |D| ≥ l1 + 4
3 l2 + 5

3 l3. So

9
5
|D| ≥ 9

5
l1 +

12
5
l2 + 3l3 ≥ |V −D|, (2)

that is,

14
5
|D| = |D|+ 9

5
|D| ≥ |D|+ |V −D| = n.

Consequently, τc(G) = |D| ≥ 5
14n.

We show next that for a cubic graph G of order n, τc(G) = 5
14n if and only

if G ∈ F . Suppose G ∈ F , then for some positive integer k, G = Fk and thus
|V (G)| = 14k. We choose one vertex of degree 3 in each Ji, together with the 2k
new vertices added to J . These vertices clearly form a clique-transversal set of Fk

with cardinality 5k, so τc(Fk) = 5
14 |V (Fk)|. The darkened vertices of F1 indicated

in Fig. 1 form a minimum clique-transversal set of F1 with τc(F1) = 5
14 |V (F1)|.

Conversely, suppose that τc(G) = 5
14n for a graph G, then there exists some

integer k such that n = 14k and let D be its minimum clique-transversal set.
Then |D| = 5k. By the above proof, the equalities hold in inequalities (1) and
(2). The equality in (1) implies that G[D] has no edges, while the equality in
(2) implies that l1 = l2 = 0, and G[V −D] is a collection of P3-components of
cardinality 3k. By the proof of Claim 1, we can see that there is a set of vertices
of cardinality 3k of D such that each vertex of the set is precisely adjacent to
the three vertices of one P3-component in G[V −D], which results in 3k copies
of J0. The remainders of D have exactly 2k vertices that are adjacent to the
endpoints of all P3-components in G[V −D]. So G ∈ F .

Clique-Transversal Sets in Cubic Graphs 111

Now we present an upper bound on τc(G). By Claim 2, we can partition
D into sets D0 = {v ∈ D | dD(v) = 0}, D1 = {v ∈ D | dD(v) = 1} and
D2 = {v ∈ D | dD(v) = 2}, and let x, y and z be the cardinality of D0, D1 and
D2, respectively. Then every vertex of D2 dominates precisely a vertex of V −D.
On the other hand, every vertex of V −D is adjacent to at most one vertex of
D2. Otherwise, suppose there exists a vertex v of V −D that is adjacent to both
vertices v1 and v2 of D2, then D ∪ {v}− {v1, v2} is a clique-transversal set with
order smaller than τc(G), a contradiction. Thus we have

|V −D| ≥ |D2| = z. (3)

Further, observing that e[D,V −D] = 3x + 2y + z ≤ 3|V −D|, we have

|V −D| ≥ x +
2
3
y +

1
3
z. (4)

If z < x + 2
3y + 1

3z, then z < 3
2x + y, so

2n = 2(|D|+ |V −D|)

≥ 2(x + y + z) + 2(x +
2
3
y +

1
3
z) (by (4))

= 3(x + y + z) +
1
3
(3x + y − z)

≥ 3τc(G).

Consequently, τc(G) ≤ 2
3n. If z ≥ x + 2

3y + 1
3z, then z ≥ 3

2x + y ≥ x + y, so

τc(G) = |D| = x + y + z

≤ 2
3
(x + y + 2z)

≤ 2
3
(|D|+ |V −D|) (by (3))

=
2
3
n,

the desired result follows. ��
If the cubic graph is claw-free, then the upper bound in Theorem 2 can be
improved.

Theorem 2. If G is a connected claw-free cubic graph of order n, then τc(G) ≤
n
2 and the bound is sharp.

Proof. If n ≤ 4, then G = K4 and the result holds. So we may assume that
n ≥ 5, thus G contains only the K2-cliques and K3-cliques. Let E′ be the set of
edges of all K2-cliques in G, and V ′ the set of vertices incident with edges of E′.
We have the following claims.

Claim 1. E′ is a matching in G.

112 Z. Liang, E. Shan, and T.C.E. Cheng

Otherwise, there exist two edges of E′ that share a common vertex, say v, and
it would yield a claw at v, a contradiction.

Claim 2. G[V − V ′] consists of only P2-components.

For any vertex v of V − V ′, there are two K3-cliques in G containing v for
otherwise v would belong to V ′. Since G is claw-free, it follows that the two
cliques share a common edge, say uv, which is incident with v. So u ∈ V − V ′.
But then the other vertices in the two K3-cliques are contained in V ′. So both
u and v induce a P2-component of G[V − V ′] and Claim 2 follows.

By Claims 1 and 2, E′ ∪E(G[V − V ′]) is exactly a perfect matching in G, so
α′(G) = n

2 .

Claim 3. For any vertex v ∈ V ′, there exactly is a K3-clique containing v.

Otherwise, it must be the case that v ∈ V − V ′.
Claims 2 and 3 imply that for each K3-clique in G, either its three vertices

are from different K2-cliques in G or it shares a common edge with another
K3-clique.

Now we construct a clique-transversal set S of G satisfying Property (A) as
follows:

(i) For every P2-component P2 in G[V − V ′], |S ∩ P2| = 1;
(ii) for every K2-clique K2 in G, |S ∩K2| ≥ 1;
(iii) for every K3-clique K3 in G, |S ∩K3| ≥ 1.

We can easily see that S is a clique-transversal set of G. Choose an S such that
|S| is minimum. We next show that |S ∩K2| = 1 for every K2-clique K2 in G.

Suppose to the contrary that there exist u0, v1 ∈ S that are in the same
K2-clique in G. By Claim 3, there exists a K3-clique in G containing v1. Let
{v1, w1, u1} be the set of vertices of the K3-clique. The minimality of S implies
that w1, u1 �∈ S for otherwise S−{v1} is a smaller set that satisfies Property (A),
a contradiction. Furthermore, w1 and u1 must belong to V ′. Suppose it is not the
case, then w1 and u1 in G[V−V ′] would induce a P2-component, so it follows from
(i) that S−{v1} is a smaller set that satisfies Property (A). Hence w1, u1 ∈ V ′−S.
Let {u1, v2} be the set of vertices of the K2-clique in G containing u1. Then v2

must be in S by (ii). By Claim 3 again, we may assume that {v2, w2, u2} is the
set of vertices of the K3-clique in G containing v2. Then we claim that only
the vertex v2 in the K3-clique belongs to S. Without loss of generality, suppose
u2 ∈ S, then we would obtain a new set S′ = S ∪ {u1} − {v1, v2}. Obviously, S′

still satisfies Property (A), and we arrive in a contradiction again. So u2 and w2

belong to V ′ − S by (i). Let {u2, v3} be the set of vertices of the K2-clique in
G containing u2. Then v3 ∈ S by (ii) again. We further consider that the K3-
clique in G contains v3. Let {v3, w3, u3} be the set of vertices of the K3-clique
in G containing v3. Similarly, we can show that v3 ∈ S and w3, u3 ∈ V ′ − S.
We continue the above process by searching alternately for the K2-cliques and
K3-cliques in G. Finally, we obtain a sequence of K2-cliques and K3-cliques
alternately occurring in G. In the t-th step, we get a K3-clique, say K3(vt, wt, ut),

Clique-Transversal Sets in Cubic Graphs 113

and we claim that only the vertex vt in the K3-clique belongs to S. Without loss
of generality, suppose ut ∈ S. Write the sequence as

K2(u0, v1),K3(v1, w1, u1),K2(u1, v2),K3(v2, w2, u2), . . . , K2(ut−1, vt),K3(vt, wt, ut).

In the sequence the last K3-clique contains two vertices of S and the others
contain exactly one vertex of S. Let

N = {v1, v2, . . . , vt},
N ′ = {u1, u2, . . . , ut−1}.

According to our construction, we have N ⊆ S and N ′ ∩ S = ∅. Let S′ =
S ∪N ′−N . Clearly S′ satisfies the Property (A) but |S′| < |S|, a contradiction.
So we can continue the sequence without end, which is impossible as there are
a limited number of K3-cliques in G. So |S ∩K2| = 1 for every K2-clique K2 in
G. Therefore,

τc(G) ≤ |S| = |V ′ ∩ S|+ |(V − V ′) ∩ S| = |V ′|/2 + |V − V ′|/2 =
n

2
.

From the above proof, it is easy to see that if G satisfies V = V ′, i.e., V −V ′ =
∅, then τc(G) = n

2 by Claim 1. Fig. 2 shows an example H1 of a claw-free cubic
graph satisfying τc(H1) = n

2 in which the darkened vertices indicated in Fig. 2
form a minimum clique-transversal set of H1. ��

� �

� �

� �

� �

� �

� � � �

�

�

�

�

�
��

�
��

�
��

�
��

�
�

�
�

�
��

�
��

� � ��
�

�
�

�
�

�
�

Fig. 2. The graph H1 with τc(H1) = n
2

As an immediate consequence of Theorem 2, we have the following result,
which shows that for a claw-free cubic graph G the clique-transversal number
τc(G) and matching number α1(G) are comparable.

Corollary 1. For any claw-free cubic graph G, τc(G) ≤ α1(G).

In Section 3, however, we give an example H2 shown in Fig. 3 of a cubic graph
for which τc(H2) is equal to 3

5 |V (H2)|. This shows the above result is not true
for arbitrary cubic graphs.

A graph G is called weakly m-colorable if its vertices can be colored with m
colors such that G has no monochromatic cliques. Andreae et al. [3] observed
that there is a straightforward relationship between weakly 2-colorable graphs

114 Z. Liang, E. Shan, and T.C.E. Cheng

and the bound of n/2 for the clique-transversal number, namely τc(G) ≤ n/2 for
each weakly 2-colorable graph of order n without isolated vertices, since both
color-classes are clique-transversal sets and one of them must have cardinality
no larger than n/2. Therefore, we have the following obvious corollary.

Corollary 2. Every claw-free cubic graph G is weakly 2-colorable.

3 Conclusion

In Section 2 we could not find an extremal graph G for which τc(G) = 2
3n, which

means that the upper bound in Theorem 1 may be improved. We close this paper
with the following problem.

Problem. Is it true that τc(G) ≤ � 35n� for cubic graphs ?

� �� �� � � �

� �� �� �� �

� �� �

� � � �

� �� �

� �

�� �� �� ���� �� �� �� �� ���� ��

� � �

Fig. 3. The graph H2 with τc(H2) = � 3
5n�

If it is true, then the upper bound is sharp. It is easy to check that the Peterson
Graph attains exactly the upper bound. Furthermore, an example H2 is also
shown in Fig. 3. It is not difficult to check that the darkened vertices of H2

indicated in Fig. 3 form a minimum clique-transversal set of H2.

References

1. Aigner, M., Andreae, T.: Vertex-sets that meet all maximal cliques of a graph,
manusript (1986)

2. Andreae, T.: On the clique-transversal number of chordal graphs. Discrete
Math. 191, 3–11 (1998)

3. Andreae, T., Schughart, M., Tuza, Z.: Clique-transversal sets of line graphs and
complements of line graphs. Discrete Math. 88, 11–20 (1991)

4. Balachandhran, V., Nagavamsi, P., Pandu Rangan, C.: Clique transversal and
clique independence on comparability graphs. Inform. Process. Lett. 58, 181–184
(1996)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier North Hol-
land, New York (1986)

Clique-Transversal Sets in Cubic Graphs 115

6. Chang, M.S., Chen, Y.H., Chang, G.J., Yan, J.H.: Algorithmic aspects of the gen-
eralized clique-transversal problem on chordal graphs. Discrete Appl. Math. 66,
189–203 (1996)

7. Chang, G.J., Farber, M., Tuza, Z.: Algorithmic aspects of neighbourhood numbers.
SIAM J. Discrete Math. 6, 24–29 (1993)

8. Dahlhaus, E., Mannuel, P.D., Miller, M.: Maximum h-colourable subgraph problem
in balanced graphs. Inform. Process. Lett. 65, 301–303 (1998)

9. Durán, G., Lin, M.C., Szwarcfiter, J.L.: On clique-transversals and clique-
independent sets. Annals of Operations Research 116, 71–77 (2002)

10. Erdős, P., Gallai, T., Tuza, T.: Covering the cliques of a graph with vertices.
Discrete Math. 108, 279–289 (1992)

11. Guruswami, V., Pandu Rangan, C.: Algorithmic aspects of clique-transversal and
clique-independent sets. Discrete Appl. Math. 100, 183–202 (2000)

12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker, New York (1998)

13. Lai, F., Chang, G.J.: An upper bound for the transversal numbers of 4-uniform
hypergraphs. J. Combin. Theory Ser. B 50, 129–133 (1990)

14. Lee, C.M., Chang, M.S.: Distance-hereditary graphs are clique-perfect. Discrete
Appl. Math. 154, 525–536 (2006)

15. Lonc, Z., Rival, I.: Chains, antichains and fibers. J. Combin. Theory Ser. A 44,
207–228 (1987)

16. Prisner, E.: Graphs with few cliques. In: Alavi, Y., Schwenk, A. (eds.) Graph The-
ory, Combinatorics and Applications. Proceedings of the 7th Quadrennial Interna-
tional Conference on the Theory and Applications, pp. 945–956. Wiley, Chichester,
New York (1995)

17. Tuza, Z.: Covering all cliques of a graph. Discrete Math. 86, 117–126 (1990)
18. Xu, G.J., Shan, E.F., Kang, L.Y., Cheng, T.C.E.: The algorithmic complexity of

the minus clique-transversal problem. Appl. Math. Comput. 189, 1410–1418 (2007)

On the L(h, k)-Labeling of Co-comparability

Graphs�

Tiziana Calamoneri1, Saverio Caminiti1, Stephan Olariu2,
and Rossella Petreschi1

1 Dipartimento di Informatica, Università degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{calamo, caminiti, petreschi}@di.uniroma1.it
2 Department of Computer Science, Old Dominion University,

Norfolk,VA 23529-0162, U.S.A
olariu@cs.odu.edu

Abstract. Given two non negative integers h and k, an L(h, k)-labeling
of a graph G = (V, E) is a map from V to a set of labels such that adjacent
vertices receive labels at least h apart, while vertices at distance at most
2 receive labels at least k apart. The goal of the L(h, k)-labeling problem
is to produce a legal labeling that minimizes the largest label used. Since
the decision version of the L(h, k)-labeling problem is NP-complete, it is
important to investigate classes of graphs for which the problem can be
solved efficiently.

Along this line of though, in this paper we deal with co-comparability
graphs and two of its subclasses: interval graphs and unit-interval graphs.
Specifically, we provide, in a constructive way, the first upper bounds on
the L(h, k)-number of co-comparability graphs and interval graphs. To
the best of our knowledge, ours is the first reported result concerning the
L(h, k)-labeling of co-comparability graphs.

In the special case where k = 1, our result improves on the best
previously-known approximation ratio for interval graphs.

Keywords: L(h, k)-Labeling, co-comparability graphs, interval graphs,
unit-interval graphs.

1 Introduction

Graph coloring is, without doubt, one of the most fertile and widely studied
areas in graph theory, as evidenced by the list of solved and unsolved problems
in Jensen and Toft’s comprehensive book on graph coloring [22]. The classic
problem of (vertex) coloring, asks for an assignment of non-negative integers

� This research was supported, in part, by the European Research Project Algorithmic
Principles for Building Efficient Overlay Computers (AEOLUS). Most of the work
reported here was performed while Professor Olariu visited with the Department of
Computer Science, University of Rome “La Sapienza”. Support through a Visiting
Fellowship from the University of Rome “La Sapienza” is gratefully acknowledged.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 116–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the L(h, k)-Labeling of Co-comparability Graphs 117

(colors) to the vertices of a graph in such a way that adjacent vertices receive
distinct colors. Of interest, of course, are assignments (colorings) that minimize
the number of colors used.

In this paper we focus on a generalization of the classic vertex coloring problem
– the so-called L(h, k)-labeling problem – that asks for the smallest λ for which
it is possible to assign integer labels {0, . . . , λ} to the vertices of a graph in
such a way that vertices at distance at most two receive colors at least k apart,
while adjacent vertices receive labels at least h apart. The span of a L(h, k)-
labeling is the difference between the maximum and the minimum label used. In
the remainder of this work we shall follow established practice and refer to the
largest label in an optimal L(h, k)-labeling for graph G as λh,k(G).

We note that for k = 0, the L(h, k)-labeling problem coincides with the usual
vertex coloring; for h = k, we obtain the well-known 2-distance coloring, which
is equivalent to the vertex coloring of the square of a graph.

The L(h, k)-labeling problem arises in many applications, including the design
of wireless communication systems [20], radio channel assignment [8,21], data
distribution in multiprocessor parallel memory systems [4,34], and scalability of
optical networks [1,36], among many others.

The decision version of the vertex coloring problem is NP-complete in general
[16], and it remains so for most of its variations and generalizations. In particular,
it has been shown that the decision version of the L(h, k)-labeling problem is
NP-complete even for h = k = 1 [20,27]. Therefore, the problem has been widely
studied for many particular classes of graphs. For a survey of recent results we
refer the interested reader to [9].

In this paper we deal with co-comparability graphs and two of its subclasses:
interval graphs and unit-interval graphs. The literature contains a plethora of pa-
pers describing applications of these graphs to such diverse areas as archaeology,
biology, psychology, management and many others (see [18,17,23,29,30]).

In the light of their relevance to practical problems, it is somewhat surprising
to note the dearth of results pertaining to the L(h, k)-labeling of these graph
classes. For example, a fairly involved web search has only turned up no results
on the L(h, k)-labeling of co-comparability graphs and, as listed below, only two
results on the L(h, k)-labeling of interval graphs and unit-interval graphs.

– In [33] the special case h = 2 and k = 1 is studied; the author proves that
2χ(G) − 2 ≤ λ2,1(G) ≤ 2χ(G) for unit-interval graphs, where χ(G) is the
chromatic number of G. In terms of the maximum degree Δ, as χ(G) ≤ Δ+1,
the upper bound becomes λ2,1(G) ≤ 2(Δ + 1), and this value is very close
to be tight, as the clique Kn, that is an interval graph, has λ2,1(Kn) =
2(n− 1) = 2Δ.

– In [3] the authors present a 3-approximate algorithm for L(h, 1)-labeling
interval graphs and show that the same approximation ratio holds for the
L(h, k)-labeling problem of unit-interval graphs.

One of our main contributions is to provide, in a constructive way, the first
upper bounds on the L(h, k)-number of co-comparability and interval graphs. In

118 T. Calamoneri et al.

the special case where k = 1, our result improves on the best previously-known
approximation ratio for interval graphs.

This remainder of the paper is organized as follows: Section 2 is devoted
to definitions and a review of preliminary results; in particular we show that
the L(1, 1)-labeling problem is polynomially solvable for the three classes of
graphs discussed in this work. Sections 3 and 4 focus, respectively, on the L(h, k)-
labeling problem on co-comparability and interval graphs. Finally, Section 5
offers concluding remarks and open problems.

2 Preliminaries

The graphs in the work are simple, with no self-loops or multiple edges. We
follow standard graph-theoretic terminology compatible with [18] and [5].

(a) (b)

Fig. 1. Illustrating two forbidden configurations

Vertex orderings have proved to be useful tools for studying structural and
algorithmic properties of various graph classes. For example, Rose, Tarjan and
Lueker [32] and Tarjan and Yannakakis [35] have used the well known simplicial
ordering of the vertices of a chordal graph to obtain simple recognition and
optimization algorithms for this class of graphs. To make this work as self-
contained as possible, suffice it to say that a graph G = (V,E) has a simplicial
ordering if its vertices can be enumerated as v1, v2, . . . , vn in such a way that for
all subscripts i, j, k, with 1 ≤ i < j < k ≤ n, the presence of the edges vivk and
vjvk implies the existence of the edge vivj . Refer to Figure 1(a) for a forbidden
configuration for a simplicial order.

Figure 1(b) illustrates a broader forbidden configuration that we shall refer
to as the umbrella. Kratsch and Stewart [24] have shown that a graph is a co-
comparability graph if and only if its vertices can be enumerated as v1, v2, . . . , vn

in such a way that for all subscripts i, j, k, with 1 ≤ i < j < k ≤ n, the presence
of the edges vivk implies the presence of at least one of the edges and vivk or
vivj . For alternate definitions of co-comparability graphs we refer to [19].

Later, Olariu [28] proved that a graph is an interval graph if and only if its
vertices can be ordered as v1, v2, . . . , vn in such a way that for all subscripts
i, j, k, with 1 ≤ i < j < k ≤ n, the presence of the edge vivk implies the
presence of the edge vivj .

Finally, for the sake of completeness, we recall that Looges and Olariu [26]
showed that a graph is a unit-interval graph if its vertices can be ordered as
v1, v2, . . . , vn in such a way that for all subscripts i, j, k, with 1 ≤ i < j < k ≤ n,
the presence of the edge vivk implies the presence of the edges vivj and vjvk.

The next proposition summarizes of previous discussion.

On the L(h, k)-Labeling of Co-comparability Graphs 119

Proposition 1. Let G = (V,E) be a graph.

1. G is a co-comparability graph if and only if there exists an ordering of its
vertices v0 < . . . < vn−1 such that if vi < vj < vl and (vi, vl) ∈ E then either
(vi, vj) ∈ E or (vj , vl) ∈ E [24];

2. G is an interval graph if and only if there exists an ordering of its vertices
v0 < . . . < vn−1 such that if vi < vj < vl and (vi, vl) ∈ E then (vi, vj) ∈ E
[28];

3. G is a unit-interval graph if and only there exists an ordering of its vertices
v0 < . . . < vn−1 such that if vi < vj < vl and (vi, vl) ∈ E then (vi, vj) ∈ E
and (vj , vl) ∈ E [26].

In the remainder of this work we shall refer to a linear orders satisfying the
above proposition as canonical and to the property that characterizes which
edges must exist in a certain class as the umbrella property of that class. Also,
Figure 2 summarizes the umbrella properties for co-comparability, interval, and
unit-interval graphs. Observe that Proposition 1 confirms the well-known fact
that unit-interval graphs ⊆ interval graphs ⊆ co-comparability graphs.

Fig. 2. Illustrating the umbrella properties for a) co-comparability, b) interval, and c)
unit-interval graphs

Before proving general results concerning the L(h, k)-labeling of the above
classes of graphs, we make a few observations about the corresponding L(1, 1)-
labelings. To begin, we observe that unit-interval, interval and co-comparability
graphs are all perfect graphs and hence the vertex-coloring problem is polyno-
mially solvable [18]. As already mentioned, the L(1, 1)-labeling problem for a
graph G is exactly the vertex-coloring problem for its square graph G2 (i.e. the
graph having the same vertex set as G and having an edge connecting u to v if
and only if u and v are at distance at most 2 in G). Since all these classes are
closed under powers [13,31], the following holds:

Remark 1. The L(1, 1)-labeling problem is polynomially solvable for unit-inter-
val, interval and co-comparability graphs.

120 T. Calamoneri et al.

3 The L(h, k)-Labeling of Co-comparability Graphs

Given a co-comparability graph G = (V,E) of maximum degree Δ, in view of
the umbrella property (Proposition 1 item 1), if (vi, vl) ∈ E and vi < vl then
all the l − i− 1 vertices between vi and vl must be connected with at least one
of these two vertices: d′ are connected to vi and d′′ are connected to vl, with
l − i− 1 ≤ d′ + d′′.

The degree, d(vi), of vi is at least d′ + 1, analogously d(vl) ≥ d′′ + 1. Since
the maximum degree is Δ we have 2Δ ≥ d′ + d′′ + 2 ≥ l− i+1. Let us formalize
this fact in the following proposition:

Proposition 2. Given a co-comparability graph of maximum degree Δ, if there
is an edge (vi, vl) such that vi < vl then l − i < 2Δ; if vi and vl are at distance
2 and vi < vl then l − i < 4Δ.

Lemma 1. A co-comparability graph G can be L(h, k)-labeled with span at most
2Δh + k if k ≤ h

2 .

Proof. Let us consider the following ordered set of labels: 0, h, 2h, . . . , 2Δh, k, h+
k, 2h + k, . . . , 2Δh + k.

Let us label all vertices of G with labels in the given order following a canonical
order of G’s vertices; once the labels have been finished, we start again from
label 0.

We will now prove that such a labeling is a feasible L(h, k)-labeling by showing
that adjacent vertices are labeled with colors at least h apart and that vertices at
distance 2 are labeled with colors at least k apart. The proofs are by contradiction
and vi and vl are any two vertices with i < l.

Distance 1. Let vi and vl be adjacent vertices, assume by contradiction that
their labels l(vi) and l(vl) differ by less than h. Then only two cases are
possible:

(1.1) l(vi) = sh, for some s such that 0 ≤ s ≤ 2Δ. Then |l(vl) − l(vi)| can be
smaller than h only if either l(vl) = sh+k or l(vl) = (s−1)h+k. In both
cases l− i ≥ (2Δ−s)+(s−1)+1 = 2Δ as illustrated in Figure 3. This is
impossible, for otherwise either vi or vl would have degree greater than
Δ (see Proposition 2.) Notice that l(vl) cannot be sh because there are
4Δ distinct labels and l− i is bounded by 2Δ.

(1.2) l(vi) = sh+k, with 0 ≤ s ≤ 2Δ. Then l(vl) must be either sh or (s+1)h.
In both cases l− i ≥ (2Δ−s)+s+1 = 2Δ+1. Again, this is impossible.
As in the previous case, l(vl) cannot be equal to l(vi).

Distance 2. Let vi and vl be at distance two with labels l(vi) and l(vl) that
differ by less than k. Since k ≤ h

2 it must be l(vi) = l(vl), and therefore
that l − i = 4Δ + 2, i.e. the number of the different labels. This contradicts
Proposition 2.

Lemma 2. A co-comparability graph G can be L(h, k)-labeled with span at most
4kΔ + k, if k ≥ h

2 .

On the L(h, k)-Labeling of Co-comparability Graphs 121

Fig. 3. Scheme for labeling vertices of a co-comparability graph

Proof. The proof is analogous to the one of Lemma 1. The only difference is the
ordered set of labels used: 0, 2k, 4k, . . . , 4kΔ, k, 3k, 5k, . . . , 4kΔ + k.

We can summarize both previous results in the following theorem:

Theorem 1. A co-comparability graph G can be L(h, k)-labeled with span at
most 2Δmax{h, 2k}+ k.

4 The L(h, k)-Labeling of Interval Graphs

If the graph G is an interval graph, we can exploit its particular umbrella prop-
erty to derive better bounds on λh,k(G).

First observe that the degree of any vertex vi connected to a vertex vl, vi < vl,
is at least l − i; furthermore, if i �= 0 then the degree of vi is at least l − i + 1 if
G is connected, because at least one edge must reach vi from vertices preceding
it in the ordering.

Proposition 3. Given a connected interval graph of maximum degree Δ, if
(vi, vl) ∈ E and vi < vl then l − i ≤ Δ and, if i �= 0 then l − i < Δ; if vi

and vl are at distance 2 and vi < vl then l − i ≤ 2Δ− 1.

Lemma 3. An interval graph G can be L(h, k)-labeled with span at most Δh, if
k ≤ h

2 .

Proof. Without loss of generality, we focus on connected graphs. We proceed as
in Lemma 1 with the difference that the set of labels is 0, h, 2h, . . . ,Δh, k, h +
k, 2h + k, . . . , (Δ− 1)h + k.

Distance 1. Let vi and vl be adjacent vertices, assume by contradiction that
their labels l(vi) and l(vl) differ by less than h. Then only two cases are
possible:

(1.1) l(vi) = sh, for some s, and l(vl) is either sh + k or (s − 1)h + k. Then
l−i ≥ (Δ−s)+(s−1)+1 = Δ. In view of Proposition 3 this is impossible
because G has maximum degree Δ. If i = 0 then l can be at most Δ;
hence, l(vl)− l(vi) is never smaller than h.

122 T. Calamoneri et al.

(1.2) l(vi) = sh + k, for some s, and l(vl) is either sh or (s + 1)h. Then i
cannot be 0 and l− i ≥ (Δ− 1− s)+ s+ 1 = Δ. This is in contradiction
with Proposition 3.

Distance 2. Let vi and vl be vertices at distance two with labels l(vi) and l(vl)
that differ by less than k. Since k ≤ h

2 it must be l(vi) = l(vl), and therefore
l − i = 2Δ + 1, i.e. the number of the different labels. This contradicts
Proposition 3.

From the previous proof it easily follows:

Corollary 1. If an interval graph G has a canonical order such that the degree of
v0 is strictly less than Δ, G can be L(h, k)-labeled with span at most (Δ−1)h+k,
if k ≤ h

2 .

The bound stated in the previous lemma is the best possible, as shown by the
following:

Theorem 2. There exists an interval graph requiring at least span Δh to be
L(h, k)-labeled.

Proof. Consider KΔ+1, the clique on Δ+ 1 vertices. As all vertices are adjacent
a span of Δh is necessary.

Lemma 4. An interval graph G can be L(h, k)-labeled with span at most 2kΔ,
if k ≥ h

2 .

Proof. The proof is analogous to the one of Lemma 3. The only difference is the
ordered set of labels used: 0, 2k, 4k, . . . , 2kΔ, k, 3k, 5k, . . . , 2k(Δ− 1) + k.

Again, it easily follows:

Corollary 2. If the canonical order of an interval graph G is such that the
degree of v0 is strictly less than Δ, G can be L(h, k)-labeled with span at most
2k(Δ− 1) + k, if k ≥ h

2 .

Unfortunately, we are not able to exhibit an interval graph requiring at least
span 2kΔ, if k ≥ h

2 , so it remains an open problem to understand if this result
is tight or not.

We can summarize the previous results in the following theorem:

Theorem 3. An interval graph G can be L(h, k)-labeled with span at most
max(h, 2k)Δ and, if G has a canonical order such that the degree of v0 is strictly
less than Δ, G can be L(h, k)-labeled with span at most max(h, 2k)(Δ− 1) + k.

Next theorem allows us to compute another bound for λh,k(G), introducing also
the dimension of the maximum clique ω.

Theorem 4. An interval graph G can be L(h, k)-labeled with span at most
min((ω − 1)(2h + 2k − 2), Δ(2k − 1) + (ω − 1)(2h− 2k)).

On the L(h, k)-Labeling of Co-comparability Graphs 123

Proof. Consider the following greedy algorithm that generalizes the coloring al-
gorithm for interval graphs:

ALGORITHM Greedy-Interval
consider the canonical order v0, v1, . . . vn−1

FOR i = 0 TO n− 1 DO
label vi with the first available label, taking into account
the labels already assigned to neighbors of vi

and to vertices at distance 2 from vi.

At the i-th step of this O(n2) time algorithm, consider the vertex set Ci consti-
tuted by all the labeled neighbors of vi and the vertex set Di constituted by all
the labeled vertices at distance 2 from vi. It is straightforward that Ci ∩Di = ∅.
As an example consider the graph of Figure 4, when i = 3 we have C3 = {v1, v2}
and D3 = {v0}.

Let vmin be the vertex in Ci with the minimum index; in view of the umbrella
property for interval graphs, vmin is connected to all vertices inside Ci. On the
other hand, each vertex vk in Di must be adjacent to some vertex in Ci, as it is
at distance 2 from vi; therefore the umbrella property implies that all vertices
in Di are connected to vmin. It follows that Δ ≥ d(vmin) ≥ |Di|+ (|Ci| − 1)+ 1.

Observe also that both Ci ∪ {vi} and Di ∪ {vmin} are cliques, and hence
|Ci| ≤ ω − 1 and |Di| ≤ ω − 1.

So, when vertex vi is going to be labeled, each labeled vertex in Ci forbids at
most 2h− 1 labels and each labeled vertex in Di forbids at most 2k − 1 labels.
Hence the number f of forbidden labels is at most |Ci|(2h − 1) + |Di|(2k − 1).
About f we can also say:

f ≤ (ω−1)(2h+2k−2) due to the inequalities |Ci| ≤ ω−1 and |Di| ≤ ω−1;
f ≤ (|Ci|+ |Di|)(2k − 1) + |Ci|2(h− k) ≤ Δ(2k − 1) + (ω − 1)(2h− 2k) for
the inequalities Δ ≥ |Di|+ |Ci| and |Ci| ≤ ω − 1.

As the previous reasoning does not depend on i, the maximum span is bounded
by min((ω − 1)(2h + 2k − 2), Δ(2k − 1) + (ω − 1)(2h− 2k)).

In Figure 4 it is shown a graph L(2, 1)-labeled with the greedy algorithm. It is
easy to see that in this case the bounds given in the previous theorem, arguments
of the min function, coincide and are exactly equal to the required span.

Fig. 4. A graph L(2, 1)-labeled with the greedy algorithm

Observe that a trivial lower bound for λh,k(G) is (ω − 1)h. So, when k = 1
the previous theorem provides a 2-approximate algorithm for interval graphs,
improving the approximation ratio of [3].

124 T. Calamoneri et al.

5 Concluding Remarks and Open Problems

In the literature there are no results concerning the L(h, k)-labeling of general
co-comparability graphs. It is neither known whether the problem remains NP-
complete when restricted to this class or to some subclasses, as interval or unit-
interval graphs.

In this paperweoffered thefirst knownupper bounds forλh,kof co-comparability
and interval graphs. The presented proofs are constructive and give the following
upper bounds:

λh,k(G) ≤ max(h, 2k)2Δ + k

if G is a co-comparability graph, and

λh,k(G) ≤ max(h, 2k)Δ

if G is an interval graph.
Moreover, for interval graphs with certain restrictions, we have reduced this

latter bound to max(h, 2k)(Δ− 1) + k. We have also shown a greedy algorithm
that guarantees, for all interval graphs, a new upper bound on λh,k(G) in terms
of both ω and Δ, that is:

λh,k(G) ≤ min((ω − 1)(2h + 2k − 2), Δ(2k − 1) + (ω − 1)(2h− 2k))

This bound is provided by a 2-approximate algorithm, improving the approx-
imation ratio in [3].

Finally, we have shown that the L(1, 1)-labeling problem is polynomially solv-
able for co-comparability graphs.

Many open problems are connected to this research. Here we list just some of
them:

– Is the L(2, 1)-labeling polynomially solvable on co-comparability graphs?
– Is it possible to find some lower bounds to understand how much our results

are tight?
– Circular-arc graphs are a natural super-class of interval graphs. Is it possible

to extend the results achieved in this paper in order to find an L(h, k)-
labeling of circular-arc graphs? What about the complexity of the L(1, 1)-
labeling on circular-arc graphs?

– What can we say about the L(h, k)-labeling of comparability graphs? It is
easy to see that their L(1, 1)-labeling is polynomially solvable as they are
perfect and the square of a comparability graph is still a comparability graph;
does the L(2, 1)-labeling remain polynomially solvable?

Last, but not least, we wish to point out the connection between the lin-
ear orderings of co-comparability, interval and unit-interval graphs with a more
general concept, namely that of a dominating pair, introduced by Corneil, Olariu

On the L(h, k)-Labeling of Co-comparability Graphs 125

and Stewart [11]. Considerable attention has been paid to exploiting the linear
structure exhibited by various graph families. Examples include interval graphs
[25], permutation graphs [15], trapezoid graphs [10,14], and co-comparability
graphs [19].

The linearity of these four classes is usually described in terms of ad-hoc
properties of each of these classes of graphs. For example, in the case of interval
graphs, the linearity property is traditionally expressed in terms of a linear order
on the set of maximal cliques [6,7]. For permutation graphs the linear behavior
is explained in terms of the underlying partial order of dimension two [2], for co-
comparability graphs the linear behavior is expressed in terms of the well-known
linear structure of comparability graphs [24], and so on.

As it turns out, the classes mentioned above are all subfamilies of a class
of graphs called the asteroidal triple-free graphs (AT-free graphs, for short).
An independent set of three vertices is called an asteroidal triple if between
any pair in the triple there exists a path that avoids the neighborhood of
the third. AT-free graphs were introduced over three decades ago by Lekkerk-
erker and Boland [25] who showed that a graph is an interval graph if and
only if it is chordal and AT-free. Thus, Lekkerkerker and Boland’s result may
be viewed as showing that the absence of asteroidal triples imposes the lin-
ear structure on chordal graphs that results in interval graphs. Recently, the
authors [11] have studied AT-free graphs with the stated goal of identifying
the “agent” responsible for the linear behavior observed in the four subfam-
ilies. Specifically, in [11] the authors presented evidence that the property of
being asteroidal triple-free is what is enforcing the linear behavior of these
classes.

One strong “certificate” of linearity is the existence of a dominating pair of
vertices, that is, a pair of vertices with the property that every path connecting
them is a dominating set. In [11], the authors gave an existential proof of the
fact that every connected AT-free graph contains a dominating pair.

In an attempt to generalize the co-comparability ordering while retaining the
AT-free property, Corneil, Koehler, Olariu and Stewart [12] introduced the con-
cept of path orderable graphs. Specifically, a graph G = (V,E) is path orderable
if there is an ordering v1, . . . , vn of its vertices such that for each triple vi, vj , vk

with i < j < k and vivk /∈ E, vertex vj intercepts each vi, vk-path of G; such an
ordering is called a path ordering.

It is easy to confirm that co-comparability graphs are path orderable. It is
also clear that path orderable graphs must be AT-free. It is a very interesting
open question whether the results in this paper about the L(h, k)-labeling of
co-comparability graph can be extended to

– graphs that have an induced dominating pair, and/or
– graphs that are path orderable.

This promises to be an exciting area for further investigation.

126 T. Calamoneri et al.

References

1. Aly, K.A., Dowd, P.W.: A class of scalable optical interconnection networks through
discrete broadcast-select multi-domain WDM. In: Proc. IEEE INFOCOM, pp. 392–
399. IEEE Computer Society Press, Los Alamitos (1994)

2. Baker, K.A., Fishburn, P.C., Roberts, F.S.: Partial orders of dimension two. Net-
works 2, 11–28 (1971)

3. Bertossi, A.A., Pinotti, C.M., Rizzi, R.: Channel assignment on strongly-simplicial
graphs. In: IPDPS ’03. Proc. of Int. l Parallel and Distributed Processing Sympo-
sium, 222b (2003)

4. Blelloch, G.E., Gibbons, P.B., Mattias, Y., Zagha, M.: Accounting for memory
bank contentions and delay in high-bandwidth multiprocessors. IEEE Trans. on
Parallel and Distributed Systems 8, 943–958 (1997)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, Am-
sterdam (1976)

6. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs
and graph planarity using PQ-tree algorithms. Journal of Comput. Syst. Sci. 13,
335–379 (1976)

7. Booth, K.S., Lueker, G.S.: A linear time algorithm for deciding interval graph
isomorphism. Journal of the ACM 26, 183–195 (1979)

8. Calamoneri, T.: Exact Solution of a Class of Frequency Assignment Problems in
Cellular Networks and Other Regular Grids. Discrete Mathematics & Theoretical
Computer Science 8, 141–158 (2006)

9. Calamoneri, T.: The L(h, k)-labelling problem: a survey. The Computer Jour-
nal 49(5), 585–608 (2006), A continuously updated version is available on
http://www.dsi.uniroma1.it/∼calamo/survey.html

10. Corneil, D.G., Kamula, P.A.: Extensions of permutation and interval graphs. In:
Proceedings 18th Southeastern Conference on Combinatorics, Graph Theory and
Computing, pp. 267–276 (1987)

11. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM Journal
on Discrete Mathematics 10, 399–430 (1997)

12. Corneil, D.G., Koehler, E., Olariu, S., Stewart, L.: On Subfamilies of AT-Free
Graphs. SIAM Journal on Discrete Mathematics 20(1), 241–253 (2006)

13. Damaschke, P.: Distance in cocomparability graphs and their powers. Disc. Applied
Math. 35, 67–72 (1992)

14. Degan, I., Golumbic, M.C., Pinter, R.Y.: Trapezoid graphs and their coloring.
Discrete Applied Mathematics 21, 35–46 (1988)

15. Even, S., Pnueli, A., Lempel, A.: Permutation graphs and transitive graphs. Journal
of the ACM 19, 400–410 (1972)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., San Francisco (1979)

17. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. Journal of Computational Biology 2, 139–152 (1995)

18. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

19. Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Ap-
plied Mathematics 9, 157–170 (1984)

20. Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance 2. SIAM
Journal of Discrete Mathematics 5, 586–595 (1992)

http://www.dsi.uniroma1.it/~calamo/survey.html

On the L(h, k)-Labeling of Co-comparability Graphs 127

21. van den Heuvel, J., Leese, R.A., Shepherd, M.A.: Graph Labelling and Radio Chan-
nel Assignment. Journal of Graph Theory 29, 263–283 (1998)

22. Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, New York
(1995)

23. Karp, R.M.: Mapping the genome: some combinatorial problems arising in molec-
ular biology. In: STOC ’93. Proc. 25th Ann. ACM Symp. on Theory of Comp., pp.
278–285. ACM Press, New York (1993)

24. Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM Journal
on Discrete Mathematics 6, 400–417 (1993)

25. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

26. Looges, P., Olariu, S.: Optimal Greedy Algorithms for Indifference Graphs. Com-
puters and Mathematics with Application 25, 15–25 (1993)

27. McCormick, S.T.: Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem. Mathematical Programming 26, 153–171 (1983)

28. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Pro-
cessing Letters 37(1), 21–25 (1991)

29. Pe’er, I., Shamir, R.: Interval graphs with side (and size) constraints. In: Spirakis,
P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 142–154. Springer, Heidelberg (1995)

30. Pe’er, I., Shamir, R.: Realizing interval graphs with side and distance constraints.
SIAM Journal of Discrete Mathematics 10, 662–687 (1997)

31. Raychauduri, A.: On powers of interval and unit interval graphs. Conressus Nu-
mererantium 59, 235–242 (1987)

32. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing 5, 266–283 (1976)

33. Sakai, D.: Labeling chordal graphs: distance two condition. SIAM Journal of Dis-
crete Mathematics 7, 133–140 (1994)

34. Shapiro, H.D.: Theoretical limitations on the efficient use of parallel memories.
IEEE Transactions on Computers 17, 421–428 (1978)

35. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13, 566–579 (1984)

36. Wan, P.J.: Near-optimal conflict-free channel set assignments for an optical cluster-
based hypercube network. Journal of Combinatorial Optimization 1, 179–186
(1997)

An Approximation Algorithm for the

General Mixed Packing and Covering Problem�

Florian Diedrich�� and Klaus Jansen

Institut für Informatik, Christian-Albrechts-Universität zu Kiel,
Olshausenstr. 40, 24098 Kiel, Germany
{fdi,kj}@informatik.uni-kiel.de

Abstract. We present a price-directive decomposition algorithm to com-
pute an approximate solution of the mixed packing and covering problem;
it either finds x ∈ B such that f(x) ≤ c(1 + ε)a and g(x) ≥ (1 − ε)b/c
or correctly decides that {x ∈ B|f(x) ≤ a, g(x) ≥ b} = ∅. Here f, g are
vectors of M ≥ 2 convex and concave functions, respectively, which are
nonnegative on the convex compact set ∅ �= B ⊆ RN ; B can be queried by
a feasibility oracle or block solver, a, b ∈ RM

++ and c is the block solver’s
approximation ratio. The algorithm needs only O(M(ln M + ε−2 ln ε−1))
iterations, a runtime bound independent from c and the input data. Our
algorithm is a generalization of [16] and also approximately solves the
fractional packing and covering problem where f, g are linear and B is a
polytope; there, a width-independent runtime bound is obtained.

1 Introduction

We study the approximate general mixed packing and covering problem

compute x ∈ B such that f(x) ≤ c(1 + ε)a, g(x) ≥ (1 − ε)b/c
or correctly decide that {x ∈ B|f(x) ≤ a, g(x) ≥ b} = ∅

(MPCc,ε)

where ∅ �= B ⊆ RN is a convex compact set, f, g : B → RM
+ are vectors of convex

and concave functions, respectively, which are nonnegative on B; a, b ∈ RM
++ are

positive vectors. Note that a = e = b holds without loss of generality where
e ∈ RM

+ denotes the unit vector; otherwise, similar to [16,24], we replace fm

byfm/am and gm by gm/bm. Let [M] := {1, . . . ,M} and c ≥ 1 is a bound for
the approximation ratio of the block solver, an algorithm which queries B by an
approximate feasibility oracle of the form

find x̂ ∈ B such that pT f(x̂)/Y (c, t)− qT g(x̂)Y (c, t) ≤ α

or correctly decide that there is no such x ∈ B
(ABSc(p, q, α, t))

� Research supported in part by DFG Project “Entwicklung und Analyse von Ap-
proximativen Algorithmen für Gemischte und Verallgemeinerte Packungs- und
Überdeckungsprobleme” JA 612/10-1, in part by EU Project AEOLUS IST-
15964, and in part by a PPP funding “Scheduling in Communication Networks”
D/05/06936 of the DAAD.

�� Research supported in part by a grant “DAAD Doktorandenstipendium” of the
DAAD. Part of this work done while visiting the ID-IMAG, ENSIMAG, Grenoble.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 128–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Approximation Algorithm 129

where t ∈ (0, 1), Y (c, t) := c(1+8/3t)(1+t) is a parameter defined for ease of ex-
position, p, q ∈ RM

+ such that eT p+eT q = 1 and α depends on p and q as defined
later. In contrast to [13,14,18], ABSc(p, q, α, t) solves only a feasibility problem
and not an optimization problem; however, this can be done by minimizing a
convex function over B. Our measure of runtime complexity is the number of
iterations or coordination steps, which is the number of calls to the block solver.
Price-directive decomposition algorithms have several potential advantages in
comparision to classical methods – they can be faster, easier to implement, and
often result in column-generation algorithms which can efficiently solve models
with an exponential number of variables. Applications for (MPCc,ε) are multi-
commodity flow [24], capacitated network design with fixed total cost [6,8] and
the network access regulation problem [2,3]. See Fig. 1 for some intuition behind
our approach.

Related problems and previous results. Related problems are so-called
pure packing and covering problems. Approximation algorithms for pure pack-
ing problems with convex functions were studied in [11,12,22] where finally a
runtime bound of O(M(ε−2 ln ε−1 + lnM)) is obtained. Garg & Könemann [9]
found a width-independent algorithm with runtime bound O(Mε−2 lnM) for
the packing problem with linear constraints. Bienstock & Iyengar [5] described
an algorithm for the same problem with runtime bound O∗(ε−1

√
KN) where K

is the maximum number of non-zeros per row and in each iteration a quadratic
program has to be solved. Similarly, Chudak & Eleutério [7] found an algo-
rithm with coordination complexity O(

√
N lnM(log log

√
N + ε−1)). Jansen &

Zhang [18] presented an algorithm that parallels the result in [13]. They ob-
tain O(M(ε−2 ln ε−1 + lnM)) as a runtime bound, although a block solver with
ratio c is used; for block solvers with arbitrary precision the runtime is im-
proved to O(M(ε−2 + lnM)), matching the bound from [13]. Experiments with
this algorithm applied to the multicast congestion problem were done in [21].
For pure covering problems with concave functions, in [13] a runtime bound of
O(M(ε−2 + lnM)) iterations is obtained; here a strong block solver with arbi-
trarily high precision is needed. This was generalized in [17] where a general
block solver is used, resulting in O(M(lnM + ε−2 ln c+ ε−2)) coordination steps;
however, this bound depends on the ratio c of the block solver. In [14], this short-
coming was removed by presenting an improved algorithm with runtime bound
O(M(ε−2 ln ε−1 + lnM)) which matches the best known bound for solving the
fractional covering problem with a similar approach in [18]. In [1] experiments
with the algorithm from [13] were done, where two-dimensional strip-packing

Fig. 1. Comparison of (MPC) with the relaxed version (MPCc,ε) where B ⊆ R2 is a
rectangle with 3 linear constraints; hatched areas indicate the feasible regions

130 F. Diedrich and K. Jansen

from [15] was used as a testbed. Finally, mixed packing and covering problems
have been studied. An important result here is [24], where with a different tech-
nique a running time of O(Mdε−2 logM) was obtained; d is the maximum num-
ber of constraints any variable appears in. Here the case with linear f, g and
B = RN

+ is solved; this can be generalized since a polytope B with N vertices
can be reduced to B′ = RN

+ by using a variable x′
i ≥ 0 for each vertex vi of B

that denotes its coefficient in a convex combination of an arbitrary x ∈ B and
studying the problem of finding x′ ∈ RN

+ such that Px′ ≤ e, Cx′ ≥ e, eTx′ ≤ 1
and eTx′ ≥ 1 where P , C are suitable modifications of the packing and covering
constraints, respectively [23]. However [24] mentions the case of general B as an
open problem which was later solved in [10,16,23]. Garg & Khandekar [10,19]
proposed an algorithm for our problem with runtime bound O(Mε−2 lnM); they
used the exponential potential function and a feasibility oracle that solves the
so-called on-line prediction problem. We refer the reader to [4] for a survey on
the technique and recent theoretical and practical results; however, there the
focus is on the exponential potential function resulting in different details.

New result. We contribute a generalization of [16]. There, the problem is solved
with a more complex block solver. Our algorithm uses an approximate block
solver; it solves each instance of (MPCc,ε) in only O(M(lnM + ε−2 ln ε−1)) iter-
ations.

Main ideas. To obtain our result, different techniques from the existing body
of literature are put into effect. We use a technical improvement of the class
of modified logarithmic potential functions from [13,14,16,17] and the resulting
price vectors to govern the direction of optimization for the block solver. We
use elimination of indices of covering constraints similar to [14], where we later
prove suitable bounds for the values of the covering functions. We use a type of
stopping rule similar to [14,16,18] for early termination of scaling phases. The
usage of a more general block solver is motivated by the results from [14,18].
Finally, we prove that infeasibility of certain instances of the block problem
implies infeasiblity of the instance.

In Sect. 2 we discuss the basic techniques. In Sect. 3 we describe the algo-
rithmic details. In Sect. 4 we bound the number of iterations and study the
behaviour of the eliminated covering functions; we conclude in Sect. 5.

2 Basic Techniques

In this section we present the used modified logarithmic potential function and
its basic properties. As in [13,18] we use notational abbrevations. For x, x̂, and
x′ ∈ B we use f, f̂ and f ′ to denote the evalutaions of f ; g, ĝ and g′ are defined in
a similar way. The algorithm will use sets A ⊆ [M] to define active sets of indices
associated with each iterate for the covering functions; these will be denoted as
A and A′. In each scaling phase a component gm of g is eliminated if gm ≥ T
where T is a threshold value; for T ∈ R+ and x ∈ B let A ⊆ [M] be the corres-
ponding set of indices of active functions. Furthermore t ∈ (0, 1) is an additional

An Approximation Algorithm 131

accuracy parameter similar to [13] that will be changed in each scaling phase.
Here we write A := A(x, T) for short. We use the potential function

Φt(θ, x,A) := 2 ln θ − t

CM
[

M∑

m=1

ln(θ − fm) +
∑

m∈A

ln(gm −
1
θ
) + (M − |A|) lnT]

where C = 8 is a constant. For fixed x ∈ B, the potential function is defined for
θ ∈ (λA(x),∞) where

λA(x) := max{ max
m∈[M]

fm,max
m∈A

1/gm}.

If there is an m ∈ A such that gm = 0 we let λA(x) := ∞; furthermore de-
note λ(x) := λ[M](x). Additionally we define the reduced potential function
by φt(x,A) := min{Φt(θ, x,A)|θ ∈ (λA(x),∞)} and denote λA := λA(x) for
short where the dependency is clear. Notice that the corresponding minimizer
θ ∈ (λA(x),∞) can be determined from the first-order optimality condition

t

2CM
[

M∑

m=1

θ

θ − fm
+

1
θ

∑

m∈A

1
gm − 1/θ

] = 1 (1)

which can be seen by calculating the derivation with respect to θ of the right
hand side of the definition of the potential function. For any fixed x ∈ B the left-
hand side of (1) is strictly monotonically decreasing in θ ∈ (λA,∞). Hence the
minimizer θ ∈ (λA,∞) is uniquely determined; we denote it by θA(x) and remark
that it can be approximated arbitrarily close by binary search. Similar as above,
we use θ, θ′ and λ, λ′ to denote the corresponding minimizers and evalutations of
λ for x, x′ ∈ B when the dependency is clear. By Lemma 1, θA(x) approximates
λA for small values of t; the proof is parallel to the one of Lemma 2.1 in [16].

Lemma 1. θ/[1 + t/(2CM)] ≥ λA ≥ θ(1 − t(M + |A|)/(2CM)] ≥ θ(1 − t/C).

Lemma 2. If gm ≤ T for each m ∈ A, then φt(x,A) ≥ 2 ln θ − t/C ln(θT) is
satisfied. Furthermore the inequality

φt(x,A) ≤ 2 ln θ − t(M − |A|)
CM

ln(θT)− t(M + |A|)
CM

ln[
t(M + |A|)

2CM
]

is valid.

The proof of Lemma 2 is omitted due to space constraints. We define the price
vectors in order to ensure that the block solver optimizes in a suitable direction.
As in [13,14,16,18] the price vectors are obtained from (1) in a natural way; for
x ∈ B, A ⊆ [M] define

pm(x,A) :=
tθ

2CM(θ − fm)
, qm(x,A) :=

t

2CM(gmθ − 1)
(2)

for m ∈ [M] and m ∈ A, respectively, and pm(x,A) := 0 for each m ∈ [M] \A.
The components of p(x,A) and q(x,A) are the summands in (1); hence the

132 F. Diedrich and K. Jansen

entries are nonnegative and we have eT p + eT q = 1. If the dependency is clear,
we write p̄ := eT p ≤ 1 and q̄ := eT q ≤ 1. The proof for the next lemma is
omitted; it is similar to the one of Lemma 2.3 in [16].

Lemma 3. Denoting p := p(x,A) and q := q(x,A), we have

pT f = θ[p̄− t/(2C)] ≤ θ[1− t/(2C)] and

qT g = [q̄ + t|A|/(2CM)]/θ ≤ [q̄ + t/(2C)]/θ ≤ [1 + t/(2C)]/θ.

3 The Algorithm

First we discuss what happens if one of the instances of the block problem
that we are about to generate renders infeasible. Note that each invocation uses
p, q ∈ RM

+ , t ∈ (0, 1/8] and α := 2p̄ − 1 − 2t and the block solver either finds
x̂ ∈ B such that pT f(x̂)/Y (c, t) − qT g(x̂)Y (c, t) ≤ α or correctly decides that
no such x̂ ∈ B exists. If the original instance is feasible, there is an x ∈ B such
that f(x) ≤ e and g(x) ≥ e; let x be chosen as such. Then for each p, q ∈ RM

+

such that p̄ + q̄ = 1 we have pT f(x) ≤ p̄ and qT g(x) ≥ q̄ = 1 − p̄. Furthermore,
writing Y := Y (c, t), we have

pT f(x)/Y − qT g(x)Y ≤ p̄/(1 + 8/3t)− (1− p̄)(1 + 8/3t) ≤ 2p̄− 1− 2t

where for the last step note that p̄− (1− p̄)(1 + 8/3t)2 ≤ (2p̄− 1− 2t)(1 + 8/3t)
is equivalent to 64/9p̄t2 ≤ 2/3t + 16/9t2 and the latter holds since t ∈ (0, 1/8].
This means that in each case in which the block solver reports infeasibility, our
algorithm terminates and reports that the initial instance is infeasible.

The initial solution x(0) ∈ B is computed as follows. First we generate M
solutions x[1], . . . , x[M] by calling ABSc(p, q, α, t) with p := 1/(3M)e ∈ RM

+ ,
qm := 2/3, qi := 0 for each i ∈ [M] \ {m} and α := −1/3− 2t such that

1
3MY (c, t)

M∑

�=1

f�(x[m]) ≤ 2Y (c, t)
3

gm(x[m])− 1
3
− 2t

for each m ∈ [M] and a solution x[0] via ABSc(p, q, α, t) with p := 1/Me ∈ RM
+ ,

q := 0 ∈ RM
+ and α := 1− 2t such that

1
MY (c, t)

M∑

�=1

f�(x[0]) ≤ 1− 2t.

Then we compute a convex combination

x(0) :=
M∑

�=0

μ�x
[�] ∈ B; precisely let I := {m ∈ [M]|

M∑

�=1

f�(x[m]) > 2cM}

and set

μ� :=
c

∑M
m=1 fm(x[�])

≤ 1
M + 1

for each � ∈ I. Finally we set

An Approximation Algorithm 133

μ� :=
1−

∑
�∈I μ�

M + 1− |I| ≥
1

M + 1
for each � ∈ ([M] ∪ {0}) \ I.

Lemma 4 asserts a quality bound; the proof is omitted for space reasons.

Lemma 4. If the instance is feasible and t ≤ 1/8, we have λ(x(0)) ≤ 9cM/2.

Now we present the algorithm itself. The remainder of Sect. 3 concerns itself with
showing what happens if one of the three stopping rules is satisfied and how the
step length τ is chosen and reduced in Steps 2.3.4 and 2.3.5 of Algorithm A.
As in [13,14,16,18] Algorithm A uses scaling phases to successively reduce ε;
similar to [13] an analysis without the scaling phases is possible, but yields
a worse runtime bound. The main goal of each scaling phase s is to obtain
x(s) ∈ B such that λ(x) ≤ c/(1 − εs) holds. Using this approach we gradually
reduce εs until εs ≤ ε/2. Then we have fm(xs) ≤ c/(1 − ε/2) < c(1 + ε) and
gm(x(s)) ≥ (1 − ε/2)/c > (1 − ε)/c; thus our instance will be solved by the
output of the final scaling phase. Since in each scaling phase some components
of g are eliminated, more precisely we aim at λA(x) ≤ c(1 + εs) ≤ c/(1 − εs)
where A ⊆ [M] is the set of indices of the active functions. Later we show that
the values for the eliminated functions are suitably bounded. The algorithm uses
the threshold values

Ts :=

{
[Mp(1− ts/C)]/λ[M](x(s−1)) : s = 1
(1− ts/C)/[λ[M](x(s−1))εq

s] : s ≥ 2

where p, q are constants to be defined later.

Algorithm A

1. Set s := 0, ε0 := 1, t0 := 1/8. Compute initial solution x(0).
If λ(x(0)) ≤ c(1 + ε/2), go to Step 3.

2. Repeat Steps 2.1 – 2.3 {scaling phase s} until εs ≤ ε/2 or λ(x(s)) ≤ c(1+ε/2).
2.1. Set s := s + 1, εs := εs−1/2, x := x(s−1), and Ts as above.
2.2. If Stopping Rule 1 is satisfied, go to Step 2.4.

Set A := {m ∈ [M]|gm < Ts}.
2.3. Repeat Steps 2.3.1 – 2.3.6 {coordination phase} forever.

2.3.1. If Stopping Rule 1 or Stopping Rule 3 is satisfied go to Step 2.4.
2.3.2. Compute θ, p and q via (2), let ts := εs/8, α := 2p̄− 1− 2ts and call

x̂ := ABS(p, q, α, ts).
2.3.3. If Stopping Rule 2 is satisfied, go to Step 2.4.
2.3.4. Compute suitable τ ∈ (0, 1) and set x′ := (1 − τ)x + τx̂ ∈ B.
2.3.5. If max{(1 − τ)gm + τ ĝm|m ∈ A} > Ts then reduce τ to τ ′ and set

x′ := (1− τ ′)x + τ ′x̂.
2.3.6. Set A := A \ {m ∈ [M]|gm(x′) ≥ Ts} and x := x′.

2.4. Set x(s) := x. {end of scaling phase s}
3. Return the final iterate x(s) ∈ B.

134 F. Diedrich and K. Jansen

We use three stopping rules for termination of each sacling phase. For Stopping
Rule 1 we simply test whether λA(x) ≤ c(1+εs) ≤ c/(1−εs) holds. For Stopping
Rule 2 we define similar to [13,14,18] a parameter

ν(x, x̂) :=
(pT f − pT f̂)/θ + θ(qT ĝ − qT g)

(pT f + pT f̂)/θ + θ(qT ĝ + qT g)

that depends on the current iterate x and the approximate block solution x̂.
We terminate the current scaling phase as soon as ν(x, x̂) ≤ ts holds, where
ts := εs/8 is an auxiliary parameter. In case of termination x meets the phase
requirement, as can be seen in Lemma 5.

Lemma 5. Let ε ∈ (0, 1) and t = ε/8. For a given x ∈ B let p, q as in (2) and
x̂ ∈ B computed by ABSc(p, q, α, t) using α := 2p̄− 1− 2t ≤ 2p̄− 1− t− t/C. If
ν(x, x̂) < t, then λA(x) ≤ c(1 + ε) ≤ c/(1− ε) holds.

The proof of Lemma 5 is omitted. The motivation behind Stopping Rule 3 is to
estimate the quality of x based on the quality of x(s−1), the input of the current
scaling phase. For this the quality is known either because of Lemma 4 or since
x(s−1) is the output of the previous scaling phase; this nice intuitive idea is also
used in [1,14,16,18]. In order to formulate Stopping Rule 3 we define

ωs :=

{
2/[9M(1− ε1)] : s = 1
(1− εs−1)/(1− εs) : s ≥ 2

which depends on the scaling phase s; for Stopping Rule 3 we terminate the
current scaling phase as soon as λA(x) ≤ ωsλ(x(s−1)) is satisfied. The desired
result is obtained by Lemma 6.

Lemma 6. Let x(s−1) be the input for and x an iterate in scaling phase s;
furthermore suppose that λA(x) ≤ ωsλ(x(s−1)) holds. If λ(x(s−1)) ≤ 9cM/2 for
s = 1 and λ(x(s−1)) ≤ c/(1− εs−1) for s ≥ 2, we have λA(x) ≤ c/(1− εs).

The proof is omitted; it can be obtained by elementary calculation or following
the proof of Lemma 3.4 in [14]. Next we describe how to choose the step length
τ and eventually reduce it in Steps 2.3.4 and 2.3.5. In the following we use A
to denote the set of indices before execution of Step 2.3.6 and A′ to denote the
set of indices after execution of Step 2.3.6. First we present some observations
which are independent from the step length that is chosen; for any step length
γ ∈ (0, 1) we use the convexity of f and the definition of p to obtain

θ − f ′
m ≥ θ − (1 − γ)fm − γf̂m = (θ − fm)[1 +

2γCM

tθ
pm(fm − f̂m)]

for each m ∈ [M]. In a similar way, since g is concave, we obtain

g′m − 1/θ ≥ (1− γ)gm + γĝm − 1/θ = (gm − 1/θ)[1 +
2γCMθ

t
qm(ĝm − gm)]

An Approximation Algorithm 135

for each m ∈ A. We aim at bounding the absolute values of the last summands
in the terms in square brackets by 1/2; to this end, any step length γ ∈ (0, 1)
will be called feasible if and only if

max{ max
m∈[M]

|2γCM

tθ
pm(fm − f̂m)|, max

m∈A
|2γCMθ

t
qm(ĝm − gm)| } ≤ 1

2
(3)

holds. By (3) for a feasible step length γ, any step length γ′ ∈ (0, γ) is feasible as
well. If γ ∈ (0, 1) is a feasible step length, using θ−fm > 0 we obtain θ−f ′

m > 0
for each m ∈ [M]. In a similar way we use gm − 1/θ > 0 to obtain g′m − 1/θ > 0
for each m ∈ A. Hence φt(x′, A′) ≤ Φt(θ, x′, A′) holds in this case, which is
important for the further analysis. We use

τ :=
t2

4CM [(pT f + pT f̂)/θ + (qT ĝ + qT g)θ]
(4)

to obtain the step length τ mentioned in Step 2.3.4.

Lemma 7. The step length τ defined by (4) is feasible.

The proof is omitted. We focus on the case that the condition in Step 2.3.5 is
true. In this case we have ĝm > T for at least one m ∈ A. Then we compute the
uniquely determined τ ′ ∈ (0, 1) such that max{(1 − τ ′)gm + τ ′ĝm} = T holds,
which can be done in O(M) time. By construction τ ′ < τ holds, hence τ ′ is
feasible. The proof of Theorem 1 is omitted for space reasons.

Theorem 1. In each iteration of the inner loop, we have

φt(x,A) − φt(x′, A′) > αt3/(CM)

where α = 1/4 if the condition in Step 2.3.5 is false and φt(x,A)−φt(x′, A′) ≥ 0
otherwise. In the latter case, Step 2.3.6 eliminates at least one index from A.

4 Analysis of Runtime and Eliminated Functions

First we show that within a scaling phase that does not terminate by Stopping
Rule 3, the difference of the reduced potentials of the initial solution and the
iterate can not be arbitrarily large but is suitably bounded. In the statement of
Lemma 8, the constants are p = 1031 and q = 219; the proof is omitted due to
space limitations.

Lemma 8. Let x ∈ B be the initial iterate of scaling phase s and let x′ ∈ B
arbitrary such that the pair x, x′ does not satisfy Stopping Rule 3. Denote by A,
A′ and θ, θ′ the corresponding sets of active indices and the minimizers of the
potential function, respectively. Then

Ds := φt(x,A)− φt(x′, A′) ≤
{

(6 + p/(8C)εs) lnM + 5/8 : s = 1
(2 + q)/(8C)εs ln ε−1

s + 6εs : s ≥ 2

holds, where p and q are constants.

136 F. Diedrich and K. Jansen

Lemma 8 states that a scaling phase that is not terminated by Stopping Rule 3
or Stopping Rule 1 must be terminated by Stopping Rule 2 since φt decreases
by at least αt3/(CM) in each iteration or at least does not increase; in the latter
case Step 2.3.6 eliminates indices, which is possible at most M times. The proof
is omitted due to space limitations.

Lemma 9. Let Ns denote the number of iterations in scaling phase s. Then

Ns ≤
{

[8MC/(αt3s) + pM/(αt2s)] lnM : s = 1
[51MC/(αt2s) + qM/(αt2s)] ln ε−1

s : s ≥ 2

holds.

The proof of Lemma 9 is omitted due to space limitations. Before studying
the eliminated indices more closely, we present the runtime complexity of the
algorithm.

Theorem 2. The total number of iterations of the algorithm is bounded by
O(M(lnM + ε−2 ln ε−1)).

Proof. Clearly we have N1 ∈ O(M lnM) and Ns ∈ O(Mε−2
s ln ε−1

s) for s ≥ 2 by
Lemma 9. Summing over all scaling phases the total number of iterations is

O(M(lnM + ln ε−1

�log ε−1�∑

s=1

22s)).

Since the summation term above is bounded by O(ε−2), the claim follows. ��

Now we study the eliminated functions; the goal is to show that the values
gm(x(s)) for m ∈ [M] \ A at the end of phase s are sufficiently large. The main
idea is similar to [14]; since the covering functions g are concave and nonnegative
on B, we have gm(x′) ≥ (1 − τ)gm(x) + τgm(x̂) ≥ (1 − τ)gm(x) for any two
consecutive iterates x, x′ in a scaling phase. Furthermore we have

(pT f + pT f̂)/θ + (qT ĝ + qT g)θ ≥ 1− t/(2C) + t|A|/(2CM) ≥ 1/2

by Lemma 3, hence in any case we obtain τ ′ ≤ τ ≤ t2/(2CM) =: τs. This means
that in each interpolation step gm is scaled down by a certain factor which is at
least 1− t2/(2CM), however.

Lemma 10. Let x(s) be the output of scaling phase s. If λ(x(0)) ≤ 9cM/2 and
λ(x(s−1)) ≤ c/(1− εs−1) for s ≥ 2, then gm(x(s)) ≥ (1− εs)/c for each m ∈ [M].

Proof. We consider only the eliminated components m ∈ [M] \A; for the other
ones the lemmas above imply the claim. In the worst case an index m ∈ [M] is
eliminated at the beginning of the scaling phase, which means gm(x(s−1)) ≥ Ts.
In this case we have gm(x(s)) ≥ (1 − τs)NsTs. We aim at proving the stronger
inequality gm(x(s)) ≥ (1 − τs)NsTs ≥ 1/c ≥ (1 − εs)/c. In the following we use
the inequality (1 − z)� ≥ (1 − �z) for each z ∈ (0, 1) and � ∈ N ∪ {0} which can

An Approximation Algorithm 137

be proved by induction on � or found in [20]. First we study phase s = 1; with
the help of Lemma 9 we obtain

(1− τ1)N1 ≥ (1− t21
2CM

)
(8MC

αt31
+ pM

αt21
) lnM

≥ (1− MC

t21

t21
2CM

)(
8

αt1
+ p

αC) ln M

= (1/2)(
8

αt1
+ p

αC) ln M ≥ (1/M)(
8

αt1
+ p

αC)

where we used (1/2)lnM = 1/(2lnM) ≥ 1/(2log M) = 1/M for the last inequality.
This means that it is sufficient to show that

(1/M)(
8

αt1
+ p

αC)T1 = (1/M)(
8

αt1
+ p

αC)Mp 1− t1/C

λ(x(0))
≥ 1/c

holds. We use λ(x(0)) ≤ 9cM/2 which holds by Lemma 4 and 1−t1/C ≥ 127/128;
inserting these bounds yields that the inequality above is implied by

(1/M)(
8

αt1
+ p

αC)
Mp 127

576cM/2
≥ 1/c

which can be rearranged to

M
p−1− 8

αt1
− p

αC ≥ 576/127.

Since M ≥ 2, this is satisfied if p − 1 − 8/(αt1) − p/(αC) ≥ 11/5 holds. Using
α = 1/4, C = 8 and t1 = 1/16, elementary calculation yields that this can be
satisfied by choosing p = 1031. Now let s ≥ 2. Similar to the analysis above we
have

(1− τs)Ns ≥ (1− t2s
2CM

)
(51CM

αt2s
+ qM

αt2s
) ln ε−1

s ≥ (1 − CM

t2s

t2s
2CM

)(
51
α + q

αC) ln ε−1
s

= (1/2)(
51
α + q

αC) ln ε−1
s ≥ ε

(51
α + q

αC)
s

where we used (1/2)ln ε−1
s = 1/(2ln ε−1

s) ≥ 1/(2log ε−1
s) = 1/ε−1

s = εs for the last
estimation. Here it is sufficient to show that

ε
(51

α + q
αC)

s Ts = ε
(51

α + q
αC)

s ε−q
s

1− ts/C

λ(x(s−1))
≥ 1/c

holds. Parallel to the argumentation before we use λ(x(s−1)) ≤ c/(1− εs−1) ≤ 2c
and 1− ts/C ≥ 2/3 to obtain that the inequality above is implied by

ε
(51

α + q
αC)

s ε−q
s

1
3c
≥ 1/c

which can be rearranged to

(ε−1
s)q− 51

α − q
αC ≥ 3.

We have εs ≤ 1/4, which implies ε−1
s ≥ 4; hence q − 51/α − q/(2C) ≥ 4/5 is

sufficient. Using α = 1/4 and C = 8, this is satisfied by q = 219. ��

138 F. Diedrich and K. Jansen

5 Conclusion

We assumed above that the price vectors are computed exactly, which is imprac-
tical since we cannot solve (1) for θ; however an approximation for which only
O(M ln(Mε−1)) arithmetic operations per iteration are necessary is suitable as
well, which can be shown with an elementary analysis that is very similar to Sub-
sect. 4.2 in [16]. We contributed an efficient and simple approximation algorithm
with data-independent coordination complexity which solves an important class
of feasibility problems, namely so-called mixed problems. In each iteration our al-
gorithm needs to approximately solve a feasibility problem over B. Our result also
solves a generalization of an open problem from [24]. In contrast to [16], our al-
gorithm does not take into account a part of the history of iterates, which makes
it slightly more straightforward to implement; furthermore the block problem is
more natural. Within the limitations of the proof of Lemma 10, τ is amenable to
line search. We suggest to evaluate whether line search yields a larger difference
in the reduced potential similar to [1]. Furthermore it is an open problem whether
a reduction of O(ε−2) to O(ε−1) in the runtime bound is possible.

Acknowledgement. Florian Diedrich thanks Denis Naddef for kind hospitality
during the preparation of this article.

References

1. Aizatulin, M., Diedrich, F., Jansen, K.: Implementation of approximation algo-
rithms for the max-min resource sharing problem. In: Àlvarez, C., Serna, M. (eds.)
WEA 2006. LNCS, vol. 4007, pp. 207–218. Springer, Heidelberg (2006)

2. Baille, F., Bampis, E., Laforest, C.: Bicriteria scheduling of parallel degradable
tasks for network access under pricing constraints. In: INOC 2003. Proceedings of
the International Network Optimization Conference, pp. 37–42 (2003)

3. Baille, F., Bampis, E., Laforest, C.: Maximization of the size and the weight of
schedules of degradable intervals. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON
2004. LNCS, vol. 3106, pp. 219–228. Springer, Heidelberg (2004)

4. Bienstock, D.: Potential function methods for approximately solving linear pro-
gramming problems: theory and practice. Kluwer Academic Publishers, Dordrecht
(2002)

5. Bienstock, D., Iyengar, G.: solving fractional packing problems in O∗(1/ε) itera-
tions. In: STOC 2004. Proceedings of the 36th ACM Symposium on Theory of
Computing, pp. 146–155 (2004)

6. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps
for capacitated network design and covering problems. In: SODA 2000. Proceedings
of the 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115 (2000)

7. Chudak, F.A., Eleutério, V.: Improved approximation schemes for linear program-
ming relaxations of combinatorial optimization problems. In: Jünger, M., Kaibel,
V. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 3509,
pp. 81–96. Springer, Heidelberg (2005)

8. Fleischer, L.: A fast approximation scheme for fractional covering problems with
variable upper bounds. In: SODA 2004. Proceedings of the 15th ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1001–1010. ACM Press, New York (2004)

An Approximation Algorithm 139

9. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In: FOCS 1998. Proceedings of the 39th
Annual IEEE Computer Society Conference on Foundations of Computer Science,
pp. 300–309 (1998)

10. Garg, N., Khandekar, R.: Personal communication (2004)
11. Grigoriadis, M.D., Khachiyan, L.G.: Coordination complexity of parallel price-

directive decomposition. Mathematics of Operations Research 2, 321–340 (1996)
12. Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for convex pro-

grams with many blocks and coupling constraints. SIAM Journal on Optimiza-
tion 4, 86–107 (1994)

13. Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate
max-min resource sharing for structured concave optimization. SIAM Journal on
Optimization 41, 1081–1091 (2001)

14. Jansen, K.: Approximation algorithm for the general max-min resource sharing
problem. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111,
Springer, Heidelberg (2004), Mathematical Programming Series A 106, 547–566
(2006) see also http://www.springerlink.com/content/fv2p781736gk4856/

15. Jansen, K.: Approximation algorithms for min-max and max-min resource sharing
problems and applications. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient
Approximation and Online Algorithms. LNCS, vol. 3484, pp. 156–202. Springer,
Heidelberg (2006)

16. Jansen, K.: Approximation algorithm for the mixed fractional packing and cov-
ering problem. In: IFIP TCS 2004. Proceedings of the 3rd IFIP Conference on
Theoretical Computer Science, pp. 223–236. Kluwer Publisher, Dordrecht (2006)
and SIAM Journal on Optimization, 17, 331–352 (2006)

17. Jansen, K., Porkolab, L.: On preemptive resource constrained scheduling: polyno-
mial time approximation schemes. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 329–349. Springer, Heidelberg (2002) and SIAM Journal on
Discrete Mathematics 20, 545–563 (2006)

18. Jansen, K., Zhang, H.: Approximation algorithms for general packing problems
with modified logarithmic potential function. In: TCS 2002. Proceedings of the
2nd IFIP International Conference on Theoretical Computer Science. Foundations
of information technology in the era of network and mobile computing, pp. 255–266.
Kluwer, Dordrecht (2002)

19. Khandekar, R.: Lagrangian relaxation based algorithms for convex programming
problems, PhD Thesis, Indian Institute of Technology, New Delhi (2004)

20. Knuth, D.E.: The art of computer programming, Volume I: Fundamental Algo-
rithms. Addison-Wesley, Reading (1968)

21. Lu, Q., Zhang, H.: Implementation of approximation algorithms for the multicast
congestion problem. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp.
152–164. Springer, Heidelberg (2005)

22. Villavicencio, J., Grigoriadis, M.D.: Approximate Lagrangian decomposition with
a modified Karmarkar logarithmic potential. In: Network Optimization. Lecture
Notes in Economics and Mathematical Systems, vol. 450, pp. 471–485. Springer,
Heidelberg (1997)

23. Young, N.E.: personal communication (2004)
24. Young, N.E.: Sequential and parallel algorithms for mixed packing and covering.

In: FOCS 2001. Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, pp. 538–546 (2001)

http://www.springerlink.com/content/fv2p781736gk4856/

Extending the Hardness of RNA Secondary

Structure Comparison

Guillaume Blin1, Guillaume Fertin2, Irena Rusu2, and Christine Sinoquet2

1 IGM-LabInfo - UMR CNRS 8049 - Université de Marne-la-Vallée - France
gblin@univ-mlv.fr

2 LINA - FRE CNRS 2729 - Université de Nantes - France
{fertin,rusu,sinoquet}@lina.univ-nantes.fr

Abstract. In molecular biology, RNA structure comparison is of great
interest to help solving problems as different as phylogeny reconstruction,
prediction of molecule folding and identification of a function common
to a set of molecules. Lin et al. [6] proposed to define a similarity cri-
terion between RNA structures using a concept of edit distance ; they
named the corresponding problem Edit. Recently, Blin et al. [3] showed
that another problem, the Longest Arc-Preserving Common Sub-

sequence problem (or Lapcs), is in fact a subproblem of Edit. This
relationship between those two problems induces the hardness of what
was the last open case for the Edit problem, Edit(Nested,Nested),
which corresponds to computing the edit distance between two secondary
structures without pseudoknots. Nevertheless, Lapcs is a very restricted
subproblem of Edit: in particular, it corresponds to a given system of
editing costs, whose biological relevance can be discussed ; hence, giv-
ing a more precise categorization of the computational complexity of the
Edit problem remains of interest. In this paper, we answer this question
by showing that Edit(Nested,Nested) is NP-complete for a large class
of instances, not overlapping with the ones used in the proof for Lapcs,
and which represent more biologically relevant cost systems.

Keywords: computational biology, RNA structures, arc-annotated se-
quences, edit distance, NP-hardness.

1 Introduction

The understanding of biological mechanisms, at a molecular scale, is induced
by the discovery and the study of various RNA functions. It is established that
the conformation of an RNA molecule (a single strand composed of bases A,
U , C and G also called primary structure) partially determines the function
of the molecule. This conformation results from the molecule folding due to
local pairings between complementary bases (A−U and C−G, connected by a
hydrogen bond). Thus, such a molecule has both double-stranded areas (stems)
and various types of loops or areas with unpaired bases. A model underlying a
given RNA conformation is the secondary structure, with its stems, bulges, and
various loops.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 140–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extending the Hardness of RNA Secondary Structure Comparison 141

RNA secondary structure comparison is essential for (i) identification of highly
conserved structures during evolution (which cannot always be detected in the
primary sequence, since it is often unpreserved) which suggest a significant com-
mon function for the studied RNA molecules, (ii) RNA classification of various
species (phylogeny), (iii) RNA folding prediction by considering a set of already
known secondary structures and (iv) identification of a consensus structure and
consequently of a common role for molecules.

At a theoretical level, the RNA structure comparison problem can be modeled
by the class of problems Edit(t1,t2) which consist in computing the minimum
number of edit operations needed to transform a structure of type t1 into a
structure of type t2, where t1, t2 take values in {plain, nested, crossing,
unlimited} (cf. Section 2 for more details). Lin et al. [6] proposed to take simul-
taneously into account primary and secondary structures in RNA comparison by
jointly considering a base and its potential hydrogen bond with another base in
the similarity computation. They proposed in [6] exact and approximate polyno-
mial algorithms for some classes of problems Edit(t1,t2). They also gave some
complexity proofs for some other classes. The complexity of the Edit(Nested,
Nested) problem was left as an open problem.

Recently, Blin et al. [3] showed that the complexity of this last problem is
actually closed since it simply follows from the complexity of the Longest Arc-

Preserving Common Subsequence problem [4] (Lapcs for short). However,
a sharp analysis of the equivalence between the Lapcs and the Edit problems
shows in fact that only a very restricted number of instances of Edit(Nested,
Nested) are shown to be NP-complete. Moreover, the cost system should sat-
isfy restrictions which can be biologically discussed. Therefore, as another step
towards establishing the precise complexity landscape of the Edit problem, it is
of interest to consider a more accurate class of instances – but not overlapping
with the one used in the proof from Lapcs –, for determining more precisely
what makes the problem hard. For that purpose, we propose after defining some
notations (Section 2) a non-trivial reduction via a 2-page book embedding with
some special requirements on the costs for the edit operations (Section 3).

2 Notations and Problem Description

An RNA structure can be described by the sequence of its bases together with
the set of hydrogen bonds possibly connecting bases A to bases U or bases C to
bases G. This structure is commonly represented by an arc-annotated sequence.
Given a finite alphabet Σ, an arc-annotated sequence is defined by a pair (S, P),
where S is a string on Σ∗ and P is a set of arcs connecting pairs of characters
of S. In the following, we will refer to the characters as bases in reference to
RNA structures. Any base with no arc incident to it is called free. As usually
considered in arc-annotated sequences comparison, we distinguish four levels of
arc structure [4]:

– Plain: there is no arc,
– Nested: no base is incident to more than one arc and no arcs are crossing,

142 G. Blin et al.

– Crossing: no base is incident to more than one arc,
– Unlimited: no restriction at all.

Those four levels respect an obvious inclusion relation denoted by the⊂ operator:
Plain ⊂ Nested ⊂ Crossing ⊂ Unlimited. In order to compare two arc-
annotated sequences, we consider the set of edit operations (and their associated
costs) introduced in [6]. There are four substitution operations which induce
renaming of bases in the arc-annotated sequence. They are listed together with
their associated cost: base-match (wm : Σ2 → IR), base-mismatch (wm : Σ2 →
IR), arc-match (wam : Σ4 → IR), arc-mismatch (wam : Σ4 → IR). Moreover,
there are four deletion operations which induce deletion of bases and/or of arcs,
which we list together with their associated cost:

base-deletion (wd : Σ → IR) →
arc-breaking (wb : Σ4 → IR) →
arc-removing (wr : Σ2 → IR) →
arc-altering (wa : Σ3 → IR) → or

In the following, given two arc-annotated sequences (S, P) and (T,Q), an edit
script from (S, P) to (T,Q) will refer to a series of non-oriented edit operations
transforming (S, P) into (T,Q). The cost of an edit script from (S, P) to (T,Q)
is the sum of the costs of each operation involved in the edit script. We define the
edit distance between (S, P) and (T,Q) as the minimum cost of an edit script
from (S, P) to (T,Q). Finding this edit distance is called the Edit problem. To
any edit script from (S, P) to (T,Q) corresponds an alignment of the characters
of S and T such that (i) if a base is inserted or deleted in a sequence, it is aligned
with a gap (indicated by −) and (ii) if a base of one sequence is (mis)matched
with a base of the other sequence, there are aligned together. In the following,
we will call cost of an alignment A, denoted by cost(A), the cost of the edit
script from which the alignment A is obtained. An optimal alignment A is an
alignment of minimum cost, that is an alignment whose cost is equal to the edit
distance.

Lin et al. proved in [6] that the problem Edit(Crossing, Plain) is MAX-
SNP hard. Thus, any harder problem (in terms of restriction levels) is also
MAX-SNP hard. Moreover, they gave a polynomial dynamic programming algo-
rithm for the problem Edit(Nested, Plain), while Sankoff [7] had previously
solved the problem Edit(Plain, Plain). The complexity of the Edit(Nested,
Nested) problem was left as an open problem (see Table 1).

Recently, Blin et al. [3] showed that the complexity of this last problem was in
fact closed, since it directly follows from the complexity of a different problem,
called Longest Arc-Preserving Common Subsequence (Lapcs for short).
As introduced by Evans in [4], the Lapcs problem is defined as follows: given two
arc-annotated sequences (S, P) and (T,Q), find the longest – in terms of sequence
length – common arc-annotated subsequence (R,U) of (S, P) and (T,Q) such
that there exists an arc in U iff it corresponds to an existing arc both in P and in
Q. In [3], Blin et al. proved that the Lapcs problem is a specific case of the Edit

Extending the Hardness of RNA Secondary Structure Comparison 143

Table 1. edit problem complexity (n and m are the number of bases of each sequence).
• m is the size of the plain sequence.
 when wd = wa = 2wr, the hardness follows
from [5]; when wa > wd (with some additional restrictions), our contribution.

unlimited crossing nested plain

unlimited Max-SNP hard

crossing Max-SNP hard

nested NP-Complete
 O(nm3) •
plain O(nm)

problem provided that the cost system for edit operations is correctly chosen. The
cost system is the following: wr = 2wd = 2wa, and all substitutions operations
as well as arc-breakings are prohibited (that is, they are given arbitrary high
costs). The main idea is to penalize the deletion operations proportionally to
the number of bases that are deleted.

Since the Lapcs problem is NP-complete for arc-annotated sequences of
Nested types, so does the last open case for the Edit problem, Edit(Nested,
Nested). Nevertheless, Lapcs is a very specific subproblem of Edit: it corre-
sponds to instances of Edit for which wr = 2wd = 2wa. In particular, this means
that the cost for deleting an unpaired base or a base linked to an hydrogen bound
is the same. However, this model would be more realistic if we had wa > wd,
as breaking a hydrogen bond requires more energy. More generally, considering
a larger class of instances (not overlapping with the one used in the proof from
Lapcs), would help us determine more precisely what makes the problem hard.
Hence, we suggest a more general categorization of Edit problem complexity
by defining a non-trivial reduction which provides a larger and non-overlapping
class of instances leading to the hardness.

3 Hardness of RNA Secondary Structure Comparison

As mentioned before, the main contribution of this paper is the proof of the
hardness of the RNA secondary structure comparison for a large class of in-
stances not considered previously. The proof relying on the NP-completeness of
Lapcs requires that wr = 2wa = 2wd. In this article, we investigate a more ac-
curate, and non-intersecting class of instances. More precisely, we will prove that
the problem is also NP-complete when the cost system respects the following
requirements:

wa > wb > wd > 0 (1)
wr > wa + wd (2)

wb +
wd

3
> wa (3)

wm > 2wr (4)

Our hardness result thus holds no matter how the costs are chosen so as to
satisfy the above constraints. The decision problem is defined formally as follows.

144 G. Blin et al.

Input: Two arc-annotated sequences (S, P) and (T,Q) of Nested type, a set of
costs for the edit operations that satisfy inequalities (1) to (4), and an integer �.
Question: Is there an alignment of the two sequences (S, P) and (T,Q) whose
cost is less than or equal to � ?
We initially notice that this problem is in NP since given an alignment we can
check polynomially if its cost is less than or equal to �. In order to prove that
it is NP-complete, we propose a polynomial reduction from the NP-complete
problem mis-3p [2].
mis-3p

Input: A cubic planar bridgeless connected graph G = (V,E) and an integer k.
Question: Is there an independent set of cardinality greater than or equal to k
in G ?
A graph G = (V,E) is said to be a cubic planar bridgeless connected graph if any
vertex of V is of degree three (cubic), G can be drawn in the plane in such a way
that no two edges of E cross (planar), and there are at least two edge-disjoint
paths connecting any pair of vertices of V (bridgeless connected). The idea of
the proof is to transform any cubic planar bridgeless connected graph into two
arc-annotated sequences. The construction first uses the notion of 2-page book
embedding: a 2-page book embedding of a graph G is a linear ordering of the
vertices of G along a line and an assignment of the edges of G to the two half-
planes delimited by the line – called the pages – such that no two edges assigned
to the same page cross. For convenience, we will refer to the page above (resp.
below) the line as the top-page (resp. bottom-page). In the following, a 2-page
s-embedding will denote a 2-page book embedding with the additional property
that in each page, every vertex has degree at least one.

Theorem 1 (Bernhart et al. [1]). Given any cubic planar bridgeless con-
nected graph G, it is possible to find, in polynomial time, a 2-page s-embedding
of G.

Given a 2-page s-embedding of a cubic planar bridgeless connected graph G =
(V,E), we construct two arc-annotated sequences of Nested type (S, P) and
(T,Q). The underlying raw sequences S and T are defined as follows:

S = Sc S1 Sc S2 . . . Sc Sn Sc

T = Tc T1 Tc T2 . . . Tc Tn Tc

where (i) n = |V |, (ii) for each 1 ≤ i ≤ n, Si (resp. Ti) is a segment UAUAGG
if the degree of the vertex vi ∈ V in the top-page (resp. bottom-page) is equal
to two, a segment GGUAUA otherwise, and (iii) Sc and Tc are segments made
of a given number q of bases C, where q > 3nwr

wd
(the value of q will be justified

in the proof of Lemma 2).
Now that the sequences S and T are defined, we have to copy the arc config-

uration of the top-page (resp. bottom-page) on S (resp. T). Each edge (vi, vj),
i < j, of the top-page is represented by two arcs in P . More precisely, one arc
a1 links a base U of Si and a base A of Sj . The second arc a2 is nested in the

Extending the Hardness of RNA Secondary Structure Comparison 145

first one : it links the base A directly to the right of the base U of a1 to the base
U directly to the left of the base A of a1. We proceed in a similar way for the
bottom-page by adding, for each edge in that page, two arcs in Q. Moreover, we
impose that when a vertex vi is of degree one on the top-page (resp. bottom-
page), the two corresponding arcs in P (resp. Q) are incident to the rightmost
bases A and U of the segment Si (resp. Ti). It is easy to check that it is always
possible to reproduce on (S, P) and (T,Q) the non-crossing edge configuration
of each page. An example of such a construction is given in Figure 1. The size of
the sequences is clearly polynomial in n: the length of S and T is 6n + (n + 1)q
and the total number of arcs is 3n. In the following, we will refer to any such
construction as a UA-construction.

Fig. 1. Example of a UA-construction. Graph (a) is a cubic planar bridgeless con-
nected graph having 6 vertices. Graph (b) is a 2-page s-embedding of graph (a).
(c) The two arc-annotated sequences of Nested type obtained from graph (a) by
a UA-construction.

In order to complete the instance of the Edit(Nested,Nested) problem, we
define the parameter � = 3n(wb + 4wd

3)− p(6wb + 2wd− 6wa) (p will be formally
defined later on).

We start the proof that the reduction from mis-3p to Edit(Nested, Nested)
is correct by giving some properties (Lemmas 1 to 5) about optimal alignments
of the sequences (S, P) and (T,Q). Then, these results will be used in Lemma
6 to conclude. We consider in all these lemmas that the conditions imposed by
the inequalities (1) to (4) are satisfied.

Lemma 1. In any optimal alignment of (S, P) and (T,Q), there is no base
substitution.

Proof. Note that base substitution is an operation on bases which occurs either
independently (no arc operation is involved) or following an arc-breaking/arc-
altering. As the cost of non-pairing base alignment is included in the cost of an

146 G. Blin et al.

arc-mismatch, a base involved in a base substitution cannot be incident to an
arc inducing an arc-mismatch. The principle of this proof is to show that, under
the conditions imposed by inequalities (1) to (4), starting from an alignment A
containing a base substitution, we can build an alignment A′ which does not
contain this substitution, satisfying cost(A′) < cost(A). Base substitution can
occur in three different configurations :

– substitution between two bases non incident to an arc : then A′ is obtained
from A by changing the base substitution into a base insertion and a base
deletion. Thus, we have cost(A′)− cost(A) = 2wd − wm.

– substitution between a base non incident to an arc and a base incident to
an arc a. There are two subcases : a induces an (i) arc-breaking or (ii)
an arc-altering in A. Let A′ be an alignment obtained from A by aligning
each base concerned by the substitution with a gap. Then any arc-breaking
(resp. arc-altering) is transformed into an arc-altering (resp. arc-removing).
Therefore, in case (i) we have cost(A′) − cost(A) = wa + wd − (wb + wm),
while in case (ii) we have cost(A′)− cost(A) = wr + wd − (wa + wm).

– substitution between a base incident to an arc a1 and a base incident to an
arc a2. There are three subcases : a1 and a2 induce (i) two arc-breakings,
(ii) two arc-alterings, (iii) an arc-altering and an arc-breaking in A. Let A′

be an alignment obtained from A by aligning each base concerned by the
substitution with a gap. In case (i), we have cost(A′) − cost(A) = 2wa −
(2wb + wm). In case (ii) we have cost(A′) − cost(A) = 2wr − (2wa + wm).
Finally, in case (iii) we have cost(A′)−cost(A) = wr+wa−(wb+wm+wa) =
wr − (wb + wm).

Since wm > 2wr and wr > wa > wb > wd (see inequalities (1), (2) and (4)), we
deduce that cost(A′)− cost(A) < 0 in every case. Thus, for any given alignment
A with at least one substitution, it is possible to find an alignment A′ without
this substitution such that cost(A′) < cost(A). This proves the lemma. ��

Definition 1. A canonical alignment of two sequences (S, P) and (T,Q) ob-
tained from a UA-construction is an alignment where, for each 1 ≤ i ≤ n + 1,
the ith segment Sc in (S, P) is aligned base to base to the ith segment Tc in
(T,Q).

Note that, by construction, no arc-match or arc-mismatch can be present in a
canonical alignment of (S, P) and (T,Q).

Lemma 2. Any optimal alignment of (S, P) and (T,Q) is canonical.

Proof. Let A be a non canonical alignment. We will show that this is not an
optimal alignment. By Lemma 1, we assume that A does not contain any sub-
stitution. In that case, non canonicity can arise for two reasons:

Case 1.There exists a crossing alignment Up-Down or Down-Up in the alignment
A. We denote by crossing alignment Up-Down (resp. Down-Up), an alignment
where at least one base of Sk (resp. Tk) is aligned with a base of Tm (resp. Sm)
or with a gap situated between two bases of Tm (resp. Sm) and such that k < m.

Extending the Hardness of RNA Secondary Structure Comparison 147

Let A′ be a canonical alignment without substitution. According to the con-
ditions imposed by inequalities (1) to (4), the cost associated with any oper-
ation on a base not incident to an arc can be upper bounded by wr

2 (since
wr > wa + wd > 2wd) and the cost associated with an operation on any base
incident to an arc can be upper bounded by wr

2 as well (by equitably distributing
the cost of the arc on its two incident bases : the cost wb of an arc can be seen
as composed of the cost wb

2 on each of its incident bases ; since wb < wr, then
wb

2 < wr

2). Since any vertex of G is represented by two segments (one in (S, P)
and one in (T,Q)) containing six bases each, the cost of the alignment of Si and
Ti for any vertex vi is strictly less than 6wr, thus cost(A′) < 6nwr.

Let A be a crossing non canonical alignment, and let us suppose first that this
crossing is Up-Down. In such an alignment the crossing imposes that at least q
(q = |Sc|) bases C of (T,Q) on the left of Tm must be inserted and that at least
as many bases C of (S, P) on the right of Sk must be deleted. Thus we have
cost(A) ≥ 2qwd. Therefore cost(A′) < 6nwr < 2qwd ≤ cost(A) since q > 3nwr

wd
.

The alignment A is thus non optimal in case 1. In the case where the crossing
is Down-Up, the proof is similar and the same result follows.

Case 2. There is no crossing alignment in A. In this case, for any k, any base
of Sk is aligned either with a base of Tk or with a gap situated between two
bases of Tk. Let us denote by ξ the sum of the alignment costs of the segments
Sk and Tk for k = 1, . . . , n representing the n vertices of G. Thus, we have
cost(A) = ξ+R where R is the total cost of base to base alignments of segments
Sc and Tc. The initial assumption (i.e. A is a non canonical alignment) imposes
that at least one base C is deleted and one base C is inserted in A. Thus, we
have R ≥ 2wd. Consequently, cost(A) ≥ ξ + 2wd. Now, let A′ be a canonical
alignment in which, for any k, any base of Sk is aligned exactly as in A, i.e. with
the same base of Tk or with a gap. We have cost(A′) = ξ < cost(A), therefore
A is not optimal. ��

By Lemma 2, the cost of an optimal alignment depends on the local alignments
of the segments Sk and Tk representing the vertices of G. By Lemma 1, a case
analysis leads to a set of exactly eighteen types of local alignments, as illustrated
in Figure 2. It is easy to see that any other alignment of the segments representing
a vertex is equivalent, in terms of cost, to one of the above mentioned eighteen
types.

Definition 2. We call symmetric of a type of alignment ti, denoted by tiSym,
the type of alignment obtained from ti by inverting the two segments (i.e. such
that the segment on (S, P) is now on (T,Q) and vice versa).

Lemma 3. An optimal alignment A′ of (S, P) and (T,Q) contains only local
alignments of types tg, tua, tgSym and tuaSym.

Proof. First, we notice that by definition of the operations on bases and arcs,
two symmetric local alignments have the same cost. Thus, to prove Lemma 3,
we will only show that any canonical alignment containing a local alignment of

148 G. Blin et al.

type tg type t1 type t2

UA
AU

AU
UA

GG
GG-

- U A
AU

AU
UA

GG
GG-

-
-

- U A
AU

AU
UA

GG
GG-

--

U A
AU
AU

UA
GG

GG -
--

-
U A

AU
AU

U A
GG

GG -
--

-
- --

U A

AU
AU

UA
GG

GG -
--

-
- --

U A
AU
AU

U A
GG

GG -
--

--
--

-

type t4

UA
AU

AU
U A

GG
GG -

--
-

- --

U A
AU

AU
UA

GG
GG -

--
-

- --

U A
AU

AU
UA

GG
GG -
-

-
- --

--
U A
AU

AU
UA

GG
GG -

--
-

--
--

U A
AU

AU
UA

GG
GG -
-

-
- --

--

U A
AU

AU
U A

GG
GG -

--
-
--

--
U A

AU
AU

UA
GG

GG -
-

-
-

-
- U A

AU
AU

U A
GG

GG -
--

-
-

-

U A
AU

AU
UA

GG
GG -
-

-
- --

--
U A

AU
AU

UA
GG

GG -
-

-
--

-
U A

AU
AU

UA
GG

GG -
--

-
-

-

type tua

type t5

type t8

type t11

type t14

type t3

type t6

type t9

type t12

type t7

type t10

type t13

type t16type t15

Fig. 2. The eighteen types of local alignments for the segments Sk and Tk

Si, Ti of type t1 or t2 (resp. t3, t4, . . . or t16) has a cost higher than the cost
of the same alignment where this local alignment is of type tg (resp. tua). The
similar conclusion for symmetric local alignments will then follow.

Let A and A′ be two canonical alignments that differ only on the local align-
ment of Si and Ti for a given 1 ≤ i ≤ n. More precisely, let this local alignment
be of type tua or tg in A′ and of any different type in A. The cost difference
between A and A′ can only be due to the local alignment of Si and Ti. Let us
notice that this difference is due locally to the alignment of a subset of bases
of Si and Ti. The alignments of bases of Si and Ti common to A and A′ will
thus not be taken into account in the computation of the cost difference between
A and A′. Moreover, if a change affects a base incident to an arc (say an arc
between a base of Si and a base of Sj), it is necessary to consider not only the
base affected (say the base of Si), but both bases incident to this arc.

The principle of the following proof is to show that from the conditions im-
posed by inequalities (1) to (4) and for the alignments A, A′ defined below,
we always have cost(A′) − cost(A) < 0, meaning that the alignment A is not
optimal.

Case 1. Let A be a canonical alignment containing a local alignment of Si and
Ti of type tj for some 3 ≤ j ≤ 16. Let A′ be the alignment obtained from A by
replacing the local alignment of Si and Ti by a local alignment of type tua. Let
us denote by k1 (resp. k2) the number of bases in Si and Ti in A which induce
an arc-removing (resp. arc-altering) and which do not induce this arc-removing
(resp. arc-altering) but an arc-altering (resp. arc-breaking) in A′.

Extending the Hardness of RNA Secondary Structure Comparison 149

Let us denote by k0 the number of bases deleted or inserted in Si and Ti in
A and which are not deleted or inserted anymore in A′.

Fig. 3. Example of a canonical alignment A containing a local alignment of type t3
and its corresponding alignment A′ where a local alignment of type tua replaces the
former local alignment. Here, k0 = 1, k1 = 3, k2 = 2.

We obtain k0 + k1 + k2 > 0, k0, k1, k2 ≥ 0 and cost(A′)− cost(A) = k1(wa −
wr)+k2(wb−wa)+k0(−wd). According to the conditions imposed by inequalities
(1) and (2), 0 < wd and wb < wa < wr, we deduce that cost(A′)− cost(A) < 0.

Case 2. Let A be an alignment containing a local alignment of Si and Ti of type
tj for j ∈ {1, 2}. Let A′ be the alignment obtained from A by replacing the local
alignment of Si and Ti by a local alignment of type tg. Let us denote by k3 the
number of bases deleted or inserted in Si and Ti in A and which are not deleted or
inserted any more in A′. We obtain k3 > 0 and cost(A′) − cost(A) = k3(−wd).
According to the conditions imposed by inequality (1), 0 < wd therefore we
deduce that cost(A′)− cost(A) < 0.

Hence, any canonical alignment containing a local alignment of Si and Ti of
type t1 or t2 (resp. t3, t4, . . . or t16) has a cost strictly greater than the cost
of the same alignment where this local alignment is of type tg (resp. tua). More
generally, since symmetric types have the same cost, we conclude that an optimal
alignment of (S, P) and (T,Q) is canonical (from Lemma 2) and contains only
local alignments of types tg, tua, tgSym and tuaSym. ��

Lemma 4. In any optimal alignment, no two segments Si and Sj (resp. Ti and
Tj) having local alignments of type tg or tgSym can be connected by an arc.

Proof. Let A be an alignment containing an arc connecting a base of Si to a
base of Sj , and whose local alignments are both of type tg or tgSym. Let A′

be an alignment obtained from A where one of these segments, say Si, has a
local alignment of type tua or respectively tuaSym. We will show that cost(A′)−
cost(A) < 0. Let k1 (resp. k2) denote the number of bases of Si in A which
induce an arc-removing (resp. arc-altering) and which in A′ do not induce this
arc-removing (resp. arc-altering) but an arc-altering (resp. arc-breaking). Thus,
we have cost(A′)− cost(A) = 4wd − 2wd + k1(wb −wa) + k2(wa − wr) = 2wd +
2wa − 2wr + k1(wb − wa) + (k2 − 2)(wa − wr) where k1 + k2 = 6, k1 ≥ 0 and

150 G. Blin et al.

k2 ≥ 2. According to the conditions imposed by inequalities (1) and (2), 0 < wd

and wb < wa < wr , therefore we have cost(A′) − cost(A) < 0. The proof is
similar considering Ti and Tj . ��

Definition 3. A canonical alignment A′ of (S, P) and (T,Q) containing only
local alignments of types tg, tua, tgSym and tuaSym and in which no arc connects
two segments whose local alignments are of type tg or tgSym (i.e. respecting the
conditions of Lemmas 3 and 4), is called tg-stable.

Lemma 5. The cost of a tg-stable canonical alignment A′ is cost(A′) = 3n(wb +
4wd

3)− p(6wb + 2wd − 6wa) where p is the number of segments whose alignment
is of type tg or tgSym.

Proof. As mentioned previously, on the whole (S, P) and (T,Q) contain 3n arcs.
If p is the number of local alignments of type tg or tgSym in A′, then there exists
6p arcs connecting a base belonging to a local alignment of type tg or tgSym to a
base belonging to a local alignment of type tua or tuaSym, and thus 3n− 6p arcs
between pairs of bases belonging to local alignments of type tua or tuaSym. We
compute the cost of any arc joining two local alignments of types tua and tua

(resp. tua and tg) or symmetric by adding to wb (resp. wa) a supplementary cost
computed for each incident base and resulting from the equitable distribution of
costs wd between the six arcs involved in each concerned local alignment. These
costs wd deal with the free bases, inside each local alignment.

The cost of an arc between two local alignments of type tua or tuaSym is
computed as follows : 4wd must be distributed on the six arcs involved. Thus
for each base incident to such an arc, a supplementary cost of 4wd

6 = 2wd

3 must
be taken into account. The cost of any arc involved in a tua-tua junction (or
symmetric) is then wb + 2wd

3 + 2wd

3 = wb + 4wd

3 . For a local alignment of type tg
(or symmetric), we must distribute 2wd on the six arcs involved, which leads to
a supplementary cost of 2wd

6 = wd

3 for any base incident to such an arc. Thus the
cost of any arc involved in a tua-tg junction (or symmetric) is wa + wd

3 + 2wd

3 =
wa + wd. We obtain cost(A′) = (3n− 6p)(wb + 4wd

3) + 6p(wd + wa) = 3n(wb +
4wd

3)− p(6wb + 24wd

3 − 6wd − 6wa) = 3n(wb + 4wd

3)− p(6wb + 2wd − 6wa). ��

Lemmas 1 to 5 provide us with all the necessary intermediate results to show
that the reduction from mis-3p to Edit(Nested, Nested) is valid.

Lemma 6. A cubic planar bridgeless connected graph G has an independent set
V ′ such that |V ′| ≥ k if and only if the edit distance between the sequences (S, P),
(T,Q) obtained from G by a UA-construction is at most � = 3n(wb + 4wd

3) −
k(6wb + 2wd − 6wa).

Proof. (⇒) Let V ′ ⊆ V be an independent set of G such that |V ′| ≥ k. Let A be
the canonical alignment of (S, P) and (T,Q) such that (i) ∀ vi ∈ V ′, the local
alignment of Si and Ti is of type tg or tgSym and (ii) ∀ vj ∈ V − V ′, the local
alignment of Sj and Tj is of type tua or tuaSym. Thus, by definition, the alignment
is tg-stable. By Lemma 5, cost(A) = 3n(wb + 4wd

3)−|V ′|(6wb +2wd−6wa). Since
|V ′| ≥ k by hypothesis, we have cost(A) ≤ 3n(wb+ 4wd

3)−k(6wb+2wd−6wa) = �.

Extending the Hardness of RNA Secondary Structure Comparison 151

(⇐) Suppose there exists an edit script between the sequences (S, P), (T,Q),
for which the corresponding alignment A′ satisfies cost(A′) ≤ �. Now let AOPT

be an optimal alignment of (S, P) and (T,Q). Let V ′ be the set of vertices v of G
for which, in AOPT , local alignments of the corresponding segments are of type
tg or tgSym. Since we know by Lemma 4 that no arc connects segments of type
tg or tgSym in AOPT , we conclude that V ′ is an independent set of G. Moreover,
by Lemma 5, we have cost(AOPT) = 3n(wb + 4wd

3)− |V ′|(6wb + 2wd − 6wa) and
since cost(AOPT) ≤ cost(A′) ≤ � with � = 3n(wb + 4wd

3)− k(6wb + 2wd − 6wa),
we conclude that k ≤ |V ′|. Lemma 6 is proved. ��

4 Conclusion

In this paper, we have proved that the problem edit(nested,nested) defined
in [6] is NP-complete. This is done using a non trivial reduction from mis-3p,
via a 2-page s-embedding. Though the NP-completeness of the problem was al-
ready known due to the fact that the Lapcs problem for nested structures was
proved to be NP-complete [5,3], we have extended this result to a larger and non-
intersecting class of instances, for which the set of costs is biologically more rele-
vant. Though the result we give in this paper is in some sense negative, we point
out that edit(nested,nested) has a polynomial approximation algorithm of
ratio β = max{ 2wa

wb+wr
, wb+wr

2wa
} [6]. However, this approximation ratio depends

on the respective values of the parameters wa, wb and wr. An interesting ques-
tion is whether there exists a polynomial algorithm for edit(nested,nested)

with constant approximation ratio.

References

1. Bernhart, F., Kainen, P.C.: The book thickness of a graph. Journal of Combinatorial
Theory, Series B 27(3), 320–331 (1979)

2. Biedl, T., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-
connectivity constraint. Algorithmica 19, 427–446 (1997)

3. Blin, G., Touzet, H.: How to compare arc-annotated sequences: the alignment hi-
erarchy. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS,
vol. 4209, pp. 291–303. Springer, Heidelberg (2006)

4. Evans, P.A.: Algorithms and Complexity for Annotated Sequence Analysis. PhD
thesis, University of Victoria (1999)

5. Lin, G.H., Chen, Z.Z., Jiang, T., Wen, J.: The longest common subsequence prob-
lem for sequences with nested arc annotations. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 444–455. Springer, Heidelberg
(2001)

6. Lin, G.H., Ma, B., Zhang, K.: Edit distance between two RNA structures. In: RE-
COMB’01. Proceedings of the 5th International Conference on Computational Bi-
ology, pp. 211–220. ACM Press, New York (2001)

7. Sankoff, D., Kruskal, B.: Time Warps, String Edits and Macromolecules: the Theory
and Practice of Sequence Comparison. Addison-Wesley, Reading (1983)

On the On-Line Weighted k-Taxi Problem

Weimin Ma1,2 and Ke Wang1

1 School of Economics and Management
Beijing University of Aeronautics and Astronautics, Beijing, 100083, P.R. China

mawm@buaa.edu.cn, wangke@sem.buaa.edu.cn
2 School of Economics and Management, Xi’an Technological University

Xi’an, Shaanxi Province, 710032, P.R. China

Abstract. Based on some results of k-server problem and k-taxi prob-
lem, the on-line weighted k-taxi problem is originally proposed and stud-
ied by our team. In the weighted k-taxi problem, the cost of every taxi
on the same distance is different whereas that is same in the traditional
k-taxi problem. In this paper, the formulation of the on-line weighted
k-taxi problem is presented first. Following that, some preliminary re-
sults which used to get the main theorems are given. Thirdly, some on-
line algorithms are designed to address the problem and the competitive
analysis are given in detail. Furthermore, the lower bound of competi-
tive ratio for some special cases is obtained. Finally, some conclusions
are made and some future research directions are pointed out.

1 Introduction

The k-server problem, originally introduced by Manasse, McGeoch and Sleator[1],
is one of the three basic on-line problems which had been studied extensively in
the late eighties and early nineties of last century, and the two others are paging
and metrical task systems.

In the k-server problem, we are given k mobile servers in a metric space M .
When a request is made by a point, one of the servers must be moved to the point
to satisfy this request immediately. The cost of all servers equals to the distance
of all servers’ moving. Our goal is to minimize the total cost. An algorithm A
which decides a server to satisfy the request at each step, is said to be on-line if
its decisions are made without the information about future requests. In general,
due to the absence of information about the future, an on-line algorithm can’t
serve the request in an optimal fashion. However, competitive analysis approach,
first applied to analyze on-line problem by Sleator and Tarjian[2], suggests us a
way of dealing with this problem. The idea behind the competitive analysis is
to evaluate the performance of an on-line algorithm by comparing to that of the
optimal off-line algorithm.

In the weighted k-server problem, servers have different costs, i.e. each server
has been assigned some non-negative weight. The weighted case of the k-server
problem turns out to be much more difficult. In paper [3], it was showed that
the competitive ratio is at least kΩ(k) in any space with at least k + 1 points.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 152–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the On-Line Weighted k -Taxi Problem 153

For k = 2, Koutsoupias and Taylor[4] proved that no online algorithm can be
better than 10.12-competitive, even if the underlying metric space is the line.
For the case k = 2 in uniform space, Chrobak and Sgall[5] showed that the Work
Function Algorithm is 5-competitive, and no better ratio is possible if the server
weights can have arbitrary positive values. They also gave a 5-competitive ran-
domized memoryless algorithm, as well as a matching lower bound. Concerning
the weighted 2-server problem on the uniform space, Epstein, Imreh, and Stee[6]
gave results for varying cost ratios between the servers. For ratios below 2.2, they
presented an optimal algorithm which is trackless. They also presented a general
lower bound for trackless algorithms depending on the cost ratio, proving that
the algorithm is the optimal trackless algorithm up to a constant factor for any
cost ratio.

The k -taxi problem is a generalization of the famous k -server problem. Some
important results of the problem have been proposed [7-12]. In the k-taxi prob-
lem, each request contains two points, one of which is the (start) point making
the request and the other is the destination point. The background of the k-taxi
problem is described as follows. There are k taxies on a traffic net to supply
service. When a service request that taking a passenger at one point to another
point occurs, a taxi must be moved to serve the request immediately, but the
information about future requests is unknown. It is assumed that all the taxies
are scheduled by a control center.

In this paper, the discussion focuses on the weighted case of the k-taxi prob-
lem. It is shown that the weighted k-taxi problem turns out to be more difficult
than the unweighted case. In the weighted k-taxi problem, taxies have different
costs, i.e. each taxi (say, tj) has been assigned some non-negative weight (say,
μj). When the taxi tj moves, the cost equals to μj times of the distance of its
moving. The model of this problem is formulated in section 2. Then the rest of
paper is organized as follows: in Section 3, some preliminary results concerning
the problem are presented. In section 4, several on-line algorithms are designed
to address the problem. And then the lower bound of competitive ratio is dis-
cussed in section 5. Finally, in section 6, we conclude the paper and discuss the
future research directions.

2 The Model

In the weighted k-taxi problem we have k taxies that reside and move in a metric
space M to supply service. Each taxi tj(1 ≤ j ≤ k) has a non-negative weight
μj . When the taxi tj moves, the cost equals to μj times of the distance of its
moving. Without loss of generality, it is assumed that

0 < μ1 ≤ μ2 ≤ μ3 ≤ · · · ≤ μk ≤ 1 (1)

Thus, t1 and tk denote the cheapest and the most expensive taxi, respectively.
For any points x and y in the given metric space, d(x, y) denotes their distance,

and the distance is symmetric, i.e., for all x, y, d(x, y) = d(y, x). A service request
r = (a, b), (a, b are different points in the given metric space), implies that there

154 W. Ma and K. Wang

is a passenger at point a must be taken to b by taxi. A service request sequence
R consists of some service request in turn, namely R = (r1, r2, · · · , rm), where
ri = (ai, bi). All discussions are based on an essential assumption: when a new
service request occurs, k taxies are all free. The weighted k-taxi problem is to
decide which taxi should be moved when a new service request occurs on the
basis that we have no information about future possible requests. The goal of
optimization is to minimize the total cost of all taxies.

For a known sequence R = (r1, r2, · · · , rm), let COPT(R) be the total cost
after finishing it with optimal off-line algorithm. An optimal off-line algorithm
knows the entire input sequence in advance and can process it optimally. If an
algorithm ON can schedule the taxies without information of the sequence after
ri for every new service request ri, we call ON an on-line algorithm. An on-line
algorithm ON is said to be a competitive algorithm, if there are constants α and
β for any possible R satisfying:

CON(R) ≤ α · COPT(R) + β (2)

where CON(R) is the total cost of satisfying sequence R with algorithm ON . α
is the competitive ratio. ON is also called a α-competitive algorithm.

3 Some Preliminary Results

In this section we propose some preliminary results as follows. For the given
metric space M , let dmax = max d(x, y), dmin = min d(x, y), where x and y are
two different points in M , and let λ = dmax

dmin
. Then we have

Lemma 1. For the present request r = (a, b), only considering the cost of finish
r, if μ2

μ1
> λ holds and there is no taxi at a, moving t1 to a first and then moving

t1 from a to b to finish r is optimal.

Proof. Without loss of generality, we assume that taxi t1 is located at c, and
taxi ti(i �= 1) is at d, where neither c nor d is a. Let C1(r) and Ci(r) denote the
cost of finishing r by t1 and ti respectively. Then we obtain

Ci(r)
C1(r)

=
μi · [d(d, a) + d(a, b)]
μ1 · [d(c, a) + d(a, b)]

≥ μi

μ1 · λ
(3)

As defined above, for any i (i �= 1), we have μi ≥ μ2. If μ2
μ1

> λ holds, we have

Ci(r)
C1(r)

≥ μi

μ1 · λ
≥ μ2

μ1 · λ
> 1 (4)

That is to say for any i (i �= 1), the cost of ti to finish r is more than that of
t1. ��

Lemma 2. For the present request r = (a, b), only considering the cost of finish
r, if μ2

μ1
> 1 + λ holds, moving t1 from a to b to finish r (moving t1 to a first, if

t1 is not at a) is optimal, no matter whether there are taxies at a or not.

On the On-Line Weighted k -Taxi Problem 155

Proof. For the case that t1 is located at a, lemma 2 obviously stands up, because
t1 is the cheapest one of the k taxies. Next, we discuss the case that t1 is not
located at a. Without loss of generality, it is also assumed that taxi t1 is located
at c(c �= a), and taxi tj(j �= 1) is at a. If μ2

μ1
> 1 + λ, then μ2

μ1
> λ holds. From

lemma 1, we can obtain that the cost of moving any other taxi which is not
located at a is more than C1(r). Therefore, we any need to compare C1(r) with
Cj(r).

Cj(r)
C1(r)

=
μj · d(a, b)

μ1 · [d(c, a) + d(a, b)]
=

μj

μ1 · [d(c,a)
d(a,b) + 1]

≥ μj

μ1 · (1 + λ)
≥ μ2

μ1 · (1 + λ)
> 1 (5)

The proof is completed. ��

Furthermore, if μ2
μ1

> 1+λ holds, from lemma 2 we know that no matter whether
a has a taxi or not, moving the taxi t1 to serve the request is the optimal
algorithm. Therefore, we can move t1 to complete all the request in this case
and the cost is minimum. All the other k − 1 taxies are idle in the whole game.
It is equal to the case k = 1 in fact, i.e., there is any one taxi in the problem. So
we have the following theorem.

Theorem 1. If μ2
μ1

> 1 + λ holds, there is a 1-competitive algorithm for the
weighted k-taxi problem.

As discussed above, it is shown that the weighted case of the k-taxi problem
turns out to be more difficult than the unweighted case. In the weighed k-taxi
problem, for the present request r = (a, b), the cost of moving a taxi which is
not located at a to finish r may be less than that of moving the one at a. But
it cannot occur in the unweighted k-taxi problem. However, if the weights are
nearly equal, it also could not occur in the weighted case.

Lemma 3. For the present request r = (a, b), only considering the cost of finish
r, if μ1 > λ

1+λ holds and there are taxies located at a, moving the cheapest one
at a to finish r is optimal.

Proof. Without loss of generality, it is assumed that taxi ti and tj are located at
c(c �= a) and a, respectively. If Ci(r)

Cj(r) = μi·[d(c,a)+d(a,b)]
μj ·d(a,b) > 1 for any i �= j holds,

the lemma is proved. The analysis is present as follows.

Ci(r)
Cj(r)

=
μi · [d(c, a) + d(a, b)]

μj · d(a, b)
=

μi

μj
·
[
d(c, a)
d(a, b)

+ 1
]

≥ μi

μj
·
(

1
λ

+ 1
)

≥ μ1 ·
1 + λ

λ
(6)

If μ1 > λ
1+λ holds, then we have Ci(r)

Cj(r) > 1. ��

156 W. Ma and K. Wang

4 Competitive Algorithms

In this section, several competitive algorithms and their competitive ratios are
presented. Let n denote the number of points in the given metric space M .
Subsection 4.1 and 4.2 formulate Greedy Algorithm(GA for short) and Partial
Greedy Algorithm(PGA for short), respectively. The two algorithms are com-
pared in subsection 4.3.

4.1 Greedy Algorithm

Firstly, we employ a Greedy Algorithm to address the problem as follows.

Greedy Algorithm. For the present request ri = (ai, bi),

(1) If there is only one taxi tj at ai, then GA moves tj from ai to bi to complete
the request.

(2) If there are more than one taxies at ai, then GA moves the cheapest one at
ai to bi to complete the request.

(3) If there is no taxi at ai, then GA moves the taxi t1 to ai first, and then
moves t1 from ai to bi to complete the request.

Theorem 2. For the on-line weighted k-taxi problem,if 1
μ1

> 1 + λ, GA is a
1

μ1
-competitive algorithm; if 1

μ1
≤ 1 + λ, GA is a (1 + λ)-competitive algorithm.

I.e., the competitive ratio of GA is max(1
μ1

, 1 + λ).

Proof. For case (1), the cost of GA for the ri is μj · d(ai, bi), and μj · d(ai, bi) ≤
d(ai, bi). For case (2), GA moves the cheapest one at ai, so the cost is also not
more than d(ai, bi). For case (3), the cost is at most μ1 · [dmax + d(ai, bi)]. I.e.,

CGA(ri) ≤
{

d(ai, bi) for the case (1) and (2);
μ1 · [dmax + d(ai, bi)] for the case (3). (7)

Then we have

CGA(R) =
m∑

i=1

CGA(ri) ≤
m∑

i=1

max(d(ai, bi), μ1 · [dmax + d(ai, bi)])

=
m∑

i=1

d(ai, bi) ·max
(

1, μ1 ·
[

dmax

d(ai, bi)
+ 1
])

≤ max(1, μ1 · (1 + λ)) ·
m∑

i=1

d(ai, bi) (8)

It is obvious to see that the cost of finishing R is at least μ1 ·
∑m

i=1 d(ai, bi)
for any algorithm in the given metric space M . That is because

∑m
i=1 d(ai, bi) is

the total distance all taxies have to move for finishing R and the weight of the
cheapest taxi t1 is μ1. Then we have

COPT(R) ≥ μ1 ·
m∑

i=1

d(ai, bi) (9)

On the On-Line Weighted k -Taxi Problem 157

Form (8) and (9), we can get

CGA(R) ≤
{ 1

μ1
· COPT(R) if 1

μ1
> 1 + λ;

(1 + λ) · COPT(R) if 1
μ1
≤ 1 + λ. (10)

The proof is completed. ��

4.2 Partial Greedy Algorithm

In this subsection, for the case 1 < k < n − 1, we employ a Partial Greedy Al-
gorithm[13] (which is so called because the Greedy Algorithm is used for some
of the cases in this problem) to address the problem. In the paper [13], the
PGA moves the nearest truck to serve the request when the point which made
the request has no truck. Similar approach also can be seen in paper [8]. In
the weighted k-taxi problem, PGA moves the cheapest taxi to serve the request
when the point which made the request has no taxi. More details are formulated
as follows.

It is assumed that there is at most one taxi located at a point before the
first request arrives. Otherwise, we can precondition the taxi locations such that
each point has at most one taxi. Furthermore, the cost of this precondition is
at most a constant (k−1)·dmax, and it has no influence on the competitive radio.

Partial Greedy Algorithm. For the present request ri = (ai, bi),

(1) If there is a taxi tj at ai and no taxi at bi, then PGA moves tj from ai to bi

to complete the request. At present no point has more than one taxi.
(2) If there is no taxi at ai and there is a taxi tj at bi, then PGA moves tj to

ai first, and then moves tj from ai to bi to complete the request. At present
no point has more than one taxi.

(3) If there is a taxi tx at ai and also there is a taxi ty at bi, and if x < y(μx ≤
μy), PGA moves tx from ai to bi to complete the request first and then turn
back to ai, else PGA moves ty to ai first and then moves ty from ai to bi to
complete the request. At present no point has more than one taxi.

(4) If there is no taxi at ai and bi, then PGA moves the taxi t1 to ai first and
then moves t1 from ai to bi to complete the request. And again no point has
more than one taxi.

Theorem 3. For the case 1 < k < n − 1 of the weighted k-taxi problem, if
2

μ1
> 1+λ, PGA is a 2

μ1
-competitive algorithm; if 2

μ1
≤ 1+λ, PGA is a (1+λ)-

competitive algorithm. I.e., the competitive ratio of PGA is max(2
μ1

, 1 + λ).

Proof. The discussion is similar to the description of GA. For case (1), the cost
of PGA for the ri is μj · d(ai, bi), and μj · d(ai, bi) ≤ d(ai, bi). For case (2),
the cost is 2μj · d(ai, bi), and 2μj · d(ai, bi) ≤ 2d(ai, bi). For case (3), the cost

158 W. Ma and K. Wang

is 2 min(μx, μy) · d(ai, bi), and it is also not more than 2d(ai, bi). For case (4),
the cost is at most μ1 · [dmax + d(ai, bi)]. I.e,

CPGA(ri) ≤

⎧
⎨

⎩

d(ai, bi) for the case (1);
2d(ai, bi) for the case (2) and (3);

μ1 · [dmax + d(ai, bi)] for the case (4).
(11)

Then we have

CPGA(R) =
m∑

i=1

CPGA(ri) + β ≤
m∑

i=1

max(2d(ai, bi), μ1 · [dmax + d(ai, bi)]) + β

≤ max(2, μ1 · (1 + λ)) ·
m∑

i=1

d(ai, bi) + β (12)

where β is the cost of preconditioning the taxies such that each point has at
most one taxi. From (12) and (9),we have

CPGA(R) ≤
{ 2

μ1
· COPT(R) + β if 2

μ1
> 1 + λ;

(1 + λ) · COPT(R) + β if 2
μ1
≤ 1 + λ. (13)

The proof is completed. ��

For the case k ≥ n − 1, we can employ Partial Greedy Algorithm to address
the problem as follows. Only move the cheapest n− 1 taxis (namely, tj , where
1 ≤ j ≤ n−1) to complete the service requests, and ignore the others. For every
request, use the PGA as defined above to schedule the taxies. It is assumed that
the cheapest n− 1 taxies are respectively located at n− 1 different points in the
metric space M before the first request arrives, and the rest of taxies are located
arbitrary. Otherwise, we can precondition the taxi locations and the cost of this
precondition is at most a constant (n− 2) · dmax.

As assumed above, the cheapest n− 1 taxies are respectively located at n− 1
different points. Therefore, the case (4) in the Partial Greedy Algorithm will
never occur. For the any other three cases, the cost of finishing ri could not be
more than 2μn−1 · d(ai, bi). In fact, the rest taxies (which are not cheaper than
tn−1, if exist) are not moved in the whole game. It is equal to the case k = n− 1
actually. Then with (9), we can get the following theorem.

Theorem 4. For the case k ≥ n− 1 of the weighted k-taxi problem, PGA is a
2μn−1

μ1
-competitive algorithm.

4.3 Comparison of the Two Algorithms

In subsections 4.1 and 4.2, we gave two algorithms GA and PGA respectively.
Then the two algorithms are compared as follows.

Theorem 5. For the case 1 < k < n−1 of the weighted k-taxi problem, if 2
μ1

>

1 + λ, then the competitive ratio of GA is less than that of PGA; if 2
μ1
≤ 1 + λ,

then GA and PGA have the same competitive ratio.

On the On-Line Weighted k -Taxi Problem 159

Proof. The criterion, with which one can judge which on-line algorithm is better
than the other, is the competitive ratio concerning relevant on-line algorithm.
For the case 1 < k < n−1, respectively the competitive ratios of algorithms GA
and PGA are

CGA =
{ 1

μ1
if 1

μ1
> 1 + λ;

1 + λ if 1
μ1
≤ 1 + λ; (14)

and

CPGA =
{ 2

μ1
if 2

μ1
> 1 + λ;

1 + λ if 2
μ1
≤ 1 + λ. (15)

So we have
if 1 + λ < 1

μ1
, then CGA = 1

μ1
, CPGA = 2

μ1
, CGA < CPGA;

if 1
μ1
≤ 1 + λ < 2

μ1
, then CGA = 1 + λ, CPGA = 2

μ1
, CGA < CPGA;

if 1 + λ ≥ 2
μ1

, then CGA = 1 + λ, CPGA = 1 + λ, CGA = CPGA.
It is easy to see that if 2

μ1
> 1+λ holds, we get CGA < CPGA. Therefore, as far as

competitive ratio is concerned, algorithm GA is better than PGA. If 2
μ1
≤ 1+λ

holds, the two algorithms have the same competitive ratio. ��

Concerning the case k ≥ n − 1, the competitive ratio of GA may be less than
that of PGA, and also it may be more than that of PGA. Take a special case for
example as follows. If μ1 = μ2 = · · · = μn−1, then the competitive ratio of PGA
is CPGA = 2μn−1

μ1
= 2. And that of GA is CGA = max(1

μ1
, 1 + λ) ≥ 2 = CPGA.

Thus, we can see that when μn−1
μ1

is varying below a certain bound, CPGA are
also less than CGA; and for some other cases, CPGA may be more than CGA.

However, at the aspect of quality of service, PGA is much better than GA
usually. PGA locates the k taxies at k distinct points in the whole game. When
request occurs on one of the k points, the request can be satisfied immediately.
In fact, PGA is also a coverage strategy. It is to say that the k taxies always
cover k points. The idea behind GA is that for the present request, only concern
about minimizing the cost of finishing the present request. It is a nature method
to handle the problem. In the process of the game, many taxies may be all
located at one point. Therefore, the number of points at which the request can
be satisfied immediately may lees than k.

5 A Lower Bound

In this section, we give a lower bound of competitive ratio for the weighted k-taxi
problem in a symmetric metric space. In the paper [13], the authors compared
an on-line algorithm with k trucks to an off-line one with h ≤ k trucks and got
the lower bound as k·(θ+1)

k·(θ+2)−2h+2 , where θ is the ratio between the cost of a truck
with goods and that of one without goods on the same distance. Let θ = 1 and
h = k, then they got the lower bound of the k-taxi problem as 2k

k+2 .

160 W. Ma and K. Wang

For the weighted case of k-taxi problem, we take in the similar approach and
only compare an on-line algorithm with k taxies to an off-line one with k taxies.
At first we analyze the unweighted case of the k-taxi problem, then the case
in which the weights are nearly equal is studied and the following theorem is
obtained.

Theorem 6. If μ1 > λ
1+λ holds, there is no c-competitive algorithm for the

weighed k-taxi problem in a given metric space M with at least k + 2 points,
where c < 2k·μ1

k+2 .

Proof. Without loss of generality, assume A is an on-line algorithm and that
the k taxies start out at k different points. Let H (of size k + 2) be a subset
of the given metric space M , induced by the k initial positions of A’s taxies
and two other points. Define R, A’s nemesis sequence on H , such that R(i)
and R(i − 1) are the two unique points in H not covered by A and a request
ri = d(R(i), R(i − 1)) occurs at time i, where all i ≥ 1. That is to say at each
step R requests the point just vacated by A. Then we have

CA(R) =
m∑

i=1

CA(ri) =
m∑

i=1

[d(R(i + 1), R(i)) + d(R(i), R(i− 1))]

= 2
m−1∑

i=1

d(R(i + 1), R(i)) + d(R(m + 1), R(m)) + d(R(1), R(0)) (16)

Let S be any k-element subset of H containing R(1) but not R(0). We can
define an off-line algorithm A(S) as follows: the taxies finally occupy the points
in set S. To process a request ri = d(R(i), R(i−1)), the following rule is applied:
If S contains R(i), move the taxi at R(i) to R(i−1) to complete the request, and
update the S to reflect this change. Otherwise move the taxi at R(i− 2) to R(i)
first and then to R(i − 1) to complete the request, and update S to reflect this
change. Then the expected cost of the off-line algorithm is (more details please
refer to paper[13])

CEXP(R) =
m∑

i=1

d(R(i), R(i− 1)) +
1
k
·

m∑

i=2

d(R(i− 2), R(i))

≤ k + 2
k
·

m−1∑

i=1

d(R(i + 1), R(i)) +
k + 1
k
· d(R(1), R(0))

−1
k
· d(R(m), R(m− 1)) (17)

When μ1 > λ
1+λ holds, the weights are nearly equal. Form lemma 3, we

know the weighted case is similar to the unweighted case. Because every taxi
has a weight which is not more than 1, (17) is still holds for the weighted case
and CA(R)′ ≥ μ1 ·CA(R), where CA(R)′ denotes the cost of algorithm A for the

On the On-Line Weighted k -Taxi Problem 161

weighted case. After some mathematical manipulation (e.g., let m → ∞), we
obtain

CA(R)′

CEXP(R)
≥ μ1 ·

CA(R)
CEXP(R)

≥ 2k · μ1

k + 2
(18)

Finally, there must be some initial set whose performance is often no worse
than the average of the costs. Let S be this set, and A(S) be the algorithm
starting from this set. ��

Taking theorem 1 and theorem 6 together, we obtain the following theorem.

Theorem 7. For the weighed k-taxi problem in a given metric space M with at
least k + 2 points, if μ1 < μ2

1+λ holds, there exists a 1-competitive algorithm; if
μ1 > λ

1+λ holds, there is no c-competitive algorithm for c < 2k·μ1
k+2 .

6 Conclusion

In this paper, we consider the weighted case of k-taxi problem. Some on-line
algorithms are designed to address the problem and the competitive analysis
are given in detail. Furthermore, the lower bound of competitive ratio for some
special cases is also discussed in this paper.

However, there are still many theoretical problems that need to be studied
further. For example, although we have get a lower bound of competitive ra-
tio for the case μ1 > λ

1+λ , and showed that if μ1 < μ2
1+λ holds, there exists a

1-competitive algorithm, the lower bound of other cases and the optimal lower
bound are still open.

Furthermore, concerning that the request cannot be complete instantaneously
and the process of satisfying request must last a period of time, an essential as-
sumption in this paper that when a new service request occurs k taxies are all
free cannot come into existence in reality. Without this assumption or taking
time into account, the problem will be more complex. It needs further investi-
gation.

Acknowledgements. The work was partly supported by the National Natural
Science Foundation of China (70671004, 70401006, 70521001), Beijing Natural
Science Foundation (9073018), Program for New Century Excellent Talents in
University (NCET-06-0172) and A Foundation for the Author of National Ex-
cellent Doctoral Dissertation of PR China.

References

1. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. Journal of Algorithms (11), 208–230 (1990)

2. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communication of the ACM 28, 202–208 (1985)

162 W. Ma and K. Wang

3. Fiat, A., Ricklin, M.: Competitive algorithms for the weighted server ploblem.
Theoretical Computer Science 130, 85–99 (1994)

4. Koutsoupias, E., Taylor, D.: The CNN problem and other k -server variants. In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 581–592. Springer,
Heidelberg (2000)

5. Chrobak, M., Sgall, J.: The weighted 2-server problem. Theoretical Computer Sci-
ence 324, 289–312 (2004)

6. Epstein, L., Imreh, C., van Stee, R.: More on weighted servers or FIFO is better
than LRU. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 257–
268. Springer, Heidelberg (2002)

7. Xu, Y.F., Wang, K.L.: On-line k -taxi problem and competitive algorithm. Journal
of Xi’an Jiaotong University (1), 56–61 (in Chinese) (1997)

8. Xu, Y.F., Wang, K.L., Ding, J.H.: On-line k -taxi scheduling on a constrained graph
and its competitive algorithm. Journal of System Engineering (12), 361–365 (in
Chinese) (1999)

9. Xu, Y.F., Wang, K.L., Zhu, B.: On the k -taxi problem. Information 2(4) (1999)
10. Xin, C.L., Ma, W.M.: Scheduling for On-line Taxi Problem On a Real Line and

Competitive Algorithms. In: ICMLC 2004. Proceedings of the Third International
Conference on Machine Learning and Cybernetics, pp. 3078–3084 (2004)

11. Ma, W.M., Wang, K.: On-line taxi problem on the benefit-cost graphs. In: ICMLC
2006. Proceedings of the Fifth International Conference on Machine Learning and
Cybernetics, pp. 900–905 (2006)

12. Ma, W.M., Wang, K.: On the On-Line k -Truck Problem with Benefit Maximiza-
tion. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 660–669. Springer,
Heidelberg (2006)

13. Ma, W.M., Xu, Y.F., You, J., Liu, J., Wang, K.L.: On the k -truck scheduling
problem. International Journal of Foundations of Computer Science 15(1), 127–
141 (2004)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 163–174, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model Futility and Dynamic Boundaries with
Application in Banking Default Risk Modeling

Xiao Jun Shi1,2

1 School of Economics and Management, Beijing University of Aeronautics and Astronautics,
Beijing, PRC, 100083

2 Institute of Finance and Banking, Chinese Academy of Social Science, Beijing, PRC, 100732
Xiao Jun Shi, sxjstein@yahoo.com.cn

Abstract. This paper presents a novel concept of model futility to capture the
dynamic feature of modeling risk. Three key components, monitoring statistic,
possibility of being futile and futility boundaries are specified. We apply this
approach in banking default risk modeling monitoring to solve the optimal
pairing ratio problem. Its effectiveness and efficiency are demonstrated by
comparison with testing approach which is currently prevailing in banking
models validation.

Keywords: Model Risk, Futility, Banking.

1 Introduction

Credit risk modeling is an exciting area for credit professionals and statisticians.
Especially as The New Basel Accord will be enforced globally after 2006, new
analytical models to measure, manage, and control credit risk are created and
promoted more frequently. One of the fundamental problems of the applications of
these models is how to confirm the efficacy of them? Nowadays, statistical testing is
the most applied method of model validation in banking risk modeling. But most used
testing methods such as significance testing, good-of-fitness testing, or more recently
used ROC methods borrowed from radar image analysis, among others (for an
excellent exhibition of these techniques, refer to [1]), are all static methods. They
cannot capture the dynamic feature of model inefficacy, or model risk. Say it in other
way, such methods cannot answer questions as “when will a particular model be
futile?” This paper presents a novel concept of model futility to capture the dynamic
feature by resembling the trajectory of model risk statistic as a stochastic process. By
this approach, banks can conduct a continuous monitoring of the efficacy of models.
We call such an approach of controlling model risk as a clinical approach. The critical
problems we aim to tackle are how to present a suitable stochastic modeling of the
model’s inefficacy, and what are the low boundaries of model futility. The following
sections are arranged as: section 2 presents typical evidences of dynamic feature of
model risk in banking; section 3 resembles model risk process as a Brownian motion;
section 4 is the most important part of this paper, in this section, model futility is
defined, monitoring statistic is designed, and a direct method to compute futility

164 X.J. Shi

boundaries is presented; section 5 gives a more convenient algorithm to determine
low boundaries based on conditional power; in section 6, we apply the model futility
method in Logistic default risk modeling to solve the problem of optimal pairing
ratio; and section 7 concludes.

2 Dynamic Feature of Model Risk in Banking

The mostly studied type of model risk in banking is overfitting errors ([2]). Broadly
speaking, there are three kinds of overfitting, that is, the so-called curse of
dimensionality resulting from estimating a model with highly flexible function form;
testing of many possible predictors and choose the one that works best on a specific
sample; fitting a feature of one’s data collection mechanism rather than an underlying
economic relationship. All of these three kinds of overfitting are dynamic in nature
which means they are related to the dynamic composition of the model development
sample. Just as [3] states: “A good credit model must perform well over time … A
model’s performance should be verified and validated on a continuous basis.
(pp188~189) ”. Now that model risk in banking is dynamic, we naturally require a
dynamic monitoring approach of the performances of the models. Specifically, we
require such an approach that can incorporates: (1) the degree of model risk
measurement, (2) the degree of variability of the model risk measurement over time,
(3) the likelihood of important excursions in the trajectory over time, (4) the
memoryless property.

3 Resemblance of Model Risk Trajectory as a Brownian Motion

Fortunately, we have already had such a tool which can satisfy the requirements
stated above. The well-known Brownian motion is such a tool. Review of Brownian
motion reveals that the properties of this type of movement closely align with model
risk process in banking. The dependence of the location of a Brownian element on its
previous position matches with assessment of the behavior of a model risk
measurement that is built on accumulating data over time. The fact that Brownian
motion follows a normal distribution matches nicely with normality assumption in
model errors researches. In addition, some systematic factors such as Basel II driven
data accumulation in banking system will universally improve the quality of the credit
risk models. And the drift term in Brownian motion can perfectly capture such
systematic effects over the course of credit modeling evolution.

The most relevant properties of Brownian motion can be applied in model risk
monitoring is the conditionality property, one can consult any of the modern
probability and stochastic course books (e.g. [4], among others) for the details of
these two properties. Here we only present the results.

We define a random variable of model risk measurement over time obeying
standard Brownian motion as ()B t . Using the conditionality properties of Brownian

motion we can calculate the probability of model risk greater than a predefined
critical value b at time 2t if we know the level of model risk is a at current time 1t as

following:

 Model Futility and Dynamic Boundaries 165

{ () () } { }2 1

2 1

1
b a

P B t b B t a
t t

−> = = −Φ
−

 (1)

4 Model Futility

The rationale behind the determination of model futility is approximating certain
model risk measure as a Brownian motion and comparing the observed trajectory of
the model risk with a predefined Brownian motion under the null hypothesis of
futility or the alternative hypothesis of efficacy.

There are three key components in the determination of model futility. The first
one is the proper measure of the model risk d and converting its dynamics into a
Brownian motion. The second one is how possible it is if the model risk dynamic
behaves as a futile Brownian motion with elapse of information time1 t . The last but
not the least one is the boundary values b of model futility. Now we show how to
specify these three components in a very basic situation.

4.1 Research Design Settings

A model risk investigator is interested in the efficacy of certain loan default
probability p prediction model over time in a bank. In the original design, the

investigator should examine N consumers over a time span of T .The investigator is
interested in conducting an interim review when the model prediction results are

available for only
1

t

t ii
N n

=
=∑ , , ,1= …t T , where in means the number of loans

examined at time of i .

4.2 Monitoring Statistic

Let ix be default status of the thi loan. Let 1ix = if the model prediction of the default

status is right, that is, if the model prediction of default possibility of a consumer is
greater than 0.5 and the consumer really default in one year, or the model result is less
than 0.5 and the consumer does not default in one year. On the other hand, let 0ix = .

By the end of the study, the best estimator of model prediction efficacy is:

1

N

ii
x

X N
==∑ (2)

For the null hypothesis (or the alternative hypothesis) of model futility, we can
predefine a suitable value for the mean of ix denoted as p , its variance is ()1p p− .

By central limit theorem, if we can write that:

~ (, ())
1

1iN

i i ii
x N N p N p p

=
−∑ (3)

1 Information time is quite different from calendar time. In the context of model risk,

information time usually refers to the portion of observed sample of the total number of the
sample. But the calendar time refers the portion of the time of the existence of the current
model of its whole life span.

166 X.J. Shi

By (3), it is easy to know:

~ (,)
() ()
1

1 1

iN

ii i i
x N p N

N
NN p p N p p

=

− −
∑

 (4)

Variance in (4) is exactly the information time IT . Note that, at the beginning of
the investigation 0IT = and at the conclusion of the study 1IT = . This gradual
accrual of information over time is exactly what information time is design to
measure.

If the null hypothesis is true, the realized model efficacy is equal to p , and then we

can see that

()
1

1

iN

i ii
x N p

ms
N p p

=
−

=
−

∑
 (5)

is normally distributed with mean of 0 and variance of iN
N and follows standard

Brownian motion. This is the monitoring statistic that we are looking for.

4.3 Possibility of Being Futile

When we have obtained monitoring statistic following Brownian motion, the
computation of possibility of being futile is quite straight. We first define the futile
process as a standard Brownian motion with no drift term. At information time
of iN

NIT = , we observe that the value of monitoring statistic is im . Applying

equation (1) directly, we know the possibility of the observed trajectory following the
futile process is

{ () } { }1 i
i

m
P B t m

IT
> = −Φ (6)

4.4 Dynamic Boundaries

The concept of boundary is central in the dynamic determination of model futility. It
is a demarcation divides the space of monitoring statistic into futility region and
continuation region. It can take the shape of level line, sloping lines or curves. It is a
prospectively declared decision rule which can solve the problem of accumulating
type I error accompanying multiple hypothesis testing on the same sample ([5]).
Inspired by the workings of [6], [7], and [8] we propose a sloping shaped boundary in
banking model risk monitoring as in fig.1. It has decreasing boundary values as
information time passing which reflects the fact that with information time elapsing
more information will accumulate and the boundaries to determine futility should be
more accurately set but not like at the beginning of the process the boundaries can be
only loosely set with small fraction of sample information used.

 Model Futility and Dynamic Boundaries 167

0

1

2

3

4

5

6

7

0.1 0.3 0.5 0.7 0.9 1

Information Time

B
ou

nd
ar

y
V

al
ue

s

Fig. 1. Sloping Model Futility Boundary. This is only an illustrating figure.

The critical problem now is how to distribute a selected overall type I error
α across the interim monitoring points at different information
time iIT as , , , ,1 2i i Mα = … . Here we applied the well-known Alpha Spending

Function method in clinical literature which was pioneered by [6], [7] and nicely
elaborated by [8].

The specific steps to determine boundaries are as followings:

Step 1: Select an overall type I error α for the monitoring process. Set M points
of investigation at information time , , ,1iIT i M= … .

Step 2: Using alpha spending function2 to distribute α across investigation points
and set the value of interim monitoring alpha levels , ,1 Mα α… .

Step 3: Set the boundary values for the thi monitoring point with the constraint of
distributed type I error level iα .

Step 4: Judging whether the monitoring statistic exceeds the boundary value at thi
monitoring point, if it exceeds, then the current model is futile.

For a simple case with 3 monitoring points, we present the details of step 3.
Boundary values are denoted as , ,1 2 3b b b . As we have known , ,1 2 3α α α , we can

obtain the boundary values by:

{ () }

{ () () }

{ () () () }

1 1 1

1 1 2 2 2

1 1 2 2 3 31

P B t b

P B t b B t b

P B t b B t b B b

α
α

α

≥ =
< ≥ =
< < ≥ =

∩
∩ ∩

 (7)

2 For space limited, the details of alpha spending function are omitted, readers who are

interested can consult [7] and [8] for details.

Continuation Region

Futility Region

168 X.J. Shi

It is easy to solve 1b as

11 1 1b z tα−= ⋅ (8)

where
11z α− means ()11 α− percentage points of a standard normal distribution.

However, the second line of expression (7) introduces new complexities. It
requires the joint distribution of ()1B t and ()2B t to determine boundary value 2b .

Lemma 1. The correlation coefficients between ()1B t and ()2B t is 1 2t tρ = , and

the joint distribution of ()1B t and ()2B t is

()
()

, (,)
()

2 2
2 1 11 1 2 2

1 2 1

1 21 2

2
2

1 2 1

1

2

t t t t

t t

t B t B B t B
t t t

B B t tf B B e
t t tπ

− +
− −=

−
 (9)

For space limited, showings of lemmas in this paper are all omitted; but they can be
available from the corresponding author by request.

As we know the joint distribution of ()1B t and ()2B t , the boundary value 2b can

be obtained by solving

()
()

()

2 2
2 1 11 1 2 2

1
1 2 1

1 2
2

2
2

2
1 2 1

1

2

t t t tt B t B B t B
b t t t

t tb
e dB dB

t t t
α

π

− +
∞ − −

∞
=

−∫ ∫ (10)

Similar procedure can be followed to solve 3b .

5 Conditional Power and Low Boundaries

The procedure above is quite complex and difficult to realize in practical application.
If we look at the boundaries problem in a forward way, the solution will be straight
and a closed-formed solution can be obtained.

Suppose that we know the value of monitoring statistic at information time

1IT is 1s . We want to know the possibility that monitoring statistic at information

time 2IT is greater than a predefined value 2s for ≤ ≤ ≤1 20 1IT IT , or

≥ =2 2 1 1{ () () }P ms IT s ms IT s (11)

We convert it to an event involving the monitoring statistic following Brownian
motion and apply the knowledge of Brownian motion conditional on the past. We can
get:

2 2 1 1
2 2 1 1

2 1

{ () () } 1 { }
IT s IT s

P ms IT s ms IT s
IT IT

⋅ − ⋅
≥ = = − Φ

−
 (12)

 Model Futility and Dynamic Boundaries 169

The proof is as following:

≥ =

= ⋅ ≥ ⋅ ⋅ = ⋅

= ≥ ⋅ = ⋅

= − ≥ ⋅ − ⋅

⋅ − ⋅
= − ≥

−

⋅ − ⋅
= − Φ

−

2 2 1 1

2 2 2 2 1 1 1 1

2 2 2 1 1 1

2 1 2 2 1 1

2 2 1 1
2 1

2 1

2 2 1 1

2 1

{ () () }

{ () () }

{ () () }

{ () }

{ (0,) }

1 { }

P ms IT s ms IT s

P IT ms IT IT s IT ms IT IT s

P B IT IT s B IT IT s

P B IT IT IT s IT s

IT s IT s
P N IT IT

IT IT

IT s IT s

IT IT

This is known as conditional power computation under the null hypothesis of
standard Brownian motion representing futile process, or 0()pC H .

By conditional power computation method, we can easily solve the problem of
boundary value. In this framework, we can convert the boundary value problem into
the following one: what is the value of b at information time = …, 1, ,iIT i M such

that the probability that the test statistic falls in the futility region at the conclusion of
the study is at least some value γ (i.e.γ = 95%). That is

α γ−≥ = =1 2{ (1) () }i iP ms z ms IT b (13)

whereα is the significance level of the testing at the conclusion of the investigation
process. α−1 2z is the critical value of the critical region at the conclusion of the

investigation process.
Lemma 2 gives the closed-formed solution of boundary value b .

Lemma 2. In conditional power framework, givenα , γ and iIT , we can obtain the

boundary values ib for thi interim investigation by

α γ− −− −
= 1 2 1 1 i

i
i

z z IT
b

IT
 (14)

6 Application in Banking Default Risk Modeling Monitoring

Logistic modeling of default risk has been widely accepted in banking industry. But
there is a fundamental question left unanswered until now, that is, what is the
optimal pairing ratio of the healthy companies to the default companies when
designing the modeling sample? In an information perspective or a Bayesian view,
pairing ratio will definitely affect modeling efficacy. In this paper, we try to apply
the model futility and boundary values method proposed above to solve this
fundamental problem.

170 X.J. Shi

6.1 Rationale

In order to find the optimal pairing ratio, we first design several typical scenarios of
pairing ratio of healthy companies to default ones in an increasing order. We take
these scenarios as different interim investigation points in model futility framework.
In this way, we change the optimal pairing ratio problem into an optimal stopping
problem of Logistic default risk modeling. That is, when the monitoring statistic first
falls into the continuation region, we set the optimal pairing ratio by this point.

6.2 The Sample

It is a well-known fact that in China there is no usable default (or bankruptcy) data for
many reasons. We commonly use ST (Specially Treated) companies in stock market
as proxy of default ones. By the definition of ST, this kind of practice is quite
acceptable. We collected the financial data of all the listed A share companies in
Shanghai Stock Exchanges until 2004. All the data come from StockStar
(www.stockstar.com.cn) which is a designated website by China Securities
Regulation Commission for listed companies’ information disclosure. During the
period from January 1, 2003 to August 9, 2004, there are totally 52 ST companies, 20
in 2003, 32 in 2004. We use all the 20 ST companies in 2003 and randomly selected
19 ST companies in 2004 to build the sample of proxy default companies for model
development. And the remaining 13 ST companies in 2004 were concluded in test
sample. In order to avoid over-estimation problem argued in Ohlson (1980), we
should use financial data two years before to development the model. That is, we
should use data in 2001 to predict what will happen in 2003, and data in 2002 to
predict the situation in 2004. Finally, there are totally 1080 healthy companies
included in development sample.

6.3 Interim Points

Now we have totally 39 proxy default companies in development sample. We design
5 typical pairing ratios, that is, 1:1.05, 1:2, 1:3, 1:5, and the last one including all the
collected healthy companies. As we know there are totally 1080 healthy companies, it
is easy to calculate information time of interim points corresponded to these 5 typical
pairing ratios. Table 1 gives the results:

Table 1. Information times of different interim ponits

Pairig Ratios Number of healthy companies Information time
1:1.05 41 0.04
1:2 78 0.07
1:3 117 0.11
1:5 195 0.18

All healthy companies 1080 1.00

 Model Futility and Dynamic Boundaries 171

6.4 Hosmer-Lemeshow Testing Results

The details of financial indicators selection, Logistic model parameters estimation and
tests of good-of-fitness are not presented here for it is not the main purpose of this
paper. Here we only present the Hosmer-Lemeshow testing results in table 2.

Table 2. Presents Hosmer-Lemeshow testing results at different information time. The first row
of the table presents information times (IT) of different interim points corresponding to 5
typical pairing ratios. In the second row, 0 represents healthy company, 1 represents default
company. In the third row, OB means observed numbers of certain type of companies, PR
means Logistic model predicted frequencies of certain type of companies, TA means total
number of companies. The last two rows present values of 2χ statistic and p-values.

IT 0.04 0.07 0.11
 0 1 0 1 0 1
 OB PR OB PR TA OB PR OB PR TA OB PR OB PR TA

1 7 7.494 1 .506 8 11 11.782 1 0.218 12 16 16.000 0 .000 16
2 7 6.858 1 1.142 8 12 11.329 0 0.671 12 16 15.988 0 .012 16
3 7 6.288 1 1.712 8 10 10.635 2 1.365 12 16 15.934 0 .066 16
4 5 5.233 3 2.767 8 12 10.086 0 1.914 12 15 15.782 1 .218 16
5 8 4.678 0 3.322 8 11 9.626 1 2.374 12 15 15.483 1 .517 16
6 3 4.172 5 3.828 8 8 8.854 4 3.146 12 16 14.835 0 1.165 16
7 3 3.070 5 4.930 8 8 7.870 4 4.130 12 14 13.267 2 2.733 16
8 0 2.142 8 5.858 8 4 5.490 8 6.510 12 8 8.755 8 7.245 16
9 0 .910 8 7.090 8 1 2.166 11 9.834 12 1 .956 15 15.044 16

10 1 .154 7 7.846 8 1 .162 8 8.838 9 0 .000 12 12.000 12
2χ 22.475 13.421 5.030

Sig. 0.004 0.098 0.754

IT 0.18 1
 0 1 0 1
 OB PR OB PR TA OB PR OB PR TA

1 23 23.000 0 0.000 23 112 111.905 0 0.095 112
2 23 22.994 0 0.006 23 112 111.619 0 0.381 112
3 23 22.969 0 0.031 23 111 111.314 1 0.686 112
4 22 22.912 1 0.088 23 112 110.985 0 1.015 112
5 22 22.814 1 0.186 23 111 110.659 1 1.341 112
6 23 22.507 0 0.493 23 109 110.217 3 1.783 112
7 23 21.925 0 1.075 23 111 109.634 1 2.366 112
8 23 20.879 0 2.121 23 109 108.784 3 3.216 112
9 13 14.618 10 8.382 23 108 106.942 4 5.058 112

10 0 0.382 27 26.618 27 85 87.941 26 23.059 111
2χ 17.998 4.104

Sig. .021 .848

6.5 Boundaries and Values of Monitoring Statistic

We set α at 0.05, γ at 0.95. By (14) in lemma 2, it is easy to calculate boundaries for

5 interim points. In order to calculate values of monitoring statistic, we should first
select a proper level of p . By experience, we set p at 0.01. For every interim point,

differences between observed and predicted values of two types of companies are
calculated, and then sum up the absolute values of these differences, we get

172 X.J. Shi

1

iN

ii
x

=∑ in (6). With p and
1

iN

ii
x

=∑ known, it is easy to obtain values of monitoring

statistic for 5 interim points. Table 3 and Fig. 2. present boundaries and values of
monitoring statistic. It is quite straight to judge from Fig. 2. that the optimal pairing
ratio is 1:3, because only in this case monitoring statistic falls into the continuation
region.

Table 3. Boundaries and monitoring statistic values of 5 interim points

Information
times

0.04 0.07 0.11 0.18 1.00

Boundaries 9.74 7.07 5.77 4.48 1.96
Monitoring
Statistic

12.03 11.58 4.23 7.92 4.34

0

2

4

6

8

10

12

14

0.04 0.07 0.11 0.18 1.00
Information Time

V
al

ue
s

boundaries monitoring statisitc

Fig. 2. Presents low boundaries and values of monitoring statistic. It shows that boundaries
decrease with information time increasing because of more information arriving. But there is
volatility in the trajectory of monitoring statistic at different information times.

6.6 Comparison with Testing Approach

If we want to solve this optimal pairing ratio problem by testing approach, we should
compare expected losses in all these 5 pairing situations. So we should first estimate
probabilities and loss function of error I and error II. We set three cutoff points for
every pairing ratio, that is, 0.5, 0.647 and 0.341. And loss of error I is 1, 20, and 38
times loss of error II when cutoff points are 0.5, 0.647 and 0.341 respectively. Table 4
presents error rates and losses in different situations. Fig. 3 presents the curves of total
error, error I and expected loss in different situations.

In order to decide which pairing ratio is optimal in this framework, we take
elimination and minimization method. First, eliminate all situations with any kind of
error rate more than 0.35. Second, we follow expected loss minimizing principal to
find the optimal pairing ratio. Finally, we pick up 1:3 as the optimal pairing ratio.

Continuation Region

Futility Region

 Model Futility and Dynamic Boundaries 173

This answer is the same as the one we’ve got in model futility boundaries
framework.

Comparing with the method we propose in this paper, the testing approach is
clearly more tedious and subjective. Additionally, there are suppositions which
demand past experiences and judgments such as loss function specification if we
apply testing approach. Although futility boundaries approach also require subjective
specification of α and γ , but it is much easier to decide, because these two
parameters represent the accuracy level of the model, they should naturally be set by
the investigator. In one word, futility boundaries approach captures the dynamic
feature of the model risk; and it is more efficiency than the testing approach.

Table 4. Presents error rates, loss specification and expected losses in 5*3 situations

 (A) (B) (C)

Fig. 3. Presents total error rate, possibilities of error I and expected costs in different situations.
(A), (B), and (C) present the situations of cutoff point at 0.341, 0.5 and 0.647 respectively. On
the horizontal axis, 1 to 5 represent 1:1.05, 1:2, 1:3, 1:5, and all healthy companies scenarios
respectively.

Pairing Ratio
Cutoff
Points

Total Error Error I Error II Loss of
Error I

Loss of Error
II

Expected
Loss

0.5 0.154 0.154 0.154 1 1 0.308
0.647 0.078 0.308 0 20 1 3.077 1:1
0.341 0.269 0.077 0.462 38 1 3.385
0.5 0.154 0.308 0 1 1 0.308

0.647 0.231 0.462 0 20 1 9.24 1:2
0.341 0.162 0.154 0.231 38 1 6.083
0.5 0.269 0.154 0.385 1 1 0.539

0.647 0.115 0.154 0.077 20 1 3.157 1:3
0.341 0.231 0.077 0.462 38 1 3.346
0.5 0.192 0.154 0.231 1 1 0.386

0.647 0.154 0.154 0.154 20 1 3.234 1:5
0.341 0.231 0.077 0.385 38 1 3.311
0.5 0.346 0.692 0 1 1 0.692

0.647 0.346 0.692 0 20 1 13.846
All healthy
Companies

0.341 0.269 0.077 0.462 38 1 20.462

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

total error
error I
expected cost

Pairing ratio

C
ut

of
f

at
 0

.5

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5

total error
error I
expected cost

Pairing ratio

C
ut

of
f

at
 0

.3
41

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

total error
error I
expected cost

Pairing ratio

C
ut

of
f

at
 0

.6
47

174 X.J. Shi

7 Conclusion and Remarks

In this paper we present a novel concept of model futility to capture the dynamic
features of model risk. We also specify the approaches to compute possibility of being
futile and the futility boundaries in conditional power framework. By application in
Logistic default risk modeling monitoring in banking, effectiveness and efficiency of
this method can be proved. In the future research, there are two directions demanding
attention. The first one is how to combine the prior knowledge of the distribution of
monitoring statistic with the method we have presented here in Bayesian way. The
second one is more complicated, if the futile process is not a standard Brownian
motion but with jumps or other characteristics, then how to modify the method we are
now presenting?

Acknowledgement. Financial supports from National Natural Science Foundation of
China (Grant NO. 70502005), BOSHIDIAN Foundation from Ministry of Education
of China (Grant NO. 2005006004), National Social Science Foundation of China
(Grant NO. 05CJL003) are acknowledged.

References

1. van Deventer, D., Imai, K.: Credit Risk Models and The Basel Accords. John Wiley &
Sons, Asia (2003)

2. Dwyer, D.W.: Examples of Overfitting Encountered When Building Private Firm Default
Prediction Models, April 12, 2005. Moody’s KMV Working Paper (2005)

3. Caouette, J.B., Altman, E.I., Narayanan, P.: Managing Credit Risk: The Next Great
Financial Challenge. John Wiley & Sons, New York (1998)

4. Ross, S.M.: Stochastic Processes, 2nd edn. John Wiley & Sons, New York (1983)
5. Moyé, L.A.: Statistical Monitoring of Clinical Trials: Fundamentals for Investigators.

Springer, Heidelberg (2005)
6. O’Brien, P.C., Fleming, T.R.: A multiple testing precdure for clinlical trials. Biometrics 35,

549–556 (1979)
7. Lan, K.K., DeMets, D.L.: Discrete Sequential Boundaries for Clinical Trials. Biometrics 70,

659–663 (1983)
8. Fleming, T.R., Green, S.J., Harrington, D.P.: Considerations for Monitoring and Evaluating

Treatment Effects in Clinical Trials. Controlled Clinical Trials 5, 55–56 (1994)
9. Ohlson.: Financial Ratios and the Probabilistic Prediction of Bankruptcy. Accounting

Research 18, 109–131 (1980)

On the Minimum Risk-Sum Path Problem

Xujin Chen, Jie Hu, and Xiaodong Hu�

Institute of Applied Mathematics
Chinese Academy of Sciences

P.O. Box 2734, Beijing 100080, China
{xchen, hujie, xdhu}@amss.ac.cn

Abstract. This paper presents efficient algorithms for the minimum
risk-sum path problem which arises in a variety of applications. Given a
source-destination node pair in a network G = (V, E), where each link e
in G can be traveled using time xe in a prespecified interval [le, ue] while
taking risk ue−xe

ue−le
, the minimum risk-sum path problem is to find a path

in G from source to destination, together with an assignment of travel
times along each link on the path, so that the total travel time of the
path is no more than a given constant and the risk sum over the links
on the path is minimized. In this paper, we solve the minimum risk-sum
path problem optimally in O(|V |3|E|) time.

1 Introduction

Path planning under uncertainty has been extensively studied in computer sci-
ence and operation research due to its applications in diverse areas such as com-
munication routing and transportation engineering (see, e.g., [11,15,14]). The
omnipresent uncertainty of travel times on network links could result from net-
work congestions, hardware failures, traffic jams or accidents, temporary con-
struction projects, weather conditions. The client/traveler, because of the lack
of updated on-line information on network links (cables, roads, etc.), will have
to consider possible ranges of the travel times on network links in making the
appropriate route choice in a risk averse manner, where route choice decisions
often involve tradeoffs between travel times and risks to be taken.

Continuing the efforts devoted to path planning under uncertainty, we study
in the paper the minimum risk-sum path problem for which few existing mod-
els in literature accurately represent the aim of decision maker. The minimum
risk-sum path problem consists in finding a path of minimum risk sum under a
total travel time constraint. Many practical situations fall within the framework
of this problem. For example, a traveler wishes to travel within time K from a
place (source) to another place (destination) in a transportation network. On a
road e, the traveler could ask the driver to go through the road using time xe

(between the least possible travel time le and the most possible travel time ue),

� Supported in part by the NSF of China under Grant No. 70221001, 60373012 and
10531070.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 175–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 X. Chen, J. Hu, and X. Hu

while taking an amount r(xe) of risk (e.g., over-speed risk). It is considered no
risk, i.e., r(xe) = 0, if xe = ue; a (full) risk, i.e., r(xe) = 1, if xe = le; and
0 ≤ r(xe) ≤ 1 for xe ∈ [le, ue] in general. It is desirable to find a route P from
source to destination and an assignment of travel times along each road on P
so that the traveler takes risks

∑
e on P r(xe) as few as possible, while assur-

ing the arrival at destination using time
∑

e on P xe ≤ K. Interestingly, the risk
r(xe) can also be understood as a premium paid by the traveler to speed up the
journey and assure the travel time xe (on e) in mind.

Related work. Previous studies on path planning under uncertainty include ro-
bustness optimization [11] and stochastic applications [4].

The robustness approach to decision making in environments of data un-
certainty also structures the uncertainty by taking the arc lengths as intervals
defined by known lower and upper bounds. Under the most popular robustness
criterion – robust deviation (minimax regret) criterion, the robust shortest path
problem consists in finding among all the paths from source to destination the
one, that over all the possible realizations of arc lengths, minimizes the maximum
deviation of the path length from the length of the shortest path in the corre-
sponding realizations, where a realization means an arc length taking a value in
its interval. The NP -hardness of the robust shortest path problem [17] explains
the reason of the lack of efficient algorithms for the problem [10,14]. Kouvelis, Yu
and Gu [11,16] studied the robust shortest path problem with a discrete scenario
set in which each scenario represents a possible realization of the arc lengths.
They proved that the problem is NP -hard (strongly NP -hard) with a bounded
(unbounded) number of scenarios.

The probability tools provide another way of dealing with uncertainty in data.
In the stochastic settings, the probability distributions are estimated/suggested
for modeling stochastic arc travel times. Fan et al [1] proposed an adaptive
heuristic for paths that maximize the probability of arriving on time [2]. Along
a different line, lots of researchers [5,3,13] gave approximations and heuristics for
expected shortest paths in stochastic networks with dynamic arc length distri-
butions. Besides the requirement on knowledge of probability distribution func-
tions, it is computationally intractable to solve the problems especially with
nonlinear objective functions and discrete decision variables.

Our results. In addition to different objectives, a major and apparent difference
between the minimum risk-sum path problem and the previous robustness and
stochastic models resides in the requirement in the minimum risk-sum path
problem of not only a path connecting source and destination, BUT ALSO an
assignment of travel time along each link on the path. In this paper we bridge
the gap of lacking accurate mathematical model for the minimum risk-sum path
problem. Based on the close connection discovered between the minimum risk-
sum path problem and the constrained shortest path problem (see [9] or Section
3.1 for its definition), we employ the dynamic programming procedures [7] for the
latter and design O(mn) time approximation algorithm and O(m2n2) time exact
algorithm for the former, where m (resp. n) is the number of links (resp. nodes)

On the Minimum Risk-Sum Path Problem 177

in the network. The polynomial time solvability established for the minimum
risk-sum path problem exhibits its essential difference from the aforementioned
NP -hard problems studied in path planning under uncertainty.

Organization of the paper. In section 2, we present mathematical model for the
minimum risk-sum path problem, and a nice property of some optimal solutions
to the problem. In Section 3, we first give polynomial time constructions between
the minimum risk-sum path problem and the constrained shortest path problem,
then we use the construction to design efficient approximation and exact algo-
rithms for the minimum risk-sum path problem that output solutions of the nice
property. In section 4, we eliminate the technical assumptions made in section 2
and extend our results to more general settings. In Section 5, we conclude this
paper with remarks on future research.

2 Model

We model the network as a loopless1 directed graph G = (V,E) with vertex
set V = V (G) of size n = |V | and arc set E = E(G) of size m = |E|, where
vertex (resp. arc) corresponds to network node (resp. link). Each arc e ∈ E is
associated with an interval [le, ue] indicating the lower bound le ∈ R+ and upper
bound ue ∈ R+ of the travel time along e (from its tail to its head). For ease of
description, we assume le, ue are nonnegative integers and le < ue, for all e ∈ E.
(These assumptions will be eliminated latter in Section 4.) Thus we consider
l = (le : e ∈ E)T and u = (ue : e ∈ E)T as integral vectors in ZE

+. Recall
that when traveling arc e using time xe, the risk incurred is 1 if xe = le and
0 if xe = ue; it is nature to quantify the risk as ue−xe

ue−le
for any xe ∈ [le, ue]. In

other words, traversal at the lower bound incurs one unit of risk, and this falls
off linearly to zero risk for a traversal at the upper bound. Given source s ∈ V
and destination d ∈ V , let P denote the set of (directed) paths in G from s to
d. In the Minimum Risk-sum Path Problem, we are given a time bound K ∈ R+

which is a constant no less than minP∈P
∑

e∈E(P) le, and our aim is to find a
pair (P, x) such that

– P ∈ P ;
– x ∈ RE(P)

+ , and xe ∈ [le, ue] for all e ∈ E(P); and
–
∑

e∈E(P) xe ≤ K.

We call such a pair (P, x) a solution to the minimum risk-sum path prob-
lem (on G) of risk-sum τ(P, x) =

∑
e∈E(P)

ue−xe

ue−le
. If, in addition, τ(P, x) =

min{τ(P ′, x′) : (P ′, x′) is a solution to the minimum risk-sum path problem on
G}, then we say that (P, x) is optimal. For technical reasons, K ∈ Z+ will be
assumed till the end of Section 3.

The following lemma states a nice property of some optimal solution to the
minimum risk-sum path problem that will play an important role in our algo-
rithm design. Intuitively speaking, the property ensures that all arcs e, with at
1 A loop in a directed graph is an arc with its tail and head being the same vertex.

178 X. Chen, J. Hu, and X. Hu

most one exception, on a minimum risk-sum path can be traversed at, le or ue,
either of the extremes of their feasible interval.

Lemma 1. There exists an optimal solution (P ∗, x∗) to the minimum risk-sum
path problem in which P ∗ has an arc f ∈ E(P ∗) such that x∗

f ∈ [lf , uf], and
x∗

e ∈ {le, ue} for all e ∈ E(P ∗) \ {f}.

Proof. Let (P ∗, x∗) be an optimal solution to the minimum risk-sum path prob-
lem on G with the set S(P ∗,x∗) := {g : g ∈ E(P ∗) and x∗

g ∈ (lg, ug)} containing
arcs as few as possible. We prove that |S(P ∗,x∗)| ≤ 1, and therefore such an
optimal solution (P ∗, x∗) satisfies the lemma.

Assume the contrary that two different arcs e, f ∈ S(P ∗,x∗), satifies ue − le ≤
uf − lf . Take δ := min{ue− x∗

e, x
∗
f − lf} and define x′ ∈ RE(P ∗)

+ by x′
e := x∗

e + δ,
x′

f := x∗
f − δ, and x′

g := x∗
g for all g ∈ E(P ∗) \ {e, f}. Then

x′
e = ue or x′

f = lf ,

∑

e∈E(P ∗)

x′
e =

∑

e∈E(P ∗)

x∗
e ≤ K,

∑

e∈E(P ∗)

ue − x′
e

ue − le
=

⎛

⎝
∑

e∈E(P ∗)

ue − x∗
e

ue − le

⎞

⎠− δ

ue − le
+

δ

uf − lf
≤

∑

e∈E(P ∗)

ue − x∗
e

ue − le
.

It follows from the definitions of δ and x′ that (P ∗, x′) is an optimal solution
to the minimum risk-sum path problem such that S(P ∗,x′) is a proper subset
of S(P ∗,x∗) with e or f ∈ S(P ∗,x∗) − S(P ∗,x′), contradicting the minimality of
S(P ∗,x∗). ��

For briefness, we refer every optimal solution of the property in Lemma 1 as to
a simple optimal solution to the minimum risk-sum path problem.

3 Algorithms

In this section, we first present a fast approximation algorithm which produces
solutions of high quality to the minimum risk-sum path problem; then we ex-
tend this approximation to be an exact algorithm which solves the problem in
O(m2n2) time.

3.1 A Fast Approximation Algorithm

In a directed graph with real function π defined on its arc set, an arc with tail a
and head b is written as (a, b), and a (directed) path P from vertex a to vertex
b is called an a-b path, for which π(P) represents the summation

∑
e∈E(P) π(e).

(The conceptions and notations extend to undirected graphs in a straightforward
way.)

On the Minimum Risk-Sum Path Problem 179

The constrained shortest path problem. Our algorithms rely on the establishment
of a close connection between the minimum risk-sum path problem and the
constrained shortest path problem [9], a special case of the extensively studied
bicriteria network design problem [6,8,12]. Given a directed graph H in which
every arc e is associated with two nonnegative integers: its length c(e) and its
traversal time t(e), the Constrained Shortest Path Problem is to determine a
shortest s-d path in H from the prespecified source vertex s to destination vertex
d, under the constraint that the traversal time of the path does not exceed
prespecified integer T . Considering c and t integral functions on the arc set
E(H) = E′ of H , one may write the constrained shortest path problem on H
(with parameters c, t, T) as the following combinatorial optimization problem
(CSPT):

OPT = min c(Q)
s.t. t(Q) ≤ T

Q is an s-d path in H

Dynamic programming technique provides us with exact algorithms (Algorithm
A and Algorithm B in [7]) for the constrained shortest path problem, which are
polynomial for the cases with arc lengths or traversal time bounded.

Theorem 1. [7] The constrained shortest path problem (CSPT) can be solved
optimally

(i) in O(T |E′|) time by Algorithm A, whose output includes optimal solutions
to (CSPT ′) on H with parameters c, t, T ′ for all T ′ = 0, 1, . . . , T ;

(ii) in O(OPT |E′|) time by Algorithm B.

Polynomial time constructions. For the minimum risk-sum path problem on
G = (V,E), we construct in O(m) time a directed graph H = (V ′, E′), length
function c ∈ {0, 1}E′

, and traversal time function t ∈ ZE′

+ such that

– H has the same vertex set as G: V ′ = V ;
– every arc e = (a, b) in G corresponds to two arcs el, eu in H both with tail

a and head b: E′ = {el, eu : e ∈ E};
– c(el) = 1, c(eu) = 0, t(el) = le, t(eu) = ue, for every e ∈ E.

Given an a-b path P in G, and x ∈ RE(P)
+ with xe ∈ {le, ue} for all e ∈ E(P),

we use Path(P, x) to denote the unique a-b path Q in H such that for every
e ∈ E,

– el ∈ E(Q) if and only if e ∈ E(P) and xe = le;
– eu ∈ E(Q) if and only if e ∈ E(P) and xe = ue.

Conversely, given an a-b path Q in H , we use Pair(Q) to denote the unique pair
(P, x) such that P is an a-b path in G, and x ∈ RE(P)

+ for which the above two
necessary and sufficient conditions hold, i.e., Path(P, x) = Q. So

Q = Path(P, x) if and only if (P, x) = Pair(Q).

180 X. Chen, J. Hu, and X. Hu

Moreover the construction from (P, x) to Q = Path(P, x) (resp. from Q to
(P, x) = Pair(Q)) can be completed in O(n) time such that the following holds.

Lemma 2. If Q = Path(P, x) , or equivalently (P, x) = Pair(Q), then c(Q) =∑
e∈E(P)

ue−xe

ue−fe
and t(Q) =

∑
e∈E(P) xe.

O(mn) time approximation. For convenience, we define the Discrete Minimum
Risk-sum Path problem (on G), which has the same description as the minimum
risk-sum path problem except that the requirement xe ∈ [le, ue] over there is
replaced with xe ∈ {le, ue}. Clearly, a solution to the discrete minimum risk-
sum path problem is also a solution to the minimum risk-sum path problem,
though the reverse is not necessarily true.

Algorithm 1. Input: directed graph G = (V,E); l, u ∈ ZE
+; K ∈ Z+. Output:

an optimal solution (P, x) to the discrete minimum risk-sum path problem.

1. Construct H = (V,E′), c ∈ {0, 1}E′
, t ∈ ZE′

+ based on G, l, u.
2. T ← K
3. Apply Algorithm B to find an optimal path Q to (CSPT) on H with param-

eters c, t, T
4. Output (P, x)← Pair(Q)

Theorem 2. In O(mn) time, Algorithm 1 outputs an optimal solution (P, x) to
the discrete minimum risk-sum path problem, which is an approximate solution
to the minimum risk-sum problem with risk-sum τ(P, x) at most one more than
the optimal risk-sum for the minimum risk-sum path problem.

Proof. From our constructions and Lemma 2, it is not hard to see that Al-
gorithm 1 solves the discrete minimum risk-sum path problem optimally. The
time complexity O(mn) of Algorithm 1 is guaranteed by Theorem 1(ii), since
|E′| = 2m, and |V ′| = n, c ∈ {0, 1}E′

imply OPT ≤ n for the (CSPT) on H
under consideration.

To verify the quality of the solution (P, x) output by Algorithm 1 from a view-
point of the minimum risk-sum path problem, let us consider a simple optimal
solution (P ∗, x∗), as stated in Lemma 1, for which we have some f ∈ E(P ∗)
and xe ∈ {le, ue} for all e ∈ E(P ∗) \ {f}. A solution (P ∗, x′) to the discrete
risk-sum path problem on G can be defined by x′

f := lf and x′
e = xe for all

e ∈ E(P ∗) \ {f}. From the optimality of (P, x) to the discrete minimum risk-
sum path problem, we deduce that τ(P, x) ≤ τ(P ∗, x′) ≤ τ(P ∗, x∗) + 1, proving
the theorem. ��

3.2 An Efficient Exact Algorithm

Next we focus on the minimum risk-sum path problem and on finding a simple
optimal solution to it. The basic idea behind our algorithm is testing all m arcs

On the Minimum Risk-Sum Path Problem 181

to find an arc f such that f and some simple optimal solution (P ∗, x∗) satisfy
Lemma 1.

As is customary, for vector/function x ∈ RJ
+ and set J ′ ⊆ J , the restriction

of x on J ′ is written as x|J′ ; for arc (edge) e in a graph G′, the deletion of e
from G′ results in a graph G′\e. In the following pseudo-code description, the
set Sol holds feasible solutions to the minimum risk-sum path problem found by
the algorithm.

Algorithm 2. Input: directed graph G = (V,E); l, u ∈ ZE
+; K ∈ Z+. Output:

an optimal solution (P, x) to the minimum risk-sum problem on G.

1. Sol← ∅
2. while G contains an arc e that does not belong to any s-d path in G do
3. G← G\e
4. end-while
5. for every f = (a, b) ∈ E do
6. Construct H = (V,E′), c ∈ {0, 1}E′

, t ∈ ZE′

+ based on G, l, u
7. Q1 ← the set of s-a paths in H , Q2 ← the set of b-d paths in H
8. for i = 1, 2 do
9. Apply Algorithm A to the constrained shortest path problem:

min t(Q) s.t. c(Q) ≤ n and Q ∈ Qi, and find, for every ni = 0, . . . , n,
an optimal solution (path) Q′

ni
to (CSPni):

min t(Q) s.t. c(Q) ≤ ni and Q ∈ Qi

10. end-for
11. for every pair of integers n1, n2 with 0 ≤ n1, n2 ≤ n do
12. if Q′

n1
and Q′

n2
have some common vertex

13. then Q′ ← an s-d path in Q′
n1
∪Q′

n2
, (P ′, x′)← Pair(Q′)

14. else (P ′
i , x

′
i)← Pair(Q′

ni
), i = 1, 2

15. P ′ ← P ′
1 ∪ {f} ∪ P ′

2

16. x′|E(Pi) ← x′
i, i = 1, 2

17. x′
f ← max{lf ,min{uf , |K − t(Q′

1)− t(Q′
2)|}}

18. if
∑

e∈E(P ′) x
′
e ≤ K then Sol← Sol ∪ {(P ′, x′)}

19. end-for
20. end-for
21. Take (P, x) ∈ Sol with minimum τ(P, x)
22. Output (P, x)

Before proceeding, let us make some elementary observations. The while-loop
(Step 2 – 4) in Algorithm 2 and the constructions of H , c, t guarantee that, for
every f = (a, b) considered in Steps 5 – 20, H contains an s-a path Q1 and a b-d
path Q2 with c(Q1) = c(Q2) = 0, implying the validity of Step 9. Moreover, by
Theorem 1(i), the running time of Step 9 is O(mn).

Suppose Q is an a-b path in a graph (directed or undirected), and a′ is a
vertex on Q, we use Q[a, a′] (resp. Q[a′, b]) to denote the subpath of Q from a
to a′ (resp. from a′ to b).

182 X. Chen, J. Hu, and X. Hu

Lemma 3. Let Q1 be an s-a path and Q2 be a b-d path in a graph having some
common vertex. Then Q1 ∪Q2 contains an s-d path.

Proof. Let a′ be the common vertex of Q1 and Q2 first encountered when Q1 is
traversed from s to a. It is easily checked that Q1[s, a′] and Q2[a′, d] have exactly
one common vertex, i.e., a′, and that Q1[s, a′]∪Q2[a′, d] is an s-d path contained
in Q1 ∪Q2. ��
From the last lemma, we see that Steps 12 – 17 of Algorithm 2 are valid, and
produce in O(n) time an s-d path P ′ in G, and real vector x′ ∈ RE(P ′)

+ with
x′

e ∈ [le, ue] for all e ∈ E(P ′). In turn, it follows from Step 18 that any member
in Sol is a feasible solution to the minimum risk-sum path problem on G.

Theorem 3. Algorithm 2 solves the minimum risk-sum path problem optimally
in O(mn3) time.

Proof. Let (P ∗, x∗) be a simple optimal solution to the minimum risk-sum path
problem guaranteed by Lemma 1. By the above observations, it suffices to show
that the final Sol contains an element (P ′, x′) with τ(P ′, x′) ≤ τ(P ∗, x∗). To
this end,

(1) let f = (a, b) ∈ E(P ∗) be such that x∗
e ∈ {le, ue} for all e ∈ E(P ∗) \ {f}.

Recall from Lemma 2 that Q∗
1 = Path(P ∗[s, a], x∗|E(P ∗[s,a])) is an s-a path in

H , and Q∗
2 = Path(P ∗[b, d], x∗|E(P ∗[b,d])) is a b-d path in H such that

(2) c(Q∗
1) =

∑
e∈E(P ∗[s,a])

ue−x∗
e

ue−le
, t(Q∗

1) =
∑

e∈E(P ∗[s,a]) x
∗
e ; and

c(Q∗
2) =

∑
e∈E(P ∗[b,d])

ue−x∗
e

ue−le
, t(Q∗

2) =
∑

e∈E(P ∗[b,d]) x
∗
e.

Notice from c ∈ {0, 1}E′
that c(Q∗

i) ≤ n for i = 1, 2. In the implementation
of Algorithm 2, at some time, Steps 5 – 20 consider the f = (a, b) ∈ E(P ∗) as
in (1), and Steps 11 – 19 consider ni = c(Q∗

i), i = 1, 2. Since Q∗
i is a feasible

solution to the constrained shortest path problem (CSPni), i = 1, 2, defined in
Step 9, we have t(Q′

ni
) ≤ t(Q∗

i) for i = 1, 2. It follows from (2) that

(3) t(Q′
n1

)+ t(Q′
n2

) ≤ t(Q∗
1)+ t(Q∗

2) =
∑

e∈E(P ∗)\{f} x
∗
e ≤ K−x∗

f , in particular,
K − t(Q′

n1
)− t(Q′

n2
) ≥ x∗

f ≥ lf ; and c(Q′
n1

) + c(Q′
n2

) ≤ n1 + n2 = c(Q∗
1) +

c(Q∗
2) =

∑
e∈E(P ∗)\{f}

ue−x∗
e

ue−le
.

Further to the observation made before the theorem, the combination of
Lemma 2 and (3) shows that

(4) the (P ′, x′) produced by Steps 12 – 17 is an optimal solution to the minimum
risk-sum path problem.

If Q′
n1

and Q′
n2

have some common vertex, then
∑

e∈E(P ′) x
′
e = t(Q′) ≤ t(Q′

n1
)+

t(Q′
n2

) ≤ K and τ(P ′, x′) = c(Q′) ≤ c(Q′
n1

) + c(Q′
n2

) ≤
∑

e∈E(P ∗)\{f}
ue−xe

ue−le
≤

τ(P ∗, x∗); else x∗
f ≤ x′

f = min{K− t(Q′
n1

)− t(Q′
n2

), uf} ≤ K− t(Q′
n1

)− t(Q′
n2

),

On the Minimum Risk-Sum Path Problem 183

∑
e∈E(P ′) x

′
e = (

∑
e∈E(P ′

1) x
′
1e)+x′

f +(
∑

e∈E(P ′
2) x

′
2e) = t(Q′

n1
)+x′

f +t(Q′
n2

) ≤ K,

and τ(P ′, x′) = c(Q′
n1

) + c(Q′
n2

) + uf−x′
f

uf−lf
≤
(∑

e∈E(P ∗)\{f}
ue−x∗

e

ue−le

)
+ uf−x∗

f

uf−lf
=

τ(P ∗, x∗). Thus (4) holds.

By (4), we see that Step 18 puts (P ′, x′) into Sol. The theorem is proved. ��

4 Extension

In this section, we extend our results to more general settings of the minimum
risk-sum path problem.

Firstly, to deal with the case in which le = ue for some e, we make the
notational convention that 0

0 = 0 (i.e., xe = ue = le ⇔ ue−xe

ue−le
= 0

0 = 0) in the
expression of the risk-sum of a solution to the minimum risk-sum path problem.

Secondly, the bounds K ∈ R+, l, u ∈ RE
+ may not be integral. It is easy to

reduce the problem to an integral case by multiplying K and all le, ue (e ∈ E)
with an appropriate integer M , and it is routine to check that the multiplication
has effect on neither the time complexity of our algorithms nor the quality of
the solutions output.

Finally, the underlying graph G may be undirected. The standard technique
is replacing each edge e in G with two opposite arcs with the same ends as
e, and reducing the problem to the directed case. In fact, the more flexibility
of undirected graphs (than that of directed graphs) provides us the following
Algorithm 3 faster than Algorithm 2, which runs in O(m2n) time.

Algorithm 3. Input: undirected graph G = (V,E); l, u ∈ ZE
+; K ∈ Z+. Output:

an optimal solution (P, x) to the minimum risk-sum path problem on G.

1. Sol← ∅
2. for every f ∈ E do
3. Construct2 H = (V,E′), c ∈ {0, 1}E′

, t ∈ ZE′

+ based on G, l, u
4. Obtain undirected graph H0 from H by contracting fl, fu into a vertex3

5. Apply Algorithm A to the constrained shortest path problem on H0 with
parameters t|E′\{fl,fu}, c|E′\{fl,fu}, n, and find for every n0 = 0, . . . , n an
optimal solution (path) Q′

0 to (CSPn0):
min t(Q0) s.t. c(Q0) ≤ n0 and Q0 is an s-d path in H0

6. for n0 = 0 to n do
7. Q′ ← an s-d path in H containing E(Q′

0) and avoiding fu
4

8. if fl �∈ E(Q′) then (P ′, x′)← Pair(Q′)
9. else let Q1 and Q2 be the two paths whose union is Q′\fl

2 The construction for undirected graphs is essentially the same as that for directed
graphs with “edge” or “edges” in place of “arc” or “arcs”.

3 This vertex in H0 is named s (resp d) if s (resp. d) is an end of f . Possibly, s = d in
H0 while s �= d in H .

4 Note that E(Q′)− E(Q′
0) ∈ {∅, {fl}}, and E(Q′) = E(Q′

0) if and only if fl �∈ E(Q′).

184 X. Chen, J. Hu, and X. Hu

10. (P ′
i , x

′
i)← Pair(Qi), i = 1, 2

11. P ′ ← P ′
1 ∪ {f} ∪ P ′

2

12. x′|E(Pi) ← x′
i, i = 1, 2

13. x′
f ← max{lf ,min{uf , |K − t(Q′

1)− t(Q′
2)|}}

14. if
∑

e∈E(P ′) x
′
e ≤ K then Sol← Sol ∪ {(P ′, x′)}

15. end-for
16. end-for
17. Take (P, x) ∈ Sol with minimum τ(P, x)
18. Output (P, x)

The correctness of Algorithm 3 can be proved in a way similar to that in
which Theorem 3 is proved. Again we take an simple optimal solution (P ∗, x∗)
and consider edge f ∈ E(P ∗) with ends a and b such that xe ∈ {le, ue} for all
e ∈ E(P ∗) \ {f}. It is easy to see that when this f is considered by Algorithm 3
(Step 2 – 16), graph H0 contains an s-d path Q with E(Q) = E(Path(P ∗, x′′))\
{fl} (where x′′ ∈ RE(P ∗)

+ satisfies x′′
e ∈ {le, ue} for all e ∈ E(P ∗) by setting

x′′|E(P ∗)\{f} := x∗|E(P ∗)\{f}, x′′
f := lf), c(Q) =

∑
e∈E(P ∗)\{f}

ue−x∗
e

ue−le
and t(Q) =

∑
e∈E(P ∗)\{f} x

∗
e ; and furthermore, when the internal for-loop (Step 6 – 15)

considers n0 = c(Q), the path Q is a feasible solution to (CSPn0). Hence we
have c(Q′

0) ≤ c(Q) and t(Q′
0) ≤ t(Q). Using similar argument to that for proving

(4) in the proof of Theorem 3, we deduce that (P ′, x′) produced by Step 8
–13 of Algorithm 3 is a feasible solution to the minimum risk-sum problem
with risk-sum τ(P ′, x′) ≤ τ(P ∗, x∗), and therefore is optimal. Thus Algorithm 3
solves optimally the minimum risk-sum path problems whose networks can be
represented by undirected graphs.

5 Conclusions

In this paper we have proposed efficient algorithms for the minimum risk-sum
path problem, which finds practical applications in route planning under un-
certainty. The minimum risk-sum path problem bears some similarities to the
robust shortest path problem (travel time interval vs. arc length interval) and
to the stochastic path planning (risk vs. probability), however, as shown in this
paper, has salient and essential differences from problems in these robust or
stochastic settings, not only in solution structure (path with assignment vs.
path without assignment), but also in complexity status (polynomial solvability
vs. NP -hardness).

On the other hand, surprisingly, our simulation shows that for some appro-
priate time bounds K, the solutions of the minimum risk-sum path problem are
quite similar to those of the robust shortest path problem [10]. This suggests
future investigation on the reasonable intuitive/theoretical explanation of this
phenomenon.

On the Minimum Risk-Sum Path Problem 185

References

1. Fan, Y., Kalaba, R., Moore, J.: Arriving on time. Journal of Optimization Theory
and Applications 127(3), 497–513 (2005)

2. Frank, H.: Shortest paths in probabilistic graphs. Operations Research 17, 583–599
(1969)

3. Fu, L., Rilett, L.R.: Expected shortest paths in dynamic and stochastic traffic
network. Transportation Research 32, 499–512 (1998)

4. Gao, S., Chabini, I.: Optimal routing policy problems in stochasic time-dependent
networks. Transportation Research Part B: Methodological 40, 93–122 (2006)

5. Hall, R.W.: The fastest path through a network with random time-dependent travel
times. Transportation Science 20, 182–188 (1986)

6. Handler, G., Zang, I.: A dual algorithm for the constrained shortest path problem.
Networks 10, 293–310 (1980)

7. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math-
ematics of Operations Research 17, 36–42 (1992)

8. Henig, M.: The shortest path problem with two objective functions. European
Journal of Opertional Research 25, 281–291 (1985)

9. Joksch, H.K.: The shortest route problem with constraints. Journal of Mathemat-
ical Analysis and Applications 14, 191–197 (1966)

10. Karaşan, O.E., Pinar, M.Ç., Yaman, H.: The robust shortest path problem with
interval data. Computers & Operations Research (to appear)

11. Kouvelis, P., Yu, G.: Roubust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Boston (1997)

12. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. Journal of Algorithms 28, 142–171 (1998)

13. Miller-Hook, E.D., Mahmassani, H.S.: Least expected time paths in stochastic,
time-varying transportation networks. Transportation Science 34, 198–215 (2000)

14. Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algo-
rithm for the robust shortest path problem with interval data. Operation Research
Letters 32, 225–232 (2004)

15. Waller, S.T., Ziliaskopoulos, A.K.: On the online shortest path problem with lim-
ited arc cost dependencies. Networks 40(4), 216–227 (2002)

16. Yu, G., Yang, J.: On the robust shortest path problem. Computers & Operations
Research 25, 457–468 (1998)

17. Zieliński, P.: The computational complexity of the relative robust shortest path
problem with interval data. European Journal of Operational Research 158, 570–
576 (2004)

Constrained Cycle Covers in Halin Graphs

Yueping Li

Department of Computer Science, Sun Yat-sen University
Guangzhou 510275, P.R. China

leeyueping@gmail.com

Abstract. This paper deals with constrained cycle cover problem in
Halin graphs. A (constrained) cycle cover of a graph is a set of cycles
such that every (selected) vertex is in at least one cycle. This problem
arises in the design fiber-optic telecommunication networks which em-
ploy a set of rings covering the network. Besides two types of minimum
weight cycle cover problem, we also settle the problem of covering Halin
graphs with an optimal 2-edge-connected subgraph. Linear time algo-
rithms are given for all of the problems.

Keywords: network, Halin graph, cycle cover, algorithm.

1 Introduction and Terminology

Telecommunication networks may be represented as a graph where the edges
stand for the links between vertices that represent users (servers). An essential
factor in the design of such a network is its survivability– its robustness to
continue communicating in the event that one or more of its links are failed. For
this purpose, the network must be built so that there are at least two disjoint
routes between any pair of vertices. In this context, given a physical biconnected
network, we wish to devise a logical network in the form of a set of cycles covering
it. The problem is cycle cover problem in the literature [5].

In this paper, we discuss the constrained cycle cover problem, which is to find
a minimum cost cycle cover for a specified vertex set such that the cycles are
edge-disjoint. A cycle is said to cover the vertices it contains. Halin graphs are
nontrivial generalization of tree and ring networks [8]. Since the topology of
fiber-optic network between large servers (switches) is usually similar to a tree
and planar, we focus on the problem in Halin graphs. For the terminology and
notation not defined in this paper, reader can refer to [2].

A Halin graph is constructed as follows: start with a tree T in which each
nonleaf has degree at least 3. Embed the tree in a plane and then connect all the
leaves of T with a cycle C such that the resulting graph H = T ∪ C is planar.
Suppose T has at least two nonleaves. Let w be a nonleaf of T which is adjacent
to only one other nonleaf of T . Then the set of leaves of T adjacent to w, which
we denote by C(w), comprises a consecutive subsequence of the cycle C. The
subgraph of H induced by {w}∪C(w) is said to be a fan and the vertex w is the
centre of the fan. In Fig.1. the black vertices are the centres of the fans which
are indicated by dotted lines.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 186–197, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constrained Cycle Covers in Halin Graphs 187

Fig. 1. A Halin graph

A graph G is called a wheel if G consists of a cycle every vertex of which is
joined to a single common vertex by an edge.

Let F be a fan of Halin graph H = T ∪ C, let H × F denote the graph
obtained from H by shrinking F to form a new “pseudo-vertex” uF ; that is,
V (H × F) = {uF} ∪ {V (H)\V (F)} and E(H × F) are defined as follows:

1. An edge with both ends in F is deleted;
2. An edge with both ends in H − F remains unchanged;
3. An edge with one end-vertex in H − F and the other in F now joins the

incident vertex of H − F and the pseudo-vertex uF .

This contraction was introduced by Cornuejols, Naddef and Pulleyblank [3].
They gave a linear time algorithm for travelling salesman problem (TSP) in
Halin graphs. It applies “Shrinking Fan” operation recursively until the Halin
graph is reduced to a wheel in which TSP can be easily solved. In the light of
solving the steiner tree problem in Halin graphs by Winter [8], we also employ
this mechanism but the calculation when shrinking a fan and the strategy to
handle the final reduced wheel are quite different.

Denote the closure of H under the operation of “Shrinking Fan” by H∗. For a
fan F of a Halin graph H , the three edges connecting V (F) to V (H−F) compose
a 3-edge cutset of H , denoted by EC3(F). When F ′ is a fan in H ′ ∈ H∗, let
ECex(F ′) be the corresponding 3-edge cutset in H with respect to EC3(F ′).
Let Fex be the subgraph of H which F is fully restored to;that is, Fex is the
component of H − ECex(F) in which F lies.

2 Preliminary Results

Lemma 1. A Halin graph is minimally 3-edge-connected.

Lemma 2 (Cornuejols[3]). A Halin graph H = T ∪ C which is not a wheel
has at least two fans.

Lemma 3 (Cornuejols[3]). If F is a fan in a Halin graph H, then H×F is a
Halin graph.

188 Y. Li

3 Our Results

Theorem 1. Let H be a Halin graph and F be a fan in H. For every cycle C∗

of H, |E(C∗) ∩ EC3(F)| = 2 or E(C∗) ∩EC3(F) = ∅.

Proof. Immediate.

Corollary 1. Let H be a Halin graph and F ′ be a fan in H ′ ∈ H∗. For every
cycle C∗ of H, we have |E(C∗) ∩ ECex(F ′)| = 2 or E(C∗) ∩ ECex(F ′) = ∅.
Furthermore, when E(C∗)∩ECex(F ′) = ∅, if E(C∗)∩E(F ′

ex) �= ∅, then E(C∗) ⊆
E(F ′

ex).

Theorem 2. Let H = T ∪ C be a Halin graph. If C∗ and C∗∗ in H are edge-
disjoint cycles which are connected by vertices, then |V (C∗) ∩ V (C∗∗)| = 1 and
the intersecttion vertex belongs to V (T) \ V (C).

Proof. First, we show |V (C∗) ∩ V (C∗∗)| ≤ 1. Suppose it does not hold and
|V (C∗) ∩ V (C∗∗)| ⊇ {u1, u2} for u1, u2 ∈ V (H). Then choose an edge e of
any path from u1 to u2. Since Halin graphs are minimally 3-edge-connected
by Lemma 1, there are edges f, g such that {e, f, g} is a 3-edge cutset which
separates u1, u2 into different components. Since C∗ covers u1 and u2, it contains
two edges of {e, f, g}. So does C∗∗. Thus, E(C∗) ∩E(C∗∗) �= ∅, a contradiction!

Secondly, since for each vertex of C, its degree is 3, it cannot be the intersection
of two edge-disjoint cycles. Hence, {V (C∗) ∩ V (C∗∗)} ⊆ {V (T) \ V (C)}.

4 Covering Vertices with One Cycle

When one user (server) wants to communicate with selected users (servers), one
good strategy is to build a logic cycle covering them. It not only allows data
transport, but also uses of fast automatic protection in case of failure. This type
of request can be viewed as covering selected vertices with one cycle. If all the
vertices are chosen to be covered, the problem is reduced to TSP.

Let H be a Halin graph and α(u, v) be the cost of the edge e = (u, v), u, v ∈
V (H). For e ∈ E(H), we abbreviate it by αe. And let SV be the set of selected
vertices and C∗ be an optimal covering cycle. We examine the relation between
C∗ and a fan F in H . Let uc be the centre of F and let u1, u2, . . . , ur for
r � 2 be the vertices of F , which belong to C (in anti-clockwise order). Let
EC3(F) = {j, k, l}. See Fig. 2.

If the centre uc ∈ SV , the situation is denoted by Case 1;the other is denoted
by Case 2. Since only the choice of EC3(F) can affect the decision outside fan
F for a cycle cover, we could enumerate all the combinations of them. And by
Theorem 1, there are four choices. We define the functions as follows:

– Ckj ≡ the minimum cost of E(C∗) ∩ E(F) when k, j are chosen;
– Ckl ≡ the minimum cost of E(C∗) ∩ E(F) when k, l are chosen;
– Cjl ≡ the minimum cost of E(C∗) ∩ E(F) when j, l are chosen;
– C∅ ≡ the minimum cost of C∗ when none of k, j, l is chosen.

Constrained Cycle Covers in Halin Graphs 189

Fig. 2. One-cycle covers in fans

In addition, the structure which makes the minimum is also recorded in the
function, if more than one obtains the minimum, select one arbitrarily. For orig-
inal vertex u in H , let Ckj(u) = Ckl(u) = Cjl(u) = 0 and C∅(u) = +∞. For

abbreviation, we define Da,b ≡
b�

i=a

Cjl(ui) +
b−1�
i=a

α(ui, ui+1) for 1 ≤ a < b ≤ r.

And assume that Da,b = 0 for b ≤ a and α(u0, u1) = α(ur, ur+1) = 0. Let
m = max{ i |ui ∈ SV ∪ {u1}} and m′ = min{ i |ui ∈ SV ∪ {ur}}.

When shrinking a fan, we need to calculate the functions. The formulas are
presented as follows:

– Case 1: uc ∈ SV .

Ckj(F) = min {D1,i−1 + α(ui−1, ui) + Ckj(ui) + α(ui, uc) | m ≤ i ≤ r} (1a)

Ckl(F) = min
�
Di+1,r + α(ui, ui+1) + Ckl(ui) + α(ui, uc) | 1 ≤ i ≤ m′� (1b)

C∗
jl(F) = min

1≤i<r

��
�

D1,i−1 + α(ui−1, ui) + Ckj(ui) + α(ui, uc)
+α(uc, uj) + Ckl(uj) + α(uj , uj+1) + Dj+1,r

| i ≤ j ≤ min { k | uk ∈ SV ∪ {ur} for i < k ≤ r}

��
	 (1c)

Cjl(F) = C∗
jl(F) (1d)

C∗
∅ (F) = min

1 ≤ i ≤ m′

m ≤ j ≤ r

α(uc, ui) + Ckl(ui) + α(ui, ui+1) + Di+1,j−1

+α(uj−1, uj) + Ckj(uj) + α(uc, uj)

�
(1e)

C∗∗
∅ (F) = min {C∅(ui) | 1 ≤ i ≤ r} (1f)

C∅(F) = min

���
��

C∗
∅ (F) if SV ⊆ V (F),

C∗∗
∅ (F) if SV = {ui} where 1 ≤ i ≤ r,

+∞ otherwise.

(1g)

– Case 2: uc /∈ SV .
The subformulas of Ckj(F), Ckl(F), C∗

jl(F), C∗
∅ (F), C∗∗

∅ (F) and C∅(F)
are the same as Case 1. But Cjl(F) is defined as : Cjl(F) = min

�
C∗

jl, D1,r

�
.

Besides the computations above, if F contains any vertex in SV , then delete
V (F)∩SV in SV and put uF into SV . Then, one “Shrinking Fan” operation is
done.

190 Y. Li

It can be easily concluded that the subformulas (1c) and (1e) could be calcu-
lated in O(|r2|) time. However, we give better implementations in O(|r|) time.

We discuss subformula (1e), first. In this subformula, the whole covering cycle
is in the fan F . Its sequence is always in the form uc, ui, ui+1, . . . , uj−1, uj, uc

where 1 ≤ i ≤ m′ and m ≤ j ≤ r. It can be viewed as using exactly a “triangle”
to cover the vertices SV ∩ V (F). An example is shown in dotted line in Case 1,
Fig. 2.

To search an optimal covering triangle, we employ the dynamic programming
strategy. It is necessary to introduce the substructure definition of pseudo-fan:
a pseudo-fan PFa,b of F is the induced subgraph F [xc, xa, xa+1, . . . , xb] where
1 ≤ a ≤ b ≤ r.

Similarly, we use one function of pseudo-fan PF to store the minimum cost
of the part of C∗ which is in PF . Initially, we assign the values to the functions
of PF1,1 according to different types of triangle covers, which will be presented
later. For a pseudo-fan PF1,i where i ≥ 2, we assume that SV ∩ V (PF1,i)
are already covered by C∗. We enumerate the choices of the edges (uc, ui−1),
(ui−1, ui) and (uc, ui). The function PF1,i is defined to store the minimum cost
for all the situations. We use a unique value to stand for each choice as follows:

– PF1,i(0): when neither of (ui−1, ui) and (uc, ui) is in C∗;
– PF1,i(2): when (ui−1, ui) is in C∗ but (uc, ui−1) and (uc, ui) are not;
– PF1,i(1): when (uc, ui) is in C∗ but (ui−1, ui) is not . It can be concluded

that (ui, ui+1) (if exists) must be in C∗;
– PF1,i(−1): when (ui−1, ui) and (uc, ui) are in C∗. It can be concluded that

(ui, ui+1) (if exists) cannot be in C∗;

Figure 3 displays the configurations of each choice. The wavy lines stand for
the edges in C∗.

Fig. 3. Configurations

To solve subformula (1e), we define the functionPF1,1 in formula (2). Moveover,
the deduction from PF1,i to PF1,i+1 where 1 ≤ i ≤ r is given in formula (3).

PF1,1(0) =

0 if u1 /∈ SV,

+∞ otherwise.
PF1,1(−1) = +∞

PF1,1(1) = α(u1, uc) + Ckl(u1) + α(u1, u2) PF1,1(2) = +∞
(2)

Constrained Cycle Covers in Halin Graphs 191

PF1,i(0) =

PF1,i−1(0) if ui /∈ SV,

+∞ otherwise.

PF ∗
1,i(0) =

min{PF ∗

1,i−1(0), PF1,i−1(−1)} if ui /∈ SV,

+∞ otherwise.

PF1,i(−1) = min{PF1,i−1(1), PF1,i−1(2)} + Ckj(ui) + α(ui, uc)
PF1,i(1) = PF1,i(0) + Ckl(ui) + α(uc, ui) + α(ui, ui+1)
PF1,i(2) = min{PF1,i−1(1), PF1,i−1(2)} + Cjl(ui) + α(ui, ui+1)

(3)

The principle of formulas (2) and (3) is that one PF1,i(1) structure must be
matched to a PF1,j(−1) structure where 1 ≤ i < j ≤ r. Once the values of
PF1,r are obtained, the value of min{PF ∗

1,r(0), PF1,r(−1)} is the solution to
subformula (1e).

Secondly, we focus on subformula (1c). The sequence of E(C∗) ∩ E(F) is
always in the form u1, u2, . . . , ui, uc, uj , uj+1, . . . , ur where 1 ≤ i < j ≤ r and
{ui+1, . . . , uj−1} ∩ SV = ∅. It can be viewed as using two disjoint triangles to
cover the vertices {u1, ur}∪{SV ∩V (F)} where the edges (uc, u1) and (uc, ur) are
eliminated. An example is shown in dotted line in Case 2, Fig. 2. The formulas
are presented as follows:

PF1,1(0) = +∞ PF1,1(−1) = α(u1, uc) + Ckj(u1) + α(u1, u2)
PF1,1(1) = +∞ PF1,1(2) = Cjl(u1) + α(u1, u2)
PF ∗

1,1(2) = +∞
(4)

PF ∗
1,i(0) =

min{PF ∗

1,i−1(0), PF1,i−1(−1)} if ui /∈ SV,

+∞ otherwise.

PF1,i(−1) = PF1,i−1(2) + Ckj(ui) + α(ui, uc)
PF ∗

1,i(1) = PF ∗
1,i(0) + Ckl(ui) + α(uc, ui) + α(ui, ui+1)

PF1,i(2) = PF1,i−1(2) + Cjl(ui) + α(ui, ui+1)
PF ∗

1,i(2) = min{PF ∗
1,i−1(1), PF ∗

1,i−1(2)} + Cjl(ui) + α(ui, ui+1)

(5)

The value of C∗
jl(F) equals PF1,r(−1)− α(u1, uc)− α(ur, uc).

If a subformula uses a function whose value is +∞, that is, it indicates no
such structure of cycle cover in the pseudo-fan, then the value of the subformula
is set to be +∞, immediately. For example, we calculate the function PF ∗

1,2(2)
in formula (5), if PF ∗

1,1(2) = +∞, then PF ∗
1,2(2) is set to be +∞.

5 Main Procedure of the Algorithm

Input: Given a Halin graph H = T ∪ C and the set SV as selected vertices.
Output: The cycle covering SV with minimum cost.

1) Choose a non-leaf vertex of T , denoted by vroot,
such that vroot is adjacent to a leaf of T , denoted by vleaf .

2) Perform a postorder scan of T , for each fan F has been found do
3) If the centre of F �= vroot then

192 Y. Li

begin
shrink F to uF ;
calculate the values to the function of F and store into uF ;
record the structure of F corresponding to each value.

end
Let Hw be the wheel we finally get and k be the edge joining vroot and vleaf .

Let j, l be the two edges in C adjacent to vleaf such that the direction of j,
vleaf , l is clockwise.
4) Let fan Fw ≡ Hw − vleaf . Calculate the values to the function of Fw.
5) Store the structure of covering cycle C∗ in Fw corresponding to each value.
6) Shrink the fan Fw to the pseudo-vertex vw.
7) Cost := min{Ckj(vw)+αk +αj , Ckl(vw)+αk +αl, Cjl(vw)+αj +αl, C∅(vw)}.
Let E∗ be the edges in {k, j, l} the choice of which makes the maximum

//If more than one get the maximum, choose one arbitrarily.
8) Mark E∗ belonging to the covering cycle C∗.

9) While (there is pseudo-vertex in H) do
10) begin

Let vF be a pseudo-vertex such that vF is shrunk from the fan F .
11) According to the information stored in vF ,

we can obtain the corresponding part of C∗ in F .
12) Restore vF to the fan F .
13) Mark the edges of C∗ in F .
14) end
15) All the marked edges compose the cycle cover C∗ for output.

In the algorithm, the section 1) needs O(1) time. The section 3) is the oper-
ation of shrinking fans in H . If a fan F contains r+1 vertices, then it is verified
that the time of the shrinking operation is O(r). Moreover, shrinking F reduces
the number of vertices of the graph by r. Thus, the total time of the shrinking
operation is O(|V |). The time of the postorder scan without shrinking is bounded
by O(|V |). The sections 4) ∼ 8) need O(1) time. The time of sections 9) ∼ 14) is
the same as the section 3). Therefore, the total time for this algorithm is O(|V |).

6 Covering Vertices with Disjoint Cycles

One variation of covering vertices using one cycle is covering them with edge-
disjoint cycles which are connected by vertices. The logic network consists of
covering cycles is more robust: if there are more than one links failed and they
lie in different cycle, then each node of the network is still reachable.

By Theorem 2, the edge-disjoint cycles intersect in the inner of T . For a fan
F of H∗, if it contains parts of two edge-disjoint vertex-connected cycles C∗ and
C∗∗, then the common vertex is the centre of F .

If E(C∗) ∪ E(C∗∗) ⊆ E(F), it could be viewed as using disjoint triangles to
cover the selected vertices.

Constrained Cycle Covers in Halin Graphs 193

If E(C∗) ∪ E(C∗∗) � E(F), there is exactly one cycle contains two edges of
EC3(F). Furthermore, the edges of other covering cycles must be in F . Then,
suppose E(C∗) � E(F), the edges j, k, l and the vertices uc, u1, . . . , ur are de-
fined the same as Section 4.

– If C∗ uses {j, k}, the sequence of E(C∗)∩E(F) is always in the form u1, u2,
. . . , ui, uc where 1 ≤ i ≤ r. It can be viewed as one triangle which contains
u1 where the edge (uc, u1) is eliminated.

– If C∗ uses {k, l}, the situation is symmetric as above.
– If C∗ uses {j, l}, the sequence is in the form u1, u2, . . . , ui, uc, uj, uj+1,

. . . , ur where 1 ≤ i < j ≤ r. It can be viewed as two disjoint triangles
which contain u1, ur respectively where the edges (uc, u1) and (uc, ur) are
eliminated.

We also use the functions Cjk, Cjl, Ckl, C∅ and the formulas are similar with
Section 4. The difference is that the calculation to the cost of covering cycles
is using arbitrary number (not just one) disjoint triangles to cover SV ∩ V (F).
The cost can be computed by the following formulas:

PF1,1(0) =

0 if u1 /∈ SV,

+∞ otherwise.
PF1,1(−1) = α(u1, uc) + Ckj(u1)

PF1,1(1) = α(u1, uc) + Ckl(u1) + α(u1, u2) PF1,1(2) = +∞
(6)

PF1,i(0) =

min {PF1,i−1(0), PF1,i−1(−1)} if ui /∈ SV,

+∞ otherwise.

PF1,i(−1) = min {PF1,i−1(2), PF1,i−1(1)} + Ckj(ui) + α(ui, uc)
PF1,i(1) = PF1,i(0) + Ckl(ui) + α(uc, ui) + α(ui, ui+1)
PF1,i(2) = min {PF1,i−1(1), PF1,i−1(2)} + Cjl(ui) + α(ui, ui+1)

(7)

Formula (6) is the initialization of calculating Ckj(F). For other functions, it
needs to be changed. The value ofCkj(F) is min{PF1,r(0), PF1,r(−1)}−α(u1, uc)
where SV is set to {u1} ∪ {SV ∩ V (F)}, temporally. The calculation of Ckl is
symmetric. The value of Cjl is PF1,r(−1)−α(u1, uc)−α(ur, uc) where SV is set
to {u1, ur}∪ {SV ∩V (F)}. The value of C∅ is min{PF1,r(0), PF1,r(−1)} where
SV is unchanged.

The main procedure of algorithm is the same as Section 5 except that the
store of the covering cycles’ structure should be included in the calculation of
each PF1,i in every fan. It takes more O(V) space. The previous one just stores
the structure into the function of the fan. For instance, Cjk(F) records the choice
of i which obtains minimum.

7 Covering Vertices with an Optimal 2-Edge-Connected
Subgraph

The functions and definitions mentioned in Section 4 are still used in this Section
while each function value records the cost of the part in a fan with respect to
the optimal 2-edge-connected subgraph. In addition, we use Cjkl(F) to store the

194 Y. Li

minimum cost when j, k, l are in the subgraph. For an arbitrary fan F in H , the
cases are simple and similar with previous ones.

– Case 1: none of j, k, l is used.
This case is solved in Section 5.

– Case 2: j, k are used.
This situation can be viewed as using arbitrary number edge-disjoint trian-
gles to cover {u1} ∪ {SV ∩ V (F)}. Just need to discount the edge (u1, uc)
when calculating the cost.

– Case 3: k, l are used. Symmetrically.

– Case 4: j, l are used.
Case 4.1: If there is an edge in E(F)∩E(C) not selected into the subgraph.
This situation can be viewed as using arbitrary number edge-disjoint trian-
gles to cover {u1, ur}∪{SV ∩V (F)}. Just need to discount the edges (u1, uc)
and (ur, uc) when calculating the cost.
Case 4.2: There is no such edge in Case 4.1. Subformula (1c) is changed to
be C∗

jl(F) = min1≤i<j≤r{α(uc, ui) + α(uc, uj)}+ D1,r.

– Case 5: j, k, l are used.
Case 5.1: If there is an edge in E(F)∩E(C) not selected into the subgraph,
this case is the same as Case 4.1.
Case 5.2: There is no such edge in Case 5.1. Choose the edge (uc, ui) of
which the cost is minimum in {(uc, u1), . . . , (uc, ur)}. If there is other edge
(uc, uj) where j �= i selected, it can be removed. Hence, Cjkl = D1,r +
min1≤i≤r{α(uc, ui)}.

We proceed to handle the fans of H∗. For an arbitrary fan F in H∗, the cases
are quite different from previous ones.

– Case 1: none of j, k, l is used.
Case 1.1: If SV = {ui} for some i ∈ {1, . . . , r}, then C∅(F) = C∅(ui).
Case 1.2: Otherwise, C∅(F) equals the cost of using arbitrary number trian-
gles to cover SV ∩ V (F). The difference is that two adjacent triangles can
have one common edge in {(uc, u1), . . . , (uc, ur)}. We do not calculate the
subformula (1e), (1f) and (1g).

Instead, this type of coverage can be solved by means of the following
formulas. The definitions of PF1,1(0), PF1,1(1) and PF1,1(−1) are the same
as formula (6). And we set C∅(F) = min{PF1,r(0), PF1,r(−1)}.

PF1,i(0) =

min{PF1,i−1(0), PF1,i−1(−1)} if ui /∈ SV,

+∞ otherwise.

PF1,i(−1) = PF1,i−1(1) + Ckj(ui) + α(ui, uc)

PF1,i(1) = min

PF1,i(0) + Ckl(ui) + α(uc, ui) + α(ui, ui+1)
PF1,i−1(1) + min{Cjl(ui), Cjkl(ui) + α(uc, ui)} + α(ui, ui+1)

(8)

Constrained Cycle Covers in Halin Graphs 195

– Case 2: j, k are used.
We define PF1,1(0) = NULL, PF1,1(1) = min{Cjl(u1), Cjlk(u1)}+α(u1, u2)
and PF1,1(−1) = Ckj(u1) + α(u1, u2). Use formula (8) to calculate PF1,i.

At last, Cjk(F) = min{PF1,r(0), PF1,r(−1)}.

– Case 3: k, l are used. Symmetrically.

– Case 4: j, l are used.
Case 4.1: If uc is not selected, subformula is set to be Cjl(F) = D1,r.
Case 4.2: Otherwise, since the edge k is not selected, we should guarantee
there are at least two edges incident with uc. New technique is introduced
as follows:

Let Ek be the edge set incident with uc. Let function PF1,i store cor-
responding values when E(PF1,i) ∩ Ek = ∅. PF ∗

1,i and PF ∗∗
1,i are used

when |E(PF1,i) ∩ Ek| = 1 and |E(PF1,i) ∩ Ek| ≥ 2, respectively. Thus,
Cjl(F) = PF ∗∗

1,r(1) according to the requirement. The formulas applied this
technique are given below:

PF1,i(0) = +∞, ∀i ∈ {1..r}, PF1,i(−1) = +∞, ∀i ∈ {1..r},
PF1,1(1) = Cjl(u1) + α(u1, u2),
PF ∗

1,1(0) = +∞, PF ∗
1,1(−1) = Ckj(u1) + α(uc, u1),

PF ∗
1,1(1) = α(u1, uc) + min{Cjkl(u1), Ckl(u1)}+ α(u1, u2),

PF ∗∗
1,1(0) = +∞, PF ∗∗

1,1(−1) = +∞,
PF ∗∗

1,1(1) = +∞,

PF ∗
1,i(0) =

min{PF ∗

1,i−1(0), PF ∗
1,i−1(−1)} if ui /∈ SV,

+∞ otherwise.

PF ∗∗
1,i(0) =

min{PF ∗∗

1,i−1(0), PF ∗∗
1,i−1(−1)} if ui /∈ SV,

+∞ otherwise.

PF1,i(1) = PF1,i−1(1) + Cjl(ui) + α(ui, ui+1)

PF ∗
1,i(1) = min

PF ∗

1,i(1) + Cjl(ui) + α(ui, ui+1),
PF1,i−1(1) + Cjkl(ui) + α(ui, uc) + α(ui, ui+1)

�

PF ∗∗
1,i(1) = min

����
���

PF ∗∗
1,i−1(1) + α(ui, ui+1) + min{Cjl(ui), Cjkl(ui) + α(ui, uc)},

PF ∗
1,i−1(1) + Cjkl(ui) + α(ui, uc) + α(ui, ui+1),

min{PF ∗
1,i−1(0), PF ∗

1,i−1(−1), PF ∗∗
1,i−1(0), PF ∗∗

1,i−1(−1)}
+Ckl(ui) + α(ui, uc) + α(ui, ui+1)

����
��	

PF ∗
1,i(−1) = PF1,i−1(1) + Ckj(ui) + α(ui, uc)

PF ∗∗
1,i(−1) = min{PF ∗

1,i−1(1), PF ∗∗
1,i−1(1)} + Ckj(ui) + α(ui, uc)

(9)

– Case 5: j, k, l are used.
Use formula (9) to obtainPF ∗

1,r and PF ∗∗
1,r. We have Cjkl(F) = min{PF ∗

1,r(1),
PF ∗∗

1,r(1)} in this case. Note that if Cjkl(F) = PF ∗∗
1,r(1), it indicates that the

edge k is removable with respect to fan F . If this edge is also removable in
the fan of H∗ which uF lies in, the cost Cjl(F) < Cjkl(F) will be smaller.
So the optimal subgraph does not contain such removable edge k.

196 Y. Li

8 Example

An example for our algorithms is given in Figure 1. The arrows show the main
procedure of shrinking fans. The graph marked with 1© illustrates an optimal
one-cycle cover which is indicated by dotted lines. The graph marked with 2©
shows an optimal cover with edge-disjoint cycles. And the one marked with 3©
displays an optimal cover with a 2-edge-connected subgraph. The values to the
functions of pseudo-vertices are presented in Table 1.

Fig. 4. Example

Table 1. Values to the functions of pseudo-vertices

Covering with One Cycle Covering with Cycles Covering with subgraph

C∅ Ckj Ckl Cjl C∅ Ckj Cjl Cjl C∅ Ckj Ckl Cjl Cjkl

s 15 20 15 16 12 13 12 13 12 13 12 13 13

t 16 23 5 17 16 23 5 17 16 23 5 17 13

u 0 3 2 1 0 3 2 1 0 3 2 1 3

v 48 47 48 43 43 32 40 30 40 32 38 30 30

Cost 48 56 56 58 43 41 48 45 40 41 46 45 46

Constrained Cycle Covers in Halin Graphs 197

9 Conclusions

We settle the problem of searching an optimal constrained cycle covers in Halin
Graphs. We study two types of cycle covers and 2-edge-connected subgraph
cover. The method is more applicable. For example, since the Synchronous Op-
tical NETwork (SONET) standard limits the number of nodes on a ring [9]. We
can add one more variable, which indicates the length of cycle, in the functions’
definitions. If the parameter D is the maximum number of nodes allowed in a
cycle, then each formula turns into D ones. The formula indicates length n is cal-
culated from the ones standing for length n− 1. The space and time complexity
will grow to O(D|V |).

Another extension is that our algorithm can be easily changed to solve the
optimal one-path cover in Halin graphs. In practice, we usually establish the ring
using two connections in both directions within one link. Hence, one path covers
selected vertices is sufficient. Li, Lou and Lu [6] solved the optimal Hamiltonian
paths in Halin graphs. Hamiltonian path can be viewed as one path covering
all the vertices. We could solve the constrained problem which covers required
vertices by means of the amended version of our algorithm.

The “Shrinking Fan” method works since Halin graphs have small treewidth,
which was stated in [1]. Our algorithm might be considerable to tackle the con-
strained cycle cover problem in small treewidth graphs.

References

[1] Arnborg, S., Lagergren, J.: Easy problems for tree-decomposable graphs. Journal
of Algorithms 12, 308–349 (1991)

[2] Bondy, J.A., Murty, U.S.R.: Graph theory with application. Macmillan, London
(1976)

[3] Cornuejols, G., Naddef, D., Pulleyblank, W.: Halin graphs and the traveling sales-
man problem. Mathematical Programming 26, 287–294 (1983)

[4] Cornuejols, G., Naddef, D., Pulleyblank, W.: The traveling salesman problem in
graphs with 3-edge cutsets. Journal of ACM 32, 383–410 (1985)

[5] Hochbaum, D.S., Olinick, E.V.: The bounded cycle-cover problem. INFORMS Jour-
nal on Computing 13, 104–119 (2001)

[6] Li, Y.P., Lou, D.J., Lu, Y.T.: Algorithms for the optimal hamiltonian path in Halin
graphs. Ars Combinatoria (accepted)

[7] Pesant, G., Soriano, P.: An optimal strategy for the constrainted cycle cover prob-
lem. Annuals of Mathematics and Ariticial Intelligence 34, 313–325 (2002)

[8] Winter, P.: Steiner problem in halin graphs. Discrete Apply. Math. 17, 281–294
(1987)

[9] Wu, T.H.: Fiber network service survivability. Artech House, Norwood, MA (1992)

Optimal Semi-online Algorithms for Scheduling

with Machine Activation Cost�

Shuguang Han1,3, Yiwei Jiang1,2,��, and Jueliang Hu1

1 Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 Key Laboratory of Advanced Textile Materials and Manufacturing Technology
(Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, China

mathjyw@yahoo.com.cn
3 Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Abstract. We investigate the following two semi-on-line scheduling
problems with machine activation cost. We are given two potential iden-
tical machines to non-preemptively process a sequence of independent
jobs. Machines need to be activated before starting to process, and each
machine activated incurs a fixed machine activation cost. No machines
are initially activated, and when a job is revealed the algorithm has the
option to activate new machines. The objective is to minimize the sum of
the makespan and activation cost of machines. For the first semi-on-line
problem with known the sum size of all jobs P in advance , we present an
semi-on-line algorithm which is optimal for every P > 0. For the second
problem with known the largest size of all jobs L in advance, we present
an optimal semi-on-line algorithm for every L > 0.

1 Introduction

Problem statement. We consider the following semi-on-line scheduling prob-
lems. We are given a sequence J of independent jobs with positive processing
times (sizes) p1, p2, . . . , pn, which must be non-preemptively scheduled on iden-
tical machines. We identify jobs with their sizes here. Jobs arrive one by one
(on-line over list) and are to be scheduled irrevocably on machines as soon as
they are given. We are given m potential machines which need to be activated
before starting to process and the activation cost cannot be neglected. Initially
there are no machines activated. As the machines are identical, by normalizing
all job sizes and machine activation cost, we assume that the activation cost for
each machine is 1 without loss of generality. The goal is to minimize the sum
of the makespan and the total machine activation cost. In this paper, we deal
with two semi-on-line problems on two potential machines (i.e., m = 2). One is
to be known the total size of all jobs in advance, denoted by P , and the other
is to be known the size of the largest job in advance, denoted by L. Using a
� Research supported by Natural Science Foundation of China(10671177), Natural

Science Foundation of Zhejiang Province (Y605316), and Natural Science Founda-
tion of Education Department of Zhejiang Province (20060578).

�� Corresponding author.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 198–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Semi-online Algorithms for Scheduling 199

three field notation, we denote these two problems by P2|sum|Cmax + m′ and
P2|max|Cmax + m′, respectively.

Note that our semi-on-line problems are quite different from the classical semi-
online parallel machine scheduling problems [3,6,9,11], where we typically have
a fixed number m of machines, the scheduler makes no decision regarding the
number of machines that are used to process jobs, and the provided machines
can be activated without any cost. We still use competitive ratio to measure
the performance of our semi-online algorithm. For a job sequence J and an
algorithm A, let cA(J) (or shortly cA) denote the makespan produced by A and
let c∗(J) (or shortly c∗) denote the optimal makespan in an off-line version.
Then the competitive ratio of A is defined as the smallest number C such that
for any J , cA(J) ≤ Cc∗(J). An on-line problem has a lower bound ρ if no on-
line deterministic algorithm has a competitive ratio smaller than ρ. An on-line
algorithm is called optimal if its competitive ratio matches the lower bound.

Previous work. Imreh and Noga [7] first considered the problem with m = +∞,
that is, there are sufficient large number of identical machines to be activated.
They presented an online 1+

√
5

2 ≈ 1.618-competitive algorithm Aρ while the
lower bound was 4/3. Dósa and He [2] made an improvement by presenting an
algorithm with a competitive ratio of 2

√
6+3
5 ≈ 1.5798. He and Jiang [8] extended

to consider preemptive online algorithms for List Model problem. In addition,
Panwalker and Liman [10] proposed another off-line scheduling problem that
there are m = +∞ potential identical machines which can be activated, and the
objective is to find an optimal schedule, the optimal number of machines, and
the respective due dates to minimize the weighted sum of earliness, tardiness,
and machine activation cost. It is remarkable that the good performance of the
algorithms in [7,2,8] is based on that we are allowed to activate a large number
of machines if needed.

But in some application, the number of the potential machines may not be
sufficient large. Cao, Chen and Wan [1] considered a parallel machine schedul-
ing problem where only finite machines are provided. The objective is to min-
imize the sum of the total weighted job tardiness penalties and the total
machine activation cost. He, Han and Jiang [5] considered online algorithms
for List Model problem with finite identical machines. The objective is to min-
imize the sum of the makespan and the total machine activation cost. Han,
Jiang and Hu [4] considered such a scheduling problem on two uniform
machines.

Our results. We consider two semi-online problems in this paper, i.e. P2
|sum|Cmax + m′ and P2|max|Cmax + m′. For the first problem, we present an
algorithm which is optimal for every P > 0. For the second problem, we also
present an optimal algorithm for every L > 0.

The rest of the paper is organized as follows. Section 2 gives some basic
notation. Section 3 presents the lower bound and an optimal algorithm for

200 S. Han, Y. Jiang, and J. Hu

P2|sum|Cmax+m′. Section 4 presents the lower bound and an optimal algorithm
for P2|max|Cmax + m′. Finally, section 5 contains some remarks.

2 Preliminary

To simplify the presentation, the following notation and definitions are required
in the remainder of the paper.

Denote by pmax
j = max{pi|i = 1, · · · , j}, and L the largest size of all jobs,

then L = pmax
n . Denote by P =

j∑

i=1

pn and Pj =
j∑

i=1

pi. Let M1,M2 be the two

potential machines. We call moment j as the time right after the j -th job is
scheduled. Let si,j denote the current load of machine Mi at moment j ≥ 0 in
an algorithm A, i = 1, 2. Let CA and C∗ be the makespan yielded by A and in
the optimal solution, respectively. And let m and m∗ be the machine activation
cost yielded by algorithm A and in the optimal solution, respectively. Then we
have cA = CA + m and c∗ = C∗ + m∗.

The following Theorem is easy to be obtained.

Theorem 1. The optimal value for the two semi-on-line problems is at least
min{1 + P, 2 + max{P

2 , L}}.

3 Problem P2|sum|Cmax + m′

In this section, we assume that the total size of all jobs P is known in advance.
We first give the lower bound of the problem, then present an algorithm H1
which is optimal for any P > 0.

3.1 Lower Bound

We present the lower bound of the problem below.

Theorem 2. The competitive ratio of any semi-on-line algorithm A for problem
P2|sum|Cmax + m′ is

C ≥

⎧
⎨

⎩

1, 0 < P ≤ 2,
2+2P
4+P , 2 < P ≤ 3,
12+4P
12+3P , P > 3.

Proof. The result is obviously true for 0 ≤ P ≤ 2.
For P > 2, the first two jobs p1 = p2 = P

6 arrive. If algorithm A activates
only one machine to process them, then the last two jobs p3 = p4 = P

3 arrive.
Clearly, by Theorem 1 and P > 2, we have c∗ = 2 + P

2 . It is not hard to obtain
that cA = min{1 + P, 2 + 2P

3 } and thus

C ≥ cA

c∗
≥

min{1 + P, 2 + 2P
3 }

2 + P
2

=
{ 2+2P

4+P , 2 < P ≤ 3,
12+4P
12+3P , P > 3.

Optimal Semi-online Algorithms for Scheduling 201

On the other hand, if algorithm A activates two machines and schedules the
jobs p1 and p2 onto different machines, then the last two jobs p3 = P

6 and p4 = P
2

arrive. We also have c∗ = 2 + P
2 . It is clear that cA ≥ 2 + 2P

3 and thus

C ≥ cA

c∗
=

2 + 2P
3

2 + P
2

=
12 + 4P
12 + 3P

≥
{ 2+2P

4+P , 2 < P ≤ 3,
12+4P
12+3P , P > 3.

��

3.2 Optimal Algorithm H1

We present an optimal semi-on-line algorithm H1 for the problem. The algorithm
activates only one machine if P ≤ 3. If P > 3, three cases are considered

according to the size of job pt, where t = min{j|
j∑

i=1

pi > 2P
3 }.

Algorithm H1

1. If P ≤ 3, activate machine M1 to schedule all the jobs, Stop.
2. If P ≥ 3, activate machine M1 to schedule p1, p2, · · · , pt−1.

2.1. If P − 1 < pt ≤ P , schedule pt and all the remaining jobs onto machine
M1, Stop.

2.2. If P
3 < pt ≤ P − 1, activate machine M2 to schedule pt, and schedule all

the remaining jobs onto machine M1, Stop.
2.3. If pt ≤ P

3 , activate machine M2 to schedule pt and all the remaining
jobs, Stop.

Lemma 1. If P ≤ 3, then cH1

c∗ ≤
{

1, 0 < P ≤ 2,
2+2P
4+P , 2 < P ≤ 3. .

Proof. According to the rule of algorithm H1, only one machine M1 is activated
by the algorithm H1, then cH1 = 1 + P . If P ≤ 2, by Theorem 1, we have
c∗ ≥ min{1 + P, 2 + P

2 } = 1 + P = cH1. If 2 < P ≤ 3, then we have c∗ ≥
min{1 + P, 2 + P

2 } = 2 + P
2 and thus cH1

c∗ ≤ 1+P
2+ P

2
= 2+2P

4+P . ��

Lemma 2. If P ≥ 3, then cH1

c∗ ≤ 12+4P
12+3P .

Proof. If P − 1 < pt ≤ P , by the rule of step 2.1 in H1, only one machine is
activated and thus cH1 = 1 + P . Furthermore, P − 1 < pt ≤ P implies that
L = pt due to P > 3. Thus we have c∗ ≥ min{1 + P, 2 + L} = 1 + P according
to Theorem 1, that is, cH1 = c∗.

If P
3 < pt ≤ P − 1, from step 2.2 of H1, only job pt is scheduled onto

machine M2, and all the others onto machine M1, then we have cH1 = 2 +
max{pt, P − pt}. Moreover, if P

2 ≤ pt ≤ P − 1, then pt = L and thus c∗ ≥
min{1 + P, 2 + pt} = 2 + pt = cH1. On the other hand, if P

3 ≤ pt ≤ P
2 , we

have cH1 = 2 + max{P − pt, pt} = 2 + P − pt ≤ 2 + 2P
3 . By Theorem 1, c∗ ≥

min{1 + P, 2 + P
2 } = 2 + P

2 due to P ≥ 3. It follows that cH1

c∗ ≤ 2+ 2P
3

2+ P
2

= 12+4P
12+3P .

202 S. Han, Y. Jiang, and J. Hu

Finally, we consider the case of pt ≤ P
3 . By the definition of pt, we have

t−1∑

i=1

pi <

2P
3 and

t∑

i=1

pi > 2P
3 , which, together with pt ≤ P

3 , leads to
t−1∑

i=1

pi >
2P
3 − pt > P

3

and thus
n∑

i=t

pi <
2P
3 . From step 2.3, we have cH1 = 2+max{

n∑

i=t

pi,
t−1∑

i=1

pi} < 2+

2P
3 . It follows that cH1

c∗ ≤ 2+ 2P
3

2+ P
2

= 12+4P
12+3P due to c∗ ≥ min{1 + P, 2 + P

2 } = 2+ P
2 .
��

Now we give the main Theorem of this section:

Theorem 3. Algorithm H1 has a parameter competitive ratio of
⎧
⎨

⎩

1, 0 < P ≤ 2,
2+2P
4+P , 2 < P ≤ 3,
12+4P
12+3P , P > 3,

and it is optimal.

Proof. The competitive ratio of algorithm H1 is obtained by Lemmas 1 and 2,
which can be illustrated as Figure 1. Moreover, the optimality of algorithm H1
is a direct consequence of Theorem 2. ��

2 3 4 5 6 7

1

1.05

1.1

1.15

1.2

1.25

1.3

Fig. 1. The competitive ratio of H1 for all P > 0

4 Problem P2|max|Cmax + m′

In this section, we assume that the largest size L of all jobs is known in advance.
We first give the lower bound of the problem, then present an algorithm H2
which is optimal for any L > 0.

Optimal Semi-online Algorithms for Scheduling 203

4.1 Lower Bound

We present the lower bound of the considered problem. The proof is more com-
plicated than that of Theorem 2. We first give the following technical lemmas.

Lemma 3. If 0 < L ≤ 1, then the competitive ratio of any semi-on-line algo-
rithm for problem P2|max|Cmax + m′ is at least 4

3 .

Proof. Assume that an algorithm A exists and has a competitive ratio C < 4
3 .

We show C ≥ 4
3 if 0 < L ≤ 1. The first job p1 = L arrives, then machine M1

must be activated to process job p1. Consider a sequence of jobs with each job
pi = ε for all i ≥ 2, where ε is a very small positive number. We can claim that
algorithm A must assign the first k jobs (if any) to M1 to avoid C ≥ 4

3 , with k

satisfying Pk =
k∑

i=1

pi = 5. Otherwise, we let pl, 1 < l ≤ k, be the first job to be

assigned to machine M2 and no other new jobs arrive after scheduling pl. Thus
we have Pl−1 < 5 and cA = 2 + Pl−1.

If Pl−1 =
l−1∑

i=1

pi < 2, then the optimal value c∗ = 1 +Pl = 1 +Pl−1 + ε, which

follows that

C ≥ 2 + Pl−1

1 + Pl−1 + ε
≥ 1 +

1
1 + 2 + ε

→ 4
3

(ε→ 0).

If 2 ≤ Pl−1 < 5, then we have c∗ = 2 + Pl

2 = 2 + Pl−1+ε
2 . It follows that

C ≥ 2 + Pl−1

2 + Pl−1+ε
2

≥ 2 + 2
2 + 2+ε

2

→ 4
3

(ε→ 0).

Thus algorithm A must assign the first k jobs to the machine M1 completely.
Then no new jobs arrive and thus cA ≥ 1 + Pk = 6, while c∗ = 2 + Pk

2 = 2 + 5
2 .

It yields that C ≥ cA

c∗ ≥ 6
2+ 5

2
= 4

3 . The proof is completed. ��

Lemma 4. If 1 < L ≤ 1+
√

17
2 , then the competitive ratio of any semi-on-line

algorithm for problem P2|max|Cmax + m′ is at least 3+L
2+L .

Proof. The proof is similar as that of Lemma 3 except for the size of Pk. Here let

Pk =
k∑

i=1

pi =

{
8+2L
L+1 , 1 < L ≤ 2,
2L, 2 < L ≤ 1+

√
17

2 .
. We only prove the result for 1 < L ≤ 2.

For the case of 2 < L ≤ 1+
√

17
2 , the desired result can be obtained by the same

argument.
We claim that algorithm A must activate only one machine to process all the

first k jobs to avoid C ≥ L+3
L+2 . Otherwise, we also let pl, 1 < l ≤ k, be the first

job to be assigned to machine M2 and no other new jobs arrive after scheduling
pl. Thus we have Pl−1 < 8+2L

L+1 and cA = 2 +Pl−1. Similarly, we prove the result
according to the size of Pl−1.

204 S. Han, Y. Jiang, and J. Hu

(i) L ≤ Pl−1 < L + 1. Then we have c∗ = 1 + Pl = 1 + Pl−1 + ε and thus

C ≥ 2 + Pl−1

1 + Pl−1 + ε
≥ 2 + L + 1

1 + L + 1 + ε
→ 3 + L

2 + L
(ε→ 0).

(ii) L + 1 ≤ Pl−1 < 2L. It is easy to obtain that c∗ = 2 + L. It follows that

C ≥ 2 + Pl−1

L + 2
=

2 + Pl − ε

2 + L
≥ 2 + L + 1− ε

2 + L
→ 3 + L

2 + L
(ε→ 0).

(iii) 2L ≤ Pl−1 < 8+2L
L+1 . Then we have c∗ = 2 + Pl

2 = 2 + Pl−1+ε
2 and thus

C ≥ 2 + Pl−1

2 + Pl−1+ε
2

≥ 2 + 2L
2 + 2L+ε

2

≥ 3 + L

2 + L + ε
2

→ 3 + L

2 + L
(ε→ 0).

From above argument, we are sure that the algorithm A must assign all the
first k jobs to the machine M1. Then no new jobs arrive and thus cA ≥ 1 + Pk,
while c∗ = 2 + L + Pk

2 . Recall that Pk = 2L+8
L+1 . Hence, C ≥ cA

c∗ ≥ 1+Pk

2+
Pk
2

= 3+L
2+L .

The proof is completed. ��

Lemma 5. If L > 1+
√

17
2 , then the competitive ratio of any semi-on-line algo-

rithm for problem P2|max|Cmax + m′ is at least 4+4L
4+3L .

Proof. Assume that an algorithm A exists and has a competitive ratio C. The
first two jobs p1 = p2 = L

2 arrive. If algorithm A activates only one machine to
process the jobs, then the last two jobs p3 = L and p4 = L arrive. It implies that
cA ≥ 2 + 2L, while c∗ = 2 + 3L

2 . Thus C ≥ cA

c∗ ≥ 2+2L
2+ 3L

2
= 4+4L

4+3L . If A activates
two machines and schedules p1 and p2 onto different machines. Then the last job
p3 = L arrives, which yields that cA = 2 + 3L

2 and c∗ = 2 + L. It follows that

C ≥ cA

c∗
=

2 + 3L
2

2 + L
=

2 + 2L− L
2

2 + 3L
2 −

L
2

>
2 + 2L
2 + 3L

2

=
4 + 4L
4 + 3L

.

The proof is completed. ��

Together with Lemmas 3, 4 and 5, we have the following Theorem for the lower
bound of the problem P2|max|Cmax + m′.

Theorem 4. The competitive ratio of any semi-on-line algorithm for problem
P2|max|Cmax + m′ is at least

⎧
⎪⎨

⎪⎩

4
3 , 0 < L ≤ 1,
3+L
2+L , 1 < L ≤ 1+

√
17

2 ,
4+4L
4+3L , L > 1+

√
17

2 .

Optimal Semi-online Algorithms for Scheduling 205

4.2 Optimal Algorithm H2

We present an optimal algorithm H2 for the problem P2|max|Cmax + m
′
. We

divide the algorithm into two parts according to the value of L. Part 1 is used
to deal with the case of L ≤ 1 and Part 2 to deal with the case of L > 1. The
detail can be described below.

Algorithm H2
Part 1. (For the case L ≤ 1)

1. Activate machine M1 to process job p1. Let k = 1, m1 = 1.
2. If no new job arrives, stop. Otherwise, let k = k + 1.
3. If mk−1 = 1 and s1,k−1 + pk ≤ 2, schedule pk on machine M1. Let mk =

mk−1. Return step 2.
4. If mk−1 = 1 and s1,k−1 + pk > 2, activate machine M2 to process job pk.

Let mk = mk−1 + 1. Return step 2.
5. If mk−1 = 2, schedule pk by LS rule (LS rule means that the job is

scheduled on the machine with minimum current load). Return step 2.

Part 2. (For the case L > 1)

1. Activate machine M1 to process job p1. Let k = 1, m1 = 1.
2. If no new job arrives, stop. Otherwise, let k = k + 1.
3. If mk−1 = 1 and the largest job is revealed.

3.1. If s1,k−1 + pk ≤ (L + 1), schedule pk on machine M1. Let mk = mk−1.
Return step 2.

3.2. If s1,k−1 + pk > L + 1, activate machine M2 to process job pk. Let
mk = mk−1 + 1. Return step 2.

4. If mk−1 = 1 and the largest job is not yet revealed.
4.1. If s1,k−1+pk ≤ 2L, schedule pk on machine M1. Let mk = mk−1. Return

step 2.
4.2. If s1,k−1 + pk > 2L, activate machine M2 to process job pk. Let mk =

mk−1 + 1. Return step 2.
5. If mk−1 = 2, schedule pk by LS rule. Return step 2.

Lemma 6. If L ≤ 1, then cH2

c∗ ≤ 4
3 .

Proof. We only need to consider Part 1 of algorithm H2. If H2 only activates
one machine M1, then it is clear that Pn ≤ 2 and thus cH2 = 1 + Pn = c∗.

We now deal with the case that H2 activates both machines. Then we have
Pn > 2 by the rule of the algorithm. Let pl be the job that determines the
makespan. We can conclude that it is impossible to schedule pl by step 4. Oth-
erwise, by the rule of step 4, pl is the first job assigned to the machine M2.
Moreover, by the definition of pl, we obtain that pl is the unique job processed
on machine M2, then cH2 = 2+pl. However, step 4 states that Pl = Pl−1+pl > 2
and Pl−1 < 2. Note that pl ≤ L ≤ 1 implies s1,l = Pl−1 > s2,l = pl. It follows

206 S. Han, Y. Jiang, and J. Hu

that cH2 = 2+Pl−1 > 2+pl = cH2, a contradiction. Hence, pl must be scheduled
by step 3 or step 5.

If pl is scheduled by step 3, then we have cH2 ≤ 2 + s1,l ≤ 4. By Theorem 1,
we have c∗ ≥ min{1 + Pn, 2 + Pn

2 } = 2 + Pn

2 ≥ 3 and thus cH2

c∗ ≤ 4
3 .

If pl is scheduled by step 5, then Pl > 2, which yields that max{s1,l, s2,l} > 1.
Since pl is scheduled by LS rule, we can conclude that |s1,l− s2,l| ≤ pl ≤ L, i.e.,
min{s1,l, s2,l} ≥ max{s1,l, s2,l}−L. We know that cH2 = 2+max{s1,l, s2,l} and

c∗ ≥ 2 +
Pl

2
= 2 +

s1,l + s2,l

2
= 2 +

min{s1,l, s2,l}+ max{s1,l, s2,l}
2

.

It follows that

cH2

c∗
≤ 2 + max{s1,l, s2,l}

2 + min{s1,l,s2,l}+max{s1,l,s2,l}
2

≤ 2 + max{s1,l, s2,l}
2 + max{s1,l,s2,l}−L+max{s1,l,s2,l}

2

=
2 + max{s1,l, s2,l}

2 + max{s1,l, s2,l} − L
2

≤ 2 + 1
2 + 1− L

2

<
3

3− 1
2

=
6
5

<
4
3
.

��

Lemma 7. If L ≥ 1, then cH2

c∗ ≤ max{L+3
L+2 ,

4+4L
4+3L}.

Proof. We consider Part 2 of algorithm H2. If H2 only activates M1 to process all
the jobs, then we conclude that Pn ≤ L+1 by step 3.1 and have cH2 = 1+Pn ≤
L+2. Due to Theorem 1, we obtain that c∗ ≥ min{L+2, 1+Pn} = 1+Pn = cH2.

Now we deal with the case that both machines are activated by H2. As the
algorithm states that the second machine is activated by step 3.2 or 4.2, and
after that, all the remaining jobs are scheduled by LS rule, we can discuss two
cases according to the activation of M2. Let pl be the job that determines the
makespan.

Case 1. M2 is activated by step 3.2. If pl is scheduled by step 3, it is not hard to
obtain that CH2 = max{s1,l, s2,l} ≤ L+1 and thus cH2 = 2+CH2 ≤ 3+L. From
step 3.2 we have Pl ≥ L+1, then c∗ ≥ L+2 due to Theorem 1. Hence, cH2

c∗ ≤ 3+L
2+L .

If pl is scheduled by LS rule. Note that after activating the second machine, at
least one machine has a load no less than L. Then we have max{s1,l−1, s2,l−1} >
L, which implies that min{s1,l, s2,l} > L due to the definition and assignment
of pl. We can also conclude that min{s1,l, s2,l} + L ≥ max{s1,l, s2,l} due to
pl ≤ L. Since cH2 = 2 + max{s1,l, s2,l} and c∗ ≥ 2 + Pl

2 = 2 + s1,l+s2,l

2 =
2 + min{s1,l,s2,l}+max{s1,l,s2,l}

2 , we obtain

cH2

c∗
≤ 2 + max{s1,l, s2,l}

2 + min{s1,l,s2,l}+max{s1,l,s2,l}
2

Optimal Semi-online Algorithms for Scheduling 207

≤ 2 + L + min{s1,n, s2,l}
2 + min{s1,l,s2,l}+L+min{s1,l,s2,l}

2

=
2 + L + min{s1,l, s2,l}
2 + min{s1,l, s2,l}+ L

2

≤ 2 + 2L
2 + L + L

2

=
4 + 4L
4 + 3L

.

Case 2. M2 is activated by step 4.2. By the rule of step 4, we conclude that
when the second machine M2 is activated to process the first job, no largest jobs
are yet revealed. Thus we only need to consider the competitive ratio of H2 after
assigning the first largest job with size of L. As the remaining jobs(including the
largest jobs) will be scheduled by step 5 (LS rule), after assigning the the first
largest job, denoted by pk, it is not hard to obtain that min{s1,k, s2,k} > L and
min{s1,k, s2,k} + L ≥ max{s1,k, s2,k}. Moreover, for any i ≥ k, pi is scheduled
by LS rule, then min{s1,i, s2,i} > L and min{s1,i, s2,i} + L ≥ max{s1,i, s2,i}
hold. By the same argument of Case 1, we can obtain the desired competitive
ratio.

Hence, for L > 1, cH2

c∗ ≤ max{L+3
L+2 ,

4+4L
4+3L} =

{
3+L
2+L , 1 < L ≤ 1+

√
17

2 ,
4+4L
4+3L , L > 1+

√
17

2 .
��

Theorem 5. Algorithm H2 has a competitive ratio of
⎧
⎪⎨

⎪⎩

4
3 , 0 < L ≤ 1,
3+L
2+L , 1 < L ≤ 1+

√
17

2 ,
4+4L
4+3L , L > 1+

√
17

2 ,

and it is optimal.

Proof. The competitive ratio of algorithm H2 is directly from above Lemmas 6
and 7, which can be illustrated as Figure 2. Moreover, the optimality of algorithm
H2 is a direct consequence of Theorem 4. ��

5 Final Remarks

As we know that both the optimal algorithms for the classic semi-on-line prob-
lems P2|sum|Cmax[9] and P2|max|Cmax[6] have a constant competitive ratio
of 4/3 for any P > 0 and L > 0. In this paper we studied two problems
P2|sum|Cmax+m′ and P2|max|Cmax+m′ and presented two optimal algorithms
H1 and H2 with the parameter competitive ratios for every P > 0 and L > 0,
respectively. Clearly, our problems are more complicated than the classic ones
not only from the problems themselves but also the performances of the bounds.
It is an interesting thing that the bound of the problem P2|max|Cmax +m′ first
decreases and then increases as L increases, see Figure 2.

As this paper only considered the case of two identical machines, it can be
very interesting to extend the results to general m machines case.

208 S. Han, Y. Jiang, and J. Hu

0 5 10 15 20 25 30 35 40 45 50
1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

Fig. 2. The competitive ratio of H2 for all L > 0

References

1. Cao, D., Chen, M., Wan, G.: Parallel machine selection and job scheduling to
minimize machine cost and job tardiness. Comput. & Oper. Res. 32, 1995–2012
(2005)

2. Dósa, G., He, Y.: Better on-line algorithms for scheduling with machine cost. SIAM
Journal on Computing 33, 1035–1051 (2004)

3. Graham, R.L.: Bounds on muliprocessing finishing anomalies. SIAM Journal on
Applied Mathematics 17, 416–429 (1969)

4. Han, S.G., Jiang, Y.W., Hu, J.L.: On-line algorithms for scheduling with ma-
chine activation cost on two uniform machines. Journal of Zhejiang University
SCIENCE 8(1), 127–133 (2007)

5. He, Y., Han, S.G., Jiang, Y.W.: On-line algorithms for scheduling with machine
activation cost. Asia-Pacific Journal of Operations research 24(2), 263–277 (2007)

6. He, Y., Zhang, G.: Semi-on-line scheduling on two identical machines. Comput-
ing 62, 179–187 (1999)

7. Imreh, C., Noga, J.: Scheduling with machine cost. In: Hochbaum, D.S., Jansen,
K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,
vol. 1671, pp. 168–176. Springer, Heidelberg (1999)

8. Jiang, Y.W., He, Y.: Preemptive on-line algorithms for scheduling with machine
cost. Acta Informatica 41, 315–340 (2005)

9. Kellerer, H., Kotov, V., Speranza, M.R., Tuza, Z.: Semi on-line algorithms for the
partition problem. Operation Research Letters 21, 235–242 (1997)

10. Panwalker, S., Liman, S.D.: Single operation earliness-tardiness scheduling with
machine activation cost. IIE Transactions 34, 509–513 (2002)

11. Tan, Z.Y., He, Y.: Semi-on-line problems on two identical machines with combined
partial information. Operation Research Letters 30, 408–414 (2002)

A Fast Asymptotic Approximation Scheme for

Bin Packing with Rejection

Wolfgang Bein1,�, José R. Correa2,��, and Xin Han3,���

1 Center for the Advanced Study of Algorithms, School of Computer Science,
University of Nevada, Las Vegas, NV 89154, USA

bein@cs.unlv.edu
2 School of Business, Univesidad Adolfo Ibáñez, Santiago, Chile

correa@uai.cl
3 School of Informatics, Kyoto University, Kyoto 606-8501, Japan

hanxin@kuis.kyoto-u.ac.jp

Abstract. The bin packing with rejection problem is the following:
Given a list of items with associated sizes and rejection costs, find a
packing into unit bins of a subset of the list, such that the number of
bins used plus the sum of rejection costs of unpacked items is minimized.
In this paper, we first show that bin packing with rejection can be re-
duced to n multiple knapsack problems. Then, based on techniques for
the multiple knapsack problem we give a fast asymptotic polynomial

time approximation scheme with time complexity O(nO(ε−2)). This im-
proves a recent approximation scheme given by Epstein, which has time

complexity O(nO((ε−4)ε−1
)). Finally, we show that our algorithm can be

extended to variable-sized bin packing with rejection and give an asymp-
totic polynomial time approximation scheme for it.

1 Introduction

In the bin packing problem items of specified size have to be packed into the
minimum number of unit bins. This problem, of particular interest in operations
research and computer science, has been extensively studied since the Sixties
(see [3] for a detailed survey). Interestingly, although bin packing is NP-hard,
efficient algorithms for computing solutions which are arbitrarily close to optimal
(asymptotically) were obtained early on by Fernandez de la Vega and Luecker [6],
and by Karmarkar and Karp [9]. More recently, packing and scheduling problems
with rejection penalties, which are natural variants of their classic counterparts,
have received attention (see e.g. [1,4,8]). Here one can decide to refuse an item,
but in doing so one is charged a certain cost. This setting is of interest since
in many practical situations one may choose to leave some items unpacked (or

� Research conducted while visiting Japan as Kyoto University Visiting Professor.
�� Supported in part by CONICYT through grants FONDECYT 10600035 and

ACT08.
��� Supported by NSFC (10231060).

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 209–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

210 W. Bein, J. Correa, and X. Han

unscheduled) at a certain price. For instance, this problem arises naturally in
the context of outsourcing tasks (e.g. shipments), in which a third party can
take care of processing a task as long as they are paid for it. Other examples are
in caching and data storage across a network, where an item can be cached or
stored locally in advance, or, instead, may be fetched at cost when needed.

Formally, in the bin packing with rejection problem we are given a list I of
items. Each item i ∈ I has an associated size si, and a rejection cost ri. The
goal is to find a partition of I into a set A of “accepted” items and a set R
of “rejected” items, together with a packing of A into unit bins, such that the
number of bins needed to pack A plus the total price of items in R is minimized.
(Clearly the NP-hardness of the bin packing with rejection problem follows from
that of bin packing.) This particular problem, was recently studied by He and
Dósa [4], who obtain several online and off line results. In particular, they give
an algorithm with asymptotic approximation ratio of 3/2. Epstein [5] gave the
first asymptotic polynomial time approximation scheme (APTAS) for the bin
packing with rejection problem based on classical bin packing techniques.

Throughout this paper we will make use of the notion of guessing, see e.g. [2].
One “guesses” a quantity if one can construct a polynomial size set of values,
which contains the desired value and a certificate can be constructed in polyno-
mial time. By an abuse of terminology we will also use the term “guessing” for
constructing the certificate itself.

Our contribution. Borrowing techniques for the multiple knapsack problem
[2,10], we provide an APTAS for bin packing with rejection which turns out to
be more efficient than that of Epstein. Furthermore we extend our scheme to
variable-sized bin packing with rejection and give an APTAS for this problem
as well. Specifically, we show that the bin packing with rejection problem can
be reduced to n multiple knapsack problems. Based on the techniques for the
multiple knapsack problem, we give a fast asymptotic polynomial time approxi-
mation scheme with time complexity O(nO(ε−2)) thereby improving the current

best O(nO((ε−4)ε−1
)) scheme [5]. Our techniques directly apply to the variable-

sized case.
The outline of this approach is as follows: i) First, we guess a packing cost costp

and a rejection cost costr such that the two values are not much larger than those
of an optimal solution, respectively. ii) Then, based on the two guessed values,
we guess a sublist Lr of the input list L such that the total profit (rejection cost)
in Lr is bounded by (1 + O(ε)costr) and all items in L− Lr can be packed into
bins with costp. iii) Finally, we call a bin packing algorithm to pack all the items
in L−Lr. The key point is that we can guarantee that all the guesses above can
be done in polynomial time of n, where n is the size of the input list.

2 An APTAS for the Bin Packing with Rejection

We first show that for solving the problem of bin packing with rejection we only
need to solve at most n multiple knapsack problems, where n is the size of the
input list. Note that any optimal value OPT (L) can be written as follows:

A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection 211

OPT (L) = OPTp(L) + OPTr(L),

where L is the input list, OPTp(L) is the cost for packing, i.e., the number of
bins used, OPTr(L) is the total rejection cost for rejection.

Definition 1. Given a list L, we denote the total rejection cost in it by p(L).

Lemma 1. Assume OPTp is fixed, then the original problem is equivalent to the
multiple knapsack problem of packing the input list into OPTp bins to maximize
the total profit of the bins.

Proof. Let OPTp = i and L = Lp ∪Lr, where Lp, Lr are the packed list and the
rejected list, respectively. Then we have

OPT (L) = OPTp(L) + OPTr(L)
= i +

∑
j∈Lr

rj

= (i +
∑

j∈L rj)−
∑

j∈Lp
rj

By the above equation, if
∑

j∈Lp
rj is maximized, then OPT (L) reaches its

minimum. In fact, maximizing
∑

j∈Lp
rj is equivalent to selecting a sublist Lp

from the input list L and packing them into i bins to maximize the total rejection
cost of the bins. Thus, if the knapsack problem of packing L into i bins is solved,
then the original problem is solved as well. ��

Lemma 1 naturally suggests the following algorithm:

– Guess OPTp from 1 to n, i.e., the number of bins to be used.
– Consider rejection costs as profits, then call PTAS for the multiple knapsack

problem [2,10] to pack items into OPTp bins and regard the unpacked items
as the rejected items.

– Output min{OPTp + R} over all OPTp, where R is the total cost of all
rejected items.

Unfortunately, this does not yield an APTAS. In the above algorithm, the pack-
ing cost is OPTp, i.e., the number of bins used, is OPTp. Assume now that the
optimal value of maximizing the total profit (rejection cost) packed into bins
with OPTp is X and the total profit packed by the PTAS of [2,10] is (1 − ε)X .
Then the total cost from our algorithm is

εX + OPT (L).

The value of εX can be large, even larger than OPT (L), thus we can not guar-
antee that the above algorithm always produces a solution near the optimal
cost.

Instead, we focus on the rejected list to obtain our APTAS. More precisely, we
guess a rejected list such that its total rejection cost is at most (1+O(ε))OPTr(L)

212 W. Bein, J. Correa, and X. Han

and such that the remaining items in L can be packed into bins with OPTp(L).
Before we give details we recall the following lemma:

Lemma 2. [9] For the bin packing problem there is an algorithm which runs in
time polynomial in n and 1/ε and finds a solution that uses at most

(1 + ε)OPT + O(ε−2)

bins, where OPT is the optimal number of bins and ε > 0 is sufficiently small.

Let OPTp and OPTr be the packing cost and the rejection cost in some optimal
solution. There are three steps in our algorithm. First, we guess OPTp and OPTr.
Then, based on these two values, we guess the packed list and the rejected list.
Finally, we pack the packed list by a classical bin packing algorithm and reject
all other items.

Our algorithm

1. Guess the packing cost costp and the rejection cost costr such that costp =
OPTp and OPTr ≤ costr ≤ (1 + ε)OPTr + 1.

2. Guess a rejected list L
′

r such that costr ≤ p(L
′

r) ≤ (1 + O(ε))costr , where
p(L

′

r) is the total rejection cost in L
′

r, and the remaining items L − L
′

r can
be packed costp bins.

3. Call APTAS to pack L−L
′

r and reject all items in L
′

r output the bins used
and p(L

′

r).

2.1 Guessing the Rejection Cost and the Packing Cost

Since every item can be packed into one bin, the optimal value for n items is
at most n and the optimal values for OPTp and OPTr are at most n as well.
Then there are n + 1 possibilities for OPTp. For the value of the rejection cost
OPTr, if OPTr <= 1 holds then we can instead estimate costr = 1 for the
asymptotic approximation. Else, if (1 + ε)i ≤ OPTr < (1 + ε)i+1 holds then we
have costr = (1 + ε)i+1, i.e., we guess the optimal rejection cost as (1 + ε)i+1,
where ε is the error bound and i ≥ 0 is an integer. Since OPTr ≤ OPT (L) ≤ n,
we have

i ≤ lnn

ln(1 + ε)
≤ 2 lnn

ε
,

where the last inequality follows from ln(1 + ε) ≥ ε− ε2/2 and ε ≤ 1/2. Thus we
have the following lemma:

Lemma 3. We can guess costr and costp in time O(ε−1n lnn) such that

costp = OPTp, OPTr ≤ costr ≤ (1 + ε)OPTr + 1,

where ε > 0 is the error bound and OPTp (OPTr) is the packed (rejection) cost
in some optimal solution.

A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection 213

2.2 Guessing the Rejected List and the Packed List

We briefly note the following simple lemma:

Lemma 4. In a given input list L, for any item i ∈ L, if ri > 1 then in some
optimal solution item i should be in the packed list.

Proof. If an item i with ri > 1 is rejected in some optimal solution then we can
reduce the total cost of the optimal solution by packing item i itself into a single
bin. ��

We describe how to guess the rejected items and the packed items such that the
total cost of the rejected and packed items are near the optimal values, based
on the rejection cost costr and the packed cost costp guessed in step 1. In the
following, we denote the guessed rejected (packed) list by L

′

r (L
′

p).

How to guess the rejected list and the packed list

2.1 Place every item with rejection cost larger than 1 into packed list L
′

p and all
items with rejection cost smaller than 1/n into the rejected list L

′

r.
2.2 Consider the remaining items with the rejection cost in [1/n, 1]. There are

three phases in assigning all the remaining items into L
′

p and L
′

r: i) rounding
down each item’s rejection cost to obtain O(ε−1 lnn) sublists such that in
each sublist all the items have the same rejection cost, ii) then guessing the
rejected items in each sublist and placing them into L

′

r such that L
′

r has
its rejection cost in [costr, (1 + O(ε)costr)], iii) lastly, placing all remaining
items into L

′

p, testing the feasibility of packing L
′

p into bins with costp.

Below are the details of the three phases in step 2.2; we refer to them as “rounding
down”, “guessing the rejected list” and “testing the packed list.”

Rounding down. Given an item with a rejection cost r, we round r down to
r̄ for some integer i ≥ 0 such that

r̄ =
(1 + ε)i

n
≤ r <

(1 + ε)i+1

n
,

where ε is the given error bound. Since r ≤ 1 we have (1+ε)i

n ≤ 1 and

i ≤ lnn

ln(1 + ε)
≤ 2ε−1 lnn.

Then we get h ≤ 2ε−1 lnn sublists Li and in Li all items have the same
rejection cost (1+ε)i

n .
Guessing the rejected list. Let U be the rejected items in some optimal so-

lution of ∪iLi and let Ui = Li ∩ U . Next, we enumerate a polynomial set
of candidates for the rejected list such that one of them includes U and the
total rejection cost in them is at most (1+O(ε))costr . Let p(Ui) be the total
rejection cost in Ui. We select items from Li as follows. We guess the values

214 W. Bein, J. Correa, and X. Han

p(Ui) approximately for 0 ≤ i ≤ h. For each i we guess a value ki ∈ [0..h/ε]
such that

ki(ε · costr/h) ≤ p(Ui) ≤ (ki + 1)(ε · costr/h).

Then we guess the rejected items in each sublist Li. Let ai be the rejection
cost of one item in Li. For each ki, for 0 ≤ i ≤ h, we order all items in Li

in order of non-decreasing size values. Then if ai > ε · costr/h then pick the
largest �ki(ε · costr/h)/ai� items from Li and put them into L

′

r, else pick the
largest �(ki + 1)(ε · costr/h)/ai	 items from Li and put them into L

′

r. Later,
we show all the candidates for ki can be bounded by O(nε−2

), i.e., there are
a polynomial number of rejected lists.

Testing the packed list. Each time, after selecting the rejected item from Li,
we put the remaining items in Li into the packed list L

′

p. Then we try to
use APTAS [9] to pack the items in L

′

p into (1 + ε)costp +O(ε−2) bins. If all
the items in L

′

p can be packed then return Lp
′ and Lr

′. Else we try another
tuple (k1, . . . , kh).

2.3 Analysis

Now we prove that the number of all candidate h-tuples (k1, . . . , kh) can be
bounded by O(nO(1/ε2)), which is polynomial in n. To this end, we first quote an
important lemma obtained by Chekuri and Khanna [2]. (We include the short
proof for self-containedness.)

Lemma 5. Let f be the number of g-tuples of non-negative integers such that
the sum of tuple coordinates is equal to d. Then f =

(
d+g−1

g−1

)
. If d+ g ≤ αg then

f = O(eαg).

Proof. The first part of the lemma is elementary counting. If d + g ≤ αg then

f ≤
(

αg

g − 1

)

≤ (αg)g−1

(g − 1)!
.

Using Stirling’s formula we can approximate (g−1)! by
√

2π(g − 1)((g−1)/e)g−1.
Thus f = O((eα)g−1) = O(eαg). ��

A naive way of guessing the values k1, · · · , kh requires nO(ln n/ε2) which is expo-
nential. However, not all the values k1, · · · , kh are independent. Indeed, we have
that ∑

i

(ki ·
ε · costr

h
) ≤

∑

i

p(Ui) = p(U) ≤ costr,

where the last inequality follows from the inequality p(U) ≤ OPTr ≤ costr.
By the above observation, we have

∑
i ki ≤ h/ε = O(lnn/ε2), then we get the

following lemma.

Lemma 6. Let an integer h ≤ 2ε−1 lnn. Then the number of h-tuples (k1, . . . , kh)
such that

∑
i ki ≤ h/ε is O(nO(ε−2)).

A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection 215

Proof. We apply the bound from Lemma 5, we have α = (1 + 1/ε) and g =
2ε−1 lnn, hence we get an upper bound e2ε−1(1+1/ε) ln n. ��

We introduce the notion of a “small-packed” solution:

Definition 2 (Small-packed). Given a solution of the packed list Lp and the
rejected list Lr, if there are two items i ∈ Lp and j ∈ Lr such that

ri = rj , si ≤ sj ,

then we say the solution is small-packed, otherwise not small-packed.

We can see if a solution is not small-packed, then there exist a packed item i and
a rejected item j such that ri = rj , si > sj. Then we exchange the two items
i and j, i.e., pack j and reject i, to get another solution without enlarging the
total cost. By the same approach, we can prove the following lemma.

Lemma 7. Any optimal solution can be reduced to a small-packed solution with-
out changing the cost.

To prove that our scheme works we also need the following lemma:

Lemma 8. Assume all items have rejection costs equal to (1+ε)i

n for some inte-
ger i, where 0 ≤ i ≤ h = O(ε−1 lnn), and p(U) ≤ costr ≤ (1 + O(ε))p(U) + 1,
where U is a set of the rejected items in some optimal solution with the small-
packed property. Then there exists a valid tuple (k1, . . . , kh) associated with L

′

r

such that U ⊆ L
′

r and p(L
′

r) ≤ (1 + O(ε))p(U) + 1.

Proof. U is a set of the rejected items in some optimal solution with the small-
packed property. Then for all i, we define

ki = �p(Ui)h/(ε · costr)	.

There are two cases based on the value of ai, which is the rejection cost of one
item in Li. Assume there are xi items in Ui. Then ai · xi = p(Ui).

(i) ai > ε ·costr/h. We prove our selection from Li is as the same as Ui = U∩Li,
i.e., Ui = Li ∩ L

′

r. By the definition ki = �p(Ui)h/(ε · costr)	, we have

p(Ui)h
ε · costr

− 1 < ki ≤
p(Ui)h
ε · costr

.

Then
p(Ui)−

ε · costr
h

<
ki · ε · costr

h
≤ p(Ui)

Since ai > ε · costr/h and ai · xi = p(Ui),

xi − 1 <
p(Ui)
ai
− ε · costr

hai
<

ki · ε · costr
hai

≤ p(Ui)
ai

= xi.

So we select �(ki · ε · costr)/(hai)�(= xi) items from Li. Since our selection
is from large to small and the optimal solution with the rejected list U is
small-packed, our selection from Li is as the same as Ui = U ∩ Li, i.e.,
Ui = Li ∩ L

′

r.

216 W. Bein, J. Correa, and X. Han

(ii) ai ≤ ε · costr/h. Here we prove that Ui ⊆ (Li ∩ L
′

r) and p(Li ∩ L
′

r) ≤
p(Ui) + ε·costr

h . Again, by the definition ki = �p(Ui)h/(ε · costr)	, we have

p(Ui)h
ε · costr

< ki + 1 ≤ p(Ui)h
ε · costr

+ 1.

Then

p(Ui) <
(ki + 1) · ε · costr

h
≤ p(Ui) +

ε · costr
h

So we select �((ki+1)ε·costr)/(hai)	(≥ xi) items from Li. Since our selection
is from large to small and the optimal solution with the rejected list U is
small-packed, Ui ⊆ Li ∩ L

′

r. And

p(Li ∩ L
′

r) ≤
(ki + 1) · ε · costr

h
≤ p(Ui) +

ε · costr
h

.

By cases i) and ii), we have U ⊆ L
′

r and p(L
′

r) ≤ p(U) + εcostr. Since
p(U) ≤ costr ≤ (1 + O(ε))p(U) + 1, the lemma follows.

��

We are now ready to prove our main result.

Theorem 1. Our algorithm is an APTAS with time complexity O(nε−2
).

Proof. Let L be the input list and Lb ⊆ L be the list in which all the items have
the rejection cost at least 1/n. So,

OPT (Lb) ≤ OPT (L) ≤ OPT (Lb) + 1. (1)

Let Lb = Lr ∪ Lp, where Lr (Lp) is the rejected (packed) list in some optimal
solution of Lb. Then

OPT (Lb) = OPTp + p(Lr), (2)

where OPTp is the number of bins used for Lp and p(Lr) is the total cost for
the rejected list Lr. By Lemma 3,

p(Lr) ≤ costr ≤ (1 + ε)p(Lr) + 1. (3)

Lemma 4 says that there are no items with a rejection cost larger than 1 in Lr.
After rounding down all the items in Lr at phase 1 of step 2.2, we obtain a new
list L̄r. Then

p(L̄r) ≤ p(Lr) ≤ (1 + ε)p(L̄r).

Combining the latter inequality with (3) we obtain,

p(L̄r) ≤ costr ≤ (1 + O(ε))p(L̄r) + 1.

By Lemma 8,

p(L̄
′

r) ≤ (1 + O(ε))p(L̄r) + 1 ≤ (1 + O(ε))p(Lr) + 1, (4)

A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection 217

where L̄
′

r is the rejected list guessed in step 2.2. Let L
′

r be the rejected list before
we round down list L̄

′

r. Then

p(L
′

r) ≤ (1 + ε)p(L̄
′

r) ≤ (1 + O(ε))p(Lr) + 1 + ε. (5)

Let A be our algorithm and A(L) be the total cost by our algorithm. By (5),
Lemma 2 and (2),

A(L) ≤ (1 + ε)OPTp + O(ε−2) + (1 + O(ε))p(Lr) + 1 + ε,

≤ (1 + O(ε))OPT (L) + O(ε−2).

As for the time complexity, in step 1, by Lemma 3, our algorithm takes
O(ε−1n lnn) time, in step 2, by Lemma 6, our algorithm takes O(nO(ε−2)) time,
in step 3, our algorithm takes O(ε−8n logn) time [9]. Then the time complexity
of our algorithm is O(nO(ε−2)). ��

3 An APTAS for Variable-Sized Bin Packing with
Rejection

In variable-sized bin packing, we are given a set of items L and a set of available
bin sizes B. (As in [7,11] we assume, without lost of generality, that the largest
bin size in B is 1.) The object is to minimize the sum of the sizes of the bins
used. It is clear that this problem is a generalization of the bin packing problem.
If each item has both a size and a rejection cost associated with it and the object
is to minimize the total cost, then the problem is the variable-sized bin packing
with rejection.

In this section, we show that our approach can be extended to the variable-
sized bin packing problem with rejection. This follows easily in the following
way:

– The rounding technique in step 1 is still available, i.e, the guessed packing
cost and rejection cost are near the optimal costs. (See Lemma 10.)

– The technique of rounding down the rejection cost in phase 2 of step 2 is
still available, since the rounding is independent of the the packing.

– As with Lemma 2, there is an APTAS for variable-size bin packing as shown
in Lemma 9.

Lemma 9. [11] For the variable-sized bin packing problem, there is a fully poly-
nomial time algorithm with the solution at most

(1 + ε)OPT + O(ε−4),

where OPT is the optimal value and ε > 0 is sufficiently small.

Since every item can be packed into one bin of size 1, the optimal value for
n items is at most n. So OPTp ≤ n and OPTr ≤ n, where OPTp (OPTr) is
the total packed (rejection) cost in some optimal solution for variable-sized bin
packing with rejection. Then the rounding technique in step 1 is still available
and we can prove the following lemma:

218 W. Bein, J. Correa, and X. Han

Lemma 10. By the same approach in step 1, there is a packed cost costp such
that

costp − 1 ≤ OPTp ≤ costp.

In our algorithm for bin packing with rejection, if we replace the APTAS for
bin packing in [9] with the one for variable bin packing in [11], then we get an
algorithm for the variable-sized bin packing with rejection. We can see Lemmas
4, 7 and 8 still hold for the variable-sized case. Using the similar proof in Theorem
1, we can prove the following theorem.

Theorem 2. There is an APTAS for variable-sized bin packing with rejection
in time O(nε−2

).

4 Concluding Remarks

In this paper, we give a fast APTAS for bin packing with rejection and show
the approach can be extended to variable-sized bin packing with rejection. The
existence of an asymptotic fully polynomial time approximation scheme for bin
packing with rejection is open.

References

1. Bartal, W., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM Journal on Discrete Mathematics 13(1),
64–78 (2000)

2. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple
knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

3. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard
problems, pp. 46–93. PWS Publishing, Boston (1996)

4. Dósa, G., He, Y.: Bin packing problems with rejection penalties and their dual
problems. Information and Computation 204(5), 795–815 (2006)

5. Epstein, L.: Bin packing with rejection revisited. In: Erlebach, T., Kaklamanis, C.
(eds.) WAOA 2006. LNCS, vol. 4368, pp. 146–159. Springer, Heidelberg (2007)

6. de la Vega, W.F., Lueker, G.: Bin packing can be solved within 1+ε in linear time.
Combinatorica 1, 349–355 (1981)

7. Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM Journal on Com-
puting 15(1), 222–230 (1986)

8. Hoogeveen, H., Skutella, M., Woeginger, G.: Preemptive scheduling with rejection.
Mathematical Programming, Ser. B 94(2-3), 361–374 (2003)

9. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proc. 23rd Annual IEEE Symp. Found. Com-
put. Sci., pp. 312–320. IEEE Computer Society Press, Los Alamitos (1982)

10. Kellerer, H.: A Polynomial Time Approximation Scheme for the Multiple Knapsack
Problem. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RAN-
DOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 51–62. Springer, Heidelberg
(1999)

11. Murgolo, F.D.: An efficient approximation scheme for variable-sized bin packing.
SIAM Journal on Computing 16(1), 149–161 (1987)

Online Coupon Consumption Problem

Yiwei Jiang1,2,3,�, An Zhang1, and Zhiyi Tan1,��

1 Department of Mathematics, State Key Lab of CAD & CG,
Zhejiang University, Hangzhou 310027, P.R. China
2 College of Science, Zhejiang Sci-tech University,

Hangzhou 310018, P.R. China
3 Key Laboratory of Advanced Textile Materials and Manufacturing Technology,

Ministry of Education, Zhejiang Sci-tech University
tanzy@zju.edu.cn

Abstract. Nowadays, it is popular that the dealer makes profits by sell-
ing a kind of discount coupons, which can be used as money to purchase
commodities with total cost less than or equal to the face value of the
coupon. We can purchase a coupon at a price of 0 < s ≤ 1 times its face
value and the number of potential purchasable coupons is a given integer
l. The customer has the option to buy the goods by cash completely or
by a discount coupon. However, each piece of goods can only use one
coupon and the coupon used must have enough balance for the goods.
The objective is to minimize the total cost for purchasing all the goods.
In this paper, we reduce the problem to a special bin packing model.
We consider the online problems for all 0 < s ≤ 1 and 1 ≤ l ≤ ∞. We
present optimal online algorithms for all 0 < s ≤ 1 when l = ∞ and
l = 1. For 2 ≤ l < ∞, we give both a lower bound and an algorithm, and
show the algorithm is optimal for l = 2.

1 Introduction

In the competitive world of business, the dealer makes lots of money by selling
discount coupons which means that the customers can get a coupon at a price
of s ≤ 1 times its face value. We then call 1− s the discount of a coupon. Each
coupon can be used as money to purchase commodities with total cost less than
or equal to the face value of the coupon. For convenience, we set this value to
be 1 among the paper. Therefore each coupon costs exactly s. The customer
has the option to buy the goods by cash completely or by a discount coupon.
However, for the dealer, to maximize his profit, only one coupon is allowed to
use for each piece of goods and the coupon used must have enough balance for
the goods. Clearly, it is not always good to purchase goods by coupons. For
example, when the total cost of all goods the customer wants is only s/2, it is
better to purchase the goods by cash rather than by coupons. We should decide

� Supported by Natural Science Foundation of Zhejiang Province (Y605316).
�� Corresponding author. Supported by Natural Science Foundation of China

(10671177, 60021201).

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 219–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 Y. Jiang, A. Zhang, and Z. Tan

to purchase the goods whether by cash or by coupons in order to minimize the
total cost. This problem can be reduced to such a special bin packing model:
The cost of a piece of goods is compared to the size of an item. Each coupon can
be regarded as a potentially purchasable bin with a certain capacity, and there
are at most l (1 ≤ l ≤ ∞) bins purchasable and no such bins provided initially.
When a piece of goods is bought by cash, it can be regarded as an item rejected,
in which a penalty identical to its size should be paid. On the other hand, those
goods bought by a coupon are regarded as items packed into a bin. Hence, to
minimize the total cost of all goods is equivalent to minimize the sum of the
penalty of the rejected items(i.e., the cost of the goods purchased by cash) and
s times the number of purchased bins (i.e., the cost of purchased coupons). We
call this problem the coupon consumption problem.

The formally description of the problem is the following. We are given a
sequence J of independent items with positive size p1, p2, . . . , pn, which must be
rejected or be packed into one of the purchased bins. At most l, 1 ≤ l ≤ ∞, bins
B1, B2, · · · , Bl can be purchased. Each bin has a unit-capacity, i.e., only items
with total size not more than 1 can be packed into it. As long as there exists an
item packed into Bi, 1 ≤ i ≤ l, Bi is purchased, which costs s ≤ 1. If an item pi

is, however, rejected, one should pay its penalty pi. The objective is to minimize
the sum of the penalty of all rejected items and all the cost for purchasing bins.

We consider online version of the problem in this paper, and using the com-
petitive ratio to measure the performance of an online algorithm. For an item
sequence J and an algorithm A, let WA(J) (or shortly WA) denote the objec-
tive value produced by A and let W ∗(J) (or shortly W ∗) denote the optimal
objective value in an offline version. Then the competitive ratio of A is defined
as the smallest number C such that for any J , WA(J) ≤ CW ∗(J). An on-
line problem has a lower bound ρ if no online algorithm has a competitive ratio
smaller than ρ. An online algorithm is called optimal if its competitive ratio
matches the lower bound.

There are some problems in the literature have relations with our problem.
However, to the authors knowledge, coupon consumption problem has some dif-
ferent features and is a new one never discussed before.

Ski-rental problem ([5]): For this problem, it is well known that an optimal
algorithm exists with competitive ratio 2. It is assumed that once the ski is
purchased, it can be used unlimitedly. But for the coupon consumption problem,
the coupon has a limited face value. Moreover, we can purchase more than one
coupon when l > 1 whereas in the ski-rental problem we only need to purchase
one pair of skis.

Bin-packing with rejection([3], [4]): In this problem, we are given a set of
items and a number of unit-capacity bins. Each item has a size and a penalty.
An item can be either rejected or packed into one bin without exceeding the
bin capacity. The objective is to minimize the sum of used bins and the total
penalties of all rejected items. However, the number of bins can be used is infinite
while the number of the purchasable coupons in our problem is at most l. Even

Online Coupon Consumption Problem 221

for the case of l = ∞ in our problem, there still exists difference between the
two problems. The size and penalty of each item are given independently in the
bin-packing with rejection problem, whereas in our problem the ratio of size and
penalty is fixed.

In this paper, we consider the online coupon consumption problem with l
potentially purchasable coupons. We present optimal algorithms for all 0 < s ≤ 1
for the cases of l =∞ and l = 1. For the case of 2 ≤ l <∞, both a lower bound
and an online algorithm are given. Moreover, the algorithm is optimal when
l = 2.

The rest of the paper is organized as follows. Section 2 gives some basic
notation and preliminary results. Section 3 and 4 consider the problem with
special cases l = ∞ and l = 1, respectively. Section 5 considers the 2 ≤ l < ∞
case of the problem. Finally, Section 6 presents some concluding remarks.

2 Preliminary

To simplify the presentation, the following notation and definitions are required
in the remainder of the paper.

−k(≤ l) The number of purchased bins by an online algorithm A.
−k∗(≤ l) The number of purchased bins in the optimal solution.
−Pj The total size of the first j items.
−Li

j The content of bin Bi at time j ≥ 0 (i.e., the moment right after
the j -th item is rejected or packed) in the algorithm A, i = 1, · · · , l.

−L0
j The total penalty of the rejected items at time j ≥ 0.

−L∗
n The total penalty of the rejected items in the optimal solution after

all items have been rejected or packed.
−WA The objective function value yielded by A. It clearly follows that

WA = L0
n + sk.

−W ∗ The optimal objective function value. Hence W ∗ = L∗
n + sk∗.

Also, an item pj is said to fit in a bin if the curent content of the bin does
not exceed 1 − pj. Let J ′ = {pi|pi ∈ J , pi > 1} ⊆ J and P ′ =

∑
pi∈J ′ pi. The

following theorem shows that we only need to design algorithms for J \ J ′.

Theorem 1. If there is an algorithm A satisfying W A(J\J ′)
W ∗(J\J ′) ≤ C, then W A(J)

W ∗(J) ≤
C.

Proof. As each bin has only a capacity of 1 and no item can be separated,
all items in J ′ must be rejected regardless of the algorithm A or the optimal
solution. Therefore, we can obtain that WA(J) = WA(J \J ′)+P ′ and W ∗(J) ≥
W ∗(J \ J ′) + P ′, which yields that

WA(J)
W ∗(J)

≤ WA(J \ J ′) + P ′

W ∗(J \ J ′) + P ′ ≤
WA(J \ J ′)
W ∗(J \ J ′)

≤ C.

��

222 Y. Jiang, A. Zhang, and Z. Tan

Hence, in the remainder of this paper, we only need to consider the item set
J \ J ′. In other words, we can assume that the size of each item in J does not
exceed 1.

Denote by �x	 the largest integer number not greater than x. It is easy to
obtain some properties on the optimal objective value W ∗ as follows.

Lemma 1. The optimal objective value W ∗ satisfies:
(1) If 0 < Pn ≤ 1, then W ∗ = min{Pn, s}.
(2) If j + z < Pn ≤ j + 1 for 0 ≤ z < 1 and some integer j, 0 ≤ j ≤ l − 1,

then W ∗ ≥ js + min{s, z}.
(3) If Pn > l, then W ∗ ≥ Pn − l + ls.
(4) W ∗ ≥ min{Pn − �Pn	, s}+ �Pn	s ≥ Pns.

3 Problem with l = ∞

In this section, we present an optimal algorithm for the case that the number of
coupons that customer can purchase is unlimited, i.e., l =∞.

Denote

α = min{2, 1
s
} =

{
2, if 0 < s ≤ 1

2 ,
1
s , if 1

2 < s ≤ 1.

We partition our algorithm A1 into two parts according to the value of s as
follows. A well-known algorithm for bin packing problem, namely First F it
(FF), which packs each item into the lowest indexed bin in which it fits, will be
used in step 4.

Algorithm A1
Part 1(For 1

2 < s ≤ 1)
Reject all items.
Part 2(For s ≤ 1

2)
1. Let L0

0 = 0 and j = 0.
2. If no new item arrives, stop. Otherwise, set j = j + 1.
3. If Pj ≤ s, then reject pj . Return step 2.
4. If Pj > s, pack pj by FF , Return step 2.

Suppose A1 has purchased k bins in the order of B1, B2, · · · , Bk, thus we have a
lemma below.

Lemma 2. ([2], [1]) If k ≥ 2, then
k∑

i=1

Li
n > k

2 .

Theorem 2. The algorithm A1 has a competitive ratio of α.

Proof. We prove it by distinguishing the value of s as follows.
For 1

2 < s ≤ 1, as Part 1 states that all items are rejected without purchasing
any bin, we have WA = L0

n = Pn. Lemma 1 (4) shows that W ∗ ≥ sPn, thus we
have W A

W ∗ ≤ 1
s .

Online Coupon Consumption Problem 223

For s ≤ 1
2 , if Pn ≤ s, then the algorithm also rejects all items by step 3 of Part

2. Therefore, we have WA = Pn ≤ s and thus W ∗ = Pn = WA from Lemma 1
(1). If Pn > s, then L0

n ≤ s and the algorithm must purchase some bins. If A1
purchases only one bin, i.e., k = 1, then we have WA = s + L0

n ≤ 2s and s <

Pn ≤ s+ 1 which implies that W ∗ ≥ s by Lemma 1 (2). It follows that W A

W ∗ ≤ 2.
Finally, if k ≥ 2, we have WA = ks + L0

n. From Lemma 2, we can obtain that
Pn ≥

∑n
i=0 Li

n ≥ k
2 +L0

n. Furthermore, if k is an even, then W ∗ ≥ k
2s+L0

n due to

Lemma 1 (2) and thus W A

W ∗ ≤ ks+L0
n

k
2 s+L0

n

< 2. On the other hand, if k is an odd, then

we have Pn ≥ k−1
2 + 1

2 + L0
n, resulting in W ∗ ≥ k−1

2 s + min{s, 1
2 + L0

n} = k+1
2 s

by Lemma 1 (2). It yields that W A

W ∗ ≤ ks+L0
n

k+1
2 s
≤ ks+s

k+1
2 s

= 2. ��

The following theorem shows that A1 is an optimal algorithm.

Theorem 3. The competitive ratio of any algorithm for the problem with l =∞
is at least α.

Proof. Assume that an algorithm A exists with competitive ratio C. Let the size
of each arriving item always be ε, a sufficiently small positive number, as long
as the algorithm A does not purchase any bin for the previous items and the
current total size (denoted by P) is less than 1. If the algorithm A purchases the
first bin B1 when P < 1, i.e., the total penalty of rejected items and the current
content of B1 are P − ε and ε, respectively, no new item arrives. Thus we have
WA = s + P − ε, while the optimal cost is W ∗ = min{P, s} due to Lemma 1
(1). It follows that

C =
WA

W ∗ ≥
s + P − ε

min{P, s} ≥ 2− ε

min{P, s} → 2.

On the other hand, if the algorithm A always rejects items even when 1 − ε ≤
P < 1, then no new item arrives and thus we have WA = P ≥ 1 − ε, which
yields that C = W A

W ∗ ≥ 1−ε
s →

1
s with W ∗ ≤ s. Hence, we conclude that for any

algorithm A, W A

W ∗ ≥ α. ��

It is not hard to see that Theorem 3 holds for any 1 ≤ l ≤ ∞, that is to say,
the lower bound of the problem for any 1 ≤ l ≤ ∞ is at least α. Note that for
1
2 < s ≤ 1, Part 1 of A1 rejects all the items without purchasing any bins. Hence,
it remains optimal for the case of 1 ≤ l <∞. In other words, the customers need
not purchase coupons if its discount is less than 50%. Hence, we only need to
consider the case of 0 < s ≤ 1

2 in the remainder of this paper.

4 Problem with l = 1

In this section, we present an optimal algorithm for the problem with l = 1,
namely, the customer can purchase only one coupon B1. We only consider the
case of 0 < s ≤ 1

2 .

224 Y. Jiang, A. Zhang, and Z. Tan

Denote by x =
√

9s2+8s−3s
4 the larger solution to the equation of s+1

s+x = s+2x
s

with respect to x. Let β = s+1
s+x = s+2x

s =
√

9s2+8s−s
2s . Note that

s + 2x ≤ 1 (1)

and
2x ≥ s (2)

when 0 < s ≤ 1
2 .

Theorem 4. The competitive ratio of any algorithm for the problem with l = 1
is at least β.

Proof. Assume that there exists an online algorithm A with competitive ratio
C. The first item p1 = x arrives. If the algorithm purchases B1 to pack it, then
the second and last item p2 = 1 arrives. Clearly, it has no choice but to reject,
resulting in WA = s + 1. However, the optimal solution is to reject p1 and
purchase B1 for p2, i.e., W ∗ = s+x. It follows that C ≥ W A

W ∗ ≥ s+1
s+x = β. On the

other hand, if A rejects p1 initially, instead of purchasing B1. Then the second
item p2 = x+ ε arrives, where ε is a sufficiently small positive number. If A now
purchases B1 for packing p2, then the third and last item p3 = 1 − x arrives,
which must be rejected because of p2 + p3 > 1. It yields that WA = s + 1 while
we can obtain W ∗ = s + x+ ε by rejecting p2 and purchasing the bin for p1 and
p3, and thus C ≥ W A

W ∗ ≥ s+1
s+x+ε → β(ε→ 0). If A also rejects p2, then let the size

of each subsequently arriving item be ε, as long as A does not purchase B1 and
the current total size (denoted by P) is less than s+2x. If A purchases B1 when
P < s+2x, then no more item arrives. We have WA ≥ (p1 +p2)+s = 2x+s+ ε.
If A does not purchase B1 even when s+ 2x− ε < P ≤ s+ 2x, then no new item
arrives. We have WA > s + 2x− ε. For both cases, we have W ∗ ≤ s by (1) and
Lemma 1(1), thus C ≥ W A

W ∗ ≥ s+2x−ε
s → β(ε→ 0). ��

Algorithm A2

1. Let L0
0 = L1

0 = 0 and j = 0.
2. If no new item arrives, stop. Otherwise, set j = j + 1.
3. If Pj ≤ 2x, then reject pj . Return step 2.
4. If Pj > 2x, we do:

4.1. If L0
j−1 + pj ≤ 2x, then reject pj . Return step 2.

4.2. If L0
j−1 + pj > 2x and L1

j−1 + pj ≤ 1, then pack pj into B1. Return step
2.

4.3. If L0
j−1 + pj > 2x and L1

j−1 + pj > 1, then reject pj . Return step 2.

We now give a simple and useful lemma below before going to analyze A2.

Lemma 3. Let a, b, c and d be positive numbers.
(1) If a

b > 1, then a+c
b+c ≤

a
b

(2) If a
b ≤

c
d , then a+c

b+d ≤
c
d .

Online Coupon Consumption Problem 225

Theorem 5. The algorithm A2 has a competitive ratio of β. Thus it is an op-
timal algorithm for the problem with l = 1 and 0 < s ≤ 1

2 .

Proof. If Pn ≤ 2x, then A2 does not purchase the bin B1 and thus WA = L0
n =

Pn. Clearly, W ∗ ≥ min{s, Pn}. By (2),

WA

W ∗ ≤
Pn

min{s, Pn}
≤ max{Pn

s
, 1} ≤ 2x

s
<

s + 2x
s

= β.

We then consider the case that Pn > 2x ≥ s. Let t = min{j|Pj > 2x}. We
can conclude that A2 must purchase B1 to pack pt in step 4.2. It is clear that
W ∗ ≥ min{s, Pn} = s. If L0

n ≤ 2x, we have W A

W ∗ ≤ s+L0
n

s ≤ s+2x
s = β. Therefore,

we are left to show the result for the case of L0
n > 2x, which implies that there

must exist items to be rejected by step 4.3.
Let ph be the last item rejected by step 4.3. We conclude that h > t and

ph + L1
h−1 > 1, resulting in

ph + L1
n > 1. (3)

Let J 1 = {pi|pi is packed into B1, i < h}. J 1 �= ∅ since pt ∈ J 1. Moreover, for
any item pj ∈ J 1, we have pj + L0

j−1 > 2x. Since L0
n − ph = L0

h−1 ≥ L0
j−1 with

h > j and L1
n ≥

∑
pi∈J 1 pi ≥ pj, we have

L1
n + L0

n − ph ≥ pj + L0
n − ph > 2x. (4)

To get the desired result, two cases are considered as follows.

Case 1. L0
n − ph > L1

n. Together with (4), we have

L0
n − ph > x, (5)

and
L0

n − ph − L1
n

L0
n − ph − x

≤ 2 ≤ s + 1
s + x

. (6)

By Lemma 1(3) with l = 1, we obtain W ∗ ≥ Pn − 1 + s = L0
n + L1

n − 1 + s.
Hence, by Lemma 3 and (3),(6), we obtain that

WA

W ∗ ≤
L0

n + s

L0
n + L1

n − 1 + s
=

(ph + L1
n − 1) + (L0

n − ph − L1
n) + (1 + s)

(ph + L1
n − 1) + (L0

n − ph − x) + (x + s)

≤ (L0
n − ph − L1

n) + (s + 1)
(L0

n − ph − x) + (s + x)
≤ s + 1

s + x
= β. (7)

Case 2. L0
n− ph ≤ L1

n. Combining it with (4), we obtain L1
n > x. Furthermore,

if L0
n − ph > x, from (7) and Lemma 3 (1), we have

WA

W ∗ ≤
(L0

n − ph − L1
n) + s + 1

(L0
n − ph − x) + s + x

<
(L0

n − ph − x) + s + 1
(L0

n − ph − x) + s + x
≤ s + 1

s + x
= β.

Then we assume that L0
n − ph ≤ x, resulting in ph > x with L0

n > 2x, and
pj > x with (4) for any pj ∈ J 1. Since ph +

∑
pi∈J 1 pi = ph + L1

h−1 > 1, it

226 Y. Jiang, A. Zhang, and Z. Tan

is impossible to pack all items in J 1
⋃
{ph} into B1 in any optimal solution.

That is to say, at least one item pg ∈ J 1
⋃
{ph} is rejected. Therefore, with

Pn = L0
n + L1

n > 2x + x ≥ s + x, we have W ∗ ≥ min{s + pg, Pn} > s + x. If
L0

n ≤ 1, it is trivial that W A

W ∗ ≤ s+1
s+x = β. On the other hand, if L0

n > 1, then by
Lemma 1 (3), we have W ∗ ≥ L0

n + L1
n − 1 + s and thus

WA

W ∗ ≤
L0

n + s

L0
n + L1

n − 1 + s
=

(L0
n − 1) + 1 + s

(L0
n − 1) + L1

n + s
≤ 1 + s

L1
n + s

≤ s + 1
s + x

= β

with Lemma 3(1) and L1
n > x.

Hence, the desired result is proved and the optimality of A2 is directly from
Theorem 4. ��

5 Problem with 2 ≤ l < ∞

In this section, we discuss the problem with 2 ≤ l < ∞. Lower bound and
algorithm for all 2 ≤ l <∞ are considered in subsection 5.1 and 5.2, respectively.
Furthermore, in subsection 5.3, we reconsider the lower bound for the special case
of l = 2 and show the algorithm is optimal for this case.

5.1 Lower Bound

We present a lower bound of the problem for all 2 ≤ l < ∞. Note that it is
necessary to consider the case of 0 < s ≤ 1

2 .

Theorem 6. The competitive ratio of any algorithm for the problem with 2 ≤
l <∞ is at least {

1 + 1
(l+1)s , if 0 < s ≤ 1

l+1 ,

2, if 1
l+1 < s ≤ 1

2 .

5.2 Algorithm A3

In this subsection, we present an algorithm A3 for all 2 ≤ l <∞ as follows.

Algorithm A3

1. Let L0
0 = 0 and j = 0.

2. If no new item arrives, stop. Otherwise, set j = j + 1.
3. If L0

j−1 + pj ≤ 1
2 , then reject pj . Return step 2.

4. If L0
j−1 + pj > 1

2 , pack pj into the earliest purchased bin in which it fits. If
such bin does not exist, we do:

4.1. If the number of purchased bins is less than l, then purchase a new one
to pack pj . Return step 2.

4.2. If all l bins have been purchased, then reject pj . Return step 2.

Note that, in step 4, A3 is actually applying the FF algorithm to purchase bins
and pack items. We can conclude that L0

n ≤ 1
2 unless there exist some items to

be rejected by step 4.2, i.e. if k < l, then L0
n ≤ 1

2 .

Online Coupon Consumption Problem 227

Theorem 7. The competitive ratio of A3 is at most 1 + 1
2s .

Proof. It is clear that WA = Pn = L0
n ≤ 1

2 and W ∗ = min{Pn, s} if A3 does not
purchase any bin, i.e., k = 0. Thus W A

W ∗ ≤ 1 + 1
2s . If k = 1, we can obtain Pn =

L0
n +L1

n > 1
2 and L0

n ≤ 1
2 . Thus we have WA ≤ s+ 1

2 and W ∗ ≥ min{Pn, s} = s,
which yields the desired competitive ratio. If 2 ≤ k < l, then have L0

n ≤ 1
2 and

Pn > k
2 + L0

n from Lemma 2. By Lemma 1 (4), we have W ∗ ≥ sPn. It follows
that

WA

W ∗ ≤
ks + L0

n

sPn
≤ ks + L0

n

(k
2 + L0

n)s
< 1 +

1
2s

by L0
n ≤ 1

2 < k
2 . Finally, we consider the case of k = l. If L0

n ≤ k
2 , we can obtain

the result by the similar argument above. Otherwise, Pn > k
2 +L0

n > k
2 + k

2 = k.
It follows that W ∗ ≥ Pn−k+ks from Lemma 1 (3). Furthermore, we can obtain
WA ≤ ks + L0

n < ks + Pn − k
2 . Hence, we have W A

W ∗ ≤ ks+Pn− k
2

Pn−k+ks < 1 + 1
2s . ��

5.3 Lower Bound for the Case of l = 2

In this subsection, we revisit the lower bound for the problem with l = 2 and
thus show A3 is optimal for this case. For an arbitrary integer m ≥ 3, we can
show that the competitive ratio of any algorithm for the problem with l = 2 is
at least 1 + m+1

(2m+3)s when 0 < s ≤ 1/2.

Lemma 4. The competitive ratio of any online algorithm A for the problem is
at least 1 + m+1

(2m+3)s , if any one of the following conditions occurs.
(C1) At some time j < n, Pj ≤ 1 and A purchased both bins.
(C2) At some time j < n, Pj ≤ 1 and L0

j ≥ m+1
2m+3 .

(C3) WA ≥ 2s + 2m+2
2m+3 and W ∗ ≤ 2s.

Proof. For (C1), then the last item pn = 1 arrives. Since both bins have been
purchased at that time, pn must be rejected. Thus we have WA ≥ 1 + 2s. It is
easy to obtain that W ∗ = 2s by purchasing one bin for pn and the other bin for
the first j items due to Pj ≤ 1. Hence, W A

W ∗ ≥ 1 + 1
2s .

For (C2), if Pj = 1, then no new item arrives. If Pj < 1, then the last item
pn = 1 − Pj arrives. No matter whether A purchase the bins or not, we have
WA ≥ min{Pn, L

0
j + s} ≥ min{1, m+1

2m+3 + s} = m+1
2m+3 + s. Because Pn = 1,

it is clear that W ∗ ≤ s by purchasing one bin for all items. Thus we have
W A

W ∗ ≥ 1 + m+1
(2m+3)s .

For (C3), it is trivial to obtain the result. ��

Lemma 4 shows that we only need to construct the instances such that one of
those conditions occurs. Before going to prove our main result, we give a useful
lemma first. To simplify the presentation, in the remaining part of our paper,
we denote by Li the current content of Bi, i = 1, 2, also let L0 be the current
total penalty of rejected items and let p and q be the last two items.

228 Y. Jiang, A. Zhang, and Z. Tan

Lemma 5. If A has only purchased B1 when the last two items p and q arrive,
and the size of p and q satisfies that p ≥ q, L1 + q > 1 and p + q > 1, then we
have WA ≥ 2s + L0 + q.

Proof. It is clear that none of the two items p and q can be packed to B1 since
p ≥ q and L1+q > 1. Note that p ≥ q and p+q > 1 implying p > 1

2 ≥ s. Thus, if
A does not purchase B2, we have WA ≥ s+L0+p+q > 2s+L0+q. Otherwise, any
algorithm can only pack one of p and q into B2 due to p+q > 1. That is, at least
one of p and q must be rejected, then WA ≥ 2s+L0+min{p, q} = 2s+L0+q. ��

We call an item with size 1
2m+3 as a tiny item, and an item with size 3

2(2m+3) as
a small item.

Theorem 8. For the problem with l = 2 and 0 < s ≤ 1
2 , the competitive ratio

of any algorithm is at least 1 + m+1
(2m+3)s , where m ≥ 3 is an arbitrary integer.

Proof. We use adversary method to achieve the result by constructing the in-
stances. The first two items p1 and p2 are both tiny items. If A purchases both
bins for them, then clearly (C1) is satisfied. Hence, we can assume that A pur-
chases at most one bin, w.l.o.g, denote it by B1 if it is purchased, for the first
two items. Let a0 and a1 be the current number of items rejected and packed
into B1, respectively. Note that a1 = 0 means that A does not purchase B1 and
thus no bins have been purchased.

If a0 = 0 and a1 = 2, that is, A purchases B1 for the first two tiny items, i.e.,
L1 = 2

2m+3 , then the last two items p = q = 2m+2
2m+3 . Note that L1 + q > 1 and

p + q > 1. From Lemma 5, we conclude that WA ≥ 2s + L0 + q = 2s + 2m+2
2m+3 ,

while we have W ∗ = 2s by packing p1, p to B1, and p2, q to B2. Hence, (C3) is
satisfied.

Now we are left to consider two cases: (i) a0 = 1 and a1 = 1; (ii) a0 = 2 and
a1 = 0. We will construct the instances in the following such that

1 ≤ a0 = a1 ≤ m (8)

unless A has satisfied one of (C1) and (C2). Clearly, (i) satisfies (8). Therefore,
we only need to focus on (ii). In that case, let the tiny items arrive one by one. To
avoid (C1), A can only purchase at most one bin so long as the number of tiny
items is not greater than 2m+3. That is to say, the arriving item must be rejected
alternatively or be packed to B1. Note that initially we have 0 = a1 < a0 = 2.
If 1 ≤ a1 = a0 ≤ m at some time, then we are done. So we assume that a1 < a0

always holds till a0 = m, then m− a1 tiny items arrive. Since the current load
of B1 is m

2m+3 , to avoid (C1) and (C2), the algorithm A must pack all of them
into B1, resulting in a1 = a0 = m. Thus we obtain (8). Two cases are considered
according to the value of a0 as follows.

Case 1. a1 = a0 = m. Both the rejected items and the items packed into B1 are
tiny with the number m, i.e., L0 = L1 = m

2m+3 . Then the item p2m+1 = 1+ε
2m+3

arrives, where ε is a sufficiently small positive number. It must be packed to B1

Online Coupon Consumption Problem 229

by A in order to avoid (C1) and (C2). Then we have L1 = m+1+ε
2m+3 and the last

two items p = m+3−ε
2m+3 and q = m+2

2m+3 arrive. Note that p > q, p + q > 1 and
L1 + q > 1. From Lemma 5, we have WA ≥ 2s + L0 + q = 2s + 2m+2

2m+3 , while
W ∗ = 2s can be obtained by packing m+1 tiny items and q into B1, m− 1 tiny
items and p, p2m+1 into B2. (C3) is satisfied.

Case 2. a1 = a0 = u ≤ m− 1. There must exist an unique integer v > 0 and an
unique rational number r ∈ [0, 3

2) such that

m + 1− u =
3
2
v + r. (9)

Then the small items of size 3
2(2m+3) arrive one by one. Since

2u
1

2m + 3
+ 2v

3
2

2m + 3
=

2m + 2− 2r
2m + 3

< 1

from (9), in order to avoid (C1), A must reject the arriving small item alter-
natively or pack it to B1 so long as the number of small items is not greater
than 2v. Let b0 and b1 be the numbers of small items rejected and packed into
B1, respectively. It is not hard to obtain that one of the following cases must
happen: (I) b0 + 1 = b1 ≤ v; (II) b0 = b1 = v.

In fact, we have b0 = b1 = 0 initially. Once b0 < b1 ≤ v, there must be
b1 = b0 + 1 at some time, i.e., (I) occurs. Therefore we only need to show (II)
must happen if (I) does not occur. That is to say, b0 ≥ b1 always holds till b0 = v.
If b0 = b1 = v, we are done. Then we assume b0 > b1 and v − b1 small items
arrive. Since

u
1

2m + 3
+ (v + 1)

3
2

2m + 3
=

m + 1
2m + 3

+
3
2 − r

2m + 3
>

m + 1
2m + 3

,

A must pack these items into B1 in order to avoid (C1) and (C2). Thus (II)
occurs.

We will complete the proof after considering the above cases (I) and (II), only
the proof of (I) will be given due to lack of space.

For (I), we have

L0 =
u

2m + 3
+

3
2b0

2m + 3
=

u + 3
2b0

2m + 3

and

L1 =
u

2m + 3
+

3
2b1

2m + 3
=

u + 3
2 (b0 + 1)

2m + 3
.

Then the last two item

p =
2m + 5

2 − u− 3
2b0

2m + 3
and

q =
2m + 2− u− 3

2b0

2m + 3

230 Y. Jiang, A. Zhang, and Z. Tan

arrive. It is easy to get that p > q, p + q > 1 and L1 + q > 1. From Lemma 5,
we obtain that

WA ≥ 2s + L0 + q = 2s +
2m + 2
2m + 3

.

On the other hand, we can obtain W ∗ = 2s by packing u+1 tiny items, b0 small
items and q on B1, u−1 tiny items, b0 +1 small items and p on B2. Hence, (C3)
is satisfied.

Corollary 1. The algorithm A3 is optimal for the case of l = 2 and 0 < s ≤ 1/2.

Proof. Theorem 8 shows that the lower bound of the problem with l = 2 is
arbitrarily close to 1+ 1

2s when m tends to infinity. Then the result follows from
Theorem 7. ��

6 Concluding Remarks

In this paper, we have proposed a new model for the so-called coupon consump-
tion problem. We presented different online algorithms for different value of l,
the number of the potential purchasable coupons with a discount of 1 − s. For
all 0 < s ≤ 1, we presented optimal algorithms for l =∞ and l = 1, respectively.
When 2 ≤ l < ∞, we gave both a lower bound and an algorithm, and showed
the algorithm is optimal for the case of l = 2.

The results of this paper suggest a number of problems deserving further
study. For the problem under consideration, it is quite reasonable to conceive
that the lower bound of the problem with 3 ≤ l <∞ is not less than that with
l = 2. As the algorithm A3 has the same competitive ratio for all 2 ≤ l <∞ and
it is optimal for the case of l = 2, we may conjecture that A3 is optimal for all
2 ≤ l <∞. Moreover, it is assumed that in this paper, each coupon has a same
face value and discount, it can be very interesting to consider the problem with
the coupons having different face value or discount.

References

1. Basse, S.: Computer algorithms: Introduction to design and analysis. Addison-
Wesley, Reading (1988)

2. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin pack-
ing: A survey. In: Hochbaum, D. (ed.) Approximation algorithms for NP-hard prob-
lems, pp. 46–93. PWS Publishing (1997)

3. Dósa, G., He, Y.: Bin packing problems with rejection penalties and their dual
problems. Information and Compution 204, 795–815 (2006)

4. Epstein, L.: Bin packing with rejection revisited. In: Erlebach, T., Kaklamanis, C.
(eds.) WAOA 2006. LNCS, vol. 4368, Springer, Heidelberg (2007)

5. Fiat, A., Woeginger, G.: On-line Algohithms: The State of Art. LNCS, vol. 1442,
pp. 1–12. Springer, Heidelberg (1998)

Application of Copula and Copula-CVaR in the

Multivariate Portfolio Optimization

Manying Bai and Lujie Sun

School of Economics and Management, Beijing University of Astronautics and
Aeronautics, F-100083, Beijing, People’s Republic of China

baimy@buaa.edu.cn

Abstract. In this article we resort to the copula theory and CVaR
measures in the portfolio management, using copula function and copula-
CVaR to design the portfolio optimization. We initially apply the three-
dimensional Archimedean copula in the empirical study. After estimating
the multi-dimensional copula, we use Monte Carlo method to generate
the scenarios for the calculation of portfolio’s variance and CVaR. Then
we apply the minimum of copula based standard variance and CVaR
as the objective function of the portfolio programming. The multivari-
ate demonstration indicates that the copula theory and copula based
CVaR method does better in the portfolio management than the normal
hypothesis.

Keywords: Copula; CVaR; Portfolio Optimization; GARCH.

1 Introduction

The theory of copula dates back to Scklar(1959)[1], but its application to the
analysis of financial problems becomes a new and fast-growing field recently.
There are quite a lot of works on the application of copula theory, including risk
management[2,3], time series dependence[4], derivatives pricing and so on. Essen-
tially, copula provides a straight-forward way to extend financial modeling from
the usual joint normal hypothesis to more general joint distributions with any
marginal ones. There are a lot of empirical studies with two-dimensional copula,
however, the application of three-dimensional copula has not been worked out
until now.

Conditional Value at Risk is the gradually used risk measure in current risk
management. It has been shown that CVaR is a coherent risk measure which
has many attractive characteristics including sub-additivity and convexity[5]. In
particular, when CVaR restricted optimization problem is calculated by scenario
simulation, it has an equivalent linear programming formulation and can be
solved using linear programming methods[6]. The comparison between VaR and
CVaR has already been studied in empirical analysis[7,8]. However, the use of
copula in the CVaR has not yet been applied.

The purpose of this paper is to suggest the use of copula to perform a
pretty analysis in the multivariate portfolio management theory. We focus on the

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 231–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 M. Bai and L. Sun

copula based standard variance and copula-CVaR minimization problems for
portfolio selection. This paper applies the empirical distribution for the marginal
distributions, uses the maximum likelihood estimation (MLE) to estimate the
parameters of Archimedean copula, and chooses the Kolmogorov-Smirnov test
for the good-of-fit of the estimated copula function. After estimating the multi-
dimensional copula, we use Monte Carlo method to generate the scenarios for
the calculation of portfolio’s variance and CVaR. Then we apply the minimum
of standard variance and CVaR on the basis of copula as the objective func-
tion of the portfolio programming. In the empirical analysis, we consider three
important stock indexes in global markets: Hong Kong HS index, Dow Jones
industry index and Nikkei index. Under the generated series of return of the
portfolio, we get series of optimal proportions and the “mean-standard vari-
ance” and “mean-CVaR” efficient frontiers. What’s more, we creatively applies
the three-dimensional Archimedean copula in the empirical study, including the
estimation of the parameters, the good-of-fit test, and the Monte Carlo simula-
tion using the three-dimensional copula. Besides this, the use of copula in the
CVaR in this paper is also a contribution.

This paper is organized as follows. Section 2 discusses the definition of copula
and the copula based Monte Carlo simulation method, and present the CVaR
formulas for single variable and multi variables respectively. Section 3 presents
the use of copula and copula-CVaR in the multivariate portfolio optimization.
Section 4 is the empirical analysis.

2 Copula and CVaR

In modern financial analysis, evidence of non-normality of the distribution of
financial return variables grows every year. The traditional financial risk man-
agement VaR approach and the Mean-Variance theory by Markowitz all depends
on the normal hypothesis. Since the multivariate normal distribution is simply
not a good model for the joint distribution of many financial variables, it leads us
to find more appropriate multivariate models. Copula is just the suitable model,
which provides an alternative to the normal specification among variables, and
has gained increasing attention in the risk management, portfolio management,
asset pricing and other applications.

2.1 Copula Function and It’s Multivariate Monte Carlo Simulation

Copula function is the joint cumulative distribution function (cdf) of a pair
of variables x1, x2, · · · , xn with the marginal cdf F1 (x1) , F2(x2), · · · , Fn(xn)
respectively[9]. That is to say, the copula function C(u1, u2, · · · , un) satisfies
H(x1, x2, · · · , xn) = C (F1 (x1) , F2(x2), · · · , Fn(xn)), where H(x1, x2, · · · , xn)
is the joint cumulative distribution function.

According to the definition of copula function, the use of copula allows us to
overcome the issue of estimating the joint cdf by two parts:

i. Determining the marginal distributions F1 (x1) , F2(x2), · · · , Fn(xn) which
represent the distribution of each variable, and estimating their parameters.

Application of Copula and Copula-CVaR 233

The marginal cdf can be structured by the traditional time series model such as
GARCH model, as well as the student-t distribution or empirical distribution;

ii. Determining the dependence structure of the variables x1, x2, · · · , xn, spec-
ifying a suitable copula function. The copula family contains the normal copula,
t copula, Archimedean copula and mix copula, etc. Moreover, there are still more
than 20 different kinds of Archimedean copula in the copula family.

Among the Archimedean copula, Clayton copula, Gumbel copula and Frank
copula are the most popular copula with the following analytic expression:

Clayton copula: CC(u, v) = (u−θ + v−θ − 1)−
1
θ

Gumbel copula: CG(u, v) = exp{−[(− lnu)θ + (− ln v)θ]
1
θ }

Frank copula: CF (u, v) = − 1
θ ln[1 + (e−θu−1)(e−θv−1)

e−θ−1]

In the empirical study, we can choose the appropriate copula suitable for the
financial variable. The next step is to estimate the parameters of the chosen

copula. This paper applies the empirical distribution
∧
Fi(x) = 1

T

∑
1(Xit ≤ x)

for the marginal cdf, uses the maximum likelihood estimation (MLE) for the
parameters of Archimedean copula, and we choose the Kolmogorov-Smirnov for
the good-of-fit test of estimated copula function.

As for the maximum likelihood estimation, we use the method of solving the
extremum of the sample’s joint pdf’s multiplying value. The three-dimensional
variable’s joint pdf is f(x1, x2, x3) = c(u1, u2, u3) · f(x1) · f(x2) · f(x3), where
f(x1), f(x2), f(x3) are the pdfs of the variables x1, x2, x3; and the function
c(u, v) = ∂C(u, v)�∂u∂v is the copula’s density function. So the maximum
likelihood function L((x1, y1), (x2, y2), (x3, y3), θ) can be denoted as

L =
∏

f(x1, x2, x3) =
∏

c(u1, u2, u3) · f(x1) · f(x2) · f(x3)

Through solving the extremum value, we can get the estimation of the copula’s
parameters. After structuring the copula model, the joint distribution containing
all dependence structure can be described by the copula, through which the
risk management and portfolio management will get better conclusions than the
results under normal hypothesis.

After all parameters of the copula are known, the task is then to generate se-
ries of variables x1, x2, · · · , xn whose joint cdf is C(u1, u2, · · ·un), where the uni-
formly distributed variables u1, u2, · · ·un equals the marginal cdf F1(x1),F2(x2),
· · · ,Fn(xn) of random variables x1, x2, · · · , xn respectively.

Considering the three-dimensional simulation, we simulate the first two series
of variables (u1i, u2i)n through the two-dimensional copula C(u1, u2), where n is
the number of the simulation samples. Then the third series of variables (u3i)n

will be generated though the three-dimensional copula C(u1, u2, u3).
In order to reach this goal, we use the method of conditional distributions. Let

Cu1 denotes the conditional distribution function for the random variable u2 at a
given value u1 of the two-dimensional copula C(u1, u2), with the following expres-
sion Cu1 (u2) = ∂C(u1, u2)�∂u1. In addition, Cu1 are non-decreasing almost ev-
erywhere on [0, 1]. Consequently, the function u2 → Cu1(u2) = ∂C(u1, u2)�∂u1

is uniformly distributed on [0, 1].

234 M. Bai and L. Sun

Just as the same for three-dimensional copula C(u1, u2, u3), the two steps
conditional distribution function u3 → Cu1,u2(u3) = ∂C(u1, u2, u3)�∂u1∂u2 is
also uniformly distributed on [0, 1].

For the sake of simplicity, we can now use the method of variable transforma-
tion to generate the desired series of (u1i, u2i, u3i)n. The transformation consists
of three steps:

i. Generate three independent uniform variables u1, ω, π ∈ [0, 1]. Here u1 is
already the first variable we are looking for;

ii. Let the conditional distribution Cu1 (u2) = ω, and compute the inverse
function of Cu1(u2). So the variable u2 = C−1

u1
(ω) is the second variable we are

looking for;
iii. After getting the first two variable u1, u2, let the two steps conditional

distribution Cu1,u2(u3) = π. Calculate the inverse function of Cu1,u2(u3). Then
the third variable will be generated by the inverse expression u3 = C−1

u1,u2
(π).

According to the above three steps, we generate three series of variables, which
are the cdf value of the original variables (u1i, u2i, u3i)n. To get the wanted
variables, we have x1 = F−1

1 (u1), x2 = F−1
2 (u2), x3 = F−1

3 (u3).

2.2 CVaR for Single and Multi Variables

Value at Risk, or VaR in short, is a popular measure of risk in nowadays finan-
cial risk management. However, it suffers from being unstable and difficult to
calculate through scenarios with normal distribution. Moreover, a very serious
shortcoming of VaR is that it doesn’t satisfy the characteristic of sub-additivity
and convexity when non-elliptical distributions are considered, which makes it
inappropriate for portfolio optimization.

Conditional Value at Risk (CVaR) is an alternative measure to replace VaR.
CVaR is intuitively defined as the weighted average of VaR and the expected
losses that are strictly greater than VaR. Consequently CVaR provides an upper
bound for VaR. However, CVaR is a convex function and suitable for scenario
calculation. Rockafellar and Uryasev (2000) have shown that CVaR can be mini-
mized using linear programming techniques, which allows CVaR a more effective
for portfolio management than VaR. Because a CVaR constraint is tighter than a
VaR constraint when the CVaR and VaR bounds coincide, these portfolio choice
results are also true and to a greater extent if a CVaR constraint is imposed.

Considering the return variable r of the financial asset, note the loss variable
x = −r. Then the VaR & CVaR calculated are all based of the loss variable x.
Assume β − V aR is the VaR at a confidence level β ∈ [0, 1], CVaR is defined
as the conditional expected value: CV aR = E(x | x ≥ β − V aR), which can be
obtained from the following expression

CV aR = E(x | x ≥ β − V aR) = 1
1−β

+∞∫

β−V aR

xf(x)dx

where f(x) is the probability density function (pdf) of loss variable x.

Application of Copula and Copula-CVaR 235

For multivariate portfolio, consuming that the multi loss of the financial assets
is the vector (x1, x2, · · · , xn). The vector (ω1, ω2, · · · , ωn) is the proportions of

the loss variables., where we have
n∑

i=1

ωi = 1. Then the loss of the portfolio

denotes xp =
n∑

i=1

ωixi, so the CVaR of the portfolio can be calculated by the

following expression

CV aR=min
α∈R

{

α + 1
1−β

∫∫

xi∈R

[
n∑

i=1

ωixi − α

]+
f(x1, x2, · · · , xn)dx1dx2 · · · dxn

}

where f(x1, x2, · · · , xn) is the joint pdf of the multi variables (x1, x2, · · · , xn),
and [x− α]+ = max(x− α, 0).
Through scenario simulation (x1j , x2j , · · · , xnj)j=1:m, we will get the CVaR

from the linear programming expression

CV aR = min
α∈R

{

α + 1
m(1−β)

m∑

i=1

[
n∑

i=1

ωixij − α

]+
}

where n is the number of loss variables, and m is the number of scenario samples.
When n equals one, we obtain CVaR expressions for single variable situation.

The scenario can be gained by several ways. Adopting the history data directly
is indeed a good manner. However, this paper applies the copula based Monte
Carlo simulation to gain numbers of scenarios, which we called copula-CVaR
method.

3 Copula and Copula-CVaR in the Portfolio Optimization

Portfolio optimization is one of the most attracting areas in decision-making.
The mean-variance formulation by Markowitz in 1950s paved a foundation for
modern portfolio selection analysis[10]. On the basis of Markowitz, Tobin(1958)
added the risk-free asset to the portfolio[11].

The advantage of using the variance for describing portfolio risk is principally
due to the simplicity of the computation, but the variance is not a satisfac-
tory measure due to the symmetry. The classical portfolio management theory
supposes that the multivariate joint distribution of the return variables is joint
normal distribution, however it is either not a good model for the real financial
return variables.

In order to deal with the variables not elliptically distributed and to measure
the risk more accurately, copula can be applied in the portfolio optimization by
virtue of expressing the variances without normal hypothesis. In order to express
the variance of the portfolio by copula, we calculate the variance in scenarios
analytically through the copula based simulation.

The multivariate joint pdf can be denoted by the copula function, which is

given by f(x1, x2, · · · , xn) = c(u1, u2, · · · , un) ·
n∏

i=1

f(xi).

236 M. Bai and L. Sun

where c(u1, u2, · · · , un) = ∂C(u1,u2,··· ,un)
∂u1∂u2···∂un

is the pdf of copula in formula, the
function f(xi) denotes the ith variable’s pdf. Let f(r) = f(r1, r2, · · · , rn), then
the variance of the portfolio can be denoted by

σ2
p =

+∞∫

−∞
[rp − E(rp)]

2
f(rp)drp =

∮
[

n∑

i=1

ωiri − E(rp)
]2

f(r)dr1dr2 · · · drn

To avoid the complex analytical calculation, the discrete samples can be used
in the following expression

σ2
p = 1

m

m∑

j=1

[
n∑

i=1

ωiri − E(rp)
]2

= 1
m

m∑

j=1

(ω1r1j +ω2r2j + · · ·+ ωnrnj − E(rp))
2

where n is the number of loss variables, and m is the number of discrete samples,
which can be gained by the copula based Monte Carlo simulation.

Using the above analytical calculating formulation, the copula based opti-
mization problem of a portfolio manager is the following one:

min σ2
p = 1

m

m∑

j=1

[
n∑

i=1

ωiri −
n∑

i=1

ωiE(ri)
]2

s.t.E(rp) =
n∑

i=1

ωiE(ri) = κ,
n∑

i=1

ωi = 1

where κ is the portfolio target return.
By giving series of target returns κ, the mean-variance efficient frontier will

be gained. Considering the added risk-free asset, in addition, the optimal pro-
portions can be calculated by the following programming formula

max E(rp)−rf

σp
= E(rp)−rf�

1
m

m�
j=1

�
n�

i=1
ωiri−E(rp)

�2

s.t.
n∑

i=1

ωi = 1ωi > 0

As already suggested by Markowitz(1959), other risk measures can be used
in the mean-risk approach, such as VaR and CVaR[12]. By virtue of convexity
and suitable for scenario calculation, CVaR is better than VaR approach in the
portfolio management.

The mean-CVaR programming formula of the portfolio optimization is as
follows

minCV aR; s.t.E(xp) = −κ,
n∑

i=1

ωi = 1, ωi > 0, α ∈ R

where κ is the portfolio target return, so −κ denotes the target loss.
Giving series of target losses −κ, the mean-CVaR efficient frontier will be

gained by series of optimizations. In addition, The optimal proportions under
risk-free asset can be calculated by the following programming

max E(rp)−rf

CV aR ; s.t.
n∑

i=1

ωi = 1, ωi > 0

Application of Copula and Copula-CVaR 237

4 Empirical Analysis

After above theoretical analysis, we apply the minimum of copula based standard
variance and CVaR as the objective function of the portfolio programming. In
the empirical study, we consider three important stock indexes in global markets
(Hong Kong HS index, Dow Jones industry index, and Nikkei index), with 488
daily data samples between May the 6th 2004 till May the 23th 2006. The risk-
free asset which we choose is five years’ Chinese public debt with the year rate
0.0214. The initial value of the portfolio is 1 unit. Suppose P denotes the asset’s
price. Then the respective return ri = Pi−Pi−1

Pi−1
is the object variable we analyze.

4.1 Modeling the Marginal Distributions and the Dependence
Structure with Copula

We fitted the GARCH models for the series r1, r2, r3 as initial models with
normal and student-t distribution. With analysis we find that the three series all
have no autocorrelation. Then the simple GARCH(1,1) model we apply follows
the following expression

rt = μ + at, at =
√
ht · εt

ht = c + β1 · a2
t−1 + β2 · ht−1

where εt is white noise processes with zero mean and unit variance, β1 and β2

follows the restriction β1 + β2 < 1. Table 1 presents the estimates of GARCH
model using the Eviews software. Trough the table, we find that the HS index
and Nikkei return variables satisfy the GARCH(1,1) model while the Dow Jones
coincides the TAR-GARCH(1,1) model.

The distributions of the three return variables are forecasted through the
GARCH model. Table 1 also presents the distributions with their parameters:
mean E(r) and standard variance σ.

Table 1. Parameter estimates of GARCH models and the distributions

parameters HS index Dow Jones index Nikkei index

μ 0.000797 0.000109 0.001008

c 2.94E-06 2.58E-06 3.07E-06

β1 – -0.034828 0.081943

β2 0.960807 0.925228 0.887853

TGARCH – 0.103353 –

AIC -6.716928 -7.196086 -6.331889

distribution student-t normal normal

E(r) 0.000797 0.000109 0.001008

σ 0.00866691 0.007853746 0.012598705

The copula function we use is Clayton copula which mainly describes the
dependence of left tail. The multi-dimensional Clayton copula is denoted in the
following expression

238 M. Bai and L. Sun

C(u1, u2, · · · , un) =
(

n∑

i=1

u−θ
i + 1− n

)− 1
θ

Afterthemaximum likelihoodestimation,theparameterθofthetwo-dimensional
copula betweenHS index andDowJones index is 0.1186.Then the two-dimensional
copula function can be expressed in the following formula

C(u1, u2) =
(
u−θ

1 + u−θ
2 − 1

)− 1
θ =

(
u−0.1186

1 + u−0.1186
2 − 1

)− 1
0.1186

As mentioned, the conditional distribution u2 → Cu1(u2) = ∂C(u1,u2)
∂u1

is uni-
formly distributed on [0, 1]. We apply the Kolmogorov-Smirnov method to test
the values of Cu1(u2) evaluated by the sample data (r1i, r2i). The test answer
presents that the P value is 0.2869, which is higher than the confidence level
0.05. Consequently the two-dimensional Clayton copula fits the sample data
well.

As well as two-dimensional copula, the two steps conditional distribution
Cu1,u2(u1, u2, u3) = ∂C(u1,u2,u3)

∂u1∂u3
is also uniformly distributed on [0,1]. The es-

timated value of θ is 0.0615 with P value 0.1047>0.05 by Kolmogorov-Smirnov
test. Therefore the three-dimensional Clayton copula can be expressed in the
formula

C(u1, u2, u3) =
(
u−0.0615

1 + u−0.0615
2 + u−0.0615

3 − 2
)− 1

0.0615

Applying the copula based Monte Carlo simulation; we get 10000 series of
data for the following empirical analysis.

4.2 Copula Based Three-Dimensional Portfolio Optimization

1. traditional portfolio efficient frontier:We note ω1, ω2, ω3 are the pro-
portions of the portfolio. On the basis of the traditional mean-variance the-
ory, we get the minimum standard variance with the optimal proportions
under given target mean of the portfolio. Table 2 presents the optimal data we
calculated.

Join the risk-free asset with the daily rate rf = 0.00005863. the optimal
proportion is ω1 = 0.52788, ω2 = 0.14994, ω2 = 0.32218. Figure 1(a) shows
the “mean-standard variance” efficient frontier and the tangent with risk-free
rate.

2. copula based portfolio efficient frontier: Contrast to the traditional
mean-variance theory, we apply the GARCH based marginal distributions and
copula based Monte Carlo simulation to calculate the efficient frontier. The soft-
ware we used is still the LINGO. The result is presented in table 3.

In order to see the good characteristic of the copula based portfolio optimiza-
tion, we compare the traditional efficient frontier with the copula based one,
as shown in figure 1(b). Figure 1(b) presents that the sphere of copula based
frontier is almost less than the traditional one under joint normal distribution,
which validates copula’s good characteristic of dependence, because the copula
based frontier considers the risk more than the traditional one.

Application of Copula and Copula-CVaR 239

Table 2. The optimal proportions of the traditional efficient frontier

Er ω1 ω2 ω3 σ Er ω1 ω2 ω3 σ

0.00018 0 1 0 0.00667 0.00044 0.3768 0.4309 0.1923 0.00579

0.0002 0.0277 0.9723 0 0.00652 0.00046 0.4002 0.3872 0.2126 0.00595

0.00022 0.0750 0.9250 0 0.00628 0.00048 0.4244 0.3423 0.2333 0.00613

0.00024 0.1223 0.8777 0 0.00607 0.0005 0.4482 0.2980 0.2538 0.00634

0.00026 0.1616 0.8308 0.0076 0.0059 0.00052 0.4721 0.2537 0.2742 0.00657

0.00028 0.1849 0.7873 0.0278 0.00054 0.00054 0.4959 0.2095 0.2946 0.00682

0.0003 0.2100 0.7408 0.0492 0.00563 0.00056 0.5197 0.1652 0.3151 0.00708

0.00032 0.2338 0.6965 0.0697 0.00555 0.00058 0.5447 0.1187 0.3366 0.00738

0.00034 0.2576 0.6522 0.0902 0.00551 0.0006 0.5674 0.0766 0.3560 0.00767

0.00036 0.2803 0.6101 0.1096 0.0055 0.00062 0.5911 0.0324 0.3765 0.00798

0.00038 0.3053 0.5637 0.1310 0.00552 0.00064 0.5217 0 0.4783 0.00835

0.0004 0.3291 0.5194 0.1515 0.00558 0.000645 0.4248 0 0.5752 0.00862

0.00042 0.3529 0.4751 0.1720 0.00567 0.00065 0.3602 0 0.6398 0.00885

Table 3. The optimal proportions of the copula-GARCH based efficient frontier

Er ω1 ω2 ω3 σ Er ω1 ω2 ω3 σ

0.00011 0.0015 0.9985 0 0.00777 0.00056 0.2597 0.4374 0.3029 0.00651

0.00014 0.0451 0.9549 0 0.00751 0.00059 0.2742 0.4006 0.3252 0.00663

0.00017 0.0715 0.9154 0.0131 0.00729 0.00062 0.2887 0.3638 0.3475 0.00677

0.0002 0.0859 0.8786 0.0355 0.0071 0.00065 0.3031 0.3271 0.3698 0.00693

0.00023 0.1004 0.8418 0.0578 0.00691 0.00068 0.3176 0.2903 0.3921 0.00711

0.00026 0.1149 0.8051 0.0800 0.00675 0.00071 0.3321 0.2535 0.4143 0.00732

0.00029 0.1294 0.7683 0.1023 0.00662 0.00074 0.3466 0.2168 0.4366 0.00753

0.00032 0.1439 0.7315 0.1246 0.0065 0.00077 0.3611 0.1799 0.4589 0.00777

0.00035 0.1583 0.6948 0.1469 0.00641 0.0008 0.3755 0.1432 0.4812 0.00802

0.00038 0.1728 0.6580 0.1691 0.00634 0.00083 0.3900 0.1064 0.5035 0.00828

0.00041 0.1873 0.6212 0.1915 0.00631 0.00086 0.4045 0.0697 0.5258 0.00855

0.00044 0.2018 0.5844 0.2138 0.00629 0.00089 0.4190 0.0329 0.5481 0.00884

0.00047 0.2163 0.5477 0.2360 0.00631 0.00092 0.4171 0 0.5829 0.00913

0.0005 0.2307 0.5109 0.2584 0.00635 0.00095 0.2749 0 0.7251 0.00978

0.00053 0.2452 0.4741 0.2807 0.00642 0.00098 0.1327 0 0.8673 0.01091

4.3 Copula-CVaR Restricted Multivariate Portfolio Optimization

Taking the minimum of CVaR as the objective function, The mean-CVaR frontier
can be calculated on condition that the confidence level is 0.95 and the scenario
is generated by copula. Table 4 presents the optimal proportions under the given
return of the portfolio.

In the same way, we draw the frontier figure through the Matlab software.
Figure 2(a) presents the copula-CVaR restricted “mean-CVaR” efficient frontier
and the tangent with risk-free rate.

Under the normal circumstance, CVaR can be expressed by the standard vari-
ance σ as CV aR = σ

α
√

2π
exp

(
− q2

α

2

)
, where qα is the quantitative α-percentile

240 M. Bai and L. Sun

Table 4. The optimal proportions of the copula-CVaR restricted ”mean-CVaR” effi-
cient frontier

Er ω1 ω2 ω3 σ Er ω1 ω2 ω3 σ

0.00011 0.0015 0.9985 0 0.0159 0.00056 0.2133 0.4483 0.3384 0.0144

0.00014 0.0451 0.9549 0 0.0155 0.00059 0.2274 0.4116 0.3610 0.0147

0.00017 0.0666 0.9165 0.0169 0.0151 0.00062 0.2421 0.3748 0.3831 0.0150

0.0002 0.0748 0.8812 0.0440 0.0148 0.00065 0.2537 0.3387 0.4076 0.0153

0.00023 0.0929 0.8436 0.0635 0.0145 0.00068 0.2719 0.3010 0.4270 0.0157

0.00026 0.1082 0.8066 0.0851 0.0142 0.00071 0.2830 0.2650 0.4519 0.0161

0.00029 0.1162 0.7714 0.1124 0.0140 0.00074 0.2999 0.2277 0.4724 0.0165

0.00032 0.1209 0.7369 0.1422 0.0139 0.00077 0.3083 0.1924 0.4993 0.0171

0.00035 0.1325 0.7008 0.1666 0.0138 0.0008 0.3223 0.1557 0.5220 0.0175

0.00038 0.1425 0.6649 0.1916 0.0137 0.00083 0.3338 0.1196 0.5466 0.0180

0.00041 0.1509 0.6298 0.2193 0.0137 0.00086 0.3494 0.0826 0.5679 0.0185

0.00044 0.1614 0.5939 0.2447 0.0138 0.00089 0.3597 0.0468 0.5934 0.0190

0.00047 0.1772 0.5568 0.2659 0.0139 0.00092 0.3784 0.0906 0.6124 0.0196

0.0005 0.1927 0.5198 0.2874 0.0140 0.00095 0.2749 0 0.7251 0.0206

0.00053 0.0997 0.4848 0.3154 0.0142 0.00098 0.1327 0 0.8673 0.0226

(a) (b)

Fig. 1. (a) the traditional “mean-standard variance” efficient frontier and the tangent
with risk-free rate; (b) the copula-GARCH based “mean-standard variance” efficient
frontier together with the traditional one

of standard normal distribution. Under the confidence level of 0.95, we have
q0.05 = 1.64485. Then the CVaR is calculated by CV aR = 2.0627σ. Conse-
quently, the copula based mean-CVaR frontier can be compared with the tra-
ditional one converted by the equation between CVaR and standard variance.
Figure 2(b) shows the copula based mean-CVaR frontier and the converted nor-
mal mean-CVaR frontier.

We find that the sphere of copula based frontier is almost less than the normal
one. For the reason of considering more about the risk, this figure presents that

Application of Copula and Copula-CVaR 241

(a) (b)

Fig. 2. (a) the copula-CVaR restricted “mean-CVaR” efficient frontier and the tangent
with risk-free rate; (b) the copula-CVaR restricted “mean-CVaR” efficient frontier com-
paring with the normal based one

copula-CVaR restrained portfolio optimization can avoid some risk which the
normal distribution based portfolio optimization allows. So we can conclude
that the copula theory and copula-CVaR method do better in the optimization
of portfolio management.

5 Conclusions

This paper applies the copula theory into the optimization of portfolio manage-
ment. Our empirical analysis firstly uses three-dimensional copula for Monte Carlo
simulation and CVaR calculation. With the copula based multi-dimensional sim-
ulated scenarios, we get the optimal investing proportions of the portfolio under
the minimum of standard variance calculated by copula. Adding the risk-free as-
set, we also get the optimal proportion and the tangent of “the mean-standard
variance” efficient frontier.

In addition, we apply the copula based CVaR into the portfolio optimization,
which we call it copula-CVaR method. Under the objective function of mini-
mum of copula-CVaR, we get another series of optimal investing proportions.
Consequently, the “mean-CVaR” frontier is calculated with the tangent under
risk-free asset. By comparison with the traditional normality based portfolio the-
ory, we find that the copula theory and copula-CVaR method do better in the
optimization of portfolio management.

Besides this, this paper creatively applies the three-dimensional Archimedean
copula in the empirical study and makes use of copula theory in the CVaR
caculation which is also a contribution. We hope the use of the multi-dimensional
copula and copula-CVaR approach can be applied more widely in the future
financial analysis.

242 M. Bai and L. Sun

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 70521001, 70531010 and 70571004).

References

1. Sklar, A.: Fonctions de repartition?n dimensions et leurs marges. Publication de
l’Institut de Statistique de l’Université Paris 8, 229–231 (1959)

2. Cherubini, U.: Value-at-risk Trade-off and Capital Allocation with copulas. Note
CRAS Paris 7, 235–256 (2001)

3. Helder, P., Luiz, K.H.: Using Conditional copula to Estimate Value at Risk. J. of
Data Sci. 4, 93–115 (2006)

4. Patton, A.J.: Modeling Time-Varying Exchange Rate Dependence Using the Con-
ditional copula, Ch. 1. University of California, San Diego (2002)

5. Rockafellar, R.T.: Stanislav Uryasev: Optimization of Conditional Value-at-Risk.
J. of Risk 2(3), 21–41 (2000)

6. Rockafellar, R.T.: Stanislav Uryasev: conditional value at risk for central loss dis-
tributions. University of Florida, working paper (2001)

7. Siddharth, A., Coleman, T.F., Li, Y.Y.: Minimizing CVaR and VaR for a Portfolio
of Derivatives (working paper). Cornell University, New York (2004)

8. Gordon, J.A., Alexandre, M.B.: A comparison of VaR and CVaR constrants on
portfolio selection with the mean-variance model. Management. Sci. 50(9), 1261–
1273 (2004)

9. Nelsen, R.B.: An Introduction to copulas. Springer, New York (1999)
10. Markowitz, H.: Portfolio Selection. J. of Finance 3, 77–91 (1952)
11. Tobin: Liquidity preference as behavior toward risk. Review of Economic Stud-

ies 25, 65–86 (1958)
12. Andreev, A., Kanto, A.: Conditional Value-at-Risk estimation using non-integer

values of degrees of freedom in Student’s t-distribution. J. of Risk 2, 55–62 (2005)

Online Capacitated Interval Coloring

Leah Epstein1, Thomas Erlebach2, and Asaf Levin3

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Computer Science, University of Leicester, England
t.erlebach.mcs.le.ac.uk

3 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. In the online capacitated interval coloring problem, a se-
quence of requests arrive online. Each of the requests is an interval
Ij ⊆ {1, 2, . . . , n} with bandwidth bj . Initially a vector of capacities
(c1, c2, . . . , cn) is given. Each color can support a set of requests such
that the total bandwidth of intervals containing i is at most ci. The goal
is to color the requests using a minimum number of colors. We present a
constant competitive algorithm for the case where the maximum band-
width bmax = maxj bj is at most the minimum capacity cmin = mini ci.
For the case bmax > cmin, we give an algorithm with competitive ratio
O(log bmax

cmin
) and, using resource augmentation, a constant competitive al-

gorithm. We also give a lower bound showing that constant competitive
ratio cannot be achieved in this case without resource augmentation.

1 Introduction

Motivated by a routing problem in optical networks we consider the following
problem. We are given a line network with links 1, 2, . . . , n and a vector of base
capacities (c1, c2, . . . , cn). The requests arrive one by one, in an online fashion,
and each request is identified by the interval of links that it uses Ij = [sj , tj]
where 1 ≤ sj ≤ tj ≤ n. Moreover, the request Ij is associated with a bandwidth
bj that is the bandwidth request of Ij . Each time a request arrives, a color must be
assigned to it before the next request is revealed. A restriction on the coloring
is that the total bandwidth of all requests that are assigned a common color
and contain link i is at most ci. The goal is to use a minimum number of
colors. Naturally, we assume bj ≤ ci for all i ∈ Ij (otherwise a feasible coloring
would not exist). Without loss of generality we also assume (by scaling) that
mini=1,2,...,n ci = 1.

As practical motivation of our study, consider an optical line network, where
each color corresponds to a distinct frequency (this frequency is seen as a color
as it is a frequency of light) in which the information flows. Different links along
the line have different capacities, which are a function of intermediate equipment
along the link (e.g., a link with an intermediate repeater may have reduced
capacity for each color as a result of the repeater). Each request uses the same

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 243–254, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

244 L. Epstein, T. Erlebach, and A. Levin

bandwidth on all links that this request contains. Moreover, requests arrive over
time. As the number of distinct available frequencies is limited, minimizing the
number of colors for a given sequence of requests is a natural objective. Changing
the color allocation of a request causes a setup cost that we would like to avoid,
and therefore we restrict ourselves to the online problem where once a request
is allocated a color this color allocation cannot be changed.

From a theoretical point of view, the problem is interesting as it extends the
previously studied case of uniform capacities (ci = 1 for all i) to the setting with
arbitrary capacities. For many problems of a similar flavor (both in the online
and offline variants), the setting with arbitrary capacities is significantly more
difficult to deal with than the uniform setting, and new techniques and ideas are
often required. For example, a 3

2 -approximation algorithm for offline coloring of
unit-bandwidth paths in trees with uniform edge capacities follows easily from
the known results for the unit-capacity case [17], but nontrivial new techniques
were needed to obtain a 4-approximation for the case with arbitrary capacities
[6]. Similar observations can be made for the throughput version of such problems
(i.e., maximizing the total bandwidth of requests that can be accepted with one
available color). For example, the only known constant competitive algorithm
for online throughput maximization in line or ring networks uses randomization
and preemption and works only for the case of uniform edge capacities [2]. For
the offline version of these problems, Chakrabarti et al. remark in [5] that most
of the techniques that have been used for the uniform capacity case do not seem
to extend to the case of arbitrary capacities.

In order to analyze our online algorithms for capacitated interval coloring, we
use the common criterion of competitive analysis. For an algorithmA, we denote
its cost by A as well. The cost of an optimal offline algorithm that knows the
complete sequence of intervals in advance is denoted by OPT. We consider the
absolute competitive ratio that is defined as follows. The absolute competitive
ratio ofA is the infimumR such that for any input, A ≤ R·OPT. If the absolute
competitive ratio of an online algorithm is at most C we say that the algorithm
is C-competitive.

The problem studied in this paper is a generalization of the classical online
interval graph coloring problem. If all capacities are 1, all bandwidth requests
are 1, and the number of links in the network is unbounded, we arrive at the
standard interval coloring problem.

Coloring interval graphs has been intensively studied. Kierstead and Trotter
[14] constructed an online algorithm which uses at most 3ω−2 colors where ω is
the maximum clique size of the interval graph. They also presented a matching
lower bound of 3ω − 2 on the number of colors in a coloring of an arbitrary
online algorithm. Note that the chromatic number of interval graphs equals the
size of a maximum clique, which is equivalent in the case of interval graphs to
the largest number of intervals that intersect any point (see [11]). Many papers
studied the performance of First Fit for this problem [12,13,16,7]. It is shown in
[7] that the performance of First Fit is strictly worse than the one achieved by
the algorithm of [14].

Online Capacitated Interval Coloring 245

Generalizations of interval coloring received much attention recently. Adamy
and Erlebach [1] introduced the interval coloring with bandwidth problem (which
is also a special case of our problem). In this problem all capacities are 1 and each
interval has a bandwidth requirement in (0, 1]. As in our problem, the intervals
are to be colored so that at each point, the sum of bandwidths of intervals colored
by a certain color does not exceed the capacity, which is 1. This problem was
studied also in [15,8,3]. The best competitive ratio known for that problem is 10
[15,3]. A lower bound strictly higher than 3 was shown in [8].

Other previous work is concerned with the throughput version of related prob-
lems. In the demand flow problem on the line, each interval is associated with a
profit, and the goal is to maximize the total profit of the accepted intervals with-
out violating any edge capacity. This corresponds to maximizing the total profit
of intervals that can receive the same color in our model. For the off-line version
of that problem, constant-factor approximation algorithms have been presented
in [5,6] for the case where bmax ≤ cmin, where bmax = maxj bj is the maximum
requested bandwidth and cmin = mini=1,...,n ci is the minimum edge capacity.
For the general case, an approximation ratio O(log bmax

cmin
) was achieved in [5].

Recently, a quasi-polynomial time approximation scheme was presented [4].

Our results: In Sect. 3 we present our first main result, a constant competitive
algorithm for capacitated interval coloring for the case in which the maximum
bandwidth request is at most the minimum capacity, i.e., the case where bmax ≤
cmin. (Note that this restriction means that the minimum edge capacity anywhere
on the line must be at least as large as the maximum bandwidth of any request.
This is stronger than the standard requirement that bj ≤ ci for all i ∈ Ij .) This
is an important special case that contains the interval coloring problem with
bandwidth studied in [1,15,3,8]. This restriction on the maximum bandwidth
is common in work on demand flow problems as well, see e.g. [5,6]. While our
algorithm uses the standard technique of partitioning the requests into different
types and dealing with each type separately, in our case the different types need
to share colors and so the bandwidth sharing scheme for the colors needs to be
designed very carefully.

We also consider the general case, i.e., the case where bmax can be larger
than cmin. First, we remark that it is not difficult to design an O(n)-competitive
algorithm for this case. This can be done by partitioning the requests into at
most n sets, each of which contains all requests for which the bottleneck link (i.e.,
the link of smallest capacity) is link i. We are left with n disjoint instances of bin
packing, and we can run e.g. First-Fit on each set. In Sect. 4, we first design an
O(log bmax)-competitive algorithm (the ratio is O(log bmax

cmin
) if the capacities are

not normalized). Then we show that for any amount ε of resource augmentation
on the capacities (i.e. increasing capacities by a multiplicative factor of at most
1+ε), we can obtain a constant competitive algorithm (the ratio is a function of
ε). Finally, we give our second main result, a lower bound showing that no online
algorithm can achieve constant competitive ratio in the general case without
resource augmentation. The basic idea of our lower bound is to adapt the known
logarithmic lower bound for online coloring of trees [10] to our problem. However,

246 L. Epstein, T. Erlebach, and A. Levin

arbitrary trees cannot be represented as interval graphs, and hence we need to
use the capacities and bandwidths in a very intricate way in order to encode the
required tree structures. Furthermore, the construction must be such that the
algorithm cannot benefit from the information that is conveyed by the encoding.

Several proofs are omitted due to space limitations.

2 Preliminaries

The following KT�b algorithm for the online interval coloring with bandwidth
problem (where all edges have the same capacity) was studied by Epstein and
Levy [8,9] (see also [15,3]). We are given an upper bound b on the maximum
request bandwidth. We are also given a value of a parameter �. The algorithm
partitions the requests into classes and then colors each class using the First-Fit
algorithm. The partition of the requests is performed online so that a request
j is allocated to class m where m is the minimum value so that the maximum
load of the requests that were allocated to classes 1, 2, . . . ,m, together with the
additional new request, is at most m�. (For a set of requests, the load created
on a link is the sum of the bandwidths of the requests containing that link, and
the maximum load is the largest load of all links.) For an interval vi that was
allocated to class m, a critical point of vi is a point q in vi such that the set of
all the intervals that were allocated to classes 1, 2, . . . ,m− 1 prior to the arrival
of vi, together with the interval vi, has total load greater than (m − 1)� in q
(i.e., q prevents the allocation of vi to class m − 1). They proved the following
lemmas:

Lemma 1. Given an interval vi that was allocated class m. For the set Am of
intervals that were allocated to class m, and for every critical point q of vi, the
total load of Am in q is at most b + �.

Lemma 2. For every m, the set Am of intervals that were allocated to class m
has a maximum load of at most 2(b + �).

Note that the set Am of intervals assigned to class m can be colored with a single
color if its maximum load does not exceed the capacity of any edge (cf. [15]).

Lemma 3. The number of classes used by the algorithm is at most �ω∗

� � where
ω∗ is the maximum load.

It was shown in [14] that using the above algorithm with b = � = 1 in the case
where all intervals have unit bandwidth (bj = 1 for all j) results in classes that
have maximum load two and can be colored online with three colors per class
(the first class can be colored using a single color), assuming unit edge capacity.
(If the edges have capacity 2, one color suffices for each class. The same obviously
holds also if b = � = 1

2 , all requests have bandwidth equal to 1
2 , and the edges

have unit capacity.) We refer to this special case of algorithm KT�b as algorithm
KT ; it is the classical algorithm by Kierstead and Trotter that requires at most
3ω − 2 colors for coloring a set of intervals with maximum clique size ω.

Online Capacitated Interval Coloring 247

3 Algorithm for the Case maxj bj ≤ mini=1,2,...,n ci

The Algorithm. Since we assume that mini=1,2,...,n ci = 1, all bandwidth
requests are at most 1. The level of request Ij = [sj , tj] is �log2 mini∈Ij ci	, i.e.
the rounded down base 2 logarithm of the minimum capacity of any link along
the request. A level i > 0 request is small if its bandwidth is at most 2i−3, and a
level 0 request is small if its bandwidth is at most 1

4 . A request that is not small
is a large request. Note that large requests exist only in level 0, 1 and 2.

Our algorithm first rounds down all capacities to integer powers of 2, this does
not change the classification into levels. Next it performs an online partition of
the requests according to their levels. For all i, the small requests of level i
are colored using an algorithm for online coloring along a line network with
identical capacities, and these capacities are max{1, 2i−1}. For the coloring of
these small requests we use the same set of colors for the requests of all levels.
More specifically, requests of level 0 are allocated a capacity of 1 in each color,
on every link. Requests of level i > 0 are allocated a capacity of 2i−1 in each
color, on every link. To color the small requests, note that a small request has
bandwidth at most 2i−3 for i > 0 and at most 1

4 for level 0. Therefore we
can apply the algorithm KT�b from Sect. 2, using b = � = 2i−3 for i > 0 and
b = � = 1

4 for level 0. A new class is opened if a new request of some level opens
a new class. Each class is colored using a single color, i.e., given color t, it is
used for all requests assigned to class t, no matter which level they belong to. It
is not difficult to show that this coloring is valid.

As for large requests we first define the following types. We define a type
1 large request to be a level 1 large request with bandwidth requirement that
belongs to the interval

(
1
2 , 1
]
. A large request that is not type 1 is called a type

2 large request. Each type of large request is packed independently using its own
set of colors. We next describe the packing of each type of large requests.

Type 1 large requests. We round up all bandwidth requests to 1 and then apply
algorithm KT , the online algorithm for interval coloring (without bandwidth) of
Kierstead and Trotter [14]. However, unlike that algorithm, where each class was
colored using three colors, we can use a single color for each class, similarly to the
algorithm for coloring requests of bandwidth in (1

4 ,
1
2] in [15], see also Sect. 2.

Type 2 large requests. We partition the type 2 large requests into three
subgroups according to their levels. For each new open color we allocate a total
unit capacity for all the type 2 large requests of level 0. Moreover for each link
whose rounded capacity is at least two we also allocate a unit capacity for all
the type 2 large request of level 1. For each link whose rounded capacity is at
least four we allocate two units of capacity for all the type 2 large requests of
level 2. We then apply the following algorithms depending on the level of the
large request.

A level 0 large request of type 2. We further partition these requests into
two sub-families of requests according to their bandwidth request. The first

248 L. Epstein, T. Erlebach, and A. Levin

sub-family consists of requests with bandwidth in
(

1
4 ,

1
2

]
, and the second sub-

family consists of requests with bandwidth in
(

1
2 , 1
]
. For each sub-family we use

its own set of colors (note that all these colors can be used also by large requests
of type 2 from levels 1 and 2). For each request in the first sub-family we round up
its bandwidth request to 1

2 and then apply algorithm KT, the online algorithm
for interval coloring (without bandwidth) of Kierstead and Trotter, where each
class can be packed into a common color, as is done for type 1. For the second
sub-family we also round up its bandwidth request to 1 and afterwards apply
algorithm KT, where each class is packed using three colors, exactly as in [14].

A level 1 large request of type 2. We recall that such a request has bandwidth
at most 1

2 . We round up its bandwidth request to 1
2 and then apply algorithm

KT, where each class can be packed into a common color.

A level 2 large request of type 2. We round up its bandwidth request to 1
and apply algorithm KT, where each class can be packed into a common color.

Analysis. First, one can show that the solution returned by the algorithm
is feasible. In fact, even the rounded capacity constraints are satisfied by the
coloring produced by the algorithm. The next lemma is a trivial consequence of
the fact that the colors used to color small requests of the different levels are
shared among the levels.

Lemma 4. Let sj be the number of colors used to color the small requests of
level j. Then, the number of colors used by the algorithm for coloring the small
requests is exactly maxj≥0 sj.

Furthermore, we can show that OPT ≥ sj

32 for all j. Together with Lemma 4,
this gives the following:

Corollary 1. The number of colors used to color the small requests is at most
32 ·OPT.

It remains to analyze the number of colors used by the large requests.

Lemma 5. Let b be a fixed value that is either 1
2 or 1 and let c be a fixed value

that is either b or 2b. Assume that we are given a subset S of large request of
level i, 0 ≤ i ≤ 2, each with bandwidth in the interval

(
b
2 , b
]

and we first round
up the bandwidth to b and afterwards use Kierstead and Trotter’s algorithm KT
with color capacity c. Then, if b < c the number of colors used to color all
the requests of this family is at most 2 ·

(
2i+2

b − 1
)
· OPT, and otherwise (if

b = c) the number of colors used to color all the requests of this family is at most
6 ·
(

2i+2

b − 1
)
·OPT.

Lemma 5 implies, using b = 1, c = 2 and i = 1, that the number of colors that
are used by the algorithm to color all type 1 large requests is at most 14 ·OPT.

Furthermore, we get that the number of colors that are used to color all type
2 large requests of level 0 is at most 32 · OPT; this follows by using b = 1

2 ,
c = 1 and i = 0 for the requests with bandwidth in

(
1
4 ,

1
2

]
, and b = 1, c = 1

Online Capacitated Interval Coloring 249

and i = 0 for the requests with bandwidth in
(

1
2 , 1
]
. Similarly, we get that the

number of colors for type 2 large requests of level 1 is at most 30 ·OPT (using
b = 1

2 , c = 1 and i = 1), and the number of colors for type 2 large requests of
level 2 is at most 30 ·OPT (using b = 1, c = 2 and i = 2). As the colors used
to color type 2 large requests of different levels are shared among the levels, the
number of colors used to color all type 2 large requests is the maximum among
the numbers of colors used to color type 2 large requests of level i for i = 0, 1, 2.
By considering the different cases above, this maximum is at most 32 ·OPT.

Theorem 1. The algorithm is 78-competitive.

Proof. Each color is used to either color small requests, or to color large requests
of type 1, or to color large requests of type 2. By Corollary 1 there are at most
32 · OPT colors that are used to color small requests. As discussed above, at
most 14 · OPT colors are used to color large requests of type 1, and at most
32 ·OPT colors are used to color large requests of type 2. The claim follows since
32 ·OPT + 14 ·OPT + 32 ·OPT = 78 ·OPT. ��

4 Algorithms and Lower Bound for the General Case

An O(log bmax)-Competitive Algorithm. Recall that bmax denotes the max-
imum bandwidth of a request. We now deal with the general case where bmax

can be larger than cmin. We still assume that the edge capacities are normalized
so that cmin = 1. In order to present an O(log bmax)-competitive algorithm, we
first note that the algorithm of the previous section is designed in such a way
that it can handle small requests even if they have bandwidth requests which
are larger than 1 and provides a solution whose cost is at most 32 · OPT for
these requests. Therefore, it suffices to consider the large requests. Recall that
for i > 0, a level i request is large if its bandwidth is at least 2i−3, and it has a
link with capacity that is smaller than 2i+1.

In our algorithm we perform an online partition of large requests into lev-
els, and pack the large requests of each level separately using colors that are
dedicated to the level. To pack the large requests of level i, we disregard the
capacities and bandwidth of the requests, and we pack the requests using Kier-
stead and Trotter’s algorithm KT assuming unit capacities and unit bandwidths.
This completes the definition of the algorithm, and it remains to analyze it.

First, it is not difficult to verify that the algorithm produces a feasible solution.
The number of levels is O(log bmax), as our algorithm uses colors to color large
requests of level i only if there is at least one large request of level i. Furthermore,
we can show that for each i our algorithm uses O(OPT) colors to color all the
large requests of level i. We thus obtain the following theorem.

Theorem 2. There exists an O(log bmax)-competitive algorithm for the general
case of the capacitated interval coloring problem.

Note that we have assumed cmin = 1 without loss of generality. In the case where
cmin is not normalized to 1, the ratio becomes O(log bmax

cmin
).

250 L. Epstein, T. Erlebach, and A. Levin

Resource Augmentation Algorithm. Given a fixed positive number 0 < ε <
1 such that 1

ε is an integer, we allow the online algorithm to use colors such that
the total bandwidth of requests that are assigned a common color and contain
the link i is at most (1 + ε)ci. I.e., the online algorithm is allowed to use slightly
larger capacities than the offline algorithm is allowed. Let δ = ε

3 .
We perform an online partition of the requests into large requests and small

requests. We pack the small requests similarly to the previous section with at
most 32 · OPT colors. We next describe the algorithm to obtain a coloring of
the large requests.

Let c̃j denote cj rounded up to the nearest integer power of (1 + δ). We
now define the level of a request [si, ti] to be the logarithm with respect to the
base (1 + δ) of the minimum rounded capacity of a link along this request, i.e.,
log1+δ minsi≤j≤ti c̃j . For each level i we use algorithm KT to compute a packing
of its large requests into colors, using a capacity of (1 + δ)i on each link. For
each i, one can show that the algorithm uses O(OPT) colors to color all the
large requests of level i.

For each i, we define the type of i to be i mod 1
δ2 . Therefore, there are exactly

1
δ2 types. For all levels with a common type we use the same set of colors, whereas
for different types we use disjoint sets of colors. Therefore, the total number of
colors used by our algorithm is at most O(1

δ2)·OPT, and this provides a constant
competitive ratio for all constant values of δ. Furthermore, we can show that the
edge capacities are violated at most by a factor of (1 + ε): Given a color c
that is used to color large requests of type i, and a link j whose capacity is
cj , the total bandwidth of requests that are colored c and contain j is at most
(1 + 3δ) cj = (1 + ε)cj . We obtain the following theorem.

Theorem 3. For every constant ε > 0, there is a constant competitive algorithm
for the general case of the capacitated interval coloring problem with resource
augmentation by a factor of 1 + ε.

Competitive Lower Bound. We finally outline a lower bound construction
showing that no deterministic algorithm can achieve constant competitive ratio
in the general case (without resource augmentation). Let A be any deterministic
online algorithm for the problem. We imagine the links of the line numbered
from left to right, starting with link 1 as the leftmost link. The capacity of link
j is set to 3j , for all j ≥ 1. We identify colors with positive integers. Whenever
A uses a new color, and it has used i−1 distinct colors prior to using that color,
the new color is defined to be color i.

In the adversary construction, each newly presented interval has its left end-
point strictly to the right of all left endpoints of previously presented intervals,
and it has a strictly larger bandwidth than all previously presented intervals. In
fact, an interval with leftmost link L has bandwidth at least 3L − 3L−1 > 3L−1.
Furthermore, the set of all presented intervals can be colored optimally with two
colors.

The adversary strategy makes use of a component (i.e., a subroutine that is
used as part of the construction) denoted by CF (�), where F can be any set of

Online Capacitated Interval Coloring 251

positive integers (the set of forbidden colors) and � can be any positive integer.
The goal of CF (�) is to force the algorithm to use a color that is not in F .
Furthermore, the interval I on which A uses a color not in F is the last interval
presented in the component. The length of I is at least �. A component CF (�)
is placed on a part of the line with leftmost link L (i.e., no interval presented
in CF (�) contains a link to the left of L). An instance of CF (�) with leftmost
link L is also called a CF (�) at L. Note that different incarnations of CF (�) may
contain different (non-isomorphic) sets of intervals, as the intervals presented by
the adversary depend on the actions of the on-line algorithmA. The construction
of CF (�) for |F | > 1 is recursive and makes use of smaller components CF ′(�′)
for F ′ ⊂ F .

A component CF (�) at L requires a part of the line consisting of g(�, |F |)
links, for a suitable function g. Note that g(�, |F |) ≥ � must always hold, since
already the last interval of CF (�) has length at least �.

The adversary construction satisfies the following invariants.

Invariant 1: When the adversary presents a CF (�) at L, the total bandwidth
of all previously presented intervals containing L is at most βL := 3L−1.

Invariant 2: Let R′ be the leftmost among the rightmost � links of the last
interval I of the component CF (�) at L presented by the adversary (i.e.,
R′ = R − � + 1 if R is the rightmost link of I). The construction ensures
that the total bandwidth of intervals from CF (�) that contain R′ is at most
3R′−1 − 3L−1.

After a CF (�) at L has been presented, only intervals with left endpoint R′

(as defined in Invariant 2) or further to the right will be presented. Note that
Invariant 2, together with Invariant 1, implies that the bandwidth of intervals
starting to the left of R′ and containing R′ is at most 3L−1 + (3R′−1 − 3L−1) =
3R′−1, so that Invariant 1 automatically holds again for components placed at
R′ or further to the right.

For F = ∅, a CF (�) at L consists of a single interval of length �+1 with leftmost
link L and bandwidth 3L − βL. The length of the part of the line required for
a CF (�) with |F | = 0 is thus g(�, 0) = � + 1. As another simple case to start
with, consider the case F = {f1} for some positive integer f1. The adversary
first presents an interval I1 of length � + 1 with leftmost link L and bandwidth
3L − βL. If A assigns a color different from f1 to I1, the component CF (�) is
finished (and I1 is the last interval of that component). If A assigns color f1 to
I1, the adversary next presents an interval I2 of length �+1 whose leftmost link
is the rightmost link R of I1. The bandwidth of I2 is 3R−βL. Algorithm A must
color I2 with a color different from f1, because I1 and I2 cannot receive the same
color (their bandwidths add up to 3L−βL +3R−βL = 3R +(3L−2 ·3L−1) > 3R

and both intervals contain link R). The component CF (�) is finished, and I2 is
its last interval. Note that I1 has rightmost link R and hence does not overlap
the rightmost � links of I2. Therefore, the bandwidth occupied by this CF (�) on
its rightmost � links (starting with link R + 1) is bounded by 3R − βL, showing
that Invariant 2 is satisfied. The length of the part of the line required for the
CF (�) with |F | = 1 is thus g(�, 1) = 2� + 1.

252 L. Epstein, T. Erlebach, and A. Levin

Let |F | = k for some k > 1. The idea underlying the construction of CF (�)
is to repeatedly use components CF ′(�′) for suitable subsets F ′ ⊂ F to force
A to use all colors from F on intervals that all intersect on a common link;
then, a new interval that contains that link and is in conflict with the previous
intervals containing that link is presented and must receive a color outside F .
On the other hand, if the algorithm already uses a color outside F to color an
interval presented in one of the recursive constructions CF ′(�′), the construction
of CF (�) finishes right away. We can assume (by induction) that Invariant 2 has
been shown to hold for the recursive constructions CF ′(�′) that are used in the
construction of CF (�), and we will show that Invariant 2 holds again for CF (�).

Assume that F = {f1, f2, . . . , fk}. We will show how to construct CF (�) on a
part of the line with leftmost link L. The construction proceeds in rounds. There
will be at most k rounds, and after the last round one additional final interval
may be presented.

For round 0, let F0 = ∅. First, the adversary presents a CF0(�0) for suitable
�0 ≥ � starting at L. If A assigns a color outside F to the last (and only) interval
of C∅(�0), the construction of CF (�) is finished. Otherwise, we can assume w.l.o.g.
that A assigns color f1 to the last interval I0 of C∅(�0). Let R0 be the rightmost
link of I0. Let R′

0 = R0 − �0 + 1. The remaining rounds up to round k − 1 will
take place inside the rightmost �0 links of I0; only the final interval that may be
presented after round k − 1 extends beyond the right end of I0.

For round 1, let F1 = {f1}. The adversary presents a CF1(�1) starting at L1 =
R′

0. Observe that the total bandwidth of intervals presented earlier that contain
R′

0 is bounded by 3R′
0−1: bandwidth at most 3L−1 from intervals presented before

the current CF (�) (by Invariant 1), and bandwidth at most 3R′
0−1 − 3L−1 from

the CF0(�0) that was presented in round 0. The last interval I1 of CF1(�1) receives
some color c. If c /∈ F , the construction of CF (�) is finished. If c ∈ F , we can
assume w.l.o.g. that c = f2.

In general, assume that round j of the construction of CF (�) has finished.
The last interval Ij of the CFj (�j) presented in round j has received color fj+1.
Let Rj be the rightmost link of Ij . Let R′

j = Rj − �j + 1. Arguing as above, we
know that the total bandwidth of intervals containing R′

j that were presented
so far is at most 3R′

j−1. Let Fj+1 = {f1, f2, . . . , fj+1}. The adversary presents a
CFj+1(�j+1) starting at Lj+1 = R′

j . This component will be placed completely
inside the rightmost �j links of Ij . The last interval Ij+1 of CFj+1 (�j+1) receives
some color c. If c /∈ F , the construction of CF (�) is finished. If c ∈ F , we can
assume w.l.o.g. that c = fj+2. This finishes round j + 1.

After round k− 1, either the construction has finished early and we are done,
or the algorithm has used colors f1, f2, . . . , fk on the intervals I0, I1, . . . , Ik−1

that were the last intervals of the components CFj (�j) for j = 0, . . . , k − 1. In
the latter case, let Rk−1 be the rightmost link of Ik−1. Note that Rk−1 is also
contained in I0, . . . , Ik−2. The adversary presents an interval Ik with leftmost
link Rk−1, length �k, and bandwidth 3Rk−1 − βL. Note that Ik is in conflict
with I0, . . . , Ik−1 on link Rk−1, as each of I0, . . . , Ik−1 has bandwidth at least
3L − 3L−1 = 3L − βL > βL. Therefore, the algorithm A must assign a color

Online Capacitated Interval Coloring 253

outside F to Ik, and the construction of CF (�) is finished. �k is chosen in such
a way that the interval Ik extends � links further to the right than any of the
previous intervals presented as part of this component CF (�). Note that no other
interval (other than Ik) from this CF (�) overlaps the rightmost � links of Ik. Let
Rk be the rightmost link of Ik, and let R′

k = Rk − � + 1. The total bandwidth
of intervals from this CF (�) that overlap the rightmost � links of Ik is equal to
the bandwidth of Ik, which is less than 3R′

k−1 − 3L−1. Therefore, Invariant 2 is
satisfied for this CF (�).

As we know that previously presented intervals of total bandwidth at most
3L−1 contain the link L (by Invariant 1), we can conclude that the total band-
width of intervals overlapping the rightmost � links of Ik is bounded by 3L−1 +
3R′

k−1 − βL = 3R′
k−1, so that Invariant 1 continues to hold for components

placed at R′
k or further to the right. One can also show that the construction of

CF (�) ensures that Invariant 2 is maintained. Furthermore, it is clear that the
component CF (�) forces the algorithm to use a color outside the set F .

The length g(�, k) of the part of the line that is needed to place a CF (�),
for � > 0, with |F | = k can be calculated to be g(�, k) = � + 1 for k = 0 and
g(�, k) = ak(� + 1) − 1 for k > 0. Here, the sequence an for n ≥ 0 is defined
by a0 = 1 and an+1 = 1 +

∏n
i=0 ai. We have a0 = 1, a1 = 2, a2 = 3, a3 = 7,

a4 = 43, etc. This sequence is known as Sylvester’s sequence or the sequence of
Euclid numbers. For n ≥ 1, it satisfies an+1 = a2

n − an + 1. It is known that
an = �c2n−1	+1, where c ≈ 1.59791 (see [18], sequences A000058 and A007018).

Next, we consider the optimal coloring of CF (�). Consider a CF (�) placed at
some link L. Let R be the rightmost link of its last interval I. Let R′ = R− �+1
be the link at which later components could potentially be placed. Call the set
of intervals from CF (�) that contain R′ and are different from I the siblings of
I. We can prove by induction on the size of F that every CF (�) can be colored
with 2 colors in such a way that all intervals from the CF (�) containing R′

(these are the last interval of CF (�) and its siblings) are assigned the same color.
Furthermore, the coloring is such that in each of the two color classes, there is
a free capacity of at least 3L−1 on all links of the component.

For any k ≥ 1, we can let F = {1, 2, . . . , k− 1} and place a CF (1) starting at
link 1. By the discussion above, the on-line algorithm A uses a color ≥ k on this
instance, while the optimum can color all intervals with 2 colors. This shows that
A cannot have competitive ratio better than k/2. As k is arbitrary, we obtain
the following theorem. Note that the number of links needed to place a CF (1) is
g(1, k) = 2ak−1 = 2(�c2k−1	+1)−1, where c ≈ 1.59791. Thus k = Θ(log logn),
where n is the length of the line, and k = Θ(log log log cmax), since the capacity
of link i is 3i.

Theorem 4. There is no deterministic on-line algorithm for capacitated inter-
val coloring with non-uniform capacities with constant competitive ratio. More-
over, the competitive ratio of any deterministic on-line algorithm for the problem
is at least Θ(log logn) for lines of length n and at least Θ(log log log cmax) for
lines with maximum edge capacity cmax and minimum edge capacity 1.

254 L. Epstein, T. Erlebach, and A. Levin

References

1. Adamy, U., Erlebach, T.: Online coloring of intervals with bandwidth. In: Solis-
Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 1–12. Springer,
Heidelberg (2004)

2. Adler, R., Azar, Y.: Beating the logarithmic lower bound: Randomized preemptive
disjoint paths and call control algorithms. In: SODA’99. Proceedings of the 10th
Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1–10. ACM Press,
New York (1999)

3. Azar, Y., Fiat, A., Levy, M., Narayanaswamy, N.: An improved algorithm for online
coloring of intervals with bandwidth. Theoretical Computer Science 363(1), 18–27
(2006)

4. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplit-
table flow on line graphs. In: STOC’06. Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pp. 721–729. ACM Press, New York (2006)

5. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.)
APPROX 2002. LNCS, vol. 2462, pp. 51–66. Springer, Heidelberg (2002)

6. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flow in a tree.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 410–425. Springer, Heidelberg (2003)

7. Chrobak, M., Ślusarek, M.: On some packing problems relating to dynamical stor-
age allocation. RAIRO Journal on Information Theory and Applications 22, 487–
499 (1988)

8. Epstein, L., Levy, M.: Online interval coloring and variants. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 602–613. Springer, Heidelberg (2005)

9. Epstein, L., Levy, M.: Online interval coloring with packing constraints. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 295–307.
Springer, Heidelberg (2005)

10. Gyárfás, A., Lehel, J.: On-line and first-fit colorings of graphs. Journal of Graph
Theory 12, 217–227 (1988)

11. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley, Chichester (1995)
12. Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM Journal

on Discrete Mathematics 1(4), 526–530 (1988)
13. Kierstead, H.A., Qin, J.: Coloring interval graphs with First-Fit. SIAM Journal on

Discrete Mathematics 8, 47–57 (1995)
14. Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive combinatorics.

Congressus Numerantium 33, 143–153 (1981)
15. Narayanaswamy, N.S.: Dynamic storage allocation and online colouring interval

graphs. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106,
pp. 329–338. Springer, Heidelberg (2004)

16. Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-
coloring. In: SODA’04. Proceedings of 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 562–571. ACM Press, New York (2004)

17. Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In: STOC’94.
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pp.
134–143. ACM Press, New York (1994)

18. Sloane, N.J.A.: On-line encyclopedia of integer sequences (1996–2007) Available
on-line at http://www.research.att.com/∼njas/sequences/Seis.html

http://www.research.att.com/~njas/sequences/Seis.html

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 255–259, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Energy Efficient Heuristic Scheduling Algorithms
for Multimedia Service*

Sungwook Kim1 and Sungchun Kim2

1 Department of Computer Science, Sogang University,
Shinsu-dong 1, Mapo-ku, Seoul, 121-742, South Korea

swkim01@sogang.ac.kr
2 Department of Computer Science, Sogang University,
Shinsu-dong 1, Mapo-ku, Seoul, 121-742, South Korea

ksc@mail.sogang.ac.kr

Abstract. In this paper, we propose new adaptive processor control algorithm
to manage various multimedia communications. The most important feature of
our proposed technique is its adaptability, flexibility and responsiveness to cur-
rent system conditions. Simulation results clearly indicate that our scheme
maintains well-balanced system performance considering all conflicting
criteria.

1 Introduction

Heterogeneous multimedia data service can be categorized into two classes according
to the required Quality of Service (QoS): class I (real-time) traffic services and class
II (non real-time) traffic services. Class I data traffic is highly delay sensitive. Based
on different tolerance characteristics, class I data type has higher priority than class II
data type during system operations [1]-[5].

A processor is one of the most significant energy-consuming components of the
system [4],[6]. Therefore, the processor management becomes a key factor in enhanc-
ing system performance. Nowadays, a lot of research effort has gone into the devel-
opment of efficient processor management techniques [1]-[8]. Recently, the Dynamic
Voltage Scaling (DVS) technique [4],[6]-[8] has been investigated and developed to
improve energy efficiency. This technique dynamically changes supply voltage and
speed of processor at runtime. However, earlier research on DVS algorithms assumes
that complete knowledge about the requested services is available a priori, which is
unrealistic and impractical.

Motivated by the above discussion, we propose new processor management algo-
rithms for multimedia data services. Main design goal of our proposed algorithms is
to maximize system performance while maintaining energy efficiency as possible.

* This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-331-D00475) and
was supported by the Sogang University, under the 2006 new faculty support program and
was supported by the Brain Korea 21 Project in 2007.

256 S. Kim and S. Kim

Earlier work reported in [1]-[3],[8] has also considered processor management al-
gorithms. These schemes dynamically control system processor to save energy based
on some observations of the current workload situations. Compared to these existing
schemes [1]-[3],[8], our proposed online scheme provides excellent system perform-
ance under different system load distributions.

2 Proposed Online Management Algorithm

While operating systems, we make a decision on how to efficiently provide appropri-
ate grade of service level by bandwidth adjustment. At this time, a bandwidth adapta-
tion technique is needed to possibly reduce requested or already connected call band-
width allocation. With multiple grades of service quality, bandwidth allocation of
existing individual connections can be dynamically adjusted. However, class I data
type requests - time critical real time applications, which do not have delay tolerance -
are designed to be transmitted at a fixed bandwidth with a specified grade of service.
Class II data type requests can have some delay latency because of human tolerance
to degradation in quality as long as it is above a certain minimum acceptable
threshold. The bandwidth adaptation strategy is applicable only to class II data
connections.

A multimedia call request is defined as a request for bandwidth (including a mini-
mum bound on bandwidth requirements), along with a priority level. Bandwidth
allocation is a discrete quantity in terms of the number of basic units (BUs). There-
fore, all calls are allocated bandwidth from the discrete set B =
{ bm in

, bmin 1+ , bmin 2+
... bmax

} where bmin i+ < bmin i 1+ +()
, bmin

 is the minimum bound and

bmax is the maximum bound for bandwidth allocation.
In the mixed class I and class II heterogeneous multimedia services, delay sensi-

tive class I services should be executed immediately with a fixed communication
speed. However, delay tolerant class II services need only to guarantee its deadline.
Therefore, between its arrival time and the deadline, the class II services are ame-
nable to adaptation with variable communication speeds while satisfying each
requirement.

The processor has different power states based on various speed assignments. Each
power state of the processor is characterized by different performance and energy
consumption. It satisfies the physical law [1],[4] that energy is reduced in direct pro-
portion to the processor power state. Therefore, it is more energy efficient to slow
down the processor power as much as possible.

As mentioned earlier, one promising power and energy reduction technique is volt-
age control. However, there is an associated control overhead for dynamic processor
power/speed changes. Whenever a speed transition takes place, extra energy overhead
is incurred [1]-[3]. Therefore, energy saving by the power control mechanism causes
potential transition penalty. The control energy overhead of each processor power
state transition is assumed to be a fixed energy amount (Te) [3],[7]. That is, for i < j <
k processor power/speed states, the cost to go from i to j and then from j to k is the
same as the cost of going from i directly up to k. Our power management strategy
tries to minimize E for providing efficient system performance. As mentioned earlier,
heterogeneous services make the control problem more complex. Our main goal here

 Energy Efficient Heuristic Scheduling Algorithms for Multimedia Service 257

is to maximize system energy efficiency while ensuring adaptive multimedia services.
In order to provide system efficiency and the ability to satisfy the QoS control simul-
taneously, our proposed scheme makes control decisions in a flexible online manner
in order to strike appropriate system performance.

In contrast to a class I service, the start time and processing rate of a class II service
can be dynamically changed. Therefore, when service requests continually arrive to
be processed, the system should schedule the requested workload. In this paper, we
design an adaptive online service scheduling algorithm for this purpose. Due to the
partial knowledge of the input requests and future uncertainty, our scheduling algo-
rithm is dynamically adjustable and improves the responsiveness of the current situa-
tions by reacting to system changes in real time.

In order to minimize the transition overhead for processor power/speed changes,
we dynamically reschedule the system load to be balanced over time. Therefore, when
a new request enters the system or a running service is completed, our proposed
scheduling algorithm tries to keep constant processor speed if possible. Based on the
combination of the online scheduling technique and dynamic power management, we
try to minimize power consumption while maximizing the system performance. Our
strategy for service scheduling is summarized in the following.

Design challenge 1. For energy saving, we try to maintain the processor power state
as low as possible while avoiding the adverse effect of running too slow to meet the
required demand.

Design challenge 2. Due to the state transition overhead of dynamic power manage-
ment, constant processor speed by load balancing over time is more energy efficient
than frequent speed changes. We try to reduce speed changes to the extent possible.

To implement our energy-efficient service scheduling idea, we try to minimize the
peak processor speed (PPs). When a service request arrives or a service is completed,
our online scheduling algorithm is responsible for scheduling and adapting the class II
service based on the current system situations. To maintain a constant processor
speed, our online scheduling strategy is to minimize the difference between the cur-
rent processor power/speed state (Sp(ct)) and PPs. Therefore, we adaptively reschedule
class II services for adaptive processor assignment. There are two kinds of adaptive
processor assignment techniques: for degradation and for upgradation. When the
degradation (upgradation) policy is applied to the processor at the current time, the
assigned processor capacity (PSi(ct)) for running class II services can be decreased
(increased). Therefore, if Sp(ct) > PPs (Sp(ct) < PPs), we degrade (upgrade) the PSi(ct)
of running class II services to make Sp(ct) close to PPs. This adaptive rescheduling
technique based on real time feedback tries to balance the system load between the
current and future times. Therefore, our service scheduling algorithm can avoid abrupt
power/speed state changes over time as much as possible. This constant Sp(ct), which
is defined as the expected processor power/speed state (Epro(ct)), reduces the extra
transition overhead of processor power/speed fluctuations for minimizing the total
energy consumption.

258 S. Kim and S. Kim

3 Simulation Experiments

In this section, we evaluate the performance of our proposed scheme using a simula-
tion model. Based on this simulation model, we compare the performance of our
scheme with other existing schemes [1]-[3],[8]. The existing schemes [1]-[3],[8] are
also designed to control processor adaptively. However, there are some disadvan-
tages. They do not consider service prioritization based on different QoS require-
ments. Therefore, under a heavy system load situation, these schemes can not provide
performance assurance for higher priority services. In addition, these schemes are
designed for a specific system performance parameter. Therefore, they cannot main-
tain well-balanced performance among conflicting criteria under widely different
system load distributions. In Fig. 1 - Fig. 2, we present simulation results by compar-
ing the performance of our scheme with the OPMMS, the APMLC, the DSSPS and
the OSVVP schemes [1]-[3],[8].

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offered Load (Service Request Arrival Rate)

S
er

vi
ce

 B
lo

ck
in

g
P

ro
ba

bi
lit

y
(C

la
ss

 I
)

Our proposed Scheme
APMLC & OPMMS Scheme
OSVVP Scheme
DSSPS Scheme

0 0.5 1 1.5 2 2.5 3

32

32.05

32.1

32.15

32.2

32.25

32.3

32.35

32.4

32.45

32.5

Offered Load (Service Request Arrival Rate)

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
B

as
ic

 U
ni

t
(W

at
ta

/3
2

K
H

z)

Our proposed Scheme
APMLC Scheme
OSVVP Scheme
OPMMS Scheme
DSSPS Scheme

Fig. 1. CBPclass_I of service requests Fig. 2. Average power consumption

Fig. 1 shows the CBPclass_I of each scheme. For low service request arrival rates

(λ<0.5), all the schemes have enough processor capacity to accept new service re-
quests. Therefore, the CBPclass_I of all the schemes is identical. As λ increases, the
amount of unused processor capacity decreases. So, new requests are likely to be
rejected and CBPclass_I increases. However, due to the advantage of our online QoS
control strategy, our proposed scheme attains excellent performance for higher prior-
ity (class I) service requests. The curves in Fig. 2 indicate the average power con-
sumption per basic unit (Watts/32 Kbps) in the system. From the simulation results
we obtained, it can be seen that all the schemes have similar trends. However, based
on our service scheduling strategy, our proposed scheme can reduce transition energy
overhead. Therefore, our scheme performs more efficiently than the other existing
schemes from low to heavy system load distributions.

4 Summary and Conclusions

In this paper, we proposed new processor management algorithms for heterogeneous
multimedia services. The main novelty of our approach is its adaptability, flexibility

 Energy Efficient Heuristic Scheduling Algorithms for Multimedia Service 259

and responsiveness to current system conditions. This feature is highly desirable for
real time system management. Performance evaluation results indicate that our
scheme maintains well-balanced performance between contradictory QoS
requirements in widely different system load intensities while other existing schemes
can not offer such an attractive trade off.

References

1. Ramanathan, D., Irani, S., Gupta, R.K.: An Analysis of System Level Power Management
Algorithms and Their Effects on Latency. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems 21(3), 291–305 (2002)

2. Irani, S., Shukla, S., Gupta, R.: Algorithms for Power Savings. In: Symposium on Discrete
Algorithms, pp. 37–46 (2003)

3. Irani, S., Shukla, S., Gupta, R.: Online Strategies for Dynamic Power Management in Sys-
tems with Multiple Power-Saving States. HYPERLINK 2(3), 325–346 (2003)

4. Govil, K., Chan, E., Wasserman, H.: Comparing Algorithms for Dynamic Speed-Setting of
a Low-Power CPU. In: International Conference on Mobile Computing and Networking,
pp. 13–25 (1995)

5. Hwang, C.-H., Wu, A.C.-H.: A Predictive System Shutdown Method for Energy Saving of
Event-Driven Computation. In: ICCAD’97. International conference on Computer-aided
design, pp. 28–32 (1997)

6. Pillai, P., Shin, K.G.: Real-Time Dynamic Voltage Scaling for Low-Power Embedded Op-
erating Systems. In: SOSP’2001. Proceedings of the 18th ACM Symposium on Operating
System Principles, pp. 89–102 (2001)

7. Mochocki, B., Hu, X.S., Quan, G.: A Realistic Variable Voltage Scheduling Model for
Real-Time Applications. In: ICCAD-02. International Conference on Computer Aided De-
sign, pp. 726–731 (2002)

8. Hong, I., Potkonjak, M., Srivastava, M.B.: On-Line Scheduling of Hard Real- Time Tasks
on Variable Voltage Processor. In: ICCAD-98. International Conference on Computer
Aided Design, pp. 653–656 (1998)

9. Burd, T.D., Brodersen, R.W.: Processor design for portable systems. Journal of VLSI Signal
Processing 13, 203–222 (1996)

Call Control and Routing in SONET Rings�

Shuqiang Chen and Qizhi Fang��

Department of Mathematics, Ocean University of China
Qingdao 266071, Shandong, P.R. China

qfang@ouc.edu.cn

Abstract. In this paper, we provide a polynomial-time approximation
algorithm for Call Control and Routing problems in SONET rings. In
this problem, we are given a SONET ring and a set of calls, each of
which is described by a source-destination pair of nodes together with
an integer specifying the call demand, the aim is to devise a routing
scheme such that the total demand transmitted is maximum subject to
the bandwidth restriction. We first give an NP-hardness proof for this
problem. Then a polynomial-time approximation algorithm is provided.
When dmax ≤ 1

K
d∗ (where K > 2 is a constant, d∗ is the available

bandwidth of the ring and dmax is the largest call demand among all
the calls), the algorithm outputs a routing scheme with total demand
transmitted at least as (1 − 7

2K+3) times the optimum.

Keywords: SONET ring, call, routing, NP-hard, approximation
algorithm.

1 Introduction

Nowadays, the Synchronous Optical Network (SONET) has been adopted by
many network service providers as faster, more efficient and less expensive trans-
port technology [6]. The nodes on a SONET network send and receive mes-
sages via add/drop multiplexers (ADMs), and the actual bandwidth available
on the network is determined by the capacity of these multiplexers. In this en-
vironment, there is an additional hardware cost to support the desired level of
bandwidth of the network, even through the fiber can offer virtually unlimited
bandwidth. Thus, many optimization problems concerning the efficient opera-
tion on data transmission have been proposed and received considerable research
attention.

A SONET ring usually consists of two working counter rotated fiber rings
carrying the data stream in opposite directions, which is appealing for both its
implicity and self-healing properties. In a SONET ring, a communication request
(or call) is characterized by a source-destination pair and a demand (the size of
the call), where the source originating data stream to be sent to the destination.
Each call requires a routing, i.e., a virtual path to be established for its trans-
mission. Therein, a well studied optimization problem is load-balanced routing
� Research is supported by NCET(No. 05-098), NSFC(No. 10371114).

�� Corresponding author.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 260–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Call Control and Routing in SONET Rings 261

problem. The aim of this problem is to devise a routing scheme for a set of calls
in the ring, so that the bandwidth required to transmit all the calls is minimized.
In practice, however, the available bandwidth offered is limited. Consequently,
the number of necessary bandwidth, even if minimized, may exceed the number
of available bandwidth; in such case only a fraction of communication requests
can be satisfied without delay. It is, therefore, meaningful to employ algorithmic
technique in order to satisfy as many requests as possible with the available
bandwidth. The problem derived from this background is called Call Control
and Routing problem in SONET rings (CCR-Ring), which will is the focal point
of this paper.

In detail, the problem of CCR-Ring is to find, for a given set of calls, a subset
of calls and their routing paths such that the total demand of accepted calls is
maximum subject to the bandwidth capacity restriction.

There are several optimization problems closely related to the problem of
CCR-Ring. One is the load-balanced routing problem, which has been exten-
sively studied in [3,5,8,9,10]. This problem is in generalNP-hard. While when all
calls have unit demand, Wilfong and Winkler [9] presented an interesting polyno-
mial time optimal algorithm. Wan and Yang [10] further presented a polynomial
time approximation scheme (PTAS) when the calls possess different demands.
Another related problem is Call Control problem. In this problem, the calls are
given together with their routing paths (prescribed routing), and the objective
is to compute a subset of the paths with maximum total call demands such that
no edge capacity is violated. Adamy, et al., [1] gave a polynomial time algorithm
to solve the Call Control problem in ring network optimally when all calls have
unit demand.

As for the problem of CCR-Ring, there have been some results obtained with
different algorithmic techniques. Sai and Erlebach [7] considered the CCR-Ring
problem when each call has unit demand in undirected rings. They presented
an approximation algorithm achieving an objective value only smaller than op-
timum by 3, as well as a PTAS. Chekuri, Mydlarz and Shepherd [2] studied
a more general model where each call has a profit value and links may have
different capacities. In their work, a (2 + ε)-approximation algorithm was pro-
posed, which also derives a performance ratio 1 + 1√

K
when the demands of

the calls are bounded by 1/K times the minimum edge capacity. The main
contribution of this work is providing a different approximation algorithm for
CCR-Ring problems. We are motivated by the “rounding technique” discussed
in [8,9,10], and give a deep application of it. When dmax ≤ 1

K d∗, where
K > 2 is a constant, d∗ is the bandwidth capacity of the ring and dmax is
the largest call demand among all the calls, our algorithm can output a rout-
ing scheme with the total demand transmitted at least as (1− 7

2K+3) times the
optimum.

In practice, the calls with large demand may usually be divided into sev-
eral parts to be transmitted independently so that the demand of each part is
smaller, and consequently, the call demand is in general much smaller than the

262 S. Chen and Q. Fang

ring capacity (i.e., the value of K is large). Therefore, our algorithm has good
performance in practice.

The remainder of this paper is organized as follows. In the next section, we
introduce some preliminaries and the integer program formulation of the CCR-
Ring problem. Moreover, an NP-hardness result is obtained. Section 3 is ded-
icated to an approximation algorithm for CCR-Ring problems. Finally in Sect.
4, we conclude with some remarks.

2 Preliminaries and Model

Throughout this paper, we assume that a SONET ring G is a bi-directed ring
consisting of n nodes labeled 0 through n−1 in a clockwise manner. All arithmetic
involving nodes will be done implicitly using modulo n operations. The link set
of G is {(i, i+ 1), (i+ 1, i) : i = 0, 1, · · · , n− 1}, where (i, i+ 1) and (i+ 1, i) are
the clockwise and counter-clockwise links between nodes i and i+1, respectively.
In our model, we further assume that a positive integer d∗ is given to represent
the available bandwidth in the ring, called the ring capacity.

A call C = 〈s, t; d〉 is an ordered pair of nodes s, t ∈ V completed by an
integer d > 0 specifying the call demand, where s is the source originating
the data stream to be sent to the destination t. Given a set of calls in the
SONET ring G, denoted by C = {Ci = 〈si, ti; di〉 : i = 1, 2, · · · ,m}, we let
P+

i and P−
i denote the clockwise and counter-clockwise paths from si to ti

respectively, and dmax = max{di : i = 1, 2, · · · ,m}. A routing of C can be
written as a set P = {Pi : i = 1, 2, · · · ,m} with Pi ∈ {P+

i , P−
i , ∅}, where

P+
i , P−

i and ∅ represent three choices made for the call Ci: transmit clockwise,
counter clockwise and not transmit, respectively. A routing is called feasible if the
total demand transmitted through each link does not exceed the ring capacity
d∗. The total demand transmitted by a routing is called its throughput.

Then Call Control and Routing problem in a SONET ring network can be
stated formally as follows:

CALL CONTROL AND ROUTING IN SONET RING (CCR-Ring):
INSTANCE : Given a bi-directed ring G with n nodes and a ring capacity d∗,
a set of calls C = {Ci = 〈si, ti; di〉 : i = 1, 2, · · · ,m}.

QUESTION : Find a feasible routing P = {Pi : i = 1, 2, · · · ,m} such that the
throughput

∑
{di : Pi �= ∅ and Pi ∈ P} is maximum.

The instance of CCR-Ring will be denoted briefly by {n; d∗; C = {Ci =
〈si, ti; di〉 : i = 1, 2, · · · ,m}}. To make the CCR-Ring a decision problem as
in [4], we append a target value K∗ to the instance and ask whether there is a
feasible routing P with throughput no less than K∗?

The NP-hardness proof is in much spirit as that of Wan and Yang’s work [10].
For the sake of briefness, we denoted by [s, t) the node sequence {s, s+1, · · · , t−
1}, and by [s, t] the node sequence {s, s+1, · · · , t}. Two calls Ci = 〈si, ti; di〉 and
Cj = 〈sj , tj ; dj〉 are said to be parallel if either [si, ti] ⊆ [sj , tj] or [sj , tj] ⊆ [si, ti];
otherwise, they are said to be crossing.

Call Control and Routing in SONET Rings 263

Theorem 1. The decision problem of CCR-Ring is NP-complete even with the
following patterns of calls:

1) All calls share a common source;
2) Each pair of calls are crossing;
3) Each pair of calls are parallel but do not share common source and desti-

nation.

Proof. The technique we use here is a polynomial transformation from a basic
NP-complete problem, PARTITION [4]. In an instance of PARTITION, we
are given m positive integers d1, d2, · · · , dm, and the question is whether we can
divide them into two groups of equal sum. From this, we construct three different
instances of the decision problem of CCR-Ring.

Case 1. Set n = m+1 and give a bi-direction ring with nodes set {0, 1, · · · , n−
1} labeled clockwise. There are m calls C1, C2, · · · , Cm. For Cj (j = 1, 2, · · · ,m),
the source is node 0, the destination is node j and the demand is dj .

Case 2. Set n = 2m and give a bi-direction ring with nodes set {0, 1, · · · , n−1}
labeled clockwise. There are m calls C1, C2, · · · , Cm. For Cj (j = 1, 2, · · · ,m),
the source is node j− 1, the destination is node m+ j− 1 and the demand is dj .

Case 3. Set n = 2m and give a bi-direction ring with nodes set {0, 1, · · · , n−1}
labeled clockwise. There are m calls C1, C2, · · · , Cm. For Cj (j = 1, 2, · · · ,m),
the source is node j − 1, the destination is node 2m− j and the demand is dj .

For each of the three cases, we define the ring capacity d∗ = 1
2

∑m
j=1 dj and

K∗ =
∑m

j=1 dj . This guarantees that the throughput achieves K∗ if and only
if all the m calls are all transmitted. It is easy to verify that in all cases, the
answer to the instance of PARTITION is YES if and only if there is a feasible
routing with throughput K∗ for the CCR-Ring instances, as desired.

In the rest of this section we give an integer program formulation for the CCR-
Ring problem. First let us introduce two sets of variables to represent a routing
of C. For i = 1, 2, · · · ,m, we set

xi =
{

1 if the call Ci is chosen and transmitted clockwise
0 otherwise.

yi =
{

1 if the call Ci is chosen and transmitted counter-clockwise
0 otherwise.

Let x = (x1, x2, · · · , xm) and y = (y1, y2, · · · , ym). Then such defined (x, y)
corresponds to a routing of C, and this notation will be used in the following.

Given a routing (x, y), the total demand transmitted through links (k, k + 1)
and (k + 1, k), called the link loads, are written as

L+
k (x, y) =

∑

i:k∈[si,ti)

dixi and L−
k (x, y) =

∑

i:k �∈[si,ti)

diyi,

respectively (k = 0, 1, · · · , n − 1). A routing (x, y) is feasible if and only if
L+

k (x, y) ≤ d∗ and L−
k (x, y) ≤ d∗ for all k ∈ {0, 1, · · · , n − 1}. The throughput

of the routing (x, y) is denoted by T (x, y).

264 S. Chen and Q. Fang

Let M = {mij}n×m and N = {nij}n×m are two link-path adjacent matrices,
where

mij =
{

1 link (i, i + 1) belongs to path P+
j

0 otherwise.

nij =
{

1 link (i + 1, i) belongs to path P−
j

0 otherwise.

Then the CCR-Ring problem can be formulated as the following {0, 1}-program:

maxT (x, y) =
∑m

i=1(dixi + diyi)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

M(d1x1, d2x2, · · · , dmxm)τ ≤ d∗

N(d1y1, d2y2, · · · , dmym)τ ≤ d∗

xi + yi ≤ 1 i = 1, 2, · · · ,m
xi, yi = 0, 1 i = 1, 2, · · · ,m

(1)

where d∗ is an n-dimensional vector with each component being d∗.

3 Approximation Algorithm

In this section we focus on a polynomial-time approximation algorithm for CCR-
Ring problems. In order to explain the algorithm clearly, we first introduce some
definitions and give a sketch of the algorithm.

Let {n; d∗; C = {Ci = 〈si, ti; di〉, i = 1, 2, · · · ,m}} be an instance of CCR-Ring
problem. For the convenience of description, we extend the concept of routing to
a relaxed version. Let x = (x1, x2, · · · , xm) and y = (y1, y2, · · · , ym), we also call
(x, y) a (fractional) routing of C if ∀i = 1, 2 · · · ,m: xi + yi ≤ 1 and xi, yi ≥ 0. A
routing (x, y) is called split if there is at least one call Ci satisfying xi · yi > 0,
i.e., it is transmitted partly clockwise and partly counter-clockwise; a routing
(x, y) is called semi-unsplit if xi ·yi = 0 for each call Ci in C, i.e., there is at most
one possible transmission path for each call; a routing (x, y) is called unsplit if
both x and y are integral, i.e., for each call in C, either it is transmitted entirely
in one direction or it is rejected. The main steps of the algorithm is as follows:

1. Solve the relaxed CCR-Ring problem to get an optimal fractional routing
(x, y);

2. Transform (x, y) into a parallel routing (x̄, ȳ), in which no parallel calls are
both split;

3. Transform (x̄, ȳ) into a semi-unsplit routing (x̃, ỹ) by rounding technique;
4. By rounding technique again, obtain a final unsplit routing (x∗, y∗).

Let K > 2 be a constant and assume that dmax ≤ 1
K d∗. Then our main result

in this section is as follows.

Theorem 2. For an instance of CCR-Ring {n; d∗; C = {Ci = 〈si, ti; di〉 : i =
1, 2, · · · ,m}} with dmax ≤ 1

K d∗ (K > 2), we can obtain, in polynomial time, a
feasible unsplit routing (x∗, y∗) of C satisfying

T (x∗, y∗) ≥ (1− 7
2K + 3

)Topt,

where Topt is the optimum throughput of the instance.

Call Control and Routing in SONET Rings 265

3.1 Relaxed CCR-Ring Problem

Relaxing the constraints xi, yi ∈ {0, 1} to 0 ≤ xi, yi ≤ 1 (∀ i = 1, 2, · · · ,m) in
(1), we obtain the relaxed CCR-Ring problem:

maxT (x, y) =
∑m

i=1(dixi + diyi)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

M(d1x1, d2x2, · · · , dmxm)τ ≤ d∗

N (d1y1, d2y2, · · · , dmym)τ ≤ d∗

xi + yi ≤ 1 i = 1, 2, · · · ,m
0 ≤ xi, yi ≤ 1 i = 1, 2, · · · ,m

(2)

This is now a linear program that is solvable in polynomial time, and of course
its optimal value, denoted by T ∗

LP , satisfies T ∗
LP ≥ Topt.

Given a feasible solution (x, y) of (2), a call Ci ∈ C is split by the routing
(x, y) if it satisfies both 0 < xi < 1 and 0 < yi < 1; the routing (x, y) is called
split if there is at least one call in C which is split by (x, y).

3.2 Transform to Parallel Routing

Recall that two calls Ci = 〈si, ti; di〉 and Cj = 〈sj , tj ; dj〉 are said to be parallel if
either [si, ti] ⊆ [sj, tj] or [sj , tj] ⊆ [si, ti]; otherwise, they are said to be crossing.
In particular, when either si = sj or ti = tj occurs, the two calls are parallel.
A routing (x, y) is said to be parallel if no two parallel calls are both split by
(x, y). That is, in a parallel routing, any two split calls must be crossing, and
therefore, cannot share common source and destination. In this subsection, the
“unsplitting” technique is utilized to transform a fractional routing (x, y) into a
parallel routing (x̄, ȳ), which is similar as that discussed in [9,10].

Given a fractional routing (x, y), without loss of generality, we assume that
there are two parallel calls Ci and Cj with [si, ti] ⊇ [sj , tj] both split by (x, y):

(a) if dixi + djxj > di, then we define a new routing (x̄, ȳ) by setting

x̄i = 1, ȳi = 0;
x̄j = xj − di

dj
(1− xi), ȳj = yj + di

dj
yi;

x̄k = xk, ȳk = yk ∀k �= i, j;

(b) if dixi + djxj ≤ di, then we define a new routing (x̄, ȳ) by setting

x̄i = xi + dj

di
xj , ȳi = yi − 1

di
min{diyi, djxj};

x̄j = 0, ȳj = yj + 1
di

min{diyi, djxj};
x̄k = xk, ȳk = yk ∀k �= i, j.

It is easy to see that after the “unsplitting” procedure, at least one of the two
calls is no longer split, and each link load is maintained or reduced. Moreover,
the throughput remains unchanged. We may repeat the “unsplitting” procedure
at most m times until no two parallel calls are both split.

Proposition 1. Any fractional routing (x, y) can be transformed into a parallel
routing (x̄, ȳ) in polynomial time such that every link load does not increase and

∑m
i=1 dixi =

∑m
i=1 dix̄i,

∑m
i=1 diyi =

∑m
i=1 diȳi.

266 S. Chen and Q. Fang

3.3 Rounding to Semi-unsplit Routing

In this subsection, we assume that (x̄, ȳ) is an optimal parallel routing of the
relaxed CCR-Ring problem. In this and the next subsection, we are much moti-
vated by the “rounding technique” discussed in [8,9,10]. Here, the main idea is
applying “rounding technique” to compel each of the split calls to be transmitted
along only one possible direction, i.e., to obtain a semi-unsplit routing.

Since all crossing calls can not share common source and destination, the
number of split calls (split by (x̄, ȳ)) is at most n (the size of the ring). For
the sake of briefness, we first renumber the calls of C. Assume that there are r
(r ≤ n) calls split by (x̄, ȳ), say Cs = {Cl1 , Cl2 , · · · , Clr}. Denote

ds
max = max{dli(x̄li + ȳli) : i = 1, 2, · · · , r}.

Obviously, ds
max ≤ dmax. We renumber the r split calls as C1, C2, · · · , Cr ordered

clockwise by their sources (or destinations). At the same time, for each call Ci, its
source, destination and demand are also relabeled according to the renumbering,
i.e., Ci = 〈si, ti; di〉 (for each i = 1, 2, · · · , r). The calls not in C∫ are renumbered
arbitrary as Cr+1, Cr+2, · · · , Cm, respectively.

After renumbering, for any k ∈ {0, 1, · · · , n− 1}, the indices of the calls in Cs
parallel to the clockwise link (k, k + 1) is an interval [ik, jk] ⊆ {1, 2, · · · , r}; and
accordingly, the indices of the calls in Cs parallel to the counter-clockwise link
(k + 1, k) is just the complement of [ik, jk], namely the interval [jk + 1, ik− 1] ⊆
{1, 2, · · · , r}. Here the intervals [ik, jk] and [jk + 1, ik − 1] are interpreted under
modulo r operations.

We first transform the parallel routing (x̄, ȳ) to a semi-unsplit routing (x̄′, ȳ′)
which can be carried out recursively as follows:

x̄′
j =

⎧
⎪⎨

⎪⎩

x̄j + ȳj if
∣
∣
∣− dj x̄j +

j−1∑

h=1

dh(x̄′
h − x̄h)

∣
∣
∣ >

∣
∣
∣dj ȳj +

j−1∑

h=1

dh(x̄′
h − x̄h)

∣
∣
∣

0 otherwise
ȳ′j = (x̄j + ȳj)− x̄′

j j = 1, 2, · · · , r.

(3)

Lemma 1. For the routing (x̄′, ȳ′) constructed by (3), every partial sum satisfies
∑j

h=1 dh(x̄′
h − x̄h) ∈

[
− 1

2d
s
max,

1
2d

s
max

)
∀ 1 ≤ j ≤ r.

The proof of this lemma can be given by induction on j, which is omitted.

Proposition 2. The semi-unsplit routing (x̄′, ȳ′) constructed by (3) satisfies
that T (x̄′, ȳ′) = T (x̄, ȳ) and the increment of each link load is no more than
3
2d

s
max.

Proof. The equality T (x̄′, ȳ′) = T (x̄, ȳ) follows directly from the construction of
(x̄′, ȳ′). Since only the split calls parallel to a link affect its link load, for each
k = 0, 1, · · · , n− 1, we have

L+
k (x̄′, ȳ′) = L+

k (x̄, ȳ) +
∑

h∈[ik,jk] dh(x̄′
h − x̄h),

L−
k (x̄′, ȳ′) = L−

k (x̄, ȳ) +
∑

h �∈[ik,jk] dh(x̄′
h − x̄h).

Call Control and Routing in SONET Rings 267

Based on Lemma 1, if ik ≤ jk then

L+
k (x̄′, ȳ′)− L+

k (x̄, ȳ) =
∑jk

h=1 dh(x̄′
h − xh)−

∑ik−1
h=1 dh(x̄′

h − xh)
< 1

2d
s
max − (− 1

2d
s
max) = ds

max;

and if ik > jk then

L+
k (x̄′, ȳ′)− L+

k (x̄, ȳ)

=
∑r

h=1 dh(x̄′
h − x̄h) +

∑jk

h=1 dh(x̄′
h − x̄h)−

∑ik−1
h=1 dh(x̄′

h − x̄h)
< 1

2d
s
max + 1

2d
s
max − (− 1

2d
s
max) = 3

2d
s
max.

Therefore, L+
k (x̄′, ȳ′)−L+

k (x̄, ȳ) < 3
2d

s
max. A symmetric argument for the counter-

clockwise link (k + 1, k) derives L−
k (x̄′, ȳ′)− L−

k (x̄, ȳ) < 3
2d

s
max as well.

We note that the semi-unsplit routing (x̄′, ȳ′) may not satisfy the ring capacity
restriction. On the other hand, in the final step of our algorithm (in the next sub-
section), the “rounding technique” will be used again which will also lead to some
increment on link loads. Therefore, it is a nature idea to “round down” the rout-
ing (x̄′, ȳ′) so as to get a routing with smaller link loads. Of course, the “rounding
down” procedure is companied with the decreasing of the routing throughput.

Define (x̃, ỹ) = λ∗(x̄′, ȳ′), that is,

x̃i = λ∗x̄′, ỹi = λ∗ȳ′, ∀i = 1, 2, · · · ,m (4)

where λ∗ is defined as

λ∗ =
d∗ − 2dmax

maxk{L+
k (x̄′, ȳ′), L−

k (x̄′, ȳ′)}
.

It follows directly from Proposition 2 that

λ∗ ≥ (d∗ − 2dmax)
/
(d∗ + 3

2dmax).

Combined Proposition 2 with the definition of (x̃, ỹ), the following result can
be derived directly.

Proposition 3. The semi-unsplit routing (x̃, ỹ) constructed by (4) satisfies that
each link load is no more than d∗ − 2dmax and T (x̃, ỹ) = λ∗T (x̄, ȳ).

3.4 Rounding to an Unsplit Routing

Now we are in the position to transform the semi-unsplit routing (x̃, ỹ) into an
unsplit feasible routing. Here for each call Ci in C, at least one of x̃i and ỹi must
be zero. Denote

CI = {Ci ∈ C : 0 < x̃i < 1};
CJ = {Cj ∈ C : 0 < ỹj < 1}.

Obviously, CI ∩ CJ = ∅. The main idea in this step is to round the fractional
calls in CI and CJ independently. In detail, for each call in CI (and CJ) we decide
either to transmit it entirely clockwise (and counter-clockwise) or throw it away.

268 S. Chen and Q. Fang

Renumber the calls in CI as Ci1 , Ci2 , · · · , Cip ordered clockwise by their
sources; accordingly, renumber the calls in CJ as Cj1 , Cj2 , · · · , Cjq ordered
counter-clockwise by their sources. Therein, as in the previous subsection, for
any k ∈ {0, 1, · · · , n− 1}, the indices of the calls in CI parallel to the clockwise
link (k, k + 1) is denoted by an interval [sk, s

′
k] ⊆ {i1, i2, · · · , ip} and the indices

of the calls in CJ parallel to the counter clockwise link (k + 1, k) is denoted by
an interval [tk, t′k] ⊆ {j1, j2, · · · , jq}, where the intervals [sk, s

′
k] and [tk, t′k] are

interpreted under modulo p and q operations, respectively.
Now we use the “rounding technique” again to construct an unsplit routing

(x∗, y∗) from (x̃, ỹ) recursively:
1) For Cil

∈ CI (l = 1, 2, · · · , p):

y∗il
= 0 l = 1, 2, · · · , p

x∗
il

=
{

1 if − dil
x̃il

+
∑l−1

h=0 dih
(x∗

ih
− x̃ih

) < 0
0 otherwise;

(5)

2) For Cjl
∈ CJ (l = 1, 2, · · · , q):

x∗
jl

= 0 l = 1, 2, · · · , q

y∗jl
=
{

1 if − djl
ỹjl

+
∑l−1

h=0 djh
(y∗jh
− ỹjh

) < 0
0 otherwise

(6)

3) For each call Cl �∈ CI ∪ CJ , define x∗
l = x̃l and y∗l = ỹl.

Lemma 2. For the unsplit routing (x∗, y∗) constructed by (5) and (6), every
partial sum satisfies

∑h
l=1 dil

(x∗
il
− x̃il

) ∈ [0, dmax),
∑h′

l=1 djl
(y∗il
− ỹil

) ∈ [0, dmax),

for h = 1, 2, · · · , p and h′ = 1, 2, · · · , q.

Proposition 4. We can obtain an unsplit routing (x∗, y∗) from a semi-unsplit
routing (x̃, ỹ) in polynomial time, such that T (x∗, y∗) ≥ T (x̃, ỹ) and the incre-
ment of each link load is no more than 2dmax.

Proof. By Lemma 2, we have
∑p

l=1 dil
x∗

il
≥
∑p

l=1 dil
x̃il

and
∑q

l=1 djl
y∗jl
≥
∑q

l=1 djl
ỹjl

,

which implies that T (x∗, y∗) ≥ T (x̃, ỹ). With the similar arguments as in the
proof of Proposition 2, it can be shown that for clockwise link (k, k + 1) and
counter clockwise link (k + 1, k),

L+
k (x∗, y∗)− L+

k (x̃, ỹ) =
∑

il∈[sk,s′
k] dil

(x∗
il
− x̃il

) ≤ 2dmax;
L−

k (x∗, y∗)− L−
k (x̃, ỹ) =

∑
jl∈[tk,t′

k] djl
(y∗jl
− ỹjl

) ≤ 2dmax.

That is, the increment of each link load is no more than 2dmax, as desired.

Call Control and Routing in SONET Rings 269

Proof of Theorem 2. Based on Proposition 1-4, the routing (x∗, y∗) obtained is
in fact a feasible unsplit routing of C with throughput T (x∗, y∗) at least λ∗ times
the optimum. Let K > 2 be a constant, and assume that dmax ≤ 1

K d∗, then

λ∗ =
d∗ − 2dmax

d∗ + 3
2dmax

≥ 1− 7
2K + 3

.

On the other hand, it it obvious that the algorithm of finding (x∗, y∗) can be
carried out in polynomial time. Therefore, the theorem is proved.

We note that when dmax is large, the performance ratio of the algorithm is rather
bad. However, in a practical data transmission network, the call demand is in
general much smaller than the network capacity. Even if there are some calls with
large demand, they can usually be divided into several parts to be transmitted
independently. Therefore, this algorithm may perform well in practice.

4 Conclusion

We have proved that the problem of CCR-Ring is NP-hard, and presented a
polynomial-time approximation algorithm for it. There are two distinct “round-
ing” phases in the algorithm. The first involves determining the possible direction
for each call transmission, and the second involves determining which calls are
accepted. In practice when dmax is small compared with d∗, the performance
ratio of the algorithm is good.

There are some related questions for future research. First, with more tech-
niques applied to the calls with large demand (e.g., [5,10]), it is probably to
obtain an approximation algorithm with better performance ratio.

Second, when all the call demands are unit (un-weighted case), the compu-
tational complexity of the CCR-Ring problem is not known yet. But we guess
it is polynomially solvable. The guess is based on the fact that our algorithm
applied to the un-weighted case leads to an approximation algorithm with ratio
1 − 7

2d∗+3 , which seems “better than” a PTAS when d∗ is considered as a part
of the input size.

References

1. Adamy, U., Abbuehl, C., Anand, R.S., Erlebach, T.: Call control in rings. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 788–799. Springer, Heidelberg (2002)

2. Chekuriy, C., Mydlarzz, M., Shepherd, F.B.: Multicommodity demand flow in a
tree. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 410–425. Springer, Heidelberg (2003)

3. Cosares, S., Saniee, I.: An optimization problem related to balancing loads on
SONET rings. Telecommunications Systems 3, 165–181 (1992)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory
of NP-Completeness. W.H. Freeman, San Fransisco (1979)

270 S. Chen and Q. Fang

5. Khanna, S.: A polynomial-time approximation scheme for the SONET ring loading
problem. Bell Labs Technical Journal 2(2) (1997)

6. Ramaswami, R., Sivarajan, K.N.: Optical Networks: A Practical Perspective, 2nd
edn. Morgan Kaufmann Publishers, San Francisco (2002)

7. Anand, R.S., Erlebach, T.: Routing anc call control algorithms for ring networks.
In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp.
186–197. Springer, Heidelberg (2003)

8. Schrijver, A., Seymour, P., Winkler, P.: The ring loading problem. SIAM Journal
on Discrete Mathematics 11, 1–14 (1998)

9. Wilfong, P., Winkler, P.: Ring routing and wavelength translation. In: SODA.
Proceedings of Ninth Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
333–341. ACM Press, New York (1998)

10. Wan, P., Yang, Y.: Load-balanced routing in counter rotated SONET rings. Net-
works 35, 279–286 (2000)

Fast Matching Method for DNA Sequences�

Jin Wook Kim1, Eunsang Kim2, and Kunsoo Park2

1 HM Research,
San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea

jwkim@theory.snu.ac.kr
2 School of Computer Science and Engineering,

Seoul National University, Seoul, 151-742, Korea
{eskim, kpark}@theory.snu.ac.kr

Abstract. DNA sequences are the fundamental information for each species and
a comparison between DNA sequences of different species is an important task.
Since DNA sequences are very long and there exist many species, not only fast
matching but also efficient storage is an important factor for DNA sequences.
Thus, a fast string matching method suitable for encoded DNA sequences is
needed. In this paper, we present a fast string matching method for encoded
DNA sequences which does not decode DNA sequences while matching. We use
four-characters-to-one-byte encoding and combine a suffix approach and a multi-
pattern matching approach. Experimental results show that our method is about 5
times faster than AGREP and the fastest among known algorithms.

1 Introduction

In molecular biology, DNA sequences are the fundamental information for each species
and a comparison between DNA sequences is an interesting and basic problem. Since
a DNA sequence is represented by a sequence of four bases - A, C, T, and G, the
comparison problem is the same as a matching problem between strings. There are
various kinds of comparison tools and the famous two are BLAST [5] and FASTA [11].
These tools provide approximate matching. In fact, however, they are based on exact
matching to speed up.

The exact matching problem is to find all the occurrences of a given pattern P in
a large text T , where both T and P are sequences of characters from a finite alphabet
Σ. Many algorithms have been developed for exact matching and they are divided into
three approaches [20]: Prefix approach, suffix approach, and factor approach. For the
prefix approach, there are the Knuth-Morris-Pratt (KMP) algorithm [16], the Shift-Or
algorithm [4] and its variants [14]. For the suffix approach, there are the Boyer-Moore
(BM) algorithm [6] and its variants – the Horspool algorithm [15], the Sunday algorithm
[25], and the hybrid algorithm [12]. For the factor approach, there are the Backward
Nondeterministic Dawg Matching (BNDM) algorithm [19] and the Backward Oracle
Matching (BOM) algorithm [3]. In addition, there exists some results for small alphabet
[7,26]. In [26], Tarhio and Peltola (TP) use q-gram for shifts. The approximate pattern

� This work was supported by FPR05A2-341 of 21C Frontier Functional Proteomics Project
from Korean Ministry of Science & Technology.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 271–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 J.W. Kim, E. Kim, and K. Park

matching tool, AGREP [27,28], has the exact match routine which has been widely
used. For more information, see [20].

A comparison between DNA sequences of different species is an important task.
Since DNA sequences are very long and there exist many species, not only fast matching
but also efficient storage is an important factor for DNA sequences. Thus, a fast string
matching method suitable for encoded DNA sequences is needed.

In fact, various encoded string matching algorithms have been developed for general
string matching after the compressed matching problem was first defined by Amir and
Benson [1]. Manber [17] used an encoding method which compresses the phrase of
length 2 to one byte. However, the problem of this method is that the pattern may have
more than one encoding. Moura et al. [18] proposed an algorithm which consists of
the Sunday algorithm with a semi-static word-based modeling and a Huffman coding.
It is 2 times faster than AGREP. Amir, Benson, and Farach [2] gave the first matching
algorithm for Ziv-Lempel encoded texts. Recently, for Ziv-Lempel encoding method,
Navarro and Raffinot [21] used the Shift-Or algorithm, and Navarro and Tarhio [22]
used the BM algorithm. For byte pair encoding method, Shibata et al. [23] used the
Knuth-Morris-Pratt algorithm and Shibata et al. [24] used the BM algorithm. The algo-
rithm in [23] is 2 times faster than AGREP for GenBank data set with m ≤ 16 where
m is the pattern length and the algorithm in [24] is 3 times faster with m ≤ 30.

Recently there have been efforts to develop practical and fast string matching algo-
rithms just for DNA sequences [8,13]. The following algorithms use a similar encoding
method which is suitable for small alphabet. Fredriksson [13] used an encoded charac-
ter called a super-alphabet. A super-alphabet of size σs is defined as packing s symbols
of text T to a single super-symbol where σ is the size of the alphabet. Fredriksson’s
Shift-Or algorithm with a super-alphabet of size 44 = 256 is 5 times faster than the
original Shift-Or algorithm with DNA sequences. Chen, Lu, and Ram [8] used the fol-
lowing encoding method: each DNA base is encoded to two-bit code and thus four bases
can be considered at a time. Chen, Lu, and Ram’s d-BM algorithm makes four encoded
patterns and then does matching using BM for each encoded pattern. It is faster than
AGREP with m > 50.

In this paper, we present a fast string matching method for encoded DNA sequences.
Our method uses encoded texts for matching and does not decode them. We use four-
characters-to-one-byte encoding and combine a suffix approach and a multi-pattern
matching approach, i.e., a combination of a multi-pattern version of the Sunday al-
gorithm and a simplified version of the Commentz-Walter algorithm [9,10]. Through
this combination, we get the most efficient string matching method for encoded DNA
sequences. We implement various algorithms and compare with our method. Experi-
mental results show that our method is about 5 times faster then AGREP and the fastest
string matching method for encoded DNA sequences among known algorithms.

2 Preliminaries

We first give some definitions and notations that will be used in this paper. Let Σ be an
alphabet and σ be the size of Σ. A string is concatenations of zero or more characters
from alphabetΣ. The length of a string S is denoted by |S|. Let S[i] denote ith character

Fast Matching Method for DNA Sequences 273

of a string S for 1 ≤ i ≤ |S| and S[i..j] denote a substring S[i]S[i + 1] . . . S[j] of S
for 1 ≤ i ≤ j ≤ |S|.

Let T be a text string of length n and P be a pattern string of length m. The string
matching problem is defined as follows: Given a text T and a pattern P , find all occur-
rences of P in T .

In this paper, we consider DNA sequences. There are four characters, A, C, T, and
G, i.e., Σ = {A, C, T, G} and thus σ = 4. The problem we consider in this paper is as
follows.

Problem 1. Let T be a text, P be a pattern and T ′ be an encoded text of T . Given T ′

and P , find all occurrences of P in the original text T without decoding T ′.

There are various encoding methods: Ziv-Lempel, Huffman, BPE, etc. If an encoding
method E such that E(a) = a for a ∈ Σ is used, then T ′ = T and Problem 1 is the
same as the string matching problem.

3 Proposed Method

We want to solve Problem 1 for DNA sequences as fast as possible. To do this, we will
propose an algorithm that uses the following methods:

• Encoding method : A fixed-length encoding method.

• Matching method : A suffix approach and a multi-pattern matching ap-
proach.

We first explain the encoding method of our algorithm, and then explain the matching
method of our algorithm.

3.1 Encoding

We use a fixed-length encoding method. Since Σ = {A, C, T, G}, i.e., σ = 4, we need
only two bits for each character. Thus we can define a mapping M :

M(A) = 00,M(C) = 01,M(T) = 10,M(G) = 11.

Since there are eight bits in one byte, we can encode four characters to one byte. Given
a substring S[i..i + 3], we define an encoding method E such that

E(S[i..i + 3]) = M(S[i]) ‖M(S[i + 1]) ‖M(S[i + 2]) ‖M(S[i + 3])

where ‖ is the concatenation operator. Then, the size σ′ of the encoded alphabet is
44 = 256.

We explain text encoding and pattern encoding.

274 J.W. Kim, E. Kim, and K. Park

Text Encoding. Given a text T , an encoded text T ′ is defined as [Tm, Tb,MaskT]
where Tm is an encoded byte sequence of length �n/4�− 1, Tb is the last encoded byte
and MaskT is a bit mask for Tb.

The encoded byte sequence Tm is defined as

Tm[i] = E(T [4i− 3..4i])

for 1 ≤ i ≤ n′ and n′ = �n/4� − 1. The last encoded byte Tb is defined as

Tb = M(T [4n′ + 1]) ‖ · · · ‖M(T [4n′ + r]) ‖
4−r

︷ ︸︸ ︷
00 ‖ .. ‖ 00

where r = n− 4n′, 1 ≤ r ≤ 4. The bit mask MaskT is defined as

MaskT =

r
︷ ︸︸ ︷
11 ‖ .. ‖ 11 ‖

4−r
︷ ︸︸ ︷
00 ‖ .. ‖ 00 .

Pattern Encoding. Given a pattern P , we make four encoded patterns. Since we will
match an encoded text and an encoded pattern, using only one encoded pattern we
cannot find all occurrences but only some positions such that their positions modulo 4
are all the same. Thus we need four encoded patterns such that the possible occurrence
positions of them modulo 4 are 0, 1, 2 and 3, respectively.

An encoded pattern P i for 0 ≤ i ≤ 3 is defined as [P i
f , P

i
m, P i

l ,Mask i
f ,Mask i

l]
where P i

m is an encoded byte sequence of length �(n + i)/4� − 2, P i
f and P i

l are

the first and last encoded bytes and Mask i
f and Mask i

l are bit masks for P i
f and P i

l ,
respectively.

The encoded byte sequence P i
m is defined as

P i
m[j] = E(P [4j + 1− i..4j + 4− i])

for 1 ≤ j ≤ mi and mi = �(n + i)/4� − 2. The first encoded byte P i
f is defined as

P i
f =

i
︷ ︸︸ ︷
00 ‖ .. ‖ 00 ‖M(P [1]) ‖ · · · ‖M(P [4− i])

where 0 ≤ i ≤ 3. The bit mask Mask i
f is defined as

Mask i
f =

i
︷ ︸︸ ︷
00 ‖ .. ‖ 00 ‖

4−i
︷ ︸︸ ︷
11 ‖ .. ‖ 11 .

And the last encoded byte P i
l is defined as

P i
l = M(P [4(mi + 1)− i + 1]) ‖ · · · ‖M(P [4(mi + 1)− i + r]) ‖

4−r
︷ ︸︸ ︷
00 ‖ .. ‖ 00

where r = m− 4(mi + 1)− i, 1 ≤ r ≤ 4. The bit mask Mask i
l is defined as

Mask i
l =

r
︷ ︸︸ ︷
11 ‖ .. ‖ 11 ‖

4−r
︷ ︸︸ ︷
00 ‖ .. ‖ 00 .

Note that P i
f and P i

l are non-empty bytes.

Fast Matching Method for DNA Sequences 275

Table 1. Four encoded patterns for P =ATCAACGAGAGATC

i P i
f P i

m P i
l Mask i

f Mask i
l

0 00100100 00011100 11001100 10010000 11111111 11110000
1 00001001 00000111 00110011 00100100 00111111 11111100
2 00000010 01000001 11001100 11001001 00001111 11111111
3 00000000 10010000 01110011 00110010 01000000 00000011 11000000

For example, given a pattern P =ATCAACGAGAGATC, four encoded patterns are
shown in Table 1.

3.2 Matching

We combine a suffix approach and a multi-pattern matching approach, i.e., a combina-
tion of a multi-pattern version of the Sunday algorithm and a simplified version of the
Commentz-Walter algorithm. After the encoding stage, we have one encoded text T ′

and four encoded patterns P i for 0 ≤ i ≤ 3. Since we do not decode T ′ while match-
ing, we must use four encoded patterns. Thus, to get the most efficient performance
for matching T ′ with four encoded patterns P i, we adopt a multi-pattern matching ap-
proach. For each encoded pattern, we adopt a Boyer-Moore approach which shows the
best results among known string matching algorithms.

The matching stage consists of two phases: preprocessing phase and searching phase.
We first explain the preprocessing phase, and then explain the searching phase.

Preprocessing. In the preprocessing phase, we make a shift table Δ for encoded pat-
terns. The role of the shift table Δ is to find the nearest candidate position for the next
occurrence of any one of four encoded patterns at any position.

We make a shift table Δ via two steps. First, we compute a shift candidate table di

for each encoded pattern P i. The shift candidate table di is in fact a shift table for one
pattern matching. We use the method that there must be at least one byte shift at any
time [25]. For each P i, we compute di using P i

m such that

di[α] = min{mi + 1,min{mi + 1− k|P i
m[k] = α, 1 ≤ k ≤ mi}}

where α is an encoded character, 0 ≤ α ≤ 255.
Then, we compute a shift table Δ from di. Since each di means the minimum offset

for the next candidate position of P i, we choose the minimum of di to find the next
candidate position of four encoded patterns, i.e.,

Δ[α] = min{di[α]|0 ≤ i ≤ 3}.

In addition, we make an index list for each encoded character α. When α appears in
the last position of P i, i.e., P i

m[mi] = α, i is inserted in the index list for α. Using this,
we can search for only the encoded patterns that Pm ends with α.

Searching. In the searching phase, we find all occurrences of four encoded patterns
in an encoded text. The searching phase is divided into two parts: match part and shift
part. Figure 1 shows a pseudocode for the searching phase.

276 J.W. Kim, E. Kim, and K. Park

while i ≤ n′

for r in the index list of Tm[i] // match part
k ← i − 1, j ← mr − 1
while j > 0 and Tm[k] = P r

m[j]

k ← k − 1, j ← j − 1

end while
if j = 0

if i < n′

if P r
f = Tm[k]&Maskr

f and P r
l = Tm[i + 1]&Maskr

l

pattern occurs at position 4 ∗ k − (3 − r)

end if
end if
else if P r

f = Tm[k]&Maskr
f and P r

l = Tb&Maskr
l

pattern occurs at position 4 ∗ k − (3 − r)

end if
end if

end for
do // shift part

i ← i + Δ[Tm[i + 1]]

while i ≤ n′ and Δ[Tm[i]] �= 1

end while

Fig. 1. Pseudocode for searching phase

In the match part, we match each character of encoded patterns and the encoded text.
Let i be a pointer to the encoded text Tm. When the index list for the character of Tm[i]
contains some entries, we try to match Tm and encoded patterns which are indicated
by the index list. Since the first and last characters of the encoded patterns have their
bit masks, a text character is masked by using the bit mask of the pattern. If we find a
match, output the match position at the original text. After that, we start the shift part.

In the shift part, we move a pointer i from left to right via a shift table Δ as far as
possible. At first, i is shifted by Δ[i+ 1] [25]. Then, if the encoded text character at the
shifted position i has no entry in its index list, shift again. This guarantees that at least
one shift occurs at each iteration. Lemma 1 shows the correctness of our algorithm.

Lemma 1. Using a shift table Δ, we can find every candidate position for four encoded
patterns.

Proof. Let i be the current position of the encoded text Tm and let α be the encoded
character at the position i + 1 of Tm. There are four values di[α] for 0 ≤ i ≤ 3
and, W.L.O.G., let Δ[α] = d0[α]. Suppose that an encoded pattern P 1

m is matched at
i + d1[α]−m1 + 1 of Tm and Δ[α] < d1[α]. Then to prove this lemma, it is sufficient
to show that the current position comes to i + d1[α]. Since the current position is now
updated to i+Δ[α], the next shift added to i+Δ[α] is Δ[β], where β = Tm[i+Δ[α]+1].
Because P 1

m occurs at i + d1[α]−m1 + 1, we get β = P 1
m[m1 − (d1[α]−Δ[α]) + 1].

Fast Matching Method for DNA Sequences 277

Fig. 2. Running time for Mus Musculus fragment set with the pattern length between 12 and 64

Thus, d1[β] ≤ d1[α] −Δ[α] and Δ[β] ≤ d1[β]. Therefore Δ[α] + Δ[β] ≤ d1[α] and
i + Δ[α] + Δ[β] ≤ i + d1[α]. Since Δ is larger than 1, after repeating the above step,
the current position comes to i + d1[α], eventually.

3.3 Analysis

The worst case time complexity is O(n′km′), where n′ is the length of the encoded
text Tm, m′ is the maximum of the lengths of four encoded pattern P i

m and k is 4, and
the best case time complexity is O(n′/m′ + m′occ), where occ is the number of all
occurrences of the pattern in the text.

4 Experimental Results

We had experiments with our algorithm FED (fast matching with encoded DNA se-
quences) and the following algorithms: BM (Boyer-Moore) [6], Horspool [15], Sunday
[25], AGREP [27,28], TP (Tarhio and Peltola) [26], BNDM (backward nondeterminis-
tic dawg matching) [19], BB (BM on byte pair encoding) [24], SASO (super-alphabet
shift-or) [13], and d-BM [8]. BB is the compressed pattern matching algorithm on byte-
pair encoding and SASO, d-BM and FED are the compressed pattern matching algo-
rithms on fix-length encoding. Others are the original pattern matching algorithms.

We implemented all algorithms by ourselves, except AGREP and BNDM. All the
algorithms had been implemented in C, compiled with gcc 3.2. We ran the experiments
in 2.4GHz Xeon with 2 GB RAM, running GNU/Linux 2.4.20-28.

We had experiments on ten real DNA sequence data sets from NCBI: The sizes
of data sets are varied from 7.6MB to 220MB. For each data set, the patterns were

278 J.W. Kim, E. Kim, and K. Park

Fig. 3. Running time for Mus Musculus fragment set with the pattern length between 64 and 2016

Fig. 4. Running time for Homo sapiens chromosome 1 with the pattern length between 12 and 64

randomly extracted from the texts, and each test was repeated 50 times. Since the ex-
perimental results are similar, we show typical two examples: Mus Musculus fragments
set (220MB) and Homo sapiens chromosome 1 long sequence (210MB). We report the
average time in milliseconds which includes the pattern encoding, preprocessing and
searching times. Figures 2–5 shows the experimental results.

Fast Matching Method for DNA Sequences 279

Fig. 5. Running time for Homo sapiens chromosome 1 with the pattern length between 64 and
2016

The proposed algorithm FED is faster than all the others from short patterns to long
patterns. Figures 2 and 4 show the running times for short patterns whose lengths are
from 12 to 64. FED is 2 ∼ 5 times faster than AGREP and 2 ∼ 3.5 times faster than TP.
In addition, FED is at least 3 times faster than BNDM. A recent algorithm FAOSO (fast
average optimal shift or) in [14] is reported about 2 times faster than BNDM on DNA
sequences, and thus FED is still faster than FAOSO. Figures 3 and 5 show the running
times for long patterns whose lengths are from 64 to 2016. FED is 5 times faster than
AGREP and 2.5 ∼ 5 times faster than TP.

5 Conclusions

We have presented a string matching algorithm suitable for encoded DNA sequences
and shown that our algorithm is the fastest among known algorithms. In addition, since
the matching process is done with the encoded text as it is, we can save the time and
space overhead for decoding.

References

1. Amir, A., Benson, G.: Efficient Two-Dimensional Compressed Matching. Data Compression
Conference, 279–288 (1992)

2. Amir, A., Benson, G., Farach, M.: Let Sleeping Files Lie: Pattern Matching in Z-compressed
Files. In: 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 705–714 (1994)

280 J.W. Kim, E. Kim, and K. Park

3. Allauzen, C., Crochemore, M., Raffinot, M.: Efficient experimental string matching by weak
factor recognition. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 51–
72. Springer, Heidelberg (2001)

4. Baeza-Yates, R., Gonnet, G.H.: A New Approach to Text Searching. Communications of the
ACM 35(10), 74–82 (1992)

5. BLAST, http://www.ncbi.nlm.nih.gov/BLAST
6. Boyer, R.S., Strother Moore, J.: A Fast String Searching Algorithm. Communications of the

ACM 20(10), 762–772 (1977)
7. Charras, C., Lecroq, T., Daniel Pehoushek, J.: A Very Fast String Matching Algorithm

for Small Alphabets and Long Patterns. In: Farach-Colton, M. (ed.) CPM 1998. LNCS,
vol. 1448, pp. 55–64. Springer, Heidelberg (1998)

8. Chen, L., Lu, S., Ram, J.: Compressed Pattern Matching in DNA Sequences. In: CSB 2004.
IEEE Computational Systems Bioinformatics Conference, pp. 62–68 (2004)

9. Commentz-Walter, B.: A String Matching Algorithm Fast on the Average. In: Maurer, H.A.
(ed.) Automata, Languages, and Programming. LNCS, vol. 71, pp. 118–132. Springer, Hei-
delberg (1979)

10. Commentz-Walter, B.: A String Matching Algorithm Fast on the Average. Technical Report
TR 79.09.007, IBM Germany, Heidelberg Scientific Center (1979)

11. FASTA, http://www.ebi.ac.uk/fasta
12. Franek, F., Jennings, C.G., Smyth, W.F.: A Simple Fast Hybrid Pattern-Matching Algorithm.

In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 288–
297. Springer, Heidelberg (2005)

13. Fredriksson, K.: Shift-Or String Matching with Super-Alphabets. Information Processing
Letters 87(4), 201–204 (2003)

14. Fredriksson, K., Grabowski, S.: Practical and Optimal String Matching. In: Consens, M.P.,
Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 376–387. Springer, Heidelberg (2005)

15. Nigel Horspool, R.: Practical Fast Searching in Strings. Software Practice and Experi-
ence 10(6), 501–506 (1980)

16. Knuth, D.E., Morris Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM Journal on
Computing 6, 323–350 (1977)

17. Manber, U.: A Text Compression Scheme That Allows Fast Searching Directly in the Com-
pressed File. ACM Transactions on Information Systems 15(2), 124–136 (1997)

18. de Moura, E.S., Navarro, G., Ziviani, N., Baeza-Yates, R.: Direct Pattern Matching on Com-
pressed Text. In: 5th International Symposium on String Processing and Information Re-
trieval, pp. 90–95. IEEE Computer Society Press, Los Alamitos (1998)

19. Navarro, G., Raffinot, M.: Fast and Flexible String Matching by Combining Bit-Parallelism
and Suffix Automata. ACM Journal of Experimental Algorithmics 5(4) (2000)

20. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings: Practical On-Line Search
Algorithms for Texts and Biological Sequences. Cambridge University Press, Cambridge
(2002)

21. Navarro, G., Raffinot, M.: Practical and Flexible Pattern Matching over Ziv-Lempel Com-
pressed Text. Journal of Discrete Algorithms 2(3), 347–371 (2004)

22. Navarro, G., Tarhio, J.: LZgrep: a Boyer-Moore String Matching Tool for Ziv-Lempel Com-
pressed Text. Software-Practice and Experience 35(12), 1107–1130 (2005)

23. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T., Arikawa,
S.: Speeding Up Pattern Matching by Text Compression. In: Bongiovanni, G., Petreschi, R.,
Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 306–315. Springer, Heidelberg (2000)

24. Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A., Arikawa, S.: A Boyer-Moore Type
Algorithm for Compressed Pattern Matching. In: Giancarlo, R., Sankoff, D. (eds.) CPM
2000. LNCS, vol. 1848, pp. 181–194. Springer, Heidelberg (2000)

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ebi.ac.uk/fasta

Fast Matching Method for DNA Sequences 281

25. Sunday, D.M.: A Very Fast Substring Search Algorithm. Communications of the ACM 33(8),
132–142 (1990)

26. Tarhio, J., Peltola, H.: String Matching in the DNA Alphabet. Software-Practice and Experi-
ence 27(7), 851–861 (1997)

27. Wu, S., Manber, U.: Fast Text Searching Allowing Errors. Communications of the
ACM 35(10), 83–91 (1992)

28. Wu, S., Manber, U.: AGREP - A Fast Approximate Pattern-matching Tool. In: The Winter
1992 USENIX Conference, pp. 153–162 (1992)

All-Pairs Ancestor Problems in Weighted Dags

Matthias Baumgart, Stefan Eckhardt, Jan Griebsch, Sven Kosub, and Johannes Nowak

Fakultät für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching bei München, Germany

{baumgart,eckhardt,griebsch,kosub,nowakj}@in.tum.de

Abstract. This work studies (lowest) common ancestor problems in (weighted)
directed acyclic graphs. We improve previous algorithms for the all-pairs repre-
sentative LCA problem to O(n2.575) by using fast rectangular matrix multipli-
cation. We prove a first non-trivial upper bound of O(min{n2m, n3.575}) for
the all-pairs all lowest common ancestors problem. Furthermore, classes of dags
are identified for which the problem can be solved considerably faster. Our algo-
rithms scale with the maximal number of LCAs for one pair and—based on the
famous Dilworth’s theorem—with the size of a maximum antichain (i.e., width)
of the dag. We extend and generalize previous results on computing shortest an-
cestral distances. It is shown that finding shortest distance common ancestors in
weighted dags is not harder than computing all-pairs shortest distances, up to
a polylogarithmic factor. Finally, we present a solution for the general all-pairs
shortest distance LCA problem based on computing all-pairs all LCAs.

1 Introduction

Directed acyclic graphs (dags) are powerful tools for modelling causality systems or
other kinds of entity dependencies. If we think of causal relations among a set of events,
natural questions come up, such as: Which events are entailed by two given events?
What is the first event which is entailed by two given events? In dags, these questions
can be answered by computing common ancestors (CAs), i.e., vertices that are reachable
via a path from each of the given vertices, and computing lowest common ancestors
(LCAs), i.e., those common ancestors that are not reachable from any other common
ancestor of the two given vertices.

Although LCA algorithms for general dags are indispensable computational primi-
tives, they have been found an independent subject of studies only recently [6, 7, 15].
There is a lot of sophisticated work devoted to LCA computations for the special case
of trees (see, e.g., [14, 19, 7]), but due to the limited expressive power of trees they are
often applicable only in restrictive or over-simplified settings. In [7], a list of examples
can be found where LCA queries on dags are necessary. We add two more applications.

A first one concerns phylogenetic networks. LCA algorithms have been frequently
used in the context of phylogenetic trees, i.e., trees that depict the ancestor relations
of species, genes, or features. Bacteria obtain a large portion of their genetic diver-
sity through the acquisition of distantly related organisms, via horizontal gene transfer
(HGT) or recombination. While views as to the extent of HGT and cross species recom-
bination in bacteria differ, it is widely accepted that they are among the main processes

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 282–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

All-Pairs Ancestor Problems in Weighted Dags 283

driving prokaryotic evolution and are (with random mutations) mainly responsible for
the development of antibiotic resistance. Such evolutionary developments cannot be
modeled by trees, and thus there has been an increasing interest in phylogenetic dag
networks and appropriate analysis methods [16, 17]. Unfortunately, many of the estab-
lished approaches from phylogenetic trees cannot trivially be extended to dags. This is
particularly true for the computation of ancestor relationships.

A second application is related to Internet protocols. Currently, inter-domain routing
is mainly done using the Border Gateway Protocol (BGP). BGP allows participating
autonomous systems to announce and withdraw routable paths over physical connec-
tions with their neighbors. This process is governed by local routing policies which are
rationally based on commercial relationships between autonomous systems. It has been
recognized that, even if globally well-configurated, these local policies have a critical
influence on routing stability and quality. An orientation of the underlying connectiv-
ity graph imposed by customer-to-provider relations can be viewed as a dag. Routes
through the Internet have the typical structure of uphill and downhill parts to the left
and right of a top provider in the middle of the route (see, e.g., [13]). Computing such
top providers, which are just CAs and LCAs, is needed for reliability or efficiency anal-
yses. In some experimental setting, we have a small Internet sample which constitutes
a dag with 11,256 vertices and 13,655 edges. Finding top providers for each of the
63,343,140 pairs makes fast CA and LCA algorithms an issue.

The contribution of this work is twofold. On the one hand, we study the problem of
finding all LCAs for each vertex pair. In spite of its importance in both the applications
given in [7] and above, this has—to the best of our knowledge—not been studied so far.
On the other hand, we improve, extend, and generalize the study of efficient all-pairs
LCA computations in dags. In particular, we consider the following problems:

ALL-PAIRS REPRESENTATIVE LCA: Compute one (representative) LCA for each pair
of vertices.

ALL-PAIRS ALL LCA: Compute the set of all LCAs for each pair of vertices.

ALL-PAIRS SHORTEST DISTANCE (L)CA: Compute the (L)CA that minimizes the
ancestral distance for each pair of vertices. We note that we also compute the corre-
sponding minimal ancestral distances as a byproduct.

Related work. LCA algorithms have been extensively studied in the context of trees
with most of the research rooted in [1, 21]. The first optimal algorithm for the all-pairs
LCA problem in trees, with linear preprocessing time and constant query time, was
given in [14]. The same asymptotic was reached using a simpler and parallelizable
algorithm in [19]. More algorithmic variants can be found in, e.g., [8, 23, 22, 9].

In the more general case of dags, a pair of nodes may have more than one LCA,
which leads to the distinction of representative versus all LCA solutions. In early re-
search both versions still coincide by considering dags with each pair having at most
one LCA. Extending the work on LCAs in trees, in [18], an algorithm was described
with linear preprocessing and constant query time for the LCA problem on arbitrar-
ily directed trees (or, causal polytrees). Another solution was given in [2], where the

284 M. Baumgart et al.

representative problem in the context of object inheritance lattices was studied. The ap-
proach in [2], which is based on poset embeddings into boolean lattices yielded O(n3)
preprocessing and logn query time on lower semilattices.

The representative LCA problem on general dags has been recently studied in [6,
7, 15]. These works rely on fast matrix multiplications to achieve Õ(n

ω+3
2) [7] and

O(n2+ 1
4−ω) [15] preprocessing time on dags with n nodes and m edges. Currently, the

fastest known algorithm for matrix multiplication needs O(nω), with ω < 2.376 [10]
implying ω+3

2 < 2.688 and 2 + 1
4−ω < 2.616. For sparse dags, an O(nm) algorithm

has been presented in [15] as well.
Bender et al. [6] have shown that shortest ancestral (CA) distances in unweighted

dags can be computed in time O(n2.575). In the same work, the authors consider a
restricted version of the problem of computing shortest LCA distances. Here, additional
information from genealogical data is used to rank candidate LCAs in pedigree graphs.
However, the general version seems to be much more difficult.

Results. We summarize the technical contributions of this paper. All proofs are omitted
due to space limitations and can be found in [4].

ALL-PAIRS REPRESENTATIVE LCA: We improve previous approaches in [7, 15] to
O(n2+μ) by straightforward application of fast rectangular matrix multiplication.1

Throughout this work, ω(x, y, z) is the exponent of the algebraic matrix multiplica-
tion of an nx × ny with an ny × nz matrix. Let μ satisfy ω(1, μ, 1) = 1 + 2μ. The
fastest known algorithms for rectangular matrix multiplication imply μ < 0.575 [11].

ALL-PAIRS ALL LCA: We give the first non-trivial upper bounds for this problem.
In particular, we show that this problem can be solved in time O(min{n2m,n3+μ})
on general dags. We further identify classes of dags for which ALL-PAIRS ALL LCA
can be solved considerably faster. Namely, for dags of bounded width w(G), our con-
struction exhibits nice scaling properties. The approach is based on the well known Dil-
worth’s theorem. In particular, the above bounds improve to O(w(G)min{nm, n2+μ}).
Additionally, we give an algorithm that scales with the size k of the largest LCA
set, achieving an O(k2 min{nm, n2+μ}) upper bound. For sparse dags of small width
o(n√

m
) we thereby settle an open question posed by Ukkonen and Nykänen [18].

ALL-PAIRS SHORTEST DISTANCE (L)CA: We extend previous results for unweight-
ed dags to weighted dags. We give an easy dynamic programming algorithm for the
ALL-PAIRS SHORTEST DISTANCE CA problem which is optimal on sparse dags. We
prove that both computing shortest ancestral distances and shortest distance common
ancestors on weighted dags is not harder than computing all-pairs shortest distances
(APSD), up to a polylogarithmic factor. To obtain this result, we slightly modify the
construction of [7] and adapt techniques to identify witnesses for shortest paths (see [20,
24]). Finally, we show how ALL-PAIRS SHORTEST DISTANCE CA can be solved by
reducing it to ALL-PAIRS ALL LCA, thereby achieving first non-trivial upper bounds.
Intriguingly, it is an open question whether this can be done better.

1 Most recently, we have learnt that a similar improvement has been independently described in
a technical report [12].

All-Pairs Ancestor Problems in Weighted Dags 285

2 Preliminaries

Let G = (V,E) be a directed acyclic graph (with edge weights). Throughout this work
we denote by n the number of vertices and by m the number of edges. Let TC(G)
denote the transitive closure of G, i.e., the graph having an edge (u, v) if v is reachable
from u over some directed path in G. The length of the shortest path from u to v is
denoted by d(u, v). A dag G = (V,E) imposes a partial ordering on the vertex set.
Let N be a bijection from V onto {1, . . . , n}. N is said to be a topological ordering
if N(u) < N(v) whenever v is reachable from u in G. Such an ordering is consistent
with the partial ordering of the vertex set imposed by the dag. A value N(v) is said to
be the topological number of v with respect to N . Observe that a graph G is a dag if and
only if it allows some topological ordering (folklore). Moreover, a topological ordering
can be found in time O(n + m). We will refer to a vertex z which has the maximal
topological number N(z) among all vertices in a set as the rightmost vertex.

Let G = (V,E) be a dag and x, y, z ∈ V . The vertex z is a common ancestor (CA) of
x and y if both x and y are reachable from z, i.e., (z, x) and (z, y) are in the transitive
closure of G. By CA(x, y), we denote the set of all CAs of x and y. A vertex z is a
lowest common ancestor (LCA) of x and y if and only if z ∈ CA(x, y) and for each
z′ ∈ V with (z, z′) ∈ TC(G) we have z′ �∈ CA(x, y). LCA(x, y) denotes the set of
all LCAs of x and y. For any z ∈ V the ancestral distance of (x, y) with respect to z is
d(z, x) + d(z, y).

3 The All-Pairs Representative LCA Problem

In this section we briefly revisit the ALL-PAIRS REPRESENTATIVE LCA problem. All
algorithms for this problem we are aware of exploit the following.

Proposition 1. [7, 15] Let G = (V,E) be a dag and let N be a topological ordering.
Furthermore, let x, y ∈ V be vertices with a non-empty set of CAs. If z ∈ V is the
rightmost vertex in CA(x, y), then z is an LCA of x and y.

Algorithm 1 solves ALL-PAIRS REPRESENTATIVE LCA in time O(nm). We modify
this algorithm later to obtain dynamic programming solutions for our other problems.
The correctness of this algorithm follows readily from the following observation.

Observation 2. Let G = (V,E) be a dag and let x, y ∈ V be any pair of vertices.
Furthermore, let z be the rightmost LCA of x and y.

1. If (x, y) ∈ TC(G) then z = x.
2. If (x, y) /∈ TC(G) then the following holds: let x1, . . . , xk be the parents of x. Let

z1, . . . , zk be the rightmost LCAs of the pairs (x1, y), . . . , (xk, y). Then z is the
rightmost vertex in {z1, . . . , zk}.

Theorem 3. Algorithm 1 solves ALL-PAIRS REPRESENTATIVE LCA in time O(nm).

Kowaluk et al. [15] observed that rightmost LCAs are found by computing maximum
witnesses for boolean matrix multiplication. Let A, B, and C be boolean n×n matrices

286 M. Baumgart et al.

Algorithm 1. ALL-PAIRS REPRESENTATIVE LCA
Input: A dag G = (V, E)
Output: An array R of size n × n where R[x, y] is an LCA of x and y
begin1

Initialize R[x, y] ← NIL2
Compute the transitive closure TC(G) and a topological ordering N of G3
foreach v ∈ V in ascending order of N(v) do4

foreach (v, x) ∈ E do5
foreach y ∈ V with N(y) ≥ N(v) do6

if (x, y) ∈ TC(G) then R[x, y] ← x7
else if N(R[v, y]) > N(R[x, y]) then R[x, y] ← R[v, y]8

end9

such that C = A · B. We have C[i, j] = 1 if and only if there exists 1 ≤ k ≤ n such
that A[i, k] = 1 = B[k, j]; in this case, we call k a witness for C[i, j]. We call k a
maximum witness for C[i, j] if k is the maximum one among all C[i, j]-witnesses.

Proposition 4. [15] Let G = (V,E) be a dag and let N be a topological ordering. Let
A be the adjacency matrix of the transitive closure TC(G) such that the vertices are
ordered corresponding to N . Then z is a rightmost ancestor of (x, y) if and only if z is
a maximum witness for C[x, y], where C = AT · A.

We briefly describe how to improve the approach taken in [15] by using fast rectangular
matrix multiplication [11] for computing the maximum witnesses. In the following, we
assume that we have already computed the adjacency matrix A of the transitive closure
TC(G) of G in time O(min{nm, nω}). Also, we assume implicitly that the rows and
columns in A are ordered according to a topological order of G’s vertex set.

Let μ ∈ [0; 1] be a parameter. We divide V into equal-sized sets V1, . . . , Vr of con-
secutive vertices (with respect to the topological ordering), where r = �n1−μ�. Thus,
the size of the sets is O(nμ). Maximum witnesses are found in two steps:

1. For each pair (x, y), determine l such that the maximum witness of (x, y) is in Vl.
2. For each (x, y) and l, search Vl to find the maximum witness.

The implementation of these two steps is straightforward: for a vertex set Vl, let AT
∗Vl

denote the matrix AT restricted to the columns corresponding to vertices in Vl. Let
M (l) = AT

∗Vl
· (AT

∗Vl
)T .

Observation 5. A pair (x, y) of vertices has a common ancestor z ∈ Vl if and only if
M (l)[x, y] = 1.

Hence for l ∈ {1, . . . r}, we compute the O(n1−μ) (rectangular) matrix products M (l)

and choose for each pair the maximum index l such that M (l)[x, y] = 1. This takes time
O(n1−μ+ω(1,μ,1)). Recall that ω(1, μ, 1) is the exponent of the algebraic matrix multi-
plication of an n×nμ with an nμ×n matrix. For the second step, we simply search for
each pair (x, y) and the corresponding index l of the set Vl manually, that is, for each
z ∈ Vl in descending order until we find z with both (z, x) and (z, y) are in TC(G).
This takes time O(n2 · |Vl|) = O(n2+μ). For μ satisfying 1 − μ + ω(1, μ, 1) = 2 + μ

All-Pairs Ancestor Problems in Weighted Dags 287

we get the optimal complexity. Currently, the best known upper bounds for rectangular
matrix multiplication are [11]:

ω(1, r, 1) =
{

2 + o(1), 0 ≤ r ≤ 0.294 = α
2(1−r)+(r−α)ω

1−α , 0.294 < r ≤ 1.

Together, this implies μ < 0.575.

Theorem 6. ALL-PAIRS REPRESENTATIVE LCA can be solved in time O(n2+μ),
where μ satisfies 1 + 2μ = ω(1, μ, 1).

4 The All-Pairs All LCA Problem

A trivial lower bound for the ALL-PAIRS ALL LCA problem is Ω(n3), even for sparse
dags with m = O(n) [4]. The definition of LCAs immediately yields several O(n2m)
algorithms. A rather trivial one, first, computes the transitive closure of G in O(nm).
Then, for every vertex z and every pair (x, y), determine in time O(out-deg(z)) if z
is an LCA of (x, y). Amazingly, this trivial algorithm is optimal on sparse dags with
m = O(n).

We proceed by giving an O(n2m) dynamic programming approach which is more
suitable for later use. This algorithm adopts ideas from Algorithm 1. Recall that z ∈
CA(x, y) is an LCA of x and y if there is no other vertex z′ ∈ CA(x, y) such that
(z, z′) ∈ TC(G). The following observation generalizes Observation 2.

Observation 7. Let G = (V,E) be a dag. Let x and y be vertices of G. Let x1, . . . , xk

be the parents of x and S the union of the sets LCA(x�, y) for all 1 ≤ � ≤ k.

1. If (x, y) ∈ TC(G) then LCA(x, y) = {x}.
2. If (x, y) /∈ TC(G) then LCA(x, y) ⊂ S. More specifically, for all v ∈ V it holds

that v ∈ LCA(x, y) if and only if v ∈ S and for all v′ ∈ S, (v, v′) /∈ TC(G).

Observation 7 is implemented by Algorithm 2 in the following way. The set LCA(x, y)
is iteratively constructed by merging the sets LCA(x�, y). In the merging steps, all those
vertices which are predecessors of some other vertices in the set are discarded. Since
the vertices are visited in increasing order with respect to a topological ordering N ,
the sets A[v, y] are finally determined by the time that v is visited. All parents of v are
visited before x. This establishes the correctness of Algorithm 2.

Proposition 8. Let tmerge(n1, n2) be an upper bound for the time needed by one merge
operation on sets of sizes n1 and n2. Then, Algorithm 2 takes time O(nm tmerge(n, n)).

Naively, two sets S1 and S2 can be merged in time O(‖S1‖ · ‖S2‖). The proof of the
following lemma can be found in [4]. It is based on keeping track of forbidden vertices
for each pair of vertices.

Lemma 9. In Line 9 of Algorithm 2, merging can be implemented to run in time O(n).

Corollary 10. Algorithm 2 using refined merging solves ALL-PAIRS ALL LCA in time
O(n2m).

288 M. Baumgart et al.

Algorithm 2. ALL-PAIRS ALL LCA
Input: A dag G = (V, E)
Output: An array A of size n × n where A[x, y] is the set of all LCAs of x and y
begin1

Compute the transitive closure TC(G) and a topological ordering N of G2
foreach v ∈ V in ascending order of N(v) do3

foreach y ∈ V with N(v) < N(y) do4
if (v, y) ∈ TC(G) then A[v, y] ← {v}5

foreach (v, x) ∈ E do6
foreach y ∈ V with N(x) < N(y) do7

if (x, y) ∈ TC(G) then A[x, y] ← {x}8
else A[x, y] ← Merge(A[v, y], A[x, y])9

end10

However, if the size k of the sets LCA(x, y) is small, i.e., k = o(
√
n), the dynamic

programming algorithm with naive merging is faster.

Corollary 11. Algorithm 2 can be modified such that it solves ALL-PAIRS ALL LCA
in time O

(
nmk2

)
where k is the maximum cardinality of LCA sets.

Note that if we do not know k in advance, we can decide online which merging strategy
to use without changing the asymptotical run-time: start Algorithm 2 with naive merg-
ing until a vertex is reached in Line 4 having more LCAs with some neighbor vertex
(Line 9) than prescribed by some threshold. If this happens, start the algorithm anew
with refined merging.

As an immediate consequence we obtain fast algorithms for testing lattice-theoretic
properties of posets represented by dags.

Corollary 12. Testing whether a given dag is a lower semilattice, an upper semilattice,
or a lattice can be done in time O(nm).

Scaling with maximum antichains. Let G = (V,E) be a dag. Let V ′ be a subset of V .
We call V ′ an antichain if no vertex in V ′ is reachable from another vertex in V ′.
That means that no two vertices of V ′ are comparable with respect to the partial order
imposed by a dag. A maximum antichain of G is a set V ′ ⊆ V such that V ′ is an
antichain of maximal cardinality. The width of a dag G, denoted by w(G), is the size
of a maximum antichain in dag G. Observe that a maximum antichain is a maximum
independent set of the transitive closure. Moreover, the sets LCA(x, y) are antichains
by definition. In particular, their sizes are bounded from above by w(G).

In contrast to Algorithm 2, which scales quadratically with the size of LCA sets,
we give an algorithm for ALL-PAIRS ALL LCA that scales linearly with the width of
dags. It is based on solutions for ALL-PAIRS REPRESENTATIVE LCA. We outline our
approach.

Suppose we are given a vertex z and want to determine all pairs (x, y) for which z
is an LCA. To this end, we employ an ALL-PAIRS REPRESENTATIVE LCA algorithm
on G. Obviously, if z is a representative LCA of (x, y) then z ∈ LCA(x, y). Thus,
if we could force the ALL-PAIRS REPRESENTATIVE LCA algorithm to return z as a
representative LCA for (x, y) whenever z is an LCA of x and y, we could answer the
above question by solving the representative LCA problem. This can be done as follows.

All-Pairs Ancestor Problems in Weighted Dags 289

Algorithm 3. ALL-PAIRS ALL LCA using LCA representatives
Input: A dag G = (V, E)
Output: An array A of size n × n where A[x, y] is the set of all LCAs of x and y
begin1

foreach z ∈ V do2
Compute a topological ordering N such that N(z) is maximal3
Solve ALL-PAIRS REPRESENTATIVE LCA using any algorithm that returns the LCA with highest4
topological number as representative and get array R
foreach (x, y) with R[x, y] = z do A[x, y] ← A[x, y] ∪ {z} (by multiset-union)5

Remove elements of multiplicity greater than one from A[x, y] for all x, y ∈ V6
end7

Algorithm 4. ALL-PAIRS ALL LCA using LCA representatives (improved)
Input: A dag G = (V, E)
Output: An array A of size n × n where A[x, y] is the set of all LCAs of x and y
begin1

Compute a transitive closure TC(G) and a minimal path cover P of G2
foreach p ∈ P do3

Compute a topological ordering N such that N(z) is maximal for all vertices of p4
Solve ALL-PAIRS REPRESENTATIVE LCA with respect to N and get array R5
foreach (x, y) with R[x, y] = z and z ∈ P do6

A[x, y] ← A[x, y] ∪ {z} (by multiset-union)7
Remove elements of multiplicity greater than one from A[x, y] for all x, y ∈ V8

end9

For a dag G = (V,E) and a vertex z ∈ V , let N∗(z) denote the maximal number of z
in any topological ordering of G. It is easily seen that a topological ordering N satisfies
N(z) = N∗(z) if and only if for all x ∈ V such that N(x) ≥ N(z), x is reachable from
z. This immediately implies a linear-time algorithm to find a corresponding ordering.

Proposition 13. A topological ordering realizing N∗(z) for any vertex z in a dag can
be computed in time O(n + m).

If we fix a vertex z’s number maximizing topological ordering, then z is the rightmost
CA of all vertex pairs (x, y) such that z ∈ LCA(x, y). Now clearly, our strategy is to
iterate for each x ∈ V over the orderings that maximizeN∗(x). Note that the algorithms
in Sect. 3 and in [7,15] naturally return the vertex z with the highest number N(z) (for a
fixed topological ordering) among all LCAs of any pair (x, y). This leads to Algorithm
3 and Theorem 14.

Theorem 14. Algorithm 3 solves ALL-PAIRS ALL LCA in timeO(min{n3+μ, n2m}).
Again, since we have μ < 0.575, this yields an O(n3.575) algorithm on dense dags.
A key observation is that an algorithm for ALL-PAIRS REPRESENTATIVE LCA that
outputs, with respect to a fixed topological ordering N , the vertex with the highest
number as a representative LCA, does it for all z with N(z) = N∗(z) in parallel.
We aim at maximizing topological numbers simultaneously for as many vertices as
possible. This can easily be reached for vertices in paths.

Proposition 15. A topological ordering maximizing N∗(z) for all vertices z in any
path p of a dag G simultaneously, can be computed in time O(n + m). Moreover, this
can be done for all vertex subsets of the given path p.

290 M. Baumgart et al.

This proposition implies that given such an ordering, it is possible to process a path
p in only one iteration of the algorithm, i.e., only one call of an algorithm for the
ALL-PAIRS REPRESENTATIVE LCA problem is needed for the vertices in p. Thus, we
can reduce the running time if we minimize the number of paths to be processed.

For a dag G = (V,E), a path cover P of G is a set of paths in G such for every
v ∈ V there exists at least one path p ∈ P such that v lies on p. A minimum path cover
is a path cover P such that ‖P‖ is minimized. It is known that a minimum path cover
can be computed in time O(min{nm, n2.5}) [5]. This suggests Algorithm 4.

Actually, Algorithm 4 is an improvement over Algorithm 3 if we know that, on the
one hand, the size of a minimal path cover is an upper bound on LCA set-sizes, and at
most n on the other hand. Fortunately, the famous Dilworth’s theorem does exactly this.

Lemma 16 (Dilworth). For each dag G, w(G) equals the size of a minimum path
cover of G.

Indeed, we need both directions of Dilworth’s theorem to obtain the following.

Theorem 17. Algorithm 4 solves ALL-PAIRS ALL LCA in time O
(
min{n2+μ ·w(G),

nm · w(G)}).
Algorithm 4 elegantly scales with dag widths automatically without saying which al-
gorithmic branch should be used as it is necessary for scaling with maximum LCA
set-sizes. However, Theorem 17 does not yield as many benefits as may be expected.
For instance, rooted binary trees can be viewed as dags. The width of a tree is the
number of its leaves which is in fully binary trees O(n). In contrast to this, each pair
has exactly one LCA. As another example, in the experimental setting of Internet dags
mentioned in the introductory section, we obtained a width of 9,604 (i.e., there is an
antichain containing around 85% of all vertices), a maximum LCA set-size of 27, and
an average LCA set-size of 9.66. All this shows that improving our algorithms towards
a linear-scaling behavior with respect to LCA set-sizes is essential.

5 Shortest Distance Common Ancestor Problems

Again, we start by giving a dynamic programming algorithm that solves the ALL-PAIRS

SHORTEST DISTANCE CA problem in time O(nm), which is optimal on sparse dags.
The O(nm) bound follows readily. The correctness is based on Observation 18.

Observation 18. Let G = (V,E) be a dag and let x, y be two vertices that have at least
one CA. Furthermore, let x1, . . . , xk be the parents of x and let Z = {z1, . . . , zk} be
the set of the corresponding shortest distance CAs of (xi, y) for 1 ≤ i ≤ k. Then, for the
shortest distance CA z of x and y it holds that z = argminz′∈Z∪{x} d(z′, x)+d(z′, y).

Theorem 19. Algorithm 5 solves the ALL-PAIRS SHORTEST DISTANCE CA problem
in time O(nm).

The following theorem generalizes results from Bender et al. [7] to weighted dags and
to computing shortest distance ancestors in addition to shortest ancestral distances. We
reach this result by modifying the natural reduction of shortest ancestral distances to
shortest distances in dags [7] and using sampling techniques already used for computing
witnesses for shortest paths [20, 24]. A detailed description can be found in [4].

All-Pairs Ancestor Problems in Weighted Dags 291

Algorithm 5. ALL-PAIRS SHORTEST DISTANCE CA
Input: A dag G = (V, E) with a weight function w : E → R

Output: An array M of size n × n where M [x, y] is a shortest distance CA of x and y
begin1

Compute the all-pairs shortest distance matrix D and a a topological ordering N of G2
foreach (x, y) with D[x, y] < ∞ do M [x, y] ← x3
foreach v ∈ V in ascending order of N(v) do4

foreach (v, x) ∈ E do5
foreach y ∈ V with N(y) ≥ N(v) do6

if D[M [v, y], x] + D[M [v, y], y] < D[M [x, y], y] + D[M [x, y], y] then7
M [x, y] ← M [v, y]

end8

Theorem 20. Let A be any APSD algorithm with running time tA(n,m) on weighted
dags with n vertices and m edges. Then, there is an algorithm for ALL-PAIRS SHORT-
EST DISTANCE CA with running time Õ(tA(n,m)+n2). Here, tA is required to satisfy
tA(O(n), O(m)) = O(tA(n,m)).

We turn our attention to the ALL-PAIRS SHORTEST DISTANCE LCA problem. It seems
to be inherently difficult to compute shortest distance lowest common ancestors or even
shortest distances directly. Nevertheless, we obtain non-trivial upper bounds by using
solutions for the ALL-PAIRS ALL LCA problem. A generic solution for finding short-
est distance LCAs looks as follows (supposed that LCA sets are stored as lists):

1. Solve APSD on dag G (understood as a weighted dag).
2. Solve ALL-PAIRS ALL LCA on dag G (understood as an unweighted dag).
3. For each pair (x, y) choose in time O

(
‖LCA(x, y)‖

)
the vertex z ∈ LCA(x, y)

which minimizes the ancestral distance d(z, x) + d(z, y) and set L[x, y] = z.

Theorem 21. Let A be an algorithm solving ALL-PAIRS ALL LCA in time tA(n,m).
Then, ALL-PAIRS SHORTEST DISTANCE LCA can be solved in time O(tA(n,m)).

The following corollaries follow immediately from the above theorem, Theorems 14
and 17 and Corollary 11.

Corollary 22. The ALL-PAIRS SHORTEST DISTANCE LCA problem can be solved in
time O(min{n2m,nmk2}) where k is the maximum cardinality of all LCA sets.

Corollary 23. The ALL-PAIRS SHORTEST DISTANCE LCA problem can be solved in
time O

(
min{n2+μ · w(G), nm · w(G)}). For the first bound, i.e., on dense dags, edge

weights are limited to be integer constants.

6 Conclusion and Open Problems

Figure 1 shows an overview (and the according interpretation) of the relations be-
tween several problems with output complexity Ω(n2). For example, Bender et al. [6]
have shown how to solve ALL-PAIRS REPRESENTATIVE LCA using APSD and how
to solve TRANSITIVE CLOSURE using ALL-PAIRS REPRESENTATIVE LCA, whereas
Kowaluk et al. [15] have figured out the relation indicated between ALL-PAIRS REP-
RESENTATIVE LCA and MAXIMUM BOOLEAN WITNESSES. Our contributions are

292 M. Baumgart et al.

SHORTEST DIST.

ALL LCA
BOOLEAN
WITNESSES

MAXIMUM

REPRESENTATIVE
ALL-PAIRS

LCA

ALL-PAIRS

LCA
SHORTEST DIST.

TRANSITIVE
CLOSURE

CA
SHORTEST DIST.
ALL-PAIRS

ALL-PAIRS
SHORTEST DIST.
CA1

ALL-PAIRS

ALL-PAIRS

Fig. 1. Structural overview of problem complexities. The interpretation is as follows: let A and
B be two problems and IA and IB two instances with solutions S(IA), S(IB) respectively. An
arrow from A to B means that S(IA) can be directly read from S(IB), where IB is constructed
from IA in linear time. More formally, IB = g(IA) for a function g linear-time computable
in |IA| and S(IA) = f(IA, S(g(IA))), where IB = g(IA) f is linear-time computable in
|IA| + |S(IB)|.

also integrated. Note that the arrow between TRANSITIVE CLOSURE and ALL-PAIRS

SHORTEST DISTANCE CA restricted to instances with constant edge weights is inten-
tionally missing. It seems that a solution to the first problem cannot be directly read
from a solution of the latter, if the latter one’s instance is restricted to constant edge
weights.

In this paper, we have described and efficiently solved all-pairs ancestor problems on
dags both for sparse and dense instances. Our solutions for ALL-PAIRS ALL LCA ex-
hibit nice scaling properties. Moreover, upper bounds for the scaling factors beautifully
coincide with Dilworth’s theorem.

ALL-PAIRS SHORTEST DISTANCE CA is widely understood. On sparse graphs our
solution is optimal, and on dense graphs the gap between APSD and ALL-PAIRS

SHORTEST DISTANCE CA is shown to be at most polylogarithmic. On the other hand,
our algorithms for ALL-PAIRS SHORTEST DISTANCE LCA rely fully on the solution
of the ALL-PAIRS ALL LCA problem. We are left with intriguing open questions:

References

1. Aho, A., Hopcroft, J., Ullman, J.: On finding lowest common ancestors in trees. SIAM
J. Comput. 5(1), 115–132 (1976)

2. Aı̈t-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice operations.
ACM Trans. Program. Lang. Syst. 11(1), 115–146 (1989)

3. Alon, N., Naor, M.: Derandomization, witnesses for boolean matrix multiplication and con-
struction of perfect hash functions. Algorithmica 16(4–5), 434–449 (1996)

4. Baumgart, M., Eckhardt, S., Griebsch, J., Kosub, S., Nowak, J.: All-pairs common-ancestor
problems in weighted dags. Technical Report TUM-I0606, Institut für Informatik, TU
München (April 2006)

5. Benczúr, A., Förster, J., Király, Z.: Dilworth’s theorem and its application for path systems
of a cycle - implementation and analysis. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643,
pp. 498–509. Springer, Heidelberg (1999)

All-Pairs Ancestor Problems in Weighted Dags 293

6. Bender, M., Pemmasani, G., Skiena, S., Sumazin, P.: Finding least common ancestors
in directed acyclic graphs. In: Proc. 12th Annual Symposium on Discrete Algorithms
(SODA’01), pp. 845–854 (2001)

7. Bender, M., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common
ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005)

8. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–
230 (1994)

9. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4), 894–923
(2005)

10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Sym-
bolic Computation 9(3), 251–280 (1990)

11. Coppersmith, D.: Rectangular matrix multiplication revisited. J. Complexity 13(1), 42–49
(1997)

12. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common an-
cestors in directed acyclic graphs. Electronic Colloquium on Computational Complexity
(ECCC), TR06-111 (2006)

13. Gao, L.: On inferring autonomous system relationships in the Internet. IEEE/ACM
Trans. Networking 9(6), 733–745 (2001)

14. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM J. Com-
put. 13(2), 338–355 (1984)

15. Kowaluk, M., Lingas, A.: LCA queries in directed acyclic graphs. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
241–248. Springer, Heidelberg (2005)

16. Moret, B., Nakhleh, L., Warnow, T., Linder, C., Tholse, A., Padolina, A., Sun, J., Timme, R.:
Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Com-
put. Biology Bioinform. 1(1), 13–23 (2004)

17. Nakhleh, L., Wang, L.: Phylogenetic networks: Properties and relationship to trees and clus-
ters. In: Priami, C., Zelikovsky, A. (eds.) Transactions on Computational Systems Biology
II. LNCS (LNBI), vol. 3680, pp. 82–99. Springer, Heidelberg (2005)

18. Nykänen, M., Ukkonen, E.: Finding lowest common ancestors in arbitrarily directed trees.
Inf. Process. Lett. 50(1), 307–310 (1994)

19. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and paral-
lelization. SIAM J. Comput. 17(6), 1253–1262 (1988)

20. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Com-
put. Syst. Sci. 51(3), 400–403 (1995)

21. Tarjan, R.: Applications of path compression on balanced trees. J. ACM 26(4), 690–715
(1979)

22. Wang, B., Tsai, J., Chuang, Y.: The lowest common ancestor problem on a tree with an
unfixed root. Inf. Sci. 119(1–2), 125–130 (1999)

23. Wen, Z.: New algorithms for the LCA problem and the binary tree reconstruction problem.
Inf. Process. Lett. 51(1), 11–16 (1994)

24. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM 49(3), 289–317 (2002)

Streaming Algorithms for Data in Motion

M. Hoffmann1, S. Muthukrishnan2,�, and Rajeev Raman1

1 Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
{m.hoffmann,r.raman}@cs.le.ac.uk

2 Division of Computer and Information Sciences, Rutgers University, Piscataway, NJ
08854-8019, USA

muthu@cs.rutgers.edu

Abstract. We propose two new data stream models: the reset model
and the delta model, motivated by applications to databases, and to
tracking the location of spatial points.

We present algorithms for several problems that fit within the stream
constraint of polylogarithmic space and time. These include tracking the
“extent” of the points and Lp sampling.

1 Introduction

The area of data stream algorithms is the study of algorithmic problems in
applications where the data arrives at extremely high speed. Further, the mem-
ory available is quite small, so the entire data can not be stored. Thus algo-
rithms have to solve data analyses problems to the best extent they can with
sublinear—often polylogarithmic—space, and fast per-item processing. Under
these constraints, computing most significant functions on the data stream is
provably impossible. So, algorithms typically tend to produce an approximation
and are often randomized. Such algorithms have been developed for a number
of data analyses problems including estimation of various norms [8,28], cluster-
ing [23,11,24], histograms [21], quantiles [22], heavy-hitters [33] etc.

The quintessential application where this arises is in processing internet traf-
fic logs such as the headers on IP packets and IP sessions. Since packets are
forwarded at blistering speeds in the internet, these traffic logs are generated
at very high speed; memory working at this speed within the routing elements
is quite scarce, and the logs have to be processed in real time to solve number
of queries involved in monitoring the internet for security breaches, accounting,
billing etc. This application has become fairly well developed, with tutorials and
a number of research papers in networking conferences [38,16,32], specialized
database systems aimed at such applications discussed in workshops, tutorials
and a number of papers in database conferences [1,37,9], and fundamental algo-
rithmic and complexity-theoretic issues being studied in the theoretical computer
science community [8,6,35].

Recently, there is growing interest in other data streams. In particular, an
emerging area is one of spatial streams. These are location-specific streams. For
� Supported by NSF EIQ 0087022, NSF ITR 0220280 and NSF EIA 02-05116.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 294–304, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Streaming Algorithms for Data in Motion 295

example, consider a vast collection of moving objects. Over time, their locations
change and one wants to track various functions of their locations. GPS (Global
Positioning System) enables tracking locations of devices over large scale. Wire-
less service providers are looking to use this or other infrastructure to enable
location-aware services, which is a burgeoning industry [3]. Other industries are
actively engaged in developing applications based on tracking the location of var-
ious objects: delivery trucks (eg. [2]), University campus buses [4], cars, stocks
of goods, biosensors [5], astronomical studies via satellite and ground-based sys-
tems [36], etc.

We propose two new models. Both models have relevance to existing scenarios
(e.g. databases) as well as spatial streams. We study a fundamental problems,
e.g., accurately estimating the “extent” of moving objects, under both models
and design space- and time-efficient algorithms for these problems. As in the
study of standard data streams [9,35], exact calculation of most functions is
impossible in our new model, and algorithms tend to be probabilistic and ap-
proximate. Our algorithms rely on new versions of techniques used commonly in
streaming problems.

1.1 The Reset Model

The first model is the reset model, which is as follows. There is a vector d =
(d1, . . . , dn) in)n, where n is assumed to be very large. We assume that di = 0
for i = 1, . . . , n initially, and consider the following model of updates:

Reset model: The updates appear in a stream (i, x), implying that di ← x.

For spatial data, each element of the vector may be a point in)d, and an
update may reset one or more coordinates of a given point.

Remark 1. In contrast, in existing data stream models (e.g. the turnstile model
[35, p9]), an update (i, x) implies di ← di + x. So, instead of increments as in
previous models, an update resets data values.

The reset model also differs from the dynamic geometric model considered in
e.g. [27] processes a stream of intermixed operations INS(p) and DEL(q), for
points p and q. One cannot reduce the reset model to the dynamic geometric
model, as simulating a reset by a DEL followed by an INS gives information
about the previous location of the point that is not readily available to the
algorithm in the reset model (recall that x and y are not stored explicity).

Motivations. The reset model has two independent motivations. First, there is
a selftuning approach to selectivity estimation in databases [7]. The query pro-
cessor has a “summary” that describes some (not necessarily the current) state
of the data distribution in the database. It selects query plans for execution using
the summary; but when a query is executed, as a by-product, it gets to know the
actual values the query intersects. The query optimizer needs to use this feedback
to update its knowledge of the data distribution. Each time it knows an actual
value, it corresponds to a reset. The goal is for the query optimizer to estimate

296 M. Hoffmann, S. Muthukrishnan, and R. Raman

various parameters of interest on the data distribution under this stream of resets.
This precisely corresponds to the reset model of data streams. The second moti-
vation arises in streams of locations. For example, in traffic sensor information
systems [34], the stream corresponds to location-dependent queries from clients
that are passed on to one of several servers by mediators. Each server gets a sub-
set of clients; a given client may go to multiple servers before being assigned to one
of them again. Servers need to track statistics on the locations of clients assigned
to them. At each server, a new location-dependent query for a client is precisely a
reset operation and they need to tracking statistics on their location corresponds
using “summaries”. We have provided only high level view of how reset model of
streaming fits both these applications. More details are in [7,34].

We now describe our results in the reset and delta models. In what follows,
an (ε, δ)-estimator of a quantity x is a random variable x̂ such that Pr[(1−ε)x ≤
x̂ ≤ (1 + ε)x] ≥ 1− δ.

Results. The reset model is significantly more restrictive than known data
stream models, so it presents significant algorithmic challenges. Indeed, for the
reset model, only very basic techniques appear to be useful, such as random
sampling, using which several problems such as approximate quantiles or the
1-median problem can be solved easily (see e.g. [29]). We obtain results in this
model by assuming that the update stream is monotone, i.e. an update always
causes di to increase.

Let d in)n be updated as in the reset model. We consider two fundamental
problems—that of estimating ||d||p for some p ≥ 0, and Lp sampling, i.e. choosing
an element from {1, . . . , n} such that i is chosen with probability proportional to
|di|p. If p = 0 then the problem reduces to calculating the L0 norm of a stream
which can be solved as in [12]. In fact, we can assume that p = 1, and that di

is always non-negative, without loss of generality. Specifically, let 1 ≥ δ, ε > 0
be two constants specified by the user. We give an algorithm that, if the if the
update stream is monotone:

– for any k, 1 ≤ k ≤ n, returns on request an (ε, δ) estimator for d(k), the sum
of the k largest elements in d. In particular, when k = n, it returns an (ε, δ)
estimator for ||d||1,

– returns on request an integer i from {1, . . . , n} with probability p̃i where
|di|

||d||1(1+ε) − ε/n ≤ p̃i ≤ (1+ε)|di|
||d||1 .

In case the algorithm is presented with a non-monotone update sequence, it
(in essence) ignores any non-monotone updates, and may therefore return an
incorrect answer. However, in case the update sequence is ‘significantly’ non-
monotone, this can be detected, in the following sense:

– Let d∗i be the maximum value attained by di over the sequence of updates,
and let d∗ = (d∗1, . . . , d

∗
n). If the update stream is non-monotone, with prob-

ability 1− δ, we detect non-monotonicity before ||d||1(1 + ε)3 ≤ ||d∗||1.
The algorithm uses polylog(n) space, and polylog(n) time to process each update
and query. The approach is similar to one used in [14], but we consider a wider
range of problems than were considered there.

Streaming Algorithms for Data in Motion 297

We make a few remarks about the results. The problem of computing the L∞
norm of d (the maximum element) is known to be hard in the turnstile model,
even if values are increasing monotonically. However, this problem is trivial in
the monotone reset model. Conversely, the problem of computing the sum of the
values in d is trivial in the turnstile model, but requires a little effort in the reset
model. It is not known how to solve the problem of Lp sampling, or to estimate
the sum of the k largest elements, for any k, in the turnstile model.

1.2 Delta Model

Let x,y ∈)n; initially, x = y = 0. The vectors are updated as follows:

Delta model: The updates appear in a stream (i,Δx,Δy), implying that xi ←
xi + Δx and yi ← yi + Δy.

Again, x,y hold the coordinates of n points in)2. This model is a direct gen-
eralisation of the classical turnstile model to two dimensions. As in Remark 1,
this model is different from the geometric stream models considered in the lit-
erature. Although we are aware of no “physically” spatial application where the
delta model is currently appropriate1 this model is also motivated by database
contexts, where several of the myriad motivations of the (one-dimensional) turn-
stile model carry over.

Results. We consider the problem of computing the “extent” of the point set
S given by x and y. Let d be the vector of Lp distances of S relative to some
centre c = (cx, cy), which is specified as part of the query. The objective is to
be able to estimate ||d||q for some q. If p = q, the problem is equivalent to
that of estimating ||x− cx||p + ||y − cy||p, where x and y are the vectors of x-
and y- coordinates respectively. Thus, the problem factors trivially into two 1-D
Lp norm estimations. The truly interesting case is when p = 2 and q = 1; this
corresponds to computing the sum of the (Euclidean) distance of the points from
a given centre. We show:

– For any fixed ε > 0 and δ > 0, we give a data structure that, given any
c = (cx, cy), returns an (ε, δ)-estimator of ||d||1, where d is the vector of L2

distances of points in S from c.

The result assumes that the choice of c is independent of the random choices
made by the algorithm (more precisely, that the operation sequence is generated
by an oblivious adversary). The algorithm uses polylog(n) space, and polylog(n)
time to process each update and query.

In the remainder of the paper, we give the results on the reset and delta model
in Section 2 and Section 3, and conclude with some open problems.

1 However, one can easily conceive of devices that can report the change in position
since the last report, without being aware of their current position.

298 M. Hoffmann, S. Muthukrishnan, and R. Raman

2 Reset Model

Let d in)n be updated as in the reset model. Recall that an update stream is
monotone if an update always causes di to increase. We show:

Lemma 1. For any constants 1 ≥ δ, ε > 0, there is an algorithm that returns
on request an (ε, δ) an (ε, δ)-estimator d̃ of d(k), for any given integer k, 1 ≤
k ≤ n, provided that the update stream is monotone. The algorithm ignores
non-monotone operations.

The algorithm takes O(τs) time to process an update and uses O(σs) space,
where τ and σ are the time and space required to return an (ε′, δ/(2(s + 1)))-
estimator of the number of distinct elements in a stream of items from {1, . . . , n},
where ε′ = ε/3 and s = �1 + log1+ε′(n/(ε′)2)�.
Proof. We begin with the case k = n, i.e., an estimator for ||d||1. We concep-
tually create an infinite sequence of buckets, . . . , B−1, B0, B1, . . ., where the i-th
bucket has weight wi = (1 + ε′)i and ε′ = ε/3. At any given time, only a con-
tiguous sequence of buckets Br−s, . . . , Br is active. Let ni denote the number of
distinct elements from {1, . . . , n} that are placed into Bi. Associated with each
active bucket Bi is the assumed data structure that returns an (ε′, δ/(2(s+1)))-
estimator ñi of the ni. Activating a bucket means allocating memory for such
a data structure and appropriately initializing it. For any d, we let ρ(d) be the
integer k such that

∑k−1
j=−∞ wj < d ≤

∑k
j=−∞ wj .

To process an update (i, d), we determine ri = ρ(d) and distinguish three
cases:

– If ri < r − s we update no buckets.
– If r − s ≤ ri ≤ r we place the integer i into all buckets Br−s, . . . , Bri .
– If ri > r, we deactivate buckets Br−s, . . . , Bri−s−1, activate any inactive

buckets among Bri−s, . . . , Br, place the integer i into all these buckets, and
finally set r := ri.

To estimate ||d||1, we proceed as follows. For j = r − s, . . . , r we obtain an
estimate ñj of the number of distinct values placed in Bj and return d̃ =∑r

j=r−s ñj · wj . We now calculate the error in this estimate.
First note that by definition,

∑ri−1
j=−∞ wi ≤ di, and so

∑ri

j=−∞ wj ≤ (1+ ε′)di.
Since ñi ≤ (1 + ε′)ni for all i = r − s, . . . , r, it follows that with probability at
least 1− δ/2:

d̃ =
∑r

j=r−s ñj · wj ≤ (1 + ε′)
∑r

j=r−s nj · wj

≤ (1 + ε′)2
r∑

j=r−s

di ≤ (1 + ε/3)2||d||1

≤ (1 + ε)||d||1
To lower-bound the estimate, take s = �1 + log1+ε′(n/(ε′)2)�, and note that:

ri∑

j=r−s

wj ≥ di −
r−s−1∑

j=−∞
wj ≥ di − dmax/(1 + ε′)s ≥ di − (ε′)2dmax/(n(1 + ε′))

Streaming Algorithms for Data in Motion 299

Summing over i, we get that:

r∑

j=r−s

nj · wj ≥
n∑

i=1

di − (ε′)2dmax/(1 + ε′) ≥ (1− ε′)
n∑

i=1

di

As with the upper bound, we note that the probability that ñi is not a significant
underestimate is at least (1 − δ/2). This gives the desired probability bound.

We now describe the general case. We omit the analysis of the failure probabil-
ity, which is as above. For integer x, r− s ≤ x ≤ r, define f(x) = k

∑x
i=r−s wi +∑r

i=x+1 niwi. Let t be the largest index i such that ni ≥ k. Arguing as above,
(1 − ε′)d(k) ≤ f(t) ≤ (1 + ε′)d(k), as f(t) is precisely how d(k) is represented
within the buckets. Now let f̃(x) = k

∑x
i=r−s wi +

∑r
i=x+1 ñiwi. The algorithm

chooses the largest index t′ such that ñt′ ≥ k and returns f̃(t′) as the estimator.
We now bound the error |f(t)− f̃(t′)|, considering first the case t′ ≥ t.

Since ñt′ ≥ k, except with negligible probability, we have nt′ ≥ k/(1 + ε′).
Thus, k/(1 + ε) ≤ nt′ ≤ . . . ≤ nt+1 < k, and:

|f(t)− f̃(t′)| ≤
r∑

i=t+1

wi|ñi − ni|+
t′
∑

i=t+1

wi(k − ni)

≤
r∑

i=t+1

ε′niwi +
t′
∑

i=t+1

ε′wini ≤ ε′f(t)

If t > t′ then for i = t′ + 1, . . . , t, ni ≥ k > ñi ≥ (1 − ε′)ni. Thus:

|f(t)− f̃(t′)| ≤
r∑

i=t′+1

wi|ñi − k|+
t∑

i=t′

wi(k − ñi)

≤
r∑

i=t′+1

ε′niwi +
t′
∑

i=t+1

ε′wini ≤ ε′f(t)

Thus, we have that (1 − ε′)2d(k) ≤ f̃(t′) ≤ (1 + ε′)2d(k), and the result follows
as above. ��

For non-monotone sequences, let d∗i be the maximum value attained by di over
the sequence of updates, and let d∗ = (d∗1, . . . , d∗n). We now show:

Theorem 1. For any constants 1 ≥ δ, ε > 0 there is an algorithm that, if the
update stream is monotone:

(a) returns on request an (ε, δ)-estimator of ||d||1,
(b) for any k, 1 ≤ k ≤ n, returns on request an (ε, δ)-estimator of d(k) and
(c) returns on request an element i from {1, . . . , n} with probability p̃i where

|di|
||d||1(1+ε) − ε/n ≤ p̃i ≤ (1+ε)|di|

||d||1 .

Non-monotone updates are ignored by the algorithm. Furthermore,

300 M. Hoffmann, S. Muthukrishnan, and R. Raman

(d) if the update stream is non-monotone, the algorithm, with probability at least
1 − δ detects the non-monotonicity before ||d||1(1 + ε)3 ≤ ||d∗||1, where d∗

is as above.

The algorithm uses polylog(n) space and time to process an update.

Proof. (Sketch) Lemma 1 essentially proves (a) and (b); it only remains to note
that either the Flajolet-Martin algorithm or its refinements [18,10] or the algo-
rithm of [12, Theorem 4] estimates the number of distinct items in a stream in
at most polylog(n) space and time.

We now outline a solution to (c). Ideally, for every active bucket Bi we would
choose a random representative, such that each (distinct) element in Bi is chosen
with probability 1/ni (and update the representative when a bucket is updated).
When asked for a sample from d, we would return one of the representatives,
choosing the representative of bucket i with probability proportional to niwi.
Then, the probability of selecting i is (taking ri = ρ(di)):

ri∑

j=r−s

1
nj

njwj∑r
j=r−s njwj

=

∑ri

j=r−s wj
∑r

j=r−s njwj
.

As before, the numerator is essentially di and the denominator is essentially
||d||1. Other sources of errors are that we are able only to sample a bucket
representative with a distribution that is arbitrarily close to uniform (using ap-
proximately min-wise independent permutations, see [15]), and that we must
work with probabilistic estimates ñj rather than nj. These are handled as in
Lemma 1.

Finally, we consider (d), and indicate how to detect non-monotonicity. After
a non-monotonic update, the updated element may continue to exist incorrectly
in a (higher-numbered) bucket. We let n∗

i and ni denote the number of elements
placed in Bi by the algorithm, and the number of elements that ‘ought’ to
be in Bi, respectively. If ||d||1(1 + ε)3 < ||d∗||1, where d∗ is as above, then
(1 + ε)

∑r
j=r−s niwi ≤

∑r
j=r−s n

∗
i wi. Thus, there is at least one bucket Bi for

which (1 + ε)niwi ≤ n∗
i wi. This can only happen if at least εn∗

i /(1 + ε) of the
n∗

i elements that were ever in Bi were updated non-monotonically. This can
be detected with the required probability by keeping a test sample of m =
O(log δ/(1 − ε/(1 + 2ε))) elements chosen approximately uniformly at random
from the n∗

i elements in Bi, together with their current values, and checking
to see if any of the elements in the test sample are updated non-monotonically.
(The sampling is done as in [15].) ��
Remark 2. In contrast, the problem under the general case when updates are
not monotonic is provably impossible to solve under streaming constraints (e.g.
polylog space). We can reduce the problem to that of estimating |A| − |A ∩ B|
for two sets A and B given in standard turnstile model, which in turn, can be
shown to have a nearly linear space lower bound for 1+ε approximation by known
lower bounds in Communication Complexity. We omit showing this process here
because it is quite standard once the problem of estimating |A|− |A∩B| is given
as the key.

Streaming Algorithms for Data in Motion 301

3 Delta Model

Recall that in this model, a set S of n 2-D points is represented by two vectors
x,y ∈)n. We consider the following problem:

– Let d be the vector of L2 distances of the points of S relative to some centre
c = (cx, cy) (the centre is specified as part of the query). The objective is to
be able to estimate ||d||1.

We begin by considering a simple 1-D version of the problem. Consider a
vector x of size n that contains x-coordinates, and suppose that we process a
sequence of updates (i,Δx), which sets xi ← xi + Δx. Then, we have that:

Proposition 1. For any fixed ε > 0 and δ > 0, there is a data structure that
processes each update in poly-log time, uses poly-log space, and in poly-log time,
given any c, returns an (ε, δ)-estimator of

∑n
i=1 |xi − c|.

Proof. We essentially observe that the standard algorithm [28] for estimating
||x||1 also computes the above quantity. The algorithm maintains a sketch of x,
which is simply a sequence of values x · ri, for i = 1, . . . , k, and where ri is a
pseudo-random vector drawn from an 1-stable distribution. It can be shown that
the (normalised) median of x · ri, for i = 1, . . . , k, for sufficiently large k is an
(ε, δ)-estimator of ||x||1. In order to estimate ||x − c||1, where c = (c, c, . . . , c),
we simply compute a sketch of x−c, by computing x ·ri−c ·ri, for i = 1, . . . , k.
This can be done in O(1) time per sketch element provided the sum of the values
in ri is known. Since ri is not stored explicitly, this is not trivial, but can be
done by using so-called range-summable random variables [21, Lemma 2].

The 2-D version of the problem can be reduced to two 1-D problems by con-
sidering the projections of the points e.g. on to orthogonal axes. Estimating the
extent based on one pair of axes, however, would yield a (

√
2+ ε)-approximation

in the worst case. Considering the projections of the points along several pairs
of orthogonal axes allows us to greatly improve the accuracy:

Lemma 2. Let � be a line segment of length x. Consider a collection C of k ≥ 1
lines passing through the origin, at angles (πi)/k for i = 0, . . . , k − 1. Then,
if s is the sum of the lengths of the projections of l on all lines in C, then
x(1 −Θ(1/k)) ≤ sπ/(2k) ≤ x(1 + Θ(1/k)).

Proof. Viewing the question as a continuous one, we can approximate the sum
by x

∫ π

0 | cos(θ)|dθ = 2x. As cos has bounded slope, we have that |sπ/k − 2x| =
O(x/k) (see Figure 1). The lemma follows.

We conclude:

Theorem 2. For any fixed ε > 0 and δ > 0, there is a data structure that
processes each update in poly-log time, uses poly-log space, and in poly-log time,
given any c = (cx, cy), returns an (ε, δ)-estimator of ||d||1, where d contains the
L2 distances from c to points in S.

302 M. Hoffmann, S. Muthukrishnan, and R. Raman

/ kπ

x

Fig. 1. Approximation of a line by its projections

Proof. For k a sufficiently large constant, we consider a collection of k lines
through the origin as above. Let � be a line in this collection, and project all
the points (xi, yi) onto �. Let ti be the distance of the projected point from the
origin. We use Proposition 1 to maintain a sketch of the vector (t1, . . . , tn); this
allows us also to project a given centre c on to � and use the sketch to estimate
the total distance τ�(c) from the projection of the centre. But τ�(c) is nothing
but the sum of the projections of the distance from c to the points; by Lemma 2,
we can sum all estimates of τ�(c) over �, multiply this by π/2k, and obtain the
desired (ε, δ) estimator.

4 Conclusions and Open Problems

We have proposed a new model for processing high speed location streams, and
presented algorithms for the problem of tracking the “extent”, i.e., lp norm of the
distances of the points from a center. For the reset model, the assumption is that
the input sequence is monotone; we obtain further algorithms for Lp sampling
and computing the sum of the k largest elements. All algorithms work under
‘streaming’ constraints, namely, they use poly-logarithmic space and time.

The problem of processing location streams does not have the immediacy of
applications that processing IP network streams has, at this point. But the ear-
liest streaming algorithms were developed around 1996 [8] when the immediacy
of IP networking application was not clear. Our model is challenging and we
hope it will prove to be a rich source of problems as new applications with loca-
tion streams become prevalent. Many natural open problems are obvious in the
reset models, including the fundamental geometric problems such as estimating
convex hulls, etc. Particularly interesting is the formulation of suitable notions
of monotonicity that may be needed to make these problems tractable.

Streaming Algorithms for Data in Motion 303

Acknowledgements. We thank Graham Cormode for several enlightening dis-
cussions, and to Christian Söhler for bringing [29] to our attention.

References

1. DIMACS Workshop on Managing and Processing Data Streams, FCRC (2003),
http://www.research.att.com/conf/mpds2003/

2. http://www.interfleet.com/
3. http://www.lbszone.com/, http://www.lbszone.com/,

http://www.lbszone.com/
4. http://www.whereismybus.com/
5. http://dimacs.rutgers.edu/Workshops/WGDeliberate/

FinalReport5-20-02.doc
6. DIMACS Working Group on Streaming Data Analysis,

http://dimacs.rutgers.edu/Workshops/StreamingII/
7. Abounaga, A., Chaudhuri, S.: Self-tuning histograms: Building histograms without

looking at the data. In: Proc. SIGMOD (1999)
8. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the

frequency moments. In: Proc. ACM STOC, pp. 20–29 (1996)
9. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in

data stream systems. ACM PODS, pp. 1–16 (2002)
10. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting

distinct elements in a data stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RAN-
DOM 2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)

11. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for
clustering problems. ACM STOC (2003)

12. Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing data streams
using Hamming norms (How to zero in). IEEE Trans. Knowledge and Data Engi-
neering 15, 529–541 (2003)

13. Cormode, G., Muthukrishnan, S.: Radial Histograms. DIMACS TR 2003-11.
14. Cormode, G., Muthukrishnan, S.: Estimating dominance norms of multiple data

streams. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp.
148–160. Springer, Heidelberg (2003)

15. Datar, M., Muthukrishnan, S.: Estimating Rarity and Similarity over Data Stream
Windows. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp.
323–334. Springer, Heidelberg (2002)

16. Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource
consumption in network traffic. SIGCOMM (2003)

17. Feigenbaum, J., Kannan, S., Ziang, J.: Computing diameter in the streaming and
sliding window models. Manuscript (2002)

18. Flajolet, P., Martin, G.: Probabilistic counting algorithms for database applica-
tions. JCSS 31, 182–209 (1985)

19. Gibbons, P., Matias, Y.: Synopsis data structures. In: Proc. SODA, pp. 909–910
(1999)

20. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on
streams: One pass summaries for approximate aggregate queris. VLDB Journal,
79–88 (2001)

21. Gilbert, A.C., Guha, S., Indyk, P., Indyk, P., Kotidis, Y., Muthukrishnan, S.,
Strauss, M.J.: Fast, small-space algorithms for approximate histogram mainte-
nance. In: Proceedings 34th ACM STOC, pp. 389–398 (2002)

http://www.research.att.com/conf/mpds2003/
http://www.interfleet.com/
http://www.lbszone.com/
http://www.lbszone.com/
http://www.lbszone.com/
http://www.whereismybus.com/
http://dimacs.rutgers.edu/Workshops/WGDeliberate/FinalReport5-20-02.doc
http://dimacs.rutgers.edu/Workshops/WGDeliberate/FinalReport5-20-02.doc
http://dimacs.rutgers.edu/Workshops/StreamingII/

304 M. Hoffmann, S. Muthukrishnan, and R. Raman

22. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: Proc. ACM SIGMOD (2001)

23. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. IEEE
FOCS, pp. 359–366 (2000)

24. Har-Peled, S., Mazumdar, S.: On Coresets for k-Means and k-Median Clustering.
In: Proc. 36th ACM STOC, pp. 291–300 (2004)

25. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data stream. Tech-
nical Note 1998-011. Digital systems research center, Palo Alto (May 1998)

26. Hershberger, J., Suri, S.: Convex hulls and related problems on data streams. In:
Proc. MPDS (2003)

27. Indyk, P.: Algorithms for dynamic geometric problems over data streams. In: Proc.
Annual ACM Symposium on Theory of Computing (STOC), pp. 373–380 (2004)

28. Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data
stream computation. IEEE FOCS, pp. 189–197 (2000)

29. Indyk, P., Thorup, M.: Unpublished manuscript (2001)
30. Jana, R., Johnson, T., Muthukrishnan, S., Vitaletti, A.: Location based services in

a wireless WAN using cellular digital packet data (CDPD). MobiDE 2001: 74–80
31. Korn, F., Muthukrishnan, S., Srivastava, D.: Reverse nearest neighbor aggregates

over data streams. In: Proc. VLDB (2002)
32. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection:

methods, evaluation and applications. In: Proc. Internet Measurement Conference
(IMC) (2003)

33. Manku, G., Motwani, R.: Approximate frequency counts over data streams. In:
Proc. VLDB, pp. 346–357 (2002)

34. Madden, S., Franklin, M.: Fjording the stream: An architecture for queryies over
streaming sensor data. In: Proc. ICDE (2002)

35. Muthukrishnan, S.: Data Streams: Algorithms and Applications. The Foundations
and Trends in Theoretical Computer Science series, Now Publishers (2005)

36. Bates, J.: Talk at NAS meeting on Statistics and Massive Data,
http://www7.nationalacademies.org/bms/Massive Data Workshop.html

37. Querying and mining data streams: you only get one look. Tutorial
at SIGMOD (2002) VLDB 2002 etc. See http://www.bell-labs.com/
user/minos/tutorial.html

38. Varghese, G.: Detecting packet patterns at high speeds. Tutorial at SIGCOMM
(2002)

http://www7.nationalacademies.org/bms/ Massive_Data_Workshop.html
http://www.bell-labs.com/user/minos/tutorial.html
http://www.bell-labs.com/user/minos/tutorial.html

A Scheduling Problem with One Producer and

the Bargaining Counterpart with Two Producers

Xiaobing Gan1, Yanhong Gu2, George L. Vairaktarakis3, Xiaoqiang Cai4,
and Quanle Chen4,�

1 Department of Information and System Management, Shenzhen University,
Shenzhen 518060, China

2 Department of Applied Mathematics, Shenzhen University, Shenzhen 518060, China
3 Department of Operations, Case Western Reserve University, Cleveland, OH

44106-7235, USA
4 Department of Systems Engineering and Engineering Management,

The Chinese University of Hong Kong, Shatin, N.T., HK
smacq@nus.edu.sg, qlchen@se.cuhk.edu.hk

Abstract. First this paper considers a Common Due Window (CDW)
scheduling problem of n jobs on a single machine to minimize the sum
of common weighted earliness and weighted number of tardy jobs when
only one manufacturer processes these jobs. Two dynamic algorithms
are designed for two cases respectively and each case is proved to be
ordinary NP-hard. Successively the scenario, where two manufacturers
jointly process these jobs due to the insufficient production facilities or
techniques of each party, is investigated. A novel dynamic programming
algorithm is proposed to obtain an existing reasonable set of processing
utility distributions on the bi-partition of these jobs.

1 Introduction

Since job-processing schedules are important for large-scale manufacturing pro-
jects, the development of algorithms for scheduling problems is always attract-
ing many researchers in the domain of optimization. Moreover if the cooperation
among several manufacturers for a manufacturing project is considered, bargain-
ing models on partitioning jobs are naturally striking.

In this paper we first address a scheduling problem of n jobs with a CDW
where the time window is from an earliest due date to a latest due date. It may
be convincing that the original research result on due window appears in [1]. Suc-
cessively, during about twelve years, a main thrust of study in this scheduling
area has been directed to the problem type where deterministic combinatorial
optimization algorithms can be developed. These include [2]∼[11]. But in recent
five years, some effort has been taken to obtain approximate solutions of those
more complicated DW scheduling problems by stochastic adaptive schemes. The
representative papers are [12] and [13]. Such a phenomenon may overwhelmingly

� Corresponding author.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 305–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

306 X. Gan et al.

foresee that it is not proper for us to pursue deterministic algorithms and heuris-
tics to solve tough problems in this field. Then in this paper we focus on one
special case of the problem investigated in [4]. We develop some properties to
obtain a dynamic programming algorithm for the unrestricted case, where the
position of CDW is a decision variable and a similar dynamic programming
algorithm for the restricted case, in which the position of CDW is a given pa-
rameter.

Before we introduce the other part of our results in this paper, we should
first describe the new discrete bargaining model involving the partitions and
schedules of jobs in [26]. Suppose there are two manufacturers who are interested
in a manufacturing project with n jobs to be processed. Any of them has not
enough production facilities or techniques for this project. Finally they decide to
cooperate to bid for this project. Thus before they take part in that bid for the
processing of these jobs and win finally, they should first negotiate to partition
these n jobs in order to derive a reasonable processing profit distribution accepted
by each of these two parties.

Such a cooperation game model on the partition of a beneficial object is
first studied by Nash [16]. In his original Nash Bargaining Model (NBM) Nash
supposes that two parties need to divide a beneficial object. When a partition
of that beneficial object is given, a unique utility is determined for each party.
Thus each party has a utility function on the division of that object. If the
Pareto efficient boundary of the set of all the feasible utility pairs is continous,
we call it Pareto efficient frontier. If the Pareto efficient frontier are concave,
Nash shows that the bargaining solution (utility pair) of his NBM is unique,
and furthermore it is also the unique solution satisfying four Nash Axioms. That
is his famous Nash Bargaining Solution (NBS).

Many subsequent research results on this model can be found in [17]-[25].
The results in [17]-[22] still investigate the situation with a concave Pareto ef-
ficient frontier, while the situation only with finite feasible utility pairs, where
the Pareto efficient subset possesses some properties similar with the concavity
of its continuous counterpart (Pareto efficient frontier), is addressed in [23]-[25].
Although Chen [26] also investigates this discrete situation, he does not assume
any convenient property on the set of feasible utility pairs. But Chen assumes the
beneficial object is a set of non-preemptive jobs to be processed. The processing
time of any job is an integer. A feasible division of this object is a bi-partition
of these jobs. All the given parameters of any job such as processing time, due
date, weighted penalty factors, and so on, are also non-negative integers. Then
naturally chen also lets the two utility function be integer-valued. Besides these
general assumptions Chen is concerned with the following special scheduling sce-
nario: when a bi-partition of jobs is given, any party’s utility of processing those
jobs assigned to him depends on an optimal schedule of those jobs. This optimal
schedule minimizes a cost (penalty) function on some operation, inventory or
transportation expenditure. Each utility function on jobs assigned to a party
comprises two terms and is defined as the first term minus the second. The first
term represents the integer gross profit proportional to the total processing times

A Scheduling Problem with One Producer and the Bargaining Counterpart 307

of jobs assigned to him from a job bi-partition. The second is the minimal value
of the objective (cost) function of a scheduling problem. For each of five specific
scheduling problems Chen designs a novel dynamic programming algorithm to
derive his bargaining solution set initiated for his complicated and practical dis-
crete bargaining model. In section 4 we will concisely expose why Chen needs
to revise the unique solution concept highlighted in the NBM to his solution set
concept initiated in [26].

In this paper we render a more general gross processing profit structure on
the jobs assigned to each party, in which the profit of one processing time unit
of different jobs can be different. For the scheduling case addressed in this paper
we also propose a dynamic programming algorithm to obtain Chen’s solution
set.

2 Problem Formulation and Notation

Let P denote the problem studied in [4]. Some basic assumptions about CDW
are very similar with those of P, and other particular notation for our special
case should be indicated. These two parts are as follows.

There are n jobs from a customer to be processed on a single machine. All
these jobs have been ready when the machine is available, and any preemption
is prohibited.
N = {1, 2, · · · , n}, the set of these n jobs Ji = job i in N
pi = processing time of Ji

Ci = completion time of Ji

d1 = common earliest delivery date for any job in N
d2 = common latest delivery date for any job in N
[d1, d2] = common due window
d = d2 − d1 = given delivery window length
E = set of jobs in N subject to Ci < d1

W = set of jobs in N such that Ci ∈ [d1, d2]
T = set of jobs in N satisfying Ci > d2

I(x) =
{

1, x > 0,
0, x ≤ 0.

In our problem, we also assume that there only exists one common due win-
dow, [d1, d2], for each job. If Ji is in W , no penalties are incurred. If Ji is in
E, it is called an early job, and the producer has to pay the inventory cost,
α(d1−Ci), where α is defined as the common earliness penalty of each time unit
for any job in our situation. It is one simplified constraint against the relevant
assumption in [4]. On the other hand, when the completion time of Ji is after
d2, it is defined as a tardy job, and the producer should pay an extra fee, cpi, in
which c is the common cost of one time unit of any job. It is also a simplification
of the assumption on the weighted number of a tardy job in [4]. Moreover in this
paper we are interested in the following two cases. In the so-called unrestricted
case, d1 or d2 is a decision variable, and the restricted case refers to a given d1

or d2.

308 X. Gan et al.

Consequently we face two problems, P1 and P2.

P1: min
(σ,d1)

n∑

i=1

α(d1 − Ci)I(d1 − Ci) + cpiI(Ci − d2).

P2: min
σ

n∑

i=1

α(d1 − Ci)I(d1 − Ci) + cpiI(Ci − d2).

P1 is for the unrestricted case, and P2 is for the restricted case.
Now we present the definitions and notation of the discrete bargaining prob-

lems for P1 and P2 respectively. For P1 and P2 we assume that each party (Ai)
has only one machine to process the jobs assigned to him. Those are denoted by
MA1 and MA2 respectively. Di denotes Ai’s continuous machine time interval
available for this task, and let pj be the common processing time of Jj for MA1

and MA2. The following are the definitions for the utility functions on P1 and
P2 respectively.

X = (X1, X2) = bi-partition of N to A1 and A2 such that X1 ∩ X2 = ∅ and
X1 ∪X2 = N

p =
n∑

j=1

pj = total processing times of these n jobs

Ui(Xi) = integer utility of Ai’s processing the jobs assigned to him
=
∑

j∈Xi

bj − min
(σi,d1)

f(Xi, σi, d1) (or =
∑

j∈Xi

bj −min
σi

f(Xi, σi))

where bj denotes the common processing profit of these two parties for Jj ,
f(Xi, σi, d1) is for P1, f(Xi, σi) is for P2, and f(Xi, σi, d1) (or f(Xi, σi)) is∑

j∈Xi
α(d1 − Cj)I(d1 − Cj) + cpiI(Cj − d2).

e = (e1, e2) = disagreement point satisfying ei ≥ U(∅), i = 1, 2
Actually ei is defined as the profit obtained from another project by Ai, if

these two parties fail to form a union for the project of these n jobs.
(u1, u2) = (U1(X1), U2(X2))
Vi(Xi) = Ui(Xi)− ei = net utility of Ai’s processing the jobs in Xi

(v1, v2) = (V1(X1), V2(X2))
According to the analysis in [26], we should treat a series of discrete optimiza-

tion problems as follows:

P1(r) max
X

: r1V1(X1)V2(X2) + r2 min{V 2
1 (X1), V 2

2 (X2)}
s.t. 0 < V1(X1) ≤ V2(X2),

X is feasible,

P2(r) max
X

: r1V1(X1)V2(X2) + r2 min{V 2
1 (X1), V 2

2 (X2)}
s.t. V1(X1) > V2(X2) > 0,

X is feasible,

where (r1, r2) denotes the common weight factor pair for A1 and A2 initiated
in Chen’s bargaining mechanisms, H = {1, 2, · · · , 9}, and r = (r1, r2) ∈ H ×
H ∪ {(1, 0), (0, 1)}. The initial maximization problem formulated by Nash is
max : v1v2. The solution of this problem is just the NBS of his NBM. In

A Scheduling Problem with One Producer and the Bargaining Counterpart 309

[26] Chen develops one dynamic programming algorithm to solve his Pi(r) and
obtain his original solution set from the solutions of Pi(r) for each of five specific
scheduling cases. In section 4, we will concisely justify the revisions on Nash’s
formulation and design the algorithms for our scheduling cases.

3 Algorithms for P1 and P2

In [4], the NP-hardiness of the studied problem is proved. Here if we revise and
add some parameters in that proof as follows,

αi ≡ α = p2n+1 = (
2n∑

i=1

pi)

3

, i = 1, 2, · · · , 2n, 2n + 1, c = 1,

we can also prove that Pi is NP-hard; see the details in section 4 of [4].

Property 1. There exists an optimal schedule for P1 so that the processing
of these n jobs begin from time point zero and no machine idle time appears
between the zero point and the completion time of the last job.

Property 2. There exists an optimal schedule to P1, where one job starts (or
completes) at d2.

Property 3. There exists an optimal schedule for P1, where jobs in E are in
LPT order.

Property 4. For P1, for any given set W and any given set T , the subsequences
on these two sets can be arbitrary for any optimal sequence of all the n jobs.

Among these four properties, Property 1,2,4 is very similar with those in [4], and
Property 3 simplifies the counterpart in [4] owing to our special assumptions on
the problem structure. But the following properties are original for P1; and
furthermore, without generality, from now on we assume that the jobs in N has
been numbered in LPT sequence.

Property 5. There exists an optimal schedule, where the processing time of the
first completed job, Jm, in W is the longest among those in W (see, figure 1).

Jm

jobs in E jobs in W jobs in T

0

d1

Cm

d2
d2 d1

Fig. 1. Illustration of Property 5

310 X. Gan et al.

Property 6. For any given Jm, there exists a local optimal partition in which
(i) Ji ∈ P 1

m = {Ji|i > m} ⇒ Ji ∈ W or Ji ∈ T ,
(ii) Ji ∈ P 2

m = {Ji|i < m} ⇒ Ji ∈ E or Ji ∈ T .

This two properties can be proved by the traditional adjacent pairwise interchange
method, thereby the details are omitted here. It is not difficult to know that Prop-
erty 2-6 still hold for P2, and Property 1 can be revised to the following corollary.

Corollary 1. There exists an optimal schedule for P2 so that no machine idle
time appears between the beginning time point of processing the first job and
the completion time of the last job.

Property 7. For P1 and P2, there exists such an optimal schedule where the
jobs in E and W are in LPT order.

In fact it is a corollary of Property 4-6. In order to design the dynamic program-
ming algorithm of P1, we should reschedule these n jobs in SPT order. The state
variables are k and x. Variable k represents the stage k where the first k jobs inN is
used. Variable x refers to the total processing times of the jobs inE∪W (see Figure
2). f(k, x) is the minimal value of the objective function for a given pair (k, x).

Algorithm 1 (Al1)

Recursive Relationships

f(k, x) = min

⎧
⎨

⎩

f(k − 1, x− pk)
+αI(x− pk − (d2 − d1))(x − pk − (d2 − d1))),
f(k − 1, x) + cpk,

2 ≤ k ≤ n, 0 ≤ x ≤ p.

Boundary Conditions

f(1, x) =

⎧
⎨

⎩

cp1, x = 0,
0, x = p1,

+∞, otherwise,
0 ≤ x ≤ p;
f(k, x) = +∞, k ≥ 1, x < 0.

Jm

jobs in E jobs in W jobs in T

0

d1 d2

d2 d1

Jk

pk

x

Fig. 2. Illustration of Algorithm 1

A Scheduling Problem with One Producer and the Bargaining Counterpart 311

It is not difficult to know that (1) the only necessary change is to replace p
with d2 if we consider the restricted case (P2); (2) the only necessary change is
to replace cpk with βk if we consider a more general definition on the weighted
number for each tardy job, where let βk denote the common penalty factor for a
tardy job Jk. Obviously the complexity of Al1 is O(np), and that of the revised
algorithm for P2 is O(nd2).

4 Dynamic Programming Algorithms for Pi(r)

Before we design the dynamic programming algorithms for our scheduling cases
on Pl and P2, we should first present a concise justification of the key ideas
utilized in Chen’s bargaining mechanisms in [26] for his discrete bargaining sit-
uation. In [26] Chen gives enough computational experiments and some critical
properties to expose the challenges confronted when the utility function of each
party is integer-valued and the Pareto efficient subset does not possess any sim-
ilar concave property for the Pareto efficient frontier. A minor trouble is that,
in Chen’s discrete bargaining model, it is a usual scenario that both (6,9) and
(9,6) maximize v1v2. Hence it is easy to know, for any given r, not only Pl(r)
but also P2(r) is necessary. One main trouble is that maximizing v1v2 and max-
imizing min{v2

1 , v
2
2} is contradictive frequently even if those two parties have

the same utility function. For example, in [26] Chen present an instance of a
scheduling case, in which (v∗1 , v

∗
2) = (1300, 1350) is the optimal utility distri-

bution of max : v1v2, but (1310,1333) maximizes min{v2
1 , v

2
2}. Actually besides

both max : v1v2 and max : min{v2
1 , v

2
2} ensure the Pareto efficiency of the bar-

gaining solutions, the first criterion highlights a more total utility of those two
parties, v1 + v2, in some sense while the second pursues the least absolute dif-
ference between v1 and v2, i.e. absolutely fair utility allocation. Obviously in
the real world which criterion is more important is subjective. Consequently any
proper bargaining solution scheme should at least include the solutions of these
two maximization problems. Moreover Chen introduces Satty’s famous 1-9 rule
initiated for the Analytic Hierarchy Processes (AHP) into his bargaining solu-
tion concept. If a weight pair (r1, r2) for those two criteria is given by those two
parties together, it means that they feel the importance of max : v1v2 versus
max : min{v2

1 , v
2
2} is r1 : r2. Thus Pi((r1, r2)) can be used to offer the solutions

needed by those two parties. After some further investigations in [26], Chen finds
only an essential part of all the solutions of Pi(r) is useful to construct his final
bargaining solution set which can be utilized to axiomatize his results on his new
discrete cooperation game model.

Now we will present the algorithm for our unrestricted scheduling case to solve
the corresponding Pi(r). Let di2 − di1 denote Ai’s given common due window,
and assume that D1 ≤ D2. Here we also reschedule these n jobs in SPT order
first. The state variables are k, x1, y1, y2, v1. Variable k represents the stage
k where the first k jobs in N are allocated. Variable x1 is defined as the total
processing time of jobs assigned to A1. Let Variable yi be the total processing
time of jobs which are not tardy on MAi. v1 is the net profit earned by A1’s

312 X. Gan et al.

jobs in E jobs in W jobs in T

MA1

d11 d12d12 d11

y1

jobs in E jobs in W jobs in T

0
d21 d22d22 d21

y2

MA2

x1

D1

1
1

xp
k

j
j

D2

Fig. 3. Illustration of Algorithm 2

processing the jobs assigned to him. v1(x1, y1, y2, v1) denotes the maximal profit
of A2 w.r.t. a given vector (x1, y1, y2, v1).

Algorithm 2 (Al2) (see Figure 3)

Recursive Relationships
v2(k, x1, y1, y2, v1)

= max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v2(k − 1, x1 − pk, y1 − pk, y2, v1 − bk

+αI(y1 − pk − (d12 − d11))(y1 − pk − (d12 − d11))),
v2(k − 1, x1 − pk, y1, y2, v1 − bk + cpk),
v2(k − 1, x1, y1, y2 − pk, v1) + bk

−αI(y2 − pk − (d22 − d21))(y2 − pk − (d22 − d21)),
v2(k − 1, x1, y1, y2, v1) + bk − cpk,

2 ≤ k ≤ n, max{
k∑

j=1

pj −D2, 0} ≤ x ≤ min{D1, p},

0 ≤ yi ≤ min{Di, p},

−max{c, (n− 1)α}(p− p1)− e1 ≤ v1 ≤
n∑

j=1

bj − e1.

A Scheduling Problem with One Producer and the Bargaining Counterpart 313

Boundary Conditions
v2(1, x1, y1, y2, v1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−e2, x1 = p1 ≤ D1,
y1 = p1, y2 = 0, v1 = b1 − e1,
or
x1 = p1 ≤ D1,
y1 = 0, y2 = 0, v1 = b1 − β1 − e1,

b1 − e2, x1 = y1 = 0, v1 = −e1, y2 = p1 ≤ D2,
b1 − β1 − e2, x1 = y1 = 0, v1 = −e1, y2 = 0, p1 ≤ D2,

−∞, otherwise,

max{
k∑

j=1

pj −D2, 0} ≤ x ≤ min{D1, p},

0 ≤ yi ≤ min{Di, p},

−max{c, (n− 1)α}(p− p1)− e1 ≤ v1 ≤
n∑

j=1

bj − e1;

v2(k, x1, y1, y2, v1) = −∞, k ≥ 1,

x1 < max{
k∑

j=1

pj −D2, 0},

or
yi < 0,
or
yi > min{Di, p},
or
v1 < −max{c, (n− 1)α}(p− p1)− e1,
or

v1 >

n∑

j=1

bj − e1.

(v∗1r1, v
∗
1r2) = arg max

0<v1≤v2(n,x1,v1)
{r1v1v2(n, x1, v1) + r2 min{v2

1, v
2
2(n, x1, v1)}

is an optimal solution of P1(r). The optimal profit distribution structure on
P2(r) is similar. Obviously the complexity of Algorithm 2 is O(n(min{D1, p})3
(
∑n

j=1 bj +max{c, (n−1)α}(p−p1))). Hence this bargaining problem is ordinary
NP-hard. Similarly if we make some slight changes on Al2, it can be used to
treat the restricted case and the cases in which the tardy penalty per time unit
of different jobs may be different.

5 Conclusion

In this paper we develop some pseudo-polynomial algorithms for a scheduling
problem with a common due window, and furthermore for the situation where
two producers jointly process these jobs, we present a dynamic programming

314 X. Gan et al.

algorithm to derive some reasonable bi-partitions of jobs and the relevant pro-
cessing distributions and then implement the bargaining mechanisms in [26].

It is interesting to develop heuristics or adaptive algorithms for those more
complicated scheduling cases. Topics on this domain has been in our further
investigation.

6 Appendix

This appendix is only prepared for referees of this paper (Paper 189). We will
present some content according to some referees’ comments about our paper. If
this revised version is accepted finally, this appendix can be deleted.

In this revised paper, we simplify the old title, modify the section of intro-
duction, and add something detailed on the justification of Chen’s bargaining
model. Besides it we finally decide to cancel the content on the Algorithm 1 in
the old version. The reasons are as follows:

1. There is a strict paper limit.
2. This algorithm is only useful for the case with the more special assumption,
cpi, on the weighted number of a tardy job.
3. For a conference paper with page limit, it may be more important to ren-
der readers new models and new ideas. Since the bargaining part may be a
promising research domain of discrete optimization on game theory, we want to
present those details on the old Algorithm 1, which is a technical breakthrough
on traditional scheduling problems, in some future complete paper.
4. The index function I(·), emerging in the Algorithm 1 in this revised version,
is also novel for dynamic programming structures.

Finally we will offer an explanation on the proof of NP-hardness of P1 and
P2.
The partition problem (PP)

Given a finite set A of 2n integers, a1, a2, · · · , a2n, where each ai ∈ Z+, does
there exist a subset B ⊆ A such that

∑
ai∈B ai =

∑
ai∈A−B ai?

The corresponding instance of P1 can be constructed as follows:
number of jobs: 2n + 1;
window size: d = (

∑2n
i=1 ai)/2 = S/2;

processing times: pi = ai, i = 1, 2, · · · , 2n, p2n+1 = S2;
earliness weights: αi ≡ α = p2n+1 = S3, i = 1, 2, · · · , 2n, 2n + 1;
assumption on weighted number of a tardy job: c = 1.

Then it is not difficult to know that there exists an optimal sequence, where
the processing of J2n+1 should be completed on d1. Hence due to this optimal
schedule structure we can implement the polynomial reduction from PP to P1.
Since P1 is NP-hard, so is P2. For the referees’ convenience, we also offer the
reference [4] with the file name, liman1994.pdf, when we upload our final version
to ESCAPE2007.

A Scheduling Problem with One Producer and the Bargaining Counterpart 315

References

1. Anger, F.D., Lee, C.-Y., Martin-Vega, L.A.: Single Machine Scheduling with Tight
Windows. Research Report, Department of Industrial and Systems Engineering,
University of Florida, Gainesville, FloridaTransportation Science, pp. 86–16 (1986)

2. Kramer, F.-J., Lee, C.-Y.: Common Due Window Scheduling. Production and Op-
erations Management 6, 262–275 (1997)

3. Lee, C.-Y.: Earliness-Tardiness Scheduling Problems with Constant Size of Due
Date Window. Research Report, Department of Industrial and System Engineering,
University of Florida, Gainesville, Florida, pp. 91–17 (1991)

4. Liman, S.D., Ramaswamy, S.: Earliness-Tardiness Scheduling Problems with a
Common Delivery Window. Operations Research Letters 15, 195–203 (1994)

5. Liman, S.D., Panwlker, S.S., Thongmee, S.: Determination of Common Due Win-
dow Location in a Singer Machine Scheduling Problem. European Journal of Op-
erational Research 93, 68–74 (1996)

6. Koulamas, C.: Single-Machine Scheduling with Time Window and Earli-
ness/Tardiness Penalties. European Journal of Operational Research 91, 190–202
(1996)

7. Ventura, J.A., Weng, M.X.: Single Machine Scheduling with a Common Delivery
Window. Journal of the Operational Research Society 47, 424–434 (1996)

8. Koulamas, C.: Maximizing the Weighted Number of On-Time Jobs in Single Ma-
chine Scheduling with Time Windows. Math. Comput. Modelling 25, 57–62 (1997)

9. Liman, S.D., Panwalkar, S.S., Thongmee, S.: Common Due Window Size and Lo-
cation Determination in a Single Machine Scheduling Problem. Journal of the Op-
erational Research Society 49, 1007–1010 (1998)

10. Liman, S.D., Panwalkar, S.S., Thongmee, S.: Scheduling Common Due Window
Problems with Controllable Processing Times. Annals of Operations Research 70,
145–154 (1997)

11. Chen, Q.-L., Sun, S.-J.: An Earliness and Tardiness Problem in Single Machine
Scheduling wiht a Common Due Window. Applied Mathematics- a Journal of Chi-
nese universities SerA 15, 440–448 (2000)

12. Chen, Z.-L., Lee, C.-Y.: A Column Generation Algorithm for Parallel Machine
Common Due Window Scheduling. European Journal of Operational Research 136,
512–527 (2002)

13. Yen, B., Wan, G.: Tabu Search for Total Weighted Earliness and Tardiness Mini-
mizing on Single Machine with Distinct Due Windows. European Journal of Op-
erational Research 142, 271–281 (2002)

14. Baker, K.R., Scudder, G.D.: Sequencing with Earliness and Tardiness Penalties: A
Review. Oper. Res. 38, 22–36 (1990)

15. Lawler, E.L.: Fast Approximation Algorithms for Knapsack Problems. In: Proc.
18th Annual Symposium on Foundation of Computer Science, pp. 206–213. IEEE
Computer Society, Long Beach, CA (1977)

16. Nash, J.: Two Person Cooperative Games. Econometrica 21, 128–140 (1953)

17. Muthoo, A.: Bargaining Theory with Application. Cambridge University Press,
Cambridge (1999)

18. Zhang, D.: A logical Model of Nash Bargaining Solution. In: Proceeding of IJCAI,
pp. 983–990 (2005)

19. Trockel, W.: Integrating the Nash Program into Mechanism Theory. Review of
Economic Design 7, 27–43 (2002)

316 X. Gan et al.

20. Trockel, W.: Core-equivalence for the Nash Bargaining Solution. Economic The-
ory 25, 255–263 (2005)

21. Dagan, N., Volij, O., Winter, E.: A Characterization of the Nash Bargaining Solu-
tion. Social Choice and Welfare 19, 811–823 (2002)

22. Touati, C., Altman, E., Galtier, J.: Generalized Nash Bargaining Solution for Band-
width Allocation. Computer Networks, 2006 (in press)

23. Nagahisa, R., Tanaka, M.: An axiomatization of the Kalai-Smorodinsky Solution
when the Feasible Sets can be Finite. Social Choice and Welfare 19, 751–761 (2002)

24. Lahiri, S.: Axiomatic Characterization of the Nash and Kalai-Smorodinsky Solu-
tions for Discrete Bargaining Problems. PU.M.A 14, 207–220 (2004)

25. Mariotti, M.: Nash Bargaining Theory when the Number of Alternatives can be
Finite. Social Choice and Welfare 15, 413–421 (1998)

26. Chen, Q.-L.: A New Discrete Bargaining Model on Job Partition Between Two
Manufacturers. PhD Dissertation, The Chinese University of Hongkong (2006)

Phrase-Based Statistical Language Modeling

from Bilingual Parallel Corpus

Jun Mao, Gang Cheng, and Yanxiang He

Computer School, Wuhan University, Wuhan, China

Abstract. Phrase-based models and class-based models are both vari-
ants of classical n-gram models. In this paper, we propose an approach
by merging phrase-based models and class-based models together. In the
phrase-based part, we use bilingual parallel corpus to extract phrases
with a method deriving from phrase-based translation models. Then we
partition these phrases into phrase classes by minimizing the loss of the
average mutual information with the aid of a count matrix. Our exper-
imental results suggest that phrase-based models can capture more key
information than word-based models and class-based models can cap-
ture the relationship among similar words or phrases and thus solve the
problem of data sparseness in some sense.

1 Introduction

Statistical language models have been widely used in many domains, especially
in automatic speech recognition and statistical machine translation. Language
models help our outputted sentences to be natural and grammatical with regard
to a certain language.

Mathematically, a language model is to estimate the prior probability of word
sequences as its task is to predict the next word given previous words. Words
are usually taken as the basic linguistic units in standard language models. If
the prior probability of some word sequences in a sentence has a high value,
we can probably conclude that this sentence is more like a good sentence than
low-valued ones according to the criterion of a given language.

Obviously, however, there are a large number of phrases which occur very
often and have high frequencies. If we search by Google, results show that
2,230,000,000 pages are found for New York while 2,270,000,000 for York. The
word York mostly appears in the phrase New York since P(New York |York) is
as high as 98.2%. In this case, such highly frequent phrases can be regarded
as single units in language models. Our experimental results show that taking
phrases as basic linguistic units can greatly improve the performance of language
models. Phrased-based language models are capable of dividing and converging
sentences more naturally and capturing more key information.

Sparseness of data is an inherent property of any given real text. It is a big
problem that will happen when collecting frequency statistics on word sequences
from a corpus of finite size, even very large corpus. When we improve the ba-
sic units from words to phrases, the data sparseness problem are getting more

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 317–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 J. Mao, G. Cheng, and Y. He

serious. Many methods to smooth data have been proposed to provide better es-
timates of the more infrequent or unseen events, such as discounting and back-off
or interpolated estimation. But those methods are limited in the capacity of solv-
ing the sparseness problem particularly to phrased-based language models. In
this paper, we use class-based models which assign words to classes based on
the frequency of their co-occurrence with other words. Experimental results also
show that perplexity is notably decreased.

This paper is organized as follows: we review in section 2 the basic language
models and related work. In section 3, we introduce our approaches to extract
phrases from the bilingual parallel corpus based on Koehn’s method. In section
4, we partition phrases into classes with a enhanced method based on Brown’s.
In section 5, we present the results of our main experiments. Finally, we give in
section 6 a conclusion and future work.

2 Language Models

2.1 N-Gram Language Models

Basic language model is to compute the probability of a word sequence or usu-
ally a sentence by computing every conditional probability of each word given
previous words and then multiplying them together. A sequence of m words is
denoted as w1 . . . wm or wm

1 . For the joint probability of each word in a sentence,
we use P (w1, w2, . . . , wm) or P (wm

1). Then, using the chain rule of probability,
P (wm

1) can be formulated as follows[1]:

P (wm
1) = P (w1)P (w2|w1)P (w3|w1w2) . . . P (wm|w1 . . . wm−1) (1)

However, with limited corpus, it is too difficult to compute the exact proba-
bility of any word given a long sequence of preceding words since language is so
creative and changeful that there are numerous possible N-grams given the last
word.

According to the Markov assumption, this problem can be simplified to n-
grams models. N-gram models are word prediction probabilistic models, which
predict the next word of previous n-1 words instead of all the histories. Most
common n-grams are bigram, trigram, four-gram models. In trigram models,
instead of computing P(departure|Rhett Bulter is back from London after a long),
we compute P(departure|a long). Generally, using n-gram models, the conditional
probability of the next word can be computed as follows:

P (wi|wi−1
1) ≈ P (wi|wi−1

i−n+1) (2)

A simple way to estimate the above equation is called maximum likelihood
estimation(MLE). We get the MLE estimate for the parameters of an n-gram
model by taking the counts from corpus. If C(w) is the number of times that w
occurs in the corpus, then:

P (wi|wi−1
i−n+1) =

C(wi−1
i−n+1wi)

C(wi−1
i−n+1)

(3)

Phrase-Based Statistical Language Modeling from Bilingual Parallel Corpus 319

2.2 Related Work on Language Models

In 1992, IBM’s Brown et al. discussed n-gram models based on classes of words[2].
Classed are extracted automatically in such a way that overall perplexity of the
corpus is minimized.

Extending the previous work of Goodman in 2001, Microsoft’s Jianfeng Gao
made an empirical study of clustering for Asian language (Chinese & Japanese)
modeling. Clustering is used to reduce the perplexity as well as to compress
language models[3]. Instead of the way to get best clusters, they concentrated on
making best use of clusters, including predictive clustering, conditional clustering
and combined clustering.

From a linguistically tagged corpus, Imed Zitouni et al. proposed a statistical
language model based on variable-length sequences[4]. A mutual information
threshold and the minimum occurrence of word sequences are predefined at the
beginning. Compute all the consecutive couples from the corpus. If the mutual
information and the occurrence of a couple are greater than the threshold, this
couple can be selected as a candidate of a word sequence. Compute the perplexity
on a development corpus and iterate until perplexity stops decreasing.

3 Extract Phrases

3.1 Overview of Our Method

Based on Koehn’s method[5], we learn phrase alignments from a parallel corpus
that has been word-aligned by Giza++[6]. Then we extract phrases based on
the alignment points. In the following of this section we will go into more details
of the process of extracting phrases.

3.2 Giza++

Giza++ is a part of the SMT toolkit Egypt which extracts linguistic information
from a bilingual corpus, and it is based on IBM models and algorithms described
in [2]. Giza++ is usually to output translation tables and some files after training
the corpus. Here we are only interested in the word alignment file derived from
Giza++.

3.3 Extract Alignment Points

According to IBM models, one word aligns to multiple words, but ideal alignment
phrases we need should be multiple words which aligns to multiple words. In
order to get many-many alignment words, both an English-Chinese alignment
file and a Chinese-English one are generated by bidirectional training. From
bidirectional alignment files, we extract alignment points based on a heuristic
approach. Our heuristic approach is similar to Koehn’s [5], but we extend his
approach by removing some deficiencies. Here, the algorithm for our approach:

320 J. Mao, G. Cheng, and Y. He

Algorithm 1

Input an English-Chinese alignment file
a Chinese-English alignment file

Output alignment points

1. Get the intersection of the two alignment files, intersect (e2c, c2e). And Get
the union of the two alignment files, union (e2c, c2e).

2. Take intersect (e2c, c2e) as the initial alignment points set.
3. Add neighboring points to the alignment points set: For all the English

words and Chinese words, if an English word e aligns to a Chinese word c,
< e, c >∈ (e2c, c2e), check all the neighbors of < e, c > by starting from
the left neighbors then going through all other neighbors clockwise and a
neighboring point < x, y > is added to the alignment points set if it satisfies:
(a) In present alignment points set, there is no alignment point like < x, ∗ >

or < ∗, y >. Here, ∗ denotes any word, x is an English word, y is a
Chinese word.

(b) < x, y > is in union (e2c, c2e).
4. Loop step 3 until no new alignment point is found.
5. Add outliers to the alignment points set: For all the English words and

Chinese words, check all the outliers which are neither present alignment
points nor neighbors of any present alignment point. An outlier < p, q > is
added to the alignment points set if it satisfies:
(a) In present alignment points set, there is no alignment point like < p, ∗ >

and < ∗, q >. Likewise, ∗ denotes any word, p is an English word, q is a
Chinese word.

(b) < p, q > is in union (e2c, c2e).
6. Collect all the appropriate alignment points derived from the intersection,

the neighboring points set and the outliers set, we obtain the final alignment
points set.

3.4 Extract Phrases

In this section, we are going to extract phrases by merging the alignment points.
In Koehn’s approach, consistent and a BP constraint are defined. For a phrase
alignment to be consistent with the word alignment, all alignment points for rows
and columns that are touched by the box have to in the box, and not outside.

Based on BP constraint, we present a simple approach to find all the valid
phrases. We define direct neighboring is neighboring on the left, right, up, down
side and define diagonal neighboring is neighboring the word on the four diagonal
directions. Direct neighboring points are required to appear together in the same
phrases. At the beginning, neighboring points are merged into one phrase. For
example, b1 and b2 are direct neighboring, so b1 and b2 can be regarded as one
alignment point. The initial phrases set are extracted after all the neighboring
points are merged with their direct neighbors. Then we merge all the adjacent

Phrase-Based Statistical Language Modeling from Bilingual Parallel Corpus 321

phrases into longer phrases and remove those contradict to BP constraint. Ac-
tually in our approach we are not interested in removing invalid phrases but
focusing only on those valid ones. Here, the details of our algorithm:

Algorithm 2

Input Alignment Points

Output Phrases

1. Get initial phrases set by merging direct neighboring points into phrases.
2. Sort all the phrases from the initial phrases set by their sequence in the

Chinese sentence(X-axis). Denote these sorted phrases as w1, w2, . . . , wn.
For a Chinese phrase wi, the x coordinate of the start point is denoted as
xsi, the end point, xti. Thus the range of the X coordinate of Ci is [xsi, xti].
For all i ≥ j, xsi ≤ xti and xti ≤ xsi.

3. Merge phrase wi and wi+1 as a phrase candidate, the range of X coordinate of
the candidate is [xsi, xt(i+1)]. If Ci aligns to an English phrase E′

i is [y′si, y
′
ti].

So the range of Y coordinate of the candidate is [y′si, y
′
t(i+1)] or [y′s(i+1), y

′
ti].

4. [y′si, y
′
t(i+1)] or [y′s(i+1), y

′
ti] can be denote as [ysm, ytn], n ≥ m. If n−m = 1,

then take the phrase candidate as a valid phrase and add it to the phrase
set.

5. Reorder present phrases based on their range of X coordinate. Go back to
Step2 and iterate until no new phrase candidate can be found.

The final result is that the whole sentence becomes a single long phrase.

4 Extract Classes

4.1 Class-Based Models

Obviously, some phrases are similar syntactically, semantically and functionally.
We always say good morning, good afternoon or good night. These three phrases
all have a meaning of speakers warm greeting to the listener and they all have
a structure of the word good plus a noun. Intuitively, we can assign the three
phrases into one distinct class. And it is not difficult to be aware that good
evening also belongs to the class. Suppose that a word wi can only be uniquely
mapped to its own class ci for the sake of simplicity.

As described in section 1, we use class-based models to resolve the problem of
data sparseness. Phrases are more sparsely distributed than words with regard
to a large corpus. We also explore the potential of class-based models to mini-
mize perplexity by making local optimizations. Even if class-based models offer
no perplexity reduction in comparison to traditional models, it is beneficial to
smooth the data via back-off methods since the counts of most linguistic units
are increased and classes of high-order grams occur more frequently than original
grams in corpora.

322 J. Mao, G. Cheng, and Y. He

4.2 MLE of the Parameters for the Phrase and Class Model

Extended from word-based n-gram models, phrase and class models use the
frequency of sequences of classes to produce a more knowledgeable estimate of
the probability of sentences. The basic class-based model defines the conditional
probability of a word wi based on its history as the product of the two factors:
the probability of a particular word wk given the class ck, and the probability
of the class ck given the preceding classes c1, c2, . . . , ck−1[2]. For example, in
traditional class-based n-gram models, we have

P (wk|wk−1
1) = P (wk|ck)P (ck|ck−1

1) (4)

Thus, our phrase and class trigram language model is computed as:

P (wn
1) = P (w1)P (w2|w1)P (w3|w1w2) · · ·P (wn|wn−2wn−1)

= P (w1|c1)P (c1)P (w2|c2)P (c2|c1) · · ·P (wn|cn)P (cn|cn−2cn−1)

= P (cn
1) ·

n∏

i=1

P (wi|ci) (5)

Similar to IBM model, the maximum likelihood estimates of the parameters
of a trigram phrase and class model are:

P (wi|ci) =
C(wi)
C(ci)

, (6)

and

P (ci|ci−2ci−1) =
C(ci−2ci−1ci)
C(ci−2ci−1)

, (7)

and for unigram:

P (ci) =
C(ci)
T

, (8)

and for bigram:

P (ci|ci−1) =
C(ci−1ci)
C(ci−1)

, (9)

Combine estimates (6)∼(9), we obtain:

P (wn
1) =

1
T
·

n∏

i=1

C(wi)
C(ci)

·
∏n

i=3 C(ci−2ci−1ci)
∏n−1

i=3 C(ci−1ci)
. (10)

4.3 Basic Algorithm

The algorithm is based on the idea that phrases are partitioned into classes in
such a way that the overall perplexity of the corpus is minimized.Brown[2]made
such a conclusion in the following:

L(π) = ΣwPr(w)logPr(w) + Σc1c2Pr(c1c2)log
Pr(c2|c1)
Pr(c2)

= −H(w) + I(c1, c2)

(11)

Phrase-Based Statistical Language Modeling from Bilingual Parallel Corpus 323

Here, L(π) is the negative of perplexity. H(w) is the entropy of the 1-gram
word distribution. It is a constant given a corpus. I(c1, c2) is the average mutual
information of adjacent classes. Because L(π) depends only on π the average
mutual information, the partition that maximizes L(π) is the partition that
maximizes the average mutual information of adjacent classes.

Algorithm 3

Input Phrases

Output Phrase Classes

1. List all the phrases in an order of frequency with the most frequent phrases
first.

2. Assign each of the first K phrases to its own as distinct class.
3. Assign the (K + 1)st most probable phrase to a new class and merge that

pair among the resulting K + 1 classes for which the loss in average mutual
information is minimal.

4. Do step 3 iterative for V −K times until each of the phrases in the phrase
list will have been assigned to one of K classes. Here, V is the total number
of phrases.

4.4 Classifying Phrases Based on Count Matrix

The basic algorithm of classifying phrases is required to find the minimal loss in
average mutual information. In this subsection, we will go further to discuss the
approach based on a count matrix.

We are going to construct a (K +1)∗ (K+1) matrix to store all the counts of
neighboring phrase classes occurring in the corpus. The count matrix is denoted
as A(i, j). Then we have

A(i, j) =
∑

a∈c(i),b∈c(j)

count(ab) (12)

Table 1. Table of count matrix

A(1,1) A(1,2) · · · · · · · A(1,K+1)

A(2,1) A(2,2) · · · · · · · A(2,K+1)

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

A(K+1,1) A(K+1,2) · · · · · · · A(K+1,K+1)

324 J. Mao, G. Cheng, and Y. He

Based on some equations to compute the average mutual information in [2],
we propose our detailed approach to compute average mutual information using
count matrix. Suppose at the beginning every single phrase belongs to a distinct
class and thus there are V distinct classes. Then each time we merge two classes
into one and we get K classes after V −K merges. Now we are going to investigate
the merge Ck(i) with Ck(j) for 1 ≤ i ≤ j ≤ k. Let pk(l,m) = Pr(Ck(l), Ck(m)),
i.e. ,the probability that a word in class Ck(m) follows a word in class Ck(l). We
also introduce Plk(l), Prk(m). Then Pk(l,m), Plk(l), Prk(m) can be computed
as follows:

Pk(l,m) = Pr(Ck(l), Ck(m)) =
A(l,m)

∑
1≤i≤K+1,1≤j≤K+1 A(i, j)

(13)

Plk(l) =
∑

m

Pk(l,m) =

∑
1≤m≤K+1 A(l,m)

∑
1≤i≤K+1,1≤j≤K+1 A(i, j)

(14)

Prk(m) =
∑

l

Pk(l,m) =

∑
1≤l≤K+1 A(l,m)

∑
1≤i≤K+1,1≤j≤K+1 A(i, j)

(15)

The average mutual information remaining after V −K merges is

Ik =
∑

l,m

qk(l,m), (16)

and
qk(l,m) = Pk(l,m) log

Pk(l,m)
Plk(l)× Prk(m)

. (17)

Then the average mutual information remaining after we merge Ck(i) and Ck(j)
is

Ik(i, j) = Ik − sk(i)− sk(j) + qk(i, j) + qk(j, i) + qk(i + j, i + j)

+
∑

l �=i,j

qk(l, i + j) +
∑

m �=i,j

qk(i + j,m) (18)

where
sk(i) =

∑

l

qk(l, i) +
∑

m

qk(i,m)− qk(i, i) (19)

According to the equations above, to minimize the loss of the average mutual
information after mergence is to find the least Ik − Ik(i, j). In this way, the two
candidate classes i, j(i < j) to be merged are eventually found. Then we wish to
update the count matrix by adding the new class denoted as (i+ j) and remove
the candidate classes i, j.

Firstly, count matrix A can be modified by adding row j to row i and adding
column j to column i,
A(i,m) := A(i,m) + A(j,m) (1 ≤ m ≤ K + 1)
A(l, i) := A(l, i) + A(l, j) (1 ≤ l ≤ K + 1)

Phrase-Based Statistical Language Modeling from Bilingual Parallel Corpus 325

That is, we use the space of storing i to store the new class (i + j), and then
add a new candidate class into the space of previous class j. The new candidate
class is the present (K + 1)st phrase after recent mergence. After iterations, the
final K classes can be obtained.

5 Experiment

5.1 Data Description

We have built an English-Chinese parallel corpus to make experiments on our
language model. The corpora contain 221,020 sentences both in English and
Chinese, covering English textbooks, news from several websites, laws of China,
movie scripts, novels and etc. Our corpora are balanced and representative. In
our experiments, sentences of length 5-25 were reserved for testing while others
are cut-off.

5.2 Data Smooth

In order to go further with resolving the problem of data sparseness and get bet-
ter experimental results, we also compute the Turing-discounting and backing-
off coefficients of n-grams[7]. In our experiment, we focus on trigrams, bigrams
and unigrams because they are most frequently implemented whether in speech
recognition systems or in machine translation systems. Moreover, out-of- vocab-
ulary(OOV) words which appear in a given sentence may cause errors[8]. Then
the problem of computing the probabilities of OOVs is solved in the unigram
part. Results are shown in 5.3.

5.3 Results of Probabilities and Backing-Off Coefficients

In our experiment, we input prepared corpora and output 2 table files, one table
of English language model parameters, and one table of Chinese language model
parameters. Both the tables are represented as < n-gram, P robability, α >. Here,
column n-gram represents the n-gram word sequences. The results of computing
n-grams probabilities are shown in the column probability. And column alpha
includes the backing-off coefficients of all bigrams and unigrams. All the proba-
bilities are stored in logarithm to simplify the computation.

Only 3-grams, 2-grams and 1-grams are considered in our experiment. For the
OOVs, P (w1) = 0.0315601 for the English experiment and P (w1) = 0.0408239
for the Chinese experiment.

5.4 Results of Phrase Classes

It is not easy to predict the value of C although there are some off-the-shelf
methods to predict C automatically. As it is not what we concern in this pa-
per, we empirically take C = 2, 000 in our experiment, similarly to Brown’s
experiment.

326 J. Mao, G. Cheng, and Y. He

Table 2. Some examples of results on English corpus

n-gram Probability α

offensive -5.122058 -0.1836201

room -3.177584 -0.8335384

preservation -5.343901 -0.241665

as dangerous -2.766028 -0.5649664

Sunday afternoon -1.567137 -0.0663463

Because of -0.9120448 -0.4944892

sick and tired -0.6643708

get angry with -1.062311

talking angrily to -0.6643708

had any breakfast -1.363341

Table 3. Some examples of phrase classes

Mr. John ||| Ms. Julia
there’s ||| that is
indifficulty ||| indebt
The Morgan factory ||| steel mill
the Michigan ||| New York City ||| Washington DC
Song writers ||| singer star ||| movie star ||| football fans
thirteen feet ||| the 14th floor ||| ten kilometres
are discussing ||| was listening to ||| ’s in London ||| am reading a
South Korea ||| People’s Republic of China ||| United States ||| United Nation ||| Middle East
tell anyone ||| tell you ||| tell you ||| informed him ||| let him know
Chief Executive Officer ||| Chief Information Officer ||| General Manager ||| Marketing Director
The year ||| What year ||| Which department do ||| What sort of ||| Which station ||| Which flight

5.5 Perplexity

Perplexity is the most common value to evaluate the performance language mod-
els. It is defined as 2H where

H = − 1
L− n + 1

i=L∑

i=n

log2 P (wi|wi−1
i−n+1) (20)

Here, w1, . . . , wL is the test word sequence and n = 2, 3 for a 2-gram and 3-gram
model. The following is the test perplexity of different language models.

Results show that the introduction of phrases and classes has greatly improved
the performance of language models. The introduction of phrases alone decreases
the perplexity of more than 20 percent. We also noticed that the introduction of
classes has obviously reduce the perplexity by nearly 2 more points than using
phrase-based model alone. Moreover, trigram models outperform bigram models
by approximate 14 points. The results prove that higher-order n-gram models are
better than lower ones. However, it is very difficult to computer n-grams(n ≥ 4)
for severe data sparseness problem.

Phrase-Based Statistical Language Modeling from Bilingual Parallel Corpus 327

Table 4. Results of perplexity with different language models

No. Type of LM Perplexity Improvement Compared with

1. Bigram 136.72

2. Phrase-based Bigram 99.53 27.2% 1

3. Phrase&Class based Bigram 96.29 29.6% 1

4. Trigram 118.01 13.7% 1

5. Phrase-based Trigram 92.50 21.6% 4

6. Phrase&Class based Trigram 90.37 23.4% 4

6 Conclusion and Future Work

We have presented in this paper a novel approach to improve the performance
of traditional n-gram language models by introducing phrases and classes as the
basic elements of language models. From our English-Chinese parallel corpus,
we extract phrases by merging the alignment points deriving from the alignment
template which is first introduced in statistical machine translation. We propose
our own algorithm to extract phrases which is much easier than checking BP
constraints all the time. When we discuss on class-based models, we follow the
traditional idea of minimizing the loss of average mutual information and propose
a simplified approach to classify phrases based on a count matrix.

We have compared our phrase and class based approach with basic n-gram
model. Experimental results show that we have gained an improvement by reduc-
ing perplexity more than 20 percent both in bigram model and trigram model.
Phrase and class based trigram model shows the best performance in our exper-
iment.

Actually, there are many good methods of classification or clustering. In the
future work, we are going to explore these methods and compare them with the
one presented in this paper. And we will focus on investigating other approaches
to extract phrases not only from bilingual corpora but large monolingual corpora.

References

1. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An introduction
to speech recognition, computational linguistics and natural language processing.
Prentice-Hall, Englewood Cliffs (2006)

2. Brown, P.F., DellaPietra, V.J., deSouza, P.V., Lai, J.C., Mercer, R.L.: Class-
based n-gram models of natural language. Computational Linguistics 18(4), 467–479
(1992)

3. Gao, J., Goodman, J.T., Miao, J.: The Use of Clustering Techniques for Language
Modeling - Application to Asian Language. Computational Linguistics and Chinese
Language Processing 6(1) (2001)

4. Zitouni, I., Smaili, K., Haton, J.-P.: Statistical Language Modeling Based on
Variable-Length Sequences. Computer Speech and Language. 17, 27–41 (2003)

328 J. Mao, G. Cheng, and Y. He

5. Koehn, P., Och, F., Marcu, D.: Statistical Phrase-Based Translation. In: Proceedings
of. the Conference on Human Language Technology, pp. 127–133 (2003)

6. Och, F.J., Ney, H.: A Systematic Comparison of Various Statistical Alignment Mod-
els. Computational Linguistics 29(1), 19–51 (2003)

7. Katz, S.M.: Estimation of Probabilities from Sparse Data for the Language Model
Component of a Speech Recognizer. IEEE Transactions on Acoustics, Speech and
Signal Processing ASSP-35, 400–401 (1987)

8. Clakson, P., Rosenfeld, R.: Statistical Language Modeling using the CMU-
Cambridge Toolkit. In: Proceedings of Euro-speech, vol 5 (1997)

Optimal Commodity Distribution for a Vehicle

with Fixed Capacity Under Vendor Managed
Inventory�

Xiaolin Xu1,2,��, Xiaoqiang Cai2, Chunlin Liu1, and Chikit To2

1 School of Business, Nanjing University, Nanjing 210093, China
xlxu@se.cuhk.edu.hk

2 Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, Shatin, N.T., HK

Abstract. Under vendor managed inventory (VMI), vendors have the
obligation to maintain the retail stores they serve with sufficient inven-
tory levels. In this paper, specifically, we consider an oil tanker which
visits and replenishes multiple retail stations daily. However, due to the
fixed capacity of vehicle, at each station the vendor faces such a trade-
off, replenishing the current station to a higher level or reserving more
capacity for the left stations that may take more profits in future. We
address this problem by two mathematical models, corresponding to sit-
uations with deterministic and stochastic station demand respectively.
A greedy algorithm is developed and proved optimal for the case with
deterministic demand. For the case with stochastic demand, we find the
optimal replenishment policy by dynamic programming, which selects
the median among three critical numbers. Numerical examples are also
presented, which shed light on managerial insights partially.

1 Introduction

In typical business model, each party involved in the supply chain manages his
own inventory independently, resulting in inefficient inventory control due to
factors like bullwhip effect. However, nowadays a new business model, Vendor
Managed Inventory (VMI), has been adopted in many industries, under which
the upstream distributor has full control on replenishing inventory of the down-
stream retailers. It is being widely used in many areas and especially found suc-
cessful in franchising business like “Seven-eleven”, “Circle-K” and “ParknShop”,
a retailer chain store in Hong Kong. Under VMI, as inventory is managed by a
central supply chain department, the vendor can maintain lower total inventories
and provide better service levels to the customers due to economic of scale and
complete information collection among different retailers.

Our work is partially motivated by such an industrial practice: In some region,
a gasoline manufacturer serves multiple retail stations by a tanker daily. In the

� Research supported by Natural Science Foundation of China (70671054) and the
Research Grant Council of Hong Kong under Project no. CUHK442/05.

�� Corresponding author.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 329–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

330 X. Xu et al.

morning, say 8:am, the tanker driver will receive a list of stations to be visited,
with delivery route fixed. Upon arriving at each station, he needs to decide how
much inventory should be replenished to it. However, due to the limited capacity
of the tanker and different profit margins at different stations, the driver faces
the trade-off between replenishing the current station to a higher inventory level
and reserving more capacity that may take higher profit later.

Corresponding to different realistic situations, we use two mathematical mod-
els to address this problem. In the first model, we assume the demand at each
station is deterministic and predictable. It corresponds to such a situation, the
demand rate at each station is stationary and the transportation time between
any two adjacent stations on the route is stable. We develop a greedy algorithm to
find the optimal solution. In the second one, however, we consider the stochastic
demand at each station, a more practical situation in reality. We formulate this
model by dynamic programming, taking into account the demand information
updating at each station. Optimal distribution policies are then derived.

The problem studied here is mainly related to inventory routing problem,
which has been studied since 70s. For example, Beltrami and Dobin [5] modelled
a network and routing problem for waste collection. As stated by Campbell et
al. [6], there are three main issues in the inventory and routing problem: 1) when
to serve; 2) how much to deliver; and 3) which route to use. In our problem, we
focus on the second one, i.e., how much capacity should be allocated to each
station on the delivery route.

There are two streams in the inventory routing literature, based on the type
of demand (deterministic or stochastic). For the case with deterministic de-
mand, Bell et al. [4] adopted integer programming to solve an inventory routing
problem occurred at air products and chemicals. Christiansen ([7], [8], and [9])
modelled shipment planning using mixed integer programming techniques with
deterministic parameters.

Stochastic inventory routing problems have gained increasing attention in re-
cent years, due to their practical importance. For a complete survey, see Anton
et al. [1]. Barnes and Bassok [2] studied the single depot multi-retailer system
with stochastic demands, linear inventory costs, and backlogging cost over in-
finite horizon and used simulation to analyze the effectiveness of the proposed
strategy. Singer et al. [11] described an application of a vehicle routing model
with random demands for the distribution of liquefied petroleum gas. However,
neither of the above two papers considered demand information updating, hence
the replenishment decisions are made before the actual delivery arrival.

The most closely related to our model is Berman and Larson [10], which
considered a gas tanker visiting n customers daily and solved the problem by
dynamic programming. They considered a linear cost function, a key difference
from ours, adopting a piecewise linear cost function. Bassok [3] also considered
a problem similar to ours. In their model, the realized demand at each station is
an exact number, under which a penalty cost will be charged. Contrast to their
setting, the demand at each station in our model is actually a range between
the safety level and capacity of each station. If the replenishing quantity is lower

Optimal Commodity Distribution for a Vehicle with Fixed Capacity 331

than the safety level, it will incur a penalty cost. Under their setting, they proved
the optimal policy is of threshold, however, under ours, the optimal policy is a
median among three critical numbers.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce notations and the basic model of our problem. A greedy algorithm for
the deterministic demand problem is developed and proved optimal in Section
3. Subsequently, we discuss the problem with stochastic demand in Section 4.
Two different settings for the problem are investigated. Some numerical exam-
ples are provided in Section 5. Finally, we summarize and suggest some possible
extensions in Section 6.

2 Modelling and Notations

Our problem can be described as follows. A tanker with limited capacity K0 is
assigned to deliver oil from the depot to n stations in a chain, with the delivery
route fixed. The initial inventory level at station i, say l0i , is known before the
vehicle leaves the depot. The vehicle visits all the stations sequentially. The oil
vendor has a long term contract with the retail station i specifying the unit
wholesale price γi per unit kiloliter of oil, which is not necessarily the same for
all stations. At each station, if the inventory level is lower than a particular
threshold when the vehicle departs, the retailer will face a safety problem. On
the other hand, each station has its own capacity limit. Let ai and bi denote
the safety level and capacity respectively, for station i = 1, ..., n. If the tanker
cannot fill station i to its safety level ai, a unit penalty αi will be charged for
each unmet unit.

The delivery tour can be regarded as a sequence of decision processes. Before
leaving the depot, the initial information about the station inventory levels (i.e.,
l0i , i = 1, ..., n) are known to the vendor. However, before the delivery arrival
of the vehicle, the inventory level is continuous decreasing because of external
customers’ demand. After the vehicle’s arrival, the actual inventory level at sta-
tion i is changed to li, the difference to the initial level is denoted by Ii. Upon
arriving at a particular station, say station i, the driver/vendor needs to decide a
replenishing quantity xi to it. Considering the limited capacity left in the tanker,
if he delivers too much to the current station, the driver faces the risk of not
having enough oil to replenish the left stations which may make more revenue.
However, if he delivers too little, there may be oil leftover with a low unit salvage
value δ. We summarize all the notations in Table 1.

In order to preclude some trivial cases, we make the following assumptions.

Assumption 1. The unit salvage value is smaller than contract sales price at
each station, i.e., δ < γi, for i = 1, . . . , n.

Assumption 2. The vehicle capacity is no larger than the sum of all stations’
capacities, i.e., K0 ≤

∑n
i=1 bi.

Assumption 1 precludes such a case, if the unit salvage value is larger than
the sales price at a particular station, say i, the replenishing amount at this

332 X. Xu et al.

Table 1. Notations

Type Symbol Description

Parameters δ the salvage value per unit
αi the penalty cost per unit of unmet demand
γi the unit sales price
K0 vehicle capacity
l0i initial inventory in station i

before vehicle leaves the depot
li inventory of station i when the vehicle arrives
Ii demand in station i before the vehicle arrival,

i.e. Ii = l0i − li
bi capacity of station i
ai safety level of station i

Decision variable xi Replenishment amount for station i

station must be zero since reserving the capacity could take higher revenue. If
Assumption 2 is broken, i.e., the vehicle capacity is larger than the total capacity
of all stations, the optimal policy is very trivial, just to replenish each station
to its capacity limit no matter what its current inventory level is.

At station i, if the inventory level is li upon the vehicle’s arrival and the
replenishing amount is xi, the profit earned by the vendor is

γixi − αi(ai − li − xi)+,

which is a piecewise linear function with respect to xi. We use Figure 1 to depict
the profit made in station i against the inventory filled in that station. According
to Figure 1, there is a turning point when the replenishing amount xi filled in
station i is equal to ai− li, while below which the marginal profit is αi + γi, and
above which, the marginal profit is γi.

Our objective is to maximize the total net profit that can be earned from all
stations, which is formulated as follows,

max
xi

n∑

i=1

{γixi − αi(ai − xi − l0i)
+}+ δ(K0 −

n∑

i=1

xi)

subject to

n∑

i=1

xi ≤ K0, (1)

xi + li ≤ bi, for i = 1, . . . , n, (2)
xi ∈ Z+, for i = 1, . . . , n, (3)

where li = l0i + Ii, i = 1, . . . , n. There are three constraints in the problem: (1)
the capacity constraint of the vehicle, i.e., the total inventory allocated to all sta-
tions should not be larger than the vehicle capacity; (2) the capacity constraint at

Optimal Commodity Distribution for a Vehicle with Fixed Capacity 333

0 a − l b − l

− penalty (a − l)

0

unit profit (a − l)

unit profit (b − l)

Inventory filled in station i

P
ro

fit
 m

ad
e

by
 s

ta
tio

n
i

Profit Structure of Station i

Fig. 1. Profit against inventory filled in station i

each station, i.e., the inventory level after replenishment at each station cannot
exceed its capacity limit; and (3) the decision variables xi, i = 1, . . . , n, are
positive integers, which can be easily relaxed to continuous case.

3 Stations with Deterministic Demand

As mentioned in the previous section, the initial inventory levels of all stations
l0i , i = 1, . . . , n is known before the vehicle leaves the depot. However, when the
vehicle travels from the depot to the stations, it will take time on the road.
During this time, the inventory in each stations depletes. In this section, we
assume the depletion/consuming rate is stationary. As a result, the inventory
level of station i is completely predictable and known. We refer to this as the
deterministic demand problem. Then, the inventory level of station i upon the
vehicle’s arrival is li = l0i − Ii, where Ii is deterministic.

In this model, since the actual inventory level is completely predictable before
the vehicle leaves the depot. The optimal decision remains same at each station,
whether it is made before or after the arrival of the vehicle.

We sort all the parameters αi + γi and γi, i = 1, . . . , n in a descend order,
which can then be further classified into sets {Ju

i , J l
i}ni=1, where Ju

i includes a
consecutive chain of parameter(s) with form α+γ, and J l

i includes a consecutive
chain of parameter(s) with form γ.

We use the following Greedy Algorithm to find a solution to the problem
described above.

334 X. Xu et al.

Greedy Algorithm

step 1. Let Ju
i = αi + γi and J l

i = γi, i = 1, . . . , n; Sort the set {Ju
i , J l

i}ni=1 in a
descend order; Let h = 1;

step 2. Fill the stations associated with Ju
h up to safety level ai and the stations

associated with J l
h up to capacity limit, according to the order sorted in

step (1). If the oil contained in the vehicle is used up amid one of the
stations, terminate; h := h + 1;

step 3. If h ≤ 2n, go to step 2; otherwise, terminate.

Theorem 1. The complexity of the Greedy Algorithm is O(n). Denote the so-
lution found by Greedy Algorithm as {xi}ni=1, it is optimal.

Corollary 1. If max{γk} ≤ min{αh + γh}, then

(a) If there exists station i with xi > ai−li, then for all station j �= i xj ≥ aj−lj;
(b) Assume at station j, lj < aj, then

(b.1) if xj < aj − lj,
γj + αj > γi + αi, then xi = 0;
γj + αj < γi + αi, then li + xi = ai.

(b.2) if bj − lj > xj > aj − lj,
γj > γi, then xi + li = ai;
γj < γi, then xi + li = bi.

Next, we illustrate how the Greedy Algorithm works through a simple example.
Assume that we have three stations to serve. The detailed data of parameters
are specified in the following Table 2.

Table 2. Parameters of the example

Parameters station 1 station 2 station 3

γi 50 60 70
αi 40 20 15

γi + αi 90 80 85

ai 30 30 30
bi 60 60 60

According to the above Greedy Algorithm, at the first step, we sort the sta-
tions in descend order of αi + γi, associated with which is the sequence 1, 3, 2
of stations. Hence, we first fill station 1 to its safety level and then stations 3
and 2. After all stations are filled up to the safety level, if there is still inventory
available, we will fill the station in descend order of γi. Therefore we will have
another sequence 3, 2 1 for the stations. If the vehicle capacity is 100 units of
oil, then the optimal solution is assign 30 units to station 1, 30 units to station
2, and 40 units to station 3.

Although it is not practical to assume deterministic demand in the real world,
this model can provide some insights in the priority of replenishing stations.

Optimal Commodity Distribution for a Vehicle with Fixed Capacity 335

Intuitively, one may think that having higher sales price will have the higher
priority in filling inventory. However, based on the Greedy algorithm, we can see
that there are 2 criteria in selecting the station to be replenished first. The first
one is the order of γi +αi. Once a station is filled to the safety level, its priority
will depend on the order of γi. This provides a rough idea of the importance of
a specific station.

4 Stations with Stochastic Demand

In the section, we assume that the actual inventory level of each station is un-
known until after the vehicle arrives at it. We assume that the vehicle will have
preliminary information about the initial inventory level and the distribution of
demand of each station. Let φi, Φi be the probability density function and the
cumulative distribution function of Ii, respectively.

Before proceeding further, we first present the following lemma to be used
later.

Lemma 1. Define Δf(x) = f(x) − f(x − 1). Let f , g be increasing concave
function and s be a constant. For the following optimization problem,

max
r≤x≤s

g(x) + f(s− 1− x),

its optimal solution x∗ satisfies the following:

(a) x∗ = s if Δg(s)−Δf(0) > 0,
(b) x∗ = r if Δg(r) −Δf(s− r) < 0,
(c) Δg(x∗) = Δf(s− x∗)}, otherwise.

4.1 Decision Made Before Delivery Arrival

In order to evaluate the value of information updating on demand, in this sub-
section, we assume that the vehicle will make its replenishment decision before
the realization of station demand.

Let V̂i(K) be the expected profit completing a tour from station i and af-
ter, given the current capacity of vehicle is K units. We formulate the optimal
dynamic equation below:

V̂i(K) = max
0≤x≤K

{Eli [γi min(x, bi − li)− αi(ai − li − x)+] + V̂i+1(K − x)},

with terminal function
V̂n+1(K) = δK.

Lemma 2. Let gi(x) = Eli [γi min(x, bi − li)− αi(ai − li − x)+], it is increasing
and concave.

336 X. Xu et al.

Theorem 2. V̂i(K) is increasing concave for all i = 1, . . . , n, the optimal value
of which is obtained at

x∗
i =

⎧
⎨

⎩

0, if ΔV̂i+1(1) > γiΦ(bi − 1) + αiΦ(ai − 1);
K, if ΔV̂i+1(K) < γiΦ(bi −K) + αiΦ(ai −K);
max{x ∈ {0, 1, . . . ,K}|ΔV̂i+1(x) ≥ γiΦ(bi − x) + αiΦ(ai − x)}, o.w..

In this model, we don’t make use of the latest information about the station
inventory status. As a result, we risk that our decision for a station i exceeds the
available capacity at that station and for potential profits that can be earned by
that excess amount. Apparently, the decision made is less optimal, even much
worse, than that made after the vehicle’s arrival.

4.2 Decision Made After Delivery Arrival

In this subsection, we assume that the decision is made after the vehicle arrives at
each station. Consequently, the updated information about the inventory level of
current station is available to the vendor before making his decision. In addition,
the travel time between any two adjacent stations may not be anticipated. We
can model the effect of the transportation time into the demand variation of the
stations. For ease of presentation, we assume that the travel time between any
two adjacent stations is deterministic and the demand at each station follows a
poisson process.

The vehicle will visit all the assigned stations in a predetermined route. Denote
the travel time from the depot to station 1 by t1 and from station i to i + 1 by
ti+1. Each station has demand that follows poisson distribution with demand
rate λi units kiloliters per unit time. Therefore, the demand of station i, i.e., Ii,
follows a poisson distribution with mean (t1 + . . . + ti)λi.

The recursive dynamic equation is as follows,

Vi(K; li) = max
0≤x≤min (K,bi−li)

[γix− αi(ai − li − x)+ + fi+1(K − x)],

with terminal function
Vn+1(K; ∅) = δK,

where fi+1(z) = EIi+1,...,In [Vi+1(z; (l0i+1 − Ii+1)+] and fn+1(z) = δz.

Given levels li+1, ..., li define the critical numbers z1
i and z2

i as follows. Let
Δfi+1(z) = fi+1(z) − fi+1(z − 1), if Δfi+1(1) < γi + αi, z1

i = 0, otherwise
z1

i = max{z ∈ {0, ...,K0}|Δfi+1(z) ≥ γi + αi}; if Δfi+1(1) < γi, z2
i = 0,

otherwise z2
i = max{z ∈ {0, ...,K0}|Δfi+1(z) ≥ γi}.

Theorem 3. For each i = 0, ..., n,Vi(K; li) is increasing and concave with re-
spect to 0 ≤ K ≤ K0, for any given li. Furthermore, at each stage i, the optimal
replenishment policy is as follows:

(a) if li ≥ ai, x∗ = mid(K − z2
i , 0, bi − li);

Optimal Commodity Distribution for a Vehicle with Fixed Capacity 337

(b) if li < ai, x∗ = mid(min(K − z1
i , bi − li),max(K − z2

i , 0), ai − li);

where mid(u, v, w) = v if u ≤ v ≤ w.

In the vast existing literatures on supply chain management and revenue man-
agement, the dynamic policy quite common to see is of threshold, however, the
optimal policy we obtain is a middle point among three critical numbers, an
interesting result. Bassok [3] also considered a problem similar to ours, which
proved the optimal policy is of threshold. The main reason causing this differ-
ence is in our setting, in addition to the capacity limit at each station, the safety
level requirement also affects the decision.

The optimal policy expressed in Theorem 3 is computationally implementable.
Upon the vehicle’s arrival at a particular station, the optimal solution can be
computed by inputting the state of the art information on inventory levels at
current station and subsequent stations to be visited.

5 Numerical Example

In this section, we use a numerical example to discuss the value of information
updating. We consider a sample with n = 3 stations with given route 1, 2, 3,and
a vehicle capacity K = 20 units. The detailed data with respect to corresponding
parameters are as follows.

Station capacity: b1 = 20, b2 = 20, b3 = 24
Station safety level: a1 = 11, a2 = 10, a3 = 12
Station unit profit: γ1 = 30, γ2 = 38, γ3 = 40
Station unit penalty: α1 = 25, α2 = 20, α3 = 15

We want to compare the difference in the expected return of using the two
stochastic models discussed in Section 4. According to the analysis in last section,
we can easily calculate the optimal decision made before the delivery arrival, i.e.,

x̂ = arg max
x
{Eli [γimin(x, bi − li)− αi(ai − li − x)+ + V̂i+1(K − x)]}.

In order to focus on the evaluation of information updating at a particular
station, we assume after that station, the decisions made will take into account
demand updating, which is expressed below

Fi(x;K, li) = γix− αi(ai − li − x)+ + fi+1(K − x). (4)

Equation (4) is actually an upper bound of the expected return without infor-
mation updating. We compare it with the optimal profit considering information
updating.

We use the following performance measure to evaluate the value of information
for a specific realization of random demand (i.e. li),

Vi(K; li)− Fi(x̂;K, li)
Vi(K; li)

∗ 100%.

338 X. Xu et al.

For the case with 3 stations described above, we compare the expected value
before and after the driver arrives at station 1. The specific results are listed in
Table 3. According to Table 3, we can see from an extreme case, l1 = 20, near
30% profit loses due to the lack of information updating.

Table 3. Comparing the result from two stochastic models

Remain inventory Expected Return Expected Return Percentage
in station i (li) by model in (4.1) by model in (4.2) difference

0 686.0148 627.0712 8.6005
1 697.4380 652.0712 6.4562
2 708.1999 677.0712 4.3785
3 718.2566 702.0712 2.2284
4 727.0712 727.0712 0
5 735.3859 727.0712 1.0884
6 743.5551 727.0712 2.4161
7 751.6111 727.0712 3.1957
8 759.5181 727.0712 4.2161
9 767.1328 727.0712 5.2151
10 774.1670 727.0712 6.0724
11 780.1702 727.0712 6.7949
12 780.1702 727.0712 6.7949
13 780.1702 727.0712 6.7949
14 780.1702 727.0712 6.7949
15 780.1702 727.0712 6.7949
16 780.1702 697.0712 10.6410
17 780.1702 667.0712 14.4871
18 780.1702 637.0712 18.7179
19 780.1702 607.0712 22.1795
20 780.1702 577.0712 26.0256

6 Concluding Remarks

In this paper, we considered a commodity distribution problem with fixed capac-
ity under the framework of VMI. Specifically, we considered an gasoline vendor,
who distributes oil to multiple retail stations by a tanker. At each station, there
is a contracted safety inventory level, not satisfying which will be penalized by
the station owner. Given the specified delivery route of the tanker, the vendor
needs to decide a replenishment quantity at each station, facing the trade-off
of replenishing more inventory at current station or reserving more capacity for
later stations.

We modelled this problem in two ways, corresponding to different realistic
situations. For the problem with stationary demand, we developed a Greedy
Algorithm, which is proved optimal, to solve a constrained nonlinear objective
function. For the random demand case, we formulated the problem by dynamic
programming. The optimal policy obtained is a median among three critical

Optimal Commodity Distribution for a Vehicle with Fixed Capacity 339

numbers, different from previous similar researches. Investigating valuable ex-
tensions of our model includes the following: (1) As the vehicle route is fixed
in our current work, incorporating the routing problem should be challenged;
(2) In our work, the commodity to be distributed is a single product, it is more
interesting to consider multi-commodity distribution problem which will involve
the initial space allocation among different commodities.

References

1. Anton, J.K., Nori, V.S., Martin, S.: The Stochastic Inventory Routing Problem
with Direct Deliveries. Transportation Science 36(1), 94–118 (2002)

2. Barnes, S.D., Bassok, Y.: Direct Shipping and the Dynamic Single-depot/Multi-
retailer Inventory System. Elsevier Science 101(3), 509–518 (1997)

3. Bassok, Y.: Dynamic Allocations for Multi-Product Distribution. Transportation
Science 29(3), 256–266 (1995)

4. Bell, W.J., Dalberto, L.M., Fisher, M.L., Greenfield, A.J., Jaikumar, J., Kedia,
P., Mack, R.G., Prutzman, P.J.: Improving the distribution of industrial gases
with on-line computerized routing and scheduling optimizer. Interfaces 13(1), 4–23
(1983)

5. Beltrami, E., Bodin, L.: Networks and Vehicle Routing for Municipal Waste Col-
lection. Networks 4, 65–94 (1974)

6. Champell, A., Clarke, L., Anton, K., Martin, S.: The Vehicle Routing Problem,
Chapter 12 (2002)

7. Christiansen, M., Nygreen, B.: A Method for Solving Ship Routing Problems with
Inventory Constraints. Ann. Oper. Res. 81, 357–378 (1998a)

8. Christiansen, M.: Modelling Path Flows for a Combined Ship Routing and Inven-
tory Management Problem. Ann. Oper. Res. 82, 391–412 (1998b)

9. Christiansen, M.: Decomposition of a Combined Inventory and Time Constrained
Ship Routing Problem. Transportation Science, 33(1), 3–16 (1999)

10. Berman, O., Larson, R.C.: Deliveries in Inventory/Routing Problem Using Stochas-
tic Dynamic Programming. Transportation Science 35(2), 192–213 (2001)

11. Singer, M., Donoso, P., Jara, S.: Fleet Configuration Subject to stochastic demand:
An Application in The Distribution of Liquefied Petroleum Gas. Journal of The
Operational Research Society 53, 961–971 (2002)

On-Line Bin Packing with Arbitrary Release

Times

Yongqiang Shi1 and Deshi Ye2,�

1 College of Economics, Zhejiang University, Hangzhou 310027, China
2 College of Computer Science, Zhejiang University, Hangzhou 310027, China

Abstract. We study a new variant of on-line bin packing problem, in
which each item ai is associated with a size ai and also a release time
ri so that it must be placed at least ri above from the bottom of a bin.
Items arrive in turn and must be assigned without any knowledge of
subsequence items. The goal is to pack all items into unit-size bins using
the minimum number of bins. We study the problem with all items
have equal size. First, we show that the ANY FIT algorithm cannot
be approximated within any constant. Then we present a best possible
on-line algorithm with asymptotic competitive ratio of 2.

Keywords: Bin packing, Arbitrary release time, On-Line algorithm.

1 Introduction

Bin packing is one of the basic problems since the early 70’s in the theoretical
computer science and combinatorial optimization literature and different vari-
ants of the problem continue to attract researchers’ attentions. In this problem,
one is given a list L of items a1, a2, . . . , an, each item ai ∈ (0, 1], and the goal is
to pack this sequence of items into unit-size bins using the minimum number of
bins. A packing algorithm is called on-line if it packs item one by one without
any information on subsequence items. We call a packing algorithm off-line, if
the algorithm knows all the information of items.

In this paper we study a new variant of on-line bin packing problem, which
is called on-line bin packing with arbitrary release time. In this variant, each bin
has a time axis [0, 1] from the bottom to top, jobs arrive in turn and must be
assigned without information of future items. Each item ai is associated with a
size ai and a release time ri so that it must be placed at least ri above from the
bottom of a bin. The goal is to pack all items into unit-size bins and minimize
the number of bins used. Without loss of generality, we assume that ai + ri ≤ 1,
otherwise, this item cannot be assigned to any bin. In this paper, we focus on
the problem of unit size items. All items have the same size of 1/K for some
integer K ≥ 1.

Unlike traditional on-line models, where items arrive one by one without re-
lease times, or items arrive over time but the items appear only after their release
� Research was supported by NSFC(10601048).

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 340–349, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On-Line Bin Packing with Arbitrary Release Times 341

times, the on-line model studied in this paper is that items arrive one by one with
arbitrary release times. Upon the arrival of items, their sizes and release times
are known to the scheduler. Items must immediately and irrevocably be assigned
without any information on subsequence items. Furthermore, items should be
fitted into a position after their release times.

To our best knowledge, this kind of on-line model was first proposed by Li
and Huang [8]. In their paper, each job has a release time and a processing time,
jobs cannot be scheduled before its release time. Jobs arrive in turn and must be
scheduled without any information of subsequence jobs while their release times
are independent of the order. The problem is to find a schedule of these jobs
while minimizing the overall completion time, i.e. the makespan. They gave the
tight competitive ratio 3 − 1/m of List Scheduling (LS) and also proposed an
improved algorithm for m ≥ 2.

The on-line bin packing problem with arbitrary release time can be regarded
as a variant of on-line scheduling problem for jobs with arbitrary release time.
Each job is also associated with processing time and release time, however all
jobs have common due date. The goal of this scheduling problem is to schedule
all the jobs before its due date while minimizing the number of machines used.
This scheduling problem is motivated by air cargo import terminal problem.
Cargo agents will make requests daily either by fax or through web or by phone
to book for truck docks at the terminal for the cargo collection. Cargo agents
will also indicate their preference time per day to come to the terminal. Since
the truck docks are scarce resource, it is significant to efficiently schedule all the
jobs in a day to reduce using the number of docks. Comparing to the bin packing
problem, the processing time of a job can be regarded as the size of an item, the
common due date can be regarded as the size of a bin. This bin packing problem
arises also in many real world applications: e.g. in the real-world packing of bins,
some items are fragility and cannot be assigned to a bin with too much items
above.

The standard measure of algorithm’s quality for on-line bin packing is the
asymptotic competitive ratio. Given a list L of items and an on-line algorithm A,
we denote by OPT (L) and A(L), respectively, the minimum possible number of
bins used to pack items in L and the number of bins used by algorithm A on L.
The asymptotic competitive ratio R∞

A of algorithm A is defined to be

R∞
A = lim sup

n→∞
max

L
{A(L)/OPT (L)|OPT (L) = n}.

Throughout of this paper, we will often simply write competitive ratio instead
of “asymptotic competitive ratio”.

Related results: Our studied problem becomes the classical on-line bin packing
problem when all the jobs are released at time zero. There is a long history
of results for the classical bin packing problem (see the survey [3,4,5]). The
bin packing is well-known to be NP-hard [6]. The classical on-line bin packing
problem was first investigated by Ullman [10]. The FIRST FIT algorithm [7]
was shown to have competitive ratio 17/10. A straight forward class of on-line

342 Y. Shi and D. Ye

algorithm is the ANY FIT (AF) algorithm: the AF algorithm never puts an
item ai into an empty bin unless the item does not fit into any partially filled
bin. NEXT FIT, FIRST FIT and BEST FIT algorithms belong to the class of
ANY FIT. The current best known lower and upper bounds for classical on-line
bin packing problem are 1.54 due to van Vliet [11] and 1.588 by Seiden [9],
respectively.

A generalization of our problem is scheduling with release times and deadlines
on a minimum of machines (SRDM) [2]. Each job has a release time, a processing
time and a deadline, the goal is to find a non-preemptive schedule such that all
jobs meet their deadlines and the number of machines needed to process all
jobs is minimum. They concerned on the off-line case and showed that this
problem is at least Θ(log n)-approximation, where n is the total number of jobs.
For the special case with equal processing times, a 9-approximation algorithm
was presented. They also presented an asymptotic 4.62-approximation algorithm
with all jobs have equal release times. Our problem becomes a special case of the
SRDM problem if all jobs have equal deadlines. Another similar problem called
strip packing with release time was studied by Augustine et al. [1]. They provided
an asymptotic full polynomial time approximation scheme for the off-line strip
packing with release time.

Our contributions: To our best knowledge, we are the first one to study the
on-line bin packing problem with release times. We assume that all items have
equal size. The detail of our results are given as follows:

1) There is no constant competitive ratio for the ANY FIT algorithm.
2) We show that no on-line algorithms can achieve competitive ratio less than 2.
3) We present an on-line algorithm with competitive ratio 2.

The rest of this paper is organized as follows. Section 2 analyzes the lower
bound of ANY FIT algorithms. Section 3 shows the general lower bound 2 and
presents an on-line algorithm with competitive ratio 2. The conclusions will be
given in Section 4.

2 Lower Bound of the ANY FIT Algorithm

In this section we show an unbounded lower bound for the ANY FIT algorithm.
Note that for the AF algorithm, a new bin is opened only if the item does not
fit into any non-empty bin.

Theorem 1. There is no constant competitive ratio for the ANY FIT algorithm.

Proof. We construct an instance I0 to show the theorem. First we assume that
all items have the same size 1/K, where K is a sufficiently large integer. K2

items arrive in turn : K items with release time 0, K items with release time
1/K, K items with release time 2/K, . . . ,K items with release time (K − 1)/K.
This instance I0 will also be used in the rest of this paper.

On-Line Bin Packing with Arbitrary Release Times 343

0

1
2

1

............
......

K

Time

Number of bins

1 2

1/K

Fig. 1. ANY FIT Packing of instance I0

Clearly, the optimal solution uses K bins, where each item is located exactly
at its release time. Now we observe the assignments by the ANY FIT algorithm,
see the Fig. 1 for an illustration, each color represents a set of items with the
same release time.

The first K items are packed into the first bin, i.e., only one bin is used.
For the second K items, K − 1 items are in the 2nd bin and one item in the
3rd bin, i.e., use K/(K − 1) bins. Because of the ANY FIT algorithm, when
a new bin is opened, no subsequence items can be fitted into a bin with index
smaller than this opened new bin. For the K items with release time x/K, at
least �1/(1−x/K)	 bins are needed. For the last K items with release time K−1

K ,
each piece shall occupy a bin, i.e. total K new bins are needed to pack the last
K items. Consequently, the number of bins used by the algorithm AF is at least
K/K+�K/(K−1)	+· · ·+�K/2	+K ≥ (1/2+1/3+· · ·+1/K)K = K(logK−1).
Then the competitive ratio of the ANY FIT algorithm is at least

RAF ≥
AF (I)
OPT (I)

=
K(logK − 1)

K
= logK − 1.

Hence there is no constant competitive for the ANY FIT algorithm when K
approaches infinity. ��

Note that the above instance I0 works also for the model with unit size. Thus one
question arises: does there exists an on-line algorithm with constant competitive
ratio even if the case with unit size? We will give a positive answer in the
following section.

3 Optimal On-Line Algorithm

3.1 General Lower Bound

In this section we show that one cannot expect to find an on-line algorithm with
asymptotic competitive ratio less than 2. Note that the classical bin packing

344 Y. Shi and D. Ye

problem is solved in polynomial time if all items have equal size. The ANY
FIT algorithm will also produce an optimal solution for the unit size model.
Thus each item with additional release time brings much more trouble to our
investigated problem.

Theorem 2. For any on-line algorithm A, R∞
A ≥ 2.

Proof. Suppose that R is the competitive ratio of on-line algorithm A. For an
integer k ≥ 3. The sequence of items generated by the adversary is given as
follows. First, n items with release time 0 and all have item size 1/k.

After first n items, OPT is n/k, for large n divisible by k, so only Rn/k items
are packed at time 0. Then for each i, n items with release time i/k are presented
one by one, where i = 1, . . . , k − 1.

Similarly, considering the situation after in items, OPT is in/k, thus at most
iRn/k items are packed starting at time i − 1. So, summing the arithmetic
sequence, the total number of packed items at the end is at most

∑k−1
i=0 (i +

1)Rn/k = R(k + 1)n/2. But this must be at least kn, i.e. R(k + 1)n/2 ≥ kn
yielding R ≥ 2k/(k + 1).

Thus, the asymptotic competitive of any on-line algorithm is at least 2 by
choosing a sufficiently large integer k. ��

3.2 Upper Bound

In this section, we present an optimal on-line algorithm for the problem with
unit size, i.e. all the items have the same size 1/K for some integer K, therefore
we can assume that the release times of items are at {i/K|i = 0, 1, . . . ,K − 1}.
Main idea: From the analysis of the lower bound of algorithm AF , we observe
that it is not good always packing items into a non-empty bin. Thus the key
point to design an efficient algorithm is to find a suitable rule when will a new
bin be opened.

Before designing our algorithm, some notations are given as follows. When
packing a new item aj , suppose that the optimal solution for these first j items
is OPTj = M , then denote by lMi the number of items with release time i/K,
(i = 0, 1, ...,K − 1). Let LM

i =
∑K−1

j=i lMj ≤ (K − i)M . Clearly, we have the
following lemma due to the capacity constraint of any optimal solution.

Lemma 3

M ≥ max
0≤i≤K−1

{ LM
i

K − i
}.

Algorithm AHC{ 1
K }(Average Height)

For any new item aj with release time rj , we pack it as follows:

Step 1. Calculate the optimal solution OPTj = M = �max0≤i≤K−1{ LM
i

K−i}�.
Step 2. If the optimal solution increases, i.e. OPTj > OPTj−1, open C bins.
Step 3. Find the lowest indexed bin so that the item aj is located as low as

possible in all open bins.

On-Line Bin Packing with Arbitrary Release Times 345

From the fact of our algorithm, we always first put an item aj into a bin with
lowest index so that it can be located at rj , then it is easy to obtain the following
Fact.

Fact 4. If there is a vacancy at j/K in the bin B
′
, there must be a vacancy at

j/K in the non-empty bins with index larger than B
′
. Furthermore if there is

no vacancy at j/K in the bin B
′
, there must be no vacancy at j/K in the bins

with index less than B
′
.

Here we want to find the minimum constant C so that all items can be packed
into C ·OPTn bins. Then the competitive ratio of the algorithm AHC{ 1

K } is C.

Lemma 5. For any instance I, if there are two adjacent items aj and aj+1

with release times rj > rj+1, the solution of AHC{ 1
K } will not be better for the

instance I with interchanging aj and aj+1. Moreover, the instance I0 generated
in the proof of Theorem 1 is one of the worst instances by AHC{ 1

K }.

Proof. Without loss of generality, we assume that all items of the instance I can
be packed into C ·OPTn bins. Denote I ′ to be the instance I after interchanging
the items aj and aj+1. First of all, we study the case OPTj = OPTj−1. For
instance I ′, after aj+1 has been assigned, the optimal solution is denoted by
OPT

′

j and the optimal solution after aj is OPT
′

j+1. We consider the following
cases of possible locations of items aj and aj+1 in the instance I by the algorithm
AHC{ 1

K }, and also the cases of the optimal solution increases or not upon the
arrival of aj+1 in I ′.

• Case 1: The two items are both located exactly at their release times.
◦ Case 1.1: OPTj = OPTj+1. It implies that when aj comes there are va-

cancies at rj and rj+1. For instance I ′, their locations will not be changed by
AHC{ 1

K }.
◦ Case 1.2: OPTj+1 > OPTj . In this case, C bins will be opened before

assigning aj+1.
-Subcase 1.2.1: aj+1 isn’t packed into these C new bins. Similar analysis as

Case 1.1.
-Subcase 1.2.2: aj+1 is packed into the first of these C new bins. There is

no vacancy just at rj+1 in the open bins before aj+1 comes. For instance I ′,
we have OPT

′

j−1 = OPT
′

j = OPTj. From the algorithm, aj+1 must be located
above rj+1. Consider the following cases:

a): aj+1 is located at r∗ between rj+1 and rj . The detail proof will be given
in full paper.

b): aj+1 is located at rj . In this case, aj+1 occupies the position which is
for aj in the stance I. Similarly with subcase 1.2.2.a), the solution will increase
1 or does not decrease.

• Case 2: Only aj is located at its release time. In this case, OPTj = OPTj+1.
◦ Case 2.1: aj+1 is located below rj . After interchanging of the two items aj

and aj+1, their locations will not change.

346 Y. Shi and D. Ye

◦ Case 2.2: aj+1 is located at or above rj . Consider the instance I ′, the
locations of aj and aj+1 will interchange comparing to their locations in the
instance I. This will not affect the locations of subsequential items.

• Case 3: aj is located above rj . It means there is no vacancy between rj and
its location in any open bin.
◦ Case 3.1: aj+1 is located exactly at its release time.

-Subcase 3.1.1: OPTj = OPTj+1. From the algorithm AHC{ 1
K }, their lo-

cations will not change in the stance I ′.
-Subcase 3.1.2: OPTj < OPTj+1. In this case C bins will be opened before

assigning the item aj+1.
a): aj+1 isn’t packed into these C new bins, same analysis as Subcase 3.1.1.
b): aj+1 is packed into the first of these C new bins, similar to the analysis

in Subcase 1.2.2.
◦ Case 3.2: aj+1 is located above rj+1. In this case, OPTj = OPTj+1 still

holds. The analysis is similar to Case 2.
-Subcase 3.2.1: aj+1 is located between rj+1 and rj . Their locations will

not change in the instance I ′.
-Subcase 3.2.2: aj+1 is located above or at rj . Their locations will inter-

change in the instance I ′ and keep the same locations of subsequential items as
the instance I.

From the above all and the case OPTj > OPTj−1 (will be given in full paper),
by interchanging such items aj and aj+1 with rj > rj+1 in the stance I, we obtain
that an instance with items with release times in nondecreasing order will achieve
the worst solution by the algorithm AHC{ 1

K }, i.e. for the instances with the same
items and but with different arrival sequences, the instance with release times in
nondecreasing order will use the largest number of bins by AHC{ 1

K }. However,
their optimal solutions are the same. Hence, the instance I0 generated in the
proof of Theorem 1 is one of the worst instances. ��

Theorem 6. The competitive ratio of algorithm AHC{ 1
K } is 2 if we let C = 2.

Proof. By Lemma 5, the instance I0 is one of the worst instances, and the optimal
solution of I0 is K. Firstly, we construe the configuration of solution for I0 by
AHC{ 1

K }. Afterward, we will analyze the other worst instances with release
times in nondecreasing order.

Let C = 2. See Fig. 2 for a demonstration of the packing instance I0 when K
is even.

The first K items are packed into 2 bins under 1
2 . K − 2 items of the second

K ones are packed into the 3rd and 4th bins under 1
2 , and each of the other 2

items of them is put into the first 2 bins at 1
2 . For any K items with release

times i/K(i = 1, 2, . . . ,K − 1), consider the following cases.
a): if i is odd, suppose i = 2h− 1, K − 2h items of them are packed into the

(2i + 1)− th and (2i + 2)− th bins under 1
2 + h−1

K , and each of the other 2h of
them is located at 1

2 + h−1
K in the former 2h bins;

On-Line Bin Packing with Arbitrary Release Times 347

0 2K

1
2

3
4

1

......

Time

Number of bins

Fig. 2. AH2{ 1
K

} Packing for Even K

b): i is even, assume i = 2h, K − 2h − 2 items of them are packed into the
(2i+ 1)− th and (2i + 2)− th bins under 1

2 + h−1
K , and each of the other 2h + 2

of them is located at 1
2 + h−1

K in the later 2h + 2 bins.
For the last K items whose release times are K−1

K , (K − 1) is odd. These
K items are just located at K−1

K in the former K bins and total 2K bins are
opened.

If K is odd, see the Figure 3. For the first K items, (K+1)/2 items are packed
into the 1st bin and (K − 1)/2 items are packed into the 2nd bin. Similar to the
above analysis, when K items comes with release times i/K(i = 1, 2, . . . ,K−1),
we consider the following cases.

a): if i is odd, set i = 2h− 1, K − 2h− 1 items of them are packed into the
(2i + 1) − th and (2i + 2) − th bins under K−1

2K + h−1
K , and each of the other

2h + 1 of them is located at K−1
2K + h−1

K in the later 2h + 1 bins.
b): i is even, set i = 2h, K − 2h − 1 items of them are packed into the

(2i+1)− th and (2i+ 2)− th bins under K−1
2K + h

K , and each of the other 2h+1
of them is located at K−1

2K + h
K in the former 2h + 1 bins.

For the last K items with release time K−1
K , (K − 1) is even. These K items

are just located at K−1
K in the former K bins of all the 2K ones.

From the above analysis, the last 2 bins are empty. But, if there are only first
P (P < K) batches of items with P different release times, the optimal solution
is P while the solution of AH2{ 1

K } is 2P and none of bins is empty. Thereby
the ratio is 2.

From now on we have discussed the case that the number of items with the
same release time are all equal to K. If they are all equal to some multiple of K,

348 Y. Shi and D. Ye

0 2K

K−1
2K

1

K+1
2K

......
......

Time

Number of bins

Fig. 3. AH2{ 1
K

} Packing for Odd K

the configuration of the algorithm AH2{ 1
K } is alike. Furthermore, for the state

that the numbers of items with same release time are different, the vacancies
brought by the items whose number is not multiple of K are more than those
vacancies brought by the items with number of K’s multiple. With analogy
analysis, the solution of algorithm AH2{ 1

K } is at most twice of optimal solution.
This completes the proof of the theorem. ��

In the following, we give an improved algorithm MAHC{ 1
K } with tight compet-

itive ratio 2− 1/K.

Algorithm MAHC{ 1
K }

For any new item aj with release time rj , we pack it as follows:

Step 1. Calculate the optimal solution OPTj = M = �max0≤i≤K−1{ LM
i

K−i}�.
Step 2. If OPTj = 1, put the item into the first bin.
Step 3. If OPTj ≥ 2 and OPTj > OPTj−1, open new C bins.
Step 4. Find the lowest indexed bin so that the item aj is located as low as

possible in all open bins.

The analysis of above algorithm is similar to the theorem 6, but the detail
proof will be given in full paper.

Theorem 7. Let C = 2, the competitive ratio of algorithm MAHC{ 1
K } is 2− 1

K .

4 Conclusions

In this paper we have studied the on-line bin packing problem with release
times. For the problem with all items have equal size, we presented a general

On-Line Bin Packing with Arbitrary Release Times 349

lower bound 2 and designed an on-line algorithm with asymptotic competitive
ratio 2. We also showed that the ANY FIT algorithm cannot be approximated
within any constant asymptotic competitive ratio.

If we turn to the off-line case of our problem, all the classical on-line bin
packing algorithms can be applied to our problem by sorting the items in the
order of non-increasing release times and all items are packed to a bin as top as
possible.

There are many challenging aspects of the bin packing with release time.
For example, study the on-line problem with items have different sizes, study
the off-line problem whether there exists a full polynomial time approximation
scheme.

Acknowledgements. We would like to thank anonymous referees for many
helpful suggestions to design a better general lower bound and for many sugges-
tions to improve the presentation of this paper.

References

1. Augustine, J., Banerjee, S., Irani, S.: Strip Packing with Precedence Constraints and
Strip Packing with Release Times. In: Proceedings of the eighteenth annual ACM
symposium on Parallelism in algorithms and architectures, pp. 180–188 (2006)

2. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling
with Release Times and Deadlines on a Minimum Number of Machines. IFIP TCS,
209–222 (2004)

3. Coffman Jr., E.G., Galambos, G., Martello, S., Vigo, D.: Bin packing approx-
imation algorithms: Combinatorial analysis. In: Du, D.-Z., Pardalos, P.M. (eds.)
Handbook of Combinatorial Optimization, Kluwer Academic Publishers, Dordrecht
(1998)

4. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Bin packing approximation algo-
rithms: A survey. In: Hochbaum, D.S. (ed.) Approximation algorithm for NP-hard
problems, pp. 46–93. PWS (1996)

5. Csirik, J., Woeginger, G.J.: On-line packing and covering problems. In: Goto, E.,
Nakajima, R., Yonezawa, A., Nakata, I., Furukawa, K. (eds.) RIMS Symposium on
Software Science and Engineering. LNCS, vol. 147, pp. 147–177. Springer, Heidel-
berg (1983)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability (A guide to the theory
of NP-completeness.). W. H. Freeman and Company, San Francisco (1979)

7. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case
performance bounds for simple one-dimensional packing algorithms. Siam Journal
on Computing 3, 256–278 (1974)

8. Li, R., Huang, H.-C.: On-line Scheduling for Jobs with Arbitrary Release Times.
Computing 73, 79–97 (2004)

9. Seiden, S.: On the online bin packing problem. Journal of the ACM 49, 640–671
(2002)

10. Ullman, J.D.: The performance of a memory allocation algorithm. Technial Report
100, Princeton University, Princeton, NJ (1971)

11. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Infor-
mation processing letters 42, 277–284 (1992)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 350–361, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Complexity of the Max-Edge-Coloring Problem
with Its Variants

Chang Wu Yu

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C

cwyu@chu.edu.tw

Abstract. The max-edge-coloring problem (MECP) is finding an edge colorings
{E1, E2, E3, …, Ez} of a weighted graph G=(V, E) to minimize

{ }∑ =
∈z

i ikk Eeew
1

)(max , where w(ek) is the weight of ek. In the work,

we discuss the complexity issues on the MECP and its variants. Specifically, we
design a 2-approximmation algorithm for the max-edge-coloring problem on
biplanar graphs, which is bipartite and has a biplanar drawing. Next, we show the
splitting chromatic max-edge-coloring problem, a variant of MECP, is
NP-complete even when the input graph is restricted to biplanar graphs. Finally,
we also show that these two problems have applications in scheduling data
redistribution on parallel computer systems.

Keywords: edge coloring, bipartite graphs, multi-graphs, algorithm design.

1 Introduction

The max-edge-coloring problem (MECP) is finding an edge colorings {E1, E2, E3, …,
Ez} of a weighted graph G to minimize

{ }∑ =
∈z

i ikk Eeew
1

)(max ,

where w(ek) is the weight of ek. We can also define its two variants by using the
minimum number of coloring as follows. The chromatic max-edge-coloring problem
(CMECP) is finding an edge colorings {E1, E2, E3, …, EΔ} of a weighted graph G to
minimize

{ }∑ Δ

=
∈

1
)(max

i ikk Eeew ,

where Δ is the maximum degree of G and w(ek) is the weight of ek. Given a weighted
graph G=(V, E), the splitting chromatic max-edge-coloring problem (SCMECP) is an
decision problem whether we can add extra edges E′ such that the resulting graph
G′=(V, E∪E′) satisfies the following four conditions:

(1) Another edge (s, t) can be added to E′ only if there exists an edge (s, t) in E.
(2) The maximum degree of the resulting new graph is the same; that is, Δ(G)=Δ(G′).

 On the Complexity of the Max-Edge-Coloring Problem with Its Variants 351

(3) The value

{ }∑ Δ

=
=

1
'in) ,()(

i kk EEtseew ∪

equals the weight of (s, t) in E, where w(ek) is the weight of ek.
(4) There is an edge coloring {E1, E2, E3, …, EΔ} of G′=(V, E∪E′) such that

{ }∑ Δ

=
∈

1
)(max

i ikk Eeew ≤K,

where K is given and w(ek) is the weight of ek.
To the best of our knowledge, the above three problems are defined formally for the

first time. Although some heuristic algorithms have been designed for the CMECP
[19, 20, 21], both the MECP and the CMECP are still open to devise a polynomial-time
algorithm even when the input graph is restricted to biplanar graphs. The first contribution
of the work is showing the existence of 2-approximation algorithm for the MECP when
the input graph is restricted to biplanar graphs. The SCMECP is a new graph problem
defined here, which have applications in shortening the overall communication time for
data redistribution in parallel systems. In this work, we will show the SCMECP is
NP-complete even when the input graph is restricted to biplanar graphs.

Only a similar problem called the max-coloring problem [28, 29] can be found in
literature. The problem is to find a proper vertex coloring of input graphs whose color
classes C1, C2, …, Ck, minimize { }∑ =

∈k

i iCeew
1

)(max where w(e) is the weight of e.

The max-coloring problem has been shown to be NP-hard on interval graphs [28];
however, there exist some approximation algorithms for the problem on many well-known
subclasses of graphs including bipartite graphs, interval graphs, circle graphs, circular arc
graphs, unit disk graph, chordal graphs, and permutation graphs [28, 29].

The rest of the paper is organized as follows. Section 2 presents necessary
definitions and notations. Next, Section 3 presents a 2-approximation algorithm for the
MECP when the input graph is restricted to biplanar graphs. The SCMECP is shown to
be NP-complete even when the input graph is restricted to biplanar graphs in Section 4.
The applications of these problems to scheduling problems for data redistribution in
parallel systems are discussed in Section 5. Finally, Section 6 concludes the paper.

2 Definitions and Notations

A graph G consists of a finite nonempty vertex set together with an edge set. A
bipartite graph G =(S, T, E) is a graph whose vertex set can be partitioned into two
subsets S and T such that each of the edges has one end in S and the other end in T. A
typical convention for drawing a bipartite graph G=(S, T, E) is to put the vertices of S on
a line and the vertices of T on a separate parallel line and then represent edges by
placing straight line segments between the vertices that determine them. In this
convention, a drawing is biplanar if edges do not cross, and a graph G is biplanar if it
has a biplanar drawing [27]. A graph is connected if there is a path joining each pair of
nodes. An acyclic graph is one that contains no cycles. A forest is an acyclic graph. A
tree is a connected acyclic graph. A component of a graph is a maximal connected
subgraph. The number of components of G is denoted by ω(G).

352 C.W. Yu

Let N(v) denote the set of vertices which are adjacent to v in G. The ends of an edge
are said to be incident with the edge. Two vertices which are incident with a common
edge are adjacent. A multi-graph is a graph allowing more than one edge to join two
vertices. The degree dG(v) of a vertex v in G is the number of edges of G incident with v.
We denote the maximum degree of vertices of G by Δ(G).

A complete bipartite graph G =(S, T, E) is a graph such that each vertex of S is joined
to each vertex of T; if ⎪S⎪=m and ⎪T⎪=n, such a graph is denoted by Km, n. An ordering
of S (T) has the adjacency property if for each vertex v∈T(S), N(v) contains consecutive
vertices in this ordering. The graph G=(S, T, E) is called a doubly convex-bipartite
graph if there are orderings of S and T having the adjacency property [24]. A graph is
called interval graph if its vertex set can be represented by using a finite number of
interval on a straight line and two vertices are connected by an edge when the
corresponding intervals overlap at least partially.

The line graph L(G) of a graph G=(V, E) is defined so that there is a one-to-one
correspondence between the vertices in L(G) and the edges in G. That is, there is an
edge joining two vertices in L(G) when their corresponding edges in G are incident with
a common vertex.

The coloring is proper if no two adjacent edges have the same color. An edge with
identical ends is called a loop. A k-edge coloring of a loopless graph G is an assignment
of k colors to the edges of G. G is k-edge colorable if G has a proper k-edge coloring.
The edge chromatic number χ′(G), of a loopless graph G, is the minimum k for which G
is k-edge-colorable. A subset M of E is called a matching in G=(V, E) if its elements are
links and no two are adjacent in G. Note that the each edge set with the same color in a
proper edge coloring forms a matching. At last, most graph definitions used in the paper
can be found in [22].

An algorithm that generates near-optimal solution is called an approximation
algorithm. We say that an approximation algorithm has a ratio-bound of ρ, called
ρ-approximation algorithm, if for any input of size, the cost C of the solution produced
by the approximation algorithm is within a factor of ρ of the cost C* of an optimal
solution: max(C/C*, C*/C)≤ ρ.

3 The 2-Approximation Algorithm for the Max-Edge-Coloring
Problem When the Input Graph Is Restricted to Biplanar Graphs

This section gives a 2-approximation algorithm for the max-edge-coloring problem
when the input graph is restricted to biplanar graphs. First, the following theorem
presents additional properties of biplanar graphs.

Theorem 1: The following four statements are equivalent [25-27]:

(1) A bipartite graph G is biplanar.
(2) The graph G is a collection of disjoint caterpillars.
(3) The graph G contains no cycle and no double claw.
(4) The graph G* that is the remainder of G after deleting all vertices of degree one, is

acyclic and contains no vertices of degree at least three.

 On the Complexity of the Max-Edge-Coloring Problem with Its Variants 353

Here a caterpillar is a connected graph that has a path called the backbone b such that
all vertices of degree larger than one lie on b; and a double claw graph is depicted in
Fig. 1.

Fig. 1. A double claw

The size of edge set of a general bipartite graph is at most O(n2), where n is the
number of vertices in the graph. However, if the input graph can be drawn in a plane
without crossing edges (i.e., it is a planar graph), the size of the edge set is less than
3n-6 [22]. Since biplanar graphs are intrinsically planar, the size of the edge set of
biplanar graphs is less than 3n-6. In fact, a biplanar graph is a tree, the size of whose
edge set is n-1.

Theorem 2: The line graph of a biplanar graph is an interval graph.

Proof: Given a biplanar graph G=(S, T, E), we will construct an interval model to
represent the line graph of G. Since G is biplanar, we have a biplanar drawing of G on
two horizontal lines. By preserving the orderings of the biplanar drawing, this drawing
can be further rearranged to satisfy the following two properties (See Fig. 2 for
example):

(1) Every vertex v of S and T has distinct χ(v) value and 1≤χ(v)≤|S|+|T|. Hereafter χ(v)
denotes the x-coordinate of a vertex v in the biplanar drawing of G.

(2) The integer set {χ(u)|u∈N(v) and d(u)=1 }consists of consecutive integers for every
vertex v∈S∪T.

The first property can be achieved by scaling the x-coordinates of vertices properly,
and the second by packing the degree-one vertices which incident to the other same
vertex.

According to the drawing, each vertex of G is labeled by using its x-coordinate, and
an interval [x-o.5, y+0.5] is created for each edge (x, y) in E (See Fig. 2 for example).
The remainder is to show that the set of intervals represents the line graph of G.
Suppose that two vertices are adjacent in L(G) and the corresponding edges in G are
e1=(u, v) and e2. Without loss of generality, let u≤v and the interval [u-o.5, v+0.5]
represents e1. That implies that e2 must be incident with u or v; and the interval created
for e2 is [z, u+0.5] or [v-o.5, z], both of which overlap with [u-o.5, v+0.5].

On the other hand, given any pair of overlapped intervals [x1, y1] and [x2, y2] in the
set, we have x1≤x2<y1≤y2. We claim that the corresponding two edges in G are incident

354 C.W. Yu

with a common vertex; that also indicates the corresponding two vertices are adjacent
in L(G). Otherwise, the edges are not incident with a common vertex, and the created
intervals for the edges must be [x1, y1] and [x2, y2] and x1< y1<x2<y2 according to the two
properties of the drawing. A contradiction occurs.

Thus, the set of intervals represents the line graph of G, and L(G) is an interval
graph. ■

1

2 3 4 106

b ec da h if g

5 7 98

b
c

d
e

g
h

i

a
1 2 3 4 5 6 7 8 9 10

f

Fig. 2. A biplanar graph G with the interval model of its line graph

Based on above theorem, an algorithm for the max-edge-coloring problem is described
as follows.

Algorithm AMEC:

Input: a biplanar graph G =(S, T, E).
Output: an edge colorings {E1, E2, E3, …, Ez} of G and the value

{ }∑ =
∈z

i ikk Eeew
1

)(max , where w(ek) is the weight of ek.

Step 1: Constructing the line graph L(G) from G.
Step 2: Finding an interval model for L(G) by applying an interval graph recognition

algorithm.
Step 3: Finding a vertex coloring {C1, C2, C3, …, Cz} of L(G) by applying a

2-approximation algorithm for solving the max-coloring problem on interval
graphs.

Step 4: Constructing an edge colorings {E1, E2, E3, …, Ez} of G from {C1, C2, C3, …,
Cz} and compute the value

{ }∑ =
∈z

i ikk Eeew
1

)(max .

 On the Complexity of the Max-Edge-Coloring Problem with Its Variants 355

The performance guarantee and complexity of algorithm AMEC are described in the
following theorems.

Theorem 3: When the input graph is biplanar, AMEC is a 2-approximation algorithm
for the max-edge-coloring problem.

Proof: Since an edge coloring of an graph G corresponds to a vertex coloring of its line
graph L(G), the max-edge-coloring problem of G can be transformed to the
max-coloring problem of L(G). Since L(G) is an interval graph (by Theorem 2), we
obtain a 2-approximation algorithm for max-edge-coloring problem of G by applying
Pemmaraju et al ’s 2-approximation algorithm for the max-coloring problem on
interval graphs [28]. Finally, we conclude that Algorithm AMEC is a 2-approximation
algorithm for the max-edge-coloring problem. ■

Theorem 4: When the input graph is biplanar, AMEC requires O(n2) time, where n is
the size of the vertex set of the input graph.

Proof: The time complexity of AMEC is discussed as follows. Step 1 requires O(n2)
time because the step compares at most every pair in the edge set (whose size of edge
set is |E|=O(n)) of G for constructing the edge set of L(G). Step 2 can be implemented
in O(n2) time if we apply Booth and Lueker’s linear-time recognition algorithm for
interval graphs [30]. Step 3 takes O(nlog n) time if we apply Pemmaraju et al ’s
2-approximation algorithm for the max-coloring problem on interval graphs [28].
Finally, Step 4 can be implemented in O(n) time. The next theorem makes a
summary. ■

4 The Splitting Chromatic Max-Edge-Coloring Problem Is

NP-Complete When the Input Graph Is Restricted to Biplanar

Graphs

When the input graph is restricted to biplanar graphs, we will prove that the SCMECP
is NP-complete by transforming from the partition problem: Given a finite set A and a
weight s(a) ∈Z+ for each a∈A, the partition problem is to ask whether there is a subset
A′⊆A such that

∑∑
′−∈′∈

=
AAaAa

asas)()(.

Theorem 5: The SCMECP is NP-complete even the input graph is restricted to biplanar
graphs (The proof is omitted due to page limit).

5 Applications in Scheduling Data Redistribution

We also find applications in scheduling problems for data redistribution in parallel
systems for these problems in this section.

356 C.W. Yu

5.1 Applications of MECP and CMECP

Parallel computing systems have been extensively adopted to resolve complex
scientific problems efficiently. When processing various phases of applications,
parallel systems normally exploit data distribution schemes to balance the system
load and yield a better performance. Array redistribution is crucial for system
performance because a specific array distribution may be appropriate for the
current phase, but incompatible for the subsequent one. Many parallel
programming languages thus support run-time primitives for rearranging a
program’s array distribution. Therefore developing efficient algorithms for array
redistribution is essential for designing distributed memory compilers for those
languages. While array redistribution is performed at run time, a trade-off occurs
between the efficiency of the new data rearrangement for the coming phase and the
cost of array redistributing among processors.

In irregular redistribution, messages of varying sizes are scheduled in the same
communication step. Therefore, the largest size of message in the same communication
step dominates the data transfer time required for this communication step.

A bipartite graph model will be introduced to represent data redistributions. Any
data redistribution can be represented by a bipartite graph G=(S, T, E), called a
redistribution graph. Where S denotes source processor set, T denotes destination
processor set, and each edge denotes a message required to be sent. For example, a
Block-Cyclic(x) to Block-Cyclic(y) data redistribution from P processors to Q
processors (denoted by BC (x, y, P, Q)) can be modeled by a bipartite graph GBC(x, y, P,

Q)=(S, T, E) where S={s0, s1, …, s|s|-1} (T={t0, t1, …, t|t|-1}) denotes the source processor
set {p0, p1, …, p|s|-1} (destination processor set{p0, p1, …, p|t|-1}) and we have (si, tj)∈E
with weight w if source processor pi has to send the amount of w data elements to
destination processor pj. For simplicity, we use BC (x, y, P) to denote BC (x, y, P, P).
Fig. 3 depicts the a data redistribution pattern BC(1, 4, 4), and its corresponding
redistribution graph GBC(1, 4, 4) is shown in Fig. 4.

Fig. 3. A data redistribution pattern BC(1, 4, 4)

 On the Complexity of the Max-Edge-Coloring Problem with Its Variants 357

Fig. 4. The redistribution graph GBC(1, 4, 4) is a complete bipartite graph

Similarly, GEN_BLOCK data redistribution from P processors to Q processors
(denoted by GB (P, Q)) can also be modeled by a bipartite graph GGB(P, Q)=(S, T, E). For
example, a GB(4, 4) with its redistribution graph GGB(4, 4) is depicted in Fig. 5 and 6.

Fig. 5. GEN_BLOCK data redistribution GB(4, 4)

Fig. 6. A redistribution graph GGB(4, 4)

Theorem 6: The redistribution graph of GEN-BLOCK is a biplanar graph (The proof is
omitted due to page limit).

A set of conflict-free data communication can be represented by a matching of the
given redistribution graph G. Thus, the data redistribution problem can be modeled as
the MECP and CMECP.

358 C.W. Yu

5.2 Applications of SCMECP

Designing data redistribution scheduling algorithms for CMECP encounters a
difficulty: shortening the overall communication time without increasing the number of
communication steps at the same time. Unlike existing algorithms, Yu et al [31]
presented an algorithm to partition large data segments into multiple small data
segments and properly schedule them in different communication steps without
increasing the number of total communication steps. For example, Fig. 7 depicts a
redistribution graph G with a possible scheduling.

Fig. 7. A redistribution graph G with maximum degree Δ=4

Since G is bipartite, it is well known that χ′(G)=Δ(G) [22]. That indicates that the
minimum number of required communication steps (colors) equals the maximum
degree Δ of the given distribution graph G. Therefore, we at least need four
communication steps for the data redistribution since χ′(G)=Δ(G)=4. In addition, the
overall cost of the scheduling is 38 (See Table 1).

Table 1. Costs of the scheduling correspond to the edge coloring in Fig. 7

Note that the cost of Step 1 (colored in red) is dominated by the data segment (with
18 data elements) from P0 to Q0. Suppose that we partition the data of the segment into
two data segments (with 9 and 9 data elements respectively) and transmit them in
different steps; then the cost required for Step 1 is reduced to 10 (Currently the step is
dominated by the data segment from P3 to Q3). We can represent the kind of message
partition by adding a new edge (P0, Q0) in the original redistribution graph and sharing
weight with the old edge (P0, Q0). Similarly, we can partition other large data segments
into multiple small data segments if the maximum degree of the resulting redistribution
graph remains unchanging. After several data partitions, the overall communication
cost can be reduced to 29 (or equivalently 76%) and the number of required
communication step is still minimized (see Fig. 8 and Table 2).

Step 1(red) 2(yellow) 3(green) 4(purple) Total
Cost 18 6 3 11 38

 On the Complexity of the Max-Edge-Coloring Problem with Its Variants 359

Fig. 8. The resulting redistribution graph after partitioning long data segments

Table 2. Costs of the scheduling after partitioning long data segments

Step 1(red) 2(yellow) 3(green) 4(purple) Total
Cost 9 9 5 6 29

Evidently, the above technique can be modeled by the SCMECP. We have shown
the SCMECP is NP-complete even when the input graph is biplanar by Theorem 5.

6 Conclusions

In this work, we have designed the first 2-approximmation algorithm for the MECP on
biplanar graphs. We also proved that the SCMECP is NP-complete even when the input
graph is restricted to biplanar graphs. These two problems find applications in
scheduling data redistribution on parallel computer systems. The authors believe that
these newly defined graph problems deserve serious attention and can be applied to
tackle more practical problems in diverse fields.

References

[1] Bandera, G., Zapata, E.L.: Sparse Matrix Block-Cyclic Redistribution. In: Proceeding of
IEEE Int’l. Parallel Processing Symposium (IPPS’99), San Juan, Puerto Rico (April 1999)

[2] Desprez, F., Dongarra, J., Petitet, A.: Scheduling Block-Cyclic Data redistribution. IEEE
Trans. on PDS 9(2), 192–205 (1998)

[3] Hsu, C.-H, Bai, S.-W, Chung, Y.-C, Yang, C.-S: A Generalized Basic-Cycle Calculation
Method for Efficient Array Redistribution. IEEE Transactions on Parallel and Distributed
Systems 11(12), 1201–1216 (2000)

[4] Hsu, C.-H, Yang, D.-L., Chung, Y.-C., Dow, C.-R.: A Generalized Processor Mapping
Technique for Array Redistribution. IEEE Transactions on Parallel and Distributed
Systems 12(7), 743–757 (2001)

[5] Guo, M.: Communication Generation for Irregular Codes. The Journal of
Supercomputing 25(3), 199–214 (2003)

[6] Guo, M., Nakata, I.: A Framework for Efficient Array Redistribution on Distributed
Memory Multicomputers. The Journal of Supercomputing 20(3), 243–265 (2001)

360 C.W. Yu

[7] Guo, M., Nakata, I., Yamashita, Y.: Contention-Free Communication Scheduling for Array
Redistribution. Parallel Computing 26(8), 1325–1343 (2000)

[8] Guo, M., Nakata, I., Yamashita, Y.: An Efficient Data Distribution Technique for
Distributed Memory Parallel Computers. JSPP’97, pp. 189–196 (1997)

[9] Guo, M., Pan, Y., Liu, Z.: Symbolic Communication Set Generation for Irregular Parallel
Applications. The Journal of Supercomputing 25, 199–214 (2003)

[10] Kalns, E.T., Ni, L.M.: Processor Mapping Technique Toward Efficient Data Redistribution.
IEEE Trans. on Parallel and Distributed Systems 6(12) (1995)

[11] Kaushik, S.D., Huang, C.H., Ramanujam, J., Sadayappan, P.: Multiphase data
redistribution: Modeling and evaluation. In: Proceeding of IPPS’95, pp. 441–445 (1995)

[12] Lee, S., Yook, H., Koo, M., Park, M.: Processor reordering algorithms toward efficient
GEN_BLOCK redistribution. In: Proceedings of the ACM symposium on Applied
computing (2001)

[13] Lim, Y.W., Bhat, P.B, Prasanna, V.K: Efficient Algorithms for Block-Cyclic Redistribution
of Arrays. Algorithmica 24(3-4), 298–330 (1999)

[14] Park, N., Prasanna, V.K., Raghavendra, C.S.: Efficient Algorithms for Block-Cyclic Data
redistribution Between Processor Sets. IEEE Transactions on Parallel and Distributed
Systems 10(12), 1217–1240 (1999)

[15] Petitet, A.P., Dongarra, J.J.: Algorithmic Redistribution Methods for Block-Cyclic
Decompositions. IEEE Trans. on PDS 10(12), 1201–1216 (1999)

[16] Prylli, L., Touranchean, B.: Fast runtime block cyclic data redistribution on
multiprocessors. Journal of Parallel and Distributed Computing 45, 63–72 (1997)

[17] Ramaswamy, S., Simons, B., Banerjee, P.: Optimization for Efficient Data redistribution on
Distributed Memory Multicomputers. Journal of Parallel and Distributed Computing 38,
217–228 (1996)

[18] Wakatani, A., Wolfe, M.: Optimization of Data redistribution for Distributed Memory
Multicomputers. short communication, Parallel Computing 21(9), 1485–1490 (1995)

[19] Wang, H., Guo, M., Wei, D.: Divide-and-conquer Algorithm for Irregular Redistributions
in Parallelizing Compilers. The Journal of Supercomputing 29(2) (2004)

[20] Wang, H., Guo, M., Chen, W.: An Efficient Algorithm for Irregular Redistribution in
Parallelizing Compilers. In: Proceedings of International Symposium on Parallel and
Distributed Processing with Applications (2003)

[21] Yook, H.-G., Park, M.-S.: Scheduling GEN_BLOCK Array Redistribution. In: Proceedings
of the IASTED International Conference Parallel and Distributed Computing and Systems
(November 1999)

[22] Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London (1976)
[23] Cole, R., Hopcroft, J.: On edge-coloring bipartite graphs. SIAM J. Comput. 11, 540–546

(1982)
[24] Yu, C.W., Chen, G.H.: Efficient parallel algorithms for doubly convex-bipartite graphs.

Theoretical Computer Science 147, 249–265 (1995)
[25] Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Proc. 9th

Australian Computer Science Conference, pp. 327–334. Australian National University,
Australian (1986)

[26] Tomii, N., Kambayashi, Y., Shuzo, Y.: On planarization algorithms of 2-level graphs,
Papers of tech. group on electronic computers. IECEJ EC77-38, 1–12 (1977)

[27] Yu, C.W.: On the complexity of the maximum biplanar subgraph problem. Information
Science 129, 239–250 (2000)

 On the Complexity of the Max-Edge-Coloring Problem with Its Variants 361

[28] Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring.
In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 562–571 (2004)

[29] Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)

[30] Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. Comput. System Sci. 13, 335–379 (1976)

[31] Yu, C.W., Hsu, C.-H., Yu, K.-M., Lian, C.K., Chen, C.-I: Irregular Redistribution
Scheduling by partitioning Messages. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.)
ACSAC 2005. LNCS, vol. 3740, pp. 295–309. Springer, Heidelberg (2005)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 362–374, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Quantitative Analysis of Multi-hop Wireless Networks
Using a Novel Paradigm

Chang Wu Yu

Department of Computer Science and Information Engineering
Chung Hua University, Taiwan, R.O.C

cwyu@chu.edu.tw

Abstract. Random geometric graphs (RGG) contain vertices whose points are
uniformly distributed in a given plane and an edge between two distinct nodes
exists when their distance is less than a given positive value. RGGs are
appropriate for modeling multi-hop wireless networks consisting of n mobile
devices with transmission radius r unit length that are independently and
uniformly distributed randomly in an area. This work presents a novel paradigm
to compute the subgraph probability in RGGs. In contrast to previous asymptotic
bounds or approximation, the closed-form formulas we derived herein are fairly
accurate and of practical value. The proposed paradigm can be used to make
quantitative analyzes on the fundamental properties of multi-hop wireless
networks.

Keywords: Random geometric graphs, subgraph counting, subgraph probability.

1 Introduction

A geometric graph G=(V, r) consists of nodes placed in a two-dimensional space R2
and edge set E={(i, j)⏐d(i, j)≤r, where i, j∈V and d(i, j) denotes the Euclidian distance
between node i and node j}. Let Χn={x1, x2, …, xn} be a set of independently and
uniformly distributed random points. Here, Ψ(Χn, r, A) is used to denote the random
geometric graph (RGG) [14] of n nodes on Χn with radius r and placed in an area A.
RGGs consider geometric graphs on random point configurations. Applications of
RGGs include communications networks, classification, spatial statistics,
epidemiology, astrophysics and neural networks [14].

A RGG Ψ(Χn, r, A) is appropriate for modeling an ad hoc network N=(n, r, A)
consisting of n mobile devices with transmission radius r unit length that are
independently and uniformly distributed randomly in an area A. When each vertex in
Ψ(Χn, r, A) represents a mobile device, each edge connecting two vertices represents a
possible communication link as they are within the transmission range of each other.
Fig. 1 displays a random geometric graph and its representing network. In the example,
area A is a rectangle used to model the deployed area such as a meeting room. Area A,
however, can be a circle, or any other shape, and even infinite space.

RGGs are different from conventional random graphs [2, 8, 13]. One random graph
has two parameters n and p, where n denotes the number of nodes and p represents the

 Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm 363

probability of the existence of each possible edge. Edge occurrences in the random
graph are independent of each other, unlike the case in RGGs. Therefore the fruitful
results of random graphs cannot be directly applied to RGGs.

(a) (b)

Fig. 1. (a) An ad hoc network N=(6, r, A), where A is a rectangle. (b) Its associated random
geometric graph Ψ(Χ6, r, A).

Counting the number of subgraphs in RGGs is of priority concern in quantitatively
analyzing wireless ad hoc networks [11, 12, 19, 22-25]. For example, the IEEE 802.11
CSMA/CA protocol suffers from the hidden and the exposed terminal problem [19].
The hidden terminal problem is caused by concurrent transmissions of two nodes that
cannot sense each other, but transmit to the same destination. Such two terminals are
referred to here a hidden-terminal pair. Hidden-terminal pairs in an environment
seriously results in garbled messages and increases communication delay, thus
degrading system performance [11, 19]. A hidden-terminal pair can be represented by
a pair of edges {(x, y), (x, z)} of G=(V, E) such that (x, y)∈E and (x, z)∈E, but (y, z)∉E.
In graph terms, such a pair of edges is an induced subgraph p2 that is a path of length
two (See Fig. 2). Counting the occurrences of p2 in a given RGG helps counting the
number of hidden-terminal pairs in a network. The exposed terminal problem is due to
prohibiting concurrent transmissions of two nodes that sense each other, but can
transmit to different receivers without conflicts, resulting in unnecessary reduction in
channel utilization and throughput. These nodes are referred to here as an
exposed-terminal set. Similarly, the problem can be modeled as a subgraph M of G=(V,
E) with four vertices {x, y, z, w}⊆V such that {(x, y), (y, z), (z, w)}⊆E, but (x, z)∉E and
(y, w)∉E (See Fig. 2).

x

y z

wzy

x

Mp2

Fig. 2. Subgraphs of hidden-terminal pair p2 and exposed-terminal set M

364 C.W. Yu

The subgraph probability of a labeled subgraph Gx in RGGs, denoted Pr(Gx), is the
probability of the occurrence of Gx as an induced labeled subgraph in RGGs. A
subgraph probability of a RGG Gx is computable if a closed-form function can be
obtained for Pr(Gx). Counting the number of subgraphs of RGGs has received
considerable attention [14]. Penrose demonstrated that, for arbitrary feasible
connected Γ with k vertices, the number of induced subgraphs isomorphic to Γ
satisfies a Poisson limit theorem and a normal limit theorem [14]. To our knowledge,
results of previous studies are all asymptotic or approximate without accurate
closed-form functions.

To our knowledge, this work presents a novel paradigm for computing the subgraph
probability in RGGs for the first time. With the derived results, counting the numbers of
some specific induced subgraphs in RGGs and their applications are discussed. In
contrast to previous asymptotic bounds or approximation, the closed-form formul
derived here are fairly accurate. The proposed paradigm can be used to determine the
fundamental properties of multi-hop wireless networks.

Our definition of random geometric graphs Ψ(Χn, r, A) is different from those of
Poisson point process [1, 7], which assume that the distribution of n points (vertices) on
a possibly infinite plane follows a Poisson distribution with parameter λ (the given
density). In Poisson point process, the number of vertices can only be a random number
rather than a tunable parameter. In practice, however, some wireless network modeling
requires a fixed input n or a finite deployed area. Torus convention models the network
topology so that nodes near the border are considered as close to nodes at the opposite
border; they are allowed to establish links as well. Here, torus convention is adopted to
cope with border effects [1, 10].

The rest of the paper is organized as follows. Section 2 introduces definitions
and notations are introduced. Section 3 then briefly surveys pertinent literature on
RGGs. Nest, Section 4 present a novel paradigm for computing the subgraph
probability of RGGs. Conclusions are finally drawn in Section 5 along with areas
for future research.

2 Definitions and Notations

A graph G=(V, E) consists of a finite nonempty vertex set V and edge set E of
unordered pairs of distinct vertices of V. A graph is simple if it has no loops and no two
of its links join the same pair of vertices. A graph G=(V, E) is labeled when the |V|
vertices are distinguished from one another by names such as v1, v2, …, v|V|. Two
labeled graphs G=(VG, EG) and H=(VH, EH) are identical, denoted by G=H if VG= VH
and EG=EH. A graph H=(VH, EH) is a subgraph of G=(VG, EG) if VH⊆VG and EH⊆EG.
Suppose that V′ is a nonempty subset of V. The subgraph of GW=(V, E) whose vertex set
is V′⊆V and whose edge set is the set of those edges of G that have both ends in V′ is
called the subgraph of GW induced by V′, denoted by GW,V′. The subgraph probability of

 Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm 365

RGGs is defined formally as follows. Let Ω={G1, G2, …, Gk} represent every possible

labeled simple graphs of Ψ(Χn, r, A), where k=2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

n

. When Gx is a labeled subgraph in

Ω, we use Pr(Gx) to denote the probability of the occurrence of Gx in Ψ(Χn, r, A). Given
a graph G=(S, E), we define

Pr(G)= ∑
=Ω∈∀ sww GGG

wG
, and

)Pr(, when 1≤w≤k.

The size of any set S is denoted by |S|. The degree of a vertex v in graph G is the
number of edge incident with v. A leaf is a vertex of degree 1. The notation

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m

n denotes

the number of ways to select m from n distinct objects. An edge e of G is said to be
contracted if it is deleted and its ends are identified. A subgraph of G is said to be
contracted if all its edges are contracted successively in any order. Two subgraphs
are disjoint if their edge set are disjoint. An induced subgraph that is a path of
length i is denoted by pi. Similarly, an induced subgraph that is a cycle of length i is
denoted by ci; c3 is often called a triangle. A set of vertices is independent if no two
of them are adjacent. An induced subgraph which is an independent set of size i is
denoted by Ii. A complete graph is a simple graph whose vertices are pairwise
adjacent; the unlabeled complete graph with n vertices is denoted Kn. A tree is a
connected acyclic graph. In a graph G=(V, E), a set S⊆V is a dominating set if every
vertex not in S has a neighbor in S. The domination number γ(G) is the minimum
size of a dominating set in G. The notational conventions used in the paper can be
found in [3].

3 Related Work in RGG

To the best of our knowledge, previous results on RGGs are all asymptotic and
approximate. We summary related results as follows. A book written by Penrose [14]
provides and explains the theory of random geometric graphs. Graph problems
considered in the book include subgraph and component counts, vertex degrees, cliques
and colorings, minimum degree, the largest component, partitioning problems, and
connectivity and the number of components.

For n points uniformly randomly distributed on a unit cube in d≥2 dimensions,
Penrose [17] showed that the resulting geometric random graph G is k-connected and G
has minimum degree k at the same time when n→∞. In [4, 5], Díaz et al. discussed
many layout problems including minimum linear arrangement, cutwidth, sum cut,
vertex separation, edge bisection, and vertex bisection in random geometric graphs. In
[6], Díaz et al. considered the clique or chromatic number of random geometric graphs
and their connectivity.

Some results of RGGs can be applied to the connectivity problem of ad hoc
networks. In [18], Santi and Blough discussed the connectivity problem of random
geometric graphs Ψ(Χn, r, A), where A is a d-dimensional region with the same length

366 C.W. Yu

size. In [1], Bettstetter investigated two fundamental characteristics of wireless
networks: its minimum node degree and its k-connectivity. In [7], Dousse et al.
obtained analytical expressions of the probability of connectivity in the one dimension
case. In [9], Gupta and Kumar have shown that if

r=
n

ncn

π
)(log + ,

then the resulting network is connected with high probability if and only if c(n)→∞.
In [20], Xue and Kumar have shown that each node should be connected to Θ(log n)
nearest neighbors in order that the overall network is connected.

Recently, Yen and Yu have analyzed link probability, expected node degree, and
expected coverage of MANETs [22]. In [21], Yang has obtained the limits of the
number of subgraphs of a specified type which appear in a random graph.

4 A Paradigm for Computing Subgraph Probability

In the section, we develop a paradigm for exactly computing subgraph probability of
RGGs. First, we deal with subgraphs with three vertices. Then a great deal of
subgraph probabilities can be computed by the paradigm.

For simplicity, we always assume that A is sufficiently large to properly contain a
circle with radius r in a Ψ(Χn, r, A) throughout the paper; that implies πr2≤|A|. In the
paper, notation Ei (Ei′) denotes the event of the occurrence (absence) of edge ei.

4.1 Base Subgraphs with Their Probabilities

Since we adopt torus convention to avoid border effects, single-edge probability in
RGG is obtained trivially and listed below.

Theorem 1: We have Pr(ej)=πr2/|A|, for an arbitrary edge ej=(u, v) and u≠v, in a Ψ(Χn,
r, A).

The following theorem shows that the occurrences of arbitrary pairwise edges in
RGGs are independent even if they share one end vertex. By Theorem 1 and 2, we
obtain the probability of two-edge subgraphs immediately.

Theorem 2 [22]: For arbitrary two distinct edges ei=(u, v) and ej=(w, x) in a Ψ(Χn, r,
A), we have Pr(eiej)=Pr(ei)Pr(ej).

Corollary 3: For arbitrary two distinct edges ei=(u, v) and ej=(w, x) in a Ψ(Χn, r, A),
we have Pr(eiej)= (πr2/|A|)2.

Theorem 2 does not imply that the occurrences of more edges in RGGs are also
mutually independent. In fact, the next theorem shows their dependence.

Theorem 4 [24]: The occurrences of arbitrary three distinct edges in a Ψ(Χn, r, A) are
dependent.

 Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm 367

In the subsection, we consider the eight labeled subgraphs with three vertices as base
subgraphs, the probabilities of which will be used to form a basis for computing the
probability of larger subgraphs later. Based on the number of edges included,
subgraphs of three vertices can be classified into four groups: a triangle (c3), an induced
path of length two (p2), an edge with an isolated vertex (p1+I1), and three isolated
vertices (I3) (See Fig. 3).

c3 p2

p1+I1

p2 p2

p1+I1 p1+I1 I3

Fig. 3. Eight base subgraphs

All these eight subgraph probabilities in a Ψ(Χn, r, A) have been computed by using
basic geometric techniques [24, 25]. Table 1 summaries their results.

Table 1. Probabilities of subgraphs with three vertices or less in a RGG

Notation p1 E2 c3 p2 E1+I1 I3

G

Pr(G)
r2/ A (r2/ A)2

4 /
4
33 Ar 24 /

4
33 Ar A

r2 (1-
A
r 2

-
A
4

33
r2

)

4
33

1 2

4

AA
r

4.2 A Paradigm for Computing Subgraph Probability of RGGs

In the paper, we adopt the following graph drawing convention. A solid line denotes
an edge of G; a broken line denotes a possible edge between them; two vertices
without a line denote a non-edge of G. A class graph G=(V, ES, EB) consists of a
vertex set V and two disjoint edge sets ES and EB, where ES (EB) denotes a set of
solid-line edge (broken-line edge) joining two vertices of V. For example, the
following class graph denotes the set of eight base graphs depicted in Fig. 3.

368 C.W. Yu

The union of two class graphs G1 and G2, denoted G1+G2, is the set whose elements
are exactly the graphs in either G1 or G2. The difference of two class graphs G1 and
G2, denoted G1-G2, is the set containing exactly those elements in G1 that are not in
G2. When G is a class graph, Pr(G) denotes the probability of the occurrence of Gx∈G in
Ψ(Χn, r, A). If every element in G1 is also in G2, we have G1 ⊆G2. Evidently, if G1⊆G2
then Pr(G1)≤Pr(G2), and if G1 is isomorphic to G2 then Pr(G1)=Pr(G2).

Note that we have Pr(E2)=Pr(c3)+Pr(p2) in Table 1. This equation can be
represented in two different forms: the first-type and the second-type graph
derivation (depicted as follows).

= + =

Type I Type II

In fact, this first-type (second-type) graph derivation can be applied on any
broken-line edge (non-edge) of any graph. Specifically, for any e∈EB, we have G(V,
ES, EB)=G1(V, ES∪{e}, EB-{e})+G2(V, ES, EB-{e}). Or for any e∉ES∪EB, we have
G(V, ES, EB)=G1(V, ES, EB∪{e})-G2(V, ES∪{e}, EB) equivalently.

The main result of the subsection tries to partially answer the question: what kinds
of subgraphs whose probabilities can be exactly computed in RGGs? The paradigm
will show that great deals of subgraphs in RGGs are computable.

We can construct two graphs α(G) and β(G) from a class graph G=(V, ES, EB) such
that α(G)=(V, ES) and β(G)=(V, ES∪EB). Fig. 4 shows an example.

G (G) (G)

Fig. 4. A G (left) with its α(G) (middle) and β(G) (right)

A class graph G=(V, ES, EB) is a Y-graph if it can be constructed according to the
following three rules:

R1: All base subgraphs are Y-graphs.
R2: G1+G2 and G1-G2 are also Y-graphs if G1 and G2 are two distinct Y-graphs.
R3: G is a Y-graph if α(φ(G)) is a tree and β(φ(G)) is a complete graph, where φ(G) is

obtained from G by the contractions of all the edges of each disjointed

 Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm 369

Y-subgraphs Gc into a single vertex w adjacent to exactly those vertices that were
previously not in Gc and adjacent to at least one vertex in Gc.

The following figure shows a Y-graph with its contraction of a base graph.

Fig. 5. A Y-graph G (left) and φ(G) (right), where α(φ(G)) is a tree and β(φ(G)) is a complete
graph

Theorem 5 [3]: A tree with two or more vertices has at least two leaves.

Given any Y-subgraph (if recognizable), its probability formula can be obtained
(shown in the next theorem).

Theorem 6: The probability of a Y-subgraph in a Ψ(Χn, r, A) is computable.

Proof: The probabilities of all base graphs are all computable as shown in Section 4.1.

If Pr(G1) and Pr(G2) are given, we have Pr(G1+G2)=Pr(G1)+Pr(G2) and
Pr(G1-G2)=Pr(G1)-Pr(G2). The rest is the case for those Y-subgraphs constructed by
applying R3.

Suppose that G is constructed by applying R3. Let S be the size of vertex set of
φ(G) We will prove that Pr(G) is computable by induction on S. When S=1, then G is
computable since it is either a single vertex (Pr(G)=1) or a base graph.

Since α(φ(G)) is a tree, α(φ(G)) must contain a leave w by Theorem 5. The
removal of w together with the edges incident with it from G results in G*, which is
with S-1 vertices and then computable according to the induction hypothesis. If w is a
vertex of G, we have only one solid line and S-1 broken lines incident to w due to the
facts that α(φ(G)) is a tree and β(φ(G)) is a complete graph; the existence of the
unique solid line ej=(w, v), where v is a vertex in G*, only depends on whether the
distance between w and v is less than r; therefore we have Pr(G)=Pr(G*)×Pr(Ej). We
conclude that G is computable.

Otherwise, w represents a Y-graph GY with size less than S. Since every vertex in
G* connects to every vertex in GY with broken lines except one solid line ej=(x, y),
where x(y) is a vertex in G*(GY). Similarly, we have Pr(G)=Pr(G*)×Pr(Ej)×Pr(GY);
this also implies that G is computable. ■

Theorem 7: Given a Y-graph G=(V, ES, EB), if α(G) is a tree then Pr(G)= (πr2/|A|)⎪V⎪-1.

Proof: (omitted). ■

Given a subgraph G, the paradigm try to compute its probability Pr(G) of a RGG by
exploiting the following two steps:

370 C.W. Yu

(1) Decomposing step: Decompose G into a linear combination of class graphs: c1G1+
c2G1+…ckGk such that β(Gi) is a complete graph and ci is a constant, for 1≤i≤k,
by recursively applying the first-type and the second-type graph derivations.

(2) Manipulating step: If Gi (for 1≤i≤k) are Y-graphs, then we compute Pr(Gi) (for
1≤i≤k) separately by using the probabilities of base graphs. Finally, Compute
Pr(G) by manipulating Pr(Gi) (for 1≤i≤k).

The following example shows how the proposed paradigm computes Pr(M)
successfully (See M in Fig. 2). First, we present the decomposing step.

2

Next, we perform the manipulating steps on the three graphs shown in the above
line:

(1) The first graph G (denoted by N) is a Y-graph because α(N) is a path (Note that a
path is a kind of trees); therefore we have Pr(N)=(πr2/|A|)3 by Theorem 7.

(2) The second graph (denoted by H) is a Y-graph because α(φ(H)) is a tree and
β(φ(H)) is a complete graph, where φ(H) is obtained from H by the contractions
of a triangle c3; then its probability can be obtained by following the procedure
described in Theorem 6); that is, we have

Pr(H)= Pr(c3)×Pr(E)=
A

r

A

r 2

2

4

4

33 πππ ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− .

(3) The last graph (denoted by B) is a Y-graph with

Pr(B)=
A

r

A

r 2
2

2

4

33 ππ ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

[24, 25].

In short, we have

Pr(M)=Pr(N)-2×Pr(H)+Pr(B)=(πr2/A)3-2×
3

62

4

33

A

rππ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− +

3

6
2

4

33

A

rππ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− =

3

6

16

27

A

rπ .

Table 2 lists the subgraphs and associated probabilities discussed above.

 Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm 371

Table 2. Probabilities of some subgraphs with four vertices in a RGG

Notations N H B M

G

Pr(G) (πr2/⎪A⎪)3
3

62

4

33

A

rππ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

3

6
2

4

33

A

rππ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 3

6

16

27

A

rπ

4.3 Intractable Subgraphs and Their Linear Combinations

Some class graphs seem intractable to obtain their accurate probability formulas, even
by using our paradigm. In the subsection, the relations and approximations of some of
them are discussed.

A D G J M P

B E H K N Q

C F I L O R

Fig. 6. Class graphs G=(V, ES, EB) with |V|=4 consisting a three–solid-line path

Class graphs G=(V, ES, EB) with |V|=4 consisting a three–solid-line path was first
considered and depicted in Fig. 6. Note that each class graph in Fig. 6 can be viewed as a
linear combination of other class graphs. Some of such linear combinations are shown in
Table 3.

Note that {A, B, G, H, J, L, M, N} are Y-graphs and computable, but {C, D, E, F,
I, K, O, P, Q, R} are not (so far). Moreover, if D is computable then F is computable
(denoted by D→F), because D=J-F and J is computable (i.e., Pr(F)=Pr(J)-Pr(D)). This
kind of dependence relations on {C, D, E, F, I, K, O, P, Q, R} is illustrated by using a
digraph shown in Fig. 7.

Table 3. Some linear combinations of class graphs in Fig. 6

A=H-B G=A+M M
B=J=D+F H N

C=F I=H-K=F+O O=M-Q

D=J-F=B-F J=B=D+F P=B+I=N-R
E=L-F K=E+Q=R-L Q=M-O=K-E
F=C L=H-B R=L+K

372 C.W. Yu

F
D

C

E Q O

K

I R
P

Fig. 7. The dependence digraph of {C, D, E, F, I, K, O, P, Q, R}, where A↔B denotes A→B
and B→A

Note that the relation is a binary and equivalence (reflexive, symmetric, and
transitive) relation. Therefore, we can partition {C, D, E, F, I, K, O, P, Q, R} into
three disjoint subsets {{C, D, E, F}, {I, K, P, R}, {O, Q}} such that if any element in
a subset is computable, then all elements in the subset are all computable. Moreover,
if any two subsets are both computable, then the remainder is computable. This
indicates that if D and O are computable, then all the ten class graphs are computable.
Our paradigm, however, failed to show their computability so far. We devise their
approximate formulas instead in the following two theorems; thereafter, we can
obtain approximate formulas for these ten intractable graphs with the help of the
linear combinations in Table 3.

Theorem 8[25]: For arbitrary four distinct nodes u, v, w, and x in a Ψ(Χn, r, A), we
have

Pr(GS=O=c4)≤
3

6

4

33

A

rπ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ,

where S={u, v, w, x}.

Theorem 8: For arbitrary four distinct nodes u, v, w, and x in a Ψ(Χn, r, A), we have
Pr(GS=D=k4)≤

3

62

8

9

8

37

2 A

rπππ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

, where S={u, v, w, x}.

Proof: The four nodes {u, v, w, x} need to be placed sufficiently near to each other in
order to form a k4 (See Fig. 8(a)). First, the three nodes {u, v, w} must be a triangle c3.
The circle model for c3 can be presented by intersections of three equal circles (See
Fig. 8(b)).

r

r

r

Fig. 8. (a) K4. (b) Its circle model. (c) Reuleaux triangle.

 Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm 373

Since the subgraph k4 consists of a triangle c3 and another nearby vertex x, we have
Pr(GS=k4)≤Pr(GS-{x}=c3)×Pr(x is near c3 sufficiently). Note that Pr(x is near c3

sufficiently) is the probability of putting the center of x in the common intersection of
three equal circles; and the largest area of the common intersection, called Reuleaux
triangle [26], is 2)

2

3
(r

−π (it is easily obtained by summing up the area of a

equilateral triangle and three areas of a circular segment with opening angle π/3).
Therefore, we have Pr(x is near c3 sufficiently)≤ 2)

2

3
(r

−π /⎪A⎪. In a sequel, we have

Pr(GS=k4) ≤ 24 /
4

33
Arππ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− × 2)

2

3
(r

−π /⎪A⎪=
3

62

8

9

8

37

2 A

rπππ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

by Table 1. ■

5 Conclusions

This work has proposed a novel paradigm for exactly computing numerous subgraph
(i.e. Y-graphs) probabilities in RGGs. For some intractable graphs, an attempt is made
to approximate their probability formulas. Future studies should devise an algorithm
to recognize Y-graphs. Identifying a basis for generating a specific set of Y-graphs
and non-Y-graphs is also of priority concern. We believe that the proposed paradigm
can provide insight into additional fundamental properties of wireless networks.

References

1. Bettstetter, C.: On the minimum node degree and connectivity of a wireless multi-hop
network. MobiHoc, pp. 80–91 (2002)

2. Bollobas, B.: Random Graphs. Academic Press, London (1985)
3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, Macmillan Press (1976)
4. Díaz, J., Penrose, M.D., Petit, J., Serna, M.: Convergence theorems for some layout

measures on random lattice and random geometric graphs. Combinatorics, Probability, and
Computing 6, 489–511 (2000)

5. Díaz, J., Penrose, M.D., Petit, J., Serna, M.: Approximating layout problems on random
geometric graphs. Journal of Algorithms 39, 78–116 (2001)

6. Díaz, J., Petit, J., Serna, M.: Random geometric problems on [0, 1]2. In: Rolim, J.D.P.,
Serna, M.J., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, Springer, Heidelberg
(1998)

7. Dousse, O., Thiran, P., Hasler, M.: Connectivity in ad-hoc and hybrid networks. Infocom
(2002)

8. Erdös, P., Rénye, A.: On Random Graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
9. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless networks.

Stochastic Analysis, Control, Optimization and Applications, pp. 547–566 (1998)
10. Hall, P.: Introduction to the Theory of Coverage Process. John Wiley and Sons, New York

(1988)

374 C.W. Yu

11. Khurana, S., Kahol, A., Jayasumana, A.: Effect of hidden terminals on the performance of
the IEEE 802.11 MAC protocol. In: Proceedings of Local Computer Networks Conference
(1998)

12. Lee, S.-J., Gerla, M.: AODV-BR: Backup routing in Ad hoc Networks. IEEE Wireless
Communications and Networking Conference 3, 1311–1316 (2000)

13. Palmer, E.M.: Graphical Evolution: An Introduction to the Theory of Random Graphs. John
Wiley and Sons, New York (1985)

14. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
15. Penrose, M.D.: A strong low for the longest edge of the minimal spanning tree. The Annals

of Probability 27(1), 246–260 (1999)
16. Penrose, M.D.: The longest edge of the random minimal spanning tree. The Annals of

Applied Probability 7(2), 340–361 (1997)
17. Penrose, M.D.: On k-connectivity for a geometric random graph. Random structures and

Algorithms 15(2), 145–164 (1999)
18. Santi, P., Blough, D.M.: The critical transmitting range for connectivity in sparse wireless

ad hoc networks. IEEE Transactions on Mobile Computing 2(1), 25–39 (2003)
19. Tobagi, F., Kleinrock, L.: Packet switching in radio channels, Part II-The hidden terminal

problem in carrier sense multiple access and the busy tone solution. IEEE Trans.
Commun. COM-23(12), 1417–1433 (1975)

20. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless
networks. Wireless Networks 10, 169–181 (2004)

21. Yang, K.J.: On the Number of Subgraphs of a Random Graph in [0, 1]d, Unpublished D.Phil.
thesis, Department of Statistics and Actuarial Science, University of Iowa (1995)

22. Yen, L.-H., Yu, C.W.: Link probability, network coverage, and related properties of
wireless ad hoc networks. In: The 1st IEEE International Conference on Mobile Ad-hoc and
Sensor Systems, pp. 525–527 (2004)

23. Yu, C.W., Wu, T.-K., Cheng, R.H.: A low overhead dynamic route repairing mechanism for
mobile ad hoc networks. Computer Communications 30, 1152–1163 (2007)

24. Yu, C.W., Yen, L.-H., Cheng, Y.-M.: Computing subgraph probability of random geometric
graphs with applications in wireless ad hoc networks. Tech. Rep., CHU-CSIE-TR-
2004-005, Chung Hua University, R.O.C.

25. Yu, C.W., Yen, L.-H.: Computing subgraph probability of random geometric graphs:
Quantitative analyses of wireless ad hoc networks. In: Wang, F. (ed.) FORTE 2005. LNCS,
vol. 3731, pp. 458–472. Springer, Heidelberg (2005)

26. http://mathworld.wolfram.com/

Inverse Min-Max Spanning Tree Problem Under

the Weighted Sum-Type Hamming Distance�

Longcheng Liu and Enyu Yao

Department of Mathematics, Zhejiang University, Hangzhou, China
llcly@126.com, eyyao@zju.edu.cn

Abstract. The inverse optimization problem is to modify the weight
(or cost, length, capacity and so on) such that a given feasible solu-
tion becomes an optimal solution. In this paper, we consider the inverse
min-max spanning tree problem under the weighted sum-type Hamming
distance. For the model considered, we present its combinatorial algo-
rithm that run in strongly polynomial times.

Keyword: Min-max spanning tree, Inverse problem, Hamming distance,
Strongly polynomial algorithms.

1 Introduction

Let G = (V,E, c) be a connected graph, where V = {1, 2, . . . , n} is the node set,
E = {e1, e2, . . . , em} is the edge set and c is the edge cost vector defined on E.
Let Γ denote the collection of all spanning tree of G. For a spanning tree T ∈ Γ ,
write cb(T) = max{c(e)|e ∈ T } and call it the cost of T . The min-max spanning
tree is to find a T ∗ ∈ Γ such that cb(T ∗) = min{cb(T)|T ∈ Γ}. It is known that
min-max spanning tree problem can be solved in strongly polynomial time[1].

Conversely, an inverse min-max spanning tree problem is to modify the edge
cost vector as little as possible such that a given spanning tree becomes a min-
max spanning tree. Yang et al. [2] showed that the inverse min-max spanning
tree problem and the inverse maximum capacity path problem under l1 and
l∞ norms are strongly polynomial time solvable, where the modification cost is
measured by l1 and l∞ norms. In this paper, we consider the inverse min-max
spanning tree problem under the weighted sum-type Hamming distance, in which
we measure the modification cost by the weighted sum-type Hamming distance.

Let each edge ei have an associated weight wi ≥ 0, and let w denote the edge
weight vector. Let T 0 be a given spanning tree of graph G. Then for the inverse
min-max spanning problem under the weighted sum-type Hamming distance, we
look for a new cost vector d = (d1, d2, . . . , dm) such that

(a) T 0 is a min-max spanning tree with respect to d;
(b) for each ei ∈ E, −li ≤ di − ci ≤ ui, where li, ui ≥ 0 are given lower and

upper modification bounds;
� Research supported by the National Natural Science Foundation of China

(10371028).

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 375–383, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

376 L. Liu and E. Yao

(c)
m∑

i=1

wiH(ci, di) is minimized, where H(ci, di) is the Hamming distance

between ci and di, i.e., H(ci, di) = 0 if ci = di and 1 otherwise.

In general, for an inverse combinatorial optimization problem, a feasible solu-
tion is given which is not optimal under the current parameter values, and it is
required to modify some parameters with minimum modification cost such that
the given feasible solution becomes an optimal solution. A lot of such problems
have been well studied when the modification cost is measured by (weighted)
l1, l2, and l∞ norms. Readers may refer to the survey paper [3] and papers
cited therein. Recently, inverse problems under the weighted Hamming distance
also received attention. In fact the weighted sum-type Hamming distance repre-
sents the weighted number of modifications. It corresponds to the situation in
which we might care about only whether the parameter of an arc is changed,
but without considering the magnitude of its change as long as the adjustment
is restricted to a certain interval. Noting that not like the l1, l2 and l∞ norms
which are all convex and continuous about the modification, the Hamming dis-
tance H(·, ·) is discontinuous and nonconvex, which make the known methods
for l1, l2 and l∞ norms unable to be applied directly to the problems under such
distance measure.

He et al. [4] discussed the inverse minimum spanning tree problems under
the weighted sum-type Hamming distance. For both unbounded and bounded
cases, they presented strongly polynomial algorithms with a time complexity
O(n3m). Here n and m are the numbers of nodes and edges, respectively, in a
given undirected network. He et al. [5] further discussed the inverse minimum
spanning tree problems under the weighted bottleneck-type Hamming distance.
For the unbounded case, they presented an algorithm with a time complexity
O(nm), and for the constrained case, they presented an algorithm with a time
complexity O(n3m logm). Zhang et al. [6] considered the center location im-
provement problems under the weighted Hamming distance. For the bounded
case, they showed that even under the unweighted sum-type Hamming distance,
achieving an algorithm with a worst-case ratio O(log n) is strongly NP -hard,
but under the weighted bottleneck-type Hamming distance, a strongly poly-
nomial algorithm with a time complexity O(n2 logn) is available. Yang et al.
[7] discussed inverse sorting problems under the weighted sum-type Hamming
distance. For both unbounded and bounded cases, they presented strongly poly-
nomial algorithms. Liu et al. [8] discussed inverse maximum flow problems under
the weighted Hamming distance, for both sum-type and bottleneck-type, they
presented strongly polynomial algorithms. Liu et al. [9] discussed inverse mini-
mum cut problem under the weighted bottleneck-type Hamming distance, they
presented a strongly polynomial algorithm.

The paper is organized as follows. Section 2 contains some preliminary results.
Sections 3 consider the problem under the weighted sum-type Hamming distance
where we show that this problem can be solved by strongly polynomial algorithm.
Some final remarks are made in Section 4.

Inverse Min-Max Spanning Tree Problem 377

In the following, for each edge set Ω we define ws(Ω) =
∑

ei∈Ω

wi and use

similar notation cs(Ω) for vector c (here letters s stand for ‘sum’).

2 Preliminary Results

For the original min-max spanning tree problem, the following result is straight-
forward.

Lemma 1. A spanning tree T of G is a min-max spanning tree under a cost
vector c if and only if G becomes disconnected after deleting the edges whose
costs are not less than cb(T).

Now we consider the inverse min-max spanning tree problem under the weighted
sum-type Hamming distance. The general inverse min-max spanning tree prob-
lem under the weighted sum-type Hamming distance can be formulated as fol-
lows.

min
m∑

i=1

wiH(ci, di)

s.t. T 0 is a min−max spanning tree of G(V,E, d);
−li ≤ di − ci ≤ ui, 1 ≤ i ≤ m .

(1)

Let T ∗ be a min-max spanning tree under the cost vector c, and assume
cb(T 0) > cb(T ∗) for otherwise we need to do nothing.

Lemma 2. There exists an optimal solution d∗ of problem (1) such that
cb(T 0) ≥ d∗b(T 0).

Proof. In fact, if cb(T 0) < d∗b(T 0), then we can construct a new cost vector d
by the following way:

di =
{

cb(T 0), if ei ∈ T 0 and d∗i > cb(T 0),
d∗i , otherwise.

It is clear that d
b
(T 0) = cb(T 0) < d∗b(T 0). By Lemma 1, the graph G =

(V,E, d∗) becomes disconnected after deleting the edges whose cost satisfy d∗i ≥
d∗b(T 0). Hence the graph G = (V,E, d) becomes disconnected after deleting the
edges whose cost satisfy di ≥ d

b
(T 0), which means T 0 is a min-max spanning

tree of graph G = (V,E, d), i.e., d is a feasible solution of problem (1).
However, by the definition of d and the definition of Hamming distance we

have
m∑

i=1

wiH(ci, d
∗
i) ≥

m∑

i=1

wiH(ci, di).

If
m∑

i=1

wiH(ci, d
∗
i) >

m∑

i=1

wiH(ci, di), then d∗ cannot be an optimal solution of

problem (1), a contradiction. Hence, d is another optimal solution of problem
(1), but it satisfies d

b
(T 0) = cb(T 0). The lemma holds.

378 L. Liu and E. Yao

Based on Lemma 2, the following result is straightforward:

Lemma 3. There exists an optimal solution d∗ of problem (1) satisfies:
(a) d∗i = ci if ci ≥ d∗b(T 0) and ei ∈ E \ T 0;
(b) d∗i ≥ ci if ci < d∗b(T 0) and ei ∈ E \ T 0;
(c) d∗i = d∗b(T 0) if ci �= d∗i and ei ∈ T 0.

Moreover, we have the following lemma:

Lemma 4. There exists an optimal solution d∗ of problem (1) satisfies:
(a) d∗i ≤ d∗b(T 0) if d∗i < ci;
(b) d∗i ≥ d∗b(T 0) if d∗i > ci.

Proof. Suppose d∗ is an optimal solution satisfies Lemma 3.
If d∗i < ci, then by the Lemma 3, we have ei ∈ T 0, hence d∗i ≤ d∗b(T 0), i.e.,

(a) holds.
Now let us consider (b). First, if ei ∈ T 0, then by Lemma 3, we have d∗i =

d∗b(T 0). Second, let us consider ei ∈ E \ T 0. If (b) is not true, i.e., there exists
an edge ek ∈ E \ T 0 and ck < d∗k such that d∗k < d∗b(T 0).

Define d as

di =
{

ci, if i = k,
d∗i , otherwise.

Note that the difference between d∗ and d is only on the edge ek, so d∗b(T 0) =
d

b
(T 0). By Lemma 1, the graph G = (V,E, d∗) becomes disconnected after

deleting the edges whose cost satisfy d∗i ≥ d∗b(T 0), combining with the fact that
dk = ck < d∗k < d∗b(T 0) = d

b
(T 0), we know the graph G = (V,E, d) becomes

disconnected after deleting the edges whose cost satisfy di ≥ d
b
(T 0), which

means that d is a feasible solution of problem (1). However, by the definition of
d and the definition of Hamming distance we have

m∑

i=1

wiH(ci, d
∗
i) ≥

m∑

i=1

wiH(ci, di).

If
m∑

i=1

wiH(ci, d
∗
i) >

m∑

i=1

wiH(ci, di), then d∗ cannot be an optimal solution of

problem (1), a contradiction. Hence, d is another optimal solution of problem (1),
but it satisfies dk = ck. And by repeating the above procedure, we can conclude
that there exists an optimal solution d∗ of problem (1) such that d∗i ≥ d∗b(T 0)
if d∗i > ci and ei ∈ E \ T 0. From the above analysis, we know (b) holds.

Here we first give a range for the value d∗b(T 0). First, by Lemma 2, we have
cb(T 0) ≥ d∗b(T 0). On the other hand, since there are lower bounds on the
reduction of costs, the smallest possible value of d∗(T 0) is d = max{ci − li|ei ∈
T 0}. So we have d ≤ d∗b(T 0) ≤ cb(T 0). And by the definition of Hamming
distance, we know the value d∗b(T 0) must be one of the value in P = {{ci|ei ∈
T 0} ∪ {d} ∪ {ci + ui|ei ∈ T 0}}∩ [d, cb(T 0)]. Then we express the different values
in P as: p1 > p2 > . . . > pη.

Inverse Min-Max Spanning Tree Problem 379

3 Problem Under the Weighted Sum-Type Hamming
Distance

The problem considered in this section is the inverse min-max spanning tree
problem under the weighted sum-type Hamming distance which can be formu-
lated as problem (1).

Before we consider how to solve the problem (1) directly, let us consider a
restricted version of the problem (1). That is, for a given value p ∈ P , we
first consider how to make T 0 a min-max spanning tree under a cost vector dp

such that dpb(T 0) = p, and dp satisfies the bound restrictions and makes the
modification cost minimum. We may call this restricted version of the inverse
min-max spanning tree problem the the inverse min-max spanning tree problem
under the sum-type Hamming distance with value p.

First, let T 0(p) = {ei ∈ T 0|ci > p}, T 0(p) = {ei ∈ T 0|ci = p}. Clearly, for
each edge ei ∈ T 0(p), we need to reduce their costs to let the maximum cost on
T 0 be equal to p. Due to Lemma 3 for each edge ei ∈ T 0(p) we have dp

i = p and
the associate objective value is ws(T 0(p)) =

∑

ei∈T 0(p)

wi. And by Lemma 3, for

each edge ei ∈ T 0(p) we do not need to change its cost.
Second, by Lemma 3, for each edge ei ∈ E \ T 0 such that ci ≥ p, we do not

need to change its cost.
Third, let E(p) = {ei ∈ E|ci < p}. Consider the graph G(p) = (V,E(p)). If

G(p) is not connected, we know that T 0 is already a min-max spanning tree with
respect to the modified weight dp and dpb(T 0) = p, where dp

i = p for ei ∈ T 0(p)
and dp

i = ci for ei ∈ E \ T 0(p). And the objective value of problem (1) with
respect to p is ws(T 0(p)) =

∑

ei∈T 0(p)

wi.

Thus we only need to consider the case that G(p) is a connected graph. In
this case, by Lemma 1, we need to increase the costs of some edges in graph
G(p) such that G(p) becomes disconnected after deleting those edges. Now we
introduce the following restricted minimum weight edge cut problem:

Restricted minimum weight edge cut problem(RMWECP)
Find an edge set Π ⊆ E(p) in graph G(p) such that

(1) for each edge ei ∈ Π , ci + ui ≥ p;
(2) G(p) becomes disconnected after deleting all edges in Π ;
(3)

∑

ei∈Π

wi is minimized.

Theorem 1. If the RMWECP is feasible, then d∗ defined as follows is one of
the optimal solutions of the restricted version of the problem (1)

d∗i =

⎧
⎪⎪⎨

⎪⎪⎩

p, if ei ∈ T 0(p),
p, if ei ∈ Π∗ ∩ T 0,
ci + ui, if ei ∈ Π∗ ∩ (E \ T 0),
ci, otherwise,

(2)

380 L. Liu and E. Yao

and the associate objective value is ws(T 0(p))+
∑

ei∈Π∗
wi, where Π∗ is a optimal

solution of RMWECP. Otherwise, the restricted version of the problem (1) is
infeasible.

Proof. In the case that RMWECP is feasible, we first prove that d∗ defined by
(2) is a feasible solution of the restricted version of the problem (1). From the
definition of E(p) and the first and second constraints of RMWECP, we know
the graph G becomes disconnected after deleting the edges whose costs are not
less than p, which indicates T 0 is a min-max spanning tree of graph G(V,E, d∗),
and it is clear −li ≤ d∗i − ci ≤ ui. Thus d∗ defined by (2) is a feasible solution
of the restricted version of the problem (1) and the associate objective value is
ws(T 0(p)) +

∑

ei∈Π∗
wi.

Next we prove ws(T 0(p)) +
∑

ei∈Π∗
wi is the minimum objective value, thus d∗

is an optimal solution of the restricted version of the problem (1). If not, there
exists an optimal solution d of the problem (1) such that

(a) d
b
(T 0) = p;

(b)
m∑

i=1

wiH(ci, di) < ws(T 0(p)) +
∑

ei∈Π∗
wi.

Let
Ω = {ei ∈ E | di �= ci} . (3)

Then by the definition of Hamming distance, (b) is equivalent to

m∑

i=1

wiH(ci, di) =
∑

ei∈Ω

wi < ws(T 0(p)) +
∑

ei∈Π∗

wi . (4)

Based on the above analysis, we can see that T 0(p) ⊆ Ω , thus (4) is equivalent
to ∑

ei∈Ω\T 0(p)

wi <
∑

ei∈Π∗

wi . (5)

Moreover, we say Ω \ T 0(p) is a feasible solution of RMWECP. In fact, it is
clear Ω \ T 0(p) ⊆ E(p). Based on the analysis before, we know di > ci for
all ei ∈ Ω \ T 0(p). And by Lemma 4 we know di ≥ d

b
(T 0) = p for all ei ∈

Ω \ T 0(p), which indicate ci + ui ≥ p for all ei ∈ Ω \ T 0(p). At last we claim
G(p) becomes disconnected after deleting all edges in Ω \ T 0(p). If not, i.e.,
G(V,E(p) \ {Ω \ T 0(p)}) is connected. Since T 0(p) ∩ E(p) = ∅, we know E(p) \
{Ω \ T 0(p)} = {E(p) ∪ T 0(p)} \ Ω, so G(V, {E(p) ∪ T 0(p)} \ Ω) is connected.
And thus G(V, {E(p) ∪ T 0(p) ∪ {ei ∈ E | ci ≥ p}} \ {Ω ∪ {ei ∈ E | ci ≥ p}}) =
G(V,E \ {Ω ∪ {ei ∈ E | ci ≥ p}}) is connected. Let L = {ei ∈ E | di ≥ p}. By
the above analysis we know L ⊆ {Ω ∪{ei ∈ E | ci ≥ p}} and thus G(V,E \L) is
connected. But since T 0 is a min-max spanning tree of G(V,E, d), G(V,E \ L)
is disconnected by Lemma 1, a contradiction. So G(p) becomes disconnected

Inverse Min-Max Spanning Tree Problem 381

after deleting all edges in Ω \ T 0(p). Hence Ω \ T 0(p) is a feasible solution of
RMWECP. For Π∗ is a optimal solution of RMWECP, we know

∑

ei∈Ω\T 0(p)

wi ≥
∑

ei∈Π∗

wi, (6)

which contradicts (5). So ws(T 0(p))+
∑

ei∈Π∗
wi is exactly the minimum objective

value.
At the same time, the above analysis told us if d is a feasible solution of

the restricted version of problem (1), then Ω \ T 0(p) is a feasible solution of
RMWECP, where Ω is defined in (3). Thus if the RMWECP is infeasible, then
the restricted version of problem (1) is infeasible too. ��

Therefore, finding an optimal solution of the restricted version of problem (1) is
equivalent to finding an optimal solution of RMWECP. To solve RMWECP in
strongly polynomial time, we modify the graph G(p) = (V,E(p)) in the following
way: the node set and the edge set are unchanged; and the value of each edge is
set as

vi =
{

wi, if ei ∈ E(p) and ci + ui ≥ p,
W + 1, otherwise, (7)

where W =
∑

ei∈E(p)

wi.

Definition 1. Minimum value cut problem in graph is to find a set of edges
whose deletion make the graph disconnected and the sum of values of edges in
the set is minimized.

The minimum value cut problem can be solved in O(n3) time [10], where n is
the number of the nodes in the graph.

Theorem 2. Let Π∗ be a minimum value cut of G(V,E(p), v) with a value
vs(Π∗).

(1) If vs(Π∗) ≤W , then Π∗ must be the optimal solution of RMWECP.
(2) If vs(Π∗) > W , then RMWECP has no feasible solution.

Proof. (1) First, if vs(Π∗) ≤ W , then vi = wi for all ei ∈ Π∗, i.e., for each
ei ∈ Π∗, ei ∈ E(p) and ci + ui ≥ p. And it is clear G(p) becomes disconnected
after deleting all edges in Π∗. So, Π∗ is a feasible solution of RMWECP.

Moreover, it is easy to see that Π∗ is an optimal solution of RMWECP. If
not, suppose there exists an edge set Π

′
which is feasible to RMWECP, and

ws(Π
′
) < ws(Π∗). Then from (7), we have

vs(Π
′
) =

∑

ei∈Π′

wi = ws(Π
′
) < ws(Π∗) =

∑

ei∈Π∗

wi = vs(Π∗),

which contradicts the fact that Π∗ is a minimum value cut of G(V,E(p), v).

382 L. Liu and E. Yao

(2) Suppose that vs(Π∗) > W but RMWECP has a feasible solution Π
′
.

From (7), we know that vi = wi for all ei ∈ Π
′
. It implies that the value of Π

′

satisfies vs(Π
′
) < W (as W =

∑

ei∈E(p)

wi), which contradicts the fact that Π∗ is

a minimum value cut of G(V,E(p), v) with a value vs(Π∗) > W . ��
Now we are ready to give a full description of an algorithm to solve the restricted
version of the problem (1).

Algorithm 1

Step 1. For the graph G = (V,E, c), the given spanning tree T 0 and the given
value p, determine the graph G(p) = (V,E(p)). If G(p) is not connected, stop and
output an optimal solution d∗ of the restricted version of the problem (1) as

d∗i =
{

p, if ei ∈ T 0(p),
ci, otherwise,

and the associated optimal value ws(T 0(p)). Otherwise go to Step 2.
Step 2. Construct graph G(V,E(p), v) according to formula (7). Find a min-
imum value cut Π∗ of the graph G(V,E(p), v). If the value of the minimum
cut satisfies vs(Π∗) > W , then the restricted version of the problem (1) has no
feasible solution, stop. Otherwise, go to Step 3.
Step 3. Output an optimal solution d∗ of the restricted version of the problem
(1) as

d∗i =

⎧
⎪⎪⎨

⎪⎪⎩

p, if ei ∈ T 0(p),
p, if ei ∈ Π∗ ∩ T 0,
ci + ui, if ei ∈ Π∗ ∩ (E \ T 0),
ci, otherwise,

(8)

and the associate objective value is ws(T 0(p)) +
∑

ei∈Π∗
wi.

It is clear that Step 1 to check whether G(p) is connected or not takes O(n)
time. Step 2 to find a minimum value cut Π∗ of the graph G(V,E(p), v) takes
O(n3) time (see [10]). Hence, Algorithm 1 runs in O(n + n3) = O(n3) time in
the worst-case, and it is a strongly polynomial algorithm.

Now we consider the problem (1). In section 2, we range the possible value of
d∗b(T 0) as P = {p1, p1, . . . , pη}. And above we discussed for a given value p ∈ P ,
we can get an associated modification weight in O(n3) time. So we can give an
algorithm to solve the problem (1) in strongly polynomial time as follows:

Algorithm 2

Step 0. Let i = 1 and I = ∅.
Step 1. For value pi, run Algorithm 1 to solve the restricted version of the
problem (1). If the restricted version problem is infeasible, then go to Step 2;
otherwise, we denote the objective value get from Algorithm 1 as Vi and I =
I ∪ {i}, then go to Step 2.
Step 2. i = i + 1, if i ≤ η, go back to Step 1; otherwise go to Step 3.
Step 3. Output an optimal objective value min

i∈I
Vi.

Inverse Min-Max Spanning Tree Problem 383

If we call solve the restricted version problem as an iteration, then Algorithm
2 needs to run η iteration, and from section 2, we know η ≤ (2n− 1), combining
with the analysis of Algorithm 1, Algorithm 2 runs in O((2n− 1) ∗ n3) = O(n4)
time in the worst-case, and it is a strongly polynomial algorithm.

4 Concluding Remarks

In this paper we studied the inverse min-max spanning tree problem under the
weighted sum-type Hamming distance. For the model considered, we presented
strongly polynomial algorithm to solve it.

As a future research topic, it will be meaningful to consider other inverse
combinational optimization problems under Hamming distance. Studying com-
putational complexity results and proposing optimal/approximation algorithms
are promising.

References

1. Camerini, P.M.: The min-max spanning tree problem and some extansions. Infor-
mation Processing Letters 7, 10–14 (1978)

2. Yang, C., Zhang, J., Ma, Z.: Some inverse min-max network problems under
weighted l1 and l∞ norms with bound constrints on changes. Journal of Com-
binatorial Optimization 13, 123–135 (2007)

3. Heuberger, C.: Inverse Optimization: A survey on problems, methods, and results.
Journal of Combinatorial Optimization 8, 329–361 (2004)

4. He, Y., Zhang, B.W., Yao, E.Y.: Wighted inverse minimum spanning tree problems
under Hamming distance. Journal of Combinatorial Optimization 9, 91–100 (2005)

5. He, Y., Zhang, B.W., Zhang, J.Z.: Constrained inverse minimum spanning tree
problems under the bottleneck-type Hamming distance. Journal of Global Opti-
mization 34(3), 47–474 (2006)

6. Zhang, B.W., Zhang, J.Z., He, Y.: The center location improvement problem under
the Hamming distance. Journal of Combinatorial Optimization 9, 187–198 (2005)

7. Yang, X.G., Zhang, J.Z.: Sone new results on inverse sorting problems. In: Wang, L.
(ed.) COCOON 2005. LNCS, vol. 3595, pp. 985–992. Springer, Heidelberg (2005)

8. Liu, L.C., Zhang, J.Z.: Inverse maximum flow problems under the weighted Ham-
ming distance. Journal of Combinatorial Optimization 12, 395–408 (2006)

9. Liu, L.C., Yao, E.Y.: Weighted inverse minimum cut problem under the bottleneck
type Hamming distance. Asia-Pacific Journal of Operational Research (to appear)

10. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood
Cliffs (1993)

Robust Optimization Model for a Class of

Uncertain Linear Programs

Weimin Miao1, Hongxia Yin1,�, Donglei Du2,��, and Jiye Han3,� � �

1 School of Mathematical Sciences, Graduate University of Chinese Academy of
Sciences, P.O. Box 4588, Beijing 100049, China
wmmiao@hotmail.com, hxyin@gucas.ac.cn

2 Faculty of Business Administration, University of New Brunswick, P.O.Box 4400,
Fredericton, NB, E3B 5A3, Canada

ddu@unb.ca
3 Institute of Applied Mathematics, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100080, China
jiyehan@vip.sina.com

Abstract. In the paper, we propose a tractable robust counterpart for
solving the uncertain linear optimization problem with correlated uncer-
tainties related to a causal ARMA(p, q) process. This explicit treatment
of correlated uncertainties under a time series setting in robust optimiza-
tion is in contrast to the independent or simple correlated uncertainties
assumption in existing literature. under some reasonable assumptions,
we establish probabilistic guarantees for the feasibility of the robust so-
lution. Finally, we provide a numerical method for the selection of the
parameters which controls the tradeoff among the tractability, the ro-
bustness and the optimality of the robust model.

1 Introduction

Robust optimization is an important technique for investigating optimization
problems with uncertainties. We consider the uncertain linear optimization prob-
lem

max
{
c′x|Ãx ≤ b̃

}
, (1)

where x and c are real vectors in Rn, Ã ∈ Rm×n and b̃ ∈ Rm are uncertain ma-
trix and vector with entries belonging to a known set U . The robust counterpart
of problem (1) is given by

max
{
c′x|Ãx ≤ b̃, ∀(Ã, b̃) ∈ U

}
. (2)

� The author’s research is supported by the National Natural Science Foundation
of China 10671203,70531040, and 70621001.

�� The author’s research is supported in part by NSERC grant 283103, and URF,
FDF at UNB.

� � � The author’s research is supported by the National Natural Science Foundation
of China NSF 10401038.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 384–395, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Robust Optimization Model for a Class of Uncertain Linear Programs 385

As a first attempt to attack the uncertain optimization problem with a sense of
‘robustness’, Soyster [15] proposed a worst-case model for (1) where each column
of matrix Ã in the constraints Ãx ≤ b, x ≥ 0 belongs to a convex set. However,
the optimal solution of the robust counterpart is too conservative as it protects
against the worst-case scenario. In order to overcome this over-conservatism, in
the past decade, many different robust models have been proposed, and they
differ mainly in the choice of the uncertainty sets and the tractability of the
resultant robust counterparts [1,2,3,4,5,6,7,11,12,13]. The reader is referred to
the aforementioned papers and references therein for more comprehensive infor-
mation on the area of robust optimization, which has emerged as a competitive
methodology for solving uncertain optimization problems.

For a uncertain linear constraint in problem (1), i.e.,

ã′x ≤ b̃, (3)

where the input parameters ã ∈ Rn, b̃ ∈ R are uncertain data. Let N =
{1, 2, · · · , N} be an index set. Under the usual assumption that the uncertain
data (ã, b̃) follows the affine data perturbation, we can represent uncertainties
over a set of random variables {z̃j, j ∈ N} as follows,

(ã, b̃) = (a0, b0) +
∑

j∈N
(Δaj , Δbj)z̃j , (4)

where (a0, b0) is the nominal value of the data, (Δaj , Δbj) is a direction of the
data perturbation, and z̃j is a random variable, for each j ∈ N . With a suitable
selection of (Δaj , Δbj), the uncertainty model (4) will reduces to the simple
case where all the uncertain coefficients in (3) are independent as assumed in
[1,3,5,6].

In the existing literature [1,2,3,6,7,8,12,13], it is generally assumed that {z̃j,
j ∈ N} are independent and identically distributed (i.i.d.). Very recently, in
order to capture distributional asymmetry of {z̃j}, Chen et al. [11] propose the
forward and backward deviation measures for bounded random variables to lead
to better approximations of the stochastic constraints, and produce a scalable
method for solving multistage stochastic programs. However, as limited to our
knowledge, more complicated correlated uncertainties on the random variables
z̃j’s have not yet been considered up to now.

In this paper, we consider the case where the random variables {z̃j, j ∈ N}
are truncated from a causal ARMA process {z̃j, j ∈ Z(an integer set)}, which
is defined in terms of homogeneous linear difference equations with constant
coefficients. A process {z̃j, j ∈ Z} is said to be an ARMA(p, q) process if it is
stationary and for each j,

z̃j − φ1z̃j−1 − · · · − φpz̃j−p = ω̃j + θ1ω̃j−1 + · · ·+ θqω̃j−q, (5)

where φp and θq are nonzero constants, and each ω̃k(k ∈ Z) is a white noise with
mean zero. We call {ω̃k, k ∈ Z} the primitive uncertainties and {z̃j, j ∈ N} the
sub-primitive uncertainties in our research. Moreover, with a suitable selection

386 W. Miao et al.

of (Δaj , Δbj), the uncertainty model (4) will reduce to the special case that the
uncertain coefficients {ã1, · · · , ãn, b̃} in (3) follow an ARMA process, which is
often encountered in practice.

ARMA processes are the most important stochastic processes in time series
analysis. They have wide applications in economic forecasting, signal processing
and communications. For example, it is used in modeling the S&P 500 stock
index, the UK interest rate spread, and the returns on the FTA All Share index
(see [14], 30-37). In particular, in many finance applications, it is reasonable
to assume that the input random variables ã and/or b̃ in the constraints (3)
are uncertainties related to (or truncated from) the causal ARMA process. For
example, the stochastic interest rate has been introduced in many financial mod-
els recently, and the interest rate series {it, t ∈ Z} is often modeled to belong
to the class of ARIMA(p, d, q) process, mostly ARIMA(p, 1, q) process, which
means that the interest spread series {z̃t+1 | z̃t+1 := it+1− it} is an ARMA(p, q)
process. Thus, we can rewrite the future interest rate series with respect to in-
terest spread z̃j as {it | it = i0 +

∑t
j=1 z̃j} and find that i1, · · · , in satisfy our

uncertainty model (4).
The main contribution of this work is to introduce a new robust formulation

for the uncertain linear constraint (3) with affine data perturbation related to a
causal ARMA process. We believe that the embedding of the natural correlated
uncertainties related to time series into existing models is an integrated part of
almost all practical applications of robust optimization. This explicit treatment
of correlated uncertainties under time series setting in robust optimization is a
major difference from existing literature, such as [3,7], where the i.i.d. of the
sub-primitive uncertainties z̃j’s are assumed. Such consideration leads to much
more involved uncertain constraints. As a consequence, the robust formulation
obtained from the existing robust technology becomes intractable because of the
infinite items of primitive uncertainties. In our paper, we give a numerical robust
method to address such problems.

The rest of the paper is organized as follows. In Section 2 we recall some
preliminary results on ARMA process which are necessary in the sequel. In
Section 3, we consider a special ARMA process, where ω̃k’s, k ∈ Z, are white
noises with means zero, and ω̃k’s themselves are i.i.d. for all k. In Section 4,
we derive level of conservatism of the robust solutions in terms of probabilistic
bounds of constraint violations and propose a numerical method to select the
parameters to control the tractability, the robustness, and the optimality of the
robust model. In Section 5, we propose an approximate numerical method for
calculating the error bounds. In Section 6, we conclude the paper.

2 The Causal ARMA Process

In this section, we recall the definition and some crucial properties of ARMA
process [10], which is one important family of process in time series analysis.

Robust Optimization Model for a Class of Uncertain Linear Programs 387

Definition 1. The process {z̃j , j ∈ Z} is said to be an ARMA(p, q) process if
the process {z̃j} is stationary and for each j,

z̃j − φ1z̃j−1 − · · · − φpz̃j−p = ω̃j + θ1ω̃j−1 + · · ·+ θqω̃j−q, (6)

with φp �= 0 and θq �= 0, where {ω̃j} is a white noise with mean zero.

We call (6) the ARMA(p, q) model, and call φ(·) and θ(·) the autoregressive and
moving average polynomials respectively with the following representations:

φ(t) = 1− φ1t− · · · − φpt
p, θ(t) = 1 + θ1t + · · ·+ θqt

q, φp, θq �= 0. (7)

Definition 2. An ARMA(p, q) process defined by (6) is said to be causal if there
exists a sequence of constants {ψk} such that

∑∞
k=0 |ψk| <∞ and

z̃j =
∞∑

k=0

ψkω̃j−k, j ∈ Z. (8)

The following theorem gives a necessary and sufficient condition for an ARMA
model to be causal, and provides an explicit representation of z̃j in terms of
{ω̃k, k ≤ j}.

Theorem 1. (Theorem 3.1.1 in [10]) Let {z̃j} be an ARMA(p, q) process where
φ(·) and θ(·) have no common zeros. Then {z̃j} is causal if and only if φ(t) �=
0, ∀|t| ≤ 1. The coefficients ψk in (8) are determined by

ψ(t) =
∞∑

k=0

ψkt
k = θ(t)/φ(t), |t| ≤ 1. (9)

For a linear process (6), the condition φ(t) �= 0, ∀|t| ≤ 1 guarantees the process
{z̃j} to be stationary. So in some literatures, such condition is also called the
stationary condition of ARMA process ([9], 77-78).

Without loss of generality, we assume that the polynomials φ(·) and θ(·) have
no common zeros—otherwise, we can delete the common factors of φ(·) and θ(·)
in (6). Then we can determine the coefficients ψk by

ψk −
∑

0<l≤k

φlψk−l = θk, 0 ≤ k < max(p, q + 1), (10)

ψk −
∑

0<l≤p

φlψk−l = 0, k ≥ max(p, q + 1). (11)

With the aid of the analysis for homogeneous linear difference equations with
constant coefficients [9,10], (11) can be written as

ψk =
l∑

i=1

ri−1∑

j=0

αijk
jξ−k

i , k ≥ max(p, q + 1)− p, (12)

388 W. Miao et al.

where ξi, i = 1, · · · , l, are the distinct zeros of φ(t), and ri is the multiplicity of
ξi. The p constants αij and the coefficients ψk(0 ≤ k < max(p, q + 1) − p), are
then determined uniquely by the max(p, q + 1) boundary conditions in (10).

Note that ψ(t) = θ(t)
φ(t) is an analytic function in {t : |t| < mini=1:l |ξi|}. Let

ρ = mini=1:l |ξi| > 1. Subsequently, we can generalize (9) as ψ(t) =
∑∞

k=0 ψkt
k =

θ(t)/φ(t), |t| < ρ.UsingAbel’s theoremonpower series,weobtain that
∑∞

k=1 ψkρ
k
0 ,

1 < ρ0 < ρ, is absolutely convergent, which means that {ψkρ
k
0} is absolutely con-

vergent to zero. Therefore, the coefficients {ψk} is negative exponentially conver-
gent to zero and can be calculated numerically. Moreover, {ψk} converges faster
when ρ becomes larger.

3 The Robust Model

Now we focus on the uncertain linear constraint (3) under affine data perturba-
tion, where the uncertainties can be expressed as (4). Thus, we can rewrite the
constraint in terms of sub-primitive uncertainties {z̃j, j ∈ N} as follows:

a0′x +
∑

j∈N
(Δaj ′x−Δbj)z̃j ≤ b0. (13)

In this paper, we consider the case that the sub-primitive uncertainties z̃j ’s,
j ∈ N , are correlated uncertainties truncated from a causal ARMA(p, q) process
defined in Definition 1. We also need the following assumptions.

Assumption 1. In ARMA model (6), the forcing terms ω̃k, k ∈ Z are i.i.d..

Assumption 2. The autoregressive and moving average polynomials φ(·) and
θ(·) have no common zeros.

For simplicity, we denote yj(x) =: Δaj ′x −Δbj for each j ∈ N . Now we have
the following result.

Theorem 2. If the uncertain data (ã, b̃) follows the affine data perturbation
defined by (4) with the sub-primitive uncertainties {z̃j, j ∈ N} truncated from
a casual ARMA process, then, under Assumptions 1 and 2, the uncertain linear
constraint (3) is equivalent to

a0′x +
∞∑

k=1

ζk(x)η̃k ≤ b0, (14)

where
ζk(x) =

∑

j∈N
yj(x)ψj+k−N−1, η̃k = ω̃N+1−k. (15)

Proof. We rewrite the left-hand side of (13) in terms of the primitive uncertain-
ties {ω̃k}:

Robust Optimization Model for a Class of Uncertain Linear Programs 389

a0′x +
∑

j∈N

(
Δaj ′x−Δbj

)
z̃j = a0′x +

∑−∞
k=N

(∑
j∈N yj(x)ψj−k

)
ω̃k

= a0′x +
∑∞

k=1

(∑
j∈N yj(x)ψj+k−N−1

)
ω̃N+1−k

= a0′x +
∑∞

k=1 ζk(x)η̃k,

(16)
where ψk = 0 for −(N − 1) ≤ k ≤ −1. From the variable translations (15), it is
easy to see that η̃k’s are also i.i.d. as same as ω̃k’s. Moreover, for each x ∈ R,
we have

∑∞
k=1 ζk(x)η̃k <∞.

From Theorem 2, the constraint (3) is dependent on infinite uncertainties ζk(x)
and η̃k, 1 ≤ k < ∞. Thus we cannot obtain a robust formulation of constraint
(3) by existing robust techniques directly, because an optimization problem with
a constraint as (14) is intractable in general.

However, we know that {ζk(x)} converges to zero negative exponentially for
each feasible solution x, followed by Assumptions 1, 2, equality (15), and the
same property of {ψk}. Therefore the first M random variables η̃k, 1 ≤ k ≤ M
dominate in (14). LetM = {1, 2, · · · ,M} be an index set. So it is natural to use
the following constraint with finite primitive uncertainties to approximate the
constraint (14):

a0′x +
∑

k∈M
ζk(x)η̃k ≤ b0. (17)

We define the uncertainty set of (17), named U , as follows:

U =

⎧
⎨

⎩
(a, b)

∣
∣
∣
∣
∣
∣
∃ η̃ ∈ RM , (a, b) = (a0, b0) +

∑

k∈M

⎛

⎝
∑

j∈N
Δaj ,

∑

j∈N
Δbj

⎞

⎠ η̃k, ‖η̃‖ ≤ Ω

⎫
⎬

⎭
,

(18)
where η̃ = (η̃1, η̃2, · · · , η̃M)′ and Ω is the parameter controlling the tradeoff
between the robustness and the optimality. Subsequently, we obtain a robust
formulation to the uncertain linear constraint (3) as follows:

a0′x +
∑

k∈M
ζk(x)η̃k ≤ b0, ∀ ‖η̃‖ ≤ Ω (or ∀ (ã, b̃) ∈ U). (19)

Theorem 3. The robust formulation(19) is equivalent to

a0′x + Ω‖t‖∗ ≤ b0, (20)

where
tk = ζk(x) =

∑

j∈N
(Δaj ′x−Δbj)ψj+k−N−1, ∀k ∈ M, (21)

and the dual norm ‖ · ‖∗ is defined by ‖t‖∗ = max‖s‖≤1 t′s.

Proof. It is easy to see that (19) is equivalent to

a0′x + max
‖η̃‖≤Ω

∑

k∈M
ζk(x)η̃k ≤ b0. (22)

390 W. Miao et al.

From the definition of the dual norm, we know that

max‖η̃‖≤Ω

∑
k∈M ζk(x)η̃k = Ω max‖η̃‖≤1

∑
k∈M ζk(x)η̃k

= Ω‖(ζ1(x), · · · , ζM (x))′‖∗. (23)

By letting t = (ζ1(x), · · · , ζM (x))′, we obtain what we desired.

4 Probabilistic Guarantees and Parameters Selection

Let y(x) = (y1(x), y2(x), · · · , yN (x))′, Ψk−N = (ψk−N , ψk−N+1, · · · , ψk−1)′

and Λk−N = Ψk−NΨ ′
k−N . Then we have ζk(x) = Ψ ′

k−Ny(x) and ζ2
k(x) =

y(x)′Λk−Ny(x). We denote λmin(Λ) and λmax(Λ) as the minimum and the max-
imum eigenvalues of matrix Λ, respectively.

Proposition 1

(i) Every element in matrix Λk−N converges to zero negative exponentially as
k → ∞. Thus

∑∞
k=1 Λk−N is meaningful, and

∑∞
k=1 ζ2

k(x) < ∞, for each
x ∈ Rn.

(ii) For any integers L and K satisfying 1 ≤ L ≤ K (including K = ∞),
∑K

k=L Λk−N is positive semidefinite, and

λmin

(
K∑

k=L

Λk−N

)

‖y(x)‖22 ≤
K∑

k=L

ζ2
k(x) ≤ λmax

(
K∑

k=L

Λk−N

)

‖y(x)‖22.

(24)
(iii) On one hand, λmax (

∑∞
k=K Λk−N) and λmin (

∑∞
k=K Λk−N) are monotoni-

cally decreasing and converge to 0 respectively as K → ∞. On the other
hand, λmax

(∑K
k=1 Λk−N

)
and λmin

(∑K
k=1 Λk−N

)
are monotonically in-

creasing and converge to λmax (
∑∞

k=1 Λk−N) and λmin (
∑∞

k=1 Λk−N) respec-
tively as K →∞.

(iv) Moreover

λmin

(
K∑

k=1

Λk−N

)

> 0, ∀K ≥ N (including K =∞). (25)

Proof. (i) For each x, ζk(x) is a linear combination of ψk−N , · · · , ψk−1. The
element of Λk−N in m-th row and n-th column is λk−N

m,n =: ψk−N+m−1ψk−N+n−1,

1 ≤ m,n ≤ N. Note that limk→∞ λk−N
m,n → 0 and

∑∞
k=1 λk−N

m,n is conver-
gent because {ψk} converges to zero negative exponentially as k → ∞. Thus,∑∞

k=1 ζ2
k(x) <∞, and hence

∑∞
k=1 Λk−N is meaningful.

(ii) Because of
∑K

k=L ζ2
k(x) =

∑K
k=L y(x)′Λk−Ny(x) = y(x)′

(∑K
k=L Λk−N

)

y(x), the inequalities (24) can be obtained from Courant-Fischer Theorem
([16],107).

Robust Optimization Model for a Class of Uncertain Linear Programs 391

(iii) Let K be any given positive integer. Because all the matrices in consid-
eration are symmetric, so their eigenvalues must satisfy

λmax

(∑K+1
j=1 Λj−N

)
≥ λmax(

∑K
k=1 Λk−N) + λmin(ΛK+1−N),

λmin

(∑K+1
k=1 Λk−N

)
≥ λmin(

∑K
k=1 Λk−N) + λmin(ΛK+1−N).

(26)

From (i), ΛK+1−N is positive semidefinite and {Λk−N} converges to the zero
matrix as k →∞. The monotonicity and the convergence of the maximum and
minimum eigenvalues follows easily.

(iv) Assume that there exists a K ≥ N (including K = ∞) such that
λmin(

∑K
k=1 Λk−N) = 0. Consequently, there exists a vector y∗ �= 0 such that

y∗
(∑K

k=1 Λk−N

)
y∗ =

∑K
k=1(Ψ

′
k−Ny∗)2 = 0. Thus,

Ψ ′
k−Ny∗ = 0, ∀k ∈ N , (27)

As discussed in Section 2, we have ψ0 = 1. Therefore, Equations (27) have the
unique solution y = 0, in contradiction with our assumption. Subsequently, we
conclude that λmin

(∑K
k=1 Λk−N

)
> 0, ∀K ≥ N (including K =∞).

Now we are ready to give the probabilistic guarantees on the feasibility.

Theorem 4

(i) For any given feasible solution x∗ in the robust formulation (20) with respect
to the uncertainty model (3), we have

P
(
ãx∗ > b̃

)
≤ P

(∞∑

k=1

ζk(x∗)η̃k > Ω‖t‖∗
)

, (28)

where t = (ζ1(x∗), · · · , ζM (x∗))′.
(ii) Assume that, in the ARMA(p, q) process, the primitive uncertainties ω̃k’s

are independent and normally distributed with mean 0 and variance δ2. That
is, ω̃k ∼ N(0, δ2), and i.i.d. Then, for any M ≥ N , assuming the l2-norm
(and hence ‖ · ‖∗ = ‖ · ‖2), we have

P

(∞∑

k=1

ζk(x∗)η̃k > Ω‖t‖∗
)

≤ Φ

(

− Ω

δ
√

1 + Γ (M)

)

, (29)

where

Γ (M) =
λmax

(∑∞
k=M+1 Λk−N

)

λmin

(∑
k∈M Λk−N

) , (30)

and

Φ(θ) =
1√
2π

∫ −∞

θ

exp
(

− t2

2

)

dt (31)

is the cumulative density function (cdf) of a standard normal distribution.

392 W. Miao et al.

(iii) Assume that, in the ARMA(p, q) process, the primitive uncertainties ω̃k’s
are independent, symmetrical and identically distributed in [−ω, ω] with
mean 0. Then, for any M ≥ N , assuming the l2-norm, we have

P

(∞∑

k=1

ζk(x∗)η̃k > Ω‖t‖∗
)

≤ exp
(

Ω2

2ω2
(Γ (M)− 1)

)

, (32)

where Γ (M) is defined as (30).

Proof. (i) From the robust counterpart (20), we have

P
(
ã′x∗ > b̃

)
= P

(
a0′x∗ +

∑∞
k=1 ζk(x∗)η̃k > b0

)

≤ P
(
a0′x∗ +

∑∞
k=1 ζk(x∗)η̃k > a0′x∗ + Ω‖t‖∗

)

= P (
∑∞

k=1 ζk(x∗)η̃k > Ω‖t‖∗) ,

where t = (ζ1(x∗), · · · , ζM (x∗))′.

(ii) For the l2-norm, we have ‖t‖∗ = ‖t‖2 =
√∑

k∈M ζ2
k(x∗). Note that

ω̃k ∼ N(0, δ2), and i.i.d. Therefore, η̃k ∼ N(0, δ2), and i.i.d. Consequently,�∞
k=1 ζk(x∗)η̃k

δ
√�∞

k=1 ζ2
k(x∗)

∼ N(0, 1). Now, we have

P (
∑∞

k=1 ζj(x∗)η̃k > Ω‖t‖∗) = P

(
�∞

k=1 ζk(x∗)η̃k

δ
√�∞

k=1 ζ2
k(x∗)

>
Ω
√�

k∈M ζ2
k(x∗)

δ
√�∞

k=1 ζ2
k(x∗)

)

= Φ

(

−Ω
√�

k∈M ζ2
k(x∗)

δ
√�∞

k=1 ζ2
k(x∗)

)

.

From (24) in Proposition 1, we obtain that

P (
∑∞

k=1 ζk(x∗)η̃k > Ω‖t‖∗) = Φ

(

−Ω
δ

(
1 +

�∞
k=M+1 ζ2

k(x∗)
�

k∈M ζ2
k(x∗)

)−1/2
)

≤ Φ

(

−Ω
δ

(

1 +
λmax(

�∞
k=M+1 Λk−N)‖y(x∗)‖2

2

λmin(
�

k∈M Λk−N)‖y(x∗)‖2
2

)−1/2
)

= Φ

(

− Ω

δ
√

1+Γ (M)

)

,

where Γ (M) is defined as (30).
(iii) From the Markov Inequality, we have

P (
∑∞

k=1 ζk(x∗)η̃k > Ω‖t‖∗) = P

(

exp
(

Ω
�∞

k=1 ζk(x∗)η̃k

ω2
√�

k∈M ζ2
k(x∗)

)

> exp
(

Ω2

ω2

))

≤ exp
(
−Ω2

ω2

)
E

(

exp
(

Ω
�∞

k=1 ζk(x∗)η̃k

ω2
√�

k∈M ζ2
k(x∗)

))

.

Because η̃k’s have the same distribution as ω̃k’s, which are independent, sym-
metric and identical distribution in [−ω, ω] with mean 0, thus we have

Robust Optimization Model for a Class of Uncertain Linear Programs 393

P (
∑∞

k=1 ζk(x∗)η̃k > Ω‖t‖∗) ≤ exp
(
−Ω2

ω2

)
Π∞

k=1E

(

exp
(

Ωζk(x∗)η̃k

ω2
√

k∈M ζ2
k(x∗)

))

= exp
(
−Ω2

ω2

)
Π∞

k=1

∑∞
l=0

(

1
(2l)!E

(
Ωζk(x∗)η̃k

ω2
√

k∈M ζ2
k(x∗)

)2l
)

≤ exp
(
−Ω2

ω2

)
Π∞

k=1 exp
(

Ω2

2ω2
ζ2

k(x∗)

k∈M ζ2
k(x∗)

)

= exp
(
−Ω2

ω2

)
exp

(
Ω2

2ω2

∞
k=1 ζ2

k(x∗)

k∈M ζ2
k(x∗)

)

= exp
(
− Ω2

2ω2

(
1−

∞
k=M+1 ζ2

k(x∗)

k∈M ζ2
k(x∗)

))
.

From (24) in Proposition 1, we obtain that

P (
∑∞

k=1 ζk(x∗)η̃k > Ω‖t‖∗) ≤ exp
(

− Ω2

2ω2

(

1− λmax(
�∞

k=M+1 Λk−N)‖y(x∗)‖2
2

λmin(
�

k∈M Λk−N)‖y(x∗)‖2
2

))

= exp
(
− Ω2

2ω2 (1− Γ (M))
)
,

where Γ (M) is defined as (30).

5 An Approximate Numerical Method for Calculating
Γ (M)

For several simple cases such as where the sub-primitive uncertainties {z̃j, j ∈
N} are truncated from an ARMA(1, 0) process, we are able to calculate Γ (M)
analytically. But for most practical applications, Γ (M) is usually difficult to
be calculated directly since we can not derive an explicit expression of matrix∑∞

k=M+1 Λk−N . Fortunately, in many cases, the autoregressive and moving av-
erage orders p and q are not very large or even small. In such cases we are able
to obtain the explicit expression of each ψk (k ≥ max(p, q+1)−p) in (12). Based
on these, we propose a numerical method to approximate Γ (M), which provides
a controllable error bound to the exact value of Γ (M).

Algorithm 1. (Method to calculate Γ (M) approximately)

Step 0. Let M ≥ N be an integer. Choose an s ∈ (0, 2) and a tolerance pa-
rameter τ > 0. Let α =

∑l
i=1

∑ri−1
j |αij |, r = maxi=1: l{ri} − 1, and

ρ = mini=1: l |ξi| > 1, where the notations are the same as those in
(12).

Step 1. Calculate λ1 = λmin

(∑
k∈M Λk−N

)
.

Step 2. Choose K1 to be the smallest nonnegative integer k satisfying k2r ≤
ρsk. Choose K2 to be the smallest nonnegative integer k satisfying
α2ρ−(2−s)k

1−ρ−(2−s) ≤ τλ1
N . Let K = max{K1,K2,max(p, q + 1)− p}.

Step 3. If K +N − 1 ≤M , then let Γ ∗(M) = 0 and stop. Otherwise, calculate
λ2 = λmax

(∑K+N−1
k=M+1 Λk−N

)
. Let Γ ∗(M) = λ2

λ1
and stop.

Theorem 5. Assume that ψk has the explicit expression as (12). For any given
integer M satisfying M ≥ N , let Γ ∗(M) be generated from the Algorithm 1.
Then the exact value Γ (M) ∈ [max{0, Γ ∗(M)− τ}, Γ ∗(M) + τ].

394 W. Miao et al.

Proof. Note that K = max{K1,K2,max(p, q + 1)− p} in Step 2 of Algorithm 1.
First, K > max(p, q + 1) − p implies that |ψk| =

∣
∣
∣
∑l

i=1

∑ri−1
j=0 αijk

jξ−k
i

∣
∣
∣ ≤

αkrρ−k, ∀k ≥ K. Consequently, the (m,n)-th element in
∑∞

k=K+N Λk−N is
(∑∞

k=K+N Λk−N

)

m,n
=
∑∞

k=K |ψk+m−1ψk+n−1|
≤
∑∞

k=K α2(k +m− 1)rρ−(k+m−1)(k + n− 1)rρ−(k+n−1)

≤
∑∞

k=K α2k2rρ−2k.
(33)

Second, K ≥ K1 implies that k2r ≤ ρsk, ∀k ≥ K. Thus,
∑∞

k=K α2k2rρ−2k ≤∑∞
k=K α2ρ−(2−s)k.
Third, K ≥ K2 implies that α2ρ−(2−s)K

1−ρ−(2−s) ≤ τλ1
N . Combining the fact that

s ∈ (0, 2), we obtain that
∑∞

k=K α2ρ−(2−s)k = α2ρ−(2−s)K

1−ρ−(2−s) ≤ τλ1
N .

Thus, each element of
∑∞

k=K+N Λk−N satisfies
(∑∞

k=K+N Λk−N

)
m,n
≤ τλ1

N .

1. K + N − 1 ≥ M + 1. The Wielandt-Hoffman Theorem (see [16], pp.104)
implies that

(
λmax

(∑∞
k=M+1 Λk−N

)
− λmax

(∑K+N−1
k=M+1 Λk−N

))2

≤
∑N

i=1

(
λi

(∑∞
k=M+1 Λk−N

)
− λi

(∑K+N−1
k=M+1 Λk−N

))2

≤
∥
∥∑∞

k=K+N Λk−N

∥
∥2

F
≤ τ2λ2

1,

(34)

Then, we have λmax

(∑∞
k=M+1 Λk−N

)
∈ [λ2 − τλ1, λ2 + τλ1]. Let Γ ∗(M) =

λ2
λ1

. Comining the fact that λmax

(∑∞
k=M+1 Λk−N

)
≥ 0, we have Γ (M) ∈

[max{0, Γ ∗(M)− τ}, Γ ∗(M) + τ].
2. K + N − 1 ≤M . We have

λmax

(∑∞

k=M+1
Λk−N

)
≤ λmax

(∑∞

k=K+N
Λk−N

)
≤ τλ1. (35)

Thus, λmax

(∑∞
k=M+1 Λk−N

)
∈ [0, τλ1]. Let Γ ∗(M) = 0. Then we obtain

that Γ (M) ∈ [0, Γ ∗(M) + τ] = [max{0, Γ ∗(M)− τ}, Γ ∗(M) + τ].

From the discussion above, for any integer M satisfying M ≥ N , we are able to
calculate an approximate value Γ ∗(M) by Algorithm 1. Moreover, for any ε > 0,
if we choose Ω in case (ii) and case (iii) of Theorem 4 satisfying

Ω ≥ −δΦ−1(ε)
√

1 + Γ ∗(M) + τ , (36)

and

Ω ≥ ω

√
−2 ln(ε)

1− Γ ∗(M)− τ
, Γ ∗(M) + τ < 1. (37)

respectively, then the probabilistic bounds, (29) and (32), are controlled to be
no more than ε.

Robust Optimization Model for a Class of Uncertain Linear Programs 395

6 Concluding Remarks

In this work, we propose a robust model for the uncertain linear program with
correlated uncertainties related to a causal ARMA process. (Without difficulties,
the results can also be generalized to the case where correlated uncertainties re-
lated to an ARMA process with non-zero mean or an ARIMA process.) Under
the l2-norm and some general symmetrically distributed assumptions on the
primitive uncertainties {ω̃k}, we establish the probabilistic guarantees for fea-
sibility and provide a numerical method for calculating Γ (M) approximately,
yielding an explicit ways to select M , Ω and ε to control the tractability, the
optimality and the robustness of the proposed robust model.

References

1. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23,
769–805 (1998)

2. Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. Oper.
Res. Let. 25, 1–13 (1999)

3. Ben-Tal, A., Nemirovski, A.: Robust solutions of Linear Programming problems
contaminated with uncertain data. Math. Prog. 88, 411–424 (2000)

4. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust so-
lutions of uncertain linear programs. Math. Prog. 99, 351–376 (2004)

5. Bertsimas, D., Pachamanova, D., Sim, M.: Robust Linear Optimization under Gen-
eral Norms. Oper. Res. Let. 32, 510–516 (2004)

6. Bertsimas, D., Sim, M.: Price of Robustness. Oper. Res. 52, 35–53 (2004)
7. Bertsimas, D., Sim, M.: Tractable Approximation to Robust Conic Optimization

Problems. Math. Prog. 107, 5–36 (2006)
8. Bertsimas, D., Thieley, A.: Robust and Data-Driven Optimization: Modern

Decision-Making Under Uncertainty. Working paper. MIT Press, Cambridge (2006)
9. Box, G., Jenkins, G.M., Reinsel, G.: Time series analysis: Forecasting and Control.

Prentice-Hall, Englewood Cliffs, NJ (1994)
10. Brochwell, P.J., Davis, R.A.: Time series: theory and methods. Springer, New York

(1991)
11. Chen, X., Sim, M., Sun, P.: A Robust Optimization Perspective of Stochastic

Programming. Working Paper (2005)
12. El-Ghaoui, L., Lebret, H.: Robust solutions to least-square problems to uncertain

data matrices. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)
13. El-Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite

programs. SIAM J. Optim. 9, 33–52 (1998)
14. Mills, T.C.: The Econometric Modelling of Financial Time Series, 2nd edn. Cam-

bridge University Press, Cambridge (1999)
15. Soyster, A.L.: Convex programming with set-inclusive constraints and applications

to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)
16. Wilkinson, J.H.: The algebraic eigenvalue problem. Clarendon Press, Oxford (1965)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 396–407, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient Algorithm
for Solving the Container Loading Problem

Wenqi Huang and Kun He*

Theoretical Computer Science Institute, College of Computer Science,
Huazhong University of Science and Technology, Wuhan 430074, China
wqhuang@mail.hust.edu.cn, brooklet60@gmail.com

Abstract. We present a new algorithm for the three-dimensional packing
problem with a single container to be loaded. Deviates from the traditional
approaches, it uses a principle —— “largest caving degree” such that items are
packed as closely as possible. Then, it incorporates a backtracking strategy that
gains a good trade-off between solution quality and computation time. We
tested our algorithm using all the 47 related benchmarks from the OR-Library
that have no orientation constraints. Experiments indicate the algorithm’s good
quality. The container volume utilization, achieved within comparable time, is
94.6% on average. This significantly improves current best-known results in the
literature by 3.6%.

Keywords: Heuristic; Cargo Loading; Cutting and Packing.

1 Introduction

The cutting and packing (C&P) problem is a well-motivated research issue in
combinatorial optimization area. Theoretically, it is NP-hard in the strong sense and is
very difficult to solve [1]. Practically, it has a wide variety of applications in the real
world. E.g., the efficient cargo transportation is of high economic value in logistics,
and near optimal cargo loading leads to lower costs all over the distribution system. A
C&P problem usually corresponds to a job scheduling problem. E.g., the two-
dimensional (2D) bin packing problem is equivalent to a parallel job scheduling
problem on identical machines located on a 2D mesh [2]. Therefore, methods for the
C&P problem are also useful for the scheduling problem, which is another kind of
important problem both in theory and practice.

In this paper, we consider a typical three-dimensional (3D) C&P problem: the
container loading problem. We assume there is no orientation constraint, i.e. the item
may be rotated by 90o before it is packed. This complicates the problem since the
number of possible packing is now a factor of 6n larger for n items. Yet, it may allow
better packing, and small modification on algorithms could easily eliminate this
scenario.

Heuristic approaches are often the feasible options for the 3D C&P problem. Basic
methods are wall building [1,3,4], layering [5], guillotine cutting [6], block
arrangement [7,8,9], etc. Tree-search [1,7], tabu search [8], simulated annealing [8],

* Corresponding author.

 An Efficient Algorithm for Solving the Container Loading Problem 397

or genetic search [9] is incorporated to improve the solution’s quality. Sometimes,
parallel methods are used to shorten the computation time [8,9]. Based on the wall
building and layering methods, Lim et al. proposed a basic algorithm MFB and a
strengthened algorithm MFB_L [4]. They tested on 760 benchmarks from the OR-
Library [10]. The results of MFB_L were about 3% better on average than that in [3],
which was the only available work they found containing packing results for the
frontier 700 benchmarks.

We proposed a new approach for the 3D packing problem. The inspiration
originates from an old adage “gold corner, silver side and grass belly” in Chinese I-
go. The adage has concentrated human’s experience and wisdom formed in the last
thousand years. It indicates that corner worth most while center worth dirt on the
chessboard. Moreover, we improved the idea with “diamond cave”. Based on a
principle of “largest caving degree” [11], a packing item should always occupy a
corner, or even a cave, bounded by surfaces of the packed items or the container. In
this way, items are packed as closely as possible. We tested our algorithm using all
the 47 benchmarks from the OR-Library [10] that allow rotations. Results generated
are compared with those in [4] which tested the same data. Experiments indicate that
we are able to achieve an average packing utilization of 94.6%. To our knowledge,
this significantly improves the best-known results by 3.6%.

2 Problem Specification

The container loading problem is to pack a subset of rectangular items (e.g. boxes)
into a single rectangular container with fixed dimensions. The objective is to find a
feasible solution that maximizes the total volume of the packed items, i.e. maximizes
the container’s volume utilization. A solution is feasible if: ① each item is packed
completely in the container; ② there is no overlapping between any two items; ③
each item is placed parallel to the surfaces of the container.

Given a container with dimensions (, ,)L W H and a set of n items
{(, ,),...,(, ,)}1 1 1S l w h l w hn n n= . Variables li, wi and hi are the three dimensions of item i.

Without loss of generality, suppose all the variables are plus integer numbers.
Consider the container embedded into a three-dimensional Cartesian reference frame.
The lower-left-near corner coincides with the origin and the upper-right-far corner
coincides with point (, ,)L W H , as Fig. 1 shows. Let {0,1}iδ ∈ denotes whether item i is
packed into the container. If item i has been packed, let (, ,)1 1 1x y zi i i and (, ,)2 2 2x y zi i i
denote the coordinates of its lower-left-near corner and upper-right-far corner
respectively. Then, the problem can be formulized as follows:

1

max
n

i i i i
i

l w h δ
=
∑

Subject to

(1) (, ,) {(, ,),(, ,),(, ,),(, ,),(, ,),(, ,)}2 1 2 1 2 1x x y y z z l w h w l h l h w h l w h w l w h li i− − − ∈ ;

(2) max(max(,) min(,),max(,) min(,),1 1 2 2 1 1 2 2x x x x y y y yi j i j i j i j− −

max(,) min(,)) 01 1 2 2z z z zi j i j i jδ δ− ≥ ;

398 W. Huang and K. He

(3) 0 1 2x x Li i≤ < ≤ , 0 1 2y y Wi i≤ < ≤ , 0 1 2z z Hi i≤ < ≤ ;

(4) {0,1}iδ ∈ ;

Where , 1, 2, ...,i j n= , i j≠ . Item i has six orientations whose dimensions on x-, y-,
and z-axis are (li,wi,hi), (wi,li,hi), (li,hi,wi), (hi,li,wi), (hi,wi,li) and (wi,hi, li), with their
orientation number from one to six respectively. Constraints (1) to (3) are
corresponded to the three conditions of a feasible solution.

zy
(L,W,H)

rightleft

upper

lower

far

near

x(0,0,0)

Fig. 1. Coordinate system

3 Algorithm Description

The main idea of our algorithm is to always do a Real Corner Occupying Action
(RCOA) with the largest caving degree. A RCOA is an action that places an item at a
corner where three orthogonal surfaces meet. Caving degree is a value defined to
judge how close a packing item is to other items filled in already.

3.1 Definitions

Definition 1 (Real Corner). It is an unoccupied space where three orthogonal
surfaces meet and form a corner. The surface could be an interior surface of the
container, or an exterior surface of a packed item. The three surfaces intersect each
other on surface or edge.

The six surfaces of the container can be regarded as six items with unit length for the
third dimension, and are packed at the corresponding positions in the beginning. The
three surfaces of a real corner belong to different items. A corner is denoted by its
coordinates (x,y,z) and its corner direction. There are eight different corner directions.
They are corresponded with the directions of the eight corners, formed by the
coordinate planes in the eight quadrants of the 3D Cartesian reference frame.

Theorem 1. There are at most two real corners formed by any three items.

 An Efficient Algorithm for Solving the Container Loading Problem 399

Proof. According to the real corner’s definition, any two items of a real corner must
intersect each other on surface or edge.

① If the two items intersect on surface, as in Fig.2 (a) item i and item k or item j
and item k show, there are at most four intersecting edges. And at each direction,
there are at most two parallel edges. The surface of the third item must be orthogonal
with the intersecting edges. The third item could intersect at most two parallel edges
to form corners, as in Fig.2 (a) item j shows. Or the third item could intersect one
edge with its two parallel surfaces, as in Fig.2 (a) item i shows. So, there are at most
two real corners formed.

② If the two items intersect on edge, as in Fig.2 (b) item i and item j show, there
are at most two pairs of intersecting surfaces. Each pair of surfaces is orthogonal with
each other and belongs to the two items respectively. So, there are at most two real
corners formed with the third item, as Fig.2 (b) item k shows.

So, the theorem is true. □

(a) (b)

i
j

k

i

j
k

Fig. 2. Real corners formed by three items

Definition 2 (Real Corner Occupying Action, RCOA). A packing action includes
three aspects: which item to be packed, which position to be placed, and which item
orientation to be set. An action is called a RCOA if the packing item occupies a real
corner.

A RCOA is denoted by the occupied corner’s coordinate and direction, as well as the
packing item’s id and orientation.

Definition 3 (Distance of Two Point Sets). It’s an infimum on distances of two
points chosen from the two sets respectively.

d (A,B) = inf {d (a,b): a in A, b in B}. (1)

Definition 4 (Distance of Two Items, dij). Regarding each item as a point set, their
distance is the Minkowski distance between the two sets.

The distance between item i and j is d dx dy dzij ij ij ij= + + , as Fig. 3 shows, where

max(| | ,0)
2

l li j
dx x xij ic jc

+
= − − ,

400 W. Huang and K. He

max(| | ,0)
2

w wi j
dy y yij ic jc

+
= − − ,

max(| | ,0)
2

h hi j
dz z zij ic jc

+
= − − ,

and (, ,)x y zic ic ic , (, ,)x y zjc jc jc are the central coordinates of item i and item j

respectively.

Fig. 3. Distance of two items

Definition 5 (Paste Number, ki). It’s the number of pasted surfaces for a RCOA

packing item. {3,4,5,6}ki∈ . A surface is pasted if the intersect area with another

surface is larger than 0.

Definition 6 (Paste Ratio, pi). It’s the total pasted area of a RCOA packing item,

divided by the total surface area of the item. (0,1]pi∈

Definition 7 (Distance of a RCOA, di). Aligned with the k pasted plane and their

normal directions (pointing to the space the packing item is in), a space Ω is enclosed
with 6-k dimensions. Distance of a RCOA is the minimum distance between the
packing item and a set of packed items. An item, including the six items forming the
container, is considered in the set if its intersection with space Ω is not null, the
intersect area or volume is larger than 0, and it does not paste the packing item. Let

0di= when k=6.

min(,) {3,4,5}
{

0 6

d j j i kij
di

k

Ω≠∅∧ =∅ =
=

=

∩ ∩
 . (2)

Fig. 4 shows the space Ω for packing item i with its upper, down, left and far
surfaces pasted (4k=), and its occupied corner is at the upper-left-far vertex. When
computing di , item a pastes with item i and it is not considered, while item b and
item c are considered; the near surface and right surface of the container are
considered too.

 An Efficient Algorithm for Solving the Container Loading Problem 401

Fig. 4. Space Ω

Definition 8 (Caving Degree, Ci). It is defined on a RCOA to judge how close the

packing item is with other items filled in already.

3
()

diC k pi i i l w hi i i
μ= + − , max(, ,)L W Hμ = . (3)

The larger the caving degree is, the better a RCOA is. A good caving degree is
determined on the largest paste number, the largest paste ratio, and the smallest
distance of a RCOA in dictionary order.

3.2 Packing Procedure

In the main procedure, a packing method is invoked recursively and items are packed
one by one from outside to the container. Suppose at a packing step, some items have
been packed and some remain outside. The packing method searches all feasible
RCOAs by iterating all free real corners, all free items and six item orientations.
Thereafter, based on the largest caving degree principle, an item is selected to pack in
an appointed position with an appointed orientation. This action makes the packing
item as closely as possible to other packed items.

So, one item is packed at each packing step. The inside items are increasing and the
outside items are decreasing until the final packing step comes. At the final step, all
items have been packed into the container without overlapping, or none of the
remainders can be packed in.

Above procedure is the greedy B0 algorithm. The strengthened B1 and B2
algorithms add backtracking strategy on B0 to get higher solution quality by
sacrificing the computation time.

3.3 Ranking Scheme

In B0 algorithm, the ranking scheme is employed to select a RCOA at each packing
step, which can be formulated as follows:

Main criteria: largest caving degree.
Tiebreaker 1: smallest length of the long dimension.
Tiebreaker 2: smallest length of the middle dimension.

402 W. Huang and K. He

Tiebreaker 3: smallest length of the short dimension.
Tiebreaker 4: smallest coordinate z of the gravity.
Tiebreaker 5: smallest coordinate y of the gravity.
Tiebreaker 6: smallest coordinate x of the gravity.
Tiebreaker 7: smallest orientation number.

Tiebreakers 1 to 3 are aimed at packing potentially awkward items early on.
Tiebreakers 4 to 7 primarily serve to produce a definitive selection when the former
rules lead to identical scores.

3.4 Basic Algorithm

There is no item in the container in the beginning. The six surfaces of the container
are regarded as six items, and are packed at the corresponding positions. Then, the
packing method is invoked recursively. At the end of each packing step, the corners
the packing item consumed are deleted from the free corner map, and the corners the
packing item created are added to the free corner map. An update procedure is used to
find the consumed and created corners and to update the free corner map. E.g., in Fig.
5, an item is packed at the lower-left-near corner of the container. Its dimensions on
x-, y- and z-axis are l, w and h respectively. The corner it consumed is (0,0,0,1) , and
the corners it created are (,0,0,1)l , (0, ,0,1)w and (0,0, ,1)h .

Algorithm B0

Input: a container denoted by (L,W,H); a free item list with each item denoted by
(li,wi,hi).

init container(L,W,H);
 packing(freeItemList){
 if freeItemList is null, return;
 for each free real corner in freeCornerMap{
 for each outside item in freeItemList{
 for each item orientation {
 check current RCOA’s validity;
 if it’s a feasible RCOA,
 compute its caving degree;
 }
 }
 }
 if current feasible RCOAs are not null {
 choose a best RCOA to do by the ranking scheme;
 move the selected item from freeItemList to
usedItemList;
 update freeCornerMap;
 packing(freeItemList);
 }
}

Output: a list of packed items in usedItemList, each with coordinates of its
lower-left-near and upper-right-far corners; container volume utilization.

 An Efficient Algorithm for Solving the Container Loading Problem 403

Fig. 5. Corners consumed and created

3.5 Strengthened Algorithm

Backtracking strategy is incorporated to further improve the packing utilization. At
each packing step of algorithm B1, instead of choosing a RCOA with the largest
caving degree, we choose a RCOA with the largest volume utilization that pseudo
computed by B0. “Pseudo computation” means that the outside items are packed
temporarily by B0 so as to get corresponding container volume utilization for the
candidate RCOA item, and are removed from the container later. In case of ties, the
same tiebreakers as that of algorithm B0 are used. Figure 5 depicts the evolvement of
the volume utilization at each packing step, which is produced by algorithm B1 on two
cases of test file 9 from the OR-Library.

All feasible RCOAs can be regarded as a neighborhood of current solution, and the
neighbor with the largest volume utilization is selected as the next step. Instead of
terminating when there is no neighbors in B1, algorithm B2 will terminate when an
optimal filling is found, or the volume utilization does not improve at the next step.
As can be seen in Fig. 6, case 2 will terminate at step 6, and case 15 will terminate at
step 4. This gives a good trade-off between solution quality and computation time.

Packing step

Fig. 6. Volume utilization at each packing step

404 W. Huang and K. He

4 Experimental Results

We have implemented our algorithms in java and run them on a 1.7GHz IBM
notebook. Benchmarks are from OR-Library [10], which is a collection of test data
sets for a variety of Operations Research (OR) problems. There are nine sets of test
data with 762 test cases for the 3D packing problem. The 47 cases in file 9 allow
rotations and are considered here. They are weakly heterogeneous problems, and their
item types are from two to five.

Figure 7 refers to the volume utilization of algorithm B0, where x-axis represents
the test case index and y-axis represents the container volume utilization. Figure 8
contains a curve graph detailing the computation time of B0 involved in generating
the solutions. The average container volume utilization is 87.2% on average.
Moreover, algorithm B0 is very fast with average time 1.13 seconds. It takes 0.22 to
2.7 seconds to pack one container, except 4.22 seconds for the 45th case and 11
seconds for the 46th case. Note that in [4], the authors did not compute the 45th to
the 47th cases.

Figure 9 refers to the volume utilization of algorithm B2, where x-axis represents
the test case index and y-axis represents the container volume utilization. Figure 10
contains a curve graph detailing the computation time of B2 involved in generating the
solutions. The average container volume utilization is 94.6% on average. The
backtracking strategy enables B2 to improve the average volume utilization by 7.4%.
Moreover, algorithm B2 is fairly fast with average time 876 seconds. It takes 0.25
seconds to 48 minutes to pack one container, except 2.66 hours for the 45th case and
3.85 hours for the 46th case. Note that in [4], the authors did not compute the 45th to
the 47th cases.

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

Average Utilization : 0.872028

0 5 10 15 20 25 30 35 40 45

V
ol

um
e

ut
ili

za
tio

n

Container index in test file 9

Fig. 7. Volume utilization for algorithm B0

 An Efficient Algorithm for Solving the Container Loading Problem 405

Average Time : 1.13s
C

om
pu

ta
tio

n
tim

e
(s

)

Container index in test file 9

0 5 10 15 20 25 30 35 40 45

12

10

8

6

4

2

0

Fig. 8. Computation time for algorithm B0

In [4], the authors computed the anterior 44 test cases of file 9. What we did is
3.6% better than theirs judged by these cases. Table 1 shows the comparison. As can
be seen, the average volume utilization is 87.21% of B0 as opposed to 83.68% of
MFB_L [4] applied, and the average volume utilization is 94.59% of B2 as opposed to
91% of MFB_L [4] applied. The B0 and B2 algorithms perform better than that of
MFB and MFB_L respectively.

As for the time, since they used a small-scale computer while we used a personal
PC, our algorithms are at least not slower than theirs. And as Fig. 8 and Fig. 9 show,
all results are obtained within reasonable times.

0 5 10 15 20 25 30 35 40 45
Container index in test file 9

V
ol

um
e

ut
ili

za
tio

n

1

0.95

0.9

0.85

0.8

Average Utilization : 0.946536

Fig. 9. Volume utilization for algorithm B2

406 W. Huang and K. He

Average Time: 876.07s
C

om
pu

ta
ti

on
 ti

m
e

(1
00

0s
)

Container index in test file 9
0 5 10 15 20 25 30 35 40 45

14

12

10

8

6

4

2

0

Fig. 10. Computation time for algorithm B2

Table 1. Comparisons with MFB and MFB_L algorithms

Comparisons MFB B0 MFB_L B2
Test computer

Unix Alpha
600 MHz

Windows
1.7GHz

Unix Alpha
600 MHz

Windows
1.7GHz

Average utilization 0.8368 0.8721 0.91 0.94595
Average time 2-3s 0.80s 205s 337.78s

5 Conclusions and Future Work

We presented a new approach, which is a heuristic in nature, for the three-
dimensional container packing problem. The rotation of items is allowed. The
approach is efficient yet not complicated. Different from the previous approaches, it
uses a conception of caving degree to judge how good a real corner occupying action
is. The approach achieved a high average packing utilization of 94.6%, computed
within rather short times, using all the 47 related benchmarks from the OR-Library
test suite. This is 3.6% better than the best-known results. Tests show that our
approach is comparable, in terms of the container volume utilization, to other
approaches reported.

There are some factors that can be considered aftertime, such as orientation
restrictions, load bearing strength of items, loading stability, grouping of items, and
weight distribution. Other variants of the 3D cutting and packing problem, e.g. strip
packing and bin packing, may use this approach for reference. More work will be
done on these in the future.

 An Efficient Algorithm for Solving the Container Loading Problem 407

Acknowledgments. This work was supported by National Natural Science
Foundation of China (Grant No. 10471051) and by the NKBRPC (Grant No.
G2004CB318000).

References

1. David, P.: Heuristics for the Container Loading Problem. European Journal of Operational
Research 141, 382–392 (2002)

2. Zhang, G.C.: A 3-Approximation Algorithm for Two-Dimensional Bin Packing.
Operations Research Letters 33, 121–126 (2005)

3. Bischoff, E.E., Ratcliff, M.S.W.: Issues in the Development of Approaches to Container
Loading. OMEGA: The International Journal of Management Science 23, 377–390 (1995)

4. Lim, A., Rodrigues, B., Wang, Y.: A Multi-faced Buildup Algorithm for Three-
Dimensional Packing Problems. OMEGA: The International Journal of Management
Science 31, 471–481 (2003)

5. Loh, T.H., Nee, A.Y.C.: A Packing Algorithm for Hexahedral Boxes. In: Proceedings of
the Conference of Industrial Automation, Singapore, pp. 115–126 (1992)

6. Morabito, R., Arenales, M.: An AND/OR Graph Approach to the Container Loading
Problem. International Transactions in Operational Research 1, 59–73 (1994)

7. Eley, M.: Solving Container Loading Problems by Block Arrangements. European Journal
of Operational Research 141, 393–409 (2002)

8. Mack, D., Bortfeldt, A., Gehring, H.: A Parallel Local Algorithm for the Container
Loading Problem. International Transactions in Operational Research 11, 511–533 (2004)

9. Gehring, H., Bortfeldt, A.: A Parallel Generic Algorithm for Solving the Container
Loading Problem. European Journal of Operational Research 131, 143–161 (2001)

10. OR-Library: http://mscmga.ms.ic.ac.uk/jeb/orlib/thpackinfo.html
11. Huang, W.Q., Xu, R.C.: Introduction to the Modern Theory of Computation ––

Background, Foreground and Solving Method for the NP-hard Problem (in Chinese).
Science, Beijing

A Bijective Code for k-Trees with

Linear Time Encoding and Decoding

Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi

Computer Science Department
University of Rome “La Sapienza”, via Salaria, 113-00198 Rome, Italy

{caminiti, fusco, petreschi}@di.uniroma1.it

Abstract. The problem of coding labeled trees has been widely stud-
ied in the literature and several bijective codes that realize associations
between labeled trees and sequences of labels have been presented. k-
trees are one of the most natural and interesting generalizations of trees
and there is considerable interest in developing efficient tools to manip-
ulate this class, since many NP-Complete problems have been shown to
be polynomially solvable on k-trees and partial k-trees. In 1970 Rényi
and Rényi generalized the Prüfer code to a subset of labeled k-trees;
subsequently, non redundant codes that realize bijection between k-trees
(or Rényi k-trees) and a well defined set of strings were produced. In
this paper we introduce a new bijective code for labeled k-trees which,
to the best of our knowledge, produces the first encoding and decoding
algorithms running in linear time with respect to the size of the k-tree.

1 Introduction

The problem of coding labeled trees, also called Cayley’s trees after the
celebrated Cayley’s theorem [6], has been widely studied in the literature. Coding
labeled trees by means of strings of vertex labels is an interesting
alternative to the usual representations of tree data structures in computer mem-
ories, and it has many practical applications (e.g. Evolutionary algorithms over
trees, random trees generation, data compression, and computation of forest
volumes of graphs). Several different bijective codes that realize associations
between labeled trees and strings of labels have been introduced, see for ex-
ample [7,9,10,17,18,19,20]. From an algorithmic point of view, the problem has
been investigated thoroughly and optimal encoding and decoding algorithms are
known for most of these codes [4,5,7,9,19].

k-trees are one of the most natural and interesting generalizations of trees
(for a formal definition see Section 2) and there is considerable interest in de-
veloping efficient tools to manipulate this class of graphs. Indeed each graph
with treewidth k is a subgraph of a k-tree, and many NP-Complete Problems
(e.g. Vertex Cover, Graph k-Colorability, Independent Set, Hamiltonian Circuit,
etc.) have been shown to be polynomially solvable when restricted to graphs of
bounded treewidth. We suggest the interested reader to see [2,3].

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 408–420, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Bijective Code for k-Trees with Linear Time Encoding and Decoding 409

In 1970 Rényi and Rényi [21] generalized Prüfer’s bijective proof of Cayley’s
theorem to code a subset of labeled k-trees (Rényi k-trees). They introduced a
redundant Prüfer code for Rényi k-trees and then characterized the valid code-
words. Subsequently, non redundant codes that realize bijection between k-trees
(or Rényi k-trees) and a well defined set of strings were produced [8,11] together
with encoding and decoding algorithms. Attempts have been made to obtain an
algorithm with linear running time for the redundant Prüfer code [15], however
to the best of our knowledge, no one has developed linear time algorithms for
non redundant codes.

In this paper we present a new bijective code for k-trees, together with en-
coding and decoding algorithms, whose running time is linear with respect to
the size of the encoded k-tree.

2 Preliminaries

In this section we recall the concepts of k-trees and Rényi k-trees and highlight
some properties related to this class of graphs.

Let us call q-clique a clique on q nodes and [a, b] the interval of integer from
a to b (a and b included).

Definition 1. [14] An unrooted k-tree is defined in the following recursive way:

1. A complete graph on k nodes is a k-tree.
2. If T ′

k = (V,E) is a k-tree, K ⊆ V is a k-clique and v /∈ V ,
then Tk = (V ∪ {v}, E ∪ {(v, x) |x ∈ K}) is also a k-tree.

By construction, a k-tree with n nodes has
(
k
2

)
+ k(n − k) edges, n − k cliques

on k + 1 nodes, and k(n − k) + 1 cliques on k nodes. Since every Tk with k or
k + 1 nodes is simply a clique, in the following we will assume n ≥ k + 2.

In a k-tree nodes of degree k are called k-leaves. Note that the neighborhood
of each k-leaf forms a clique and then k-leaves are simplicial nodes. A rooted k-
tree is a k-tree in which one of its k-cliques R = {r1, r2, . . . , rk} is distinguished;
this clique is called the root.

Remark 1. In an unrooted k-tree Tk there are at least two k-leaves; when Tk is
rooted at R at least one of those k-leaves does not belong to R (see [21]). Since
k-trees are perfect elimination order graphs [22], when a k-leaf is removed from
a k-tree the resulting graph is still a k-tree and at most one of its adjacent nodes
may became a k-leaf, unless the resulting k-tree is nothing more than a single
clique.

In this paper we will deal with k-trees labeled with distinct integer values in
[1, n]. In Figure 1(a) an example of k-tree with k = 3 and 11 nodes labeled with
integers in [1, 11] is given. The same k-tree, rooted at R = {2, 3, 9}, is given in
Figure 1(b).

410 S. Caminiti, E.G. Fusco, and R. Petreschi

(a) (b)

Fig. 1. (a) An unrooted 3-tree T3 on 11 nodes. (b) T3 rooted at the clique {2, 3, 9}.

Let us call T n
k the set of labeled k-trees with n nodes. It is well known that

[1,12,16,21]:
|T n

k | =
(
n
k

)
(k(n− k) + 1)n−k−2

When k = 1 the set T n
1 is the set of Cayley’s trees and |T n

1 | = nn−2, i.e. the
well-known Cayley’s theorem.

Definition 2. [21] A Rényi k-tree Rk is a k-tree with n nodes labeled in [1, n]
rooted at the fixed k-clique R = {n− k + 1, n− k + 2, . . . , n}.

It has been proven [16,21] that:
|Rn

k | = (k(n− k) + 1)n−k−1

where Rn
k is the set of Rényi k-trees with n nodes. It is obvious that Rn

k ⊆ T n
k ;

the equality holds only when k = 1 (i.e. the set of labeled trees rooted in n is
equivalent to the set of unrooted labeled trees) and when n = k or n = k + 1
(i.e. the k-tree is a single clique).

3 Characteristic Tree

Here we introduce the characteristic tree T (Rk) of a Rényi k-tree that will be
used to design our algorithm for coding a generic k-tree.

Let us start by introducing the skeleton of a Rényi k-tree. Give a a Rényi
k-tree Rk its skeleton S(Rk) is defined according to the definition of k-trees:
1. if Rk is a single k-clique R, S(Rk) is a tree with a single node R;
2. let us consider a k-tree R′

k, its skeleton S(R′
k), and a k-clique K in R′

k. If
Rk is the k-tree obtained from R′

k by adding a new node v attached to K,
then S(Rk) is obtained by adding to S(R′

k) a new node X = {v} ∪K and a
new edge (X,Y) where Y is the node of S(R′

k) that contains K, at minimum
distance from the root.

A Bijective Code for k-Trees with Linear Time Encoding and Decoding 411

(a) (b) (c)

Fig. 2. (a) A Rényi 3-tree R3 with 11 nodes and root {9, 10, 11}. (b) The skeleton
S(R3), with nodes {v} ∪ K. (c) The characteristic tree T (R3).

S(Rk) is well defined, in particular it is always possible to find a node Y contain-
ing K in S(R′

k) because K is a clique in S(R′
k). Moreover Y is unique, indeed it

is easy to verify that if two nodes in S(R′
k) contain a value v, their lower com-

mon ancestor still contains v. Since it holds for all v ∈ K, there always exists a
unique node Y containing K at minimum distance from the root.

The characteristic tree T (Rk) is obtained by labeling nodes and edges of S(Rk)
as follows:

1. each node {v} ∪K with parent X is labeled v. The node R is labeled 0;
2. each edge from node {v}∪K to its parent {v′}∪K ′ is labeled with the index

of the node in K ′ (considered as an ordered set) that does not appear in K.
When the parent is R the edge is labeled ε.

In Figure 2 a Rényi 3-tree with 11 nodes, its skeleton and its characteristic tree
are shown.

It is easy to reconstruct a Rényi k-tree Rk from its characteristic tree T (Rk)
since the characteristic tree is well defined and conveys all information needed to
rebuild the skeleton of Rk. We point out that there will always be one, and only
one, node in K ′ that does not appear in K (see 2. in the definition of T (Rk)).
Indeed, v′ must appear in K, otherwise K ′ = K and then the parent of {v′}∪K ′

would contain K and this would contradict each node in S(Rk) being attached
as closely as possible to the root (see 2. in the definition of S(Rk)).

Remark 2. For each node {v}∪K of S(Rk) each w ∈ K −R appears as label of
a node in the path from v to 0 in T (Rk).

A linear time algorithm to reconstruct Rk from T (Rk) with a simple traversal of
the tree is detailed in Section 6. This algorithm avoids the explicit construction
of S(Rk).

Let us consider Zn
k , the set of all trees with n−k+1 nodes labeled with distinct

integers in [0, n− k] in which all edges incident on 0 have label ε and all other

412 S. Caminiti, E.G. Fusco, and R. Petreschi

(a) (b) (c) (d)

Fig. 3. (a) A simple tree T with 11 nodes labeled in [0, 10]. (b) The functional digraph
G at the beginning of the Dandelion encoding. (c) G after the first swap p(1) ↔ p(8).
(d) G at the end of the encoding after the swap p(1) ↔ p(3), together with the code
string.

edges take a label from [1, k]. The association between a Rényi k-tree and its
characteristic tree is a bijection between Rn

k and Zn
k . Obviously, for each Rényi

k-tree its characteristic tree belongs to Zn
k , and this association is invertible. In

Section 4 we will show that |Zn
k | = |Rn

k |; this will imply the bijectivity of this
association.

Our characteristic tree coincides with the Doubly Labeled Tree defined in a
completely different way in [13] and used in [8]. Our new definition gives us the
right perspective to build the tree in linear time, as will be shown in Section 5.

4 Generalized Dandelion Code

As stated in the introduction, many codes producing bijection between labeled
trees with n nodes and strings of length n−2 have been presented in the literature.
Here we show a generalization of one of these codes, because we need to take into
account labels on edges. We have chosen Dandelion code due to special structure of
the code strings it produces. This structure will be crucial to ensure the bijectivity
at the end of the encoding process of a k-tree (see Section 5 Step 3).

Dandelion code was originally introduced in [10], but its poetic name is due
to Picciotto [19]. Our description of this code is based on [5] where linear time
coding and decoding algorithms are detailed.

The basic idea behind Dandelion code is to root the tree in 0 and to ensure the
existence of edge (1, 0). A tree T with n nodes labeled in [0, n−1] is transformed
into a digraph G, such that 0 has no outgoing edges and each node v �= 0 has
one outgoing edge; the outgoing edge of 1 is (1, 0). For each v in T , let p(v)
be the parent of v in T rooted in 0. G is obtained starting with the edge set
{(v, p(v))|v ∈ V − {0}}, i.e. initially G is the whole tree with edges oriented

A Bijective Code for k-Trees with Linear Time Encoding and Decoding 413

upwards to the root (see Figure 3(b)). Now we have to shrink the path between
1 and 0 into a single edge. This can be done by iteratively swapping p(1) with
p(w) where w = max{u ∈ path(1, 0)} (see Figure 3(c) and 3(d)). The code string
will be the sequence of p(v) for each v from 2 to n− 1 in the obtained G.

Since the trees we are dealing with have labels on both nodes and edges,
we need to modify the Dandelion code to enable it to hold edge information.
In particular, we have to specify what happens when two nodes u and v swap
their parents. Our algorithm ensures that the label of the edge (v, p(v)) remains
associated to p(v). More formally, the new edge (u, p(v)) will have the label of
the old edge (v, p(v)) and similarly the new edge (v, p(u)) will have the label of
the old edge (u, p(u)).

A further natural generalization is to adopt two nodes r and x as parameters
instead of the fixed 0 and 1.

In Program 1 the pseudo-code for the generalized Dandelion Code is given;
l(u, v) is the label of edge (u, v). The tree T is considered as rooted in r and it is
represented by the parent vector p. The condition of Line 2 can be precomputed
for each node in the path between x and r with a simple traversal of the tree,
so the linear time complexity of the algorithm is guaranteed.

Program 1. Generalized Dandelion Code
1: for v from x to r do
2: if v = max{w ∈ path(v, r)} then
3: swap p(x) and p(v), together swap l(x, p(x)) and l(v, p(v))
4: for v ∈ V (T)− {x, r} in increasing order do
5: append (p(v), l(v, p(v))) to the code

The decoding algorithm proceeds to break cycles and loops in the digraph
obtained by a given string, and to reconstruct the original path from x to r. We
refer to [5] for details.

As an example consider the coding of tree shown in Figure 2(c) with r = 0
and x = 1, the only swap that occurs is between p(1) and p(8). The code string
obtained is: [(0, ε), (0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)].

As mentioned in the previous section, we now exploit the Generalized Dan-
delion code to show that |Zn

k | = |Rn
k |. Each tree in Zn

k has n− k + 1 nodes and
therefore is represented by a code string of length n − k − 1. Each element of
this string is either (0, ε) or a pair in [1, n− k] × [1, k]. Then there are exactly
k(n − k) + 1 possible pairs. This implies that there are (k(n − k) + 1)n−k−1

possible strings, thus proving |Zn
k | = (k(n− k) + 1)n−k−1 = |Rn

k |.

5 A Linear Time Algorithm for Coding k-Trees

In this section we present a new bijective code for k-trees and we show that
this code permits linear time encoding and decoding algorithms. To the best
of our knowledge, this is the first bijective encoding of k-trees with efficient

414 S. Caminiti, E.G. Fusco, and R. Petreschi

implementation. In [11] a bijective code for k-trees was presented, but it is very
complex and does not seem to permit efficient implementation.

In our algorithm, initially, we have to root the k-tree Tk in a particular clique
Q and perform a relabeling to obtain a Rényi k-tree Rk. Then, exploiting the
characteristic tree T (Rk) and the Generalized Dandelion code, we bijectively
encode Rk. The most demanding step of this process is the computation of
T (Rk) starting from Rk and viceversa. This will be shown to require linear
time.

Notice that the coding presented in [8], which deals with Rényi k-trees, is not
suitable to be extended to obtain a non redundant code for general k-trees.

As noted at the end of the previous section, using the Generalized Dandelion
Code, we are able to associate elements in Rn

k with strings in:

Bn
k = ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−1

Since we want to encode all k-trees, rather than just Rényi k-trees, our final
code will consist of a substring of the Generalized Dandelion Code for T (Rk),
together with information concerning the relabeling used to transform Tk into
Rk.

Codes for k-trees associate elements in T n
k with elements in:

An
k =

(
[1,n]

k

)
× ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−2

The obtained code is bijective: this will be proved by a decoding process that
is able to associate to each code in An,k its corresponding k-tree. Note that
|An

k | = |T n
k |.

The encoding algorithm is summarized in the following 4 steps:

Coding Algorithm

Input: a k-tree Tk

Output: a code in An,k

1. Identify Q, the k-clique adjacent to the maximum labeled leaf lM of Tk. By
a relabeling process φ, transform Tk into a Rényi k-tree Rk.

2. Generate the characteristic tree T for Rk.
3. Compute the generalized Dandelion Code for T using as parameters r = 0

and x = φ(q), where q = min{v /∈ Q}. Remove from the obtained code string
S the pair corresponding to φ(lM).

4. Return the code (Q,S).

Assuming that the input k-tree is represented by adjacency lists adj, we detail
how to implement the first three steps of our algorithm in linear time.

Step 1. Compute the degree d (v) of each node v and find lM , i.e. the maximum
v such that d (v) = k, then the node set Q is adj (lM). In order to obtain a Rényi
k-tree, nodes in Q have to be associated with values in {n−k+1, n−k+2, . . . , n}.
This relabeling can be described by a permutation φ defined by the following
three rules:

A Bijective Code for k-Trees with Linear Time Encoding and Decoding 415

1. if qi is the i-th smallest node in Q, assign φ (qi) = n− k + i;
2. for each q /∈ Q ∪ {n− k + 1, . . . , n}, assign φ (q) = q;
3. unassigned values are used to close permutation cycles, formally: for each

q ∈ {n− k + 1, . . . , n}−Q, φ(q) = i such that φj(i) = q and j is maximized.

Figure 4 provides a graphical representation of the permutation φ corresponding
to the 3-tree in Figure 1(a), where Q = {2, 3, 9}, obtained as the neighborhood
of lM = 10. Forward arrows correspond to values assigned by rule 1, small loops
are those derived from rule 2, while backward arrows closing cycles are due to
rule 3.

Fig. 4. Graphical representation of φ for 3-tree in Figure 1(a)

The Rényi k-tree Rk is Tk relabeled by φ. The final operation of this step is
to order the adjacency lists of Rk. The reason for this will be clear in the next
step.

Figure 2(a) gives the Rényi 3-tree R3 obtained by relabeling the T3 of Fig-
ure 1(a) by φ represented in Figure 4. The root of R3 is {9, 10, 11}.

Let us now prove that the overall time complexity of step 1 is O(nk). The
computation of d(v) for each node v can be implemented by scanning all adja-
cency lists of Tk. Since a k-tree with n nodes has

(
k
2

)
+k(n−k) edges, it requires

O(nk) time, which is linear with respect to the input size.
The procedure to compute φ in O(n) time is given in Program 2:

Program 2. Compute φ

1: for qi ∈ Q in increasing order do
2: φ(qi) = n− k + i
3: for i = 1 to n− k do
4: j = i
5: while φ(j) is assigned do
6: j = φ(j)
7: φ(j) = i

Assignments of rule 1 are made by the loop in Line 1, in which it is assumed
that elements in Q appear in increasing order. The loop in Line 3 implements
rules 2 and 3 in linear time. Indeed the while loop condition of Line 5 is always
false for all those values not belonging to Q ∪ {n− k + 1, . . . , n}. For remaining
values the inner while loop scans each permutation cycle only once, according
to rule 3 of the definition of φ.

Relabeling all nodes of Tk to obtain Rk requires O(nk) operations, as well as
the procedure in Program 3 used to order its adjacency lists.

416 S. Caminiti, E.G. Fusco, and R. Petreschi

Program 3. Order Adjacency Lists
1: for i = 1 to n do
2: for each j ∈ adj(i) do
3: append i to newadj(j)
4: return newadj

Step 2. The goal of this step is to build the characteristic tree T of Rk. In
order to guarantee linear time complexity we avoid the explicit construction of
the skeleton S(Rk). We build the node set and the edge set of T separately.

The node set is computed identifying all maximal cliques in Rk; this can be
done by pruning Rk from k-leaves. The pruning process proceeds by scanning the
adjacency lists in increasing order: whenever it finds a node v with degree k, a
node in T labeled by v, representing the maximal clique with node set v∪adj(v),
is created. Then v is removed from Rk and consequently the degree of each of
its adjacent nodes is decreased by one.

In a real implementation of the pruning process, in order to limit time com-
plexity, the explicit removal of each node should be avoided, keeping this informa-
tion by marking removed nodes and decreasing node degrees. When v becomes a
k-leaf, the node set identifying its maximal clique is given by v union the nodes
in the adjacent list of v that have not yet been marked as removed. We will store
this subset of the adjacency list of v as Kv, it is a list of exactly k integers.

Note that, when v is removed, at most one of its adjacent nodes becomes a
k-leaf (see Remark 1). If this happens, the pruning process selects the minimum
between the new k-leaf and the next k-leaf in the adjacency list scan.

At the end of this process the original Rényi k-tree is reduced to its root
R = {n − k + 1, . . . , n}. To represent this k-clique the node labeled 0 is added
to T (the algorithm also assigns K0 = R).

This procedure is detailed in Program 4; its overall time complexity is O(nk).
Indeed, it removes n− k nodes and each removal requires O(k) time.

In order to build the edge set, let us consider for each node v the set of its
eligible parents, i.e. all w in Kv. Since all eligible parents must occur in the
ascending path from v to the root 0 (see Remark 2), the correct parent is the
one at maximum distance from the root. This is the reason why we proceed
following the reversed pruning order.

The edge set is represented by a vector p identifying the parent of each node.
0 is the parent of all those nodes s.t. Kv = R. The level of these nodes is 1.

To keep track of the pruning order, nodes can be pushed into a stack during
the pruning process. Now, following the reversed pruning order, as soon as a
node v is popped from the stack, it is attached to the node in Kv at maximum
level. We assume that the level of nodes in R (which do not belong to T) is 0.

The pseudo-code of this part of Step 2 is shown in Program 5.
The algorithm of Program 5 requires O(nk) time. In fact, it assigns the parent

of n − k nodes, each assignment involves the computation of the maximum
(Line 6) and requires k comparisons.

A Bijective Code for k-Trees with Linear Time Encoding and Decoding 417

Program 4. Prune Rk

function remove(x)
1: let Kx be adj(x) without all marked elements
2: create a new node in T with label x // it corresponds to node
{x} ∪Kx of the skeleton

3: mark x as removed
4: for each unmarked y ∈ adj(x) do
5: d(y) = d(y)− 1

main
1: for v = 1 to n− k do
2: w = v
3: if d(w) = k then
4: remove(w)
5: while ∃ an unmarked u ∈ adj(w) s.t u < v and d(u) = k do
6: w = u
7: remove(w)

Program 5. Add edges
1: for each v ∈ [1, n− k] in reversed pruning order do
2: if Kv = R then
3: p(v) = 0
4: level(v) = 1
5: else
6: choose w ∈ Kv s.t. level(w) is maximum
7: p(v) = w
8: level(v) = level(w) + 1

To complete step 2 it only remains to label each edge (v, p(v)). When p(v) = 0,
the label is ε; in general, the label l(v, p(v)) must receive the index of the only
element in Kp(v) that does not belong to Kv. This information can be computed
in O(nk) by simple scans of lists Kv. The ordering of the whole adjacency list
made at the end of step 1 ensures that elements in all Kv appear in increasing
order.

Figure 2(c) shows the characteristic tree computed for the Rényi 3-tree of
Figure 2(a).

Step 3. Applying the generalized Dandelion Code with parameters 0 and
x = φ(q), where q = min{v /∈ Q}, we obtain a code S consisting in a list of
n−k−1 pairs. For each v ∈ {1, 2, . . . , n−k}−{x} there is a pair (p(v), l(v, p(v)))
taken from the set {(0, ε)}∪([1, n− k]× [1, k]). Given all this, the obtained code
is redundant because we already know, from the relabeling process performed
in Step 1, that the greatest leaf lM of Tk corresponds to a child of the root in
T . Therefore the pair associated to φ(lM) must be (0, ε) and can be omitted.

418 S. Caminiti, E.G. Fusco, and R. Petreschi

The Generalized Dandelion code already omits the information (0, ε) associated
with the node x, so, in order to reduce the code length, we need to guarantee
that φ(lM) �= x. We already know that a k-tree on n ≥ k + 2 nodes has at least
2 k-leaves. As Q is chosen as the adjacent k-clique of the maximum leaf lM it
cannot contain a k-leaf. So there exists at least a k-leaf less than lM that does
not belong to Q; q will be less or equal to this k-leaf. Consequently q �= lM and,
since φ is a permutation, φ(lM) �= φ(q). The removal of the redundant pair from
the code S completes Step 3.

Since the Generalized Dandelion Code can be computed in linear time, the
overall time complexity of the coding algorithm is O(nk).

We want to remark that we choose Dandelion Code because it allows us to
easily identify an information (the pair (0, ε) associated to φ(lM)) that can be
removed in order to reduce the code length from n− k − 1 to n− k − 2: this is
crucial to obtain a bijective code for all k-trees.

Many other known codes for Cayley’s trees can be generalized to encode edge
labeled trees, obtaining bijection between Rényi k-trees and strings in Bn,k.
However other known codes, such as all Prüfer-like codes, do not make it possible
to identify a removable redundant pair. This means that not any code for Rényi
k-trees can be exploited to obtain a code for k-trees.

The returned pair (Q,S) belongs to An,k, since Q ∈
(
[1,n]

k

)
, and S is a string of

pairs obtained by removing a pair from a string in Bn,k. Due to lack of space we
cannot discuss here how this pair can be efficiently represented in �log2(|An,k|)�
bits.

The Dandelion Code obtained from the characteristic tree in Figure 2(c) with
parameters r = 0 and x = 1 is: [(0, ε), (0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)] ∈
B11

3 ; this is a code for the Rényi 3-tree in Figure 2(a). The 3-tree T3 in Figure 1(a)
is coded as: ({2, 3, 9}, [(0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)]) ∈ A11

3 . We recall
that in this example Q = {2, 3, 9}, lM = 10, q = 1, φ(lM) = 3, and φ(q) = 1.

6 A Linear Time Algorithm for Decoding k-Trees

Any pair (Q,S) ∈ An,k can be decoded to obtain a k-tree whose code is (Q,S).
This process can be performed with the following algorithm:

Decoding Algorithm

Input: a code (Q,S) in An,k

Output: a k-tree Tk

1. Compute φ starting from Q and find lM and q.
2. Insert the pair (0, ε) corresponding to φ(lM) in S and decode it to obtain T .
3. Rebuild the Rényi k-tree Rk by visiting T .
4. Apply φ−1 to Rk to obtain Tk.

Let us detail the decoding algorithm. Once Q is known, it is possible to com-
pute q = min{v ∈ [1, n]|v /∈ Q} and φ as described in Step 1 of coding algorithm.
Since all internal nodes of T explicitly appear in S, it is easy to derive set L of all
leaves of T by a simple scan of S. Note that leaves in T coincide with k-leaves in

A Bijective Code for k-Trees with Linear Time Encoding and Decoding 419

Rk. Applying φ−1 to all elements in L we can reconstruct the set of all k-leaves
of the original Tk, and therefore find lM , the maximum leaf in Tk.

In order to decode S, a pair (0, ε) corresponding to φ(lM) needs to be added,
and then the decoding phase of the Generalized Dandelion Code with parameters
φ(q) and 0 applied. The obtained tree T is represented by its parent vector.

Program 6. Rebuild Rk

1: initialize Rk as the k-clique R on {n− k + 1, n− k + 2, . . . , n}
2: for each v in T in breadth first order do
3: if p(v) = 0 then
4: Kv = R in increasing order
5: else
6: let w be the element of index l(v, p(v)) in Kp(v)

7: Kv = Kp(v) − {w} ∪ {p(v)} in increasing order
8: add v to Rk

9: add to Rk all edges (u, v) s.t. u ∈ Kv

The reconstruction of the Rényi k-tree Rk is detailed in Program 6. Finally,
Tk is obtained by applying φ−1 to Rk.

The overall complexity of the decoding algorithm is O(nk). In fact the only
step of the algorithm that requires some explanation is Line 7 of Program 6.
Assuming that Kp(v) is ordered, to create Kv in increasing order, Kp(v) simply
needs to be scanned omitting w and inserting p(v) in the correct position. As
K0 = {n− k + 1, . . . , n} is trivially ordered, all Kv will be ordered.

7 Conclusions

In this paper we have introduced a new bijective code for labeled k-trees which, to
the best of our knowledge, produces the first encoding and decoding algorithms
running in linear time with respect to the size of the k-tree.

In order to develop our bijective code for k-trees we passed through a transfor-
mation of a k-tree in a Rényi k-tree and developed a new coding for Rényi k-trees
based on a generalization of the Dandelion code. The choose of Dandelion code
is motivated by the need of identifying and discarding a redundant information.
This is crucial to ensure the resulting code for k-trees to be bijective.

All details needed to obtain linear time implementations for encoding and
decoding algorithms have been presented.

References

1. Beineke, L.W., Pippert, R.E.: On the Number of k-Dimensional Trees. Journal of
Combinatorial Theory 6, 200–205 (1969)

2. Bodlaender, H.L.: A Tourist Guide Through Treewidth. Acta Cybernetica 11, 1–21
(1993)

420 S. Caminiti, E.G. Fusco, and R. Petreschi

3. Bodlaender, H.L.: A Partial k-Arboretum of Graphs with Bounded Treewidth.
Theoretical Computer Science 209, 1–45 (1998)

4. Caminiti, S., Finocchi, I., Petreschi, R.: A Unified Approach to Coding Labeled
Trees. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 339–348.
Springer, Heidelberg (2004)

5. Caminiti, S., Petreschi, R.: String Coding of Trees with Locality and Heritabil-
ity. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 251–262. Springer,
Heidelberg (2005)

6. Cayley, A.: A Theorem on Trees. Quarterly Journal of Mathematics 23, 376–378
(1889)

7. Chen, W.Y.C.: A general bijective algorithm for trees. In: Proceedings of the
National Academy of Science, vol. 87, pp. 9635–9639 (1990)

8. Chen, W.Y.C.: A Coding Algorithm for Rényi Trees. Journal of Combinatorial
Theory 63A, 11–25 (1993)

9. Deo, N., Micikevičius, P.: A New Encoding for Labeled Trees Employing a Stack
and a Queue. Bulletin of the Institute of Combinatorics and its Applications
(ICA) 34, 77–85 (2002)

10. Eğecioğlu, Ö., Remmel, J.B.: Bijections for Cayley Trees, Spanning Trees, and
Their q-Analogues. Journal of Combinatorial Theory 42A(1), 15–30 (1986)

11. Eğecioğlu, Ö., Shen, L.P.: A Bijective Proof for the Number of Labeled q-Trees.
Ars Combinatoria 25B, 3–30 (1988)

12. Foata, D.: Enumerating k-Trees. Discrete Mathematics 1(2), 181–186 (1971)
13. Greene, C., Iba, G.A.: Cayley’s Formula for Multidimensional Trees. Discrete

Mathematics 13, 1–11 (1975)
14. Harary, F., Palmer, E.M.: On Acyclic Simplicial Complexes. Mathematika 15, 115–

122 (1968)
15. Markenzon, L., Costa Pereira, P.R., Vernet, O.: The Reduced Prüfer Code for

Rooted Labelled k-Trees. In: Proceedings of 7th International Colloquium on
Graph Theory. Electronic Notes in Discrete Mathematics, vol. 22, pp. 135–139
(2005)

16. Moon, J.W.: The Number of Labeled k−Trees. Journal of Combinatorial Theory 6,
196–199 (1969)

17. Moon, J.W.: Counting Labeled Trees. William Clowes and Sons, London (1970)
18. Neville, E.H.: The Codifying of Tree-Structure. In: Proceedings of Cambridge

Philosophical Society, vol. 49, pp. 381–385 (1953)
19. Picciotto, S.: How to Encode a Tree. PhD thesis, University of California, San

Diego (1999)
20. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik

und Physik 27, 142–144 (1918)
21. Rényi, A., Rényi, C.: The Prüfer Code for k-Trees. In: Erdös, P., et al. (eds.) Com-

binatorial Theory and its Applications, pp. 945–971. North-Holland, Amsterdam
(1970)

22. Rose, D.J.: On Simple Characterizations of k-Trees. Discrete Mathematics 7, 317–
322 (1974)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 421–434, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Market-Based Service Selection Framework in
Grid Computing

Yanxiang He and Haowen Liu

School of Computer, State Key Lab of Software engineering,
Wuhan University, Wuhan, Hubei 430072

yxhe@whu.edu.cn, jimlhw@126.com

Abstract. Much research focuses on the foundational components of
computational grid infrastructure, making the grid service economic possible.
The service consumers could submit their jobs to the published services but don’t
need to concern how the jobs are mapped to the resources, how the resources are
organized and managed, and how the revenue is divided among the organization.
However, most of the services are contributed by the providers voluntarily; it
means the services could be published optionally or canceled at any time even
when they are carrying out some jobs, and the consumers take much risk in
selecting the providers. There are few mechanisms to encourage the service
providers to compete for profit and satisfy the consumers, especially considering
the consumers’ preference of deadline and price. We develop a market-based
framework to attract the providers, and decrease the risk of the consumers, in
which different bidding strategies of providers and different behavior models of
consumers are discussed.

1 Introduction

Grid infrastructure is a large VO (Virtual Organization) which integrates a large mount
of distributed heterogeneous resources and high performance computing capabilities
into a super service plat, which can provide huge computing capability, storage
capability and so on [1, 2]. And with the development of the Grid Technology, which is
trended to incorporate web services[3], it is more easy to provide dependable,
consistent, pervasive, and inexpensive access to high-end computing services, storage
services, retrieving services, and so on.

GIIS component in Globus Toolkit [4] provides a service for service registration and
aggregation, but it couldn’t prevent some service providers which had been assigned
some jobs leaving at any time; it also provides a service for service discovering, but
couldn’t assure the service consumers would be satisfactory with the service according
to their real demand and preference [16]. The former is due to the heterogeneous
feature of the grid resources and the dynamic feature of services; it is difficult to form a
steady service market so that the users couldn’t ease themselves to search and select
on-demand. The latter is referring to the service providers and consumers themselves.
Both the service providers and consumers have their own goals, objectives, strategies
and supply-and-demand patterns, So even the service is free of charge, the consumers

422 Y. He and H. Liu

are afraid of whether it would complete their jobs on time, or even the service costs the
consumers much more, but the consumers would prefer to select it, the examples can be
found in our another paper [16].

In order to make good use of the resources and satisfy the real demand of the
consumers, many other mechanisms have been brought forward, such as the scheduling
mechanism of considering deadline and cost in Nimrod/G [5, 6] and GRACE
infrastructure for the Nimrod/G resource broker [7, 9], and service level agreement
based scheduling mechanism in the Grid [13, 14].

As mentioned in [5, 6], the Nimrod/G resource broker, a global resource management
and scheduling system for computational grid, built with Globus services. They tried to
make the resources economization, but only support static price, tried to support deadline
based scheduling and dynamic resource trading using Globus and GRACE services, but
also ignore that the low-price services will still be the bottleneck of scheduling. In [7, 9],
they introduced dynamic price mechanism, which is just the diversity in different time
slots, the example is that the access price on weekend is rush low. However, it would
come with two problems. The first is that the rational and intelligent consumers would
prefer to submit their short jobs on weekend which finally affected the performance of the
service, and the second is that it is difficult to account the fee when the long job is crossed
over different time slots. The scheduling mechanism based on service level agreement in
[13, 14] aims to meet the job’s requirement on performance, cost, security, or other
quality of service metrics, and overcomes the difficulties during the mappings that
requires negotiation among application and resources, but still couldn’t promote the
competing among the providers.

The best way to adjust the price is to consider the market mechanism. E-Bay Style
market mechanisms such as Yahoo! Auction, Amazon, run well in the e-Commerce [10,
11], and provide great security technique to assure the success of the transaction.
However, it is not fit for the grid service. The goods in the transaction is the real entity not
the virtual encapsulated service, which could be published or canceled at any time. And
the seller’s selection in the platform is partly based on the transaction-based feedback
(rating and comment) by the buyers, which is subjective and maybe not the true.

In order to resolve above problems, we advance a market-based service selection
framework, which encourages the service providers (Provider) to live more time to
fulfill assigned jobs and increase their resource utilization, to compete for more profit,
to form a steady market, decreasing the risk of the service consumers (Consumer), and
satisfying their demand more possibly.

This article firstly describes the whole framework in Section 2. Section 3 discusses
the strategies of the service providers, the behaviors of the service consumers. The
experiments and analysis are following in section 4. Section 5 summaries our works
and gives a future plan.

2 Framework

In this section, we introduce the framework of the service market for matching
consumers with relevant providers in the case of grid environments. The architecture is
seen in Figure 1, and the basic roles, functions and issues are described below.

 Market-Based Service Selection Framework in Grid Computing 423

Yellow Pages Catalogue

Service Contracts
Service Providers

Register/Unregistered

Publish/Cancel

Service Consumers

Publish/Cancel/Search
Monitor / Analysis

Search/Consult

Market

E-Bank

Fig. 1. Architecture of a Service Market with service providers and consumers

2.1 General Design

We describe the general process of the mechanism in the service market, and the
process in an auction could be divided into four stages. In the first stage, the providers
take the actions of registration, unregistration, publishing services and canceling
services, to form a service market. In the second stage, the consumers submit their jobs
and specify a desired service price and deadline, and even the preference to price or
deadline, which are passed on to market manager, calling for bids. In the third stage, the
providers subsequently compete against each other in an auction by placing bid to
obtain a contract. In the fourth stage, each consumer is shown a list of providers, who
could satisfy his demands, so that he could select one according to his preference right
now or even after consulting about each provider further from the market manager.
Then the contract is formed, the jobs are carried out according to the contracts, and the
winning providers will get paid for their services and also get sanctioned if they don’t
deliver what they promise. The consumer or provider may take another action before
the job is completed, which satisfies the real market. So during a fix period, many
auctions happen to form a round of auction. And during the process, we presuppose that
the market manager has no any collusion with any user, promise the market is fair.

2.2 Service Providers and Consumers

Software agents are used to facilitate the fine grain of interaction, bidding, and
selection in the service market. A software agent is a program with an owner, whom it
represents. The software agent can autonomously perform tasks on behalf of its owner
in order to satisfy its goals. To this point, it also has the ability to interact with other

424 Y. He and H. Liu

agents or external sources. For our mechanisms, we have software agents for the
providers and consumers and for the enabling intermediary the market manager.

A provider may be a person or a community, who can supply different services
aiming of different applications. As we know different services are incorporated from
different resources representing different capability, just like that a “computing”
service would require a large amount of processor resources, which is different from a
“storage” service which would require a large amount of disk space. And even the same
service has different application environments. Taking two “weather-forecast” services
for example, they may aim different area, one serves China, and the other serves the
U.S.A. So when publishing the services, he must describe the service type, service
environment clearly. And before publishing any service, a provider should register in
the market with enough credit.

The main task of a provider agent is to bid on arriving job according to his internal
resource state and his bidding strategy, which is detailed in Section 3.2.

Also a service consumer has his own aim, strategy, behavior, and demand. We
mainly consider the preference of the consumers about the price and deadline, and the
optional constraint about the reputation of the provider, which is detailed in Section 3.3.

2.3 Service Market Manager

2.3.1 Providing Yellow Page Service
For the direct and convenient access from the consumers, the service market manager
must get the services together as a market, which is also easy to manage and maintain.
In order to form a steady and trusted environment, the market has a high doorstep for
the provider’s entering and a constraint for the provider’s leaving.

On receiving the request for registration from a provider, the manager should check
whether he has minimum credit to pay for possible violation of the contract. The credit
reflects the competence of the provider in assuring to fulfill assigned jobs, it means the
provider was able to burden a contract when his credit is bigger than the possible
compensate of violating a contract. If the provider is allowed, the manager would apply
a credit account for him in the e-Bank.

On receiving the request for unregistration from a provider, the manager should
check whether he has fulfilled all his contracts, and apply to freeze his account before
compelling to recoup related compensation to related consumers, which assures the
interest of the consumers.

On receiving the request for publishing the service from a provider, the manager
should check whether the service description is clear and unabridged, and then publish
it in the Yellow Pages catalogue. The reaction after receiving request of canceling is
similar to unregistration.

On receiving the request for searching for services from a consumer, the manager
also check his credit, and then help search in the Yellow Pages catalogue.

2.3.2 Supervising the Service Contracts
In addition to the functions of service registration, unregistration, publishing,
canceling and searching, the manager acts as a mediator. Once the provider and

 Market-Based Service Selection Framework in Grid Computing 425

consumer had agreed on a contract, the copy of the contract would reserved by the
manager, which assure capital transfer between the provider and the consumer. By
monitoring and checking the contracts in process, the mediator compels the provider
to pay for corresponding compensation to the consumer by automating transferring
the capital from the e-Bank, once the contract is unfulfilled on time. Also the
payment from consumers to provider is transferred through the e-Bank. In this paper,
the communication protocol between the consumer and the provider is based
on the Contract Net Protocol [12], and the process of generating a new
contract is simplified, but not like the SLAs [13, 14], which is beyond our
consideration.

2.3.3 Providing Consultation Service for the Consumers
In order to attract the providers and the consumers to the market, the manager
provides “free” service of registering, publishing and searching services, and etc. The
state would be changed, especially when there exists more than one market
competing for providing the “market” service. However, it is possible for the
manager to obtain additional profit for providing useful information, besides the
profit from the successful transaction. Owing to the management and supervision of
the service contracts, the manager knows whether a contract is fulfilled, what the
capital of the contract is, who is the provider and consumer of the contract. In the
market, the manager should not reveal the detail information of any contract;
however, he could statistic and analysis the knowledge about a provider’s reputation
information, such as the ability whether he could burden a new contract, the
fulfillment rate of his contracts, and the transaction capital of his contracts. The
manager thinks that the providers with higher reputation take better state of capital
and fulfillment rate of contracts. So the manager could act as a consultee and obtain
additional profit for providing the consultation service.

3 Auction

3.1 Novel Auction

In auction, usually the owners of the goods are sellers, the users of the goods are buyers,
and the sellers cash in by calling for bids on their goods, seldom the case that the sellers
cash in by bidding to sell goods. However, it is still an auction, a reverse auction, which
usually appears in the situation that the buyers lead the market and call for bids. In grid
service market, the goods is grid service, which is special un-storable merchandise, and
requires to be made good use of. When great grid services compete for consume, the
providers have to react to the calling for bids.

The actual choice of the auction process can depend on many factors. In this paper,
we focus on the single-bid sealed auction, being a communication-efficient auction

426 Y. He and H. Liu

[15]. But there are two differences from the general first-price, owing to the service
feature in grid and the demands of the consumers.

To a provider, the price is not the unique competence of his service, but one of the
most important parameters. We mainly concern the parameters including capability,
access price and execution time. These parameters are changing and affecting each
other. For example, when the resources are enough and the capability is idle, the
provider could contribute more resources to a job, so that he would bid with less time
and higher price, when the resources are in tense, the provider had to bid with lower
price and more time to attract the consumers.

To a consumer, the less cost and the less time, the more satisfied. Generally
speaking, the less cost, the better when he prefers to the price, and the less time, the
better when he prefers to the deadline.

So the first difference is that the provider would bid not only on price, but also on
time. The second is to bid as low price and less time as possibly to win the contract,
neither the lowest price or the least time, nor the lowest price and the least time
simultaneous. Whether he could win greatly depend on the consumer’s preference,
which is preliminarily introduced in another paper [16].

In more detail, the market operates in the following manner. Each time the
consumer submits a job, an auction is activated. In each round of auction, the
auctioneer agent retrieves the initial services which satisfy the conditions of service
type and service environment. Then the auctioneer calls for bids to the related service
owners. After a fixed time, the auctioneer agent ranks all the bids it received
according to the consumer’s preference. The ranked services are showed to the
consumer for further selection. Finally the owner of the selected service would take a
contract with the consumer, and then carry out the job before deadline under the
monitor. Once the contract is fulfilled, the resources occupied are released for
competition in the next auction.

3.2 Bidding Strategies of Provider

A rational bidder seeks to maximize his revenue with minimum resources, and the
outcome of his bid is unselected or selected. It is because the preference of the
consumers is difficult to capture that the provider couldn’t decide to adjust price or
time blindly. What he could do is to adjust his access price and execution time mainly
according to the capability of his resources and the state of his history bids, as the
latest bid could reflect the status of the market furthest. If the remainder resources are
enough which are compared to last bid, he could bid less execution time to complete
the jobs with increasing the investment of the available resources. If the remainders
are not enough, he could only bid lower price to increase his competence in the
market. And once his bid is selected, he would increase the bid price in the next
auction, aiming of more revenue. Generally speaking, the provider prefers the price to
time.

Therefore, the provider will adjust his bid time and price as table 1.

 Market-Based Service Selection Framework in Grid Computing 427

Table 1. Adjustment Strategy of bid time and bid price

Result of Last Bid State of Resource Adjustment of bid time Adjustment of bid price

Enough
–)0(tt – 0) p(p

Not selected

Not enough
+)0(tt – 0)p(p

Enough
–)0(tt + 0)p(p

Selected

Not enough
+)0(tt + 0) p(p

3.3 Behavior Models and Selection Strategies of Consumer

When a consumer is showed a list of providers, he might choose one or not. No
matter which one he would prefer, his job would be fulfilled on time or else he
should get the corresponding compensation within the contract. However, the
question is whether the provider has the ability to pay for compensation, so he could
further choose to buy some reputation information about the providers to decrease
the risk.

We model four classes of consumer behaviors according to his preference.

(a) Select the first provider in the list, without further consultation about the
provider. If he prefers the deadline, he would choose the least time no matter the price
(NMP), which means he would not concern how high the price is, and have a risk of
unknowing whether the provider could burden the new contract. If he prefers the price,
he would choose the lowest price but no matter the time (NMT).

(b) Select the first accepted provider in the list, without further consultation about
the provider. If he prefers the deadline, he could bear the price beyond his expectation,
but not too high, which means he could choose the less time, but accepted price
(LTAP). If he prefers the time, he would choose the lower price, but accepted time
(LPAT) similarly.

(c) Select the first satisfying provider in the list, without further consultation. If he
prefers the deadline, he couldn’t bear the price is beyond the expectation at the same
time, so he would choose the less time and satisfying price (LTSP). The reverse is
lower price and satisfying time (LPST).

(d) Select the first disburdening behavior (FD). In this model, the consumer would
consult some aspect about the provider in sequential order from top to bottom, until he
finds the provider, whose concerned aspect is disburdening. If he prefers the deadline,
which reflects his expectation that his job is completed on time and should be
completed, he could concern whether the provider has broken any contract. If the
prefers the price, which reflects his expectation that the job cost less, or the
compensation is satisfying, he could concern whether the provider has the ability to pay
the fiddler of violating the new contract.

428 Y. He and H. Liu

As mentioned above, the reputation information about a provider includes the ability
whether he could burden a new contract, the fulfillment rate of his contracts, and the
transaction capital of his contracts, which information to consult depends on the
consumer’s real demand.

As a rational consumer, taking the first behavior is a little risky, and taking the fourth
behavior costs more but with less risk. So usually he would take the second or the third
behavior, or combine the forth behavior with the first three behaviors.

4 Experiments and Analysis

4.1 Experiments Design

In order to understand the mechanism of the service market and its dynamics, we just
simulated the computational service and perform simulations of the auction as above.
In the experiments, the consumers submit multi-jobs at the same time, which could be
simulated as a consumer submits a standard job in fixed time interval. Suppose the
speed of a standard processor is 10 MIPS (Million Instructions per Second), and a
standard job costs one standard processor 100 seconds to complete, then the length of a
standard job is 1000 MI, which is similar with Rajkumar Buyya [8]. With more then
one standard processor, the execution time will be shortened, which is simply
considered to be inverse with the number of processors, but the more processors, the
more time of the communication and data delay between the processors, so we process
the relation between time and number of processors as the below formula (1), which
might be not exact, but is used by all the bidders, so that it would have little affection on
the result of auction.

)/100100(*01.0/100 mmt −+= (1)

Where, m represents the number of the standard processors participating the job.

For each experiment, we create 20 test services offered by different providers, with
the same service type and environment, different capability (represented by the number
of processors) ranged between 30 and 600, different initial execution time randomly
around 10 seconds, different credit in E-Bank ranged between 1000 and 20000 units,
different initial access price randomly around 10 units/MI, and the lowest price with 1
unit/MI which represents the cost of consumed resources. As a rational provider, he
would consider to make full use of his resource predominance firstly, after determining
how many processors is proper, he could compute the possible bid time with formula
(1), when he found the priority of his resources is not obvious, he would consider
bidding with lower price in the next bid then, which reflect on the table 1, and the scope
of change is no more than 1. However, when he found the possible bid price is under the
lowest price, he could reject to bid. And he would not invest all his resources in one job,
but reserve part to bid another job at the same time, once the job is completed, the
released resources could increase his competence again.

We set the compensation coefficient and consultation coefficient as 1.5 and 0.1
respectively, the detailed compensation of violating a contract and cost of consultation
is based on the real contract.

 Market-Based Service Selection Framework in Grid Computing 429

4.2 Results and Analysis

4.2.1 Stability
To evaluate the stability of the market with respect to different consumer behavior
models, we now consider the change of the market time (average bid time) and the
market price (average bid price), which is showed in Figure 2a, 2b and Figure 3a, 3b
about the change of market time and price in 1000 round of auctions with the
consumer’ preference of deadline and price respective.

Average bid time with the Preference of

Deadline

8.5

9

9.5

10

10.5

1 201 401 601 801

round of auction

t
i
m
e
(
s
e
c
o
n
d
)

NMP

LTAP

LTSP

FD

Fig. 2a. Average bid time with the Preference of Deadline

Average bid price with the Preference of

Deadline

0

5

10

15

20

25

30

1 201 401 601 801

round of auction

p
r
i
c
e
(
U
n
i
t
s
/
M
I
)

NMP

LTAP

LTSP

FD

Fig. 2b. Average bid price with the Preference of Deadline

We can see from Figure 2a, 2b that the market time trends to be under 10 seconds
and reaches stable under the four behavior models of consumer, however, the NMP
results in least market time, the FD results a little more that NMP, and the ordinal is

430 Y. He and H. Liu

LTSP and LTAP. However, the change of the market price is absolutely reverse to the
change of the market time under the four behavior models. It is because that with the
preference of Deadline, the list of received candidate bids is sorted according to time,
and the bid in the top of the list would have more chance to win the contract. For the
NMP, the consumer chooses the first of the list, which has the least time and possible
high price. For the FD, the consumer chooses the one which hadn’t violate before,
giving the same chance to the provider of new entering and the one with high
reputation. Both LTSP and LTAP have constraint with the price, giving the chance to
the bit not in the front of the list, which results higher market time than NMP and FD,
and lower market price than NMP.

Average bid time with the Preference of Price

9.5

10

10.5

11

1 201 401 601 801

round of auction

t
i
m
e
(
s
e
c
o
n
d
)

NMT

LPAT

LPST

FD

Fig. 3a. Average bid time with the Preference of Price

Average bid price with the Preference of Price

0

5

10

15

1 201 401 601 801

round of auction

p
r
i
c
e
(
U
n
i
t
s
/
M
I
)

NMT

LPAT

LPST

FD

Fig. 3b. Average bid price with the Preference of Price

 Market-Based Service Selection Framework in Grid Computing 431

We can also see from Figure 3a, 3b that the market price trends to be under below 10
units / MI and reaches stable with the consumer’ preference of price, and the result and
reason are similar to the above.

4.2.2 Balance
At the same time, we can see the job distributions among the providers with different
capability. Figure 4 and 5 show the results under different preferences and behaviors of
consumers respective.

Fig. 4. Job distributions among different providers with different capability

For the convenient observation, we assign the increasing capability (number of

processors), which is equally ranged between 30 and 600, to provider1, provider2... to
provider20 sequent. We can know from Figure 4 that the jobs are randomly distributed to
each provider approximately, which is affected little by the behaviors of the consumers. It
is because that the consumers pay more attention to the price, the provider’s capability
has no obvious predominance in the market, so each provider has the same chance to
catch a contract, and the disparity of jobs among the providers is not great.

We can know from Figure 5 that when the consumer takes the behavior of NMP or
FD, most of the jobs are distributed to the providers with more capability, and the
providers with less capability are assigned few jobs. However, when the consumer
takes the behavior of LTAP or LTSP, the assigned jobs to the providers with less
capability begin to increase, which reflects that the chance for the providers increases.
It is because that the consumers focus on the deadline now, and the providers with more
capability have obvious competence to contribute more resources on some job, so to
take the position of monopoly. When the market capability is beyond the need of the

432 Y. He and H. Liu

Fig. 5. Job distributions among different providers with different capability

consumers, the monopoly is not obvious, but we could conclude that once the whole
market capability is in tension, the few providers would monopolize the market
especially when the consumers take the behavior of NMP or FD. It is the diversity and
dynamic of the consumer’ preferences and behaviors, that the monopoly is not easy to
be formed, which will be further researched and approved in the future.

4.2.3 Risk
The main threat to the market comes from three kinds of providers, they are the ones of
new entering, the ones have ever exited from the market or violated the contracts, and
the collusive ones.

For the new ones, they have the ability of burdening a new contract in the first few
rounds, and have the interest to complete the contract, or else he would be punished
with low reputation which would affect his future contract with the consumers taking
the behavior of FD.

For the one who had ever violated the contracts, it has affection on the consumers
who take other behaviors than the behavior of FD, which could be easily avoided by
combining the FD to user’s behavior of NMT, LPAT, LPST, NMP, LTAP or LTSP, by
costing just a little more for consultation.

For the collusive ones, they usually sacrifice some of them to accumulate much
credit and contracts to special ones, in order to attract more consumers. However, the
collusion itself has no affection on the consumers, but affects the interest of the other
providers, which could be identified by the market manager soon, and new incentive
mechanisms should be introduced to resolve this problem, and will be in our future
papers.

 Market-Based Service Selection Framework in Grid Computing 433

5 Conclusions and Future Works

In this paper, we have outlined a framework of service selection in the Grid that uses
market mechanisms to attract the rational providers to contribute his resources for
revenue, so as to form a stable and fair market, in which the consumers could select the
satisfying service on-demand and the providers with different capability could survive.
Four consumer behavior models have been talked in the framework, the first three
models make the bids satisfy the consumers’ demand as can as possibly, and the last
model could decrease the consumers’ risk in selecting provider. Another consumer
behavior model could be easily added to the framework, and the model of FD could be
combined with the other behavior models as a new model. Though only the
computational service is talked about, the framework could be extended to support the
other services, and the more complex case is that many markets compete for providers
and consumers.

However, the framework brings any other problems. The first is the case of
collusion, which should be further researched. The second is the job distribution among
the providers when the whole market capability is under the demand of the consumers
which is not considered in this paper.

References

1. Foster, I., Kesselman, C., Tueck, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. Supercomputer Applications (2001)

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid services for distributed system
integration. IEEE Computer 35(6), 37–46 (2002)

3. Sarmenta, L., Chua, S., Echevarria, P., Mendoza, J.M.: Bayanihan computing.NET: Grid
computing with XML Web services. In: CCGRID 2002. Proc. of the 2nd IEEE/ACM Int’l
Conf. on Cluster Computing and the Grid, pp. 404–405. IEEE Computer Society Press,
Berlin (2002)

4. Foster, I., Kesselman, C.: “Globus: A Metacomputing Infrastructure Toolkit. Intl J.
Supercomputer Applications 11(2), 115–128 (1997)

5. Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with Nimrod/G:
Killer Application for the Global Gird? In: IPDPS’2000, Mexico, IEEE Computer Society
Press, Los Alamitos (2000)

6. Buyya, R., Abramson, D., Giddy, J.: Nimrod/G: An Architecture for a Resource
Management and scheduling System in a Global Computational Grid. In: HPC ASIA’2000,
China, IEEE Computer Society Press, Los Alamitos (2000)

7. Buyya, R., Abramson, D., Giddy, J.: An Economy Driven Resource Management
Architecture for Globus Computational Power Grids. In: PTPTA’2000, Las Vegas (2000)

8. Buyya, R., Giddy, J., Abramson, D.: An evaluation of Economy-based Resource Trading
and scheduling on Computing Power Grids for Parameter Sweep Applications. In: The
second Workshop on Active Middleware Services AMS2000, conjunction with the
HPDC2000 (2000)

9. Buyya, R.: Economic-Based distributed resource management and scheduling for grid
computing. [Ph.D. Thesis], Monash University, Melbourne (2002)

10. Bajari, P., Hortacsu, A.: Winner’s Curse, Reserve Prices and Endogenous Entry: Empirical
Insights From eBay Auction (2000), http://www.stanford.edu/~bajari/wp/auction/ebay.pdf

434 Y. He and H. Liu

11. Resnick, P., Zeckhauser, R., Swanson, J., Lockwood, K.: The Value of Reputation on eBay:
A Controlled Experiment. Experimental Economics 9(2), 79–101 (2006)

12. Smith, R.: The contract net protocol: high level communication and control in distributed
problem Solver. IEEE Transactions on Computers 29, 1104–1113 (1980)

13. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol for
negotiating service level agreements and coordinating resource management in distributed
systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS,
vol. 2537, pp. 153–183. Springer, Heidelberg (2002)

14. Czajkowski, K., Dan, A., Rofrano, J., Tuecke, S., Xu, M.: Agreement-based Service
Management (WS-Agreement). Draft Global Grid Forum Recommendation Document
(2003)

15. Bohte, S.M., Gerding, E., La Poutre, H.: Market-based Recommendation: Agents that
Compete for Consumer Attention. ACM Transaction on Internet Technology (2000)

16. He, Y., Liu, H., et al.: A preference Method with Fuzzy Logic in Service Scheduling of Grid
Computing. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 865–871.
Springer, Heidelberg (2005)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 435–446, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Informative Gene Selection and Tumor Classification by
Null Space LDA for Microarray Data

Feng Yue, Kuanquan Wang, and Wangmeng Zuo

Biocomputing Research Center, The School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, 150001, China

csfyue@gmail.com, wangkq@hit.edu.cn, cswmzuo@gmail.com

Abstract. DNA microarray technology can monitor thousands of genes in a
single experiment. One important application of this high-throughput gene ex-
pression data is to classify samples into known categories. Since the number of
gene often exceeds the number of samples, classical classification methods do
not work well under this circumstance. Furthermore, there are many irrelevant
and redundant genes which will decrease classification accuracy, thus a gene
selection process is necessary. More accurate classification result using these
selected genes is expected. A novel informative gene selection and sample clas-
sification method for gene expression data is proposed in this paper. This
method is based on Linear Discriminant Analysis (LDA) in the regular space
and the null space of within-class scatter matrix. By recursively filtering genes
which have smaller coefficient in the optimal projection basis vectors, the re-
maining genes are more and more informative. The results of experiments on
leukemia dataset and the colon dataset show that genes in this subset have much
less correlations and more discriminative power compared to those selected by
classical methods.

1 Introduction

DNA microarray technology provides the opportunity to simultaneously measure the
expression level of thousands or tens of thousands of genes. These high-throughput
data can provide valuable insights in molecular level. Various techniques, such as
clustering [1,2], classification [3,4] and prediction [5], are used to analyze gene ex-
pression data to exploit the hidden information. One important application of gene
expression data is to uncover the distinction between different types of cancer or tu-
mor and normal samples, and classify samples into known categories accurately and
reliably. After firstly considered by Golub et al. 4., varieties of gene selection and
sample classification methods have been proposed [6~10], and many comparisons
between different methods are conducted as well [11~13].

Gene expression data from DNA microarrays are characterized by many measured
variables (genes) on only a few observations (experiments) [6] Among all of these
genes, most are redundant or irrelevant. Thus gene selection, i.e. dimensionality re-
duction via feature selection, is needed. Methods of gene selection can be roughly
grouped into two categories: filtering approaches and wrapper approaches [14]. The

436 F. Yue, K. Wang, and W. Zuo

former evaluate goodness of genes individually, and a score is assigned to each gene.
Then the top d genes with the highest score are chosen. In contrast with that, the
wrapper approaches evaluate each gene subset instead of each gene, and select best d-
gene subset according to current classifier. Although the filter approaches are simple
and efficient, the wrapper approaches usually show a more accurate behavior [14,15].

As two examples of filtering approach, Golub et al. [4] use the correlation coeffi-
cient ranking scheme to select informative genes for a two-class problem, while Du-
doit et al. [11] use the ratio of between-group to within-group sums of squares to
evaluate each gene. Despite their linear time complexity in terms of gene number,
these filtering methods assess gene individually and can not discover the redundancy
and correlations between genes. The gene subset selected by these methods may be
highly correlated. Other methods can perform the dimensionality reduction from a
holistic view, such as PCA-based method [16] and PLS-based method [6], but they
can only reduce original high dimensional data to only a few gene components, which
are difficult to interpret. For wrapper approaches, the gene selection process is de-
pendent on the choice of classifier.

Recently, Li et al. [15] propose a recursive gene selection method and have tested
it on SVM, ridge regression and a Rocchio-style classifier. It recursively discards
genes of small weight according to the selected classifier training by remaining genes.
Most recently, an incremental wrapper-based gene selection method is proposed by
Ruiz et al. [10], and has been tested on Naïve Bayes, IB1 and C4.5 classifiers. First it
evaluates the discriminant power of each gene individually, and then recursively im-
prove prediction performance by adding a gene one time until best performance is
obtained. Although these methods can achieve very good performance using only a
small number of genes, it lacks of a holistic view of genes and only selects genes in a
greedy manner.

In this paper, we propose a novel wrapper-based gene selection method using LDA
in the original space and the null space. We use the optimal projection basis vectors
which maximize the ratio of the between-class scatter to the within-class scatter to
capture the predictive power of every gene. More informative genes are expected to
have larger coefficient in projection basis vectors. After recursively selecting genes
with large coefficient, the remaining gene subset has minimum redundant and irrele-
vant genes. Because at every iteration the optimal projection basis vectors is obtained
using all the remaining gene expression data, this method analyzes data from a holis-
tic view and can eliminate more correlation and redundant genes. Experimental
results show that this method is superior to some state-of-the-art filter-based and
wrapper-based approaches.

The organization of the rest of this paper is as follows: In Section 2, the Null Space
LDA based informative gene selection method will be introduced. Experimental re-
sults on two microarray datasets, and comparisons with two well-known filtering
approaches will be presented in Section 3. Finally, conclusion and our future work
will be given in Section 4.

2 Informative Gene Selection by Null Space LDA

In this section, we shall describe in detail the proposed informative gene selection
method, as well as the Null Space LDA method it based on.

 Informative Gene Selection and Tumor Classification by Null Space LDA 437

2.1 Fisher’s Linear Discriminant Analysis(LDA)

Let the training set be composed of C classes, where each class contains iN sample,

i=1,2,…C, and let i
mX be a d-dimensional column vector which denotes the mth sam-

ple from the ith class. In this case, the within-class scatter matrix WS , between-class

scatter matrix BS ,and total scatter matrix TS are defined as,

∑∑
= =

−−=
C

i

N

m

T
i

i
mi

i
mW

i

xxS
1 1

))((μμ , (1)

∑
=

−−=
C

i

T
iiiB NS

1

))((μμμμ , (2)

and

∑∑
= =

−−=+=
C

i

N

m

Ti
m

i
mBWT

i

xxSSS
1 1

))((μμ , (3)

where μ is the mean of all samples, and iμ is the mean of samples in the ith class.

In Fisher’s linear discriminant analysis theory [17], the best classification accuracy
can be achieved by projecting the data into a new subspace where the ratio of be-
tween-class scatter matrix to within-class scatter matrix is maximized:

WSW

WSW
W

W
T

B
T

W
opt maxarg= (4)

where optW is the best projection basis vectors. It can be shown that the column vec-

tors of optW is eigenvectors of BW SS 1− 17.

2.2 Null-Space LDA

Classical Fisher’s linear discriminant analysis, however, usually encounters the small
sample size problem, where the dimension of the sample space is much larger than the
number of the samples in the training set [18]. This can lead to the singularity of WS .

In order to deal with this problem, numerous methods have been proposed in the last
years [18~21]. Among these methods, the PCA + Null Space LDA method proposed
by Huang et al. [19] stands out for its efficiency. In this method, after removing the
null space of TS , which contains the intersection of the null spaces of BS and WS ,

without losing discriminant information, the best predictive performance can be ob-
tained when BS is maximized in null space of WS . With this optimal projection basis

vectors, all training samples in one class can be projected to one common vector, so it
can achieve 100% prediction accuracy for the training samples. More concretely, let
U be the matrix whose columns are all the eigenvectors of TS corresponding to the

nonzero eigenvalues, then we get

438 F. Yue, K. Wang, and W. Zuo

USUS W
T

W =' (5)

and

USUS B
T

B =' (6)

Let Q be the null space of '
WS , then we get

0)()(''' === UQSUQQSQS W
T

W
T

W (7)

and

)()(''' UQSUQQSQS B
T

B
T

B == (8)

UQ is a subspace of the whole null space of WS , and is really useful for discrimina-

tion. Let V be the matrix whose columns are all the eigenvectors of ''
BS corresponding

to the nonzero eigenvalues, then the final LDA projection basis vectors is W=UQV
[19]. Using this projection basis vectors, 0=WSW W

T , 0≠WSW B
T and is maximized.

So the ratio of between-class scatter matrix to within-class scatter matrix is maxi-
mized. Because all the distinctions of training samples belonging to the same class are
removed, we will obtain the same unique vector for all samples of the same class. We
refer to this vector as the common vector [21].

2.3 Informative Gene Selection

In this subsection, we propose to use linear discriminant analysis for informative gene
selection. While discriminant analysis is mainly utilized for feature extraction by
previous studies [19,21], it is considered as an informative gene selection method for
the first time. After getting the optimal projection basis vectors, previous researches
usually project all samples on these vectors and then perform classification task, while
we extract the information provided by these vectors to select informative genes.

The key idea of informative gene selection using Null Space LDA is that in the op-
timal projection basis vectors, the absolute value of each coefficient reflects the im-
portance of that gene: the expression data should be magnified or minified to project
training samples into common vectors. Thus the magnitude of this coefficient can be
used as an indicator of informative genes: the smaller the absolute value of coeffi-
cient, the weaker informative power this gene has. Discarding a large number of non-
informative genes will only lose little discriminant information. Only top few genes
which correspond to larger coefficient are retained as informative genes.

Instead of discarding all the non-informative genes at one time, a more preferable
scheme is to discard only a small number of genes which are most non-informative.
After that, the best projection basis vectors is recalculated using remaining genes. The
informative power of remaining genes should be updated according to this new pro-
jection basis vectors. By recursively filtering genes which correspond to small coeffi-
cient, the remaining genes become more and more informative, and the redundant and
irrelevant genes are discarded step by step. When number of genes is less than that of
samples, Null Space LDA would be inapplicable and the general LDA could be used.

 Informative Gene Selection and Tumor Classification by Null Space LDA 439

Then the process of gene selection is performed according to best projection basis
vectors of LDA, in the same manner, until only one gene left. The full algorithm is
shown below.

Recursive gene selection Algorithm
1 Let M be the number of genes and N be the number

of samples.
2 Let m be the number of remaining genes currently
3 Mm ←
4 While 1≥m
5 If Nm >
6 Calculate optW by PCA + Null space LDA

7 Else
8 Calculate optW by general LDA

9 Calculate the weight of every gene using optW

10 Sort genes according to their weight
11 Select top K genes of large weight and set Km ←

The number of genes discarded at each iteration can be a tunable parameter. In ex-

periments we set this value to 2/m and have very good results. Practically, this
method will work well unless K is too small compared to m , in which case too much
information is discarded.

3 Experimental Results

3.1 Experiments on Leukemia Dataset

The leukemia dataset contains gene expression data of two types of acute leukemia:
acute lymphoblastic leukemia(ALL) and acute myeloid leukemia(AML) [4]. Gene
expression levels were measured by using Affymetrix high-density oligonucleotide
arrays containing 7129 genes. The dataset consist of 47 cases of ALL (38 B-cell ALL
and 9 T-cell ALL) and 25 cases of AML, and is split into training samples (38 sam-
ples, 27 ALL and 11 AML) and test samples (34 samples, 20 ALL and 14 AML).
This dataset is available at http://www.genome.wi.mit.edu/MPR. Following Dudoit et
al [11] we preprocess this dataset by thresholding, filtering, a base 10 logarithmic
transformation and standardization. Finally a matrix of 3571 genes by 72 samples is
obtained.

First we use Golub’s correlation coefficient, Dudoit’s BW metric, and PCA + Null
Space method to select top 50 most informative genes, then classify 34 test samples
by nearest neighbor classifier in original space and projection space using these 50
genes. For Null Space LDA method, both recursive and non-recursive scheme are
tested. In recursive gene selection scheme, half of currently remaining genes, i.e.
1786, 893, 447, 224, 112, 56 genes, are selected. Final 50 genes are selected from 56
genes in the same manner.

440 F. Yue, K. Wang, and W. Zuo

The results are given in Table 1. As can be seen, using top 50 genes selected by
Golub’s and Dudoit’s metric, NN classifier can achieve very good prediction per-
formance (94.12% and 94.12%, respectively). Although using 50 genes selected by
Dudoit’s metric 97.1% accuracy can be obtained by null space LDA, it seems that
genes selected by Golub’s metric are not suitable for null space LDA (only a 70.6%
accuracy is achieved).Using top 50 genes selected by both non-recursive and recur-
sive null space LDA can obtain good performance (91.2% and 97.1%, respectively)
and result of recursive scheme is better. It seems that genes selected by these methods
are not suitable for NN classifier in original space, either (accuracy are only 85.3%
and 76.5%, respectively).

Table 1. Classification accuracy using top 50 Genes selected by different method

 Golub’s
metric

Dudoit’s
Metric

Null Space LDA
(non-recursive)

Null Space LDA
(recursive)

NN classifier in
original space

0.94118
(32/34)

0.94118
(32/34)

0.85294
(29/34)

0.76471
(26/34)

NN classifier in
projection space

0.70588
(24/34)

0.97059
(33/34)

0.91176
(31/34)

0.97059
(33/34)

Then we examine the relevance of genes selected using different methods. Follow-

ing Li et al. [15], we show the correlation matrix of 50 genes selected by each method
(Figure 1). In each matrix, the features are sorted according to their ranks assigned by
the classifiers. The (i, j) element of the matrix is the absolute value of the correlation
coefficient between the i-th feature vector and the j-th feature vector in the training
data. The intensity in those graphs reflects the magnitude of gene-gene correlation
coefficients: the brighter the gray-level, the stronger the correlation for either posi-
tively or negatively correlated genes.

From Figure 1 we can see the strong correlations between genes selected by
Golub’s and Dudoit’s metrics. Moreover, stronger correlations between groups of
genes which are indicators of different tumor type are visible in (A). But genes se-
lected by both non-recursive and recursive null space LDA method have much less
correlations. Compared with non-recursive scheme, recursive gene selection do have
some influences in further reducing the correlations.

Figure 2(A) illustrates the prediction accuracy when different number of genes are
selected. In this experiment, half of remaining genes are retained. When the number
of the reserved genes is less than that of samples (namely, 38), LDA is used instead of
null space LDA. Note that the accuracy could achieve 94.1% when only one gene is
used. Using 7, 4, 2 genes can also obtain very good results of which the maximum
number of mistaken classified sample is 3. The best performance is only 1 classifica-
tion error, which is obtained when 28 or 56 genes are used.

The best results reported in [10] are 93.03% when 2.50 genes (in average of 10 10-
fold cross-validation experiments) are retained using Nearest Neighbor classifier and
84.64% when 1.10 genes (in average of 10 10-fold cross-validation experiments) are
retained using C4.5 decision tree classifier. But in our method, the result is 94.1% when
only one gene is used, which has better accuracy and uses less gene. While in [15], the
accuracy using one gene is roughly 60% (estimated from the performance graph).

 Informative Gene Selection and Tumor Classification by Null Space LDA 441

(A) mean=0.5377 (B) mean=0.6111

(C) mean=0.3592 (D) mean=0.2929

Fig. 1. Correlation matrix of 50 genes selected by different methods

While filtering half genes (Scheme I) seems arbitrary, we test other schemes to fil-
ter genes. The first is filtering only one gene at one time (Scheme II) and the second is
filtering 100 genes each iteration until less than 100 genes are left, then filtering one
gene at one time (Scheme III). When the number of remaining genes is close to the
number of samples, the performance is instable. To solve this problem, we only retain
28 genes when 56 genes left, the same as filtering half genes scheme. After that genes
are filtered one by one as before. Experimental results are show in Figure 2 (B) and
(C), respectively.

Similar results are obtained as expected. Using less than 10 genes, the prediction
accuracy can be consistently above 90%, even when only one or two genes are used.
Besides that, other interesting tips can be learned from these graphs:

• When the number of the remaining genes drop from 56 to 28, the performance of
our method is instable (green dashed line in Figure 2 (A) (B) and (C)). In Figure
2(A), the accuracy is not influenced, while in Figure 2 (B) and (C) the accuracy is
decreased and increased, respectively. This instability may be due to the difference
of projection basis vectors obtained by null space LDA and LDA, but the influence
of it is very limited: after a few iterations using LDA, the accuracy will increase
gradually (Figure 2 (B)).

442 F. Yue, K. Wang, and W. Zuo

10
0

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NO. Gene

A
cc

ur
ac

y

10
0

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NO. Gene

A
cc

ur
ac

y

(A) (B)

10
0

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NO. Gene

A
cc

ur
ac

y

(C)

Fig. 2. Classification accuracy versus number of genes retained using null space LDA of differ-
ent schemes. (A) Scheme I. Filter half genes at one time. (B) Scheme II. Filter a gene at one
time. (C) Scheme III. Filter 100 genes at one time.

• When too many genes are dropped compared to remaining genes, the performance
of our method will drop significantly. In Figure 2 (C) when we retain 71 genes
from 171 genes, the accuracy decreases from 94.12% to 88.24% (red dashed line).
The reason is that too much information is lost; the retained genes are not informa-
tive enough. Also, the decline of performance is not fatal: after a few iterations of
filtering only one gene at one time, the accuracy will increase gradually (Figure 2
(B)). But if we always dropped too many genes, the performance will drop rapidly
accordingly.

 Informative Gene Selection and Tumor Classification by Null Space LDA 443

3.2 Experiments on Colon Dataset

The colon dataset reported by Alon et al. [2] is composed of 62 (40 tumor and 22
normal) samples of colon epithelial cells. The ‘tumor’ (40 samples) biopsies were
collected from tumors, and the ‘normal’ (22 samples) biopsies were collected from
healthy parts of the colons of the same patient. Gene expression levels were measured
using high-density oligonucleotide arrays. Of about 6000 genes represented in these
arrays, 2000 genes were selected based on the confidence of the measured expression
levels.This dataset is available at http://microarray.princeton.edu/oncology/affydata/
index.html.

We use Golub’s correlation coefficient, Dudoit’s BW metric, and the PCA + Null
Space method to select top 100 and 200 most informative genes. Using Leave-One-
Out cross validation we classify 62 samples by nearest neighbor classifier in original
space and projection space using these 100 or 200 genes. For recursive Null Space
LDA method, 100 genes are filtered one time, i.e. the number of remaining genes are
1900, 1800, 1700, … 300, 200, 100.

Table 2. Classification accuracy using top 100 Genes selected by different method

Golub’s
metric

Dudoit’s
Metric

Null Space LDA
(non-recursive)

Null Space LDA
(recursive)

NN classifier in
original space

0.80645
(50/62)

0.80645
(50/62)

0.83871
(52/62)

0.85484
(53/62)

NN classifier in
projection space

0.62903
(39/62)

0.67742
(42/62)

0.82258
(51/62)

0.80645
(50/62)

Table 3. Classification accuracy using top 200 Genes selected by different method

Golub’s
metric

Dudoit’s
Metric

Null Space LDA
(non-recursive)

Null Space LDA
(recursive)

NN classifier in
original space

0.77419
(48/62)

0.79032
(49/62)

0.77419
(48/62)

0.80645
(50/62)

NN classifier in
projection space

0.75806
(47/62)

0.70968
(44/62)

0.82258
(51/62)

0.83871
(52/62)

Experimental results are given in Table 2 and Table 3 respectively. From Table 2,
we can see that Using top 100 genes selected by Golub’s and Dudoit’s metrics, pre-
dicted performance achieved by NN classifier are 80.65%. But these genes are not
suitable for null space LDA classifier (only 62.90% and 67.74 are achieved). Using
top 100 genes selected by both non-recursive and recursive null space LDA can also
obtain good performance (82.26% and 80.65%, respectively) and result of the non-
recursive scheme is better. But genes selected by these methods are more suitable for
NN classifier in original space (accuracy are 83.87% and 85.48%, respectively). The
results obtained by top 200 genes (shown in Table 3) are similar with that of top 100
genes using Golub and Dudoit’s metric. But this time the advantage of using null
space LDA method is evident. Both non-recursive and recursive scheme can obtain a
much better performance.

444 F. Yue, K. Wang, and W. Zuo

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NO. Gene

A
cc

ur
ac

y

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NO. Gene

A
cc

ur
ac

y

(A) (B)

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NO. Gene

A
cc

ur
ac

y

 (C)

Fig. 3. Classification accuracy versus number of gene retained using null space LDA of differ-
ent scheme. (A) Scheme I. Filter half genes at one time. (B) Scheme II. Filter a gene at one
time. (C) Scheme III. Filter 100 genes at one time.

Because no explicit training and test set, we can not select consistent informative
genes for all LOOCV experiments. Consequently we can not depict the graph of cor-
relations of selected genes. But it can be expected that in each LOOCV experiment,
informative genes selected by null space LDA have less correlations than those se-
lected by Golub and Dudoit’s metrics.

We also test other schemes to filter genes besides Scheme I. Experimental results
are show in Figure 3 (B) and (C), respectively.

The results are similar with those obtained on leukemia dataset. When the number
of remaining genes is close to the number of samples, the performance would be in-
stable (green dashed line in Figure 3 (A) and (C)). Compared with results of leukemia

 Informative Gene Selection and Tumor Classification by Null Space LDA 445

dataset, we can not get very good prediction performance using only 1 or 2 genes.
Prediction accuracy over 80% can only obtained by using 100 informative genes or
more. It is probably due to the complexity of this classification task.

4 Conclusion and Future Work

A novel informative gene selection and sample classification method for gene expres-
sion data is proposed in this paper, which can select a small number of informative
genes from all genes. Compared with other state-of-art methods, it can produce more
accurate classification result using these informative genes as features when classifi-
cation tumor samples. Experimental results also show that recursive Null-Space LDA
method is more accurate and more robust than non-recursive scheme. Our future work
includes how to deal with the instability when the number of informative genes is
close to the size of samples and how to incorporate the information provided by the
regular space and the null space of total scatter matrix.

Acknowledgment

The work is supported in part by the NSFC foundation under the contracts No.
60571025, the 863 project under the contracts No. 2006AA01Z308.

References

1. Michael, B.E., Paul, T.S., Patrick, O.B., David, B.: Cluster analysis and display of ge-
nome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

2. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tis-
sues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)

3. Laura, J.V., Hongyue, D., Marc, J.V., Yudong, D.H., Augustinus, A.M., Mao, M., Hans,
L.P., Karin, K., Matthew, J.M., Anke, T.W., George, J.S., Ron, M.K., Chris, R., Peter, S.L.,
Rene, B., Stephen, H.F.: Gene expression profiling predicts clinical outcome of breast can-
cer. Nature 415, 530–536 (2002)

4. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,
H., Loh, M.L., Downing, J.R., Caligiuri, M.A., BloomTeld, C.D., Lander, E.S.: Molecular
Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Moni-
toring. Science 286, 531–537 (1999)

5. Douglas, T.R., Uwe, S., Michael, B.E., Charles, M.P., Christian, R., Paul, S., Vishwanath,
I., Stefanie, S.J., Matt, V.R., Mark, W., Alexander, P., Jeffrey, C.F., Deval, L., Dari, S.,
Timothy, G.M., John, N.W., David, B., Patrick, O.B.: Systematic variation in gene expres-
sion patterns in human cancer cell lines. Nature Genetics 24, 227–235 (2000)

6. Danh, V.N., David, M.R.: Tumor classification by partial least squares using microarray
gene expression data. Bioinformatics 18, 39–50 (2002)

7. Antoniadis, S., Lambert, L., Leblanc, F.: Effective dimension reduction methods for tumor
classification using gene expression data. Bioinformatics 19, 563–570 (2003)

8. Sun, M., Xiong, M.: A mathematical programming approach for gene selection and tissue
classification. Bioinformatics 19, 1243–1251 (2003)

446 F. Yue, K. Wang, and W. Zuo

9. Guan, Z., Zhao, H.: A semiparametric approach for marker gene selection based on gene
expression data. Bioinformatics 21, 529–536 (2005)

10. Roberto, R., José, C.R., Jesús, S.A.: Incremental wrapper-based gene selection from mi-
croarray data for cancer classification. Pattern Recognition (in press)

11. Dudoit, S., Fridlyand, J., Terence, P.S.: Comparison of Discrimination Methods for the
Classification of Tumors Using Gene Expression Data. Journal of the American Statistical
Association 97, 77–87 (2002)

12. Tao, L., Zhang, C., Mitsunori, O.: A comparative study of feature selection and multiclass
classification methods for tissue classification based on gene expression. Bioinformat-
ics 20, 2429–2437 (2004)

13. Statnikov, A., Constantin, F.A., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive
evaluation of multicategory classification methods for microarray gene expression cancer
diagnosis. Bioinformatics 21, 631–643 (2005)

14. Inza, I., Larranaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection
approaches in DNA microarray domains. Artificial Intelligence in Medicine 31, 91–103
(2004)

15. Li, F., Yang, Y.: Analysis of recursive gene selection approaches from microarray data.
Bioinformatics 21, 3741–3747 (2005)

16. West, M., Blanchette, C., Dressman, H., Huang, F., Ishida, S., Spang, R., Zuzan, H.,
Olason, J., Marks, I., Nevins, J.: Predicting the clinical status of human breast cancer by
using gene expression profiles. Proc. Natl. Acad. Sci. USA 98, 11462–11467 (2001)

17. Fisher, R.A.: The Use of Multiple Measures in Taxonomic Problems. Ann. Eugenics 7,
179–188 (1936)

18. Chen, L.F., Liao, H.Y., Ko, M.T., Lin, J.C., Yu, G.J.: A New LDA-Based Face Recogni-
tion System Which Can Solve the Small Sample Size Problem. Pattern Recognition 33,
1713–1726 (2000)

19. Yu, H., Yang, J.: A Direct LDA Algorithm for High-Dimensional Data with Application to
Face Recognition. Pattern Recognition 34, 2067–2070 (2001)

20. Huang, R., Liu, Q., Lu, H., Ma, S.: Solving the Small Size Problem of LDA. Proc. 16th
Int’l Conf. Pattern Recognition 3, 29–32 (2002)

21. Hakan, C., Marian, N., Mitch, W., Atalay, B.: Discriminative Common Vectors for Face
Recognition. IEEE Trans. PAMI 27, 4–13 (2005)

Heuristic Search

for 2D NMR Alignment to Support Metabolite
Identification

Geun-Cheol Lee1, Jeff de Ropp2, Mark R. Viant3, David L. Woodruff2,
and Ping Yu2

1 Konkuk University; 1 Hwayang-dong; Gwangjin-Gu; Seoul; Korea
gclee@konkuk.ac.kr

2 University of California, Davis; One Shields Avenue; Davis CA 95616; USA
jsderopp,dlwoodruff,pyu@ucdavis.edu

3 The University of Birmingham, Birmingham, UK
m.viant@bham.ac.uk

Abstract. For the problem of aligning two-dimensional NMR spectra
of biological samples to determine if metabolite standards in a database
can be excluded as possible constituents, we develop heuristic search al-
gorithms that offer tremendous time savings when compared to manual
methods. Xi et al [15] consider this problem and use statistical methods
to reduce the search space and enumerate it. In this paper we consider
the case when the statistical model is not available due to lack of data.
We describe a simulated annealing algorithm and an algorithm that hy-
bridizes simulated annealing with a shift neighborhood and a variant of
reactive tabu search with a large neighborhood. Computational experi-
ments based on data from physical experiments demonstrates that the
hybrid is more effective than its constituents for runs with limited CPU
time but that simulated annealing and the hybrid are roughly equal for
longer runs.

1 Introduction

For the problem of aligning two-dimensional NMR spectra of biological samples
to determine if metabolite standards in a database can be excluded as possible
constituents, we develop heuristic search algorithms that offer tremendous time
savings when compared to present manual methods. Xi et al [15] consider this
problem and use statistical methods to reduce the search space an enumerate it.
In this paper we consider methods that are effective when the statistical model is
not available due to lack of data. Also, it provides an interesting and important
problem for testing metaheuristics.

A large neighborhood structure for shifting the spectra is used by a reactive
tabu search [2]. We make use of a stopping criteria based loosely on the idea of
freezing in simulated annealing (SA). The large neighborhood structure requires
expensive computations, so it is not appropriate for SA itself. For an implemen-
tation of a simulated annealing that uses the cooling schedule of Johnson et al

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 447–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

448 G.-C. Lee et al.

[6], we make use of a neighborhood structure that is computationally tractable
enough to facilitate the sampling that is the basis of SA. Following Voß and
Fink [13], we use SA as the escape mechanism in the reactive tabu search al-
gorithm. The resulting hybrid algorithm is better and faster than either of its
components for runs using limited CPU time when tested on data from physical
experiments. For longer runs, there is little difference between the hybrid and
simulated annealing.

Two dimensional Nuclear Magnetic Resonance (2D NMR) analysis [7] makes
use of a technology where samples are placed in a magnetic field that forces
orientation of the the nuclei of hydrogen atoms. Application of a radio frequency
pulse forces the nuclei out of that alignment. The signals induced as the nuclei
realign are recorded. When this is repeated with systematically varying time of
the acquired signal, the result, after some transformation, is an x,y,z plot. Each
peak on the main diagonal of the plot corresponds to a chemical group, with the
z-value corresponding to the number of hydrogen nuclei present in the peak. In a
COrrelation SpectroscopY (COSY) spectrum, which is our interest here, peaks
on the off-diagonal indicate spin coupling of the two corresponding peaks on the
main diagonal. Hence, topographic plots are assumed to be symmetric.

Many chemical compounds are identifiable by their signatures on these graphs,
which makes the technology potentially very interesting for use in analysis of
metabolites. At present, the identification of the metabolites is a major bottle-
neck in the efforts to automate metabolomic analysis. Depending on the type of
2D spectrum collected, the time to acquire a spectrum is on the order of minutes
or hours but the time to identify compounds is on the order of days. Present
methods of identification are primarily based on a person picking through the
peaks visually.

One of the things that adds difficulty to automating this process for COSY
spectra is that the peak for a given chemical group may be shifted slightly from
one sample to the next. The primary causes of shifts in peak position are vari-
ations in sample pH (despite buffering) and sample temperature (despite fairly
precise control of sample chamber temperature). The pH effect is particularly
difficult to remove, and real metabolomic samples have a small variance in pH
even in the presence of added buffer.

For two dimensional spectra, the presence of off-diagonal peaks makes the
problem of compensating for shifts complex and computationally very expensive.
With COSY spectra, it is valuable to rule out compounds using a simple model
where the compound signatures are shifted. If the compound signatures cannot
be shifted in reasonable fashion to match the signatures found for a sample,
then no reasonable shifting of the sample peaks will result in a match either.
The chemical compound signatures are, generally, many orders of magnitude
simpler than the signatures from a biological sample so shifting them can be
done much more quickly.

The consideration of peak shifts in 2D NMR spectra is complicated by the
fact that two peaks on the diagonal are often coupled by an off-diagonal peak.
Hence, shifting one peak can result in shifts of others. We have an algorithm that

Heuristic Search for 2D NMR Alignment 449

matches the graph for compounds with the graph for a sample and finds near
optimal shifts for the compounds so they can be ruled out as being above the
detection limit in spectrum for the sample or retained for further consideration.
We tested it by developing a database of 2D COSY NMR spectra of the 20
naturally occurring amino acids. Experiments searching for amino acid peaks
in COSY data generated from samples reveal that we can rule out compounds
using an optimization algorithm that requires less than a minute per compound.

In this paper we will concern ourselves with comparing z-values that are con-
sidered to be above the detection limit. Hence, the z-dimension is binary, which
yields very simple and well-defined topographic plots that show the location of
peaks that are above the detection limit. If a compound is present in a sample,
then all of the peaks for the compound will be present above detection in the
sample, perhaps after some shifting. In the following section we provide a formu-
lation that allows us to rule out this possibility for some compounds. In §3 we
describe algorithms to search for solutions; tests on the algorithms are described
in §4. The paper closes with conclusions and directions for further research.

2 Formulation

We use the same formulation as Xi et al [15]. When describing the formulations,
we use the terms pixels and x, y pairs interchangeably to refer to points in the
graph with z values that are above the detection limit.

2.1 Data for a Compound

There are three related database views for each compound in the database.

– G: the set of all x, y pairs that are above the detection limit for the compound;
|G| gives the number of them.

– O: a vector where each element corresponds to a peak and is the set of x, y
pairs for the pixels that is the peak. The number of peaks for compound is
given by |O|. Note that ∪|O|

i=1Oi = G.
– B: each entry is a database of information about a band on the x-axis. In a

computer implementation, this would have the x-value for the left side of the
band, the x-value for the right side, references to entries in G and O for all
peaks in the band and references to entries in O that are for peaks that are
not in the band, but that are spin coupled with the peak in the band on the
diagonal axis. The number of bands is given by |B|. Since off-diagonal peaks
occur only when diagonal peaks are spin coupled, every band has exactly
one on-diagonal peak.

2.2 Decision Variables

A vector of band shifts, b, of length |B| constitutes the decision vector. Each
element gives the number of pixels that the corresponding band is shifted, with

450 G.-C. Lee et al.

a positive number understood to be a right shift and a negative number a left
shift. Because of the symmetry, without loss of generality we consider shifting
only the x bands. We constrain the shift vector to avoid having band boundaries
cross. Furthermore, we assume a user specified limit, B, on the number of pixels
that each band can be shifted in either direction. The set of all feasible shift
vectors will be denoted by β.

The function S(b, ·) returns the x, y list view of the compound given by its
second argument modified to reflect the shift given by its first. E.g., S(b,G) is
the list of x, y pairs for the compound assuming shift vector b has been applied.
The fact that all off-diagonal peaks are coupled with diagonal peaks and the
presence of the list B makes this simple to implement. For example, a movement
to the right of one pixel, causes all peaks in the band to move right one pixel.
The peak on the diagonal moves up one pixel as do the off-diagonal peaks that
are not in the band but are spin coupled with the diagonal peak in the band.

2.3 Data from an Experiment

Each experiment results in a set of x, y pairs for points that are above the
detection limit. Call that list E .

2.4 Objective Function

We now define two counting functions. In keeping with common slang, we will
refer to these functions as counting the number of pixels or peaks that hit:

– δ(O, E , b): for a shift vector b this function returns the number entries (i.e.,
peaks) in O for which there is at least one x, y pair that is in both S(b,O)
and E .

– γ(G, E , b): for a shift vector b this function returns the number of x, y pairs
that are in both S(b,G) and E .

If we treat the lists as sets, then γ(G, E , b) ≡ |{S(b,G)
⋂
E}|. Description of

δ(·) requires more notation. Let Si(b,O) be the set of x, y pairs that are above
detection for peak i after shift vector b has been applied. We use I(·) as an
indicator function, which takes the value one if its argument is true and zero
otherwise. With this notation, δ(O, E , b) ≡

∑|O|
i=1 I({Si(b,O)

⋂
E} �= ∅)

Since the goal is to rule out the possibility that any shifting of the sample
could result in a match for a particular database entry, we need an objective
function that gives an ability to put a lower bound on this possibility. For this
purpose, the first term in the objective function is 100 δ(O,E,b)

|O| , which is the
percent of the peaks for which there is at least one hit under shift vector b.
Database compounds with a score less than 100 for all reasonable b are unlikely
to be in the sample.

The number of pixels that hit is of secondary importance. This information
can help to prioritize compounds for further interpretation. To capture this in
a simple, heuristic way, we add the term γ(G,E,b)

|G| . Leaving this term scaled as a

Heuristic Search for 2D NMR Alignment 451

fraction and the first term as a per cent results in a lexicographic ordering of the
objective function values. A significant side benefit is that this term also helps
guide the search through the large regions of the search space where the first
term is constant. Only those compounds with an objective function value over
one hundred could be in the sample. Very roughly, those with a higher value
tend to be a better match than those with a lower value.

Maximization of these two terms, subject to the constraint that b remain
feasible provides a fully specified optimization problem, which is to maximize
f(b) ≡ 100 δ(O,E,b)

|O| + γ(G,E,b)
|G| subject to b ∈ β.

3 Local Search Algorithms

As the name implies, local search algorithms are based on the idea of perturba-
tions of a current solution. We sometimes refer to a perturbation of a solution
as a move. All the solutions that can be reached in one move from a solution,
b, are said to be in its neighborhood, N (b). We will concern ourselves here only
with neighborhoods that preserve feasibility (i.e., N (b) ⊂ β for all b ∈ β).

Starting from some initial solution b(0), a hill climbing algorithm (which are
sometimes called greedy or steepest descent when minimizing) proceed at iteration
k ≥ 1 as follows b(k) := argmaxb∈N (b(k−1)) f(b) and terminates when for all
b ∈ N (b(k−1)), f(b) ≤ f(b(k−1)). The algorithm terminates at a solution that is
by definition a local maximum of f(·) with respect to the neighborhood.

Consider two neighborhood structures. An obvious neighborhood consists all
those solutions that differ by one in one vector element (without violating con-
straints). Call this neighborhood n1. A natural one-dimensional characterization
of moves that imply n1 is simply the band number for a move to the right and
the negative of the band number for a move to left. A generalization of this
neighborhood structure has a more natural two-dimensional characterization:
a band number and the change in the vector element for the band. Call this
neighborhood where one band can move any feasible distance n2.

3.1 Greedy Algorithms and Large Neighborhoods

It seems intuitive that algorithms based on n2 will dominate those based on n1,
but to verify that we implemented a greedy algorithm based on each. Call these
algorithms g1 and g2 respectively.

We also implemented greedy algorithms based on a band by band decom-
position of n2. Algorithm d1 optimizes the value for each vector element in-
dependently, considering each only once in order. More formally, the algorithm
proceeds as follows for bands i = 1, . . . , |B| in order:

b(i) = argmaxbi
f(b)

subject to:
bj = b

(i−1)
j , 1 ≤ j < i, i < j ≤ |B|

b ∈ β

452 G.-C. Lee et al.

Algorithm d2 simply repeats algorithm d1 using the result of the last execu-
tion as the starting point for the next until no further improvement is made by
an execution of d1. Thus d1 can be thought of as defining a neighborhood over
which greedy algorithm d2 operates. This is similar to the ideas expressed by the
literature on very large neighborhoods [1] and compound neighborhoods [5] (al-
though the label “compound” neighborhood is more descriptive than “large” in
this case we will eschew it due to potential confusion with chemical compounds).
We will refer to d1 both as an algorithm and as a neighborhood.

3.2 Simulated Annealing

Simulated Annealing SA is a metaheuristic for complex optimization problems
[8]. We have adopted algorithm statement shown in Figure 1, which based on
the work of Johnson et al [6], except that we make use of problem specific
information to set the initial temperature. In the canonical version of SA, the
initial temperature is set by trying temperatures until one is found that results
in approximately the desired rate of move acceptance. We save computational
effort by setting the initial temperature at T (0) ← 102− f(0), where f(0) is the
objective value for the compound with no shifting. In the sequel, we refer to this
implementation of simulated annealing with neighborhood n2 as algorithm sa.

The function Frozen(MinPercent) returns true if five temperatures in a
row result in less than MinPercent percent acceptance of moves. For our ex-
periments we fixed MinPercent at 2 as recommended by Johnson et al. The
function BestCheck() simply keeps track of the best solution seen so far. The
temperature is reduced by multiplying the current temperature by the parameter
TempFactor. The number of iterations at each temperature is the parameter
SizeFactor times the neighborhood size.

3.3 Tabu Search

Tabu Search (ts) algorithms [4,5] select moves according to a hill climbing
scheme modified by a tabu list to force the search away from the reversal of
the attributes of moves selected for recent iterations.

The form of our ts algorithm is shown in Figure 2. This is a conceptual
description; the implementation is organized for greater efficiency. We applied
tabu search using the compound neighborhood g1.

The functions Tabu() and UpdateMoveArray() work together. The MoveAr-
ray has a row for each band and a column for each shift of the band that has
been tried. The entries give the change in the corresponding b vector element
for the corresponding move. For the purpose of describing tabu restrictions, call
this array A, so the change in bi in iteration j is given by Aij .

The function Tabu() implements tabu restrictions and aspiration criteria. We
conducted preliminary experiments with two types of tabu restrictions. The first,
t1, forbids moves at iteration k to vectors b where bi − b

(k−1)
i = −Aij for

max(1, k − κ) ≤ j ≤ k − 1. With this restriction, it is not possible for a single
move to directly reverse another move. This is generalized under tabu restriction

Heuristic Search for 2D NMR Alignment 453

Begin with bi = 0, i = 1, . . . , |B|
T ← T (0)

REPEAT

REPEAT SizeFactor ∗ |N (b)| times

Randomly Select b′ ∈ N (b) (a neighbor)

Δ ← f̂(b′) − f̂(b) (change in Obj)

IF (Δ ≥ 0) OR (exp(Δ/T) < URan(0,1)) (good enough?)

b ← b′ (move)

BestCheck(b)

T ← TempFactor ∗ T (cool)

UNTIL Frozen(MinPercent)

Fig. 1. Simulated Annealing Algorithm (sa)

t2, where a move is forbidden it would reverse the cumulative effect of any of the
last κ moves. I.e., moves are forbidden if the resulting vector b has the property

bi − b
(k−1)
i = −

k−1∑

�=j

Ai�

for max(1, k−κ) ≤ j ≤ k−1. Our experiments indicated that t2 performs slightly
worse than t1 so in the sequel, results are reported only for tabu restrictions
based on t1.

We also define two types of aspiration criteria. Criterion a1 overrides tabu
status if the move would result in the best solution found so far. Criterion a2

overrides tabu status if the move would result in the best solution seen as the
result of change for the vector element under consideration.

The function FindBestOK() search neighborhood d1 subject to tabu restric-
tions. Hence, the function proceeds as follows for bands i = 1, . . . , |B| in order:

b(i) = argmaxbi
f(b)

subject to:
bj = b

(i−1)
j , 1 ≤ j < i, i < j ≤ |B|

b ∈ β
not Tabu(b)

The function EndCriteria() signals termination when there have been Ta-

buStop solutions in a row without improvement.The function LTMem() imple-
ments so-called long term memory. A single parameter variant of reactive tabu
search [2] is used. Solutions are hashed [14] and the hash values are stored. When
a pattern of three hash values is repeated, the search is restarted with a random

454 G.-C. Lee et al.

Begin with bi = 0, i = 1, . . . , |B|
REPEAT

b′ ← FindBestOK()

UpdateMoveArray(b, b′) (record changes)

b ← b′ (make the move)

BestCheck(b)

LTMem(b)

UNTIL EndCriteria()

Fig. 2. Tabu Search

value of b ∈ β. The function LTMem() also halves the value of TabuStop (if it
is greater than 2) whenever a new best solution is found.

3.4 Hybrid

Given the notation that we have developed, it is now possible to provide a
compact description of an effective hybrid algorithm. Algorithm hy combines ts

and sa, and by implication neighborhoods d1 and n2. Following Voß and Fink
[13], we use sa as the escape mechanism in the reactive tabu search algorithm
ts. Instead of just restarting ts with a random value when a sequence of three
repeated hash values are encountered, we execute sa starting with the current
solution. The advanced start of sa typically causes much faster freezing than
a random start. Upon termination of sa, ts is resumed from the last solution
visited by sa.

4 Computational Experiments

In order to test the algorithms, two dimensional (2D) magnitude COSY NMR
spectra were measured using an Avance DRX-500 spectrometer (Bruker, Fre-
mont, CA) running XWINNMR software version 3.1. We recorded spectra for
the twenty naturally occurring amino acids in order to create the database access
functions described herein. In order to replicate these experiments, the following
data are needed: Amino acid spectra were obtained for 10 mM solutions of the
free amino acid in 2D2O, buffered to pH 7.4 with 0.2 M sodium phosphate. We
also recorded 2D COSY spectra for two different samples from a shellfish (red
abalone, Haliotis rufescnes) to create two different E structures: a sample of foot
muscle and of digestive tissue. The abalone sample extraction and preparation
are described in [12]. All data were obtained at 295K and referenced to internal
TMSP (1 mM) at 0.00 ppm. Magnitude COSY spectra were collected with 1024
points in t2 and 256 points in t1 over a bandwidth of 14 ppm. The resulting

Heuristic Search for 2D NMR Alignment 455

NMR spectra were processed in XWINNMR using standard methods and zero
filled in t1 yielding a transformed dataset of 1024 by 1024 points.

The code for algorithms was executed by Matlab version 6 on a 1.79 GHz
Athalon MP2200 processor running under Linux. We used B = 10 as user-
specified bound on the shift function, which is 10/1024 × 14 = 0.137ppm. A
constant detection limit was used for the compound database and another for the
two samples. In both cases, the detection limit was obtained by visual inspection.

By running 20 amino acids against two samples, we obtain 40 runs that we can
use for comparison. Detailed results are given in the Appendix. We summarize
the results here.

All of the heuristic search algorithms are many orders of magnitude fast than
processing “by hand.” For lower CPU times the hybrid outperforms its con-
stituent algorithms. A qualitatively important result not shown in the table is
that the heuristic search algorithms find 11 acids that cannot be ruled out with
fewer than 10 for the simple heuristic runs described in Table 1.

Some additional observations are as follows: The hybrid algorithm gets better
results for low CPU times than sa or ts. The sensitivity to the cooling rate
is not very strong, but slower cooling generally tends to improve the quality of
the solution at the expense of more CPU time. The effect of the initial value
of TabuStop is direct: the algorithm runs longer and therefore tends to find
better solutions on average.

5 Conclusions

For the problem of aligning two dimensional NMR spectra to see if compounds
in a database can be ruled out as being above the detection limit of the NMR
device, we develop heuristic search algorithms that offer tremendous time sav-
ings over present manual methods. The hybrid algorithm performs well and has
a parameterization that allows users to control the time/quality tradeoff in an
intuitive way. In a few seconds, a compound can be ruled out of further consid-
eration or its priority for further analysis estimated.

There are, of course, plenty of opportunities for more research in this area.
Comparing spectra from samples to determine which peaks may be biomarkers
generates problems that are closely related to those considered in this paper. One
area of ongoing research is the problem of aligning spectra from two samples.
For one dimensional spectra, there are simple, computationally fast methods
for alignment that are used in practice [3,9]. The presence of coupling makes it
impossible to apply these algorithms naively in the two-dimensional case. The
algorithms that we have presented do not generalize to this problem for practical
reasons: for the spectra generated from bio-samples (as opposed to those from
a single compound) large sections of the diagonal are densely populated with
peaks, many of which are superimposed or overlapping. Hence, the generation of
the bands that can be moved independently is problematic. More sophisticated
approaches based on correlations of individual peaks such as the one proposed by
[11] are computationally too expensive to apply to 2D spectra in many settings.

456 G.-C. Lee et al.

A promising line of research for the sample alignment problem is the use of
warping techniques that were developed for image processing [10].

In this paper, we have provided such algorithms with the intention of adding to
the tools available for automated identification of compounds in NMR samples.
A large neighborhood is shown to be effective for simple local search, and is
the basis for an effective variant of reactive tabu search. However, a simple
neighborhood seems to be just as effect when the CPU allocated to the problem
is large. The most effective algorithm for short runs is provided by a hybrid
with reactive tabu search based on a large neighborhood that uses simulated
annealing with an appropriate shift neighborhood. This algorithm that makes
use of two meta-heuristics based on different neighborhoods is shown to be much
more effective than its constituents alone for such runs.

Acknowledgment

This publication was made possible in part by grant number 5 P42 ES04699
from the National Institute of Environmental Health Sciences, NIH. Its con-
tents are solely the responsibility of the authors and do not necessarily represent
the official views of the NIEHS, NIH. It is also supported by NIH grant RO1
HG003352-01A2. MRV is grateful to the Natural Environment Research Council,
UK, for an Advanced Fellowship (NER/J/S/2002/00618).

References

1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics 123, 75–102 (2002)

2. Battiti, R., Tecchiolli, G.: The Reactive Tabu Search. ORSA Journal on Comput-
ing 6, 126–140 (1994)

3. Forshed, J., Schuppe-Koistinen, I., Jacobsson, S.P.: Peak Alignment of NMR Sig-
nals by Means of a Genetic Algorithm. Analytica Chimica Acta 487, 189–199 (2003)

4. Glover, F.: Tabu Search - Part I. ORSA Journal on Computing 1, 190–206 (1989)

5. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publisher, Boston, Dor-
drecht, London (1997)

6. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Sim-
ulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning. Oper-
ations Research 37, 865–892 (1989)

7. Keeler, J.: (2002),

http://www-keeler.ch.cam.ac.uk/lectures/ understanding/chapter7.pdf

8. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Anneal-
ing. Science 220(4598), 671–680 (1983)

9. Lee, G.-C., Woodruff, D.L.: Beam Search for Peak Alignment of NMR Aignals.
Analytica Chimica Acta 513(2), 413–416 (2004)

10. Tomasi, G., van den Berg, F., Andersson, C.: Correlation Optimized Warping and
Dynamic Time Warping as Preprocessing Methods for Chromatographic Data.
Journal of Chemometrics 18, 231–241 (2004)

http://www-keeler.ch.cam.ac.uk/lectures/understanding/chapter_7.pdf
http://www-keeler.ch.cam.ac.uk/lectures/understanding/chapter_7.pdf

Heuristic Search for 2D NMR Alignment 457

11. Stoyanova, R., Nicholls, A.W., Nicholson, J.K., Lindon, J.C., Brown, T.R.: Auto-
matic alignment of individual peaks in large high-resolution spectral data set. J.
Magn. Reson. 170, 329–355 (2004)

12. Viant, M.R., Rosenblum, E.S., Tjeerdema, R.S.: NMR-Based Metabolomics: A
Powerful approach for Characterizing the Effects of Environmental Stressors on
Organism Health. Environ. Sci. Technol. 37, 4982–4989 (2003)

13. Voß, S., Fink, A.: Efficient Meta-heuristics Approaches for Ring Load Balancing. In:
Proceedings of the 9th International Conference on Telecommunication Systems,
pp. 243–250. Southern Methodist University, Dallas (2001)

14. Woodruff, D.L., Zemel, E.: Hashing Vectors for Tabu Search. Annals of OR 41,
123–137 (1993)

15. Xi, Y., de Ropp, J.S., Viant, M., Yu, P.: Automated Screening for Metabolites in
Complex Mixtures using 2D COSY NMR Spectroscopy. Metabolomics 2, 221–233
(2006)

Appendix: Experimental Results

By running 20 amino acids against two samples, we obtain 40 runs of each
algorithm. Table 1 summarizes the first set of results. The column labelled “Avg.
Obj. Val.” gives the average over the 40 runs of the objective function value found
during each. The column “Avg. CPU (sec)” gives the average execution time.
Although this paper is concerned with the optimization problem, it is useful to
examine the column labelled “Over 100” because this gives the number of amino
acids that cannot be ruled out (hence avoiding a Type I error).

Table 1. Averages for 40 Alignments by Simple Heuristics: 20 amino acids against two
abalone tissue samples

Algorithm Avg. Obj. Val. Avg. CPU (sec) Over 100

None 45.2 6
g1 49.2 0.9 8
g2 64.4 2.8 8
d1 61.8 0.7 8
d2 63.0 1.5 9

Since sa, ts, and hy are stochastic algorithms, we replicated them using 10
different seeds for the pseudo-random stream. The results with a wide variety of
parameter combinations of each algorithm are given in tables that are available
from the authors. Table 2 gives some of the results for the hybrid algorithm with
the given neighborhood.

The run with the SA parameters 16 and 0.95 was not replicated because of
the excessive run time. These parameter values are recommended by Johnson et
al., which we used to verify that sa is not as effective as hy even when given a
very long run time. The hybrid algorithm, hy was always run with a tabu tenure
of 7 and the value of SizeFactor is always 1, so the parameters given are the
aspiration method, the initial value of TabuStop and the SizeFactor.

458 G.-C. Lee et al.

Table 2. Replicated Experiments: Statistics Concerning the Averages of 10 Different
Random Seeds for 40 Alignments

Objective Val. CPU (sec)
Algorithm Avg. Std. Dev. of Avgs. Avg. Std. Dev. of Avgs.

hy a2 32 0.5 68.7 0.00 8.53 0.3
hy a1 32 0.6 68.7 0.00 9.45 0.3
hy a1 32 0.7 68.6 0.31 10.70 0.4
hy a1 64 0.5 68.7 0.00 17.47 0.2
hy a1 64 0.6 68.7 0.00 19.73 0.4
hy a1 64 0.7 68.7 0.00 22.28 0.6
hy a1 128 0.5 69.2 0.41 35.55 0.5
hy a1 128 0.6 69.4 0.35 39.50 1.0
hy a1 128 0.7 69.5 0.26 47.08 1.0
hy a1 128 0.8 69.6 0.24 56.10 1.9
hy a2 32 0.5 65.7 0.71 4.57 0.1
hy a2 32 0.6 66.0 0.00 4.53 0.1
hy a2 32 0.7 66.0 0.00 4.55 0.2
hy a2 64 0.5 67.6 0.63 6.76 0.2
hy a2 64 0.6 67.7 0.48 7.19 0.2
hy a2 64 0.7 68.0 0.00 7.81 0.2
hy a2 128 0.5 68.7 0.00 10.94 0.2
hy a2 128 0.6 68.6 0.32 11.61 0.2
hy a2 128 0.7 68.7 0.00 12.72 0.4
hy a2 256 0.5 68.7 0.00 18.82 0.7
hy a2 256 0.6 68.7 0.00 19.73 0.4
hy a2 256 0.7 68.7 0.00 21.71 0.7
hy a2 512 0.5 68.7 0.00 32.25 0.4
hy a2 512 0.6 68.7 0.00 36.71 1.1
hy a2 512 0.7 68.7 0.00 40.16 0.3
hy a1 32 0.8 68.7 0.00 12.22 0.7
hy a1 64 0.8 68.7 0.00 25.85 0.5
hy a2 64 0.8 68.0 0.00 7.76 0.2
hy a2 128 0.8 68.7 0.00 13.40 0.6
hy a1 256 0.7 69.6 0.21 85.31 1.1
hy a1 256 0.8 69.7 0.001 112.34 2.0

A New Succinct Representation of

RMQ-Information and Improvements in the
Enhanced Suffix Array�

Johannes Fischer and Volker Heun

Inst. für Informatik, Ludwig-Maximilians-Universität München
Amalienstr. 17, D-80333 München

{Johannes.Fischer,Volker.Heun}@bio.ifi.lmu.de

Abstract. The Range-Minimum-Query-Problem is to preprocess an ar-
ray of length n in O(n) time such that all subsequent queries asking for
the position of a minimal element between two specified indices can be
obtained in constant time. This problem was first solved by Berkman
and Vishkin [1], and Sadakane [2] gave the first succinct data structure
that uses 4n+ o(n) bits of additional space. In practice, this method has
several drawbacks: it needs O(n log n) bits of intermediate space when
constructing the data structure, and it builds on previous results on suc-
cinct data structures. We overcome these problems by giving the first
algorithm that never uses more than 2n + o(n) bits, and does not rely
on rank- and select-queries or other succinct data structures. We stress
the importance of this result by simplifying and reducing the space con-
sumption of the Enhanced Suffix Array [3], while retaining its capability
of simulating top-down-traversals of the suffix tree, used, e.g., to locate
all occ positions of a pattern p in a text in optimal O(|p| + occ) time
(assuming constant alphabet size). We further prove a lower bound of
2n − o(n) bits, which makes our algorithm asymptotically optimal.

1 Introduction

Given an array A of n real numbers or other elements from a totally ordered set,
a natural question is to ask for the position of a minimal element between two
specified indices l and r. Queries of this form are known under the name of range
minimum queries (RMQ), and the result is denoted by rmqA(l, r). There are sev-
eral variants of the problem, the most prominent being the one where the array is
static and known in advance, which is the issue of this article. It has been shown
by Berkman and Vishkin [1] that a preprocessing in O(n) time is sufficient to
answer all RMQs in O(1) time. This algorithm has been rediscovered and simpli-
fied by Bender and Farach-Colton [4]. The main motivation of both papers is the
strong connection between RMQs and a different fundamental algorithmic prob-
lem in trees, namely the task of computing the lowest common ancestor (LCA) of
two specified nodes in constant time, first noted by Gabow et al. [5]. They showed

� This work was partially funded by the German Research Foundation (DFG).

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 459–470, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

460 J. Fischer and V. Heun

that LCA-queries on a tree T correspond to a restricted version of RMQ on an
array that is obtained by writing down the heights of the nodes visited during
an Euler-Tour through T (the details will be explained later). The fact that the
general RMQ-problem can be reduced to an instance of LCA, which is in turn
reduced to the restricted version of RMQ, is the basis for their RMQ-algorithms.

A drawback of these methods is that, because they employ arrays of size n
that store numbers up to the computer’s word size, their space consumption is
O(n log n) bits. It has been noted that in many cases this is far from optimal,
and a flood of algorithms under the term succinct (meaning that their space
complexity is O(n) bits instead of words) has been developed, starting with
Jacobson’s succinct representation for labeled trees [6].

The only known result on succinct data structures for the RMQ-problem is due
to Sadakane [2]. His solution requires 4n+o(n) bits of space and makes heavy use
of succinct data structures for rank- and select-queries on binary sequences (see
[7]), and of succinct data structures for related problems [8]. Another drawback
is that the solution in [2] requires the intermediate construction of several labeled
trees, which use O(n log n) bits of space in the worst case.

1.1 Contributions of Our Work

We present a new succinct data structure for the RMQ-problem that uses 2n +
o(n) bits of extra space and answers range minimum queries in O(1) time. It is a
practicable and direct method, meaning that (1) at each stage of its construction
it never requires more space than the final data structure, (2) it does not rely on
any other results on succinct data structures, and (3) it is easy to implement.

As a direct application of our new storage scheme for RMQ, we show that it
leads to simplifications and improvements in the Enhanced Suffix Array (ESA)
[3], a collection of arrays which can be used as a space-conscious alternative
to the suffix tree, e.g., for locating all occ occurrences of a pattern p in a text
in optimal O(|p| + occ) time. Note that despite the significant progress that
has been made in the field of compressed indexes [7, 9], none of these indexes
achieves this time bound, even if the size |Σ| of the alphabet is assumed to be
constant. So the ESA is still the method of choice. We show that one of the
arrays from the ESA (previously occupying n logn bits) can be replaced by our
storage scheme for RMQ, thus reducing its space to 2n + o(n) bits. We further
emphasize the practicability of our method by performing tests on realistically-
sized input arrays which show that our method uses less space than the most
space-conscious non-succinct data structure [10], and that the query time is
competitive.

Finally, a lower bound of 2n− o(n) bits is shown, making our data structure
asymptotically optimal.

1.2 Applications of RMQ

We briefly sketch the most important applications of RMQ.

A New Succinct Representation of RMQ-Information and Improvements 461

Computing Lowest Common Ancestors in Trees. For a static tree T to
be preprocessed, lcaT (v, w) returns the deepest node in T that is an ancestor
of both v and w. It has been noted by Gabow et al. [5] that this problem can
be reduced to RMQ as follows: store the heights of the nodes in an array H
in the order in which they are visited during an in-order tree traversal of T .
Also, in I[j] remember the node from which the height H [j] has come. Finally,
let R be the inverse array of I, i.e., I[R[j]] = j. Then lcaT (v, w) is given by
I[rmqH(R[v], R[w])]. This is simply because lcaT (v, w) is the shallowest node
visited between v and w during the in-order tree traversal.
Computing Longest Common Extensions of Suffixes. This problem has
numerous applications in approximate pattern matching and is defined for a
static string t of size n: given two indices i and j, lcet(i, j) returns the length
of the longest common prefix of t’s suffixes starting at position i and j; i.e.,
lcet(i, j) = max{k : ti,...,i+k−1 = tj,...,j+k−1}. It is well-known that lcet(i, j)
is given LCP[rmqLCP(SA−1[i] + 1, SA−1[j])], where LCP is the LCP-array [11]
for t.
Document Retrieval Queries. The setting of document retrieval problems is
as follows: For a static collection of n text documents, on-line queries like “return
all d documents containing pattern p” are posed to the system. Muthukrishnan
[12] gave elegant algorithms that solve this and related tasks in optimal O(|p|+d)
time. The idea behind these algorithms is to “chain” suffixes from the same
document and use RMQs to ensure that each document containing p is visited
at most twice. Sadakane [2] continued this line of research towards succinctness,
again using RMQs.
Maximum-Sum Segment Queries. Given a static array A of n real numbers,
on-line queries of the form “return the sub-interval of [l, r] with the highest sum”
are to be answered; i.e., MSSQ(l, r) returns the index pair (x, y) such that (x, y) =
argmaxl≤x≤y≤r

∑y
i=x A[i]. This problem and extensions thereof have very elegant

optimal solutions based on RMQs due to Chen and Chao [13]. The fundamental
connection between RMQ and MSSQ can be seen as follows: compute an array of
prefix sums C[i] =

∑i
k=0 A[k] and prepare it for range minimum and maximum

queries. Then if C[x] is the minimum and C[y] the maximum of all C[i] in [l −
1, r] and x < y, then (x + 1, y) is the maximum-sum segment in [l, r]. The more
complicated case where x > y is also broken down to RMQs.

2 Definitions and Previous Results

The Range Minimum Query (RMQ) problem is formally defined as follows:
given an array A[0, n − 1] of elements from a totally ordered set (with order
relation “≤”), rmqA(l, r) returns the index of a smallest element in A[l, r], i.e.,
rmqA(l, r) = arg mink∈{l,...,r}{A[k]}. (The subscript A will be omitted if the
context is clear.) The most naive algorithm for this problem searches the array
from l to r each time a query is presented, resulting in a Θ(n) query time in
the worst case. As mentioned in the introduction, we consider the variant where

462 J. Fischer and V. Heun

A is first preprocessed in order to answer future queries faster. The following
definition will be central for both our algorithm and that of [1].

Definition 1. A Cartesian Tree of an array A[l, r] is a binary tree C(A) whose
root is a minimum element of A, labeled with the position i of this minimum.
The left child of the root is the Cartesian Tree of A[l, i− 1] if i > l, otherwise it
has no left child. The right child is defined analogously for A[i + 1, r].

Note that C(A) is not necessarily unique if A contains equal elements. To over-
come this problem, we impose a strong total order “≺” on A by defining A[i] ≺
A[j] iff A[i] < A[j], or A[i] = A[j] and i < j. The effect of this definition is just
to consider the ’first’ occurrence of equal elements in A as being the ’smallest’.
Defining a Cartesian Tree over A using the ≺-order gives a unique tree Ccan(A),
which we call the Canonical Cartesian Tree. Note also that this order results
in unique answers for the RMQ-problem, because the minimum under “≺” is
unique. A linear-time algorithm for constructing Ccan(A) is given in [4].

In the rest of this paper the space is analyzed in bit -complexity. For the sake
of clarity we write O(f(n) · log(g(n))) for the number of bits needed by a table,
where f(n) denotes the number of entries in the table, and g(n) is their maximal
size. For example, a normal integer array of size n which takes values up to n
uses O(n · logn) bits of space.

2.1 Berkman and Vishkin’s Algorithm

This section describes the solution to the general RMQ-problem as a combination
of the results obtained in [1,5,4]. We follow the simplified presentation from [4].
±1RMQ is a special case of the RMQ-problem, where consecutive array ele-

ments differ by exactly 1. The solution starts by reducing RMQ to ±1RMQ as
follows: given an array A[0, n − 1] to be preprocessed for RMQ, build Ccan(A).
Then perform an Euler Tour in this tree, storing the labels of the visited nodes
in an array E[0, 2n − 2], and their respective heights in H [0, 2n − 2]. Further,
store the position of the first occurrence of A[i] in the Euler Tour in a repre-
sentative array R[0, n− 1]. The Cartesian Tree is not needed anymore once the
arrays E, H and R are filled, and can thus be deleted. The paper then shows
that rmqA(l, r) = E[±1rmqH(R[l], R[r])]. Note in particular the doubling of
the input when going from A to H ; i.e., H has n′ := 2n− 1 elements.

To solve ±1RMQ on H , partition H into blocks of size log n′

2 .1 Define two
arrays A′ and B of size 2n′

log n′ , where A′[i] stores the minimum of the ith block
in H , and B[i] stores the position of this minimum in H .2 We now want to
preprocess A′ such that out-of-block queries (i.e., queries that span over sev-
eral blocks in H) can be answered in O(1). The idea is to precompute all
RMQs whose length is a power of two. For every 0 ≤ i < 2n′/ logn′ and
every 1 ≤ j ≤ log(2n′/ logn′) compute the position of the minimum in the
sub-array A′[i, i + 2j − 1] and store the result in M [i][j]. Table M occupies
1 For a simpler presentation we often omit floors and ceilings from now on.
2 Array A′ is just conceptual because A′[i] is given by H [B[i]].

A New Succinct Representation of RMQ-Information and Improvements 463

1
2 3

54

(l,r)

l r

RMQ

block−queryblock−query

in−block−query in−block−query

superblock−query

Fig. 1. How a range-minimum query rmq(l, r) can be decomposed into at most five
different sub-queries. Thick lines denote the boundaries between superblocks, thin lines
denote the boundaries between blocks.

O(2n′

log n′ log 2n′

log n′ · log 2n′

log n′) = O(n · logn) bits of space and can be filled in O(n)
time by using the formula M [i][j] = argmink∈{M [i][j−1],M [i+2j−1][j−1]}{A′[k]}.
To answer rmqA′(i, j), select two overlapping blocks that exactly cover the in-
terval [i, j], and return the position where the overall minimum occurs. Precisely,
let l = �log(j − i)	. Then rmq(i, j) = arg mink∈{M [i][l],M [j−2l+1][l]}{A′[k]}.

It remains to show how in-block-queries are handled. This is done with the
so-called Four-Russians-Trick, where one precomputes the answers to all possible
queries when the number of possible instances is sufficiently small. The authors
of [4] noted that due to the ±1-property there are only O(

√
n′) blocks to be

precomputed: we can virtually subtract the initial value of a block from each
element without changing the answers to the RMQs; this enables us to describe
a block by a ±1-vector of length 21/2 log n′−1. For each such block precompute
all 1

2
log n′

2 (log n′

2 + 1) = O(log2 n′) possible RMQs and store them in a table
P [1, 21/2 log n′−1][1, log n′

4 (log n′

2 +1)] with a total size of O(
√
n′ log2 n′·log log n′

2) =
o(n) bits. To index table P , precompute the type of each block and store it
in array T [1, 2n′

log n′]. The block type is simply the binary number obtained by
comparing subsequent elements in the block, writing a 0 at position i if H [i+1] =
H [i]+ 1 and 1 otherwise. Because tables M , E and R are of size O(n), the total
space needed is O(n · logn) bits.

Now, to answer rmq(l, r), if l and r occur in different blocks, compute (1) the
minimum from l to the end of l’s block using arrays T and P , (2) the minimum
of all blocks between l’s and r’s block using the precomputed queries on A′

stored in table M , and (3) the minimum from the beginning of r’s block to r,
again using T and P . Finally, return the position where the overall minimum
occurs, possibly employing B. If l and r occur in the same block, just answer
an in-block-query from l to r. In both cases, the time needed for answering the
query is constant.

3 Our New Algorithm

This section describes our new algorithm for the RMQ-problem. The array A
to be preprocessed is (conceptually) divided into superblocks B′

1, . . . , B
′
n/s′ of

464 J. Fischer and V. Heun

size s′ := log2+ε n, where B′
i spans from A[(i − 1)s′] to A[is′ − 1]. Here, ε is

an arbitrary constant greater than 0. Likewise, A is divided into (conceptual)
blocks B1, . . . , Bn/s of size s := logn/(2 + δ). Again, δ > 0 is a constant. For
the sake of simplicity we assume that s′ is a multiple of s. We will preprocess
long queries by a two-level step due to Sadakane [8], and short queries will be
precomputed by a combination of the Four-Russians-Trick (as presented in [15])
with the method from [10]. The general idea is that a query from l to r can
be divided into at most five sub-queries (see also Fig. 1): one superblock-query
that spans several superblocks, two block-queries that span the blocks to the left
and right of the superblock-query, and two in-block-queries to the left and right
of the block-queries. From now on, we assume that the ≺-relation is used for
answering RMQs, such that the answers become unique.

3.1 A Succinct Data Structure for Handling Long Queries

We first wish to precompute the answers to all RMQs that span over at least one
superblock. Define a table M ′[0, n/s′−1][0, log(n/s′)]. M ′[i][j] stores the position
of the minimum in the sub-array A[is′, (i+2j)s′−1]. As in Sect. 2.1, M ′[i][0] can
be filled by a linear pass over the array, and for j > 0 we use a dynamic program-
ming approach by setting M ′[i][j] = arg mink∈{M ′ [i][j−1],M ′[i+2j−1][j−1]}{A[k]}.

In the same manner we precompute the answers to all RMQs that span over
at least one block, but not over a superblock. These answers are stored in a table
M [0, n/s−1][0, log(s′/s)], where M [i][j] stores the minimum of A[is, (i+2j)s−1].
Again, dynamic programming can be used to fill table M in optimal time.

3.2 A Succinct Data Structure for Handling Short Queries

We now show how to store all necessary information for answering in-block-
queries in a table P .

Theorem 1 ([15]). Let A and B be two arrays, both of size s. Then rmqA(l, r) =
rmqB(l, r) for all 0 ≤ l ≤ r < s if and only if Ccan(A) = Ccan(B). ��

It is well known that the number of binary trees with s nodes is Cs, where
Cs is the s’th Catalan Number defined by Cs = 1

s+1

(
2s
s

)
= 4s/(

√
πs3/2)(1 +

O(s−1)). Because the Cartesian tree is a binary tree, this means that table P
does not have to store the in-block-queries for all n/s occurring blocks, but only
for 4s/(

√
πs3/2)(1+O(s−1)) possible blocks. We use the method described in [10]

to represent the answers to all RMQ-queries inside one block.

Computing the Block Types. In order to index table P , it remains to show
how to fill array T ; i.e., how to compute the types of the blocks Bi occurring in
A in linear time. Thm. 1 implies that there are only Cs different types of arrays
of size s, so we are looking for a surjection

t : As → {0, . . . , Cs − 1}, and t(Bi) = t(Bj) iff Ccan(Bi) = Ccan(Bj) , (1)

A New Succinct Representation of RMQ-Information and Improvements 465

Input: block Bj

Output: t(Bj), the type of Bj

let R[0, s − 1] be an array1

R[0] ← −∞2

q ← s, N ← 03

for i ← 1, . . . , s do4

while R[q + i − s − 1] > Bj [i − 1]5

do
N ← N + C(s−i)q6

q ← q − 17

end8

R[q + i − s] ← Bj [i − 1]9

end10

return N11

Fig. 2. An algorithm to compute the type
of a block

aba

ba
baa

$

$

$
a
$

b
a
a
$

7

6 1 4 2

b$

a
$

ba
a
$

8

5 3

8 7 6 1 4 2 5 3
0 1 2 1 3 0 2

1 2 3 4 5 6 7 8

a
v

yx

1
SA=

LCP= −

Fig. 3. The suffix tree (top) and the suffix-
and LCP-array (bottom) for string t =
aababaa$

where As is the set of arrays of size s. The reason for requiring that Bi and
Bj have the same Canonical Cartesian Tree is given by Thm. 1 which tells us
that in such a case both blocks share the same RMQs. The algorithm in Fig.
2 shows how to compute the block type directly. It makes use of the so-called
ballot numbers Cpq , defined by

C00 = 1, Cpq = Cp(q−1) +C(p−1)q, if 0 ≤ p ≤ q �= 0, and Cpq = 0 otherwise. (2)

The basic idea of the algorithm in Fig. 2 is that it simulates a walk in a certain
graph, as explained in [15].

Theorem 2 ([15]). The algorithm in Fig. 2 computes a function satisfying the
conditions given in (1) in O(s) time. ��

3.3 Space Analysis

Table M ′ has dimensions n/s′ × log(n/s′) = n/ log2+ε n × log(n/ log2+ε n) and
stores values up to n; the total number of bits needed for M ′ is therefore
n/ log2+ε n × log(n/ log2+ε n) · logn = o(n). Table M has dimensions n/s ×
log(s′/s) = (2 + δ)n/ logn × log((2 + δ) log1+ε n). If we just store the offsets of
the minima then the values do not become greater than s′; the total number of
bits needed for M is therefore O(n/ logn× log(log1+ε n) · log(log2+ε n)) = o(n).
To store the type of each block, array T has length n/s = (2 + δ)n/ logn, and
because of Thm. 1 the numbers do not get bigger than O(4s/s3/2). This means
that the number of bits to encode T is
n

s
· log(O(4s/s3/2)) =

n

s
(2s−O(log s)) = 2n−O(n/ logn log logn) = 2n− o(n) .

466 J. Fischer and V. Heun

Finally, by Sect. 3.2, and as [10] allows to store all queries inside of one block in
O(s · s) bits, table P can be stored in

O

(
4s

s3/2
s · s

)

= O
(
n2/(2+δ)

√
logn

)
= O

(
n1− 1

2/δ+1
√

logn
)

= o(n/ logn)

bits. Thus, the total space needed is 2n + o(n) bits. It is interesting that the
leading term (2n) comes from table T , i.e., from remembering the type of all
blocks occurring in A. One can wonder if this is really necessary. The following
theorem says that, asymptotically, one cannot do better than this, provided
that the array is only used for minimum evaluations. To model this situation,
we introduce the so-called min-probe model, where we only count evaluations of
argmin{A[i], A[j]}, and all other computations and accesses to additional data
structures (but not to A) are free (note the analogy to the cell-probe model [16]).

Theorem 3. For an array A of size n one needs at least 2n− o(n) additional
bits to answer rmqA(l, r) in O(1) for all 0 ≤ l ≤ r < n in the min-probe model.

Proof. Let DA be the additional data structure. To evaluate rmqA(l, r) in O(1),
the algorithm can make O(k) argmin-evaluations (constant k). The algorithm’s
decision on which i ∈ [l, r] is returned as the minimum is based on the outcome
of the K := 2k possible outcomes of these argmin-evaluations, and possibly other
computations in DA. Now suppose there are less than Cn/(K +1) different such
DA’s. Then there exists a set {A0, . . . , AK} of K + 1 arrays of length n with
DAi = DAj for all i, j, but with pairwise different Cartesian Trees. Because the
algorithm can return different answers for at most K of these arrays, for at least
two of them (say Ax and Ay) it gives the same answer to rmq(l, r) for all l, r.
But Ax and Ay have different Cartesian trees, so there must be at least one pair
of indices l′, r′ for which rmqAx

(l′, r′) �= rmqAy
(l′, r′). Contradiction. So there

must be at least Cn/(K + 1) different choices for DA; thus the space needed to
represent DA is at least log(Cn/(K + 1)) = 2n− o(n)−O(1) bits. ��

4 Improvements in the Enhanced Suffix Array

Suffix trees are a very powerful tool for many tasks in pattern matching. Because
of their large space consumption, a recent trend in text indexing tries to replace
them by adequate array-based data structures. Kasai et al. [17] showed how
algorithms based on a bottom-up traversal of a suffix tree can be simulated
by a parallel scan of the suffix- and LCP-array. The Enhanced Suffix Array
(ESA) [3] takes this approach one step further by also being capable of simulating
top-down traversals of the suffix tree. This, however, requires the addition of
another array to the suffix- and LCP-array, the so-called child-table. Essentially,
the child table captures the information on how to move from an internal node
to its children. This table requires O(n) words (or O(n · logn) bits). We show
in this section that the RMQ-information on the LCP-array can be used as an
alternative representation of the child-table, thus reducing the space requirement

A New Succinct Representation of RMQ-Information and Improvements 467

to O(n/ logn) words (precisely, to 2n+ o(n) bits). Note that our representation
is not only less space-consuming than [3], but also much simpler. Throughout
this section, t is a text of length n.

4.1 Enhanced Suffix Arrays

In its simplest form, the ESA consists of the suffix- and LCP-array for t. The
basic idea of the ESA is that internal nodes of the suffix tree correspond to
certain intervals (so-called �-intervals) in the LCP-array (recall the definition of
SA and LCP in Sect. 1.2):

Theorem 4 ([3]). Let T , SA, LCP be t’s suffix tree, suffix- and LCP-array,
respectively. Then the following is equivalent:

1. There is an internal node in T representing a sub-word φ of t.
2. There exist 1 ≤ l < r ≤ n s.t. (a) LCP[l] < |φ| and LCP[r + 1] < |φ|, (b)

LCP[i] ≥ |φ| for all l < i ≤ r and φ = tSA[q]..SA[q]+|φ|−1, and (c) ∃ q ∈
{l + 1, . . . , r} with LCP[q] = |φ|.

The pair of indices satisfying point 2 of the above theorem are said to form
a |φ|-interval [l : r] (denoted as |φ|-[l : r]), and each position q satisfying (c) is
called a |φ|-index. For example, in the tree in Fig. 3, node v corresponds to the
1-interval [2:6] in LCP and has 1-indices 3 and 5.

Let �-[l :r] be any such interval, corresponding to node v in T . Then if there
exists an �′ > � such that there is an �′-interval [l′ :r′] contained in [l :r], and no
super-interval of [l′ :r′] has this property, then �′-[l′ :r′] corresponds to an inter-
nal child of v in T . E.g., in Fig. 3, the two child-intervals of 1-[2 :6] representing
internal nodes in T are 2-[3 : 4] and 3-[5 : 6], corresponding to nodes x and y. The
connection between �-indices and child-intervals is as follows [3, Lemma 6.1]:

Lemma 1. Let [l :r] be an �-interval. If i1 < i2 < · · · < ik are the �-indices in
ascending order, then the child intervals of [l :r] are [l :i1 − 1], [i1 :i2], . . . , [ik :r].
(Singleton intervals are leaves!)

With the help of Lemma 1 it is possible to simulate top-down traversals of the
suffix tree: start with the interval 0-[1 :n] (representing the root), and at each
interval calculate the child-intervals by enumerating their �-indices. To find the
�-indices in constant time, the authors of [3] introduce a new array C[1, n], the
so-called child-table, occupying n logn bits of space.

4.2 An RMQ-based Representation of the Child-Table

The following lemma is the key to our new technique:

Lemma 2. Let [l : r] be an �-interval. Then its �-indices can be obtained in
ascending order by i1 = rmqLCP(l + 1, r), i2 = rmqLCP(i1 + 1, r), . . . , as long as
LCP[rmqLCP(ik + 1, r)] = �.

468 J. Fischer and V. Heun

Input: pattern p = p1..m to be found in t
Output: interval of p in SA or negative answer

c ← 0, found ← true, l ← 1, r ← n1

repeat2

[l, r] ← getChild(l, r, pc+1)3

if [l : r] = ∅ then return “not found”4

if l = r then M ← m5

else M ← min{LCP[rmqLCP(l + 1, r)], m}6

found ← (pc+1..M−1 = tSA[l]+c..SA[l]+M−1)7

c ← M8

until l = r ∨ c = m ∨ found = false9

if found then return [l : r]10

else return “not found”11

function getChild (l, r, a)11

rold ← r12

r ← rmqLCP(l + 1, rold)13

� ← LCP[r]14

repeat15

if tSA[l]+� = a then16

return [l : r − 1]17

end18

l ← r19

r ← rmqLCP(l + 1, rold)20

until l = rold ∨ LCP[r] > �21

if tSA[l]+� = a then22

return [l : rold]23

else return ∅24

Fig. 4. How to locate a pattern of length m in a text in O(m) time

Proof. Because of point 2(b) in Thm. 4, the LCP-values in [l + 1:r] cannot be
less than �. Thus any position in this interval with a minimal LCP-value must be
an �-index of [l :r]. On the other hand, if LCP[rmqLCP(ik + 1, r)] > � for some k,
then there cannot be another �-index in [ik + 1:r]. Because RMQ always yields
the position of the leftmost minimum if this is not unique, we get the �-indices
in ascending order. ��

With Lemma 1 this allows us to compute the child-intervals by preprocessing
the LCP-array for RMQ. As an example, we can retrieve the 1-indices of 1-
[2 :6] as i1 = rmqLCP(3, 6) = 3 giving interval [2 :2] (corresponding to leaf 7 in
Fig. 3), i2 = rmqLCP(4, 6) = 5 giving [3:4] (corresponding to node x). Because
LCP[rmqLCP(6, 6)] = LCP[6] = 3 > 1, there are no more 1-indices to be found,
so the last child-interval is [5:6] (corresponding to y).

Theorem 5. Any algorithm based on a top-down traversal of a suffix tree can
be replaced by data structure using |SA|+4n+o(n) bits without affecting its time
bounds, where |SA| denotes the space consumed by the suffix array.

Proof. With Lemmas 1 & 2, preparing the LCP-array for RMQ is enough for
retrieving the child-intervals. Because of Thm. 3, this requires 2n+ o(n) bits. [8]
has shown that the LCP-array can be stored in 2n + o(n) bits as well, while
retaining constant access to LCP[i]. With Thm. 4, the claim follows. ��

4.3 Application to Pattern Matching

For a given pattern p of length m, the task is to answer in O(m) time whether p is
a substring of t, and to locate all occ occurrences of p in O(m+occ) time. With a
plain suffix array these time bounds cannot be achieved (they are O(m log n) and
O(m log n+occ), respectively). Note that the ESA is still the method of choice for
this task, as all known compressed indexes [7,9] have asymptotic worse matching
or locating times, even for the alphabet size |Σ| being a constant.

A New Succinct Representation of RMQ-Information and Improvements 469

The algorithm to locate a pattern p is shown in Fig. 4. The invariant of the
algorithm is that found is true if p1..c occurs in t and has the interval [l :r] in
SA. In each step of the loop, method getChild(l, r, a) is used to find the sub-
interval of [l :r] that stores the suffixes having p1..c+1 as a prefix. This is done
exactly as described in Sect. 4.2. Because |Σ| is a constant, function getChild
takes constant time. (Note that for large |Σ| ∈ ω(logn) one would actually drop
back to binary search, so even for large alphabets getChild never takes more
than O(log n) time.) The if-statement in lines 5–6 distinguishes between internal
nodes (l > r) and leaves (l = r). The actual pattern matching is done in line 7
of the algorithm. Because c is increased by at least 1 in each step of the loop,
the running time of the whole algorithm is O(m).

To retrieve all occ occurrences of p, get p’s interval [l :r] in SA by the method
explained above, and then return the set of positions {SA[l], SA[l+1], . . . , SA[r]}.
This takes O(occ) additional time.

5 Implementation Details

We implemented the algorithm from Sect. 3 in C++ (available at the first au-
thor’s home page). A good trade-off between time and space is to fix the block
size s to 23 and the superblock size s′ to 28, and to introduce an “intermediate”
block-division of size s′′ = 24. As the intermediate blocks consist of two blocks of
size s, their RMQs can be answered with two look-ups to table P , and therefore
do not have to be stored at all. The advantage of this intermediate layer is that
it reduces the space of table M ′. In total, our implementation uses 7

8n bytes.
We compared our algorithm with the most space-conscious algorithm for RMQ

due to Alstrup et al. [10], which uses only 2n + o(n) additional words of space.
We could not compare with the succinct method [2] because it is not yet publicly
available. We performed some tests on random arrays of length up to n = 227 ≈
1.34× 106 (i.e., the array uses space up to 227 × 4 = 229 = 512MB). We found
that our method is not only much less space consuming than [10] (by a factor
of ≈ 8), but also faster in constructing the index (by a factor of ≈ 2.5). This
shows that the extra work from Sect. 3 pays off. The query time for short queries
(logn/2) is about the same for both methods (with a slight advantage for our
method), whereas for long queries (n/100) our method is slowed down by only
a factor of two, which can be coped with given the reduction in space.

6 Conclusions

We have presented a direct and easy-to-implement data structure for constant-
time RMQ-retrieval that uses 2n+o(n) bits of additional space, which is asymp-
totically optimal. This led to direct improvements in the Enhanced Suffix Array.
Tests confirmed the practical utility of our method. We finally note that our
algorithm is also easy to implement on PRAMs (or real-world shared-memory
machines), where with n/t processors the preprocessing runs in time Θ(t) if
t = Ω(logn), which is work-optimal.

470 J. Fischer and V. Heun

References

1. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J.
Comput. 22(2), 221–242 (1993)

2. Sadakane, K.: Space-efficient data structures for flexible text retrieval systems.
In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 14–24. Springer,
Heidelberg (2002)

3. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

4. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94
(2005)

5. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. of the ACM Symp. on Theory of Computing, pp. 135–143.
ACM Press, New York (1984)

6. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554.
IEEE Computer Society Press, Los Alamitos (1989)

7. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
(to appear, 2007) Preliminary version available at
http://www.dcc.uchile.cl/∼gnavarro/ps/acmcs06.ps.gz

8. Sadakane, K.: Succinct representations of lcp information and improvements in the
compressed suffix arrays. In: Proc. SODA, ACM/SIAM, pp. 225–237 (2002)

9. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems (to appear, 2007), Preliminary version available at
http://tcslab.csce.kyushu--u.ac.jp/∼sada/papers/cst.ps

10. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: A
survey and a new distributed algorithm. In: Proc. SPAA, pp. 258–264. ACM Press,
New York (2002)

11. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

12. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
SODA, ACM/SIAM, pp. 657–666 (2002)

13. Chen, K.-Y., Chao, K.-M.: On the range maximum-sum segment query problem.
In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 294–305.
Springer, Heidelberg (2004)

14. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM J.
Comput. 14(4), 862–874 (1985)

15. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

16. Yao, A.C.-C.: Should tables be sorted? J. ACM 28(3), 615–628 (1981)
17. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-

common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

http://www.dcc.uchile.cl/~gnavarro/ps/acmcs06.ps.gz
http://tcslab.csce.kyushu--u.ac.jp/~sada/papers/cst.ps

Lagrangian Relaxation and Cutting Planes for

the Vertex Separator Problem�

Victor F. Cavalcante and Cid C. de Souza

Institute of Computing, State University of Campinas, C.P. 6176, 13084-970
Campinas, SP, Brazil

{victor.cavalcante,cid}@ic.unicamp.br

Abstract. In this paper we propose an algorithm for the vertex sep-
arator problem (VSP) based on Lagrangian Relaxation and on cutting
planes derived from valid inequalities presented in [3]. The procedure is
used as a preprocessing for the branch-and-cut (B&C) algorithm imple-
mented for VSP in [12], aiming to generate an initial pool of cutting
planes and a strong primal bound for the latter. Computational experi-
ments show that the exact method obtained in that way outperforms the
pure B&C algorithm recently introduced by de Souza and Balas in [12].
Besides, we show that the Lagrangian phase is a very effective heuristic
for the VSP, often producing optimal solutions extremely fast.

1 Introduction

A vertex separator in an undirected graph is a subset of the vertices, whose
removal disconnects the graph in at least two nonempty connected components.
Recently, Balas and de Souza [3,12] studied the vertex separator problem (VSP)
which can formally be stated as follows.

INSTANCE: a connected undirected graph G = (V,E), with |V | = n, an integer
1 ≤ b ≤ n and a cost ci associated with each vertex i ∈ V .

PROBLEM: find a partition of V into disjoint sets A,B,C, with A and B nonempty,
such that (i) E contains no edge (i, j) with i ∈ A, j ∈ B, (ii) max{|A|, |B|} ≤ b,
(iii)

∑
j∈C cj is minimized.

The sets A and B are called the shores of the separator C. A separator C that
satisfies (i) but violates (ii) is termed infeasible; one that satisfies (i) and (ii) is
feasible; and a separator that satisfies (i), (ii), (iii) is optimal. Unless otherwise
specified, the term separator is used here to denote a feasible one. The VSP is
NP-hard and has widespread applicability in network connectivity. We refer to
[3] for further discussion on applications, including one in Linear Algebra.

Based on the Integer Programming (IP) model and the strong valid inequal-
ities introduced by Balas and de Souza, we propose an algorithm that com-
bines Lagrangian relaxation with cutting plane techniques to solve the VSP.
Our method belongs to a class of Lagrangian Relaxation algorithms where con-
straints of certain families of inequalities may only be explicitly dualized when
� Research supported by grants CNPq-307773/2004-3 and FAPESP-03/09925-5.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 471–482, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

472 V.F. Cavalcante and C.C. de Souza

they become violated at some Lagrangian relaxation solution (see [5,6,8,10]).
These so-called Relax-and-Cut (R&C) algorithms appear as a promising alter-
native approach to strengthen Lagrangian relaxation bounds.

Related Work. Relax-and-Cut algorithms are presented in several recent works
in literature [5,6,7,8,9,10]. These algorithms use a dynamic inequality dualization
scheme that renders viable the application of Lagrangian Relaxation to models
with an exponential number of inequalities. Indeed, a similar approach for the
traveling salesman problem [1] date from the early 80’s.

The VSP described in this paper was first defined in [3] by Balas and de
Souza were a polyhedral investigation of the VSP is conducted. They introduced
several classes of strong valid inequalities for the polytope associated to the
problem. The same authors reported extensive computational experiments with
a branch-and-cut (B&C) algorithm based on these inequalities in [12]. A similar
problem is discussed in [11] by Borndörfer et al. This problem can be considered
a generalization of the VSP in the sense that the partitioning can be done in
more than two sets of vertices. However, contrarily to the VSP, solutions where
one of the shores remains empty are allowed.

Our contribution. The contribution of this paper is twofold and is related
to the different usages we made of the R&C algorithm. First, we consider the
performance of the B&C algorithm developed in [12] when the R&C is used
as a preprocessing phase. We found out that the resulting method is a very
powerful technique to tackle hard instances of VSP, outperforming the pure B&C
algorithm in most of the benchmark instances. Thus, our algorithm can be viewed
as the best exact method available so far for the VSP. Also, the R&C algorithm
can be used as a heuristic for the VSP. We show that it produces solutions of
very high quality for the problem, often optimal ones. Besides, our Lagrangian
heuristic is much faster than the Linear Programming heuristic proposed in [12].

The paper is organized as follows. Section 2 presents the results in [3,12]
that are relevant to our work, namely, an IP formulation of VSP and a class
of valid inequalities used as cutting planes in the R&C algorithm. Section 3
briefly reviews the Lagrangian relaxation technique and the subgradient method
(SM). A general description of the R&C framework is also given and the specific
algorithm we developed for the VSP is described in section 4, including details of
our Lagrangian heuristic for the problem. Section 5 reports on the computational
results obtained for test instances gathered from the literature. Finally, in section
6, we draw some conclusions and discuss possible extensions of this study.

2 An IP Model for VSP and a Class of Valid Inequalities

We now describe the mixed IP model presented in [3,12] on which our Lagrangian
relaxation is based. For every vertex i ∈ V , two binary variables are defined:
ui1 = 1 if and only if i ∈ A and ui2 = 1 if and only if i ∈ B . For S ⊆ V and
k ∈ {1, 2}, let uk(S) denote

∑
(uik : i ∈ S), and u(S) = u1(S) + u2(S). An IP

formulation for the VSP is given by

Lagrangian Relaxation and Cutting Planes 473

max
∑

i∈V

ci(ui1 + ui2)

ui1 + ui2 ≤ 1, ∀ i ∈ V (1)

ui1 + uj2 ≤ 1, uj1 + ui2 ≤ 1, ∀ (i, j) ∈ E (2)

u1(V) ≥ 1, (3)

u2(V) ≤ b, (4)

u1(V)− u2(V) ≤ 0, (5)

ui2 ≥ 0, ui1 ∈ {0, 1}, ∀ i ∈ V. (6)

Inequality (1) forces every vertex to belong to at most one shore. Inequalities
(2) prohibits the extremities of an edge to be on distinct shores. Inequalities (3)
to (5) limit the size of the shores and, at the same time, reduce the symmetry of
the model by forcing the size of shore A to be bounded by that of shore B. As
observed in [12], if the ui1 variables are integer for all i ∈ V , the integrality of the
u2 variables can be dropped from the formulation. Though this observation is
not taken into account by our Lagrangian relaxation, it is relevant for IP solvers.

Balas and de Souza [3] call a valid inequality for VSP symmetric if, for all j ∈ V ,
the coefficients of the variables uj1 and uj2 in the inequality are the same. Besides,
they show that vertex separators are intimately related to vertex dominators. A
vertex dominator is a subset of vertices of the graph such that all the remaining
vertices are adjacent to at least one of them. The dominator is said to be con-
nected if the subgraph induced by its vertices is connected. Balas and de Souza
then stated the following property: every separator and every connected domina-
tor have at least one vertex in common. From this observation, they derived a class
of symmetric inequalities associated with connected dominators, the so-called CD
inequalities. If S ⊂ V is a connected dominator, the CD inequality for S is given by

u(S) ≤ |S| − 1. (7)

Inequality (7) is clearly valid for the VSP polytope P , where P = conv{u ∈
{0, 1}2|V | : u satisfies (1)–(6)}. It is non dominated only if S is minimal (with
respect to vertex removal). However, necessary and sufficient conditions for CD
inequalities to define facets are not known in general. But, in [12], they are shown
to be very effective in computations.

According to [12], for unit costs, one can adapt the separation routine to
search for more stringent CD inequalities. These inequalities are valid for all
vectors u ∈ P satisfying u(V) ≥ zLB + 1, but chop off several feasible solutions
with smaller costs. Their usage preserves optimality and is conditioned to the
existence of a lower bound zLB. We call them conditional cuts, in an analogy
to what is done for the set covering problem in [2]. For the VSP, these cuts are
obtained computing α = max{zLB−b+1, 1} and searching minimal dominators

474 V.F. Cavalcante and C.C. de Souza

that cover at least k = |V | − α + 1 vertices (k-dominators). Thus, given a lower
bound zLB for the optimum, the separation routine can be changed to identify
minimal connected dominators that cover at least k vertices. Conditional cuts
are used both in the B&C algorithm in [12] and in our implementation.

3 Relax-and-Cut (R&C) Algorithms

We now review the basics on Lagrangian relaxation and relax-and-cut algorithms
that are relevant to us. Denote by X a subset of Bn = {0, 1}n and let

Z = max {cx : Ax ≤ b, x ∈ X} (8)

be a formulation for a NP-hard combinatorial optimization problem. In asso-
ciation with (8) one has b ∈ Rm, c ∈ Rn and A ∈ Rm×n, where m and n are
positive integral values representing, respectively, the number of constraints and
the number of variables involved. Assuming that m is an exponential function
of n, let Z ′ denote the formulation obtained after removing constraints Ax ≤ b
from (8). Also, assume that Z ′ can be solved in polynomial or pseudo-polynomial
time in the problem size.

A Lagrangian relaxation of (8) is obtained by bringing the term λ(b − Ax)
into the objective function of Z ′, where λ ∈ Rm

+ is the corresponding vector of
Lagrange multipliers. The resulting Lagrangian relaxation Problem (LRP) is

Z(λ) = max {cx + λ(b −Ax) : x ∈ X} = max {(c− λA)x + λb : x ∈ X}. (9)

It is a known fact that Z(λ) ≥ Z and, therefore, the tightest possible upper
bound on Z, attainable through LRP (λ), is given by an optimal solution to the
Lagrangian dual problem (LDP) ZD = minλ∈R

m
+
{max {(c−λA)x+λb : x ∈ X}}.

In the literature, several methods exist to compute the LDP. Among these, due
to its simplicity and the acceptable results it returns, the subgradient method
(SM) is the most widely used [4]. A brief review of that method follows since
the R&C algorithm we suggest here for the VSP is deeply based on SM.

SM is an iterative algorithm which solves a succession of LRPs like the one in
(9). It starts with a feasible vector λ0 of Lagrangian multipliers and, at iteration
k, generates a new feasible vector λk of multipliers and an associated LRP.

At iteration k, let x̄k be an optimal solution to (9) with cost Z(λk) and let
Zk

LB be a known lower bound on (8). An associated subgradient vector (for the
m relaxed constraints) is then computed as gk

i = (bi − aix̄
k), i = 1, 2, . . . ,m.

That vector is then used to update λk. To that order, a step size θk must be
computed first. Typically, for a real valued parameter πk ∈ (0, 2], formula

θk =
πk(Z(λk)− Zk

LB)
∑m

i=1(g
k
i)2

(10)

is used [4]. Finally, once θk is obtained, λk is updated as

λk+1
i = max {0;λk

i − θkgk
i }, i = 1, 2, . . . ,m. (11)

Lagrangian Relaxation and Cutting Planes 475

Notice that the straightforward use of formulas (10-11) may become troublesome
when a huge number of dualized inequalities exist. An alternative is then to
modify SM according to the R&C scheme discussed below.

In the literature two strategies to implement R&C algorithms are discussed.
They differ, basically, on the moment at which the new inequalities are dualized.
In a Delayed Relax-and-Cut (DRC), several executions of SM are made and the
cuts found during one such execution are added only at the beginning of the next
one. In a Non Delayed Relax-and-Cut (NDRC), typically a single SM run is done
and cuts are dualized along the iterations as they are found. See [5,6,8,9,10] for
details. In a comparison carried out in [9], NDRC performed better than DRC.
Therefore, in our implementation, we adopt the NDRC strategy.

Clearly, if there are exponentially many inequalities in (8), the use of tra-
ditional Lagrangian relaxation becomes impracticable. Alternatively the R&C
scheme proposes a dynamic strategy to dualize inequalities. In this process, one
should be able to identify inequalities that are violated at x̄k. To do so, likewise
polyhedral cutting-plane generation, a separation problem must be solved at ev-
ery iteration of SM. Thus, one tries to find at least one inequality violated by
the current LRP solution. The inequalities thus identified are candidates to be
dualized. It is worth noting that separation problems arising in R&C algorithms
may be easier than their polyhedral cutting-plane algorithm counterparts. That
applies since LRP normally has integral valued solutions (cf. [10]).

4 A Relax-and-Cut Algorithm for the VSP

Different Lagrangian relaxations can be devised from the formulation given in
Section 2. We decided to start with a simple one in which the constraint sets (1)
and (2) are dualized by means of the vector multipliers λ ∈ R|V |

+ , β1 ∈ R|E|
+ and

β2 ∈ R|E|
+ , respectively. The resulting LRP is given by

LRP(λ, β1, β2) = max {
∑

i∈V

(c̄i1ui1 + c̄i2ui2 + λi) +
∑

(i,j)∈E
i<j

(β1
i,j + β2

i,j) :

ukl, k ∈ V, l = 1, 2 satisfy (3)–(6)}
(12)

where c̄k1 =ck−λk−
∑

(k,j)∈E
k<j

β1
k,j−

∑
(i,k)∈E

i<k

β2
i,k and c̄k2 = ck−λk−

∑
(i,k)∈E

i<k

β1
i,k−

∑
(k,j)∈E

k<j

β2
k,j are the Lagrangian costs of, respectively, uk1 and uk2. Notice that

(12) can be solved in O(|V | log |V |) time by sorting the variables according to
their Lagrangian costs and after performing a few simple calculations.

On the other hand, the computation of good primal bounds is important for
the computation of the step size (10) in the SM and to assess the duality gap
along the iterations of the algorithm. To compute lower bounds for the VSP,
we devise a simple greedy heuristic. Initially, the set L containing the vertices
that are candidates to be part of the shores is built. This excludes the universal
vertices (those which are adjacent to all other vertices) since, obviously, they
must be in all separators. The heuristic chooses arbitrarily two nonadjacent

476 V.F. Cavalcante and C.C. de Souza

vertices of L and assigns them to different shores so that, in the end, they
will not be empty. It proceeds by assigning vertices to shores, prioritizing the
assignments corresponding to the variables with higher weighted Lagrangian
costs. The weighting method, chosen after some experimentation, is implemented
by multiplying the original cost of the variable associated to a vertex v by the
degree of v (δ(v)), as seen in step 5. All the assignments are made so as to
maintain the compatibility and to respect the maximum size of the shores. As
a final step, a local search subroutine is ran in an attempt to improve on the
solution produced by the heuristic. These steps are summarized below.

Lagrangian heuristic (G = (V, E), c)
1. L ← V \{universal vertices in G};
2. v ← {any vertex in L};
3. Initialize shore A: A ← {v} and L ← L\{v};
4. Initialize shore B: B ← {first vertex in L\Adj(v)} and L ← L\B;
5. for k = 1, 2 do:

for all i ∈ L, compute wuik ← c̄(uik) ∗ δ(i);
Let Sk be the list of variables uik sorted nonincreasingly by wuik ;

6. while |A| < b or |B| < b do
f1 ← {vertex corresponding to the first variable in S1};
f2 ← {vertex corresponding to the first variable in S2};
if c̄(uf1,1) > c̄(uf2,2) then

A ← A ∪ {f1}; S1 ← S1\{uf1,1};
for all j ∈ Adj(f1) do S2 ← S2\{uj,2};

else
B ← B ∪ {f2}; S2 ← S2\{uf2,2};
for all j ∈ Adj(f2) do S1 ← S1\{uj,1};

if |A| = b, c̄(uf1,1) ← −∞; /* avoids new vertices in A */
if |B| = b, c̄(uf2,2) ← −∞; /* avoids new vertices in B */

7. Compute the separator: C ← V \{A ∪ B}
8. Local Search(G, A, B, C, c)
9. return (A, B, C)

We now turn to the improvement heuristic. The local search starts by enlarg-
ing the separator with as many vertices of the shores belonging to its adjacency
as possible (steps 1–5). Then vertices are transferred from the separator back to
the shores in step 6 in an arbitrary order. However, the choice of the destination
shore is made so as to increase the chances of future moves from the separator
to the shores. This is evaluated via the simple computations in steps 6.i to 6.m.
The overall complexity of the Lagrangian heuristic, including the local search
procedure, is O(|V | log |V |+ |E|).

Local Search (G, A, B, C, c) (initializations)
1. Let AC be the vertices in A that have neighbors in C;

2. Let BC be the vertices in B that have neighbors in C;

3. if A = AC then AC ← AC\{arbitrarily chosen vertex of A};
4. if B = BC then BC ← BC\{arbitrarily chosen vertex of B};
5. A′ ← A\AC ; B′ ← B\BC ; C′ ← C ∪ AC ∪ BC ;

Lagrangian Relaxation and Cutting Planes 477

Local Search (G, A, B, C, c) (main loop)
6. for every vertex v ∈ C′ do:

6.a if |A′| = b and |B′| = b then break;

6.b if |Adj(v) ∩ A′| �= ∅ and |Adj(v) ∩ B′| �= ∅, then continue;

6.c C′ ← C′\{v};
6.d if Adj(v) ⊂ C′ then

6.e if |A′| = b then B′ ← B′ ∪ {v};
6.f else

6.g if |B′| = b then A′ ← A′ ∪ {v};
6.h else

6.i nA ← 0; nB ← 0;

6.j for all w ∈ Adj(v) do

6.k nA ← nA + |Adj(w) ∩ A|; nB ← nB + |Adj(w) ∩ B|;
6.l if nA > nB then A′ ← A′ ∪ {v};
6.m else B′ ← B′ ∪ {v};
6.n else

6.o if Adj(v) ⊂ A′ ∪ C′ and |A′| < b then A′ ← A′ ∪ {v};
6.p else /* Adj(v) ⊂ B′ ∪ C′ */

6.q if |B′| < b then B′ ← B′ ∪ {v};
7. if

�
i∈C ci >

�
i∈C′ ci then A ← A′, B ← B′, C ← C′.

Another ingredient of our R&C algorithm is a fast separation routine that
looks for violated CD inequalities at ū = (ū1, ū2), the optimal solution of the
current LRP in (12). A high level description of our procedure is given below
where, for any S ⊂ V , Adj(S) refers to the set of all vertices in V \S which
are adjacent to at least one vertex in S. The routine starts by constructing the
subgraph Gū = (W,F) of the input graph G = (V,E) which is induced by the
vertices i ∈ V with ūi1 + ūi2 ≥ 1. It is easy to see that, if W is a dominator
and Gū is connected then the CD inequality associated to W is violated by ū.
Unfortunately, the converse is not true in general but holds when constraints
(1) are satisfied. Thus, our routine can be viewed as a heuristic. Step 5 of the
algorithm tries to strengthen the inequality since the minimality of the dominator
is a necessary condition for a CD inequality to be facet defining. It checks if the
removal of a limited number of vertices preserves the connectedness of the graph
induced by W and the dominance property. Clearly, in this way, the separation
routine can be implemented to have O(|V |+ |E|) time complexity.

CD-Separation(G)
1. Construct Gū = (W, F);
2. Determine nCC , the number of connected components of Gū;
3. if nCC = 1 then /* Gū is connected */
4. if V ⊆ (W ∪ Adj(W)) then /* W is a dominator of V */
5. Turn W into a minimal CD;
6. return the CD inequality u(W) ≤ |W | − 1;
7. else return FAIL; /* no new cut is returned for dualization */

478 V.F. Cavalcante and C.C. de Souza

In our R&C algorithm the separation procedure is called at each SM iteration.
Since we implemented two greedy ways to obtain minimal CD inequalities, at most
two cuts are produced at each SM iteration. Every new cut separated is stored
in a pool and dualized in a Lagrangian fashion. The relaxation in (12) is then
modified to incorporate this constraint. As a result, the term

∑|pool|
k=1 μk(|Sk| −

1−u(Sk)) is added to the cost function of (12), where μ ∈ R|pool|
+ is the vector of

multipliers of the CD inequalities that are currently dualized. The management of
the cut pool is quite simple: a new inequality is inserted only if it is not identical
to another inequality already in the pool or in the original formulation.

When the the R&C algorithm stops, the conditional cut generator (CCG) is
executed. This procedure tries to transform every CD inequality in the pool into
a more restrictive conditional cut, according to the discussion in Section 2. For
that, zLB, the best lower bound at the end of the R&C algorithm, is used.

In our implementation, the R&C algorithm and CCG form a preprocessing
phase for the B&C described in [12]. The output from this phase is a set of,
possibly conditional, CD cuts which are added a priori to the model given as
input of B&C. Moreover, B&C is also given the values of zLB, which may help
to prune the enumeration earlier, and of α = zLB − b + 1 which, according to
Section 2, is applied to limit the size of the smallest shore in equation (3). We
denote by R&C&B&C, the algorithm resulting from this combination of R&C
and B&C. Figure 1 depicts the flow diagram of R&C&B&C.

cut poolcut pool
R&C B&C Results

best VSP lb

CCG

shore size lb

Input
Data

Fig. 1. Flow Diagram of R&C&B&C

5 Computational Results

In this section we report the computational tests carried out with the R&C
algorithm implemented for the VSP. Tests were ran on a Pentium IV machine
having 1GB of RAM and operating under Linux OS. The codes are written in C
and C++, using resources of the Standard Template Library. XPRESS Optimizer
16.01.05 was used as the IP solver.

Our experiments were made on a subset of instances taken from [12]. Initially,
from the more than 140 instances, we select those whose graph densities were
higher than 40%. Among those, we kept only the ones which required more than
a minute of CPU time to be solved by the branch-and-bound (B&B) algorithm of
XPRESS (default configuration). We end up with 31 instances for our tests, all of
which, with cost vector equals to the the sum vector. Instances from [12] can be
downloaded from www.ic.unicamp.br/~cid/Problem-instances/VSP.html.

Lagrangian Relaxation and Cutting Planes 479

The motivation to select only high density graphs comes from : (a) these are
the most difficult cases for standard B&B algorithms; (b) experimental results
reported in [12] revealed some difficulties of the LP solver when high density cuts
are added to the problem matrix, resulting on a severe degradation of the per-
formance of cutting-plane algorithms and (c) in high density graphs, connected
dominators tend to be small and, therefore, the corresponding CD inequalities
are of low density. Thus, the use of cutting-plane algorithms is justifiable and
likely to be more effective for high density graphs.

The following settings were used for the basic parameters of the subgradient
algorithm: (a) in equation (10), π is initially set to 2 and multiplied by 0.5
each 100 consecutive iterations without improvement on the upper bound; (b)
the Lagrangian heuristic is called at each SM iteration; (c) the local search
heuristic is called only when the cost of the current solution differs from those
of the ones previously found. Cost repetition is easily identified in our case since
there are only O(|V |) possible values for the cost function; (d) the algorithm
stops when the limit of 2000 SM iterations is reached or when, πk ≤ 0.00001 in
equation (10), what occurs first.

Computational experiments were performed aiming to assess three aspects
of our approach: (i) the quality of the dual bounds produced by our R&C
algorithm; (ii) the quality of the primal bounds produced by our Lagrangian
heuristic; (iii) the effectiveness of using our approach as a preprocessing tool
that provide an IP solver with a tighter formulation.

The latter aspect deserves some discussion. First, it should be noticed that
the IP model from section 2 is rather weak. In the linear relaxation, setting all
variables to 1/2 satisfies all the constraints for any sufficiently large value of b
(which is the case for all instances in our dataset). This gives the worst dual
bound one could come up with: n ! Thus, poor dual bounds are expected unless
strong cuts are added to the formulation. Results reported in [12] show that CD
inequalities fulfill this requirement. However, a drawback to use such inequalities
comes from the fact that the corresponding separation problem is NP-hard in
general. The authors had then to resort to a heuristic procedure to perform the
task. Their heuristic is of quadratic-time complexity, therefore, more expensive
than our linear-time complexity heuristic used to separate integral points.

Moreover, inspecting the behavior of the B&C algorithm developed in [12],
which we had access to, we noticed that a couple of CD inequalities needed to
be separated and added to the model before good dual bounds are computed.
Thus, it would be very helpful if we could quickly generate a set of initial CD cuts.
That is precisely the role to be played by the R&C algorithm in the preprocessing
phase. Besides this, the lower bound from the Lagrangian heuristic can be used
as an incumbent to accelerate the pruning of the search tree.

Four algorithms were tested, namely: our R&C, the standard B&B from
XPRESS, the B&C from [12] and the hybrid method, denoted by R&C&B&C,
that uses R&C as a preprocessing for the B&C algorithm. In R&C&B&C, the
B&C algorithm starts with the IP model strengthened by: (a) the CD cuts and
(b) the incumbent solution returned by the preprocessing phase and (c) a

480 V.F. Cavalcante and C.C. de Souza

Table 1. Computational results for VSP instances

Instance R&C B&B B&C R&C&B&C
name d (%) n m Opt ub lb tb(s) t(s) Pool t(s) node t(s) node tb(s) t(s) node

dim.miles1000 0.40 128 6560 110 122 109 <0.01 3.09 830 85.48 467 15.51 9 9.84 17.98 9
dim.DSJC125.9 0.90 125 14047 22 63 22 <0.01 4.4 1116 > 1800.00 72631 890.96 29809 13.85 1017.17 27935

mat.L125.fs 183 1 0.44 125 6909 98 135 96 0.05 2.04 16 225.19 2354 29.42 24 15.31 27.88 33
mat.bcsstk04 0.68 132 11968 84 91 84 <0.01 3.74 912 > 1800.00 17584 74.77 61 5.75 11.23 3
mat.arc130 0.93 130 15656 88 112 88 0.01 5.5 1138 177.95 127 225.36 83 12.77 237.41 83

mat.L120.cavity01 0.42 120 6064 99 117 99 0.13 3.24 345 239.83 2385 9.15 9 4.59 10.3 11
mat.L120.fidap021 0.43 120 6236 98 116 98 <0.01 2.13 349 98.07 776 12.56 15 3.22 4.32 11
mat.L120.rbs480a 0.46 120 6666 88 105 88 0.04 2.34 505 1193.02 14220 186.34 343 44.1 82.95 116
mat.L100.rbs480a 0.52 100 5200 73 82 73 <0.01 2.3 537 261.47 4831 19.28 57 0.30 15.07 55
mat.L120.e05r0000 0.59 120 8474 90 107 90 <0.01 2.82 539 246.59 1299 8.50 9 0.49 6.94 5
mat.L100.wm1 0.60 100 6012 74 102 73 0.4 1.63 49 71.14 974 19.67 21 11.17 15.21 21
mat.L120.fidap022 0.60 120 8734 84 93 84 <0.01 2.95 634 1008.47 10797 32.66 45 0.52 81.2 133
mat.L100.wm2 0.61 100 6178 76 103 76 <0.01 1.69 6 188.39 1925 12.74 14 8.66 8.52 14
mat.L100.fidapm02 0.62 100 6280 69 73 69 <0.01 2.04 663 426.09 6695 5.84 7 0.35 4.27 7
mat.L120.fidap001 0.63 120 9084 82 93 82 <0.01 3.76 464 > 1800.00 30274 30.77 29 15.6 54.81 5
mat.L100.e05r0000 0.64 100 6406 70 83 70 <0.01 1.81 353 209.06 3497 6.02 9 0.33 4.06 3
mat.L80.fidapm02 0.65 80 4196 53 53 53 <0.01 1.21 503 131.64 11323 3.48 11 1.88 2.36 5
mat.L120.fidapm02 0.65 120 9372 86 97 86 0.1 2.96 537 723.72 6602 27.73 21 5.60 7.19 5
mat.L100.fidap001 0.68 100 6858 64 81 64 <0.01 2.62 285 1185.9 55503 20.3 63 4.29 9.47 35
mat.L100.fidap022 0.68 100 6818 62 78 62 0.01 2.37 369 965.03 36353 43.63 131 4.96 31.23 107
mat.L80.fidap022 0.76 80 4886 41 75 41 <0.01 1.81 186 277.68 21621 11.91 135 0.24 3.63 137
mat.L100.fidap027 0.81 100 8128 69 85 69 <0.01 2.55 248 83.70 655 5.90 5 3.51 4.14 1
mat.L100.fidap002 0.82 100 8214 66 89 66 <0.01 2.52 184 203.21 3381 4.56 3 0.88 4.82 5
mat.L120.fidap002 0.82 120 11892 68 107 68 0.01 3.58 225 1439.09 12803 34.29 51 4.68 8.74 5
mat.L120.fidap027 0.85 120 12222 83 101 83 0.01 3.74 414 226.79 3758 12.36 7 7.79 9.86 5

miplib.l152lav.p 0.40 97 3829 61 98 54 <0.01 1.58 122 639.63 39489 73.24 292 50.87 56.76 245
miplib.lp4l.p 0.46 85 3373 50 82 46 0.01 1.37 94 411.68 34485 43.31 358 40.98 36.48 332
miplib.air03.p 0.61 124 9502 75 125 74 2.46 2.87 241 496.60 6373 158.67 124 68.64 115.75 113
miplib.misc03.p 0.63 96 5884 52 88 52 0.05 2.42 802 1387.42 55610 130.18 4411 8.73 123.16 3227
�

> 18002.84 458792 2149.11 36156 2012.91 32666

constraint stating that universal nodes in the input graph must belong to the
separator. The results of our experiments are compiled in table 1. Five groups of
columns are present in the table. The first describes the instance characteristics:
name, density (d), the number of vertices (n) and edges (m) and the optimum
(Opt). The four remaining groups give results of the different algorithms: ub (lb)
for upper (lower) bounds, t for the computation time and tb for the time needed
to find the best primal bound. Column head Pool for R&C gives the number of
violated cuts added to the model before the execution of B&C.

We observe that, though the instances dim.DSJC125.5 and miplib.misc07
were initially selected to be part of our dataset, their results are not shown in
table 1. This exclusion took place cause none of the tested algorithms computed
dim.DSJC125.5 and only R&C&B&C was able to solve miplib.misc07 within
the fixed time limit of 30 minutes for each run. Our approach needed 1658
seconds to prove optimality and the Lagrangian heuristic found its best solution
with cost 115 (only one unit away from the optimum) in just 0.23 seconds !

We first analyse the dual bounds generated by R&C. If no cuts were used, the
theoretical bound for the Lagrangian relaxation would be n as discussed earlier.
Comparing column ub for R&C with n, we see that, by adding CD cuts, R&C is
able to produce better bounds than the trivial one in 24 out of the 29 instances.
This suggests that the preprocessing phase in R&C&B&C pays off as far as dual
bounds are concerned. However, comparing columns ub for R&C and Opt, one
sees that huge integrality gaps are still to be closed. Instance mat.L80.fidapm02
was the only one that was solved to optimality by R&C.

On the primal side, excellent results were achieved. As seen in column lb of
R&C, in 23 out of 29 cases our simple Lagrangian heuristic found an optimal
solution. The average error of the heuristic was of only 0.94% and the maximum

Lagrangian Relaxation and Cutting Planes 481

9%

30%

22%

4%

22%

13%

82%

9%

9%

[0, 0.01]

(0.01, 0.1]

(0.1, 0.5]

(0.5, 1]

(1, 5]

(5, 10]

(10, 30]

(30, 60]

T
im

e
R

a
n

g
e

(s
)

% of Instances

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

LP-H

LR-H

Fig. 2. Time to optimum for Lagrangian (LR-H) and LP-based (LP-H) heuristics

error was 9.8% for instance miplib.l152lav.p. For a better appreciation of the
performance of the Lagrangian heuristic (LR-H), we compare the columns tb(s)
from R&C and from B&C. This comparison can be visualized by inspecting the
histogram in figure 2, where we restricted ourselves to the cases for which LR-H
found the optimum. This histogram reveals that LR-H finds optimal solutions
much quicker than the LP based heuristic (LP-H). Besides, it shows that in
82% of the cases, the optimum was found in less than 0.01 seconds and, for all
instances, LR-H reached the optimum in less than 0.05 seconds.

Finally, we analyse the behavior of R&C&B&C and compare its performance
with that of B&C and B&B. In our analysis, percentages are computed relative
to the number of instances tested that could be solved by at least one of the
approaches, say, 30. B&B is by far the worst alternative but curiously reached the
optimum much sooner than its competitors in instance mat.arc130. Back to the
other algorithms, one sees that R&C&B&C is faster than B&C in 23 out of the
30 instances (77%). Besides, the total time spent by B&C in the 29 instances
solved by both methods (see last row of table 1) is 6.8% larger than that of
R&C&B&C. As for the number of nodes explored during the enumeration, one
can see that R&C&B&C visits less nodes than B&C, with a total reduction of
9.6% over these 29 instances. Overall, we can say that R&C&B&C is better than
B&C code of [12], beating the latter in the majority of the tested instances.

6 Conclusions and Future Works

In this paper we developed an R&C algorithm for the VSP and tested it on a
set of instances from the literature. The primal bounds produced by a simple
Lagrangian heuristic proved to be very effective, rapidly reaching the optimum
in many cases. Though the dual bounds were not as good, the R&C algorithm
proved to be an excellent tool for preprocessing, quickly providing inequalities
to strengthen the initial IP model, which allow the B&C algorithm of [12] to

482 V.F. Cavalcante and C.C. de Souza

solve the large majority of the tested instances faster than it does when working
alone. To our knowledge, this turns our R&C&B&C algorithm the best exact
method available for the VSP to date. Future works include the study of different
relaxations, better primal heuristics and the use of other known inequalities for
the VSP polytope discussed in [3] as cutting planes in the R&C algorithm.

References

1. Balas, E., Christofides, N.: A restricted lagrangean approach to the traveling sales-
man problem. Mathematical Programming 21, 19–46 (1981)

2. Balas, E., Ho, C.: Set covering algorithms using cutting planes, heuristics, and
subgradient optimization. Mathematical Programming Study 12, 37–60 (1980)

3. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation.
Mathematical Programming 103, 583–608 (2005)

4. Beasley, J.E.: Modern Heuristic Techniques, ch. 6. Blackwell Scientific Press, Ox-
ford (1993)

5. Calheiros, F., Lucena, A., de Souza, C.: Optimal rectangular partitions. Net-
works 41, 51–67 (2003)

6. Guignard, M.: Lagrangean relaxation. In: Lòpez-Cerdá, M.A., Garćıa-Jurado, I.
(eds.) Top, Madrid, Spain. Sociedad de Estad́ıstica e Investigación Operativa,
vol. 11, pp. 151–228 (2003)

7. Kliewer, G., Timajev, L.: Relax-and-cut for capacitated network design. In: Bro-
dal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 47–58. Springer,
Heidelberg (2005)

8. Lucena, A.: Steiner problem in graphs: Lagrangean relaxation and cutting-planes.
In: COAL Bulletin. Mathematical Programming Society, vol. 21 (1992)

9. Lucena, A.: Non delayed relax-and-cut algorithms. Annals of Operations Re-
search 140(1), 375–410 (2005)

10. Martinhon, C., Lucena, A., Maculan, N.: Stronger k-tree relaxations for the vehicle
routing problem. European Journal on Operational Research 158, 56–71 (2004)

11. Ferreira, C.E., Borndörfer, R., Martin, A.: Decomposing matrices into blocks.
SIAM Journal on optimization 9, 236–269 (1998)

12. de Souza, C.C., Balas, E.: The vertex separator problem: algorithms and compu-
tations. Mathematical Programming 103, 609–631 (2005)

Finding Pure Nash Equilibrium of Graphical

Game Via Constraints Satisfaction Approach

Min Jiang1,2

1 Wuhan University, Wuhan Hubei 430072, China
mail.minjiang@gmail.com

2 City University of Hong Kong, Hong Kong, China

Abstract. Considerable progress has been made in recent years in com-
plexity analysis of Nash equilibrium, so we restrict our attention to seek
it from the empirical perspective in this paper. Based on a new descrip-
tion format of game - stimulate – response pair proposed in the paper, we
put forward a constraints satisfaction-based algorithm on this data struc-
ture to compute pure Nash equilibrium of graphical game. And then, we
discuss how to employ search strategies when finding the equilibrium in
different types. To evaluate our algorithm, we use a comprehensive game
generator - GAMUT, to produce a mass of data and take a famous tool -
gambit as competitor. At last the experimental result is presented.

1 Introduction

The classical theory of game was invented by John Von Neumann and Oskar
Morgenstern in their foundational book [13]. It studies the rational behavior 1

among n (n ≥ 2) players using the strict mathematical method. Game theory
provides a powerful tool to predict and analyze the state that rational players
form and the outcome due to the strategies they adopt in a complex situation.

In the past half a century, the economics and mathematics communities have
already carried on deep research on the game theory and have made lots of com-
pelling achievements. Equilibrium is one of the most important concepts in com-
putational game theory. There are different definitions of equilibrium according to
different conditions, e.g., Does cooperation exists between players? Is game carried
on once or repeatedly? Does every player know any opponent’s available strate-
gies? Among all the equilibriums, Nash equilibrium may be the most important,
which was put forward by John F. Nash in his famous paper [9].

In recent years, the researchers in computer science also put more and more en-
thusiasm to this topic. For example, e-commerce [26], large-scale network [27,28] ,
algorithmic mechanism design [29] and so on. Computational game theory, a
brand-new field, is taking shape under the influence of a lot of relevant disci-
plines. It origins from the classical game theory but has its own focus. Just as
Michael Kearns says:“draws strongly on classical game theory, but differs in its
1 It means that a player chooses his own strategy according to the principle of maxi-

mizing his payoff.

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 483–494, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

484 M. Jiang

focus. As the name suggests, the emphasis is on computational and algorithmic
issues”. All of those real-life problems push the researchers to design fast and
accurate solutions.

We follow this direction and restrict our attention to finding Pure Nash equi-
librium from the practical point of view.

The motivation and contribution of this paper is to find the pure Nash equi-
librium of graphical game by using constraints satisfaction problem (CSP) ap-
proach, which has proved successful to settle many hard problems. Such that,
to open a door to explore the problem by virtue of some impactful methods.

Follow by presenting a CSP based on algorithm, we discuss how to speed
up the finding process through different heuristic strategies according to the
distinct equilibrium we want to seek. For accelerating the searching speed, we
propose a description format – stimulate – response pair to depict a game. By
this depiction, the major operation in seeking process can be reduced to find
the intersection on set. Clearly, our objective will benefit from this onefold and
simple execution command.

By way of being compared with other algorithms, we use a comprehensive
testbed - GAMUT to produce a real-world dataset and employ a famous tool,
GAMBIT, as the contrast.

The rest of the paper is organized as follows: Section 2 introduces some con-
cepts of game and equilibrium and presents a new description format - stimulate
– response pair. In section 3 we describe a reduction from graphical game to
CSP and put forward an algorithm to realize it. In section 4, we discuss how to
accelerate searching speed according to different types of equilibrium. Then the
experimental results are presented in Section 5. In section 6, some related works
in the area is described.

2 Game Theory and Nash Equilibrium

2.1 Nash Equilibrium

Nash equilibrium describes a stable situation among n players, in which every
player doesn’t want to change his strategy unilaterally. That is to say, any player
can not gain more payoff through changing his own strategy.

For any given game, Nash has already proved in his paper that there exists
at least one situation - Nash equilibrium. Generally speaking, Nash equilibrium
is the abbreviation for mixed Nash equilibrium. if everyone can make a choice
randomly according to some probability distribution it fixes in advance, the
equilibrium in this situation is mixed. Pure Nash equilibrium is considered as a
special case for mixed Nash equilibrium.

In this paper, the equilibrium is pure in the sense that each participator could
choose one and only one strategy, on which all of his effort would focus. A simple
example may help the audience to catch the concept of Nash equilibrium.

Suppose this game has two players, and each player has three strategies. We
use the table (Table 1.) to describe the payoff of two players. The first one is
player A’s payoff and the second one is player B’s payoff. In this game, it has

Finding Pure Nash Equilibrium of Graphical Game 485

Table 1. Payoff Matrix of A Game

B:1 B:2 B:3

A:1 2,2 23,45 8,10

A:2 40,25 0,0 5,15

A:3 10,5 15,5 10,10

three Nash equilibrium. If every player is rational, the combination of their choice
will be one among the three pairs.

For example: if player A chooses his strategy 1, player B knows it in this
Situation, he must choose his strategy 2 to maximize his payoff. But at the same
time, player A also knows that if player B’s choice is 2, his best response will
be his strategy 1. This means that in this situation, no one wants to change his
choice unilaterally.

2.2 Graphical Game

In spite of the fact that Nash equilibrium certainly exists which has been cer-
tified in Nash’s paper, in a particular field, e.g., computer science, what people
concerns is how to compute it. The researchers have presented many algorithms
to solve this problem. There are two comprehensive surveys [16,17] which sum-
marize the temporal approaches, algorithms and tools. But we know that a game
described in strategy form2 (or normal form) demands exponential space require-
ment with the increase of the number of players, so we cannot hope to have an
effective algorithm.

The first problem needed to be solved is how to represent a game compactly
so as to avoid the exponential space requirement. The experience and fact tell
us that it is effective to use the locality of a complex problem to conquer it.

The researcher in computational game community follows this direction. Gen-
erally speaking, the locality of a game can be divided into two types: locality of
action and locality of player.

Thefirstonemeansoneplayershowshis influenceuponotherparticipantsthrough
the strategy that he chooses. The representative of this type is Rasenthal’s conges-
tiongame[20]and localeffectgame[19]definedbyK.Keyton-Brownetal.Congestion
game describes a scenario, where every player is only interested in a subset of avail-
able resources.We can use the following formulate to describe the payoff of player i:
Pi(SRi, n) =

∑

r∈SRi

Fr(nr) ,whereSRi ⊆ R,nr is the number of playerswho are in-

terested inresourcerandFr isanarbitrary function.Localeffectgamehighlightsthe
asymmetryof the influenceof locality,namely, strategyaaffects strategyb if thepay-
offof theplayer taking strategybdependsona functionFa,bof thenumber of players
choosing strategy a. Please note that, the asymmetry is embodied by Fa,b �= Fb,a.
Because a strategy does not have an influence on all the other strategies, the local
effect game can represent a game succinctly.

2 It means to describe a game via tabular format.

486 M. Jiang

The representative of the latter kind, locality of player, is the widely-studied
Graphical Game. As the name suggests, it depicts a game with a graph where
nodes represent players and edge means that the two players can affect each other
3. The assumption it is based on is that every player often has direct relations
only with few players, and his influence on the global situation is spread out
through these players. If the number of his neighbors is K - |Neighbor(i)| = K
and K � n, then the size of every player’s payoff matrix can be reduced at once.
So it is a good idea to represent a game compactly.

Definition 1. A graphical game is a 3-tuple GG =< Graph, S, U >, where
Graph is a undirected graph G =< V,E > ; S is a set of strategies, and it
is very similar to the classical definition; U = {U1, . . . , Ui, . . . , Un} is a set of
payoff functions, where Ui =

∏
j∈Neighbor(i) Sj → N, and it maps player i’s

strategy and those of his neighbor to a value. Commonly, payoff matrix is used
to represent S and U.

In the present paper, we put forward a new description format called stimulate –
response pair to describe the effect among player i and his neighbors. A
stimulate – response pair is srij =< {Sneighbor−i}, {sij}, outcome >, in which
{Sneighbor−i} means a combination of strategies of player i’s neighbors (not
including player i). {sij} denotes a strategy j player i chooses when his neigh-
bors play {Sneighbor−i}. Outcome is player i’s payoff in this situation. So, every
player’s payoff matrix can be transformed to some simulate-response pairs.

Sharp-eyed readers will find that this representing format is a transformation
of payoff matrix, but it is easy to be understood and implemented. Please note
that, we use set to describe the elements in this format. It means we don’t care
the difference of scheduling when the players choose the strategies. Through
it, the operation of finding Nash equilibrium is reduced to the operation on set.
Obviously, this reduction makes the search process more intuitionistic and faster.

For the convenience of implementing, we define two functions on it:

– Stimulate(srij) = {{Sneighbor−i}|{Sneighbor−i} ∈ srij} , which returns the
combination of strategies of player i’s neighbor in srij ;

– Response(srij) = {{sij}|{sij} ∈ srij}, which returns the strategy of player
i in srij

Through the above definitions, we reformulate a graphical game as follows:

Definition 2. A graphical game GG =< Graph, SR >, where
SR = {SR1, . . . , SRn}, SRi = {sri1, ..., srin}. SRi can be considered as the
classical payoff matrix and srij represents the jth stimulate – response pair of
player i.

Obviously, though the above definitions have the same description ability, each
has its strong points. In the following part of this paper, we will use them
alternately according to the actual need without puzzling readers.
3 Surely, we can use different concepts in graph theory, i.e., directed graph or hyper

graph, to meet our requirements.

Finding Pure Nash Equilibrium of Graphical Game 487

Definition 3. Pure Nash Equilibrium.We say a profile SP is pure Nash equi-
librium. For every player i and all his own available (pure) strategies Si in SP :
Ui(SP) ≥ Ui(i : s

′
), s

′

i ∈ Si. This means no player can increase his payoff
through changing his strategy from si to s

′

i in SP .

Our attention is restricted to the computation of pure Nash equilibrium, so the
definition and algorithms about mixed Nash equilibrium was referred to [16].

We know that game theory is based on the assumption that every player is
intelligent and rational. Intelligence means that any player knows his opponents
know everything about this game, at the same time he possesses the ability
to reason out the current situation as other players do. Rationality means that
every player adopts his strategy for the sake of maximizing his payoff. According
to the two points the definition of the best response is given as follows:

Definition 4. BRi(SP) is player i’s best response in a profile SP . If
BRi(SP) = {sin|sin ∈ Si, ∀s

′

i ∈ Si : Ui(S−i; sin) ≥ Ui(S−i; s
′

i)}.
Intuitively speaking, BRi(SP) is a set of player i’s strategies, which let player
i get his maximal payoff in the profile SP . Obviously, it is very easy to use
stimulate – response pair to describe it again. For the limitation of the paper,
we don’t do that. We can imagine that when a rational player makes a decision,
he always chooses a strategy as response among his best responses according to
other opponents’ choices.

2.3 Complexity Issues

Like other hard problems, the study concerning Nash equilibrium can be di-
vided into theory analysis and practical computing. In recent years, exciting
breakthroughs have been made in the complexity analysis of Nash equilibrium.
The theoreticians have proved that 4-Nash [14] , 3-Nash [1,5] and 2-Nash
[2] are PPAD-complete 4, especially the last proof presented by X.Chen and
X.Deng which settled the big open problem puzzling relevant communities for a
long time.

For pure Nash equilibrium, Gottlob et al. [8] have proved that determining
whether a game has a pure Nash equilibrium is NP-complete, and hardness
holds even if the game is described by graphical form, which has 3-bounded
neighborhood, and where each player is allowed to play at most three strategies.

All of those proofs show it is a hard problem to find a Nash equilibrium, even
if the condition is restricted.

3 A CSP’s Solution to Pure Nash Equilibrium

3.1 Constraint Satisfaction Problem (CSP)

Many computational problems from different application fields can be consid-
ered as constraint satisfaction problems. For example, the problems of scheduling
4 Because the decision form of existence of a mixed Nash equilibrium is always yes,

speaking of NP-completeness would be meaningless.

488 M. Jiang

a collection of tasks [21], laying out a chip [22], even to understand the visual
image [23], can all be done in this way. ACM(Association for Computing Machin-
ery) identified it as one of the strategic directions in computer research. Many
facts[24] tell us CSP is a powerful tool to settle some hard problems, especially,
combinational optimization problem. So we hope to find Pure Nash equilibrium
by using CSP approach.

At beginning, let we recall the statements about CSP in the [25] first. A CSP
is a 3-tuple CSP =< X,D,C >, where X = {X1, ..., Xn} is a set of variables,
and Di is a non-empty domain of Xi; C = {C1, ..., Cm} , and every Ci involves
some subsets of the variables and specifies the allowable combinations of the
values for those subsets.

A search process for a CSP’s solution can be constructed as follows:

1. Initial state: no variable is assigned to a value;
2. Successor function: assign a value to an unassigned variable, which ensures

that it does not conflict with the previously assigned variables;
3. Check whether all constraints are satisfied;
4. Cost of path: assign a fixed cost for every search step.

CSP is a problem which was deeply studied, and there are a huge amount
of literature and algorithms. Although it is hard to solve theoretically, i.e., the
famous 3-SAT problem is a special case, sometimes we still can find the solution
effective in practice. Another predominance of CSP is that the simple yet pow-
erful description ability makes one possess the capability to handle sophisticated
problem even if he is not very familiar with it.

3.2 From Game to CSP

In this section, we will discuss how to transform finding pure Nash equilibrium
in a given game into finding a solution of CSP. Note that, the players in all the
games we discussed in the paper are finite and every player has finite strategies.
We present our reduction as follows:

1. Every variable Xi denotes player i;
2. The domain of every variable is the stimulate – response pairs;
3. Unary constraint: if this constraint is satisfied, it means the strategies

player i chooses are the best response to his neighbors. When applying this
constraint, all the stimulate – response pairs will be removed except that it
is the best response to a certain “stimulation”;

4. Binary constraint: It means that a legal assignment lets two adjacent play-
ers have corresponding best responses.
In the algorithm presented in this paper, we use stimulate – response pair to
implement this constraint. Assume that, the player j is the player i’s neighbor.
SRi(SRj) is a set of stimulate – response pairs of player i (player j) , which is
the result of applying the unary constraint. If there are

Finding Pure Nash Equilibrium of Graphical Game 489

((Response(srim)∩Receive(srjn)) �= φ)∧((Receive(srim)∩Response(srjn))
�= φ), we say this binary constraint is satisfied. The meaning of this unary con-
straint is that two adjacent players have his own strategy respectively; each
strategy is the best response to his opponent’s strategy which is also a best
response according to itself. In other words, there is a circle of best response
between two adjacent players.

5. Constraints propagation: assign a value to each variable in turn, with
the requirement that the current assignment should not conflict with the
previous assignments.

Clearly, if an assignment to every variable can satisfy all the above constraints,
it is a pure Nash equilibrium for its corresponding game, otherwise the game
doesn’t have a pure Nash equilibrium.

3.3 An Algorithm on Graphical Game

We present our algorithm as follows.

Algorithm 1. PNE-CSP (sketch)
Data: Graphical Game GG with stimulate – response pair
Result: pure Nash equilibrium or “not exist”
begin

Step.1 Arbitrarily select a node as root, and do breadth-first search, form a
sequence X1, X2, ..., Xn; Step.2 for i = 1 To n do

APPLY-UNARY-CONSTRAINTS(Xi);

Step.3 for i = n Downto 2 do
Add all Neighbors of Xi to queues;
while not empty the queues do

temp = Move-First(queues);
APPLY-BINARY-CONSTRAINTS(temp,Xi);
if |Domain(temp)| = 0 then

Return “not exist”

Step.4 for i = 1 To n do
assign any value for Xi is consistent with the value assigned for Xj ,
where Xj is the parent of Xi.

end

For the limitation of space, we just describe the framework of the algorithm.
Please note that the underlying graph of our algorithm is undirected and tree-
like. The undirected graph means we deem the effect of neighbors is symmetrical.

Remark 1. step 1. To makes the parent of each node precedes it except root.
The reason will be explained later.

Step 2. To removes all the strategies a rational player will not choose, so the
search space is reduced.

490 M. Jiang

Step 3. The most important part of it is Apply-Binary-Constraints(Xi, Xj),
and the result of it ensures every value remained in the domain of Xi can find a
corresponding value in the domain of Xj, which guarantees the binary constraint
between them is satisfied. The order of those operations is from leaf to root. The
ordering from step 1. assures that the latter operation will not affect the previous
results in this step. If the domain of any variable is empty, the search process
is terminated. It means there is no pure Nash equilibrium for the corresponding
game.

Step 4. A classical constraints propagation. We can use different methods to
speed up search process with respect to the equilibrium we want to find.

4 Discussion

Through the above analysis, we know that if one wants to find an equilibrium
without using its distinguishing features, the result may not be the best. In
other words, when computing an equilibrium, we should take full advantage of
its features to accelerate the speed of searching.

For example, if we want to find a pure Nash equilibrium, which, as we know,
may not exist, we should choose the variable with fewest ”legal” values. Because
it picks a variable that is most likely to cause a failure as fast as possible, the
search tree will be pruned soon. This method is called ”Minimum Remaining
Values” (MRV) or ”Fail-Fist” in CSP’s terms. In other cases, if we only want to
seek a mixed Nash equilibrium, the strategy will be changed. On the contrary,
we choose the variable with most ”legal” value if possible. The reason is that
mixed Nash equilibrium certainly exists, so we can find it as soon as possible
without backtracking. However, it is not advisable to choose this strategy to look
for all the mixed Nash equilibriums.

On all accounts, concerning the problem of finding equilibrium with intelligent
approaches, we must use the heuristic strategies with special purposes to get
satisfying results.

5 Experimental Results

Our experiment is designed to evaluate the performance between Gambit, a most
famous tool, and our algorithm on finding pure Nash equilibrium on graphical
game. The dataset used in this experiment is produced by GAMUT and the un-
derlying graph is n-try tree. We compare the results of 2 programs which run on 20
different cases. Case 1 denotes 3 persons - 30 actions; Case 2 denotes 3 person - 31
actions; . . . ; Case 20 is 3 person - 49 actions. Our program employs JCL pack-
age, which is developed by EPFL 5. For possessing the bin-constraint needed in
our algorithm, we extend it. Please note, its performance is not the reason that
we choose JCL. Strictly speaking, it is not the most fast one, but it is the only

5 http://liawww.epfl.ch/JCL/index.htm

Finding Pure Nash Equilibrium of Graphical Game 491

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ec

.

Case #

Running Time

PNE-CSP
Gambit-EnumPure

Fig. 1. The Running Time

package that we find can provide the continuous CSP function at present. Despite
not using this feature in the paper, it has established the foundation for our fu-
ture work. In the present paper, all programs are implemented in java 5.0, and
the version of GAMBIT is 2006.1.20. The running environment are linux fc 5.0,
Pentium(R) 1.86G with 1G memory. The running time is presented in Figure 1.

The result shows that when the size of game largens, it is not obvious that
the increase of consumption in time of our algorithm and the difference between
two methods is easy to be found.

6 Related Work

The computation of equilibrium is an amazing but hard problem, which has re-
cently employed many methods related to different fields. Among all the existing
algorithms, Lemke-Howson’s algorithm is the most famous one. It is a comple-
mentary pivoting algorithm, where an arbitrary selection of an action for the first
player determines the first pivot, then every successive pivot is determined by
this state, until an equilibrium is found. Gambit is an implementation of Lemke-
Howson method. As a toolkit, Gambit consists of some different programs with
several uses. Gambit-enumpure is used for computing pure Nash equilibrium.

Another well-known program is Gametracer, which includes two algorithms,
Global Newton Method (GNM) and Iterative Polymatrix Approximation (IPA),
both due to Srihari Govindam and Robert Wilson [3]. GNM perturbed a game
to another one that has a known equilibrium, and then traced the solution back
to the original game as the magnitude of the perturbation approaches zero.
IPA approximates the game with a bimatrix game, one in which the interaction
between each pair of players is not affected by any other players. A player’s

492 M. Jiang

payoff is the sum of his payoffs which is decided by the interactions with other
players.

In this paper, we are interested in graphical game, which is defined by Kearns
et al. in [12]. We consider that probabilistic graphical models motivated graphical
games and the algorithm to do probabilistic inference on trees led to the idea of a
similar message passing algorithm for computing Nash equilibrium. In Kearns’s
paper, they proposed three algorithms to compute Nash equilibrium. The first is
an abstract algorithm, the second based on the first tries to find approximation
Nash equilibrium in polynomial time and the last is an exact but inefficient
version.

Another paper by the same authors [11] tries to efficiently compute an exact
Nash equilibrium in tree-like graphical game. It is a pity that Elkind et al.
in [7] prove that this algorithm is incorrect and any 2-pass message passing
algorithm of this type has no hope to solve the problem in polynomial time
even on bounded-degree tress with pathwidth 2. An algorithm proposed in [10]
uses message passing algorithm to compute Nash equilibrium in general (loopy)
graphs, which is also based on 2-pass message passing algorithm.

Although pure Nash equilibrium is computationally trivial, it is a very primi-
tive, intuitive, and straightforward concept of rationality. In very recent,
Daskalakis et al.[18] proposed a reduction from graphical games to Markov ran-
dom fields so that pure Nash equilibria in the former can be found by statistical
inference on the latter. They use junction tree algorithm to achieve it.

Surprisingly, to the best of our knowledge, we are aware of little work on pure
equilibrium based on CSP approach.

[6] uses the approach to find approximation Nash equilibrium. They define a
function called regret function which denotes that any player should not exceed
ε. The constraint Ci for a player ensures that he regrets to being no more than
a ε. Until now, the most compelling result by using CSP method to seek mixed
Nash equilibrium in normal form is presented in [15], where they employed a
simple search approach and tested 22 types of game. But we still think the re-
sult remains to be improved and the reason has been discussed in Section 4
in detail. The authors of this paper have developed a comprehensive game
generator - GAMUT, which can produce many different types of game.

Please note that, the difference between our approach and the above CSP-
based approaches is that we take profile but not strategy as value of a domain
and we use stimulate – response pair to depict it. Through this approach, we
convert major part of comparing operations between numbers to elements of set.
Clearly, it will accelerate the calculating speed.

7 Conclusion and Future Work

Equilibrium is the most important concept in computational game theory. In
recent years, the complexity analysis of this problem has made some exciting
breakthroughs, so it seems more important to find it at a fast speed in practice.

Finding Pure Nash Equilibrium of Graphical Game 493

In this paper, we put forward a description format, stimulate – response pair,
to depict a game, which can convert the major part of comparison between the
real numbers into the comparison between the elements of set. Clearly, it will
accelerate the search speed. At the same time, we propose an algorithm which
can reduce finding pure Nash equilibrium on graphical game to seeking a solution
of CSP. The experiment shows that our algorithm can find the Nash equilibrium
correctly and has some advantages over Gambit in some extent. We hope this
approach open a door to explore this hard problem from a different viewpoint.

Meanwhile, we realize that the time requirement of this kind of problem will
increase exponentially with the increase of the description length of it. On the
contrary, that means the time requirement will be decreased exponentially with
the description length cut down. It gives us an indication to solve this problem. In
the future, we will continue to study how to rapidly find mixed Nash equilibrium
or approximation Nash equilibrium from the empirical perspective.

References

1. Chen, X., Deng, X.: 3-NASH is PPAD-Complete. In: ECCC 2005, TR05-134 (2005)

2. Chen, X., Deng, X.: Settling the Complexity of 2-player Nash Equilibrium. In:
ECCC 2005, TR05-140 (2005)

3. Blum, B., Shelton, C., Koller, D.: A continuation method for Nash equilibria in
structured games. International Joint Conference on Artificial Intelligence (IJCAI),
757–764 (2003)

4. Papadimitriou, C.: Algorithms, games and the internet. In: STOC, pp. 749–753.
ACM Press, New York (2001)

5. Daskalakis, C., Papadimitriou, C.H.: Three-Players Games are Hard. In: ECCC
2005, TR05-139 (2005)

6. Koller, D., Vickrey, D.: Multi-agent algorithms for solving graphical games. In:
AAAI 2002. Eighteenth National Conference on Artificial Intelligence, pp. 345–351
(2002)

7. Elkind, E., Goldberg, L.A., Goldberg, P.W.: Nash Equilibria in Graphical Games
on Trees Revisited. In: Electronic Commerce (EC), pp. 100–109. ACM Press, New
York (2006)

8. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games.
In: TARK. Theoretical Aspects Of Rationality And Knowledge, pp. 215–230 (2003)

9. Nash, J.F.: Non-cooperative games. Annals of Mathematics (54), 286–295 (1951)

10. Oriz, L., Kearns, M.: Nash Propagation from Loopy Graphical Games. Advances
in Neural Information Processing Systems, 817–824 (2003)

11. Littman, M., Kearns, M., Singh, S.: An Efficient Exact Algorithm for Singly Con-
nected Graphical Games. NIPS, 817–823 (2001)

12. Kearns, M., Littman, M., Singh, S.: Graphical Models for Game Theory. In: UAI-
01. Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intel-
ligence, pp. 226–253. Morgan Kaufmann, San Francisco (2001)

13. Morgenstern, O., von Neumann, J.: Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ (1980)

14. Goldberg, P.W., Papadimitriou, C.H.: Reducibility Among Equilibrium Problems.
In: STOC’06, Seattle, WA, pp. 61–70. ACM Press, New York (2006)

494 M. Jiang

15. Porter, R., Nudelman, E., Shoham, Y.: Simple Search Methods for Finding a Nash
Equilibrium. In: AAAI 2004. Proceedings of the Nineteenth National Conference
on Artificial Intelligence, pp. 664–669 (2004)

16. McKelvey, R.D., McLennan, A.: Computation of Equilibria in Finite Games, vol. 1.
Elsevier, Amsterdam (1996)

17. von Stengel, B.: Computing Equilibria for Two-person Games, vol. 3. North-
Holland Press, Amsterdam (2002)

18. Daskalakis, C., Papadimitriou, C.H.: Computing Pure Nash Equilibria in Graphical
Games via Markov Random Fields. In: Eletronic Commerce (EC), pp. 91–99. ACM
Press, New York (2006)

19. Leyton-Brown, K., Tennenholtz, M.: Local-Effect Games. IJCAI, 772–780 (2003)
20. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-

national Journal of Game Theory, 65–67 (1973)
21. Dhar, V., Ranganathan, N.: Integer Programming vs Expert Systems: An Experi-

mental Comparison. Communications of the ACM (33), 323–336 (1990)
22. de Kleer, J., Sussman, G.J.: Propagation of Constraints Applied to Circuit Syn-

thesis. Circuit Theory and Applications, 127–144 (1980)
23. Davis, A.L., Rosenfeld, A.: Cooperating Processes for Low Level Vision: A Survey.

Articial Intelligence (17), 245–263 (1981)
24. Kumar, V.: Algorithms for Constraint Satisfaction Problems: A Survey. AI maga-

zine, 32–44 (1992)
25. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prencite Hall.
26. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the Cost of Muliticast

Transmissions. Journal of Computer and System Sciences (63), 21–41 (2001)
27. Korilis, Y.A., Lazar, A., Orda, A.: Achieving Network Optima using Stackelberg

Routing Strategies. IEEE/ACM Transactions of Networking (5), 161–173 (1997)
28. Roughgarden, T.: On the Severity of Braess Paradox: Designing Networks for Self-

ish Users is Hard. Journal of Computer and System Sciences, 922–953 (2006)
29. Nisan, N., Ronen, A.: Algorithmic Mechanism Design. Games and Economic Be-

havior 35(1-2), 166–196 (2001)

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 495–503, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A New Load Balanced Routing Algorithm for Torus
Networks

Jiyun Niu1, Huaxi Gu2, and Changshan Wang1

1 School of Computer Science, Xidian University, Xi’an, China 710071
2 State key lab of ISN, Xidian University, Xi’an, China 710071

njy_001@163.com, hxgu@xidian.edu.cn

Abstract. Originated from gas diffusion phenomenon, a new load balanced
routing algorithm named Gas Diffusion Based Load balanced Routing (GDLR)
is proposed for torus networks. GDLR estimates global congestion in the
network by the number of potential deadlocked packets. Based on this
information, the probabilities of all possible ports a packet may use are
accordingly determined. Subsequently，packets are sent out with the stochastic
policy, which leads to data load spreading with consequent automatic load
balancing. Finally, simulations have been carried out on 2D torus networks by
using OPNET software. The results obtained show that GDLR achieves a better
performance than other popular algorithms such as Dimension Order, Duato,
and GAL.

Keywords: Interconnection networks, Routing, Torus.

1 Introduction

Direct interconnection networks have received wide applications, from processor
memory interconnect [1], I/O interconnect [2], to switch and router fabrics [3]. Torus
network is one of the typical networks [5].

Routing algorithms, which determine how a packet travels from its source to
destination, are crucial for the network performance. An efficient routing algorithm
can improve the network throughput and reduce the average latency. Routing
algorithms generally fall into two categories: deterministic and adaptive. The former
always provides the same road between a source-destination pair, while the latter
offers many optional paths. Dimension order (DOR) routing [4], very popular in
practice for its simple hardware implementation, is a typical representative of
deterministic routing algorithms. It routes a packet along productive dimensions (A
productive dimension is the dimension in which a packet has not reached its
destination.) in a predefined order. Many commercial products use dimension order
routing, such as Intel Paragon, MIT J-machine and Cray T3D [5, 6]. Though it can
distribute the traffic evenly under the uniform traffic, DOR performs poorly under
congested conditions due to its deterministic way to route packets regardless of the
current network state.

Adaptive routing was proposed to overcome the performance limitations of
deterministic routing. A minimal adaptive routing can route packets along any of the

496 J. Niu, H. Gu, and C. Wang

shortest paths in the topology. Duato proposed such an adaptive algorithm in [7]. The
algorithm requires two types of channels, represented as Class A and Class B. Class A
contains at least two virtual channels for Torus (one for mesh), in which deterministic
routing is employed. By contrast, in the virtual channels belonging to class B fully
adaptive routing is used. The packets can adaptively choose any virtual channel
available from class B. Only if all the virtual channels of class B are busy can a
packet turn to channels that belong to class A.

The routing algorithms mentioned above attempt to provide low latency on local
traffic. However, they perform poorly under some adversarial traffic, such as hotspot
or tornado traffic. Therefore, people try to propose algorithms that can yield
satisfactory performance under different traffic. Valliant’s randomized algorithm [8]
uses a random node as an intermediate destination so as to give good performance on
worst-case traffic. However, it performs poorly on local traffic due to its complete
loss of locality. Arjun proposes a load balanced routing algorithm (GAL in [9]) that
senses global congestion by injection queue length at the source node to decide the
directions to route in each dimension. Though GAL matches the throughput of
minimal algorithms on local patterns and of Load balanced algorithms on difficult
patterns, it is complex to implement and slow to adapt to changes in traffic. What is
more, it has very high latency once it starts routing traffic non-minimally. ACQ [10]
makes improvements on it. It uses channel queues rather than the injection queue
length to estimate global congestion. It achieves good performance on adversarial
traffic but gives poor performance on benign traffic.

In this paper, we introduce Gas Diffusion based load balanced routing (GDLR)-a
minimal, adaptive routing algorithm for k-ary n-cube networks. GDLR uses time-out
criteria to detect deadlocks, and the detected deadlocked packets are absorbed into
local node and retransmitted at a later time. GDLR estimates network congestion by
the number of potential deadlock packets rather than the queue length used by GAL
and ACQR. What is more, GDLR routes a packet according to the congestion degree
of local ports. In this way, GDLR balances the traffic load in each direction to achieve
a good performance on different traffics. The rest of the paper is organized as follows.

Section 2 gives a detailed description of the GDLR algorithm. We measure the
performance of GDLR in section 3 and compare its performance with several existing
algorithms through simulation. Finally we give some conclusions in section 4.

2 Gas Diffusion Based Load Balanced Routing Algorithm

2.1 GDLR Algorithm

GDLR is obtained from the inspiration of gas diffusion phenomenon. As is known,
when there are differences in the density of the gas in different locations, the high-
density gas will diffuse to the location where the gas is of low density. This process
continues until the density of the gas in the two places becomes equal. When mapped
to routing issue, the phenomenon turns out to be that packets turn from more
congested ports to less congested ones, until the congestion degree of all the ports
becomes approximately same.

 A New Load Balanced Routing Algorithm for Torus Networks 497

Unlike GAL or ACQ, it exploits the number of potential deadlocked packets,
which is more accurate, rather than the queue length to sense the network congestion.
Based on this local information, it determines the probability of all possible ports
packets may use. The less congested one port is, the more routing probability it owns.
In other words, it is inclined to give more opportunity to less congested ports. The
underlying strategy is the greedy policy. Each node tries to send out packets as
quickly as possible, then the average ETE delay of the network will be reduced and
the network throughput will be increased. However, in order not to follow the
network fluctuations to reach a good performance in the long run, some congested
ports are also used with low probability. A detailed description of the algorithm
implemented on 2D-Torus is shown as below.

Algorithm GDLR

// D: the set of the productive dimensions for a certain packet. For 2D-Torus,
there are at most two productive dimensions, 0 and 1.

// ||D||: total members of the set D.

//
0

P : the probability of routing in dimension 0.

//
1

P : the probability of routing in dimension 1.

// P: = {
0

P ,
1

P }, the set of routing probabilities of all productive dimensions.

//
0

M : the number of the potential deadlocked packets in the port representing

productive dimension 0.

//
1

M : the number of the potential deadlocked packets in the port representing

productive dimension 1.

// M: = {
0

M ,
1

M }, the set of the numbers of the potential deadlocked packets in

ports representing all productive dimensions.

//
0

α : the factor to update the routing probability of the port representing

productive dimension 0.

//
1

α : the factor to update the routing probability of the port representing

productive dimension 1.

0
P : =0.5,

1
P : =0.5

for each packet in the input subqueue
Calculate the set D for the packet
if ||D||=1
 if D={0}

0

P : =1,
1

P : =0

 else

0

P : =0,
1

P : =1

 end if
else
 calculate the set M for the packet

498 J. Niu, H. Gu, and C. Wang

 if
0

M >
1

M

0

P : =
0

P -
0

α ,
1

P : =
1

P +
0

α

 end if

 if
0

M <
1

M

 0
P : =

0
P +

1
α ,

1
P : =

1
P -

1
α

 end if
end if

for each member
j

P in P

 if
j

P >1

j

P :=1

 endif

 if
j

P <0

j

P :=0

 endif

route the packet in dimension 0 with the probability
0

P , dimension 1 with
1

P

 end for

The determination of the factorα for updating the routing probability of a certain
port requires much technique. The simplest strategy is to set the value of α as a
constant:

α =C, C∈(0,1) (1)

that is, independently from the conditions of network. Another way is to adaptively
determine the value ofα based on the congestion conditions of local ports. In our
experiments, the latter method was applied, and the algorithm showed moderately
good performance. The formula used is showed below.

0 1

0

0 1

M M

M M
α

−
=

+
 (2)

1 0

1

10

M M

M M
α

−
=

+
 (3)

This model is very simple but effective. However, it is not proper for high-
dimension networks where a packet may have more than two productive dimensions.
A solution of this problem is given in section 2.3. And more elaborate models may be
produced to improve the performance.

2.2 Deadlock Detection and Recovery

Deadlocks can be detected by a simple time-out criterion, similar to those suggested
in [11, 12]. Given a threshold Tout, if a packet cannot be sent out within Tout period,

 A New Load Balanced Routing Algorithm for Torus Networks 499

then it is supposed to be a potential deadlocked packet to be ejected from the network.
Instead of killing the detected deadlocked packet [12], GDLR uses a software-based
recovery mechanism to absorb the packet and retransmit it later.

Theorem 1: GDLR is livelock free and it can resolve every detected deadlock.
Proof: GDLR makes all the packets choose minimal path, thus providing livelock

freedom.
Suppose that a deadlock has been detected. GDLR uses software-based deadlock

recovery mechanism to deliver a potential deadlocked packet to local node, thus
freeing the resources it occupies. Other packets forming the deadlock cycle can use
the freed resources and continue their travel. So far, the deadlock has been resolved.

2.3 Extensions

We only give a description of the algorithm implemented on 2D torus before. Here we
try to apply the algorithm to higher dimensional torus network and other popular
networks.

Given a k-ary n-cube network and a set D of ()d d n≤ productive dimensions for a

certain packet to be routed, D = []
0 1 1

{ , ... }, 0, 1 , 0 1
d j

D D D D n j d− ∈ − ≤ ≤ − , as well

as a set M = 0 1 1{ , ... }dM M M − , with (0 1)
j

M j d≤ ≤ − representing the number of

the potential deadlocked packets in the port for the productive dimension

(0 1)
j

D j d≤ ≤ − . Then, we accordingly need to determine a set A = 0 1 1{ , ... }dA A A −

with jA (0 1)j d≤ ≤ − , the factor for updating the probability of routing in

productive dimension (0 1)
j

D j d≤ ≤ − , initialized by the value 0, as well as a set P

= 0 1 1{ , ... }dP P P − with jP (0 1)j d≤ ≤ − representing the routing probability of the

productive dimension (0 1)
j

D j d≤ ≤ − . The determination of set A requires

experience, and the set P should meet the requirement jP

1

0

1
k

j

j

P
−

=

=∑

(4)

Here we just give one way to figure out the set A and P.

j ini j
P P A= − ,

1
ini

P
D

= , 0 1j d≤ ≤ − , D = d (5)

j avg

j

sum

M M
A

M

−
= , Where sum

avg

M
M

D
= ,

1

0

k

sum j

j

M M
−

=

=∑ (6)

However, further research is required to decide whether this way will yield the best
performance.

500 J. Niu, H. Gu, and C. Wang

3 Simulation Study

3.1 Evaluation Methodology

In this section, we give a comparison of GDLR with other popular algorithms
including Dimension Order routing algorithm, Duato’s algorithm, and GAL. The
simulations have been carried out on 8-ary 2-cube network as well as 16-ary 2-cube
network by OPNET simulation software [13]. Due to space constraints, we only
present the results of 8-ary 2-cube network. The results obtained for 16-ary 2-cube
network are of similar trends.

Only virtual cut through switching mechanism [14] is used in the simulations, but
the algorithms are also suitable for wormhole switching [15] and store-and-forward
switching [16, 17]. The simulations are based on the following assumptions if not
specially stated. Packet length distribution is a specific distribution SP (Size and
Percent) based on the IP (Internet Protocol) packet size and percentages sampled over
a two-week period [18]: 40 bytes (56% of all traffic), 1500 bytes (23%), 576 bytes
(16.5%) and 52 bytes (4.5%), which makes the results more convincing.

The traffic patterns used include the uniform, the hotspot and the tornado traffic
pattern. In the uniform traffic pattern, each node sends packets to all other nodes in
the network with the same probability. In the hotspot traffic pattern, one or
more nodes are designated as the hotspot nodes, which receive hotspot traffic in
addition to regular uniform traffic. In the tornado traffic pattern, the node (i, j)
only sends packets to node (i, (j+[k/2]-1) mod k), with k being the radix of the
network.

The nodes operate asynchronously. They generate packets at the time intervals
following the negative exponential distribution. And packets arriving at a destination
node are consumed immediately. For a fair comparison, four virtual channels are used
for each algorithm.

The performance of a routing algorithm is evaluated in terms of two main metrics:
average ETE (End To End) delay and normalized network throughput. The average
ETE delay is defined as the mean time from the time a packet is generated to the time
it reaches its destination, while the normalized network throughput is equal to the
current network throughput divided by network capacity.

3.2 Simulation Results

Fig.1 shows the results of the four algorithms under uniform traffic. For traffic
loads less than 0.4 where little congestion is present, the four algorithms yield
almost identical latency and throughput. However, as traffic loads increase, the gap
between them is broadened. Dimension Order, the deterministic minimal routing
algorithm, reaches its saturation point firstly. GAL and Duato are both adaptive
algorithms and give approximately the same performance. GDLR gives a good
performance under high traffic load by using the probability method to route a
packet.

 A New Load Balanced Routing Algorithm for Torus Networks 501

 (a) ETE Delay (b) Throughput

Fig. 1. Performances of the four algorithms under uniform traffic

(a) ETE Delay (b) Throughput

Fig. 2. Performances of the four algorithms under hotspot traffic

What Fig.2 shows is the comparison of the four algorithms under hotspot traffic.
As is shown, Dimension order performs poorly under the hotspot traffic, the first to
reach saturation at traffic load 0.3. The reason is that Dimension order determines the
same path between a source and destination node regardless of network conditions.
Duato is the second with its saturation point of 0.4, due to its adaptive routing
method. GAL has its saturation point 0.1 lower than Duato, because it can turn to
non-minimal path when congestion is detected. GDLR turns out to be the best one,
with the lowest latency and the highest throughput.

The performances of the four algorithms under tornado traffic are showed in Fig.3.
As can be seen, Dimension order and Duato perform poorly under the tornado traffic
for the reason of adopting only minimal routing. GAL achieves a good performance
under high traffic load, due to the fact that it can adopt non-minimal path when
congestion is found and thus can balance the load and relieve the congestion. GDLR,
also a minimal algorithm, dramatically performs very well, with its saturation point of
0.3, due to its stochastic decisions for routing.

502 J. Niu, H. Gu, and C. Wang

(a) ETE Delay (b) Throughput

Fig. 3. Performances of the four algorithms under tornado traffic

4 Conclusion

In this paper, we introduce a load balanced routing algorithm GDLR on k-ary n-cube
networks. The algorithm makes use of local information, the number of potential
deadlocked packets, to estimate the network congestion. Based on this information,
GDLR determines the probability of ports a packet may use. In this way, GDLR leads
packets to pass by congested area and achieves a good performance under different
patterns. A comparison of GDLR with other popular algorithms such as Dimension
Order, Duato, GAL, has been given in terms of throughput and latency under various
environments. The simulation results show that GDLR can balance the network load
and improve the overall performance.

Since Section 2 gives some extensions to GDLR, a further study on them will be
carried out in the near future. What is more, GDLR algorithm with injection control is
another research topic in the future.

Acknowledgement. This research was supported in part by the Zhongxing
Telecommunication Equipment Corporation (ZTE) Research Fund under Grant No.
ZXJS200609120159 and by the National Science Foundation of China under Grant
No.60532060. The authors also want to thank Guochang Kang and Shaolei Chen for
their generous help.

References

1. Scott, S., Thorson, G.: The cray t3e network: adaptive routing in a high performance 3d
torus. In: Proceedings of Hot Interconnects Symposium IV (August 1996)

2. Pfister, G.: An Introduction to the InfiniBand Architecture. IEEE Press, Los Alamitos
(2001), http://www.infinibadta.org

3. Dally, W.J., Carvey, P., Dennison, L.: Architecture of the Avici terabit switch/router. In:
Proceedings of Hot Interconnects Symposium VI, August 1998, pp. 41–50 (1998)

 A New Load Balanced Routing Algorithm for Torus Networks 503

4. Sullivan, H., Bashkow, T.R.: A large scale, homogeneous, fully distributed parallel
machine, I. In: Proc. of the International Symposium on Computer Architecture, pp. 105–
117 (1977)

5. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks, an Engineering Approach.
Morgan-Kaufmann Press, San Francisco (2003)

6. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan-
Kaufmann Press, San Francisco (2004)

7. Duato, J.: A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks.
IEEE Trans. on Parallel and Distributed Systems 4, 1320–1331 (1993)

8. Valiant, L.G.: A scheme for fast parallel communication. SIAM Journal on
Computing 11(2), 350–361 (1982)

9. Singh, A., Dally, W.J., Towles, B., Gupta, A.K.: Globally adaptive load-balanced routing
on tori. Computer Architecture Letters 3 (2004)

10. Singh, A., Dally, W.J., Gupta, A.K., Towles, B.: Adaptive Channel Queue Routing on k-
ary n-cubes. In: SPAA. ACM Symposium on Parallelism in Algorithms and Architectures,
Barcelona, Spain (June 2004)

11. Anjan, K.V., Pinkston, T.M., Duato, J.: Generalized theory for deadlock-free adaptive
routing and its application to Disha Concurrent. In: Rolim, J.D.P. (ed.) Parallel and
Distributed Processing. LNCS, vol. 1586, Springer, Heidelberg (1999)

12. Kim, J., Liu, Z., Chien, A.: Compressionless Routing: A Framework for Adaptive and
Fault-Tolerant Routing. IEEE Trans. Parallel and Distributed Systems 8(3), 229–244
(1997)

13. OPNET Modeler documentation. OPNET Technologies, Inc. (2004), http:// www.
opnet.com/

14. Kermani, P., Kleinrock, L.: Virtual Cut through: A new computer communication
switching technique. Computer Networks 3, 34 (1979)

15. Ni, L., M., P., McKinley, K.: A Survey of Wormhole Routing Techniques in Directed
Networks. Computer 26, 62–76 (1993)

16. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks, an Engineering Approach.
Morgan-Kaufmann Press, San Francisco (2003)

17. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan-
Kaufmann Press, San Francisco (2004)

18. Newman, Internet Core Router Test (March 6, 2001), On the Web at http://www.
lightreading.com

Optimal Semi-online Scheduling Algorithms on a

Small Number of Machines

Yong Wu, Zhiyi Tan�, and Qifan Yang

Department of Mathematics, State Key Lab of CAD & CG,
Zhejiang University, Hangzhou 310027, P.R. China

tanzy@zju.edu.cn

Abstract. This paper considers semi-online scheduling problems on
parallel identical machines with combined partial information. For the
objective to minimize makespan, and both the largest processing time of
all jobs and the total processing time of all jobs are known in advance,
we present an optimal algorithm with competitive ratio 4/3 on three ma-
chines. For the objective to maximize the minimum machine load, and
both the largest processing time of all jobs and the optimal value are
known in advance, we present algorithms which are optimal when the
machine number is less than 5.

1 Introduction

In recent years, semi-online scheduling problems have received increasing atten-
tion from the scheduling community. Different from classical online setting, some
partial information about future jobs is known in advance before we construct a
schedule. We can obtain algorithms with better performance than online algo-
rithms. Some kinds of partial information that have been studied before are as
follows:

sum: The total processing time of all jobs is known in advance [8].
opt: The optimal value of the instance is known in advance [2].
max: The largest processing time of all jobs is known in advance [7].
Furthermore, it is interesting to investigate whether the combination of two

kinds of partial information is more ”powerful”. In other words, whether the per-
formance of a semi-online algorithm can be even better if another kind of partial
information is available [9]. The answer is not always positive. For example, the
combination of sum and opt seems of little use.

In this paper, we will consider problems arise from the combination of above
three kinds of partial information. We are given a machine set M of m parallel
identical machines M1,M2, · · · ,Mm and a job set J of n independent jobs. We
identify jobs by their processing times as pj , j = 1, · · · , n. Machines and jobs are
available at time zero, and no preemption is allowed. Two different objectives are
considered. The first is to minimize the makespan. The second is to maximize
� Corresponding author. Supported by Natural Science Foundation of China

(10671177, 60021201).

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 504–515, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimal Semi-online Scheduling Algorithms 505

the minimum machine load, where the load of a machine is defined as the total
processing time of jobs assigned to it. We denoted them by Pm||Cmax and
Pm||Cmin, respectively.

We use the competitive ratio to measure the performance of an online (semi-
online) algorithm. For any instance I and an algorithm A, let CA(I) (or shortly
CA) and C∗(I) (or shortly C∗) denote the objective value of the schedule pro-
duced by A and optimal offline schedule, respectively. For the objective to min-
imize makespan, the competitive ratio is defined as the smallest number c such
that for any I, CA(I) ≤ cC∗(I). For the objective to maximize the minimum
machine load, the competitive ratio is defined as the smallest number c such that
for any I, C∗(I) ≤ cCA(I). An online (semi-online) scheduling problem has a
lower bound ρ if no online (semi-online) algorithm has a competitive ratio smaller
than ρ. An online (semi-online) algorithm A is called optimal if its competitive
ratio matches the lower bound of the problem.

Many results of related semi-online scheduling problems have been got in
recent years(see Table 1). For the objective to minimize makespan, it seems hard
to obtain optimal algorithms for m > 2 machines, even for the special case of m =
3. In this paper, we will present an optimal algorithm for P3|sum & max|Cmax,
and it remains optimal for P3|opt & max|Cmax. For the objective to maximize
the minimum machine load, it is surprising that the problem with optimal value
is known in advance is much harder than online and other semi-online problems.
In this paper, we will present optimal algorithms for Pm|opt & max|Cmin when
2 ≤ m ≤ 5.

Let T =
∑n

j=1 pj be the total processing time of all the jobs, and pmax =
max

j=1,···,n
pj be the largest processing time of all the jobs. Since we are assured

that at least one job with processing time pmax will arrive sooner or later, it is

Table 1. Results of related semi-online problems (∗: given in this paper)

Cmax Cmin

LB UB LB UB

m = 2 4/3[2]
opt m = 3, 4 4/3[2] 5m−1

3m+1 ,
2 − 1/m[1] 2 − 1/m[1],

m ≥ 5 1.625[2] 43/24(m → ∞)[5]
11/6[5]

m = 2 4/3[8] 4/3[8] 3/2[6] 3/2[6]
sum

m ≥ 3 1.5(m ≥ 6)[4] 1.6[4] m − 1[10] m − 1[10]

m = 2 4/3[7] 4/3[7] 3/2[6] 3/2[6]
max

m ≥ 3 open open m − 1[10] m − 1[10]

m = 2 6/5[9] 6/5[9] 5/4[10] 5/4[10]
m = 3 4/3* 4/3* 3/2[10] 3/2[10]

sum & max �
10/3[3]

m ≥ 4 open
1.6[4]

m − 2[10] m − 2[10]

m = 2 6/5[9] 6/5[9] 5/4* 5/4*
m = 3 4/3* 4/3*

opt & max
m = 4, 5 open 5m−1

3m+1 ,
2 − 1

m−1* 2 − 1
m−1*,

m ≥ 6 open 1.625[2] 43/24(m → ∞)[5]
11/6[5]

506 Y. Wu, Z. Tan, and Q. Yang

convenient to assume that p1 be the first such job. When analyzing a semi-online
algorithm A, let lti be the current load of Mi right before the assignment of pt,
and Li be the load of Mi after all the jobs have been assigned, i = 1, · · · ,m.

The paper is organized as follows. In section 2, we consider problems P3|sum
& max|Cmax and P3|opt & max|Cmax. In section 3, the problem Pm|opt & max|
Cmin is studied.

2 Minimizing Makespan

Theorem 1. Any semi-online algorithm A for the problem P3|sum & max|Cmax

or P3|opt & max|Cmax has a competitive ratio of at least 4
3 .

Proof. We prove the lower bound by adversary method. Let pmax = 6 be known
in advance. Moreover, T = 18 or C∗ = 6 is also known in advance for the
respective problem. The first two jobs are p1 = p2 = 2. If they are assigned to
the different machines, let the last three jobs be p3 = p4 = 6, p5 = 2. Since at
least one job with processing time 6 will be assigned to the same machine as
p1 or p2, we have CA ≥ 8. If p1 and p2 are assigned to the same machine, let
p3 = 6. If p3 is assigned to the same machine as p1 and p2, let the last two jobs
be p4 = 6 and p5 = 2 and we have CA ≥ 10. Otherwise, let p4 = p5 = 4, we have
CA ≥ 8. Hence, CA/C∗ ≥ 4/3. ��

Next, we will present an algorithm for P3|sum & max|Cmax with a competitive
ratio of exactly 4

3 . Since the total processing time of all jobs is known in advance,
we can normalize the processing time of all jobs be T =

∑n
j=1 pj = 18. As

C∗ ≥ T/3 = 6, it is sufficient to prove CA = max{L1, L2, L3} ≤ 8 as well
as CA/C∗ ≤ 4/3. The cases of pmax ≤ 3 and pmax ≥ 5 are relatively easy
to deal with, and is omitted here due to lack of space. We focus on the case
of 3 < pmax < 5 in the following. A machine is called small, middle, big and
huge if its load lies in the interval [0, 2), [2, 8 − pmax], (8 − pmax, 5) and [5, 8],
respectively.

Assign p1 to M1. The assignment of remaining jobs consists of two stages. In
the first stage, jobs are assigned to three machines according to the following
Preliminary Rules until there is at least one job on both M2 and M3. Then we
go to the second stage. Jobs are assigned by different Final Rules depending on
the loads of three machines at the end of the first stage.

Preliminary Rule
While there is no job assigned to M2 or M3, and suppose pj , j ≥ 2 is the current
job,

1. if lj1 + pj ≤ 8, then assign pj to M1.
2. if lj1 + pj > 8 and lj2 + pj ≤ 8− pmax, then assign pj to M2.
3. if lj1 + pj > 8, lj2 + pj > 8− pmax and lj3 + pj ≤ 8, then assign pj to M3.
4. if lj1 + pj > 8, lj2 + pj > 8− pmax and lj3 + pj > 8, then assign pj to M2.

Obviously, if all jobs have been assigned in the first stage, then CA ≤ 8.

Optimal Semi-online Scheduling Algorithms 507

Lemma 1. If at the end of first stage, M2 is a big machine, then
(i) there is a single job with processing time greater than 8 − pmax scheduled

on M2.
(ii) if M3 is also a big machine, there is a single job with processing time

greater than 8− pmax scheduled on M3.
(iii) if M3 is a huge machine, there are two jobs with processing time both

greater than 8− pmax scheduled on M3.

Proof. Note that in the first stage, the load of M2 will not be greater than
8 − pmax unless some job is assigned by Preliminary Rule 4. In other words,
assign current job pj to M3 will cause the load of M3 be greater than 8. Since
pj ≤ pmax < 8, there is at least one job have already assigned to M3 when pj

arrives. It follows that M2 does not process any job at that time, or the first
stage ended before pj arrives. Secondly, pj > 8 − pmax. Otherwise, M2 can not
be a big machine after pj is assigned. Finally, jobs assigned to M3 before pj

arrived are all greater than 8− pmax. Otherwise, it will be scheduled on M2 by
Preliminary Rule 2. Since 8−pmax < 5 < 2(8−pmax) and 3(8−pmax) > 8, if M3

is a big machine, there is a single job scheduled on it. If M3 is a huge machine,
there are two jobs scheduled on it. ��

Let the loads of three machines at the beginning of the second stage be l0i , i =
1, 2, 3. Reindex M2 and M3 such that l02 ≤ l03. Obviously, we have l01 > 8− pmax.
Otherwise, jobs will not be assigned to M2 or M3. Therefore, M1 must be a big
or huge machine. On the other hand, M2 and M3 can not be both huge machines,
since pmax ≤ 5 and at least one of M2 and M3 process only one job in the first
stage. Table 2 lists all possible situation of the three machines at the beginning
of the second stage. The last column of the table shows how to assign jobs in
the second stage, which will be given in the rest of the section case by case.

Lemma 2. Suppose after the assignment of some jobs, one of the following
status happens. Then we can assign the remaining jobs so that CA ≤ 8.

(i) There exist i1, i2 ∈ {1, 2, 3}, such that Mi1 , Mi2 are huge machines. Denote
such status by (Mi1 ,Mi2 , I);

Table 2. Different Final Rules depending on the loads of three machines at the end of
the first stage

M1 M2 M3 Final Rule M1 M2 M3 Final Rule

1 big small small Final Rule 1 10 huge small small Final Rule 1

2 big small middle Final Rule 1 11 huge small middle (M1, M3, II)

3 big small big Final Rule 1 12 huge small big Final Rule 1

4 big small huge Final Rule 2 13 huge small huge (M1, M3, I)

5 big middle middle (M3, M2, III) 14 huge middle middle (M1, M2, II)

6 big middle big Final Rule 1 15 huge middle large (M1, M2, II)

7 big middle huge (M3, M2, II) 16 huge middle huge (M1, M3, I)

8 big big big Final Rule 3 17 huge big big Final Rule 3

9 big big huge Final Rule 2 18 huge big huge (M1, M3, I)

508 Y. Wu, Z. Tan, and Q. Yang

(ii) There exist i1, i2 ∈ {1, 2, 3}, such that Mi1 is huge and Mi2 is middle,
while the load of Mi3 , i3 = {1, 2, 3}\{i1, i2} is less than 5. Denote such status
by (Mi1 ,Mi2 , II);

(iii) There exist i1, i2 ∈ {1, 2, 3}, such that Mi1 , Mi2 are middle machines,
while the load of Mi3 , i3 = {1, 2, 3}\{i1, i2} is less than 5. Denote such status
by (Mi1 ,Mi2 , III).

Proof. (i) Assign all the remaining jobs to Mi3 , i3 = {1, 2, 3}\{i1, i2}. As T = 18
and Mi1 ,Mi2 are huge machines, Li3 = T − Li1 − Li2 ≤ 18 − 5 − 5 = 8,
CA = max{Li1 , Li2 , Li3} ≤ 8.

(ii) Assign successive jobs to Mi3 until the new load of Mi3 will be greater than
5 for the first time, i.e. there exists job pr, such that lri3 < 5 and lri3 + pr ≥ 5. If
lri3 +pr ≤ 8, assign pr to Mi3 makes the schedule agree with status (Mi1 ,Mi3 , I),
assign remaining jobs according (i) can finish the proof. Otherwise, assign pr to
Mi2 . Since 3 < pr ≤ pmax and 2 ≤ lri2 ≤ 8 − pmax, we have 5 ≤ lri2 + pr ≤ 8,
which implies that the schedule agrees with status (Mi1 ,Mi2 , I).

(iii) Assign successive jobs to Mi3 until the new load of Mi3 will be greater
than 5 for the first time, i.e. there exists job pr, such that lri3 < 5 and lri3 +
pr ≥ 5. If further lri3 + pr ≤ 8, assign pr to Mi3 makes the schedule agree with
(Mi3 ,Mi1 , II). Otherwise, assign pr to Mi2 . As 3 < pr ≤ pmax and 2 ≤ lri2 ≤
8− pmax, we have 5 ≤ lri2 + pr ≤ 8, which implies that the schedule agrees with
(Mi2 ,Mi1 , II). ��

Final Rule 1
By the description of Preliminary Rule 1, l01 + l02 > 8, or jobs assigned to M2

will be assigned to M1. Assign the successive jobs to M3 until there exists job
pu, such that lu3 < 5 and lu3 + pu ≥ 5.

If lu3 + pu ≤ 8, then assign pu to M3 and M3 becomes a huge machine. If
further M2 is a middle machine at the end of the first stage, the schedule agrees
with (M3,M2, II). Otherwise, M2 is a small machine and l02 ≤ 2. Assign all the
remaining jobs to M2 with total processing time less than T−(lu3 +pu)−(l01+l02) ≤
18− 5− 8 = 5. Hence, L1 = l01 ≤ 8, L2 ≤ 2 + 5 < 8 and L3 = lu3 + pu ≤ 8.

If lu3 + pu > 8, then pu > 3. Assign pu to M2 and all the remaining jobs to
M3, we have L1 = l01 ≤ 8, L2 = l02 + pu ≤ (8− pmax) + pmax = 8, and

L3 = T − L1 − L2 = T − l01 − (l02 + pu)
= T − (l01 + l02)− pu ≤ 18− 8− 3 = 7.

Final Rule 2
By Lemma 1(iii), let the two jobs scheduled on the huge machine M3 be pv1 and
pv2 . We have l01 + pv1 > 8 and pv2 > 8 − pmax. Assign all the remaining jobs to
M2, we have L1 = l01 ≤ 8, L3 = l03 ≤ 8, and

L2 = T − L1 − L3 = T − l01 − (pv1 + pv2)
= T − (l01 + pv1)− pv2 ≤ 18− 8− (8− pmax) ≤ 8.

Final Rule 3
By Lemma 1(i)(ii), let the jobs scheduled on M2 and M3 be py and px, respec-
tively. By Preliminary Rule 3, px + py > 8. Assign successive jobs to M1 until

Optimal Semi-online Scheduling Algorithms 509

there exists a job pz, such that lz1 ≤ 8 and lz1+pz > 8. Assign pz to M2 and all the
remaining jobs to M3. Because lz1 + pz > 8 and px + py > 8, the total processing
time of the remaining jobs is less than 2, which implies that L3 ≤ 5 + 2 < 8.
If L2 = py + pz ≤ 8, we have CA ≤ 8. Otherwise, CA = py + pz > 8. Consider
the assignment of p1, px, py, pz in any optimal schedule. Obviously, there exists
a machine process at least two of them. By pmax ≥ pj , j = x, y, z and px ≥ py,
we have C∗ ≥ py + pz or C∗ ≥ px + py. For the former case, our assignment is
optimal. For the latter case, assume CA/C∗ > 4/3, we have

py + pz = CA >
4
3
C∗ =

4
3
(px + py) >

4
3
· 8 =

32
3
.

Therefore, T ≥ pmax + px + py + pz ≥ 2(py + pz) > 64
3 > 18, which is a

contradiction.
Hence, we can reach our desired result.

Theorem 2. There exists a semi-online algorithm for P3|sum & max|Cmin

with a competitive ratio of 4
3 .

Note that if C∗ is known in advance, then T ≤ 3C∗. Similarly as Theorem 2, we
have the following theorem.

Theorem 3. There exists a semi-online algorithm for P3|opt & max|Cmin with
a competitive ratio of 4

3 .

3 Maximizing the Minimum Machine Load

In this section, we always assume that pmax ≤ C∗ since we may replace all jobs
with processing time greater than C∗ by jobs with processing time C∗, which
would not influence the optimal algorithm nor our algorithm, as we will see it
later.

Call pj as a small job if pj ≤ 2
5C

∗, otherwise we say that it is a big job.
Algorithm OM2

1. If 0 < pmax ≤ 2
5C

∗, assign all jobs by LS rule, i.e., always assign job to the
machine which it can start process the job earlier.

2. If 4
5C

∗ ≤ pmax ≤ C∗, assign p1 to M2, and assign other jobs to M1.
3. If 2

5C
∗ < pmax < 4

5C
∗, assign p1 to M2. Suppose that pj , j ≥ 2 is the current

job.
(3.1) In case pj is a small job,

(3.1.1) if lj2 < 4
5C

∗, assign pj to M2.
(3.1.2) if lj2 ≥ 4

5C
∗, assign pj to M1.

(3.2) In case pj is a big job,
(3.2.1) if lj1 < 4

5C
∗, assign pj to M1.

(3.2.2) if lj1 ≥ 4
5C

∗, assign pj to M2.

Theorem 4. The competitive ratio of the algorithm OM2 forP2|opt&max|Cmin

is 5
4 , and it is an optimal algorithm for P2|opt & max|Cmin.

510 Y. Wu, Z. Tan, and Q. Yang

Algorithm OMm

1. If 0 < pmax ≤ m
m−1

m−2
2m−3C

∗, assign all jobs by LS rule.
2. If m−1

2m−3C
∗ ≤ pmax ≤ C∗.

(2.1) Assign p1 to Mm.
(2.2) Suppose pj , j ≥ 2 is the current job, let

Zj = {Mi|lji = 0, 1 ≤ i ≤ m− 1},

W j = {Mi|0 < lji ≤
m− 1
2m− 3

C∗, 1 ≤ i ≤ m− 1}.

(2.2.1) If Zj = ∅, assign pj to the machine with smallest load inM\{Mm}.
(2.2.2) If Zj �= ∅ and pj ≥ m−1

2m−3C
∗, assign pj to an arbitrary machine in

Zj .
(2.2.3) If Zj �= ∅, pj < m−1

2m−3C
∗ and W j �= ∅, assign pj to an arbitrary

machine in W j .
(2.2.4) If Zj �= ∅, pj < m−1

2m−3C
∗ and W j = ∅, assign pj to an arbitrary

machine in Zj .
3. If m

m−1
m−2
2m−3C

∗ < pmax < m−1
2m−3C

∗.
(3.1) Assign p1 to Mm.
(3.2) Suppose pj , j ≥ 2 is the current job, let

U j = {Mi|lji <
m− 1
2m− 3

C∗, lji + pj ≤ C∗, 1 ≤ i ≤ m− 1},

V j = {Mi|lji ≤ pmax, 1 ≤ i ≤ m− 1}.

(3.2.1) If U j �= ∅, assign pj to the machine in U j with the smallest index.
(3.2.2) If U j = ∅, V j �= ∅, assign pj to the machine in V j with the largest

index.
(3.2.3) If U j = V j = ∅, assign pj by LS rule.

Theorem 5. The competitive ratio of the algorithm OMm for Pm|opt & max|
Cmin, m ≥ 3 is at most 2− 1

m−1 .

Proof. For 0 < pmax ≤ m
m−1 ·

m−2
2m−3C

∗, since all jobs are assigned by LS rule, we
have

|Li − Lk| ≤ pmax, 1 ≤ i, k ≤ m,

Li ≤ COMm + pmax, 1 ≤ i ≤ m,

C∗ ≤ T

m
=
∑m

i=1 Li

m
≤ (m− 1)(COMm + pmax) + COMm

m
=COMm+

m− 1
m

pmax,

COMm ≥ C∗ − m− 1
m

pmax ≥ C∗ − m− 1
m

· m

m− 1
· m− 2
2m− 3

C∗ =
m− 1
2m− 3

C∗.

For m−1
2m−3C

∗ ≤ pmax ≤ C∗, it is obviously that Lm = p1 ≥ m−1
2m−3C

∗. Next
we will prove that Li ≥ m−1

2m−3C
∗, 1 ≤ i ≤ m − 1. Suppose that there exists

i0, 1 ≤ i0 ≤ m− 1, such that Li0 < m−1
2m−3C

∗.

Optimal Semi-online Scheduling Algorithms 511

Lemma 3. If pg > m−1
2m−3C

∗, then Zg �= ∅.

Proof. According to the algorithm, |W j | ≤ 1 for all j, 1 ≤ j ≤ n. Suppose
that pg > m−1

2m−3C
∗ and Zg = ∅, then 0 < lgi0 ≤ Li0 < m−1

2m−3C
∗ and Mi0

is the unique machine in W g. Thus the load of each machine in M\{Mm} is
greater than m−1

2m−3C
∗ except Mi0 . Hence pg will be assigned to Mi0 which results

Li0 ≥ pg > m−1
2m−3C

∗, a contradiction. ��

By Lemma 3, all jobs with processing time greater than m−1
2m−3C

∗ are assigned
to empty machines. Since the loads of those machines are greater than Li0 , no
more jobs will be assigned to those machines. The final loads of those machines
are all less than pmax ≤ C∗ ≤ 2m−2

2m−3C
∗. For machines which process at least

two jobs, no more jobs will be assigned to it after its load greater than m−1
2m−3C

∗

considering the existence of Mi0 . Therefore, the final loads of these machines are
also less than m−1

2m−3C
∗ + m−1

2m−3C
∗ = 2m−2

2m−3C
∗. Finally, we have

COMm = Li0 ≥
m−1∑

i=1

Li − (m− 1− 1)
2m− 2
2m− 3

C∗ ≥ T − Lm − (m− 2)
2m− 2
2m− 3

C∗

≥ (m− 1)C∗ − (m− 2) · 2m− 2
2m− 3

C∗ =
m− 1
2m− 3

C∗

which violates our assumption.
In the rest of the proof, we concentrate on the case of m

m−1 ·
m−2
2m−3C

∗ < pmax <
m−1
2m−3C

∗. From the description of Step (3.2), we conclude that if Mi �∈ U j ∪ V j

and pj is still assigned to Mi, i = 1, · · · ,m, we must have

U j = V j = ∅, lji = min
1≤k≤m

ljk. (1)

Lemma 4. If there exists i0, 1 ≤ i0 ≤ m, such that Li0 < m−1
2m−3C

∗, then
Li > C∗ for all 1 ≤ i ≤ m and i �= i0.

Proof. Suppose that there exists k, 1 ≤ k ≤ m and k �= i0, such that Lk < C∗.
Then we have
m∑

i=1

Li−Lk−Li0 = T−Lk−Li0 > mC∗−C∗− m− 1
2m− 3

C∗ = (m−2)
2(m− 1)
2m− 3

C∗.

Therefore, there exists at least one machine, say Me, satisfying Le > 2(m−1)
2m−3 C∗.

Denoted by pf the job which makes the load of Me be greater than 2(m−1)
2m−3 C∗

for the first time, i.e., lfe ≤
2(m−1)
2m−3 C∗, lfe + pf > 2(m−1)

2m−3 C∗. Since

lfe >
2(m− 1)
2m− 3

C∗ − pf >
2(m− 1)
2m− 3

C∗ − pmax >
m− 1
2m− 3

C∗ > pmax,

we have Me �∈ Uf ∪ V f . Together with lfi0 ≤ Li0 < m−1
2m−3C

∗ ≤ lfe , pf can not
be assigned to Me, which contradicts to the definition of pf . Hence, we have
Li > C∗ for all 1 ≤ i ≤ m and i �= i0. ��

512 Y. Wu, Z. Tan, and Q. Yang

Lemma 5. If there exists i0, 1 ≤ i0 ≤ m − 1, such that Li0 < m−1
2m−3C

∗, then
Li > pmax for all 1 ≤ i ≤ m.

Proof. By Lemma 4, we have

Lm > C∗ > pmax. (2)

Hence, there exists some job assigned to Mm together with p1. Denote one of
such jobs by pd. By (1), pd will not be assigned to Mm unless Ud = V d = ∅,
then we have Li ≥ ldi > pmax, 1 ≤ i ≤ m− 1. Together with (2), the lemma is
thus proved. ��

Now we are going to prove COMm ≥ m−1
2m−3C

∗ by contradiction. Assume COMm <
m−1
2m−3C

∗. Denote by pji the last job assigned to Mi, 1 ≤ i ≤ m− 1, respectively.
We distinguish three cases according to which machine is the least loaded one.

Case 1. COMm = Lm < m−1
2m−3C

∗

Obviously, Lm ≥ pmax since p1 is always assigned to Mm. Moreover, by Lemma
4, we have Li > C∗, 1 ≤ i ≤ m− 1. We first show that

Li − pji = lji

i ≤ Lm, 1 ≤ i ≤ m− 1. (3)

Since lji

i + pji = Li > C∗, we have

Mi �∈ U ji , 1 ≤ i ≤ m− 1. (4)

If Mi ∈ V ji , by the definition of V ji , we have lji

i ≤ pmax ≤ Lm. If Mi �∈ V ji ,
together with (4), we have lji

i = min
1≤k≤m

lji

k ≤ lji
m ≤ Lm due to (1). (3) is thus

proved.
Next, we will show that there is only one job assigned to Mi except pji , 2 ≤

i ≤ m− 1. Suppose that for some h, 2 ≤ h ≤ m− 1, there are at least two jobs
assigned to Mh before the assignment of pjh

with total processing time ljh

h ≤
Lm < m−1

2m−3C
∗, then at least one job with processing time less than m−1

2(2m−3)C
∗

exists. Let pqh
be the first such job, i.e. pqh

< m−1
2(2m−3)C

∗. We distinguish two
subcases to derive contradiction.
Subcase 1. pj1 comes before pqh

By (4), M1 �∈ U j1 . Since pj1 is still assigned to M1, we have U j1 = ∅ and
V j1 ⊆ {M1}. Thus Mh �∈ U j1 ∪ V j1 and hence, lj1h > pmax. As pjh

is the last
job assigned to Mh, pqh

comes before pjh
. Together with the fact that pj1 comes

before pqh
, we have ljh

h ≥ lj1h > pmax, i.e., Mh �∈ V jh . Note that Mh �∈ U jh

by (4), we have ljh
m ≥ min

1≤k≤m
ljh

k = ljh

h > pmax by (1). Hence there exists some

job, denoted by pjm , assigned to Mm before the assignment of pjh
. But this

also causes contradiction. In fact, as pjm ≤ Lm − p1 < m−1
2m−3C

∗ − pmax <
1

(m−1)(2m−3)C
∗, together with (3) we have ljm

h ≤ ljh

h ≤ Lm < m−1
2m−3C

∗ and

ljm

h + pjm < m−1
2m−3C

∗ + 1
(m−1)(2m−3)C

∗ < C∗. It follows that Mh ∈ U jm , which
implies that pjm can not be assigned to Mm.

Optimal Semi-online Scheduling Algorithms 513

Subcase 2. pqh
comes before pj1

In this case, we have lqh

1 ≤ lj11 ≤ Lm < m−1
2m−3C

∗ and lqh

1 + pqh
≤ m−1

2m−3C
∗ +

m−1
2(2m−3)C

∗ ≤ C∗. It follows that M1 ∈ U qh and pqh
should be assigned to M1, a

contradiction.
Combining with above discussions, we know that there are only two jobs on

Mi, 2 ≤ i ≤ m− 1, one is pji and denote the other one by pki . Therefore,

Li = pki + pji > C∗, 2 ≤ i ≤ m− 1. (5)

Consider the assignment of a total amount of 2m−2 jobs of pji , 1 ≤ i ≤ m−1,
pki , 2 ≤ i ≤ m − 1 and p1 in any optimal schedule, there must exist two of m
machines in M on which totally process no more than two of them. Note that
m ≥ 3, together with (3) and (5), we have

C∗ ≤ 1
m− (m− 2)

(

T −
(

m−1∑

i=1

pji +
m−1∑

i=2

pki + p1 − 2p1

))

=
1
2

(

(L1 − pj1) +
m−1∑

i=2

(Li − (pji + pki)) + Lm + p1

)

=
1
2
(lj11 + Lm + p1)

<
1
2

(
m− 1
2m− 3

C∗ +
m− 1
2m− 3

C∗ +
m− 1
2m− 3

C∗
)

≤ C∗,

which is a contradiction.

Case 2. COMm = Li <
m−1
2m−3C

∗, for some i, 2 ≤ i ≤ m− 1
By Lemma 5, we have Li > pmax. Therefore, there must be at least two jobs
assigned to Mi with total processing time less than m−1

2m−3C
∗. Similarly to Case

1, denoted by pqi the first job assigned to Mi with pqi < m−1
2(2m−3)C

∗. On the

other hand, by 4, we have L1 = lj11 + pj1 > C∗ and thus M1 �∈ U j1 . Since pj1 is
assigned to M1, we have U j1 = ∅ and V j1 ⊆ {M1}. If V j1 = ∅, then lj11 ≤ lj1i ≤
Li < m−1

2m−3C
∗ by (1). If V j1 = {M1}, then lj11 ≤ pmax ≤ Li < m−1

2m−3C
∗ by the

definition of V j1 . For both cases, lj11 < m−1
2m−3C

∗.
Subcase 1. pj1 comes before pqi

Since lj1i < m−1
2m−3C

∗, we know that there are at least two jobs with total pro-
cessing time less than m−1

2m−3C
∗ assigned to Mi before the assignment of pj1 .

Therefore, at least one of them with processing time less than m−1
2(2m−3)C

∗ ex-
ists, which contradicts to the fact that pqi is the first job assigned to Mi with
processing time less than m−1

2m−3C
∗.

Subcase 2. pqi comes before pj1

By lqi

1 ≤ lj11 < m−1
2m−3C

∗ and lqi

1 + pqi ≤ lj11 + pqi ≤ m−1
2m−3C

∗ + m−1
2(2m−3)C

∗ < C∗,
we have M1 ∈ U qi and pqi must be assigned to M1, which is a contradiction.

Case 3. COMm = L1 < m−1
2m−3C

∗

By Lemma 5, Li > pmax, 1 ≤ i ≤ m. Hence at least two jobs are assigned to
each machine. Since the load of M1 is always less than m−1

2m−3C
∗. The processing

514 Y. Wu, Z. Tan, and Q. Yang

time of each job assigned to Mi, 2 ≤ i ≤ m − 1 and Mm are all greater than
m−2
2m−3C

∗, or they will be assigned to M1 by Step (3.2.1). On the other hand,
there are only two jobs pki and pji assigned to Mi. Suppose pti is the third job
assigned to Mi, then lti

i > 2 · m−2
2m−3C

∗ > pmax, lti

i + pti > 3 · m−2
2m−3C

∗ ≥ C∗ i.e.
Mi �∈ U ti ∪ V ti . Since lti

i > m−1
2m−3C

∗ > L1 ≥ lti
1 , pti can not be assigned to Mi.

We can also obtain that there is only one job, denoted by pq, assigned to Mm

besides p1. In fact, if pq′ is the third job assigned to Mm, then

lq
′

m >
m− 2
2m− 3

C∗ + p1 >
m− 2
2m− 3

C∗ +
m(m− 2)

(m− 1)(2m− 3)
C∗

=
(2m− 1)(m− 2)
(m− 1)(2m− 3)

C∗ >
(2m− 1)(m− 2)

(m− 1)2
L1 > L1 ≥ lq

′

1 ,

which implies that pq′ can not be assigned to Mm.
Similarly to the Case 1, we have

Li = pki + pji > C∗, 2 ≤ i ≤ m− 1, (6)

Lm = pq + p1 > C∗. (7)

Consider the assignment of 2m− 2 jobs of pji , 2 ≤ i ≤ m − 1, pki , 2 ≤ i ≤
m− 1, p1 and pq in any optimal schedule. Combining with (6) and (7), we have

C∗ ≤ 1
m− (m− 2)

(

T −
(

m−1∑

i=2

pji +
m−1∑

i=2

pki + pq + p1 − 2p1

))

=
1
2

(

L1 +
m−1∑

i=2

(Li − (pji + pki)) + (Lm − (pq + p1)) + 2p1

)

=
1
2
(L1 + 2p1) <

1
2

(
m− 1
2m− 3

C∗ +
2(m− 1)
2m− 3

C∗
)

≤ C∗,

which is a contradiction.

Lemma 6. Let r be the lower bound for the problem Pm′|opt|Cmin with m′ ≥ 2,
then r is also a lower bound for the problem Pm|opt & max|Cmin, where m =
m′ + 1.

Proof. Assume that r is a lower bound for the problem Pm′|opt|Cmin with a fixed
m′ ≥ 2. We convert it into a lower bound for the problem Pm|opt & max|Cmin.
Let pmax = C∗ be known in advance. We begin the job sequences with p1 = C∗,
and then continue with the original job sequences used for Pm′|opt|Cmin. The
optimal algorithm assign p1 to one machine separately and the optimal value is
unchanged. To make the objective value produced by semi-online algorithm A
be larger, A also prefer to assign p1 to one machine and do not use this machine
later. The objective value of schedule produced by A will not decrease though
one more machine is available. Thus the competitive ratio of any algorithm for
the problem Pm|opt & max|Cmin is at least r. ��

Optimal Semi-online Scheduling Algorithms 515

By Lemma 6 and the lower bounds of Pm|opt|Cmin[1], any semi-online algorithm
A for the problem Pm|opt & max|Cmin has a competitive ratio of at least

⎧
⎨

⎩

3/2 if m = 3,
5/3 if m = 4,
7/4 if m = 5.

Hence, OMm is an optimal algorithm for Pm|opt & max|Cmin when m = 3, 4, 5.

References

1. Azar, Y., Epstein, L.: On-line machine covering. Journal of Scheduling 1, 67–77
(1998)

2. Azar, Y., Regev, O.: On-line bin-stretching. Theoretical Computer Science 168,
17–41 (2001)

3. Chang, S.Y., Hwang, H.C., Park, J.: Semi-on-line parallel machines scheduling
under known total and largest processing times. Journal of the Operations Research
Society of Japan 48, 1–8 (2005)

4. Cheng, T.C.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling
with given total processing time. Theoretical Computer Science 337, 134–146
(2005)

5. Ebenlendr, T., Noga, J., Sgall, J., Woeginger, G.: A note on semi-online machine
covering. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp.
110–118. Springer, Heidelberg (2006)

6. He, Y.: Semi on-line scheduling problem for maximizing the minimum machine
completion time. Acta Mathematica Applicatae Sinica 17, 107–113 (2001)

7. He, Y., Zhang, G.C.: Semi on-line scheduling on two identical machines. Comput-
ing 62, 179–187 (1999)

8. Kellerer, H., Kotov, V., Speranza, M.R., Tuza, Z.: Semi on-line algorithms for the
partition problem. Operations Research Letters 21, 235–242 (1997)

9. Tan, Z.Y., He, Y.: Semi-on-line problems on two identical machines with combined
partial information. Operations Research Letters 30, 408–414 (2002)

10. Tan, Z.Y., Wu, Y.: Optimal semi-online algorithms for machine covering. Theoret-
ical Computer Science 372, 69–80 (2007)

Lower Bounds on Edge Searching

Brian Alspach1, Danny Dyer2, Denis Hanson1, and Boting Yang3

1 Department of Mathematics and Statistics, University of Regina
{alspach,dhanson}@math.uregina.ca

2 Department of Mathematics and Statistics, Memorial University of Newfoundland
dyer@math.mun.ca

3 Department of Computer Science, University of Regina
boting@cs.uregina.ca

Abstract. Searching a network for intruders is an interesting and diffi-
cult problem. Edge-searching is one such search model, in which intruders
may exist anywhere along an edge. Since finding the minimum number
of searchers necessary to search a graph is NP–complete, it is natural
to look for bounds on the search number. We show lower bounds on
the search number using minimum degree, girth, chromatic number, and
colouring number.

1 Introduction

Clearing a graph (or network) of an intruder or intruders has a natural division
into two classes of problem: those in which intruders may be located only at
vertices and those in which intruders may be located at vertices or anywhere
along edges. The latter situation is called edge-searching. Searching graphs serves
as a model for important applied problems (see [3], [4] and [6]). A survey of results
can be found in [1].

In this paper, we adopt the convention that multigraphs allow multiple edges,
reflexive graphs allow loops, and that graphs allow neither loops nor multiple
edges. A reflexive multigraph allows both loops and multiple edges. The specifics
of searching a reflexive multigraph G are as follows. Initially, all edges of G are
contaminated. To search G it is necessary to formulate and carry out a search
strategy. A strategy is a sequence of actions performed as consecutive steps
designed so that after the final step, all edges of G are uncontaminated (or
cleared). Only three actions are allowed at each step.

1. Place a searcher on a vertex.
2. Move a searcher on a vertex u along an edge uv to v.
3. Remove a searcher from a vertex.

An edge uv in G can be cleared in one of two ways. Either at least two searchers
are located on vertex u of edge uv, and one of them traverses the edge from u
to v while the others remain at u, or at least one searcher is located on vertex
u, where all edges incident with u, other than uv, are already cleared. Then the
searcher moves from u to v. A cleared edge may become recontaminated. This

B. Chen, M. Paterson, and G. Zhang (Eds.): ESCAPE 2007, LNCS 4614, pp. 516–527, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Lower Bounds on Edge Searching 517

happens if, at any time, there is a path from an endpoint of the cleared edge to
an endpoint of a contaminated edge that does not contain a searcher. We say a
vertex is cleared when all edges incident with it are cleared.

Knowing that our goal is a cleared graph, one in which all the edges are
cleared, a basic question is: what is the fewest number of searchers for which a
search strategy exists? We call this the search number, denoted s(G).

Let E(i) be the set of cleared edges after action i has occurred. A search
strategy for a graph G for which E(i) ⊆ E(i+1) for all i is said to be monotonic.
We may then define the monotonic search number, denoted ms(G). LaPaugh
[7] and Bienstock and Seymour [2] proved that for any connected graph G,
s(G) = ms(G). We will only consider connected graphs throughout this paper.

In general, determining the search number of a graph G is NP-complete [8].
As any successful search strategy gives an upper bound, our goal becomes first to
find the “right” way to clear the graph, using as few searchers as possible. Once
this strategy is found, we must then prove that no fewer searchers will suffice.
Here is where the true difficulty lies: most easily attainable lower bounds are quite
poor. We will prove several lower bound results using the graph parameters of
minimum degree, girth, and chromatic number.

The following three theorems (see [11]) give lower bounds for the search num-
ber of a graph G. The first uses the minimum degree δ(G), while the second uses
the clique number ω(G) of G, the order of a maximum order complete subgraph.

Theorem 1. If G is a connected graph then s(G) � δ(G). If δ(G) � 3, then
s(G) � δ(G) + 1.

Theorem 2. If G is a connected graph and ω(G) � 4, then ω(G) � s(G).

We also recall a well-known theorem on searching. In this paper, if H is minor
of G, we write H + G, and if H is a subgraph of G, we write H � G.

Theorem 3. If H + G, then s(H) � s(G).

2 Minimum Degree and Girth

Consider the graph K3,3. By Theorem 1, four searchers are necessary. However,
with four searchers it is impossible to clear more than two vertices! We introduce
the idea of girth to expand our repertoire of lower bounds.

Since the search number of a connected graph is equal to its monotonic search
number, we may investigate monotonic search strategies instead. Being able
to assume a search is monotonic is very useful. Moreover, Theorem 4 tells us
something about how such a search strategy may be formulated. However, we
must first introduce the following lemma. A vertex in a graph G is said to be
exposed if it has edges incident with it that are contaminated as well as edges
incident with it that are cleared. Following a search strategy S on G, we define
exS(G, i) to be the number of exposed vertices after the i-th step. We also define
the maximum number of exposed vertices to be mexS(G) = max

i
exS(G, i).

518 B. Alspach et al.

Lemma 1. If G is a connected reflexive multigraph, then for any monotonic
search strategy S using ms(G) searchers, mexS(G) � ms(G) � mexS(G) + 1.

Proof. The first inequality is straightforward; every exposed vertex must contain
a searcher, so there cannot be more exposed vertices than searchers.

For the second inequality, it suffices to show that if there is a monotonic search
strategy S which clears G using k searchers, and if mexS(G) � k − 2, then we
can formulate another monotonic search strategy T which clears G using only
k − 1 searchers, and mexT (G) = mexS(G).

Let S denote the set of all search strategies for G that use k searchers. For a
given search strategy S ∈ S, label the searchers in the order that they are first
placed in G. The first unlabelled searcher placed will be labelled γ1, the second
unlabelled searcher placed will be labelled γ2, and so on. Certainly, if any searcher
is not placed on the graph, then it may be removed from S without affecting the
search strategy. Thus, we may assume that every searcher is labelled, and every
searcher is at some point placed on the graph. We also shall index each action
using successive positive integers starting with 1, 2,

Whenever a vertex v is exposed, then there must be at least one searcher on
v in order to prevent recontamination of the edges incident with v. If there is
more than one searcher located at v, then we arbitrarily designate one of the
searchers as the guard for v. Of course, if there is only one searcher located at
v, then that searcher automatically is designated as the guard. We shall call a
searcher important if the searcher at some point either clears an edge or becomes
the guard on an exposed vertex.

Now consider the searcher γk. We first want to show that there is a strategy
in S for which γk is not important. To this end, we assume that S contains at
least one strategy for which γk is important. For any strategy S for which γk is
important, let L(S) denote the index of the last action in S and let k(S) denote
the index of the action that results in γk becoming important. In other words,
either action k(S) is the first time γk clears an edge, or action k(S) results in γk

first being a guard at some vertex.
Over all strategies S ∈ S for which γk is important, let L(S) − k(S) be

minimum. Suppose L(S)− k(S) > 0.
Consider the case that γk becomes important because action k(S) consists of

γk clearing an edge uv by traversing the edge from u to v. Define a new strategy
S′ as follows. We let S′ coincide with S for actions with indices 1, 2, . . . , k(S)−1.
At this point, γk is located at vertex u and in strategy S should move along uv
from u to v in order to clear it. Because mexS(G) � k − 2, there is at least one
searcher γi �= γk who is not being used to protect an exposed vertex. If γi also
is located on vertex u, then let γi traverse the edge uv from u to v as the action
indexed with k(S) in S′. From this point on, S′ is the same as S except that the
roles of γi and γk are interchanged. If γi is not located on vertex u, then remove
γi from its current vertex as the action indexed by k(S) in S′. Now place γi on u
as the action of S′ indexed k(S) + 1. Remove γk from u as the next action of S′

and replace γk on the vertex from which γi just came. These four actions have
interchanged the locations of γi and γk. From this point on, the action indexed

Lower Bounds on Edge Searching 519

t in S′ is the same as the action indexed t − 4 in S with the roles of γi and γk

interchanged.
In both subcases for which γk became important, it is easy to see that L(S′)−

k(S′) < L(S)−k(S). Now consider the remaining case that γk becomes important
because following action k(S), γk is a guard on an exposed vertex u. If there are
two or more searchers on u following action k(S), designate a searcher γi other
than γk to be the guard. Then interchange the roles of γi and γk from that point
on. The resulting strategy S′ certainly satisfies L(S′) − k(S′) < L(S) − k(S).
Hence, just before the action k(S) is carried out, there is just one searcher
on u, in addition to γk, and this searcher leaves u on action k(S). Because
mexS(G) � k−2, there is another non-guard searcher γj located at some vertex
v �= u. Take four steps to interchange γk and γj and then define S′ to be the initial
part of S, the four actions just concluded, and the completion of S with the roles
of γj and γk interchanged. Again it is easy to see that L(S′)−k(S′) < L(S)−k(S).

Therefore, if there exists a search strategy S with γk being important and
L(S) − k(S) > 0, there must be such a search strategy with L(S) = k(S).
Suppose S is such a strategy with L(S) = k(S). This means that γk becomes
important only on the last action of S, and this action must complete clearing
the graph. Hence, on the last action L(S), γk traverses an edge uv from u to v
clearing the last contaminated edge of G. Because γk is not important and u is
incident with a contaminated edge, there must be another searcher on u acting
as the guard. Have this searcher clear the edge uv instead of γk. This results in
a strategy for which γk is not important.

From this strategy, form a new strategy T which is exactly the same, but
with all of γk’s actions are removed. Since γk is unimportant, every edge is still
cleared, and the maximum number of exposed vertices is the same, but only
k − 1 searchers are used.

Theorem 4. If G is a connected reflexive graph with no vertices of degree 2,
then there exists a monotonic search S with ms(G) searchers such that ms(G) =
mexS(G) + 1.

Proof. Let G be a connected reflexive graph G with no vertices of degree 2. As-
sume that for every monotonic search strategy S on G, mexS(G) = ms(G) = k.
Since S is a search strategy, there is a moment when the number of exposed
vertices becomes mexS(G) for the last time. Let S′ be a monotonic search strat-
egy which has the minimum number of instances where the number of exposed
vertices goes from being less than k to being k and has the minimum number
of edge clearings after the last time the number of exposed vertices becomes k.
The only action which can increase the number of exposed vertices is clearing
an edge, which can expose at most two additional vertices. Let xy be the last
edge cleared before the number of exposed vertices becomes mexS(G) for the
last time. We consider four cases as to how xy can be cleared.
Case 1: The edge xy is a loop, with x = y. Since clearing xy can expose at
most one additional vertex, the number of exposed vertices must be k − 1. If
x was already exposed, clearing xy would not increase the number of exposed

520 B. Alspach et al.

vertices. Thus, x must not have been an exposed vertex. But since there must
be a searcher on each of the k− 1 exposed vertices, this leaves only one searcher
to clear the loop xy. But a single searcher cannot clear a loop, a contradiction.
Thus, xy cannot be a loop.
Case 2: The number of exposed vertices just before xy is cleared is k − 2, and
at this time neither x nor y is exposed. Label the k − 2 exposed vertices as
v1, v2, . . . vk−2, and assume that searcher γi rests on vertex vi, 1 � i � k − 2.
The edge xy must be such that neither x nor y is some vi. Assume that after xy
is cleared, searcher γk−1 is on x and γk is on y.

If there are any pendant edges or loops attached to some vi that are not
cleared, we can use searcher γk to clear these edges first. If this reduces the
number of exposed vertices, then at some later action k vertices must be ex-
posed because the number of exposed vertices increasing to k occurs a minimum
number of times in S′. This later point must have more cleared edges, contradict-
ing the minimality of S′. Thus, clearing such an edge cannot reduce the number
of exposed vertices. But then, clearing xy next would produce a search strategy
with fewer edges to be cleared after the number of exposed vertices becomes k
for the last time, again contradicting the minimality of S′. Similarly, if there are
any contaminated edges between vi and vj , γk may clear these edges first, and
then xy, again contradicting the minimality of S′. So we may assume that all
edges between the vi have already been cleared, as have all pendant edges and
loops incident with them.

If some vertex vi is incident with only one contaminated edge, then γi may
clear that edge first, and then γk may clear xy, again contradicting the mini-
mality of S′. Thus, each vi must have at least two contaminated edges incident
with it, and the γi, 1 � i � k − 2, must remain where they are as blockers.

Neither x nor y are exposed before xy is cleared so that all edges incident with
x and y are contaminated. After xy is cleared, both x and y are exposed. Thus,
each of them is incident with a contaminated edge. Since G has no vertices of
degree 2, both x and y must have at least two contaminated edges incident with
them, and thus neither γk−1 nor γk may move, contradicting that S′ is a search
strategy.
Case 3a: The number of exposed vertices just before xy is cleared is k − 1 and
one of the vertices of xy already is an exposed vertex. Label the exposed vertices
v1, v2, . . ., vk−1, and assume that they have searchers on them, with searcher γi

on vertex vi, 1 � i � k − 1. Without loss of generality, assume that x = vk−1.
Since the vertex vk−1 is still exposed, we may assume that γk−1 stays on vk−1,
that the remaining searcher γk clears vk−1y by traversing the edge from vk−1 to
y, and that there is another contaminated edge vk−1z incident with vk−1.

If there are any pendant edges or loops attached to some vi that are not
cleared, we use the remaining searcher γk to clear these edges first, and then
vk−1y, contradicting the minimality of S′. In particular, vk−1z is not pendant so
that z must have degree at least 3. Similarly, if there are any contaminated edges
between vi and vj , γk may clear these edges first, then vk−1y, again contradicting

Lower Bounds on Edge Searching 521

the minimality of S′. So we may assume that all edges between the vi already
have been cleared, as have all pendant edges and loops incident with them.

If some vertex vi is incident with only one contaminated edge, then γi may
clear that edge first, then γk may clear vk−1y, again contradicting the minimality
of S′. Thus, each vi must have at least two contaminated edges incident with it,
and all the γi, 1 � i � k− 2, must remain where they are as blockers. Note that
deg(y) > 1, as otherwise searching vk−1y does not expose a new vertex. Since
deg(y) � 3, we know that once γk clears vk−1y, γk must remain on y. After vk−1y
is cleared, if vk−1 has two or more contaminated edges incident with it, then γk−1

must remain at vk−1. Then no searchers may move, contradicting that S′ is a
search strategy. Thus, the only contaminated edge remaining incident with vk−1

must be vk−1z. Thus, the next action in S′ must be that γk−1 clears vk−1z. Since
deg(z) � 3, z must have at least two contaminated edges incident with it, and
thus γk−1 also cannot move, contradicting that S′ is a search strategy.
Case 3b: The number of exposed vertices is k − 1, and neither of the vertices
of xy is already exposed. Since the number of exposed vertices increases by 1
after xy is cleared, exactly one of x and y must have degree 1. (If both were
degree 1, the graph would be disconnected.) Without loss of generality, assume
that deg(x) = 1. Then deg(y) � 3. Assume that the k − 1 exposed vertices are
labelled vi and that the searcher γi is on vi, 1 � i � k− 1. Then the searcher γk

must clear xy.
As in the previous case, all edges between vi must be cleared, as must all

pendant edges and loops incident with them. Also, each vi must have at least
two contaminated edges incident with it. Thus, none of the γi, 1 � i � k − 1,
may move. Similarly, since deg(y) � 3, y must have at least two contaminated
edges incident with it, meaning that γk cannot move. This contradicts that S′

is a search strategy.

This theorem tells us that there exist search strategies for some graphs that
“save” searchers, in the sense we may keep a searcher in reserve, to never be
stationed at an exposed vertex, but instead to clear edges between stationed
searchers. If we consider the analogy of a graph filled with gas, we may always
keep a searcher from being exposed, or by rotating searchers reduce the amount
of “exposure” to a toxic substance.

The use of graph instead of multigraph in Theorem 4 is intentional. While it
is possible that the result may be extended to some multigraphs, this proof does
not suffice.

We first introduce a lemma from [10] to be used in the proof of Theorem 5.

Lemma 2. If G is a graph and δ(G) � 3, then the number of cycles with pairwise
distinct vertex sets is greater than 2

δ
2 .

Theorem 5. If G is a connected graph with δ(G) � 3, then s(G) � δ(G) +
g(G)− 2.

Proof. From Lemma 2, we know that the girth of G is finite, that g = g(G) � 3,
and that G has at least 3 cycles. Since δ = δ(G) � 3, it follows from Theorem 4

522 B. Alspach et al.

that there exists a monotonic search S with ms(G) = s(G) searchers such that
mexS(G) = ms(G) − 1. Let E0, E1, ..., Em be the sequence of cleared edge sets
corresponding to S. Let Gi be the graph induced by the cleared edges in Ei.
Case 1. δ � g = 3. Consider the smallest i such that G has one cleared vertex
u at step i. Since deg(u) � δ, G must have at least δ exposed vertices adjacent
to u. Since S exposes at most ms(G) − 1 vertices, δ � s(G) − 1, and thus
s(G) � δ + 1 = δ + g − 2.
Case 2. δ � g = 4. Let i be the least number such that G has at least two
cleared vertices u and v at step i. If u and v are adjacent, they can have no
common neighbours, and since deg(u) � δ and deg(v) � δ, they must both be
adjacent to at least δ−1 exposed vertices each. This accounts for 2δ−2 searchers,
and 2δ − 2 � δ + g − 2, as required. If u and v are not adjacent, then they may
share common neighbours. At worst, all their neighbours are common. Consider
the graph Gi−1. Since u and v are not adjacent, only one of them can become
cleared by the next move. Assume that v is already cleared at step i − 1, and
u becomes clear at step i. Then v has at least δ exposed vertices adjacent to
it, and certainly u itself is exposed at this point. Thus G must have at least
δ + 1 different exposed vertices at step i− 1. Since S exposes at most ms(G)− 1
vertices, δ + 1 � ms(G)− 1, and thus ms(G) � δ + 2 = δ + g − 2.
Case 3. δ � g � 5. Let i be the least number such that G has at least two
cleared vertices u and v at step i. If these two vertices are adjacent, then one
must have δ − 1 exposed vertices adjacent to it, and the other must have at
least δ− 2 exposed vertices adjacent to it (it may be adjacent to a third cleared
vertex). Thus 2δ − 3 � ms(G) − 1, and ms(G) � 2δ − 2 � δ + g − 2. If u and
v are not adjacent, they have at most one neighbour in common, and hence
again must have at least 2δ− 3 exposed vertices between them. Thus, as above,
ms(G) � δ + g − 2.
Case 4. g > δ = 3. Consider the smallest i such that Gi contains exactly one
cycle C. Then each vertex of this cycle is either exposed or cleared. (Since only
one edge was cleared, if Gi contained more than one cycle, then Gi−1 must
have contained a cycle.) Let u be a cleared vertex in C. Consider the graph H
obtained when the edges of C are removed from Gi. Certainly, H is a forest,
as Gi contained exactly one cycle. Then u is certainly in one of the non-trivial
component trees that make up H . Since there are no vertices of degree 1 in G,
any vertices of degree 1 in H must be exposed. Thus, there is an exposed vertex
in the tree containing u. Further, this exposed vertex cannot be an exposed
vertex in C, as this would mean that Gi contains two cycles. Thus, for every
cleared vertex in C, there is an exposed vertex in G. Certainly, for every exposed
vertex in C there is a corresponding exposed vertex (itself), and the number of
exposed vertices is at least g. Since the monotonic search strategy S exposes at
most ms(G) − 1 vertices, g � ms(G) − 1, and thus ms(G) � g + 1 � δ + g − 2.
Case 5. g > δ � 4. Let i1 be the smallest i such that Gi1 has two or more
cycles. Accordingly, we know Gi has at most one cycle for any i < i1. If C1 and
C2 are two of the cycles formed and are vertex-disjoint, then as before, there is

Lower Bounds on Edge Searching 523

an exposed vertex that corresponds to each vertex in each cycle. But at most
one exposed vertex may correspond to a vertex in both cycles. Thus the number
of exposed vertices is at least 2g − 1, and so ms(G) � 2g � δ + g − 2. If C1

and C2 share exactly one common vertex, then there are at least 2g− 2 exposed
vertices at step i2. Again, ms(G) � 2g− 1 � δ + g − 2. If C1 and C2 share more
than one vertex, then Gi2 contains exactly three cycles. In this case, we consider
step i2, the first moment that the graph Gi contains four or more cycles.

Let C be the subgraph of G formed by V (C) = V (C1) ∪ V (C2) and E(C) =
E(C1)∪E(C2), as shown in Figure 1(i). Let one of the new cycles formed be C3.
If C3 is vertex-disjoint from C, then Gi2 contains two vertex-disjoint cycles, and
as before, the number of exposed vertices is at least 2g−1. Thus, ms(G) � 2g �
δ + g − 2. If C3 and C share exactly one vertex, then there are at least 2g − 2
exposed vertices at step i2. Again, ms(G) � 2g − 1 � δ + g − 2. Otherwise, C
and C3 share two or more vertices. We consider some subcases (see Figure 1).

P2 P3

P6

P5

P1 P4

(ii)

P2

P3

P4

P6

P5
P1

(iii)(i)

Fig. 1. (i) The graph C; (ii) Case 5(a); (iii) Case 5(b)

Case 5(a). In this case, we consider four cycles: the cycle induced by the paths
P1 and P2; the cycle induced by P2, P3, P5, and P6; the cycle induced by P3 and
P4; and finally the cycle induced by P1, P4, P5, and P6. These cycles all have
length at least g. We note that either or both of P5 and P6 may be paths of length
zero. Summing the lengths of the cycles, we see that we count each path, and
hence each edge, exactly twice. Thus, in this subgraph G′, E′ = E(G′) � 2g. We
next consider how many vertices are in V ′ = V (G′). If neither P5 nor P6 are paths
of length zero, then summing vertex degrees over V ′ shows that 2(|V ′|−4)+3·4 =
2|E|, or that |V ′| = |E′| − 2 � 2g − 2. In this case, every vertex corresponds
to an exposed vertex, and so ms(G) � 2g − 1 � δ + g − 2. If exactly one of P5

or P6 is a path of length zero, then summing vertex degrees over V ′ shows that
2(|V ′|−3)+2 ·3+4 = 2|E′|, or that |V ′| = |E′|−2 � 2g−2. All but one of these
vertices must correspond to an exposed vertex, so ms(G) � 2g − 2 � δ + g − 2.
Finally, if both P5 and P6 are paths of length zero, then summing vertex degrees
over V ′ shows that 2(|V ′| − 2) + 2 · 4 = 2|E′|, or that |V ′| = |E′| − 2. In this
case, however, all but two vertices must correspond to an exposed vertex, so
the number of exposed vertices is at least |E′| − 4 � 2g − 4 � δ + g − 3, since
g � δ + 1. Thus, ms(G) � δ + g − 2.
Case 5(b). In this case, we again consider four cycles: the cycle induced by the
paths P1, P4, and P6; the cycle induced by the paths P2, P4, and P5; the cycle
induced by the paths P3, P5, and P6; and the cycle induced by the paths P1, P2,

524 B. Alspach et al.

and P3. Each cycle has length at least g. Consider the sum of the lengths of the
cycles. Each path is counted twice, as is each edge. Thus, in this subgraph G′,
the total number of edges |E′| � 2g. We sum the degrees of the vertices, and find
that 2(|V ′|−4)+4 ·3 = 2|E′|, or that |V ′| = |E′|−2 � 2g−2. Since each vertex
in G′ corresponds to an exposed vertex, we see that ms(G) � 2g− 1 � δ + g− 2.

In fact, this result is best possible. Recall that the complete bipartite graph
Ka,b on a + b distinct vertices, where 1 � a � b, is the graph with vertex set
V (Ka,b) = {v1, v2, . . . , va} ∪ {u1, u2, . . . , ub} and edge set E(Ka,b) = {uivj |1 �
i � b, 1 � j � a}. We now have sufficient tools to calculate the search number
of the complete bipartite graph for all possible values of a and b.

Corollary 1. Let 1 � a � b.

1. If a = 1 and 1 � b � 2, then s(Ka,b) = 1.
2. If a = 1 and b � 3, then s(Ka,b) = 2.
3. If a = b = 2, then s(Ka,b) = 2.
4. If a = 2 and b � 3, then s(Ka,b) = 3.
5. If 3 � a � b, then s(Ka,b) = a + 2.

A similar result can be shown for a complete multipartite graph.

Theorem 6. For a complete multipartite graph Km1,...,mk
, where m1 � ... �

mk, if mk � 3 and k � 3, then s(G) =
k−1∑

i=1

mi + 2.

Proof. Let
∑k−1

i=1 mi = x. It is easy to see that s(Km1,...,mk
) � x + 2. Suppose

Km1,...,mk
can be cleared by x+1 searchers. By Theorem 4, there exists a mono-

tonic search strategy S with ms(G) searchers such that mexS(G) = ms(G)−1 �
x. Let V1, ..., Vk be the k parts of the vertex set with |Vj | = mj , and v ∈ Vi

be the first cleared vertex using strategy S. Thus, all neighbours of v must be
exposed vertices. If mi < mk, v has at least x + 1 neighbours. This contradicts
that mexS(G) � x. If mi = mk, the x neighbours of v must be exposed vertices.
Since mexS(G) � x, each of other vertices in Vi must be contaminated. Since
mi = mk � 3, each of these exposed vertices has at least 2 contaminated edges
incident on it. When we use the only free searcher to clear any edge incident on a
vertex in Vi−{v}, we have x+1 exposed vertices, each of which is incident with
at least two contaminated edges. Thus, no searcher can move, a contradiction.

The Petersen graph P is a cubic graph with girth 5. Thus, s(P) � 6. In fact,
6 searchers are sufficient. To see this, place a searcher on each of the vertices
of a 5-cycle in P . Use a sixth searcher to clear the 5-cycle induced by these
vertices. Move each searcher from the vertex it is on along the single remaining
contaminated edge incident with it. This leaves searchers on every remaining
uncleared vertex, and the sixth searcher can then clear the 5-cycle induced by
these vertices, clearing the graph. In the same fashion, Theorem 5 implies that
the Heawood graph and the McGee graph, which have girths 6 and 7, respec-
tively, must have search numbers at least 7 and 8. In fact, it can be shown that
these numbers are also sufficient to clear these graphs. The search strategies are
similar to those for the Petersen graph.

Lower Bounds on Edge Searching 525

3 Chromatic Number

If a graph G has a clique of order k, then at least k colours are required for a
proper colouring. Thus, for any graph G, ω(G) � χ(G). Since we know that the
clique number is a lower bound on the search number, it is reasonable to wonder
whether Theorem 2 can be extended to the chromatic number.

Recall that the least number k such that the vertices of G can be ordered
from v1 to vn in which each vertex is preceded by less than k of its neighbours is
called the colouring number col(G) of G. Theorem 7 comes from [5]. Corollary 2
then follows directly from Theorems 7, 1, and 3.

Theorem 7. For every connected graph G, χ(G) � col(G) � max{δ(H)|H �
G}+ 1.

Corollary 2. For every connected graph G, χ(G)− 1 � s(G).

We also offer a constructive proof for Corollary 2 which gives a proper colouring
of G using at most s(G) + 1 colours.

We begin by introducing the homeomorphic reduction of a reflexive multi-
graph X . Let V ′ = {u ∈ V (X) : deg(u) �= 2}. A suspended path in X is a path of
length at least 2 joining two vertices of V ′ such that all internal vertices of the
path have degree 2. A suspended cycle in X is a cycle of length at least 2 such
that exactly one vertex of the cycle is in V ′ and all other vertices have degree
2. Let V ′ = {u ∈ V (X) : deg(u) �= 2}. The homeomorphic reduction of X is the
reflexive multigraph X ′ obtained from X with vertex set V ′ and the following
edges. Any loop of X incident with a vertex of V ′ is a loop of X ′ incident with
the same vertex. Any edge of X joining two vertices of V ′ is an edge of X ′ joining
the same two vertices. Any suspended path of X joining two vertices of V ′ is
replaced by a single edge in X ′ joining the same two vertices. Any suspended
cycle of X containing a vertex u of V ′ is replaced by a loop in X ′ incident with
u. In the special case that X has connected components that are cycles, these
cycles are replaced by loops on a single vertex.

Lemma 3. If X is a connected reflexive multigraph and Y is its homeomorphic
reduction, then s(X) = s(Y).

To obtain a bound on the search number involving chromatic number, we return
to the idea of the maximum number of exposed vertices in a search.

Theorem 8. If G is a connected reflexive multigraph with homeomorphic re-
duction G′ and a monotonic search strategy S for G′ such that mexS(G′) � 3,
then χ(G) � mexS(G′) + 1.

Proof. Let mexS(G′) = k. We will show that G is (k + 1)-colourable. We first
show that G′ is (k + 1)-colourable. Following the monotonic search strategy S
that exposes at most k vertices in G′, we can design a colouring such that it can
colour G′ using at most k + 1 colours.

526 B. Alspach et al.

Initially, searchers are placed on G′. When a vertex first becomes exposed (or
in the case of vertices of degree 1, becomes cleared), the vertex is coloured. This
colour cannot be changed or erased in the following searching process. We now
consider how to colour a vertex v in the moment it becomes exposed (or cleared,
in the case of vertices of degree 1). Before this moment, v cannot be adjacent
to any cleared vertex. Thus, each coloured vertex that is adjacent to v must be
an exposed vertex. Since the number of exposed vertices is less then or equal
to k, we can always assign v a colour that is different from the colours of the
adjacent vertices of v. Thus, while S clears G′, we can assign a colour to each
vertex of G′ such that any pair of adjacent vertices has different colours. Thus,
G′ is (k + 1)-colourable.

We now show that G is (k+1)-colourable. For each vertex u in G′, assign the
colour of u in G′ to the corresponding vertex u in G. Any uncoloured vertex in G
must be on a suspended path or a suspended cycle. If it is on a suspended cycle,
one vertex in this cycle has already been coloured. At most two more colours are
needed to colour the remaining vertices of this cycle, but since k � 3, we have
a sufficient number of colours to do so. Similarly, if the vertex is in a suspended
path, the ends of the suspended path have already been coloured. Now at most
one more colour is needed to colour the remaining vertices of this path, but again,
we have sufficient colours to do so. Hence, G is (k + 1)-colourable. Therefore,
χ(G) � k + 1.

Combining Theorem 8 with Lemma 1, we obtain the following corollary, an
improvement on Corollary 2.

Corollary 3. If G is a connected reflexive multigraph and s(G) � 3, then χ(G)−
1 � s(G).

Of course, we can do better. As demonstrated in Theorem 4, there are graphs
where the maximum number of exposed vertices is one less than the search
number.

Corollary 4. If G is a connected reflexive graph with s(G) � 3 and the property
that its homeomorphic reduction is not a multigraph, then χ(G) � s(G).

Proof. Since G is not a multigraph, the homeomorphic reduction can only have
multiple edges if two or more suspended paths have the same end points. For-
bidding this, the homeomorphic reduction must be a graph with no vertices of
degree 2, as required by Theorem 4. The result follows.

We now demonstrate an infinite family of graphs for which Corollary 2 provides a
better bound than any of the others demonstrated here. Let P be the graph with
vertex set V (P) = {vi}p+1

i=1 , and edge set E(P) = {vivj |1 � i < j � p}∪{v1vp+1}.
Thus, the graph P is a complete graph on p vertices with an extra edge incident
with a vertex of degree 1.

We will employ the Mycielski construction [9]. Given a graph G, we form the
graph M(G), with vertex set V (M(G)) = V (G) ∪ V ′(G) ∪ {u}, where V ′(G)
contains the “twins” of V (G). That is, V ′(G) = {x′|x ∈ V (G)}. The edge set

Lower Bounds on Edge Searching 527

E(V (M)) = E(G)∪{x′y|xy ∈ E(G)}∪{x′u|x′ ∈ V ′(G)}. That is, for each vertex
v ∈ V , we introduce a new vertex v′ adjacent to the neighbours of v. Finally, we
add a new “super vertex” u which is adjacent to each new vertex v′. Similarly,
we may define an infinite family of graphs by repeatedly applying a Mycielski
construction. Define M0(G) = G, and M t(G) = M(M t−1(G)) for t � 1.

The Mycielski construction based on the 5-cycle C5 was introduced in [9] to
create an infinite family of triangle-free graphs with arbitrarily large chromatic
number. In fact, χ(M t(C5)) = t + 3 for t � 0. More generally, for any graph G,
it can be shown that ω(M t(G)) = ω(G), δ(M t(G)) = δ(G)+ t, and χ(M t(G)) =
χ(G) + t for t � 0.

Taking the graph P as defined above, it is clear that δ(P) = 1, ω(P) = p, and
χ(P) = p. Applying the Mycielski construction, we see that δ(M t(P)) = 1 + t,
ω(M t(P)) = p, and χ(M t(P)) = p+ t. As well, since P is a subgraph of M t(P),
we know that g(M t(P)) = 3 so long as p � 3. So for large p and t, Theorem 5
tells us that δ(M t(P)) + 1 � t + 2 � s(M t(P)). Similarly, Theorem 2 tells us
that ω(M t(P)) = p � s(M t(P)). But Corollary 2 tells us that χ(M t(P))− 1 =
p + t− 1 � s(M t(P)), a clear improvement.

References

1. Alspach, B.: Searching and sweeping graphs: A brief survey. Combinatorics 04
(Catania, 2004) Matematiche (Catania) 59 (2004), Fasc. I–II, pp. 5–37 (2004)

2. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algo-
rithms 12, 239–245 (1991)

3. Fellows, M., Langston, M.: On search, decision and the efficiency of polynomial
time algorithm. In: 21st ACM Symp. on Theory of Computing, pp. 501–512 (1989)

4. Frankling, M., Galil, Z., Yung, M.: Eavesdropping games: A graph-theoretic ap-
proach to privacy in distributed systems. Journal of ACM 47, 225–243 (2000)

5. Halin, R.: Unterteilungen vollständiger Graphen in Graphen mit unendlicher chro-
matischer Zahl. Abh. Math. Sem. Univ. Hamburg 31, 156–165 (1967)

6. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theoret. Comput.
Sci. 47(2), 205–218 (1986)

7. LaPaugh, A.S.: Recontamination does not help to search a graph. Journal of
ACM 40, 224–245 (1993)

8. Megiddo, N., Hakimi, S.L., Garey, M., Johnson, D., Papadimitriou, C.H.: The
complexity of searching a graph. Journal of ACM 35, 18–44 (1988)

9. Mycielski, J.: Sur le coloriage des graphes. Coll. Math. 3, 161–162 (1955)
10. Tusa, Z.: Exponentially many distinguishable cycles in graphs. Graphs, designs

and combinatorial geometries (Catania, 1989). J. Combin. Inform. System Sci. 15,
281–285 (1990)

11. Yang, B., Dyer, D., Alspach, B.: Sweeping graphs with large clique number
(extended abstract). In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS,
vol. 3341, pp. 880–892. Springer, Heidelberg (2004)

Author Index

Alspach, Brian 516

Bai, Manying 231
Baumgart, Matthias 282
Bein, Wolfgang 209
Blin, Guillaume 140

Cai, Xiaoqiang 305, 329
Calamoneri, Tiziana 116
Caminiti, Saverio 116, 408
Cavalcante, Victor F. 471
Chan, Chao-Wen 94
Chang, Chin-Chen 82, 94
Chen, Quanle 305
Chen, Shuqiang 260
Chen, Xujin 175
Cheng, Gang 317
Cheng, T.C.E. 107
Cieliebak, Mark 12
Correa, José R. 209
Cui, Peng 24

de Ropp, Jeff 447
de Souza, Cid C. 471
Diedrich, Florian 128
Dósa, György 1
Du, Donglei 384
Dyer, Danny 516

Eckhardt, Stefan 282
Epstein, Leah 243
Erlebach, Thomas 243

Fang, Qizhi 260
Fertin, Guillaume 140
Fischer, Johannes 459
Fusco, Emanuele G. 408

Gan, Xiaobing 305
Ganguly, Sumit 48
Griebsch, Jan 282
Gu, Huaxi 495
Gu, Yanhong 305
Guo, Jiong 36

Hall, Alexander 12
Han, Jiye 384
Han, Shuguang 198
Han, Xin 209
Hanson, Denis 516
He, Kun 396
He, Yanxiang 317, 421
Heun, Volker 459
Hoffmann, M. 294
Hu, Jie 175
Hu, Jueliang 198
Hu, Xiaodong 175
Hu, Yih-Shin 82
Huang, Wenqi 396

Jacob, Riko 12
Jansen, Klaus 128
Jiang, Min 483
Jiang, Yiwei 198, 219

Kim, Eunsang 271
Kim, Jin Wook 271
Kim, Sungchun 255
Kim, Sungwook 255
Kosub, Sven 282

Lee, Geun-Cheol 447
Leng, Ming 60
Levin, Asaf 243
Li, Yueping 186
Liang, Zuosong 107
Lin, Chia-Chen 82
Liu, Chunlin 329
Liu, Haowen 421
Liu, Longcheng 375

Ma, Weimin 152
Majumder, Anirban 48
Mao, Jun 317
Miao, Weimin 384
Muthukrishnan, S. 294

Niu, Jiyun 495
Nowak, Johannes 282
Nunkesser, Marc 12

530 Author Index

Olariu, Stephan 116

Park, Kunsoo 271
Petreschi, Rossella 116, 408

Raman, Rajeev 294
Rusu, Irena 140

Shan, Erfang 107
Shi, Xiao Jun 163
Shi, Yongqiang 340
Sinoquet, Christine 140
Sun, Lingyu 60
Sun, Lujie 231

Tan, Zhiyi 219, 504
To, Chikit 329

Vairaktarakis, George L. 305
Viant, Mark R. 447

Wang, Changshan 495
Wang, Ke 152
Wang, Kuanquan 435
Woodruff, David L. 447
Wu, Yong 504

Xu, Xiaolin 329

Yang, Boting 516
Yang, Qifan 504
Yao, Enyu 375
Ye, Deshi 340
Yin, Hongxia 384
Yu, Chang Wu 350, 362
Yu, Ping 447
Yue, Feng 435

Zhang, An 219
Zhang, Peng 70
Zhao, Wenbo 70
Zuo, Wangmeng 435

	Title Page
	Preface
	Organization
	Table of Contents
	The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is $FFD(I)\leq11/9 OPT(I)+6/9$
	Introduction
	Preliminaries
	Case $1/5<X\leq1/4$
	Case $2/11<X\leq1/5$
	References

	Sequential Vector Packing
	Approximation Algorithms
	ILP Formulation
	An Easy $(\frac1{\eps}, \frac1{1-\eps})$-Approximation
	A 2-Approximation for Bounded Number Sequential Vector Packing

	NP-Completeness
	Practical Algorithms
	Conclusion
	References

	A Tighter Analysis of Set Cover Greedy Algorithm for Test Set
	Introduction
	Preliminaries
	Differentiation Distribution
	Improved Approximation Ratio
	Lower Bound
	Discussion
	References

	A More Effective Linear Kernelization for Cluster Editing
	Introduction
	Preliminaries
	Data Reduction Leading to a 6k-Vertex Kernel
	Data Reduction Leading to a 4k-Vertex Kernel
	Cluster Editing with a Fixed Number of Cliques
	Open Problems and Future Research
	References

	CR-\sc precis: A Deterministic Summary Structure for Update Data Streams
	Introduction
	Review
	CR-\sc precis Structure for Update Streams
	Algorithms for Strict Update Streams
	General Update Streaming Model

	References

	An Effective Refinement Algorithm Based on Swarm Intelligence for Graph Bipartitioning
	Introduction
	Mathematical Description
	Motivation
	MSIR: The Framework
	Experimental Results
	Conclusions
	References

	On the Complexity and Approximation of the Min-Sum and Min-Max Disjoint Paths Problems
	Introduction
	The Problems
	Related Work
	Our Results

	Complexity of the Weighted Min-Sum DP Problem
	Approximation Hardness of the Min-Sum DP and Min-Max DP Problems
	The Randomized Approximation Algorithms
	LP Formulation and Algorithm for Uniform Min-Max EDP
	LP Formulation and Algorithm for Weighted Min-Sum EDP

	Discussion
	References

	A Digital Watermarking Scheme Based on Singular Value Decomposition
	Introduction
	Related Works
	SVD
	Liu and Tan’s Watermarking Scheme
	Chandra’s Watermarking Scheme

	The Proposed Scheme
	Embedding Process
	Extracting Process

	Experimental Result and Discussions
	Conclusions
	References

	A New (t, n)−Threshold Scheme Based on Difference Equations
	Introduction
	Preliminary
	Main Idea
	Proposed Schemes
	Analysis
	Conclusions
	References

	Clique-Transversal Sets in Cubic Graphs
	Introduction
	Clique-Transversal Number in Cubic Graphs
	Conclusion
	References

	On the L(h, k)-Labeling of Co-comparability Graphs
	Introduction
	Preliminaries
	The L(h, k)-Labeling of Co-comparability Graphs
	The L(h, k)-Labeling of Interval Graphs
	Concluding Remarks and Open Problems
	Concluding Remarks and Open Problems
	References

	An Approximation Algorithm for the General Mixed Packing and Covering Problem
	Introduction
	Basic Techniques
	The Algorithm
	Analysis of Runtime and Eliminated Functions
	Conclusion
	References

	Extending the Hardness of RNA Secondary Structure Comparison
	Introduction
	Notations and Problem Description
	Hardness of RNA Secondary Structure Comparison
	Conclusion
	References

	On the On-Line Weighted k-Taxi Problem
	Introduction
	The Model
	Some Preliminary Results
	Competitive Algorithms
	Greedy Algorithm
	Partial Greedy Algorithm
	Comparison of the Two Algorithms

	A Lower Bound
	Conclusion
	References

	Model Futility and Dynamic Boundaries with Application in Banking Default Risk Modeling
	Introduction
	Dynamic Feature of Model Risk in Banking
	Resemblance of Model Risk Trajectory as a Brownian Motion
	Model Futility
	Research Design Settings
	Monitoring Statistic
	Possibility of Being Futile
	Dynamic Boundaries

	Conditional Power and Low Boundaries
	Application in Banking Default Risk Modeling Monitoring
	Rationale
	The Sample
	Interim Points
	Hosmer-Lemeshow Testing Results
	Boundaries and Values of Monitoring Statistic
	Comparison with Testing Approach

	Conclusion and Remarks
	References

	On the Minimum Risk-Sum Path Problem
	Introduction
	Model
	Algorithms
	A Fast Approximation Algorithm
	An Efficient Exact Algorithm

	Extension
	Conclusions
	References

	Constrained Cycle Covers in Halin Graphs
	Introduction and Terminology
	Preliminary Results
	OurResults
	Covering Vertices with One Cycle
	Main Procedure of the Algorithm
	Covering Vertices with Disjoint Cycles
	Covering Vertices with an Optimal 2-Edge-Connected Subgraph
	Example
	Conclusions
	References

	Optimal Semi-online Algorithms for Scheduling with Machine Activation Cost
	Introduction
	Preliminary
	Problem $P2|sum|C_{\max}+m'$
	Lower Bound
	Optimal Algorithm H1

	Problem $P2|max|C_{\max}+m'$
	Lower Bound
	Optimal Algorithm H2

	FinalRemarks
	References

	A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection
	Introduction
	An APTAS for the Bin Packing with Rejection
	Guessing the Rejection Cost and the Packing Cost
	Guessing the Rejected List and the Packed List
	Analysis

	An APTAS for Variable-Sized Bin Packing with Rejection
	Concluding Remarks
	References

	Online Coupon Consumption Problem
	Introduction
	Preliminary
	Problem with l = ∞
	Problem with l = 1
	Problem with $2\leq l<\infty$
	Lower Bound
	Algorithm A3
	Lower Bound for the Case of l = 2

	Concluding Remarks
	References

	Application of Copula and Copula-CVaR in the Multivariate Portfolio Optimization
	Introduction
	Copula and CVaR
	Copula Function and It’s Multivariate Monte Carlo Simulation
	CVaR for Single and Multi Variables

	Copula and Copula-CVaR in the Portfolio Optimization
	Empirical Analysis
	Modeling the Marginal Distributions and the Dependence Structure with Copula
	Copula Based Three-Dimensional Portfolio Optimization
	Copula-CVaR Restricted Multivariate Portfolio Optimization

	Conclusions
	References

	Online Capacitated Interval Coloring
	Introduction
	Preliminaries
	Algorithm for the Case maxj bj ≤ mini=1,2,...,n ci
	Algorithm for the Case {$\max_j b_j \leq \min_{i=1,2,\ldots ,n} c_i$
	Algorithms and Lower Bound for the General Case
	References

	Energy Efficient Heuristic Scheduling Algorithms for Multimedia Service
	Introduction
	Proposed Online Management Algorithm
	Simulation Experiments
	Summary and Conclusions
	References

	Call Control and Routing in SONET Rings
	Introduction
	Preliminaries and Model
	Approximation Algorithm
	Relaxed CCR-Ring Problem
	Transform to Parallel Routing
	Rounding to Semi-unsplit Routing
	Rounding to an Unsplit Routing

	Conclusion
	References

	Fast Matching Method for DNA Sequences
	Introduction
	Preliminaries
	Proposed Method
	Encoding
	Matching
	Analysis

	Experimental Results
	Conclusions
	References

	All-Pairs Ancestor Problems in Weighted Dags
	Introduction
	Preliminaries
	The All-Pairs Representative LCA Problem
	The All-Pairs All LCA Problem
	Shortest Distance Common Ancestor Problems
	Conclusion and Open Problems
	References

	Streaming Algorithms for Data in Motion
	Introduction
	The Reset Model
	Delta Model

	Reset Model
	DeltaModel
	Conclusions and Open Problems
	References

	A Scheduling Problem with One Producer and the Bargaining Counterpart with Two Producers
	Introduction
	Problem Formulation and Notation
	Algorithms for P$_\rm 1$ and P$_\rm 2$
	Dynamic Programming Algorithms for P$_\rm i$(r)
	Conclusion
	Appendix
	References

	Phrase-Based Statistical Language Modeling from Bilingual Parallel Corpus
	Introduction
	Language Models
	N-Gram Language Models
	Related Work on Language Models

	Extract Phrases
	Overview of Our Method
	Giza++
	Extract Alignment Points
	Extract Phrases

	Extract Classes
	Class-Based Models
	MLE of the Parameters for the Phrase and Class Model
	Basic Algorithm
	Classifying Phrases Based on Count Matrix

	Experiment
	Data Description
	Data Smooth
	Results of Probabilities and Backing-Off Coefficients
	Results of Phrase Classes
	Perplexity

	Conclusion and Future Work
	References

	Optimal Commodity Distribution for a Vehicle with Fixed Capacity Under Vendor Managed Inventory
	Introduction
	Modelling and Notations
	Stations with Deterministic Demand
	Stations with Stochastic Demand
	Decision Made Before Delivery Arrival
	Decision Made After Delivery Arrival

	Numerical Example
	Concluding Remarks
	References

	On-Line Bin Packing with Arbitrary Release Times
	Introduction
	Lower Bound of the ANY FIT Algorithm
	Optimal On-Line Algorithm
	General Lower Bound
	Upper Bound

	Conclusions
	References

	On the Complexity of the Max-Edge-Coloring Problem with Its Variants
	Introduction
	Definitions and Notations
	The 2-Approximation Algorithm for the Max-Edge-Coloring Problem When the Input Graph Is Restricted to Biplanar Graphs
	The Splitting Chromatic Max-Edge-Coloring Problem Is NP-Complete When the Input Graph Is Restricted to Biplanar Graphs
	Applications in Scheduling Data Redistribution
	Applications of MECP and CMECP
	Applications of SCMECP

	Conclusions
	References

	Quantitative Analysis of Multi-hop Wireless Networks Using a Novel Paradigm
	Introduction
	Definitions and Notations
	Related Work in RGG
	A Paradigm for Computing Subgraph Probability
	Base Subgraphs with Their Probabilities
	A Paradigm for Computing Subgraph Probability of RGGs
	Intractable Subgraphs and Their Linear Combinations

	Conclusions
	References

	Inverse Min-Max Spanning Tree Problem Under the Weighted Sum-Type Hamming Distance
	Introduction
	Preliminary Results
	Problem Under the Weighted Sum-Type Hamming Distance
	Concluding Remarks
	References

	Robust Optimization Model for a Class of Uncertain Linear Programs
	Introduction
	The Causal ARMA Process
	The Robust Model
	Probabilistic Guarantees and Parameters Selection
	An Approximate Numerical Method for Calculating $\Gamma(M)$
	Concluding Remarks
	References

	An Efficient Algorithm for Solving the Container Loading Problem
	Introduction
	Problem Specification
	Algorithm Description
	Definitions
	Packing Procedure
	Ranking Scheme
	Basic Algorithm
	Strengthened Algorithm

	Experimental Results
	Conclusions and Future Work
	References

	A Bijective Code for k-Trees with Linear Time Encoding and Decoding
	Introduction
	Preliminaries
	Characteristic Tree
	Generalized Dandelion Code
	A Linear Time Algorithm for Coding k-Trees
	A Linear Time Algorithm for Decoding k-Trees
	Conclusions
	References

	Market-Based Service Selection Framework in Grid Computing
	Introduction
	Framework
	General Design
	Service Providers and Consumers
	Service Market Manager

	Auction
	Novel Auction
	Bidding Strategies of Provider
	Behavior Models and Selection Strategies of Consumer

	Experiments and Analysis
	Experiments Design
	Results and Analysis

	Conclusions and Future Works
	References

	Informative Gene Selection and Tumor Classification by Null Space LDA for Microarray Data
	Introduction
	Informative Gene Selection by Null Space LDA
	Fisher’s Linear Discriminant Analysis(LDA)
	Null-Space LDA
	Informative Gene Selection

	Experimental Results
	Experiments on Leukemia Dataset
	Experiments on Colon Dataset

	Conclusion and Future Work
	References

	Heuristic Search for 2D NMR Alignment to Support Metabolite Identification
	Introduction
	Formulation
	Data for a Compound
	Decision Variables
	Data from an Experiment
	Objective Function

	Local Search Algorithms
	Greedy Algorithms and Large Neighborhoods
	Simulated Annealing
	Tabu Search
	Hybrid

	Computational Experiments
	Conclusions
	References
	Appendix: Experimental Results

	A New Succinct Representation of RMQ-Information and Improvements in the Enhanced Suffix Array
	Introduction
	Contributions of Our Work
	Applications of RMQ

	Definitions and Previous Results
	Berkman and Vishkin’s Algorithm

	Our New Algorithm
	A Succinct Data Structure for Handling Long Queries
	A Succinct Data Structure for Handling Short Queries
	Space Analysis

	Improvements in the Enhanced Suffix Array
	Enhanced Suffix Arrays
	An RMQ-based Representation of the Child-Table
	Application to Pattern Matching

	Implementation Details
	Conclusions
	References

	Lagrangian Relaxation and Cutting Planes for the Vertex Separator Problem
	Introduction
	An IP Model for VSP and a Class of Valid Inequalities
	Relax-and-Cut (R&C) Algorithms
	A Relax-and-Cut Algorithm for the VSP
	Computational Results
	Conclusions and Future Works
	References

	Finding Pure Nash Equilibrium of Graphical Game Via Constraints Satisfaction Approach
	Introduction
	Game Theory and Nash Equilibrium
	Nash Equilibrium
	Graphical Game
	Complexity Issues

	A CSP’s Solution to Pure Nash Equilibrium
	Constraint Satisfaction Problem (CSP)
	From Game to CSP
	An Algorithm on Graphical Game

	Discussion
	Experimental Results
	Related Work
	Conclusion and Future Work
	References

	A New Load Balanced Routing Algorithm for Torus Networks
	Introduction
	Gas Diffusion Based Load Balanced Routing Algorithm
	GDLR Algorithm
	Deadlock Detection and Recovery
	Extensions

	Simulation Study
	Evaluation Methodology
	Simulation Results

	Conclusion
	References

	Optimal Semi-online Scheduling Algorithms on aSmall Number of Machines
	Introduction
	Minimizing Makespan
	Maximizing the Minimum Machine Load
	References

	Lower Bounds on Edge Searching
	Introduction
	Minimum Degree and Girth
	Chromatic Number
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

