
A Continuation-Based Framework for
Economy-Driven Grid Service Provision

Maurizio Giordano and Claudia Di Napoli

Istituto di Cibernetica “E. Caianiello”, C.N.R.
Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy

{m.giordano,c.dinapoli}@cib.na.cnr.it

Abstract. The management of computational resources is a crucial as-
pect in grid computing because of the decentralized, heterogeneous and
autonomous nature of these resources that usually belong to different
administrative domains and are provided in dynamic and changing envi-
ronments. For this reason more sophisticated computing methodologies
are necessary to provide these resources in a flexible manner. In partic-
ular, the possibility of controlling the execution of services in grid is a
crucial aspect in order to change service execution policies at run-time.

In the present work an infrastructure to model service providers is pro-
posed to allow for flexible provision of grid services, i.e. to allow providers
to dynamically control the execution of services according to the chang-
ing conditions of the environment where they operate in. The infrastruc-
ture is based on continuations, a programming paradigm that allows to
control the state of program execution at application-level without in-
volving the operating system stack. This approach makes the proposed
infrastructure a flexible and easily programmable middleware to experi-
ment different scheduling policies in service-oriented scenarios.

Keywords: Grid service provision, continuations, quality of service.

1 Introduction

Computational grids represent the new research challenge in the area of dis-
tributed computing. They aim at providing a unified computational infrastruc-
ture composed of networked heterogeneous resources that makes effective use of
the computational power delivered by each resource.

A computational grid is a pool of resources that are not subject to centralized
control (i.e. that live within different control domains and that do not rely on
a central management system), that use standard, open, general-purpose proto-
cols and interfaces (i.e. not application-specific). Resources can be combined in
order to deliver added value services so that the utility of the resulting system
is significantly greater than that of the sum of its parts. Users will be able to
access and share these computing resources on demand over the Internet, re-
lying on an infrastructure that is expected to be resilient, self-managing, and
always available, and above all that is perceived as a unified framework by end

D.J. Veit and J. Altmann (Eds.): GECON 2007, LNCS 4685, pp. 112–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Continuation-Based Framework 113

users. In order to provide such a computational infrastructure, grid technologies
should support the sharing and coordinated use of diverse resources in a dynamic
environment [1].

In addition, in grid environments resource providers (that can be individuals,
organizations, groups, government, and so on) are independent and autonomous
entities that need to be motivated to make available the resources they provide.

A market-oriented approach can be used to provide the possibility of buy-
ing and selling computational resources in the same way as goods and services
are bought and sold in the real world economy [2]. Adopting a computational
economy-based view [3,4] where resources are provided at a given cost consti-
tutes per se a mechanism for encouraging resource owners to contribute their
resources for the construction of the grid, and compensate them based on the
resource usage, i.e. on the value of the work done. So, the ultimate success
of computational grids as a production-oriented commercial platform for solv-
ing problems is critically dependent on the support of market/economy-based
mechanisms to resource management.

In such production-oriented (commercial) computational grids, resource own-
ers act as service providers that make a profit by selling their services to users
that act as buyers of computational resources for solving their problems.

In this scenario, service providers need to have control on the execution of
the services they provide in order to accommodate for the changing Quality-of-
Service (QoS) [5] requirements service consumers can ask for.

In this work we propose an infrastructure to model service providers to control
the execution of services by allowing for service suspension and resuming in a
way similar to process preemption and control in traditional operating systems.

The infrastructure relies on continuation programming paradigm [6] in order
to provide execution state saving and restoring mechanisms for services. These
mechanisms will support the possibility of explicitly controlling the execution of
services to allow providers to decide “how” to fulfil a service request, i.e. what
Quality-of-Service to provide at run-time.

The rest of the paper is so organized: in section 2 the economic-based service-
oriented scenario is described as the reference application domain; section 3 re-
ports the proposed service provider architecture together with its functionalities
and interfaces; in section 4 some use-cases are outlined to show the applica-
bility of the proposed infrastructure in commercial computational grids; finally
section 5 reports some conclusions.

2 A Service-Oriented Approach for Economic-Aware
Grids

In the present work a service-oriented approach is adopted as described in [1],
where grid resources are exposed to the network as grid services, i.e. computa-
tional capabilities defined through a set of well-defined interfaces, and a set of
standard protocols used to invoke the services from those interfaces, and it has
to be identified, published, allocated, and scheduled. A service is provided by the



114 M. Giordano and C. Di Napoli

body responsible for offering it, we refer to as service provider, for consumption
by others, we refer to as service consumers, under particular conditions. In this
view, a service provider represents the interface between a service consumer and
a required functionality, i.e. a grid service.

It is worth noting that in our scenario we refer to a grid service as any type of
computational resource made available through the network according to plat-
form independent interfaces and protocols, so it can also be a web service com-
pliant with OGSA [7]. In the rest of the paper we refer to “web services”, or “grid
services”, or simply “services” assuming they have, from our point of view, the
same meaning.

It is well recognized that in a market-based service-oriented grid, services
will be provided with some user-dependent Quality-of-Service (QoS) require-
ments, i.e. with characteristics that meet expectations and obligations agreed
between the provider and the consumer. Service providers may want to optimize
utilization, i.e. their profit, whereas service consumers may want to optimize re-
sponse time while minimizing cost. So, the same service could be provided with
different QoS.

It is beyond the scope of the present work to study how complex the quality
of a service can be, and how to characterize it, i.e. how many parameters should
be considered to express the quality of a service, and how it can be represented,
that is mainly a domain-specific problem. In general, we assume that a service
request is fulfilled when the user requirements on the Quality-of-Service can be
met by the service provider that received the request. According to the current
research directions, the match is stated in Service Level Agreements (SLAs) [8],
that represent bilateral agreements typically between a service provider and a
service consumer established before service execution.

Nevertheless, it is likely that in very dynamic and changing computing en-
vironments like the grid, service providers can make different decisions on the
Quality-of-Service they provide their services with according to the requirements
of new service requests, e.g. they may want to break or change some agreements
in the case a new consumer comes with a more remunerative request. Also ser-
vice consumers may decide to change some requirements on service execution,
e.g. they may want to pay more to have a service delivered earlier. In such cases,
it is advisable to control the execution of services on demand by suspending and
resuming their execution according to decisions made at run-time.

3 A Continuation-Based Service Provider

In order to be able to control the execution of services, we propose a service
provider architecture supporting web service preemption facilities for the sus-
pension and resuming of service instance execution based on continuation man-
agement [6].

The main feature of this architecture is the possibility to use a set of primi-
tives to control service execution, i.e. to submit, suspend, resume web services.
The primitives allow to specify QoS parameters affecting the service scheduling



A Continuation-Based Framework 115

decisions (priorities, cpu resource access, and so on) and to change them at run-
time. These primitives are also exposed as web services that can be invoked by
any client program acting on behalf of service brokers and/or service consumers
and they are accessed in a distributed setting through XML/SOAP messaging.

In this way we provide a uniform mechanism to control service execution
policies at two levels: a low level where service providers control their own service
execution according to local policies, and a meta-level where global decisions
need to be made for the coordination of services provided by different providers.
In the latter case, we foresee that the primitives to control service execution can
be used by a metascheduler [9,10] in charge of coordinating the local schedulers
of different providers.

The primitives are based on the possibility to capture the state of a com-
putation by means of continuations, so the computation can be suspended and
resumed later on.

3.1 The Notion of Continuation

A continuation relative to a point in a program represents the remainder of the
computation from that point [6], so a continuation is a representation of the
program current execution state. Continuation capturing allows to package
the whole state of a computation up to a given point. Continuation invoca-
tion allows to restore that previous state restarting the computation from that
point. Although any programming system maintains the current continuation
of each program instruction it evaluates, these continuations are generally not
accessible to the programmer.

In functional programming languages, the continuation can be represented
as a function and the possibility of explicitly managing it allows to effect the
program control flow [11]. In languages like C the current execution state is
represented by the call stack state, the globals, and the program counter. Some
object-oriented programming languages support continuations by providing con-
structs to save the current execution state into an object, and then to restore
the state from this object at a later time.

In our implementation we used Stackless Python [12], an experimental imple-
mentation of the Python programming language that uses continuation support
to model concurrency in an easy way. It provides abstractions of microthreads
at application level, named tasklets, whose implementation is based on continua-
tions. Stackless Python supports tasklets as built-in user-level lightweight threads
with constructs to control their creation, suspension, resuming and scheduling
at application level. Furthermore, Python is one of the languages that pro-
vides a satisfactory support of libraries and tools for the development of web
services [13].

3.2 The Service Provider Architecture

In order to be able to provide services that meet Quality-of-Service require-
ments both of service consumers (e.g. cost, response-time) and of providers (e.g.



116 M. Giordano and C. Di Napoli

...
WSTasklet

Waitqueue

...

...

Service
Provider

Request
Handler

Service
Scheduler

Runqueue

Suspend

Expirequeue

Finished

SOAPWS Client
Resume

Service

WSTasklet

Service

WSTasklet

Service

WSTasklet

Service

WSTasklet

Service

WSTasklet

Submit

Expiring

Terminated

Running

Suspended

finished

resume

suspend

kill
expired

WSTasklet State
Transition Diagram

kill

Kill

WSTasklet

Srv Result

Expired

submit

Fig. 1. Services provider architecture and service state transition

throughput, profit, CPU utilization), it is crucial to be able to control the exe-
cution of services in accordance with new events occurring in the environment
since these requirements cannot be statically determined.

Service preemption mechanisms are a way to provide full control of service
execution and they can be implemented (or simulated) using several approaches,
both at application or operating system level. For examples, at application level
the Java language provides (deprecated) thread suspension/resuming support.
Other approaches [14] use operating systems signals (SIGSTOP/SIGCONT) avail-
able in most operating system infrastructures.

The main objective of the proposed service provider architecture is
application-level preemption of services in order to support at programming level
the development of dynamic policies for service execution. Service preemption
is not provided at operating system level, but at application-level by manag-
ing program continuations. This choice makes the framework flexible and easily
adaptable for developing and experimenting scheduling facilities, policies and
service-control in different service-oriented architecture applications.

Existing web service frameworks [15,16] make it difficult to implement a
service provider architecture with preemption mechanisms of web services with-
out a deep changing of the control patterns usually implemented as a built-in
feature. This is because they usually obey to the Inversion of Control (IoC) pro-
gramming pattern [17,18] widely used in most Java and object-oriented web ap-
plication environments. So, web service instantiation and life-cycle management
cannot be fully controlled by programmers who develop and add web services to
the framework.

For this reason existing web service frameworks are not suitable to provide an
application-level control of service execution supporting service suspension and
resuming.



A Continuation-Based Framework 117

For this reason we designed a service provider equipped with mechanisms
to process suspension and resuming notifications. The service provider should
process, from time to time, arrival of notification messages in order to sus-
pend/resume the execution of a service it is providing by capturing/restoring
its continuation. The control of service execution can be driven both by the
service provider itself and by any client program. Service preemption, driven or
not by client requests, is carried out by the provider storing at the preemption
points the execution state of the specified service.

The client program can represent either a service consumer that requires a
service result, or a metascheduler or a service broker trying to adapt local service
execution policies so that resources can be shared in a reliable and efficient way
in a heterogeneous and dynamically changing environment like the grid.

The service provider architecture is depicted in figure 1 and it is implemented
in Stackless Python. The provider is represented by a service container consist-
ing of a pool of lightweight threads, named WSTasklets, implemented by using
continuations. WSTasklets execute concurrently in the same Python interpreter
process.

WSTasklets are threads wrapping up service functions that represent web
service operations in WSDL [19]. Web service operations are given as parameters
to a WSTasklet wrapper and executed within its context (see figure 1). The
wrapping guarantees the required functionalities to suspend/resume web service
operation executions by means of the Stackless Python continuation storing and
resuming support.

A WSTasklet, and hence the corresponding service, can be in the following
states:

– running, i.e. the WSTasklet is in execution or ready to be scheduled for
execution;

– suspended, i.e. the WSTasklet is not yet terminated, but cannot be scheduled
for execution;

– expiring, i.e. the WSTasklet terminated its execution, but its descriptor is
still alive to make the result available to successive requests;

– terminated, i.e. the WSTasklet terminated its execution and its descriptor is
no longer available because either a specified expiration time elapsed, or the
client requested and obtained the result before the expiration time.

There is a special WSTasklet, always in running state, that is the main thread
of the service provider. It interleaves messaging and scheduling activities by
means of two modules: the Request Handler and the Service Scheduler. The Re-
quest Handler deals with probing incoming SOAP messages; the Service Sched-
uler module controls WSTasklet state transitions by means of a set of primitives:
submit, suspend, resume, kill (black arrows in the diagram shown in figure 1).
The submit primitive creates a new WSTasklet, wrapping up a specified service
operation and puts it in the running state.

The Service Scheduler maintains three queues to manage WSTasklets in dif-
ferent states:



118 M. Giordano and C. Di Napoli

Runqueue - it contains all WSTasklets running or ready to be scheduled for
execution. Threads in this queue are by default executed in time-sharing
mode by assigning to each WSTasklet a time quantum that can be changed
by the Service Scheduler (also in response to incoming SOAP requests).

Waitqueue - it contains all WSTasklets suspended and thus removed from the
Runqueue. The provider may decide to suspend/resume service execution
according to both its own scheduling policy, and upon receiving specific
SOAP requests from an external application, e.g. a metascheduler.

Expirequeue - it contains all WSTasklets that finished executing and that are
waiting to be garbage-collected by the system. They are maintained in this
queue in order to keep the computation results that can be later on collected
by service consumers with SOAP requests within a given expiration time.
The expiration time is not necessarily a system specific parameter, and it
could be specified as a QoS parameter at the submitting phase.

It should be noted that in the Service Scheduler module different scheduling
policies can be implemented at application-level overriding the default one both
by changing the time quantum and by re-organizing the Runqueue. In this way
the service provider is able to change its own local scheduling policy at run-time
directly invoking the primitives to control service execution.

3.3 Asynchrnonous Client-Provider Interaction

As outlined earlier, the proposed infrastructure allows also to access the primi-
tives to control service execution as web services to be invoked by any external
client program. In such a case, a client-provider interaction takes place and it is
implemented as an asynchronous request/response operation with polling [20].
Asynchronicity allows the client to proceed the computation concurrently with
the web service execution until the operation result is required: at this point the
client needs to synchronize with the provider and establishes a new communica-
tion to retrieve the result.

We extend the asynchronous request/reply operation mode with functional-
ities to suspend and resume web service execution. The client-provider asyn-
chronous interaction pattern is described in figure 2 where a client invokes a
web service operation, named ”Operation A”, offered by the continuation-based
service provider.

The primitives to control service execution are exposed as the following WSDL
operations: submit, suspend, resume and probe. They represent meta-operations
because they are invoked by clients to control and to monitor web service oper-
ation executions.

The client-provider interaction pattern is started by clients invoking the
submit WSDL operation to request a service execution. The submit request
invokes the ”Operation A” on a set of input arguments and starts its execution
(see the syntax in figure 3(a)). The provider sends back to the client a reply
with an acknowledge that the submission is done together with a correlation ID.
The correlation ID is unique and is set by the provider to be used together with



A Continuation-Based Framework 119

Client
(invoker)

Web Service
(provider)

1: Submit ”Operation A” (Request)

2: Ack. ”Operation A started” (Reply with Correlation ID)

3: Suspend ”Operation A” (Request with Correlation ID)

4: Ack. ”Operation A suspended”(Reply)

71: Probe result (Request with Correlation ID)

81: Ack. ”no result yet”(Reply)

5: Resume ”Operation A” (Request with Correlation ID)

6: Ack. ”Operation A resumed”(Reply)

7n: Probe result (Request with Correlation ID)

8n: Response of ”Operation A” (Reply)

Fig. 2. Asynchronous request/response operation with polling and suspend/resume
facility

the client to associate subsequent requests and responses belonging to the same
client-provider transaction.

Correlation tokens to embed multiple messages in transactions are widely used
in most asynchronous web service protocol proposals [21,22]. Approaches differ
for the particular protocol adopted (JMS, SOAP, etc.) and/or the mechanisms
used to implement message correlation. In our approach correlation is explicitly
included in SOAP message bodies as shown in figure 3.

The submit request includes a set of qos parameters. QoS attributes are spec-
ified by clients to drive or affect scheduling policy of the web service operation
execution.

The client starts the execution of ”Operation A” and continues its computa-
tion so that it may also decide to suspend the web service execution, to resume
it later on up to completion.

To perform suspend and resuming actions the client uses the suspend and
resume meta-operations. The suspend request uses the correlation ID to refer
to the web service operation (instance) to be suspended. Upon receiving the
request, the provider captures and saves the execution state of ”Operation A”,
and it sends back to the client an acknowledge.

The resume request uses the correlation ID to refer to the web service oper-
ation (instance) whose execution must be resumed. Upon receiving the request,
the provider retrieves the execution state (continuation) stored and tagged with



120 M. Giordano and C. Di Napoli

<submit>
<service>

<name>operationA</name>
<args>

<arg>arg</arg>
. . .

</args>
</service>
<qos>

<param>
<name>qosparameter</name>
<value>qosvalue</value>

</param>
. . .

</qos>
</submito>

<acknowledge>
<cid>correlationID</cid>
<msg>text</msg>

</acknowledge>

<resume>
<cid>correlationID</cid>
<qos>

<param>
<name>qosparameter</name>
<value>qosvalue</value>

</param>
. . .

</qos>
</resume>

<acknowledge>
<cid>correlationID</cid>
<msg>text</msg>

</acknowledge>

(a) (b)

Fig. 3. Service control primivites syntax: (a) submit; (b) resume

the specified correlation ID. It then resumes the web service operation and sends
back to the client an acknowledge.

As described in figure 3(b), also the resume request includes specifications of
QoS parameters. This means that in our framework a service execution can be
resumed by changing at run-time the web service operation scheduling policies.

Client-provider synchronization is implemented by the probe request. The
probe checks if ”Operation A” is finished. If the request occurs before the web
service operation exits (the first probe of figure 2), the client is acknowledged
that the result in not ready yet. After a successful probe request the client
synchronizes with the provider and gets the result.

4 Application Scenarios

Economy-based grid environments require more sophisticated scheduling ap-
proaches able to deal with several optimisation functions: those provided by the
user with his/her objectives (e.g. cost, response-time) as well as those objectives
defined by the resource providers (e.g. throughput, profit, CPU utilization). It is
also important to be able to change these objectives according to new conditions
occurring when fulfilling service requests.

Our framework provides this flexibility since it is possible to associate to the
request of a service execution a qos parameter taking into account the cost of
a service and to allow both the client and the provider to use its value to drive
service execution suspension and resuming.

For example, let’s suppose that a client requests the execution of a service
with an associated cost representing an estimate of the amount of resource the
client expects the web service will consume (e.g. CPU time). Thus the cost
may correspond to the maximum execution time guaranteed by the provider,
according to a previous agreement with the consumer. In this case the service
request can be submitted with a qos parameter value corresponding to the cost.
The Request Handler module of the service provider receives the request with
the associated cost and the Service Scheduler starts its execution in time-sharing.



A Continuation-Based Framework 121

While the time-sharing quantum is fixed for all services, the amount of quanta
available for the service is limited by the cost parameter. If the service has not
completed before this time, the Service Scheduler suspends it.

Depending on the client-provider agreement, the suspended service can be
rescheduled for execution only after all tasks have finished spending the time
slices they paid for, or it can be resumed only if the client pays an additional
cost. In the latter case the client resumes the operation with a new value of the
qos parameter guaranteeing an additional execution time slice for it. In this sce-
nario the Service Scheduler makes scheduling decisions according to the received
requests and it controls the execution of the required services accordingly.

The possibility of changing the scheduling policies at run-time can be exploited
also when the cost of service execution is dependent on the priority the provider
assigns to the service it provides. We assume that when consumers request a ser-
vice execution, the provider charges for the service a cost according to the priority
which the service will be executed with. In this scenario it is possible for consumers
to increase/decrease, at any time, the money they are willing to pay for the the re-
quired services. In such a case the provider should respectively increase/decrease
the priority it assigned to the service execution requested by that consumer. In
this scenario the qos parameter included in service submission represents the pri-
ority assigned to it; if the consumer wants to change it, it request the provider first
to suspend the service and then to resume it with a changed priority value.

Of course, in both scenarios it is up to the local Service Scheduler, according
to the adopted policy, to account for the cost/priority change request and to fit
it in the multitasking environment.

5 Conclusions

In this work we propose a service provider architecture based on continuations
storing and management to provide primitives to control web services execu-
tion and to implement service scheduling policies. The primitives are also of-
fered by the service provider to external client applications via web service
(SOAP/WSDL) interfaces.

With this approach we may implement the service execution policies at two
levels: the lower level relies at the service provider layer to implement local
schedulers; the higher level can be a metascheduler that interacts with multiple
service provider schedulers in a distributed setting by means of SOAP messaging.

Community Scheduler Framework (CSF) [23] is an infrastructure providing fa-
cilities to define, configure and manage metaschedulers for the grid. Metaschedul-
ing is conceived as a higher level of scheduling decisions to coordinate local
schedulers (PBS [24], LSF [25]) on hosts and clusters in a grid environment.

Our approach has similarities to CSF. Both solutions pursue the scope of pro-
viding new high-level scheduling functionalities both to service consumers and to
the development of metascheduler middleware. CSF functionalities mainly tar-
get configuration and management of scheduling policies and their coordination
in a grid environment.



122 M. Giordano and C. Di Napoli

CSF provides scheduling functions both via web service (SOAP/WSDL) in-
terfaces and by means of client interfaces or shell commands. Like CSF, our
framework allows service execution control and scheduling queues configuration
and management through SOAP-based messaging interaction.

Although both approaches support suspension/resuming facilities, CSF ap-
plies them to control jobs, i.e. processes running in the hosting OS environments.
CSF defines high-level scheduling services (in Java) to drive and translate con-
sumer requests into job-control commands implemented at lower level in the
scheduler running on the target hosts or clusters (as PBS and LSF). There-
fore CSF job-control functionality depends on the underlying OS layer service
compatibility.

In the present work we developed a continuation-based service provider featur-
ing programmable and full control of generic web service executions. The service
execution control is not provided at operating system level, but at application-
level through the use of continuations. This choice makes the framework flexible
and easily portable across heterogeneous programming environments with sup-
port of continuations since there is no direct dependence with the operating sys-
tem. The proposed framework represents a programming platform for developing
and experimenting with service scheduling policies in different service-oriented
applications.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid service architecture for distributed system integration. Technical report Open
Grid Service Infrastructure WG (2002)

2. Wooldridge, M.: Engineering the computational economy. In: Proceedings of the
Information Society Technologies Conference (IST–2000), Nice, France (2000)

3. Buyya, R., Abramson, D., Giddy, J.: An economy driven resource management
architecture for global computational power grids. In: Proceedings of The 2000
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Las Vegas, USA (2000)

4. Buyya, R., Giddy, J., Abramson, D.: An evaluation of economy–based resource
trading and scheduling on computational power grids for parameter sweep appli-
cations. In: Proceedings of The Second Workshop on Active Middleware Services
(AMS 2000). In conjuction with Ninth IEEE International Symposium on High
Performance, Pittsburgh, USA (2000)

5. Foster, I., Roy, A., Sander, V.: A quality of service architecture that combines
resource reservation and application adaptation. In: Proceedings of the 8th Inter-
national Workshop on Quality of Service (IWQOS 2000), Pittsburgh, USA (2000)
181–188

6. Friedman, D.P., Haynes, C.T., Kohlbecker, E.E.: Programming with continua-
tions. In: Program Transformation and Programming Environments, pp. 263–274.
Springer, Heidelberg (1984)

7. Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,
B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwel, J., Reich, J.V.: The
open grid services architecture, version 1.0. Technical report, Global Grid Forum
Informational Document (2005)



A Continuation-Based Framework 123

8. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: Snap: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 153–183. Springer, Heidelberg (2002)

9. Wäldrich, O., Wieder, P., Ziegler, W.: A meta-scheduling service for co-allocating
arbitrary types of resources. In: Wyrzykowski, R., Dongarra, J.J., Meyer, N.,
Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 782–791. Springer, Hei-
delberg (2006)

10. Vadhiyar, S., Dongarra, J.: A metascheduler for the grid. In: Proceedings of the
11th IEEE Symposium on High-Performance Distributed Computing, IEEE Com-
puter Society, Los Alamitos (2002)

11. Di Napoli, C., Mango Furnari, M.: A continuation–based distributed lisp system.
In: Proceedings of the First International Conference on Massively Parallel Com-
puting Systems, pp. 523–527. IEEE Computer Society Press, Los Alamitos (1994)

12. Tismer, C.: Stackless python (2007), http://www.stackless.com
13. SourceForge.net: Python web services (2007),

http://pywebsvcs.sourceforge.net
14. Newhouse, T., Pasquale, J.: A user-level framework for scheduling within service

execution environments. In: Proceedings of the 2004 IEEE International Confer-
ence on Services Computing (SCC ’04), pp. 311–318. IEEE Computer Society,
Washington, DC (2004)

15. The Apache Software Foundation: Apache web services project - axis (2007),
http://ws.apache.org/axis

16. IBM developerWorks: WebSphere (2007),
http://www-128.ibm.com/developerworks/websphere

17. Johnson, R.E., Foote, B.: Designing reusable classes. Journal of Object-Oriented
Programming 1(2), 22–35 (1988)

18. Fowler, M.: Inversion of control containers and the dependency injection pattern
(2004), http://www.martinfowler.com/articles/injection.html

19. Booth, D., Liu, C.K.: Web services description language (wsdl) version 2.0 part 0
primer (2007),
http://www.w3.org/TR/2007/PR-wsdl20-primer-20070523

20. Adams, H.: Asynchronous operations and web services, part 2 (2002),
http://www-128.ibm.com/developerworks/library/ws-asynch2/index.html

21. Swenson, K., Ricker, J.: Asynchronous web service protocol (2002),
http://xml.coverpages.org/AWSP-Draft20020405.pdf

22. Sun Developer Network: Developing asynchronous web services
with java message service in sun java studio enterprise 7 (2005),
http://developers.sun.com/prodtech/javatools/jsenterprise/reference/
te chart/jse7/asynch.html

23. Platform: Open source metascheduler for virtual organizations with
the community scheduler framework (csf). Technical report (2007),
http://www.cs.virginia.edu/~grimshaw/CS851-2004/Platform/
CSF architecture.pdf

24. Open portable batch system (2007), http://www.openpbs.org
25. Load sharing facility (2007), http://www.platform.com

http://www.stackless.com
http://pywebsvcs.sourceforge.net
http://ws.apache.org/axis
http://www-128.ibm.com/developerworks/websphere
http://www.martinfowler.com/articles/injection.html
http://www.w3.org/TR/2007/PR-wsdl20-primer-20070523
http://www-128.ibm.com/developerworks/library/ws-asynch2/index.html
http://xml.coverpages.org/AWSP-Draft20020405.pdf
http://developers.sun.com/prodtech/javatools/jsenterprise/reference/te chart/jse7/asynch.html
http://developers.sun.com/prodtech/javatools/jsenterprise/reference/te chart/jse7/asynch.html
http://www.cs.virginia.edu/~grimshaw/CS851-2004/Platform/CSF_architecture.pdf
http://www.cs.virginia.edu/~grimshaw/CS851-2004/Platform/CSF_architecture.pdf
http://www.openpbs.org
http://www.platform.com

	A Continuation-Based Framework for Economy-Driven Grid Service Provision
	Introduction
	A Service-Oriented Approach for Economic-Aware Grids
	A Continuation-Based Service Provider
	The Notion of Continuation
	The Service Provider Architecture
	Asynchrnonous Client-Provider Interaction

	Application Scenarios
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




