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Abstract. In the quest for tractable methods for reasoning about con-
current algorithms both rely/guarantee logic and separation logic have
made great advances. They both seek to tame, or control, the complexity
of concurrent interactions, but neither is the ultimate approach. Rely-
guarantee copes naturally with interference, but its specifications are
complex because they describe the entire state. Conversely separation
logic has difficulty dealing with interference, but its specifications are
simpler because they describe only the relevant state that the program
accesses.

We propose a combined system which marries the two approaches. We
can describe interference naturally (using a relation as in rely/guarantee),
and where there is no interference, we can reason locally (as in separation
logic). We demonstrate the advantages of the combined approach by
verifying a lock-coupling list algorithm, which actually disposes/frees
removed nodes.

1 Introduction

Reasoning about shared variable concurrent programs is difficult, because the
interference between the simultaneously executing threads must be taken into
account. Our aim is to find methods that allow this reasoning to be done in a
modular and composable way.

On the one hand, we have rely/guarantee, a well-established method, intro-
duced by Jones [11], that is popular in the derivation and the post-hoc verifica-
tion of concurrent algorithms. RG provides a good way of describing interference
by having two relations, the rely R and the guarantee G, which describe the state
changes performed by the environment or by the program respectively. Its dis-
advantage is that the specification of interference is global : it must be checked
against every state update, even if it is ‘obvious’ that the update cannot inter-
fere with anything else. Even Jones [12] acknowledges this limitation and still
considers the search for a satisfactory compositional approach to concurrency an
‘open problem.’

On the other hand, the recent development of separation logic [19,15] sug-
gests that greater modularity is possible. There, the ∗ operator and the frame
rule are used to carve all irrelevant state out of the specification and focus only
on the state that matters for the execution of a certain component or thread.
This makes specifications local ; two components may interfere, only if they have
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overlapping specifications. Its disadvantage is that, in dealing with concurrent
programs, it took the simplest approach and uses invariants to specify thread in-
teraction. This makes expressing the relational nature of interference often quite
difficult and requires many auxiliary variables [17]. Even O’Hearn acknowledges
the weaknesses of separation logic, and asks if “a marriage between separation
logic and rely-guarantee is also possible” [15].

Here we present such a marriage of rely/guarantee and separation logic, which
combines their advantages and eliminates some of their weaknesses. We split
the state into two disjoint parts: (i) the shared state which is accessible by all
threads, and (ii) the local state which is accessible by a single component. Then,
we use rely/guarantee to deal with the shared state, and separation logic to deal
with the local state. This is best illustrated by our parallel composition rule:

� C1 sat (p1, R ∪ G2, G1, q1) � C2 sat (p2, R ∪ G1, G2, q2)

� C1‖C2 sat (p1 ∗ p2, R, G1 ∪ G2, q1 ∗ q2)

This rule is identical to the standard rely/guarantee rule except for the use of
∗ instead of ∧ in the pre- and post-conditions. In our specifications, the pre-
conditions (e.g. p1) and the postconditions (e.g. q1) describe both the local and
the shared state. The rely conditions (e.g. R∪G2) and the guarantee conditions
(e.g. G1) describe inter-thread interference: how the shared state gets modified.

The separating conjunction between assertions about both the local and the
shared state splits local state (l) in two parts, but does not divide the shared
state (s).

(p1 ∗ p2)(l, s)
def= ∃l1 l2. l = l1 � l2 ∧ p1(l1, s) ∧ p2(l2, s)

The parallel composition rules of rely/guarantee and separation logic are special
cases of our parallel composition rule. (1) When the local state is empty, then
p1 ∗ p2 = p1 ∧ p2 and we get the standard rely/guarantee rule. (2) When the
shared state is empty, we do not need to describe its evolution (R and G are
the identity relation). Then p1 ∗ p2 has the same meaning as separation logic
∗, and we get the parallel rule of concurrent separation logic without resource
invariants (see §2.1).

An important aspect of our approach is that the boundaries between the
local state and the shared state are not fixed, but may change as the program
runs. This “ownership transfer” concept is fundamental to proofs in concurrent
separation logic.

In addition, as we encompass separation logic, we can cleanly reason about dy-
namically allocated data structures and explicit memory management, avoiding
the need to rely on a garbage-collector. In §4, we demonstrate this by verifying
a lock-coupling list algorithm, which actually disposes/frees removed nodes.

2 Technical Background

In this paper, we reason about a parallel programming language with pointer
operations. Let x, y and z range over logical variables, and x, y and z over
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program variables. We assume tid is a special variable that identifies the current
thread. Commands C and expressions e are given by the following grammar,

C ::= x:=e | x:=[e] | [e1]:=e2 | x:=cons(e1, . . . , en) | dispose(e)
| C1; C2 | C1‖C2 | if(b){C1} else{C2} | while(b){C} | atomic(b){C}

e ::= x | x | e + e | n

where b ranges over boolean expressions. Note that expressions e are pure: they
do not refer to the heap. In the grammar, each assignment contains at most one
heap access; assignments with multiple heap accesses can be performed using
multiple assignments and temporary variables to store the intermediate results.

The semantics of atomic are that C will be executed in one indivisible
step. This could be implemented through locking, hardware atomicity, trans-
actional memories, etc. Choosing atomic over a given synchronisation primitive
(e.g. locks) enables our reasoning to be applied at multiple abstraction levels. In
any case, any synchronisation primitive can be encoded using atomic.

2.1 Local Reasoning – Separation Logic

In Hoare logic [9], assertions describe properties of the whole memory, and hence
specifications, e.g. {P} C {Q}, describe a change of the whole memory. This
is inherently global reasoning. Anything that is not explicitly preserved in the
specification could be changed, for example {x = 4} y:=5 {x = 4}. Here y is
allowed to change, even though it is not mentioned in the specification.1

The situation is different in separation logic [19]. Assertions describe prop-
erties of part of the memory, and hence specifications describe changes to part
of the memory. The rest of the memory is guaranteed to be unchanged. This is
the essence of local reasoning, specifications describe only the memory used by
a command, its footprint.

The strength of separation logic comes from a new logical connective: the
separating conjunction, ∗. P ∗ Q asserts the state can be split into two parts,
one described by P and the other by Q. The separating conjunction allows us
to formally capture the essence of local reasoning with the following rules:

{P} C {Q}
(Frame)

{P ∗ R} C {Q ∗ R}
{P1} C1 {Q1} {P2} C2 {Q2} (Par)
{P1 ∗ P2} C1‖C2 {Q1 ∗ Q2}

The first rule says, if P is separate from R, and C transforms P into Q then
if C finishes we have Q and separately still have R. The second rule says that
if two threads have disjoint memory requirements, they can execute safely in
parallel, and the postcondition is simply the composition of the two threads’
postconditions.2

1 ‘Modifies clauses’ solve this problem, but they are neither pretty nor general.
2 Originally, separation logic did not consider global variables as resource; hence the

proof rules had nasty side-conditions. Later, this problem was solved by Bornat et
al. [2]. By disallowing direct assignments to global variables, we avoid the problem.
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Separation logic has the following assertions for describing the heap, h:

P, Q, S ::= false | emp | e = e′ | e 	→ e′ | ∃x. P | P ⇒ Q | P ∗ Q | P −� Q

We encode ¬,∧,∨, ∀, and true in the classical way. emp stands for the empty
heap; e 	→ e′ for the heap consisting of a single cell with address e and contents e′.
Separating conjunction, P ∗Q, is the most important operator of separation logic.
A heap h satisfies P ∗Q, if it can be split in two parts, one of which satisfies P and
the other satisfies Q. There remains one new connective to describe: septraction,
P −�Q.3 Intuitively, P −�Q represents removing P from Q. Formally, it means
the heap can be extended with a state satisfying P , and the extended state
satisfies Q.

h, i �SL (P ∗ Q) def= ∃h1, h2. (h1 � h2 = h) ∧ h1, i �SL P ∧ h2, i �SL Q

h, i �SL (P −� Q) def= ∃h1, h2. (h1 � h = h2) ∧ h1, i �SL P ∧ h2, i �SL Q

Finally, e 	→ e1, . . . , en is a shorthand for (e 	→ e1) ∗ . . . ∗ (e + n − 1 	→ en).

3 The Combined Logic

3.1 Describing Interference

The strength of rely/guarantee is the careful description of interference between
parallel processes. We describe interference in terms of actions P � Q which
describe the changes performed to the shared state. These resemble Morgan’s
specification statements [13], and P and Q will typically be linked with some
existentially quantified logical variables. (We do not need to mention separately
the set of modified shared locations, because these are all included in P .)

The meaning of an action P � Q is that it replaces the part of the state
that satisfies P before the action with a part satisfying Q. Its semantics is the
following relation:

[[P � Q]] = {(h1 � h0, h2 � h0) | h1, i �SL P ∧ h2, i �SL Q}

It relates some initial state h1 satisfying the precondition P to a final state h2

satisfying the postcondition. In addition, there may be some disjoint state h0

which is not affected by the action. In the spirit of separation logic, we want
action specifications as ‘small’ as possible, describing h1 and h2 but not h0, and
use the frame rule to perform the same update on a larger state.

The rely and guarantee conditions are simply sets of actions. Their semantics
as a relation is the reflexive and transitive closure of the union of the semantics
of each action in the set. We shall write R for a syntactic rely condition (i.e. a
set of actions) and R for a semantic rely condition (i.e. a binary relation).
3 Sometimes called “existential magic wand”, as it is the dual to “magic wand”: P −�

Q
def
= ¬(P −∗ ¬Q). It has been used in the connection with modal logic in [4].
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3.2 Stability

Rely/guarantee reasoning requires that every pre- and post-condition in a proof
is stable under environment interference. An assertion S is stable under inter-
ference of a relation R if and only if whenever S holds initially and we perform
an update satisfying R then the resulting state still satisfies S.

Definition 1 (Stability). S;R =⇒ S iff for all s, s′ and i such that s, i �SL S
and (s, s′) ∈ R, then s′, i �SL S

By representing the interference R as a set of actions, we reduce stability to
a simple syntactic check. For a single action [[P � Q]], the following separation
logic implication is necessary and sufficient:

Lemma 1. S; [[P � Q]] =⇒ S iff �SL (P −� S) ∗ Q =⇒ S.

Informally, it says that if from a state that satisfies S, we subtract the part of the
state satisfying P , and replace it with some state satisfying Q, then the result
should still satisfy S. When the action cannot fire because there is no substate
of S satisfying P , then P −� S is false and the implication holds trivially.

An assertion S is stable under interference of a set of actions R when it is
stable under interference of every action in R.

Lemma 2. S; (R1 ∪R2)∗ =⇒ S iff S;R1 =⇒ S and S;R2 =⇒ S.

Finally, we define wssaR(Q) to be the weakest assertion that is stronger than Q
and stable under R.

Definition 2 (Weakest stable stronger assertion). (1) wssaR(Q) ⇒ Q,
(2) wssaR(Q);R =⇒ wssaR(Q), and
(3) for all P , if P ;R =⇒ P and P ⇒ Q, then P ⇒ wssaR(Q).

3.3 Local and Shared State Assertions

We can specify a state using two assertions, one describing the local state and
the other the shared state. However, this approach has some drawbacks: speci-
fications are longer, and extending the logic to a setting with multiple disjoint
regions of shared state is clumsy.

Instead, we consider a unified assertion language that describes both the lo-
cal and the shared state. This is done by extending the positive fragment of
separation logic assertions with ‘boxed’ terms. We could use boxes for both
local and shared assertions: for example, P

local
and P

shared
. However, since

P
local

∗ Q
local

⇐⇒ P ∗ Q
local

holds for *, and all the classical operators, we
can omit the

local
and the “shared” subscript. Hence the syntax of assertions is

p, q, r ::= P | P | p ∗ q | p ∧ q | p ∨ q | ∃x. p | ∀x. p

Semantically, we split the state, σ, of the system into two components: the
local state l, and the shared state s. Each component state may be thought to be
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a partial finite function from locations to values. We require that the domains
of the two states are disjoint, so that the total state is simply the (disjoint)
union of the two states. Assertions without boxes describe purely the local state
l, whereas a boxed assertion P describes the shared state s. Formally, we give
the semantics with respect to a ‘rely’ condition R, a set of actions describing the
environment interference:

l, s, i �R P ⇐⇒ l, i �SL P
l, s, i �R P ⇐⇒ l = ∅ ∧ s, i �SL wssa[[R]](P )
l, s, i �R p1 ∗ p2 ⇐⇒ ∃l1, l2. (l = l1 � l2) ∧ (l1, s, i �R p1) ∧ (l2, s, i �R p2)
l, s, i �R p1 ∧ p2 ⇐⇒ (l, s, i �R p1) ∧ (l, s, i �R p2)
. . .

Note that ∗ is multiplicative over the local state, but additive over the shared
state. Hence, P ∗ Q =⇒ P ∧ Q . The semantics of shared assertions, P , could
alternatively be presented without l = ∅. This results in an equally expressive
logic, but the definition above leads to shorter assertions in practice.

We use wssa[[R]]( ) to make assertions semantically resistant to interference:

Lemma 3. If (l, s, i �R p), s′ � l defined and [[R]](s, s′) then (l, s′, i �R p).

We define an assertion to be syntactically stable if each of the assertions about
the shared state is stable. By construction, any assertion about the local state
of a component is unaffected by other components, because interference can
happen only on the shared state. On the other hand, a boxed assertion S may
be affected.

Definition 3 (Stable assertion). P stable underR always; P stable underR iff
P ; [[R]] =⇒ P ; (p op q) stable underR iff p stable underR and q stable underR; and
(qu x. p) stable underR iff p stable underR where op ::= ∧ | ∨ | ∗ and qu ::= ∀ | ∃.
This syntactic condition allows us to change the interpretation of a formula to
a more permissive rely.

Lemma 4. If (l, s, i �R p), [[R]] ⊆ [[R′]] and p stable under R′ then (l, s, i �R′ p).

We present a few entailments for formulae involving shared states.

P �SL Q
P � Q

P ∧ Q � P ∧ Q P ∨ Q � P ∨ Q P ∗ Q � P ∧ Q

∀x. P � ∀x. P ∃x. P � ∃x. P P � P ∗ P P � emp

3.4 Ownership Transfer

Usually the precondition and postcondition of an action have the same heap
footprint. For example, consider the action saying that x can be incremented:

x 	→ M � x 	→ N ∧ N ≥ M (Increment)

If they have a different footprints, this indicates a transfer of ownership between
the shared state and the local state of a thread. Consider a simple lock with
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� C sat (p, R,G, q)�
(r stable under R ∪ G)
∨ (C has no atomics)

�

� C sat (p ∗ r, R,G, q ∗ r)

Q = (P ∗ X �→ Y ) x /∈ fv(P )

� (x := [e]) sat (Q ∧ e=X,R, G, Q ∧ x=Y )

� C1 sat (p, R, G, q)
� C2 sat (q, R, G, r)

� C1; C2 sat (p, R,G, r)

� C1 sat (p1, R ∪ G2, G1, q1) p1 stable under R ∪ G1

� C2 sat (p2, R ∪ G1, G2, q2) p2 stable under R ∪ G2

� C1‖C2 sat (p1 ∗ p2, R,G1 ∪ G2, q1 ∗ q2)

� C sat (P1 ∗ P2, {}, {}, Q1 ∗ Q2) Q stable under R
y ∩ FV (P2) = ∅ P ⇒ P1 ∗ F Q1 ∗ F ⇒ Q (P1 � Q1) ⊆ G

� (atomic{C}) sat (∃y. P ∗ P2, R,G, ∃y. Q ∗ Q2)

Fig. 1. Proof rules

two operations: (Acq) which changes the lock bit from 0 to 1, and removes the
protected object, list(y), from the shared state; and (Rel) which changes the lock
bit from 1 to 0, and replaces the protected object into the shared state. We can
represent these two operations formally as

(x 	→ 0) ∗ list(y) � x 	→ 1 (Acq) x 	→ 1 � (x 	→ 0) ∗ list(y) (Rel)

3.5 Specifications and Proof Rules

The judgement � C sat (p, R, G, q) semantically says that any execution of C
from an initial state satisfying p and under interference at most R, (i) does not
fault (e.g. access unallocated memory), (ii) causes interference at most G, and,
(iii) if it terminates, its final state satisfies q.

The key proof rules are presented in Figure 1. The rest can be found in the
technical report [22]. From separation logic, we inherit the frame rule. This rule
says that a program safely running with initial state p can also be executed with
additional state r. As the program runs safely without r, it cannot access r when
it is present; hence, r is still true at the end. The additional premise is needed
because r might mention the shared state and C might modify it in an atomic.

We adopt all of the small axioms for local state from separation logic (not
presented) [14]. Additionally, we have a read axiom (Fig. 1 top right) for shared
state, which allows a non-atomic read from a shared location if we can rely on
its value not changing. Note that we do not need to check stability for this read.

The next rule is that of conditional critical regions atomic(b){C}. For clarity,
we present the rule where the guard b is just true. The general case, where b is
non-trivial and may access the heap, just complicates the essential part of the
rule. A simple rule for critical regions would be the following:

� C sat (P, {}, {}, Q) (P � Q) ⊆ G Q stable under R

� (atomic{C}) sat (P , R, G, Q )
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G-Exact
x �→ y � x �→ y ⊆ G

P1 � S ∗ Q1 ⊆ G P2 ∗ S � Q2 ⊆ G
G-Seq

P1 ∗ P2 � Q1 ∗ Q2 ⊆ G

�SL P ′⇒P P � Q ⊆ G �SL Q′⇒Q
G-Cons

P ′ � Q′ ⊆ G

P � Q ∈ G
G-Ax

P � Q ⊆ G

P � Q ⊆ G
G-Sub

P [e/x] � Q[e/x] ⊆ G

(P∗F ) � (Q∗F ) ⊆ G
G-CoFrm

P � Q ⊆ G

Fig. 2. Rules and axioms for guarantee allows an action

As in RG, we must check that the postcondition is stable under interference from
the environment, and that changing the shared state from P to Q is allowed by
the guarantee G.

This rule is sound, but too weak in two ways. First, it does not allow critical
regions to access any local state, as the precondition P requires that the local
state is empty. Second, it requires that the critical region changes the entire
shared state from P to Q and that the guarantee condition allows such a change.
Thus, we extend the rule by (i) adding a precondition P2 and a postcondition
Q2 for the local state, and (ii) allowing the region to change a part P1 of P into
a part Q1 of Q, ensuring that the rest F does not change. Additionally, we allow
some existential quantifiers, y in the shared state to be pulled out over both the
shared and local state.

A specification, P1 � Q1 is allowed by a guarantee G if its effect is contained
in G. Fig. 2 provides rules to approximate this definition in proofs. The rule
G-Seq allows actions to be sequenced and builds in a form of framing. Note
that, if S is empty, then the rule is a parallel composition of two actions; if P2

and Q1 are empty, then the rule sequences the actions. It would be simpler, if
we simply included the frame rule however this is unsound. In fact, the coframe
rule G-CoFrm is admissible. G-Cons is similar to the rule of consequence, but
the second implication is reversed, Q ⇒ Q′. Semantically, the property is defined
as follows:

Definition 4. P � Q ⊆ G iff [[P � Q]] ⊆ [[G]].

There is a side-condition to the atomic rule requiring that Q is a precise assertion.
This is formally defined in §5 (Footnote. 7). This is a technical requirement
inherited from concurrent separation logic. It ensures that the splitting of the
resultant state into local and shared portions is unambiguous.

We reiterate the parallel composition rule from the introduction. As the in-
terference experienced by thread C1 can arise from C2 or the environment of the
parallel composition, we have to ensure that this interference R∪G2 is allowed.
Similarly C2 must be able to tolerate interference from C1 and from the envi-
ronment of the parallel composition. The precondition and postcondition of the
composition are the separating conjunction, ∗, of the preconditions/postcondi-
tions of the individual threads. In essence, this is the conjunction of the shared
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lock(p) {
atomic(p.lock==0){
p.lock = tid;

//p.oldn = p.next;
}
}
unlock(p) {
atomic(true) {
p.lock = 0;
}
}

locate(e) {
local p,c;
p = Head;
lock(p);
c = p.next;
while(c.value<e){
lock(c);
unlock(p);
p = c;
c = p.next;
}
return (p,c);
}

add(e) {
local x,y,z;
(x,z)=locate(e);
if (z.value!=e){
y = cons(0,e,z);
x.next = y;
}
unlock(x);
}

remove(e) {
local x,y,z;
(x,y)=locate(e);
if (y.value==e){
lock(y);
z = y.next;
x.next = z;
unlock(x); // A
dispose(y);
} else {
unlock(x);
}
}

Fig. 3. Source code for lock coupling list operations. For clarity, we use a field notation,
hence we encode p.lock, x.value, x.next and p.oldn as [p], [x + 1], [x + 2] and [p + 3],
respectively. Commented code is auxiliary, that is, required only for the proof.

state assertions, and the separating conjunction of the local state assertions
(cf. the semantics of ∗ in §3.3).

The proof rules for conditional and iterative commands are completely stan-
dard (See [22].)

4 Example

This section uses the new logic to verify a fine-grained concurrent linked list
implementation of a mutable set data structure (see Fig. 3). It has operations
add which adds an element to the set, and remove which removes an element
from the set.

The algorithm associates one lock per list node rather than have a single lock
for the entire list. Traversing the list uses lock coupling: the lock on one node is
not released until the next node is locked. Somewhat like a person climbing a
rope “hand-over-hand,” you always have at least one hand on the rope.

An element is added to the set by inserting it in the appropriate position, while
holding the lock of its previous node. It is removed by redirecting the previous
node’s pointer, while both the previous and the current node are locked. This
ensures that deletions and insertions can happen concurrently in the same list.
The algorithm makes two assumptions about the list: (1) it is sorted; and (2)
the first and last elements have values −∞ and +∞ respectively. This allows us
to avoid checking for the end of the list.

Node predicates. We use three predicates to represent a node in the list: (1)
Ns(x, v, y), for a node at location x with contents v and tail pointer y and
with the lock status set to s; (2) U (x, v, y) for an unlocked node at location
x withcontents v and tail pointer y; and (3) Lt(x, v, y) for a node locked with
thread identifier t. We use N (x, v, y) for a node that may or may not be locked.
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Ns(x, v, y) def= x 	→ s, v ∗
(

(s = 0 ∧ x + 2 	→ y, )
∨ (s �= 0 ∧ x + 3 	→ y)

)
∧ x mod 4 = 0

U (x, v, y) def= N0(x, v, y) Lt(x, v, y) def= Nt(x, v, y) ∧ t > 0

We assume nodes are aligned, x mod 4 = 0, and cons returns aligned nodes.4

The thread identifier parameter in the locked node is required to specify that a
node can only be unlocked by the thread that locked it. The fourth field/cell is
auxiliary. It is used to store the last value of the nodes tail before it was locked.
Once a node is locked its tail field is released to the locking thread, allowing it
to mutate the field outside of critical sections, the auxiliary field is used in the
proof to track the list structure.

Actions. The algorithm does four kinds of actions: (1) lock, which locks a node,
(2) unlock, which unlocks a node, (3) add, which inserts a new node to the
list, and (4) delete, which removes a node from the list. All of these actions
are parameterised with a set of thread identifiers, T . This allows us to use the
actions to represent both relies and guarantees. In particular, we take a thread
with identifier tid to have the guarantee with T = {tid}, and the rely to use the
complement of this set. Let I(T ) be the set of these four actions.

The first two actions are straightforward:

t ∈ T ∧ U (x, v, n) � Lt(x, v, n) (lock)
t ∈ T ∧ Lt(x, v, n) � U (x, v, n) (unlock)

Now, consider adding a node to the list. We begin by describing an action
that ignores the sorted nature of the list:

t ∈ T ∧ Lt(x, u, n) � Lt(x, u, m) ∗ U (m, v, n)

To add an element to the list, we must have locked the previous node, and then
we can swing the tail pointer to the added node. The added node must have
the same tail as previous node before the update. To preserve the sorted order
of the list, the actual add action must also mention the next node: the inserted
value must be between the previous and the next values.

(t ∈ T ) ∧ (u < v < w) ∧ (Lt(x, u, n) ∗ Ns(n, w, y))
� Lt(x, u, m) ∗ U (m, v, n) ∗ Ns(n, w, y) (add)

The final action we allow is removing an element from the list. We must lock
the node we wish to delete, n, and its previous node, x. The tail of the previous
node must be updated to the deleted node’s tail, m.

(v < ∞) ∧ (t ∈ T ) ∧ (Lt(x, u, n) ∗ Lt(n, v, m)) � Lt(x, u, m) (delete)

4 Without this restriction a node could be formed by parts of two adjacent nodes.
Instead of assuming alignment, this problem can also be solved by allowing contexts
in actions, for example the node is reachable from the head.
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List predicate. We use separation to describe the structure of the shared list.
The predicate ls(x, A, y) describes a list segment starting at location x with the
final tail value of y, and with contents A. We use · as a list separator.

ls(x, ∅, x) def= emp ls(x, v·B, y) def= (∃z. x �= y ∧ N (x, v, z) ∗ ls(z, B, y))

Note, as we use separation logic we do not need any reachability predicates,
our predicate is simply a recursively defined predicate. The use of ∗ and the
inequality x �= y ensures the list is acyclic. Removing a node from a list segment
simply gives two list segments.

Proposition 1. (Ns(x, v, y)−� ls(w, A, z)) is equivalent to ∃BC. (A = B·v·C)∧
w �= z ∧ (

ls(w, B, x)�z ∗ ls(y, C, z)�x

)
where P �x

def
= P ∧ ¬(x 	→ ∗ true)

The algorithm works on sorted lists with the first and last values being −∞ and
+∞ respectively. s(A) represents this restriction on a logical list A.

srt(+∞·ε) def= emp srt(a·b·A) def= srt(b·A) ∧ a < b s(−∞·A) def= srt(A)

Main proof. Appendix A contains the proof outline for the remove function. The
outline presents the intermediate assertions in the proof. We present one step of
the verification of remove function in detail: the unlock action labelled “A” in
Fig. 3. For simplicity, we inline the unlock body.�∃AB. ls(Head, A,x)∗Ltid(x, u, y)∗Ltid(y, e, z)∗ls(z, B, nil)∗s(A·u·B) ∗ (x+2�→z)

�
atomic{�Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ (x+2�→z)

�
x.lock = 0;

�
U(x, u, z) ∗ Ltid(y, e, z)

�}�∃A. ls(Head, A, nil) ∗ s(A) ∗ Ltid(y, e, z)
�

We must prove four things: (1) the body meets its specification; (2) the body’s
specification is allowed by the guarantee; (3) the outer specification’s postcon-
dition is stable; and (4) find a frame, F , that satisfies the two implications.

The first is a simple proof in separation logic. The second follows as:

Ltid(x, u, y) ∗ Ltid(y, e, z) � Ltid(x, u, z) ⊆ I({tid})
Ltid(x, u, z) � U(x, u, V z) ⊆ I({tid})

G-Seq
Ltid(x, u, y) ∗ Ltid(y, e, z) � U(x, u, z) ⊆ I({tid})

Third, to show ∃A. ls(Head, A, nil) ∗ s(A) is stable, we use Lemma 1 for the four
actions in the rely: lock, unlock, add and delete. The proof of stability is long
(hence omitted), but the proof steps are largely automatic. We can automate
these checks [6].

Finally, we define F as ls(Head, A, x)∗ls(z, B, nil)∗s(A·u·B)

Theorem 1. The algorithm in Fig. 3 is safe and keeps the list always sorted.

5 Semantics and Soundness

Our semantics follows the abstract semantics for separation logic of Calcagno,
O’Hearn and Yang [5]. Rather than presenting the semantics with respect to a
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l�s = l1 b(l1) l′�s′ = l2 Q(s′)

(C, (l1, ∅, o)) Emp−−−→∗(skip, (l2, ∅, o′))
(atomicQ(b){C}, (l, s, o)) R−→

p
(skip, (l′, s′, o′))

(C1, σ)
R−→
p

(C′
1, σ

′)

(C1‖C2, σ)
R−→
p

(C′
1‖C2, σ

′)

A(l, l′) (l′, s, o) ∈ Heaps

(A, (l, s, o))
R−→
p

(skip, (l′, s, o))

(¬∃l′. A(l, l′))

(A, (l, s, o))
R−→
p

fault

R(s, s′) (l, s′, o′) ∈ Heaps

(C, (l, s, o))
R−→
e

(C, (l, s′, o′))

Fig. 4. Abridged operational semantics

particular model of the heap, we use a partial commutative cancellative5 monoid
(M,�, ∅) as an abstract notion of a heap. We use m, l, s and o to range over
elements of M .

Our logic explicitly deals with the separation between a thread’s own local
state (l) and the shared state (s), and hence implicitly the environment’s own
state (o). Our semantics are given with respect to a structured heap, which sepa-
rates these three components.6 This splitting is only used to prove the soundness
of the logic. There is an obvious erasure to a semantics without a splitting.

Definition 5 (Structured heaps). Heaps
def
= {(l, s, o) | {l, s, o} ⊆ M ∧ l �

s � o is defined} and (l1, s1, o1) � (l2, s2, o2) defined as (l, s, o), iff s1 = s2 = s,
l1 � l2 = l, o1 = l2 � o, and o2 = l1 � o; otherwise it is undefined.

We use σ to range over these structured heaps. Again following [5], we use
abstract commands, A, and abstract boolean tests, b, for our abstract heap
model. Note that by encoding each primitive command onto a pair of abstract
commands, we can give our language a grainless semantics [20].

Definition 6. (i) Primitive commands A are represented by a subset of M×M ,
satisfying: (1) If A(l1 � l, l2), then either there exists l′2 such that A(l1, l′2) and
l2 = l � l′2, or ¬∃l. A(l1, l); and (2) If ¬∃l2. A(l1 � l, l2), then ¬∃l2. A(l1, l2).
(ii) Boolean expressions b are represented by M → {true, false, fault}, satisfy-
ing: if b(l1 � l) = v, then either b(l1) = v or b(l1) = fault.

We present the key rules of the semantics of the abstract programming language
in Figure 4. The rest can be found in the extended version [22]. We define a
reduction step Config1

R−→
λ

Config2, as configuration Config1 makes a reduction

step to Config2 with possible interference R and label λ. The label indicates
whether this is a program action, p, or an environment action, e. Configurations
are either fault or a pair of a command and a structured heap, (C, σ). We use
R−→∗ as the transitive and reflex closure of the reduction relation.
5 If m1 � m = m2 � m, then m1 = m2.
6 The assertions simply ignore the environment.
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We alter the syntax of atomic to have a postcondition annotation Q, to
specify how the state is split between shared and local on exit from the block. In
CSL the resource invariant does this job, but we do not have a single resource
invariant in this logic. Each of these postconditions must be precise, so there
is a unique splitting.7 Consider the semantics of atomic (Figure 4). The non-
faulting rule (1) combines the thread’s local state with the shared state to create
a new local state, l�s = l1, (2) checks the guard holds of this new state, b(l1),
(3) executes the command with no interference on the shared state (Emp), (4)
splits the resulting local state into a new shared and local state, l′�s′ = l2,
and (5) finally checks the postcondition Q holds of the shared state s′. As Q
is precise, it uniquely specifies the splitting in step (4). There are three more
rules for atomic (not presented) where the program faults on the evaluation of
the body, the evaluation of the guard, or fails to find a splitting to satisfy the
postcondition.

Parallel composition is modelled by interleaving, we just present one of the
rules. The three remaining rules concern abstract commands and environment
transitions. The abstract command A executes correctly, if it runs correctly
by accessing only the local state. Otherwise, A faults. Its execution does not
affect the shared and environment states. An environment transition can happen
anytime and affects only the shared state and the environment state, provided
that the shared-state change describes the rely relation, R; the local state is
unchanged.

We extend the standard separation logic notion of safety with a guarantee
observed by each program action.

Definition 7 (Guarantee). (1) (C, σ,R) guars0 G always holds; and
(2) (C, σ,R) guarsn+1 G iff if (C, σ) R−→

λ
Config then there exist C′ σ′ such that

Config = (C′, σ′); (C′, σ′,R) guarsn G; and if λ = p then (σ, σ′) ∈ G.

Definition 8. |= C sat (p, R, G, q) iff for all R′ ⊆ R and σ �R′ (p), then (1)

∀n. (C, σ, [[R′]]) guarsn [[G]]; and (2) if (C, σ)
[[R′]]−−−→∗ (skip, σ′) then σ′ �R′ (q).

Theorem 2 (Soundness). If � C sat (p, R, G, q), then |= C sat (p, R, G, q)

6 Related Work

Owicki & Gries [16] introduced the concept of non-interference between the
proofs of parallel threads. Their method is not compositional and does not permit
top-down development of a proof because the final check of interference-freedom
may fail rendering the whole development useless.

To address this problem, Jones [11] introduced the compositional rely/guar-
antee method. In the VDM-style, Jones opted for ‘two-state’ postconditions;
other authors [23,18] have chosen single-state postconditions. Several authors
7 P is precise iff for every l ∈ M , there exists at most one lP such that lP �SL P and
∃l′. lP � l′ = l.
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have proved the soundness and relative completeness of rely/guarantee [23,18,7];
Prensa’s proof [18] is machine checked by the Isabelle theorem prover. The com-
pleteness results are all modulo the introduction of auxiliary variables. Abadi and
Lamport [1] have adapted RG to temporal logic and have shown its soundness
for safety specifications.

Separation logic [19,15] takes a different approach to interference by forbidding
it except in critical regions [10]. An invariant, I, is used to describe the shared
state. This is a simple case of our system where the interference specifications
(i.e. R and G) are restricted to a very simple relation, I � I. Brookes has shown
concurrent separation logic to be sound [3].

There have been attempts to verify fine-grained concurrent algorithms using
both separation logic and rely/guarantee. Vafeiadis et al. [21] verify several list
algorithms using rely/guarantee. Their proofs require reachability predicates to
describe lists and they cannot deal with the disposal of nodes. Parkinson et
al. [17] verify a non-blocking stack algorithm using concurrent separation logic.
Their proof requires a lot of auxiliary state to encode the possible interference.
With the logic presented in this paper much of the auxiliary state can be re-
moved, and hence the proof becomes clearer.

Concurrently with our work, Feng, Ferreira and Shao [8] proposed a differ-
ent combination of rely/guarantee and separation logic, SAGL. Both our ap-
proach and SAGL partition memory into shared and private parts. However, in
SAGL, every primitive command is assumed to be atomic. Our approach is more
flexible and allows one to specify what is atomic; everything else is considered
non-atomic. By default, non-atomic commands cannot update shared state, so
we only need stability checks when there is an atomic command: in the lock
coupling list only at the lock and unlock operations. On the other hand, SAGL
must check stability after every single command. Moreover, in SAGL, the rely
and guarantee conditions are relations and stability checks are semantic impli-
cations. We instead provide convenient syntax for writing down these relations,
and reduces the semantic implication into a simple logic implication. This al-
lowed us to automated our logic [6], and hence automatically verify the safety
of a collection of fine-grained list algorithms.

SAGL is presented as a logic for assembly code, and is thus hard to apply at
different abstraction levels. It does not contain separation logic as a proper subsys-
tem, as it lacks the standard version of the frame rule [19]. This means that it can-
not prove the usual separation logic specification of procedures such as
copy tree [14]. In contrast, our system subsumes SL [19], as well as the single-
resource variant of CSL [15]: hence, the same proofs there (for a single resource)
go through directly in our system (for procedures see [22]). Of course, the real in-
terest is the treatment of additional examples, such as lock coupling, that neither
separation logic nor rely/guarantee can prove tractably. Our system also includes
a rely-guarantee system, which is why we claim to have produced a marriage of
the two approaches. It may be possible to extend SAGL to include the frame rule
for procedures, but we understand that such extension is by no means obvious.
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With this all being said, there are remarkable similarities between our work
and SAGL; that they were arrived at independently is perhaps encouraging as
to the naturalness of the basic ideas.

7 Conclusion

We have presented a marriage of rely/guarantee with separation logic. We proved
soundness with respect to an abstract operational semantics in the style of ab-
stract separation logic [5]. Hence, our proof can be reused with different lan-
guages and with different separation logics, e.g. permissions and variables as
resource [2]. Our logic allows us to give a clear and simple proof of the lock-
coupling list algorithm, which includes memory disposal. Moreover, our logic
can be efficiently automated [6].
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A Proof Outline: remove

remove(e) { local x,y,z, t ;�∃A. ls(Head, A, nil) ∗ s(A) ∧ −∞ < e ∧ e < +∞�
(x,y) = locate(e);�∃uv. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ N(y, v, Z) ∗ ls(Z, B, nil) ∗ s(A·u·v·B)

∗ (x+2�→y) ∧ u < e ∧ e ≤ v ∧ e < +∞
�

t = y.value; if (t == e) {�∃u. ∃ZAB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ N(y, e, Z) ∗ ls(Z, B, nil) ∗ s(A·u·e·B)

∗ (x+2�→y) ∧ e < +∞
�

lock(y);�∃uZ. ∃AB. ls(Head, A,x) ∗ Ltid(x, u, y) ∗ Ltid(y, e, Z) ∗ ls(Z, B, nil) ∗ s(A·u·e·B)

∗ (x+2�→y) ∗ (y+2�→Z) ∧ e < +∞
�

z = y.next; x.next = z;�∃u. ∃AB. ls(Head, A, x) ∗ Ltid(x, u, y) ∗ Ltid(y, e, z) ∗ ls(z, B, nil) ∗ s(A·u·B)

∗(x+2�→z) ∗ (y+2�→z)

�

unlock(x);�∃A. ls(Head, A, nil) ∗ s(A) ∗ Ltid(y, e, z) ∗ (y+2�→z)
�

dispose(y);
} else { unlock(x); }�∃A. ls(Head, A, nil) ∗ s(A)

�
}

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-687.html
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