
K E Y  P O I n T S

 The humoral as well as the cellular immune  •
system play important roles in the control of 
cancer.

 Therapeutic efficacy of immunological ap- •
proaches is limited by a restricted availability 
of tumor-specific antigens. Presently cancer/
testis (CT), activation markers, differentiation, 
amplification, mutational antigens, and danger 
signals serve as tumor-associated target struc-
tures.

 The efficacy of cytokine therapies and cell- •
based approaches (T cells, dendritic cells, natu-
ral killer [NK] cells) is presently tested in pre-
clinical and in clinical trials.

 Presently, several monoclonal antibodies have  •
been approved by the US Food and Drug Ad-
ministration (FDA) for the treatment of cancer. 
The target structures of these antibodies include 
CD20 for non-Hodgkin’s lymphoma (NHL) and 
B-NHL; CD33 for CD33 positive acute myeloid 
leukemia, epithelial cell-adhesion molecule 
(EpCam) (expired 2000), vascular endothelial 
growth factor (VEGF) and epidermal growth 
factor receptor (EGFR) for colorectal cancer, 
ErbB2 (human epidermal growth factor recep-
tor 2 [HER2]) for breast cancer, and CD52 for 
B-cell chronic lymphocytic leukemia (B-CLL). 
Numerous other antibodies are currently being 
tested in clinical trials.G. Multhoff, PhD
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Abstract

This chapter elucidates immunological aspects in can-
cer therapy. For many years, the impact of the immune 
system in cancer immunity was a matter of debate. 
Nowadays, it is generally accepted that an active im-
mune system can monitor, edit, and destroy malignantly 
transformed cells in vitro and in established tumor 
mouse models. However, the capacity of the immune 
system to fight human tumors is limited, as human 
tumors are highly individual, complex, and dynamic 
systems that have the capacity to modulate anticancer 
immune responses and to affect the tumor microenvi-
ronment. Here, we describe the development of inno-
vative immunological strategies from a preclinical stage 
to clinical application. In the last decade, especially hu-
manized monoclonal antibodies (mAb) have emerged 
as promising pharmaceutical tools (“magic bullet”) for 
the treatment of cancer in combination with radio- and/
or chemotherapy. 

7.1  
Introduction

Immune homeostasis is a fine balance between the 
induction of immune responses that defend against 
foreign pathogens and the suppression of immune 
responses for the maintenance of self-tolerance to pre-
vent autoimmune diseases. Since tumor cells develop 
from the host’s own tissue they might be considered 
as being “self ” by the immune system, and this makes 
the generation of an efficient immune defense against 
cancer difficult. However, Rudolf Virchow (1863) suc-
ceeded in detecting infiltrating leukocytes in tumor 
tissues (overview in Mantovani et al. 1992). A few 
years later, William Coley (1890) associated the pres-
ence of fatal bacterial infections with the induction of 
antitumor immune responses in patients with partially 
resected tumors (Coley 1893). Based on these earlier 
findings, Paul Ehrlich postulated the “virulent capacity 
of tumors” in 1909. 

The substantial progress that has been made in the 
treatment of cancer using radio- and chemotherapy 
led to reduced attention about the involvement of the 
immune system in the control of cancer for several de-
cades. However, with an increase in the understanding 
of the molecular mechanisms of immune recognition 
and regulation came accumulating evidence that the 
immune system plays a crucial role in the control of 
cancer. Nowadays, it is generally accepted that an ac-
tive immune system can monitor, edit, and destroy ma-

lignantly transformed cells in vitro and in established 
tumor mouse models (Smyth et al. 2001; Dunn et al. 
2002). However, the capacity of the immune system to 
fight against cancer in humans is limited, as human tu-
mors are highly individual, complex, and dynamic sys-
tems, which have the capacity to modulate anticancer 
immune responses and to affect the tumor microenvi-
ronment. 

Nevertheless, correlative relationships between al-
tered immune function, tumor development, and anti-
tumor immune responses (Dunn et al. 2002, 2004) have 
been observed in spontaneous human tumors.

Spontaneous remission is defined as a complete or 
partial, temporary, or permanent disappearance of all 
or at least some relevant tumor parameters in the ab-
sence of any proven medical intervention. For a vari-
ety of different cancer entities such as colon cancer 
(Beechey et al. 1986), mammary carcinomas (Larsen 
et al. 1999), malignant melanoma (Mackensen et al. 
1994), acute myeloid leukemia (AML) (Tzankov et al. 
2001), and liver metastases of a non-small cell lung 
(NSCLC) carcinoma (Kappauf et al. 1997), spontane-
ous remissions have been documented. Furthermore, 
immunocompromised individuals such as those with 
human immunodeficiency virus (HIV) infection are 
more susceptible to lymphomas and Karposi’s sarcomas 
(Boshoff and Weiss 2002). Together with promising 
results derived from xenograft and syngeneic tumor 
mouse models, which have demonstrated the capacity 
of humoral (antibody) and cellular immune responses 
to eradicate established tumors, these findings further 
support the concept of cancer immunosurveillance or 
immunoediting (Dunn et al. 2004).

7.2  
Immune System 

The ability of the immune system to effectively respond 
to tumors is dependent on the following assumptions:

 Tumor cells differ from normal cells.•	
 The immune system can recognize these differ-•	
ences.

 The immune system is in an active state and capable •	
in generating an effective and protective immune 
response.

These prerequisites indicate that cancer immunoedit-
ing is a dynamic process that involves both the tumor 
as well as the immunocompetent effector system. The 
efficient eradication of tumors in a living organism re-
quires crosstalk between leukocytes of the innate and 
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adaptive arms of the immune system, which reside in 
different immunological compartments. It has been 
shown that the cytokine interferon-gamma (IFN-γ), 
and the cytolytic effector molecules perforin and gran-
zyme are secreted by cells of the innate and adaptive 
immune system, which contribute to the host’s immune 
defense against cancer. Following uptake into tumor 
cells, intracellular located granzyme B initiates apop-
tosis via the activation of procaspases 3, 7, 10 inactive 
cytosolic inhibitor of caspase-activated DNase (ICAD), 
and the disruption of the membrane potential of mito-
chondria, which causes the release of cytochrome c into 
the cytosol. The situation of the host’s immune defense 
is complicated by the fact that throughout evolution, 
tumors have adopted strategies to interfere with and to 
overcome the immune system. These immune escape 
mechanisms involve the downregulation of major his-
tocompatibility complex class I (MHC I) and costimu-
latory molecules, the loss of tumor-specific antigens, 
the stimulation of inhibitory receptors expressed on ef-
fector cells, the stimulation of the growth of inhibitory 
CD4/CD25 double-positive regulatory T cells (Tregs), 
and the secretion of inhibitory molecules such as ser-
pin-protease inhibitors, which interfere with the apop-
tosis cascade. For example, about 60% of metastases 
express significantly reduced levels of MHC class I on 
their cell surfaces. These findings indicate that a better 
understanding of the interaction between immune cells, 
tumor cells, and the tumor microenvironment and their 
consequences will guide the development of more effec-
tive approaches for controlling and successfully treating 
cancer.

7.3  
Tumor Markers

As mentioned earlier, a key barrier to the generation 
of protective anticancer immune responses is that, in 
contrast to pathogens, tumors are not typically seen as 
being “foreign” by the host’s immune system. It is there-
fore essential to identify and characterize tumor-specific 
antigens/peptides that can be used for the development 
of innovative immunotherapeutic strategies. Recent ap-
proaches include the serological analysis of recombinant 
cDNA expression libraries (SEREX) (Chen et al. 1997), 
differential gene expression analysis, and T-cell epitope 
cloning (TEPIC), using samples obtained from patients 
with cancer (Boon and van der Bruggen 1996; van 
den Eynde and BOON 1997). These methods have 
identified antigens that can be grouped into various cat-
egories including cancer/testis, activation, differentia-

tion, amplification, mutational antigens, danger signals 
such as membrane-bound heat shock proteins (HSPs), 
and pathogens (Table 7.1). 

7.3.1  
Cancer/Testis Antigens

The expression pattern of cancer/testis (CT) antigens in 
healthy human individuals is restricted to germline tis-
sues such as testis and placenta. Nevertheless, a high pro-
portion of melanoma, bladder cancer, lung, esophageal, 
and ovarian tumors show a surface positive phenotype 
in a lineage nonspecific fashion (Boon et al. 1997; Van 
den Eynde and Boon 1997; Old and Chen 1998). The 
expression of these antigens frequently maps to genes 
on the X chromosome. The CT antigens are also linked 
to the unique class of differentiation antigens that have 
the capacity to elicit a cellular and humoral immune 
response. Representative CT antigen members that be-
long to multigene families are summarized in Table 7.1.

7.3.2  
Activation Antigens

Mucins (MUC-1, 2, 3, 4, 11, 12, 13) are a family of 
highly glycosylated proteins that can be grouped into 
the activation antigens. They are predominantly found 
on mammary, ovarian, and pancreatic carcinomas 
(Boon and van der Bruggen 1996). Weakly glycosy-
lated members of this protein family are expressed on 
healthy epithelial cells. Membrane location of MUC-1 
and MUC-4 is achieved through a hydrophobic mem-
brane-spanning domain that mediates plasma mem-
brane retention (Singh et al. 2004). A mouse monoclo-
nal antibody (mAb) directed against CD227 is able to 
detect the membrane-bound form of MUC-1. 

7.3.3  
Differentiation Antigens

The following members of the differentiation antigens 
including tyrosinase, gp100, and Melan-A/Mart-1 are 
expressed on normal melanocytes. Prostate-specific 
antigen (PSA) is found on the cell surface of healthy 
prostate tissue. Compared with normal tissues, the ex-
pression density of these and other antigens including 
carcino-embryogenic antigen (CEA), alpha-1-fetopro-
tein, and epithelial cell-adhesion molecule (EpCam) in 
tumors is highly increased. Due to the lack of tumor-
specificity of these antigens, it is important to note that 
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an efficient immune response against these tissue-spe-
cific antigens can also affect normal tissues. One well-
known example is the destruction of normal melano-
cytes by cytotoxic Melan-A–specific T cells, which can 
cause vitiligo in the healthy skin of melanoma patients. 
A list of differentiation antigens with a high expression 
on tumors is shown in Table 7.1. 

7.3.4  
Amplification Antigens

This group of antigens is ubiquitously and widely ex-
pressed in normal tissues but highly overexpressed in 
tumor cells. Important representatives of this group 
are Her-2/neu, which is predominantly overexpressed 
on adenocarcinoma of the colon, mammary, ovarian, 

pancreatic, and lung carcinomas and p53, PRAME, and 
aldolase A, which are overexpressed in lung carcinomas 
(Coulie et al. 1999; Gure et al. 2000).

7.3.5  
Mutational Antigens

Although this group of antigens—mostly peptides—are 
ubiquitously expressed in normal tissues, they are ex-
pressed in a mutated form in many tumors. In general, 
each tumor exhibits an individual pattern of mutation, 
and the resultant antigenic profile is therefore consid-
ered as being tumor-specific and unique (Wang and 
Rosenberg 1999; Renkvist et al. 2001). Most muta-
tions are point mutations that are translated into indi-
vidually mutated proteins. Since these mutations cause 

Table 7.1. Categories of tumor-associated antigens

Antigen category Antigens

CT Melanoma associated antigen (MAGE-1, -2, -3) (Boon and van der Bruggen 1996) 
NY-ESO-1 = LAGE-1 (esophageal cancer, ovarian cancer) (Odunsi et al. 2003; Jager 
et al.1999) 
B-melanoma antigen (BAGE) 

Activation MUC-1, 2, 3, 4, 11, 12, 13

Differentiation CEA
α-1-Fetoprotein
EpCam
Tyrosinase (Brichard et al. 1993)
Melan-A/Mart-1 (Coulie et al. 1994)
Glycoprotein (gp100) (Kawakami 1995) 
PSA

Amplification Her2/neu proto-oncogen (c-erb-B2; Cheever et al. 1995)
p53 (Scanlan et al. 1998)
Preferentially expressed antigen in melanoma (PRAME)
Aldolase A

Mutational Human leukocyte antigen allele type A2 (HLA-A2)
CDK4 (Wolfel et al. 1995) 
β-Catenin (Robbins et al. 1996)
Caspase 8 (Mandruzzato et al. 1997)
Melanoma-ubiquitous mutated (MUM-1)
Mutated p53 (Gnjatic et al. 1998)

Damage signals HSP70, HSP 72, HSP 90
Gp 96

Pathogens Human papilloma virus (HPV) types 16 and 18 (Tindle 1996)
Epstein-Barr virus (EBV) (Lennette et al. 1995)
Human T-cell lymphotropic virus type I (HTLV-1; leukemia)
HHV-8
Helicobacter pylori bacteria (chronic gastritis and stomach carcinoma)
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severe changes in the activity of the encoded proteins, 
these antigens affect the oncogenic potential of the tu-
mor. Examples of mutational antigens that are found in a 
variety of different tumor entities are listed in Table 7.1. 

7.3.6  
HSPs

HSPs were firstly discovered in 1962 (Ritossa 1962) 
as a set of evolutionary conserved molecules whose 
expression is highly inducible not only by a variety of 
different stress stimuli such as elevated temperatures, 
irradiation, heavy metals, cytostatic drugs, amino acid 
analogue, glucose deprivation, oxidative stress, but also 
by inflammation or viral and bacterial infections. Under 
physiological conditions, HSPs are required for cell dif-
ferentiation and antigen processing for proper protein 
folding of nascent polypeptides, for transport of pro-
teins along membranes, and for prevention of protein 
aggregation (Morimoto 1991; Pierce 1994). In con-
trast to normal tissues, malignantly transformed cells 
such as tumors have been found to overexpress HSPs 
in the cytosol, which might cause the translocation of 
them into the plasma membrane and into the extracel-
lular milieu. Members of the HSP70 and HSP90 fami-
lies are present on the plasma membranes of a num-
ber of different tumor entities (Multhoff et al. 1997; 
Shin et al. 2003) where they act as danger signals for 
the innate (Schmitt et al. 2007) and adaptive cellular 
immune system. T cells have been found to recognize 
HSP-chaperoned immunogenic peptides that are cross-
presented by antigen-presenting cells (APCs) (Srivas-
tava et al. 1998). In contrast, natural killer (NK) cells 
have the capacity to recognize membrane-bound Hsp70 
on tumors, even in the absence of immunogenic pep-
tides. Since the corresponding normal tissues lack an 
HSP membrane expression, the presence of HSPs on 
the plasma membrane is considered as a tumor-specific 
antigen (unpublished observation). HSPs that are pre-
dominantly found on tumor cell surfaces and in the ex-
tracellular space are Hsp70, Hsp72, and a major stress 
inducible member of the HSP70 family, Gp96 (glucose-
related protein 96), an endoplasmic reticulum (ER)-re-
siding member of the HSP90 family.

7.3.7  
Pathogens

A small proportion of tumors (2–5%) are initiated by 
viral infections, which causes a transformation of hu-
man cells (Coulie et al. 1999). Human papilloma virus 

type 16 and 18 are associated with cervical carcinomas 
(Bontkes et al. 2000; Youde et al. 2000, Rudolf et al. 
2001), Epstein-Barr virus infections with Burkitt’s lym-
phomas, human T-lymphotropic virus (HTLV-1) with 
T-cell lymphomas, and human herpes virus 8 (HHV-8) 
infections with Karposi’s sarcoma. A chronic bacterial 
infection of the stomach with Helicobacter pylori has 
been associated with gastritis and with gastric tumors. 

7.4  
Preclinical Immunotherapeutic Approaches

A better understanding of the molecular basis of the 
immune homeostasis and its regulatory mechanisms 
has re-attracted many researchers to the concept of 
augmenting the antitumor responses. An emerging 
number of newly identified tumor-associated antigens 
(TAA) including differentiation, mutational, amplifica-
tion, CT, danger signals that have been identified using 
expression libraries, differential gene expression analy-
sis (Chen et al. 1997), T-cell epitope cloning (Boon 
and van der Bruggen 1996), and bioinformatics 
(Scanlan et al. 2000) have also advanced this field. The 
following section aims to summarize immunoediting 
and immunotherapeutic concepts including nonspecific 
cytokine therapies, specific antibody, and cell-based 
concepts that have been tested successfully in animal 
models. The proof of principle and the in vivo efficacy 
of some of these have already been demonstrated in first 
human clinical trials. 

7.4.1  
Cytokines

Cytokines, also termed as interleukins, lymphokines, 
or chemokines, are small (8–30 kDa) signaling proteins 
and glycoproteins that are predominantly produced by 
hematopoietic cells. Their main function is to recruit 
and stimulate the immune system against pathogens 
and to support differentiation and developmental pro-
cesses during embryogenesis. Cytokine-based immu-
nostimulation is believed to have the potential to treat 
established primary tumors and distant metastases. 
One of the earlier immunological approaches aimed 
on the broad, nonspecific stimulation of the adaptive 
(T lymphocytes) and innate (NK cells) immune system 
by the administration of high doses of recombinant in-
terleukin 2 (IL-2) (Rosenberg 1986). Large-scale pro-
duction of interferons, using recombinant DNA tech-
nology in 1983 enabled the first systematical evaluation 
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of appropriate dose, route, and schedule for application 
in humans. Meanwhile, cytokines have an established 
role in therapy of malignant melanoma and renal cell 
carcinoma as described later in this chapter.

7.4.2  
Antibodies

The development of the technology for producing mAb 
from hybridoma cells (Kohler and Milstein 1975), 
for which Kohler, Jerne, and Milstein were awarded the 
Nobel Prize in Physiology and Medicine in 1984, led to 
the hypothesis that the “magic bullet” against cancer 
has been found. Despite their high degree of specific-
ity and affinity, the development of clinically applicable 
antibodies for the treatment of cancer has proven to be 
more complex than was originally anticipated. Patients 
that had been treated with the first generation of mu-
rine mAb developed a human–anti-mouse antibody re-
sponse (HAMA) against the therapeutic agent, and this 
drastically limited the therapeutic success. Nowadays, 
therapeutic antibodies are humanized either by grafting 
CDR (complimentarity-determining regions) onto hu-
man antibodies, or by creating chimeric antibodies by 
transferring the murine Fab antigen–binding variable 
region onto a human constant Fc portion. Approval 
has already been achieved for the clinical application of 
humanized monoclonal antibodies, which are directed 
against CD20 (Rituxan, MabThera, Zenapax, Zevalin, 
Bexxar) for the treatment of non-Hodgkin’s and cu-
taneous B-cell (Kerl et al. 2006) lymphomas, CD33 

(Mylotarg) for the treatment of CD33-positive myeloid 
leukemia, CD52 (Campath, Mabcampath) for the treat-
ment of B-cell chronic lymphocytic leukemia (B-CLL), 
EpCam (Panorex) for the treatment of colorectal can-
cer, ErbB2 (Herceptin) for Her-2 overexpressing breast 
cancer, and vascular endothelial growth factor (VEGF) 
(Avastin) and epidermal growth factor receptor (EGFR) 
(Erbitux, Vectibix) for the treatment of colon carci-
noma.

Naked, unconjugated antibodies kill their tumor tar-
gets by different mechanisms including antibody depen-
dent cell-mediated cytotoxicity (ADCC) (Steplewski 
et al. 1985), complement-dependent cytotoxicity (CDC) 
(Houghton et al. 1983), and by the direct induction 
of apoptosis via death receptor targeting (Contassot 
et al. 2007). Alterations of signal transduction (Trauth 
et al. 1989), blocking of ligand-receptor interactions 
(Yang et al. 1999), and the prevention of the enzymatic 
cleavage of cell surface proteins (Baselga et al. 2001) 
can also be involved. The antibody Apomab, which is 
directed against the death receptor DR5, augments 
apoptosis of colorectal, NSCLC, and pancreatic model 
tumor cell lines by clustering of DR5 at the cell surface 
and thus stimulating a death-inducing signaling path-
way involving caspase 8 and Fas-associated cell death 
(Adams et al. 2008). Effector cells of the innate immune 
system (NK cells, monocytes, macrophages) expressing 
Fc-gamma (Fc-γ) receptors such as low (CD16)-, inter-
mediate (CD32)-, and high (CD64)-affinity Fc receptors 
can mediate ADCC after antibody binding to the tumor 
targets. Another possibility is to use antibodies as vehi-
cles to more specifically deliver toxic compounds such 

Fig. 7.1. Principles of tumor cell kill by antibodies: bispecific 
antibody-mediating effector-tumor cell interaction, naked 
antibody mediating antibody dependent cellular cytotoxicity 

(ADCC), radioactive labeled antibody mediating targeted in-
ternalization of radionuclides, and chemotherapy-labeled anti-
body-mediating targeted internalization of cytostatic drugs

Naked antibody

Tumor

Bispecific antibody

Effector
cell

Radioactive labeled antibody

Chemotherapy labeled antibody 
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as radionuclides and/or chemotherapeutics directly to 
the tumors. The principles of antibody-mediated tumor 
kill are schematically illustrated in Fig. 7.1.

Despite these promising strategies, the clinical out-
come of antibody-based therapies is still limited by a 
number of factors including their relatively short in vivo 
half-life and clearance from the host’s body, the insuffi-
cient degree of glycosylation of humanized antibodies, 
variations in the affinity and avidity of the humanized 
antibodies, and the low amount of tumor-specific or 
tumor-associated antigens.

7.4.3  
Cell-Based Therapies

Adoptive cell-transfer therapies have developed into po-
tent treatments for patients with highly immunogenic 
tumors including metastatic melanoma (Dudley and 
Rosenberg 2007). Current studies are aimed at im-
proving GMP (good manufacturer practice) methods 
for generating and administering appropriate lympho-
cyte populations in future clinical trials and improving 
the resilience of antitumor immunity in tumor patients. 

7.4.3.1  
Dendritic Cells

Dendritic cells (DCs) can be subdivided in two de-
velopmental lineages, the myeloid and the lymphoid 
(Steinman and Inaba 1999). DCs control the activ-
ity of B lymphocytes, T lymphocytes, and NK cells 
(Banchereau and Steinman 1998). As professional 
APCs, their primary task is to capture foreign antigens 
from the periphery, process and maturate them into 
peptides, and present them on MHC molecules to naïve 
T cells. In the absence of essential costimulatory signals 
that are concomitantly delivered, T-cell activation is in-
sufficient. Apart from their activating function, DCs are 
also able to tolerize the immune system against self-an-
tigens in order to avoid autoimmune reactions (Turley 
2002). The migratory capacity of DCs is regulated by 
chemokines. The expression of the chemokine receptor 
CCR7 promotes the migration of immature DCs to in-
flamed tissues and that of mature DCs to the draining 
lymph nodes, where the antigen is presented to naïve 
T cells (Sallustro and Lanzavecchia 2000). 

Although lymphodepletion by chemotherapy and 
total body irradiation can reduce the absolute num-
ber of APCs, it also has been shown to promote their 
maturation into an active state, as indicated by an 
upregulation of CD86 and MHC class II antigens in 

a mouse model (Zhang et al. 2002). Irradiation has 
also been found to stimulate secretion of the inflam-
matory cytokine IL-12 by DCs, which subsequently 
activates T cells and NK cells. The maturation of DCs 
and their capacity for antigen cross-presentation is also 
enhanced by the secretion of tumor-necrosis factor 
(TNF), IL-1, and IL-4 and by the presence of “danger 
signals” such as lipopolysaccharide (LPS) and/or HSPs 
(Asea and Stein-Streilein 1998). DCs pulsed with 
tumor lysates (Nair et al. 1997), tumor protein ex-
tracts (Ashley et al. 1997), and/or synthetic peptides 
can generate protective immunity to subsequent tumor 
challenge in tumor mouse models. The requirements 
for GMP-grade production of the cell products pres-
ently limit the applicability of this therapeutic approach 
in human patients. 

7.4.3.2  
T Cells 

The term immunosurveillance, which characterizes the 
important role of T cells in generating an antitumor 
immune response, was established in 1967 by Burnet. 
Generally, T lymphocytes can be grouped roughly into 
CD4 T helper and CD8 cytotoxic T cells. T cells, com-
posing between 60 and 80% of the peripheral blood 
lymphocyte (PBL) pool, recognize their targets via the 
T-cell receptors (TCRs), but only after primary stimula-
tion by APCs such as monocytes, macrophages, or DCs 
(Lanzavecchia and Sallusto 2001). The enormous 
heterogenicity of TCRs is obtained by variable-diver-
sity-joining gene recombination and crossover events. 
APCs present processed foreign peptides to CD8 T cells 
in the context of MHC class I and to CD4 T cells in the 
context of MHC class II molecules. As indicated above, 
an effective, long-lasting T-cell stimulation requires 
concomitant costimulation via interactions between 
essential costimulatory molecules such as B7 on APCs 
and CD28 on responding T cells.

Tumor-specific cytotoxic lymphocytes (CTL) 
play a crucial role in the immunotherapy of cancer 
(Gattinoni et al. 2006) by directly targeting and killing 
tumor cells that express appropriate antigens for which 
they are specific, whereas CD4 T cells provide help for 
these events via the secretion of pro-inflammatory cy-
tokines such as IL-2. Although IL-2 is a growth factor 
for T and NK cells, which promotes expansion and cy-
totoxic function of effector cells, it is also essential for 
the maintenance of peripheral self-tolerance (Furtado 
et al. 2002). Non-mutated self-antigens expressed by tu-
mors primarily serve as target antigens for CD8 CTLs. 
Adoptive cell transfer therapies involve ex vivo activation 
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and expansion of tumor-reactive T-cell populations that 
are then transferred into patients. Although the immu-
noreconstitution with ex vivo expanded tumor-infiltrat-
ing lymphocytes (TILs) (Wang and Rosenberg 1999) 
has shown some success, more recent data indicate that 
the adoptive transfer of TILs after non-myeloablative, 
but lymphodepleting systemic chemotherapy is supe-
rior with respect to tumor regression. It thus appears 
that the removal of the host’s immune system increases 
the efficacy of the adaptive cell transfer. One explana-
tion for this might be that the depletion reduces the 
number and activity of endogenous immunoregulatory 
T-cell populations such as CD4/CD25 double-positive 
Tregs (Ni and Redmond 2006). These cells might com-
pete with CD8 T cells for activating cytokines and/or 
the availability of APCs and thereby suppress antitumor 
immune responses. Tregs are characterized by an upregu-
lated expression of the transcription factor fork-head 
box P3 (FoxP3) protein and by a constitutively high ex-
pression of the IL-2 receptor alpha chain (CD25), the 
glucocorticoid-induced TNF-receptor related protein 
(GITR), the cytotoxic T-lymphocyte associated antigen 
4 (CTLA-4), and in the case of humans, low levels of 
CD127. A number of studies suggest that Tregs are in-
volved in the control of antitumor immune responses, 
and these cells have been shown to accumulate in tumor 
lesions, where they inhibit the function of tumor infil-
trating cytotoxic T cells (Antony et al. 2005). However, 
in addition to Tregs (Zhang et al. 2005), CD11b+Gr1+ 
myeloid suppressor cells (MSCs), NK cells, and natu-
ral killer T (NKT) cells (Kronenberg 2005) have been 
found to exert immunosuppressive functions. Apart 
from the arginine metabolism, the exact mechanisms of 
action of these cells have yet to be elucidated (Bronte 
and Zanovello 2005). Another reason could be that 
homing of lymphocytes is improved following deple-
tion of the host’s immune cells.

7.4.3.3  
nK Cells

NK cells, also formerly termed large granular lympho-
cytes (LGLs), are specialized cells of the innate immune 
system that exert their function against pathogen-in-
fected and tumor cells as a first line of defense. NK cells, 
which compose about 5 to 20% of circulating lympho-
cytes (Trinchieri 1989), can stimulate the immune sys-
tem indirectly by the release of high amounts of IFN-γ, 
or mediate a direct cytotoxic response via the secretion 
of perforin and granzymes or via FAS–FAS ligand in-
teraction. The discrimination of self and non-self by 

NK cells is regulated by a fine balance of activating (short 
intracellular immunoreceptor tyrosine-based activation 
motifs [ITAM]) and inhibiting (long intracellular im-
munoreceptor tyrosine-based inhibition motifs [ITIM]) 
receptors. These receptors can be grouped into the fol-
lowing main receptor families: immunoglobulin like re-
ceptors with specificity for HLA alleles; C-type lectin re-
ceptors NKG2D, CD94, NKG2A, NKG2C; and natural 
cytotoxicity receptors (NCRs) NKp30, NKp44, NKp46. 
The cytokines IL-2 and IL-15 are crucial to the survival, 
expansion, and differentiation of NK cells (Koka et al. 
2003). NK cells play key roles in the crosstalk between 
the innate and adaptive immunity (Degli-Esposti 
et al. 2005; Pulendran and Ahmed 2006). Knockout 
mice for recombinant activating gene 2 (RAG-2), perfo-
rin, interferon gamma, or STAT-1 or NK deficient mice 
are more susceptible to the development of tumors than 
their wild-type counterparts (Dunn et al. 2004; Smyth 
et al. 2001 b). NK cells kill their susceptible targets by 
releasing cytotoxic granules containing granzymes and/
or perforin via interactions with death-inducing ligands 
(TRAIL, FAS ligand) through the secretion of inflam-
matory cytokines (IFN-γ, TNF-α), and T-cell recruiting 
chemokines such as RANTES, MIP1-α, MIP1-β), and 
via antibody dependent cellular cytotoxicity (ADCC) 
(Smyth et al. 2001a; Robertson 2002). In contrast, 
cytokines such as IL-2, IL-12, IL-15, IL-18, IL-21, IL-
23, and IL-27 augment NK cell–mediated tumor activi-
ties (Ma et al. 2006a; Smyth et al. 2004). Remarkably, 
alloreactive NK cells have been shown to prevent graft 
versus host disease (GvHD) by eliminating the recipi-
ent antigen-specific DCs in a mouse acute myelogenous 
leukemia (AML) model system (Ruggeri et al. 2002; 
Miller et al. 2005). 

7.4.4  
mAbs

mAbs, targeting tumor-specific antigens, can initiate 
ADCC via their Fc part and with the help of activated 
NK cells, macrophages, granulocytes, and the comple-
ment system. Experimentally, mAbs such as trastu-
zumab, rituximab, and anti-EGF receptor have been 
shown to induce ADCC. Macrophages and granulo-
cytes express both activating and inhibitory Fc recep-
tors, whereas NK cells present only the low affinity ac-
tivating Fc-γ receptor (CD16). The interaction of NK 
cells with Fc-γ ligand initiates the release of IFN-γ, 
TNF-α, and T-cell-recruiting chemokines. This release 
can be enhanced by the addition of pro-inflammatory 
cytokines such as IL-2 and IL-15 (Parihar et al. 2002). 
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Other approaches for enhancing antibody-mediated 
NK cell activity involve the use of oligodeoxynucle-
otides (ODN) containing unmethylated CpG motifs, 
which mimic bacterial DNA. The Toll-like receptor 9 
(TLR-9) has been identified as the receptor for CpGs 
by TLR-9 knockout mouse systems. The use of bacillus 
Calmette-Guerin (BCG) (Brandau et al. 2001; Sutt-
mann et al. 2006) as an adjuvant is another method for 
a nonspecific stimulation of NK cells via the secretion 
of IL-12 and IFN-γ by monocytes. More recently, de-
fensins, a family of cysteine-rich cationic polypeptides 
that are constitutively expressed by epithelial cells, have 
been found to attract immature DCs and thus induce 
signaling through TLR-4. The presence of NK cells and 
CD8-positive T cells is a prerequisite for their antitumor 
activity (Ma et al. 2006b). Last, but not least, HSP70 or 
peptides derived thereof, acting as classical danger sig-
nals, have been found to activate NK cells against Hsp70 
membrane–positive cancer cells in vitro (Gastpar et al. 
2005), in tumor mouse models (Stangl et al. 2006), 
and in a clinical phase I trial (Krause et al. 2003). The 
mechanism of tumor cell lysis has been characterized as 
a perforin-independent, granzyme B-mediated apopto-
sis (Gross et al. 2003).

7.5  
Role of Immunotherapy in Clinical Practice

From the large pool of potential immunotherapeu-
tics until today, only a few have made their way to clin-
ical application. This section summarizes the clini-
cally relevant immunotherapies in their typical fields of 
application.

7.5.1  
Malignant Melanoma

Immunotherapy has a long history in malignant mela-
noma, which is considered a highly immunogenic tu-
mor. However, two large trials testing the efficacy of 
adjuvant IFN-γ showed no advantage for patients with 
high-risk primary tumors or lymph node metastases 
(Southwest Oncology Group [Meyskens et al. 1990]; 
European Organization for Research and the Treat-
ment of Cancer, unpublished). A phase II study on 
IFN-β as an adjuvant for melanoma demonstrated pos-
sible advantages and led to the initiation of a random-
ized study whose results have not been published so far. 
IFN-α is the first substance that has shown a significant 
advantage in prospective randomized trials. IFN-α2a 
and IFN-α2b differ by two amino acids and can be re-
garded as equivalent on the basis of their effectiveness. 
Low-dose IFN-α (3 million IU subcutaneously, three 
times weekly for 18–24 months) should be offered all 
patients with primary melanoma thicker than 1.5 mm 
and no indication of lymph node involvement, on the 
basis of three studies that showed a significant increase 
in the recurrence-free survival time (Grob et al. 1998; 
Pehamberger et al. 1998; Cameron et al. 2001).

A variety of randomized studies with different IFN-α 
dosages as an adjuvant has been conducted in patients 
with lymph node metastases. The clearest results are 
available for IFN-α2b, using a high-dose regimen (ini-
tiation: 20 million IU/m2 intravenously daily day one to 
five every week for 4 weeks, maintenance: 10 million IU/
m2 subcutaneously three times weekly for 11 months). 
The first prospective randomized study showed an in-
cidence in the recurrence-free survival prolonging dis-
ease free and overall survival (Kirkwood et al. 1996). 

Table 7.2. IFN-α in malignant melanoma

treatment 
concept

tumor extension scheme effect

Adjuvant Primary tumor >1.5 mm thickness, no lymph 
node involvement, R0 resection

Low dose Prolonged RFS

Positive lymph nodes, R0 resection High dose Prolonged RFS
Prolonged DFS
Prolonged OS

Palliative Inoperable recurrent tumor
Metastasized tumor (stage IV)

IFN-α combined with chemo-
therapy

Objective response 
Unchanged OS

RFS recurrence free survival, DFS disease free survival, OS overall survival
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A follow-up confirmatory trial testing high-dose IFN vs. 
lower-dose IFN vs. observation was not able to confirm 
the earlier results (Kirkwood et al 2000). A third trial 
comparing high-dose IFN vs. a vaccine was terminated 
early because a clear disease-free and survival advantage 
for the IFN arm was evident early. On the other hand, 
IFN treatment was associated with higher toxicity com-
pared with the vaccine arm (Kirkwood et al. 2000).

Based on these studies, IFN-α was introduced as stan-
dard adjuvant therapy for stage III resected melanoma. 
However, toxicity remains an issue. Flu-like syndromes 
including fever, chills, headache, malaise, myalgias, ar-
thralgias, and fatigue acutely occur during therapy with 
interferons and diminish over time with continued daily 
or alternate daily administration. Vigorous hydration is 
essential, as patients tend to become dehydrated. 

Inoperable recurrent tumors, inoperable regional 
metastases, and distant metastases (stage IV) are the 
major indications for systemic chemotherapy and 
chemoimmunotherapy in malignant melanoma. Many 
studies have evaluated the effectiveness of cytokine 
monotherapy in patients with advanced disease. Both 
IFN-α as well as IL-2 can achieve remission rates com-
parable with that of cytostatic agents (Keilholz et al. 
1997). Treatment with IL-2 resulted in prolonged com-
plete remissions in 5% of patients (Dillman et al. 
1997). The combination of cytostatic agents and cyto-
kines leads to an increase in the objective response rate 
similar to polychemotherapy, but no improvement of 
overall survival (Falkson et al. 1998; Bajetta et al. 
1994; Smith et al. 1992). The tolerability of chemother-
apy is reduced by IFN-α as well as by IL-2. As treatment 
in such situations is primarily palliative, the effect of 
any regimen on the quality of life must be carefully con-
sidered. As a first-line treatment, single-agent therapy is 
recommended, as polychemotherapy or biochemother-
apy do not show significant advantages for prolongation 
of survival and are more toxic (Table 2.2). 

Peptide immunization, vaccination with dendritic 
cells and hybrid vaccines, adoptive transfer of T cells, 
and immunization with naked and packaged DNA have 
been tested in phase I studies only and should only be 
used in clinical trials (Garbe et al. 2008).

7.5.2  
Renal Cell Carcinoma

Metastatic renal cell carcinoma (RCC) has been notori-
ously resistant to conventional chemotherapy. In the 
early 1980s, the observation of spontaneous remissions 
in RCC led to a search for therapeutic agents with 
potential to improve the immunologic response against 

RCC tumor cells. Early trials used in vitro stimulation of 
T cells with IL-2 to produce lymphokine-activated killer 
(LAK) cells that were co-administered with high-dose 
IL-2. However, it was later recognized that the therapeu-
tic effect resided predominantly with high-dose IL-2, 
and the use of LAK cells was abandoned (Rosenberg 
et al. 1993). However, the utility of high dose IL-2 is 
limited by its toxicity. Side effects include fever, chills, 
lethargy, diarrhea, nausea, anemia, thrombocytopenia, 
eosinophilia, diffuse erythroderma, hepatic dysfunc-
tion, confusion, and in approximately 5% of patients, 
myocarditis. IL-2 can lead to a capillary leak syndrome, 
leading to fluid retention, hypotension, and respira-
tory distress syndrome. Early high-dose studies were 
associated with 2–4% mortality. These patients require 
intensive supportive care. Mortality rates could be 
decreased to less than 1% in experienced treatment 
centers.

In spite of toxicity, the response to high-dose IL-2 
treatment in metastatic RCC may be spectacular with 
long-lasting CRs in individual cases. However, overall 
responses are achievable in only about 20% of patients, 
and complete long-lasting responses occur in only 
about 5% (Fyfe et al. 1995). In a National Institutes of 
Health trial that randomized patients to receive high-
dose IL-2 or a dose that was 10 times lower, a signifi-
cantly higher response rate with high-dose IL-2 than 
with low-dose intravenous IL-2 (21 versus 13%) was 
seen, but no overall survival difference and a higher 
morbidity as anticipated were found (Yang et al. 2003). 
This was confirmed in a multi-institutional phase III 
trial testing intravenous high-dose IL-2 or low-dose 
subcutaneous IL-2 plus IFN-α (response rates were 
23.2 vs. 9.9%), while there was no significant difference 
in overall survival (17 vs. 13 months). As expected, 
there were more grade 3 and 4 toxicities in the high-
dose IL-2 arm (McDermott et al. 2005). It can be 
concluded that high-dose IL-2 is an acceptable therapy 
for patients with little or no comorbidities and excel-
lent performance status, for whom the possibility of 
long-term CR is worth the complexity, risk, and acute 
toxicity of the treatment. How to best sequence or 
combine IL-2 with newer drugs is unknown. In phase 
II studies, recombinant IFN-α was reported to induce 
response in RCC in up to 29% of cases. However, in 
contrast to IL-2, IFN-α alone has no curative potential, 
and CRs are rare and of short duration. In a random-
ized trial comparing IFN-α with medroxyprogesterone 
acetate, IFN-α treatment was associated with a longer 
survival time, although the benefit was minimal (me-
dian survival time, 8.5 versus 6 months), and patients 
treated with IFN-α had a lower quality of life (Medical 
Research Council 1999).
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A large study of 425 patients evaluated the activity 
of low-dose IL-2 in combination with IFN-α, as well as 
each agent alone. IFN-α or IL-2 alone had low response 
rates, but the response rate for the combination was sig-
nificantly higher (p < 0.01), with significantly improved 
1-year event-free survival (p = 0.01). However, no differ-
ence in overall survival was seen (Negrier et al. 1998).

In the future, new biologic agents might play a more 
important role than unspecific immunomodolators 
in RCC. Seventy-five percent of all RCC are clear-cell 
RCC. These are characteristically associated with loss of 
function of the von Hippel-Lindau (VHL) gene, resem-
bling a constitutively activated hypoxic response result-
ing from upregulation of the hypoxia factor (HIF). HIF 
activation results in upregulation of genes encoding 
VEGF, transforming growth factor (TGF), Met, stromal 
cell-derived factor (SDF)-1 and chemokine receptor 
CXCR4, among others. 

Small-molecule multikinase inhibitors that target 
VEGF receptors (sunitinib and sorafenib) have a favor-
able toxicity profile and can prolong time to progres-
sion and preserve quality of life when used in newly 
diagnosed or previously treated patients. Lately, suni-
tinib malate has been shown to be more effective than 
IFN-α in a large multicenter phase III trial (median 
progression-free survival 11 vs. 5 months) (Motzer 
et al. 2007). 

IFN-α does not improve survival or relapse-free sur-
vival as an adjuvant. A phase III study treating patients 
with pT3-4a and/or node-positive RCC was not able to 
show a benefit of low dose IFN-α given daily for 5 days 
every 3 weeks for up to 12 cycles compared with post-
operative observation (median survival 7.4 years in the 
observation arm and 5.1 years in the treatment arm, me-
dian recurrence-free survival 3.0 years in the observa-
tion arm and 2.2 years in the interferon arm) (Messing 
et al. 2003). Also, a similar study using high dose IFN-α 
showed no benefit (Clark et al. 2003). Those results were 
confirmed in a prospectively randomized clinical trial to 
investigate the role of adjuvant immunochemotherapy 
in high-risk patients with RCC. Two hundred and three 
RCC patients were stratified into three risk groups: pa-
tients with tumor extending into renal vein/vena cava 
or invading beyond Gerota’s fascia (pT3b/c pN0 or pT4 
pN0), patients with locoregional lymph node infiltra-
tion (pN+), and patients after complete resection of tu-
mor relapse or solitary metastasis (R0). There was no 
relapse-free survival benefit, and the overall survival was 
inferior with an adjuvant 8-week-outpatient, sc-rIL-2/
sc-rIFN-α2a/iv-5-fluorouracil (5-FU)–based immuno-
chemotherapy compared with observation (Atzpodien 
et al. 2005). In summary, there is no role for immuno-
modolators in the adjuvant treatment of RCC.

7.5.3  
Hematologic Malignancies

IFN is an effective treatment in hairy cell leukemia 
(Quesada et al. 1986). Nine complete and 17 partial 
responses were documented by bone marrow core bi-
opsies. Peripheral blood hematologic indices improved 
or normalized in all patients. Previously untreated pa-
tients showed significantly higher complete remission 
rates than did patients who had undergone splenec-
tomy. Therapy was well tolerated, and most patients ex-
periencing tumor remission also reported an improved 
quality of life. Another study found similar results in a 
small population of patients, with an overall response 
rate of 93% (Foon et al. 1986). On IFN treatment, pe-
ripheral blood counts returned to normal levels. This 
study also assessed NK cell activity and immunologic 
surface markers, and noted normalization of both pa-
rameters after therapy. Today, new nucleoside analogs 
show better results. Yet, IFN-α is still the first option 
in recurrences or if there are contraindication against 
nucleoside analogs.

A significant survival benefit of more than 89 
months in a phase II trial in patients with chronic my-
elogenous leukemia suggests that IFN is effective in this 
disease as well (Allan et al. 1995; Ohnishi et al. 1995). 
This survival advantage was independent of cytogenetic 
improvement with IFN, which was also noted. 7 to 8% 
of the patients showed complete remission with IFN-α 
monotherapy. Guilhot et al. (1997) were able to show 
better results with combinations of IFN-α and cytosina-
rabinoside.

In non-Hodgkin’s lymphoma (NHL), post–stem cell 
transplant IL-2 has shown activity. Low-dose IL-2 was 
also evaluated in combination with histamine, but no 
differences in response were observed compared with 
IL-2 alone. 

7.6  
Clinical Use of mAbs

7.6.1  
naked Antibodies

More than 200 mAbs have been tested in clinical stud-
ies, but the number of clinically relevant antibodies re-
mains limited (Table 2.3). The first mAb that received 
US Food and Drug Administration (FDA) approval 
is rituximab, which is a chimeric antibody directed 
against the surface antigen CD20 on B lymphocytes, 
expressed on most B-cell NHL and subtypes of acute 
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lymphatic leukemias (ALL). In combination with poly-
chemotherapy, rituximab is used for primary therapy of 
follicular NHL and diffuse large B-cell NHL as well as 
for maintenance therapy in recurrent follicular B-NHL 
after successful induction chemotherapy. Chemoim-
munotherapy with rituximab is standard in therapy of 
primary and recurrent mantle cell lymphoma (Tobinai 
et al. 2006; ToBinai 2007). Rituximab might also be 
successful in combination with chemotherapy in CLL 
and in Burkitt’s lymphoma, improving progression-free 
and overall survival.

Alemtuzumab is a humanized antibody directed 
against CD52 on B and T lymphocytes, and monocytes, 
macrophages, eosinophilic granulocytes, and NK cells. 
It is approved for clinical application in fludarabine-re-
fractory CLL. In those patients, remission rates of 40% 
can be achieved. Interestingly, alemtuzumab has been 
shown to be especially effective for bone marrow mani-
festations of CLL. The role of alemtuzumab in primary 
therapy of CLL is not yet clear. Further studies will 
evaluate whether the efficacy of alemtuzumab in recur-
rences can be enhanced. Promising results were seen 
with alemtuzumab-chemoimmunotherapy in periphery 
T-cell lymphoma (Ravandi and O’brien 2006). In con-
trast to rituximab, therapy with alemtuzumab is accom-
panied by heavier infusion-associated complications 
such as fever, shivering, dyspnea, or exanthema, and a 
higher rate of infectious complications. 

Metastasized human epidermal growth factor recep-
tor 2 (HER2)-expressing breast cancer treatment was 
the first indication for trastuzumab, a HER2-specific 
humanized monoclonal antibody. HER2 is a receptor 
tyrosine kinase of the EGFR family that is overexpressed 

in 25–30% of all breast cancer patients. Overexpression 
of HER2 leads to enhanced cell proliferation. A phase III 
study combining trastuzumab with first-line chemother-
apy showed prolonged progression-free and overall sur-
vival (Lin and Rugo 2007). It has also been approved as 
monotherapy for chemotherapy refractory metastasized 
breast cancer (Ligibel and Winer 2002). In addition, 
efficacy of adjuvant chemotherapy can be significantly 
enhanced by trastuzumab (Colomer 2005). 

The chimeric mAb cetuximab is directed against 
EGFR. EGFR plays an important role in pathogenesis 
and progression of solid tumors such as colorectal can-
cer, NSCLC, and head and neck tumors. Binding of 
cetuximab to EGFR hinders the activation of intracel-
lular tyrosine kinases and the following signal transduc-
tion pathway. The antibody also induces direct lysis of 
the tumor cells. A multicenter phase II study (BOND-1) 
was able to show that combination of irinotecan with 
cetuximab could overcome irinotecan resistance. In 
23% of the patients, tumor remission, and in 30% stable 
disease was reached (Saltz 2005). Cetuximab is now 
used for therapy of metastasized colorectal carcinoma 
in combination with irinotecan after progression with 
irinotecan monotherapy. In a phase III study of locally 
advanced head and neck tumors, the combination of 
cetuximab with radiotherapy significantly prolonged 
survival (Bonner et al. 2007). In metastasized NSCLC, 
a phase II study showed that combination of cisplatin, 
vinorelbin, and cetuximab leads to a significant survival 
benefit compared with chemotherapy with cisplatin and 
vinorelbin alone (Lilenbaum 2006). 

Bevacizumab is a VEGF-specific humanized mAb. 
Binding to VEGF inhibits tumor angiogenesis. It is ap-

Table 7.3. mAbs in clinical use

Generic name target antigen structure Application

Rituximab CD20 Chimeric IgG-1κ B-NHL
Mantle cell lymphoma
CLL
B-precursor ALL

Alemtuzumab CD52 Humanized IgG-1 κ CLL
Peripheral T-cell lymphomas

Trastuzumab HER2 Humanized IgG-1 κ Breast cancer

Cetuximab EGFR Chimeric IgG-1 κ Head and neck cancer
Colorectal carcinoma
NSCLC

Bevacizumab VEGF Humanized IgG-1 κ Colorectal carcinoma
NSCLC

IgG immunoglobulin G
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proved in combination with irinotecan and 5-FU for 
first-line therapy of metastasized colorectal carcinoma. 
Patients with contraindications for irinotecan can be 
successfully treated with 5-FU and bevacizumab. In 
primary therapy of advanced NSCLC, the addition of 
bevacizumab to carboplatin and paclitaxel leads to en-
hanced progression-free and overall survival (Sandler 
et al. 2006; Lyseng-Williamson and Robinson 2006). 
Contraindications are squamous cell histology and brain 
metastases because of enhanced risk of heavy bleeding.

7.6.2  
Radioimmunoconjugates

With the help of immunoconjugates, cytotoxic sub-
stances such as radioisotopes, cytokines, enzymes, or 
toxins can specifically be targeted to the tumor cells 
by the monoclonal antibody. Only two radioimmuno-
conjugates have approval for therapy, 90Y–ibritumomab 
tiuxetan and 131I-tositumomab. Both are directed against 
CD20 and are used for recurrent or refractory follicu-
lar B-NHL after therapy with rituximab. The radioim-
munoconjugates might also be successful in therapy of 
transformed follicular NHL and primary diffuse large 
cell B-NHL.
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