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K E Y  P O I n T S

 High-throughput technologies in genomics,  •
epigenomics, transcriptomics, proteomics, and 
metabolomics may detect specific variation 
patterns and help to optimize individual medi-
cal decisions.

 Transcriptomics and proteomics quantify a  •
large number of RNA and protein species, re-
spectively, by using quantitative hybridization 
onto chips (microarrays) or signature sequenc-
ing of RNA and two-dimensional electropho-
resis, mass spectrometry, or antibody array 
binding of proteins. 

 High-throughput analyses are subject to prob- •
lems of noise and multiple testing and involve 
the necessity to select reliable, informative, and 
biologically reasonable subsets.

 In the field of breast cancer, RNA expression  •
profiles have been derived that achieve simi-
lar sensitivity but are more specific than are 
conventional algorithms in predicting distant 
metastasis, that is, less error-prone in recom-
mending adjuvant systemic therapy. 

 Meta-analysis of different prognostic RNA sig- •
natures revealed that genes associated with cell 
proliferation provide the driving force in all of 
them.

 While proteomics potentially oversees a larger  •
space of expression variation than transcrip-
tomics, proteomic profiling beyond the testing 
of individual markers has not yet been trans-
ferred successfully to the field of breast cancer.
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Abstract

High-throughput technologies of modern biology 
provide “molecular portraits” of tissues and have en-
tered the field of oncology. In the present chapter, we 
describe tools of high-throughput expression analysis 
in transcriptomics and proteomics, with an emphasis 
on microarrays, two-dimensional electrophoresis, and 
mass spectrometry. Options and limitations in data 
production, extraction, and interpretation are outlined. 
Problems of sensitivity, specificity, multiple testing, and 
noise are discussed. As a concrete example, we review 
the application of these tools to the field of breast can-
cer, where expression analyses already contribute to in-
dividual treatment decisions.

17.1  
Introduction

Therapeutic algorithms in oncology depend on various 
clinical and pathologic parameters that provide informa-
tion about the risk of disease recurrence and likelihood 
of response to specific treatment options. However, the 
predictive power of these parameters is still limited. Ex-
pression profiling offers a possibility to further classify 
tumor subtypes; to improve the prediction of survival, 
disease recurrence, and efficiency of therapeutic regi-
men; and to recognize more precisely the necessity of 
systemic and aggressive treatment in individual patients 
(Fig 17.1). Beyond refined disease subtyping and indi-
vidualized treatment decision, it may provide molecular 
understanding of the disease and novel targets for ther-
apy. Expression profiling may thus become relevant in 

all sections of oncology. This includes radiation oncol-
ogy, e. g., the study of the radiation response of tumors 
and of normal tissues and the development of biomark-
ers that predict local disease control and toxicity after 
radiotherapy (Nuyten et al. 2006).

From a methodological point of view, expression 
profiling belongs to a group of new high-throughput 
technologies that provide molecular portraits of cells 
and tissues (Perou et al. 2000; Sotiriou and Piccart 
2007). Such portraits can include data on genomic indi-
viduality, i.e., on DNA polymorphisms, mutations, copy 
number variations (genomics), and epigenetic modifica-
tions (epigenomics), as well as genome-wide quantitative 
data on gene expression at a specific point in time and 
under specific environmental circumstances (Fig. 17.2). 
Expression may be assessed in terms of transcriptomics, 
proteomics, or metabolomics by quantifying a large, if 
not exhaustive set of transcripts, proteins, or metabo-
lites, respectively. RNA microarray expression studies 
look at responses on the transcript level. Thus, this me-
thodical approach does not portrait alternative splicing 
or co- and posttranslational modifications. Proteomics, 
which encompasses an analysis of protein populations 
encoded by single genes, may offer further information 
at that level.

In this chapter, we review molecular tools of expres-
sion profiling that can be assigned to the field of tran-
scriptomics and proteomics. We describe current tech-
niques applied in these two research fields and, as an 
example, discuss advances that have been made or can 
be expected by their application to the field of breast 
cancer, the most frequently diagnosed cancer in women 
in Western countries (Miller et al. 2006; Sotiriou 
and Piccart 2007).

Clinical

Individualized
diagnosis

Prognostic and
predictive factors

Decisionmakingalgorithm

PathologyImaging

Disease
subtyping

Prediction
of response

Prognosis

Conventional diagnosis

Molecular
profiling
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- Transcriptomics
- Proteomics
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Fig 17.1. Prospect of an individualized therapy in oncology 
by the use of molecular profiles. Therapy of malignant tumors 
depends on clinical and pathological data such as tumor 
size, lymph node invasion, and distant metastasis. However, 
patients with similar clinicopathological features may have 
markedly different outcomes. Both the response of the tumor 
and that of normal tissue may vary substantially. Molecular 
profiling offers a possibility to further classify tumor subtypes, 
to improve the prediction of individual patient outcome, and 
to select the optimal therapeutic regimen
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17.2  
Transcriptomics

17.2.1  
Data Production

Several methods are available to monitor transcription 
levels of tens of thousands of genes rapidly and simulta-
neously. The quantification of RNA species by sequence-
specific annealing (hybridization) to complementary 
DNA probes arrayed on a substrate (microarray) was 
developed by Schena et al. (1995). Sample RNA was 
submitted to reverse transcription and fluorescent la-
beling. Thereby, a quantitative parameter was produced 
that could be measured as a localized signal after hy-
bridization to the arrayed sensors. Comparison by com-
petitive hybridization of two RNA samples labeled with 
two different dyes (Cy3 and Cy5) resulted in expression 
ratios of the two sources (e.g., of tumor and nontumor 
tissue). Whereas sensors were originally taken from li-
braries of DNA clones (cDNA), present-day microar-

ray technology prefers synthetic oligonucleotides, i.e., 
oligomers of single-stranded DNA. Oligonucleotides 
are designed in silico and can be synthesized in situ by a 
combinatorial sequence of photolithographic steps ap-
plied to the nascent microarray (Fig. 17.3; Pease et al. 
1994; Hardiman 2004). 

Array technologies rely on representational label-
ing of the source RNA with reverse transcription and 
production of labeled or tagged molecules. This process 
may be coupled with a PCR amplification step. Arrays 
of oligonucleotides involve either the two-label scheme 
that results in ratios between two samples or a single-la-
bel method that attributes intensities to the RNA targets 
of a single source. In the two-label scheme, labels may 
be exchanged (dye swap) in order to neutralize artifacts 
associated with one of the dyes. 

In most types of microarrays, the identity of a sen-
sor is specified by its location and referenced ex ante 
by its Cartesian coordinates (Fig. 17.4). Alternatively, 
a sensor’s identity may be referenced by an optical bar 
code or an address sequence. The array positions of the 
sensors may then be chosen randomly and identified 

Fig. 17.2. Different forms of “-omics”

Genomics addresses the set of all genes (the “ge-
nome”). The field includes the elucidation of the 
entire DNA sequence of various organisms and the 
mapping of phenotypes (that may reveal pleiotropic 
effects and epistatic interactions of gene loci). In med-
icine, genomics serves to attribute disease features to 
common or rare variants with weak or strong effects, 
respectively. Variants may involve single genes only, 
submicroscopic copy number changes of chromo-
somal domains, or visible rearrangements. Micro-
scopic analysis of chromosomes was the first form of 
genomics that achieved considerable relevance in all 
parts of genetics including tumor cytogenetics. 

Epigenomics is the study of heritable modifica-
tions (marks) other than those in the DNA sequence 
that regulate gene expression, silence the activity of 
transposable elements, and stabilize adjustments of 
gene dosage as seen in X-chromosome inactivation 
and genomic imprinting. Epigenomics encompasses 
two major modifications of DNA and chromatin: 
DNA methylation and posttranslational histone 
modification. 

Transcriptomics is the global study of gene ex-
pression at the RNA level. Generally, the transcrip-
tome implies the set of all messenger RNA (mRNA) 
molecules, or “transcripts”, produced in one or a 
population of cells. However, RNA-“omics” may also 
address the set of all microRNAs, transcripts that 
have regulative functions but are not translated into 
proteins. 

Proteomics is the study of the entire spectrum of 
proteins (including co- and posttranslational modifi-
cations) of a cell, a tissue, or an organism. 

Metabolomics is the study of the entire metabolic 
content of a cell, a tissue, or an organism addressing 
quantitatively the set of usually small molecules that 
are educts, intermediates, or products of metabolic 
pathways. 

lnteractomics is the study of interactions among 
proteins and other molecules within a cell by apply-
ing methods of biology, informatics, and engineer-
ing. 

Molecular Tools, Expression Profiling 301



ex post (Steemers et al. 2000). This method is used in 
bead technology, which allows for further miniaturiza-
tion of the arrays.

Other methods of RNA monitoring exist that, in 
contrast to array techniques, are not based on quanti-
tative hybridization. In serial analysis of gene expres-
sion ([SAGE] Velculescu et al. 1995), RNA fragments 
derived from a sample to be analyzed are ligated and 

cloned in a vector, which is then sequenced. The num-
ber of stretches in the vector sequence that belong to 
the same RNA species indicates the concentration of 
this RNA in the original sample. In massively parallel 
signature sequencing (MPSS), the relative amount of 
each RNA species in a sample is determined by mass se-
quencing of reversely transcribed DNA and subsequent 
counting of identical sequencing data.

Fig. 17.3. Photolithographic in situ synthesis of an oligo-
nucleotide microarray (courtesy of Affymetrix, Santa Clara, 
California)

Fig. 17.4. Design and function of a microarray expression 
chip. DNA oligonucleotides act as sensors. Sensors of the same 
sequence reside at one location. The hybridization intensity at 
this location depends on the concentration of complementary 

RNA in the sample. Quantification is achieved by laser-induced 
fluorescence of the label (courtesy of Affymetrix, Santa Clara, 
California)
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17.2.2  
Data Extraction 

All methods of gene expression monitoring are subject 
to biological variability and experimental noise. Bio-
logical variability is due to endogenous, environmental, 
periodic, and stochastic causes. While factors such as 
daytime and feeding status may be controllable, others 
cannot be predicted. In the plant model Arabidopsis, for 
instance, touching has been shown to induce significant 
changes in gene expression (Chotikacharoensuk 
et al. 2006). In general, biological variability is reduced 
by randomization and replication. Replication of sam-
pling may be more important than repeating the exami-
nation of a sample (Breitling 2006). However, experi-
mental noise has to be controlled as well. This can be 
achieved by a variance stabilization procedure such as 
log-transformation (Fig. 17.5).

RNA arrays need to be normalized since the distri-
bution of the expression signal varies from array to ar-
ray. Most simply, each signal y of an array a is replaced 
by a z-score with z = (y – μa)/σa. Thereafter, all arrays 
have mean μ = 0 and variance σ2 = 1. Expression data of 
individual genes then can be compared across arrays. In 
many studies (e.g., Stranger et al. 2005), section-wise 
normalization (quantile normalization) is performed, 
as the signal distribution of an array may be affected by 
skewness or other distortions. The method is motivated 
by the idea that two data vectors have the same distribu-

tion if the quantile–quantile plot is a straight diagonal 
line. The extension from two to n dimensions (i.e., ar-
rays) is straightforward. Bolstad et al. (2003) provided 
a stepwise description of quantile normalization with 
standard spreadsheet software: 

Given 1. n arrays of p sensors (gene probes), form a 
spreadsheet X of dimension p × n, where each array 
is a column.
Sort each column of 2. X to give Xsort. 
Take the means across rows of 3. Xsort and assign this 
mean to each element in the row to get X*sort. 
Get 4. Xnormalized by rearranging each column of X*sort to 
have the same ordering as original X. 

After normalization, individual replicates are averaged 
for each probe resulting in an expression data for each 
gene in each individual. However, the results have to 
be regarded cautiously. Thus, for instance, the normal-
ized expression of the testis determining factor (SRY) in 
lymphoblastoid cells of the CEU and YRI parental Hap-
Map samples (March 2007 release, www.sanger.ac.uk/
humgen/genevar/) seems to be higher in women than 
in men (6.02 ± 0.05 versus 6.00 ± 0.07, p = 0.03, two-
sided t-test). Of course, this is an artifact revealing that 
normalized expression levels of 6.02 do not indicate sig-
nificant expression in this setting. For significance anal-
ysis of expression data, t-tests or rank products may be 
used (Breitling et al. 2004). The seeming significance 
of the above example highlights the problem of multiple 

Analysis of oligonucleotide-based microarray data 
revealed Poisson-like noise of gene expression data 
for a large range of expression levels (Tu et al. 2002). 
This noise was mainly related to the hybridization 
process. Poisson noise occurs in signals that come 
about by a sequence of independent probabilistic 
events (Poisson process). The variance of such sig-
nals, i.e., the average squared distance from the mean, 
equals the mean signal intensity, σ 2 = μ, and increases 
proportionally. Log-transformation of the data, y(x) 
= log(x), results in variance stabilization at higher 
expression levels. This is related to the property of 
the logarithm to compress distance with increasing 
number. Approximating y in the region surround-
ing μX by a Taylor expansion, y(x) ≈ log(μx) + log'(μx)
(x – μx) +..., with log'(μx) = 1/μx, yields a rough estimate 
μy ≈ log(μx) of the expectation (i.e., mean) of y if the 
zero-order approximation is used. The variance, i.e., 

the expectation of (y – μx)2 is then derived from the 
first-order approximation as σ 2y ≈ σ 2x /μ 2x. In the case 
of a Poisson process where σ 2x = μ x logarithmic trans-
formation thus results in a variance σ 2y ≈ l/exp(μy) 
that declines with increasing signal intensity. How-
ever, this “noise stabilization” is not effective at low 
expression levels. In the case of a Poisson process, for 
instance, the variance of the log-transformed signal 
becomes larger than the mean signal intensity μy if 
the latter is less than 0.57. Different methods of vari-
ance stabilization at low levels have been devised. As 
a most simple procedure started-log transformation 
has been recommended, i.e., y = log(x + b), which, in 
case of a Poisson process, implies an upper variance 
limit of about 1/(2b). Forgoing subtraction of the 
background from the raw signal may already have 
the desired effect of noise stabilization in the low ex-
pression range (BREITLING 2006).

Fig. 17.5. Variance stabilization
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testing that occurs in all epidemiological investigations 
that run a large number of parameters on the same set 
of probands. In a microarray study that measures the 
expression of 30,000 genes, about 1,500 spurious results 
are to be expected purely due to chance if the “usual” 
significance level of α = 1/20 = 0.05 is not corrected for 
multiple testing. 

The classical Bonferroni correction divides the sig-
nificance level acceptable for a single test (p < α) by the 
number n of the tests in the multiplex assay (pi < α/n). 
This correction is too conservative, however, and im-
plies an unnecessary decline of power. The Simes proce-
dure is less conservative. It controls the false discovery 
rate (FDR), i.e., the expected fraction of false-positive 
results among all positive results (BENJAMINI and 
HOCHBERG 1995). After listing the n tests in an ascend-
ing order according to their p-values, the position with 
the largest k is identified which satisfies pk/k < α/n and 
all tests up to this position are declared to be positive. 
Thus, the observed distribution of the p-values is taken 
into account. Multiple tests may be correlated; in case of 

negative correlations, the limit of the Simes procedure 
can be relaxed even more. Permutation, e.g., random 
redistribution of proband labels, is another powerful 
method to control the probability of false-positive re-
sults as given by the actual data distributions and test 
correlations. For that purpose, each unadjusted p-value 
of the multiplex assay is replaced by the fraction (i.e., 
relative frequency) of random permutations that, by 
chance, produced smaller minimal p-values (WESTFALL 
and YOUNG 1993). The necessary number of permuta-
tions depends on the smallest p-value to be adjusted 
and may thus imply considerable computation time.

17.2.3  
Data Interpretation

Results that are likely to be true positive still need to be 
interpreted (Breitling 2006; Sotiriou and Piccart 
2007). This is the expression-profiling step and involves 
dimensionality reduction of the large number of posi-

Fig. 17.6. Example of a heat map. Autosomal gene expression in lymphoblastoid cells of 
2 × 60 men and women of African (YRI) and European (CEU) origin as listed in the Hap-
Map gene variation project (log transformed and normalized across all samples; ftp.sanger.
ac.uk/pub/genevar). 98 RefSeq-annotated genes (right panel) revealed a sex-dependent dif-
ference at a significance level of p < 0.002. Their average expression ranged from 5.7 to 12.0, 
with 8 genes not surpassing the average SRY expression in females, indicating substantial 
artifacts (see text). The heat map shows z-scores, i.e., deviations from the mean in standard 
deviation (SD) units. Hierarchical clustering of the 98 genes (complete linkage, Genesis®; 
left panel) recapitulates the sex difference
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tive results. Profiling may be supervised, that is, directed 
by a known grouping of the samples (e.g., probands 
versus control). In a “leave-one-out” procedure, an opti-
mal set of genes may thus be selected that classifies cor-
rectly the largest number of left-out probands and con-
trols (Figs. 17.6, 17.7). In unsupervised profiling, that 
is, grouping of similar expression patterns in a dataset 
without using any outside information, cluster analysis 
is the standard method. Clustering demands a measure 
of distance such as the correlation coefficient, for in-
stance. Simple hierarchical clustering may proceed in 
an agglomerative way: Recursively, individuals and/or 
clusters with the smallest distance, i.e., highest correla-
tion of gene expression, are united into a new cluster 
until a top cluster is formed that contains all individu-
als. Vice versa, genes may be clustered according to the 
correlation of their expression across probands. The fol-
lowing pitfall frequently occurs if clustering is applied 
in supervised analyses: if an outcome-related selection 
of genes is spurious, then a claim of correlation between 
clusters and clinical outcome is also spurious if the clus-
tering is based on the expression of these genes (Dupuy 
and Simon 2007).

Knowledge-driven dimensionality reduction ac-
cording to the biological annotation of genes may be 

done before or after significance analysis, clustering, or 
classifier extraction. If it is done before, e.g., by focusing 
on a subset of genes only, it may help to uncover subtle 
effects that might remain insignificant otherwise. If it is 
done afterwards, e.g., by comparison with gene ontol-
ogy databases (Smith et al. 2007), it may help to rec-
ognize biological processes and to evaluate clusters or 
classifiers. Further conceptual integration may involve 
annealing with genome data and other “-omics” results, 
cross-species comparison, and network approach in 
terms of systems biology.

17.3  
Proteomics

In the following, we review basic principles of proteom-
ics as well as methods currently applied in this field and 
discuss the application of proteomic strategies in can-
cer research. The term proteome, a linguistic equivalent 
to the term genome, refers to the entire protein content 
encoded in the genome of a cell, a tissue, or an organ-
ism. In comparison to the genome that is believed to 
be similar in different cell types, the proteome of an or-

Fig. 17.7. Example of a predictive classifier. The autosomal genes shown in Fig. 17.6 were 
listed according to their significance level (blue triangles). Beginning with expression data 
(z-scores) of the two most significant genes a sex classifier (blue squares) was derived from 
the combined sample of 120 men and women (CEU-YRI) by a leave-one-out procedure: The 
gene expressions in each single individual were compared to the averages in the two groups 
of the remaining 59 or 60 men and women (Pearson coefficient of correlation between indi-
vidual and average gene expressions). If the correlation with the group of the same sex was 
superior, then the prediction was counted as correct. The classifier reached a plateau after 
the top 40–50 genes had been included. Classification based on male and female averages in 
the CEU-YRI sample also worked in a sample of 90 Asian men and women (CHN-JPN) with 
a maximal predictive power of 70% (brown squares), that is, well above random prediction. 
However, only for a small number of genes the sex difference was replicated in the Asian 
sample (brown triangles). Technical artifacts, ethnical confounders, and random effects in 
multiple testing schemes have to be considered
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ganism is a dynamic system that is constantly subject 
to changes. Protein composition changes from cell type 
to cell type, within subcellular compartments and be-
tween different stages of development and thus repre-
sents the functional status of a biological compartment 
(Fig. 17.8). Proteome research (proteomics) can be de-
fined as the large-scale characterization of proteins ex-
pressed by the genome. Unlike the study of a single pro-
tein or pathway, proteomic methods enable a systematic 
overview of expressed protein profiles. An advantage of 
proteomics over transcriptomics is the ability to study 
posttranslational modifications. There is limited value, 
for example, in measuring signal transduction pro-
cesses at the mRNA levels if they are characterized by 
protein phosphorylation or acetylation. Moreover, there 
are several genes with little correlation between RNA 
and protein expression levels.

Proteomics employs protein electrophoresis, mass 
spectrometry, and microarrays for the detection, iden-
tification, and characterization of proteins. These pro-
teomic tools have their own individual advantages and 
limitations affecting their ability to assess the protein 
profile. Currently, the identification and characteriza-
tion of all proteins in a given sample through high-reso-
lution two-dimensional gel electrophoresis (2-DE) and 
subsequent analysis with mass spectrometry (MS) are 
expensive and time-consuming and, thus, not yet ame-
nable to day-to-day use in the clinical setting. Routine 
approaches for obtaining protein data include enzyme-
linked immunosorbent assay (ELISA) and immuno-
histochemistry. MS techniques have matured rapidly 
in recent years, due to the invention of two ionization 
techniques, electrospray ionization (ESI) and matrix-
assisted laser desorption/ionization (MALDI). Protein 
arrays are being developed involving up to a few hun-
dred antibodies or based on surface enhanced laser des-
orption/ionization (SELDI) for a wider coverage of the 
proteome.

Protein profiles could ultimately improve the diag-
nosis, prognosis, and management of patients by indi-
cating protein markers of disease similar to the tumor 
markers already available (Healy et al. 2007), reveal-
ing the protein interactions affecting overall tumor 
progression, and identifying individual cancer pro-
files which are suitable for tailored chemotherapeutic 
strategies (Banks and Selby 2003; Alessandro et al. 
2005). 

In 2001, the Human Proteome Organization 
(HUPO) was launched. For information on interna-
tional collaborations and training courses in proteom-
ics, we refer to their webpage: http://www.hupo.org.

17.3.1  
2-DE

2-DE, first introduced independently by Klose (1975) 
and O’Farrell (1975), still represents the most power-
ful tool for separating complex protein mixtures when 
combined with staining procedures and mass spectrom-
etry (Fig. 17.8). The principle of 2-DE is to separate pro-
teins according to the two parameters isoelectric point 
(pI; pH value at which the net charge on a protein is 
zero) and molecular weight. For this, it combines iso-
electric focusing (IEF) in a polyacrylamide gel that has 
a pH gradient in the first dimension with a separation of 
proteins on a SDS polyacrylamide gel in the second di-
mension. After silver staining, protein spots in protein 
patterns of individual samples are compared among dif-
ferent 2-DE gels. The power of 2-DE lies in its high reso-
lution of up to 10,000 proteins per sample and its ability 
to detect simultaneously vast amounts of proteins and 
to visualize co- and posttranslational modifications. 
Thereby, for instance, disease-associated proteins can 
be elucidated through subtractive analyses comparing 
disease with control protein patterns. At the stage of 

Fig. 17.8. Possible fates of proteins in the cell. The proteome 
is not stable, as there is constant turnover of proteins with a 
changing dynamic that depends on environmental and devel-
opmental conditions
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subtractive analysis, the approach has the potential to 
unravel complex networks of protein interactions. In-
dividual stained protein spots can be digested into pep-
tides, which can be analyzed by mass spectrometry and 
subsequent protein database searches. However, 2-DE 
in its current form has a number of serious disadvan-
tages such as its lack of real high-throughput capability, 
for resolving hydrophobic and very low as well as very 
high molecular weight proteins.

Two-dimensional difference gel electrophoresis 
(DIGE) strengthened the 2-DE platform by allowing 
the detection and quantification of differences between 
three samples resolved on the same gel, or across multi-
ple gels, when linked by an internal standard (Fig. 17.9; 
Issaq and Veenstra 2007). Samples (and standard) 
are labeled separately and then mixed to allow resolu-
tion on a single gel. This minimizes experimental varia-
tion and improves spot matching. Differentiation and 
comparison of samples is possible since they are labeled 
with different dyes (limited lysine labeling with DIGE 
Fluor Cy2, Cy3, and Cy5). The standard, a pool of all 
the samples within an experiment, enables normalizing 
the relative abundance of each protein and comparing 
abundances across different gels and sets of more than 
three samples. Protein detection levels span the linear 

range of 0.125 ng to 10 µg. Image analysis with appro-
priate software allows for the identification of differ-
ences in protein abundance.

In classic 2-DE and DIGE approaches, highly al-
kaline and highly hydrophobic proteins are under-
represented since (1) in aqueous media, proteins have 
a minimum of solubility at their isoelectric point, may 
therefore precipitate there, and subsequently do not 
migrate into the SDS-PAGE gel; (2) hydrophobic pro-
teins generally do not transfer easily from the first to the 
second dimension; and (3) non-ionic and zwitterionic 
detergents commonly used for isoelectric focusing have 
a lower power of solubilizing membrane proteins than 
ionic detergents. To bypass these limitations of 2-DE 
in resolving hydrophobic proteins such as membrane 
proteins, an alternative technique, the two-dimen-
sional BAC/SDS-PAGE (2-DB), has been developed. 
Here, the first-dimension separation occurs according 
to molecular weight in an acidic discontinuous PAGE 
system (pH 4.0–1.5) using cationic benzyldimethyl-n-
hexadecylammonium chloride (BAC) as detergent and 
the second-dimension separation is performed using 
the anionic detergent SDS (Zahedi et al. 2005, 2007; 
Braun et al. 2007).

Fig. 17.9. Workflow for a standard two-dimensional differ-
ence gel electrophoresis (DIGE) experiment. After being la-
beling separately with different dyes, individual samples can 
be compared on a single gel. Thereby, experimental variation 
is reduced and spot matching is improved. Using an internal 
standard, i.e., a pool of all the samples within an experiment, 

each protein’s abundances in different samples can be normal-
ized and compared across different gels. Hence, the number of 
samples included in an experiment is not limited. Gels are im-
aged and analyzed quantitatively in order to identify protein 
differences among different samples (courtesy of GE Health-
care Life Sciences Little Chalfont, UK)
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17.3.2  
MS-Based Proteomics

MS has become an indispensable analytical tool of pro-
teomics (Sanz-Medel et al. 2008). Mass spectrometers 
measure the molecular mass of a sample through the 
following steps: 

A protein sample is enzymatically digested into its 1. 
constituent peptides. 
The peptides of a sample are introduced to the 2. 
ionization source of the instrument directly or are 
separated into a series of components, which then 
enter the mass spectrometer sequentially for indi-
vidual analysis. Such en route separation can be per-
formed, for example, through high-pressure liquid 
chromatography (HPLC).
Inside the ionization source, the sample molecules 3. 
are ionized by ESI or MALDI. 
The charged sample ions are accelerated into the 4. 
vacuum-maintained mass analyzer region of the 
mass spectrometer where they are separated ac-
cording to their mass (m) to charge (z) ratios (m/z). 
Mass analyzers currently available include quadru-
poles and time-of-flight (TOF) analyzers; they differ 
in the covered m/z range, their mass accuracy, and 
their resolution. 
Data on relative abundance and 5. m/z ratios of de-
tected ions are stored in the format of an m/z spec-
trum. 
The 6. m/z spectra are analyzed using protein data-
bases and enable protein identification.

Since proteomics began with 2-DE methodology, 
the application of MS has been driven by the qualita-
tive character of protein identification on a 2-DE gel. 
Indeed, MS techniques are very convenient for pro-
tein identification. However, their application to pro-
tein quantification is more complicated since there is 
no linear dependence between the concentrations of 
protein or peptides in a sample and the MS signals 
observed. While there are several promising gel-free 
MS-based approaches, presently available methods 
do not fulfill the increasing need for reliable methods 
of absolute quantification of proteins (Sanz-Medel 
et al. 2008).

17.3.3  
Protein Arrays

Protein microarrays use either multiple capture anti-
bodies dotted separately on a slide (forward microar-
rays) or multiple tissue/protein samples, again dotted 

and fixed together on single slides which then are 
stained with the different antibodies (reverse microar-
rays; Kopf and Zharhary 2007; Wingren and Bor-
rebaeck 2007). Whereas these methods can detect the 
presence of numerous proteins or the level of expres-
sion in multiple tissue samples in a high-throughput 
manner, the technique is still limited by the availability 
of specific and sensitive antibodies. The latter proved to 
be an issue, for instance, in case of known lung cancer 
markers such as the cytokeratins (Conrad et al. 2008). 
Antibody specificity must be validated by immuno-
blotting, and internal controls may be required if the 
antibodies do not bind predictably. Detection of low-
abundance proteins also remains a problem, as simple 
methods of multiple protein amplification, analogous 
to the polymerase chain reaction for DNA amplifica-
tion, are not available. Moreover, the capacity of protein 
arrays to detect co- and posttranslational modifications 
is limited.

17.4  
Expression Profiling in Breast Cancer

Expression analysis is applied in various medical fields. 
Here, we review some developments in the field of tran-
scriptomics and proteomics concerning breast cancer. 
With a lifetime risk of 13%, breast cancer is the most 
frequently diagnosed cancer in women of Western 
countries (Miller et al. 2006). In a minor fraction of 
cases, the tumor develops due to the constitutional mu-
tation of a breast cancer (BRCA) gene, whereas in gen-
eral the genetic basis of breast cancer is complex and 
not sufficiently understood. Therapy is based on more 
or less radical surgery combined with radiation and 
adjuvant systemic treatment (chemotherapy, receptor-
specific drugs). Adjuvant systemic therapy of patients 
with localized breast cancer reduces the risk of distant 
metastases by 30%, but 70–80% of these patients would 
survive without systemic therapy (van’t Veer et al. 
2002). Conventional clinical and pathological param-
eters such as age, menopausal status, tumor size, his-
tological grade, lymph node involvement, and status 
of estrogen receptor (ER) and ERBB2 receptor (Her-2/
neu) are used in algorithms such as Adjuvant!Online 
that prognosticate the course of the disease or provide 
recommendations for individual treatment decisions 
such as the St. Gallen criteria. However, the predictive 
power of these algorithms is limited. Expression pro-
filing produces additional predictive information and, 
possibly, new treatment options (Rouzier et al. 2005; 
Sotiriou and Piccart 2007).
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17.4.1  
RnA Analyses

RNA microarray data of breast tumors have been ana-
lyzed in supervised or unsupervised manner. Supervised 
methods use outside information about the experimen-
tal condition (e.g., cases with metastases versus cases 
without) to shape the derivation of a model from the 
dataset. Unsupervised methods use information con-
tained within the RNA data only and usually involve 
hierarchical clustering (see section on transcriptomics) 
to detect relationships among tumors, among genes, 
and connections between specific genes and specific 
tumors. 

In unsupervised analyses, breast tumors have been 
found to cluster in at least four groups with specific com-
posite expression profiles (Perou et al. 2000; Sotiriou 
and Piccart 2007): Three major types related to a 
specific receptor status, ER–/ERBB2–, ERBB2+, or ER+, 
with the last type being subdivided in two groups that 
showed high or low proliferation resembling the lu-
minal breast cancer subtypes A and B. Beyond this re-
production of the conventional histopathological clas-
sification, distinct expression patterns were found. In a 
subset of ER-negative tumors, for instance, a functional 
androgen receptor response was detected which even-
tually might serve as a novel therapeutic target (Doane 
et al. 2006).

Supervised analyses produce expression classifiers 
on a set of tumors for which the outcome is known al-
ready. The endpoint, i.e., the definition of what is con-
sidered as outcome (e.g., metastasis-free survival or 
response to a specific treatment) may vary from study 
to study. For evaluation, classifiers are applied to an 
independent set of tumors and compared to conven-
tional predictive algorithms such as Adjuvant!Online. 
van’t Veer et al. (2002) extracted a classifier from 
the expression data of 78 lymph-node negative breast 
cancer patients younger than 55 years of age, of whom 
44 remained free of distant metastases for at least 5 
years after diagnosis. By evidence of differential regu-
lation and of correlation with disease outcome, 231 of 
25,000 genes were selected. A leave-one-out procedure 
with the 78 samples then yielded an optimal classifier of 
70 genes, which had maximal predictive power. Subse-
quent evaluation showed that the classifier is effective 
both in lymph node-negative and lymph node-positive 
patients (van de Vijver et al. 2002). Comparison with 
conventional predictive algorithms showed that the 
70-genes signature (MammaPrint®) has similar sensi-
tivity (>90%) but is more specific, that is, less patients 
are classified erroneously into the high-risk group 
where they would receive adjuvant systemic therapy. 

Especially, patients in the ER-positive subgroup profit 
from this specification.

Recently, expression of SATB1 was found to have 
high prognostic value in both node-negative and node-
positive breast cancer patients (Han et al. 2008). SATB1 
is a nuclear protein that acts as a cell-type-specific ge-
nome organizer and gene regulator essential for T-cell 
differentiation and activation. In breast cancer, SATB1 
induces a metastatic gene expression pattern that cor-
relates significantly with the 231 genes selected by 
van’t Veer et al. (2002) (see above) and with expres-
sion signatures for lung and for bone metastasis (Han 
et al. 2008). However, the comparison of breast cancer 
classifiers among each other (including MammaPrint®, 
the Rotterdam signature, Oncotype DX®, and others) 
revealed little or no overlap although they have similar 
predictive values and carry similar prognostic informa-
tion (Wang et al. 2005; Fan et al. 2006; Sotiriou and 
Piccart 2007). There are several reasons for this dis-
parity. Methodical differences (microarray platforms, 
hybridization conditions, gene annotations, normaliza-
tion methods, profiling strategies) have been identified 
which now are addressed in the US Food and Drug Ad-
ministration (FDA)-launched microarray quality con-
trol (MAQC) project. Moreover, the different classifiers 
were not derived from the same patient sets. Most im-
portantly, however, sets of selected genes may vary sub-
stantially among studies since on the one hand, the ex-
pression levels of different genes are correlated and, on 
the other hand, statistical power of small study groups is 
limited. Thus, genes from the same pathway that carry 
similar biological information are likely to rank differ-
ently in different expression studies based on relatively 
small numbers of tumors (Dupuy and Simon 2007).

Supervised analyses may be developed bottom-up, 
that is, driven by a biological hypothesis and deriving 
an expression signature from a preselected subset of 
genes. Several subsets have been applied such as the 
wound-response signature, which was shown to be 
expressed in breast cancers of patients with markedly 
worse clinical outcome (Chang et al. 2004) or the 
gene-expression grade index (GGI), a signature of 97 
genes that consistently differed in expression between 
low- and high-grade breast cancers and which was 
used successfully to predict the clinical outcome in 
intermediate-grade tumors (Sotiriou et al. 2006).

A meta-analysis revealed that genes associated with 
cell proliferation provide the driving force in all previ-
ously reported prognostic signatures (Sotiriou and 
Piccart 2007). All of these classifiers provide useful 
information on the intrinsic properties of a tumor. 
However, tumor size and nodal status retain important 
prognostic information.
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Besides prognostic signatures, predictive classifiers 
have been developed. Both top-down and bottom-up 
supervised analyses have been performed in order to 
find classifiers that—beyond the determination of the 
ER- and ERBB2-receptor status—predict the response 
to a specific treatment. Thereby, predictors of anti-
estrogen treatment in patients with ER-positive tumors 
have been derived as well as classifiers that accurately 
predict the effect of chemotherapeutic agents that 
target specific pathways (Bild et al. 2006). Prediction 
of treatment response is complicated, however, by the 
heterogeneity and evolution of tumors, and by the 
individual biological properties of the host (Sotiriou 
and Piccart 2007). 

17.4.2  
Proteomics

Histological data, especially the receptor expression sta-
tus, represents the protein level. Therefore, in a general 
sense, proteomics already has been taken successfully to 
the clinics of breast cancer. As yet, however, proteom-
ics in the sense of multiprotein pattern analysis by 2-DE 
and MS has not (Harris et al. 2007). Proteomics is 
hampered by the heterogeneity of tissue biopsies, vari-
ability in time and space, and small volumes in focused 
sampling procedures such as microdissection or nipple 
aspiration. While some of these are shared with tran-
scriptomics, proteomics lacks a PCR-like amplification 
method (Hondermarck et al. 2008). Of course, multi-
protein analyses also encounter the multitesting prob-
lem, which might result in the generation of spurious 
results. 

Thus, proteomics contributes to the understanding 
of factors in breast cancer biology such as the chaperone 
14-3-3, which is involved in the control of proliferation 
and differentiation, the ubiquitinating activity of BRCA1, 
and the downstream effects of ERBB2 or tumor growth 
factor (TGF)β receptor activation, and may eventually 
reveal new therapeutic targets (Hondermarck et al. 
2008). As of 2007, however, the clinical use of proteomic 
pattern analysis is not reliable enough and has not been 
recommended (Harris et al. 2007). Classifiers such as 
a 21-protein-signature of metastasis-free survival de-
rived from unsupervised protein expression profiling 
(Jacquemier et al. 2005) still require confirmation in 
larger and well-designed prospective studies.
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