
K ey   P oi  n ts

	 Overall treatment time (OTT) is the time period ••
between the first and the last day of treatment.

	 Experimental and clinical evidence shows that ••
OTT is an important parameter of curative ra-
diotherapy and that many fractionated irradi-
ated tumours exhibit a time factor.

	 A meta-analysis of 12 randomized clinical tri-••
als including patients with squamous cell car-
cinomas of the head and neck revealed that ac-
celerated radiotherapy resulted in significantly 
better local tumour control than conventional 
radiotherapy.

	 Repopulation of tumour stem cells during frac-••
tionated irradiation is considered to be the ma-
jor underlying mechanism of increased treat-
ment resistance with longer OTT.

	 The effective cell doubling time is determined ••
by the rate of cell production and cell loss. 
Therefore, accelerated repopulation of tumour 
stem cells during radiotherapy could result 
from an increased production rate or reduced 
stem cell loss.

	 While changes in microenvironment appear to ••
passively affect repopulation, it has been pos-
tulated that an active regulatory element is in-
volved in triggering accelerated repopulation 
in tumours. This view is supported by similar 
repopulation kinetics in squamous cell carci-
nomas and normal epithelium where reoxy-
genation is unlikely to contribute to accelerated 
repopulation. Several studies indicate a role of 
signalling via epidermal growth factor receptor 
(EGFR).

	 In experimental studies, inhibition of EGFR by ••
monoclonal antibodies has been shown to in-
hibit accelerated repopulation during fraction-
ated irradiation.
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Abstract

Delivering radiation treatment with identical total dose 
over a shorter as compared to a longer time period in-
fluences the clinical effects on both normal tissue and 
tumour cells. The concept of dose-dense chemotherapy 
is also based on reduction of overall treatment time by 
shortening the interval between cycles. This chapter re-
views preclinical and clinical data on the influence of 
treatment time and cell kinetics on outcome.

16.1 	  
Introduction

Conventional curative radiotherapy is given in 30–35 
daily fractions of 1.8–2 Gy in an overall treatment time 
(OTT) of 6–7 weeks. OTT is the time period between 
the first and the last day of treatment. This standard 
regimen has been developed to treat the tumour with 
a high radiation dose and with acceptable side effects 
to normal tissues. It has been recognized that normal 
tissue tolerance to radiotherapy increases with the use 
of small doses per fraction and with a time interval 
between fractions long enough for regeneration. 
On the other hand, it was generally accepted among 
radiation oncologists that prolonged OTT did not 
reduce antitumour efficacy of curative radiotherapy. 
This view was based on the observation that tumours 
usually grow at a slow rate with volume doubling 
times of several months (reviewed in Begg and Steel 
2002). Therefore it was assumed that prolongation of 
OTT by several days, e.g. because of acute side effects 
or machine breakdown, would not result in inferior 
tumour control probability. However, this view has 
changed dramatically during the last 20 years by exper-
imental and clinical evidence showing that OTT is an 
important parameter of curative radiotherapy and that 
many fractionated irradiated tumours exhibit a time 
factor.

16.2 	  
Time Factor of Fractionated Radiotherapy

In their seminal article published in 1988, Withers and 
colleagues reported that in patients with head and neck 
squamous cell carcinomas local tumour control after 
fractionated radiotherapy decreases with prolonged 
OTT (Withers et al. 1988). The loss in radiation dose 
was estimated to be as high as 0.6 Gy per day. Several 
experimental studies on tumours in mice supported 
the early clinical observation that OTT matters (Bau-
mann et al. 1994; Beck-Bornholdt et al. 1991; Speke 
and Hill 1995a, b; Suit et al. 1977). Consequently, the 
concept of shortening of the OTT (accelerated radio-
therapy) as a therapeutic intervention counteracting the 
time factor of fractionated radiotherapy was tested in 
clinical trials. Today, data from numerous randomized 
clinical trials with several thousand patients, mainly 
with squamous cell carcinomas of the head and neck 
as well as with lung cancer, are available. A meta-anal-
ysis of 12 randomized clinical trials with 5,723 patients 
treated for squamous cell carcinomas of the head and 
neck revealed that accelerated radiotherapy resulted in 
significantly better local tumour control than conven-
tional radiotherapy (Bourhis et al. 2006). Although 
cancer-specific and overall survival were only slightly 
improved, the local tumour control data strongly sup-
port the existence of a time factor. Similar findings are 
reported from randomized trials in lung cancer (Saun-
ders et al. 1997, 1999; Turrisi et al. 1999). In other 
tumour types, such as bladder cancer, no benefit from 
accelerated radiotherapy was observed (Horwich et al. 
2005). Today radiation oncologists are obliged to pre-
scribe OTT as well as dose and number of fractions. It 
has become the standard of care in curative radiother-
apy of tumour types with proven time factor to com-
pensate for unplanned treatment breaks, e.g. because of 
machine breakdown or holidays.

16.3 	  
Mechanisms Underlying the Time Factor

Repopulation of tumour stem cells during fractionated 
irradiation is considered to be the major underlying 
mechanism of increased treatment resistance with lon-
ger OTT. Mechanisms other than repopulation could 
theoretically contribute to or modulate the time factor 
(Table 16.1). However, systematic experiments did not 
reveal supportive evidence for alternative mechanisms 

	 Clinical studies suggest that the concept of ••
dose-dense chemotherapy, e.g. 2-week cycles 
instead of 3-week cycles, is more successful in 
patients with lymphoma and breast cancer than 
in those with small cell lung cancer.
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of accelerated repopulation (Petersen et al. 2001, 2005; 
Zips et al. 2003). Each fraction of radiation inactivates 
a proportion of tumour stem cells, i.e. the population 
of tumour stem cells in a tumour is reduced (depopula-
tion). A complete depopulation of tumour stem cells is 
the aim of curative radiotherapy. The desired therapeu-
tic effect of depopulation is abrogated by the prolifera-
tion of surviving tumour stem cells during treatment. 
This process has been named repopulation. Assuming 
a linear relationship between tumour volume and the 
number of tumour stem cells in untreated tumours, 
the doubling time of tumour stem cells would be in 
the range of several weeks to months which could not 
explain the time factor observed in experimental and 
clinical studies. Findings from early experimental stud-
ies suggest that in some but not all tumour types the 
tumour stem cell doubling time after single-dose irra-
diation is shortened (Hermens and Barendsen 1969; 
Jung et al. 1990; Stephens et al. 1978), i.e. repopula-
tion apparently accelerates in some tumour types after 
radiotherapy. The concept of accelerated repopulation 
stimulated a number of experimental and clinical stud-
ies to explore the kinetics and underlying mechanisms 
of accelerated repopulation during fractionated radio-
therapy (Baumann et al. 2003).

16.4 	  
Mechanisms of Accelerated Repopulation

The effective cell doubling time (net doubling time) is 
determined by the rate of cell production and cell loss 
(Begg and Steel 2002). Therefore, accelerated repopu-
lation of tumour stem cells during radiotherapy could 
result from an increased production rate or reduced 

stem cell loss (Table  16.2). Methods to determine cell 
loss or cell production such as immunohistochemistry 
or flow cytometry are plagued by the fact that tumour 
stem cells are morphologically not distinguishable 
from non-tumour stem cells and represent only a very 
small fraction (about 1%) of all tumour cells (implica-
tions of the tumour stem cell concept for radiotherapy 
were recently reviewed in Baumann et al. 2008). Even 
major changes in the tumour stem cell compartment 
during acceleration of repopulation might be easily 
overlooked. Radiobiological methods (tumour control 
assay, excision assay) allow determination of tumour 
stem cell survival after irradiation in vivo (Baumann 
et al. 2008; Krause et al. 2006; Zips et al. 2005). Local 
tumour control data obtained from fractionated irradi-
ated experimental tumours have been used to estimate 
repopulation rates of tumour stem cells (Hessel et al. 
2003, 2004a,  b; Petersen et al. 2001; Thames et al. 
1996). However, using local tumour control assays, it 
still remains challenging to dissect mechanisms un-
derlying accelerated repopulation of tumour stem cells. 
Therefore, data from local tumour control assays, stud-
ies into normal tissue response during fractionated ir-
radiation and non-stem cell assays (histology, flow cy-
tometry, etc.) were considered to hypothesize concepts 
of accelerated repopulation (Fowler 1991; Trott and 
Kummermehr 1991).

Table 16.1.  Biological mechanisms other than repopulation which may result in an increase of radiation resistance of tumour 
stem cells during fractionated radiotherapy and thereby contribute to the time factor

Resistance factor Possible underlying radiobiological mechanisms

Increased tumour hypoxia Progressive destruction of the tumour vasculature by radiotherapy results in impaired 
oxygen supply and thereby in an increased radiobiological hypoxia

Selection of radioresistant 
clones

Subpopulations of radioresistant and rapidly proliferating clonogenic cells are selected 
during radiotherapy

Increased capacity to recover 
from sublethal damage

Clonogenic tumour cells adapt to the repeated radiation-induced damage/stress 
by an increased capacity to recover from sublethal damage

Accumulation in radioresistant 
phases of the cell cycle

During fractionated radiotherapy clonogenic cells stop to proliferate and are blocked 
at radioresistant phases of the cell cycle

Table 16.2.  Determinants of production and loss of tumour 
stem cells

Cell production Cell loss

Growth fraction Probability of self-maintenance

Cell cycle time Necrotic/apoptotic cell death
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16.4.1 	  
Increased Cell Production Rate of Tumour 
Stem Cells During Fractionated Radiotherapy

Experimental and clinical data on normal epithelia sug-
gest that acceleration of stem cell divisions might con-
tribute to repopulation during fractionated irradiation 
(Dorr 1997). Modelling of cell kinetic data implies a 
shorting of the cell doubling time of surviving stem 
cells during fractionated irradiation from 3.5 to 1.4 days 
(Dorr and Kummermehr 1991). It has been speculated 
that in some tumours, e.g. well-differentiated squamous 
cell carcinomas, repopulation is reminiscent of the 
normal epithelium (Kummermehr et al. 1992; Trott 
and Kummermehr 1991). This seems to be supported 
by clinical data showing a more pronounced time fac-
tor of fractionated radiotherapy in well-differentiated 
primary tumours with high expression of epidermal 
growth factor receptor (EGFR, see below) than in less 
well differentiated primaries or lymph node metastases 
(Eriksen et al. 2004; Overgaard et al. 2003). Taking 
the experimental and clinical data together, it is concep-
tually possible that an increased production of tumour 
stem cells contributes to accelerated repopulation dur-
ing fractionated radiotherapy.

16.4.2 	  
Reduced Cell Loss of Tumour Stem Cells 
During Fractionated Radiotherapy

Applying the hierarchal structure of epithelial or hae-
mopoietic normal tissues to malignant tumours, after 
each tumour stem cell division, the progeny either re-
main in the stem cell compartment or differentiate into 
a non-stem cell (Kummermehr and Trott 1997). As 
malignant tumours grow and the number of tumour 
stem cells increases with tumour volume (Baumann 
et al. 1990; Kummermehr and Trott 1997; Suit et al. 
1965) the average probability for a tumour stem cell 
daughter to remain a tumour stem cell after cell divi-
sion (average probability of self-maintenance) is higher 
than 50%. Assuming a tumour stem cell fraction of 1%, 
model calculations suggest that the average probability 
of tumour stem cell self-maintenance is 51–65%, i.e. 
the average probability of cell loss would equal 35–49% 
(Kummermehr and Trott 1997). Based on data ob-
tained from normal epithelia (Dorr 1997) and from 
studies on tumour cell kinetics (Begg and Steel 2002) 
it has been proposed that during fractionated radiother-
apy the loss of tumour stem cells decreases and more 
cells remain in the stem cell compartment, which would 
result in accelerated repopulation (Fowler 1991; Kum-

mermehr et al. 1992; Trott and Kummermehr 1991). 
As an alternative mechanism of reduced cell loss, down-
regulation of radiation-induced apoptotic cell death has 
been suggested as an underlying mechanism of acceler-
ated repopulation (Thames et al. 1996).

16.4.3 	  
Tumour Microenvironment and Accelerated 
Repopulation of Tumour Stem Cells

The microenvironment of malignant tumours is char-
acterized by hypoxia, high interstitial fluid pressure, 
glucose and energy deprivation, high lactate levels and 
extracellular acidosis (Vaupel 2004). These hostile con-
ditions contribute to the high cell loss occurring spon-
taneously in tumours. Cell loss factors between 89% 
and 97% have been estimated for carcinomas (Begg 
and Steel 2002). Experimental and clinical data indi-
cate that tumours reoxygenate during fractionated irra-
diation (Horsman and Overgaard 2002). Based on 
these observations it has been hypothesized that reoxy-
genation during fractionated radiotherapy reduces cell 
loss and subsequently shortens the net doubling time 
of tumour stem cells (Fowler 1991). Experimental 
data support the hypothesis of a causative relationship 
between reoxygenation, cell loss and repopulation of 
tumour stem cells (Hessel et al. 2003, 2004a,  b; Pe-
tersen et al. 2001, 2003; Speke and Hill 1995a,  b). 
However, improved tumour microenvironment might 
also lead to a higher cell production rate.

16.4.4 	  
Molecular Regulation  
of Accelerated Repopulation

While changes in microenvironment appear to pas-
sively affect repopulation, it has been postulated that 
an active regulatory element is involved in triggering 
accelerated repopulation in tumours (Trott and Kum-
mermehr 1991). This view is supported by similar re-
population kinetics in squamous cell carcinomas and 
normal epithelium where reoxygenation is unlikely to 
contribute to accelerated repopulation. The molecular 
background of the hypothesized regulatory element has 
been explored in experimental and clinical studies. Sev-
eral studies indicate that signalling via EGFR appears to 
be involved in accelerated repopulation of tumour stem 
cells during fractionated radiotherapy (Bentzen et al. 
2005; Eriksen et al. 2004, 2005; Krause et al. 2005; 
Petersen et al. 2003; Schmidt-Ullrich et al. 1997; 
Zips et al. 2008). Activated EGFR signalling results in 
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multiple biological responses potentially relevant for 
accelerated repopulation, e.g. increased cell prolifera-
tion and reduced cell death by antiapoptotic signalling 
or by improved DNA repair (Baumann et al. 2007). 
However, EGFR expression and signalling might also 
be associated with the tumour microenvironment and 
reoxygenation during radiotherapy (Krause et al. 2005; 
Zips et al. 2008).

16.5	  
Time Factor of Fractionated Radiotherapy 
Combined with Other Treatment Modalities

Curative radiotherapy is often given combined with 
chemotherapy, surgery and biological modifiers. Radio-
therapy after surgery is given to sterilize residual tumour 
stem cells. While it is clear that during the gap between 
surgery and start of radiotherapy the remaining tumour 
stem cells might repopulate, it remains controversial for 
example in patients with head and neck cancer whether 
accelerated postoperative radiotherapy improves lo-
coregional control (Ang et al. 2001; Awwad et al. 1992, 
2002; Sanguineti et al. 2005; Suwinski et al. 2008). 
Experimental data on repopulation rates of microscopic 
and macroscopic tumours suggest that in the postop-
erative situation the time factor of fractionated radio-
therapy might be less pronounced (Beck-Bornholdt 
et al. 1991; Raabe et al. 2000).

In a large variety of advanced carcinomas curative 
radiotherapy is combined with chemotherapy. Experi-
mental observations and some clinical studies indicate 
that chemotherapy as a single modality can induce ac-
celerated repopulation in tumours (reviewed in Davis 
and Tannock 2000; Kim and Tannock 2005). Induced 
repopulation by induction chemotherapy may possibly 
explain the inferior results of induction chemotherapy 
before radiotherapy compared with concurrent chemo-
radiation in patients with non-small cell lung cancer 
(Fournel et al. 2005; Furuse et al. 1999; Zatloukal 
et al. 2004).

The evidence of a time factor of concurrent chemo-
radiation remains a controversial issue. A randomized 
clinical trial in patients with limited disease small cell 
lung cancer (SCLC) treated with chemoradiation dem-
onstrated a significantly higher local tumour control 
when OTT was reduced from 33 to 19  days (Turrisi 
et al. 1999). A meta-analysis of four randomized clini-
cal trials in patients with limited disease SCLC revealed 
that OTT is the most important predictive factor for 
outcome after chemoradiation (De Ruysscher et al. 
2006). In contrast to the results of this meta-analysis, 

no impact of prolonged OTT on local tumour control 
rates after conventional fractionated chemoradiation 
for limited disease SCLC has been reported by others 
(Bogart et al. 2008). A time factor has been also hy-
pothesized for postoperative chemoradiation in rectal 
cancer (Fietkau et al. 2007). Comparison of results 
from randomized clinical trials in head and neck can-
cer given with and without prolonged OTT supports 
the evidence of a significant time factor of chemora-
diation (Budach et al. 2006). Experimental data on hu-
man squamous cell carcinoma indicates that concurrent 
chemotherapy inhibits tumour cell repopulation (Bu-
dach et al. 2002). Based on this observation it could be 
speculated that concurrent chemotherapy reduces the 
time factor of fractionated radiotherapy and thereby 
diminishes the benefit from accelerated radiotherapy. 
Taken together, most observations support the evidence 
of a time factor during chemoradiation. In contrast to 
radiotherapy alone, the underlying mechanisms of the 
time factor during chemoradiation are poorly under-
stood. The clinical benefit of accelerated radiotherapy 
compared with conventional radiotherapy in the con-
text of chemoradiation has been demonstrated in SCLC 
but requires further studies in other cancer types such 
as head and neck cancer.

Epidermal growth factor receptor inhibition in 
combination with fractionated radiotherapy in patients 
with head and neck cancer significantly improved lo-
coregional tumour control and survival (Bonner et al. 
2006). In experimental studies, inhibition of EGFR by 
monoclonal antibodies has been shown to inhibit ac-
celerated repopulation during fractionated irradiation 
(Krause et al. 2005). Results from a subgroup analysis 
of a randomized clinical trial suggest that radiotherapy 
with and without EGFR inhibition is more effective 
when radiotherapy was given within shorter OTT, i.e. 
as accelerated and hyperfractionated-accelerated radio-
therapy (Bonner et al. 2006). Although it is impossible 
to conclude on biological mechanisms of interaction 
from a subgroup analysis of a clinical trial, it appears 
that tumours treated with radiotherapy and EGFR in-
hibitor exhibit a time factor.

16.6 	  
Dose-Dense Chemotherapy

Increased dose density is achieved by reducing the inter-
val between each dose of chemotherapy. The cumulative 
drug dose remains constant, but the same amount of 
drug is administered over a shorter period. Mathemati-
cal models of tumour growth have provided the basis 
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for the clinical application of dose-dense chemotherapy 
(Norton 2005). The Norton-Simon model suggests 
that increasing the dose density of chemotherapy will 
increase efficacy by minimizing the opportunity for re-
growth of tumour cells between cycles of chemotherapy. 
In patients with breast cancer, Intergroup trial 9741, 
coordinated by the Cancer and Leukemia Group  B 
(CALGB), tested the two hypotheses that dose-dense 
and sequential administration of chemotherapy regi-
mens incorporating doxorubicin, cyclophosphamide 
and paclitaxel would improve disease-free survival and 
overall survival. A statistically significant 4-year disease-
free survival advantage was detected for the two dose-
dense regimens compared with the regimens adminis-
tered every 3  weeks (Citron et al. 2003; McArthur 
and Hudis 2007; Orzano and Swain 2005). In patients 
with non-Hodgkin’s lymphoma, this concept has also 
been shown to improve the clinical outcome (reviewed 
in Broussais-Guillaumot and Coiffier 2007; Held 
et al. 2006), while disappointing results were reported 
from a trial that included 318 patients with better-prog-
nosis SCLC treated with ifosfamide, carboplatin and 
etoposide (Lorigan et al. 2005).

16.7 	  
Conclusion

Prolongation of overall treatment time has an adverse 
effect on outcome after fractionated radiotherapy. Ac-
celerated repopulation of tumour stem cells during 
therapy, as the most likely explanation of this so-called 
time factor, is an established mechanism of treatment 
resistance. Understanding the underlying mechanisms 
and molecular regulation of accelerated repopulation 
resulted in successful therapeutic interventions. How-
ever, further investigations into accelerated repopula-
tion in the context of combined treatments and into the 
clinical benefits of dose-dense chemotherapy without 
irradiation are necessary.
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