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	 The unique, considerably dynamic and thus ••
complex physiology of tumors can markedly 
influence the therapeutic response to standard 
irradiation, chemotherapy, photodynamic ther-
apy, endocrine therapy and immunotherapy. 

	 Acquired treatment resistance due to the im-••
pact of the hostile microenvironment adds to 
the “classical” drug resistance based on the mo-
lecular biology of tumors. 

	 The chaotic microvasculature leads to a sig-••
nificant impediment of delivery, an uneven 
distribution and a compromised penetration 
of drugs from tumor capillaries to more distant 
tumor cells. 

	 Interstitial transport of larger molecules ••
(monoclonal antibodies, cytokines) by convec-
tion is inhibited. 

	 Low cell proliferation rates and cell cycle arrest ••
distant from tumor microvessels can protect 
tumor cells from the effects of cytotoxic thera-
pies whose activity is selective for rapidly di-
viding cell populations.

	 Hypoxia directly and/or indirectly confers re-••
sistance to therapy. Direct effects are mediated 
through reduced generation of free radicals 
(some chemotherapy, photodynamic therapy) 
or lacking fixation of DNA damage (X- and 
γ-rays). 

	 Indirect hypoxia-driven effects are mostly ••
based on changes in the transcriptome, in dif-
ferential regulations of gene expression and in 
alterations of the proteome and genome. 

	 Anemia can lead to therapeutic resistance ••
through deepening hypoxia and reducing the 
transport capacity of red blood cells for various 
antineoplastic drugs.P. Vaupel, Dr.med., M.A. / Univ. Harvard
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Abstract 

It is generally accepted that tumor perfusion, micro-
circulation, characteristics of the interstitial space of 
tumors, oxygen (and nutrient) supply, tissue pH dis-
tribution and the bioenergetic status—factors that are 
usually closely linked and that define the so-called 
pathophysiological microenvironment—can markedly 
influence the therapeutic response of malignant tumors 
to sparsely ionizing radiation, chemotherapy, photody-
namic therapy, hormonal therapy and immunotherapy. 
Besides more direct mechanisms involved in the devel-
opment of acquired therapeutic resistance, there are in 
addition, obstacles in intratumor pharmacokinetics of 
antitumor agents due to delivery problems caused by 
an inadequate and heterogeneous perfusion and barri-
ers within the interstitial compartment. Indirect effects 
causing therapeutic resistance include lower cell prolif-
eration rates and cell cycle arrest. Changes in transcrip-
tome, alterations in gene expression and in the genome, 
genomic instability and clonal selection can drive sub-
sequent events that are known to further increase resis-
tance to therapy, in addition to critically affecting long-
term prognosis.

15.1 	  
Introduction

The physiology of solid tumors is uniquely different to 
that of normal tissues. It is characterized, inter alia, by a 
chaotic microvascular structure and function, O2 deple-
tion (hypoxia and anoxia, respectively), extracellular 
acidosis, significant interstitial fluid flow, and interstitial 
hypertension, creating a hostile pathophysiological mi-
croenvironment (see Chap. 4). This microenvironment 
is not static, but instead is quite dynamic (and therefore 
more complex than previously assumed), describing a 
situation that is not compatible with earlier, conven-
tional dogmas.

Hypoxia and the other microenvironmental pa-
rameters are known to directly or indirectly confer re-
sistance to non-surgical treatment modalities through 

limited access of therapeutics to the tumor, decreased 
radiosensitivity and drug action in the absence of O2, 
critically reduced effects in tumor cells that are poorly 
proliferating and via changes in pH gradients, etc. 
Other mechanisms include the capacity of the hostile 
microenvironment to drive changes in gene expression, 
genomic instability and clonal selection. 

15.2 	  
Role of the Disorganized,  
Compromised Microcirculation  
as an Obstacle in Tumor Therapy 

As already mentioned in Chap. 4, there is a disturbed 
balance of pro-angiogenic and anti-angiogenic mol-
ecules (yielding an unregulated angiogenesis), which 
leads to the development of a disorganized microvas-
culature and significant arterio-venous shunt perfusion 
and thus to an inefficient delivery of therapeutic mol-
ecules (e.g., drugs, cytokines and antibodies) and nu-
trients (e.g., oxygen and glucose) through the vascular 
system of the tumor (see Table 15.1). The situation is 
further aggravated by flow-dependent spatio-temporal 
heterogeneities in the distribution of plasma-borne 
drugs (and their metabolites).

The considerable impediment of fluctuating (in-
termittent) perfusion to successful cancer therapy has 
been comprehensively reviewed by Durand (2001) 
and Durand and Aquino-Parsons (2001 a,b).

The mean vascular density in most tumor areas is 
generally lower than that in normal tissues, and thus 
diffusion distances are enlarged. Penetration of drugs 
from tumor capillaries to tumor cells that are distant 
from them is therefore compromised. In these tumor 
regions distant to patent microvessels, some drugs (i.e., 
drugs with a short half-life within the circulation) can-
not achieve sufficient concentrations to exert lethal 
toxicity for all of the viable cells further away from the 
tumor microvasculature system (Minchinton and 
Tannock 2006; Di Paolo and Bocci 2007). In addi-
tion, in these tumor regions, the concentrations of the 
key nutrients are also low, leading to marked gradients 
with higher cellular turnover rates close to blood ves-
sels and lower cell proliferation rates (and cell cycle ar-
rest) farther from the nearest microvessel before treat-
ment and to repopulation of surviving tumor cells after/
between treatments (Tannock 1968, 2001; Hirst and 
Denekamp 1979). 

Cells dividing at a reduced rate would be protected 
from the effects of cytotoxic therapies whose activity is 
“selective” for rapidly dividing cell populations with a 

	 Tumor acidosis is involved in acquired treat-••
ment resistance through a series of mechanisms 
including, inter alia, inhibition of cell prolifera-
tion, reduced cellular uptake and activation or 
an increased efflux of drugs.
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short cell cycle, a large proportion of cells in S-phase 
and, therefore, a large growth fraction (Hall and 
Giaccia 2006; Trédan et al. 2007). There is a strong 
indication that the growth fraction decreases as tumor 
size increases, at least in experimental tumor systems.

Anti-angiogenic therapy for solid tumors using 
inhibition of VEGF-signaling can generate an early-
phase of “normalization” of tumor vasculature (Jain 
2001). This occurs via the recruitment of pericytes to 
the tumor microvasculature, an effect associated with 
a temporary, short-lived stabilization of the vessels and 
a (still hypothetic) improvement in blood flow. The lat-
ter may be accompanied by improved oxygen and drug 
delivery, creating a window of opportunity for higher 
sensitivity to ionizing radiation and the delivery of 
anti-cancer agents (Jain 2005). The postulated increase 
in pericyte recruitment is thought to be mediated by 
angiopoietin-1 and matrix metalloproteinases (Lin and 
Sessa 2004).

15.3 	  
Interstitial Barriers  
to Delivery of Therapeutic Agents 

As already outlined in Chap. 4, the interstitial com-
partment of tumors is significantly different from that 
of normal tissues. As a result of (a) vessel leakiness, 
(b) lack of functional lymphatics, (c) interstitial fibro-
sis and (d) contraction of the interstitial matrix medi-
ated by stromal fibroblasts, most solid tumors have an 

increased interstitial (hydrostatic) fluid pressure (IFP; 
Jain 1987, 1990; Heldin et al. 2004; Milosevic et al. 
2004; Cairns et al. 2006).

Increased interstitial fluid pressure (IFP) within 
solid tumors decreases extravasation and inhibits the 
extravascular transport of larger molecules (e.g., mono-
clonal antibodies, cytokines) by convection (see Table 
15.2). Macromolecules rely more heavily on convection 
as opposed to simple diffusional transport. Interstitial 
transport of macromolecules is further impaired by a 
much denser network of collagen fibers in the extracel-
lular matrix of tumors as compared to normal tissues. 
Collagen content in tumors is much higher and collagen 
fibers are much thicker than in normal tissues, leading 
to an increased mechanical stiffness of the tissue (Netti 
et al. 2000; Heldin et al. 2004). 

IFP is almost uniform throughout a tumor and 
drops precipitously at the tumor/normal tissue inter-
face. For this reason, the interstitial fluid oozes out of 
the tumor into the surrounding normal tissue and car-
ries away anticancer agents with it (Fukumura and 
Jain 2007). As another consequence of this drop in IFP, 
blood may be diverted away from the tumor center to-
ward the periphery where anticancer agents may be lost 
from larger vessels.

Transmural coupling between IFP and microvas-
cular pressure can critically reduce perfusion pressure 
between up- and downstream tumor blood vessels (see 
Chap. 4, Sect. 4.6) leading to blood flow stasis and thus 
inadequate delivery of anticancer agents, in addition 
to the mechanisms impairing blood flow already men-
tioned. 

Table 15.1.  Role of chaotic tumor microcirculation in acquired treatment resistance (selection)

Pathophysiological condition Leads via To

Inadequate and heterogeneous perfusion Inefficient and heterogeneous delivery of 
cytotoxic agents

Inefficient and heterogeneous nutrient 
supply yielding lower cell proliferation 
rates /cell cycle arrest

Impaired pharmacokinetics of drugs, 
impaired delivery of therapeutic 
macromolecules and gene therapies

Protection from cytotoxic therapies 
whose activity is selective for rapidly 
dividing cells

Arterio-venous shunt vessels Shunt perfusion (i.e., flow bypassing 
exchange vessels)

Impaired delivery of cytotoxic agents

Enlarged diffusion distances Compromised penetration of cytotoxic 
agents

Insufficient concentrations of drugs and 
therapeutic macromolecules in tumor 
regions distant to patent blood vessels
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(Trédan et al. 2007), tumor hypoxia plays a pivotal role 
in acquired treatment resistance, since O2 depletion in 
solid tumors is classically associated with resistance to 
radiotherapy, but has also been shown to diminish the 
efficacy of certain forms of chemotherapy, of photody-
namic therapy, immunotherapy and hormonal therapy 
(for reviews since 2000, see Chaplin et al. 2000; Vau-
pel et al. 2001a,b, 2002, 2004; Vaupel and Mayer 
2005; Shannon et al. 2003; Vaupel 2004b; Weinmann 
et al. 2004; Brown 2002, 2007; Tannock et al. 2005; 
Kurebayashi 2005; Hall and Giaccia 2006; Liao 
et al. 2007; Vaupel and Höckel 2008; Bristow and 
Hill 2008).

15.4.1 	  
General Aspects  
of Hypoxia-Driven Treatment Resistance

Hypoxia protects tumor cells from damage by nonsur-
gical anticancer therapies that are directly or indirectly 
O2-dependent (or both; for reviews see Moulder and 
Rockwell 1987; Durand 1991, 1994; Tannock and 
Hill 1992; Teicher 1993, 1994, 1995; Hall 1994; Vau-
pel 1997b; Chaplin et al. 2000; Höckel and Vaupel 
2001; see Table 15.3). 

Interactions between cancer cells and the extracel-
lular matrix can affect their response to chemotherapy. 
The basic mechanisms involved in the so-called adhe-
sion-mediated drug resistance are rather complex and 
still under investigation. Agents that can modulate cell 
adhesion might enhance the effects of chemotherapy 
(Trédan et al. 2007). 

Several types of treatment have been shown to de-
crease tumor IFP in patients (Lee et al. 2000; Willett 
et al. 2004, 2005; Batchelor et al. 2007). This decrease 
in IFP has been attributed to a substantial reduction in 
vascular permeability (concomitant with a pruning of 
tumor vessels) after angiogenesis-inhibiting treatment 
with VEGF-receptor inhibitors (combined with radia-
tion and/or chemotherapy). 

15.4 	  
Hypoxia as an Obstacle  
in Tumor Therapy

Although resistance of human tumors to anticancer 
agents is mostly ascribed to gene mutations, gene am-
plification or epigenetic changes that influence the up-
take, metabolism or export of drugs from single cells 

Table 15.2.  Interstitial barriers in acquired treatment resistance

Pathophysiological condition Leads via To

Interstitial hypertension Decreased extravasation and compromised 
interstitial transport of macromolecules

Impaired delivery of  therapeutic macro-
molecules (e.g., passive immunotherapy) 
and gene therapies, disturbed immigration 
of immune effector cells 

Dense network of collagen fibers Compromised interstitial transport of 
macromolecules

Impaired delivery of  therapeutic macro-
molecules (e.g., passive immunotherapy)

IFP drop at the tumor/normal 
tissue interface

Centrifugal interstitial fluid flow
Diversion of blood from tumor center to 
periphery

Loss of anticancer agents
Loss of anticancer agents in the tumor 
periphery

Transmural coupling between IFP 
and microvascular pressure

Critical reduction in perfusion pressure Flow stasis compromising intra-tumor 
pharmacokinetics

Expansion of the interstitial space Increase in distribution space for anti-
cancer (and diagnostic) agents

Time necessary for drug concentration 
equilibrium between vascular 
and interstitial space may be prolonged

IFP = interstitial fluid pressure
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Table 15.3.  Tumor hypoxia and acquired treatment resistance (selection of mechanisms)

Treatment affected Mechanisms involved Examples References

A. Direct effects

X- and γ-rays* Reduced “fixation” of DNA damage Hall and Giaccia (2006)

Chemotherapy* Reduced generation of free radicals Antibiotics (bleomycin, 
doxorubin)

Erlichman (1992)

Photodynamic 
therapy

Reduced generation of free radicals Shannon et al. (2003)
Henderson and Fingar 
(1987)

B. Indirect effects

X- and γ-rays* Cell cycle effects, modulation of proliferation 
kinetics 
Increased activity of repair enzymes
Enhanced expression of anti-apoptotic proteins
Selection of apoptosis-resistant cells
Elevated intracellular levels of glutathione and 
associated nucleophilic thiols

Hall and Giaccia (2006)

Chemotherapy** Cell cycle effects, modulation of proliferation 
kinetics 

Vinca alkaloids, 
methotrexate, platinum 
compounds, taxanes, 
doxorubicin

Chabner et al. (1996)

Increased activity of repair enzymes Alkylating agents, 
platinum compounds, 
etoposide, anthracyclines

Chabner et al. (1996)
Zeller (1995)

Elevated intracellular levels of glutathione Melphalan

Increased telomerase activity Telomerase inhibitors Nishi et al. (2004) 
Anderson et al. (2006)

Development of an aggressive phenotype Lunt et al. (2008)

Amplification and increased synthesis of 
dihydrofolate reductase (DHFR)

Methotrexate Rice et al. (1986)

Increased synthesis of growth factors 
(e.g., TGF-β, bFGF)

Wei and Au (2005)

Increased transcription of membrane 
transporters (e.g., GP-170, GLUT-1)

Vinca alkaloids, 
anthracyclines, 
etoposide, taxanes

Vera et al. (1991)
Comerford et al. (2002)

Increased expression of anti-apoptotic proteins, 
selection of apoptosis-resistant cells

Alkylating agents, 
cisplatin, anthracyclines, 
etoposide

Cole and Tannock 
(2005)

Protection against drug-induced senescence Anthracyclines Sullivan et al. (2008)

*Anemia acts as a factor worsening tumor hypoxia

**Anemia acts as a factor that intensifies tumor hypoxia and that may impair transport of some cytotoxic drugs by red blood cells
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15.4.1.1 	 
Direct Effects

Direct effects (i.e., effects of hypoxia per se) are medi-
ated via deprivation of molecular O2 and thus reduced 
generation of free radicals that some chemotherapeutic 
agents (e.g., the antibiotics bleomycin and doxorubicin; 
Erlichman 1992) and photodynamic therapy require 
to be maximally cytotoxic. Sparsely ionizing radiation 
(X- and γ-rays) needs O2 for “fixation” of DNA damage 
(Fig. 15.1).

15.4.1.2 	 
Indirect Effects Based  
on Changes in the Transcriptome, 
in Differential Regulation of Gene Expression 
and in Alteration of the Proteome

Indirect effects, which to a great extent are reversible 
and which may occur upon exposure to oxygen levels 
< 1% (pO2 < 7 mmHg), rely on the hypoxia-mediated 
modulation (stimulation or inhibition) of gene expres-

sion (see Fig. 15.1) and posttranscriptional or posttrans-
lational effects resulting in changes in the proteome and 
leading, inter alia, to
(a) 	modulation of proliferation kinetics, perturba-

tions of the cell cycle distribution, the number of 
tumor cells accumulating in G1-phase (e.g., 5-FU; 
Yoshiba et al. 2008) and a reduction in the fraction 
of active S-phase cells (e.g., the vinca alkaloids and 
methotrexate exhibit cell-cycle-phase specificity; 
Chabner et al. 1996). As a rule, the portion of pro-
liferating cells decreases with increasing hypoxia 
and increasing duration of hypoxia. Hereby, the 
fraction of hypoxic and not proliferating—but still 
viable—tumor cells is of special interest;

(b) 	quantitative changes in cellular metabolism (e.g., 
intensified glycolysis in hypoxic tumors with tis-
sue acidosis, which in turn can have an impact on 
cellular activation, intracellular accumulation and 
membrane transport of drugs), increased enzyme 
activities, elevated intracellular concentrations of 
glutathione (GSH) and associated nucleophilic thi-
ols that can compete with the target DNA for alkyla-
tion (see Table 15.3);  

Table 15.3.  (continued) Tumor hypoxia and acquired treatment resistance (selection of mechanisms)

Treatment affected Mechanisms involved Examples References

B. Indirect effects

Endocrine therapy Reduced expression of estrogen receptor

Enhanced androgen receptor function 

Hormonal therapy of 
breast cancer

Androgen-deprivation 
therapy

Kurebayashi (2005)

Park et al. (2006)

Immunotherapy Reduced survival and proliferation of T-cells

Reduced production of cytokines by T-cells

Immunosuppression by adenosine

Tumor-associated macrophages recruited to 
hypoxic sites can switch to a “protumor pheno-
type” leading to immune evasion of tumors

Kim et al. (2008)

Lukashev et al. (2007)

Sitkovsky and Lukashev 
(2005)

Lewis and Murdoch 
(2005)
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(c) 	increased transcription of membrane transporters 
(e.g., GLUT-1 facilitating the efflux of vinblastine, 
Vera et al. 1991), DNA repair enzymes, autocrine 
and paracrine growth factors (e.g., TGF-β), proteins 
involved in cell detachment and tumor invasiveness, 
and resistance-related proteins. Many hypoxia-
inducible genes are controlled by the transcription 
factors HIF-1, nuclear factor κB (NFκB) and activa-
tor protein-1 (AP-1; Koong et al. 1994; Dachs and 
Tozer 2000; Laderoute et al. 2002). 

In addition to hypoxia, other epigenetic microenviron-
mental factors (e.g., acidosis, glucose depletion, lactate 
accumulation) may also be involved in the mechanisms 
described above. (For more details on hypoxia-medi-
ated proteome changes, see Rice et al. 1986; Lader-
oute et al. 1992; Ausserer et al. 1994; Graeber et al. 
1994; Sanna and Rofstad 1994; Giaccia 1996; Mat-
tern et al. 1996; Raleigh 1996; Brown and Giaccia 
1998; Sutherland 1998; Semenza 2000a,b; Höckel 
and Vaupel 2001). 

15.4.1.3 	 
Indirect Effects  
Based on Enhanced Mutagenesis,  
Genomic Instability and Clonal Selection

Therapeutic resistance can also result from (progres-
sive) genome changes and clonal selection at tissue O2 
concentrations <0.1% (pO2 <0.7 mmHg; Vaupel 2004b, 
2008).

Increasing resistance towards nonsurgical therapy 
concomitant with primary tumor growth can also be 
driven by transient or persistent genomic changes and 
clonal selection (often associated with subsequent clonal 
dominance) due to a hypoxia-related strong selection 
pressure (see Fig. 15.1). Hypoxia promotes genomic in-
stability (through point mutations, gene amplification 
and chromosomal rearrangements), thus increasing 
the number of genetic variants and thereby promoting 
clonal and intrinsic tumor cell heterogeneity. Emanci-
pative proliferation of resistant clonal variants in a “sur-
vival of the fittest” scenario and malignant progression 
are the final results (see Table 15.3).

Hypoxia-mediated clonal selection of tumor cells 
with persistent genomic changes can lead, inter alia, 
to a loss of differentiation and of apoptosis, which 
can stabilize or further aggravate tumor hypoxia and 
which in turn again promotes malignant progression 
(Vaupel 2004a, 2008). Thus, hypoxia is involved in a 
vicious circle that is regarded as a fundamental bio-
logic mechanism of malignant disease (for reviews, see 
Höckel and Vaupel 2001; Vaupel et al. 2004; Vau-
pel 2008). Other consequences of hypoxia-induced 
malignant progression are an increased locoregional 
spread and enhanced metastasis (Höckel et al. 1996a, 
1998). (For more details on hypoxia-mediated genome 
changes and expansion of aggressive tumor subclones, 
see Young et al. 1988; Stoler et al. 1992; Cheng and 
Loeb 1993; Stackpole et al. 1994; Russo et al. 1995; 
Giaccia 1996; Graeber et al. 1996; Reynolds et al. 
1996; Kim et al. 1997; Höckel et al. 1999; Höckel and 
Vaupel 2001).

Fig. 15.1.  Hypoxia-driven direct and indirect 
mechanisms leading to acquired treatment resis-
tance
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15.4.2 	  
Tumor Hypoxia  
as an Obstacle in Radiotherapy

Tumor hypoxia may present a severe problem for 
radiation therapy (X- and γ-radiation), because ra-
diosensitivity is progressively limited when the O2 
partial pressure in a tumor is less than 25–30 mmHg, 
the latter representing the median O2 tensions in most 
normal tissues (Vaupel et al. 2003; see Fig. 15.2). Hyp
oxia-associated resistance to photon radiotherapy is 
multifactorial. Molecular oxygen “fixes” (i.e., makes 
permanent) DNA damage produced by oxygen free 
radicals, which arise after the interaction of radiation 
with intracellular water (Hall and Giaccia 2006). 
Thus, because of this so-called “oxygen-enhancement 
effect,” the radiation dose required to achieve the same 
biologic effect is approximately three times higher in 
the absence of oxygen than in the presence of normal 
levels of oxygen (Gray et al. 1953). Evidence suggests 
that hypoxia-induced proteome and genome changes 
(see Table 15.3) may also have a substantial impact on 
radioresistance by increasing the levels of heat shock 
proteins and repair enzymes or by increasing the 
number of cells in a tumor with diminished apoptotic 
potential or increased proliferation potential of selected 
clones, both of which have been linked to radioresistance 
(for a review, see Höckel et al. 1996b; Höckel and 
Vaupel 2001).

Numerous clinical studies report an impaired radio-
curability of anemic patients, most probably due to hyp
oxia-related radioresistance (Evans and BergsjØ1965; 
Bush 1986; Frommhold et al. 1998; Henke et al. 1999; 
Grau and Overgaard 2000; Kumar 2000; Harrison 
et al. 2002; Dunst 2004; Dunst and Molls 2008; Har-
rison and Blackwell 2004; Nowrousian et al. 2008; 
Haugen et al. 2004; Hu and Harrison 2005; Ludwig 

2004; Prosnitz et al. 2005). A significant influence of 
hemoglobin level on the outcome of radiotherapy has 
been convincingly documented for carcinomas of the 
uterine cervix, head and neck, bladder and bronchus 
(for a review, see Grau and Overgaard 2000). One 
major reason for these observations may be the fact that 
anemia can strongly aggravate tumor hypoxia (Vaupel 
et al. 2006).

Carbon monoxide (CO) in tobacco smoke strongly 
binds to hemoglobin (formation of carboxyhemoglobin 
HbCO) and thus decreases the amount of “effective” 
hemoglobin. Furthermore, CO increases the hemoglo-
bin affinity for O2. The sum of these effects is a signifi-
cant increase in tumor hypoxia and in radioresistance, 
resulting in a poorer treatment outcome after primary 
radiotherapy (for a review, see Grau and Overgaard 
2000). 

15.4.3 	  
Tumor Hypoxia  
as an Adverse Parameter in Chemotherapy

Besides restricted delivery and uneven distribution 
(due to poor and heterogeneous blood flow) as well 
as reduced diffusional flux (due to enlarged diffusion 
distances), oxygen-dependency has been documented 
for a broad range of cytotoxic drugs (e.g., cyclophos-
phamide, carboplatin and doxorubicin) under in vitro 
and in vivo conditions (Teicher et al. 1981, 1990; 
Teicher 1994, 1995). However, these investigations 
have been qualitative, and clear hypoxic thresholds for 
O2-dependent anticancer agents are still not available, 
although they presumably exist for each agent (Wout-
ers et al. 2007). Thus, additional research is necessary to 
provide quantitative data on hypoxia-induced chemore
sistance, although this information may be difficult to 

Fig. 15.2.  Schematic representation of major 
hypoxia-induced mechanisms causing treatment 
resistance and malignant progression, finally lead-
ing to poor long-term prognosis
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obtain under in vivo conditions. Multiple (direct and 
indirect) mechanisms are probably also involved in the 
hypoxia-induced resistance to chemotherapeutic agents, 
including a reduced generation of free radicals (e.g., 
bleomycin, anthracyclines), the increased production of 
nucleophilic substances such as glutathione, which can 
compete with the target DNA for alkylation (e.g., in the 
acquired resistance to alkylating agents), an increased 
activity of DNA repair enzymes (e.g., alkylating agents, 
platinum compounds; Chabner et al. 1996), an inhibi-
tion of cell proliferation and tissue acidosis, which is 
often observed in hypoxic tumors with a high glycolytic 
rate (Durand 1991, 1994). Furthermore, hypoxic stress 
proteins, the loss of apoptotic potential and multi-drug 
resistance proteins can impart resistance to certain 
chemotherapeutic drugs (Sakata et al. 1991; Hickman 
et al. 1994; Shannon et al. 2003). Clear hypoxic thresh-
olds for chemotherapeutic agents are still not available, 
although resistance of hypoxic cells to conventional 
chemotherapy is well documented (Wouters et al. 
2007).

Anemia is an independent risk factor for survival 
in most cancers treated with chemotherapy (e.g., Har-
rison and Blackwell 2004; Ludwig 2004; Prosnitz 
et al. 2005; Van Belle and Cocquyt 2003). As with 
radiotherapy, the presence of anemia and its association 
with inferior results of chemotherapy may be—at least 
partially—linked to severe hypoxia and its profound 
effect on tumor biology (e.g., development of an ag-
gressive phenotype). However, anemia as a result of a 
reduced red blood cell mass may also have a negative 
impact on the pharmacokinetics of chemotherapeutic 
agents (Nowrousian 2008). RBCs have been reported 
to play an important role in storage, transport and me-
tabolism of particular cytotoxic drugs. Anthracyclines, 
ifosfamide and its metabolites, and topoisomerase I/
II inhibitors are incorporated in erythrocytes and may 
be transported by these cells to the tumor tissue and 
mobilized by active or passive mechanisms (Highley 
et al. 1997; Ramanathan-Girish and Boroujerdi 
2001; Schrijvers 2003). 6-Mercaptopurine, metho-
trexate and aminotrexate are reported to accumulate in 
erythrocytes (Cole et al. 2006; Halonen et al. 2006). 
As shown for oxaliplatin, platinum-derived cytotoxic 
agents are also bound to erythrocytes and transported 
by RBCs (Luo et al. 1999). In an animal model, a sig-
nificant correlation was found between concentrations 
of melphalan in erythrocytes and the tumor availabil-
ity of this drug (Wildiers et al. 2002). Because of their 
potential ability to take up, transport and deliver vari-
ous antineoplastic drugs, erythrocytes have increasingly 
become interesting objects to be evaluated as biologi-
cal carriers in clinical oncology. Pretreatment elevation 

and/or maintenance of Hb levels are therefore essential, 
irrespective of the way in which this goal is achieved 
(Wildiers et al. 2002).

15.4.4 	  
Tumor Hypoxia  
as an Obstacle in Chemoradiation

The combination of radiotherapy and chemotherapy is a 
promising approach because of its independent cell kill 
effect and the property of some cytotoxic agents to en-
hance the effect of radiotherapy. At the end of the 1970s, 
platinum complexes were described as being able to act 
as potent radiosensitizers of hypoxic tumor cells (Dou-
ple and Richmond 1978, 1979). As an obstacle in this 
type of chemoradiation, Koukourakis et al. (2002) 
have suggested that (hypoxia-induced?) overexpression 
of HIF-1α in patients with head and neck cancer may be 
related to substantial resistance to carboplatin chemo-
radiotherapy. More in-depth research is needed to ac-
curately characterize adverse effects of hypoxia in this 
type of combination therapy. 

15.4.5 	  
Tumor Hypoxia as a Barrier  
for Other Nonsurgical Anticancer Therapies

15.4.5.1 	  
Photodynamic Therapy

Photodynamic therapy-mediated cell death requires 
the presence of oxygen, a photosensitizing drug, and 
light of the appropriate wavelength, both in vitro and 
in vivo (for a review see Freitas and Baronzio 1991). 
However, reports vary greatly on the extent to which 
photodynamic therapy with hematoporphyrin deriva-
tives is dependent on oxygen (Moan and Sommer 
1985; Henderson and Fingar 1987). Cells were not 
killed under anoxic conditions. The critical threshold—
below which progressively reduced cell death was ob-
served—varied between 15 and 35 mmHg (Mitchell 
et al. 1985; Henderson and Fingar 1987; Chapman 
et al. 1991), probably because of reduced production of 
singlet oxygen species (1O2) and different sensitivities 
from the treatment in different cell lines. Considering 
the reduced effectiveness of photodynamic agents at 
lower O2 partial pressures, the rapid induction of tumor 
hypoxia by photodynamic therapy itself—either as a 
consequence of a photodynamic therapy-induced de-
crease in blood flow or as a result of oxygen consump-
tion by the photodynamic therapy process itself—has 
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to be considered under in vivo conditions, since it may 
mean that this therapy is self-limiting (Chapman et al. 
1991; Chen et al. 2002). Photodynamic therapy involv-
ing prodrugs, such as aminolevulinic acid (ALA), may 
be further limited because conversion of the prodrug 
to the active photosensitizer appears to be less effective 
under hypoxic conditions.

15.4.5.2 	  
Immunotherapy

As already described in Sects. 15.2 and 15.3, immuno-
therapy is heavily hampered by the morphologically 
aberrant tumor microvasculature and increased inter-
stitial fluid pressure, which can impede the delivery of 
cytokines and monoclonal antibodies and can prevent 
immigration of immune effector cells into the estab-
lished tumor parenchyma. 

Tumor hypoxia can dramatically impede the effec-
tiveness of certain (passive) immunotherapies using 
cytokines (interferon-γ and tumor necrosis factor-α). 
Hypoxia also reduces survival and proliferation of T-
lymphocytes and the production of cytokines by these 
cells (Kim et al. 2008; Lukashev et al. 2007). Pharma-
cological studies have firmly established that high levels 
of adenosine, a pathophysiological feature of solid tu-
mors (see Chap. 4, Sect. 4.11.12), have immunosuppres-
sive effects (Sitkovsky and Lukashev 2005; Ohta 
et al. 2006). In addition, hypoxia can alter IL-2-induced 
activation of lymphokine-activated killer (LAK) cells 
(reviewed by Chaplin et al. 2000; Kim et al. 2008; 
Sitkovsky and Lukashev 2005). The potency of treat-
ment started to decrease at oxygen partial pressures of 
less than approximately 35 mmHg (≈ 5% O2).

15.4.5.3 	  
Resistance to Hormonal Treatment

Endocrine therapy is the treatment of choice for 
patients with breast cancer expressing estrogen receptor 
(ER) and/or progesterone receptor (PR). A hypoxic mi-
croenvironment has been shown to posttranscription-
ally reduce ER-α expression in breast cancer cells and 
thus decreases sensitivity to hormonal agents. ER-
α-negative invasive breast cancer is more aggressive 
and in situ cancer is associated with increased risk of 
progression to invasive disease (Kurebayashi et al. 
2001; Kurebayashi 2005; Helczynska et al. 2003; 
Stoner et al. 2002). Cooper et al. (2004) have shown 
that the reduced ER-α expression in breast cancers is 

caused by persistent changes in proteasome function as 
a response to intermittent hypoxia. As a consequence, 
the latter authors observed a diminished response to 
estradiol and development of resistance to endocrine 
therapy.

15.5 	  
Tumor Acidosis and Treatment Resistance

As already outlined in Chap. 4, tumor cells have a lower 
extracellular pH (pHe) than normal cells. This is an in-
herent characteristic of the tumor phenotype. Like nor-
mal cells, tumor cells have a neutral to slightly alkaline 
cytosolic (“internal”) pH (pHi), which is considered to 
be permissive for cell proliferation (Gillies et al. 1992). 
The result is a reverse (or negative) pH gradient (pHi 
> pHe) across the tumor-cell plasma membrane in vivo 
compared with normal tissues where pHi < pHe  (≈ 7.2 
vs. ≈ 7.4; reviewed in Vaupel et al 1989; Griffiths 
1991).

The extracellular acidosis in tumors is not simply 
caused by excessive production of lactic acid and CO2, 
but may also be the result of other mechanisms yielding 
H+ ions that are exported into the extracellular space 
mainly via the H+-monocarboxylate cotransporter 
(MCT1) and the Na+/H+ antiporter (NHE1), and—to 
a lesser extent—by a vacuolar type H+-pump (H+-AT-
Pase; Fais et al. 2007). Taking the various H+ sources of 
the tumor metabolism into account, it is not surprising 
that hypoxia is not always correlated with a decrease in 
extracellular pH, i.e., acidic tumor regions and hypoxic 
tumor areas are not necessarily congruent. 

pH effects on therapeutic modalities were sum-
marized extensively prior to 2000 by Wike-Hooley 
et al. (1984), Tannock and Rotin (1989), Durand 
(1991,1994), Song et al. (1993, 1999), Vaupel (1997), 
Gerweck (1998) and Stubbs (1998). More recent re-
views include Stubbs et al. (2000), Evelhoch (2001) 
and Roepe (2001).

15.5.1 	  
Effects of Tumor Acidosis 
on Ionizing Radiation

Cell survival after ionizing radiation has been assessed 
at low extracellular pH for several mammalian cell lines. 
The results demonstrated increased radiation resistance 
at reduced pHe, the effect, however, being much less 
than that due to hypoxia (Haveman 1980; Röttinger 
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et al. 1980; Freeman et al. 1981; Röttinger and Men-
donca 1982). The mechanisms involved may be due to 
either a greater capacity for DNA repair under low pH 
conditions or to an inhibition of the fixation of poten-
tially lethal radiation damage (Freeman and Sierra 
1984; Tannock and Rotin 1989). Furthermore, it has 
been reported that an acidic environment can suppress 

radiation-induced postmitotic apoptosis (Lee et al. 
1987).

Low environmental pH has also been shown to in-
hibit cell proliferation, can exert substantial effects on 
cell cycle that also modify radiosensitivity and can se-
lect for a more aggressive phenotype (Hill et al. 2001; 
Rofstad et al. 2006; see Table 15.4).

Table 15.4.  Tumor acidosis and acquired treatment resistance (selection of mechanisms)

Treatment affected Mechanisms involved Examples References

X- and γ-rays Reduced “fixation” of DNA damage

Increased capacity for DNA repair

Freeman and Sierra (1984)

Haveman (1980)
Röttinger et al. (1980)

Cell cycle effects,
reduced cell proliferation rate

Taylor and Hodson (1984)
Eagle (1973)

Development of an aggressive phenotype

Suppression of radiation-induced apoptosis

Hill et al. (2001)
Rofstad et al. (2006)

Lee et al. (1987)

Chemotherapy Cell cycle effects, 
reduced cell proliferation rate

Wike-Hooley et al. (1984)
Cole and Tannock (2005)
Valeriote and van Putten 
(1975)

Reduced active uptake due to ATP-depletion
Reduced uptake by diffusion

Increased DNA repair

Methotrexate
Weakly basic drugs

Alkylating agents

Gerweck and Seetharaman 
(1996)

Sarkaria et al. (2008)

Over-expression of P-glycoprotein (Pgp), 
increased drug efflux

Anthracyclines
vinca alkaloids

Wei and Roepe (1994)
Lotz et al. (2007)

Resistance to apoptosis Overexpression of Pgp Robinson et al. (1997)

Immunotherapy Inhibition of cell-mediated anti-tumor 
immunity

Lardner (2001)

Decreased T-cell-mediated cytotoxicity 
through Pgp-overexpression

Weisburg et al. (1996)

Inhibition of LAK-cells Severin et al. (1994)

Depression of NK-cells Loeffler et al. (1991)
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15.5.2 	  
pH and Chemotherapy

The transport of drugs into tumor cells (either by dif-
fusion or carrier-mediated mechanisms) and their in-
tracellular metabolism are pH-dependent (Tannock 
and Rotin 1989). Since the cellular uptake of drugs by 
diffusion is efficient only for the non-ionized form of 
compounds and since the extracellular pH in tumors 
is acidic with the cytosolic pH being maintained in the 
neutral/slightly alkaline range, the respective pH gradi-
ent acts to exclude weakly basic drugs and thus impairs 
their cellular uptake by diffusion. Since cell membranes 
are readily permeable only to uncharged drug mol-
ecules, weak bases tend to concentrate on the more acid 
side of the membrane, i.e., in the extracellular space, 
while weak acids accumulate on the more alkaline side 
of the membrane, i.e., in the cytosolic compartment. 
Weakly basic drugs include doxorubicin, idarubicin, 
epirubicin, daunarubicin, bleomycin, mitoxantrone and 
vinca alkaloids (Raghunand and Gillies 2000, 2001; 
Gerweck and Seetharaman 1996; Gerweck 1998; 
Gerweck et al. 2006).

Multiple indirect mechanisms may additionally 
be involved in the acidosis-induced resistance to che-
motherapeutic agents, including an increased efflux of 
drugs (Wei and Roepe 1994) and resistance to apopto-
sis (Robinson et al. 1997), the latter mechanisms being 
mediated by overexpression of P-glycoprotein. Further-
more, an increased activity of DNA repair enzymes has 
been convincingly described (Sarkaria et al. 2008), 
and an inhibition of cell proliferation and cell cycle ef-
fects have extensively been discussed as mechanisms re-
ducing the effectiveness of chemotherapeutic agents in 
acidic environments (e.g., Valeriote and van Putten 
1975; see Table 15.4).

15.5.3 	  
pH and Immunotherapy

Although there are only relatively few studies on the ef-
fect of acidic extracellular pH on immune cells and their 
function, evidence of impaired lymphocyte cytotoxicity 
and proliferation at acidic pH is beginning to emerge 
(for a review see Lardner 2001). There is a growing 
awareness among immunologists and oncologists of the 
potential modulatory role of the acidic tumor microen-
vironment on immune cell function (see Table 15.4). 
The majority of the work to date has focused primarily 
on cell-mediated immunity, with only a few studies on 
humoral immunity. Summarizing the few data available 
so far, the acidic microenvironment may be inhibitory 

to the antitumor immunity (Cairns et al. 2006). Most 
of this evidence is experimental, and clinical demon-
stration of similar phenomena will be difficult. Further-
more, many data are still too preliminary for firm con-
clusions to be made and are thus speculative. 

15.6 	  
Conclusions

Besides “classical” drug resistance (mostly based on the 
molecular biology of tumors), which can only partly ex-
plain the lack of treatment efficacy, acquired therapeutic 
resistance due to the impact of hostile microenviron-
mental conditions is increasingly receiving attention in 
clinical practice. One of the goals of translational can-
cer research is to obtain a better understanding of the 
impact of these hostile microenvironmental parameters 
on tumor response to therapy, in order to improve pa-
tients’ outcomes. 

Based on the association between hostile microen-
vironmental parameters and treatment failure, further 
development and validation of noninvasive techniques 
for the repeated assessment of these factors are urgently 
needed to enable an application in the clinical routine 
and integration into general patient care. Pretreat-
ment assessment of the hostile micromilieu and the 
pathophysiology of individual tumors should allow a 
selection of patients for more aggressive treatment and/
or for individualization of therapy.
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