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Abstract. In this paper, we propose a new two-step algorithm (PDTA) to solve 
the problem of underdetermined blind separation, where the number of sensors 
is less than that of source signals. Unlike the usual two-step algorithm, our algo-
rithm’s first step is to estimate the number of source signals and the mixture 
matrix instead of K-mean clustering algorithm, in which people often suppose 
that the number of source signals is known when they estimate the mixture ma-
trix. After the mixture matrix is estimated by PDTA, the short path algorithm is 
used to recover source signals. The last simulations show the good performance 
of estimation the number of source signals and recovering source signals. 

1   Introduction 

The blind source separation (BSS) problem is currently receiving increased interests 
[1],[2],[3],[4],[5] in numerous engineering applications. Blind separation comes from 
cocktail problem [6], and it consists in restoring n unknown, statistically independent 
random sources from m  available observations that are linear combinations of these 
sources, but we know little about mixture channel and source signals’ distribution. In 
recent years, blind sources separation has been a hot topic in signal processing field 
and neural networks field, furthermore, it has been applied to many fields from its 
appearance to now, such as, wireless communication, radar, image processing, array 
processing and biomedicine, and so on. 

Specially, the authors of paper [1] discussed separability of blind source separation 
in the linear mixture case. By using the information of the mixing matrix, the authors 
obtained the results about when the source signals can be extracted or not and how 
many source signals can be extracted. This paper can enrich the separability theory of 
blind source separation. 

At the same time, in the paper [7], Xie’s conjecture corrected the famous Stone’s 
conjecture. BSS algorithms based on Xie’s conjecture should be without suspicion in 
basic theory. From now on, researches have a reliable basis to study BSS both in 
theory and algorithm design. 

Blind separation problem is to restore source signals in unknown mixture parame-
ters, so the mathematics model of blind separation is 

T ttNtAStX 1  )()()( =+=  (1) 
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where T
m txtxtxtX )]()(),([)( 21=  are sensor signals, nmRA ×∈  is the mixture 

matrix, and T
n tstststS )]()(),([)( 21=  are source signals, and 

T
m tntntntN )]()(),([)( 21=  is noise. Blind separation aims at restoring source 

signals only by known sensor signals, so blind separation has two uncertainties, scales 
uncertainty and permutations uncertainty, but these are allowed in blind separation as 
a result of the information of source signals in their waveforms. Generally, we sup-
pose noise doesn’t exist. 

In general, if m  is more than or equal to n , just to say, the number of sensor sig-
nals is more than that of source signals, which is overdetermined blind separation. We 
consider m  is less than n  in this paper, namely, underdetermined blind separation. 
Although it is difficult to restore source signals, we can use some other information, 
such as, sparseness of source signals, to restore source signals, and if some source 
signals aren’t sparse in time-field, we can make them sparse through some transfor-
mation, such as, fourier transformation or wavelet transformation [8],[17], so blind 
separation model also written as: 
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where nm < , or written with vector format: 

T   ttsatsatsatx nn 1)()()()( 2211 =++=  (3) 

Up to now, the two-step algorithms are general methods for underdetermined blind 
separation based on sparse representation [15],[16]. The two-step algorithms include 
two steps, the first step is K-mean clustering algorithm for estimating mixture matrix 
and the second step is the short-path algorithm for restoring source signals, so we call 
the two-step algorithms KTA(K-mean Two-step Approach). As it mentioned above, 
the K-mean clustering algorithm has a key station in KTA and will have an important 
influence on the next work. When the mixture matrix is estimated, the source signals 
can be restored through linear programming. In this paper, two-step algorithms still be 
adopted, but it is different from KTA, and we call the new two-step algorithms 
PDTA(Probability Distribution Two-step Approach). In the paper, we will estimate the 
number of source signals first, and the mixture matrix also can be gotten accurately, 
finally, the work is same to KTA for restoring source signals by linear programming. 

2   Sparse Representation of Underdetermined Blind Separation 

To underdetermined blind separation, generally, some blind extraction algorithms are 
taken [9],[10] in past, but the algorithms can’t realize restoring all source signals. In 
order to restore all source signals in underdetermined blind separation, researchers 
make use of some characteristics of signals, for example, sparse analysis is adopted to 
make signals sparse presentation, so some underdetermined blind separation are suc-
cessfully. The good algorithms include in Belouchrani’s [11] Maximum likelihood 
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algorithm for discrete sources, Zibulevsky’s sparse decomposition algorithm [12], Lee 
[13]，Lewicki [14] and Li’ overcomplete representation algorithms [15] and Bofill’ 
sparse representation in frequency domain [16]. 

Generally, sparse signal is that whose most sample points are zero or are near to 
zero, and a little points are far from zero. Contrast to Gaussian signal’s, sparse sig-
nal’s distribution function tends to Laplace distribution, namely, there is only one 
kurtosis in zero point, but it doesn’t tend to zero less fastly than that of Gaussian sig-
nal and represents super-gaussian, so it is less possible for two source signals have 
large numbers in the same time, but only one sample point has a large number in 
almost all time. Here, we suppose that the source signal )(tsi  is nonzero and the other 

source signals are zero or are near to zero in the time of t . So equation (3) can be 
written as: 

)()( tsatx ii=  (4) 

From the above equation, we can known that ia  and )(tx  are collinear，so we can 

estimate mixture matrix ],,[ 21 naaaA =  by clustering )(tx  in all time. It is a very 

important algorithm for sparse component analysis solving underdetermined blind 
separation, named by K-mean clustering. The algorithm includes two steps, first, 
cluster centres are estimated by K-mean clustering; secondly, source signals are esti-
mated by known mixture matrix through linear programming. 

3   Model of Underdetermined Blind Separation Based on Sparse 
Representation 

All that proposed algorithms can’t separate source signals directly in underdetermined 
blind separation, which includes JADE algorithms, ICA algorithms and H-J algo-
rithms and so on. But the algorithms can resolve the problem based on sparse repre-
sentation, so the sparse blind separation problem comes down to solving the following 
optimization [16], 
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where 2σ  is noise variance, so the equation (5) is optimization problem with multi-
variables, which is difficult to resolve directly. We suppose that mixture matrix A  is 
known in advance, then the model is also denoted concisely as, 
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If noise doesn’t taken into account, the equation (6) turns to 
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From the equation (6) and the equation (7), we know that there is an optimization 
problem in every time t  based on known mixture matrix A , so optimization problem 
(7) can be divided into T  easy optimization problems. 

Generally, the two-step algorithms are fast, but the estimated mixture matrix isn’t 
rigorous as a result of unknown number of the source signals, so the effect of blind 
separation isn’t good. In this paper, we propose a new PDTA algorithm to resolve the 
underdetermined blind separation problem. 

For the sake of simplicity, we suppose 2=m , namely, the number of sensors is 
two, to explain the PDTA algorithms. The sensor signals can be regarded as a point in 
the 2-dimension plane from equation (4), and they are collinear with the columns of 
the mixture matrix in the 2-dimension plane. Our PDTA algorithms also include two 
steps, and the first step is to estimate the number of source signals and estimate the 
mixture matrix based on sensors signals distributions. In order to analyze the data, we 
initialize the sensor data first, and the method will be introduced next. 

We suppose that Tttxtxtx T 2,1,)](ˆ),(ˆ[)(ˆ 21 ==  are initialized data, so 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<−

≥

=
0)(          ,

)(

)(

0)(          ,
)(

)(
   

)(ˆ

2

2

txif
tx

tx

txif
tx

tx

tx  (8) 

and we know that the data )(ˆ tx  will locate in the upper half unit circle. 

4   Sparse Blind Separation Algorithms of PDTA 

In order to restore source signals, the mixture matrix should be estimated first, and 
this paper also will estimate it first. 

4.1   Estimation of Number of Source Signals and Identification of the Mixture 
Matrix 

In past KTA algorithms, because we don’t know the number of source signals, so 
there is a lot of illegibility in the KTA algorithms and identification of number of 
source signals has a key effect on blind separation. From the above initialized sensor 
data, we know that the data points locate in the upper unit circle, so we can compute 
the arc distance between every point in the unit circle and the point whose coordinate 
is (1,0), 
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Because the points which are collinear in the 2-dimension plane or near in the unit 
circle should belong to the same cluster and the points numbers will be enough big, so 
we can distinguish the number of source signals from the number of columns of mix-
ture matrix, which can be gotten from the distribution of )(tdist . 

In order to get the distribution of )(tdist , we let Tttdista 2,1)},(min{ ==  and 

Tttdistb 2,1)},(max{ == , The interval ],[ ba  is then divided equally into M  sub-

intervals which are ])1(,[ δδ +++ iaia  21,0 −= Mi , and b],1)-(M[a δ+ ,where 

M

a-b=δ ,and M  is a sufficiently large. By estimating the number of sample points 

of )(tdist  in each interval denoted by im for the i -th interval, the probability for 

)(tdist  belonging to the i -th interval can be obtained, that is, 

Mi
T

m
P i

i 2,1, ==  (10) 

To make the pdf smooth, we use the following filter, 

)464(
16

1ˆ
2112 ++−− ++++= kkkkkk PPPPPP  (11) 

We want to get the number of source signals, namely, to get the number of peaks in 
the pdf of )(tdist . 

Definition 1. if 1
ˆˆ

−> kk PP  , 1
ˆˆ

+> kk PP  and jkP ε>ˆ , 1,3,2 −= Mk , we suppose that 

there is a peak in the pdf of )(tdist , and if Mk ,1= ,we only consider jkP ε>ˆ .where 

jε  is a prior threshold value.  

According to the definition 1, we will get the number of peaks denoted as 
peaknum , which also is the estimation of number of source signals. 

Next, we will get the estimation of the mixture matrix by the method above, be-

cause we get any peak which is identified by kP̂ , if 1
ˆˆ

−> kk PP  , 1
ˆˆ

+> kk PP  and 

jkP ε>ˆ , so we can find the every kP̂  which is related to a peak and also get the in-

terval of kP̂ , denoted as ],)1([ δδ kaka +−+ . We let 

.,,2,1               ,2/)12(              
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 (12) 

where ilength  denotes the arc distance between the center of the i th cluster of sensor 

data and the point whose coordinate is (1,0). Because the arc distance is radian in unit 
circle, and the i th cluster of sensor data is collinear with a column of mixture matrix, so 

T
iii lengthlengtha )]sin(),[cos(= ， peaknumi 2,1=  (13) 
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From the above algorithm, the number of source signals and the mixture matrix are 
both gotten expediently, then, the second step of PDTA algorithms will be used to 
restore source signals by linear programming. 

4.2   Restore Source Signals 

From the equation (7), we know that it is a linear programming problem for restoring 
the source signals, and ia  denotes a column of mixture matrix in the equation (3), so 

],,[ 21 naaaA =  and ia  has been normalized, namely, 1=ia . 

The equation (3) explains that the vector )(tx  is composed of the normalized vectors 

naaa 21 ,  or )()()()( 2211 tsatsatsatx nn+++= , where )()(),( 21 tststs n  are the 

coefficients. The geometrical graph shows that the vectors )()(),( 2211 tsatsatsa nn  

and )(tx  can form a close geometrical graph as figure 1, what’s more, ∑
n

i
i ts )(  is the 

length sum of the vectors )()(),( 2211 tsatsatsa nn .In underdetermined blind separa-

tion, if nm < , the solutions of the equations (3) are not single. 

 

Fig. 1. The illustration of the short path 

From the figure 1, we can know that the minimization of ∑
n

i
i ts )(  which satisfies 

the equation (7) is equal to find a shortest path from the origin (0,0) to )(tx . In the 2-

dimension plane, the shortest path of )(tx  is composed of the two vectors of ia  and 

ja , which are nearest to )(tx  respectively. 

We let ],[ jir aaA = , so )(tsr  is the coefficient of )(tx  which is decomposed by 

ia  and ja , so the solutions of )(tsr of the optimization problem (7) is 
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So only the i th source signal and the j th source signal have nonzero values got-

ten by equation (14) in the time of t , but zero for the other source signals in the time 
of t . 

5   Simulation Results 

In the experiment, we take 2=m , 6=n , namely there are two sensors and six source 
signals, and the mixture matrix is randomly taken as  
 

    0.7660    0.5000    0.2588     -0.1736    -0.7071   -0.9063

    0.6428    0.8660    0.9659      0.9848     0.7071     0.4226
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, and the initialized sensor  

 

data is shown in figure 2. By the method of the equation (9), we calculate the  
arc distances of Tttdist 2,1),( = , and its probability distribution chart is shown  

the figure 3, which is gotten from the equation (10) and (11), sometimes, the  
pdf’s filter should be used more times. From the definition, we can calculate  
the peaknum  is 6, and get the estimated mixture matrix  
 

     0.7635    0.5029    0.2672    -0.1667     -0.7007   -0.9039ˆ
     0.6458    0.8644    0.9636     0.9860       0.7135    0.4277

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 by the (12),(13). According  

 

to the estimated mixture matrix Â and the short path algorithm, the source signals are 
recovered in the figure 6. What’s more, we calculate the correlation coefficient matrix 
of source signals and restored signals is  
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0.9979     0.0288     0.0014      0.0008 -   0.0008-   0.0121-   

0.0014     0.9972     0.0202      0.0005     0.0003     0.0009-   

0.0025-   0.0039     0.9950      0.0250     0.0011     0.0000-   

0.0001    0.0000-   0.0162     0.9946      0.0246      0.0014    

0.0003     0.0001-   0.0009     0.0035      0.9951      0.0168    

0.0071-   0.0016-   0.0021-   0.0014     0.0084      0.9969    

corrcoef , which  

 

shows that PDTA algorithm is very excellent not only in estimation of the number of 
source signals and the mixture matrix but also in the restoration of source signals. 

     

Fig. 2. The sensor signals and their initialized sensor signals 
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Fig. 3. The )(tdist probability distribution 

 

Fig. 4. Six source signals 

 

Fig. 5. Two mixture signals 

 

Fig. 6. Six restored source signals 
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6   Conclusions 

In general underdetermined blind separation, source signals are recovered by the two-
step algorithms KTA through the information of sparseness of source signals, but 
there is a big trouble for K-mean clustering algorithm in the two-step algorithms as a 
result of unknown number of source signals, so we give new two-step algorithms 
PDTA in this paper, which can estimate the number of source signals in advance by 
the distribution and get the mixture matrix different from the K-mean clustering algo-
rithm, and the source signals are recovered by the short path algorithm successfully. 
From the simulation results and the gotten correlation coefficient matrix of source 
signals and restored signals, the outstanding performance of the PDTA algorithms is 
expressed. When the sensor number is more than two, it still will be open problem. 
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