
An Elliptic Curve Based Authenticated Key
Agreement Protocol for Wireless Security

SeongHan Shin, Kazukuni Kobara, and Hideki Imai

Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology (AIST)

1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021 Japan
{seonghan.shin,kobara conf,h-imai}@aist.go.jp

http://www.rcis.aist.go.jp/

Abstract. When we consider wireless security, it is strongly preferable
to use password-based authentication and the elliptic curve based Diffie-
Hellman protocol since the former provides a user-friendly authentication
method and the latter is an efficient key agreement protocol. However,
this combination does not necessarily guarantee security against off-line
dictionary attacks (especially, ”partition attacks”). In this paper, we pro-
pose an elliptic curve based authenticated key agreement (called EC-
AKA) protocol that is secure against partition attacks as well as suitable
for the following situation: (1) a client, who communicates with many
different servers, remembers only one password and has insecure devices;
(2) the counterpart servers are not perfectly secure against several at-
tacks; (3) neither PKI (Public Key Infrastructures) nor TRM (Tamper-
Resistance Modules) is available. The EC-AKA protocol is secure under
the elliptic curve Diffie-Hellman problem in the random oracle model. We
also show that the EC-AKA protocol achieves more strengthened security
properties and efficiency compared with the existing protocols (employed
in the IEEE 802.1x).

1 Introduction

The rapid advance of wireless technology has brought much attention from many
researchers who, at the same time, have expressed concerns about security. As
we know, the most fundamental security goals are authentication that is a means
to verify who is communicating with whom or whether a party is a legitimate
one, and confidentiality that is a means to protect messages exchanged over open
networks (i.e., the Internet). One of the ways to achieve such security goals is
to use an authenticated key agreement (AKA) protocol by which the involving
parties authenticate each other and then share a common session key to be used
for their subsequent secure channels. Up to now, many AKA protocols have been
proposed where some take advantage of PKI (Public Key Infrastructure) and
others are based on a secret shared between the parties (e.g., human-memorable
password).

Compared to the wired networks, wireless ones typically place severe restric-
tions on designing such cryptographic protocols. Main obstacles include: client’s

Y. Wang, Y. Cheung, and H. Liu (Eds.): CIS 2006, LNAI 4456, pp. 767–777, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.rcis.aist.go.jp/

768 S. Shin, K. Kobara, and H. Imai

mobile devices have constraints on available power consumption, followed by re-
striction of computing power; mobile devices are easy to be lost or stolen due to
a holder’s carelessness; wireless communications are more prone to interception
than wired ones; communication bandwidth is already limited; and it is difficult
to keep some information secure on mobile devices, and so on.

For efficiency, one can use elliptic curve groups whose use in public key cryp-
tography was first proposed by Koblitz [1] and Miller [2] 1. This is because public
key schemes based on elliptic curve groups typically have lower processing re-
quirements, and can achieve the same level of security with considerably shorter
key sizes than counterparts based on the more traditional RSA and standard
discrete logarithm settings. Such elliptic curve cryptographic systems and pro-
tocols are ideal for wireless environments where processing power, time and/or
communication bandwidth are at a premium.

Therefore, when we consider wireless security it is strongly preferable to use
password-based authentication and the elliptic curve based Diffie-Hellman proto-
col since the former provides a user-friendly authentication method and the latter
is an efficient key agreement protocol. However, this combination sometimes re-
sults in insecurity against a special kind of off-line dictionary attacks known as
”partition attacks”. That is, the direct elliptic curve analogs of password-based
AKA protocols are insecure against partition attacks (see [3]). Here is a simple
example: given an affine point (X , Y) on an elliptic curve E, the Y-coordinate
may be used for an attacker to exclude invalid password candidates by execut-
ing a password-based AKA protocol once so that the attacker can sieve out the
correct password at a logarithm rate.

1.1 Our Contributions

The first motivation of this work is to thwart partition attacks in an elliptic
curve based AKA protocol. And the second motivation comes from the fact that
the leakage of stored secrets is a more practical risk rather than breaking a
well-studied cryptographic hard problem (e.g., the discrete logarithm problem).
In order to deal with this problem, we consider the following situation: (1) a
client, who communicates with a variety of servers, remembers only one password
and has insecure devices (e.g., mobile phones or PDAs) with built-in memory
capacity; (2) the counterpart servers are not perfectly secure against several
attacks (e.g., virus or hacker); (3) neither PKI nor TRM is available.

In this paper, we propose an AKA (called EC-AKA) protocol based on the
elliptic curve Diffie-Hellman protocol that is an analog of the original Diffie-
Hellman protocol [4]. The EC-AKA protocol is suitable for the above situation
in that it is secure against leakage of stored secrets from a client and servers, re-
spectively, as well as secure against partition attacks. We prove that the EC-AKA
protocol is provably secure in the random oracle model with the reduction to
the elliptic curve Diffie-Hellman problem. Moreover, we show that the EC-AKA
1 They observed that the discrete logarithm on elliptic curves over finite fields ap-

peared to be intractable and hence ElGamal encryption and signature schemes have
natural counterparts on these curves.

An Elliptic Curve Based Authenticated Key Agreement Protocol 769

protocol achieves more strengthened security properties and efficiency compared
with the existing password-based AKA protocols (e.g., [3,5]). Note that the au-
thenticity of the EC-AKA protocol is based on password and an additional stored
secret which might seem to be similar to that of EAP-FAST. However, the obvi-
ous distinction between the two protocols is that the EC-AKA protocol remains
secure even if the stored secret on client’s side is leaked out to an attacker while
EAP-FAST does not.

2 An Elliptic Curve Based Authenticated Key Agreement
(EC-AKA) Protocol

2.1 Preliminary

Here we consider an elliptic curve E defined over the field GF (pm), with either
p ≥ 2160 and m = 1 or p = 2 and m ≥ 160, where q = pm and p is a prime. For
example, the curve in short Weierstrass form is

E : Y2 = X 3 + aX + b. (1)

As shown in the literature [7], we can define an additive (abelian) group in the
set of points on this curve (taken together with the point at infinity O). Let G1
and G2 be two generators of order q (i.e., qG1 ≡ qG2 ≡ O mod pm) chosen from
the points on E. This is the group where the elliptic curve discrete logarithm
problem (EC-DLP) is defined: given two points G1 and H on E it is hard to find
an integer e such that H ≡ e · G1. On the other hand, the e multiple of G can
be readily computed by using a method similar to the ”square-and-multiply” for
exponentiation in GF (p).

Let k denote the security parameter for hash functions (say, 160 bits). Let N
be a dictionary size of passwords (say, 36 bits for alphanumerical passwords with
6 characters). Let {0, 1}� denote the set of finite binary strings and {0, 1}k the
set of binary strings of length k. Let ”||” denote the concatenation of bit strings
in {0, 1}�. Let us define secure one-way hash functions. While H : {0, 1}� →
Z

�
q\{1} denotes a full-domain hash (FDH) function, the other hash functions

are denoted Hj : {0, 1}� → {0, 1}k for j = 1, 2, 3 and 4. Here H and Hj are
distinct random functions one another. Let C and S be the identities of client
and server, respectively, with representing each ID ∈ {0, 1}� as well.

2.2 The Protocol

In this subsection, we propose the EC-AKA protocol in detail (see Fig. 1 and 2).
During the initialization phase, server S sends its elliptic curve parameter

param, which is generated in a form (E, q, G1, G2), to the client. The latter picks
a secret value s1 randomly chosen from Z

�
q and registers securely a verification

data v1 to server S where pw is the client’s password. Then client C remembers his
password pw and additionally stores the secret value s1 as well as the parameter
param on insecure devices that may happen to leak s1 and param in the end.

770 S. Shin, K. Kobara, and H. Imai

Client C Server S
[Initialization]

param ← (E, q, G1, G2)param�

s1
R← Z

�
q , v1 ≡ s1 + pw mod q v1 �

1, s1, param 1, v1, param

Fig. 1. The initialization of EC-AKA protocol where the enclosed values in rectangle
represent stored secrets of client and server, respectively

The server S also stores the verification data v1 and its parameter param on its
databases both of which may be leaked out. Finally, they set a counter j as 1.

In the j-th (j ≥ 1) execution of the EC-AKA protocol, client C should recover
the verification data vj by adding the secret value sj with the password pw. With
a randomly chosen value x from Z

�
q , the client computes the Diffie-Hellman public

value X and calculates Z using a mask generation function as the addition of
X with W · G2 where W is a full-domain hash of (j, vj). Then client C sends
(C, j, Z) to server S. If the received counter j is incorrect, the server terminates
the protocol. Otherwise, server S extracts X ′ from this masked Diffie-Hellman
public value Z with W ·G2. If the resultant value is a quadratic non-residue, the
server terminates the protocol. The latter computes not only the Diffie-Hellman
public vale Y ≡ y · G with a randomly chosen value y from Z

�
q but also the

keying material KS ≡ y · X ′ that is used to compute its authenticator VS and
a session key SKj. Upon receiving (S, Y, VS) from the server, client C computes
the keying material KC from Y and then generates his authenticator VC and a
session key SKj, as long as the authenticator VS is valid, before sending VC to
server S. If the authenticator VC is valid, server S actually computes a session
key SKj. At the end of the j-th protocol execution, client C (resp., server S)
refreshes sj (resp., vj) to a new one s(j+1) (resp., v(j+1)) for the next session.

Remark 1. In order to prevent the invalid-curve attacks [6], both of client and
server should check that a received point does indeed lie on the elliptic curve
(e.g., by using formulas for the addition law that use both coefficients a and b
of the equation of the elliptic curve).

3 Security

First, we give a clue about why the proposed EC-AKA protocol is secure against
partition attacks.

Before the EC-AKA protocol execution, the client and the server can agree
on the Y-coordinate on curve E with a single bit (+, −). Here we assume that
the sign is +. Let us think of Z in the first flow of Fig. 2: Z ≡ X + W . In this

An Elliptic Curve Based Authenticated Key Agreement Protocol 771

Client C Server S
[j-th Protocol Execution (j ≥ 1)]

j, sj , param j, vj , param

vj ≡ sj + pw mod q

W ← H(j, vj), x
R← Z

�
q

X ≡ x · G1, Z ≡ X + W · G2 C, j, Z�

W ← H(j, vj), y
R← Z

�
q

If j is incorrect, then reject.

Otherwise, X ′ ≡ Z − W · G2,

If X ′ is a QNR, then reject.

Y ≡ y · G1, KS ≡ y · X ′,

and VS ← H1(Trans||KS).S, Y, VS�KC ≡ x · Y

If VS �= H1(Trans||KC), then reject.

Otherwise, VC ← H2(Trans||KC),

SKj ← H3(Trans||KC),

s(j+1) = sj + H4(Trans||KC),

and accept.

VC � If VC �= H2(Trans||KS), then reject.

Otherwise, SKj ← H3(Trans||KS),

v(j+1) = vj + H4(Trans||KS),

and accept.

j + 1, s(j+1), param j + 1, v(j+1), param

Fig. 2. The j-th execution of EC-AKA protocol where the enclosed values in rectangle
represent stored secrets of client and server, respectively, and Trans = C||S||j||Z||Y

case, an attacker can try the possible password candidates in order to get the de-
masked value X ′. If X ′ is a quadratic non-residue, the attacker can exclude the
password candidates used. From Hasse’s theorem [7], the number of such values
X ′ is in the range [(q+1)/2−√

q, (q+1)/2+
√

q]. Hence the attacker can reduce
the dictionary size by roughly half with such partition attack. That means the
password can be sieved out to be correct one, given a number of protocol runs,
at a logarithmic rate to the dictionary size.

However, the client in the EC-AKA protocol sends Z computed with an ad-
ditional mask W · G2. Suppose an attacker who tries a guessed password on Z.
The attacker cannot determine whether the guessed password is correct or not
since all of the Legendre symbols

(
X′

q

)
are quadratic residues. Thus the EC-AKA

protocol is secure against partition attacks. This technique used in the EC-AKA
protocol is quite different from [3] in that the latter ensures that any candidate
X -coordinate observed by an attacker is valid by utilizing an elliptic curve and
its twisted one in order to obviate partition attacks.

3.1 Model and Security Notion

Here we introduce the model based on [8] and security notion.

772 S. Shin, K. Kobara, and H. Imai

The Model. We denote by C and S two parties that participate in the key
exchange protocol P . Each of them may have several instances called oracles
involved in distinct, possibly concurrent, executions of P where we denote C
(resp., S) instances by Ci (resp., Sj), or by U in case of any instance. During
the execution of P , an adversary has the entire control of the network and
additionally has access to the parties’ stored secrets where the latter simulates
insecure devices and databases. Let us show the capability of adversary A each
query captures:

– Execute(Ci, Sj): This query models passive attacks, where the adversary gets
access to honest executions of P between Ci and Sj by eavesdropping.

– Send(U , m): This query models active attacks by having A send a message
to instance U . The adversary A gets back the response U generates in pro-
cessing the message m according to the protocol P . A query Send(Ci, Start)
initializes the key exchange protocol.

– Reveal(U): This query handles the misuse of the session key by any instance
U . The query is only available to A if the instance actually holds a session
key and the latter is released to A.

– Leak(U): This query handles the leakage of the ”stored” secrets by any in-
stance U . The adversary A gets back (sj , param) and (vj , param) where the
former (resp., the latter) is released if the instance corresponds to Ci (resp.,
Sj).

– Test(U): The Test-query can be asked at most once by the adversary A and
is only available to A if the instance U is ”fresh” in that the session key is
not obviously known to the adversary. This query is answered as follows: one
flips a (private) coin b ∈ {0, 1} and forwards the corresponding session key
SK (Reveal(U) would output) if b = 1, or a random value except the session
key if b = 0.

Security Notion. The adversary A is provided with random coin tosses, some
oracles and then is allowed to invoke any number of queries as described above,
in any order. The aim of the adversary is to break the privacy of the session
key in the context of executing P . The AKE security is defined by the game
Gameake(A, P), in which the ultimate goal of the adversary is to guess the
bit b involved in the Test-query by outputting this guess b′. We denote the
AKE advantage, by Advake

P (A) = 2 Pr[b = b′] − 1, as the probability that A can
correctly guess the value of b. The protocol P is said to be (t, ε)-AKE-secure if
A’s advantage is smaller than ε for any adversary A running time t.

3.2 Elliptic Curve Diffie-Hellman Assumption

A (t, ε)-ECDHG,G attacker, in a finite cyclic group G of prime order q with G
as a generator, is a probabilistic machine B running in time t such that its
success probability Succecdh

G,G(B), given random elements aG and bG to output
abG, is greater than ε. We denote by Succecdh

G,G(t) the maximal success probability
over every adversaries running within time t. The ECDH-Assumption states that
Succecdh

G,G(t) ≤ ε for any t/ε not too large.

An Elliptic Curve Based Authenticated Key Agreement Protocol 773

3.3 Security Proofs

Suppose an active attacker A, who gets the client’s stored secret, is willing to
break the semantic security of the EC-AKA protocol. The protocol is said to be
secure if, when passwords are chosen from a dictionary of size N , Advake

P (A) ≤
O(qs/N) + ε(·) for some negligible function ε(·) in the security parameter. The
first term represents the fact that the attacker can do no better than guess a
password during each interaction to the parties where qs is the number of queries
to the Send-oracle.

Theorem 1. The EC-AKA protocol is provably secure against an attacker, who
asks the Leak(Ci)-query, in the random oracle model [9] if the elliptic curve
Diffie-Hellman (ECDH) problem is hard.

Proof. We prove this theorem by contradiction. Here we assume that the EC-
AKA protocol is insecure in the sense that the attacker A can distinguish the
key given by the Test-oracle. With the elliptic curve Diffie-Hellman instance as
input, we show that an algorithm B can compute the Diffie-Hellman key by using
the attacker A as a subroutine.

The algorithm B is given the ECDH instance (G, P = aG, Q = bG) and
should simulate all of the queries from attacker A. When A asks a hash-query
Hj(q), such that a record (j, q, r) appeared in the Hj-oracle, the answer is r.
Otherwise, answer r is chosen randomly from {0, 1}k and the record (j, q, r) is
added to the Hj . Now, algorithm B sets (G1 = G, G2 = Q), feeds it to at-
tacker A, and then simulates the protocol as usual. When A asks a Send(Sj , ∗)-
query, B computes Y as follows: Y ≡ yP . We can easily see that the simula-
tion is perfectly indistinguishable in the view of A since there exists a unique
discrete logarithm for Y . After seeing a hash-query Hj(q) asked by A, B can
solve the ECDH problem with non-negligible probability. Let Wi = H(qi) and
Ki = ECDHG,G((Z −WiG2), Y) = ECDHG,G(Z, Y)+ECDHG,G(−WiG2, Y) such
that the tuple (Z, Y, Ki) is in Hj . With probability 1/q2

h, B can compute the
Diffie-Hellman key ECDHG,G((W0 − W1)Q, yP) = K1 − K0 since B already
knows y, W0 and W1. The running time of B is the running time of A plus some
constant time for modular multiplication. This concludes the proof.

Of course, the attacker can do on-line dictionary attacks with the success proba-
bility O(qs/N). But, notice that the EC-AKA protocol doesn’t allow even on-line
attacks without any leakage of stored secrets since the authentication depends
on the strong secret vj like [10,11].

Suppose an active attacker, who gets the server’s stored secret, is willing
to break security of the EC-AKA protocol by impersonating the compromised
server. In that case, we cannot avoid this impersonation attack as all of the
authentication protocols cannot. However, we can say the following theorem.

Theorem 2. The EC-AKA protocol is secure against an attacker, who asks the
Leak(Sj)-query, unless the attacker do the server impersonation attack within a
limited time period.

774 S. Shin, K. Kobara, and H. Imai

Table 1. Classification and comparison of AKA protocols

Client’s possessions Extension∗1

Protocols Password Stored Secret Public Info.
EAP-MD5, LEAP

√
impossible

PAKE [3,5]
√

impossible
MA-DHKE∗2 [13]

√ √
impossible

EAP-SIM [14]
√

possible∗3

EAP-FAST
√ √

impossible
EC-AKA

√ √
possible∗3

EAP-TLS
√ √

possible
EAP-TTLS, PEAP

√
(
√

)∗4
√

impossible
*1: Whether or not each protocol can be extended to the multiple server scenario

(with only one password).
*2: Mutual Authentication and Diffie-Hellman Key Exchange of Section 3.4.
*3: The number of stored secrets grows linearly to the number of servers.
*4: Optional.

We assume that the EC-AKA protocol runs at a fixed time period (e.g., a day)
and an attacker obtains the secret (i.e., vj) at that time. In this case, if the
update of vj between the client and the server is completed before the attacker
does, the latter cannot do the impersonation attack any more because vj is no
longer valid.

4 Comparison

In this section, we compare the EC-AKA protocol with the existing AKA proto-
cols (including EAP methods [12]). In Table 1, we classify each protocol in the
viewpoint of which kind of information is needed for client authentication. Table 2
shows the comparative result of security properties when the leakage of stored se-
crets happen in each protocol. Though both the EAP-FAST and EC-AKA proto-
cols are based on the password and additional secret stored on client’s devices, the
former is not adequate for multiple sever scenario and insecure against the leakage
of stored secrets.

Efficiency, as well, is very important when considering practical applications
for mobile devices with restricted computing power and wireless networks having
limited bandwidth. As for communication overhead, we represent the points on
the elliptic curve in a compressed form: given an affine point (X , Y) the X -
coordinate requires n bits where n is the bit length of the underlying field and
the Y-coordinate is represented by one bit in order to distinguish two solutions
of a quadratic equation. In addition, the length of identities and counter is
excluded. Table 3 indicates that the EC-AKA protocol is more efficient mainly
in terms of computation costs of client and communication overheads compared
to [3,5].

An Elliptic Curve Based Authenticated Key Agreement Protocol 775

Table 2. Comparison of AKA protocols in a situation where no perfect TRM is avail-
able

Security∗1 (of password)
on against the leakage of stored secrets

Protocols communications from client C from server S
EAP-MD5, LEAP �∗2 © X (�∗2)
PAKE [3,5] © © X (�∗2)
MA-DHKE [13] © © �∗2

EAP-SIM [14] © X X
EAP-FAST © X X
EC-AKA © ©∗3 ©∗3

EAP-TLS © X X
EAP-TTLS, PEAP © © X (�∗2)

*1: © guarantees the security of password against both on-line and off-line
dictionary attacks. � guarantees the security of password against on-line,
but not off-line attacks. X guarantees the security of password against nei-
ther on-line nor off-line attacks.

*2: A client registers password verification data computed with a particular one-
way function of the password, f(pw), at the server instead of pw.

*3: Information-theoretically secure.

Table 3. Comparison of elliptic curve based AKA protocols, which do not rely on PKI,
in terms of efficiency

Computation costs Communication The number of
Protocols of client∗1 overhead∗2 flows
EC-EKE [3] 4Mul, [3Mul] ∗3 100 Bytes 3
PAKE-EC [5] 5Mul, [3Mul] ∗3 160 Bytes 4
EC-AKA 4Mul, [3Mul] 60 Bytes 3

*1: Mul denotes the number of modular multiplications and the figures in the
brackets are the remaining costs after pre-computation.

*2: For the minimum security parameters recommended for use in current
practice: |q| = |H| = 160 (for the elliptic curve Diffie-Hellman protocol
and hash functions).

*3: 2Mul are needed for checking the group order.

5 Conclusions

When we consider wireless security, a combination of password-based authenti-
cation and the elliptic curve Diffie-Hellman protocol is strongly preferable mainly
because it not only does not require any security infrastructure, but also provide
computation and communication efficiency. However, such combination does not
necessarily guarantee security against a special kind of off-line dictionary attacks,
known as ”partition attacks”.

As one of the solutions for wireless security, we have proposed an elliptic
curve based AKA (EC-AKA) protocol secure against partition attacks as well as

776 S. Shin, K. Kobara, and H. Imai

suitable for the following situation: (1) a client, who communicates with many
different servers, remembers only one password and has insecure devices (e.g.,
mobile phones or PDAs); (2) the counterpart servers are not perfectly secure
against several attacks (e.g., virus or hacker); (3) neither PKI nor TRM is avail-
able. The authenticity of the EC-AKA protocol is based on the client’s relatively
short password and an additional secret stored on insecure devices. We proved
that the EC-AKA protocol is provably secure in the random oracle model with
the reduction to the elliptic curve Diffie-Hellman problem. In addition, we an-
alyzed its several security properties and efficiency while comparing with the
existing AKA protocols (employed in the IEEE 802.1x [15]).

Acknowledgments. The authors appreciate anonymous reviewers for their
helpful comments.

References

1. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

2. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) Ad-
vances in Cryptology. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

3. Boyd, C., Montague, P., Nguyen, K.: Elliptic Curve based Password Authenticated
Key Exchange Protocols. In: Varadharajan, V., Mu, Y. (eds.) Information Security
and Privacy. LNCS, vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

4. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

5. Wong, D.S., Chan, A.H., Zhu, F.: Password Authenticated Key Exchange for
Resource-Contrained Wireless Communications. In: Lorenz, P., Dini, P. (eds.) Net-
working - ICN 2005. LNCS, vol. 3421, pp. 827–834. Springer, Heidelberg (2005)

6. Antipa, A., Brown, D., Menezes, A., Struik, R., Vanstone, S.: Validation of Elliptic
Curve Public Keys. PKC 2003. In: Desmedt, Y.G. (ed.) Public Key Cryptography
- PKC 2003. LNCS, vol. 2567, pp. 211–223. Springer, Heidelberg (2002)

7. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. In: Jantke,
K.P. (ed.) Analogical and Inductive Inference. LNCS, vol. 265, Springer, Heidelberg
(1987)

8. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) Advances in Cryptology - EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

9. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM CCS’93, pp. 62–73. ACM Press, New York (1993)

10. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology - CRYPTO ’93. LNCS, vol. 773, pp. 232–249.
Springer, Heidelberg (1994)

11. Shoup, V.: On Formal Models for Secure Key Exchange. IBM Research Report RZ
3121 (1999), http://eprint.iacr.org/1999/012

12. IETF (Internet Engineering Task Force).: PPP Extensible Authentication Protocol
(EAP). RFC 2284 (1998)

http://eprint.iacr.org/1999/012

An Elliptic Curve Based Authenticated Key Agreement Protocol 777

13. Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols. In:
ACM Transactions on Information and System Security, vol. 2(3), pp. 230–268.
ACM Press, New York (1999)

14. Haverinen, H., Salowey, J.: Extensible Authentication Protocol Method for GSM
Subscriber Identity Modules (EAP-SIM) (2004)
draft-haverinen-pppext-eap-sim-16.txt

15. IEEE 802.1x.: Port Based Network Access Control. IEEE, http://www.ieee802/
org/1/pages/802.1x.html

draft-haverinen-pppext-eap-sim-16.txt
http://www.ieee802/org/1/pages/802.1x.html
http://www.ieee802/org/1/pages/802.1x.html

	An Elliptic Curve Based Authenticated Key Agreement Protocol for Wireless Security
	Introduction
	Our Contributions

	An Elliptic Curve Based Authenticated Key Agreement $(EC-AKA)$ Protocol
	Preliminary
	The Protocol

	Security
	Model and Security Notion
	Elliptic Curve Diffie-Hellman Assumption
	Security Proofs

	Comparison
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

