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Abstract. A forward secure threshold signature scheme from bilinear pairings 
is presented in this paper. Compared with previous forward secure threshold 
signature schemes against malicious adversary, this scheme needs very few in-
teractions and is very efficient. A new interactive zero-knowledge proof proto-
col is presented and its non-interactive version can verify the validity of part 
signatures in this scheme. At last, we prove that the scheme is robust and for-
ward secure in the random oracle model. 

1   Introduction 

Exposure of secret keys is one of the greatest threats to the security of a digital signa-
ture. Therefore, how to deal with the problem of secret key exposure in signatures is 
very important. Threshold signature is used to void secret key exposure. In a (t+1, n) 
threshold signature[1, 2], a secret key is distributed into n servers, and each server has a 
share of the secret key. Only more than t servers can jointly generate signatures. In 
comparison, forward secure signature[3~5] can reduce the damage of secret key expo-
sure. In this paradigm, the whole lifetime of signature is divided into several time 
periods, the secret key is updated in each period by a one-way function, at the same 
time, the old key is destroyed. As a result, even if the current secret key is exposed, 
the adversary can’t forge signatures for past time periods. Forward secure threshold 
signature combines the merits of the both kinds of signatures, as a result, it satisfies 
that if an adversary breaks into no more than t servers, she can’t forge any signature; 
even if an adversary breaks into more than t servers, she can’t forge signatures per-
taining to previous time periods. 
 
Related works. Abdalla et al. [6] firstly present a forward secure threshold signature 
scheme against malicious adversary based on the scheme in [3]. However, in their 
scheme, the size of both the public key and the secret key is very large, what’s more, 
the scheme needs a lot of interactions because distributed multiplication of many 
values protocol is used. Distributed multiplication of many values protocol is very 
inefficient, and it is still an open problem to improve its efficiency [6]. Following by 
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Abdalla’s work, another forward secure threshold signature with proactive property 
[7] is suggested, which needs shorter keys, however, has lower efficiency. Wang et al. 
[8] point out the scheme in [7] is insecure. Chu et al. present a forward secure thresh-
old signature scheme with weak security as an extension of his main work [9], but it 
can’t tolerate malicious adversary and has not any proofs of forward security. 
 
Our contribution. Based on [5], a forward secure threshold signature scheme FTS 
from bilinear pairings is presented in this paper. We name it as scheme FTS. 

In addition, we present a new interactive zero-knowledge proof protocol named as 
Proof-VS, and prove that it is complete, sound and zero-knowledge. Then we convert 
Proof-VS into a non-interactive version NIProof-VS which is used to verify the valid-
ity of part signatures in our scheme by using a collision-resistant hash function. With 
necessary changes, NIProof-VS can be used in other threshold schemes from pairings 
effectively, too. Note that scheme FTS can void using distributed multiplication of 
many values thanks to using bilinear pairings. 

Scheme FTS is very efficient. There are only once interaction in update algorithm 
and twice interactions in signing algorithm in this scheme. The running time of both 
the key generation and the key update algorithm is independent of the total number of 
time periods T in the scheme. And the signing and verifying costs are only logarith-
mic in T. The new scheme is robust against malicious adversary. Finally, we prove it 
is forward secure in the random oracle model assuming CDH problem is hard. 
 
Organization. In section 2, we introduce the preliminaries of our work, including 
communication model, definition and related mathematical background. The pre-
sented zero-knowledge proof protocol and the concrete description of the scheme are 
given in Section 3. We compare the efficiency of our scheme with related schemes 
and provide the security proof of our scheme in section 4 and 5, respectively. In sec-
tion 6, further discussion is given. Finally, we conclude this paper in the last Section. 

2   Preliminaries 

2.1   Model and Definition 

⑴ Communication Model 
There exists a trusted dealer during the key generation phase. We assume that the 
participants in our scheme include a set of n players {1,2,…,n} who are connected by 
a broadcast channel. Additionally, they can securely communicate over private point-
to-point channels. Furthermore, the system works in a synchronous communication 
model; that is, all participating players have a common clock and, thus, can send their 
messages simultaneously in a particular round of a protocol. Finally, the whole life-
time of signature is divided into T time periods. At the end of each time period, the 
participants update their shares all together. 

⑵ Forward Secure Threshold Signature Scheme 

Definition 1 (Key-evolving threshold signature scheme). A key-evolving threshold 
signature scheme is a quadruple of algorithms, FTS(t,s,n)=(FTS.GEN, FTS.UPD, 
FTS.SIG, FTS.VER), where, t is the maximum number of corrupted players; s is the 
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minimum number of honest players so that signature computation is feasible; n is the 
total number of players, 

FTS.GEN: the key generation algorithm, inputs a security parameter k N∈  and the 
total number of time periods T, and generates a public key PK and the initial shares of 
secret key for all players. 

FTS.UPD: the secret key update algorithm, inputs the current time period j, and 
generates a share ( )

1
i

jSK +  for each player i in the algorithm for the next time period.  

FTS.SIG: the signing algorithm, inputs the current time period j and a message M, 
and the participant players jointly generate a signature <j, tag> of M for period j.  

FTS.VER: the verification algorithm, inputs the public key PK, a message M and a 
signature <j, tag>，and returns 1 if <j, tag> is a valid signature of M or 0, otherwise.  

( )i
jSK  is a share player i holds in period j. Assume that ( )i

jSK  always contains the 

value j and the total number of time periods T. If <j, tag> is a valid signature gener-
ated in FTS.SIG algorithm，then FTS.VER(M, <j, tag>)=1. 
 

The adversary model in ROM. The adversary F chooses players to corrupt at the 
beginning of the game. She runs in three stages: in the chosen-message attack (cma) 
phase, F has access to the signing oracle, and can query to obtain the signature of any 
message she selects under the current secret key. At the end of each time period, the 
adversary can choose whether to stay in the same phase or switch to the over-
threshold phase. In the over-threshold phase, for a particular time period b, the adver-
sary may corrupt a set of players of size t+1 or greater. It means F can learn the secret 
key. In the forgery phase, the adversary outputs her forgery, i.e. a signature message 
pair. We consider an adversary successful if she forges a signature of some new mes-
sage for some period prior to the time period b. The adversary is allowed to query a 
random oracle H corresponding to a collision-resistant hash function. 

Definition 2 (Forward secure threshold signature scheme). A key-evolving 
threshold signature scheme is a forward secure threshold signature scheme if there is 
no such an adversary described above that can forge a signature <j, tag> for some new 
message M s.t. FTS.VER(M, <j, tag>)=1 and j<b. 

2.2   Cryptographic Assumptions 

Let 1G  and 2G  be two groups of some prime order q, where 1G  is represented addi-

tively and 2G  is represented multiplicatively. And let 1P G∈  be a generator of 1G . A 
bilinear pairing is an efficiently computable map 1 1 2:e G G G× → , which satisfies: 

1. Bilinear: For all 1,P Q G∈  and ,a b Z∈ , there is ( , ) ( , )abe aP bQ e P Q= . 

2. Non-degenerate: The map does not send all pairs in 1 1G G×  to the identity in 2G . 
3. Computable: There is an efficient algorithm to compute e(P,Q) for any 

1,P Q G∈ . 

Decision Diffie-Hellman (DDH) problem: Given ( , , , )P aP bP cP , where 

, , qa b c Z∈ , decide whether c ab=  in qZ . Computation Diffie-

Hellman（CDH）problem: Given ( , , )P aP bP , where , qa b Z∈ , compute abP . 
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Definition 3 (GDH group). A prime order group G  is a GDH group if DDH 
problem can be solved in polynomial time but no probabilistic algorithm solves CDH 
problem. 

The Weil and Tate pairings are practical example of the bilinear pairing. Using the 
Weil or Tate pairing, certain elliptic curves can be used as GDH groups. 

IG is a GDH parameter generator if only it takes security parameter k, outputs two 
groups 1G  and 2G  and an admissible pairing 1 1 2:e G G G× → .  

3   The Forward Secure Threshold Signature Scheme 

3.1   Building Blocks 

Let G be a cyclic group of some prime order q, where G is represented additively. Let 
( 0... )iP i n=  be the generators of G. 

(1) The zero-knowledge proof protocols we present 
Prover P wants to convince verifier V that she knows the values ( 1... )ib i n=  that 

satisfy 0 1
( 1... ),

n
i i i ii

G b P i n H b P
=

′= = =∑ .  

Firstly, we give an interactive protocol 0 1 1Pr ( ; ,..., ; ,..., ; )n noof VS P P P G G H ′− : 

①P selects ( 1... )i R qw Z i n∈ = , computes 0 ( 1... )i iE w P i n= =  and 
1

n
i ii

F w P
=

=∑ , 

and sends these values to V. 
②V randomly chooses R qc Z∈ , and sends it to P. 

③P computes , ( 1... )i i ir w b c i n= − = , and sends them to V. 

④V verifies:
?

0 ( 1... )i i iE r P cG i n= + =  and 
?

1

n
i ii

F cH r P
=

′= +∑ . If equations are 

right, V believes P; otherwise, doesn’t. 

Theorem 1. Proof-VS  is complete, sound and zero-knowledge. 
 
Proof. (Sketch)   
(1)Completeness：If P and V are honest and P knows ib , then the following both 

equations are right: 

0 0 0( ) , ( 1... )i i i i i iE w P r b c P r P cG i n= = + = + = ,  

1 1 1
( )

n n n
i i i i i i ii i i

F w P r b c P cH r P
= = =

′= = + = +∑ ∑ ∑ .  

So V believes P. 
(2)Soundness: If P doesn’t know some ib , after P sends iE  and F  to V, and then 

gets c from V, P is only able to guess ir . The probability that P makes V believe 
him is 1/ q  at most. Therefore the soundness can be satisfied. 

(3)Zero-knowledge: We can construct a simulator S to simulate the view of any veri-
fier. S selects R qc Z′∈ and ( 1... )i R qr Z i n′∈ = . She computes 0 ,i i iE r P c G′ ′ ′= +  
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( 1... )i n=  and 
1

n
i ii

F c H r P
=

′ ′ ′ ′= +∑ . The distributions of , ,i iE F c′ ′ ′  and r ′  are sta-

tistically indistinguishable from those of , , ,i iE F c r  in the real view.   
Then, convert Proof-VS into a non-interactive version by a collision-resistant hash 

function: H: qG Z→ . The protocol 0 1 1Pr ( ; ,..., ; ,..., ; )n nNI oof VS P P P G G H ′−  is de-

scribed as follows: 

①P selects ( 1... )i R qw Z i n∈ = at random, and computes 0 ( 1... )i iE w P i n= = , 

1

n
i ii

F w P
=

=∑ , 0 1 1 1( || || ... || || || ... || || || || ... || || )n n nc H P P P G G H E E F′= , and 

, ( 1... )i i ir w b c i n= − = . Then sends , ( 1... )ic r i n=  to V. 

②V verifies: 
?

0 1 1 1 0 1 0 1
( || || ... || || || ... || || || || ... || || )

n
n n n n i ii

c H P P P G G H r P cG r P cG cH r P
=

′ ′= + + +∑     

If the equation is right, V believes P; otherwise, doesn’t.  

(2) Distributed random secret generation (Joint-RVSS) protocol  
All players jointly and verifiably generate a random secret ρ  and each player i has a 

share iρ  of the secret. Any t+1 players can reconstruct the secret ρ , however, t play-

ers can’t get any useful message about it. The public commits include 0Pρ  and 

0 ( 1... )i P i nρ = . We use the Joint-Exp-RSS protocol in [10] as the Joint-RVSS protocol 

in our scheme. So we will use the security results of it to prove the security of our 
threshold signature scheme. As is proved in [10], the view of an adversary corrupting 
t players can be simulated when the commit 0Pρ  is taken as input. Here we skip the 

detailed descriptions of this protocol and its security proof. 

3.2   Notations 

Our scheme uses a binary tree structure similar to that in [5] which is a variant of the 
tree structure used in the HIBS scheme in [11]. If we use a full binary tree with depth 
l , then the number of time periods is 12 1lT += − (labeled 0 through T-1). Each node 
of the tree is associated with one time period. Let 0w ε= , where ε  denotes an empty 
string.  Let jw  denote the node associated with period j. Let 0jw ( 1jw ) be the left 
(right) child node of jw , |j

kw  be a k-prefix of jw . Associate all nodes of the tree 

with the time periods according to the pre-order traversal: Begin with root node 0w . 
If jw  is an internal node, then 1 0j jw w+ = , if jw  is a leaf node and 1j T< − , then 

1 1jw w+ ′= , where w′  is the longest string such that 0w′  is a prefix of jw . 

The secret share ( )i
jSK  player i holds in period j is a set which is composed of the 

node secret share ( )
j

i
wS  and the secret shares of the right siblings of the nodes on the 

path from the root to jw . That is, whenever 0w′  is a prefix of jw , ( )i
jSK  contains the 

share ( )
1

i
wS ′  of secret key of node 1w′ . The secret share ( )i

jSK  is organized as a stack 
( )iST  of the shares of node secrets when player i runs the key update algorithm at the 
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end of period j. At that time ( )
j

i
wS  lies in the top of ( )iST . Firstly pop the current node 

secret share ( )
j

i
wS  off the stack, then update as follows: 

1. If jw  is an internal node, generate the secret shares ( )
0j

i
wS  and ( )

1j
i

wS  of 0jw  and 

1jw , respectively. And then push ( )
1j

i
wS  and ( )

0j
i

wS  onto the stack orderly. The new 

top is ( )
0j

i
wS  and indeed 1 0j jw w+ = . Erase ( )

j
i

wS  at last. 

2. If jw  is a leaf, erase ( )
j

i
wS . The next share on top of the stack is 1

( )
j

i
wS + . 

3.3   Description of Our Scheme 

Let IG be a GDH parameter generator for which the GDH assumption holds. Our 
forward security threshold signature scheme is constructed as follows: 

(1) .FTS GEN：Input a security parameter k, the total number of time periods 
12 1lT += −  ( l  is the depth of the binary tree).  

①Run IG (1 )k  to generate groups 1G  and 2G  of some prime order q  and an ad-

missible pairing 1 1 2:e G G G× → . 

②Select a random generator 1P G∈  and a random secret qZα ∈ , and set Q Pα= . 

Choose ( 1... )i R qa Z i t∈ = , set 
1

( ) (mod )
t i

ii
f x a x qα

=
= +∑ , and then compute 

( ), ( 1... )i f i i nα = = . 

③Choose cryptographic hash functions H: 1 qG Z→ , *
1 1:{0,1} ,H G→  

* *
2 1 1:{0,1} {0,1}H G G× × → . 

④The public key is 1 2 1 2( , , , , , , , , )PK G G e P Q l H H H= . Compute and broadcast 
( ) ( 1... )i

iR P i nε α= = . Send share iα  to player ( 1... )i i n= secretly. Each player 

( 1... )i i n=  computes ( )
1 ( )i

iSN Hε α ε= , and then pushes ( ) ( )( )i iS SNε ε=  onto 

stack ( )iST . 
(2) .FTS UPD : Input the current time period k . Let 1... nw w w=  denote the node 

corresponding to k . Firstly each player ( 1... )i i n=  pops the node secret share ( )i
wS  off 

the stack ( ) ( )i i
kST SK= , and then does as follows: 

①If w  is an internal node, parses 
1 2 1

( ) ( )
| | |( , ,..., , , )

n

i i
w w w w w wS R R R R SN

−
= . By execut-

ing twice intJo RVSS−  simultaneously, all players jointly generate two random 

values 0 1,w w qZρ ρ ∈ . Player i gets shares ( ) ( )
0 1,i i

w w qZρ ρ ∈ and public commits 

0 0w wR Pρ= , 1 1w wR Pρ= , ( ) ( )
0 0
j j

w wR Pρ= , ( ) ( )
1 1
j j

w wR Pρ= , where 1,...,j n= . Player 

i then computes ( ) ( ) ( )
0 0 1( 0)i i i

w w wSN SN H wρ= + , and ( ) ( ) ( )
1 1 1( 1)i i i

w w wSN SN H wρ= + . 

She erases ( )i
wS  and pushes 

1 2 1

( ) ( )
1 | | | 1 1( , ,..., , , , )

n

i i
w w w w w w wS R R R R R SN

−
=  and ( )

0
i

wS =  

1 2 1

( )
| | | 0 0( , ,..., , , , )

n

i
w w w w w wR R R R R SN

−
 onto the stack ( )iST  orderly at last. 

②If w  is a leaf, then only erases ( )i
wS . 
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(3) FTS.SIG：Input the time period k and a message M. Let 1... nw w w=  denote the 

node corresponding to period k . Firstly each participant player i reads the node secret 
share ( )i

wS  from the top of the stack ( ) ( )i i
kST SK= , and then does as follows: 

①Parses 
1 2 1

( ) ( )
| | |( , ,..., , , )

n

i i
w w w w w wS R R R R SN

−
= . All players jointly generate a random 

secret qr Z∈  by executing intJo RVSS− . Player i gets the share ( )i
qr Z∈  and 

the public commits U rP= , ( ) ( )j jU r P= , where 1,...,j n= .  

②Then player i computes 2 ( , , )MP H M k U= , ( ) ( ) ( )i i i
w MFS SN r P= + , and executes 

1

( ) ( ) ( ) ( ) ( )
1 1 1 1 | |Pr ( ; ( ), ( | ),..., ( | ), ; , ,..., , ; )

n

i i i i i
n M w wNI oof VS P H H w H w P R R R U FSεε−  in 

order to prove the part signature ( )iFS  which she provides satisfies that  
( ) ( ) ( )

1 | 11
( ) ( | )

m

ni i i
i w m Mm

FS H H w r Pα ε ρ
=

= + +∑ , and these iα , ( )
| , ( 1... )
m

i
w m nρ =  and 

( )ir  satisfy  ( )i
iR Pε α= , ( ) ( )

| | , ( 1... )
m m

i i
w wR P m nρ= = , ( ) ( )i iU r P= . If the verifica-

tion passes, it means the participant player i provides a valid part signature. 
③Any set B of t+1 players who pass the verification of NIProof-VS, then compute 

( )i
Bii B

FS C FS
∈

=∑  and publish signature <k,σ =(U, FS)> and 

| ( 1,..., )
mwR m n= . 

(4) FTS.VER：Input a message M and a signature <k,σ =(U, FS)> and 

| ( 1,..., )
mwR m n= . Let 2 ( , , )MP H M k U= . Return 1 if    

                 1 | 11
( , ) ( , ( )) ( , ( | )) ( , )

m

n

w m Mm
e P FS e Q H e R H w e U Pε

=
= ⋅ ⋅∏   

or 0, otherwise. 

4   Efficiency Comparisons 

The complexity analysis is considered in terms of T according to the method in [5]. 
Therefore, the complexity of all computations independent of T is (1)O . l′  is a secu-

rity parameter in [6, 7].  
Compare the efficiency of our scheme with the schemes against malicious adver-

sary in [6, 7] in Table 1. The running time of both key generation and key update 
algorithms in our scheme is independent of T, so the complexity is (1)O , as opposed 

to (1)O T  in [6] and (1)O l T′ in [7]. Signing and verifying in our scheme can all be 

finished in (1) logO T  time. So their costs are only linear in logT . The efficiency of 

verifying algorithm, to some extent, depends on the efficiency of pairing computation. 
With a good pairing computation algorithm, we can have an efficient verifying algo-
rithm. 

The total interactions in our scheme are the fewest in the three schemes, too. There 
is no interaction in our key generation algorithm. Key update algorithm will execute 
twice Joint-RVSS simultaneously, but only needs once interaction. In signing algo-
rithm twice interactions are needed in total, one happens in Joint-RVSS and the other 
happens in NIProof-VS. 
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Table 1. Efficiency comparisons 

 The scheme in [6] The scheme in [7] Our scheme  
(1)O T  (1)O l T′  (1)O  FTS.GEN time  

and interactions 0 1 0 
(1)O T  (1)O l T′  (1)O  FTS.UPD time  

and interactions 1 2 1 
(1)O T  (1)O l T′  (1)logO T  FTS.SIG time  

and interactions 2l′  2 2 
FTS.VER time (1)O T  (1)O l T′  (1)logO T  

5   Security Analysis 

Theorem 2. Let 1 2 1 2( , , , , , , , , )PK G G e P Q l H H H=  and ( ) ( )
0 ( 1... )i iSK S i nε= =  be the 

public key and the shares generated by FTS.GEN, respectively; Let the shares of 
secret key be updated by FTS.UPD; Let , ( , )k U FSσ< = >  and | ( 1,..., )

mwR m n=  be a 

signature generated by FTS.SIG on input a message M for period k. Then 
FTS.VER(M, <k,(U,FS)>=1. 

Proof 

          

1 | 11

1 | 11

1 | 11

1 | 11

( , ) ( , ( )) ( , ( | )) ( , )

             ( , ( )) ( , ( | )) ( , )

             ( , ( )) ( , ( | )) ( , )

             ( , ( ) ( | )

m

m

m

m

n

w m Mm
n

w m Mm
n

w m Mm
n

w mm

e P FS e Q H e R H w e U P

e P H e P H w e rP P

e P H e P H w e P rP

e P H H w

ε
α ε ρ

α ε ρ
α ε ρ

=

=

=

=

= ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅
= +

∏
∏
∏
∑

( ) ( )
1 1|1

( )

)

             ( , ( ( ) ( | ) ))
             ( , )
             ( , )

m

M
n i i

Bi i Bi m Bi Mwi B m
i

Bii B

rP

e P C H C H w C r P
e P C FS
e P FS

α ε ρ
∈ =

∈

+
= + +
=
=

∑ ∑
∑

          

Theorem 3. The FTS scheme is a key-evolving (t,s,n) -threshold signature scheme 
against malicious adversary for 1s t≥ + , 2 1n t≥ + . 
 
Proof. (Sketch) It is because NIProof-VS and Joint-RVSS protocols can detect the 
dishonest players in the protocol and s honest players can make FTS.UPD and 
FTS.SIG algorithms be executed properly for 1s t≥ + , 2 1n t≥ + . According to theo-
rem 2, the scheme can tolerant a malicious adversary corrupting t players.  

Theorem 4. The FTS(t,s,n) scheme is a forward secure threshold signature scheme in 
the random oracle model in the presence of malicious adversary for 1s t≥ + , 

2 1n t≥ + . 
 
Proof. (Sketch) The security of our threshold scheme is based on CDH assumption. 
Because FS.PKE [5] is forward secure, assuming that CDH problem is hard, we only 
need prove our scheme is forward secure as long as FS.PKE  is forward secure. 
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Let F be an adversary working against the security of FTS. F runs in three stages: 
the chosen-message attack phase, cma; the over-threshold phase, overthreshold; and 
the forgery phase, forge. We want to construct an algorithm I against the security of 

.FS PKE  using F as a subroutine. I works in three stages: the chosen-message attack 
phase, cma; the break-in phase, breakin; and the forgery phase, forge. I has access to 
both a singing oracle SIG′  and a hashing oracle 2H ′ .  

In the cma phase, F is allowed to make queries to a signing oracle .FTS SIG  and a 
hash oracle 2H . Therefore, we need to simulate both of these oracles. In doing so, we 

have to simulate F’s view FVIEW  of the protocol. W.l.o.g. assume that the adversary 

F corrupts players 1...t . 
The simulation of FVIEW  in FTS.GEN: Because ( )f x  is a random polynomial in 

qZ , iα  is a random value in qZ . That is, ( )iSNε  is distributed uniformly in 1G . We 

can pick values for ( 1... )i i tα =  at random from qZ . And then compute ( )iSNε , ( )iRε  

( 1... )i t= . For each ( ) ( 1... )jR j t nε = + , compute ( )jRε = j Pα = ,0 ,1
( )

t

j j i ii
Pλ α λ α

=
⋅ + ⋅∑  

= ( )
,0 ,1

t i
j j ii

Q Rελ λ
=

+ ⋅∑ , where ,j iλ  is computable Lagrange interpolation coefficient.  

The simulation of FVIEW  in FTS.UPD: Because the shares of secrets 0 1,w wρ ρ  are 

distributed uniformly in qZ , we can pick random values ( ) ( )
0 1, ( 1... )i i

w w i tρ ρ =  in qZ  for 

F. It is easy to compute ( ) ( )
1 0,i i

w wSN SN  and provide them to F. According to the security 

proof of intJo RVSS− , taking as input 0 1,w wR R , we can simulate the intJo RVSS−  

protocol to get FVIEW  including ( ) ( )
0 1, ( 1... )i i

w wR R i n=  in this protocol.  
The simulation of signing oracle FTS.SIG: For each query <M, k> made by F, 

query SIG′  oracle and get signature <k, (U, FS)>. Then return  <k, (U, FS)> to F as 
the answer to her signing query. 

The simulation of 2H  hash oracle: For each query (M, k, U) made by F, query 2H ′  
oracle, and then give the answer to F directly. 

The simulation of FVIEW  in FTS.SIG: For a message <M, k>, take as input U got 
from query FTS.SIG oracle to simulate the Joint-RVSS protocol, therefore, we can get 

FVIEW  including ( ) ( )i iU r P= ( 1... )i n=  in the protocol. 2 ( , , )H M k U  can be got by 

querying 2H  hash oracle and ( 1... )iFS i t=  can be computed according to ( 1... )ir i t= . 
( )i
wSN  and ( )i

wR ( 1... )i t=  can be got from simulation of FTS.UPD. With FS obtained 

from the query of the signing oracle FTS.SIG, we can compute ( 1... )iFS i t n= +  
which F views by the same means of Lagrange interpolation in simulation of 
FTS.UPD. Simulate the NIProof-VS protocol at last. 

In the break-in stage: When F has finished cma stage and decides to switch to over-
threshold stage b, we run I in break-in stage. So we can get current secret key bSK  
and provide it to F. 

In forge stage: When F finishes her break-in stage, she can construct a forged sig-
nature , ( , )k U FS< >  and | ( 1,..., )

mwR m n=  for ,M k< > , ( )k b<  to I. Finally, I out-

puts , ( , )k U FS< >  and | ( 1,..., )
mwR m n=  as her forgery. 
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It means that there must be an algorithm I against the forward security of FS.PKE if 
there exists an adversary F working against the forward security of our FTS  scheme. 
When CDH problem is hard, FS.PKE is forward secure according to the security 
theorem 1 in [5]. In another word, there is no PPT algorithm against the forward secu-
rity of FS.PKE. So there is no PPT adversary against the forward security of the FTS 
scheme. According to definition 2 and theorem 3, the FTS(t,s,n) scheme is a forward 
secure threshold signature scheme in the random oracle model in the presence of 
malicious adversary for 1s t≥ + , 2 1n t≥ + .   

6   Further Discussion 

(1) Proactive security 
We can add proactive security to this scheme. Proactive secret sharing has been pre-
sented in [12]. In the paradigm, shares are periodically renewed without change the 
secret key. Therefore, the shares got by the adversary in one period are useless after 
they are renewed. Nikov and Nikova [13] point out scheme [12] is insecure against a 
mobile adversary. We can apply similar method to this scheme to get proactive secu-
rity against static adversary. Because of limited space, the concrete content is ne-
glected here.  

 

(2) Storage space 
In this scheme, the secret share size and the signature size are not independent to the 
total time periods T, but have logT complexities. Fortunately, our scheme is based on 
the bilinear parings that are constructed from certain elliptic curve. Thus the scheme 
works on a small finite field and has smaller storage space than other schemes as long 
as the total number of time periods is not very large. 

7   Conclusion 

A forward secure threshold signature scheme from bilinear pairings is given in this 
paper, which is the extended version of [14]. The scheme is very efficient and needs 
very few interactions. As an additional result, we present an interactive zero-
knowledge proof protocol and convert it into a non-interactive protocol in order to 
verify the validity of part signatures in the scheme. The scheme is robust and forward 
secure assuming CDH problem is hard. 
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