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Abstract. The paper researches a class of nonlinear integer program-
ming problems the objective function of which is the sum of the products
of some nonnegative linear functions in the given rectangle and the con-
straint functions of which are all linear as well as strategy variables of
which are all integer ones. We give a linear programming relax-PSO hy-
brid bound algorithm for solving the problem. The lower bound of the op-
timal value of the problem is determined by solving a linear programming
relax which is obtained through equally converting the objective function
into the exponential-logarithmic composite function and linearly lower
approximating each exponential function and each logarithmic function
over the rectangles. The upper bound of the optimal value and the feasi-
ble solution of it are found and renewed with particle swarm optimization
(PSO). It is shown by the numerical results that the linear programming
relax-PSO hybrid bound algorithm is better than the branch-and-bound
algorithm in the computational scale and the computational time and
the computational precision and overcomes the convergent difficulty of
PSO.

1 Introduction

Integer programming problems are encountered in a variety of areas, such as
capital budgeting [6], computer-aided layout design [7], portfolio selection [8],
site selection for electric message systems [9] and shared fixed costs [10] etc. The
methods for solving the Integer programming problems have mainly method of
dynamic programming, branch and bound method, the method of computational
intelligence [1,2,3,11,12, 13].
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In the paper, we consider a class of nonlinear integer programming problems
below: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

min φ(x) =
t∑

i=1

p∏

j=1

(cT
ijx + dij)

s.t. Ax ≤ b,
x ∈ Zn ∩ [l, u].

(1)

where t, pi ∈ Z+ − {0},
t∏

i=1

pi ≥ 2, p =
t∏

i=1

pi;dij ∈ R+,cij = (cij1, cij2, · · ·,

cijn)T ∈ Rn
+, in R = [l, u], A = (aij)m×n ∈ Rm×n,b ∈ R. Z is noted as the

set which consist of all the integers, l,u ∈ Zn.
We will give a new linear programming relax-PSO hybrid bound algorithm of

the problem (1) by making use of branch-and-bound method (BBA) and PSO.
It will be shown by the numerical results that the algorithm to be proposed is
better than BBA in the computational scale and the computational time and
the computational precisionand that it overcomes the convergent difficulty of
PSO. In Section 2, we give a linear relaxed approximation so as to determine a
lower bound of the optimal value of the problem (1). In Section 3, we give a PSO
algorithm based on the penalty function of the problem (1) so as to find and
renew the feasible solutions and the upper bound of the problem (1). In Section
4, the numerical computation is done so as to test the property of the proposed
algorithm. Section 5 is conclusions.

2 Linear Programming Relaxed Approximation

Firstly, we convert equally the problem (1) into the non-linear integer program-
ming problem below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min φ =
t∑

i=1

exp(
pi∑

j=1

log(cT
ijx + dij))

s.t. Ax ≤ b,
x ∈ Zn ∩ [l, u].

(2)

Secondly,the problem(2) is continuously relaxed to the problem below:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min φ =
t∑

i=1

exp(
pi∑

j=1

log(
n∑

k=1

cijkxk + dij))

s.t. Ax ≤ b,
x ∈ [l, u].

(3)

For i = 1, 2, · · · , t, j = 1, 2, · · · , pi, let φij = log yij ,where yij = cT
ijx + dij =

n∑

k=1

cijxk + dij . From x ∈ [l, u], yij ∈ [lij , uij ],where

lij =
n∑

k=1

min{cijklk, cijkuk} + dij , (4a)
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lij =
n∑

k=1

max{cijklk, cijkuk} + dij , (4b)

Because log(yij) is a strictly increase concave function in (0, +∞), it can be
seen that the convex envelope of φij over [lij , uij ] is a line which is through
two points (lij , log(lij)),(uij , log(uij)), i.e. the line is the best lower approximate
linear function of φij in [lij , uij ]:

zij =
log(uij) − log(lij)

uij − lij
(yij − lij) + log(lij) = cijyij + dij . (5)

where

cij =
log(uij) − log(lij)

uij − lij
, (6)

dij =
uij log(lij) − lij log(uij)

uij − lij
. (7)

Let li =
pi∑

j=1

log(lij), ui =
pi∑

j=1

log(uij), zi =
pi∑

j=1

log(zij),ψi = exp(zi). Because

exp(zi) is a strictly increasing convex function in (−∞, +∞), so the best lower
approximate linear function of ψi on zi in [li, ui] is a line through two points
(li, exp(li)) and (ui, exp(ui)) and tangents with ψi = exp(zi), i.e. it is the linear
function lli(zi) = cizi + di,where

ci =
exp(ui) − exp(li)

ui − li
, (8)

di =
exp(ui) − exp(li)

ui − li
(1 − log(

exp(ui) − exp(li)
ui − li

, )). (9)

So, we obtain a lower approximate linear function of ψ on z = (z1, z1, · · · , zt)
over [li, ui] where l = (l1, l2, · · · , lt, ) and u = (u1, u2, · · · , ut, ):

ω =
t∑

i=1

lli(zi). (10)

Thus, the linear programming relaxed approximation of the problem(1) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ω =
t∑

i=1

lli(zi)

s.t. Ax ≤ b,

zi =
pi∑

j=1

zij , i = 1, 2, · · · , t,

zij = cijyij + dij , i = 1, 2, · · · , t, j = 1, 2, ..., pi,
yij = cT

ijyij + dij , i = 1, 2, · · · , t, j = 1, 2, ..., pi,
x ∈ [l, u].

(11)

Obviously, the optional value of the problem(11) is sure to be a lower bound
of the problem(1).
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3 A PSO Algorithm Based on The Penalty Function

The particle swarm optimization algorithm (PSO) is a kind of computational
intelligent which is put forward by Kenney and Eberhart etc. in 1995 and has
global optimization property but is not proven in convergence[11,12,13]. We only
give a PSO algorithm based on the penalty function.

Firstly,we give a penalty function of the problem(1) below:

p(x) = φ(x) + M(
m∑

i=1

| min{0, bi −
n∑

j=i

aijxj} |) (12)

where the penalty coefficient M > 0 can be any number large enough.
Nc represents the biggest iteration of PSO, Mc represents the particle number

in particle swarm, psb represents the best position by which a particle swarm has
gone so far and pgb represents the best position by which all the xgb represents
the best feasible position in the particle swarm at present. V i

max represents the
biggest velocity of a particle xi.

The PSO algorithm based on the penalty function(IP-PSO) is described be-
low:

Step1. Set t = 1, M = 1000, Nc = 100.Produce randomly a particle swarm in
Scale Mc.The initial position of each particle xi is xij(0)(j = 1, 2, · · · , n) and
the initial velocity is vij(j = 1, 2, · · · , n), compute each particle’s fitness and
determine psb and pgb and xgb.

Step2. Set t = t + 1. For each particle from the next formula:
⎧
⎨

⎩

vij = wvij + ciri(pij − xij) + c2r2(pgj − xij)
xij = xij + vij

i = 1, 2, · · · , Mc, j = 1, 2, · · · , n.
(13)

where w ∈ [0.2, 1.2] is inertia weight, c1 = 2, c2 = 1.7 are acceleration constants,
r1, r2 are two random functions over [0,1].If vij > V i

max in (13), then vij = V i
max.

Renew psb and pgb as well as xgb.

Step3. If t = Nc, outcome the best particle xopt = xgb; else, go to Step2.
All the coefficients in the IP-PSO are determined through the numerical test

in Section 5 and the IP-PSO can find better feasible solution and better upper
bound of the problem(1).

4 Description of Linear Programming Relax-PSO Hybrid
Bound Algorithm

In the section,we describe a linear programming relax-PSO hybrid bound al-
gorithm (BB-PSO-HA). In the algorithm,branching procedure is simple integer
rectangle two-partitioning one and lower bounding procedure needs solving the
problem(11) in each sub-rectangle as well as upper bounding procedure needs
the algorithm IP-PSO.
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BB-PSO-HA
Step0.(Initialization) k := 0, Ω = {R}. Solve the problem(12), and determine
the lower bound LB of the problem(1). Use Algorithm IP-PSO to determine the
best feasible solution xbest so far.
Stepk.(k = 1, 2, · · ·)

k1(termination) If Ω = Φ or UB−LB
UB < Eps, then outcome zopt, Optv = UB.

k2(Selection Rule) In Ω, find a rectangle Rk such that LB(Rk).
k3(Branching Rule) Partition Rk into two sub-rectangle with rectangle simple

two equally-partition technique,and reduce each sub-rectangle to make vertex
point integer, and obtain two integer sub-rectangle Rk1 and Rk2. Set Ω = (Ω −
Rk) ∪ {Rk+1,1, Rk+1,2}

k4(Lower Bounding) Solve the problem(11) in Rk+1,1 and Rk+1,2 respectively
so as to renew LB.

k5(Upper Bounding) Solve the problem(1) in Rk+1,1 and Rk+1,2 respectively
with IP-PSO to renew xbest and UB = φ(xbest).

k6(deleting Rule) Ω = Ω − {R ∈ Ω : LB(R) ≥ UB}, k = k + 1, go to k1.

5 Numerical Analysis

In the problem(1), let t = 1, p1 = n, cn
ijx = cixi, then, we obtain the next

example:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ω =
n∏

i=1

(cixi + di)

s.t.
n∑

i=1

aixi ≤ b,

xi ∈ [1, 20],
xi ∈ Z,
i = 1, 2, · · · , n.

(14)

where ci ∈ [−20, 20], di ∈ [21, 52], ai ∈ [0, 50], b = 1.2sum(a) =
n∑

i=1

ai.

The procedures of BBA and BB-PSO-HA are compiled with Matlab7.0.1 in
personal computer DELL-P4-Intel1865-512MB. We produce randomly twenty
examples for the problems (14) in n=60,100,150,200,300,500,800,1000,1500,2000.
and solve the examples with BBA and BB-PSO-HA respectively. The results
of the numerical computation are seen at Table1-Table2 where Ex1=Eps1 =
10−4 and Ex2=Eps2 = 10−5 . “Iteration” and “Cputime” are noted as the
iteration times and computational time respectively. “Avg, Max, Min” are noted
as the iteration times and computational time of “average, maximum, minimum”
respectively.

It is shown by the numerical results from Table 1 and Table 2 that BB-
PSO-HA is better than BBA in computational scale, computational time and
computational precision.
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Table 1.

BBAEx1
Iteration Cputime(Seconds)

n Avg Max Min Avg Max MIN
60 7000 10000 1 472.2 1035.8 0.09
100 7580 10000 1 674.9 1331.5 0.07
150 7211 10000 1 844.7 2574.9 0.15
200 6776 10000 1 840.5 3206.8 0.29
300 8366 10000 1 1793.9 5450 0.2
500 6298 10000 3 2405.8 8278.6 0.64
800 5288 10000 2 4491.6 8611 0.98
1000 4357 10000 432 4143.4 22135 181
1500 * * * * * *

* * * * * * *

Table 2.

BBA-PSOEx2
Iteration Cputime(Seconds)

n Avg Max Min Avg Max MIN
60 25 166 1 274.9 1814.8 9.8
100 8 75 1 142.8 1488.4 17
150 16 164 1 449.3 4546 30
180 11 175 1 171.9 2379.8 30
200 18 160 1 635.7 5797.7 32.5
300 14 178 1 451.2 3947.8 49.5
500 15 144 1 1017.3 9394.1 65.3
800 4 43 1 594.2 6732.6 137.5
1000 18 256 1 3493.1 50020 133.2
1500 2 5 1 297.8 1003.2 199.5
2000 5 50 1 3057.3 41250 271.2

6 Conclusion

We give a new linear programming relax-PSO hybrid bound algorithm for solving
a class of nonlinear integer programming problems. The lower bound of the
optimal value of the problem is determined by solving a linear programming
relax which is obtained through equally converting the objective function into
the exponential-logarithmic composite function and lower approximating each
exponential function and each logarithmic function with the best linear function.
The upper bound of the optimal value and the feasible solution of it are found
and renewed with PSO.
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It is shown by the numerical results that the linear programming relax-PSO
hybrid bound algorithm is better than BBA in computational scale, computa-
tional time and computational precision and overcomes the convergent difficulty
of PSO.
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