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Abstract. The paper presents a two-phase quantum based evolution
algorithm for multiple sequence alignment problem,called TPQEAlign.
TPQEAlign uses a new probabilistic representation, qubit, that can
represent a linear superposition of individuals of solutions. Combined
with strategy for the optimization of initial search space, TPQEAilgn is
proposed as follows. It consists of two phases. In the first phase, a
promising initial value is searched and stored. Each local group has a
different value of qubit from other local groups to explore a different
search space each. In the second phase, we initialize the population
using the stored resulting obtained in the first phase. The effectiveness
and performance of TPQEAlign are demonstrated by testing cases in
BAliBASE. Comparisons were made with the experimental results of
QEAlign and several popular programs, such as CLUSTALX and SAGA.
The experiments show that TPQEAlign is efficient and competent with
CLUSTALX and SAGA.

1 Introduction

Multiple Sequence Alignment (MSA) is one of the challenging tasks in
bioinformatics. It is computationally difficult and has diverse applications in
sequence assembly, sequence annotation, structural and functional predictions
for genes and proteins, phylogeny and evolutionary analysis. Multiple sequence
alignment algorithms may be classified into three classes [1].

The first class is those algorithms that use high quality heuristics very close
to optimality [2]. They can only handle a small number of sequences and limited
to the sum-of-pairs objective function.

The second class is those algorithms that use the progressive alignment strat-
egy. A multiple alignment is gradually built up by aligning the closest pair of
sequences first and then aligning the next closest pair of sequences, or one se-
quence with a set of aligned sequences or two sets of aligned sequences. This
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procedure is repeated until all given sequences are aligned together. The best-
known system based on progressive multiple alignment is perhaps CLUSTALW.
Other multiple alignment systems that are mostly targeting proteins or short
DNA sequences, and based on progressive alignment, include MULTALIGN [3],
T-COFFEE [4], MAFFT [5], MUSCLE [6], Align-m60 [7], and PROBCONS [8].

The third class of alignment algorithms using iterative refinement strategy
can avoid the above problem by aligning these sequences simultaneously. The
basic idea is to adopt the evolution theory in nature, initializing a population
of individuals of alignments, and then refining these individuals evaluated by
an objective function generation by generation, until finding the best alignment.
Based on this strategy, SAGA [9], with DIALIGN [10] has become the popular
method for multiple alignments.

However, these methods still share some problems, such as local optima, slow
convergent speed and lacking a specific termination condition, especially for
iterative methods. Some are not flexible enough to capture the full complexity
of the similarities between biological sequences.

Quantum evolution algorithm (QEA) is one of the fields of research of
Quantum computing. It combines the probabilistic algorithm and quantum
algorithm. Kuk-Hym Han has analyzed the characteristics of QEA and showed
that QEA can successfully solve the knapsack problem [11]. We try to go one
step further and to redesign QEA to solve MSA. We import a variation operator
from Genetic Algorithm in QEA, since the representation of the MSA is much
more complicated than the knapsack problem.

The paper presents a new Two-Phase Quantum based Evolution Algorithm for
multiple sequence alignment, called TPQEAlign - a result of our research on re-
designing QEA to solve MSA. The effectiveness and performance of TPQEAlign
are demonstrated by testing cases in BAliBASE [12].

2 Multiple Sequence Alignment

Given a finite alphabet set and a set S = (S1, S2, ..., Sn) of n sequences with
length l1, l2, ..., ln, respectively: Si = Si1Si2... Sil,1 ≤ i ≤ n, Sij ∈

∑
,1 ≤ j ≤

li) where consists of four characters for DNA sequences, and twenty characters
of amino acids for protein sequences, a multiple alignment of S is specified by a
n × l matrix M = (aij), 1 ≤ i ≤ n, 1 ≤ j ≤ l, l ≥ max(li), satisfying:

i) aij ∈
∑

∪ {-}, where ”-” denotes the gap letter;
ii) each row ai = ai1ai2...ail, 1 ≤ i ≤ n, of M is exactly the corresponding

sequence Si, if we remove all gap letters;
iii) no column in M contains only gaps.

We can estimate the quality of an alignment by scoring the alignment. The
goal of the multiple sequence alignment is to find the optimal alignment that
maximizes the score.
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3 Algorithms

3.1 Representation

The quantum-inspired evolutionary algorithm deals more efficiently with the
balance between exploration and exploitation than traditional genetic algorithm.
It explores the search space with a smaller number of individual and a global
solution within a shorter span of time.

In quantum computing, the smallest unit of information stored in a two-state
quantum.

[
u
v

]

where u and v express the probability amplitudes of the ”0” state and the ”1”
state, respectively. The linear combination of the two basic vectors |0> and |1>
can be represented as u|0> + v|1> satisfying the following equation:

|u|2 + |v|2 = 1 (1)

where the probability that the state is measured as basis vector |0> is the square
of the norm of the amplitude and the probability that the state is measured as
basis vector |1> is the square of the norm of the amplitude, denoted by |u|2 and
|v|2, respectively.

A qubit may be in the 1 state, in the 0 state, or in a linear superposition
of both states. If there is, for instance, a four-qubits system with four pairs of
amplitudes such as

M =
[

u1 u2 u3 u4
v1 v2 v3 v4

]
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then the state of the 4-qubits system can be represented as

1
4
√

3
|0000 > +

1
4
|0001 > − 1

4
√

3
|0010 > +

1
2
√

6
|0100 > +

1
4
√

3
|1000 > +

1
2
√

6
|1100 > − 1

4
√

3
|1010 > +

1
4
|1001 > −

1
2
√

6
|0110 > +

1
2
√

2
|0101 > −1

4
|0011 > − 1

2
√

2
|0111 > −

1
4
|1011 > − 1

2
√

6
|1110 > +

1
2
√

2
|1101 > − 1

2
√

2
|1111 >

The probabilities to reach 16 states |0000>, |0001>, |0010>, |0100>, |1000>,
|1100>, |1010>, |1001>, |0110>, |0101>, |0011>, |0111>, |1011>, |1110>,
|1101>, |1111>, are 1
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8 , respectively. Thus, there are possible 2n states in a system, in which the
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states are described by n bits. The system M performs a superposition of the
four states on each bit independently in sequence and changes the state of the
system. Thus, a 4-qubits system comprises the information of 16 states.

For multiple sequence alignment problem, if an alignment of k sequences with
the length of N is represented using binary string, it needs a space of k ∗ N
binary bits. k ∗ N qubits are used to represent the alignment, which is called
qubit alignment individual, denoted by Align-qubit for short.

If, for instance, three sequences abcd, ac, abd are to be aligned,Align-qubit
is as follows, where k = 3 and N = 5 which is the ceiling of 1.2*4, and 4 is
the maximum length of the initial sequences. It contains the information of 215

binary states.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u11 u12 u13 u14 u15
v11 v12 v13 v14 v15
u21 u22 u23 u24 u25
v21 v22 v23 v24 v25
u31 u32 u33 u34 u35
v31 v32 v33 v34 v35

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The following binary state represents an alignment as:
⎡

⎣
0 0 0 0 1
0 1 0 1 1
0 0 1 0 1

⎤

⎦−→
a b c d −
a − c − −
a b − d −

Binary states that represent a valid binary coding for any alignment are called
binary individuals. An Align-qubit individual contains the information of many
binary individuals.

3.2 Multiple Sequence Alignment by Quantum Evolutionary
Algorithm

QEAlign involves a population consisted of Align-qubit individuals, which can
be driven by Q-gate and can collapse to be binary individuals decoded to
alignments. Initially, A population of Align-qubit individuals Q(0) is initialized
randomly and gives the initial binary individuals P(0) and B(0). In the
evolutionary process, the old Align-qubit individuals Q(t-1) is driven by Q-gate
to generate the new Align-qubit individuals Q(t), from which generating the new
binary individuals P(t) which are optimized by an mutation operator. The binary
individuals among P(t) and B(t-1) are evaluated for the fitness value and the best
binary individuals among them is stored to B(t). The binary individuals in B(t) is
migrated locally or globally under local migration condition or global migration
condition, respectively. Then the best binary individual evaluated among B(t)
is saved to b. These steps are repeated iteratively, generation by generation. In
each generation, good binary individuals survive and bad binary individuals are
discarded. The fitness value of b is increased until no more improvement can be
made.
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All these steps can be grouped as the procedure QEAlign:

Procedure QEAlign
1 t ← 0
2 initialize Q(t)
3 construct P(t) by collapsing the states of Q(t)
4 repair P(t)
5 evaluate P(t)
6 store the best solutions among P(t) into B(t)
7 while (not termination-condition) do
8 t ← t + 1
9 update Q(t)using Q-gates
10 construct P(t) by collapsing the states of Q(t)
11 repair P(t)
12 mutation P(t)
13 evaluate P(t) and B(t-1)
14 store the best solutions among B(t-1)and P(t) into B(t)
15 store the best solution b among B(t)
16 if (migration-condition)
17 then migrate b or bt

j to B(t) locally endif
18 endwhile

The termination condition is that b is not improved after bmax times of loops
or the number of loops is larger than the given number.

The following in this part is the introduction to the main operations in
QEAlign.

Collapsing the states of Q(t) is to construct binary states. In this step, each
binary bit of a binary state is set according to the corresponding qubit of Align-
qubit individual. For every bit of each binary state, a random number between
0 and 1 is generated, and if the random number is satisfied that random(0,1)
< |βij |2, then the bit of this binary state is set to 1, otherwise 0. This process is
implemented by the procedure CONSTRUCT(x), where x is a binary state.

Procedure CONSTRUCT(x)
1 i ← 0
2 while (i < nseqs) do
3 j ← 0
4 while (j < alnlength) do
5 if random(0,1) < |βij |2 then xij ← 1
6 else xij ← 0 endif
7 j ← j + 1
8 endwhile
9 i ← i + 1
10 endwhile
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Repair operation is to transform the binary states into be binary individuals
such that the number of gaps inserted into any one of the sequences is just equal
to N − ni.

Update operation is to update Align-qubit individuals in Q(t) by Q-gate. A Q-
gate is acted as a variation operator in QEAlign, the updated Align-qubit should
satisfy the normalization condition, |u′|2 + |v′|2 = 1, by the Q-gate operation,
where u′ and v′ are the values of updated Align-qubit.

In the QEAlign, the following rotation gate is used as Q-gate:

U(Δθij) =
[

cos(Δθij) −sin(Δθij)
sin(Δθij) cos(Δθij)

]

(3)

Procedure REPAIR(x)
1 i ← 0
2 while (i < nseqs) do
3 gapcount ← aln seqlen
4 while (gapnum < gapcount) do
5 k ← randint(0, aln length)
6 if (xik = 0) then xik ← 1 endif
7 endwhile
8 while (gapnum > gapcount) do
9 k ← randint(0, aln length)
10 if (xik = 1) then xik ← 0endif
11 endwhile
12 i ← i + 1
13 endwhile

and the lookup table of Δθij is given in Table1.

Table 1. Lookup table of Δθij

xij bij fCscore(xj) ≥ Δθij

0 0 false θ1

0 0 true θ2

0 1 false θ3

0 1 true θ4

1 0 false θ5

1 0 true θ6

1 1 false θ7

1 1 true θ8

where Δθij is the function of xij , bij , and the expression f(xj) ≥ f(bj), and
xij is the j-th bit of the i-th sequence of the binary solution xt

k in P(t), bij is
the j-th bit of the i-th sequence of the binary solution bt

k in B(t), and bij is
the rotation angle of the the j-th qubit of the i-th row of the qubit individual
qt
k in Q(t). fCscore(xj) is the j-th Cscore of the alignment represented by xt

k

and fCscore(bj) is the j-th Cscore of the alignment represented by bt
k. fCscore is

computed as follows.
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fCscore(xj) = Cscore(s
′

1,i, s
′

2,i, ..., s
′

k,i) =
∑

1≤p≤q≤k

Pscore(s
′

p,i, s
′

q,i) (4)

where s
′

1,i, s
′

2,i, ..., s
′

k,i is the column of the alignment decoded from x.The pro-
cess of updating is implemented by the procedure UPDATE:

Procedure UPDATE Q(q)
1 i ← 0
2 while (i < nseqs) do
3 j ← 0
4 while (j < alnlength) do
5 determine Δθij according to table 1
6 [α

′

ij , β
′

ij ] ← U(Δθij)[αij , βij ]T

7 j ← j + 1
8 endwhile
9 i ← i + 1
10 endwhile

QEAlign imports an optional operator (mutation). This operator acts as op-
timizing the binary individuals. When optimizing a binary individual, we first
decode it to be an alignment, then randomly select a block of subsequences,
from which generating the template sequence by consisting of the characters
with the highest frequency of each column of the subsequences. Template se-
quence is aligned with each of subsequences by banded-dynamic programming,
in which the gaps in each subsequence must be deleted in advance, and template
sequences are not inserted gaps when aligning. It is described in the procedure
MUTATION(x), where x is a binary individual.

Procedure MUTATION(x)
1 Decode x to a alignment
2 Select sub-sequences
3 Find template sequence
4 i ← 0
5 while (i < nseqs) do
6 align template sequence and sub-sequence by banded-DP
7 insert sub-sequence in alignment
8 i ← i + 1
9 endwhile

A migration in QEAlign is a process of copying bt
k in B(t) or b to B(t). A

global migration is implemented by replaced all the solution in B(t) by b, and a
local migration is implemented by replaced some of the solutions in B(t) by the
best one of them.

The process of migration is described as the procedure MIGRATION.
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Procedure MIGRATION(B(t))
1 divided B(t) into several groups
2 if (global migration condition)
3 then copy b to B(t)
4 else if(local migration condition)
5 then for each group in B(t) do
6 find the best bt

k in B(t)
7 copy bt

k to the group
8 endfor
9 endif
10 endif

3.3 Two-Phase QEAlign

It has been verified that changing the initial values of qubits can provide bet-
ter performance of QEA. Since the initial search space is directly determined
by the initial values of qubits, the qubit individuals can converge to the best
solution effectively if we can seek the initial values of qubits to show the initial
search space with small distance to the best solution. Combined with the strat-
egy, TPQEAilgn is proposed as follows.

Procedure TPQEAlign
1 First-phase QEAlign
2 Second-phase QEAlign

In the first phase of TPQEAlign, all the initial qubit individuals are divided
into multiple groups, the initial values of qubit individuals in the same group
are initialized as the same value and in different group the initial values are
different. In the g-th local group, the initial values of qubits can be decided by
the following formula:

[
ug

vg

]

=

⎡

⎣

√
(1−2δ)
Ng−1 g + δ

√
1 − (1−2δ)

Ng−1 g − δ

⎤

⎦ (5)

where Ng is the total number of groups, δ, 0 < δ << 1, a constant. The first
phase of TPQEAlign runs without global migration. At the end of the first phase
of TPQEAlign, the initial value of qubit individual with the highest fitness is
recorded. In the second phase of TPQEAlign, all the initial value of Q(0) is
initialized by the recorded value. Then we got a two-phase QEAlign by using
the above QEAlign and the idea of TPQEAlign.

4 Experimental Results

The TPQEAlign algorithm was tested on the BAliBASE, a standard Benchmark.
And we use SPS to assess the alignment. The following parameters are used in
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the QEAlign algorithm: population = 100, local group = 5, θi, i =1, ... , 8, is
given in Table 2. The global migration condition is 100, and the local migration
condition is 1.

Table 2. The value of θ

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

-0.4π -0.6π 0.0π 0.1π 0.5π -0.5π 0.2π 0.5π

Multiple alignment comparisons among CLUSTALW, SAGA, TPQEAlign,
and QEAlign with Ref1 through Ref5 are shown in Table 3∼7, where ”F” is
used to represent the fail alignment.

Table 3. Multiple alignment comparison among CLUSTALW, SAGA, TPQEAlign,
and QEAlign with Ref1

Name ID CLUSTALX SAGA TPQEAlign QEAlign
1idv 14% 0.705 0.342 0.344 0.194

1havA 15% 0.446 0.411 0.160 0.150
1dox 46% 0.919 0.879 0.835 0.821
1fmb 49% 0.981 0.979 0.948 0.823
2fxb 51% 0.945 0.951 0.956 0.878
9rnt 57% 0.974 0.965 0.915 0.885
11ed 43% 0.946 0.923 0.741 0.702
1ppn 46% 0.989 0.983 0.863 0.847

Table 4. Multiple alignment comparison among CLUSTALW, SAGA, TPQEAlign,
and QEAlign with Ref2

Name ID CLUSTALX SAGA TPQEAlign QEAlign
1aboA 26% 0.650 0.489 0.461 0.347
1idy 28% 0.515 0.548 0.580 0.535
1csy 29% 0.154 0.154 0.581 0.537
1r69 26% 0.675 0.475 0.594 0.587

1tvxA 34% 0.552 0.448 0.630 0.633
1tgxA 35% 0.727 0.773 0.541 0.529
1ubi 32% 0.482 0.492 0.618 0.609
4enl 48% 0.375 0.739 0.745 0.703

Of all the proposed methods, CLUSTALX and SAGA are the most popular
methods. Table4 shows that QEAlign and TPQEAlign are better than most of
the presented popular aligning methods from Ref2 to Ref4 and not as good as
these methods for Ref1 and Ref5. Compared with SAGA, QEAlign is much sim-
pler. It updates the qubit individuals only by one variation operator, while SAGA
has operators as many as 22. Moreover, QEA does not need a lot of individuals
to search the global optional solution, owing to its qubit representation.
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Table 5. Multiple alignment comparison among CLUSTALW, SAGA, TPQEAlign,
and QEAlign with Ref3

Name ID CLUSTALX SAGA TPQEAlign QEAlign
1idv 20% 0.273 0.364 0.568 0.447
1r69 19% 0.524 0.534 0.416 0.363
1ubi 20% 0.146 0.585 0.351 0.252
1wit 22% 0.565 0.484 0.480 0.432
1ped 32% 0.627 0.646 0.585 0.482
2mvr 24% 0.538 0.494 0.225 0.219
4enl 41% 0.547 0.672 0.569 0.562

Table 6. Multiple alignment comparison among CLUSTALW, SAGA, TPQEAlign,
and QEAlign with Ref4

Name ID CLUSTALX SAGA TPQEAlign QEAlign
1pvsA 29% F 0.250 0.352 0.273
1ckaA 19% F 0.375 0.452 0.349
11kl 28% 1.000 F 0.429 0.354
1vcc 36% 0.485 0.485 0.584 0.524
2abk 30% F F 0.490 0.470

kinasel 28% F F 0.377 0.340

Table 7. Multiple alignment comparison among CLUSTALW, SAGA, TPQEAlign,
and QEAlign with Ref5

Name ID CLUSTALX SAGA TPQEAlign QEAlign
1pvsA 25% 0.429 0.429 0.270 0.301
1qpg 35% 1.000 0.521 0.605 0.594

1thm1 32% 0.412 0.765 0.483 0.413
1thm2 38% 0.774 0.774 0.554 0.539
S51 21% 0.938 0.831 0.363 0.353
S52 29% 1.000 1.000 0.573 0.542

kinasel 26% 0.806 0.484 0.520 0.503

5 Conclusions and Future Work

The above analysis follows that QEAlign and TPQEAlign are valid aligning
methods. However, QEAlign is not a perfect algorithm for MSA. It does not
perform for many test cases. In the future, some better Quantum-gates should
be explored for MSA; a new termination criterion is adopted instead of the
number of loops; COFFEE is employed as the objective function instead of SPS.

The quantum based techniques described above not only enrich our knowl-
edge of how new computation model can be used for implementing evolutionary
algorithm but demonstrate the feasibility of such methods and the novelty of
the paradigm.
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