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Abstract. A novel swarm intelligence paradigm called seeker optimization al-
gorithm (SOA) for the real-parameter optimization is proposed in this paper. 
The SOA is based on the concept of simulating the act of humans’ intelligent 
search with their memory, experience, and uncertainty reasoning. In this sense, 
the individual of this population is called seeker or searcher just from which the 
new algorithm’ name is derived. After given start point, search direction, search 
radius, and trust degree, every seeker moves to a new position (next solution) 
based on his social learning, cognitive learning, and uncertainty reasoning. The 
algorithm’s performance was studied using several typically complex functions. 
In almost all cases studied, SOA is superior to continuous genetic algorithm 
(GA) and particle swarm optimization (PSO) in all optimization quality, robust-
ness and efficiency. 

1   Introduction 

The evolutionary computation (EC) community has shown a significant interest in 
optimization for many years. In particular, there has been a focus on global optimiza-
tion of numerical, real-valued ‘black-box’ problems for which exact and analytical 
methods do not apply. Recently, real-parameter genetic algorithm (GA) [1, 2], particle 
swarm optimization (PSO) [3] and differential evolution (DE) [4] have been intro-
duced and particularly PSO has received increasing interest from the EC community. 
These techniques have shown great promise in several real-world applications. How-
ever, the diversity of algorithms is encouraged by the ‘No Free Lunch’ theorem [5, 6], 
and it is valuable to propose new algorithms. 

Optimization problems can often be viewed as the search for an optimal solution 
through a range of possible solutions. In the continuous decision variable spaces, 
there exists a neighborhood region close to the global extremum. In this region, the 
fitness values of the decision variables are inversely proportional to their distances 
from the global extremum based on the Intermediate Value Theorem. That is, bet-
ter points are likely to be found in the neighbourhood of families of good points. 
Hence, search is intensified in regions containing good solutions [7]. It can  
be believed that one must find the near optimal solutions in the narrower  
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neighborhood of the point with higher fitness value, while he must find them in the 
wider neighborhood of the point with lower fitness value. The algorithm called 
seeker (or searcher) optimization algorithm (SOA) presented in this paper aims to 
mimic the behavior of the search group mainly in terms of uncertainty reasoning, 
at this point where the new algorithm is  intensively different from the existing 
search techniques. 

Apparently, the behavior rules mentioned above are described by natural lin-
guistic terms. In order to exploit the rules, cloud model [8], as a model of the un-
certainty transition between a linguistic term of a qualitative concept and its quan-
titative data is introduced into new algorithm. The cloud theory [8] is derived and 
advanced from fuzzy logic theory, but improves the weakness of rigid specifica-
tion and too much certainty, which comes into conflict with the human recognition 
process, appearing in commonly used transition models. The preservation of the 
uncertainty in transition makes cloud theory well meet the need of real life situa-
tion, and has already been used successfully in intelligent control [9], data mining 
[10], etc.. 

This paper is organized as follows. Section 2 describes cloud theory. In section 3, 
we introduce the SOA in details. And the algorithm parameters are discussed in sec-
tion 4. Convergence analysis is shown in section 5. Then, we compare the SOA with 
continuous GA and PSO by use of typical function optimization in section 6. Finally, 
the conclusions and future work are presented in section 7. 

2   Cloud Theory 

DEFINITION 1. [8,10] Let U be the set, U={u}, as the universe of discourse, and T a 
linguistic term associated with U. The membership degree of u in U to the linguistic 
term T, CT(u), is a random number with a stable tendency. A cloud is a mapping from 
the universe of discourse U to the unit interval [0,1]. That is, CT(u): U→[0,1]; 

,Uu ∈∀  u→CT(u).  
In the definition above, the mapping from U to the interval [0,1] is a one-point to 

multi-point transition, which shows the uncertainty. So the degree of membership of u 
to [0,1] is a probability distribution rather than a fixed value, which is different from 
the fuzzy logic.  

The normal clouds are most useful in representing linguistic terms of vague con-
cepts because normal distributions have been supported by the results in every branch 
of both social and natural sciences. A normal cloud is defined with three digital char-
acteristics, expected value Ex, entropy En and hyperentropy He (Fig. 1). 

The Ex is the position at U corresponding to the center of gravity of the cloud. En 
is a measure of the coverage of the concept within the universe of discourse. He is the 
entropy of the entropy En, and is a measure of dispersion of the cloud drops. 

Given the three parameters (Ex, En, He) of a normal cloud model, the cloud with n 
cloud drops is generated by the following algorithm called basic normal cloud  
generator [10]. 
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Algorithm 1. Basic normal cloud generator 

Input: Ex, En, He, n 
     Output: {(x1, μ1),…, (xn, μn)} 
     for i =1 to n 
         En' =RANDN(En, He) 
         xi =RANDN(Ex, En') 
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2
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         cloud(xi, μi) 
end. 

Here, the function RANDN(a,b) produces a normally distributed random number 
with mean a and standard deviation b. the cloud(xi, μi) is the ith cloud drop in the 
universe. In my personal view, cloud models may be partly and originally similar to 
particle systems [11]. 

 

 

Fig. 1. Illustration of the three digital characteristics of a normal cloud 

3   Seeker Optimization Algorithm 

In the SOA, every seeker has a start position vector c , which may be viewed as ex-
pected value Ex of cloud model, as the start location to find next solution. Moreover, 
each seeker holds a search radius r  which is equivalent to the En' of cloud model, a 
trust degree μ  described by membership degree of cloud model, and a search direc-

tion d showing him where to go. 
At each time step t, the search decision-making is conducted to choice the four pa-

rameters and the seeker moves to a new position )1( +tx . The update of the position 
from the start position is a process of uncertainty reasoning, and determined by a like 
Y-conditional cloud generator [10] as follows: 

xij(t+1)=cij+dijrij(-ln(μij))
0.5. (1) 

where “i” is the index of seekers, and “j” is the index of variable dimensions. 
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The pseudocode of the main algorithm is presented as 
follows. 

begin 
    t•0; 
    generating S positions randomly and uniformly; 
    repeat 
        evaluating each seeker; 
        giving search parameters:start position, search 
          direction,search radius,and trust degreee; 
        updating positions using (1); 
        t•t+1; 
    until t=Tmax 
  end. 

4   Algorithm Parameters 

In this section, we introduce how to decide the parameters in (1). 

4.1   Start Point Vector  

Intuitively, start position vector c  is set to current position )(tx . Inspired by PSO, 

Every seeker contains a memory storing its own best position so far p  and a global 

best position g  obtained through communication with its fellow neighbor seekers. In 

this paper, the whole search group was classified into k=3 neighbourhoods according 
to the indexes of the seeker group. Then, 

))()(())()(()( 21 txtgtxtptxc −+−+= φφ . (2) 

where 1φ  and 2φ  are real numbers chosen uniformly and randomly in the interval 

[0,1]. 

4.2   Search Direction 

In our opinion, each seeker has four significative directions called local temporal 

direction ltd , local spacial direction lsd ,  global temporal direction gtd , global 

spacial direction gsd , respectively. 

⎩
⎨
⎧

−<−−
−≥−−=

 ))1((   ))(( if))()1((
))1((  ))(( if))1()((

txfittxfittxtxsign
txfittxfittxtxsign

dlt  (3) 

))()(( txtxsigndls −′=  (4) 

))()(( txtpsigndgt −=  (5) 
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))()(( txtgsigndgs −=  (6) 

where sign(·) is signum function, )(tx′  is the position of the seeker with the largest 

fitness in a given neighborhood region,  ))(( txfit is the fitness function of )(tx . 

Then, search direction is assigned depending on the four directions. In our experi-
ments in this paper, we give search direction as follows. 

)))()(())()(())1()())))(1((- ))((((( 21 txtgtxtptxtxtxfittxfitsignsignd −+−+−−−= ϕϕω  (7) 

where ω is the inertia weight, and ω=(Tmax-t)/Tmax. 1ϕ  and 2ϕ  are real numbers cho-

sen uniformly and at random in a given interval [0,1]. 
The expression (2) and (7) are thought to adhere to the principle of self-organized 

aggregation behaviors [12]. 

4.3   Search Radius 

It is crucial but difficult how to rationally give search radius. For unimodal optimiza-
tion problems, the performance of algorithm maybe is relatively insensitive to search 
radius within certain range. But for multimodal problems, different search radius may 
result to different performance of algorithm especially when dealing with different 
problems. In this paper, the cloud generator based method is first introduced to give 
search radius. 

Algorithm 2. The cloud based method of search radius 

minmax xxEnr −= ; 

     Her=Enr/10; 
     =′r RANDN(Enr, Her); 

r =RAND(0, r ′ ). 

where maxx  and minx  are the positions with the maximum fitness and the minimum 

fitness within its fellow neighbor, respectively. Such as, the En may be viewed as the 
“known” region of the problem domain, and the seekers from inside this region to 
outside this region are respectively kept under from a fine-grained search to a coarse-
grained search. The function RAND(0, r ′ ) is given as real numbers chosen uniformly 
and randomly in a given interval [0, r ′ ]. 

The mathematic expected curve (MEC) of a membership cloud may be considered 
as its membership function from the fuzzy set theory point of view [9]. In order to 
decrease computing time, the simple method of search radius was expressed as 
r =RAND(0, Enr) where Enr is presented as ALGORITHM 2. That is to say, fuzzy 
logic was used to deal with uncertainty reasoning.  

4.4   Trust Degree 

The parameter μ is, in fact, the grade of membership from cloud model and fuzzy set 
theory. According to the discussion in section 1, the uncertainty rule of intelligent 
search is described as “If {fitness is large}, Then {search radius is small}”. The  
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linear membership function was used for “large” of “fitness”. Namely, it is directly 
proportional to the fitness of )(tx or the index of the ascensive sort order of the fitness 

of )(tx (we applied the latter in our experiments). That is, the best position so far has 

the maximum μmax=1.0, while other position has a μ<1.0, and the worst position so far 
has the minimum μmin. The expression is presented as (8) and (9). 

)(
1 minmaxmax μμμμ −

−
−−=

S

IS i
i . (8) 

μij= RAND(μi, 1) (9) 

where S is the neighbor search group size, and Ii  is the index (sequence number) of 
)(txi after sorting the fitnesses of neighbor seekers in ascending order. 

Meanwhile, The Gaussian membership function MECA(x)= 
22 2/)( EnExxe −− was used 

for “small” of “search radius”. Based on “3En” rule [13] which shows that the ele-
ments beyond Ex±3En in the universe of discourse can be neglected for a linguistic 
atom [9], μmin=0.0111 is given at the point x= Ex±3En where MECA(Ex±3En)=0.0111. 

5   Convergence Analysis 

From (2) and (8), when )()( tgtxi = , 1≤i≤S, it is apparently given that 

)()( tgtci = and 0.1)( =tiμ . Then (1) gives )()1( tgtxi =+  and =+ ))1(( txfit i  
 

))(())(( tgfittxfit i = . Hence, the maximum fitness of the t+1 step is larger than or, at 

least, equal to the maximum fitness of the t step. As a result, the SOA is convergent. 
But it is not determinate that the algorithm can be convergent to the global optimum. 
The further mathematical convergence analysis will be still left for future. 

6   Function Optimization 

In this section, the experiments will be discussed to compare the performance of the 
SOA, PSO and continuous genetic algorithm (GA). We used the MATLAB codes of 
PSO with adaptive inertia weight and continuous GA presented by [2]. In the experi-
ments, the parameters of the PSO are that: learning rate c1 = c2=2, inertia weight line-
arly decreased from 0.9 to 0.4 with run time increasing [14]. The parameters of the 
continuous GA are that: the fraction of population kept was set 0.8, the mutation rate 
was set 0.1. 

17 typical functions with varying complexities and varying number of variables 
(NV) were employed. They are as follows. 
F1 Goldstein-Price function 

1
2

2212
2

11
2

21 2(30[)]361431419()1(1[1 xxxxxxxxxF +×++−+−+++=     

2,1,22)],273648123218()3 2
2212

2
11

2
2 =≤≤−+−++−− ixxxxxxxx i  

(10) 
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F2 DeJong’s f2 
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F4 DeJong’s f6 
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F5 DeJong’s f7 
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F6 Goldstein’s function 
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F8 Hyper-Ellipsoid function 
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F9 Rastrigin’s function 
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F13 Shubeurt’s function 
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F14 Simple square sum function 
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As a measure of performance, we consider the average number of generations 
(AG) that the algorithms require to generate a solution with a certain high fitness 
value. In order to compare the ability to prevent the convergence of the algorithms to 
a local optimum, we also evaluate the performance of the algorithms in terms of the 
number of runs (NR) (out of 10 trials) for which the algorithms get stuck at a local 
optimum. When the algorithm fails to achieve the near global optimum, that is, the 
absolute value of the best function value minus the ideal function value (IV) is larger 
than 0.0001, after a maximum number of generations (MNG), we conclude that it has 
gotten stuck at a local optimum and does not generate a solution with a given high 
fitness value. Besides, the best function values (BV) of repetitious experiments, the 
average values of the best solutions (AV), and the standard deviations of the function 
values of the best solutions (STD) are also compared. 

In all our experiments, we have used a population size of 100 for all functions. Fur-
thermore, the expression avgr xxEn −= max was used for search radius when functions 

F13, F16, and F7-11 were optimized. Here, avgx  is the average value of the points in 

a same neighbourhood. The results of experiments are presented in Table 1.  
As seen from Table 1, the SOA outperforms the GA and the PSO. For all the func-

tions optimized here, the values of the BVs and AVs of SOA are better than the ones 
of GA and PSO, especially the values of NRs of SOA are smaller, which shows SOA 
has better potential to get the global optimum. Besides, the values of AGs of SOA are 
greatly less than that of GA and PSO, which shows SOA has higher convergent 
speed. Moreover, SOA has less STDs, which shows SOA is more robust. 
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Table 1. Comparisons of performance of SOA, GA and PSO 

Functions Algo. AG NR BV AV STD 
GA 153.8 0 3 3 1.6922e-005 
PSO 109 0 3 3 0 

F1 
(NV=2,  IV=3, 
MNG=1000) SOA 20.9 0 3 3 0 

GA 902.8 0 5.2587e-005 0.011178 0.014291 
PSO 77.1 0 7.3463e-030 2.7379e-026 7.3804e-026 

F2 
(NV=2,  IV=0, 
MNG=1000) SOA 42.9 0 0 0 0 

GA 115.2 0 0.998 0.998 1.9642e-010 
PSO 80.3 0 0.998 0.998 1.655e-016 

F3 
(NV=2,IV=0.998, 
MNG=1000) SOA 70.7 0 0.998 0.998 1.4803e-016 

GA 191 1 0 1.4098e-005 4.4572e-005 
PSO 72.3 0 0 0 0 

F4 
(NV=2, IV=0, 
MNG=1000) SOA 16.5 0 0 0 0 

GA 3000 10 0.00029844 0.0073763 0.010015 
PSO 853.5 0 8.7414e-060 2.8635e-058 5.1778e-058 

F5 
(NV=2, IV=0, 
MNG=3000) SOA 97.8 0 0 0 0 

GA 18.7 0 7 7 0 
PSO 28.9 0 7 7 0 

F6 
(NV=0, IV=7, 
MNG=1000) SOA 20.6 0 7 7 2.1843e-008 

GA 3000 10 0.53597 0.81229 0.17299 
PSO 3000 10 0.029509 0.068525 0.021366 

F7 
(NV=10, IV=0, 
MNG=3000) SOA 476.8 0 0 1.9209e-007 3.9966e-007 

GA 3000 10 13628 17236 2211.2 
PSO 3000 10 0.004186196 348.9081 331.593447 

F8 
(NV=100,IV=0, 
MNG=3000) SOA 78.6 0 1.9066e-103 5.0255e-097 1.4066e-096 

GA 3000 10 13.188 24.484 7.2147 
PSO 3000 10 1.989918 3.88034 1.720125 

F9 
(NV=15, IV=0, 
MNG=3000) SOA 706.6 0 0 0 0 

GA 3000 10 0.0058716 0.01661 0.007963 
PSO 995.4 0 1.7342e-072 1.8576e-070 2.1241e-070 

F10 
(NV=5, IV=0, 
MNG=3000) SOA 136.7 0 1.3200e-128 5.1487e-080 1.6181e-079 

GA 3000 10 0.000801 0.0023801 0.0011435 
PSO 971.1 0 9.02340e-087 4.7115e-084 5.6996e-084 

F11 
(NV=5, IV=0, 
MNG=3000) SOA 137.3 0 3.5094e-127 3.6511e-125 5.5413e-125 

GA 89.7 0 1.1076e-029 1.8645e-022 3.7167e-022 
PSO 13.7 0 0 0 0 

F12 
(NV=5, IV=0, 
MNG=3000) SOA 8.2 0 8.0952e-134 5.934e-057 1.8158e-056 

GA 2086.4 6 -186.73 -186.5 0.20155 
PSO 446.9 5 -186.7309088 -186.7309088 2.9959e-014 

F13 
(IV=-186.7309, 
NV=2,MNG=3000) SOA 2247.1 3 -186.730901 -186.7309079 0.000120 

GA 25.5 0 2.2357e-019 3.0517e-007 5.2728e-007 
PSO 28.8 0 2.2862e-088 4.7246e-084 1.4408e-083 

F14 
(NV=2, IV=0, 
MNG=1000) SOA 9.1 0 0 1.2337e-253 0 

GA 29.9 0 -1.0316 -1.0316 1.7246e-008 
PSO 41.8 0 -1.031628 -1.031628 2.3406e-016 

F15 
(IV=-1.031628, 
NV=2,MNG=1000) SOA 13.7 0 -1.0316 -1.0316 2.3406e-016 

GA 2142.3 6 1 1.0013 0.0012818 
PSO 1169.3 0 1 1 0 

F16 
(NV=2, IV=1, 
MNG=3000) SOA 117.4 0 1 1 4.1659e-009 

GA 991 0 6.7894e-008 4.5504e-006 6.1197e-006 
PSO 455.2 0 1.3498e-032 1.3498e-032 2.8850e-048 

F17 
(NV=5, IV=0, 
MNG=3000) SOA 51.6 0 1.3450e-032 1.3500e-032 2.8850e-048 
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7   Conclusions and Future Work 

In this research, a novel optimization algorithm based on the concept of simulating the 
act of human’s intelligent search was introduced whose performance in terms of robust-
ness and efficiency was studied with a challenging set of benchmark problems. The SOA 
performed very well, converging to near global optimal solutions when solving different 
classes of problems with different degrees of complexities. In all cases studied, SOA was 
faster, more robust and more efficient than GA and PSO in finding the global optimum. 

Future research will include practical applications, and theoretical analysis to better 
understand this algorithm’s convergence properties and the effects of the parameters 
on its performance. 
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