
Y. Wang, Y. Cheung, and H. Liu (Eds.): CIS 2006, LNAI 4456, pp. 167–176, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Seeker Optimization Algorithm

Chaohua Dai1, Yunfang Zhu2, and Weirong Chen1

1 The School of Electrical Engineering, Southwest Jiaotong University,
610031 Chengdu, China
dchzyf@126.com

2 Department of Computer & Communication Engineering, E’ mei Campus,
Southwest Jiaotong University, 614202 E’ mei, China

zyfdch@126.com

Abstract. A novel swarm intelligence paradigm called seeker optimization al-
gorithm (SOA) for the real-parameter optimization is proposed in this paper.
The SOA is based on the concept of simulating the act of humans’ intelligent
search with their memory, experience, and uncertainty reasoning. In this sense,
the individual of this population is called seeker or searcher just from which the
new algorithm’ name is derived. After given start point, search direction, search
radius, and trust degree, every seeker moves to a new position (next solution)
based on his social learning, cognitive learning, and uncertainty reasoning. The
algorithm’s performance was studied using several typically complex functions.
In almost all cases studied, SOA is superior to continuous genetic algorithm
(GA) and particle swarm optimization (PSO) in all optimization quality, robust-
ness and efficiency.

1 Introduction

The evolutionary computation (EC) community has shown a significant interest in
optimization for many years. In particular, there has been a focus on global optimiza-
tion of numerical, real-valued ‘black-box’ problems for which exact and analytical
methods do not apply. Recently, real-parameter genetic algorithm (GA) [1, 2], particle
swarm optimization (PSO) [3] and differential evolution (DE) [4] have been intro-
duced and particularly PSO has received increasing interest from the EC community.
These techniques have shown great promise in several real-world applications. How-
ever, the diversity of algorithms is encouraged by the ‘No Free Lunch’ theorem [5, 6],
and it is valuable to propose new algorithms.

Optimization problems can often be viewed as the search for an optimal solution
through a range of possible solutions. In the continuous decision variable spaces,
there exists a neighborhood region close to the global extremum. In this region, the
fitness values of the decision variables are inversely proportional to their distances
from the global extremum based on the Intermediate Value Theorem. That is, bet-
ter points are likely to be found in the neighbourhood of families of good points.
Hence, search is intensified in regions containing good solutions [7]. It can
be believed that one must find the near optimal solutions in the narrower

168 C. Dai, Y. Zhu, and W. Chen

neighborhood of the point with higher fitness value, while he must find them in the
wider neighborhood of the point with lower fitness value. The algorithm called
seeker (or searcher) optimization algorithm (SOA) presented in this paper aims to
mimic the behavior of the search group mainly in terms of uncertainty reasoning,
at this point where the new algorithm is intensively different from the existing
search techniques.

Apparently, the behavior rules mentioned above are described by natural lin-
guistic terms. In order to exploit the rules, cloud model [8], as a model of the un-
certainty transition between a linguistic term of a qualitative concept and its quan-
titative data is introduced into new algorithm. The cloud theory [8] is derived and
advanced from fuzzy logic theory, but improves the weakness of rigid specifica-
tion and too much certainty, which comes into conflict with the human recognition
process, appearing in commonly used transition models. The preservation of the
uncertainty in transition makes cloud theory well meet the need of real life situa-
tion, and has already been used successfully in intelligent control [9], data mining
[10], etc..

This paper is organized as follows. Section 2 describes cloud theory. In section 3,
we introduce the SOA in details. And the algorithm parameters are discussed in sec-
tion 4. Convergence analysis is shown in section 5. Then, we compare the SOA with
continuous GA and PSO by use of typical function optimization in section 6. Finally,
the conclusions and future work are presented in section 7.

2 Cloud Theory

DEFINITION 1. [8,10] Let U be the set, U={u}, as the universe of discourse, and T a
linguistic term associated with U. The membership degree of u in U to the linguistic
term T, CT(u), is a random number with a stable tendency. A cloud is a mapping from
the universe of discourse U to the unit interval [0,1]. That is, CT(u): U→[0,1];

,Uu ∈∀ u→CT(u).
In the definition above, the mapping from U to the interval [0,1] is a one-point to

multi-point transition, which shows the uncertainty. So the degree of membership of u
to [0,1] is a probability distribution rather than a fixed value, which is different from
the fuzzy logic.

The normal clouds are most useful in representing linguistic terms of vague con-
cepts because normal distributions have been supported by the results in every branch
of both social and natural sciences. A normal cloud is defined with three digital char-
acteristics, expected value Ex, entropy En and hyperentropy He (Fig. 1).

The Ex is the position at U corresponding to the center of gravity of the cloud. En
is a measure of the coverage of the concept within the universe of discourse. He is the
entropy of the entropy En, and is a measure of dispersion of the cloud drops.

Given the three parameters (Ex, En, He) of a normal cloud model, the cloud with n
cloud drops is generated by the following algorithm called basic normal cloud
generator [10].

 Seeker Optimization Algorithm 169

Algorithm 1. Basic normal cloud generator

Input: Ex, En, He, n
 Output: {(x1, μ1),…, (xn, μn)}
 for i =1 to n
 En' =RANDN(En, He)
 xi =RANDN(Ex, En')

2

2

)'(2

)(

En

Exx

i

i

e

−−

=μ

 cloud(xi, μi)
end.

Here, the function RANDN(a,b) produces a normally distributed random number
with mean a and standard deviation b. the cloud(xi, μi) is the ith cloud drop in the
universe. In my personal view, cloud models may be partly and originally similar to
particle systems [11].

Fig. 1. Illustration of the three digital characteristics of a normal cloud

3 Seeker Optimization Algorithm

In the SOA, every seeker has a start position vector c , which may be viewed as ex-
pected value Ex of cloud model, as the start location to find next solution. Moreover,
each seeker holds a search radius r which is equivalent to the En' of cloud model, a
trust degree μ described by membership degree of cloud model, and a search direc-

tion d showing him where to go.
At each time step t, the search decision-making is conducted to choice the four pa-

rameters and the seeker moves to a new position)1(+tx . The update of the position
from the start position is a process of uncertainty reasoning, and determined by a like
Y-conditional cloud generator [10] as follows:

xij(t+1)=cij+dijrij(-ln(μij))
0.5. (1)

where “i” is the index of seekers, and “j” is the index of variable dimensions.

170 C. Dai, Y. Zhu, and W. Chen

The pseudocode of the main algorithm is presented as
follows.

begin
 t•0;
 generating S positions randomly and uniformly;
 repeat
 evaluating each seeker;
 giving search parameters:start position, search
 direction,search radius,and trust degreee;
 updating positions using (1);
 t•t+1;
 until t=Tmax
 end.

4 Algorithm Parameters

In this section, we introduce how to decide the parameters in (1).

4.1 Start Point Vector

Intuitively, start position vector c is set to current position)(tx . Inspired by PSO,

Every seeker contains a memory storing its own best position so far p and a global

best position g obtained through communication with its fellow neighbor seekers. In

this paper, the whole search group was classified into k=3 neighbourhoods according
to the indexes of the seeker group. Then,

))()(())()(()(21 txtgtxtptxc −+−+= φφ . (2)

where 1φ and 2φ are real numbers chosen uniformly and randomly in the interval

[0,1].

4.2 Search Direction

In our opinion, each seeker has four significative directions called local temporal

direction ltd , local spacial direction lsd , global temporal direction gtd , global

spacial direction gsd , respectively.

⎩
⎨
⎧

−<−−
−≥−−=

))1(())((if))()1((
))1(())((if))1()((

txfittxfittxtxsign
txfittxfittxtxsign

dlt (3)

))()((txtxsigndls −′= (4)

))()((txtpsigndgt −= (5)

 Seeker Optimization Algorithm 171

))()((txtgsigndgs −= (6)

where sign(·) is signum function,)(tx′ is the position of the seeker with the largest

fitness in a given neighborhood region,))((txfit is the fitness function of)(tx .

Then, search direction is assigned depending on the four directions. In our experi-
ments in this paper, we give search direction as follows.

)))()(())()(())1()())))(1((-))(((((21 txtgtxtptxtxtxfittxfitsignsignd −+−+−−−= ϕϕω (7)

where ω is the inertia weight, and ω=(Tmax-t)/Tmax. 1ϕ and 2ϕ are real numbers cho-

sen uniformly and at random in a given interval [0,1].
The expression (2) and (7) are thought to adhere to the principle of self-organized

aggregation behaviors [12].

4.3 Search Radius

It is crucial but difficult how to rationally give search radius. For unimodal optimiza-
tion problems, the performance of algorithm maybe is relatively insensitive to search
radius within certain range. But for multimodal problems, different search radius may
result to different performance of algorithm especially when dealing with different
problems. In this paper, the cloud generator based method is first introduced to give
search radius.

Algorithm 2. The cloud based method of search radius

minmax xxEnr −= ;

 Her=Enr/10;
 =′r RANDN(Enr, Her);

r =RAND(0, r ′).

where maxx and minx are the positions with the maximum fitness and the minimum

fitness within its fellow neighbor, respectively. Such as, the En may be viewed as the
“known” region of the problem domain, and the seekers from inside this region to
outside this region are respectively kept under from a fine-grained search to a coarse-
grained search. The function RAND(0, r ′) is given as real numbers chosen uniformly
and randomly in a given interval [0, r ′].

The mathematic expected curve (MEC) of a membership cloud may be considered
as its membership function from the fuzzy set theory point of view [9]. In order to
decrease computing time, the simple method of search radius was expressed as
r =RAND(0, Enr) where Enr is presented as ALGORITHM 2. That is to say, fuzzy
logic was used to deal with uncertainty reasoning.

4.4 Trust Degree

The parameter μ is, in fact, the grade of membership from cloud model and fuzzy set
theory. According to the discussion in section 1, the uncertainty rule of intelligent
search is described as “If {fitness is large}, Then {search radius is small}”. The

172 C. Dai, Y. Zhu, and W. Chen

linear membership function was used for “large” of “fitness”. Namely, it is directly
proportional to the fitness of)(tx or the index of the ascensive sort order of the fitness

of)(tx (we applied the latter in our experiments). That is, the best position so far has

the maximum μmax=1.0, while other position has a μ<1.0, and the worst position so far
has the minimum μmin. The expression is presented as (8) and (9).

)(
1 minmaxmax μμμμ −

−
−−=

S

IS i
i . (8)

μij= RAND(μi, 1) (9)

where S is the neighbor search group size, and Ii is the index (sequence number) of
)(txi after sorting the fitnesses of neighbor seekers in ascending order.

Meanwhile, The Gaussian membership function MECA(x)=
22 2/)(EnExxe −− was used

for “small” of “search radius”. Based on “3En” rule [13] which shows that the ele-
ments beyond Ex±3En in the universe of discourse can be neglected for a linguistic
atom [9], μmin=0.0111 is given at the point x= Ex±3En where MECA(Ex±3En)=0.0111.

5 Convergence Analysis

From (2) and (8), when)()(tgtxi = , 1≤i≤S, it is apparently given that

)()(tgtci = and 0.1)(=tiμ . Then (1) gives)()1(tgtxi =+ and =+))1((txfit i

))(())((tgfittxfit i = . Hence, the maximum fitness of the t+1 step is larger than or, at

least, equal to the maximum fitness of the t step. As a result, the SOA is convergent.
But it is not determinate that the algorithm can be convergent to the global optimum.
The further mathematical convergence analysis will be still left for future.

6 Function Optimization

In this section, the experiments will be discussed to compare the performance of the
SOA, PSO and continuous genetic algorithm (GA). We used the MATLAB codes of
PSO with adaptive inertia weight and continuous GA presented by [2]. In the experi-
ments, the parameters of the PSO are that: learning rate c1 = c2=2, inertia weight line-
arly decreased from 0.9 to 0.4 with run time increasing [14]. The parameters of the
continuous GA are that: the fraction of population kept was set 0.8, the mutation rate
was set 0.1.

17 typical functions with varying complexities and varying number of variables
(NV) were employed. They are as follows.
F1 Goldstein-Price function

1
2

2212
2

11
2

21 2(30[)]361431419()1(1[1 xxxxxxxxxF +×++−+−+++=

2,1,22)],273648123218()3 2
2212

2
11

2
2 =≤≤−+−++−− ixxxxxxxx i

(10)

 Seeker Optimization Algorithm 173

F2 DeJong’s f2

2,1,048.2048.2,)1()(1002 2
1

2
2

2
1 =≤≤−−+−= ixxxxF i (11)

F3 DeJong’s f5

2,1,536.65536.65,)
)(

1
002.0/(13

25

1
2

1
6

=≤≤−∑
∑ −+

+=
= =

ix
axj

F i
j i iji

 (12)

F4 DeJong’s f6

[] 2,1,100100,
)(001.00.1

5.0sin
5.04

22
2

2
1

2
2

2
1

2

=≤≤−
++

−+
+= ix

xx

xx
F i (13)

F5 DeJong’s f7

2,1,100100],0.1))(50([sin)(5 1.02
2

2
1

225.02
2

2
1 =≤≤−+++= ixxxxxF i (14)

F6 Goldstein’s function

1010;2502715 246
6 ≤≤−++−= xxxxF (15)

F7 Griewangk’s function

512512,10;1)cos(
4000

7
1 1

2
≤≤−=∑ ∏ ++=

= =
i

D

i

D

i

ii xD
i

xx
F (16)

F8 Hyper-Ellipsoid function

11;8
100

1

22 ≤≤−∑=
=

i
i

i xxiF (17)

F9 Rastrigin’s function

1010,15;))2cos(10(109
1

2 ≤≤−=∑ −+=
=

i

D

i
ii xDxxDF π (18)

F10 Schwefel’s 2.21 function

{ } 1010;,1,max10 ≤≤−== ii
i

xixF (19)

F11 Schwefel’s 2.22 function

1010;11
5

1

5

1
≤≤−∑ ∏+=

= =
i

i i
ii xxxF (20)

F12 Schwefel’s 2.23 function

1010;12
5

1

10 ≤≤−∑=
=

i
i

i xxF (21)

174 C. Dai, Y. Zhu, and W. Chen

F13 Shubeurt’s function

[] [] +
⎭
⎬
⎫

⎩
⎨
⎧
∑ ++•

⎭
⎬
⎫

⎩
⎨
⎧
∑ ++•=

==

5

1
2

5

1
1)1(cos)1(cos13

ii
ixiiixiiF

[] 1010;)80032.0()42513.1(5.0 2
2

2
1 ≤≤−+++ ixxx

(22)

F14 Simple square sum function

55;14 2,1
2
2

2
1 ≤≤−+= xxxF (23)

F15 Six-Peak function

,)4()3/1.24(15 2
2

2
221

2
1

4
1

2
1 xxxxxxxF +−+++−= 33 2,1 ≤≤− x (24)

F16 Yan and Ma’s function

;2)20cos()20cos(
2

16 21
21 +•−

+
= xx

xx
F ππ 1010 2,1 ≤≤− x (25)

F17 Yan and Ma’s function

[]+
⎩
⎨
⎧

∑ +•−+=
−

=
+

1

1
1

22
1

2)3(sin1)1()3(sin1.017
D

i
ii xxxF ππ

} 55,5;)]2(sin1[)1(22 ≤≤−=+− iDD xDxx π

(26)

As a measure of performance, we consider the average number of generations
(AG) that the algorithms require to generate a solution with a certain high fitness
value. In order to compare the ability to prevent the convergence of the algorithms to
a local optimum, we also evaluate the performance of the algorithms in terms of the
number of runs (NR) (out of 10 trials) for which the algorithms get stuck at a local
optimum. When the algorithm fails to achieve the near global optimum, that is, the
absolute value of the best function value minus the ideal function value (IV) is larger
than 0.0001, after a maximum number of generations (MNG), we conclude that it has
gotten stuck at a local optimum and does not generate a solution with a given high
fitness value. Besides, the best function values (BV) of repetitious experiments, the
average values of the best solutions (AV), and the standard deviations of the function
values of the best solutions (STD) are also compared.

In all our experiments, we have used a population size of 100 for all functions. Fur-
thermore, the expression avgr xxEn −= max was used for search radius when functions

F13, F16, and F7-11 were optimized. Here, avgx is the average value of the points in

a same neighbourhood. The results of experiments are presented in Table 1.
As seen from Table 1, the SOA outperforms the GA and the PSO. For all the func-

tions optimized here, the values of the BVs and AVs of SOA are better than the ones
of GA and PSO, especially the values of NRs of SOA are smaller, which shows SOA
has better potential to get the global optimum. Besides, the values of AGs of SOA are
greatly less than that of GA and PSO, which shows SOA has higher convergent
speed. Moreover, SOA has less STDs, which shows SOA is more robust.

 Seeker Optimization Algorithm 175

Table 1. Comparisons of performance of SOA, GA and PSO

Functions Algo. AG NR BV AV STD
GA 153.8 0 3 3 1.6922e-005
PSO 109 0 3 3 0

F1
(NV=2, IV=3,
MNG=1000) SOA 20.9 0 3 3 0

GA 902.8 0 5.2587e-005 0.011178 0.014291
PSO 77.1 0 7.3463e-030 2.7379e-026 7.3804e-026

F2
(NV=2, IV=0,
MNG=1000) SOA 42.9 0 0 0 0

GA 115.2 0 0.998 0.998 1.9642e-010
PSO 80.3 0 0.998 0.998 1.655e-016

F3
(NV=2,IV=0.998,
MNG=1000) SOA 70.7 0 0.998 0.998 1.4803e-016

GA 191 1 0 1.4098e-005 4.4572e-005
PSO 72.3 0 0 0 0

F4
(NV=2, IV=0,
MNG=1000) SOA 16.5 0 0 0 0

GA 3000 10 0.00029844 0.0073763 0.010015
PSO 853.5 0 8.7414e-060 2.8635e-058 5.1778e-058

F5
(NV=2, IV=0,
MNG=3000) SOA 97.8 0 0 0 0

GA 18.7 0 7 7 0
PSO 28.9 0 7 7 0

F6
(NV=0, IV=7,
MNG=1000) SOA 20.6 0 7 7 2.1843e-008

GA 3000 10 0.53597 0.81229 0.17299
PSO 3000 10 0.029509 0.068525 0.021366

F7
(NV=10, IV=0,
MNG=3000) SOA 476.8 0 0 1.9209e-007 3.9966e-007

GA 3000 10 13628 17236 2211.2
PSO 3000 10 0.004186196 348.9081 331.593447

F8
(NV=100,IV=0,
MNG=3000) SOA 78.6 0 1.9066e-103 5.0255e-097 1.4066e-096

GA 3000 10 13.188 24.484 7.2147
PSO 3000 10 1.989918 3.88034 1.720125

F9
(NV=15, IV=0,
MNG=3000) SOA 706.6 0 0 0 0

GA 3000 10 0.0058716 0.01661 0.007963
PSO 995.4 0 1.7342e-072 1.8576e-070 2.1241e-070

F10
(NV=5, IV=0,
MNG=3000) SOA 136.7 0 1.3200e-128 5.1487e-080 1.6181e-079

GA 3000 10 0.000801 0.0023801 0.0011435
PSO 971.1 0 9.02340e-087 4.7115e-084 5.6996e-084

F11
(NV=5, IV=0,
MNG=3000) SOA 137.3 0 3.5094e-127 3.6511e-125 5.5413e-125

GA 89.7 0 1.1076e-029 1.8645e-022 3.7167e-022
PSO 13.7 0 0 0 0

F12
(NV=5, IV=0,
MNG=3000) SOA 8.2 0 8.0952e-134 5.934e-057 1.8158e-056

GA 2086.4 6 -186.73 -186.5 0.20155
PSO 446.9 5 -186.7309088 -186.7309088 2.9959e-014

F13
(IV=-186.7309,
NV=2,MNG=3000) SOA 2247.1 3 -186.730901 -186.7309079 0.000120

GA 25.5 0 2.2357e-019 3.0517e-007 5.2728e-007
PSO 28.8 0 2.2862e-088 4.7246e-084 1.4408e-083

F14
(NV=2, IV=0,
MNG=1000) SOA 9.1 0 0 1.2337e-253 0

GA 29.9 0 -1.0316 -1.0316 1.7246e-008
PSO 41.8 0 -1.031628 -1.031628 2.3406e-016

F15
(IV=-1.031628,
NV=2,MNG=1000) SOA 13.7 0 -1.0316 -1.0316 2.3406e-016

GA 2142.3 6 1 1.0013 0.0012818
PSO 1169.3 0 1 1 0

F16
(NV=2, IV=1,
MNG=3000) SOA 117.4 0 1 1 4.1659e-009

GA 991 0 6.7894e-008 4.5504e-006 6.1197e-006
PSO 455.2 0 1.3498e-032 1.3498e-032 2.8850e-048

F17
(NV=5, IV=0,
MNG=3000) SOA 51.6 0 1.3450e-032 1.3500e-032 2.8850e-048

176 C. Dai, Y. Zhu, and W. Chen

7 Conclusions and Future Work

In this research, a novel optimization algorithm based on the concept of simulating the
act of human’s intelligent search was introduced whose performance in terms of robust-
ness and efficiency was studied with a challenging set of benchmark problems. The SOA
performed very well, converging to near global optimal solutions when solving different
classes of problems with different degrees of complexities. In all cases studied, SOA was
faster, more robust and more efficient than GA and PSO in finding the global optimum.

Future research will include practical applications, and theoretical analysis to better
understand this algorithm’s convergence properties and the effects of the parameters
on its performance.

References

1. Deb, K., Anand, A., Joshi, D.: A Computationally Efficient Evolutionary Algorithm for
Real-Parameter Optimization. Evolutionary Computation 10(4), 371–395 (2002)

2. Randy, L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. pp. 215–228. John Wiley
& Sons, Inc, New Jersey (2004)

3. Kennedy, J., Eberhart, R.C.: Panicle Swarm Optimization. In: Proceeding of the 1995
IEEE International Conference on Neural Networks, Vol, pp. 1942–1948. IEEE Computer
Society Press, Los Alamitos (1995)

4. Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Adaptive Scheme for
Global Optimization over Continuous Spaces. In: Technical report, International Computer
Science Institute, Berkley (1995)

5. Wolpen, D.W., Macready, W.G.: No Free Lunch Theorem for Optimization. IEEE Trans.
Evol. Comp. 1(1), 67–82 (1997)

6. Köppen, M.: No-Free-Lunch Theorems and the Diversity of Algorithms. In: Proceedings
of the 2004 Congress on Evolutionary Computation, vol. 1, pp. 235–241. IEEE, Los
Alamitos (2004)

7. Raphael, B., Smith, I.F.C., Direct, A.: Stochastic Algorithm for Global Search. Applied
Mathematics and Computation 146, 729–758 (2003)

8. Li, D., Meng, H., Shi, X.: Membership Clouds and Membership Cloud Generators. Journal
of Computer Research and Development 42(8), 32–41 (1995) (in Chinese)

9. Li, D., Cheung, D.W., Shi, X. et al.: Uncertainty Reasoning Based on Cloud Models In
Controllers. Computers and Mathematics with Applications 35(3), 99–123 (1998)

10. Li, D.: Di, K., Li, D.: Knowledge Representation and Uncertainty Reasoning in GIS Based
on Cloud Models. In: Proceeding of the 9th International Symposium on Spatial Data
Handling, Beijing, 10-12 (2000)

11. Reeves, W.T.: Particle Systems - a Technique for Modeling a Class of Fuzzy Objects.
ACM Transactions on Graphics 2(2), 91–108 (1983)

12. Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton University Press, Princeton, NJ (2001)

13. Changyu, L., Deyi, L., Lili, P.: Uncertain Knowledge Representation Based on Cloud
Model. Computer Engineering and Applications 40(2), 32–35 (2004) (in Chinese)

14. Shi, Y., Eberhart, R.: Empirical Study of Particle Swarm Optimization, In: Proceedings of
the 1999 Congress.on Evolutionary Computation, Vol. 3, Washington, DC, USA, pp.
1945–1950 (1999)

	Seeker Optimization Algorithm
	Introduction
	Cloud Theory
	Seeker Optimization Algorithm
	Algorithm Parameters
	Start Point Vector
	Search Direction
	Search Radius
	Trust Degree

	Convergence Analysis
	Function Optimization
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

