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Abstract. This paper discusses the asymptotic convergence of evolu-
tionary algorithms based on finite search space by using the properties
of Markov chains and Perron-Frobenius Theorem. First, some conver-
gence results of general square matrices are given. Then, some useful
properties of homogeneous Markov chains with finite states are investi-
gated. Finally, the geometric convergence rates of the transition opera-
tors, which is determined by the revised spectral of the corresponding
transition matrix of a Markov chain associated with the EA considered
here, are estimated by combining the acquired results in this paper.

1 Introduction

Evolutionary algorithms(EAs for brevity) are a class of useful optimization meth-
ods based on a biological analogy with the natural mechanisms of evolution, and
they are now a very popular tool for solving optimization problems. An EA is
usually formalized as a Markov chain, so one can use the properties of Markov
chains to describe the asymptotic behaviors of EAs, i.e., the probabilistic behav-
iors of EAs if never halted. Asymptotic behaviors of EAs has been investigated
by many authors [1−12]. Due to the connection between Markov chains and EAs,
a number of results about the convergence of EAs have been obtained by adopt-
ing the limit theorem of the corresponding Markov chin in the above works. In
this paper, we will make further research on this topic, especially on convergence
rate of EAs by using Perron-Frobenius Theorem and other analytic techniques.

The remaining parts of this paper are organized as follows. In section 2, we
apply some basic matrix theory, such as Jordan Standard Form Theorem and
Perron-Frobenius Theorem etc., to study the convergence of general square ma-
trix A. We obtain that An converge with geometric convergence rate defined
by the revised spectral of A. In section 3, we concern on homogeneous Markov
chains with finite states. We give the relations among states classification, ge-
ometric convergence rate and eigenvalues of transition matrix. In section 4, we
combine the results in section 2 and section 3 to investigate the limit behaviors
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of EAs. Under some mild conditions, we get that EAs converges to the optimal
solution set related to the given problem with geometrical rate which is deter-
mined by the revised spectral of corresponding transition matrix of a Markov
chain associated with the EA considered in this paper. Finally, we conclude this
paper with a short discussion in section 5.

2 Preliminaries

In this section, we need to collect a number of definitions and elementary facts
with respect to matrix classification, matrix decomposition and matrix conver-
gence which will be useful throughout the whole paper. For a detailed reference
on matrix theory, see the monograph by Steward[13]

Definition 1. A m × m square matrix A is said to be
(1) nonnegative(A ≥ 0), if aij ≥ 0 for all i, j ∈ {1, 2, · · · , m},
(2) positive(A > 0), if aij > 0 for all i, j ∈ {1, 2, · · · , m}.

A nonnegative matrix A : m × m is said to be
(3) primitive, if there exists a positive integer k such that Ak is positive,
(4) reducible, if there exists a permutation matrix B such that

BABT =
(

C 0
R T

)
,

where square matrix C and T are square matrices,
(5) irreducible, if it is not reducible,

(6) stochastic, if
m∑

j=1
aij = 1 for all i ∈ {1, 2, · · · , m}.

A m × m stochastic matrix A is said to be
(7) stable, if it has identical rows.

Definition 2. For a square matrix A : m × m with eigenvalues λ1, · · · , λm,
its revised spectral gap is usually defined as r(A) = max{|λi| : |λi| �= 1, i =
1, · · · , m}, and its norm is defined as ||A|| = max{|aij | : i, j = 1, · · · , m}.
The following two Lemmas are well-known and can be found in many literatures
of matrix theory.

Lemma 1 (Jordan Standard Form Theorem). Suppose that square matrix
A : m×m has r different eigenvalues λ1, · · · , λr. Then there exists an invertible
matrix B such that

B−1AB = J ≡ diag[J(λ1), · · · ,J(λr)],

where

J(λi) =

⎛
⎜⎜⎜⎜⎝

λi 0 · · · 0 0
1 λi 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · 1 λi 0
0 0 · · · 1 λi

⎞
⎟⎟⎟⎟⎠
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∈ Cn(λi)×n(λi), 1 ≤ i ≤ r,

and
r∑

i=1
n(λi) = m.

Lemma 2 (Perron-Frobenius Theorem). For any nonnegative square ma-
trix A : m × m, the following claims are true.

(1)There exists a non-negative eigenvalue λ such that there are no other eigen-
values of A with absolute values greater than λ;

(2) min
i

(
m∑

j=1
aij) ≤ λ ≤ max

i
(

m∑
j=1

aij).

By using the above matrix theorems, we can get the following convergence results
about An as n tends to infinity.

Proposition 1. Suppose that 1 is a simple eigenvalue of square matrix A :
m×m and all other eigenvalues have absolute values less than 1. Then lim

n→∞An

exists and has geometric convergence rate.

Proof. Let λ1, λ2, · · · , λm−1 be those eigenvalues with absolute values less than
1. By Lemma 1, we know that the Jordan form of A is as follows⎛

⎜⎜⎜⎜⎝

B1 0 · · · 0 0
0 B2 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · Bt 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ ,

where square matrices Bi : qi × qi(qi is the algebra multiplicity of λi),i =
1, 2, · · · , t, are Jordan blocks with the above form.

Note that the elements of Bk
i are 0, λk

i , C1
kλk−1

i , C2
kλk−2

i , · · ·, Cqi−1
k λk−qi+1

i . It
is easy to check that ||Bk

i || → 0(i = 1, · · · , m − 1) as k → ∞. Moreover, for fixed
qi, when k is big enough, Cqi−1

k |λi|k−qi+1 is the biggest elements among {0, |λi|k,
C1

k |λi|k−1, C2
k |λi|k−2, · · ·, Cqi−1

k |λi|k−qi+1}; And, for fixed qi ≤ m, when k is big
enough, Cqi−1

k ≤ Cm
k . In addition, there exists an invertible matrix T such that

A = T−1 ×

⎛
⎜⎜⎜⎜⎝

B1 0 · · · 0 0
0 B2 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · Bt 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠ × T.

If we write

B∗ =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠

and let Π = T−1B∗T, then
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||Ak −Π || ≤ ||T−1|| · ||T|| ·Cm
k (r(A))k−m+1 ≤ c ·km(r(A))k → 0(k → ∞). (1)

Note that, for any given 0 < ε < 1, km(r(A))εk → 0(k → ∞). Hence, for the
fixed m and r(A), we have km(r(A))εk ≤ 1 as k → ∞. By (1), when k is big
enough, we have

||Ak − Π || ≤ c · (r(A))(1−ε)k, (2)

which means that An has geometric convergence rate. 	

Proposition 2. Suppose that square matrix A : m×m has m linear independent
eigenvectors and its eigenvalues except 1 have absolute values less than 1. Then
lim

n→∞An exists and has geometric convergence rate determined by r(A).

Proof. Let λ1 ≤ λ2 ≤ · · · ≤ λq(q < m) be eigenvalues of A not equal 1. Then,
we have from the assumption of Proposition 2 that

|λi| < 1, ∀i = 1, · · · , q.

By matrix theory, there exists an invertible matrix T and the following diagonal
matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 · · · · · · · · · 0
0 λ2 0 · · · · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 λq 0 · · · · · · · · · 0
0 · · · 0 1 0 · · · · · · 0
0 · · · 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that A = T−1BT. Therefore, we have Ak = T−1BkT. Write

B∗ =
(

0 0
0 I

)

and let Π = T−1B∗T. Then

||Ak − Π || = T−1(Bk − B∗)T
≤ ||T−1|| · max{|λk| : k = 1, · · · , q} · ||T||
= c · r(A)k → 0(k → ∞). 	


3 Homogeneous Markov Chains with Finite States

Since the limit behaviors of Markov chains depend on the structure of their tran-
sition matrixes, the properties of transition matrixes are very useful to describe
the limit behaviors of Markov chains. In this section, we will introduce some
indexes and definitions at first. Then, we will pay our attention on homogenous
Markov chains with finite states space.

Let P be the transition matrix associated with Markov Chain {Xn; n ≥ 0}
defined on a finite state space S = {s1, s2, · · · , sm}. We will also classify the
state space in the following.
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Definition 3. (1) a vector: v = (v1, · · · , vm) is called a probability vector if

vi ≥ 0 and
m∑

i=1
vi = 1,

(2) a probability vector v is called an invariant probability measure(stationary
distribution) of transition matrix P: if vP = v.

The following notations are usually needed to classify the states of Markov
chains.

fn
ij

.= P{X0 = i, X1 �= j, · · · , Xn−1 �= j, Xn = j}, is the probability that
Markov chain starts at state si and reaches state sj at time n for the first time;

f∗
ij

.=
∞∑

n=1
fn

ij , is the probability that Markov chain starts at si and reaches sj

after finite steps;

mii
.= ∞, if f∗

ii < 1; otherwise mii
.=

∞∑
n=1

nfn
ii ;

di
.= the biggest common divisor of {n : pn

ii > 0}, is called the period of
state si

Definition 4. The state sj is called a
(1) transient state, if f∗

jj < 1;
(2) recurrent state, if f∗

jj = 1;
(3)positive recurrent, if mjj < ∞;
(4)zero recurrent, if sj is not a positive recurrent;
(5)aperiodic, if di = 1.

In the following, we will further describe the states classification of Markov
chains. Let N ⊂ S be the collection of all transient states of S, R+ be the
collection of all positive recurrent states, and R0 be the collection of all zero
recurrent states of S. Then S = N

⋃
R0 ⋃

R+. Furthermore, R0 and R+ can
be divided into some irreducible sub-classes, that is, R0 = R0

1 + · · · + R0
i and

R+ = R+
1 + · · · + R+

j .
For Markov chain with finite states, it is well-known that

lim
k→∞

1
k

k∑
l=1

P l
ij = Πij , ∀i, j ∈ S. (3)

Researchers can refer to relative limit theorems, such as Proposition 3.3.1 in [14].
Moreover, since P is finite dimensional, hence the limit distribution Π is also a
transition matrix on S.

Definition 5. The subset E ⊂ S is closed if i ∈ E, j �∈ E, which implies that
pij = 0, i.e., if i ∈ E then

∑
j∈E

Pij = 1. The state space S is called reducible, if

S have no-empty closed subset; otherwise, S is irreducible.

In fact, S is reducible(irreducible) ⇔ transition matrix P on state space S is
reducible(irreducible).
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We have another important fact that if every positive state of P is aperi-
odic, then lim

k→∞
Pk exists. Combining Proposition 1 and Proposition 2 as well as

Theorem 16.0.1 and Theorem 16.0.2 in [14], we can get the following conclusion
immediately.

Proposition 3. Give a Markov chain with transition matrix P : m×m on finite
state space, for the following statements

(1) P is aperiodic,
(2) Pk has geometric convergence rate,
(3) 1 is a simple eigenvalue and all other eigenvalues have absolute values less

than 1,
(4) P has m linearly independent eigenvectors and and the eigenvalues except

1 have absolute values less than 1,
then the relations among them are that

(1) ⇔ (2); (3) ⇒ (2); (4) ⇒ (2).

For a reducible stochastic matrix, there is a very important convergence theorem
given by M. Iosifescu[15], which is

Lemma 3. Let P be a reducible stochastic matrix, where C is a primitive
stochastic matrix and R,T �= 0. Then

P∞ = lim
k→∞

P k =
(

C∞ 0
R∞ 0

)

is a stable stochastic matrix.

In the following, Π is always defined as in Proposition 1 or Proposition 2. It is
obvious that

ΠP = PΠ = Π = Π2.

Thus, we have (P − Π)k = Pk − Π, ∀k ≥ 1. Moreover, by Proposition 1 and

2, P has geometric convergence rate, hence
∞∑

k=1
||Pk − Π || < ∞. Thus, if let

Z = I+
∑
k≥1

(P−Π)k = I
I−P+Π , then Z is well-defined and Z = (I−P+Π)−1.

We can prove that Z has the following properties.

Proposition 4. (1) (I − P)Z = Z(I − P) = I − Π,
(2)ΠZ = Π,Z1 = 1,
(3) all eigenvectors of P are those of Z; moreover, if ri(�= 1) is a eigenvalue

of P, then 1
1−ri

is the eigenvalue of Z.

Proof. Because (1) and (2) of Proposition 4 are easy to be checked, we only
check (3) of Proposition 4 here.

For a vector ν, notice the fact that

Pν = ν =⇒ Πν = ν =⇒ Zν = ν
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νP = ν =⇒ νΠ = ν =⇒ νZ = ν.

Hence, 1 is a eigenvalue of Z and those eigenvectors of P corresponding to 1 are
also those of Z. In addition, for all other eigenvalues |λk| < 1 of P, let νk be a
right eigenvector of P, that is

Pνk = λkνk.

Then, ΠP = Π implies that Πνk = ΠPνk = λkΠνk. If λk �= 1, then we have
Πνk = 0. Note that

Zνk =
1

1 − λk
νk. (4)

If λk �= 1, then (4) means that νk is right eigenvector of Z corresponding to
eigenvalue 1

1−λk
. In addition, we have ΠZ = Π , which means that 1 is eigenvalue

of Z corresponding to eigenvector π. The same process can be applied to check
left eigenvectors of P. Therefore, this is the proof of (3) of Proposition 4. 	

It is easy to know from Perron- Frobenius theorem that if P is a transition
matrix, then 1 is a eigenvalue of P and there is no other eigenvalues with absolute
values greater than 1. This fact implies that r(P) ≤ 1.

4 Asymptotic Behaviors of Evolutionary Algorithms

In this section, we consider the following optimization problem: Given an objec-
tive function f : S → (−∞, ∞), where S = {s1, s2, · · · , sM} is a finite search
space. A maximization problem is to find a x∗ ∈ S such that

f(x∗) = max{f(x) : x ∈ S}. (5)

We call x∗ an optimal solution and write fmax = f(x∗) for convenience. If there
are more than one optimal solution, then denote the set of all optimal solutions
by S∗ and call it an optimal solution set. Moreover, optimal populations
refer to those which include at least an optimal solution and the optimal pop-
ulation set consists of all the optimal populations.

An evolutionary algorithm with population size N(≥ 1) for solving the opti-
mization problem (5) can be generally described as follows:

step 1. initialize, either randomly or heuristically, an initial population of N
individuals, denoted it by ξ0 = (ξ0(1), · · · , ξ0(N)), where ξ0(i) ∈ S, i = 1, · · · , N ,
and let k = 0.

step 2. generate a new (intermediate) population by adopting genetic opera-
tors (or any other stochastic operators for generating offsprings), and denote it
by ξk+1/2.

step 3. select N individuals from populations ξk+1/2 and ξk according to
certain select strategy , and obtain the next population ξk+1, then go to step 2.

For convenience, we write that

f(ξk) = max{f(ξk(i)) : 1 ≤ i ≤ N}, ∀k = 0, 1, 2, · · · ,

which represents the maximum in populations ξk, k = 0, 1, 2, · · ·.
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It is well-known that {ξk; k ≥ 0} is a Markov chain with the state space
SN because the states of the (k + 1) − th generation only depend on the k − th
generation. In this section, we assume that the stochastic process, {ξk; k ≥ 0},
associated with an EA, is a homogeneous Markov chain, and denote its
transition probability matrix by P. It is easy to check the following results.

Remark 1. If the selection strategy in step 3 of the EA can lead to the fact that

f(ξk) ≤ f(ξk+1), (6)

then the corresponding transition matrix P is reducible.

The selection with the property of equation (6) is the so-called elitist selection,
which insures that if the population has reached the optimal solution set, then
the next generation population cannot reach any other states except those cor-
responding to the optimal population set. In practical, a lot of EAs have this
kind of property. Hence, we always assume that EAs considered here possess the
property of equation(6).

Remark 2. If population size N = 1 and the optimization problem has only one
optimal solution, then

Π = P∞ =

⎛
⎜⎜⎝

1 0 · · · 0
1 0 · · · 0
· · · · · · · · · · · ·
1 0 · · · 0

⎞
⎟⎟⎠

Remark 3. If population size N ≥ 1 and the optimization problem has only one
optimal solution, then

Π = P∞ =

⎛
⎜⎜⎝

a11 a12 · · · a1m 0 . . . 0
a21 a22 · · · a2m 0 . . . 0
· · · · · · · · · · · · · · · · · · · · ·
aq1 aq2 · · · aqm 0 . . . 0

⎞
⎟⎟⎠ ,

where q = MN , and the former m elements in matrix P exactly correspond to
the m optimal states.

The remark 2 and 3 can be followed by Lemma 3 immediately.

Remark 4. For any initial distribution v0, vk
.= v0Pk → (b1, b2, · · · , bm, 0, · · · , 0)

(k → ∞), which implies that P ( lim
k→∞

ξk ∈ S∗) = 1, that is, EAs converges to

optimal solution in probability.

In the following, we will prove the main results in this paper.

Theorem 1. Suppose the optimization problem has only one optimal solution
x∗ and the population size N = 1. If P{ξ1 = x∗|ξ0 = sj} > 0 for all sj �= x∗,
then
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(1) all states except x∗ are transient;
(2)x∗ is positive recurrent and aperiodic;
(3) Pk converges, and if writing the limit by Π, then

Π =

⎛
⎜⎜⎝

1 0 · · · 0
1 0 · · · 0

· · · · · · · · · · · ·
1 0 · · · 0

⎞
⎟⎟⎠

Proof. Note that P (ξ1 = x∗|ξ0 = sj) > 0 and P (ξ1 = x∗|ξ0 = x∗) = 1. So,
we have f∗

jj < 1 for all sj �= x∗, which means that sj(�= x∗) is transient. This
completes the proof of (1).

Since P is finite dimensional matrix, the positive recurrent states are not
empty. Hence, x∗ must be positive recurrent by (1) of this theorem. Combine
the above fact and P (ξ1 = ξ∗|ξ0 = ξ∗) = 1, we get that x∗ is aperiodic. This is
(2).

By Remark 1, we know that lim
k→∞

Pk exists and the limit Π has the given

form of (3). 	


In order to deal with more complicate cases, such as f is not 1-1 and population
size N ≥ 1, we will introduce the following analytic techniques.

Denote the elements in image space of f by If = {y1, · · · , yq}. For i = 1, · · · , q,
the level sets of original state space SN are defined by

Si = {(x1, · · · , xN ) ∈ SN : max{f(x1), · · · , f(xN )} = yi}.

Define new transition matrix P(k) on new state space {S1, S2, · · · , Sq} by

pij(k) =

∑
x∈Si,z∈Sj

P (ξk+1 = z, ξk = x)
∑

x∈Si

P (ξk = x)
, ∀Si, Sj .

We can check that pij(k) = pij(1) .= pij , ∀k ≥ 1, which means that P(k) is ho-
mogenous. In particular, let C∗ = {(s1, · · · , sN ) ∈ SN : max{f(s1), · · · , f(sN)}=
fmax} be the optimal population set. Then

pij = 0, if Si = C∗, Sj �= C∗

pii = 1, if Si = C∗.

Consider new stochastic process {ξk; k ≥ 1} defined on new state space S =
{S1, · · · , Sq}, the distribution of ξk is given by P{ξk = Si} = P{ξk ∈ Si}.
Obviously, {ξk; k ≥ 0} is a homogenous Markov chain with transition matrix
P(k). We can get the following general results

Theorem 2. If P{ξ1 = C∗|ξ0 = Sj} > 0 for all Sj �= C∗, then transition
matrix P has the following properties
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(1) all states in new state space except C∗ are transient;
(2)C∗ is positive recurrent and aperiodic;
(3) lim

k→∞
P

k
exists, and if writing the limit by Π then

Π =

⎛
⎜⎜⎝

1 0 · · · 0
1 0 · · · 0

· · · · · · · · · · · ·
1 0 · · · 0

⎞
⎟⎟⎠

The proof of this theorem is similar to Thm 1, so we omit it here.

Theorem 3. If P{ξ1 = C∗|ξ0 = Sj} > 0 for all Sj �= C∗, then transition
matrix P

k
has geometric convergence rate determined by r(P).

Proof. Note that we can find a permutation matrix B such that BPBT is a
upper triangular matrix and its diagonal elements are P{ξ1 = Sj |ξ0 = Sj}. By
the properties of transition matrices corresponding to the EA, 1 is a simple one
in diagonal elements and all other diagonal elements are real and less than 1.
Similar to Proposition 1, the transition matrix BPBT has geometric convergence
rate. Hence, P has also geometric convergence rate determined by r(P). 	


5 Conclusions and Discussions

This paper confirms mathematically some results on asymptotic behaviors of evo-
lutionary algorithms. Several important facts of the asymptotic behaviors of evolu-
tionary algorithms, which make us understand evolutionary algorithms better, are
proved theoretically. From this paper, we know that the convergence rate of EAs is
determined by the spectrum radius of transition matrix, so, if the spectrum radium
of the transition matrixes of Markov chain associated with the evolutionary algo-
rithm becomes much smaller, the EA will converge much faster. For the simplest
case that the objective function is 1− 1, the spectrum radium r = max{P (ξk+1 =
sj |ξk = sj) : sj �= x∗}. So, we must make max{P (ξk+1 = sj |ξk = sj) : sj �= x∗}
become as small as possible in order to attain a fast convergence speed.

In fact, there are still a number of open problems for the further investiga-
tion such as, what effect on asymptotic behaviors will be brought by selection
strategy, genetic operators and population size, respectively; the question of non-
asymptotic behaviors(when the number of iterations depends in some way of the
population size); and others. Probably, one can think of many variants and gen-
eralization of the algorithm, but the results we obtained in this paper incite us to
go on studying simplified models of evolutionary algorithms in order to improve
our understanding of their asymptotic behaviors.
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