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Abstract. A centralized network is a network where all communication
is to and from a single site. In the combinatorial optimization literature,
this problem is formulated as the capacitated minimum spanning tree
problem (CMST). Up to now there are still no effective algorithms to
solve this problem. In this paper, we present a completely new approach
by using the genetic algorithms (GAs). For the adaptation to the evolu-
tionary process, we developed a tree-based genetic representation to code
the candidate solution of the CMST problem. Numerical analysis shows
the effectiveness of the proposed GA approach on the CMST problem.

1 Introduction

A centralized network is a network where all communication is to and from
a single site (Kershenbaum, 1993). In such networks, terminals are connected
directly to the central site. Sometimes multipoint lines are used, where groups
of terminals share a tree to the center and each multipoint line is linked to the
central site by one link only. This means that optimal topology for this problem
corresponds to a tree in a graph G = (V, E) with all but one of nodes in V
corresponding to the terminals. The remaining node refers to the central site, and
edges in E correspond to the feasible telecommunication wiring. Each subtree
rooted in the central site corresponds to a multipoint line. Usually, the central site
can handle, at most, a given fixed amount of information in communication. This,
in turn, corresponds to restricting the maximum amount of information flowing
in any link adjacent to the central site (which we will refer as the root of the
graph G) to that fixed amount. In the combinatorial optimization literature, this
problem is known as the capacitated minimum spanning tree problem (CMST).

The CMST problem has been shown to be NP -hard by Papadimitriou (Pa-
padimitriou, 1978). Much of the early works focused on heuristic approaches to
find good feasible solutions. Among them are those by Chandy and Lo (Chandy,
1973), Kershenbaum (Kershenbaum, 1974), and Elias and Ferguson (Elias and
Ferguson, 1974). The only full optimization algorithms that we are aware of are
by Gavish (Gavish, 1982) and Kershenbaum et al. (Kershenbaum at al., 1983),
but their use is limited to problems involving up to 20 nodes. Gavish (Gavish,
1983) also studied a new formulation and its several relaxation procedures for
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the capacitated minimum directed tree problem. Recently, this problem has even
more aroused many researchers’ interesting by using cutting plane algorithms by
Gouveia (Gouveia, 1995) and Hall (Hall, 1996), branch-bound algorithm by Ma-
lik and Yu (Malik and Yu, 1993), neighborhood search technique by Ahuja et al.
Ahuja, 2003, and ant colony optimization technique by Reimann and Laumanns
Reimann, 2006.

In the studies that date back twenty years, it is not surprising to find that
only very small instances were attempted in solving this problem. In this paper,
we present a completely new approach by using the genetic algorithms (GAs),
which have been demonstrating their powerful potential in dealing with such
complicated combinatorial problem with tree topology (Zhou and Gen, 1998,
2003). For the adaptation to the evolutionary process, we developed a tree-based
genetic representation to code the candidate solution of the CMST problem.
Because the new genetic representation has the tree topology and is only encoded
by a bigeminal string, it is easy to go on genetic operations. Also the tree-
based genetic representation guarantees that the candidate solutions are always
feasible solutions of the problem to be solved, and its locality property makes the
evolutionary process more efficiency. Numerical analysis shows the effectiveness
of the proposed GA approach on this CMST problem.

2 Problem Formulation

Firstly, we formulate the centralized network design problem as a zero-one in-
teger program. This particular formulation was first expressed by Gavish (Gav-
ish, 1982). Considering a complete, undirected graph G = (V, E), we let V =
1, 2, ..., n be the set of nodes representing the terminals and denote the central
site, or ”root” node, as node 1, and E = {(i, j)|i, j ∈ V } be the set of edges
representing all possible telecommunication wiring. For a subset of nodes S ⊆ V
we define E(S) = {(i, j)|i, j ∈ S} to be the edges whose endpoints are both in
S. We define the following binary decision variables for all edges (i, j) ∈ E:

xij =
{

1 if edge (i,j) is selected;
0 otherwise.

Let cij be the (fixed) cost of including edge (i, j) in the solution, and suppose
that di represents the demand at each node i ∈ V , where by convention the
demand of the root node d1 = 0. We also use d(S), S ⊆ V , to denote the sum
of the demands of the nodes of S. The subtree capacity is denoted κ .

It is not hard to verify that the following formulation is a valid integer pro-
gramming representation for the centralized network design problem:

min z =
n−1∑
i=1

n∑
j=2

cijxij (1)

s.t.
n−1∑
i=1

n∑
j=2

xij = n − 1 (2)
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∑
i∈S

∑
j∈S
j>1

xij ≤ |S| − λ(S), S ⊆ V \{1}, |S| ≥ 2 (3)

∑
i∈U

∑
j∈U
j>1

xij ≤ |U | − 1, U ⊂ V, |U | ≥ 2, {1} ∈ U (4)

xij = 0 or 1, (i = 1, 2, . . . , n − 1, j = 2, 3, . . . , n.) (5)

Equality (2) is true of all spanning trees: a tree with n nodes must have n− 1
edges. Inequalities (4) are some of the standard rank inequalities for spanning
trees: if more than |U |−1 edges connect the nodes of a subset U , then that set of
edges must contain a cycle. The parameter λ(S) in (3) refers to the bin-packing
number of the set S, namely, the number of bins of size needed to pack the nodes
of items of size di for all i ∈ S. These constraints are similar to (4), except that
they reflect the capacity constraint: if the set S does not contain the root node,
then the nodes of λ(S) must be contained in at least (S) different subtrees off
of the root.

In the case that the demands of all non-root nodes are 1, inequalities (3) can
be expressed more simply as follows as items of unit size can always be packed
in �|S|/κ� bins or subtrees.

∑
i∈S

∑
j∈S
j>1

xij ≤ |S| −
⌈
|S|
κ

⌉
, S ⊆ V \{1}, |S| ≥ 2 (6)

The above mathematical formulation is regarded as the capacitated minimum
spanning tree problem in literature. Assuming that all the constraints in (3) or
(6) can be explicitly represented, it is possible to compute a lower bound on
the problem by replacing the binary variables with continuous variables in the
range 0 to 1 and solving the resulting linear program. Unfortunately, there are
O(2n) constraints in (3) or (6), leading to a very large linear program even for
moderate values of n. In fact, the problem is NP -hard (Papadimitriou, 1978)
and algorithms exist yielding exact solutions only for problems of modest size
(Gavish, 1985).

Up to now, all heuristic algorithms for this problem are only focused on how
to deal with the constraints to make the problem simpler to solve. On the ap-
proach of cutting plane algorithms (Gouveia, 1995, Hall, 1996) or branch-bound
algorithm (Malik, 1993), the network topology of the CMST problem are usu-
ally neglected. As a result, it results in the exponential explosion of constraints.
In the following section, we focus on a new approach on this problem by us-
ing genetic algorithms. In the evolutionary process, we make full use of its tree
topology of the CMST problem and develop the algorithm to get the optimal or
near-optimal solutions.

3 Genetic Algorithms Approach

A genetic algorithm (GA) can be understood as an ”intelligent” probabilistic
search algorithm which can be applied to a variety of combinatorial
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optimization problems (Gen and Cheng, 2000). The theoretical foundations of
GAs were originally developed by Holland (Holland, 1975). The idea of GAs is
based on the evolutionary process of biological organisms in nature. During the
course of the evolution, natural populations evolve according to the principles of
natural selection and ”survival of the fittest”. Individuals which are more suc-
cessful in adapting to their environment will have a better chance of surviving
and reproducing, whilst individuals which are less fit will be eliminated. This
means that the genes from the highly fit individuals will spread to an increasing
number of individuals in each successive generation. The combination of good
characteristics from highly adapted ancestors may produce even more fit off-
spring. In this way, species evolve to become more and more well adapted to
their environment.

3.1 Genetic Representation

For the CMST problem, two main factors should be taken into consideration if
we want to keep its tree topology structure in the genetic representation: one
is the connectivity among nodes; the other is the degree value (the number of
edges connected on it) of each node. Therefore, the intuitive idea of encoding a
tree solution is to use a two-dimension structure for its genetic representation.
One dimension encodes the nodes of a spanning tree; another dimension encodes
the degree value of each node. Thus it needs a 2 × n matrix to represent a
chromosome for an n-node tree. Obviously the genes in node dimension take the
integers from 1 to n exclusively; the genes in degree dimension take the integers
from 1 to b inclusively (b is the largest degree value for all nodes). We define this
genetic representation as tree-based permutation.

For a rooted tree like the CMST solution, we can take one node (i.e. node
1) as the root node of it. All other nodes are regarded being connected to it
hierarchically. For any node (current node), the node incident to it on the upper
hierarchy is called as its predecessor node and the node incident to it on the
lower hierarchy is called as its successor node. Obviously, the root node has
no predecessor node and the leaf node has no successor node. Based on this
observation, the tree-based permutation of such a tree can be encoded as the
following procedure:

procedure: tree-based permutation encoding
step 1: Select node 1 (root node) as the current node in a labeled tree T , put

it as the first digit in the node dimension of the permutation and its degree
value as the first digit in the degree dimension.

step 2: Check all successor nodes of the current node from left branch to right
branch. If there are successor nodes, let the leftmost successor node as the
current node, then go to step 3. Otherwise, go to step 4.

step 3: Put the label digit of the current node to the permutation in the node
dimension and its degree value to the permutation in the degree dimension
(here we build the permutation by appending digits to the right), then go
to step 2.
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Fig. 1. A rooted tree and its tree-based permutation

step 4: Delete the current node and its adjacent edge from the tree, let its
predecessor node as the current node.

step 5: If all nodes have been checked, stop; otherwise, go to step 2.

Figure 1 illustrates an example of this tree-based permutation. For the initial
population, each chromosome can be generated randomly. However, in order to
keep the connectivity between nodes, the genes in the degree dimension need to
satisfy the following conditions: For an n-node tree, the total degree value for
all nodes is 2(n − 1). Suppose that drest is the total degree value of the nodes
whose degree value in degree dimension have been assigned and drest is the total
lower bound of the degree values for all those nodes whose degree value in degree
dimension have not been assigned. Then the degree value of the current node in
degree dimension should hold: no less than 1. The degree value of the current
node together with that of the rest nodes should hold: no less than drest and
no greater than 2(n − 1) − dused. Especially, for the root node, its degree value
should take no less the value of [|V |/κ] , which reflects the number of subtrees
connected to the root node to satisfy the capacity constraint.

Also, it is easy to decode the above tree-based permutation into a tree.
Suppose that the node dimension for individual P is represented as P1(k),
k = 1, 2, ..., n and the degree dimension for individual P as P2(k), k = 1, 2, ..., n.
The decoding procedure for each individual in the form of tree-based permuta-
tion can be operated as follows (for the convenience of the procedure operation,
the first gene value in the degree dimension should be added by one):

procedure: tree-based permutation decoding
step 1: Set k ← 1 and j ← 2.
step 2: Select the node r = P1(k) and the node s = P1(j), add the edge from

r to s into a tree.
step 3: Let P2(k) ← P2(k) − 1, P2(j) ← P2(j) − 1.
step 4: If P2(k) = 0, let k ← k − 1, otherwise, go to step 6.
step 5: If j = n, stop, otherwise, go to step 4.
step 6: If P2(j) ≥ 1, let k ← j, j ← j + 1, go to step 2, otherwise, j ← j + 1,

go to step 2.

Obviously, any rooted spanning tree can be encoded by this representation
scheme and any permutation encoded in this way represents a rooted spanning
tree. However, the relation between the encoding and its spanning tree may
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not be one-to-one mapping because different chromosomes may represent the
same spanning tree. But it is possible to represent all possible spanning trees
on a complete graph. It is also easy to go back and forth between the encoded
representation of a tree and the tree’s representation for evaluating the fitness,
which will be illustrated in Section 3.4.

It is important to point out that this encoding keeps the structure of a tree,
so it possesses the locality in the sense that small changes in the representation
(such as mutation operation) make small changes in the tree. Without this prop-
erty, the GA search tends to drift rather than converge to a highly fit population.
Therefore, this encoding is well adapted to the evolutionary process and thus
adopted as the genetic representation for the CMST problem.

3.2 Genetic Operation

Genetic operation is used to alter the genetic composition of individuals or chro-
mosomes. Usually it contains two kinds of operations: crossover and mutation.
In order to keep all individuals being feasible after genetic operations on the
tree-based permutation for the CMST problem, only three kinds of mutations
are adopted in this paper.

Exchange mutation on nodes : Exchange mutation selects two genes (nodes) at
random and then swaps the genes (nodes). This mutation is essentially a 2-opt
exchange heuristic. The operation can be illustrated by Figure 2.

Fig. 2. Exchange mutation on nodes

Inversion mutation on nodes : Inversion mutation selects two genes (nodes) at
random and then inverts the substring between these two genes (nodes). It is
illustrated in Figure 3.

Insertion mutation: Insertion mutation selects a string of genes (branch) at ran-
dom and inserts it in a random gene (node). When a string of genes are taken
off from a gene, the gene value of that node should be decreased by one. When
a string of genes are added on a gene, the gene value of that node should be
increased by one. The operation can be illustrated by Figure 4. Obviously, this
operation is indispensable for the evolutionary process to evolve to the fit tree
structures.
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Fig. 3. Inversion mutation on nodes

Fig. 4. Inversion mutation on nodes

3.3 Modification

For the CMST problem, there is the capacity constraint for each spanning tree.
Especially, when the demands of all terminals are equal to one, the problem
is finding a rooted spanning tree in which each of the subtree off of the root
node contains at most κ nodes. Therefore, before evaluation, if there are such
individuals whose subtrees violate the capacity constraint, we use the insertion
mutation operation to insert the extra branch on a subtree into other subtree
with less nodes.

3.4 Evaluation and Selection

Evaluation is to associate each individual with a fitness value which reflects how
good it is. The higher fitness value of an individual, the higher its chances of
survival and reproduction and the larger its representation in the subsequent
generation. Obviously the evaluation together with selection provides the mech-
anism of evolving all individuals toward the optimal or near-optimal solutions.
Simply, we take the objective value of Equation (1) for each individual’s fitness
value after its decoding from genotypic representation to phenotypic represen-
tation.



130 G. Zhou et al.

As to selection, we adopt the (μ + λ)-selection strategy(Back, 1991). But
in order to avoid the premature convergence of the evolutionary process, our
selection strategy only selects μ different best individuals from μ parents and
λ offspring. If there are no μ different individuals available, the vacant pool of
population is filled with renewal individuals.

3.5 GA Procedure for the CMST

To summarize our GA approach on the CMST problem, the overall procedure
can be outlined as follows:

procedure: GA for CMST
begin

t ← 0;
initialize the population of parents P (0);
evaluate P (0);
while (not termination condition ) do

reproduce P (t) to yield the population of offspring C(t);
modify P (t);
evaluate C(t);
t ← t + 1;

end
end

Table 1. The cost matrix for the numerical example (n = 16, κ = 5)

i/j 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1616 1909 246 622 829 1006 2237 399 1717 632 1191 2116 824 1336 1519
2 2996 1419 2217 1213 2046 3753 1516 1180 1997 552 3622 2423 1367 862
3 1893 1543 1792 2785 1362 1667 3556 2332 2446 1248 1508 3233 3287
4 799 593 1188 2369 242 1670 857 962 2243 1004 1348 1425
5 1230 1253 1625 761 2301 801 1748 1509 206 1873 2119
6 1758 2597 480 1883 1449 663 2463 1420 1701 1573
7 2703 1399 1470 454 1849 2612 1350 960 1470
8 2238 3922 2304 3231 137 1442 3476 3743
9 1889 1029 1009 2108 959 1586 1628
10 1693 1437 3808 2480 511 340
11 1685 2206 909 1205 1603
12 3098 1952 1429 1100
13 1331 3368 3624
14 2038 2309
15 578

The parameters for the proposed GA approach are set as follows: population size
pop size = 200; mutation probabilities for three mutation operations are pm = 0.3
respectively; maximum generation max gen = 500; and run by 20 times.
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4 Computational Experience

In order to illustrate the ideas that were presented in the previous section, we
present a numerical example given out by Gavish (Gavish, 1985). The example
consists of a CMST problem with 16 nodes, a unit traffic between each node and
node 1, and a capacity restriction . The cost matrix for the example is presented
in Table 1.

Gavish adopted an augmented lagrangean based algorithms to solve this prob-
lem and got the optimal solution 8526 (Gavish, 1985). By the proposed GA, we
also got the optimal solution 8526 and its corresponding topology of a tree.
Figure 5 illustrates the result.

Fig. 5. Inversion mutation on nodes

5 Conclusion and Further Work

The centralized network design problem can be formulated as a capacitated
minimum spanning tree problem. In this paper we developed a new approach
to deal with this problem by using genetic algorithms. In order to code the
corresponding rooted tree topology for the genetic representation on the CMST
problem, we presented a tree-based permutation which is able to represent all
possible rooted trees. Small numerical example shows the effectiveness of the
proposed GA approach on the CMST problem.

Further works are needed to demonstrate the effectiveness of the proposed
GA approach on this problem, which including the test on the problems with
larger scale, the comparison with its lower bound since it is difficult to give out
the optimal solution of the problem on larger scale. However, the research work
gives out an novel approach on such complicated combinatorial optimization
problems.
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