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Abstract. Kernel discriminant analysis (KDA) method is a promising
approach for non-linear feature extraction in face identification tasks.
However, as a linear algorithm to address nonlinear problem, Fisher
discriminant analysis (FDA) approach will not give a satisfactory per-
formance. Moreover, FDA usually suffers from small sample size (S3)
problem. To overcome these two shortcomings in FDA method, Shan-
non wavelet kernel based subspace FDA (SKDA) algorithm is devel-
oped in this paper. Two public databases such as FERET and CMU
PIE databases are selected for evaluation. Comparing with the existing
kernel based FDA-based methods, the proposed method gives superior
results.

Keywords: Face identification, Kernel discriminant analysis, Shannon
wavelet.

1 Introduction

Over the past decade, Fisher discriminant analysis [1] method has been shown to
be an effective approach in face identification tasks and its superior performance
has been reported in many literatures [1]-[11] . FDA is theoretically sound and
its objective is to find the most discriminant feature for pattern classification.
However, there are two major limitations upon FDA approach. First, it is a
linear method and is hard to solve nonlinear problem, while the second is the
small sample size (S3) problem, which always occurs when the sample size is
smaller than the dimensionality of feature vector.

KDA is a useful approach to deal with nonlinear problem. The basic idea of
KDA is to apply a nonlinear mapping Φ : x ∈ Rd → Φ(x) ∈ F to the input
data vector x in input space Rd and then to perform the FDA on the mapped
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higher dimension feature space F . The feature space F could be considered as
a linearization space. By utilizing kernel trick, the inner products 〈Φ(xi), Φ(xj)〉
in F can be replaced with a Mercer kernel function K(xi, xj), i.e. K(xi, xj) =
〈Φ(xi), Φ(xj)〉 = Φ(xi)T · Φ(xj), where xi, xj are input pattern column vectors
in input space Rd. So the nonlinear mapping Φ can be performed implicitly
in input space Rd. This paper exploits Shannon wavelet kernel method [9] to
address the nonlinear problems such as pose and illumination variations in face
identification, while subspace FDA (SFDA) algorithm [6] will be used to solve
S3 problem.

Therefore, combining Shannon wavelet kernel with subspace FDA method, we
design and develop a novel Shannon wavelet kernel-based subspace FDA algo-
rithm (SKDA) in this paper. Two public databases such as FERET and CMU
PIE databases are selected for evaluation. Comparing with the existing kernel
based FDA-based methods, the proposed method gives the best performance.

The rest of this paper is organized as follows. Section 2 briefly describes the
Shannon wavelet based Mercer kernel function. The proposed SKDA algorithm is
developed and evaluated in section 3 and section 4 respectively. Finally, Section
5 draws the conclusions.

2 Mercer Kernel Function Based on Shannon Wavelet

This section briefly reviews on Shannon wavelet based Mercer kernel function.
Details can be found in paper [9].

Assume
· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

is the multiresolution analysis (MRA) [12,13] generated by the Shannon sampling
function φ(x) = sinc(x) := sin πx

πx . Thus the scaling subspaces

Vj = {f ∈ L2(R)|suppf̂ ⊂ [−2jπ, 2jπ]}

and the corresponding wavelet subspaces {Wj}j∈Z , where Wj ⊥ Vj and Wj ⊕
Vj = Vj+1, can be generated by the Shannon wavelet:

ψ(x) := 2sinc(2x) − sinc(x), (1)

whose Fourier transform is given by ψ̂(ξ) = χ[−2π,−π]∪[π,2π](ξ) , where χ(x) is an
indicator function. Let H(ξ) and G(ξ) be the 2π-periodic functions respectively
as:

H(ξ) =
{

1, ξ ∈ [−π
2 , π

2 )
0, ξ ∈ [−π, −π

2 ) ∪ [π
2 , π) and G(ξ) = H(ξ + π).

Then, we have

φ̂(ξ) = H(ξ/2)φ̂(ξ/2), ψ̂(ξ) = G(ξ/2)φ̂(ξ/2).

It is easy to see that φ(x) is an orthonormal scaling function and ψ(x) is an
orthonormal wavelet.
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The necessary and sufficient condition for a translation invariant function
k(x, y) = k(x − y) to be a Mercer kernel is that its Fourier transform is non-
negative. Under this consideration, the Shannon wavelet Mercer kernel k(x, y)
defined on Rd × Rd can be constructed as follows:

k(x, y) =
1
d

d∑
i=1

[ψ((xi − yi)/θi)]p, (2)

where ψ(x) is Shannon wavelet function defined in (1), x = (x1, · · · , xd)T , y =
(y1, · · · , yd)T ∈ Rd, p ∈ Z+ and θi > 0 (i = 1, · · · , d) are kernel parameters.

3 Proposed SKDA Algorithm

This section reports Shannon wavelet kernel based subspace FDA method for
face identification. Details are discussed as follows.

3.1 Some Notations

Let d and C be the dimensionality of original sample feature space and the num-
ber of sample classes respectively. The total original samples X = {X1, X2, · · · ,
XC}, the jth class Xj contains Nj samples, namely Xj = {xj

1, x
j
2, · · · , x

j
Nj

},
j = 1, 2, · · · , C. Let N be the total number of original training samples, then N =∑C

j=1 Nj . If Φ(x): x ∈ Rd → Φ(x) ∈ F is the kernel nonlinear mapping, where F
is the mapped feature space, denote df = dimF , the total mapped sample set
and the jth mapped class are given by Φ(X) = {Φ(X1), Φ(X2), · · · , Φ(XC)} and
Φ(Xj) = {Φ(xj

1), Φ(xj
2), · · · , Φ(xj

Nj
)} respectively. Also, the mean of the mapped

sample class Φ(Xj) and the global mean of the total mapped sample Φ(X) are
given by mj = 1

Nj

∑
x∈Xj

Φ(x) and m = 1
N

∑C
j=1

∑
x∈Xj

Φ(x) respectively. In
feature space F , the within-class scatter matrix SΦ

w, between-class scatter matrix
SΦ

b and total scatter matrix SΦ
t are defined respectively as:

SΦ
w =

1
N

C∑
j=1

∑
x∈Xj

(Φ(x) − mj)(Φ(x) − mj)T = ΦwΦT
w,

SΦ
b =

1
N

C∑
j=1

Nj(mj − m)(mj − m)T = ΦbΦ
T
b ,

SΦ
t =

1
N

C∑
j=1

∑
x∈Xj

(Φ(x) − m)(Φ(x) − m)T = ΦtΦ
T
t ,

where Φw, Φt ∈ Rd×N and Φb ∈ Rd×C .
The Fisher index JΦ(W ) in mapped feature space F is defined by

JΦ(W ) = det(WT SΦ
wW ) [det(WT SΦ

b W )]−1, (3)

where W ∈ F df×m. The objective of FDA is used to find a optimal projection in
mapped feature space F that minimizes within-class distance and simultaneously
maximizes between-class distance.
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3.2 SKDA Strategy

Let SΦ
wt = ΦT

wΦt ∈ RN×N . By performing singular value decomposition, there
exist two orthonormal matrices U, V ∈ RN×N and a diagonal matrix Λ =
diag{σ1, · · · , σr, 0, · · · , 0} ∈ RN×N with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, such that SΦ

wt =
UΛV T . Since SΦ

w = ΦwΦT
w, we have (ΦtV )T Sw(ΦtV ) = diag{σ2

1 , · · · , σ2
r , 0, · · · , 0}

∈ RN×N . Rewrite the term ΦtV as ΦtV = [y1, y2, · · · , yr, yr+1, · · · , yN ]df×N ,
where yi is the ith column of (ΦtV )df×N . Denote Y = [yr+1, yr+2, · · · , yN ]. It
can be seen that Y is a df ×(N−r) matrix and satisfies Y T SΦ

wY = 0(N−r)×(N−r).
Having determined the null subspace of SΦ

w, the projection is then determined
in the subspace N(SΦ

b ), the complementary subspace of SΦ
b . Thus, the second

step is to discard the null space of SΦ
b to ensure that the numerator of the Fisher

index will not be zero.
To this end, we define Ŝb = Y T SΦ

b Y , and then Ŝb = (Y T Φb)(Y T Φb)T , Y T Φb

is a (N − r) × C matrix. By singular value decomposition, there exist two or-
thonormal matrices (Ub)(N−r)×(N−r) and (Vb)C×C , such that Y T Φb = UbΛbV

T
b ,

where Λb =
[
Σb

0

]
∈ R(N−r)×C and Σb = diag{τ1, · · · , τm, 0, · · · , 0} ∈ RC×C

with τ1 ≥ τ2 ≥ · · · ≥ τm > 0. Rewrite Ub = [u1, · · · , um, um+1, · · · , uN−r] ∈
R(N−r)×(N−r) and denote A = [u1, · · · , um](N−r)×m and Dm = diag{τ1, · · · , τm},
we have AT ŜbA = D2

m, namely, (Y A)T Sb(Y A) = D2
m. Let W = (Y A)df×m, then

WT SΦ
wW = 0m×m, WT SΦ

b W = D2
m.

Thereby, W is the optimal SKDA projection matrix, by which the Fisher index
J(W ) (3) reaches maximum.

3.3 SKDA Algorithm Design

Based on above analysis, the proposed SKDA algorithm is designed as follows.

Step 1: Compute the N × N matrix Swt = ΦT
wΦt via the following formula:

ΦT
wΦt = [N · K − K · 1NN − N · ΛN · K + ΛN · K · 1NN ]/N2,

where the kernel matrix K =
(
k(xi

j , x
l
k)

)i=1,···,C;l=1,···,C
j=1,···,Ni;k=1,···,Nl

, 1mn denotes a
m × n matrix with all terms equal to 1, ΛN = diag[ΛN1 , · · · , ΛNC ] is a N by
N block diagonal matrix, and ΛNi is a Ni × Ni matrix with all terms equal
to 1/Ni, i = 1, · · · , C.

Step 2: Perform singular value decomposition Swt
svd= UΛV T , where U, V ∈

RN×N are two orthonormal matrices, Λ = diag[σ1, · · · , σr, 0, · · · , 0] ∈ RN×N

with σ1 ≥ · · · ≥ σr > 0.
Step 3: Rewrite V = [v1, · · · , vr, vr+1, · · · , vN ] and denote Ṽ = [vr, vr+1, · · · , vN ]

∈ RN×(N−r) and Y = (ΦtṼ )df×(N−r).
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Step 4: Compute Z = (Y T Φb)(N−r)×C = Ṽ T ΦT
t Φb, it yields that

ΦT
t Φb = [N ·K · DC−K·1NC ·D−1NN ·K · DC +

1
N

· 1NN · K · 1NC · D]/N2,

where K is the kernel matrix, DC = diag[DN1 , · · · , DNC ] and DNi is a Ni ×1
matrix with all terms equal to 1/

√
Ni (i = 1, · · · , C), D = diag[

√
N1, · · · ,√

NC ].
Step 5: If the norm of one row in the matrix Z is too small (say less than 1e−6),

then discard this row in matrix Z. Accordingly, discard the corresponding
column in matrix Ṽ . Denote the modified matrices Z,Ṽ and Y as Z ′,Ṽ ′ and
Y ′ respectively, then do singular value decomposition Z ′ svd= UbΛbV

T
b , where

Ub and Vb all are orthonormal matrices, Λb = (
∑

b, 0)T ∈ R(N−r′)×C and∑
b = diag[τ1, · · · , τs, 0, · · · , 0]C×C . Usually, s = C − 1.

Step 6: Rewrite Ub = [u1, · · · , us, us+1, · · · , uN−r′ ], where ui is the ith col-
umn of orthonormal matrix Ub. Denote A = (u1, · · · , us)(N−r′)×s and W =
(Y ′A)df×s, then W is the SKDA optimal projection matrix.

Step 7: For any testing sample Φ(x), we get its enhanced feature vector as

(WT Φ(x))s×1 = (Y ′A)T Φ(x) = AT Ṽ ′T Φt · Φ(x)

=
1√
N

AT Ṽ ′T[Φ(xi
j)

T·Φ(x)−mT·Φ(x)]1≤i≤C;1≤j≤Ni

N×1 ,

where Φ(xi
j)

T · Φ(x) = k(xi
j , x) and mT · Φ(x) = 1

N

∑C
i=1

∑Ni

j=1 k(xi
j , x).

4 Experimental Results

In this section, two popular and available human face databases, namely FERET
and CMU PIE databases, are selected to evaluate the performance of our pro-
posed SKDA algorithm. In the following experiments, Shannon wavelet kernel
is with parameters (p, θ) = (1, 3.5).

4.1 Face Image Databases

For FERET database, we select 120 people, 6 images for each individual. Face
image variations in FERET database include pose, illumination, facial expression
and aging. Images from one individual are shown in Figure 1.

CMU PIE face database includes totally 68 people. There are 13 pose varia-
tions ranged from full right profile image to full left profile image and 43 different
lighting conditions, 21 flashes with ambient light on or off. In our experiment,
for each people, we select 56 images including 13 poses with neutral expression
and 43 different lighting conditions in frontal view. Several images of one people
are shown in Figure 2.

For all images in above two face databases, the following preprocessing steps
are performed.
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Fig. 1. Images of one person from FERET database

 

Fig. 2. Images of one person from CMU PIE face database

– All images are aligned with the centers of eyes and mouth. The orientation of
face is adjusted (on-the-plane rotation) such that the line joining the centers
of eyes is parallel with x-axis.

– All the original images with resolution 112x92 are reduced to wavelet feature
faces with resolution 30x25 after two-level D4 wavelet decomposition [14].

– All training and testing samples in above two face databases are further
normalized as follows:

x∗ =
x − mean(x)

std(x)
,

where x is a sample vector for training or testing, mean(x) is the expectation
of x and std(x) is the standard deviation of x.

4.2 Results on FERET Database

This subsection reports the results of proposed SKDA method on FERET face
database. We randomly select n (n=2 to 5) images from each people for training,
while the rest (6−n) images of each individual are selected for testing. The exper-
iments are repeated 10 times and the average accuracies are recorded in table 1
and shown in the Figure 3. The identification rate of SKDA method increases from
75.90% with training number 2 to 93.92% with training number 5. While for RBF
kernel based SFDA (RKDA), the corresponding identification accuracies increase
from 71.35% with training number 2 to 92.08% with training number 5 respec-
tively. Comparing with other kernel-based FDA methods, namely, GDA [2] with
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Table 1. Comparison on different algorithms on FERET database

TN 2 3 4 5
GDA [2] 71.27% 82.31% 87.71% 92.58%
KDDA [4] 69.45% 82.69% 88.04% 93.25%
RKDA 71.35% 81.06% 87.00% 92.08%
SKDA 75.90% 84.75% 90.29% 93.92%

2 3 4 5
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FERET database

Trainning Number
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Fig. 3. Performance on FERET face database

RBF kernel and KDDA [4] with RBF kernel, the identification accuracies of GDA
and KDDA methods increase from 69.45% and 71.27% with training number 2 to
93.25% and 92.58% with training number 5 respectively.

The results show our proposed SKDA methods gives the best performance for
all cases on FERET database.

4.3 Results on CMU PIE Face Database

The subsection reports the results of the proposed SKDA method on CMU
PIE database. We randomly select 14 images from each people for training
(14×68=952 images for training), while the rest of images of each individual
are selected for testing (42×68=2856 images for testing). The experiments are
repeated 10 times and the average accuracies of rank 1 to rank 4 are recorded
and shown in table 2 and plotted in Figure 4. The identification rate of proposed
SKDA method increases from 78.31% with rank 1 to 83.31% with rank 4, while
the identification accuracies of RKDA algorithm increase from 77.79% with rank
1 to 82.63% with rank 4. Comparing with other kernel-based methods, namely,
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GDA [2] with RBF kernel and KDDA [4] with RBF kernel, the identification
rates of GDA and KDDA methods increase from 77.86% and 77.64% with rank
1 to 83.22% and 83.07% with rank 4 respectively. The results demonstrate that
our proposed SKDA method gives better performance on CMU PIE database.

Table 2. Comparison on different algorithms on CMU PIE database

Rank 1 2 3 4
GDA [2] 77.86% 80.49 % 82.10 % 83.22%
KDDA [4] 77.64% 80.39% 81.95% 83.07%
RKDA 77.79% 80.26% 81.67% 82.63%
SKDA 78.31% 80.57% 82.11% 83.31%

1 2 3 4
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Fig. 4. Performance on CMU PIE face database

5 Conclusions

Based on Shannon wavelet kernel, this paper proposes and develops a novel sub-
space KDA algorithm for nonlinear feature extraction for face identification. Two
human face databases, namely FERET database and CMU PIE database, are
selected for evaluation. The results are encouraging on FERET and CMU PIE
face databases. Experimental results show that the proposed SKDA algorithm
gives better performance than existing state-of-the-art RBF kernel based FDA
algorithms.



1114 W.-S. Chen, P.C. Yuen, and J.-H. Lai

Acknowledgement

This project was supported by the Science Faculty Research grant of Hong Kong
Baptist University RGC Earmarked Research Grant HKBU-211306 and NSF of
China (60373082) and NSF of Guangdong province (06105776). The authors
would like to thank for the US Army Research Laboratory for contribution of
the FERET database and CMU for the CMU PIE database.

References

1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19(7), 711–720 (1997)

2. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach.
Neural Computation 12(10), 2385–2404 (2000)

3. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 23(2), 228–233 (2001)

4. Lu, J., Plataniotis, K.N., Ventsanopoulos, A.N.: Face recognition using kernel dis-
criminant analysis algorithms. IEEE Trans. on Neural Network 14(1), 117–126
(2003)

5. Chen, W.S., Yuen, P.C., Huang, J.: A New Regularized Linear Discriminant Anal-
ysis Methods to Solve Small Sample Size Problems. Int. J. Pattern Recognit. Artif.
Intell. 19(7), 917–936 (2005)

6. Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Component-based subspacec lin-
ear discriminant analysis method for recognition of face images with one training
sample. In: Optical Engineering, vol. 44(5) (2005)

7. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete
kernel Fisher Discriminant framework for feature extraction and recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 27(2), 230–244 (2005)

8. Chen, W.S., Yuen, P.C., Huang, J., Dai, D.Q.: Kernel machine-based one-
parameter regularized Fisher discriminant method for face recognition. IEEE
Transactions on Systems, Man and Cybernetics, Part B 35(3), 659–669 (2005)

9. Chen, W.S., Yuen, P.C., Huang, J., Lai, J.H.: Face Classification based on Shannon
Wavelet Kernel and Modified Fisher Criterion. In: Proceeding of the 7th IEEE
international conference on automatic face and gesture recognition, April 10-12,
2006 pp. 467–474 (2006)

10. Huang, J., Yuen, P.C., Chen, W.S., Lai, J.H.: Choosing Parameters of Kernel
Subspace-LDA for Recognition of Face Images under Pose and Illumination Vari-
ations. In: IEEE Transactions on Systems, Man and Cybernetics, Part B (2007)
(Accepted to be published)

11. Xiong, H.L., Swamy, M.N.S., Ahmad, M.O.: Two-dimensional FLD for face recog-
nition. Pattern Recognition 38(7), 1121–1124 (2005)

12. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet repre-
sentation. IEEE Pattern Anal. and Machine Intell 11(7), 674–693 (1989)

13. Meyer, Y.: Wavelets and operators. Cambridge Univ. Press, Cambridge (1993)
14. Daubechies, I.: Ten lectures on wavelets, CBMS-NSF conference series in applied

mathematics, SIAM Ed (1992)


	Subspace KDA Algorithm for Non-linear Feature Extraction in Face Identification
	Introduction
	Mercer Kernel Function Based on Shannon Wavelet
	Proposed SKDA Algorithm
	Some Notations
	SKDA Strategy
	SKDA Algorithm Design

	Experimental Results
	Face Image Databases
	Results on FERET Database
	Results on CMU PIE Face Database

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




