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Abstract. This paper presents a novel method for feature extraction based on 
the generalized entropy of the histogram formed by Euclidean distances, which 
is named distributive entropy of Euclidean distance (DEED in sort). DEED is a 
nonlinear measure for learning feature space, which provides the congregate 
and information measure of learning samples space. The ratio of between-class 
DEED to within-class DEED ( rdJ ) is used as a new nonlinear separability cri-
terion for optimizing feature selection. Experiments on vehicle classification 
show that the proposed method has better performance on all the datasets than 
the fisher linear discriminant analysis.   

1   Introduction 

Feature extraction is a crucial preprocessing step for pattern recognition. It can be 
viewed as a process that extracts effective features from the original measurements 
though some functional transformations [1]. Feature extraction for classification aims 
to select features leading to large between-class distance and small within-class vari-
ance in the feature vector space, at the same time preserve class separability as much 
as possible. Various linear mapping based criteria have been proposed for evaluating 
the effectiveness of features [2]. Fisher linear discriminant analysis (FLDA) is a popu-
lar and powerful linear classification technique, which clusters patterns of the same 
class and separates patterns of different classes by maximizing the criterion function. 
As a measure of class separability, the Fisher criterion is defined by the ratio of the 
between-class variance to the within-class variance. FLDA works mostly for linearly 
separable classes and provides second-order statistics of data only. However, many 
pattern classifications are not linearly separable and features are highly nonlinear 
functions. Since it is difficult to capture a nonlinear relationship with a linear map-
ping, the basis problem is to find a proper nonlinear mapping function for the given 
data.  

The rationale of performing a nonlinear mapping goes back to Cover’s theorem on 
the separability of patterns, which states that a complex pattern–classification problem 
cast in a high-dimensional space nonlinearly is more likely to be linearly separable than 
in a low-dimensional space [3]. Many neural network architectures apply this idea for a 
linear solution obtained in the feature space [4]. Other nonlinear feature extraction ap-
proaches can be found in the Ref. [5]. In this paper, we address the feature extraction 
problem from an information theoretic perspective. The generalized entropies of histo-
grams formed by Euclidean distances are employed for classification.  



1086 M. Bao et al. 

The histogram entropy concept has been utilized in the image processing [6], 
which reflects the statistical information content of an image and hence its structure in 
the most general sense. A histogram of a measurement provides the basis for an em-
pirical estimate of the probability density function. In this paper, we propose an  
entropy-based nonlinear mapping method for effective feature extraction. As an alter-
native criterion, the ratio of the between-class histogram entropy to the within-class 
histogram entropy is maximized to increase class separability.   

The rest of this paper is organized as follows. In section 2, the distributive entropy 
of Euclidean distance (DEED) is defined and applied to a novel nonlinear separability 
criterion. Experiment results from the tracked vehicle and wheel vehicle classification 
problem are presented in Section 3, comparing the performance of linear and nonlin-
ear discriminant analysis. Finally, conclusions are summarized in Section 4.  

2   Distributive Entropy of Euclidean Distance 

2.1   The Definition and Properties of DEED 

Assume a matrix is formed by nm × dimension vectors, all vectors can be mapped to 
certain points in the Euclidean space. The Euclidean distances between any points can 
be used to compute a histogram.  The Shannon entropy of this histogram is defined as 
distributive entropy of Euclidean distance (DEED). The value of DEED provides the 
uncertainty information concerning feature vectors. For a mutual classification prob-
lem, the distributive entropy of Euclidean distance between any sample and the sam-
ple mean of the same class is defined as within-class DEED (WCDEED). The  
distributive entropy of Euclidean distance between any sample in one class and the 
sample mean of other class is defined as between-class DEED (BCDEED). Theoreti-
cally, separability of features in training samples will be enhanced when the mapped 
points in Euclidean space are more consistently convergence to the center point. 
However, if the distribution of all mapped points in Euclidean space is diffusive, it 
should be difficult to achieve a good classification performance by using such training 
samples.  

Shannon entropy is a strictly convex function, which reaches a maximum value 
when all probabilities are equal. Any approach to uniform the probability distributions 
will increase the entropy. Because DEED is a measure of histogram uniformity, it also 
shares the properties of entropy. That means the value of DEED should be large if the 
mapped points uniformly converge around a certain point, and the value of DEED 
should be small if the mapping points exhibit non-uniform convergence. Furthermore, 
the DEED measure can be extended to the mutual classification problem due to the 
additivity property of Shannon entropy. We propose DEED-based criterion function 
as follows: 

WCDEEDBCDEEDJ rd /= . (1) 

Hence, the larger ratio of between-class DEED (BCDEED) to within class DEED 
(WCDEED) is, the better separability of training samples will be. Unlike FLDA, 
equation (1) is an efficient criterion via nonlinear mapping, because it contains high 
order statistical information and improves the discriminative capability. In addition, 
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as a nonparametric method, the DEED-based algorithm provides weighting informa-
tion in training procedure for further application.  

2.2   DEED-Based Algorithm 

Consider a matrix nmRW ×∈  representing all the vectors in a set of m×n dimensional 
vectors ),,( ,2,1, niiii xxxu = , it is normalized by 2L . Let ),,( 21 nxxxu =  denote 

the mean of u , it is convenient to obtain the Euclidean distance between each vector 
and the mean vector u ofW  and express in terms of arrayδ . 

T
kkkk uuuuuu ))((),( −−=δ , mk 2,1= . (2) 

Set )max(max δδ = , )min(min δδ = , then ],[ maxmin δδδ ∈k . Given a constant N  
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We have various estimates of a density function, and obtain histograms of Euclidean 
distances belong to each intervals of iΦ . 

If ip  is defined as the number of samples belong to interval iΦ , the sum of 

ip (i=1, 2, …, N) is m. The probability of iΦ  is derived as follows when ∞→m , 

mpP ii /= ,           Ni ,,2,1= , (5) 

and                              1
1
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=

N

i
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Using equations (5) and (6), we may calculate the distributive histogram of Euclidean 
distance, and employ it to derive the DEED,   

                                   ∑
=

−=
N

i
ii PPPE

1
2log)( . (7) 

Given a confidence coefficientα , we denote the maximum Euclidean distance un-

der confidence interval as maxδ̂  , and ignore those samples out of the confidence in-

terval. Then the modified DEED can be obtained by multiplying the )ˆ( maxδf  (for 

simplicity, let maxmax
ˆ)ˆ(̂ δδ =f ) to the right side of equation (7),  
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∑
=
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The parameter )(ˆ PE  contains the information of both the distribution and scatter 

range of mapped points in Euclidean space. We also abbreviate the name of modified 

distributive entropy of Euclidean distance )(ˆ PE to distributive entropy of Euclidean 

distance DEED for reason of convenience. 

2.3   Validation in Simulation 

Consider two classes of overlapping, two dimensional, Gaussian-distributed patterns 
labeled as 1 and 2. Let nC  denote the set of events in which a random vector X   be-

longs to patterns labeled n. We have the conditional probability density function, 
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where u is the mean of two dimension vectors, 2σ is variance. In two-class problem, 
2,1=n . Five sets of data with different separabilities can be obtained by changing the 

parameters u and 2σ . Assume three conditions of equal probability, the costs of cor-
rect classifications are zero, and an equal cost to all misclassifications, we determine 
the optimum decision boundary using the likelihood ratio test as shown in Table 1.  

Table 1. Parameters of numerical simulation 

 Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 

1C  1 [(0,0); 2] [(0,0); 1] [(0,0); 1] [(0,0); 1] [(0,0); 1] 

2C 1 [(2,0) ; 4] [(0,2) ; 4] [(0,3) ; 6] [(0,4) ; 8] [(0,5) ; 10] 

Decision boundary2 (-2,0); 3.68 
(-0.67,0); 

2.34 
(-0.6,0); 2.54 

(-0.57,0); 
2.71 

(-0.55,0); 
2.86 

Correct classifica-
tion probability 3 

0.7428 0.8164 0.8763 0.9145 0.9385 

1. The mean value and variance of Gaussian model.   
2. The center and the radius of Bayesian decision boundary.  
3. The average correct classification probability of 20 samples set. 

 
The simulation results show the efficiency of rdJ  as a separability criterion, and a 

large criterion value corresponds to the enhanced performance of classification.  

3   Experiment Results and Discussions 

In this section, we apply the separability criterion of rdJ  to the classification of 

ground vehicles. The data set consists of 3250 samples of 5 types of wheeled vehicle 
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and 4250 samples of 9 types of tracked vehicles, which is collected from four field 
experiments. The sampling rate is 1000 Hz, and the ground vehicles are classified by 
tracked and wheeled vehicles.  

3.1   Various Features Extraction of Ground Vehicles 

Some features of ground vehicle have been obtained by analyzing the noise signal 
of ground vehicles, e.g. 1) most noise energy of vehicle are spread at frequencies 
in the range of 0-500 Hz; 2) the tracked vehicles is distinctive from wheeled vehi-
cle due to its stronger harmonic component; 3) there is more energy in lower fre-
quency and the fundamental frequency varies with the status of running vehicle. 
These three features were adopted for the tracked and wheeled vehicle  
classification. 

3.1.1   Non-uniform Subband Energy Feature 
A filterbank with 25 bands was designed to filter the noise signal. The features were 
derived from energies of each band and represented by a 25-dimension vector. A 
second order IIR peaking filter was determined by the equation (10) [7], [8].  
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Fig. 1. Non-uniform subbands filters 

The frequency and phase response of filter bank are shown in Fig. 1. Frequency 
bands dividing are determined by equation (11). From Fig. 1, the frequency between 
the 50Hz -200Hz is partitioned to 18 bands, and the frequency below 50 Hz was di-
vided into 2 bands, while the other five bands were assigned to the frequency from 
250 Hz to 500 Hz. Obviously, the frequency between 50-200 Hz was analyzed more 
carefully than other frequency bands. 
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3.1.2   Modified Mel Frequency Cepstral Coefficient Feature 
Cepstral analysis is an effective analysis method for harmonic signal. Mel frequency 
cepstral coefficient (MFCC) is a feature widely used in the context of speech recog-
nizing because it considers the hearing mechanism. The energy of recorded signal 
concentrate in the frequency range of 0-500 Hz, therefore we design a new nonlinear 
mapping function, 

)300/1(log900 10 nsmel fF +×= . (12) 

Using equation (12), we divide smelF  into 25 bands uniformly in the frequency 

range of interest. The center frequency is determined by mapping the center of 
each band in smelF  to a linear frequency. According to the center frequency in 

linear frequency, the triangle filter banks of modified MFCC can be designed. The 

relationship between smelF  and linear frequency are shown in Fig. 2, and the 25 

triangle filters are shown in Fig. 3. The 25 dimensions features were obtained us-
ing equations (13)-(15). Similar to the hearing mechanism, the high frequency 
components were analyzed in a large scale and the low frequency components 
were analyzed in a small scale. The harmonic characteristics can be achieved by 
the cepstral analysis. 
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where )(kM l corresponds to the triangle filter of the kth band.  
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Fig. 2. Relationship of modified Mel frequency and linear frequency 

 

Fig. 3. Modified Mel frequency triangle filters 

3.1.3   The Coefficient of Wavelet Package  
The feature of wavelet package was selected by using typical wavelet kernel function 
‘db6’. We used 5-scale wavelet analysis of the recorded signal from vehicles and 
achieved 32 dimensions vector. The wavelet algorithm for features extraction is pro-
vided in the Wavelet Toolbox of Matlab.  

3.2   Comparison of the Performance of Class Separability Criteria  

The experiments randomly choose two third of tracked vehicle samples as training 
samples from database, the rest are used for test. Similarly, we obtain the training and 
test samples of wheeled vehicle. There are 2166 wheeled vehicle samples and 3030 
tracked vehicle samples in the training set. After 20 times such selection independ-
ently, we create 20 sets of both training and test set for the classification of ground 
vehicles. We denote the wheel samples as ‘W’, and the tracked samples as ‘T’. 

3.2.1 Separability Estimation by the Use of Criterion rdJ  
Distributive histogram of Euclidean distance and DEED can be calculated from the 
three features given in Section 3.1, and shown in Figs. 4-6 and Table 2 respectively. 
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The number of statistical interval is 256.  From Table 2, it is seen that the best separa-
bility of feature is non-uniform subband feature, and the modified MFCC feature is 
inferior to the non-uniform sub-band feature. The worst feature for separating class is 
the wavelet package feature. 

 

Fig. 4. Distributive histogram of Euclidean distance for the non-uniform subband filter 

 

Fig. 5. Distributive histogram of Euclidean distance for the modified MFCC feature 

3.2.2   Separability Estimation by the Use of Trace and Determinant Criteria  
Consider the FLDA, the between-class scatter matrix bS and within-class scatter ma-

trix wS are computed using the feature vectors of training samples and used in the 

trace criterion tJ  and determinant criterion dJ defined by 
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                                               )( 1
bwt SStrJ −= , (16) 

and 

wbwd SSSJ /+=  
(17) 

 

Fig. 6. Distributive histogram of Euclidean distance for the wavelet package feature 

Table 2. The average DEED of three features used in experiments and criterion rdJ  

 W W/T T/W T WT CDEED rdJ  

Non-uniform subban
feature 

3.8082 7.3273 6.9469 3.4835 7.2917 14.2742 1.9576 

Modified MFCC 4.7927 8.5399 4.1159 2.2804 7.0731 12.6558 1.7893 
Wavelet package 6.2504 7.6938 9.227 6.3796 12.63 13.9442 1.1041 
Note:  W:  WCDEED of wheeled vehicle, 

T:   WCDEED of tracked vehicle,   
     WT:  sum of W and T 
     W/T:  BCDEED by the wheeled samples to mean vector of tracked     
     T/W:  BCDEED by the tracked samples to mean vector of wheel 
     CDEED:  the sum of T/W and W/T 

The criteria values using the three features are shown in Table 3. It is different 
from the observation in section 3.2.1 that modified MFCC feature is the best for the 
separability estimation, whereas the non-uniform subband feature is inferior one. 
However, the wavelet package feature is the worst one among three kinds of features. 
Furthermore, we employed the K-mean cluster method to analyze the separability of 
three features. The clustering results are also shown in Table 3. It is clear that the 
clustering performance using non-uniform sub-band feature is the best, modified 
MFCC feature is inferior while the performance using the feature of wavelet package 
is the worst. 
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Table 3. The average value of fisher criterion tJ , dJ  and cluster results 

 tJ  dJ  
Correct clus-
tering rate of 

W (%)   

Correct clus-
tering rate of T 

(%) 

Average correct 
clustering rate of 

W and T (%) 
Non-uniform sub-

band feature 
1.9347 2.9347 71.45 91.23 81.34 

Modified MFCC 2.3569 3.5456 63.16 94.70 78.93 
Wavelet package 1.7316 2.7316 70.12 87.48 78.80 

3.2.3   Discussion of Three Separability Criteria 
In the two-class experiments, the performances of the three separability criteria with 
three kinds of features are not consistent. Simulation results given in Table 3 indicate 
that the correct clustering rates of all tracked vehicle features are higher than those of 
wheeled vehicle features. It is also explained in Figs. 4-6. Take the modified MFCC 
feature as an example, the Euclidean distance from the feature vector of wheeled 
vehicle to mean vector of tracked vehicle’s feature are spread in the interval of 0-0.2, 
which is closed to the distance distribution of tracked vehicle feature (0-0.1). That is 
why the misclassification rate of wheeled samples is high. In addition, the Euclidean 
distance from tracked vehicle feature vector to mean vector of wheeled vehicle feature 
are spread in the interval of 0.2-0.4, which less overlap the distance distribution of 
wheeled vehicle feature (0.1-0.2). It results in a good clustering performance for the 
tracked vehicle. We can draw a similar conclusion when considering the other two 
features. Hence, the distributive histogram of Euclidean distance provides a reason-
able explanation for the clustering results. 

3.3   Validation of the Criterion rdJ  by the Use of Classification Algorithms 

In the two-class ground vehicle classification problem, we adopted the distributive 
histogram of Euclidean distance and separability criterion rdJ  .  The separability 

estimation result shows that the non-uniform subband classification feature yields the 
best separability performance, the inferior one is the modified MFCC feature and the 
separability of wavelet is the worst. In the case of using FLDA-based tJ  and dJ , the 

modified MFCC feature exhibits the best separability and the non-uniform subband 
feature is inferior to the modified MFCC feature. The wavelet package is the worst 
one in terms of separability. However, we have the same observation from cluster 
analysis as the estimation method using rdJ . Next, we will validate it by using three 

supervised classifiers. 
The experiments choose 20 independent training sets for each feature. The first 

classifier is K nearest neighbor (KNN) classifier. Let k = 3 and the number of refer-
ence samples be that of training samples. The second one is a three-layer back- propa-
gation (BP) neural network with 25 input nodes, 12 hide layers and 2 output nodes. 
The third one is a support vector machine (SVM) classifier. The kernel function of 
SVM is a radial basis function (RBF). Classification results are shown in the table 4. 

It is observed from Table 4 that, in the case of using KNN classifier the classifica-
tion performance of modified MFCC feature is the best, non-uniform subband feature 
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is inferior, and the wavelet package feature is the worst one. This result is the same as 
the separability estimation result using FLDA-based criteria. Secondly, in the case of 
using SVM and BP algorithms, the non-uniform subband feature exhibits the best 
classification performance. The modified MFCC feature yields inferior performance 
and the wavelet package feature is the worst one for classification. This result is con-
sistent with the separability estimation using the new criterion rdJ . 

Table 4. Classification results of three kinds classifier 

Correct classification 
probability of 

wheeled vehicle (%)

Correct classification 
probability of tracked 

vehicle (%) 

Average correct classifica-
tion probability of wheeled 
and tracked vehicles (%) 1 

KNN SVM BP KNN SVM BP KNN SVM BP 
Non-uniform 

subband feature 
95.7 97.20 97.30 96.90 98.90 97.00 96.30 98.05 97.15 

Modified MFCC 96.5 96.60 94.20 96.80 98.00 95.70 96.65 97.30 94.95 
Wavelet package 93.4 95.10 96.18 92.20 96.20 88.39 92.80 96.65 92.29 

    1 The classification results of KNN classifier accord well with those using tJ and dJ , whereas 

the classification results from BP and SVM algorithms accord well with those using rdJ    

Experiment results show that the Fisher linear criteria tJ and dJ are suitable to use 

with KNN classifier as explained in Ref. [2]. The proposed criterion rdJ is suitable    

to use in the BP and SVM classification experiments. The separability criterion rdJ  is 

a nonlinear parameter based on the DEED analysis, which preserves most classifica-
tion information after the feature has been transformed to the high dimension space.  

4   Conclusion 

In this paper, we have considered the use of a new optimization criterion based on the 
histogram entropy of Euclidean distance for classification. A nonlinear parameter 
DEED is defined for pattern classification. With help of the DEEE, a criterion func-
tion rdJ for feature extraction can be set up. It has been shown that the larger rdJ  

(ratio of between-class DEED to within-class DEED) is, the better separability of 
learning samples will be. Because the entropy is an invariant for the nonlinear trans-
form, the DEED is able to preserve most classification information.  

Experiment results show that the proposed criterion can improve the classification 
performance of the extracted features compared to other linear Fisher criteria used in 
pattern recognition. The DEED-based separability estimation criterion is better than 
FDLA in the case of using neural network classifier. It should be noted that DEED is 
an information measure of distributive histogram of Euclidean distance, which pro-
vides more information for further study on dynamic learning theory. Still more re-
search about separability criterion as well as improved methods for an optimal feature 
extraction are necessary.  
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