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Abstract. An improved two-dimensional entropic image segmentation method
is presented in this paper. The method makes use of a new entropy function de-
fined in a simple form, which can reduce computational amount notably. And the
correctness of the new function is also proved. Then a scheme based on muta-
tive scale chaos optimization is adopted to search for the optimal threshold. The
results of simulation illustrate that efficiency of segmentation is improved signif-
icantly due to the new entropy function and searching method.

1 Introduction

The thresholding method based on maximum entropy is one of the most widely used
methods in image segmentation. It uses the gray-level features of an image to choose
a single or multiple thresholds by which the image pixels are classified into several
regions and thus the object is extracted from the background. The one-dimensional
entropic method was firstly introduced by Kapur in 1985 [1]. Abutaleb expanded it
to the two-dimensional space in 1989 [2]. Compared to 1-D method, the 2-D method
makes use of pixels’ gray levels and average gray levels within a neighborhood, which
can produce a better segmentation result. And it also shows a stronger ability of resisting
noises. However, the computational amount in 2-d method increases sharply than in 1-D
situation. To solve the problem, people use some optimization methods such as genetic
algorithms (GA) [3,4,5], chaos optimization method [6], etc. Some researchers focused
on the simplification of the mathematical expression of the entropy function and put
forward some fast algorithms [7,8]. Yang proposed a segmentation method based on
an optimized entropy function which reduced the computational amount efficiently, see
[9]. However we find there’s some irrationality in the author’s work. In this paper, we
analyze the function and make some modification to it. Later we will make experiment
to test the new function,based on a chaos optimization scheme.We also compare the
efficiency of genetic algorithm and chaos optimization method.

2 Model of 2-D Maximum Entropic Segmentation

2.1 Conventional Model

Suppose the gray level interval of a M × N sized image is [0, L], so the pixels’ average
gray level within a neighborhood is also in [0, L]. Let f(x, y) denote the gray level
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of pixel (x, y) and g(x, y) denote the average gray level of a n × n neighborhood.
Then the 2-D gray level pair of pixel (x, y) is denoted by [f(x, y), g(x, y)]. Let pij =
rij/(MN)represent the probability of the gray-level pair (i, j), (i, j = 0, 1, · · ·L − 1)
where rij is the number of elements in the event {f(i, j) = rij}. Obviously we have
0 ≤ rij ≤ M · N and

∑L−1
i=0

∑L−1
i=0 pij = 1. For each class of pixels labeled by A and

B, let

HA = −
s−1∑

i=0

t−1∑

j=0

pA
ij

log2 pA
ij

,

HB = −
L−1∑

i=s

L−1∑

j=t

pB
ij

log2 pB
ij

,
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ij

= pij/
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pij .

pA
ij
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denote the probability of the gray-level pair (i, j) in region A and B respectively.
Then the sum of the two entropies

H1(s, t)=HA + HB = −
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ij

log2 pA
ij

−
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pB
ij

log2 pB
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(1)

is the object function. The goal of the segmentation is to find a threshold (s∗, t∗) satis-
fying the following nonlinear problem:

F1(s∗, t∗) = max
0≤s,t≤L−1

H1(s, t). (2)

2.2 A New Entropy Function

For the purpose of reducing computational amount, researchers are focusing on propos-
ing some fast algorithms by deducing equation (1). According to the property that an
entropy function reaches its maximum in an equiprobable distribution, a new entropy
function was presented by Yang in [9]:

H2(s, t)=
s−1∑
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∣
∣
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and the following problem

F2(s∗, t∗) = min
0≤s,t≤L−1

H2(s, t) (4)

was proven to be equivalent to problem (2). That means all logarithmic and multiplica-
tive operations are substituted by additions. This is an effective method in reducing
computational amount.

To prove the equivalence, Yang insisted that when entropy function H1 reached its
maximum, the probability pA

ij in (1) equalled to the same value 1/st for different (i, j)
while pB

ij equalled to 1/[(L − s)(L − t)]. So the new entropy function H2(s, t) in (3)
reached its minimum 0. On the contrary, when H2(s, t) equalled to 0, we had pA

ij
=

1/(st) and pB
ij = 1/[(L − s)(L − t)] for each (i, j). That meant entropy HA and

HB reached their maximums in such an equiprobable distribution. Therefore the two
problems were equivalent. However, some point was ignored by Yang. If pA

ij and pB
ij

could both reach the point 1/(st) or 1/[(L − s)(L − t)] for every (i, j), the proof was
correct in theory. But we know that in a given gray-scale image, gray level pairs (i, j)
are mainly distributed in regions representing object and background, and some pairs
don’t exist. In such a situation, whatever s and t equal to, pA

ij or pB
ij will equal to 0, i.e.

they cannot equal to 1/(st) or 1/[(L − s)(L − t)], hence H1(s, t) and H2(s, t)cannot
reach their extrema. For two different functions who can reach their extrema at the
same point in [0, 1], they may have different extremum points in a smaller interval [a, b],
(0 ≤ a ≤ b ≤ 1). Therefore, the proof by Yang is not totally correct.

Despite of the mistake, the work Yang has done is valuable. In this paper we make
some modifications on the basis of (3) and present an improved entropy function, whose
correctness will be proven in the following theorem.

Theorem. Define a new object function

H3(s, t)=
s−1∑

i=0

t−1∑

j=0

(

pA
ij − 1

st

)2

+
L−1∑

i=s

L−1∑

j=t

(

pB
ij − 1

(L − s)(L − t)

)2

, (5)

where pA
ij , pB

ij ∈ [aij , bij ] ⊂ [0, 1]. Then the new nonlinear optimization problem

F3(s∗, t∗) = min
0≤s,t≤L−1

H3(s, t) (6)

is equivalent to (2).

Proof. Denote both pA
ij and pB

ij by pij(0 ≤ i, j ≤ L − 1). H1 and H3 can be regarded
as functions of pij . For those pij = 0 terms in H1, we ignore them. Now let’s check the
existence of H1’s extremum.

Because
∂(−H1)

∂pij
= log2 pij + 1,

∂2(−H1)
∂p2

ij

=
1

pij
> 0
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and for any (i′, j′) �= (i, j), we have

∂2(−H1)
∂pij∂pi′j′

=
∂

∂pi′j′
(log2 pij + 1) = 0 .

So the Hessian matrix of −H1(pij) is a positive definite symmetric matrix whose diag-
onal elements are 1/pij > 0 while remainders are zeros. Therefore, −H1 is a strictly
convex function. According to the optimization theory, −H1 has a unique minimum.
That means H1 has a unique maximum point. To prove the equivalence of the two
optimization problems, let’s firstly check a function with two variables

f1 = −
2∑

i=1

pi log2 pi, where p1 + p2 = 1 . (7)

From (7) we have f1 = −p1 log2 p1 − (1−p1) log2(1−p1). This function has a unique
maximum, as shown in Fig.1. If p1 = 1/2, then f1 reaches its maximum. However, if p1
is limited within a smaller interval [a, b] satisfying 1/2 /∈ [a, b], then we know from the
figure that the smaller the distance between p1 and 1/2, the bigger f1 evaluates. That
means f1 is approaching its maximum as (p1 − 1/2)2 is approaching its minimum.
When (p1 − 1/2)2 reaches its minimum in [a, b],

2
(

p1 − 1
2

)2

=
(

p1 − 1
2

)2

+
(

1 − p2 − 1
2

)2

=
2∑

i=1

(

pi − 1
2

)2

also reaches its minimum. So f1 evaluating its maximum equals to
∑2

i=1 (pi − 1/2)2

evaluating its minimum.

Fig. 1. Entropy function with one variable. It’s a convex function with one maximum.
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Let’s move on to a function with three variables

f2 = −
∑3

i=1
pi log2 pi, where p1 + p2 + p3 = 1, (8)

therefore,

f2 = −
2∑

i=1

pi log2 pi − (1 − p1 − p2) log2(1 − p1 − p2) . (9)

Now let’s observe its figure as shown in Fig.2.

Fig. 2. Entropy function with two variables. It’s a convex function with one maximum.

It is obvious that f2 is also a convex function. We can find its maximum at point
(1/3, 1/3). If the domain of (p1, p2) doesn’t include the point (1/3, 1/3), as discussed
above, it can be inferred similarly that the smaller the distance between (p1, p2) and
(1/3, 1/3) is, the bigger f2 evaluates. Now we investigate p3. Because p3 = 1−p1−p2,
for α ∈ [0, 1],

2∑

i=1

(pi − 1/3)2 + (p3 − α)2

=
2∑

i=1

(pi − 1/3)2 + (1 − p2 − p1 − α)2 , (10)

when α = 1/3, f2(p1, p2, p3) is approaching its maximum as
∑3

i=1 (pi − 1/3)2 is
approaching 0.

By analogy with above, using the convex feature of the functions and the existence
of the extrema, we can conclude that for any pi ∈ [ai, bi] ⊂ [0, 1], f(p1, p2, · · · , pn)
reaches its maximum at the same point as

∑n
i=1 (pi − 1/n)2 reaches its minimum.

Therefore, it can be inferred that the optimization problems (2) and (6) are equivalent.
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This is the proof.
According to Shannon’s information theory [10], an entropy function reaches its

maximum in a equiprobable distribution. Entropy is a probabilistic measure of uncer-
tainty. From some aspect, the equiprobable distribution (1/n, 1/n, · · · , 1/n) is the very
source of the uncertainty. The closer a distribution is to the source, the bigger the value
of entropy is. This is an interpretation to the theorem from the view of entropy.

3 The Mutative Scale Chaos Optimization Algorithm (MSCOA)

3.1 The Principle of Chaos Optimization

Chaos is a common phenomenon existing in nonlinear definite systems. Owing to its
stochastic property, ergodicity and intrinsic regularity, global optimization methods
based on chaos are widely applied in optimization problems, see [11,12,13,14,15].

The basic idea of the mutative scale chaos optimization algorithm is as follows.
Firstly a sequence of chaotic variables is created by iterations. The sequence is used
to check the whole solution space, which is called rough searching. Then according to
the result of rough searching, a currently optimal solution is selected and the searching
space is limited to a smaller one depending on the optimal solution, which is called pre-
cise searching. The MSCOA method incorporates advantages of both rough and precise
searching, and achieves the goal of obtaining optimal solution quickly and effectively.

Chaos optimization is realized through chaotic variables created by chaotic mapping
functions. For example, the Logistic function

yk+1 = uyk(1 − yk) , (11)

where u is the chaotic parameter, yk ∈ (0, 1), k = 0, 1, 2, · · ·. When u = 4, the mapping
is in totally chaotic state. Having been created, the chaotic variables need to be mapped
into solution space as

xi
k = ai + (bi − ai) · yi

k , (12)

where i = 1, 2, · · ·n, n is the number of function’s variables. [ai, bi] are domains of the
variables. For a gray-scale image, the interval of threshold is usually [0, 255].

3.2 Design of the Algorithm

The problem to be optimized is (6). According to the basic steps of the MSCOA method,
we design an algorithm to search for the optimal threshold in a 2-d gray level space. The
procedure is as follows:

Step 1: Initialization: k = 0, chaotic variables yi
0 = yi ∈ (0, 1), r = 0, ai

r = 0,
bi
r = 255, where i = 1, 2, k is the chaos iteration counter and r is the iteration counter

for shrinking spaces; optimal chaotic variables (Y 1, Y 2) = (0, 0); initialize minimum
F ∗ with a big value and current optimal threshold (s∗, t∗) = (0, 0);
Step 2: Mapping chaotic variables (y1

k, y2
k) to threshold variables (sk, tk):

sk = a1
r + y1

k(b1
r − a1

r), tk = a2
r + y2

k(b2
r − a2

r) ;
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Step 3: Calculate F (sk, tk), if F (sk, tk) < F ∗, then (Y 1, Y 2) = (y1
k, y2

k),
(s∗, t∗) = (sk, tk), F ∗ = F (sk, tk); else move on to next;
Step 4: Calculate yi

k = 4 · yi
k · (1 − yi

k), i = 1, 2, k = k + 1;
Step 5: Repeat step2-step4; if F ∗ remains unchanged in T1 iterations, continue;
Step 6: Shrink the space for searching:

a1
r+1 = s∗ − ρ(b1

r − a1
r), b

1
r+1 = s∗ + ρ(b1

r − a1
r),

a2
r+1 = t∗ − ρ(b2

r − a2
r), b2

r+1 = t∗ + ρ(b2
r − a2

r),

where ρ ∈ (0, 0.5), and make sure the new space isn’t beyond the original boundary:
if ai

r+1 < ai
r, then ai

r+1 = ai
r; if bi

r+1 > bi
r, then bi

r+1 = bi
r;

then make some modifications to (Y 1, Y 2),

Y 1 = (s∗ − a1
r+1)/(b1

r+1 − a1
r+1),

Y 2 = (t∗ − a2
r+1)/(b2

r+1 − a2
r+1).

Step 7: Let yi
k = Y i, repeat step2-step6; if F ∗ remains unchanged in T2 iteration steps,

output (s∗, t∗) and F ∗.
This is the whole procedure of the algorithm, in which parametersρ, T1, T2 is to be

adjusted to control accuracy and convergence rate for different applications.

4 Simulation Results and Analysis

To test the algorithm, we choose two 256 × 256 sized gray-scale images, the bacteria
image and rice image. The programming tool is MATLAB v7.0, and the configuration
of the computer is 1.5GHz host frequency with 512M memory.

The 2-D chaotic variables are mapped to [l, L] × [l, L], 0 ≤ l < L ≤ 255, where
L, l is the upper and lower boundary of gray levels. As to the selection of parameters
in the algorithm, we choose ρ = 0.4, T1 = 300, T2 = 3. For comparison, the algo-
rithm in Ref.[9] is also simulated. Segmentation results are shown in Fig.3 and Fig.4.
From left to right are the original image, segmentation result by the method in Ref. [9],
segmentation result by our method.

The different optimal thresholds, minimum of object functions and time cost are
compared in Table.1. Due to the randomicity of chaotic algorithms, we execute the
algorithm 50 times, and get the best thresholds, minimal function values and average
time cost. Result I is computed by Ref. [9] and II by our paper.

Table 1. Segmentation results by two methods, compared by optimal thresholds, extrema of the
entropy functions, and average time cost

Thresholds Minimum Time Cost (s)

I
Rice (126,137) 2.9075 39.87

Bacteria (112,116) 3.374 35.23

II
Rice (115,123) 9.85e-3 0.98

Bacteria (94,106) 1.089e-2 1.21
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Fig. 3. Rice image and its segmentation results by two different methods. From left to right it’s
the original image, result by Ref.[9], result by our paper.

Fig. 4. Bacteria image and its segmentation results by two different methods. From left to right
it’s the original image, result by Ref.[9], result by our paper.

According to the segmentation results, it can be concluded that the algorithm by
Ref.[9] is not likely to find the best threshold while our algorithm shows better segmen-
tation results. It’s not reasonable to judge the two algorithms by the minimums of two
functions, for they are calculated in different methods. According to the time cost, algo-
rithm in our paper shows a notable advantage over the other. As we know, the key point
is how to search the 2-D threshold space. The algorithm in Ref.[9] is to search the space
(L − l)2 times, and (L − l)2 calculations are executed for each feasible solution(s, t).
So the computational complexity is O[(L− l)4]. In our algorithm, according to parame-
ters T1 and T2, only about 1000 iterations are executed and for every iteration 2(L− l)2

computations are needed. Thus the whole computational amount is O[c·(L−l)2], which
is much smaller than the former.

It is shown in Ref.[9] by experiment that the computational efficiency is increased
by 15%-30% if function (3) is adopted comparing to function (1). However, out experi-
mental results are not consistent with it. We test function (1) and (5) both in the MSCOA

Table 2. Two functions are both tested in the MSCOA method, compared by average iterations,
the convergence rate, and average time cost

Iterations Convergence Rate Time Cost (s)

I
Rice 1320 92% 4.88

Bacteria 1171 90% 5.23

II
Rice 1294 94% 0.98

Bacteria 1186 90% 1.21
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method. The results are shown in Table.2 where I and II represents function(1) and (5)
respectively.

It can be observed that the adoption of function (5) increases the computational effi-
ciency about 4 times than function (1). The number of iterations is decided by MSCOA
itself and has nothing to do with the adoption of functions. But the computational time
changes noticeably, because for each iteration the time for calculating function (1) and
(5) differs. Therefore, the application of the improved entropy function (5) is practical
in 2-D entropic image segmentation.

By far people have been paying more attention to the genetic algorithm than chaos
optimization algorithm. Theoretically both algorithms will converge to the global opti-
mal solution, provided parameters are selected properly.Here the parameters are chosen
according to Ref.[5]. There is a large body of literature focusing on the parameters
for GA. Here the preferences may not be the best, but the result could illustrate some-
thing.The tool we use is Matlab v7.0, GA Toolbox.

Table 3. Comparison of GA and MSCOA in average iterations, convergence rate and time cost. I
for GA and II for MSCOA. Notice that the iterations for GA is the number of generations.

Iterations Convergence Rate Time Cost (s)

I
Rice 39 93.5% 2.24

Bacteria 43 92% 2.67

II
Rice 1294 94% 0.98

Bacteria 1186 90% 1.21

We know the GA is highly efficient for large scale optimization problems. Actually
the problem here is a two dimensional case, seeming to be a little small for GA. If a
segmentation method with three or more thresholds is used, GA may be a much better
choice. Besides, the threshold is an integer in interval [0, 255], which is very easy for
binary coding and decoding. That’s one of the reasons why people like to apply GA in
image segmentation.

5 Conclusions

This paper presents an improved entropy function in 2-d entropic image segmentation.
Compared to the original entropy function, the new one is simpler and easier for cal-
culations. A mutative scale chaotic optimization algorithm is designed. Simulation re-
sults and comparison with other algorithms shows our algorithm is better. The MSCOA
shows an excellent searching ability in our experiment, and it’s easy for programming
and fast in computation for such a 2-d entropic image segmentation.
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