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Abstract. In this paper, we propose a new variational decomposition model 
which splits an image into two components: a first one containing the structure 
and a second one the texture or noise. Our decomposition model relies on the 
use of two semi-norms: the Besov semi-norm for the geometrical component, 
the negative Hilbert-Sobolev norms for the texture or noise. And the proposed 
model can be understood as generalizations of Daubechies-Teschke’s model 
and have been motivated also by Lorenz’s idea. And we illustrate our study 
with numerical examples for image decomposition and denoising. 

1   Introduction 

Image decomposition is of important interest in mathematical image processing. In 
principle, it can be understood as an inverse problem. Consequently, it can be done by 
regularization techniques and minimization of related variational functionals. 

One classical model of such functionals is the total variation minimizing process 
introduced by Rudin-Osher-Fatemi [1]. However, since ROF model will remove the 
texture when tuning parameter is small enough, Meyer proposes that the oscillating 
components (texture or noise) should be modeled using a different space of functions 
that is in some sense dual to BV space. So, this leads to a new image decomposition 
model in theory [2]. Meyer’s model cannot be solved directly, due to the existence of 
the weaker norm. Thus, a lot of people begin to study regarding practical methods of 
Meyer’s model. For example, Vese-Osher proposed to solve Meyer’s model using 
three Euler-Lagrange equations based on pL  norm [3]. Osher-Sole-Vese put forward 
the method combing total variation minimization with the 1H −  norm based on VO 
model [4]. But, it is a pity that the PDEs based these variational models is usually 
numerically intensive. Thus, in [5], Daubechies-Teschke suggested a special 
variational model for image decomposition: 
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Since function spaces of interest in problem (1) can be characterized by means of 
wavelet coefficients, they propose a wavelet based scheme of (1) instead of solving 
PDE systems. Later in [8], Linh Lieu successfully generalized Osher-Sole-Vese’s 
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model for image restoration and decomposition in a total variation minimization 
framework. She proposed that the oscillating component can be modeled by tempered 
distributions belonging to the negative Hilbert-Sobolev spaces sH −  ( 0s > ). 

Here inspired from Linh Lieu’s idea, it occurred to us that the textured (or noisy) 
component v  in (1) can be characterized via negative Hilbert-Sobolev spaces sH − .  
In addition, since Besov spaces , ( )p qB Ωβ ( 0>β , 0 ,p q< ≤ ∞ ) cover a wide range of 

classical smoothness spaces and the Besov semi-norms can be expressed through 
equivalent norms of wavelet coefficients[6], we propose to generalize the first term 

( )1
1,1B

u
Ω

 to ( ),p qB
u

Ωβ  in (1).  But we are only interested in the especially simple case 

p q= . Therefore, the new variational model for image decomposition is 

2
,
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E u v u f u v v −Ω Ω Ω

= + − + +βα γ ,                 (2) 

where α  and γ  are tuning parameters, 1 p≤ ≤ ∞ . 
The outline of the paper is as follows. In section 2 we give minimization process of 

the new variational model (2). It can be understood as generalizations of [5, 6]. In 
section 3 we discuss some examples of the new variational problem. Section 4 shows 
numerical results of image decomposition and denoising examples using (2). Finally, 
we give the conclusions in section 5. 

2   Minimization of the New Model 

In this section, we consider the minimization of the new variational problem (2). 
Since 2,2 ( ) ( )B Hβ βΩ = Ω [5], we consider only the spaces , ( )p pB Ωβ 、 2 0

2,2( ) ( )L BΩ = Ω  and 

2,2( ) ( )s sH B− −Ω = Ω  in (2). 

For an orthogonal wavelet ψ , which is in 2,2 ( )sB Ω ( s β> ), we have the following 

norm equivalence [5]: 
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where { }( , , ) : , , 1,2,3jJ i j k k J j Z iλ= = ∈ ∈ = , jλ =  if jJλ ∈ , fλ , uλ , vλ  denote the 

λ -th wavelet coefficients. 
Replacing the norms in (2) by (3), we obtain the equivalent sequence in wavelet 

framework 
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Let uλ  be fixed in (4), then the derivative of ( , )fW u v with respect to vλ  can be 

expressed by 

                                       ( ) 2( , ) 2( ) 2(1 2 )s
v fD W u v f u v−= − − + +

λ

λ
λ λ λγ . 

Set ( )( , ) 0v fD W u v
λ

= , one has 

                                             2 1(1 2 ) ( )sv f u− −= + −λ
λ λ λγ .                                    (5) 

Replacing vλ  by (5) in (4), we have 
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Note that here φ  is positive homogeneous of degree one. Since the duality between 
positive homogeneous functions and convex sets holds for convex functions, we 
consider only the case 1 p≤ ≤ ∞  in this paper.  

In the following, we, inspired from [6, 9], minimize (7) using duality result from 
convex analysis. 

Proposition 1. Let { } 2 ( )f Jλ ∈  and 1 p≤ ≤ ∞ . Then the wavelet coefficients of the 

minimizer of problem (7) is 

                                                   ( )( )Cu Id f
λλ θ λ= − ∏ .                                         (8) 

where λ
λ

αθ μ= and CΠ  is the orthogonal projection onto the convex set 
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Proof. Since φ  is homogeneous of degree one, it is standard [7] that the Legendre-
Fenchel transform of φ  
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Since φ  is convex and l.s.c., **φ φ= . Hence 
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If uλ  is a minimizer of (7), then necessary condition is 

                                                       ( )( )0 fQ u
λ λ∈∂ .                                             (11) 

Since the subgradient of the second term of (7) with respect to uλ  is { }2 ( )f uλ λ λμ− − , 

one has 

                                        ( )( )( ) 2 2 ( )fQ u u f u
λ λ λ λ λ λα φ μ∂ = ∂ − − . 

Hence 
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− ∈ ∂ ,                                           (12) 

where =λ
λ

αθ μ . From the inversion rules for subgradients ([7] prop. 11.3), we know 

that (12) is equivalent to: 
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Being *φ  given by (10), w  is given by the orthogonal projection of 
fλ

λθ
 on the 

convex set C . Indeed, from (13), one has 
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Here replacing uλ  by (8)in (5), one obtain the expression of vλ . Therefore, 

minimizers of (2) can be expressed as: 
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where the scale function is equal to one and ψ  is orthogonal wavelet. 
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3   Some Examples of the New Model 

In order to illustrate concretely the minimization of the new model, we consider the 
three cases 1p = , 2p =  and p = ∞  separately in this section. Here what is important 
to us is that one can obtain the convex sets that are related to three examples. In terms 
of the description of section 2 and Lorenz’s work [6, 9], one has 
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and 

      ( )12 ( ) 2 1 , ( )
J

C x l J x p− +

∈

⎧ ⎫
= ∈ ≤ = ∞⎨ ⎬
⎩ ⎭

∑ λ β
λ λ

λ
.                       (19) 

3.1   The Penalty 
1,1 ( )Bβ Ω

⋅  

From (18), one obtains the convex set which is located by the projection: 
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Then this projection is performed by the following clipping function [6], i.e. 
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Clearly,  (8) is a soft shrinkage function: 

                      ( ) ( )12
u S f−= λ β

λ
λ λθ

.                                                (22) 

Replacing uλ  by (22) in (5), one has 

             ( ) ( ) ( )1

1
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2
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λ
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If set 1β =  and 1s = , (22) and (23) reduce to Daubechies-Teschke’s results [5]. 

3.2   The Penalty 
2,2 ( )Bβ Ω

⋅  

In this case, it can be seen as the example for 1 p< < ∞ . From (17), we know that the 
projection which one must calculate is the orthogonal projection onto the convex set: 

                                     222 2( ) 2
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Then this projection is characterized by the constrained minimization problem 
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Using Lagrange multipliers 0μ > , this problem can be rewritten as 
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Replacing xλ  by (26) in (24) yields 
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Here we discover that the right side of (27) is monotonically decreasing and 

continuous in μ . If μ  increases from 0  to ∞ , (27) decreases from 222 fλ β
λ

−  to 0 . 

Thus, this indicates that there is a Lagrange multipliers 0μ >  such that (26) is the 
projection. Replacing Cλθ∏  by (26) in (8), one has 
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This is a linear shrinkage operator which depends on the scale λ  and Besov smooth 

order β , where 
1

2
=

λ

μ
θ

. 

Replacing uλ  by (28) in (5), we have 
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3.3   The Penalty 
, ( )Bβ

∞ ∞ Ω
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In this section, (19) shows that the convex set which we concern is  
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Similar to the case 2p = , we have 
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From section 3.2., we know that here the projection is the soft shrinkage, i.e. 

( 1)2
2

( )x S f
λ βλ μ λ− +

= . Therefore, replacing Cλθ∏  by 
( 1)2

2

S
λ βμ − +

in (8) yields the clipping 

function: 
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Replacing uλ  by (32) in (5), one obtains 

                                               ( ) ( )
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Finally, replacing vλ  and uλ separately by (23)、(29)、(33) and 

(22)、(28)、(32) in (15) and (16), we obtain the associated minimizers of the new 
model in three cases. 

4   Numerical Examples 

In this section we present numerical results obtained by applying our proposed new 
model to image decomposition and denoising in the case 1p = , 2p =  and p = ∞ . In 
our implementation, the stationary wavelet transform is used. We will show numerical 
results obtained with various values of β  and s . For denoising, the peak-signal-to-
noise (PSNR) are used to evaluate the denoising performance. 

 Firstly, we try texture removal with an intercepting part of Barbara image (shown 
in Figure 1). The results are shown in Figure 2. We can see that the new model (2) 
can separates better the textured details v  from non-textured image kept in u . 

Secondly, we show the denoising results obtained from the proposed new model (2). 
We add Gaussian white noise of 10σ =  to the clean Lena image (shown in Figure 3). 
Table 1 gives PSNR for the denosing results. In Figure 4, we show denoisng results 
from our proposed model using 1=β , 1s =  and 2=β , 2s = , respectively, for the  

,p qBβ  semi-norm and sH −  norm. These show that the proposed new model (2) can 

denoise effectively. 

    

Fig. 1. Original image 
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                           ( ) ( ), , 1,1,1p sβ = [5] 

  

                                                      ( ) ( ), , 1,2,2p sβ =  

  

                                                       ( ) ( ), , 2,1,1p sβ =  

  

                 ( ) ( ), , 2,2,2p sβ =
 

Fig. 2. Decomposition results of a natural textured image from the new model (2) based on the 
different parameter choice ( ), ,p sβ  
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( ) ( ), , ,1,1p sβ = ∞  

  

( ) ( ), , ,2,2p sβ = ∞
 

Fig. 2. (continued) 

Table 1. PSNR for the denoising results 

The values of  p , β  and s  PSNR 

Noisy image 28.1058 

1β =  1s = [5] 31.0034 1p =  

2β =  2s =  29.5262 

1β =  1s =  31.1634 2p =  

2β =  2s =  29.9701 

1β =  1s =  31.3668 p = ∞  

2β =  2s =  31.3687 

 

Fig. 3. Noisy image 
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         ( ) ( ), , 1,1,1p sβ = [5]                 ( ) ( ), , 1,2,2p sβ =                    ( ) ( ), , 2,1,1p sβ =  

 

      ( ) ( ), , 2,2,2p sβ =                ( ) ( ), , ,1,1p sβ = ∞                   ( ) ( ), , ,2,2p sβ = ∞  

Fig. 4. Denoising results from the new model (2) for different parameter choice ( ), ,p sβ  

5   Conclusion 

In this paper, we have presented a new variational model for image decomposition, 
which is based on Besov spaces and negative Hilbert-Sobolev spaces. And we, 
inspired by Lorenz, give proof for the general characterization of the solution of the 
proposed model based on the orthogonal projections onto the convex set, as well as 
some material examples. But the optimal choice of tuning parameters in new model is 
still a remaining problem. 
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