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Abstract. In this paper, the multi-objective optimization problem is converted 
into the constrained optimization problem. For the converted problem, a novel 
PSO algorithm with dynamical changed inertia weight is proposed. Meanwhile, 
in order to overcome the drawback that most algorithms take pareto dominance 
as selection strategy but do not use any preference information. A new selection 
strategy based on the constraint dominance principle is proposed. The computer 
simulations for four difficulty benchmark functions show that the new algo-
rithm is able to find uniformly distributed pareto optimal solutions and is able to 
converge to the pareto-optimal front. 

1   Introduction 

The use of evolutionary algorithm for multi-objective optimization has significantly 
grown in the last few years, giving rise to a wide variety algorithms[1]-[4]. EMO 
researchers have produced some clever techniques to maintain diversity [5], new 
algorithm that uses very small population size [6]. 

Particle swarm optimization (PSO) is a recently heuristic algorithm inspired by a 
bird flock. PSO has been found to be successful in a wide variety fields, but until 
recently it had not been extended to deal with the multi-objective problems. 

PSO seems suitable to deal with multiple objectives, because of its high conver-
gence speed that the algorithm presents for single-objective optimization [7]. 

In this paper, we present a novel PSO algorithm which allows PSO algorithm to 
deal with multi-objective optimizations. Firstly, because the inertia weight ω is a 
very important parameter in standard version, it can control algorithm’s ability of 
exploitation and exploration so the accumulation factor of the swarm is introduced in 
the new algorithm, and the inertia weight is formulated as the function of the factor. 
In each generation, the ω  is changed dynamically according to the accumulation 
factor. Secondly, the multi-objective optimization problem is converted into the con-
strained optimization problem. Based on the converted problem, we have added a 
constraint-handling mechanism that can improve the exploratory capabilities of the 
original algorithm.  
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2   Basic Concepts 

Multi-objective optimization problems can be described as follows: 

                                                   )(min xF                                                       (1) 
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Definition 2: A point Ω∈*x  is pareto optimal if there exists no feasible vector 

Ω∈x , such that *xx ≺ . 

3   Model of Multi-objective Optimization 

3.1   Measure of the Quality of Solutions 

Definition 3: Suppose the t-th swarm is composed of the particles N
ttt xxx 21, , let 

i
tp is the number of the particles that dominate i

tx .Then i
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t
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3.2   Measure of the Uniformity of Solutions 

The aim of the multi-objective optimization is to generate a set of uniformly distrib-
uted pareto optimal solutions in the objective space. Based on this, the measure of the 
uniformity of solutions is given.  

Definition4: Suppose the t-th swarm is composed of the particles N
ttt xxx 21, , we 

calculate the distances between ix   and the other particles in the objective space, and 

rank these distances. iD1 and iD2  are two smallest distances, then the crowding-

distance of ix is denoted as 
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t-th swarm. It can be seen that the smaller the crowding-distance variance of the t-th 
swarm, the more uniformity the t-th swarm. 
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3.3   Transform Multi-objective Optimization into the Constrained Optimization 
Problem 

From the analysis mentioned above, it can be seen that if the ranks of all individuals 
are regarded as the constraints and the measure of the uniformity of solutions is re-
garded as the objective function, then the multi-objective optimization can be con-
verted into the following constrained optimization problem: 
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4   Selection Operator 

Most of multi-objective algorithms take pareto dominance as their selection strategy 
but do not use any preference information. However, these algorithms can not per-
form well on the problems that have many multi objectives. In order to overcome this 
problem, a new selection strategy for problem (2) is proposed. 

4.1 If two particles are infeasible, we prefer to select the one with the smaller con-
straint violation, namely the one has the smaller rank. 
4.2 If one particle is feasible and the other is infeasible, we prefer to select the feasi-
ble particle, namely the one has the rank one. 
4.3 If two particles have the same rank, we prefer to select the one with the smaller 

objective value (e.g. 
ix and 

jx have the same rank one, then we calculate the crowd-

ing-distances of ix and 
jx  in the set S based on the definition4, and choose the one 

with the biggest crowding-distance, the S denotes the set which is composed of all 
particles of rank one).The above process can distinguish the particles which locate in 
the sparse region and the crowded region. 

5   The Accumulation Factor of the Swarm 

PSO initialized the flock of birds randomly over the searching space, every bird is 
called a “particle”. At each generation, each particle adjusts its velocity vector, based 
on its best solution (pbest) and the best solution of all particles (gbest). The swarm is 

composed of N particles ( ),, 21 NPPP , each particle’s position is represented as iP , 

the velocity of this particle is denoted as iV . At (t+1)th generation, each particle up-

dates its position according to the following equations:  

))()(())()(()()1( 2211 tPtgbestrctPtpbestrctVtV iiiii  
(3) 

)1()()1( tVtPtP iii  (4) 

Where V is the inertia weight in the range [0.1, 0.9]. 1c and 2c are positive con-

stants. 
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One factor influences the property of algorithm is the accumulation degree of the 

swarm. We define )1,0()(
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lation size, n is the number of variables, L is the length of the maximum diagonal in 

the search space, idp  indicates the dth coordinate of the ith particle, dp indicates the 

average values of all particles in the dth coordinate . The smaller the value of s, the 
more centralized the swarm is. When the swarm is centralized, it becomes difficult for 
the algorithm to break away from the local optimum. 

If the particles are sparse, the swarm is not easy to plunge into the local optimum. 
But when particles are centralized, it becomes easy to plunge into the local optimum.  

From above, we know that ω will increase when particles are centralized, so 
ω can be described as follows: 

ssωωω −= 0                                                                                                (5) 

Where, 10 =ω , )2.0,1.0(∈sω  

6   The Proposed Algorithm  

Step1: Given swarm size N. Generate the initial swarm P(t) randomly, and copy non-

dominated members of P(t) to P  set t=1.  
Step2: initialize the memory of every particle (this memory serves as a guide to travel 
through the search space). For Ntoi 1= , )()( tPtpbest ii = , )(tPi indicates the i-th 

particle in P(t). 
Step3: initialize the velocity of every particle, let 0)( =tVi . 

Step4: (a) compute the new speed of each particle using the expression (3): where 

)(tgbest  is taken from P . Firstly, we compute the crowding-distances of all particles 

in P , and choose the one with the biggest crowding-distance as )(tgbest . 

(b) compute the new positions of the particles adding the speed by using the expres-

sion (4). The new swarm is defined as )1(' +tP . 

(c)  copy the nondominated members of )1(' +tP to P , and remove the dominated 

members from P .After that choose N members from )1()( ' +∪ tPtP  

to constitute the next swarm )1( +tP .In this study, selection operator in section 4 is 

used to choose the N members . Set t=t+1. 
(d) when the current position of the particle is better than the position contained in its 
memory, the particle’s position is updated using )()( tPtpbest ii = .The criterion to 

decide what position from memory should be retained is simply to apply the pareto 
dominance. 
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Step5: loop to step4 until a stopping criterion is met, usually a given maximum gen-
erations. 

7   Simulation Results  

To evaluate the efficiency of the new algorithm NMPSO, we choose four benchmark 
functions [8]. All experiments were performed in matlab. The parameter is described 

as follows: swarm size N=100, 1r and 2r are the random numbers in [0, 1], 1c and 

2c are positive constants. n is the number of  the decision variables. Number of gen-

erations: 250.  

7.1   Test Functions 

Each of the test functions defined below is structured in the same manner : 
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7.2   Computation Results 

We execute 10 times on each test problem independently, and compare the results  
with the other 8 algorithms in [8]. In figure 1-4, the pareto fronts achieved by the  
 

 

Fig. 1. Comparison results of 9 algorithms on function 1 

 

Fig. 2. Comparison results of 9 algorithms on function2 
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Fig. 3. Comparison results of 9 algorithms on Function 3 

 

Fig. 4. Comparison results of 9 algorithms on function4 

different algorithms are visualized. Per algorithm and test function, the outcomes of 
the first five runs were unified, and the dominated solutions were removed from the 
union set; the remaining points are plotted in the figures.  
Where ∗∨+∧×• ,,,,, ,□, ,  denote the algorithms of Ffga, Hlga, Npga, Nsga, 

Rand, Spea, Soea, Nmpso and Vega. 
The simulation results of the 8 algorithms in [8] are chosen from 

http://www.tik.ee.ethz.ch/~zitzler/testdata.html. 
It can be seen from Fig1 to Fig4 that compared with the other 8 algorithms, the 

NMPSO can find more pareto-optimal solutions which are scattered more uniformly 
over the entire pareto front and the pareto front of NMPSO is in the below of the other 
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compared pareto fronts. On average, the proposed algorithm requires 1250 function 
evaluations to find 100 pareto-optimal solutions. 

8   Conclusions 

In this paper, the multi-objective optimization problem is converted into the con-
strained optimization problem. For the converted problem, a novel PSO algorithm 
with dynamical changed inertia weight is proposed. Meanwhile, in order to overcome 
the drawback that most algorithms take pareto dominance as selection strategy but do 
not use any preference information. A new selection strategy based on the constraint 
dominance principle is proposed. The computer simulations for four difficulty bench-
mark functions show that the new algorithm is able to find uniformly distributed 
pareto optimal solutions and is able to converge to the pareto-optimal front. 
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