
Chapter 6
Spatial Joints with Clearance: Dry Contact
Models

The problem of the dynamic behavior of planar multibody systems with clearance
joints was developed in the previous chapters. The utility of the methodologies
developed is somewhat restricted because they are not valid for spatial multibody
systems such as vehicle models, car suspensions and robotic manipulators, where
the system motion is not limited to be planar. In fact, even planar systems may
exhibit out-of-plane motion due to misalignments, thus justifying the development
of mathematical models to assess the influence of the clearance joints in spatial
multibody systems. The main purpose of this chapter is to present effective method-
ologies for spatial multibody systems including both the spherical and the revolute
joints with clearance. Due to their relevance for this chapter, some aspects of the
multibody formulation for spatial systems, based on the Cartesian coordinates, are
reviewed here to introduce the basic aspects on the dynamic modeling of spatial
multibody systems with clearance joints (Nikravesh 1988). A brief description of
the ideal, or perfect, spherical and spatial revolute joints is presented. Similar to the
case of planar formulation, the bodies that constitute the spatial clearance joints are
modeled as colliding bodies and contact-impact forces control the dynamic behavior
of the joint elements. For this purpose, the joint elements are considered as elastic
bodies in contact, in which relative penetration exists, but without deformation. The
normal contact force that depends on this pseudo-penetration follows the contact-
impact force model proposed by Lankarani and Nikravesh (1990). This force model,
which is a function of the bodies’ relative motion and of the internal geometry of
the joint, leads to the contact forces that are introduced in the system’s equations of
motion. In this methodology, the clearance plays a key role in the joint kinematics.
Simple spatial mechanical systems that describe spatial motion, such as the four-bar
mechanism and the double pendulum, are used to illustrate the methodologies and
assumptions adopted. In addition, a slider–crank mechanism that describes a planar
motion is also considered, as an application example, in order to compare both the
planar and spatial formulation for clearance joints.
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134 6 Spatial Joints with Clearance: Dry Contact Models

6.1 Spatial Multibody Systems

This section presents the formulation of the general equations of motion to the spa-
tial dynamic analysis of multibody systems. A simple and brief description of the
standard mechanical joints of spatial multibody mechanical systems is presented,
namely of the ideal spherical and revolute joints, to emphasize the differences with
respect to joints with clearance, introduced later. The methodology presented can
be implemented in any general-purpose multibody code, tested in particular in the
computer program DAP-3D, which has been developed for the spatial dynamic
analysis of general multibody systems (Nikravesh 1988). Due to its simplicity and
computational easiness, Cartesian coordinates and Newton–Euler’s method are used
to formulate the equations of motion of the spatial multibody systems.

Let Fig. 6.1 represent a rigid body i to which a body-fixed coordinate system
(ξηζ)i is attached at its center of mass. When Cartesian coordinates are used, the
position and orientation of the rigid body must be defined by a set of translational
and rotational coordinates. The position of the body with respect to global coordi-
nate system XYZ is defined by the coordinate vector ri = [ x y z ]Ti that represents
the location of the local reference frame (ξηζ)i . The orientation of the body is de-
scribed by the rotational coordinate’s vector pi = [ e0 e1 e2 e3 ]Ti , which is made
with the Euler parameters for the rigid body (Nikravesh 1988). Therefore the vector
of coordinates that completely describes the rigid body i is

qi = [ rT
i pT

i ]Ti (6.1)

A spatial multibody system with nb bodies is described by a set of coordinates q
in the form

q = [qT
1 , qT

2 , . . . , qT
nb]

T (6.2)

The location of point P on body i can be defined by the position vector sP
i with

respect to the body-fixed reference frame (ξηζ)i and by the global position vector
ri , that is,

rP
i = ri + sP

i = ri + Ai s′P
i (6.3)

Fig. 6.1 Definition of the
Cartesian coordinates for a
rigid body
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where Ai is the transformation matrix for body i that defines the orientation of the
referential (ξηζ)i with respect to the referential frame XYZ. The transformation
matrix is expressed as function of the four Euler parameters as (Nikravesh 1988)

Ai =

⎡
⎢⎢⎣

e2
0 + e2

1 − 1
2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e2
0 + e2

2 − 1
2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1
2

⎤
⎥⎥⎦

i

(6.4)

Notice that the vector sP
i is expressed in global coordinates whereas the vector

s′P
i is defined in the body i fixed coordinate system. Throughout the formulation

presented in this work, the quantities with (.)′ mean that (.) is expressed in local
system coordinates.

The velocities and accelerations of body i use the angular velocities ω′
i and

accelerations ω̇′
i instead of the time derivatives of the Euler parameters, which

simplifies the mathematical formulation and does not require the use of mathe-
matical constraint for Euler parameters. The relation between the Euler parameters
ė0 + ė1 + ė2 + ė3 = 0 is implied in the angular velocity and, therefore, is not
used explicitly (Nikravesh and Chung 1982). When Euler parameters are employed
as rotational coordinates, the relation between their time derivatives, ṗi , and the
angular velocities is expressed by (Nikravesh 1988)

ṗi = 1
2 LT �′

i (6.5)

where the auxiliary 3×4 matrix L is a function of Euler parameters (Nikravesh 1988)

Li =
⎡
⎣−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0

⎤
⎦

i

(6.6)

The velocities and accelerations of body i are given by vectors

q̇i = [ ṙT
i �′T

i ]Ti (6.7)

q̈i = [ r̈T
i �̇′T

i ]Ti (6.8)

In terms of the Cartesian coordinates, the equations of motion of an uncon-
strained multibody mechanical system are written as

Mq̈ = g (6.9)

where M is the global mass matrix, containing the mass and moment of inertia of
all bodies and g is a force vector that contains the external and Coriolis forces acting
on the bodies of the system.
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For a constrained multibody system, the kinematical joints are described by a set
of holonomic algebraic constraints denoted as

�(q, t) = 0 (6.10)

Using the Lagrange multipliers technique the constraints are added to the equa-
tions of motion. These are written together with the second time derivative of the
constraint equations. Thus the set of equations that describe the motion of the multi-
body system is

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
�

}
(6.11)

where λ is the vector of Lagrange multipliers and � is the vector that groups all the
terms of the acceleration constraint equations that depend on the velocities only, that
is,

� = −(�qq̇)qq̇ − �tt − 2�qt q̇ (6.12)

The Lagrange multipliers, associated with the kinematic constraints, are physically
related to the reaction forces and moments generated between the bodies intercon-
nected by kinematic joints.

Equation (6.11) is a differential algebraic equation that has to be solved, the
resulting accelerations being integrated in time. However, in order to avoid con-
straints violation during numerical integration, the Baumgarte (1972) stabilization
technique is used, (6.11) being modified to

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
� − 2α�̇ − β2�

}
(6.13)

where α and β are positive constants that represent the feedback control parameters
for the velocity and position constraint violations (Baumgarte 1972, Nikravesh 1988).
This issue is presented and discussed in detail in Chap. 2, the conclusions being valid
for spatial systems also. The same applies to the use of the vector calculus and the
numerical methods for planar dynamics of multibody systems presented in previous
chapters, which are still adequate for the treatment of spatial systems.

According to the formulation outlined, the dynamic response of multibody sys-
tems involves the evaluation of the Jacobian matrix �q and vectors g and �, in
each time step. The solution of (6.13) is obtained for the system accelerations q̈.
These accelerations, together with the velocities q̇∗, are integrated to obtain the new
velocities q̇ and positions q∗ for the next time step. This process is repeated until
the complete description of system motion is obtained for a selected time interval.
Note that, in vector q̇∗, the angular velocities are substituted by the time derivatives
of the Euler parameters using (6.5).
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Fig. 6.2 Perfect spherical joint in a multibody system

An ideal or perfect spherical joint, also known as the ball and socket joint, illus-
trated in Fig. 6.2, constrains the relative translations between two adjacent bodies i
and j , allowing only three relative rotations. Therefore the center of the spherical
joint, point P , has constant coordinate with respect to any of the local coordinate
systems of the connected bodies, i.e., a spherical joint is defined by the condition
that the point Pi on body i coincides with the point Pj on body j . This condi-
tion is simply the spherical constraint, which can be written in a scalar form as
(Nikravesh 1988)

�(s,3) ≡ ri + Ai s′P
i − r j − A j s′P

j = 0 (6.14)

The three scalar constraint equations implied by (6.14) restrict the relative posi-
tion of points Pi and Pj . Therefore three relative degrees of freedom are maintained
between two bodies that are connected by a perfect spherical joint.

An ideal three-dimensional revolute or rotational joint between bodies i and j ,
shown in Fig. 6.3, is built with a journal–bearing that allows a relative rotation about
a common axis, but precludes relative translation along this axis. Equation (6.14) is
imposed on an arbitrary point P on the joint axis. Two other points Qi on body i
and Q j on body j are also arbitrarily chosen on the joint axis. It is clear that vectors
si and s j must remain parallel. Therefore there are five constraint equations for an
ideal three-dimensional revolute joint (Nikravesh 1988):

�(r,5) ≡
{

ri + Ai s′P
i − r j − A j s′P

j = 0
s̃i s j = 0

(6.15)

Note that the cross product in (6.15) has only two independent constraints, the
third being linearly dependent on the first two. The five scalar constraint equations
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Fig. 6.3 Ideal three-dimensional or spatial revolute joint in a multibody system

yield only one relative degree of freedom for this joint, that is, rotation about the
common axis of the revolute joint.

6.2 Spherical Joint with Clearance

In this section, a mathematical model of spherical joint with clearance for spatial
multibody systems is presented. In standard multibody models, it is assumed that
the connecting points of two bodies, linked by an ideal or perfect spherical joint,
are coincident. The introduction of the clearance in a spherical joint separates these
two points and the bodies become free to move relative to each other. Hence the
three kinematic constraints shown in (6.14) are removed and three relative DOF
are allowed instead. A spherical joint with clearance does not constrain any DOF
from the system like the ideal spherical joint. In a spherical clearance joint, the
dynamics of the joint is controlled by contact-impact forces that result from the
collision between the bodies connected. Thus these types of joints can be called as
force-joints, since they deal with force constraints instead of kinematic constraints.

Figure 6.4 depicts two bodies i and j connected by a spherical joint with clear-
ance. A spherical part of body j , the ball, is inside of a spherical part of body i ,
the socket. The radii of socket and ball are Ri and R j , respectively. The differ-
ence in radius between the socket and the ball defines the size of radial clearance,
c = Ri−R j . The centers of mass of bodies i and j are Oi and O j , respectively.
Body-fixed coordinate systems ξηζ are attached at their center of mass, while XYZ
represents the global coordinate system. Point Pi indicates the center of the socket,
the center of the ball being denoted by Pj . The vector that connects the point Pi to
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Fig. 6.4 Generic spherical joint with clearance in a multibody system

point Pj is defined as the eccentricity vector, which is represented in Fig. 6.4. Note
that, in real mechanisms, the magnitude of the eccentricity is typically much smaller
than the radius of the socket and ball.

Similar to the two-dimensional revolute joint, when some amount of clearance
is included in a spherical joint, the ball and socket can move relative to each other.
Figure 6.5 illustrates the different types of ball motion inside the socket, namely,
contact or following mode, free flight mode and impact mode.

In the contact or following mode, the ball and the socket are in permanent contact
and a sliding motion relative to each other exists. This mode ends when the ball

Ball

Socket

Free flight
motion

Contact or
following motion

Impact

Free flight
motion

Impact

Ball center
locus trajectory

Fig. 6.5 Modes of the ball motion inside the socket
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and socket separate from each other and the ball enters the free flight mode. In the
free flight motion, the ball moves freely inside the socket boundaries, that is, the
ball and the socket are not in contact, hence there is no joint reaction force. In the
impact mode, which occurs at the termination of the free flight motion, impact forces
are applied to the system. This mode is characterized by an abrupt discontinuity in
the kinematic and dynamic responses, and a significant exchange of momentum
between the two impacting bodies is observed. At the termination of the impact
mode, the ball can enter either the free flight or the following mode.

In what follows, some of the most relevant kinematic aspects related to the spher-
ical clearance joint are presented. As displayed in Fig. 6.4, the eccentricity vector e,
which connects the centers of the socket and the ball, is given by

e = rP
j − rP

i (6.16)

where both rP
j and rP

i are described in global coordinates with respect to the inertial
reference frame (Nikravesh 1988):

rP
k = rk + Aks′P

k , (k = i, j) (6.17)

The magnitude of the eccentricity vector is evaluated as

e =
√

eT e (6.18)

The magnitude of the eccentricity vector expressed in the global coordinates is
written as

e =
√

(x P
j − x P

i )2 + (y P
j − y P

i )2 + (z P
j − z P

i )2 (6.19)

and the time rate of change of the eccentricity in the radial direction, that is, in the
direction of the line of centers of the socket and the ball is

ė = (x P
j − x P

i )(ẋ P
j − ẋ P

i ) + (y P
j − y P

i )(ẏ P
j − ẏ P

i ) + (z P
j − z P

i )(ż P
j − ż P

i )

e
(6.20)

in which the dot denotes the derivative with respect to time.
A unit vector n normal to the collision surface between the socket and the ball is

aligned with the eccentricity vector, as observed in Fig. 6.6. Thus

n = e
e

(6.21)

Figure 6.6 illustrates the situation in which the socket and the ball bodies are in
contact, which is identified by the existence of a relative penetration. The contact or
control points on bodies i and j are Qi and Q j , respectively. The global position of
the contact points in the socket and ball are given by
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Fig. 6.6 Penetration depth between the socket and the ball during the contact

rQ
k = rk + Aks′Q

k + Rkn, (k = i, j) (6.22)

where Ri and R j are radius of the socket and the ball, respectively.
The velocity of the contact points Qi and Q j in the global system is obtained by

differentiating (6.22) with respect to time, yielding

ṙQ
k = ṙk + Ȧks′Q

k + Rk ṅ, (k = i, j) (6.23)

Let the components of the relative velocity of contact points in the normal and
tangential direction to the surface of collision be represented by vN and vT , re-
spectively. The relative normal velocity determines whether the contact bodies are
approaching or separating, and the relative tangential velocity determines whether
the contact bodies are sliding or sticking. The relative scalar velocities, normal and
tangential to the surface of collision, are obtained by projecting the relative impact
velocity onto the tangential and normal directions, yielding

vN = [(ṙQ
j − ṙQ

i )T n]n (6.24)

vT = (ṙQ
j − ṙQ

i )T − vN ≡ vT t (6.25)

where t represents the tangential direction to the impacted surfaces.
From Fig. 6.6 it is clear that the geometric condition for contact between the

socket and the ball can be defined as

δ = e − c (6.26)

where e is the magnitude of the eccentricity vector given by (6.18) and c is the
radial clearance size. It should be noted here that the clearance is taken as a specified
parameter. When the magnitude of the eccentricity vector is smaller than the radial
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clearance size there is no contact between the socket and the ball and, consequently,
they can freely move relative to each other. When the magnitude of eccentricity is
larger than radial clearance, there is contact between the socket and the ball, the
relative penetration being given by (6.26). Then a constitutive contact law, such as
the continuous contact force model proposed by Lankarani and Nikravesh (1990),
expressed by (3.9), is applied in order to evaluate the contact force developed in the
direction perpendicular to the plane of collision. Thus the magnitude of the contact
force can be summarized as follows:

FN =

⎧⎪⎨
⎪⎩

0 if δ < 0

K δn

[
1 + 3(1 − c2

e)
4

δ̇

δ̇(−)

]
if δ > 0

(6.27)

where the generalized parameter K is evaluated by (3.3), ce is the restitution coef-
ficient, δ̇ is the relative penetration velocity and δ̇(−) is the initial impact velocity.
The nature of the contact forces for spatial systems is identical to those for planar
systems, which are presented and discussed in Chap. 3.

The normal and tangential forces at the contact points are represented by fN and
fT , respectively. Since these forces do not act through the center of mass of bodies
i and j , the moment components for each body need to be evaluated. Furthermore
the contribution of the contact forces to the generalized force vector is obtained by
projecting the normal and tangential forces onto the X, Y and Z directions. Based on
Fig. 6.7, the equivalent forces and moments applied on the center of mass of body i
are given by
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fi = fN + fT (6.28)

mi = s̃Q
i fi (6.29)

The forces and moments acting on body j are written as

f j = −fi (6.30)

m j = −s̃Q
j fi (6.31)

For notation purpose the tilde (∼) placed over a vector indicates that the compo-
nents of the vector are used to generate a skew-symmetric matrix (Nikravesh 1988).

6.3 Spatial Revolute Joint with Clearance

The typical configuration of a spatial revolute joint with clearance is schematically
illustrated in Fig. 6.8. The pair of elements in a spatial revolute clearance joint are
a cylindrical hole, the bearing, and a cylindrical pin, the journal. The clearance, in
a realistic connection, is much smaller than the length of the two cylinders or the
nominal radius of the joint elements.

Similar to the spherical clearance joint model development, the two mechanical
bodies connected by the joint are modeled as colliding bodies, and, consequently,
contact-impact forces control the dynamics of the joint. In the methodology pre-
sented here, the contact force model with hysteric damping is used to evaluate the
normal contact forces resulting from the interpenetration between the journal and
the bearing. For this purpose, the mechanical elements are considered as two rigid
bodies in contact that penetrate into each other, without deforming. The normal
contact force depends on this pseudo-penetration, according to the model proposed
by Lankarani and Nikravesh (1990). Thus it is clear that the spatial revolute joint
with clearance does not impose any kinematic constraint to the system, but imposes
some force restrictions, limiting the journal movement within the bearing limits.

The model for the spatial revolute clearance joint is more complex than the spher-
ical joint with clearance, because there are more paths of motion for the journal
when clearance is present. Four different types of journal motion inside the bearing
are considered in the present work, namely: (1) free flight motion where there is

Fig. 6.8 Typical spatial
revolute joint with clearance

Journal

Bearing
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(a) (b)

(d)(c)

Fig. 6.9 Four different possible scenarios for the journal motion relative to the bearing: (a) no
contact; (b) one point contact; (c) line contact; (d) two contact points in opposite sides

no contact between the two elements; (2) the journal contacts with the bearing wall
at a point; (3) the journal and bearing contact with each other at a line; (4) two
contact points between the journal and the bearing wall, but in opposite sides. These
four possibilities are illustrated in Fig. 6.9. The dynamic response of the joint is a
function of these four scenarios which depend on the system configuration.

In a noncontact situation, no forces are introduced into the system, because the
journal moves freely inside the bearing boundaries until it reaches the bearing wall.
When the journal and the bearing are in contact with each other, local deformations
take place at the contact area and, consequently, contact-impact forces characterize
the interaction between the bodies. By evaluating the variation of the contact forces
during the contact period, the system response is obtained simply by adding the
contact-impact forces to the multibody system equations of motion as external gen-
eralized forces. This approach provides accurate results, in so far as the equations of
motion are integrated over the period of contact. It, thus, accounts for the changes
in the configuration and velocities of the system during that contact.

In order for the spatial revolute clearance joints to be used in the multibody sys-
tem formulation, it is required that a mathematical model be developed. Figure 6.10
shows a representation of a spatial revolute joint with clearance that connects bodies
i and j . The bearing is part of body i and the journal is part of body j . The difference
in radius between the bearing and the journal, c = Ri−R j , defines the size of the
radial clearance. The center of mass of bodies i and j are Oi and O j , respectively.
Body-fixed coordinate systems ξηζ are attached at the center of mass of each body,
whereas the XYZ denotes the global coordinate system. The geometric center of the
bearing is located at point P which, together with point Q, defines the joint/bearing
axis, while points V and W on body j define the journal axis. These points are



6.3 Spatial Revolute Joint with Clearance 145

W

Ri

Rj
V

Q

X

Y

Z

(i)
(j)

Oj

Oj

ξi

ξj

ηi

ηj

ζi

ζj

→
si

Q

→
sj

V

→
si

P

→
sj

P

→
sj

W

→
rj

→
ri

Fig. 6.10 General configuration of a three-dimensional or spatial revolute joint with clearance in
a multibody system

located at the top and bottom of journal bases, so that the distance between points
V and W defines the length of the joint.

Figure 6.11 shows two different scenarios for the contact between the journal
and the bearing. For simplicity, in this figure only the journal and the bearing are

θ ≈ 0o

(a) (b)

PP

Fig. 6.11 Two different scenarios for contact between the journal and the bearing wall: (a) only
one journal base (top) contacts with the bearing wall; (b) both bases (top and bottom) contact with
the bearing wall
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represented. In the present methodology, only the top and the bottom journal bases
are considered for contact detection between the journal and bearing elements. Fur-
thermore it is assumed that the clearance is much smaller than the dimensions of
the bodies, so that the angle between the bearing and journal axes, represented by
θ in Fig. 6.11a, is very small and, consequently, both top and bottom journal bases
can be assumed to be parallel and perpendicular to the joint axis, as illustrated in
Fig. 6.12.

Assuming a local coordinate system (ξηζ)r associated with the revolute clearance
joint axis located at point P , the unit coordinate vectors defined along the local axes
are u′

ξ, u′
η and u′

ξ, as illustrated in Fig. 6.13. The unit coordinate vector along the
ζr-axis, u′

ξ, is evaluated as

u′
ξ = s′Q

i − s′P
i∥∥∥s′Q

i − s′P
i

∥∥∥ (6.32)

where both vectors s′P
i and s′Q

i are described in the local coordinate system of body
i . The remaining two unit vectors are evaluated according to

{
u′

ξ = u′
ξ

u′
η = u′

η
if u′

ξ = u′
ζ (6.33)

or
{

u′
ξ = ũ′

ζr
u′

ζi

u′
η = ũ′

ζr
u′

ξr

if u′
ξ �= u′

ζ (6.34)

Fig. 6.12 Front and top
views for contact between the
journal and the bearing: (a)
only the journal top base
contacts with the bearing
wall; (b) both journal bases
(top and bottom) contact with
the bearing wall
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Fig. 6.13 Definition of the local coordinate system associated with the revolute clearance joint and
the respective unit vectors

The transformation matrix Ari from local components (ξηζ)r into the local co-
ordinate system (ξηζ)i is expressed as (Nikravesh 1988)

Ari = [u′
ξ u′

η u′
ξ ]T (6.35)

Note that this transformation matrix is constant. Furthermore if u′
ξ = u′

ξ the trans-
formation matrix Ari is the identity matrix I. Thus the matrix that transforms the
local vectors (ξηζ)r into the global reference system XYZ is given by

Ar = Ai Ari (6.36)

The global position of the origin of the local coordinate system (ξηζ)r is

rP
i = ri + Ai s′

i P (6.37)

In order to define the relative position between the journal and the bearing, it is
necessary to express the vectors sV

j and sW
j in the local coordinate system associated

with the joint (ξηζ)r . From Fig. 6.13, the global coordinates of points V and W with
respect to the inertial reference frame are expressed as
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rV
j = r j + A j s′V

j (6.38)

rW
j = r j + A j s′W

j (6.39)

Thus vectors sV
j and sW

j expressed in the global coordinate system are

sV
r = rV

j − rP
i (6.40)

sW
r = rW

j − rP
i (6.41)

When expressed in the local coordinate system of the joint, these vectors are
given by

s′V
r = AT

r sV
r (6.42)

s′W
r = AT

r sW
r (6.43)

The vectors given by (6.42) and (6.43) define the coordinates of points V and W of
the journal, expressed in terms of the local coordinate system associated with the
joint, that is, (ξηζ)r .

Figure 6.14 depicts a configuration for the system in which both top and bottom
journal bases contact with the bearing wall. The eccentricity vectors at the top and
bottom journal bases, eV

r and eW
r , are given by the projection of the vectors sV

r and
sW

r onto the local axes ξr and ηr , yielding

eV
r = {(s′V

r )ξr
(s′V

r )ηr
0}T (6.44)

eW
r = {(s′W

r )ξr
(s′W

r )ηr
0}T (6.45)

The magnitudes of the eccentricity vectors are evaluated as

eV
r =

√
(eV

r )T eV
r (6.46)

eW
r =

√
(eW

r )T eW
r (6.47)

The unit vectors, nV
r and nW

r , are normal to the planes of contact at the points
where the top and bottom journal bases touch the bearing wall. Referring to Fig. 6.14
these normal vectors are evaluated as

nV
r = eV

r∥∥eV
r

∥∥ (6.48)

nW
r = eW

r∥∥eW
r

∥∥ (6.49)

Referring to Fig. 6.14, the penetrations due to the contact between the journal
bases and the bearing wall are calculated as
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Fig. 6.14 Definition of the
local coordinate system
associated with the revolute
clearance joint and the
respective unit vectors
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P

)j(

(i)

W

V

P

W
V

Cj
WCj

V

Ci
V

Ci
W

W→
δr

V→
δr

ξ
r

ζr

→
sr

V

→

→
sr

W

Q

ξr

ηr
V

ηr

er
W→

er
V→

nr
W→

δV
r = eV

r − c (6.50)

δW
r = eW

r − c (6.51)

where eV
r and eW

r are, respectively, the modules of the eccentricity vectors at the
top and bottom journal bases, and c is the radial clearance given by the difference
between the radius of the bearing and the journal. There is contact if the radial
motion exceeds the radial clearance size.

Considering CV
i , CV

j , CW
i and CW

j to be the potential contact points on bodies i
and j , their global positions are evaluated as

r
CV

k
k = rP

k + Aks′CV
k

k , (k = i, j) (6.52)

r
CW

k
k = rP

k + Aks′CW
k

k , (k = i, j) (6.53)
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where vectors s′CV
k

k and s′CW
k

k , (k = i, j), are the local coordinates of vectors s
CV

k
k and

s
CW

k
k on bodies i and j , expressed by the local coordinate system of each body. These

vectors are only defined in the local coordinate system of the joint (ξηζ)r and are
expressed as

s′CV
i

r = { 0 0 (s′V
r )ζr

}T + Ri nV
r (6.54)

s′CV
j

r = s′V
r + R j nV

r (6.55)

s′CW
i

r = { 0 0 (s′W
r )ζr

}T + Ri nW
r (6.56)

s′CW
j

r = s′W
r + R j nW

r (6.57)

The vectors defined by (6.54)–(6.57) when expressed in the local coordinate systems
associated with bodies i and j yield

s′CV
i

i = Ari s′CV
i

r (6.58)

s′CV
j

j = AT
j Ar s′CV

j
r (6.59)

s′CW
i

i = Ari s′CW
i

r (6.60)

s′CW
j

j = AT
j Ar s′CW

j
r (6.61)

The impact velocities, required to evaluate the contact forces, using the Lankarani
and Nikravesh model, are obtained by differentiating (6.52) and (6.53) with respect
to time, yielding

ṙ
CV

k
k = ṙP

k + Ak�̃′
ks′CV

k
k , (k = i, j) (6.62)

ṙ
CW

k
k = ṙP

k + Ak�̃′
ks′CW

k
k , (k = i, j) (6.63)

The relative impact velocities between the two bodies at the contact points are

ΔṙV = ṙ
CV

j

j − ṙ
CV

i
i (6.64)

ΔṙW = ṙ
CW

j

j − ṙ
CW

i
i (6.65)

The relative velocities given by (6.64) and (6.65) are projected onto the direction
normal to the penetration, yielding the relative normal velocities, δ̇V

r and δ̇W
r , shown

in Fig. 6.15. The normal relative velocities represent whether the contact bodies are
approaching or separating. These velocities are evaluated by

δ̇V
r = (ΔṙV )T nV

r (6.66)

δ̇W
r = (ΔṙW )T nW

r (6.67)
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Fig. 6.15 Location of the contact points and representation of impact velocities

When contact between the journal and the bearing takes place, impact forces act
at the contact points. The contributions of these impact forces to the generalized
vector of forces are found by projecting them onto the X, Y and Z directions. Since
these forces do not act through the center of mass of the bodies i and j , the moment
components for each body need to be evaluated. For convenience and simplicity
the bodies are presented separately in Fig. 6.16 and only the force components that
act at the top journal base are illustrated. According to Fig. 6.16, the forces and
moments working on the center of mass of body i are given by

fi = fN + fT (6.68)

mi = y
CV

i
i fz

i − z
CV

i
i fy

i + x
CV

i
i fz

i − z
CV

i
i fx

i + x
CV

i
i fy

i − y
CV

i
i fx

i (6.69)

The forces and moments corresponding to body j are written as

f j = −fi (6.70)

m j = −y
CV

j

j fz
j + z

CV
j

j fy
j − x

CV
j

j fz
j + z

CV
j

j fx
j − x

CV
j

j fy
j + y

CV
j

j fx
j (6.71)

Since the formulation of the spatial revolute joint involves a good deal of mathe-
matical manipulation, it is convenient to summarize the main steps in an appropriate
algorithm. This algorithm, presented in the flowchart of Fig. 6.17, is developed in
the framework of the multibody methodology and can be condensed in the following
steps:
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1. Start at instant of time t0, with given initial conditions for positions q0 and ve-
locities q̇0.

2. Define the location of points Pi , Pj , Qi , Vj and W j , necessary to describe the
spatial revolute clearance joint. Define joint and material properties (RB , EB , νB ,
RJ , EJ and νJ ).

3. Compute the local coordinate system associated with the joint, (ξηζ)r and eval-
uate the unit coordinate vectors along each axis, that is, u′

ξ, u′
η and u′

ξ using
(6.32)–(6.34).

4. Evaluate the local coordinates of the geometrical centers of the top and bottom
bases in the (ξηζ)r system using (6.42)–(6.43).

5. Compute eccentricity vectors eV
r and eW

r and the unit vectors that define the im-
pact direction nV

r and nW
r through (6.44)–(6.49).

6. Evaluate the penetrations δV
r and δW

r with (6.50)–(6.51).
7. Check for contact: if there is contact, determine the contact points using

(6.52)–(6.53), evaluate the impact velocities with (6.66)–(6.67), compute the
impact forces by (6.68)–(6.71) and add the impact forces to the equations of
motion.

8. Obtain the new positions and velocities of the system for time step t + Δt by
integration of the final derivatives of the state variables.
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Fig. 6.17 Representation of the algorithm proposed to model spatial revolute joint with clearance
in multibody systems

9. Update the system time variable.
10. Go to step 5 and repeat the whole process for the new time step, until the final

time for the analysis is reached.

6.4 Demonstrative Example 1: Four-Bar Mechanism

In this section, the application of the four-bar mechanism that describes a spatial
motion (Haug 1989) is employed, as an illustrative example to demonstrate how a
spherical clearance joint can affect the behavior of the mechanism. The spatial four-
bar mechanism consists of four rigid bodies that represent the ground, crank, coupler
and rocker. The body numbers and their corresponding local coordinate systems are
shown in Fig. 6.18. The kinematic joints of this multibody system include two ideal
revolute joints, connecting the ground to the crank and the ground to the rocker,
and one perfect spherical joint that connects the crank and coupler. A spherical
joint, with a given clearance, interconnects the coupler and the rocker. This four-bar
mechanism is modeled with 24 coordinates, which result from 4 rigid bodies and 19
kinematic constraints. Consequently this system has five degrees of freedom.
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Fig. 6.18 Representation of the algorithm proposed to model spatial revolute joint with clearance
in multibody systems

The initial configuration of the spatial four-bar mechanism is illustrated in
Fig. 6.18. The system is released from the initial position with null velocities and
under the action of gravity force, which is taken to act in the negative Z direction.
The dimensions and inertia properties of each body are presented in Table 6.1. The
dynamic parameters used for the simulation and for the numerical methods required
to solve the system dynamics are listed in Table 6.2.

In order to study the influence of the spherical clearance model in the global
behavior of the spatial four-bar mechanism, some kinematic and dynamic character-
istics, corresponding to the first 2s of the simulation, are presented and discussed in
what follows. The results are always plotted against those obtained with a simulation
in which all kinematic joints are considered to be ideal or perfect.

The normal contact force and the joint reaction force, for the first impact at the
spherical clearance joint, are shown in Fig. 6.19a. The plotted reaction force is the
magnitude of the joint force in the revolute joint that connects the ground to the
rocker. The simulation is performed by employing the Lankarani and Nikravesh
contact force model given by (3.9). By observing Fig. 6.19a, it is clear how the
impacts inherent to the dynamics of the clearance joint influence the reaction force.

Table 6.1 Geometric and inertia properties of the spatial four-bar mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)
Iξξ Iηη Iζζ

2 0.020 0.0196 0.0000392 0.0000197 0.0000197
3 0.122 0.1416 0.0017743 0.0000351 0.0017743
4 0.074 0.0316 0.0001456 0.0000029 0.0001456
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Table 6.2 Parameters used in the dynamic simulation of the four-bar mechanism

Socket radius 10.0 mm Young’s modulus 207 GPa
Ball radius 9.5 mm Poisson’s ratio 0.3
Radial clearance 0.5 mm Integration step size 0.00001 s
Restitution coefficient 0.9 Integration tolerance 0.000001 s

The two force curves plotted show a very similar shape. The maximum reaction
force is about 60% of the contact force. Figure 6.19b shows the hysteresis curves for
the first three impacts at the spherical clearance joint. The contact force decreases for
each impact suggesting that some system energy is dissipated from impact to impact.
This dissipated energy is measured as the area enclosed by the hysteresis plot. The
energy dissipation is due to the contact model used and, since the gravitational force
is the only external action, that is, no other external forces or drivers are applied to
the system, no energy is fed to the system.

Figure 6.20a–d depicts the Z-component for the position, velocity and acceler-
ation of the center of mass of rocker, as well as the Y-component of the reaction
moment that acts at the revolute joint that connects the ground to the rocker, for
both ideal and spherical clearance joint simulations. The results plotted in Fig. 6.20a
show that the position accuracy of the four-bar mechanism is clearly influenced by
the effective joint clearance. Furthermore the maximum Z-position is not reached in
every cycle since the impacts within the joint with clearance dissipate some of the
system’s energy. Figure 6.20c and d shows that the mechanism with clearance joint
creates significantly larger dynamic accelerations and reaction moments on the sys-
tem than those observed for an ideal dynamic model. The magnitude of acceleration
and moment for the case of the ideal joint is very low, not even visible in the figures,
since there is no driver in the system, the gravitational force being the only external
action on the system.

The magnitude of the eccentricity vector is plotted in Fig. 6.21, in which the dif-
ferent types of motion between the ball center and the socket center can be observed,

0

50

100

150

200

250

300

0.01738 0.01742 0.01746 0.0175 0.0175

Time [s]

F
o

rc
e 

[N
]

Contact force Reaction force

0

50

100

150

200

250

300

0 0.001 0.002 0.003

Penetration depth [mm]

C
o

n
ta

ct
 f

o
rc

e 
[N

]

First impact Second impact

Third impact

(a) (b)

Fig. 6.19 (a) Normal contact force at the clearance joint and corresponding reaction force in the
ground–rocker revolute joint for the first impact; (b) hysteresis loop of the first three impacts at the
clearance joint. The contact force decreases from impact to impact because no energy is fed to the
system



156 6 Spatial Joints with Clearance: Dry Contact Models

–1.5

–1.0

–0.5

0.0

0.5

1.0

Time [s]

Ideal joint SPH-Clearance joint

–50

0

50

100

150

200

Time [s]

Ideal joint SPH-Clearance joint

–0.2

–0.1

0.0

0.1

0.2

0.3

Time [s]

Ideal joint SPH-Clearance joint

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

Time [s]

R
o

ck
er

 Z
-p

o
si

ti
o

n
 [

m
]

R
o

ck
er

 Z
-a

cc
el

er
at

io
n

 [
m

/s
2 ]

R
o

ck
er

 Z
-v

el
o

ci
ty

 [
m

/s
]

R
o

ck
er

 Y
-m

o
m

en
t 

[N
m

]

Ideal joint SPH-Clearance joint

(a)

(c)

(b)

(d)

Fig. 6.20 (a) Z-coordinate of rocker center of mass; (b) Z-velocity of rocker center of mass;
(c) Z-acceleration of rocker center of mass; (d) Y-component of the reaction moment at the ground–
rocker revolute joint.

namely, free flight, impact, rebound and permanent or continuous contact. In the first
instants of the simulation, free flight motion followed by impacts and rebounds are
well evident. After that, it can be observed that the ball and socket present periods of
permanent or continuous contact, where the ball follows the socket wall. The dashed
line in Fig. 6.21 represents the radial clearance size (0.5 mm), which corresponds to
the maximum relative motion between the ball and the socket without contact.
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Fig. 6.21 Module of the eccentricity vector
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Fig. 6.22 Ball center trajectory inside the socket: (a) first simulation’s instants in which free flight
motion and impacts followed by rebounds are visible; (b) permanent or continuous contact, i.e.,
the ball follows the socket wall

The path of the ball center relative to the socket center is also illustrated in Fig. 6.22.
Figure 6.22a shows the relative motion between the two bodies for the first six im-
pacts. The half gray spherical surface represents the clearance limit while the small
spheres inside represent the ball center path. The free flights are illustrated by clear
spheres, whereas the impacts are represented by darker spheres. It is clear that in
the first instants of simulation the impacts are immediately followed by rebounds.
Figure 6.22b shows the time interval simulation from 0.100 to 0.150 s. From this
figure, it is observed that the ball is always in permanent contact with the socket wall.
Furthermore the permanent contact between the ball and socket is accomplished by
varying the penetration depth along the radial direction. The Poincaré maps are used
to illustrate the dynamic behavior of the spatial four-bar mechanism with a spherical
clearance joint. The system’s response is nonlinear, as the relative motion between
the ball and the socket can change from free flights, impact and continuous contact,
as illustrated in Figs. 6.21 and 6.22. The nonlinear system response is well visible by
plotting the corresponding Poincaré maps, which relate the rocker Z-velocity versus
rocker Z-position, shown in Fig. 6.23. The Poincaré map presented in Fig. 6.23b has
a complex aspect, densely filled by orbits or points, which indicates chaotic behavior.
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Fig. 6.23 Poincaré maps: (a) ideal joint; (b) spherical clearance joint
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6.5 Demonstrative Example 2: Double Pendulum

In order to examine the effectiveness of the formulation developed for the spa-
tial revolute clearance joint, a double pendulum with the configuration shown in
Fig. 6.24 is studied. The numbering of the bodies of the system and their local
coordinate frames are also pictured in Fig. 6.24. The double pendulum is made
up of three rigid bodies, the ground body and two arms. One ideal revolute joint
connects the two pendulum arms while a spatial revolute clearance joint, with a
radial clearance size of 0.5 mm, exists between the ground and body 2. This simple
multibody system is modeled with 18 coordinates and 11 kinematic constraints,
which results in a system with 7 DOF.

Initially the double pendulum rests in the XZ plane position with pendulum arms
perpendicular to each other. The system is then released from this initial configu-
ration under gravity action only, which is taken as acting in the positive Y direc-
tion. The geometric dimensions and inertia properties of the double pendulum are
listed in Table 6.3, while the dynamic parameters used in simulations are shown in
Table 6.4.

In order to evaluate the influence of the spatial revolute clearance joint, in the
dynamic performance of the double pendulum, the main kinematic and dynamic
characteristics of the system response during the first 4 s of simulation are analyzed
here, with the results compared to those obtained for a system with ideal joints. The

3D Revolute clearance joint

W

ξ2η2

V

ζ2

ξ3η3

ζ3

Y ≡ η1

X ≡ ξ1

Z ≡ ζ1

Fig. 6.24 Double pendulum modeled by two rigid bars and two revolute joints. Each bar is a
prismatic homogeneous rigid body with square section of 0.03 m × 0.03 m
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Table 6.3 Governing properties for the double pendulum

Body nr Length (m) Mass (kg) Moment of inertia (Kg m2)
Iξξ Iηη Iζζ

2 1.0 7.02 0.0010530 0.5855265 0.5855265
3 1.0 7.02 0.5855265 0.5855265 0.0010530

Hertz contact law with hysteresis damping factor, given by (3.9), is used to evaluate
the contact forces caused by the impact in the clearance joint.

Figure 6.25a shows the normal contact force developed in the revolute clearance
joint, during the first impact, and the reaction force of an ideal joint. The plotted
reaction force is the module of the joint force in X direction developed at the ideal
revolute joint that connects the two pendulum arms. In Fig. 6.25a, it is observed that
the reaction force shape is similar to the shape of the contact force at the clearance
joint. The maximum reaction force is about 50% of the contact force. Figure 6.25b
shows the hysteresis curves for the first three impacts, developed at the clearance
joint. As in the case of four-bar mechanism, analyzed in the previous section, the
contact force decreases for each impact, suggesting that some of the system energy
is dissipated from impact to impact. This dissipated energy is represented by the
area enclosed by the hysteresis plot.

The position, velocity and acceleration of the center of mass of body 3 in the Y
direction are plotted in Fig. 6.26a–c. Since the double pendulum has an open-loop
topology, the existence of a clearance joint clearly influences the global position
of the bodies of the system. The global behavior of the double pendulum with a
clearance joint is characterized as nonlinear, almost chaotic, as illustrated in the
Poincaré map of Fig. 6.26d. The velocity and acceleration components of the center
of mass of body 3 in the Y direction are chosen to construct the Poincaré map.
The complex densely filled appearance of the Poincaré map is an indicator that the
system response is highly nonlinear.

The effect of the existence of a revolute clearance joint in the global motion of
the double pendulum is illustrated in Fig. 6.27, in which the trajectory of the center
of mass of the end arm is plotted during the first three seconds of simulation. The
effect of the impacts, which occur at the clearance joint, produce very high peaks
in the component of the reaction forces and moments used to represent the system
response of the double pendulum, as it is shown in Fig. 6.28. Note that the reference
quantities presented in Fig. 6.28, denoted as ideal joint, are obtained for the system
model with ideal joints only.

Figure 6.29 shows the module of the eccentricity vector for both journal bases
of the revolute clearance joint, as referred in Fig. 6.24. It can be observed that, for

Table 6.4 Simulation parameters for the double pendulum

Bearing radius 10.0 mm Young’s modulus 207 GPa
Journal radius 9.5 mm Poisson’s ratio 0.3
Radial clearance 0.5 mm Integration step size 0.00001 s
Restitution coefficient 0.9 Integration tolerance 0.000001 s
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Fig. 6.25 (a) Normal contact force developed at the revolute clearance joint and reaction force in
the ideal revolute joint that connects the two pendulum arms; (b) hysteresis loop of the first three
impacts at the revolute clearance joint

the first impacts, the trajectories of the two bases are coincident. But, after that, the
impacts between the journal and the bearing wall take place at different instants of
time, meaning that some misalignment occurs. This phenomenon can be observed
in Fig. 6.30 where a sequence of frames from a computer animation of the journal
trajectory, relative to the bearing boundaries, is shown. The contact situations are
represented by a dark journal, while the noncontact cases are represented by a light-
colored journal. In the frame sequence the rebounds, during the first impacts, are
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Fig. 6.26 (a) Y-position of body 3 center of mass; (b) Y-velocity of body 3 center of mass; (c)
Y-acceleration of body 3 center of mass; (d) Poincaré map
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Fig. 6.27 Trajectory of the center of mass of the end arm during the first 3 s of simulation
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Fig. 6.30 Sequence of positions representing trajectory of the journal inside the bearing for first
instants of simulation

clearly visible. Moreover the height of the rebound decreases from impact to impact
due to the energy loss.

6.6 Demonstrative Example 3: Slider–Crank Mechanism

In this section, a spatial slider–crank mechanism is used as a numerical example
to demonstrate the application of the methodologies previously presented. Four
rigid bodies describe the slider–crank model under consideration. The model also
includes one ideal revolute joint that connects the ground and the crank, one ideal
spherical joint between the crank and the connecting rod and one ideal translational
joint that connects the ground and the slider. A joint with clearance connects the
slider to the connecting rod. This system has 19 independent kinematic constraints
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Fig. 6.31 Initial configuration of the spatial slider–crank mechanism with a clearance joint be-
tween the slider and the connecting rod

and it is described by 24 coordinates, which results in a mechanism with five degrees
of freedom. A body-fixed coordinate system (ξηζ) is attached to the center of mass
of each body, and XYZ represents the global coordinate system. The slider–crank
model shown in Fig. 6.31 is constrained to move in the XZ plane and therefore
the overall motion described by the mechanism can be considered as planar. The
gravitational acceleration is considered as acting in the negative Z direction.

The initial configuration is taken with the crank and the connecting rod collinear.
The crank, which is the driving link, rotates about the Y-axis with a constant angular
velocity of 150 rad/s. The crank velocity is maintained constant due to its very large
rotational inertia, that is, the crank acts like a flywheel. The geometric characteristics
and the mass and inertia properties are presented in Table 6.5.

The dynamic parameters used for the simulation are similar to those listed in
Table 6.4. Furthermore the initial conditions necessary to start the dynamic analysis
are obtained from kinematic simulation of a slider–crank model in which all the
joints are considered to be ideal. In order to keep the analysis simple, all the joints
are considered as frictionless.

In what follows, three different situations are analyzed. In the first one, the slider–
crank mechanism is considered as a two-dimensional system and the joint between
the connecting rod and slider is modeled as a 2D revolute clearance joint, as was
presented in Chap. 4. In the second case, the slider–crank is modeled as a spatial
multibody system and the clearance joint as a spherical joint with clearance, as de-
veloped in Sect. 6.2. Finally, in the third situation, the slider–crank is also considered
as a spatial system and the joint clearance as a 3D revolute joint with clearance, as
was presented in Sect. 6.3. For all three situations, the contacts between the elements

Table 6.5 Geometric and inertia properties for the dynamic simulation of the spatial slider–crank
mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)
Iξξ Iηη Iζζ

2 0.1524 0.15 10.0000 10.000 10.000
3 0.3048 0.30 0.0002 0.0002 0.0002
4 – 0.15 0.0001 0.0001 0.0001
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Fig. 6.32 (a) Normal contact force at the clearance joint for the different models; (b) hysteresis
loop at the clearance joint. All the plots are for the first impact

that constitute the clearance joints are modeled by employing the Hertz contact law
with hysteresis damping factor, expressed by mathematical equation (3.9).

The normal contact force developed at the clearance joint at the first impact,
for the three different simulations, is plotted in Fig. 6.32a. Figure 6.32b shows the
corresponding hysteresis curves. The contact force curves, obtained with 2D rev-
olute clearance joint and with spherical clearance joint, coincide. This is expected
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Fig. 6.33 Slider velocity for the different joint clearance models: (a) 2D revolute joint; (b) spheri-
cal joint; (c) 3D revolute joint
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since the slider–crank model describes a planar motion and, therefore, the spherical
clearance joint behavior can be considered equivalent to the case of the 2D revolute
clearance joint. However, for the case of 3D revolute clearance joint simulation, the
contact force curve presents a different evolution. Moreover the contact duration is
shorter and the maximum force is greater than for the other two cases. This behav-
ior can be understood due to the fact that in the 3D revolute model there are two
point contacts, which are the two journal bases, instead of one point contact. Due
to the nonlinear characteristics of the continuous force model, it is expected that
representing the joint with one or two contact points leads to different results.

Figures 6.33 through 6.37 show the results for the case in which the radial clear-
ance size is equal to 0.5 mm. In order to better understand the dynamic behavior
of the slider–crank mechanism, these results are compared with those obtained for
the ideal joint. The simulations are performed for the three different clearance joint
models mentioned previously and at time interval corresponding to two complete
crank rotations.

In Figs. 6.33 through 6.35, it is observed that the peaks on the slider acceleration
curves are due to the contact force variation, which occurs during the period of con-
tact between the elements that compose the clearance joints. The same phenomenon
can be observed in the curves of the crank moment, because the contact forces are
propagated through the rigid bodies of the slider–crank mechanism. It is noteworthy
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Fig. 6.34 Slider acceleration for the different joint clearance models: (a) 2D revolute joint;
(b) spherical joint; (c) 3D revolute joint
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Fig. 6.36 Journal/ball motion inside the bearing/socket boundaries for different joint clearance
models: (a) 2D revolute joint; (b) spherical joint; (c) 3D revolute joint
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Fig. 6.37 Poincaré maps for the different joint clearance models: (a) 2D revolute joint; (b) spheri-
cal joint; (c) 3D revolute joint

that the global behavior of the slider–crank is the same for the three different clear-
ance joint models, after the initial phase of the simulation. In fact, after t=0.26 s
the magnitude of the moments is the same for all models. In the period prior to
t=0.26 s, though the evolution of the crank moment is qualitatively the same, its
magnitude differs for the different models. Figure 6.36 shows the relative motion
between the journal and the bearing, and between the ball and the socket, for the
three different joint clearance models. The dashed line represents the radial clear-
ance size (0.5 mm). Since the slider–crank mechanism describes a planar trajectory,
the relative motion between the journal and the bearing and between the ball and
the socket occurs only in the plane XZ, the motion in the Y-direction being null.
Therefore it is possible to compare the dynamic behavior of the 2D and 3D joint
clearance formulations.

The dynamic response of the slider–crank mechanism is also represented by the
evolution of velocity and acceleration of the slider and of the crank that acts on the
crankshaft. Additionally the relative motion between the journal and the bearing,
and between the ball and the socket centers, is plotted together with the correspond-
ing Poincaré maps. The values of slider velocity and slider acceleration are plotted
in the Poincaré maps in Fig. 6.37.

The Poincaré maps presented in Fig. 6.37 show that the global behavior of the
slider–crank motion is nonlinear but tends to have a certain level of periodicity.
Furthermore it is clear that both 2D and 3D models have a rather predictable motion,
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their correlation, when measured by the outputs plotted in the Poincaré maps, be-
ing very high. The dynamic response of the spatial slider–crank mechanism with
both spatial clearance joints, presented in this chapter, is consistent with the results
obtained for the planar slider–crank model analyzed in Chap. 3, in which the two-
dimensional revolute clearance joint modeling was used. This is expected, since the
formulation for the spherical clearance joints is quite similar to that of the planar
revolute clearance joints. Moreover the spatial slider–crank mechanism used in this
section, apart from being a three-dimensional model, describes a planar motion due
to the constrained topology.

6.7 Summary

In this chapter, a formulation for spatial dynamic analysis of multibody mechanical
systems, employing the Cartesian coordinates and the Newton–Euler’s approach,
was presented. Euler parameters were used to define the angular orientation of bod-
ies, which leads to a mathematical formulation without singularities. Additionally
a simple and brief description of the standard mechanical joints of spatial multi-
body systems was presented. The constraint equations for the perfect spherical joint
and for the perfect three-dimensional revolute joint were also presented in the first
section of this chapter.

A general methodology for dynamic characterization of mechanical systems
with spherical and three-dimensional revolute joints with clearance was formulated,
for implementation in general-purpose computer codes. This formulation can be
understood as an extension of that proposed for the two-dimensional multibody
mechanical systems with clearance joints. The descriptions of spherical and three-
dimensional clearance joints are based on the Cartesian coordinates, the joint ele-
ments are modeled as contact-impacting bodies and the dynamics of the joints is
controlled by a continuous contact force model, which takes into account the geo-
metric and mechanical characteristics of the contacting bodies. The normal force is
evaluated as a function of the elastic pseudo-penetration depth between the impact-
ing bodies, coupled with a nonlinear viscous-elastic factor representing the energy
dissipation during the impact process. For this continuous contact force model, it is
assumed that the compliance and damping coefficients are available.

Three illustrative examples and numerical results were presented, the efficiency
of the developed methodologies being discussed in the process of their presentation.
In order to keep the analysis simple, the friction and the lubrication effects were not
included in the present chapter. However, the inclusion of these phenomena closely
follows the procedures described in Chaps. 4 and 5.

A spatial four-bar mechanism was used with a spherical clearance joint formu-
lation to demonstrate its application. The system was driven only by gravity, and
the system was not conservative due to the presence of damping in the impact
model, which leads to some energy dissipation in every cycle of the motion. This
was observed by comparing the position and velocity of the mechanical system
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with clearance to that of a system with ideal joints. Clearly the impacts within the
clearance joint significantly increase the amount of dissipated energy.

In a second application, the double pendulum was used as a numerical example
to illustrate the spatial revolute clearance joint formulation. In addition, a simple
spatial slider–crank mechanism was used to study the influence of the clearance joint
models in comparable planar and spatial mechanisms. A flywheel was incorporated
in the crankshaft to maintain the crank angular velocity constant. It was observed
that the overall results are consistent to those obtained for planar slider–crank model,
that is, due to the clearance impacts the dynamic system presents much higher peaks
in the acceleration time response and reaction forces than would be predicted if
clearances were neglected. The system behavior clearly tends to be nonlinear and
eventually chaotic, as shown by the corresponding Poincaré maps.

The overall results presented in this section show that the introduction of clear-
ance joints in spatial multibody mechanical systems significantly influences the pre-
diction of the components’ position and drastically increases the peaks in accelera-
tion and reaction moments at the joints. Moreover the system response clearly tends
to be nonlinear when a clearance joint is included. This is a fundamental feature
mainly in high-speed and precision mechanisms where the accurate predictions are
essential for the design of the mechanical systems.
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