
Chapter 5
Lubricated Joints for Mechanical Systems

In most machines and mechanisms, the joints are designed to operate with some
lubricant fluid. The high pressures generated in the lubricant fluid act to keep the
journal and the bearing apart. Moreover the thin film formed by lubricant reduces
friction and wear, provides load-carrying capacity and adds damping to dissipate
undesirable mechanical vibrations (Hamrock 1994, Frêne et al. 1997). Therefore the
proper description of lubricated revolute joints, the so-called journal–bearings, in
multibody systems is required to achieve better models and hence an improved un-
derstanding of the dynamic performance of machines. This aspect gains paramount
importance due to the demand for the proper design of journal–bearings in many
industrial applications (Ravn 1998, Bauchau and Rodriguez 2002). In the dynamic
analysis of journal–bearings, the hydrodynamic forces, which include both squeeze
and wedge effects, generated by the lubricant fluid, oppose the journal motion. It
should be mentioned that the methodology presented here uses the superposition
principle for load capacity due to the wedge effect entrainment and squeeze-film
effect separately (Hamrock 1994). The hydrodynamic forces are obtained by inte-
grating the pressure distribution evaluated with the aid of Reynolds’ equation written
for the dynamic regime (Pinkus and Sternlicht 1961). The hydrodynamic forces are
nonlinear functions of the journal center position and of its velocity with reference
to the bearing center. In the dynamic regime of a journal–bearing, the journal center
has an orbit situated within a circle radius which is equal to the radial clearance.
Thus a lubricated revolute joint does not impose kinematic constraints like an ideal
revolute joint but instead it deals with force constraints as for the dry clearance
joints. In a simple way, the hydrodynamic forces built up by the lubricant fluid
are evaluated from the state of variable of the system and included into the equa-
tions of motion of the mechanical system (Nikravesh 1988). For dynamically loaded
journal–bearings the classic analysis problem consists in predicting the motion of
the journal center under arbitrary and known loading (Boker 1965, Goenka 1984).
However, in the present work the time variable parameters are known from the dy-
namic system’s configuration and the instantaneous force on the journal–bearing are
evaluated afterwards.

In this chapter, a general methodology for modeling lubricated revolute joints in
multibody mechanical systems is presented and discussed. A simple journal–bearing
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102 5 Lubricated Joints for Mechanical Systems

subjected to a constant and unidirectional external load and a simple planar slider–
crank mechanism, in which a lubricated revolute joint in the gudgeon-pin exists,
are used as numerical applications in order to demonstrate the assumptions and
procedures adopted.

5.1 General Issues in Tribology

In physical joints, clearance, friction and impact are always present, mainly when
there is no fluid lubricant. These phenomena can significantly change the dynamic
response of the mechanical systems in so far as the impact causes noise, increases
the level of vibrations, reduces the fatigue life of the components and results in
loss of precision. When the clearance joints are dry, i.e., without lubricant, contact
and friction forces are the only effects present, representing the physical contact
detected between the surfaces (Flores and Ambrósio 2004). However, in most the
mechanical systems, the joints are designed to operate with some lubricant fluid. It
is known that the use of lubricant in revolute joints is an effective way of ensuring
better performance of the mechanical systems. In fact, lubricants are widely used
in thin fluid film journal–bearing elements to reduce friction and wear, provide load
capacity and add damping to dissipate undesirable mechanical vibrations.

Journal–bearing is a circular shaft, designated as journal, rotating in a circular
bush, designated as bearing. The space between the two elements is filled with a
lubricant. Under an applied load, the journal center is displaced from the bearing
center and the lubricant is forced into the convergence clearance space causing a
build-up of pressure. The high pressures generated in the lubricant film act to keep
the journal and the bearing surfaces apart. It is well known from fluid mechanics that
a necessary condition to develop pressure in a thin film is that the gradient and the
slope of the velocity profile vary across the thickness of the film (Frêne et al. 1997).

Shown in Fig. 5.1 is the basic journal–bearing geometry. The length of the bear-
ing is L and it has a diameter D. The difference between the radii of the bearing
and the journal is the radial clearance c (c = RB -RJ ). In general, both the journal
and the bearing may rotate nonuniformly, and the applied load may vary in both
magnitude and direction.

In the region of the local converging film thickness, the hydrodynamic pressure
rises to a maximum value and then decreases to ambient values at the side and
trailing edges of the thin film. In zones where the film thickness locally increases,
the fluid pressure may drop to ambient or below its vapor pressure leading to the
release of dissolved gases within the lubricant vaporization causing film rupture.
The phenomenon of film rupture is known as lubricant cavitation, and the effects on
the performance and stability of journal–bearings are reasonably well understood
and documented in the literature (Dowson and Taylor 1979, Elrod 1981, Woods and
Brewe 1989, Mistry et al. 1997). The performance of journal–bearings considering
lubricant supply conditions has been studied theoretically and experimentally by
Miranda (1983), Claro (1994) and Costa (2000).
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Fig. 5.1 Basic journal–bearing geometry

Journal–bearings are used in many important operating situations, in which the
loads vary in both magnitude and direction, often cyclically. Examples include re-
ciprocating machinery such as internal combustion engines, compressors, out of
balance rotating machinery such as turbine rotors and other industrial processing
machinery. The hydrodynamic fluid film developed in the journal–bearings exhibits
damping which plays a very important role in the stability of the mechanical ele-
ments. In order to study the performance of such journal–bearings, it is necessary
to determine the loads and their variation with time. In dynamically loaded journal–
bearings, the eccentricity and the attitude angle vary through the loading cycle, and
special care must be taken to ensure that the combination of load and speed rotation
does not lead to a dangerous small minimum film thickness.

Lubricated joints are designed so that even when the maximum load is applied,
the journal and bearing do not come in contact. One of the main reasons for design-
ing journal–bearings in this way is to reduce friction and extend their lifetime. Con-
sequently proper modeling of lubricated revolute joints in multibody mechanical
systems is required to achieve a better understanding of the dynamic performance
of the machines. This aspect plays a crucial role owing to the demand for proper
design of the journal–bearings in many industrial applications.

5.2 Dynamic Characteristics of Journal–Bearings

If the journal and bearing have relative angular velocities with respect to each other,
the amount of eccentricity adjusts itself until the pressure generated in the con-
verging lubricating film balances the external loads. The pressure generated, and
hence the load capacity of the journal–bearing, depends on the journal eccentricity,
the relative angular velocity, the effective viscosity of the fluid lubricant and the
journal–bearing geometry and clearance. There are two different actions of pressure
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Fig. 5.2 (a) Squeeze-film
action; (b) wedge-film action
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generation in journal–bearings, namely wedge and squeeze actions, as shown in
Fig. 5.2. The squeeze action relates the radial journal motion to the generation of
load capacity pressure in the lubricant film, whilst the wedge action deals with the
relation between relative rotational velocity of the journal and bearing ability to
produce such pressure.

When only the squeeze action of the lubricant is considered, assuming a null or
low relative rotational velocity and, hence, absence of relative tangential velocity,
the journal load and the fluid reaction force are considered to have the same line of
action, which is collinear with the center lines. However, in the more general case,
in the presence of high angular velocities, they do not have the same line of action
because of the wedge effect. When relative angular velocities are large, the simple
squeeze approach is not valid and the general Reynolds’ equation has to be used
(Hamrock 1994, Frêne et al. 1997).

In general, mechanical systems demand journal–bearings in which the load varies
in both magnitude and direction, which results in dynamically loaded journal–
bearings. Figure 5.3 shows the cross-section of a smooth dynamically loaded
journal–bearing. When the load acting on the journal–bearing is not constant in
direction and/or module, the journal center describes an orbit within the bear-
ing boundaries. Typical examples of dynamically loaded journal–bearings include

Fig. 5.3 Cross-section of a
smooth dynamically loaded
journal–bearing
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the crankshaft bearings in combustion engines and high-speed turbine bearings
supporting dynamic loads caused by unbalanced rotors.

In mechanical systems, a lubricated revolute joint does not produce any kine-
matic constraint. Instead it acts in a similar way to a force element producing time-
dependent forces. Thus it deals with the so-called force constraints. For dynamically
loaded journal–bearings the classic tribology analysis problem consists in predict-
ing the motion of the journal center under arbitrary and known loads, using, for
instance, the mobility method (Boker 1965, Goenka 1984). Conversely, in the work
now presented, the time-variable parameters are known from the dynamic analysis
and the instantaneous forces on the journal–bearing are calculated. In a simple way,
the forces built up by the lubricant fluid are evaluated from the state of variables of
the system and included into the equations of motion of the mechanical system as
external generalized forces.

5.3 Hydrodynamic Forces in Dynamic Journal–Bearings

Theory of lubrication for dynamically loaded journal–bearings is mathematically
complex, and the solution of the governing differential equations is based on many
simplifying premises. The main basic principles, terminology and theoretical back-
ground are well discussed in the thematic literature, such as Hamrock (1994), Frêne
et al. (1997), amongst others. Pinkus and Sternlicht (1961) present a detailed deriva-
tion of the Reynolds’ equation, in which the forces developed by the fluid film pres-
sure field are evaluated. The Reynolds’ equation contains viscosity, density and film
thickness as parameters. The full general form of the isothermal Reynolds’ equation
for a dynamically loaded journal–bearing is written as
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(5.1)

where X is the radial direction, Z is the axial direction, μ is the dynamic fluid
viscosity, h denotes the film thickness and p is the pressure. The two terms on the
right-hand side of (5.1) represent the two different effects of pressure generation on
the lubricant film, i.e., wedge and squeeze actions, respectively.

It is known that (5.1) is a nonhomogeneous partial differential of the elliptical
type. The exact solution of the Reynolds’ equation is difficult to obtain and, in
general, requires a considerable numerical effort. However, it is possible to solve
the equation analytically by setting to zero either the first or second term on the
left-hand side. These solutions correspond to those for infinitely short and infinitely
long journal–bearings, respectively.

Dubois and Ocvirk (1953) consider a journal–bearing where the pressure gra-
dient around the circumference is very small when compared with those along
the length. This assumption is valid for length-to-diameter (L/D) ratios up to
0.5. Hence the Reynolds’ equation for an infinitely short journal–bearing can be
written as
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When the relative pressure is zero at journal–bearing ends the pressure in the
fluid film is given by (Frêne et al. 1997)

p(θ, Z) = −3μ
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(5.3)

where θ is the angular coordinate, Z is the axial direction, L represents the journal–
bearing length, μ is the dynamic fluid viscosity, h denotes the film thickness and ω

is the relative angular velocity between the journal and bearing. The dot in the above
expression denotes the time derivative of the corresponding parameter.

For an infinitely long journal–bearing a constant fluid pressure and negligible
leakage in the axial direction are assumed. In many cases, it is possible to treat a
journal–bearing as infinitely long and consider only its middle point. This solution
was first derived by Sommerfeld (1904) and is valid for length-to-diameter (L/D)
ratios greater than 2. Thus the Reynolds’ equation for an infinitely long journal–
bearing is
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And the pressure distribution in the fluid is given by (Frêne et al. 1997)
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(5.5)
where RJ is the journal radius, c is the radial clearance and ε is the eccentricity
ratio.

It is convenient to determine the force components of the resultant pressure in
directions tangential and perpendicular to the line of centers. These force compo-
nents can be obtained by integrating the pressure field either in the entire domain
2π or half-domain π. In the later case, the pressure field is integrated only over the
positive part by setting the pressure in the remaining portion equal to zero. These
boundary conditions, associated with the pressure field, correspond to Sommerfeld’s
and Gümbel’s boundary conditions (Fig. 5.4).

The Sommerfeld’s boundary conditions, complete or full film, do not take into
account the cavitation phenomenon and, consequently, contemplate the existence
of negative pressures for the region π<θ<2π. This case is not realised in many
applications due to the fluid incapacity to sustain significant sub-ambient pressures.

The Gümbel’s conditions, which account for the rupture film, assume the ex-
istence of a zero pressure zone for the region between π and 2π. Though the
Gümbel’s, or half Sommerfeld’s solution, results in more realistic predictions of
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Fig. 5.4 (a) Sommerfeld’s boundary conditions; (b) Gümbel’s boundary conditions

the load capacity, it leads to a violation of the continuity of flow at the outlet end of
the pressure curve.

For the Sommerfeld’s conditions, i.e., full film, the force components of the fluid
film for infinitely short journal–bearing are written as (Frêne et al. 1997)

Fr = −πμL3 RJ

c2

ε̇(1 + 2ε2)

(1 − ε2)5/2
(5.6)

Ft = πμL3 RJ

c2

ε(ω − 2γ̇ )

2(1 − ε2)3/2
(5.7)

where Fr is the radial component of the force while Ft is the tangential component,
as Fig. 5.3 shows.

For the Gümbel’s conditions, i.e., rupture film, the force components of the fluid
film for infinitely short journal–bearing can be expressed as (Frêne et al. 1997)
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As for the case of the infinitely short journal–bearing, the complete film and the
film rupture for the infinitely long journal–bearing are also distinguished. Thus, for
the Sommerfeld’s conditions, full film, the force components of the fluid film for
infinitely long journal–bearing are written as (Frêne et al. 1997)

Fr = − 12πμL R3
J ε̇

c2(1 − ε2)3/2
(5.10)

Ft = 12πμL R3
J ε(ω − 2γ̇ )

c2(2 + ε2)(1 − ε2)1/2
(5.11)

For the Gümbel’s conditions the force components of the fluid film for infinitely
long journal–bearing are written as (Frêne et al. 1997)
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In fact, the main difficulty in obtaining satisfactory solutions of journal–bearing
performance lies not only in solving the differential equations but also in defin-
ing adequately the boundary conditions of Reynolds’ equation. In dynamically
loaded journal–bearings, obtaining the force components from the integration of
the Reynolds’ equation only over the positive pressure regions, by setting the pres-
sure in the remaining portions equal to zero, involves finding the zero points, i.e.,
the angles θs at which the pressure begins and θe when it ends. For the case of a
steady-state journal–bearing, these angles are, in general, assumed to be equal to 0
and π, respectively. However, for a dynamically loaded journal–bearing these angles
are time-dependent and the evaluation of the force components involves a good deal
of mathematical manipulation. For details in their treatment see the work by Pinkus
and Sternlicht (1961). The hydrodynamic force components, along the eccentricity
direction and normal to it, are for radial velocity greater than zero, ε̇ > 0, given by
Pinkus and Sternlicht (1961) as
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For a negative radial velocity ε̇ < 0, the force components are written as follows:
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where the parameter k is defined as

k2 = (1 − ε2)
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Finally the force components of the resulting pressure distribution, tangential and
perpendicular to the line of centers, have to be projected onto the X and Y directions.
From Fig. 5.3 it is clear that

Fx = Fr cosγ − Ft sinγ (5.19)

Fy = Fr sinγ + Ft cosγ (5.20)

Equations (5.6)–(5.18), for infinitely short and infinitely long journal–bearings,
present the relation between the journal center motion and the fluid reaction force
on the journal. The solution of these equations presents no problem since the journal
center motion is known from the dynamic analysis of the mechanical system.

In traditional tribology analysis of journal–bearings, the external forces are
known and the motion of the journal center inside the bearing boundaries is evalu-
ated by solving the differential equations for the time-dependent variables. However,
in the present work instead of knowing the applied load, the relative journal–bearing
motion characteristics are known. Afterwards the fluid force, from the pressure dis-
tribution in the lubricant, is calculated. Thus, since all the states of variables are
known from dynamic analysis of the mechanical system, the hydrodynamic forces
given by (5.19) and (5.20) can be evaluated and introduced as external generalized
forces into the system’s equations of motion of the multibody mechanical system.
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5.4 Transition Between Hydrodynamic and Dry Contact

In this section, a transition model, which combines the squeeze action and the dry
contact model, is discussed. This model that considers the existence of lubrication
during the free flight trajectory of the journal, prior to contact, and the possibility
for dry contact under some conditions, seems to be well fitted to describe revolute
joints with clearances in mechanical systems.

In what follows, the expression for the squeeze forces of infinite long journal–
bearings is presented. The objective is to evaluate the resulting force from the given
state of position and velocity of the journal–bearing. The squeeze forces are exerted
when a fluid is squeezed between two approaching surfaces. In journal–bearings,
squeeze action is dominant when the relative angular velocity is small compared to
the relative radial velocity and, hence, it is reasonable to drop the wedge term in the
Reynolds’ equation.

In the infinitely long journal–bearing the axial flow is neglected when com-
pared with the circumferential flow, hence the Reynolds’ equation reduces to a
one-dimensional problem and the pressure field is given by (Hamrock 1994)

p = 6μR3
J ε̇

c2

cosθ(2 − εcosθ)
(1 − εcosθ)2

(5.21)

The resulting force F on the journal that balances the fluid pressure is evaluated
as an integral of the pressure field over the surface of the journal:

F = 12πμL R3
J ε̇

c2(1 − ε2)
3
2

(5.22)

where μ is the dynamic lubricant viscosity, L is the journal–bearing length, RJ is
the journal radius, c is the radial clearance, ε is the eccentricity ratio and ε̇ is the
time rate of change of eccentricity ratio.

The direction of the force is along the line of centers that connects the journal and
the bearing, which is described by the eccentricity vector. Thus the squeeze force
can be introduced into the equations of motion of multibody mechanical systems
as a generalized force with the journal and bearing centers as points of action for
the force and reaction force, respectively. It should be highlighted that the effect of
cavitation is not considered in (5.22), that is, it is assumed that a continuous film
exists all around the journal–bearing. However, these conditions are not satisfactory
from the physical point of view because the lubricant fluids cannot sustain nega-
tive pressures. Based on the mechanics of the journal–bearing, Ravn et al. (2000)
included a cavitation effect assuming that negative pressure occurs on the half of
journal surface which faces away from the moving direction.

Equation (5.22), which represents the action on the journal that maintains in equi-
librium the field pressure, is valid for situations when the load capacity of the wedge
effect is negligible when compared to that of the squeeze effect. In the squeeze
lubrication, the journal moves along a radial line in the direction of the applied load,
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thus the film thickness decreases and the fluid is forced to flow up around the journal
and out from the ends of the bearing. Since the squeeze force is proportional to the
rate of decrease of the fluid film thickness, it is apparent that the lubricant acts as a
nonlinear viscous damper resisting the load when the film thickness is decreasing.
As the fluid film thickness becomes very thin, that is, the journal is very close to the
bearing surface, the force due to the lubricant evaluated from (5.22) becomes very
large. Hence a discontinuity appears when the film thickness approaches zero and,
consequently, the squeeze force tends to infinity.

For highly loaded contact, the pressure causes elastic deformation of the sur-
faces, which can be of the same order as the lubricant film thickness. These circum-
stances are dramatically different from those found in the hydrodynamic regime.
The contribution of the theory of elasticity with the hydrodynamic lubrication is
called elasto-hydrodynamic lubrication theory (EHL).

Figure 5.5 schematically shows the shape of the lubricant film thickness and
the pressure distribution within a typical elasto-hydrodynamic contact. Due to the
normal load F the contacting bodies are deformed. The viscous lubricant, adhering
to the surfaces of the moving bodies, is dragged into the high-pressure zone of the
contact and therefore separates the mating surfaces. The pressure distribution within
the elasto-hydrodynamic contact is similar to the dry Hertzian pressure distribution.
At the inlet zone, the pressure slowly builds up until it approximately reaches the
maximum Hertzian pressure (p). It is, therefore, assumed that for a certain film
thickness, called boundary layer, the fluid can no longer be squeezed and the journal
and bearing walls are considered to be in contact, in a way similar to that for the dry
contact situation presented in Chap. 4. It should be highlighted that the EHL theory
is quite complex and its detailed description is beyond the scope of the present work.
However, another equivalent model, based on physical reasoning, can be proposed
leading to effects similar to those of the EHL theory.

A transition model which combines the squeeze action and the dry contact model
is proposed here. Figure 5.6 shows a partial view of a mechanical system represent-
ing a revolute clearance joint with lubrication effect, where both the journal and the
bearing can have planar motion. The parallel spring–damper element represented

p

hmin

EHL pressure profile

Inlet zone

F
Hertzian pressure profile

Hertzian zone Outlet zone

Fig. 5.5 Typical elasto-hydrodynamic contact; qualitative shape of lubricant film and pressure
profile
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Fig. 5.6 Mechanical system
representing a revolute joint
with lubrication effect
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by a continuous line refers to the solid-to-solid contact between the journal and
the bearing wall, whereas the damper represented by a dashed line refers to the lu-
bricated model. If there is no lubricant between the journal and the bearing, the
journal can freely move inside the bearing boundaries. When the gap between the
two elements is filled with a fluid lubricant, a viscous resistance force exists and
opposes the journal motion. Since the radial clearance is specified, the journal and
bearing can work in two different modes. In mode 1, the journal and the bearing
wall are not in contact with each other and they have a relative radial motion.
For the journal–bearing model without lubricant, when e<c the journal is in free
flight motion and the forces associated with the journal–bearing are set to zero. For
lubricated journal–bearing model, the lubricant transmits a force, which must be
evaluated from the state variables of the mechanical system using one of the models
described in the previous section. In mode 2, the journal and the bearing wall are in
contact, thus the contact force between the journal and the bearing is modeled with
the continuous contact force model represented by (3.9).

Since the EHL pressure profile is similar to the Hertzian pressure distribution, it
looks reasonable to change from the squeeze action in the hydrodynamic lubrication
regime to the pure dry contact model. In order to avoid numerical instabilities and
to ensure a smooth transition from pure squeeze model to dry contact model, a
weighted average is used. When the journal reaches the boundary layer, for which
the hydrodynamic theory is no longer valid, the squeeze force model is replaced by
the dry contact force model, as represented in Fig. 5.7a and b. This approach ensures
continuity in the joint reaction forces when the squeeze force model is switched to
dry contact force model. Mathematically the transition force model is expressed by

F =

⎧⎪⎪⎨
⎪⎪⎩

Fsqueeze if e ≤ c
(c + et0) − e

et0
Fsqueeze + e − c

et0
Fdry if c ≤ e ≤ c + et0

Fdry if e ≥ c + et0

(5.23)

where et0 and et1 are given tolerances for the eccentricity. The values of these pa-
rameters must be chosen carefully, since they depend on the clearance size. It should
be noted that the clearance used for the pure squeeze force model is not c but it is
c + et1 instead.
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Fig. 5.7 (a) Pure squeeze and dry contact force models; (b) transition force model between lubri-
cated and dry contact situations

5.5 Kinematic Aspects of the Journal–Bearing Interaction

In order to evaluate the forces produced by the fluid lubricant on the journal–bearing
interface, the different dynamic parameters on which these forces depend need to be
evaluated. It is clear that the hydrodynamic forces are nonlinear functions of the
time parameters, ω, ε, ε̇, γ and γ̇ , which are known at any instant of time from
the dynamic system configuration, i.e., these parameters are functions of the system
state variables.

Let Fig. 4.4 be redrawn here to highlight the existence of the lubricant fluid in
the gap between the journal and the bearing. The two bodies i and j are connected
by a lubricated revolute joint, in which the gap between the bearing and the journal
is filled with a fluid lubricant. Part of body i is the bearing and part of body j is the
journal. The notation used in Fig. 5.8 is the same described in Sect. 4.2.

The parameter ε, which defines the eccentricity ratio, is obtained as the ratio of
the distance between the bearing and journal centers by radial clearance, that is,

ε = e

c
(5.24)

where the eccentricity e is given by (4.3).
The parameter ε̇ can be obtained by differentiating (4.1), and dividing the result

by the radial clearance. For the purpose let (4.1) be re-written as

e = rP
j + A j s′ P

j − rP
i − Ai s′ P

i (5.25)

then its time derivative is

ė = ṙP
j + Ȧ j s′ P

j − ṙP
i − Ȧi s′ P

i (5.26)
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Fig. 5.8 Generic configuration of a dynamically loaded journal–bearing in a multibody mechanical
system

Hence the time rate of eccentricity ratio is given by

ε̇ = ė

c
(5.27)

The line of centers between the bearing and the journal makes an angle γ with
X′-axis as shown in Fig. 5.8. Since the unit radial vector n has the same direction as
the line of centers, the angle γ can be defined as

[
cos γ

sin γ

]
=
[

nx

ny

]
(5.28)

Thus

γ = tan−1 ny

nx
(5.29)

The parameter γ̇ can be obtained by differentiating (5.29) with respect to time,
yielding

γ̇ = ex ėy − ėxey

e2
(5.30)

The hydrodynamic components of force resulting from pressure field projected
onto the X and Y directions given by (5.19) and (5.20) act on the journal center.
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Fig. 5.9 Vectors of forces
that act on the journal and
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Thus these forces have to be transferred to the centers of mass of the bearing and
the journal bodies. From Fig. 5.9, the forces and moments that act on the center of
mass of journal body are given by

⎡
⎢⎣

f x
j

f y
j

m j

⎤
⎥⎦ =

⎡
⎢⎢⎣

Fx

Fy

−(ξ P
j sinϕ j + ηP

j cosϕ j)Fx + (ξ P
j cosϕ j − ηP

j sinϕ j)Fy

⎤
⎥⎥⎦ (5.31)

and for the center of mass of bearing body, at point Oi ,

⎡
⎢⎣

f x
i

f y
i

mi

⎤
⎥⎦ =

⎡
⎢⎣

−Fx

−Fy

(ξ P
i sinϕi + ηP

i cosϕi + ey)Fx − (ξ P
i cosϕi − ηP

i sinϕi + ex)Fy

⎤
⎥⎦

(5.32)
The transport moment produced by transferring the forces from the center of journal
to the center of the bearing is given by mt = ey Fx −ex Fy , which is already included
in the force vector given by (5.32).

5.6 Application Example 1: Simple Journal–Bearing

In this section, as an application example, a simple journal–bearing subjected to a
constant and unidirectional external load is considered, as shown in Fig. 5.10. The
journal–bearing under constant unidirectional load contains both the dynamic char-
acteristics within the transient period and the steady hydrodynamic characteristics
within the steady-state period.
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Fixed bearing

Fluid lubricant

Journal

ω
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Fig. 5.10 Simple journal–bearing subjected to a constant external load

The journal–bearing properties and initial conditions are listed in Table 5.1. Ini-
tially the journal and bearing centers coincide. The oil fluid used in the present
example is a SAE 40 multigrade, which is recommended for small combustion
engines, and at 40◦C the viscosity is equal to 400 cP. In order to analyze the per-
formance of the models proposed, the simple journal–bearing performance is de-
scribed by the journal center trajectory inside the bearing boundaries, as represented
in Fig. 5.11a–e, and by the horizontal and vertical component of the reaction fluid
force, shown in Figs. 5.12 and 5.13, respectively.

For the hydrodynamic journal–bearing models that use the Sommerfeld’s bound-
ary conditions, the journal center oscillates around its equilibrium position, as ob-
served in Fig. 5.11a and c, whereas for the Gümbel’s conditions, after an initial
overshoot and transient period, the journal reaches its final equilibrium position,
displayed in Fig. 5.11b and d. In the equilibrium position, the squeeze effect be-
comes null, that is, ε̇ = 0. Hence the forces generated by the wedge action balances
the external applied load, which in this particular situation is FX = 0, as observed in
Fig. 5.12b and d, and FY = F , as shown in Fig. 5.13b and d. This is expected since
the steady-state position is reached and the journal rotates about its whirl. When
the Pinkus and Sternlicht hydrodynamic model is used, the journal also reaches the
final equilibrium position but with lower damping, as shown in Figs. 5.11e, 5.12e
and 5.13e. Indeed this model predicts lower damping and higher fluctuations in
the transient phase which seems to be more realistic since in practical cases the
oscillation and instability of the journal–bearing are among the main concerns of
any analysis. The overall results are corroborated by published works about this
field (Alshaer and Lankarani 2001).

Table 5.1 Dynamic properties of the simple journal–bearing

External load 30 N Journal mass 0.13 kg
Bearing radius 10.0 mm Journal rotational inertia 2.5 × 10−4 kg m2

Journal radius 9.8 mm Journal angular speed 500 rpm
journal–bearing length 40.0 mm Oil viscosity at 40◦C 400 cP
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Fig. 5.11 Trajectory of the journal center inside the bearing boundaries for the different
dynamically loaded journal–bearing models: (a) infinitely long journal–bearing with Sommer-
feld’s conditions; (b) infinitely long journal–bearing with Gümbel’s conditions; (c) infinitely short
journal–bearing with Sommerfeld’s conditions; (d) infinitely short journal–bearing with Gümbel’s
conditions; (e) Pinkus and Sternlicht hydrodynamic model

When observing the results, it should be pointed out that from the physical point
of view a simple journal–bearing subjected to a constant and unidirectional external
load corresponds to the free vibration system. The journal is under the influence of a
suddenly applied force, which means that the journal is pulled out from the position
of stable equilibrium by a small amount and released. A closer look at the forces,
displayed in Fig. 5.12, shows that in all models FX converges or oscillates about
FX = 0 N while Fig. 5.13 shows that the trend is convergence or oscillation of FY

about FX = 31.275 N.
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Fig. 5.12 Horizontal reaction force on the journal for the different dynamically loaded journal–
bearing models: (a) infinitely long journal–bearing with Sommerfeld’s conditions; (b) infinitely
long journal–bearing with Gümbel’s conditions; (c) infinitely short journal–bearing with Sommer-
feld’s conditions; (d) infinitely short journal–bearing with Gümbel’s conditions; (e) Pinkus and
Sternlicht hydrodynamic model

The journal–bearing performance for the hydrodynamic models with Sommer-
feld’s boundary conditions corresponds to a free vibration without damping, in
which the journal is pulled out of its equilibrium position and then released without
initial velocity and, consequently, the motion persists forever. The undamped free
vibration, being periodic, is represented by a rotating vector, the end of which de-
scribes the circle observed in Fig. 5.11a and c. Yet the Gümbel’s solutions, shown
in Fig. 5.11b and d, and the Pinkus and Sternlicht model represent a damped free
vibration system. In the later model the end point of the rotating vector describes the
logarithmic spiral, displayed in Fig. 5.11e. The damped cycle path has its pole at the
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Fig. 5.13 Vertical reaction force on the journal for the dynamically loaded journal–bearing models:
(a) infinitely long journal–bearing with Sommerfeld’s conditions; (b) infinitely long journal–
bearing with Gümbel’s conditions; (c) infinitely short journal–bearing with Sommerfeld’s con-
ditions; (d) infinitely short journal–bearing with Gümbel’s conditions; (e) Pinkus and Sternlicht
hydrodynamic model

steady-state equilibrium position. In fact, the damped oscillations play an important
role in the various forms of hydrodynamic instability and vibration, particularly in
lightly loaded journal–bearings.

The final equilibrium position clearly depends on the applied load, physical and
dynamic properties of the journal–bearing and the hydrodynamic model used. The
steady-state equilibrium position does not occur in a dynamically loaded journal–
bearing because the applied load varies in both magnitude and direction. This issue
is discussed in the next section where a simple planar mechanical system with a
dynamically loaded journal–bearing is considered.
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5.7 Demonstrative Example 2: Slider–Crank Mechanism

The slider–crank mechanism used in the previous chapter is selected again here
as an application example to study the influence of modeling the lubricated revo-
lute joints in the dynamic behavior of mechanical systems. Figure 5.14 shows the
configuration of the slider–crank model. The revolute joint between the connecting
rod and slider is modeled as lubricated joint. Initially the journal and bearing centers
coincide. The crank is the driving link and rotates with a constant angular velocity of
5000 rpm. Furthermore the initial conditions necessary to start the dynamic analysis
are obtained from kinematic analysis of the mechanism in which all the joints are
considered as ideal joints. The dynamic parameters used in the simulations are listed
in Table 5.2.

In order to better understand the influence of the lubricated revolute joint models
on the dynamic performance of the slider–crank mechanism, some of the results
relative to the dry contact situation discussed in the previous chapter are presented
again. Thus, in what follows, four different situations are analyzed and discussed. In
the first one, the revolute joint is modeled as dry frictionless contact and the normal
contact force law is given by Lankarani and Nikravesh model and expressed by
(3.9). In the second case, besides this contact force model, the modified Coulomb
friction law given by (3.16) is also included. In the third situation, the revolute
clearance joint is modeled by using the transition model, that is, a combination
between the dry contact force model and the pure squeeze force model presented in
Sect. 5.4. In the fourth simulation the clearance revolute joint is modeled with the
hydrodynamic Pinkus and Sternlicht model given by (5.14)–(5.18).

The dynamic behavior of the slider–crank mechanism simulations is quantified
by plotting the values of the slider velocity and acceleration and the moment that
acts on the crank, represented by Figs. 5.15–5.17. Additionally the journal center
trajectories as well as the Poincaré maps are plotted in Figs. 5.18 and 5.19. The
results are relative to two complete crank rotations after the transient effect has
fadeout.

When observing the slider velocity, slider acceleration and crank moment dia-
grams, the influence of the joint clearance model is evident. For the cases of dry
contact models with and without friction, displayed in Figs. 5.15a, b, 5.16a, b and
5.17a, b, high peaks on the acceleration and moment are visible, which means that

Clearance

ξ 2

η 2

X

Y

ξ3

η3

ξ1

η1

ξ4

η4

Fig. 5.14 Slider–crank mechanism with a lubricated revolute clearance joint



5.7 Demonstrative Example 2: Slider–Crank Mechanism 121

Table 5.2 Dynamic properties of the simple journal–bearing

Bearing radius 10.0 mm Young’s modulus 207 GPa
Journal radius 9.5 mm Poisson’s ratio 0.3
Journal–bearing length 40.0 mm Baumgarte - α 5
Restitution coefficient 0.9 Baumgarte - β 5
Friction coefficient 0.03 Integration step size 0.00001 s
Oil viscosity at 40◦C 400 cP Integration tolerance 0.000001 s

the journal and bearing impact each other. Periods of continuous or permanent
contact between the journal and bearing, shown in Figs. 5.18a and b, can also be
observed. Furthermore the dynamic response of the slider–crank mechanism for
dry contact model is clearly nonperiodic, as shown in the corresponding Poincaré
maps, presented in Fig. 5.19a and b. However, when the friction effect is included,
the peaks on the slider accelerations and, consequently, on the crank moments are
reduced, as observed in Figs. 5.16b and 5.17b.

When the transition model is employed, the peaks on the slider acceleration and
crank moment curves are smaller when compared to those obtained for dry contact
models, as observed in Figs. 5.16c and 5.17c. If the impact forces between the jour-
nal and bearing are associated with noise, the fluid clearly acts as a filter in so far
as the high frequencies or disturbances are removed or at least reduced. Similar to
the case of dry contact with friction simulation, in the transition model the journal
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Fig. 5.15 Slider velocity: (a) dry contact without friction; (b) dry contact with friction; (c) transi-
tion model; (d) Pinkus and Sternlicht hydrodynamic model
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Fig. 5.16 Slider acceleration: (a) dry contact without friction; (b) dry contact with friction;
(c) transition model; (d) Pinkus and Sternlicht hydrodynamic model
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5.7 Demonstrative Example 2: Slider–Crank Mechanism 123

(a)                                                            (b)

(c)                                                            (d)

Fig. 5.18 Journal center path: (a) dry contact without friction; (b) dry contact with friction;
(c) transition model; (d) Pinkus and Sternlicht hydrodynamic model
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Fig. 5.19 Crank moment: (a) dry contact without friction; (b) dry contact with friction; (c) transi-
tion model; (d) Pinkus and Sternlicht hydrodynamic model
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and bearing are in continuous or permanent contact during all the simulation as is
visible in Fig. 5.18c. Hence the system behavior tends to be periodic, as illustrated
in the corresponding Poincaré map in Fig. 5.19c.

In the case of the hydrodynamic force model given by Pinkus and Sternlicht,
the overall results of the slider–crank mechanism simulation shown in Figs. 5.15d,
5.16d and 5.17d are quite close to those obtained for ideal joints. Clearly, in the case
of lubricated revolute joints, the reaction forces developed are much smoother and
the peak values are practically removed when compared with the unlubricated case.
The system response is clearly periodic or regular, but some numerical instability
is observed when the journal moves close to the bearing wall because the system
becomes very stiff for a large eccentricity. In the hydrodynamic model, the fluid
acts as a nonlinear spring–damper element introducing stiffness and damping to the
system. This means that the lubricant absorbs part of the energy produced by the
slider–crank mechanism. This is one of the main advantages for the use of fluid lu-
bricants in the joints of machines and mechanisms. In order to better understand the
efficiency and accuracy of the lubricated revolute joint using the Pinkus and Stern-
licht model, the slider–crank model is considered again for another study. Table 5.3
shows the properties for the new set of study cases.

The performance of the slider–crank mechanism is quantified by plotting the reac-
tion force produced by the fluid on the lubricated joint and the driving crank moment,
displayed in Fig. 5.20a and b. In addition, the journal center orbit inside the bearing
limits and the minimum oil film thickness are also plotted in Fig. 5.21a and b. The time
interval used corresponds to two complete crank rotations. The results are compared
to those obtained when the system is modeled with ideal joints only.

From Fig. 5.20a and b it is clear that the results are of the same order of magni-
tude as those obtained with ideal joints. The first and the second crank cycles show
the same results which indicate that the system has reached steady-state operation
conditions. This can be confirmed by the orbit of the journal center relative to the
bearing center, in which the journal moves far away from the bearing wall, meaning
that there is always a minimum film lubricant in between the two bodies, as shown
in Fig. 5.21a and b. Since the load on the journal–bearing under consideration is not
constant in direction and magnitude, the journal center describes a trajectory within
the bearing boundaries as displayed in Fig. 5.21a. This means that the steady-state
equilibrium is not reached, which results in a time-dependent loci of the journal
center inside the bearing.

The practical criterion for determining whether or not a journal–bearing is op-
erating satisfactorily is the value of the minimum film thickness, which is probably
the most important parameter in the performance of journal–bearings.

Table 5.3 Parameters used in the simulations of the slider–crank mechanism
Bearing radius 10.0 mm
Radial clearance 0.2 mm
Journal–bearing length 40.0 mm
Oil viscosity 400 cP
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Fig. 5.20 (a) Reaction force developed in the lubricated revolute joint, c = 0.2 mm, μ = 400 cP;
(b) driving crank moment, c = 0.2 mm, μ = 400 cP

The minimum film thickness for an aligned journal–bearing is given by

hmin = c(1 − ε) (5.33)

where ε is the eccentricity ratio and c is the radial clearance. For safe journal–
bearings performance, a minimum film thickness is required.

The safe allowable film thickness depends on the surface finish of the journal.
Hamrock (1994) suggests that the safe film thickness should be greater than 2.5 μm.
In practical engineering design, it is recommended that the safe film thickness
should be at least 0.00015 mm/mm of bearing diameter (Phelan 1970). Similar value
for the minimum film thickness can be obtained using the ESDU 84031 Tribology
Series (1991) design criterion, shown in Fig. 5.22, which depends on the size of the
journal–bearing.

The surface quality of the journal–bearing should be consistent with the expected
film thickness and it is, therefore, usual for smaller journal–bearings to be finished to
higher standards than larger journal–bearings. ESDU 84031 Tribology Series (1991)
suggests that the surface roughness value of the journal–bearings should be not
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Fig. 5.21 (a) Journal center trajectory inside the bearing, c = 0.2 mm, μ = 400 cP; (b) minimum
and safe oil film thickness, c = 0.2 mm, μ = 400 cP
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worse than 1/20 of the minimum film thickness. Thus for the journal–bearing con-
sidered here, the safe film thickness that ensures good operating conditions is close
to 3 μm. For the present example, the film thickness is always larger than this safe
film thickness as demonstrated in Fig. 5.21b.

Equations (5.14)–(5.18) show that the parameters influencing the journal–bearing
performance are the oil viscosity μ, the radial clearance c, the bearing length L, the
journal radius RJ and the dynamic journal–bearing parameters ω, ε, ε̇, γ and γ̇ .
Since the dynamic parameters of the journal–bearing depend directly on the system
configuration, the radial clearance size and the oil viscosity are the only possible
variables. Thus, in the following, several simulations of the slider–crank mechanism
for different values of clearance size and oil viscosity are performed. The behav-
ior of the mechanism is quantified by measuring the values of joint reaction force,
driving crank moment and journal center trajectory. The values used for the radial
clearance size are 0.5 and 0.1 mm, while the oil viscosity values are 400 and 40 cP.

There are some important differences between the results presented above,
namely in what concerns the radial clearance size and oil viscosity influence on
the joint reaction force and crank moment; such differences are graphically dis-
played in Figs. 5.23–5.28. The journal–bearing clearance is an important factor for
the satisfactory operation of the journal–bearings. Small values of clearance can
give rise to high journal–bearing temperatures while large values of clearance can
mean excessive lubricant flow rates. Furthermore the results clearly show the sen-
sitivity of the system response with different values of viscosity. As expected, with
low viscosity the journal and the bearing walls are closer than with high viscos-
ity, which suggests the possibility of metal-to-metal contact, especially visible in
Figs. 5.26–5.28. Moreover there are some numerical instabilities associated with
the lubricated model, namely when the oil viscosity is low, the clearance is too
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Fig. 5.23 Reaction force developed in the lubricated revolute joint: (a) c = 0.5 mm, μ = 400 cP;
(b) c = 0.1 mm, μ = 400 cP
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Fig. 5.24 Driving crank moment: (a) c = 0.5 mm, μ = 400 cP; (b) c = 0.1 mm, μ = 400 cP
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Fig. 5.25 Journal center trajectory inside the bearing: (a) c=0.5 mm, μ=400 cP; (b) c=0.1 mm,
μ=400 cP
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Fig. 5.26 Reaction force developed in the lubricated revolute joint: (a) c = 0.5 mm, μ = 40 cP;
(b) c = 0.2 mm, μ = 40 cP
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Fig. 5.27 Driving crank moment: (a) c = 0.5 mm, μ = 40 cP; (b) c = 0.2 mm, μ = 40 cP
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Fig. 5.28 Journal center trajectory inside the bearing: (a) c = 0.5 mm, μ = 40 cP; (b) c =
0.2 mm, μ = 40 cP
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large or for a combination of these two factors. These numerical difficulties are well
represented by some peaks in the joint reaction force and crank moment diagrams,
because the journal and bearing walls are very close to each other. On the other
hand, when the two elements are very close, the hydrodynamic lubrication theory is
no longer valid and the EHL theory must be taken into account (Rahnejat 2000).

5.8 Summary

A comprehensive methodology for modeling lubricated revolute joints in multibody
mechanical systems was presented in this chapter. A simple journal–bearing and
the slider–crank mechanism were chosen as demonstrative examples of the appli-
cation of the techniques used. Furthermore a parametric study of the slider–crank
mechanism for different values of clearance size and oil viscosity was performed
in order to provide the results necessary for the comprehensive discussion of the
models proposed.

For dynamically loaded journal–bearings, the classic analysis problem consists
in predicting the motion of the journal center under arbitrary and known loading. On
the contrary, in the present analysis the time-variable parameters are known from the
dynamic analysis and the instantaneous force on the journal–bearing is calculated
on the bodies of the models proposed. The forces built up by the lubricant fluid are
evaluated from the state of variables of the system and included in the equations of
motion.

Both squeeze and wedge hydrodynamic effects are included in the analysis of
dynamically loaded journal–bearings. It should be mentioned that the methodology
presented here uses the superposition principle of wedge effect entrainment and
squeeze-film effect to calculate the load capacity. This is only approximate and has
been adopted in the work in order to lead to an analytic solution, rather than to a
purely numerical one. Furthermore the methodology is only applicable to long bear-
ings, which is seldom the case in most engine bearings, but it can be useful for many
other mechanisms. This is the compromise used here for the sake of computational
efficiency.

In an application for a slider–crank mechanism, for instance, the reaction moment
necessary to drive the crank with a constant angular velocity is of the same order of
magnitude as the one in the case of an ideal joint, meaning that the global motion
of the slider–crank mechanism with a lubricated joint is periodic or regular. The
lubricant acts as a nonlinear spring–damper in so far as lubricated journal–bearing
absorbs some of the energy produced by the slider when it accelerates or decelerates,
which results in lower reaction moment compared to ideal joints. The lubricant in-
troduces effective stiffness and damping to the slider–crank mechanism. Therefore
a hydrodynamic fluid film journal–bearing exhibits a damping effect that plays an
important role in the stability of the mechanical components.

The transition model that takes into account the existence of the lubricant during
the free flight of the journal and the possibility for dry contact under some conditions



130 5 Lubricated Joints for Mechanical Systems

seems to be well fitted to describe joints with clearances. The similarity of the forces
is notable in the transition model when compared with those of the EHL theory.

The minimum film thickness is a fundamental parameter in the study of a hy-
drodynamic journal–bearing. The value of the minimum oil film thickness defines
the kind of regime of lubrication which is present in the journal–bearing, namely
thick-film lubrication, where the journal–bearing surfaces are totally separated by
the lubricant and thin-film lubrication in which the field of pressure developed
produces elastic deformation. The lubrication between two moving surfaces can
shift between these two regimes, depending on the velocity, lubricant viscosity and
roughness of surfaces.

The viscosity, which is associated with the resistance to the flow, is one of the
most important properties of the fluid lubricants employed in journal–bearings. Ac-
tually the behavior of the journal–bearings is quite sensitive to the oil viscosity. As
expected, with low working viscosity, the journal and the bearing walls are closer
than with high viscosity, which can lead to the possibility of metal-to-metal contact.
With higher viscosity there are higher reaction moments produced in systems. This
is due to the fact that the lubricant becomes more rigid and absorbs less energy from
the system. Moreover the fluid film in conventional journal–bearings can reach a
very small thickness and the pressure gradient generated under some conditions can
produce elastic deformations of the same order of the magnitude of the film thick-
ness. Thus for a rigorous analysis the elastic deformation must also be considered.

The clearance size also has an important effect on the performance of the journal–
bearings. Higher clearance leads to a larger space for the lubricant to flow. The
position of the journal loci moves within the bearing, so there is less pressure pro-
duced, the motion of the journal being a result of that. Also lower clearance means
higher hydrodynamic forces, higher system rigidity and consequently higher reac-
tion forces on the system. Lower clearance produces fewer fluctuations due to the
increased damping, which means less vibration and instability problems.

The quantitative solutions for lubricated journal–bearings in mechanical systems
presented in this chapter are quite useful in so far as they are given in a closed form.
The hydrodynamic model for lubricated revolute joints in mechanical systems is
numerically efficient and fast because the pressure distribution does not need to be
evaluated. Furthermore the methodology is easy and straightforward to implement
in a computational code because resultant forces due to the fluid action are obtained
in explicit form. Some numerical difficulties can be observed when either the fluid
viscosity is too low or the radial clearance of the journal–bearing is too large, which
leads to large eccentricities and, consequently, the system becomes stiff.
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