
Chapter 4
Planar Joints with Clearance: Dry Contact
Models

In general, a multibody system is made of several components, which can be divided
into links with a convenient geometry and joints, which introduce restrictions on the
relative motion of the various bodies of the system (Shabana 1989). Usually the links
are modeled as rigid or deformable bodies, while the joints are modeled through a
set of kinematic constraints, that is, the joints are not modeled de per si (Bauchau
and Rodriguez 2002). The functionality of a kinematic joint relies upon the relative
motion allowed between the connected components, which, in practice, implies the
existence of a gap, that is, a clearance between the mating parts, leading to surface
contact, shock transmission and the development of different regimes of friction
and wear. No matter how small the clearance is, it can lead to vibration and fatigue
phenomena, lack of precision or, in the limit, to even random overall behavior. If
there is no lubricant or other damping materials in the joint, impacts occur in the
system and the corresponding impulses are transmitted throughout the multibody
system. In this work, the elements that compose the clearance joints are modeled
as colliding bodies. The impact between the two bodies is treated as a continuous
event, that is, the local deformations and the contact forces are continuous functions
of time. The impact analysis of the system is performed simply by including the
contact-impact forces in the equations of motion during the impact period (Flores
and Ambrósio 2004). From the system configuration, a geometric condition defines
if the elements of the joints are in contact or not. Thus the dynamics of joints
with clearances is controlled by contact-impact forces, rather than by the kinematic
constraints of the ideal joints. A force model that accounts for the geometric and
material characteristics of the clearance joint components describes these impacts
and the eventual continuous contact (Lankarani and Nikravesh 1990). The energy
dissipative effects are introduced in the joints through the contact force model and by
friction forces that develop during the contact (Ambrósio 2002). The main purpose
of this chapter is to present the mathematical models for revolute and translational
joints with clearance in planar multibody mechanical systems. The methodologies
and procedures adopted in this chapter are applied to a slider–crank mechanism,
which includes both revolute and translational joints with clearance. For the case of
revolute joints with clearance, the contact force models presented in the previous
chapter are used to assess the influence of the different models on the impact force.
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68 4 Planar Joints with Clearance: Dry Contact Models

4.1 Clearance Models

It is known that the performance of a multibody system is degraded by the presence
of clearances in the joints because impact forces occur. These impact forces con-
tribute to the failure of the components due to shock loading, reducing the systems’
life due to material fatigue, generating high noise levels, causing energy dissipation
and exciting unwanted vibratory responses (Dubowsky and Freudenstein 1971a,b,
Ravn 1998, Flores and Ambrósio 2004, Flores et al. 2006).

In standard multibody models, it is assumed that the connecting points of two
bodies, linked by an ideal or perfect revolute joint, are coincident. The introduction
of the clearance in a revolute joint allows for the separation of these two points.
Figure 4.1 depicts a revolute joint with clearance, that is, the so-called journal–
bearing, where the difference in radius between the bearing and the journal defines
the radial clearance.

Although a revolute joint with clearance does not constrain any degree of free-
dom from the mechanical system, as the ideal joint does, it imposes some kinematic
restrictions, limiting the journal to move within the bearing. Thus, when the clear-
ance is present in a planar revolute joint, two kinematic constraints are removed
and two degrees of freedom are introduced instead. The dynamics of the joint is
then controlled by contact-impact forces between the journal and the bearing. Thus,
whilst a perfect revolute joint in a mechanical system imposes kinematic constraints,
a revolute clearance joint leads to force constraints. Therefore mechanical joints
with clearance can be defined as force-joints instead of kinematic joints.

In a revolute clearance joint, when contact exists between the journal and the
bearing, a contact-impact force, perpendicular to the plane of collision, develops.
The force is typically applied as a spring–damper element. If this element is linear,
the approach is known as the Kelvin–Voigt model (Timoshenko and Goodier 1970).
If the relation is nonlinear, the model is generally based on the Hertz contact law
(Hertz 1896).

In what concerns the clearance modeling, there are, in general, three different ap-
proaches, namely, the massless link approach, the spring–damper approach and the

Fig. 4.1 Revolute joint with
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momentum exchange approach. The massless link approach (Earles and Wu 1975),
in which the presence of clearance at a joint is modeled by adding an imaginary
massless link with a fixed length equal to the clearance, is illustrated in Fig. 4.2a.
This link results in the mechanism model having an additional degree of freedom.
Hence the resulting equations of motion are found to be highly nonlinear and com-
plex to solve. Furthermore this model assumes that there is contact between the
journal and the bearing all the time, hence unable to represent free flight trajecto-
ries. Wu and Earles (1977) used the massless link model to predict the occurrence
of contact loss in revolute joints of planar mechanisms.

The spring–damper approach (Dubowsky and Freudenstein 1971a,b, Bengisu
et al. 1986), in which the clearance is modeled by introducing a spring–damper
element that simulates the surface elasticity, is in Fig. 4.2b. This model shows some
deficiencies in representing the physical nature of the energy transfer during the
impact process, the parameters of the spring and damper elements being difficult
to quantify. Dubowsky (1974) investigated the dynamic effects of clearance in pla-
nar mechanisms by simulating the elasticity of the contacting surfaces using linear
springs and dampers.

In the momentum exchange approach (Townsend and Mansour 1975, Ravn 1998,
Flores et al. 2006), the mechanical elements that constitute a clearance joint are
considered as impacting bodies. The contact-impact forces control the dynamics
of the clearance joint. The work presented in this book uses methodologies that
are in line with momentum exchange approach in the kinematics of the contacting
bodies concerned. In the massless link and spring–damper models, the clearance is
replaced by mechanical components, which are intended to represent the behavior
of the clearance as closely as possible. The momentum exchange approach is more
realistic since the impact force model allows, with high level of approximation, to
simulate the elasticity of the contacting surfaces as well as the energy dissipation
during the impact.

Several published works focused on the different modes of motion of the journal
inside the bearing. Most of these consider a three-mode model for predicting the
dynamical response of articulated systems with revolute clearance joints (Mansour
and Townsend 1975, Miedema and Mansour 1976). The three different modes of
journal motion inside the bearing are the contact or following mode, the free flight

Clearance circle

(a) (b)

Clearance orbit

Fig. 4.2 Examples of models for revolute joints with clearance: (a) massless link model;
(b) spring–damper model
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Fig. 4.3 Types of journal motion inside the bearing

mode and the impact mode. These three types of the journal motion are illustrated
in Fig. 4.3.

In the contact or following mode, the journal and the bearing are in permanent
contact and a sliding motion between the contacting surfaces exists. In this mode, the
relative penetration depth varies along the circumference of the bearing. This mode
ends when the journal and the bearing separate from each other, and the journal
enters the free flight mode. In the free flight mode, the journal can move freely
inside the bearing boundaries, that is, the journal and the bearing are not in contact
and, consequently, no reaction force develops at the joint. In the impact mode, which
occurs on the termination of the free flight mode, impact forces are applied to the
system. This mode is characterized by a discontinuity in the kinematic and dynamic
characteristics, and a significant exchange of momentum occurs between the two
impacting bodies. At the termination of the impact mode, the journal can enter either
a free flight or a following mode. During the dynamic simulation of a revolute joint
with clearance, if the path of the journal center is plotted for each instant, these
different modes of motion, depicted in Fig. 4.3, can be easily identified.

4.2 Model of Revolute Joint with Clearance

The simulation of real joints requires the development of a mathematical model for
revolute clearance joints in the multibody systems. Figure 4.4 shows two bodies i
and j connected by a generic revolute joint with clearance. Part of body i is the
bearing and part of body j is the journal. The center of mass of bodies i and j
are Oi and O j , respectively. Body-fixed coordinate systems ξη are attached to the
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Fig. 4.4 Generic revolute joint with clearance in a multibody system

center of mass of each body, while the XY coordinate frame represents the global
coordinate system. Point Pi indicates the center of the bearing, and the center of the
journal is denominated by point Pj .

In the dynamic simulation, the behavior of the revolute clearance joint is treated
as an oblique eccentric impact between the journal and the bearing. The mechanics
of this type of impact involves both the relative normal velocity and the relative
tangential velocity (Zukas et al. 1982). When the impact occurs, an appropriate
contact law must be applied, the resulting forces being introduced in the system
equations of motion as generalized forces.

Taking into account Fig. 4.4, the eccentricity vector e connecting the centers of
the bearing and the journal is calculated as

e = rP
j − rP

i (4.1)

where both rP
i and rP

j are described in the global coordinates reference frame as
(Nikravesh 1988)

rP
k = rk + Aks′P

k , (k = i, j) (4.2)

The magnitude of the eccentricity vector is evaluated as

e =
√

eTe (4.3)

where eT is the transpose of vector e.
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The unit normal vector n to the surfaces in collision between the bearing and the
journal, designated as n, is aligned with the eccentricity vector:

n = e/e (4.4)

The unit vector is aligned with the line between the centers of the bearing and the
journal.

With reference to Fig. 4.5, the penetration depth caused by the impact between
the journal and the bearing is evaluated as

δ = e − c (4.5)

where c is the radial clearance, defined as the difference between the radius of the
bearing and the radius of the journal.

Let points Qi and Q j represent the contact points on bodies i and j , respectively.
The position of the contact points Qi and Q j are evaluated as

rQ
k = rk + Aks′Q

k + Rkn, (k = i, j) (4.6)

where Ri and R j are the bearing and journal radiis, respectively.
In some contact models, it is important to evaluate the dissipative effects that

develop during impact. In the continuous force contact model it, is necessary to
calculate the relative velocity between the impacting surfaces. The velocity of the
contact points Qi and Q j in the global coordinate system is found by differentiating
(4.6) with respect to time, i.e.,

ṙQ
k = ṙk + Ȧks′Q

k + Rk ṅ (4.7)
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Fig. 4.5 Penetration depth due to the impact between the bearing and the journal
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where (•̇) denotes the derivative with respect to time of quantity (•).
The relative velocity between the contact points is projected onto the tangential

line to the colliding surfaces and onto the normal to colliding surfaces, yielding a
relative tangential velocity, vT , and a relative normal velocity, vN , shown in Fig. 4.6.
The normal relative velocity determines whether the contact bodies are approaching
or separating. The tangential relative velocity determines whether the contact bodies
are sliding or sticking. The relative scalar normal and tangential velocities are

vN = (ṙQ
j − ṙQ

i )T n (4.8)

vT = (ṙQ
j − ṙQ

i )T t (4.9)

where t is obtained by rotating the vector n, calculated using (4.4), in the counter
clockwise direction by 90◦.

The normal and tangential forces, fN and fT , respectively, are applied at the
contact points. These forces are evaluated using the contact force law proposed in
Chap. 3 and a friction model such as the Coulomb law. The contributions to the
generalized vector of forces and moments, g in the equation of motion, are found
by projecting the normal and tangential forces onto the X and Y directions. These
forces that act on the contact points of bodies i and j are transferred to the center
of mass of bodies and an equivalent transport moment is applied to the rigid body.
Referring to Fig. 4.7, the forces and moments that act on the center of mass of body
i due to the clearance joint contact are given by

fi = fN + fT (4.10)

mi = −(y Q
i − yi ) f x

i + (x Q
i − xi) f y

i (4.11)

The corresponding forces and moments applied to the body j are

f j = −fi (4.12)

m j = (x Q
j − x j) f y

j − (y Q
j − y j) f x

j (4.13)

Fig. 4.6 Velocity vectors of
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and the journal
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4.3 Model of Translational Joint with Clearance

Similar to the procedure used in the previous section for the revolute joint, this
presents a mathematical model for translational joints with clearance in multibody
systems. Figure 4.8 shows an example of a planar translational joint with clearance.
The clearance c is defined as the difference between the guide and slider surfaces.
The geometric characteristics of the translational clearance joint used here are the
length of the slider L, the slider width W and the distance between the guide surfaces
H . In the present work, the slider and the guide elements that constitute a transla-
tional clearance joint are modeled as two colliding bodies and the dynamics of the
joint is governed by contact-impact forces. The equations of motion that govern the
dynamic response of the general multibody systems incorporate these forces.

In an ideal translational joint the two bodies, slider and guide, translate with
respect to each other along the line of translation, so that there is neither rotation
between the bodies nor a relative translation motion in the direction perpendicular
to the axis of the joint. Therefore an ideal translational joint reduces the number

Fig. 4.8 Translational joint
with clearance, that is, the
slider and its guide
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of degrees of freedom of the system by two. The existence of a clearance in a
translational joint removes the two kinematic constraints and introduces two extra
degrees of freedom. Hence the slider can move ‘freely’ inside the guide limits. When
the slider reaches the guide surfaces an impact occurs and the dynamic response of
the joint is controlled by contact forces. These contact forces are evaluated accord-
ing to the continuous contact force proposed together with the dissipative friction
force model selected. Then these forces are introduced into the system equations
of motion as external generalized forces. Although a translational clearance joint
does not constrain any degree of freedom from the mechanical system, as an ideal
joint does, it imposes some restrictions on the slider motion inside the guide. Thus,
while a perfect joint in a multibody system is achieved by kinematic constraints, a
clearance joint is obtained by force constraints.

Over the last few decades extensive work has been done to study the dynamic
effect of the revolute clearance in multibody systems (Dubowsky and Freudenstein
1971a, Ravn 1998, Schwab 2002, Flores and Ambrósio 2004). In contrast, lit-
tle work has been done to model translational joints with clearance. Wilson and
Fawcett (1974) derived the equations of motion for the different scenarios of the
slider motion inside the guide. They also showed how the slider motion in a trans-
lational clearance joint depends on the geometry, speed and mass distribution.
Farahanchi and Shaw (1994) studied the dynamic response of a planar slider–crank
mechanism with slider clearance. More recently, Thümmel and Funk (1999) used
the complementary approach to model impact and friction in a slider–crank mecha-
nism with both revolute and translational clearance joints.

The modeling of translational clearance joints is more complicated than that for
the revolute joints, due to the several possible contact configurations between the
slider and the guide. Figure 4.9 illustrates four different scenarios for the slider
configuration relative to guide surface, namely: (1) no contact between the two el-
ements: the slider is in free flight motion inside the guide and, consequently, there
is no reaction force at the joint; (2) one corner of the slider is in contact with the
guide surface; (3) two adjacent slider corners are in contact with the guide surface,
which corresponds to having a face of slider in contact with the guide surface; (4)
two opposite slider corners are in contact with the guide surface. The conditions for
switching between different cases depend on the system’s dynamics. For the cases
represented in Fig. 4.9, the contact forces are evaluated using the continuous contact
force model.

In order for the clearance joints to be simulated in the multibody system envi-
ronment, it is required that a mathematical model be developed. Figure 4.10 shows
a representation of a translation joint with clearance that connects bodies i and j .
The slider is body i whereas the guide is part of body j . The center of mass of
bodies i and j are Oi and O j , respectively. Let points P , Q, R and S in the guide
surfaces indicate the geometric limits inside which contact may occur. Points Ai ,Bi ,
Ci andDi indicate the four corners of the slider, and A j , B j , C j and D j are the points
on the guide surfaces that are closer to the points in body j . The contact formulation
for all corners in the slider is similar, and therefore, in what follows only the slider
corner A is used to describe the mathematical formulation.



76 4 Planar Joints with Clearance: Dry Contact Models

(b)(a)

(d)(c)

Fig. 4.9 Different scenarios for the slider motion inside the guide: (a) no contact; (b) one corner in
contact with the guide; (c) two adjacent corners in contact with the guide; (d) two opposite corners
in contact with the guide

Let vector t, directed along the guide surface from point P to point Q in body j ,
be written in terms of the body-fixed coordinates as

t′ j = s′Q
j − s′ P

j (4.14)

Note that the tangent vector expressed in the inertia frame is t = A j t′, where A j is
the transformation matrix from body j ’s frame to the inertial frame.

Let the position vector for any given point G of a body k be described with
respect to inertial reference frame as

rG
k = rk + Aκs′G

k , (k = i, j) (4.15)

where s′G
k is the position of point G in body k expressed in body-fixed coordinates.

The position of point A j , belonging to the segment PQ of the guide, closest to
point Ai located in the corner of the slider, is given as

rA
j = rP

j + [tT (rA
i − rP

j )]t (4.16)

The vector connecting the slider corner Ai to point A j on the guide surface is

δ = rA
j − rA

i (4.17)
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Fig. 4.10 Generic translational clearance joint in a multibody system

Note that vector δ has the same direction as the normal n to the guide surface.
Regardless of this identity, let the normal vector n be defined as perpendicular to the
tangent vector t, which for two-dimensional cases is

n = [ ty −tx ]T (4.18)

Figure 4.11 shows the slider and guide in two different scenarios, namely in a
noncontact situation and in the case of penetration between the slider and guide
surface. For the contact case, the vectors δ and n are parallel but oriented in oppo-
site directions. Thus the condition for penetration between the slider and guide is
expressed as

nT δ < 0 (4.19)

The magnitude of the penetration depth for point Ai is evaluated as

δ =
√

δT δ (4.20)

The impact velocity, required for the evaluation of the contact force, is obtained
by differentiating (4.17) with respect to time, yielding
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Fig. 4.11 (a) Noncontact situation; (b) penetration between the slider corner A and the guide
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�̇ = ṙ j + Ȧ j s′ A
j − ṙi − Ȧi s′ A

i (4.21)

When the contact between the slider and the guide surfaces takes place, normal
and tangential forces appear in the contact points. By transferring these forces to the
center of mass of each body Fig. 4.12 shows the forces and moments acting on the
center of mass of body I , which are

fi = fN + fT (4.22)

mi = −(y Q
i − yi ) f x

i + (x Q
i − xi) f y

i (4.23)
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The forces and moments to be applied in body j are written as

f j = −fi (4.24)

m j = (x Q
j − x j) f y

j − (y Q
j − y j) f x

j (4.25)

In dealing with translational clearance joints, it is essential to define how the
slider and guide surfaces contact each other and, consequently, what is the most
adequate contact force model. Lankarani (1988) presented a linear model for contact
between two square plane surfaces as

FN = K δ (4.26)

where the stiffness parameter K is given by

K = a

0.475(σi + σ j)
(4.27)

having the area of contact a length of 2a and quantities σ i and σ j are given by (3.4).
When two adjacent slider corners contact with the guide surface, the resulting

contact force is applied at the geometric center of the penetration area, denoted as
GC in Fig. 4.13a, and the contact force model given by (4.26) is used. Otherwise,
when one or two opposite slider corners contact the guide surface the contact is
assumed to be between a spherical surface and a plane surface, allowing for the
contact model given by Hertz law with hysteretic damping factor expressed by (3.9)
to be applied. In order to evaluate the equivalent stiffness, a small curvature radius
Rc is assumed on the contact corner, represented in Fig. 4.13b. The unified contact
model is obtained using the pseudo-stiffness expressed by (4.27) in the continuous
force model represented by (3.9).

Geometric center

(j)

(b)(a)

(i)

Rc (j)

(i)

Fig. 4.13 (a) Contact between a spherical surface and a plane; (b) contact between two plane
surfaces
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4.4 Application 1: Slider–Crank with Revolute Clearance Joint

The slider–crank mechanism is chosen as an example to demonstrate the application
of the methodologies presented in this chapter. The same mechanism has been stud-
ied by other authors (Ravn 1998, Schwab 2002), which allows the comparison of
the results obtained. Figure 4.14 shows the configuration of the slider–crank mech-
anism, which consists of four rigid bodies, two ideal revolute joints and one ideal
translational joint. A revolute clearance joint exists between the connecting rod and
the slider.

The crank, which is the driving link, rotates with a constant angular velocity of
5000 rpm. The initial configuration of the mechanism is defined with the crank and
the connecting rod collinear and the journal and bearing centers coincident. Fur-
thermore the initial positions and velocities necessary to start the dynamic analysis
are obtained from kinematic simulation of the slider–crank mechanism in which all
the joints are considered to be ideal. The geometric and inertia properties of each
body are listed in Table 4.1. The parameters used for the different models, required
to characterize the problem, and for the numerical methods, required to solve the
system dynamics, are listed in Table 4.2.

The dynamic response of the slider–crank mechanism is obtained and repre-
sented in Figs. 4.15 and 4.16 by the time plots of the velocity and acceleration
of the slider and the moment acting on the crank, which is required to maintain the
crank angular velocity constant. The relative motion between journal and bearing
centers is plotted in Figs. 4.15d and 4.17. The Hertz contact force law with hysteretic
damping factor, given by (3.9), is used to evaluate the contact force between the
journal and bearing. Figure 4.15 shows the results for the case in which the clearance
size is 0.5 mm. Note that the results, reported for the two full crank rotations after
steady-state has been reached, are plotted against those obtained for an ideal joint.

In Fig. 4.15a, it is observed that the existence of a joint clearance influences
the slider velocity by leading to a staircase-like behavior. The periods of constant

Table 4.1 Geometric and inertia properties of the slider–crank mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)

2 0.05 0.30 0.00010
3 0.12 0.21 0.00025
4 – 0.14 0.00010
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Table 4.2 Parameters used in the dynamic simulation of the slider–crank mechanism with revolute
clearance joint

Bearing radius 10.0 mm Baumgarte - α 5
Restitution coefficient 0.9 Baumgarte - β 5
Young’s modulus 207 GPa Integration step 10−5 s
Poisson’s ratio 0.3 Integration tolerance 10−6 s

velocity observed for the slider mean that the journal moves freely inside the bear-
ing boundaries. The sudden changes in velocity are due to the impact between the
journal and the bearing. When a smooth change in the velocity curve of the slider
is observed it indicates that the journal and the bearing are in continuous contact,
that is, the journal follows the bearing wall. This situation is confirmed by smooth
changes in the acceleration curve. The slider acceleration exhibits high peaks caused
by impact forces that are propagated through the rigid bodies of the mechanism, as
perceived in Fig. 4.15b where the acceleration of the slider is displayed. The slider
acceleration presents high peaks of its values, which may be smoothed in a real
mechanism due to the energy dissipation associated with the system components’
flexibility. The same phenomena can be observed in the crank moment, represented
by Fig. 4.15c. As far as the trajectory of the journal center relative to the bear-
ing center is concerned, different types of motion between the two bodies can be
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Fig. 4.16 Crank moment for different radial clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm;
(c) c = 0.1 mm; (d) c = 0.01 mm

observed, namely, free flight, impact and rebound, and permanent or continuous
contact. The relative penetration depth between the journal and the bearing is visible
by the points of the journal that are plotted outside the clearance circle, in Fig. 4.15d,
where the journal center trajectories are presented by continuous lines that connect
point markers. Each one of the markers represents the position of the journal for a
given time step. It can be observed that during the free flight motion the time step
adopted by the integration algorithm is much larger than during the contact. When
contact is detected, the integration time step decreases significantly, which shows
the importance of varying time-step integration algorithm for problems involving
contact.

The clearance size is one of the most important parameters that affect the dy-
namic behavior of the system. In Figs. 4.16–4.18, the crank moments, the journal
center trajectories and the Poincaré maps are used to illustrate the dynamic behavior
of the slider–crank mechanism when different clearance sizes are present. In this
application, the slider acceleration and slider velocity are chosen to plot the Poincaré
maps. The values for the clearance of the revolute joint are chosen to be 0.5, 0.2, 0.1
and 0.01 mm.

Poincaré maps are mathematical abstractions which are often useful in high-
lighting the dynamic behavior of systems in terms of periodic, quasi-periodic and
chaotic motion. Especially chaotic systems are often examined through the use of
Poincaré maps. A Poincaré map consists of plotting the value of two components
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(a)

(c) (d)

(b)

Fig. 4.17 Journal center trajectory with respect to the bearing for different radial clearance sizes,
the maximum eccentricity being plotted with a dashed circle: (a) c = 0.5 mm; (b) c = 0.2 mm;
(c) c = 0.1 mm; (d) c = 0.01 mm

from the state vector versus its derivative, i.e., y(t) and ẏ(t) (Baker and Gollub 1990,
Tomsen 1997). Regular or periodic behavior is insensitive to initial conditions and
is represented in the Poincaré map by a closed orbit or finite number of points.
Chaotic or nonperiodic responses are extremely sensitive to initial conditions and
are perceived by a region densely filled by orbits or points in the Poincaré map. A
complicated looking phase in a Poincaré map is one indicator of chaotic motion.
Quasi-periodic orbits fill up the Poincaré maps as the chaotic orbits, but they do so
in a fully predictable manner since there is not such a sensitive dependency on the
initial conditions (Wiggins 1990).

From the Poincaré maps analysis, the slider–crank mechanism behavior can
easily be characterized, and it is possible to distinguish between periodic, quasi-
periodic and chaotic responses. In multibody systems, nonlinearities arise from in-
termittent motion, clearance joints, friction effect and contact forces, among others.
The relation between the clearance size and the type of motion observed is clearly
identified from plots in Fig. 4.18.

Figure 4.16 shows that when the clearance size is decreased the dynamic behavior
tends to be smoother, which is represented by lower peaks in the crank moment. In-
deed, when the clearance is small, the system response tends to be closer to the ideal
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Fig. 4.18 Poincaré maps for different radial clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm;
(c) c = 0.1 mm; (d) c = 0.01 mm

response meaning that the journal and the bearing experiment a smaller number of
impacts. Hence the clearance joint behavior tends to be periodic instead of nonlinear
or chaotic. This conclusion is easily confirmed by the journal center trajectories
and the respective Poincaré maps displayed in Fig. 4.17d and 4.18d, respectively.
Figure 4.17a and b clearly shows a nonperiodic motion between the journal and
bearing since it does not repeat from cycle to cycle. This is confirmed by the re-
spective Poincaré map displayed in Fig. 4.18a and b, where the chaotic behavior
can be clearly observed. This chaotic response suggests that impacts followed by
some rebounds take place. Figure 4.18c shows a quasi-periodic motion, because
the orbits fill up the Poincaré maps in a fully predictable manner, thus there is no
sensitive dependence on the initial conditions. It is clear that, when the clearance
is reduced, the dynamic response tends to be periodic or regular, which indicates
that the journal follows the bearing wall. It is noteworthy that, for an ideal revolute
joint, the Poincaré map is almost the same as the map shown in Fig. 4.18d, which is
expected in so far as all the bodies in the system exhibit a periodic motion.

In a way similar to the clearance size study for the crank moments, the journal
center trajectories and Poincaré maps are used to quantify the behavior of the slider–
crank mechanism when friction is taken into account. In the models used, the contact
between the journal and the bearing is modeled by the Lankarani and Nikravesh
force model, given by (3.9), together with the modified Coulomb friction law, given
by (3.16). The radial clearance size is equal to 0.5 mm and four different values
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Fig. 4.19 Crank moment for different values of friction coefficient: (a) c f = 0.01; (b) c f = 0.03;
(c) c f = 0.05; (d) c f = 0.1

for friction coefficient are used, namely, 0.01, 0.03, 0.05 and 0.1. Figure 4.19 de-
picts the crank moments for different friction coefficient values. The journal center
trajectories and the corresponding Poincaré maps are shown in Figs. 4.20 and 4.21.

In general, the effect of the friction is to reduce the peaks of the force values due
to the impact between the journal and the bearing. This can be observed in the crank
moment plots, displayed in Fig. 4.19a–d. Figure 4.20a–d shows that the path of the
journal center is characterized by a continuous contact, i.e., the journal follows the
bearing wall all the time when the friction coefficient is increased. By observing
Figures 4.19–4.21 it is clear that, when the friction coefficient increases, the dy-
namic response of the system tends to be periodic and closer to that of the system
with ideal joints. For a low value of the friction coefficient, the system response is
chaotic since the Poincaré map has the trajectories spread, as shown in Fig. 4.21a.

In short, multibody mechanical systems with clearance joints are well known
as nonlinear dynamic systems that, under certain conditions, exhibit a chaotic re-
sponse. However, from the results presented here, it is found that the dynamics of
the revolute clearance joint in multibody mechanical systems is sensitive not only to
the clearance size but also to the friction coefficient. With a small change in one of
these parameters the response of the system can shift from chaotic to periodic and
vice versa.

In what follows, several models demonstrate how different contact force mod-
els may influence the behavior of the slider–crank mechanism and what their
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Fig. 4.20 Journal center trajectory for different values of friction coefficient: (a) c f = 0.01;
(b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1
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Fig. 4.21 Poincaré maps for different values of friction coefficient: (a) c f = 0.01; (b) c f = 0.03;
(c) c f = 0.05; (d) c f = 0.1
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consequences are in terms of the contact force and crank reaction moment. The
contact force models for both spherical and cylindrical contact surfaces, presented
in Chap. 3, are used here. The impact is treated as being frictionless and the radial
clearance size is set to be 0.5 mm. The contact force for two full crank rotations is
used to illustrate the behavior of the slider–crank mechanism, when different con-
tact force models are applied. The contact forces corresponding to each model are
pictured in Fig. 4.22. In addition to the contact force, the driving crank moment nec-
essary to maintain a constant crank angular velocity for the different contact models
and the journal center trajectories are presented in Figs. 4.23 and 4.24, respectively.

From Fig. 4.22, it is clear that for all pure elastic contact models the level of
contact force is higher when compared to the continuous contact force model by

0

20

40

60

80

C
o

n
ta

ct
 f

o
rc

e 
[K

N
]

0

20

40

60

80

Time [s]

C
o

n
ta

ct
 f

o
rc

e 
[K

N
]

(a)

3.006 3.012 3.018 3.024 3.030

0

20

40

60

80

Time [s]

C
o

n
ta

ct
 f

o
rc

e 
[K

N
]

0

20

40

60

80

C
o

n
ta

ct
 f

o
rc

e 
[K

N
]

0

20

40

60

80

C
o

n
ta

ct
 f

o
rc

e 
[K

N
]

(c)

3.006 3.012 3.018 3.024 3.030

Time [s]

(e)

3.006 3.012 3.018 3.024 3.030

Time [s]

(d)

3.006 3.012 3.018 3.024 3.030

Time [s]

(b)

3.006 3.012 3.018 3.024 3.030

Fig. 4.22 Contact force between the journal and the bearing for the contact models presented:
(a) Hertz contact law; (b) Lankarani and Nikravesh model; (c) Dubowsky and Freudenstein model;
(d) Goldsmith model; (e) ESDU 78035 model
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Fig. 4.23 Driving crank moment for the different contact models presented: (a) Hertz contact law;
(b) Lankarani and Nikravesh model; (c) Dubowsky and Freudenstein model; (d) Goldsmith model;
(e) ESDU 78035 model

Lankarani and Nikravesh (1990) with a restitution coefficient ce = 0.9. A similar
conclusion can be drawn from Fig. 4.23a–e, since the impact forces are propagated
through the rigid bodies of the slider–crank mechanism. By inspecting Fig. 4.24a–e
it is observed that the contact models, which do not include energy dissipation, have
short periods of contact between the journal and the bearing and long free flight
periods. The contact model given by (3.9), which accounts for energy dissipation,
presents long periods of contact between the journal and the bearing.

In Fig. 4.24a–e, the journal trajectories are presented by continuous lines that
connect points. A point is plotted for each integration time step and represented by
a marker, the relative penetration depth being visible by points outside the clearance
circle. The point density is very high when the journal contacts the bearing wall,
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(e)

(c)

(a) (b)

(d)

Fig. 4.24 Journal center trajectory for the different contact models: (a) Hertz contact law;
(b) Lankarani and Nikravesh model; (c) Dubowsky and Freudenstein model; (d) Goldsmith model;
(e) ESDU 78035 model

which means that the step size of the integration algorithm is small. When the jour-
nal is in free flight motion, the time step is automatically increased by the integration
algorithm and, consequently, the points plotted in Fig. 4.24a–e are further apart.
This shows the importance of using a varying time-step integration scheme for the
dynamic analysis of systems that involve contact and impact.

Figure 4.25a–d depicts the influence of the coefficient of restitution on the crank
moment when the continuous contact force model proposed by Lankarani and
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Fig. 4.25 Crank moment for different values of the restitution coefficient when the continuous con-
tact force model proposed by Lankarani and Nikravesh (1990) is used: (a) ce = 1.00; (b) ce = 0.99;
(c) ce = 0.95; (d) ce = 0.90

Nikravesh (1990), given by (3.9), is used. This model shows a direct relationship
between the contact force and coefficient of restitution that is selected to the process
of energy dissipation during the impact. In the case studies presented, the radial
clearance size is equal to 0.5 mm and four different coefficients of restitution are
selected, namely, 1.00, 0.99, 0.95 and 0.90. In Fig. 4.25a–e, it is observed that when
the coefficient of restitution decreases, the peaks of the crank moment values are
reduced, indicating a higher energy dissipation during the contact.

Figure 4.26a and b shows the time variation of the contact force and the relation
between the force and penetration depth for different values of the coefficient of
restitution, for the first impact only. Observing Fig. 4.26b, it is important to high-
light how the hysteresis loop increases when the coefficient of restitution decreases.
When the restitution coefficient is the unit, which corresponds to the pure Hertz
contact force law, there is no energy dissipation in the contact process. This result is
evident in the force-penetration depth relation of Fig. 4.26b, which does not present
an hysteresis loop.

Some important conclusions can be drawn from the study presented here. Among
the spherical shaped contact areas, the linear Kelvin–Voigt contact model does not
represent the overall nonlinear nature of impact. The Hertz relation, besides its non-
linearity, does not account for the energy dissipation during the impact process.
Therefore the Hertz relation along with the modification to represent the energy
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Fig. 4.26 Influence of the coefficient of restitution for the Lankarani and Nikravesh continuous
contact force model: (a) contact force versus time; (b) force–penetration depth relation

dissipation in the form of internal damping is advantageous for modeling contact
forces in a multibody system. The cylindrical models are expressed by nonlinear
and implicit functions of penetration depth and they require a numerical iterative
procedure to solve them, if no approximation is to be used.

The different continuous contact force models which use an elastic contact theory
lead to comparable results in terms of contact forces, crank moments and journal
trajectories. However, when dissipation is allowed to take place, the peaks of the
crank moments that are required to drive the mechanism with a constant angular
velocity are much lower than those observed for the elastic models. This observation
is consistent with the comparisons of the flight trajectories observed for the different
models. It was observed that the energy dissipation of the continuous contact model,
proposed by Lankarani and Nikravesh (1990), results in long periods of time when
the journal seats in the bearing, thus predicting a much smoother dynamic response
of the system. Furthermore because the restitution coefficient plays a role in the
control of the energy dissipation this model can represent a much broader number
of contact conditions.

4.5 Application 2: Slider–Crank with Translational
Clearance Joint

In order to examine the consequences of the formulation developed for the transla-
tional clearance joint, the planar slider–crank mechanism, discussed in the previous
section, is considered again as a numerical example here. All joints are ideal except
for the translation joint that has a clearance, as shown in Fig. 4.27. The translational
clearance joint is composed of a guide and a slider. This joint has a finite clearance,
which is constant along the length of the slider.

It is assumed that the crank is driven at a constant angular velocity equal to 5000
rpm, maintained by varying the input torque. Initially the slider is at the same dis-
tance from the upper and lower guide surfaces and the initial velocities and positions



92 4 Planar Joints with Clearance: Dry Contact Models

½

ξ 2

η 2
X

Y

ξ3

η3

ξ1

η1

ξ4

η4

C
le

ar
an

ce
½

ξ 2

η 2
XX

YY

ξ3

η3

ξ1

η1

ξ4

η4

Fig. 4.27 Slider–crank mechanism with a translational clearance joint

are those used in Sect. 4.4. Table 4.3 shows the parameters used in the simulation of
this demonstrative example.

The dynamic performance of the slider–crank mechanism study case is demon-
strated through the time plots of the slider velocity and acceleration and the moment
that acts on the crank, which are presented in Figure 4.28. Additionally the slider tra-
jectories inside the guide are represented in Fig. 4.28 in a nondimensional plot. Re-
sults for two full crank rotations are given in Fig. 4.28a–d. The impact between the
slider and guide surfaces is assumed to be frictionless, the Lankarani and Nikravesh
contact force model expressed by (3.9) being used to compute the normal forces.
For convenience, a small radius of curvature at each slider corner is considered, in
order to calculate the equivalent generalized stiffness given by (3.5).

The slider velocities and acceleration, presented in Fig. 4.28a and b, clearly show
the influence of the clearance in the kinematics of the translation joint. The slider ve-
locity diagram is smooth and close to the ideal joint simulation. The smooth changes
in the velocity also indicate that the slider and guide surfaces are in permanent con-
tact for long periods. Some sudden changes in the velocity are due to the impacts
between the slider and guide surfaces. These impacts are visible in the acceleration
diagram by high values in the form of peaks in the response. Since the bodies of the
slider–crank mechanism are rigid, the impact forces are propagated from the slider
to the crank, leading to visible high peaks in the crank moment diagram shown in
Fig. 4.28c.

The dimensionless slider trajectories are shown in Fig. 4.28d. There, the differ-
ent types of motion between the slider and guide observed are associated with the
different guide–slider configurations, that is, no contact, contact-impact followed
by rebound and permanent contact. The dimensionless X-slider motion varies from

Table 4.3 Numerical parameters used in the dynamic simulation of the slider–crank mechanism
with a translational clearance joint

Clearance size 0.5 mm Young’s modulus 207 GPa
Slider length 50.0 mm Poisson’s ratio 0.3
Slider width 50.0 mm Baumgarte - α 5
Slider thickness 50.0 mm Baumgarte - β 5
Corner curvature radius 1.0 mm Integration step 10−5 s
Restitution coefficient 0.9 Integration tolerance 10−6 s
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Fig. 4.28 (a) Slider velocity; (b) slider acceleration; (c) crank moment; (d) dimensionless slider
trajectories inside the guide

0 to 1, which corresponds to the low and top dead ends, respectively. The dimension-
less Y-slider motion higher than 0.5 corresponds to the case in which the slider and
the upper guide surface are in contact, whereas the dimensionless Y-slider motion
lower than −0.5 corresponds to the case in which the contact takes place between the
slider and the lower guide surface. The horizontal lines in the slider path diagrams
represent the geometric limits for contact situations between the slider and guides
surfaces.

In order to understand the influence of the clearance size in the dynamic behavior
of the slider–crank mechanism, the driving crank moment is plotted in Fig. 4.29a–d
for simulations where the clearance in the translational clearance joint varies from
0.01 to 0.5 mm. In addition to the crank moment, the respective slider trajectories
and the Poincaré maps are presented in Figs. 4.30 and 4.31. Again the slider accel-
eration and slider velocity are chosen to build the Poincaré maps.

From Fig. 4.29 it is evident that when the clearance size is small the crank
moment peaks are lower and the dynamic response tends to be closer to the ideal
translation joint case. This suggests that the periods of permanent contact between
the slider and guide surfaces are longer and, hence, the slider and guide experi-
ment fewer impacts. This observation can be confirmed by the slider trajectories
and Poincaré maps provided in Figs. 4.30 and 4.31, respectively. When the clear-
ance size is reduced, the system response changes from chaotic, as displayed in
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Fig. 4.29 Driving crank moment for different clearance sizes in the translational clearance joint:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm
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Fig. 4.30 Dimensionless slider path for different clearance sizes in the translational clearance joint:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm
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Fig. 4.31 Poincaré maps for different clearance sizes in the translational clearance joint:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm

Fig. 4.30a, to periodic or regular, as observed in Fig. 4.31d. This feature can be
useful in the evaluation of the acceptable range for clearance, in any type of con-
struction where this type of joints is applied.

The effect of the friction phenomenon on the dynamic performance of the trans-
lational clearance joint is also studied. Again the driving crank moment, the slider
path and Poincaré maps are used to quantify the dynamic response of the slider–
crank mechanism and represented in Figs. 4.32–4.34. The value for the clearance
size is equal to 0.5 mm in all simulations, and four different values for the friction
coefficient are used, namely, 0.01, 0.03, 0.05 and 0.1.

In Fig. 4.32, it is observed that the reaction, or driving crank moment necessary
to maintain constant crank angular velocity, does not relate directly to the friction
coefficient value, that is, when the friction coefficient increases the peak values of
the crank moment do not show tendency to increase or decrease. Analyzing the
slider trajectories, plotted in Figs. 4.33a–d, and the corresponding Poincaré maps,
shown in Fig. 4.34a–d, it is observed that the influence of the friction coefficient in
global system response is not significant, conversely to what happens in the case of
the revolute clearance joint, shown in Figs. 4.19–4.21.

The influence of employing different contact force models on the global slider–
crank behavior is also analyzed in this work. Figures 4.35 and 4.36 show the contact
forces and driving crank moments for the contact force models given by (3.9) and
(4.26), respectively, that is, the nonlinear force model proposed by Lankarani and
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Fig. 4.32 Driving crank moment for different values of the friction coefficient in the translational
clearance joint: (a) c f = 0.01; (b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1
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Fig. 4.33 Slider path for different values of the friction coefficient in the translational clearance
joint: (a) c f = 0.01; (b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1
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Fig. 4.34 Poincaré maps for different friction coefficients in the translational clearance joint:
(a) c f = 0.01; (b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1

Nikravesh (1990), using a restitution coefficient of ce = 0.9, and the linear force
model for two plane surfaces presented by Lankarani (1988). In the case of the linear
contact model for two plane surfaces, the average penetration is used to evaluate the
magnitude of the contact force. This force is then applied at the geometric center of
the penetration area, as schematically shown in Fig. 4.11a.
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Fig. 4.35 Contact force between the slider and guide surface: (a) Lankarani and Nikravesh model;
(b) linear contact model for two plane surfaces
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Fig. 4.36 Driving crank moment: (a) Lankarani and Nikravesh model; (b) linear contact model for
two plane surfaces

4.6 Summary

A comprehensive approach to the modeling of unlubricated clearance joints in pla-
nar multibody systems has been presented in this chapter, with specialization for
the revolute and translational joints. In the process, different contact models have
been revised in face of their suitability to represent the impact between the bodies
joined by these joints. The methodologies proposed have been exemplified, through
the application to the dynamic study of a slider–crank mechanism with revolute and
translational clearance joints.

A critical aspect, in the precise prediction of the peak forces, is the proper se-
lection of an appropriate contact model. From the comparison between the cylin-
drical contact force models and spherical contact force models, one can conclude
that the spherical and cylindrical force–displacement relations are reasonably close.
Furthermore the straightforward force–penetration relation proposed by Lankarani
and Nikravesh (1990) is largely used for mechanical contacts owing to its simplicity
and easiness of implementation in a computational program and also because this
is the only model that accounts for energy dissipation during the impact process.
A modified Coulomb’s friction law was used to model the friction phenomenon;
one merit of this modified model is that it improves the numerical stability of the
integration algorithm.

How the solution strategy of the contact problem associated with the modeling
of joints with clearances is sensitive to the procedure used to detect contact was
discussed. In the sequel of the techniques proposed, a numerical strategy that takes
advantage of the use of a variable time-step integration algorithm has been proposed
to handle the identification of the start of contact and to proceed afterwards.

The dynamic response of the slider–crank mechanism with clearance joints, in
terms of Poincaré maps, shows that periodic and nonperiodic responses can occur.
Poincaré maps play a key role in representing the global behavior of dynamical
systems. For the radial clearance and friction coefficient values used in this work the
system response exhibits both periodic and chaotic responses. When the clearance is
reduced, the dynamic response changes from chaotic to periodic or regular behavior.
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In fact, most of the mechanical systems present some inherent nonlinearity even
when modeled with ideal joints. The chaotic behavior of the mechanical system
may be eliminated with suitable design and/or parameter changes of mechanical
system.

For the case of revolute clearance joint analysis, the overall results are corrob-
orated by published works on this field, for cases that include dry contact force
models (Ravn 1998, Schwab 2002). The results for translational clearance joints in
mechanical systems seem quite acceptable, but they cannot be compared with other
results since this issue has not been addressed before in the literature.

The planar slider–crank mechanism with a translational clearance joint was used
as a numerical example to illustrate the methodology proposed. In general, the
dynamic response of the slider–crank mechanism presents some peaks, due to the
impact between the slider and the guide, namely in what concerns the accelerations
and reaction moments. It was observed that all curves for the kinematic and kinetic
variables are similar to those obtained with ideal joints, with the exception of the
peaks especially visible for the forces and accelerations. These peaks have been
clearly associated to the existence of the clearances and to their magnitude. The rel-
ative motion between the guide and slider showed a very high nonlinearity, or even
chaotic behavior, when a translational clearance is included. When the clearance
size is reduced, the system’s response becomes closer to the case for ideal joints.
Furthermore the dynamic behavior of the slider–crank model tends to be periodic
or regular. This feature can be useful in calculations of an acceptable range for the
clearance, during the design process.

The conclusions drawn from the results presented in this chapter must be con-
sidered in the light of the assumptions identified in the formulation of the motion’s
equation, namely the assumption of rigidity for the bodies, the lack of joints’ flex-
ibility and the nonexistence of lubrication effects. In this chapter, contact between
the surfaces that constitute the clearance joints was assumed to be dry, i.e., with-
out any interposition fluid layer. Consequently contact-impact forces and friction
forces were the only loads on the contacting bodies when the physical contact was
detected between the surfaces. In the engineering design of machines and mecha-
nisms, journal–bearings are usually designed to operate with some lubricant. Lu-
bricated journal–bearings are designed so that when the maximum load is applied,
the journal and bearing do not come into contact. The main reason for designing
journal–bearings in this way is to reduce the friction and extend the lifetime of me-
chanical systems. The issue of lubricated journal–bearings in mechanical systems is
presented and discussed in the next chapter.
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