
Chapter 3
Contact-Impact Force Models
for Mechanical Systems

The collision is a prominent phenomenon in many mechanical systems that involve
intermittent motion, kinematic discontinuities or clearance joints. As a result of an
impact, the values of the system state variables change very fast, eventually looking
like discontinuities in the system velocities and accelerations. The impact is char-
acterized by large forces that are applied and removed in a short time period. The
knowledge of the peak forces developed in the impact process is very important for
the dynamic analysis of multibody mechanical systems having consequences in the
design process. The numerical description of the collision phenomenon is strongly
dependent on the contact-impact force model used to represent the interaction be-
tween the system components. The model for the contact-impact force must con-
sider the material and geometric properties of the colliding surfaces and information
on relative positions and velocities, contribute to an efficient integration and account
for some level of energy dissipation. These characteristics are ensured with a con-
tinuous contact force model, in which the deformation and contact forces are con-
sidered as continuous functions during the complete period of contact. This chapter
deals with contact-impact force models for both spherical and cylindrical contact
surfaces. The incorporation of the friction phenomenon, based on the Coulomb’s
friction law, is also discussed together with a computational strategy which includes
an automatic step size selection procedure based not only on numerical error control
but also on the characteristics of the contact.

3.1 Approaches to Contact and Impact of Rigid Bodies

Impact occurs during the collision of two or more bodies, which may be external or
belong to a multibody mechanical system. The impact phenomenon is characterized
by abrupt changes in the values of system variables, most visible as discontinuities
in the system velocities. Other effects directly related to the impact phenomena are
the vibration propagation on the system components, local elastic/plastic deforma-
tions at the contact zone and some level of energy dissipation. The impact is a very
important phenomenon in many mechanical systems such as mechanisms with in-
termittent motion and with clearance joints (Khulief and Shabana 1986, Ravn 1998).
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The selection of the most adequate contact force model plays a key role in the correct
design and analysis of these types of mechanical systems (Flores et al. 2006).

By and large, an impact may be considered to occur in two phases: the compres-
sion or loading phase and the restitution or unloading phase. During the compression
phase, the two bodies deform in the normal direction to the impact surfaces, and the
relative velocity of the contact points/surfaces on the two bodies in that direction is
gradually reduced to zero. The end of the compression phase is referred to as the in-
stant of maximum compression or maximum approach. The restitution phase starts
at this point and ends when the two bodies separate from each other (Brach 1991).
The restitution coefficient reflects the type of collision. For a fully elastic contact
the restitution coefficient is equal to the unit, while for a fully plastic contact resti-
tution coefficient is null. The most general and predominant type of collision is the
oblique eccentric collision, which involves both relative normal velocity and relative
tangential velocity (Maw et al. 1975, Zukas et al. 1982).

In order to evaluate efficiently the contact-impact forces resulting from collisions
in multibody systems, such as the contact between the bearing and journal in a revo-
lute joint with clearance, special attention must be given to the numerical description
of the contact force model. Information on the impact velocity, material properties
of the colliding bodies and geometry characteristics of the contact surfaces must be
included in the contact force model. These characteristics are observed with a con-
tinuous contact force, in which the deformation and contact forces are considered as
continuous functions (Lankarani and Nikravesh 1990). Furthermore it is important
that the contact force model can add to the stable integration of the equation of
motion of multibody system.

In a broad sense, there are two different methods to solve the impact prob-
lem in multibody mechanical systems designated as continuous and discontinuous
approaches (Lankarani and Nikravesh 1990). Within the continuous approach the
methods commonly used are the continuous force model, which is in fact a penalty
method, and the unilateral constraint methodology, based on the linear complemen-
tary approach (Pfeiffer and Glocker 1996). The continuous contact force model
represents the forces arising from collisions and assumes that the forces and de-
formations vary in a continuous manner. In this method, when contact between the
bodies is detected, a normal force perpendicular to the plane of collision is applied.
This force is typically applied as a spring–damper element, which can be linear, such
as the Kelvin–Voigt model (Lankarani 1988), or nonlinear, such as the Hunt and
Crossley model (Hunt and Crossley 1975). For long impact durations this method
is effective and accurate in that the instantaneous contact forces are introduced into
the system’s equations of motion. The second continuous methodology specifies
that when contact is detected a kinematic constraint is introduced in the system’s
equations. Such a constraint is maintained while the reaction forces are compressive,
and removed when the impacting bodies rebound from contact (Ambrósio 2000).

A second approach of a different nature is a discontinuous method that assumes
that the impact occurs instantaneously, the integration of the equations of motion
being halted at the time of impact. Then a momentum balance is performed to cal-
culate the post-impact velocity, the integration being resumed afterwards with the
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updated velocities, until the next impact occurs. In the discontinuous method, the
dynamic analysis of the system is divided into two intervals, before and after impact.
The restitution coefficient is employed to quantify the dissipation energy during the
impact. The restitution coefficient only relates relative velocities after separation to
relative velocities before contact and ignores what happens in between. The dis-
continuous method is relatively efficient but the unknown duration of the impact
limits its application, since for large enough contact periods the system configura-
tion changes significantly (Lankarani 1988). Hence the assumption of instantaneity
of impact duration is no longer valid and the discontinuous analysis must not be
adopted. This method, commonly referred to as piecewise analysis, has been used
for solving the intermittent motion problem in mechanical systems (Khulief and
Shabana 1986) and it is still the most commonly used approach in vehicle accident
reconstruction (PC-Crash 2002).

In general, the contact points change during collision. When there is no penetra-
tion between the colliding bodies, there is no contact and, consequently, the contact
forces are null. The occurrence of penetration is used as the basis to develop the
procedure to evaluate the local deformation of the bodies in contact. Although the
bodies are assumed to be rigid, the contact forces correspond to those evaluated as
if the penetration is due to local elastic deformations. These forces are calculated
as being equivalent to those that would appear if the bodies in contact were pressed
against each other by an external static force. This means that the contact forces are
treated as elastic forces expressed as functions of the coordinates and velocities of
the colliding bodies. The methodology used here allows for the accurate calculation
of the location of contact points. The direction of the normal contact force is de-
termined from the normal vector to the plane of colliding surfaces at the points of
contact.

In short, in dynamic analysis, the deformation is known at every time step from
the configuration of the system and the forces are evaluated based on the state
variables. With the variation of the contact force during the contact period, the
response of the dynamic system is obtained by simply including updated forces
into the equations of motion. Since the equations of motion are integrated over the
period of contact, this approach results in a rather accurate response. Furthermore
this methodology is not limited by the changes in the system configuration during
the contact periods.

3.2 Normal Force Models for Spherical Contact Surfaces

The simplest contact force relationship, known as Kelvin–Voigt viscous-elastic
model, is modeled by a parallel spring–damper element (Zukas et al. 1982). The
spring represents the elasticity of the contacting bodies while the damper describes
the loss of kinetic energy during the impact. In most studies, the stiffness and damp-
ing coefficients have been assumed to be known parameters, and the analysis has
been confined to unconstrained bodies. The spring stiffness in the element can be
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calculated using a simple mechanical formula or obtained by means of the finite
element method (FEM). Recently Zhu et al. (1999) proposed a theoretical formula
for calculating damping in the impact of two bodies in a multibody system. This
model assumes that both the spring and the damper are linear. When the contact
bodies are separating from each other the energy loss is included in the contact
model by multiplying the rebound force with a coefficient of restitution. The resti-
tution coefficient accounts for the energy dissipated during the impact in the form
of a hysteresis in the relation between force and deformation.

The normal Kelvin–Voigt contact force, FN , is calculated for a given penetration
depth, δ, as

FN =
{

K δ if vN > 0 (loading phase)
K δ ce if vN < 0 (unloading phase) (3.1)

where K is the stiffness, δ is the relative penetration depth, ce is the restitution
coefficient and vN is the relative normal velocity of the colliding bodies.

The primary drawback associated with this model is the quantification of the
spring constant, which depends on the geometry and material properties of the con-
tacting bodies. On the other hand, the assumption of a linear relation between the
penetration depth and the contact forces is at best a rough approximation because
the contact force depends on the shape, surface conditions and material properties
of the contacting surfaces, all of which suggest a more complex relation.

For the linear Kelvin–Voigt model, Fig. 3.1a–c shows the penetration depth δ,
the normal contact force FN and the hysteresis of two internally colliding spheres.
The restitution coefficient and the spring stiffness used to build Fig. 3.1 are 0.9 and
1.5 × 108 N/m, respectively.

The best-known contact force law between two spheres of isotropic materials is
due to the result of the work by Hertz, which is based on the theory of elasticity
(Timoshenko and Goodier 1970). The Hertz (1896) contact theory is restricted to
frictionless surfaces and perfectly elastic solids being exemplified by the case shown
in Fig. 3.2.

The Hertz law relates the contact force with a nonlinear power function of pene-
tration depth and is written as

FN = K δn (3.2)
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Fig. 3.1 Internally colliding spheres modeled by linear Kelvin–Voigt viscous-elastic contact
model: (a) penetration depth, d; (b) normal contact force, FN ; (c) force–penetration relation
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Fig. 3.2 Relative penetration
depth during the impact
between two spheres (i)

(j)

δ

Ri

Rj

where K is the generalized stiffness constant and δ is the relative normal indentation
between the spheres. The exponent n is set to 1.5 for the cases where there is a
parabolic distribution of contact stresses, as in the original work by Hertz. Although
for metallic materials n = 1.5 for other materials such as glass or polymer it can
be either higher or lower, leading to a convenient contact force expression that is
based on experimental work but that should not be confused with Hertz theory. The
generalized parameter K is dependent on the material properties and the shape of the
contact surfaces. For two spheres in contact the generalized stiffness coefficient is a
function of the radii of the spheres i and j and the material properties as (Goldsmith
1960)

K = 4

3(σi + σ j)

[
Ri R j

Ri + R j

] 1
2

(3.3)

where the material parameters σi and σ j are given by

σk = 1 − ν2
k

Ek
, (k = i, j) (3.4)

and the quantities νk and Ek are the Poisson’s ratio and the Young’s modulus as-
sociated with each sphere, respectively. For contact between a sphere body i and a
plane surface body j the generalized stiffness coefficient depends on the radius of
the sphere and the material properties of the contacting surfaces, being expressed by
(Goldsmith 1960)

K = 4

3(σi + σ j )

√
Ri . (3.5)

For two internally colliding spheres modeled by Hertz contact law, Fig. 3.3a–c
shows the penetration depth, δ, the normal contact force, FN , and the relation force–
penetration. The generalized stiffness is equal to 6.6 × 1010 N/m1.5 for the calcula-
tions used to generate the graphs.

It is apparent that the Hertz contact law given by (3.2) cannot be used during
both phases of contact (loading and unloading phases), since this model does not
take into account the energy dissipation during the process of impact. This is a pure
elastic contact model, that is, the contact energy stored during the loading phase
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Fig. 3.3 Internally colliding spheres modeled by Hertz contact law: (a) penetration depth, δ;
(b) normal contact force, FN ; (c) force–penetration ratio

is exactly the same that is restored during the unloading phase. The advantages of
the Hertz law relative to Kelvin–Voigt contact model reside on its physical meaning
represented by both its nonlinearity and by the relation between the generalized
stiffness and geometry and material of the contacting surfaces. Although the Hertz
law is based on the elasticity theory, some studies have been performed to extend
its application to include energy dissipation. In fact, the process of energy transfer
is a complicated part of modeling impacts. If an elastic body is subjected to a cyclic
load, the energy loss due to internal damping causes a hysteresis loop in the force–
displacement diagram, which corresponds to energy dissipation.

Hunt and Crossley (1975) showed that the linear spring–damper model does
not represent the physical nature of energy transferred during the impact process.
Instead they represent the contact force by the Hertz force law with a nonlinear
viscous-elastic element. This approach is valid for direct central and frictionless
impacts. Based on Hunt and Crossley’s work, Lankarani and Nikravesh (1990) de-
veloped a contact force model with hysteresis damping for impact in multibody
systems. The model uses the general trend of the Hertz law, the hysteresis damping
function being incorporated to represent the energy dissipated during the impact.
Lankarani and Nikravesh (1990) suggested separating the normal contact force into
elastic and dissipative components as

FN = K δn + Dδ̇ (3.6)

where the first term of the right-hand side is referred to as the elastic force and
the second term accounts for the energy dissipated during the impact. In (3.6), the
quantity D is a hysteresis coefficient and δ̇ is the relative normal impact velocity.

The hysteresis coefficient is written as a function of penetration as

D = χ δn (3.7)

in which the hysteresis factor χ is given by

χ = 3K (1 − c2
e)

4δ̇(−)
(3.8)
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δ̇(−) being the initial impact velocity. By substituting (3.8) into (3.7) and the results
into (3.6), the normal contact force is finally expressed as

FN = K δn

[
1 + 3(1 − c2

e)
4

δ̇

δ̇
(−)

]
(3.9)

where the generalized parameter K is evaluated by (3.3) and (3.4) for sphere-to-
sphere contact or by similar expressions for the contact of other types of geometry;
ce is the restitution coefficient, δ̇ is the relative normal penetration velocity and δ̇(−)

is the initial normal impact velocity where contact is detected. The use of the damp-
ing scheme included in this model implies the outcome illustrated in Fig. 3.4a–c in
which the penetration depth, δ, normal contact force, FN , and hysteresis of an impact
between two internally colliding spheres are presented. The generalized stiffness
used to evaluate the relations in Fig. 3.4 is 6.6 × 1010 N/m1.5.

Equation (3.9) is valid only for impact velocities lower than the propagation ve-
locity of elastic waves across the bodies, that is, δ̇(−) ≤ 10−5 √

E/ρ, where E is
the Young’s modulus and ρ is the material mass density (Love 1944). The quantity√

E/ρ, velocity of wave propagation, is the larger of two propagation velocities of
the elastic deformation waves in the colliding bodies.

Shivaswamy (1997) studied theoretically and experimentally the impact between
bodies and demonstrated that at low impact velocities, the hysteresis damping is
the prime factor for energy dissipation. Impact at higher velocities, exceeding the
propagation velocity of the elastic deformation waves, is likely to dissipate en-
ergy in a form not predicted by the current model. In a later work, Lankarani and
Nikravesh (1994) proposed a new approach for contact force analysis, in which
the permanent indentation is also included. At fairly moderate or high velocities of
collision, especially in the case of metallic solids, permanent indentations are left
behind on the colliding surfaces. Hence local plasticity of the surfaces in contact
becomes the dominant source of energy dissipation during impact. Permanent or
plastic deformations are beyond the scope of the present work.
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Fig. 3.4 Internally colliding spheres modeled by the Lankarani and Nikravesh contact force model:
(a) penetration depth, δ; (b) normal contact force, FN ; (c) force–penetration relation
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3.3 Normal Contact Force Models for Cylindrical Surfaces

The contact models given by (3.2) and (3.9) are valid only for colliding bodies that
exhibit in the contacting surface a parabolic contact stress distribution, such as in
the case of ellipsoidal contact areas. For a cylindrical contact area such as the one
pictured in Fig. 3.5 between two parallel cylinders, a literature search reveals few
approximate force–displacement relationships.

It is worth noting that line contact assumes a precise parallel alignment of the
colliding cylinders. Furthermore a uniform force distribution over the length of
the cylinders is also assumed and boundary effects are neglected. For the case of
cylindrical contact forces, some authors suggest the use of the more general and
straightforward force–displacement relation given by (3.9) but with an exponent, n,
in the range of 1–1.5 (Hunt and Crossley 1975, Ravn 1998). Dietl (1997) used the
classical solution of contact, presented by Hertz, but with the exponent n equal to
1.08 to model the contact between the journal and the bearing elements.

Based on Hertz theory, Dubowsky and Freudenstein (1971) proposed an expres-
sion for the indentation, as function of the contact force, of an internal pin inside a
cylinder as

δ = FN

(
σi + σ j

L

)[
ln
(

Lb(Ri − R j )
FN Ri R j (σi + σ j )

)
+ 1

]
(3.10)

where Ri, j and σi, j are the parameters shown in (3.4), L is the length of the cylinder
and the exponent b has a value 3. Since (3.10) is a nonlinear implicit function for FN ,
with a known penetration depth, FN can be evaluated. This is a nonlinear problem
and requires an iterative solution scheme, such as the Newton–Raphson method, to
solve for the normal contact force, FN .

Fig. 3.5 Contact between
two external cylinders
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Fig. 3.6 Internally colliding cylinders using Dubowsky and Freudenstein contact force model: (a)
penetration depth, δ; (b) normal contact force, FN ; (c) force–penetration ratio

Based on the Dubowsky and Freudenstein contact force model the solutions cor-
responding to the time variation of the indentation δ, the normal contact force FN

and the force–penetration depth ratio are shown in Fig. 3.6a–c. In the plots presented
for the case of a pin contact inside a cylinder, the pin and cylinder radii are 9.5 and
10 mm, respectively. The length of the cylinder is equal to 15 mm, and both the pin
and the cylinder are made of steel.

Goldsmith (1960) proposed an expression similar to (3.10) but with the value of
exponent b equal to 1. However, this value for b leads to a problem of consistency
of the units in the expression. Figure 3.7a–c shows the penetration depth δ, the
normal contact force FN and the force–penetration ratio of two internally colliding
cylinders modeled with the Goldsmith contact force. This model shows that the
force–penetration ratio is almost linear.

The ESDU 78035 Tribology Series (1978) also proposes some expressions for
contact mechanics analysis suitable for engineering applications. For a circular con-
tact area the ESDU 78035 model is the same as the pure Hertz law given by (3.2).
For rectangular contact, e.g., a pin inside a cylinder, the expression is given by

δ = FN

(
σi + σ j

L

)[
ln
(

4L(Ri − R j)
FN (σi + σ j )

)
+ 1

]
(3.11)

where all quantities are the same as used for the calculations in Fig. 3.6.

0

0.1

Time [ms]

δ 
[m

m
]

(a)

0.227 0.29
0

40

Time [ms]

F
N

 [K
N

]

(b)

0.227 0.293 δ [mm]

F
N

 [K
N

]

0

40

0

(c)

0.1

Fig. 3.7 Internally colliding cylinders using Goldsmith contact force model: (a) penetration depth,
δ; (b) normal contact force, FN ; (c) force–penetration ratio
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Fig. 3.8 Internally colliding cylinders using the ESDU 78035 contact force model: (a) penetration
depth, δ; (b) normal contact force, FN ; (c) force–penetration ratio

Figure 3.8a–c shows the penetration depth δ, the normal contact force FN and
the force–penetration ratio of two internally colliding cylinders modeled by ESDU
78035, given by (3.11).

The contact force due to the spherical and cylindrical contact force models is
displayed in Fig. 3.9, where it can be observed that the spherical and cylindrical
force–displacement relations are reasonably close. Thus the straightforward force–
penetration relation proposed by Lankarani and Nikravesh given in (3.9) is largely
used for mechanical contacts not only because of its simplicity and easiness in im-
plementation in a computational program, but also because this is the only model
that accounts for the energy dissipation during the impact process (Ryan 1990,
Smith and Haug 1990, Bottasso et al. 1999, Pedersen 2001, Pedersen et al. 2002,
Silva and Ambrósio 2004, Flores et al. 2006).
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3.4 Tangential Friction Force Models

When contacting bodies slide or tend to slide relative to each other tangential forces
are generated. These forces are usually referred to as friction forces. Three basic
principles have been experimentally established, namely: (1) the friction force acts
in a direction opposite to that of the relative motion between the two contacting bod-
ies; (2) the friction force is proportional to the normal load on the contact; (3) the
friction force is independent of a nominal area of contact. These three statements
constitute what is known as the laws of sliding friction under dry conditions (Sto-
larski 1990). Based on the experimental observations by Angmonds in the field of
optics, Coulomb developed what is today the most commonly used friction law, but
there is still no simple model which can be universally used by designers to calculate
the friction force for a given pair of bodies in contact. In face of the shortcomings of
the Coulomb friction law, in recent years there has been much interest on the subject
of friction, and many research papers have focused on the subject (Keller 1986,
Wang and Manson 1992, Han and Gilmore 1993).

The presence of friction in the contact surfaces makes the contact problem more
complicated as the friction may lead to different contact modes, such as sticking or
sliding. For instance, when the relative tangential velocity of two impacting bodies
approaches zero, stiction occurs. Indeed, as pointed out by Ahmed et al. (1999),
the friction model must be capable of detecting sliding, sticking and reverse sliding
to avoid energy gains during impact. This work was developed for the treatment of
impact problems in jointed open-loop multibody systems. Lankarani (2000) extends
Ahmed’s formulation to the analysis of impact problems with friction in any general
multibody system including both open- and closed-loop systems.

The Coulomb’s friction law of sliding friction can represent the most fundamen-
tal and simplest model of friction between dry contacting surfaces. When sliding
takes place, the Coulomb law states that the tangential friction force FT is pro-
portional to the magnitude of the normal contact force, FN , at the contact point
by introducing a coefficient of friction c f (Greenwood 1965). The Coulomb’s fric-
tion law is independent of relative tangential velocity. In practice, this is not true
because friction forces can depend on many parameters such as material proper-
ties, temperature, surface cleanliness and velocity of sliding, which cannot all be
accumulated for by a constant friction coefficient. Therefore a continuous friction
force–velocity relationship is desirable. Furthermore the application of the original
Coulomb’s friction law in a general-purpose computational program may lead to
numerical difficulties because it is a highly nonlinear phenomenon that may involve
switching between sliding and stiction conditions. Also from this point of view,
more realistic friction force models are required.

In the last decades, a number of papers addressed the issue of the tangential fric-
tion forces (Bagci 1975, Threlfall 1978, Rooney and Deravi 1982, Haug et al. 1986,
Wu et al. 1986a, b). Most of them use the Coulomb friction model with some modi-
fication in order to avoid the discontinuity at zero relative tangential velocity and to
obtain a continuous friction force. Dubowsky (1974) assumed the friction force to
be equal to a constant value opposing the direction of velocity, given by
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fT = −cc
vT

vT
(3.12)

where cc is a coefficient independent of normal contact force and vT is the relative
tangential velocity. This model does not take the effect of zero velocity into account,
that is, it has the disadvantage of an infinite gradient at null relative tangential veloc-
ity. This causes computational difficulties in the integration process since the force
instantaneously changes from −fT to +fT . This model is qualitatively illustrated
in Fig. 3.10a, which shows the Coulomb’s friction force versus relative tangential
velocity.

A friction model with better numerical features is found in Rooney and Deravi
(1982), where the friction force is calculated from two sets of equations. When the
relative tangential velocity is not close to zero the Coulomb’s friction law is given
by

fT = −c f fN
vT

vT
(3.13)

and when the relative tangential velocity of the contacting bodies is close to zero the
friction force is a value within a range given by

−c f FN < FT < c f FN (3.14)

where c f is the coefficient of friction, vT is the relative tangential velocity and FN

is the normal contact force, which is always positive. This model is illustrated in
Fig. 3.10b.

Wilson and Fawcett (1974) used the model expressed by (3.13) in the dynamic
study of a slider–crank mechanism with a clearance joint between the slider and
the guide. More recently, Ravn (1998) also used (3.13) to include the friction effect
in revolute joints with clearance. Threlfall (1978) proposed another friction force
model, in which the transition between −fT and +fT is made using a curve as
follows:

FT FT

vT vT

(a) (b)

Fig. 3.10 (a) Standard Coulomb’s friction law, (b) Rooney and Deravi friction force
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fT = c f fN
vT

vT

(
1 − e−( 3vT

vr )
)

, if |vT | < vr (3.15)

where c f is the friction coefficient, fN is the normal contact force, vr is a small
characteristic velocity as compared to the maximum relative tangential velocity en-
countered during the simulation. The value of vr is a specified parameter that for
small values results in slowing down the integration method as it gets closer to the
idealized model of Fig. 3.10a. In practice, the regulation factor 1 − exp(−3vT /vr )
smoothes out the friction force discontinuity. The shape of this curve is illustrated
in Fig. 3.11a.

Ambrósio (2002) presented another modification for Coulomb’s friction law, in
which the dynamic friction force is expressed as

fT = −c f cdfN
vT

vT
(3.16)

where c f is the friction coefficient, FN is the normal contact force, vT is the relative
tangential velocity and cd is a dynamic correction coefficient, which is expressed as

cd =

⎧⎪⎨
⎪⎩

0 if vT ≤ v0
vT −v0
v1−v0

if v0 ≤ vT ≤ v1

1 if vT ≥ v1

(3.17)

in which v0 and v1 are given tolerances for the velocity. This dynamic correction
factor prevents the friction force from changing direction for almost null values of
the tangential velocity, which is perceived by the integration algorithm as a dynamic
response with high-frequency contents, thereby forcing a reduction in the time-step
size. The great merit of this modified Coulomb’s law is that it allows the numerical
stabilization of the integration algorithm. This friction force model, illustrated in
Fig. 3.11b, does not account for other phenomena like the adherence between the
sliding contact surfaces, which can be added as a complementary model.

FT FT

vTvr-vr vT
v1v0

(a) (b)

Fig. 3.11 (a) Threlfall friction force, (b) friction force of (3.16)
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3.5 Numerical Aspects in Contact Analysis

In a dynamic simulation, it is very important to find the precise instant of transition
between the different states, that is, contact and noncontact situations. This requires
close interaction with the numerical procedure to continuously detect and analyze
all situations. If not, errors may build up and the final results will become inaccurate.

When a system consists of fast- and slow-moving components, that is, the eigen-
values are widely spread, the system is designated as being stiff (Nikravesh 1988).
Stiffness in the system equations of motion arises when the gross motion of the
overall mechanism is combined with the nonlinear contact forces that lead to rapid
changes in velocity and accelerations. In addition, when the equations of motion
are described by a coupled set of differential and algebraic equations, the error of
the response system is particularly sensitive to constraints violation. Constraints
violation inevitably leads to artificial and undesired changes in the energy of the
system. Yet, by applying a stabilization technique, the constraint violation can be
kept under control (Baumgarte 1972). During the numerical integration procedure,
both the order and the step size are adjusted to keep the error tolerance under control.
In particular, the variable step size of the integration scheme is a desirable feature
when integrating systems that exhibit different time scales, such as in multibody
systems with impacting bodies (Shampine and Gordon 1975). Thus large steps are
taken when the system’s motion does not include contact forces, and when impact
occurs the step size is decreased substantially to capture the high-frequency response
of the system.

One of the most critical aspects in the dynamic simulation of the multibody systems
with collisions is the detection of the precise instant of contact. In addition, the numer-
ical model used to characterize the contact between the bodies requires the knowledge
of the pre-impact conditions, that is, the impact velocity and the direction of the plane
of collision. The contact duration and the penetration cannot be predicted from the
pre-impact conditions due to the influence of the kinematic constraints imposed in the
bodieson theoverall system motion.Thus,before thefirst impact, thebodiescan freely
move relative to each other and, in this phase, the step size of the integration algorithm
may become relatively large. The global motion of the system may be characterized
by relatively large translational and rotational displacements during a single time
step. Therefore, if the numerical integration is not handled properly, the first impact
between the colliding bodies is often made with a high penetration depth and, hence,
the calculated contact forces become artificially large.

The importance of the initial penetration control, in the framework of the integra-
tion of the equations of motion, is better discussed using a simple example. Take the
case of the falling ball illustrated in Fig. 3.12, with a mass m = 1.0 kg, a moment
of inertia equal to 0.1 kg m2, a radius R = 0.1 m, animated by an initial horizontal
velocity v = 1.0 m/s and acted upon by gravity forces only. The motion of the ball
is such that during its falling trajectory it strikes the ground. The penetration of the
ball in the ground, in the integration time step, for which contact is first detected, is

δ(−) = (h − R) − yb (3.18)
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Fig. 3.12 (a) Trajectory of a falling ball obtained with integration algorithms with and without
initial penetration control; (b) detailed view in the vicinity of contact

where yb is the y coordinate of the ball’s center of mass. The superscript (−) on δ

means that it is the penetration when contact is first detected. Note that δ(−) must be
a positive value for contact. Therefore, by monitoring the sign of the penetration at
every time step t + Δt the start can be identified from

δ(−) (q, t) δ(−) (q, t + Δt) ≤ 0 (3.19)

When (3.19) is verified the start of contact is defined as occurring at t + Δt .
The integration of the equations of motion of the system could be proceeded with
no numerical problem if the penetration first detected is close to zero, or at least
below a pre-defined threshold, i.e., if δ(−) (q, t + Δt) ≤ δmax . Because this is not
always the case, strategies to limit the time step in the vicinity of contact must be
implemented when solving contact problems.

Define as δ− the distance between the two surfaces in the time step t− that pre-
cedes the time step t+, at which penetration δ+ is first detected. In between these
time steps, say at tc, the penetration δc = 0 exists. Assuming constant velocity for
the multibody system in the vicinity of contact, the time at which contact starts can
be calculated by

tc = t− + δ−

δ+ − δ− Δt (3.20)

Consequently the ideal situation, during the integration of the multibody equations
of motion, would be a time step in the vicinity of contact of

Δt ideal = tc − t− + ε (3.21)

where ε is a very small number to effectively ensure that δmax > δc > 0. Several
procedures are suggested to ensure that δ+ < δmax , which can be implemented in
any code, depending on the access that exists to the numerical integrator.
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Procedure 1: Assume that in the vicinity of contact the motion of the multibody
system is such that each body moves approximately with constant velocity. Note
that the assumption only needs to be valid within a simple time step. Then the time
for contact is calculated using (3.20) and the ideal time step using (3.21). Now
the positions and velocities of the multibody system, at the time of contact tc, are
estimated as

qc = q− + (q+ − q)
Δt ideal

Δt
(3.22)

q̇c = q̇− + (q̇+ − q̇)
Δt ideal

Δt
(3.23)

where the superscripts −, + and c mean that the quantity in which they are applied
is evaluated at the instant before contact, after contact and at the time of contact,
respectively. The integration algorithm is now restarted at time tc with the initial
positions and velocities given by (3.22) and (3.23).

The procedure proposed, being approximate, does present slight violations of the
position and velocity constraint equations. Because a constraint stabilization method
or a constraint elimination method is being used, according to the discussion in
Chap. 2, it is expected that such violations remain under control. Notice also that
when a variable time-step integrator is used during its start the time steps are small.
Therefore in the vicinity of contact, small time steps are used by the integrator and
even if the conditions calculated by (3.22) and (3.23) are just before contact the
integration process continues with the guarantee that the initial penetration never
exceeds the prescribed threshold.

Procedure 2: The numerical algorithms used for integration of first-order differ-
ential equations with variable time steps, such as the ones generally used in multi-
body dynamics (Shampine and Gordon 1975, Gear 1981), include an error control
that supports the acceptance of rejection of a particular time step. Such decision is
based on numerical issues, related to the dynamic response of the system, rather
than on any physical reason. The idea behind this procedure, to handle the control
on the initial penetration, is to devise a complementary control for the selection of
the integration time step based on physical reasoning only. Say that at a given time,
during the integration of the equations of motion of multibody system, the internal
numerical control of the integration algorithm tests a time step Δttrial and decides
to accept it. Before it is definitely accepted, the following physical condition must
be met by all new contacts detected in the system:

δ(−) (q, t + Δttrial) < δmax (3.24)

If the condition described by (3.24) is met by all new contacts, the integration
continues without any further interference. If (3.24) is not met the integration algo-
rithm takes it as an indication to reject the time step and attempts a smaller time step.
Generally such action corresponds to halving the attempted time step, but particular
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integration error controls may take different actions. When a smaller new time step
is attempted the condition defined by (3.24) is checked again and a decision is made.
Eventually a suitable time step that ensures the fulfillment of (3.24) for all new
contacts is identified. The integrators available in math libraries include features to
inform to the user if the error control intends to accept or reject a time step before
doing it. When such features are available the procedure just described is easily
implemented.

3.6 Summary

In this chapter, different continuous contact-impact force models for both spherical
and cylindrical shape surface collisions in multibody mechanical systems were re-
viewed. In addition, various types of friction force models based on the Coulomb’s
law were also listed and discussed. Because modeling contact forces plays a crucial
role in the analysis of multibody mechanical systems that experience impacts, the
contact force model must be computed using suitable constitutive laws that take into
account material properties of the colliding bodies, geometric characteristics of the
impacting surfaces and, eventually, the impact velocity. Additionally the numerical
method for the calculation of the contact force should be stable enough to allow for
the integration of the mechanical equations of motion with acceptable efficiency.
These characteristics are ensured by using a continuous contact force model in
which the force and penetration vary in a continuous manner and for which some
energy dissipation is included. This approach has the extra benefit of leading to a
behavior of the variable time-step integrator that is more stable.

Some important conclusions can be drawn from the study presented in this
chapter. Among the spherical-shaped contact areas, the linear Kelvin–Voigt contact
model does not represent the overall nonlinear nature of impact phenomenon. The
Hertz relation does not account for the energy dissipation during the impact process.
Therefore the Hertz relation, along with the modification to represent the energy
dissipation, in the form of internal damping, can be adopted for modeling contact
forces in a multibody system. This model is straightforward and easy to implement
in a computational program.

The cylindrical models are nonlinear and implicit functions, and therefore, they
require a numerical iterative procedure to be performed. Furthermore these models
have been proposed as purely elastic, not being able to explain the energy dissipation
during the impact process. From the comparison between the spherical and cylin-
drical contact force models, it can be concluded that the spherical and cylindrical
force–displacement relations are reasonably close. Therefore, the straightforward
force–penetration relation proposed by Lankarani and Nikravesh (1990), with a
modification of the pseudo-stiffness parameter in the case of cylindrical contact,
is largely used for mechanical contacts owing to its simplicity and easiness of im-
plementation in a computational program. Aiding to those advantages, this is the
only model that accounts for energy dissipation during the impact process.
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In dynamic analysis of multibody systems, the deformation/indentation is known
at every time step from the configuration of the system, the forces evaluated being
based on the state variables. With the variation of the contact force during the contact
period, the dynamic system response is obtained by simply including updated forces
into the equations of motion. Since the equations of motion are integrated over the
period of contact, this approach results in a rather accurate response. This procedure
was further improved by including in the time integration scheme a procedure that
controls the time step in order to prevent large penetrations to develop in the initial
contact. Furthermore this methodology accounts for the changes in the system’s
configuration during the contact period. This approach is employed in the forth-
coming chapters to describe the impact between the elements that compose the joint
clearances.
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