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Preface

The primary goal of this book is to present suitable methodologies for dynamic
analysis of multibody mechanical systems with imperfect or real joints, that is,
considering clearances, including their tribological characteristics and surface com-
pliance properties. Two- and three-dimensional methodologies for imperfect kine-
matic joints with and without lubrication are presented. In the process, different
contact-impact force models are revised in the face of their suitability to represent
collision between the bodies connected by imperfect joints. The incorporation of
friction forces, based on the Coulomb friction law, is also discussed together with an
effective computational strategy. Further a general methodology which accounts for
squeeze-film and wedge-film actions, including the cavitation effect, for modeling
dynamically loaded journal–bearings is also presented.

The equations that govern the dynamical behavior of the general multibody me-
chanical systems incorporate the contact-impact forces due to collision between the
bodies that constitute the imperfect joints, as well as the hydrodynamic forces owing
to the lubrication effect. The Newton–Euler’s equations of motion and the general-
ized Cartesian coordinates are used here. Elementary multibody mechanical systems
are used to discuss the assumptions and procedures adopted. The main results ob-
tained from this research work show that the effect of imperfect joints, namely joints
with clearance, can have a predictable nonlinear dynamic response.

This book is written for academics, students and practitioners in mechanical en-
gineering, design, researchers in the field and teaching staff. This book can also be
used by students in the final year of MSc or in the beginning of PhD in mechanics
and computation sciences.

Motivation and Contributions for this Book

Computer-aided multibody mechanical systems emerged over the last three decades
as an important scientific part of Applied and Computational Mechanics, with sig-
nificant applications in several branches of engineering. This has been made possi-
ble not only thanks to the impressive improvement of the computer hardware and
software but also due to the development of robust and accurate computational tools,
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vi Preface

which in turn generated a demand for the analysis of more complex mechanical
systems. Not long ago, the design of machines and components was based on trial
and error and knowledgeable craftsmanship. Later, algebraic methods for analy-
sis eliminated part of the limitations of the trial and error and led to documented
methods used in the design of mechanical components. In today’s industry, there is
little room for error and a great need for optimized and cost-effective production
of components and machines with high reliability and durability. Still, all areas of
research require the construction of models and, therefore, the use of assumptions
and approximations. The analysis of complex mechanical systems is an area where,
in the past few decades, faster data processing has lead to an increased research
effort. This includes kinematic and dynamic analyses, synthesis and optimization of
the motion of mechanical systems. The main objective of this book is to contribute
to the improvement of the methodologies dealing with the analysis of realistic me-
chanical systems, which include imperfect or real joints, i.e., joints in which the
effects of clearance, misalignment, friction and lubrication are taken into account by
employing the multibody systems formulation. In line with the multibody systems
formulation, such systems can include several rigid and deformable bodies intercon-
nected to each other by different types of kinematic joints and being acted upon by
forces and moments. These systems are characterized by large displacements and
rotations having, generally, a nonlinear behavior.

None of the real mechanical systems have perfect mechanical joints because of
the functional tolerances required between adjacent moving segments. Due to either
the loads carried by the mechanical devices or the misalignments that are required
for their operation, real joints must be lubricated or must include bushings, generally
made with metals and polymers. By using rubber bushings a conventional mechan-
ical joint is transformed into a joint with clearance allowing for the mobility of the
over-constrained system in which it is used. A good example of the application of
these joints is vehicle dynamics in which the handling response or the vibration
characteristics of land vehicles are greatly improved when these elements are used
in the suspension system.

The mechanical joints of any industrial machine are obtained by allowing the
relative motion between the components connected by them. Due to the manufac-
turing tolerances, wear or material deformation, these joints are imperfect and have
clearances. These clearances modify the dynamic response of the system, justify the
deviations between the numerical predictions and the experimental measurements
and eventually lead to important deviations between the projected behavior of the
mechanisms and their real outcome. The attenuation of the impact response and of
the vibration characteristics in industrial machines is obtained by including, in their
design, a selection of joint clearances.

The imperfect joints with direct contact between the parts involved generally use
lubrication to minimize the energy dissipation. Therefore appropriate tribological
models must be devised in the framework of their application in general multibody
systems. The characterization of the normal contact forces in the nonlubricated
joints is realized by using the continuous contact force model while their tangential
forces are obtained by using appropriate friction force models. The joints, which
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have rubber bushings, can be described by a linear model that does not include
coupling between radial and axial or bending loading or by a more advanced non-
linear model for rubber bushings.

The general-purpose computational tools used for the design and analysis of me-
chanical systems have a wide number of mechanical systems modeling features that
require the description of rigid or flexible bodies for which geometry, mass, center
of mass, moment of inertia and other relevant properties are defined. The compu-
tational codes also provide a large library of kinematic joints that constrain relative
degrees of freedom between connected bodies. The kinematic joints available in the
commercial programs are represented as ideal joints, that is, there are no clearances
or deformations in them. Thus modeling the dynamics of multibody mechanical sys-
tems with clearances and imperfections is a challenging issue in mechanical design
and much work still remains to be done to achieve more advanced modeling tools.

This observation, coupled with the dearth of design guidelines in the field of
mechanical systems with real or imperfect joints, and also the importance of such
systems have motivated the work reported in this book.

Organization of the Book

An introduction and an overview of the book are provided in the first chapter. The
remainder of this book consists of five more chapters, dealing with the different
aspects involved in the study of imperfect joints in multibody mechanical systems.

In Chap. 2, the formulation of motion’s equations of multi-rigid body systems
is described. The generalized coordinates are the centroidal Cartesian coordinates
and the system configuration is restrained by constraint equations. The dynamic
formulation uses the Newton–Euler’s equations of motion, which are augmented
with the constraint equations that lead to a system of differential algebraic equations.
Constraint violation stabilization methods and the coordinate partition method are
also presented and discussed in this chapter. An elementary four-bar linkage is used
as an application example to demonstrate the computational treatment of this type
of systems.

Chapter 3 deals with contact-impact force models for both spherical- and
cylindrical-shaped surface collisions in multibody mechanical systems. The inclu-
sion of friction forces based on Coulomb’s friction law is also presented and dis-
cussed for effective computational implementation.

Chapter 4 focuses on the modeling of planar clearance joints without lubricant,
namely revolute and translational joints with clearance. Kinematic aspects of rev-
olute and translational joints with clearance are also presented. Results for a basic
slider–crank mechanism with a revolute clearance joint and a translational clearance
joint are presented and used to discuss the assumptions and procedures adopted.

The fifth chapter covers the lubricated models for revolute clearance joints in
multibody mechanical systems. The squeeze-film and wedge-film actions are con-
sidered as well as the cavitation effect. First, some techniques for modeling and
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evaluating the forces in lubricated revolute joints are presented and applied to a
simple journal–bearing under a constant and unidirectional external load. Finally, a
slider–crank mechanism with a lubricated revolute joint is considered as a numerical
example. Both the effect of the clearance size and oil lubricant viscosity effects are
studied.

Chapter 6 describes the modeling of spatial clearance joints, namely spherical
and revolute joints. A quick review on the formulation of spatial multibody sys-
tems is presented. In addition, a simple and brief description of the perfect spherical
and revolute joints is done. Three simple multibody systems are used as illustrative
examples, namely, the spatial four-bar mechanism, the double pendulum and the
slider–crank mechanism.
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Nomenclature

All symbols in this book are described in the nomenclature, unless stated otherwise
in the text.

General

Matrices are in boldface upper-case characters.
Vectors and column matrices are in boldface lower-case characters.
Scalars are in lightface characters.

Latin Symbols

Symbol SI unit Description

A – Rotational transformation matrix
a m Length
c m Radial clearance
cd – Dynamic correction coefficient
ce – Coefficient of restitution
c f – Coefficient of friction
D Ns/m Hysteresis damping coefficient
E N/m2 Young’s modulus of elasticity
e – Eccentricity vector
e m Eccentricity magnitude
ė m/s Eccentricity time derivative or radial velocity
e0, e1, e2, e3 – Euler parameters
f – Force vector
FN N Normal contact force
FT N Tangential force
g N, N m Generalized force vector
g(c) N, N m Constraint reaction forces vector
H m Distance between the guide surfaces
h m Fluid film thickness
K N/m1.5 Generalized stiffness
L m Length

xiii



xiv Nomenclature

Symbol SI unit Description

M kg, kg m2 System mass matrix
m – Number of kinematic independent constraints
n – Hertz’s contact force exponent
nb – Number of bodies
nc – Number of Cartesian coordinates
n – Normal unit vector
p – Euler parameter vector
p N/m2 Fluid pressure
q – Vector of generalized coordinates
q̇ – Vector of velocities
q̈ – Vector that contains the state of accelerations
R m Radius
r – Global position vector
s′ – Local position vector
t s Time
t – Tangential unit vector
vN m/s Normal velocity
vT m/s Tangential velocity
W m Slider width
XY – 2D global coordinate system
XYZ – 3D global coordinate system
y m, m/s System position and velocity
ẏ m/s, m/s2 System velocity and acceleration

Greek Symbols

Symbol SI unit Description

� – Position constraints vectors
�q – Jacobian matrix of constraints
Φqt – Time derivative of Jacobian matrix
�̇ – Constraint velocity equation
�̈ – Constraint acceleration equation
α – Baumgarte stabilization coefficient
β – Baumgarte stabilization coefficient
χ N s/m2.5 Hysteretic damping factor
δ m Penetration depth
δ̇ m/s Penetration velocity

δ̇
(−)

m/s Initial impact velocity
ε – Eccentricity ratio
� – Right-hand side vector of acceleration equations
λ – Lagrange multipliers vector
μ N s/m2 Dynamic fluid viscosity
� – Right-hand side vector of velocity equations
θ rad Angular position
ρ kg/m3 Material mass density
σ m2/N Material parameter
ν – Poisson’s ratio
ω rad/s Angular velocity
ξη – 2D body-fixed coordinate system
ξηζ – 3D body-fixed coordinate system



Nomenclature xv

Subscripts

Symbol Description

B Bearing
i Relative to body i
J Journal
j Relative to body j
n Normal direction
q Generalized coordinate
r Radial direction
t Tangential direction

Superscripts

Symbol Description

0 Initial conditions
g Ground
P Generic point P
r Revolute joint
s Spherical joint
t Translational joint
x X-direction
y Y-direction
z Z-direction

Operators

Symbol Description

( )T Matrix or vector transpose
(′) Components of a vector in a body-fixed coordinate system
(·) First derivative with respect to time
(··) Second derivative with respect to time
(.) Scalar or internal product
(×) Cross or external product
(�) Partial derivative
(∼) Skew-symmetric matrix or vector
Δ Increment

Abbreviations

Symbol Description

2D two-dimensional,
3D three-dimensional,
ADAMS automatic dynamic analysis of mechanical systems,
ALF augmented Lagrangian formulation,
BSM Baumgarte stabilization method,
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Symbol Description

CAE computer-aided engineering,
CPM coordinate partitioning method,
DADS dynamic analysis and design system,
DAE differential algebraic equation,
DAP dynamic analysis program,
DIM direct integration method,
DIVPRK double initial value problem Runge–Kutta,
DOF degrees of freedom,
DRAM dynamic response of articulated machinery,
EHL elasto-hydrodynamic lubrication,
ESDU Engineering Sciences Data Unit,
FEM finite element method,
GC geometric center,
IMP integrated mechanism program,
IVPRK initial value problem Runge–Kutta,
KAM kinematic analysis method,
KAPCA kinematic analysis program using complex algebra,
KINSYN kinematic synthesis,
LINCAGES linkage interactive computer analysis and graphically enhanced synthesis,
MADYMO mathematical dynamical models,
MBS MultiBody System,
ODE ordinary differential equation.



Chapter 1
Introduction

Multibody dynamics can be understood as the study of systems of many bodies
whose interactions are modeled by forces and kinematic constraints. In other words,
a multibody system (MBS) can be defined as a collection of bodies acted upon by
forces of different origins and interconnected to each other by different types of
joints that constrain their motion. The forces applied to the system components may
include those resulting from contact-impact, friction, gravity, joint constraints, ex-
ternal applications, the interaction with other systems such as fluids, tires or wheel–
rail contact or due to mechanical elements such as springs, dampers and actuators.
Kinematic constraint types may include revolute joints, translational joints, spheri-
cal joints and cylindrical joints, among others. The kinematic constraints may also
be in the form of prescribed trajectories for given points of the system components
or as driving constraints for a subsystem. The mechanical systems included under
the definition of MBS comprise robots, heavy machinery, automobile suspensions
and steering systems, machinery tools, animal bodies or satellites, among others
(Wittenburg 1977, Nikravesh 1988). However, the range of systems that can be
represented by MBS models is expanding and new exciting applications are being
proposed everyday.

1.1 Multibody Systems and the Advent of Computers

Traditionally the kinematic and dynamic analyses of multibody systems was under-
taken by assuming that the bodies were treated as rigid and without considering
the physical properties of the joints (Reuleaux 1963, Martin 1982, Shigley and
Uicker 1995). The kinematic solutions were obtained using the graphical method
or analytical method for simple cases. The forces and moments on the bodies were
then obtained based on the kinematic data. Since the traditional graphical and an-
alytical methods are only available for simple cases of mechanisms and due to the
broad usage of computers, numerical solutions for multibody systems were then
developed (Chace 1967, Uicker 1969, Paul and Krajcinovic 1970).

It is well known that by the end of the eighteenth century the basic laws of mo-
tion for both translation and rotation were known. However, up to the middle of
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the twentieth century little work effort was put on the dynamic analysis of systems
of interconnected bodies undergoing general translation and rotation. In fact, the
multibody system dynamics as it is known today began with the advent of comput-
ers.1 The first and most important impetus for development of multibody dynamics
was the rise of electronic digital computers, which finally broke down the massive
computational barriers. It was not until the late 1960s that computational techniques
found their way into the field of mechanical engineering.

In recent years greater emphasis has been placed on the design of high-speed,
lightweight and precision systems. Generally these systems incorporate various
types of driving, sensing and controlling devices working together to achieve spe-
cific performance requirements under different loading conditions. The design and
performance analysis of such systems can be greatly enhanced through transient dy-
namic simulations, provided that all significant effects can be incorporated into the
mathematical model. The need for a better design, in addition to the fact that many
mechanical and structural systems operate in adverse environments, demanded the
inclusion of many factors that have been ignored in the past. Systems such as en-
gines, robotics, machine tools and space structures may operate at high speeds and
in very high temperature environments. Neglecting deformation effects and clear-
ances at the joints, for example, when these systems are analyzed, can lead to a
mathematical model that poorly represents the actual system.

The research in the area of multibody dynamics has been motivated by a growing
interest in the simulation and design of large-scale systems of interconnected bodies
that undergo large displacements and rotations. The analysis and design of such
systems require the simultaneous solution of hundreds or thousands of differential
equations of motion, a task that could hardly be accomplished a few decades ago
before the development of electronic computers. By the mid-1960s, attention turned
to the possibility of constructing general-purpose multibody computer programs.
With such programs, it is possible to simulate the motion of a very broad class
of multibody systems. General-purpose programs are capable of generating and
integrating the equations of motion, based on input data describing the way the
bodies are interconnected, the mechanical and geometric properties of the bodies
and the interaction between them, along with the system state at an initial time.
This requires systematic techniques for formulating the equations of motion and
numerical methods for solving them.

Broadly the rise of multibody systems dates back to the mid-1960s. Ever since,
multibody dynamics has grown into one of the major fields of computational me-
chanics. In fact, the formalisms for computer-oriented generation of multibody sys-
tems have been developed to a high degree of maturity during the past decades. The
specialized literature includes a number of books on the subject (Wittenburg 1977,
Kane and Levinson 1985, Haug 1989, Nikravesh 1988, Shabana 1989, Huston 1990,

1 In 1964 Gordon Moore—semiconductor engineer and co-founder of Intel in 1968—stated that
the density of transistors in silicon based on micro-chips would double every year. Except in the
late 1970s, where the doubling period increased to 18 months, this statement has been true for over
three decades.
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Schiehlen 1990, Amirouche 1992), where a broad variety of formulations and
computational methods are discussed. More recently, a number of review papers
of interest have been provided by Huston (1991), Schiehlen (1997), Shabana (1997)
and Rahnejat (2000). Indeed, over the last years, the field of multibody systems has
developed a new vigor inspired by new discoveries of formulation, new compu-
tational and experimental procedures and new applications. The modeling aspects
in the various technological contexts and the interaction with other methodologies
for computer-aided system design are fertile research topics in multibody dynamics
(Ambrósio and Pereira 2003). Schiehlen (1997) stated that ‘Challenging applica-
tions include biomechanics, chaos and nonlinearity, robotics and society and vehicle
control. . . multibody system dynamics turn out to be a very lively and promising
research subject’ and such statement is being revised everyday by challenging ap-
plications and developments.

Over the last 40 years, several general-purpose computer codes that are ca-
pable of performing dynamic analysis of constrained mechanical systems have
been developed (Chace 1967, Uicker 1969, Paul and Krajcinovic 1970). A pro-
gram called KAPCA (cited by Shigley and Uicker 1995), standing for kinematic
analysis program using complex algebra, written by students at the University of
Wisconsin, has proved highly efficient as well as easy to use. This program had
severe limitations such as the inability to perform force analysis of mechanisms.
The first widely available general program for mechanism analysis was named
KAM (kinematic analysis method) and was developed and distributed by IBM
(Chace 1963, 1964). It included the capabilities for position, velocity, accelera-
tion and force analysis of both planar and spatial systems. KINSYN (Rubel and
Kaufman 1977) is a program available today which is intended primarily for kine-
matic synthesis. It addresses the synthesis of planar mechanism. This program was
developed byKaufman (1978) at the Massachusetts Institute of Technology. The
DRAM, an acronym for dynamic response of articulated machinery, is a generalized
program for the kinematic and dynamic analyses of planar mechanisms that was
developed by Chace (1978) at the University of Michigan and that is in the origin of
the commercial code ADAMS. DRAM can be used to simulate even very complex
planar mechanisms and provide position, velocity, acceleration and static force or
dynamic force analysis. IMP (integrated mechanism program) was developed by
Sheth and Uicker (1971) at the University of Wisconsin. This program can also
be used to simulate either planar or spatial systems and provide kinematic, static
and dynamic analyses (Erdman 1985, 1995, Crossley 1988). Erdman and Gustafson
(1977) developed a computer code called LINCAGES (linkage interactive computer
analysis and graphically enhanced synthesis) to solve synthesis of mechanism prob-
lems.Orlandea et al. (1977) presented the first practical solution methodology for
large multibody systems, based upon Lagrangian dynamics for constrained systems.
This work was the basis of the computer program ADAMS, an acronym for auto-
matic dynamic analysis of mechanical systems, the formulation and implementa-
tion of which incorporate stiff integration algorithms and sparse matrix techniques.
Haug (1989) used the Cartesian position and orientation of the center of mass of
each rigid body in the system to express the equations of motion. The constraints
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are determined from the kinematic pairs connecting adjacent bodies. The result-
ing dynamics algorithm has been implemented in the software package DADS, an
acronym for dynamic analysis and design system (Haug et al. 1982). KAP (kine-
matic analysis program) and DAP (dynamic analysis program) are two FORTRAN
codes developed by Nikravesh (1988) at the University of Arizona. These computer
codes allow the kinematic and dynamic analyses of mechanical systems with rigid
bodies. Garcia de Jálon and Bayo (1994) use the Cartesian coordinates of the joints
connecting each body in the system, called natural coordinates, to derive the equa-
tions of motion. The constraint equations are derived from the relationship between
adjacent kinematic pairs. Their formulation is used in the computer code COM-
PAMM (Jiménez et al. 1990). Also in Europe there have been important multibody
codes developed in the past 20 years. NEWEUL (Kreuzer 1979) is a software pack-
age that has been developed and maintained at the Stuttgart University since 1979
and is able to perform dynamic analysis of mechanical systems, such as vehicle dy-
namics, biomechanics and dynamics of mechanisms. NEWEUL software, based on
the Newton–Euler formulation, generates the equation of motion of the multibody
systems in symbolic form. MECANO (Géradin and Cardona 1989) is a software
that allows the simulation of articulated systems and accounts for nonlinear flexi-
bility and large displacements. SIMPACK (Rulka 1990) is a commercial multibody
simulation code based on recursive dynamics that is able to describe and predict
the motion of general mechanical systems, analyze vibrational behavior, calculate
forces and moments and interface CAE environments. MADYMO, acronym for
mathematical dynamical models, is an advanced software engineering tool devel-
oped by TNO (1998), which is basically used for occupant safety analysis. This
software tool combines multibody and finite element methods and allows the design
and optimization of vehicle structures, components and safety systems. Based on
a recursive dynamics formalism the computer code RecurDyn (2006) is one of the
most recent general-purpose commercial multibody codes capable of modeling a
wide variety of complex multibody systems.

1.2 Multibody System’s Equations of Motion

In a broad sense, the best-known methods to derive the equations of motion are
Newton–Euler’s method (Nikravesh 1988), Lagrange’s method (Shabana 1989) and
Kane’s method (Kane and Levinson 1985). The Newton–Euler’s methodology in-
volves introducing a set of Lagrange’s multipliers representing reaction forces of
the joints which require an additional set of algebraic constraint equations. The
size of the solution matrix becomes large, thereby occupying a substantial memory
space for computation. However, this approach is relatively simple to implement.
The Lagrange and Kane’s methods select generalized coordinates to eliminate the
explicit use of constraint equations from the formulation; therefore, a minimum
number of equations are generated. The main drawback of these techniques con-
cerns their difficulty to find generalized coordinates. Also their implementation is
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not as easy and straightforward as the Newton–Euler’s method. For this reason, the
Newton–Euler’s method is adopted throughout this book to present the methodolo-
gies developed here.

The transient dynamic response of a constrained multibody system can be ob-
tained by solving its governing equations of motion. In general, when not using a
minimal set of coordinates, the motion of MBS is described by the so-called dif-
ferential algebraic equations (DAE), i.e., a set of differential equations coupled with
algebraic constraints (Nikravesh 1988, Haug 1989). The differential equations are of
second order, and the algebraic equations describe the kinematic joints in the system.
The solution of this type of equations and their integration in time introduces several
numerical difficulties, namely the existence and uniqueness of solutions and insta-
bility for higher index systems (Garcia de Jálon and Bayo 1994). Specific numerical
algorithms that enforce the stability of the solution are often required (Shampine
and Gordon 1975, Gear 1981, Brenan et al. 1989). These algorithms use multi-time
stepping procedures and often have the ability to deal with stiff systems. An alter-
native approach for the solution of the equations of motion is to transform the set
of DAE in its underlying set of ordinary differential equations (ODE), which are
solved by integration in time. It is well known that the substitution of the algebraic
equations of the DAE system by their differential counterpart in the ODE system
introduces mild instabilities and drift problems in the integration process, which
can be attenuated using stabilization techniques such as Baumgarte stabilization
method (BSM) (Baumgarte 1972) or the iterative augmented Lagrangian formula-
tion (ALF) (Bayo et al. 1988). Other methods such as the K-U formulation, based
on the application of the Moore Penrose generalized inverse/pseudo-inverse ma-
trix to multibody systems, are also applied with success, increasing the efficiency
and robustness of the formulation in the presence of redundant constraints (Neto
and Ambrósio 2003), but they do not help in the stabilization of the constraint
violations.

Due to its simplicity and computational implementation easiness, Cartesian co-
ordinates are used in this work to formulate the equations of motion of the multi-
body systems. The kinematic constraints are added to the formulation by using
the Lagrange multipliers technique. This simple, but powerful, approach allows
for the analysis of complex mechanical systems. The equations of motion result-
ing from this formulation are composed of a set of differential algebraic equations
(Nikravesh 1988). In a constrained multibody system, the equations of motion are
solved by appending the constraint acceleration equations to the formulation. The
resulting system of equations leads to a high-sparsity matrix. This fact can be ex-
ploited in order to improve the computational efficiency of the multibody programs.
When solving the system of equations, the Gauss elimination scheme requires a
high number of arithmetic operations that are proportional to the cube of the matrix
dimension. With the use of a sparse matrix solver the number of arithmetic oper-
ations is greatly reduced, becoming almost proportional to the number of nonzero
elements in the matrix of the system. The use of a sparse solver performs the Gauss
elimination only on the nonzero elements of the matrix, reducing the number of
fill-ins needed while showing good numerical stability. Such approach is used with
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success in rigid and flexible multibody systems by Gonçalves and Ambrósio (2000),
Gonçalves (2002) and Pombo (2004).

The computational programs for multibody systems analysis are based on differ-
ent approaches for automatic generation and integration of the equations of motion.
The computational efficiency of these programs depends upon several factors, two
of which are the choice of the type of coordinates and the methods used for the
numerical solution of the different types of equations. The choice of coordinate
type directly influences both the number of equations of motion and their order of
nonlinearity. Furthermore, depending on the form of these equations, one method of
numerical solution may be preferable to another in terms of efficiency and accuracy.
Relative coordinates have the advantages of leading to the smallest set of equations
possible. However, they present drawbacks such as the large complexity in their
derivation, the high degree of nonlinearity of the equations of motion and their
complex computer implementation. To overcome these disadvantages, Cartesian co-
ordinates are used in most of the general-purpose computer codes, such as ADAMS
(Ryan 1990), which is broadly used in industry. The formulation with Cartesian
coordinates yields a large number of equations but the order of nonlinearity is lower
than that of the relative, or point, coordinates.

Although in this work all methodologies presented use Cartesian coordinates
it can be argued that depending on the application different types of coordinates
present relative advantages and drawbacks. Also, depending on how the formula-
tions based on a particular type of coordinates are implemented computationally,
some of the drawbacks on the use of such coordinates may be limited or eliminated.
A review on advantages and disadvantages of different formulations can be found
in Nikravesh (1988).

1.3 Kinematic and Dynamic Analyses of Multibody Systems

In dealing with the study of multibody system motion, two different types of
analysis can be performed, namely, the kinematic analysis and the dynamic anal-
ysis. The kinematic analysis consists in the study of the system’s motion inde-
pendently of the forces that produce it, involving the determination of position,
velocity and acceleration of the system components. In kinematic analysis, only
the interaction between the geometry and the motions of the system is analyzed
and obtained. Since the interaction between the forces and the system’s motion
is not considered, the motion of the system needs to be specified to some extent,
that is, the kinematic characteristics of some driving elements need to be pre-
scribed, while the kinematic motion characteristics of the remaining elements are
obtained using the kinematic constraint equations, which describe the topology of
the system.

The dynamic analysis of multibody systems aims at understanding the relation-
ship between the motion of the system parts and the causation of the motion, includ-
ing external applied forces and moments. The motion of the system is, in general,
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not prescribed, its calculation being one of the principal objectives of the analysis.
The dynamic analysis also provides a way to estimate external forces that depend
on the relative position between the system components, such as the forces exerted
by springs, dampers and actuators. Furthermore it is also possible to estimate the
external forces that are developed as a consequence of the interaction between the
system components and the surrounding environment, such as contact-impact and
friction forces. The internal reaction forces and moments generated at the kinematic
joints are also obtained in the course of the dynamic analysis. These reaction forces
and moments prevent the occurrence of the relative motions, in prescribed direc-
tions, between the bodies connected via kinematic joints. The fundamental aspects
related to the kinematic and dynamic analyses of multibody systems are discussed
in detail in the forthcoming chapters.

1.4 Multibody Systems with Imperfect Joints

Multibody systems are made of several components, which can be divided into two
major groups, namely links, that is, bodies with a convenient geometry, and kine-
matic joints, which introduce some restrictions on the relative motion of the various
bodies of the system. Usually the bodies are modeled as rigid or deformable bodies,
while joints are represented by a set of kinematic constraints. The functionality of
a kinematic joint relies upon the relative motion allowed between the connected
components. This fact implies the existence of a gap, that is, a clearance between
the mating parts, and thus surface contact, shock transmission and the development
of different regimes of friction and wear. No matter how small that clearance is,
it can lead to vibration and fatigue phenomena, lack of precision or even random
overall behavior. Therefore it is quite important to quantify the effects of both clear-
ance joints and bodies flexibility on the global system response in order to define
the minimum level of suitable tolerances that allow mechanical systems to achieve
required performances.

Mechanical systems with rigid and flexible bodies and with nonideal joints have
been treated in the past. Studies have considered joint compliance and friction, but
without clearances (Haug et al. 1986). Methods for modeling joint connections and
external impacts using restitution coefficient and momentum have also been pro-
posed in the literature (Khulief and Shabana 1986, 1987). While such methods offer
the advantage of relatively low computational effort over techniques that explicitly
model the joint impact, they do not provide the values of these forces, which are
important from the design point of view. In fact, measurements of the influence that
joint clearances have on the kinematic and dynamic performances of a mechanism
provide useful criteria for judging the suitability of the mechanism to perform a
given task.

In general, in the dynamic analysis of multibody mechanical systems it is as-
sumed that the kinematic joints are ideal or perfect, that is, clearance, local elas-
tic/plastic deformations, wear and lubrication effects are neglected. However, in a
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real mechanical joint a gap is always present. Such clearance is necessary not only
to allow the relative motion between the connected bodies but also to permit the
assemblage of components. For instance, in a journal–bearing joint, such as the
one shown in Fig. 1.1, there is a radial clearance allowing for the relative motion
between the journal and the bearing. The presence of such joint clearance leads to
degradation of the performance of mechanical systems in virtue of the impact forces
that take place. No matter how small the clearance is, it can lead to vibration and
fatigue phenomena, premature failure and lack of precision or even random overall
behavior.

The degradation of the performance of mechanical systems with clearance joints
has been recognized for a number of years (Goodman 1963). It is known that the
forces within joints with realistic amounts of clearance, due to clearance impacts, are
much higher than would be calculated if the joint clearances were neglected (Flores
and Ambrósio 2004). High joint impact forces can also cause early failure. However,
the total elimination of the clearance in the connections aiming at eliminating joint
impacts is, usually, either expensive or impossible.

The subject of the representation of imperfect joints has attracted the attention
of a large number of researchers that produced a number of theoretical and experi-
mental works devoted to the dynamic simulation of mechanical systems with joint
clearances (Dubowsky and Freudenstein 1971a, b, Bahgat et al. 1979, Grant and
Fawcett 1979, Haines 1985, Soong and Thompson 1990, Deck and Dubowsky 1994,
Ravn 1998, Claro and Fernandes 2002). Some of these works focus on the pla-
nar systems in which only one kinematic joint is modeled as a clearance joint.
Dubowsky and Freudenstein (1971a, b) formulated an impact pair model to predict
the dynamic response of an elastic mechanical joint with clearance. In their model,
springs and dashpots were arranged as Kelvin–Voigt model. This work was subse-
quently extended by Dubowsky and his co-workers (Dubowsky 1974a, Dubowsky
and Gardner 1977, Dubowsky and Moening 1978). Dubowsky (1974b) showed how

Journal

Bearing

Clearance

Fig. 1.1 Actual revolute joint with clearance
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clearances can interact dynamically with machine control systems to destabilize and
produce undesirable limit cycle behaviors.

Wilson and Fawcett (1974) assumed that clearance exists in the sliding bearing
in a slider–crank mechanism. A theoretical investigation of the effects of parame-
ters, such as the geometry, speed and mass distribution of the mechanism, upon the
transverse motion of the slider was reported by these researchers. They derived the
equations of motion for the different scenarios of the slider motion inside the guide.

Earles and Wu (1973) employed a modified Lagrange’s equation approach in
which constraints were incorporated using Lagrange multipliers in order to predict
the behavior of rigid mechanism with clearance in a journal–bearing. The clearance
in the journal–bearing was modeled by a massless imaginary link, but the simulation
was restricted to the range of motion that starts when the contact between the journal
and the bearing is terminated. Later they investigated the prediction of contact loss
in a bearing of a linkage mechanism (Earles and Wu 1975, Wu and Earles 1977).

Mahrus (1974) conducted an experimental investigation into journal–bearing per-
formance. A test machine was developed on which steady or varying unidirectional
or full two-component dynamic load can be applied to the test journal–bearing. The
corresponding journal center path is measured simultaneously with the load to show
the effect of the load diagram on hydrodynamic lubrication.

Grant and Fawcett (1979) proposed a method to prevent contact loss between
the journal and the bearing. Their experimental results verified the approach for
a limited class of systems, but could not overcome the lack of universality of the
method (Haines 1980a). In a theoretical study, Townsend and Mansour (1975) mod-
eled a four-bar crank-rocker mechanism with clearance as two sets of compound
pendulums. They ignored the motion in contact mode entirely and instead a close
succession of small pseudo-impacts was assumed for the simulation. Subsequently
Miedema and Mansour (1976) extended their previous two-mode model, for the free
flight and impact modes, to a three-mode model in which a following mode was pro-
posed. In their numerical simulations, the following mode was always assumed to
occur immediately after the impact mode. However, this is frequently not observed
in practice.

Haines (1980b) derived equations of motion that describe the contributions at a
revolute joint with clearance but with no lubrication present. Also Haines (1985)
carried out an experimental investigation on the dynamic behavior of revolute joints
with varying degrees of clearance. Under static loads, the deflection associated with
contact elasticity in the dry journal–bearing is found to be much larger and less
linear than predicted.

Bengisu et al. (1986) developed a separation parameter for a four-bar linkage
which was based on a zero-clearance analysis. The theoretical results were com-
pared with the experimental results and showed good qualitative agreement. They
also predicted contact loss in a mechanism with multiple clearance joints.

Norton et al. (1994) discussed the bearing forces as a function of mechanical
stiffness and the vibration isolation in an experimental four-bar mechanism. The test
rig was instrumented with piezoelectric accelerometers and force transducers. As
expected, the clearances in the physical model created significantly larger dynamic
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accelerations, torques and forces on the bearings than was predicted theoretically by
the rigid dynamic model.

Roger and Andrews (1977) developed mathematical models for the journal–
bearing elements, which take into account the effect of clearance, surface com-
pliance and lubrication. However, their lubrication model only accounts for the
squeeze-film effect. Later Liu and Lin (1990) extended Roger and Andrews’ work
to include both squeeze-film and wedge-film actions. Schwab (2002), based on the
work of Moes et al. (1986), applied the impedance method to model lubricated revo-
lute joints in a slider–crank mechanism. Flores et al. (2003) proposed a hybrid model
for revolute clearance joints in which the dry contact and the pure squeeze-film
effect are combined. In a later work, Flores et al. (2006), based on the Pinkus and
Sternlicht (1961) formulation for dynamically loaded journal–bearings, presented a
model for dynamic analysis of a planar slider–crank mechanism with a lubricated
revolute joint. Alshaer et al. (2001) analyzed and compared the dynamic response
of a slider–crank mechanism in which a revolute joint was modeled as frictionless
dry contact and lubricated joint as well.

Feng et al. (2002) developed an optimization method to control the change of
inertia forces by optimizing the mass distribution of moving links in planar linkages
with clearances at joints. Innocenti (2002) presented a method for analysis of spatial
structures with revolute clearance joints. García Orden et al. (2003) presented a
methodology for the study of typical smooth joint clearances in multibody systems.
This approach takes advantage of the analytical definition of the material surfaces
defining the clearance, resulting in a formulation where the gap does not play a
central role, as it happens in standard contact models.

Other researchers also included the influence of the flexibility of bodies in the
dynamic performance of multibody systems besides the existence of gaps in the
joints (Winfrey et al. 1973, Dubowsky et al. 1991, Bauchau and Rodriguez 2002).
Soong (1988) presented an analytical and experimental investigation of the elas-
todynamic response characteristics of a planar linkage with bearing clearances.
Dubowsky and Moening (1978) demonstrated a reduction in the impact force level
by introducing the flexibility of bodies. They also observed a significant reduction
of the acoustic noise produced by the impacts when the system incorporates flexible
bodies. Kakizaki et al. (1993) presented a model for spatial dynamics of robotic ma-
nipulators with flexible links and joint clearances, where the effect of the clearance
is taken to control the robotic system.

The dynamic behavior of the multibody systems with clearance joints is very
sensitive to small changes of parameters, namely the clearance size and the fric-
tion coefficient. In fact, the system response can change from periodic to chaotic
with a very small variation of the initial parameters. Seneviratne and Earles (1992)
used a massless link model to study the behavior of a four-bar mechanism with
a clearance joint. Farahanchi and Shaw (1994) studied the dynamic performance
of the slider–crank mechanism with a slider clearance. This research showed that
both periodic and chaotic behaviors depend on the values of friction coefficient and
crank velocity. Rhee and Akay (1996) used a discontinuous contact force model
to analyze a four-bar mechanism with one revolute clearance joint. They showed
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that, depending on the friction coefficient and clearance size, the system can exhibit
periodic or chaotic behavior. More recently, Ravn (1998) and Flores (2005) demon-
strated, through the use of Poincaré maps, that the dynamic response of mechanical
systems with clearance joints can be periodic in some situations, but also chaotic for
other conditions.

1.5 Contact Analysis in Multibody Systems

In general, the motion characteristics of a multibody system are significantly af-
fected by contact-impact phenomena. According to Gilardi and Sharf (2002), impact
is a complex physical phenomenon for which the main characteristics are a very
short duration, high force levels, rapid energy dissipation and large changes in the
velocities of bodies. Inherently contact implies a continuous process which takes
place over a finite time.

The problem of collision between rigid bodies is quite old and it was analyzed
originally by Newton (1686). Whittaker (1904) extended Newton’s work to account
for friction phenomenon. Up to 1904, all of the contact problems used the theory
developed by Newton, the inclusion of friction in the model being the major diffi-
culty, as pointed out by Painlevé (1905). However, Kane (1984) pointed out, in a
newsletter with limited circulation, an apparent paradox on the application of the
Newton’s theory with Coulomb’s friction to a problem of a collision in a double
pendulum leading to an increase of energy in the system. Naturally the question that
arises is: what was wrong? Keller (1986) presented a solution to Kane’s paradox,
but the solution was not easy to generalize. Keller’s solution resulted in widespread
interest, which led to the development of relevant work and even to the publication
of relevant textbooks totally devoted to this issue such as Brach (1991), Pfeiffer and
Glocker (1996), Johnson (1999), Stronge (2000), among others.

Brach (1991) presented an algebraic solution scheme, revising Newton’s theory
and introducing impulse ratios, to describe the behavior in tangential directions.
He defined the tangential impulse as a constant fraction of the normal impulse.
This fraction is equivalent to friction coefficient in many cases. However, Brach’s
solution did not give clear solutions to the problem when the reverse sliding was
considered during the collision. Smith (1991) proposed another purely algebraic
approach to the problem using the Newton’s theory for the coefficient of restitution.
The impulsive ratio is determined using as velocity the average value of different
slipping velocities. Wang and Mason (1992), based on the Routh’s (1905) tech-
nique, compared the coefficients of restitution given by Newton and Poisson. They
also identified the impact conditions under which Newton’s and Poisson’s models
give the same solution. Stronge (1991) demonstrated the energy inconsistencies in
some solutions obtained with Poisson’s model when the coefficient of restitution
is assumed to be independent of the coefficient of friction. Furthermore Stronge
proposed to define the coefficient of restitution as the square root of the ratio of
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the elastic strain energy released during the restitution to the energy absorbed by
deformation during compression.

Hurmuzlu and Marghitu (1994) studied the contact problem in multibody sys-
tems, where a planar rigid-body kinematic chain undergoes an external impact and
an arbitrary number of internal impacts. Based on Keller’s (1986) work, they de-
veloped a differential–integral approach and used different models for coefficient
of friction. Han and Gilmore (1993) proposed a similar approach, using an alge-
braic formulation of the equations of motion, the Poisson’s model of restitution
and the Coulomb’s law to define the tangential motion. Different conditions that
characterize the motion (slipping, sticking and reverse sliding) are detected by an-
alyzing velocities and accelerations at the contact points. Han and Gilmore (1993)
confirmed their simulation results with experiments for two-body and three-body
impacts. Haug et al. (1986) directly solved the differential equations of motion by
using the Lagrange multiplier technique. Newton’s model was used for impact while
the Coulomb’s law was used for friction.

The analysis of contact between two bodies can be extended to the analysis of
impact in a multibody mechanical system. Whenever a link in a multibody system
experiences a hard stop, contact forces of complex nature act on the links and the
corresponding impulse is transmitted throughout the system. In the case of worn
joints with clearances, the link moves freely inside the clearance zone, because it
is not constrained, until it impacts onto the joint and the link experiences a hard
stop (Flores and Ambrósio 2004). The methodology used to describe multibody
mechanical systems with hard stops and joint clearances is based on the develop-
ment of different contact force models that include energy dissipation, with which a
continuous analysis of the system undergoing internal impact is performed.

The impact phenomenon is characterized by abrupt changes in the values of
system variables, most commonly discontinuities in the system velocities. Other
effects directly related to the impact phenomena are those of vibration propagation
through the system, local elastic/plastic deformations at the contact zone and fric-
tional energy dissipation. Impact is a prominent phenomenon in many mechanical
systems such as mechanisms with intermittent motion and mechanisms with clear-
ance joints (Lee and Wang 1983, Khulief and Shabana 1986, 1987). Therefore, in
order to correctly simulate and design these kinds of mechanical systems adequately,
some appropriate contact-impact force model must be adopted. Furthermore, during
impact, a multibody system presents discontinuities in geometry and some material
properties can be modified by the impact itself.

In a broad sense, the different methods to solve the impact problem in multibody
mechanical systems are continuous and discontinuous approaches (Lankarani and
Nikravesh 1990). Within the continuous approach, the methods commonly used
are the continuous force model, which is in fact a penalty method, and the uni-
lateral constraint methodology, based on complementary approaches (Pfeiffer and
Glocker 1996). The continuous contact force model represents the forces arising
from collisions and assumes that the forces and deformations vary in a continuous
manner. In this method, when contact between the bodies is detected, a contact force
perpendicular to the plane of collision is applied. This force is typically applied as a
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spring–damper element, which can be linear, the Kelvin–Voigt model (Timoshenko
and Goodier 1970), or nonlinear, the Hunt and Crossley model (Hunt and Cross-
ley 1975). Figure 1.2 schematically shows these two contact force models. For long
impact durations this method is effective and accurate in so far as the instantaneous
contact forces are introduced into the system’s equations of motion. In the second
continuous approach, when contact is detected a kinematic constraint is introduced
in the system equations. Such a constraint is maintained while the reaction forces
are compressive and removed when the impacting bodies rebound from contact
(Ambrósio 2000).

As far as the second approach is concerned, the discontinuous method assumes
that the impact occurs instantaneously and the integration of the equations of mo-
tion is halted at the time of impact. Then a momentum balance is performed to
calculate the post-impact velocities of the bodies involved in the contact and all
those included in the same kinematic chain. The integration is then resumed with
the updated velocities until the next impact occurs. In the discontinuous method, the
dynamic analysis of the system is divided into two intervals, before and after impact.
The restitution coefficient is employed to quantify the dissipation energy during
the impact. The restitution coefficient only relates the velocity just after separation
and the velocity just before contact, and ignores what happens in between. The
discontinuous method is relatively efficient. However, the unknown duration of the
impact limits its application because if the duration of impact is large enough, the
system configuration changes significantly (Lankarani 1988). Hence the assumption
of instantaneity of impact is no longer valid and the discontinuous analysis cannot
be adopted. This method, commonly referred to as piecewise analysis, has been used
for solving intermittent motion problems (Khulief and Shabana 1986, 1987).

Broadly an impact may be considered to occur in two phases: the compression or
loading phase and the restitution or unloading phase. During the compression phase,
the two bodies deform in the normal direction to the impact surface, and the relative
velocity of the contact points/surfaces on the two bodies in that direction is reduced

Fig. 1.2 Contact force
models; FN is the normal
contact force, K is the
stiffness constant and d is the
damping coefficient.
(a) Linear viscous-elastic
Kelvin–Voigt force model,
(b) nonlinear viscous-elastic
Hunt and Crossley force
model

K d K d

FN

FN FN

FN

(a) (b)
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to zero. The end of the compression phase is referred to as the instant of maximum
compression or maximum approach. The restitution phase starts at this point and
ends when the two bodies separate (Brach 1991). The restitution coefficient reflects
the type of collision, for a fully elastic contact ce = 1, while for a fully plastic contact
ce = 0. The most general and predominant type of collision is the oblique eccentric
collision, which involves both relative normal velocity and relative tangential ve-
locity (Maw et al. 1975, Zukas et al. 1982). Figure 1.3 shows the oblique eccentric
collision between two bodies. A more detailed analysis on the contact-impact force
models for multibody systems will be presented in Chap. 3.

The contact between two bodies can also be classified as conformal and noncon-
formal (ESDU 78035 1978, Johnson 1999). A contact is said to be conformal if the
surfaces of the two bodies fit exactly or even closely together without deformation.
Bodies which have dissimilar profiles are said to be nonconformal. When brought
into contact without deformation they will first touch at a point (point contact) or
along a line (line contact). Figure 1.4 illustrates examples of conformal and noncon-
formal contacts. It should be highlighted that the radius of curvature is, by definition,
positive for convex surfaces and negative for concave surfaces.

The compliant continuous contact force models, commonly referred to as penalty
methods, have been gaining significant importance in the context of multibody sys-
tems with contacts thanks to their computational simplicity and efficiency. In these
models, the contact force is expressed as a continuous function of the penetration
of relative bodies. However, one of the main drawbacks associated with these force
models deals with the difficulty to choose the contact parameters such as the equiva-
lent stiffness or the degree of nonlinearity of the penetration, especially for complex
contact scenarios. Thus the complementary formulations for contact modeling in
multibody systems have attracted the attention of many researchers (Rockafellar
1972, Moreau 1988, Pang et al. 1992, Pfeiffer 1999, Bauchau et al. 2001, Trin-
kle 2003). Assuming that the contacting bodies are truly rigid, as opposed to lo-
cally deformable or penetrable as in the penalty approaches, the complementary
formulations resolve the contact dynamics problem by using the unilateral con-
straints to compute contact impulses or forces to prevent penetration from occur-
ring. Thus at the core of the complementary approach is an explicit formulation
of the unilateral constraints between the contacting rigid bodies (Kilmister and
Reeve 1966, Rosenberg 1977, Brogliato et al. 2002). In the approach, contacts are

Fig. 1.3 Oblique eccentric
collision between two bodies

(i)
(j)

vi

vj
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Fig. 1.4 Conformal and
nonconformal contacts:
(a) sphere on sphere,
nonconformal contact,
(b) cylinder on cylinder,
conformal contact

(b)(a)

intermittent, that is, an active constraint can become passive or inactive, while an
inactive constraint can become active. In the event of a passive constraint becoming
active, the change is generally accomplished by an impact which is characterized
by impulsive forces. Such an event changes the behavior of the system, the number
of kinematic constraints and, therefore, the number of degrees of freedom of the
system is changed. Consequently the governing system of differential equations of
motions is changed too.

Lötstedt (1982) presented a formulation for the contact force developed between
rigid bodies when subjected to unilateral constraints and constructed a unique so-
lution by using the linear complementary theory of mathematical programming.
Analysis of the bounds on contact velocity and existence of the contact force in the
linear complementary formulation was also presented. Baraff (1989) provided the
detail of the complimentarity conditions in acceleration–force form for the contact
between two polyhedral bodies and proposed to employ heuristic solution meth-
ods to calculate the forces between the bodies in noncolliding contact. Pfeiffer and
Glocker (1996) presented a formulation of the impact system dynamics with unilat-
eral constraints at acceleration–force level and employed the impact rule formulated
to convert the two-dimensional frictional impact problem to a linear complementary
problem. The extension of the treatment to three-dimensional contact was developed
and presented by Glocker (1999), in which both approximate polyhedral and conic
friction laws were used to produce linear and nonlinear complementary formula-
tions, respectively. Later Glocker (2001) presented a comprehensive revision of the
contact dynamics fundamentals along with a number of practical contact examples.
Pfeiffer (1999) presented a brief development of the contact force calculation for
nonchanging contact configuration. Trinkle (2003) proposed a time-stepping algo-
rithm incorporating Coulomb friction and inelastic impacts and shocks in velocity–
impulse form.

Certainly the advances in contact mechanics and the extensive work published
in this field allow finding advantages and drawbacks on the use of the different
continuous and discontinuous approaches. In this work, the contact forces are rep-
resented using the continuous force approach due to its simplicity and its easy un-
derstanding. Although not discussed any further, unilateral constraints could also
have been chosen to handle the contact. In any case, the contact detection and the
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methodologies to deal with the tribological effects remain the same regardless of
the choice of methodology selected to handle the contact forces being based on
unilateral constraints or on a penalty method.
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Chapter 2
Multibody Systems Formulation

The dynamic analysis of multibody systems, made of interconnected bodies that
undergo large displacements and rotations, is a research area with applications in
a broad variety of engineering fields that deserved relevant attention over the last
few decades (Wittenburg 1977, Nikravesh 1988, Huston 1990, Schiehlen 1990).
Many multibody computational programs capable of automatic generation and in-
tegration of the differential equations of motion have been developed, such as DAP
(Nikravesh 1988), DADS (Smith and Haug 1990), ADAMS (Ryan 1990), COM-
PAMM (Jiménez et al. 1990) and SIMPACK (Rulka 1990). The various formu-
lations of multibody systems used in these programs differ in the principle used
(e.g., principle of virtual work, principle of virtual power, Newton–Euler’s ap-
proach), types of coordinates adopted (e.g., Cartesian coordinates, Lagrangian co-
ordinates) and the methods selected for handling kinematic constraints (e.g., co-
ordinate partitioning method, augmented Lagrange formulation) (Nikravesh 1988,
Shabana 1989). The solution of the problem for constrained multibody systems
can be obtained using the Lagrange’s multipliers technique which leads to a set
of differential and algebraic equations (DAE), in which the coordinates and the
Lagrange multipliers are unknown. The numerical solution of the set of DAE is
not straightforward (Brenan et al. 1989). One of the most used methods to solve this
problem consists of converting the system of DAE into a set of ordinary differential
equations (ODE) by appending the second derivative with respect to time of the
constraint equations (Gear 1981, Nikravesh 1988). However, this approach presents
numerical stability problems, which can be reduced or at least kept under control by
employing a technique of constraint violation stabilization (Baumgarte 1972). The
formulation of multibody system dynamics adopted in this work follows closely
that of Nikravesh (1988), in which the generalized Cartesian coordinates and the
Newton–Euler’s approach are employed to obtain the equations of motion. Fur-
thermore, the Baumgarte stabilization technique is used to control the position and
velocity violations (Baumgarte 1972). The methodology presented is implemented
in the computational program DAP, which has been developed for dynamic analy-
sis of general multibody systems (Nikravesh 1988). This multibody formulation is
capable of automatically generating and solving the equations of motion for general
multibody systems.
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2.1 Multibody System Definition

In order to analyze the dynamic response of a constrained multibody system (MBS),
it is first necessary to formulate the equations of motion that govern its behav-
ior. Figure 2.1 depicts a multibody system, which consists of a collection of rigid
and/or flexible bodies interconnected by kinematic joints and possibly some force
elements. The kinematic joints control the relative motion between the bodies, while
the force elements represent the internal forces that develop between bodies due to
their relative motion. The forces applied over the system components may be the
result of springs, dampers, actuators or external forces. A wide variety of mechan-
ical systems, such as robots, heavy machinery, automobile or railway vehicles, can
be modeled in this way (Nikravesh 1988). In the plane, the rigid bodies have three
degrees of freedom (DOF). When the bodies include some flexibility they have three
DOF plus the number of generalized flexible coordinates necessary to describe their
deformation (Ambrósio 1991). Here, only rigid bodies are used.

Kinematic constraints can be classified as holonomic or nonholonomic. Holo-
nomic constraints arise from geometric constraints and are integrable into a form
involving only coordinates (holo comes from Greek that means whole, integer).
Nonholonomic constraints are not integrable. The relationship specified by a con-
straint can be an explicit function of time designated as rheonomic constraints (rheo
comes from Greek that means hard, inflexible, independent) or not, being desig-
nated by scleronomic constraints (scleros comes from Greek that means flexible,
changing).

The kinematic constraints considered here are assumed to be holonomic, arising
from geometric constraints on the generalized coordinates. Holonomic constraints,

Revolute joint

Spherical joint

Spring

Body 1

Body n

Body 3

Ground body

Revolute joint

with clearance

Actuator

Lubricated joint

Contact bodies

Applied torque

Gravitational forces
Flexible body

Other applied forces

Body i

Body 2

Fig. 2.1 Schematic representation of a general multibody system made of rigid bodies intercon-
nected by kinematic joints and acted on by applied forces
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also called geometric restrictions, are algebraic equations imposed on the system
that are expressed as functions of the displacement and, possibly, time. If the time
t does not appear explicitly in the constraint equation, then the system is said to be
scleronomic. A simple example of scleronomic constraint equations is the revolute
joint between two bodies. Otherwise when the constraint is holonomic and t appears
explicitly, the system is said to be rheonomic. When the constraint equation con-
tains inequalities or relations between velocity components that are not integrable
in closed form, the system is said to be nonholonomic. Nonholonomic constraints
are still kinematic constraints since they impose restrictions to the velocity and ac-
celeration (Nikravesh 1988, Shabana 1989).

With respect to the selection of coordinates two main approaches are generally
found in the methods used in the dynamic analysis of MBS. Either an expanded
system of dependent coordinates, e.g., Cartesian coordinates, are used to describe
the system configuration or a minimum number of relative coordinates are used,
corresponding to the mechanical degrees of freedom of the system and lead to a
minimum number of ordinary differential equations (Shabana 1989). In relative
coordinates, the kinematic constraints are implicit for open-loop systems. In the
presence of closed-loop systems, the use of relative coordinates requires that either
a joint is described by a pair of forces, i.e., a cut-joint, or that kinematic constraints
are set explicitly in one of the joints of the closed loop. The application of Cartesian
coordinates has the advantage that the formulation of the equations of motion even
for complex systems is straightforward (Nikravesh 1988).

2.2 Cartesian Coordinates

With the purpose of defining the geometric configuration or position of a multibody
system, it is necessary to specify the coordinates that locate each body. Due to their
simplicity and computational easiness, Cartesian coordinates are used to formulate
the dynamics of the multibody systems. Figure 2.2 represents a rigid body i to which
a body-fixed coordinate system (ξη)i is attached at its center of mass. When Carte-
sian coordinates are used, the position and orientation of the rigid body is defined
by a set of translational and rotational coordinates. Thus body i is uniquely located
in the plane by specifying the global coordinates ri = [x y]Ti of the body-fixed
coordinate system origin and the angle θi of rotation of this system relative to the
global coordinate system.

A point P on body i can be defined by position vector sP
i , which represents the

location of point P with respect to the body-fixed reference frame (ξη)i , and by the
global position vector ri , that is,

rP
i = ri + sP

i = ri + Ai s′ P
i (2.1)

where Ai is the transformation matrix for body i that defines the orientation of the
referential (ξη)i with respect to the referential frame XY.
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Fig. 2.2 Rigid body in
Cartesian coordinates
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The transformation matrix is expressed as

Ai =
[

cos θ − sin θ

sin θ cos θ

]
i

(2.2)

Thus the vector of coordinates for body i is denoted by

qi = [ rT θ ]Ti (2.3)

Note that alternative sets of coordinates can be in the literature. The relative
advantages and drawbacks are often application dependent and, consequently, the
problem of choosing the most efficient type of coordinates for each type of applica-
tion is not discussed any further in this text.

2.3 Constraints for Revolute and Translational Joints

A kinematic joint imposes limitations on the relative motion between adjacent bod-
ies. When these conditions are expressed in analytical form, they are called con-
straint equations. In a simple way, a constraint is any condition that reduces the
number of degrees of freedom in a system. In what follows, the formulation for the
planar revolute and translational joints is reviewed to illustrate the methodology.
With these two basic kinematic joints a large class of multibody systems can be
modeled and analyzed. For details on the formulation of other types of kinematic
joints the interested reader is referred to Nikravesh (1988). In order to distinguish
among the different constraint equations, each elementary set of constraints is iden-
tified by a superscript containing two parameters. The first parameter denotes the
type of constraint while the second one defines the number of independent equations
that it involves. For example, �(r,2) denotes the planar revolute (r ) joint constraint,
which contains two (2) equations.



2.3 Constraints for Revolute and Translational Joints 27

The revolute joint is a pin and bush type of joint that constrains the relative
translation between the two bodies i and j , allowing only the relative rotations,
as illustrated in Fig. 2.3. The kinematic conditions for the revolute joint require that
two different points, each one belonging to a different body, share the same position
in space all the time. This means that the global position of a point P in body i
is coincident with the global position of a point P in body j . Such a condition is
expressed by two algebraic equations that can be obtained from the following vector
loop equation:

ri + sP
i − r j − sP

j = 0 (2.4)

which is re-written as

�(r,2) ≡ ri + Ai s′ P
i − r j − A j s′ P

j = 0 (2.5)

Thus there is only one relative DOF between two bodies that are connected by a
planar revolute joint.

In a planar translational joint the two bodies, slider and guide, translate with
respect to each other parallel to the line of translation, so that there is neither rotation
between the bodies nor a relative translation motion in the direction perpendicular
to the line of translation. Thus a planar translational joint reduces the number of de-
grees of freedom of the system by two, which implies the need for two independent
algebraic equations to represent it.

A constraint equation for eliminating the relative rotation between two bodies i
and j is written as

θi − θ j − (θ0
i − θ0

j ) = 0 (2.6)

where θ0
i and θ0

j are the initial rotational angles for each body. In order to eliminate
the relative motion between the two bodies in a direction perpendicular to the line
of translation, the two vectors si and d, shown in Fig. 2.4, must remain parallel.
These vectors are defined by locating three points on the line of translation, two

Fig. 2.3 Planar revolute joint
connecting bodies i and j
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Fig. 2.4 Planar translational joint connecting bodies i and j

points on body i and one point on body j . This condition is enforced by forcing the
vector product of these two vectors to remain null all the time. A simple method
consists in defining another vector ni fixed to body i and perpendicular to the line
of translation. Then it is only required that d remains perpendicular to ni , that is,

nT
i d = 0 (2.7)

Therefore (2.6) and (2.7) yield the two constraint equations for a planar transla-
tional joint:

�(t,2) =
[

(x P
i − x Q

i )(y P
j − y P

i ) − (y P
i − y Q

i )(x P
j − x P

i )
θi − θ j − (θ0

i − θ0
j )

]
=
[

0
0

]
(2.8)

where x P
i and y P

i are the global coordinates of point P of body i , and the coordinates
of points Q on body i and P on body j follow the same notation.

2.4 Kinematic Analysis

Kinematic analysis is the study of the motion of a system independently of the
forces that produce it. Since in the kinematic analysis the forces are not considered,
the motion of the system is specified by driving elements that govern the motion
of specific degrees of freedom of the system during the analysis. The position,
velocity and acceleration of the remaining elements of the system are defined by
kinematic constraint equations that describe the system topology. It is clear that in
the kinematic analysis, the number of driver constraints must be equal to the number
of degrees of freedom of the multibody mechanical system. In short, the kinematic
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analysis is performed by solving a set of equations that result from the kinematic
and driver constraints.

Let the configuration of a MBS be described by nc Cartesian coordinates. A set
of m algebraic kinematic independent holonomic constraints � can be written in a
compact form as (Nikravesh 1988)

�(q, t) = 0 (2.9)

where q is the vector of generalized coordinates and t is the time variable, in general
associated with the driving elements.

The velocities and accelerations of the system elements are evaluated using the
velocity and acceleration constraint equations. Thus the first time derivative of (2.9)
provides the velocity constraint equations

�qq̇ = −�t ≡ υ (2.10)

where �q is the Jacobian matrix of the constraint equations, that is, the matrix
of the partial derivates, ��/�q, q̇ is the vector of generalized velocities and � is
the right-hand side of velocity equations, which contain the partial derivates of �
with respect to time, ��/�t . Notice that only rheonomic constraints, associated with
driver equations, contribute with nonzero entries to the vector �.

A second differentiation of (2.9) with respect to time leads to the acceleration
constraint equations, obtained as

�qq̈ = −(�qq̇)qq̇ − 2�qt q̇ − �tt ≡ � (2.11)

where q̈ is the acceleration vector and γ is the right-hand side of acceleration equa-
tions, i.e., the vector of quadratic velocity terms, which are exclusively function of
velocity, position and time. In the case of scleronomic constraints, that is, when �
is not explicitly dependent on time, the term �t in (2.9) and �qt and �tt in (2.11)
vanish.

The constraint equations represented by (2.9) are nonlinear in terms of q and are,
usually, solved by employing the Newton–Raphson method. Equations (2.10) and
(2.11) are linear in terms of q̇ and q̈, respectively, and can be solved by any usual
method adopted for the solution of systems of linear equations.

The kinematic analysis of a multibody system can be carried out by solving (2.9),
(2.10) and (2.11). The necessary steps to perform this analysis, sketched in Fig. 2.5,
are summarized as follows:

1. Specify the initial conditions for positions q0 and initialize the time counter t0.
2. Evaluate the position constraint (2.9) and solve them for positions, q.
3. Evaluate the velocity constraint (2.10) and solve them for velocities, q̇.
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Fig. 2.5 Flowchart of computational procedure for kinematic analysis of a multibody system

4. Evaluate the acceleration constraint (2.11) and solve them for accelerations, q̈.
5. Increment the time. If the time is smaller than the final time, go to step 2), other-

wise stop the kinematic analysis.

2.5 Equations of Motions for a Constrained Multibody System

The equations of motion for a constrained multibody system of rigid bodies are
written as (Nikravesh 1988)

Mq̈ = g + g(c) (2.12)

where M is the system mass matrix, q̈ is the vector that contains the system accel-
erations, g is the generalized force vector, which contains all external forces and
moments, and g(c) is the vector of constraint reaction equations.

The joint reaction forces can be expressed in terms of the Jacobian matrix of the
constraint equations and the vector of Lagrange multipliers as (Nikravesh 1988)

g(c) = −�T
q λ (2.13)

where λ is the vector that contains m unknown Lagrange multipliers associated
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with m holonomic constraints. The Lagrange multipliers are physically related to
the reaction forces and moments generated between the bodies interconnected by
kinematic joints. Thus substitution of (2.13) in (2.12) yields

Mq̈ + �T
q λ = g (2.14)

In dynamic analysis, a unique solution is obtained when the constraint equations
are considered simultaneously with the differential equations of motion, for a proper
set of initial conditions. Therefore (2.11) is appended to (2.14), yielding a system
of differential algebraic equations (DAE). Mathematically the simulation of con-
strained multibody system requires the solution of a set of nc differential equations
coupled with a set of m algebraic equation, written as

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
�

}
(2.15)

This system of equations is solved for q̈ and λ. Then, in each integration time
step, the accelerations vector, q̈, together with velocities vector, q̇, are integrated
in order to obtain the system velocities and positions for the next time step. This
procedure is repeated till the final analysis time is reached.

The system of (2.15) can be solved by applying any method suitable for the
solution of linear algebraic equations. The existence of null elements in the main
diagonal of the matrix and the possibility of ill-conditioned matrices suggest that
methods using partial or full pivoting are preferred. However, none of these formu-
lations help in the presence of redundant constraints.

The left-hand-side matrix of the system of (2.15) can be inverted analytically.
For the purpose, (2.14) is rearranged to put the acceleration vector in evidence in
the left-hand side and the result is substituted in (2.11), which is also rearranged as

λ = (�qM−1�T
q )−1�qM−1g − (�qM−1�q

T )−1� (2.16)

In these equations, it is assumed that the multibody model does not include any
body with null mass or inertia so that the inverse of the mass matrix M exists. The
substitution of (2.16) in (2.14) provides the expression for the system accelerations
written as

q̈∗ = [
M−1 − M−1�T

q (�qM−1�T
q )−1�qM−1] g + M−1�T

q (�qM−1�T
q )−1�

(2.17)
Equations (2.16) and (2.17) are now rearranged in a compact form as

[
q̈∗

λ

]
=
[ [

M−1 − M−1�T
q (�qM−1�T

q )−1�qM−1] M−1�T
q (�qM−1�T

q )−1

(�qM−1�T
q )−1�qM−1 −(�qM−1�T

q )−1

][
g
�

]

(2.18)
The matrix in the right-hand side of (2.18) is the inverse of the system matrix that

appears in (2.15).
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The system of the motion (2.15) does not explicitly use the position and ve-
locity equations associated with the kinematic constraints, that is, (2.9) and (2.10).
Consequently, for moderate or long simulations, the original constraint equations
start to be violated due to the integration process and/or the inaccurate initial con-
ditions. Therefore special procedures must be followed to avoid or minimize this
phenomenon. Several methods to solve this problem have been suggested and tested,
the most common among them being the Baumgarte stabilization method (Baum-
garte 1972), the coordinate partitioning method (Wehage and Haug 1982) and the
augmented Lagrangian formulation (Bayo et al. 1988).

In addition to these three basic approaches, many research papers have been pub-
lished on the stabilization methods for the numerical integration of the equations of
motion of multibody systems, namely, Park and Chiou (1988), Kim et al. (1990),
Yoon et al. (1994), Rosen and Edelstein (1997), Lin and Hong (1998), Blajer (1999),
Lin and Huang (2002). Nikravesh (1984) made a comparative study of the standard
or direct integration of the system’s equation of motion, the Baumgarte’s approach
and the coordinate partitioning method. More recently, Neto and Ambrósio (2003)
used different methodologies to handle the constraint violation correction or sta-
bilization for the integration of DAE in the presence of redundant constraints dis-
cussing, in the process, the benefits and shortcoming of these methods.

Due to its simplicity and easiness for computational implementation, the Baum-
garte stabilization method (BSM) is the most popular and attractive technique to
control constraint violations. However, this method does not solve all possible nu-
merical difficulties as, for instance, those that arise near kinematic singularities.
Another drawback of Baumgarte’s method is the ambiguity in choosing feedback
parameters. The choice of these coefficients usually involves a trial-and-error pro-
cedure (Baumgarte 1972). The augmented Lagrangian method, which also keeps
the constraint violations under control, shares with BSM the problem of parameter
selection but is able to handle redundant constraints. These methods are discussed
in detail in Sect. 2.7.

2.6 Direct Integration Method of the Equations of Motion

In this section, the main numerical aspects related to the standard integration of the
equations of motion of a multibody system are reviewed. The standard integration
of the equations of motion, here called direct integration method (DIM), converts
the nc second-order differential equations of motion into 2nc first-order differential
equations. Then a numerical scheme, such as the Runge–Kutta method, is employed
to solve the initial-value problem (Gear 1981).

The 2nc differential equations of motion are solved, without considering the in-
tegration numerical errors and, consequently, during the simulation the propagation
of these kinds of errors results in constraint violations. The two error sources that
lead to constraint violations for any numerical integration step are truncation and
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round-off errors. Truncation or discretization errors are caused by the nature of the
techniques employed to approximate values of a function y. Round-off errors are
due to the limited numbers of significant digits that can be retained by a computer.
Truncation errors are composed of two parts. The first one is a local truncation error
that results from an application of the method in question over a single step. The sec-
ond one is a propagated error that results from the approximation produced during
the previous steps. The sum of the two is the total or global truncation errors. The
commonly used numerical integration algorithms are useful in solving first-order
differential equations that take the form (Gear 1981)

ẏ = f (y, t) (2.19)

Thus, if there are nc second-order differential equations, they are converted to 2nc
first-order equations by defining the y and ẏ vectors, which contain, respectively,
the system positions and velocities and the system velocities and accelerations, as
follows:

y =
{

q
q̇

}
and ẏ =

{
q̇
q̈

}
(2.20)

The reason for introducing the new vectors y and ẏ is that most numerical integra-
tion algorithms deal with first-order differential equations (Shampine and Gordon
1975). The following diagram can interpret the process of numerical integration at
instant of time t :

ẏ(t) Integration→ y(t + Δt) (2.21)

In other words, velocities and accelerations at instant t , after integration process,
yield positions and velocities at next time step, t = t + Δt .

Figure 2.6 presents a flowchart that shows the algorithm of direct integration
method of the equations of motion. At t=t0, the initial conditions on q0 and q̇0 are
required to start the integration process. These values cannot be specified arbitrarily,
but must satisfy the constraint equations defined by (2.9) and (2.10). The direct
integration algorithm presented in Fig. 2.6 can be summarized by the following
steps:

1. Start at instant of time t0 with given initial conditions for positions q0 and veloc-
ities q̇0.

2. Assemble the global mass matrix M, evaluate the Jacobian matrix �q, construct
the constraint equations �, determine the right-hand side of the accelerations �
and calculate the force vector g.

3. Solve the linear set of the equations of motion (2.15) for a constrained multi-
body system in order to obtain the accelerations q̈ at time t and the Lagrange
multipliers λ.
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Fig. 2.6 Flowchart of computational procedure for dynamic analysis of multibody systems; direct
integration method (DIM)

4. Assemble the vector ẏt containing the generalized velocities q̇ and accelerations
q̈ for instant of time t .

5. Integrate numerically the q̇ and q̈ for time step t + Δt and obtain the new posi-
tions and velocities.

6. Update the time variable, go to step 2) and proceed with the process for a new
time step, until the final time of analysis is reached.

The direct integration method of equations of motion is prone to integration er-
rors, because the constraint (2.9) and (2.10) are only satisfied at the initial instant
of time. In the first few time steps, the constraint violations are usually small and
negligible. However, as time progresses, the error in computed values for kinematic
parameters is accumulated and constraint violations increase. Hence the results
produced can be unacceptable; therefore the DIM requires the use of a constraint
stabilization technique, especially for long simulations. It should be noted that the
DIM is quite sensitive to initial conditions, which can be an important source of
errors in the integration process.

2.7 Solution Methods that Handle Constraint Violations

The initial conditions and the integration of the velocities and accelerations of the
multibody system introduce numerical errors in the new positions and velocities
obtained. These errors are due to the finite precision of the numerical methodologies
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and the position and velocity constraint equations not appearing anywhere in the
solution procedure outlined in Fig. 2.6. Therefore methods able to eliminate errors
in the constraint or velocity equations or, at least, to keep such errors under control
must be implemented (Neto and Ambrósio 2003).

2.7.1 Baumgarte Stabilization Method

As shown earlier, for a multibody system of kinematically constrained rigid bodies,
the equations of motion are given by

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
�

}
(2.22)

with initial conditions for q0 and q̇0. The constraint violations result from accumu-
lated integration errors and become more apparent with stiff systems, that is, when
the natural frequencies of the system are widely spread. Stiffness can be produced
by the physical characteristics of the MBS, such as components with large differ-
ences in their masses, stiffness and/or damping. Even though the initial conditions
guarantee the nonviolation of constraint equations on position (2.9) and velocity
level (2.10), during the course of numerical integration the numerical errors do not
satisfy the constraint equations. The effect of these errors increases with time. Hence
the constant distances cease to be constant and the points of the same element pro-
gressively move closer to or further away from their original position.

When (2.22) is solved, actually (2.11) and (2.12) are solved implicitly. In fact, only
the second derivatives of constraint equations will be satisfied in every integration
step. Yet it is known that (2.11) represents an unstable system (Franklin et al. 2002).
The Baumgarte stabilization method (BSM) allows constraints to be slightly vi-
olated before corrective actions can take place, in order to force the violation to
vanish. The BSM replaces the differential equation (2.11) by (Baumgarte 1972)

�̈ + 2α�̇ + β2� = 0 (2.23)

Equation (2.23) is the differential equation for a closed-loop system in terms
of kinematic constraint equations. The terms 2α�̇ and β2� in (2.23) play the
role of a control term. The principle of the method is based on the damping of
acceleration of constraint violation by feeding back the position and velocity of
constraint violations, as seen in Fig. 2.7, which shows open-loop and closed-loop
control systems. In the open-loop systems, � and �̇ do not converge to zero if
any perturbation occurs and, therefore, the system is unstable. Thus, utilizing the
Baumgarte’s approach, the equations of motion for a dynamic system subjected to
holonomic constraints are expressed in the form

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
� − 2α�̇ − β2�

}
(2.24)
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Fig. 2.7 Open-loop (cascade) and closed-loop (feedback) control systems

In general, if α and β are chosen as positive constants, the stability of the general
solution of (2.24) is guaranteed. When α is equal to β, critical damping is achieved,
which usually stabilizes the system response quickly. Baumgarte (1972) highlighted
that the suitable choice of the parameters α and β is performed by numerical exper-
iments. Consequently Baumgarte’s method still has some ambiguity in determining
optimal feedback gains. Indeed it seems that the value of the parameters is purely
empiric, and there is no reliable method for selecting the coefficients α and β. The
improper choice of these coefficients can lead to unacceptable results in the dynamic
simulation of multibody systems.

Although Baumgarte’s constraint stabilization gives good results in most of the
applications, it does not help for some particular configuration of the systems, such
as near kinematic singularities. Since Baumgarte’s approach suffers from the lack
of a criterion in the choice of α and β parameters, the fundamental question is: what
are the adequate values of α and β parameters for the type of problems involved in
this work? Baumgarte (1972) pointed out that the stabilizing values of α=β=5 is a
good choice for a MBS made of rigid bodies. In a later paper, Baumgarte proposed
a criterion that aids in the selection of the coefficients, which is further discussed by
Kim et al. (1990). In this work, the feedback parameters are inversely proportional
to the integration time step when a constant step size is used, α = 1/Δt and β =√

2/Δt , where Δt is the integration step size. The simplicity of this approach works
quite well for computer implementation and appears to be efficient. However, this
criterion causes numerical instability and produces incorrect results when the step
size is too small. This causes the damping terms to dominate the numerical value of
(2.23) and makes the system numerically stiff. Furthermore, if a constant integration
step size algorithm is used and it is not very large, this proposed approach damps
out the constraint violations faster than an arbitrary assigned constant value of α and
β. When a variable step and order integration algorithm is employed, this approach
is more likely to lead to numerical problems.
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More recently, some works have suggested criteria that help in the selection of the
parameters α and β. Chang and Nikravesh (1985) presented an adaptive numerical
scheme for determining these parameters. The stability requirement of the adaptation
mechanism proposed by Chang and Nikravesh is based on the critical damping, α=β.
The idea of this approach is based on the adaptive scheme in which the feedback
parameters are adjusted according to the predicted error. Yet this approach requires
complex programming and increases computational time. Later Kim et al. (1990)
presented a method for determining the feedback parameters. This method is based
on the stability analysis for the error propagation of the modified constrained equa-
tion containing the feedback parameters, which is discretized by the Runge–Kutta
algorithm in a time domain. Lin and Hong (1998) showed that the parameters α

and β can depend on the integration method. In their study, the stability analysis
methods used in digital control theory are applied to solve the instability problem.

In short, there is no clear-cut method for choosing the most correct values for
feedback parameters for general cases. The choice of α and β parameters usually
involves a trial-and-error procedure. Furthermore the selection of the stabilization
parameters depends on the type of application, namely, the integrator, the integration
step size and the type of model of multibody system. However, the parameters α and
β should be, in general, equal to one another and typical values of the stabilization
parameters range from 1 to 20 (Nikravesh 1988, Garcia de Jálon and Bayo 1994).

2.7.2 Coordinate Partitioning Method

Based on the original work by Wehage and Haug (1982), the coordinate partitioning
method eliminates the errors of the velocities and positions that would otherwise
accumulate during the integration process, i.e., the method reduces such errors to
values below a specified tolerance. This method requires that sets of independent
and dependent coordinates are first identified. Then, only the independent accelera-
tions and velocities are integrated and the dependent quantities are calculated using
partitions of the velocity and constraint equations.

The definition of the dependent and independent coordinates can be done auto-
matically by using a matrix factorization technique, such as Gaussian elimination
with full pivoting. For a multibody system with m constraints and n coordinates the
Jacobian matrix is m × n and the order of the columns of the matrix corresponds
to the order of elements of vector q. Consider a m × n matrix A for which the
factorization results in the form

m − k n − (m − k)

A →
[

B R
S D

] }m − k
}k

(2.25)

Assume that there are k redundant rows in the matrix and m − k dependent con-
straints. As a result of the full pivoting procedure used, the k redundant constraints
end up in the factorized matrix bottom rows. B is a nonsingular (m − k) × (m − k)
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matrix associated to the dependent coordinates, and R is the sub-matrix (m − k) ×
(n − m + k) associated to the independent coordinates.

In what follows, let it be assumed that A represents the Jacobian matrix �q.
Without loss of generality, let it be assumed that there are no redundant constraints
in the multibody model or that these have been identified and eliminated. In such
case, the Jacobian matrix can be partitioned into

�q = [�u �v] (2.26)

The Jacobian matrix in (2.26) has the same form of the sub-matrix [B R] of
(2.25). Equation (2.26) implies the partition of the coordinate vector into vectors
of dependent and independent coordinates, denoted by u and v, respectively. This
coordinate partition also implies the partition of the velocity and acceleration vectors
given as q̇ = [u̇T v̇T ]T and q̈ = [üT v̈T ]T , respectively.

Let it be assumed that the vector of system accelerations is calculated by using
(2.15) or (2.18) alternatively. The integration vector ẏ, appearing in Fig. 2.6, includ-
ing only the independent coordinates is

ẏ = [
v̇T v̈T

]T
(2.27)

which after integration results in vector y = [
vT v̇T ]T

.
The dependent velocities and positions are calculated using the velocity and

position constraint equations, respectively. To evaluate the dependent velocities let
(2.10) be partitioned:

�uu̇ + �vv̇ = � (2.28)

The dependent velocities u̇ are evaluated by solving the system of equations:

�uu̇ = −�vv̇ + � (2.29)

The dependent positions are obtained through the solution of the position constraint
equations; given the independent coordinates, this is

� (u, v, t) = 0 (2.30)

The Newton–Raphson method is used for the solution of (2.30) to obtain the depen-
dent positions u. To achieve convergence some reliable estimates must be provided
for these coordinates. A good estimation of ui at time t i , to start the iterative so-
lution procedure, is found by using the information from the previous time t i−1 as
(Nikravesh 1988)

ui = ui−1 + h u̇i−1 + 0.5h2üi−1 (2.31)

where h is the integration time step from t i to t i−1.
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Summarizing, the methodology that corrects the constraint violations is the
coordinate partition method (Wehage and Haug 1982), in which the generalized
coordinates are partitioned into independent and dependent sets. The numerical in-
tegration is carried out for independent generalized accelerations and independent
velocities only leading to the new independent velocities and independent coordi-
nates, respectively. Then the constraint equations are solved for dependent gener-
alized coordinates using, for instance, the Newton–Raphson method. The advan-
tage of this method is that it satisfies all the constraints to the level of precision
specified and maintains good error control. However, it suffers from poor numerical
efficiency due to the requirement for the iterative solution for dependent generalized
coordinates in the Newton–Raphson method, and the constraint velocity equations
are solved for the dependent velocities. During integration, numerical problems may
arise due to inadequate choice of independent and dependent coordinates that lead to
poorly conditioned matrices. For details on this methodology, the interested reader
is referred to the work by Wehage and Haug (1982) or Nikravesh (1984, 1988).

2.7.3 Augmented Lagrangian Formulation

The augmented Lagrangian formulation is a methodology that penalizes the con-
straint violations, much in the same form as the Baumgarte stabilization method
(Baumgarte 1972). This is an iterative procedure that presents a number of advan-
tages relative to other methods because it involves the solution of a smaller set of
equations, handles redundant constraints and still delivers accurate results in the
vicinity of singular configurations.

The augmented Lagrangian formulation consists in solving the system equations
of motion, represented by (2.15), by an iterative process. Let index i denote the i th
iteration. The evaluation of the system accelerations in a given time step starts as

Mq̈∗
i = g (i = 0) (2.32)

The iterative process to evaluate the system accelerations proceeds with the evalua-
tion of

M̄q̈∗
i+1 = ḡ (2.33)

where the generalized mass matrix M̄ and load vector ḡ are given by

M = M + �T
q α�q

ḡ = Mq̈∗
i + �T

q α(γi − 2ω μ�qq̇∗
i − ω2�i ) (2.34)

In (2.34), the mass matrix M, the Jacobian matrix �q and the right-hand side of the
acceleration equations � are the same as those used in (2.15). The penalty terms α,
μ and ω ensure that the constraint violation feedbacks are accounted for during the
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solution of the system equations. The iterative process continues until

∥∥q̈∗
i+1 − q̈∗

i

∥∥ ≤ ε (2.35)

The augmented Lagrangian formulation involves the solution of a system of equa-
tions with a dimension equal to the number of coordinates of the multibody system.
Though mass matrix M is generally positive semi-definite the leading matrix of
(2.33), M + �T

q α�q, is always positive definite (Garcia de Jálon and Bayo 1994).
Even when the system is close to a singular position or when in the presence of
redundant constraints the system of equations can still be solved.

2.8 Application Example: Four-Bar Mechanism

An elementary four-bar mechanism is used as a numerical example, to illustrate
the influence of the values of Baumgarte’s parameters on the control of constraint
violations. Figure 2.8 shows the configuration of the four-bar mechanism, which
consists of four rigid bodies, including ground, and four revolute joints. The body
numbers and their corresponding coordinate systems are shown in Fig. 2.8.

The kinematic joints considered here are assumed to be ideal or perfect, that is,
clearance and friction effects are neglected. In the dynamic simulation, the crank
is given an initial angular speed of 20π rad/s counter clockwise. The properties
of the four-bar mechanism analyzed here are listed in Table 2.1. The numeri-
cal parameters concerning the simulation of the four-bar mechanism are listed in
Table 2.2.

Several representative simulations are performed to study and compare the effi-
ciency of different values for α and β parameters on the stabilization of the con-
straint violations. A measure of their efficiency can be drawn from the error of the
third constraint equation (�3) and its derivative (�̇3) that are representative of the
rest of the constraint equations and their derivatives, which present similar results.

X

Y

ξ1

η1

ξ 2η 2

ξ3

η3

ξ 4

η 4

60°

Crank

Coupler

Ground

Follower

Fig. 2.8 Kinematic model for the four-bar mechanism
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Table 2.1 Properties for the individual components of the four-bar mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)

1 0.25 – –
2 0.20 1.00 0.30
3 0.40 2.25 2.00
4 0.40 2.00 1.35

Table 2.2 Simulation parameters for the four-bar mechanism

Crank velocity 20π rad/s
Initial time 0.00 s
Final time 5.00 s
Time step size 0.0001 s

In this case, the third constraint is associated with the revolute joint, connecting
crank and coupler.

In the results now presented, only a fixed integration time-step size is used for
the dynamic simulation of the four-bar mechanism. The Runge–Kutta–Vener fifth-
and sixth-order method, referred to as IVPRK/DIVPRK in the IMSL Fortran Sub-
routines Library (IMSL 1997), is used to solve the equation of motion with the
corresponding initial conditions, as it is not the purpose of the present work to make
a detailed description of all available integration algorithms. The interested reader
is referred to Brenan et al. (1989) for a more detailed discussion on this issue.

In a first simulation the direct integration method is used, the equations of motion
being integrated without any consideration for the constraint violations. Three other
simulations are performed considering the stabilization of the constraint violations
using the Baumgarte stabilization method. Table 2.3 summarizes the values of the
parameters α and β according to the approaches presented and discussed in the
previous sections.

Figure 2.9a shows that when direct integration method is used the violation of the
constraints grows indefinitely with time. The DIM produced unacceptable results
because the constraint equations are rapidly violated due to the inherent instability
of the equations used and to the numerical errors that develop during computation.
For nonzero values for parameters α and β, the behavior of the multibody system is
slightly different, as is illustrated in Fig. 2.9b–d. Moreover, when the parameters α

and β are equal, critical damping is reached, which stabilizes the system response
more quickly, that is, the first and second derivatives converge to zero. Thus the
constraint equations, and not only their second derivatives, are satisfied at any give

Table 2.3 Values of the parameters α and β used in the simulations

Method α β

Direct integration method (DIM) 0 0
Baumgarte stabilization method (BSM) 5 5
Baumgarte stabilization method (BSM) 1 23
Baumgarte stabilization method (BSM) 1000 1414
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t = 0.0 s
t = 1.0 s t = 2.0 s

t = 3.0 s t = 4.0 s t = 5.0 s

α = β = 0

α = β = 5

Fig. 2.11 Animation sequence of dynamic simulation of four-bar mechanism

time. Figure 2.9d illustrates a stiff system, which occurs when the values of α and
β are high.

Figure 2.10a–d depicts the violation of the derivative of the third constraint equa-
tion (�̇3). It should be highlighted that different scales are used for results plotted in
Figs. 2.9a–d and 2.10a–d, in order to clearly observe the influence of the values of
Baumgarte parameters. Figure 2.11 shows a sequence of configurations that allows
the visualization of the constraint violations during the dynamic simulation of the
four-bar mechanism.

2.9 Summary

In this chapter, the fundamentals of the formulation for the kinematic and dynamic
analyses of multibody systems were presented and discussed. The formulation
closely follows the work of Nikravesh (1988) and summarizes how the general
equations of motion of dynamic equilibrium of a MBS can be formulated, using
generalized Cartesian coordinates and one Newton–Euler method. This formulation
is straightforward in terms of assembling equations of motion and providing all
reaction forces. From the mathematical viewpoint, Cartesian coordinates are the
supporting structure for all the methodologies and dynamic analysis presented in
the forthcoming chapters. Furthermore the main aspects related to the formulation
of the planar revolute and translational joints were also reviewed.

The equations of motion for constrained MBS are expressed by (2.15), which is
often referred to as a coupled set of differential and algebraic equations. A set of ini-
tial conditions, positions and velocities, is required to start the dynamic simulation.
The selection of the appropriate initial conditions plays a key role in the prediction
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of the dynamic performance of mechanical systems. The subsequent initial condi-
tions for each time step in the simulation are obtained from the final conditions of the
previous time step, i.e., from the initial values for positions and velocities (2.15) is
solved for accelerations, q̈, and Lagrange multipliers, λ, using the L-U factorization
in conjunction with forward and backward substitution. The positions and velocities
at the next time step are then obtained by integration of the velocity and acceleration
vectors, q̇ and q̈. This procedure is repeated until the final time is reached. The
integration process can be performed using a constant step size scheme, such as
the Runge–Kutta method, or a predictor–corrector algorithm with both variable step
and order (Shampine and Gordon 1975, Gear 1981). It was not the purpose of this
chapter to make a detailed description of all the available methods and integration
algorithms. The interested reader is referred to the work by Brenan et al. (1989).

In order to stabilize or keep under control the constraint violations, (2.15) is
solved using the Baumgarte stabilization method (Baumgarte 1972). It was shown
in this chapter that the numerical instability, during the numerical integration of
kinematic acceleration equations, suggests that direct integration method may not be
used directly to obtain the solution of the dynamic simulation problem. In order to
ensure that the system constraint equations are fulfilled, the Baumgarte stabilization
method or any other corrective measure must be implemented. The introduction
of feedback gains can eliminate the growth of the constraint violations within a
stable range, but there is no clear-cut suggestion for choosing values for feedback
parameters for general cases. However, it was demonstrated that for α and β equal
to each other and eventually equal to 5, the system response stabilizes more quickly.
However, the constraint violations can only be completely eliminated by using the
coordinate partition method. The BSM not only can fail in the cases of configu-
ration singularities but also is dependent on the empiric feedback gains. Instead of
representing constraints by the unstable differential equation, it was suggested to in-
troduce them in the form of an asymptotically stable differential equation. With this
methodology, experience tells that the numerical result does not diverge from the
exact solution, but oscillates around it. Magnitude and frequency of the oscillation
depend on the values of Baumgarte parameters.
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Chapter 3
Contact-Impact Force Models
for Mechanical Systems

The collision is a prominent phenomenon in many mechanical systems that involve
intermittent motion, kinematic discontinuities or clearance joints. As a result of an
impact, the values of the system state variables change very fast, eventually looking
like discontinuities in the system velocities and accelerations. The impact is char-
acterized by large forces that are applied and removed in a short time period. The
knowledge of the peak forces developed in the impact process is very important for
the dynamic analysis of multibody mechanical systems having consequences in the
design process. The numerical description of the collision phenomenon is strongly
dependent on the contact-impact force model used to represent the interaction be-
tween the system components. The model for the contact-impact force must con-
sider the material and geometric properties of the colliding surfaces and information
on relative positions and velocities, contribute to an efficient integration and account
for some level of energy dissipation. These characteristics are ensured with a con-
tinuous contact force model, in which the deformation and contact forces are con-
sidered as continuous functions during the complete period of contact. This chapter
deals with contact-impact force models for both spherical and cylindrical contact
surfaces. The incorporation of the friction phenomenon, based on the Coulomb’s
friction law, is also discussed together with a computational strategy which includes
an automatic step size selection procedure based not only on numerical error control
but also on the characteristics of the contact.

3.1 Approaches to Contact and Impact of Rigid Bodies

Impact occurs during the collision of two or more bodies, which may be external or
belong to a multibody mechanical system. The impact phenomenon is characterized
by abrupt changes in the values of system variables, most visible as discontinuities
in the system velocities. Other effects directly related to the impact phenomena are
the vibration propagation on the system components, local elastic/plastic deforma-
tions at the contact zone and some level of energy dissipation. The impact is a very
important phenomenon in many mechanical systems such as mechanisms with in-
termittent motion and with clearance joints (Khulief and Shabana 1986, Ravn 1998).

P. Flores et al., Kinematics and Dynamics of Multibody Systems with Imperfect Joints. 47
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The selection of the most adequate contact force model plays a key role in the correct
design and analysis of these types of mechanical systems (Flores et al. 2006).

By and large, an impact may be considered to occur in two phases: the compres-
sion or loading phase and the restitution or unloading phase. During the compression
phase, the two bodies deform in the normal direction to the impact surfaces, and the
relative velocity of the contact points/surfaces on the two bodies in that direction is
gradually reduced to zero. The end of the compression phase is referred to as the in-
stant of maximum compression or maximum approach. The restitution phase starts
at this point and ends when the two bodies separate from each other (Brach 1991).
The restitution coefficient reflects the type of collision. For a fully elastic contact
the restitution coefficient is equal to the unit, while for a fully plastic contact resti-
tution coefficient is null. The most general and predominant type of collision is the
oblique eccentric collision, which involves both relative normal velocity and relative
tangential velocity (Maw et al. 1975, Zukas et al. 1982).

In order to evaluate efficiently the contact-impact forces resulting from collisions
in multibody systems, such as the contact between the bearing and journal in a revo-
lute joint with clearance, special attention must be given to the numerical description
of the contact force model. Information on the impact velocity, material properties
of the colliding bodies and geometry characteristics of the contact surfaces must be
included in the contact force model. These characteristics are observed with a con-
tinuous contact force, in which the deformation and contact forces are considered as
continuous functions (Lankarani and Nikravesh 1990). Furthermore it is important
that the contact force model can add to the stable integration of the equation of
motion of multibody system.

In a broad sense, there are two different methods to solve the impact prob-
lem in multibody mechanical systems designated as continuous and discontinuous
approaches (Lankarani and Nikravesh 1990). Within the continuous approach the
methods commonly used are the continuous force model, which is in fact a penalty
method, and the unilateral constraint methodology, based on the linear complemen-
tary approach (Pfeiffer and Glocker 1996). The continuous contact force model
represents the forces arising from collisions and assumes that the forces and de-
formations vary in a continuous manner. In this method, when contact between the
bodies is detected, a normal force perpendicular to the plane of collision is applied.
This force is typically applied as a spring–damper element, which can be linear, such
as the Kelvin–Voigt model (Lankarani 1988), or nonlinear, such as the Hunt and
Crossley model (Hunt and Crossley 1975). For long impact durations this method
is effective and accurate in that the instantaneous contact forces are introduced into
the system’s equations of motion. The second continuous methodology specifies
that when contact is detected a kinematic constraint is introduced in the system’s
equations. Such a constraint is maintained while the reaction forces are compressive,
and removed when the impacting bodies rebound from contact (Ambrósio 2000).

A second approach of a different nature is a discontinuous method that assumes
that the impact occurs instantaneously, the integration of the equations of motion
being halted at the time of impact. Then a momentum balance is performed to cal-
culate the post-impact velocity, the integration being resumed afterwards with the
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updated velocities, until the next impact occurs. In the discontinuous method, the
dynamic analysis of the system is divided into two intervals, before and after impact.
The restitution coefficient is employed to quantify the dissipation energy during the
impact. The restitution coefficient only relates relative velocities after separation to
relative velocities before contact and ignores what happens in between. The dis-
continuous method is relatively efficient but the unknown duration of the impact
limits its application, since for large enough contact periods the system configura-
tion changes significantly (Lankarani 1988). Hence the assumption of instantaneity
of impact duration is no longer valid and the discontinuous analysis must not be
adopted. This method, commonly referred to as piecewise analysis, has been used
for solving the intermittent motion problem in mechanical systems (Khulief and
Shabana 1986) and it is still the most commonly used approach in vehicle accident
reconstruction (PC-Crash 2002).

In general, the contact points change during collision. When there is no penetra-
tion between the colliding bodies, there is no contact and, consequently, the contact
forces are null. The occurrence of penetration is used as the basis to develop the
procedure to evaluate the local deformation of the bodies in contact. Although the
bodies are assumed to be rigid, the contact forces correspond to those evaluated as
if the penetration is due to local elastic deformations. These forces are calculated
as being equivalent to those that would appear if the bodies in contact were pressed
against each other by an external static force. This means that the contact forces are
treated as elastic forces expressed as functions of the coordinates and velocities of
the colliding bodies. The methodology used here allows for the accurate calculation
of the location of contact points. The direction of the normal contact force is de-
termined from the normal vector to the plane of colliding surfaces at the points of
contact.

In short, in dynamic analysis, the deformation is known at every time step from
the configuration of the system and the forces are evaluated based on the state
variables. With the variation of the contact force during the contact period, the
response of the dynamic system is obtained by simply including updated forces
into the equations of motion. Since the equations of motion are integrated over the
period of contact, this approach results in a rather accurate response. Furthermore
this methodology is not limited by the changes in the system configuration during
the contact periods.

3.2 Normal Force Models for Spherical Contact Surfaces

The simplest contact force relationship, known as Kelvin–Voigt viscous-elastic
model, is modeled by a parallel spring–damper element (Zukas et al. 1982). The
spring represents the elasticity of the contacting bodies while the damper describes
the loss of kinetic energy during the impact. In most studies, the stiffness and damp-
ing coefficients have been assumed to be known parameters, and the analysis has
been confined to unconstrained bodies. The spring stiffness in the element can be
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calculated using a simple mechanical formula or obtained by means of the finite
element method (FEM). Recently Zhu et al. (1999) proposed a theoretical formula
for calculating damping in the impact of two bodies in a multibody system. This
model assumes that both the spring and the damper are linear. When the contact
bodies are separating from each other the energy loss is included in the contact
model by multiplying the rebound force with a coefficient of restitution. The resti-
tution coefficient accounts for the energy dissipated during the impact in the form
of a hysteresis in the relation between force and deformation.

The normal Kelvin–Voigt contact force, FN , is calculated for a given penetration
depth, δ, as

FN =
{

K δ if vN > 0 (loading phase)
K δ ce if vN < 0 (unloading phase) (3.1)

where K is the stiffness, δ is the relative penetration depth, ce is the restitution
coefficient and vN is the relative normal velocity of the colliding bodies.

The primary drawback associated with this model is the quantification of the
spring constant, which depends on the geometry and material properties of the con-
tacting bodies. On the other hand, the assumption of a linear relation between the
penetration depth and the contact forces is at best a rough approximation because
the contact force depends on the shape, surface conditions and material properties
of the contacting surfaces, all of which suggest a more complex relation.

For the linear Kelvin–Voigt model, Fig. 3.1a–c shows the penetration depth δ,
the normal contact force FN and the hysteresis of two internally colliding spheres.
The restitution coefficient and the spring stiffness used to build Fig. 3.1 are 0.9 and
1.5 × 108 N/m, respectively.

The best-known contact force law between two spheres of isotropic materials is
due to the result of the work by Hertz, which is based on the theory of elasticity
(Timoshenko and Goodier 1970). The Hertz (1896) contact theory is restricted to
frictionless surfaces and perfectly elastic solids being exemplified by the case shown
in Fig. 3.2.

The Hertz law relates the contact force with a nonlinear power function of pene-
tration depth and is written as

FN = K δn (3.2)
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Fig. 3.1 Internally colliding spheres modeled by linear Kelvin–Voigt viscous-elastic contact
model: (a) penetration depth, d; (b) normal contact force, FN ; (c) force–penetration relation
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Fig. 3.2 Relative penetration
depth during the impact
between two spheres (i)

(j)

δ

Ri

Rj

where K is the generalized stiffness constant and δ is the relative normal indentation
between the spheres. The exponent n is set to 1.5 for the cases where there is a
parabolic distribution of contact stresses, as in the original work by Hertz. Although
for metallic materials n = 1.5 for other materials such as glass or polymer it can
be either higher or lower, leading to a convenient contact force expression that is
based on experimental work but that should not be confused with Hertz theory. The
generalized parameter K is dependent on the material properties and the shape of the
contact surfaces. For two spheres in contact the generalized stiffness coefficient is a
function of the radii of the spheres i and j and the material properties as (Goldsmith
1960)

K = 4

3(σi + σ j)

[
Ri R j

Ri + R j

] 1
2

(3.3)

where the material parameters σi and σ j are given by

σk = 1 − ν2
k

Ek
, (k = i, j) (3.4)

and the quantities νk and Ek are the Poisson’s ratio and the Young’s modulus as-
sociated with each sphere, respectively. For contact between a sphere body i and a
plane surface body j the generalized stiffness coefficient depends on the radius of
the sphere and the material properties of the contacting surfaces, being expressed by
(Goldsmith 1960)

K = 4

3(σi + σ j )

√
Ri . (3.5)

For two internally colliding spheres modeled by Hertz contact law, Fig. 3.3a–c
shows the penetration depth, δ, the normal contact force, FN , and the relation force–
penetration. The generalized stiffness is equal to 6.6 × 1010 N/m1.5 for the calcula-
tions used to generate the graphs.

It is apparent that the Hertz contact law given by (3.2) cannot be used during
both phases of contact (loading and unloading phases), since this model does not
take into account the energy dissipation during the process of impact. This is a pure
elastic contact model, that is, the contact energy stored during the loading phase
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Fig. 3.3 Internally colliding spheres modeled by Hertz contact law: (a) penetration depth, δ;
(b) normal contact force, FN ; (c) force–penetration ratio

is exactly the same that is restored during the unloading phase. The advantages of
the Hertz law relative to Kelvin–Voigt contact model reside on its physical meaning
represented by both its nonlinearity and by the relation between the generalized
stiffness and geometry and material of the contacting surfaces. Although the Hertz
law is based on the elasticity theory, some studies have been performed to extend
its application to include energy dissipation. In fact, the process of energy transfer
is a complicated part of modeling impacts. If an elastic body is subjected to a cyclic
load, the energy loss due to internal damping causes a hysteresis loop in the force–
displacement diagram, which corresponds to energy dissipation.

Hunt and Crossley (1975) showed that the linear spring–damper model does
not represent the physical nature of energy transferred during the impact process.
Instead they represent the contact force by the Hertz force law with a nonlinear
viscous-elastic element. This approach is valid for direct central and frictionless
impacts. Based on Hunt and Crossley’s work, Lankarani and Nikravesh (1990) de-
veloped a contact force model with hysteresis damping for impact in multibody
systems. The model uses the general trend of the Hertz law, the hysteresis damping
function being incorporated to represent the energy dissipated during the impact.
Lankarani and Nikravesh (1990) suggested separating the normal contact force into
elastic and dissipative components as

FN = K δn + Dδ̇ (3.6)

where the first term of the right-hand side is referred to as the elastic force and
the second term accounts for the energy dissipated during the impact. In (3.6), the
quantity D is a hysteresis coefficient and δ̇ is the relative normal impact velocity.

The hysteresis coefficient is written as a function of penetration as

D = χ δn (3.7)

in which the hysteresis factor χ is given by

χ = 3K (1 − c2
e)

4δ̇(−)
(3.8)
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δ̇(−) being the initial impact velocity. By substituting (3.8) into (3.7) and the results
into (3.6), the normal contact force is finally expressed as

FN = K δn

[
1 + 3(1 − c2

e)
4

δ̇

δ̇
(−)

]
(3.9)

where the generalized parameter K is evaluated by (3.3) and (3.4) for sphere-to-
sphere contact or by similar expressions for the contact of other types of geometry;
ce is the restitution coefficient, δ̇ is the relative normal penetration velocity and δ̇(−)

is the initial normal impact velocity where contact is detected. The use of the damp-
ing scheme included in this model implies the outcome illustrated in Fig. 3.4a–c in
which the penetration depth, δ, normal contact force, FN , and hysteresis of an impact
between two internally colliding spheres are presented. The generalized stiffness
used to evaluate the relations in Fig. 3.4 is 6.6 × 1010 N/m1.5.

Equation (3.9) is valid only for impact velocities lower than the propagation ve-
locity of elastic waves across the bodies, that is, δ̇(−) ≤ 10−5 √

E/ρ, where E is
the Young’s modulus and ρ is the material mass density (Love 1944). The quantity√

E/ρ, velocity of wave propagation, is the larger of two propagation velocities of
the elastic deformation waves in the colliding bodies.

Shivaswamy (1997) studied theoretically and experimentally the impact between
bodies and demonstrated that at low impact velocities, the hysteresis damping is
the prime factor for energy dissipation. Impact at higher velocities, exceeding the
propagation velocity of the elastic deformation waves, is likely to dissipate en-
ergy in a form not predicted by the current model. In a later work, Lankarani and
Nikravesh (1994) proposed a new approach for contact force analysis, in which
the permanent indentation is also included. At fairly moderate or high velocities of
collision, especially in the case of metallic solids, permanent indentations are left
behind on the colliding surfaces. Hence local plasticity of the surfaces in contact
becomes the dominant source of energy dissipation during impact. Permanent or
plastic deformations are beyond the scope of the present work.
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Fig. 3.4 Internally colliding spheres modeled by the Lankarani and Nikravesh contact force model:
(a) penetration depth, δ; (b) normal contact force, FN ; (c) force–penetration relation
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3.3 Normal Contact Force Models for Cylindrical Surfaces

The contact models given by (3.2) and (3.9) are valid only for colliding bodies that
exhibit in the contacting surface a parabolic contact stress distribution, such as in
the case of ellipsoidal contact areas. For a cylindrical contact area such as the one
pictured in Fig. 3.5 between two parallel cylinders, a literature search reveals few
approximate force–displacement relationships.

It is worth noting that line contact assumes a precise parallel alignment of the
colliding cylinders. Furthermore a uniform force distribution over the length of
the cylinders is also assumed and boundary effects are neglected. For the case of
cylindrical contact forces, some authors suggest the use of the more general and
straightforward force–displacement relation given by (3.9) but with an exponent, n,
in the range of 1–1.5 (Hunt and Crossley 1975, Ravn 1998). Dietl (1997) used the
classical solution of contact, presented by Hertz, but with the exponent n equal to
1.08 to model the contact between the journal and the bearing elements.

Based on Hertz theory, Dubowsky and Freudenstein (1971) proposed an expres-
sion for the indentation, as function of the contact force, of an internal pin inside a
cylinder as

δ = FN

(
σi + σ j

L

)[
ln
(

Lb(Ri − R j )
FN Ri R j (σi + σ j )

)
+ 1

]
(3.10)

where Ri, j and σi, j are the parameters shown in (3.4), L is the length of the cylinder
and the exponent b has a value 3. Since (3.10) is a nonlinear implicit function for FN ,
with a known penetration depth, FN can be evaluated. This is a nonlinear problem
and requires an iterative solution scheme, such as the Newton–Raphson method, to
solve for the normal contact force, FN .

Fig. 3.5 Contact between
two external cylinders

(i)

(j)

Ri

Rj

L
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Fig. 3.6 Internally colliding cylinders using Dubowsky and Freudenstein contact force model: (a)
penetration depth, δ; (b) normal contact force, FN ; (c) force–penetration ratio

Based on the Dubowsky and Freudenstein contact force model the solutions cor-
responding to the time variation of the indentation δ, the normal contact force FN

and the force–penetration depth ratio are shown in Fig. 3.6a–c. In the plots presented
for the case of a pin contact inside a cylinder, the pin and cylinder radii are 9.5 and
10 mm, respectively. The length of the cylinder is equal to 15 mm, and both the pin
and the cylinder are made of steel.

Goldsmith (1960) proposed an expression similar to (3.10) but with the value of
exponent b equal to 1. However, this value for b leads to a problem of consistency
of the units in the expression. Figure 3.7a–c shows the penetration depth δ, the
normal contact force FN and the force–penetration ratio of two internally colliding
cylinders modeled with the Goldsmith contact force. This model shows that the
force–penetration ratio is almost linear.

The ESDU 78035 Tribology Series (1978) also proposes some expressions for
contact mechanics analysis suitable for engineering applications. For a circular con-
tact area the ESDU 78035 model is the same as the pure Hertz law given by (3.2).
For rectangular contact, e.g., a pin inside a cylinder, the expression is given by

δ = FN

(
σi + σ j

L

)[
ln
(

4L(Ri − R j)
FN (σi + σ j )

)
+ 1

]
(3.11)

where all quantities are the same as used for the calculations in Fig. 3.6.
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Fig. 3.7 Internally colliding cylinders using Goldsmith contact force model: (a) penetration depth,
δ; (b) normal contact force, FN ; (c) force–penetration ratio
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Fig. 3.8 Internally colliding cylinders using the ESDU 78035 contact force model: (a) penetration
depth, δ; (b) normal contact force, FN ; (c) force–penetration ratio

Figure 3.8a–c shows the penetration depth δ, the normal contact force FN and
the force–penetration ratio of two internally colliding cylinders modeled by ESDU
78035, given by (3.11).

The contact force due to the spherical and cylindrical contact force models is
displayed in Fig. 3.9, where it can be observed that the spherical and cylindrical
force–displacement relations are reasonably close. Thus the straightforward force–
penetration relation proposed by Lankarani and Nikravesh given in (3.9) is largely
used for mechanical contacts not only because of its simplicity and easiness in im-
plementation in a computational program, but also because this is the only model
that accounts for the energy dissipation during the impact process (Ryan 1990,
Smith and Haug 1990, Bottasso et al. 1999, Pedersen 2001, Pedersen et al. 2002,
Silva and Ambrósio 2004, Flores et al. 2006).
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3.4 Tangential Friction Force Models

When contacting bodies slide or tend to slide relative to each other tangential forces
are generated. These forces are usually referred to as friction forces. Three basic
principles have been experimentally established, namely: (1) the friction force acts
in a direction opposite to that of the relative motion between the two contacting bod-
ies; (2) the friction force is proportional to the normal load on the contact; (3) the
friction force is independent of a nominal area of contact. These three statements
constitute what is known as the laws of sliding friction under dry conditions (Sto-
larski 1990). Based on the experimental observations by Angmonds in the field of
optics, Coulomb developed what is today the most commonly used friction law, but
there is still no simple model which can be universally used by designers to calculate
the friction force for a given pair of bodies in contact. In face of the shortcomings of
the Coulomb friction law, in recent years there has been much interest on the subject
of friction, and many research papers have focused on the subject (Keller 1986,
Wang and Manson 1992, Han and Gilmore 1993).

The presence of friction in the contact surfaces makes the contact problem more
complicated as the friction may lead to different contact modes, such as sticking or
sliding. For instance, when the relative tangential velocity of two impacting bodies
approaches zero, stiction occurs. Indeed, as pointed out by Ahmed et al. (1999),
the friction model must be capable of detecting sliding, sticking and reverse sliding
to avoid energy gains during impact. This work was developed for the treatment of
impact problems in jointed open-loop multibody systems. Lankarani (2000) extends
Ahmed’s formulation to the analysis of impact problems with friction in any general
multibody system including both open- and closed-loop systems.

The Coulomb’s friction law of sliding friction can represent the most fundamen-
tal and simplest model of friction between dry contacting surfaces. When sliding
takes place, the Coulomb law states that the tangential friction force FT is pro-
portional to the magnitude of the normal contact force, FN , at the contact point
by introducing a coefficient of friction c f (Greenwood 1965). The Coulomb’s fric-
tion law is independent of relative tangential velocity. In practice, this is not true
because friction forces can depend on many parameters such as material proper-
ties, temperature, surface cleanliness and velocity of sliding, which cannot all be
accumulated for by a constant friction coefficient. Therefore a continuous friction
force–velocity relationship is desirable. Furthermore the application of the original
Coulomb’s friction law in a general-purpose computational program may lead to
numerical difficulties because it is a highly nonlinear phenomenon that may involve
switching between sliding and stiction conditions. Also from this point of view,
more realistic friction force models are required.

In the last decades, a number of papers addressed the issue of the tangential fric-
tion forces (Bagci 1975, Threlfall 1978, Rooney and Deravi 1982, Haug et al. 1986,
Wu et al. 1986a, b). Most of them use the Coulomb friction model with some modi-
fication in order to avoid the discontinuity at zero relative tangential velocity and to
obtain a continuous friction force. Dubowsky (1974) assumed the friction force to
be equal to a constant value opposing the direction of velocity, given by
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fT = −cc
vT

vT
(3.12)

where cc is a coefficient independent of normal contact force and vT is the relative
tangential velocity. This model does not take the effect of zero velocity into account,
that is, it has the disadvantage of an infinite gradient at null relative tangential veloc-
ity. This causes computational difficulties in the integration process since the force
instantaneously changes from −fT to +fT . This model is qualitatively illustrated
in Fig. 3.10a, which shows the Coulomb’s friction force versus relative tangential
velocity.

A friction model with better numerical features is found in Rooney and Deravi
(1982), where the friction force is calculated from two sets of equations. When the
relative tangential velocity is not close to zero the Coulomb’s friction law is given
by

fT = −c f fN
vT

vT
(3.13)

and when the relative tangential velocity of the contacting bodies is close to zero the
friction force is a value within a range given by

−c f FN < FT < c f FN (3.14)

where c f is the coefficient of friction, vT is the relative tangential velocity and FN

is the normal contact force, which is always positive. This model is illustrated in
Fig. 3.10b.

Wilson and Fawcett (1974) used the model expressed by (3.13) in the dynamic
study of a slider–crank mechanism with a clearance joint between the slider and
the guide. More recently, Ravn (1998) also used (3.13) to include the friction effect
in revolute joints with clearance. Threlfall (1978) proposed another friction force
model, in which the transition between −fT and +fT is made using a curve as
follows:

FT FT

vT vT

(a) (b)

Fig. 3.10 (a) Standard Coulomb’s friction law, (b) Rooney and Deravi friction force
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fT = c f fN
vT

vT

(
1 − e−( 3vT

vr )
)

, if |vT | < vr (3.15)

where c f is the friction coefficient, fN is the normal contact force, vr is a small
characteristic velocity as compared to the maximum relative tangential velocity en-
countered during the simulation. The value of vr is a specified parameter that for
small values results in slowing down the integration method as it gets closer to the
idealized model of Fig. 3.10a. In practice, the regulation factor 1 − exp(−3vT /vr )
smoothes out the friction force discontinuity. The shape of this curve is illustrated
in Fig. 3.11a.

Ambrósio (2002) presented another modification for Coulomb’s friction law, in
which the dynamic friction force is expressed as

fT = −c f cdfN
vT

vT
(3.16)

where c f is the friction coefficient, FN is the normal contact force, vT is the relative
tangential velocity and cd is a dynamic correction coefficient, which is expressed as

cd =

⎧⎪⎨
⎪⎩

0 if vT ≤ v0
vT −v0
v1−v0

if v0 ≤ vT ≤ v1

1 if vT ≥ v1

(3.17)

in which v0 and v1 are given tolerances for the velocity. This dynamic correction
factor prevents the friction force from changing direction for almost null values of
the tangential velocity, which is perceived by the integration algorithm as a dynamic
response with high-frequency contents, thereby forcing a reduction in the time-step
size. The great merit of this modified Coulomb’s law is that it allows the numerical
stabilization of the integration algorithm. This friction force model, illustrated in
Fig. 3.11b, does not account for other phenomena like the adherence between the
sliding contact surfaces, which can be added as a complementary model.

FT FT

vTvr-vr vT
v1v0

(a) (b)

Fig. 3.11 (a) Threlfall friction force, (b) friction force of (3.16)
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3.5 Numerical Aspects in Contact Analysis

In a dynamic simulation, it is very important to find the precise instant of transition
between the different states, that is, contact and noncontact situations. This requires
close interaction with the numerical procedure to continuously detect and analyze
all situations. If not, errors may build up and the final results will become inaccurate.

When a system consists of fast- and slow-moving components, that is, the eigen-
values are widely spread, the system is designated as being stiff (Nikravesh 1988).
Stiffness in the system equations of motion arises when the gross motion of the
overall mechanism is combined with the nonlinear contact forces that lead to rapid
changes in velocity and accelerations. In addition, when the equations of motion
are described by a coupled set of differential and algebraic equations, the error of
the response system is particularly sensitive to constraints violation. Constraints
violation inevitably leads to artificial and undesired changes in the energy of the
system. Yet, by applying a stabilization technique, the constraint violation can be
kept under control (Baumgarte 1972). During the numerical integration procedure,
both the order and the step size are adjusted to keep the error tolerance under control.
In particular, the variable step size of the integration scheme is a desirable feature
when integrating systems that exhibit different time scales, such as in multibody
systems with impacting bodies (Shampine and Gordon 1975). Thus large steps are
taken when the system’s motion does not include contact forces, and when impact
occurs the step size is decreased substantially to capture the high-frequency response
of the system.

One of the most critical aspects in the dynamic simulation of the multibody systems
with collisions is the detection of the precise instant of contact. In addition, the numer-
ical model used to characterize the contact between the bodies requires the knowledge
of the pre-impact conditions, that is, the impact velocity and the direction of the plane
of collision. The contact duration and the penetration cannot be predicted from the
pre-impact conditions due to the influence of the kinematic constraints imposed in the
bodieson theoverall system motion.Thus,before thefirst impact, thebodiescan freely
move relative to each other and, in this phase, the step size of the integration algorithm
may become relatively large. The global motion of the system may be characterized
by relatively large translational and rotational displacements during a single time
step. Therefore, if the numerical integration is not handled properly, the first impact
between the colliding bodies is often made with a high penetration depth and, hence,
the calculated contact forces become artificially large.

The importance of the initial penetration control, in the framework of the integra-
tion of the equations of motion, is better discussed using a simple example. Take the
case of the falling ball illustrated in Fig. 3.12, with a mass m = 1.0 kg, a moment
of inertia equal to 0.1 kg m2, a radius R = 0.1 m, animated by an initial horizontal
velocity v = 1.0 m/s and acted upon by gravity forces only. The motion of the ball
is such that during its falling trajectory it strikes the ground. The penetration of the
ball in the ground, in the integration time step, for which contact is first detected, is

δ(−) = (h − R) − yb (3.18)
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Fig. 3.12 (a) Trajectory of a falling ball obtained with integration algorithms with and without
initial penetration control; (b) detailed view in the vicinity of contact

where yb is the y coordinate of the ball’s center of mass. The superscript (−) on δ

means that it is the penetration when contact is first detected. Note that δ(−) must be
a positive value for contact. Therefore, by monitoring the sign of the penetration at
every time step t + Δt the start can be identified from

δ(−) (q, t) δ(−) (q, t + Δt) ≤ 0 (3.19)

When (3.19) is verified the start of contact is defined as occurring at t + Δt .
The integration of the equations of motion of the system could be proceeded with
no numerical problem if the penetration first detected is close to zero, or at least
below a pre-defined threshold, i.e., if δ(−) (q, t + Δt) ≤ δmax . Because this is not
always the case, strategies to limit the time step in the vicinity of contact must be
implemented when solving contact problems.

Define as δ− the distance between the two surfaces in the time step t− that pre-
cedes the time step t+, at which penetration δ+ is first detected. In between these
time steps, say at tc, the penetration δc = 0 exists. Assuming constant velocity for
the multibody system in the vicinity of contact, the time at which contact starts can
be calculated by

tc = t− + δ−

δ+ − δ− Δt (3.20)

Consequently the ideal situation, during the integration of the multibody equations
of motion, would be a time step in the vicinity of contact of

Δt ideal = tc − t− + ε (3.21)

where ε is a very small number to effectively ensure that δmax > δc > 0. Several
procedures are suggested to ensure that δ+ < δmax , which can be implemented in
any code, depending on the access that exists to the numerical integrator.
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Procedure 1: Assume that in the vicinity of contact the motion of the multibody
system is such that each body moves approximately with constant velocity. Note
that the assumption only needs to be valid within a simple time step. Then the time
for contact is calculated using (3.20) and the ideal time step using (3.21). Now
the positions and velocities of the multibody system, at the time of contact tc, are
estimated as

qc = q− + (q+ − q)
Δt ideal

Δt
(3.22)

q̇c = q̇− + (q̇+ − q̇)
Δt ideal

Δt
(3.23)

where the superscripts −, + and c mean that the quantity in which they are applied
is evaluated at the instant before contact, after contact and at the time of contact,
respectively. The integration algorithm is now restarted at time tc with the initial
positions and velocities given by (3.22) and (3.23).

The procedure proposed, being approximate, does present slight violations of the
position and velocity constraint equations. Because a constraint stabilization method
or a constraint elimination method is being used, according to the discussion in
Chap. 2, it is expected that such violations remain under control. Notice also that
when a variable time-step integrator is used during its start the time steps are small.
Therefore in the vicinity of contact, small time steps are used by the integrator and
even if the conditions calculated by (3.22) and (3.23) are just before contact the
integration process continues with the guarantee that the initial penetration never
exceeds the prescribed threshold.

Procedure 2: The numerical algorithms used for integration of first-order differ-
ential equations with variable time steps, such as the ones generally used in multi-
body dynamics (Shampine and Gordon 1975, Gear 1981), include an error control
that supports the acceptance of rejection of a particular time step. Such decision is
based on numerical issues, related to the dynamic response of the system, rather
than on any physical reason. The idea behind this procedure, to handle the control
on the initial penetration, is to devise a complementary control for the selection of
the integration time step based on physical reasoning only. Say that at a given time,
during the integration of the equations of motion of multibody system, the internal
numerical control of the integration algorithm tests a time step Δttrial and decides
to accept it. Before it is definitely accepted, the following physical condition must
be met by all new contacts detected in the system:

δ(−) (q, t + Δttrial) < δmax (3.24)

If the condition described by (3.24) is met by all new contacts, the integration
continues without any further interference. If (3.24) is not met the integration algo-
rithm takes it as an indication to reject the time step and attempts a smaller time step.
Generally such action corresponds to halving the attempted time step, but particular
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integration error controls may take different actions. When a smaller new time step
is attempted the condition defined by (3.24) is checked again and a decision is made.
Eventually a suitable time step that ensures the fulfillment of (3.24) for all new
contacts is identified. The integrators available in math libraries include features to
inform to the user if the error control intends to accept or reject a time step before
doing it. When such features are available the procedure just described is easily
implemented.

3.6 Summary

In this chapter, different continuous contact-impact force models for both spherical
and cylindrical shape surface collisions in multibody mechanical systems were re-
viewed. In addition, various types of friction force models based on the Coulomb’s
law were also listed and discussed. Because modeling contact forces plays a crucial
role in the analysis of multibody mechanical systems that experience impacts, the
contact force model must be computed using suitable constitutive laws that take into
account material properties of the colliding bodies, geometric characteristics of the
impacting surfaces and, eventually, the impact velocity. Additionally the numerical
method for the calculation of the contact force should be stable enough to allow for
the integration of the mechanical equations of motion with acceptable efficiency.
These characteristics are ensured by using a continuous contact force model in
which the force and penetration vary in a continuous manner and for which some
energy dissipation is included. This approach has the extra benefit of leading to a
behavior of the variable time-step integrator that is more stable.

Some important conclusions can be drawn from the study presented in this
chapter. Among the spherical-shaped contact areas, the linear Kelvin–Voigt contact
model does not represent the overall nonlinear nature of impact phenomenon. The
Hertz relation does not account for the energy dissipation during the impact process.
Therefore the Hertz relation, along with the modification to represent the energy
dissipation, in the form of internal damping, can be adopted for modeling contact
forces in a multibody system. This model is straightforward and easy to implement
in a computational program.

The cylindrical models are nonlinear and implicit functions, and therefore, they
require a numerical iterative procedure to be performed. Furthermore these models
have been proposed as purely elastic, not being able to explain the energy dissipation
during the impact process. From the comparison between the spherical and cylin-
drical contact force models, it can be concluded that the spherical and cylindrical
force–displacement relations are reasonably close. Therefore, the straightforward
force–penetration relation proposed by Lankarani and Nikravesh (1990), with a
modification of the pseudo-stiffness parameter in the case of cylindrical contact,
is largely used for mechanical contacts owing to its simplicity and easiness of im-
plementation in a computational program. Aiding to those advantages, this is the
only model that accounts for energy dissipation during the impact process.
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In dynamic analysis of multibody systems, the deformation/indentation is known
at every time step from the configuration of the system, the forces evaluated being
based on the state variables. With the variation of the contact force during the contact
period, the dynamic system response is obtained by simply including updated forces
into the equations of motion. Since the equations of motion are integrated over the
period of contact, this approach results in a rather accurate response. This procedure
was further improved by including in the time integration scheme a procedure that
controls the time step in order to prevent large penetrations to develop in the initial
contact. Furthermore this methodology accounts for the changes in the system’s
configuration during the contact period. This approach is employed in the forth-
coming chapters to describe the impact between the elements that compose the joint
clearances.

References

Ahmed S, Lankarani HM, Pereira MFOS (1999) Frictional impact analysis in open loop multibody
mechanical system. Journal of Mechanical Design 121:119–127.

Ambrósio J (2000) Rigid and flexible multibody dynamics tools for the simulation of systems
subjected to contact and impact conditions. European Journal of Solids A/Solids 19:S23–S44.

Ambrósio J (2002) Impact of rigid and flexible multibody systems: deformation description and
contact models. Virtual nonlinear multibody systems, NATO Advanced Study Institute, Prague,
Czech Republic, June 23–July 3, edited by W Schiehlen and M Valásek, Vol. II, pp. 15–33.

Bagci C (1975) Dynamic motion analysis of plane mechanisms with Coulomb and viscous damp-
ing via the joint force analysis. Journal of Engineering for Industry, Series B 97(2):551–560.

Baumgarte J (1972) Stabilization of constraints and integrals of motion in dynamical systems.
Computer Methods in Applied Mechanics and Engineering 1:1–16.

Bottasso CL, Citelli P, Taldo A, Franchi CG (1999) Unilateral contact modeling with adams. Inter-
national ADAMS user’s conference, Berlin, Germany, November 17–18, 11pp.

Brach RM (1991) Mechanical impact dynamics, rigid body collisions. Wiley, New York.
Dietl P (1997) Damping and stiffness characteristics of rolling element bearings—theory and ex-

periment. Ph.D. Dissertation, Technical University of Vienna, Austria.
Dubowsky S (1974) On predicting the dynamic effects of clearances in planar mechanisms. Journal

of Engineering for Industry, Series B 96(1):317–323.
Dubowsky S, Freudenstein F (1971) Dynamic analysis of mechanical systems with clear-

ances, part 1: formulation of dynamic model. Journal of Engineering for Industry, Series B
93(1):305–309.

ESDU 78035 Tribology Series (1978) Contact phenomena. I: stresses, deflections and contact
dimensions for normally loaded unlubricated elastic components. Engineering Sciences Data
Unit, London, England.

Flores P, Ambrósio J, Claro JCP, Lankarani HM (2006) Influence of the contact-impact force model
on the dynamic response of multibody systems. Proceedings of the Institution of Mechanical
Engineers, Part-K Journal of Multi-body Dynamics 220:21–34.

Gear CW (1981) Numerical solution of differential-algebraic equations. IEEE Transactions on
Circuit Theory CT-18:89–95.

Goldsmith W (1960) Impact—the theory and physical behaviour of colliding solids. Edward
Arnold, London, England.

Greenwood DT (1965) Principles of dynamics. Prentice Hall, Englewood Cliffs, NJ.
Han I, Gilmore BJ (1993) Multi body impact motion with friction analysis, simulation, and vali-

dation. Journal of Mechanical Design 115:412–422.



References 65

Haug EJ, Wu SC, Yang SM (1986) Dynamics of mechanical systems with Coulomb friction,
stiction, impact and constraint addition deletion—I theory. Mechanism and Machine Theory
21(5):401–406.

Hertz H (1896) On the contact of solids—on the contact of rigid elastic solids and on hardness. Mis-
cellaneous papers (Translated by DE Jones and GA Schott), pp. 146–183. Macmillan, London,
England.

Hunt KH, Crossley FR (1975) Coefficient of restitution interpreted as damping in vibroimpact.
Journal of Applied Mechanics 7:440–445.

Keller JB (1986) Impact with friction. Journal of Applied Mechanics 53:1–4.
Khulief YA, Shabana AA (1986) Dynamic analysis of constrained system of rigid and flexible

bodies with intermittent motion. Journal of Mechanisms, Transmissions, and Automation in
Design 108:38–45.

Lankarani HM (1988) Canonical equations of motion and estimation of parameters in the analysis
of impact problems. Ph.D. Dissertation, University of Arizona, Tucson, AZ.

Lankarani HM (2000) A poisson based formulation for frictional impact analysis of multibody
mechanical systems with open or closed kinematic chains. Journal of Mechanical Design
115:489–497.

Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact
analysis of multibody systems. Journal of Mechanical Design 112:369–376.

Lankarani HM, Nikravesh PE (1994) Continuous contact force models for impact analysis in multi-
body systems. Nonlinear Dynamics 5:193–207.

Love AEH (1944) A treatise on the mathematical theory of elasticity, Fourth edition. Dover Publi-
cations, New York.

Maw N, Barber JR, Fawcett JN (1976) The oblique impact of elastic spheres. Wear 38:101–114.
Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood

Cliffs, NJ.
PC-Crash (2002) A simulation program for vehicle accidents, Technical manual, Version 6.2.
Pedersen S, Hansen J, Ambrósio J (2002) A novel roller-chain drive model using multibody dy-

namics analysis tools. Virtual nonlinear multibody systems, NATO Advanced Study Institute,
Prague, Czech Republic, June 23–July 3, edited by W Schiehlen and M. Valásek, Vol. II,
pp. 180–185.

Pedersen SL (2001) Chain vibrations. MS Dissertation, Department of Mechanical Engineering,
Solid Mechanics, Technical University of Denmark, Lyngby, Denmark.

Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral constraints. Wiley, New York.
Ravn P (1998) A continuous analysis method for planar multibody systems with joint clearance.

Multibody System Dynamics 2:1–24.
Rooney GT, Deravi P (1982) Coulomb friction in mechanism sliding joints. Mechanism and Ma-

chine Theory 17:207–211.
Ryan RR (1990) ADAMS—multibody system analysis software. Multibody systems handbook.

Springer, Berlin Heidelberg New York.
Shampine L, Gordon M (1975) Computer solution of ordinary differential equations: the initial

value problem. Freeman, San Francisco, CA.
Shivaswamy S (1997) Modeling contact forces and energy dissipation during impact in multibody

mechanical systems. Ph.D. Dissertation, Wichita State University, Wichita, KS.
Silva MPT, Ambrósio J (2004) Human motion analysis using multibody dynamics and optimiza-

tion tools. Technical report IDMEC/CPM—2004/001, Instituto Superior Técnico of the Tech-
nical University of Lisbon, Lisbon, Portugal.

Smith RC, Haug EJ (1990) DADS—dynamic analysis and design system. Multibody systems
handbook. Springer, Berlin Heidelberg New York.

Stolarski TA (1990) Tribology in machine design. Butterworth-Heinemann, Oxford, England.
Threlfall DC (1978) The inclusion of Coulomb friction in mechanisms programs with particular

reference to DRAM. Mechanism and Machine Theory 13:475–483.
Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York.



66 3 Contact-Impact Force Models for Mechanical Systems

Wang Y, Manson M (1992) Two dimensional rigid-body collisions with friction. Journal of Applied
Mechanics 59:635–642.

Wilson R, Fawcett JN (1974) Dynamics of slider–crank mechanism with clearance in the sliding
bearing. Mechanism and Machine Theory 9:61–80.

Wu SC, Yang SM, Haug EJ (1986a) Dynamics of mechanical systems with Coulomb friction,
stiction, impact and constraint addition deletion—II planar systems. Mechanism and Machine
Theory 21(5):407–416.

Wu SC, Yang SM, Haug EJ (1986b) Dynamics of mechanical systems with Coulomb friction,
stiction, impact and constraint addition deletion—III spatial systems. Mechanism and Machine
Theory 21(5):417–425.

Zhu SH, Zwiebel S, Bernhardt G (1999) A theoretical formula for calculating damping in the
impact of two bodies in a multibody system. Proceedings of the Institution of Mechanical
Engineers 213(C3):211–216.

Zukas JA, Nicholas T, Greszczuk LB, Curran DR (1982) Impact dynamics. Wiley, New York.



Chapter 4
Planar Joints with Clearance: Dry Contact
Models

In general, a multibody system is made of several components, which can be divided
into links with a convenient geometry and joints, which introduce restrictions on the
relative motion of the various bodies of the system (Shabana 1989). Usually the links
are modeled as rigid or deformable bodies, while the joints are modeled through a
set of kinematic constraints, that is, the joints are not modeled de per si (Bauchau
and Rodriguez 2002). The functionality of a kinematic joint relies upon the relative
motion allowed between the connected components, which, in practice, implies the
existence of a gap, that is, a clearance between the mating parts, leading to surface
contact, shock transmission and the development of different regimes of friction
and wear. No matter how small the clearance is, it can lead to vibration and fatigue
phenomena, lack of precision or, in the limit, to even random overall behavior. If
there is no lubricant or other damping materials in the joint, impacts occur in the
system and the corresponding impulses are transmitted throughout the multibody
system. In this work, the elements that compose the clearance joints are modeled
as colliding bodies. The impact between the two bodies is treated as a continuous
event, that is, the local deformations and the contact forces are continuous functions
of time. The impact analysis of the system is performed simply by including the
contact-impact forces in the equations of motion during the impact period (Flores
and Ambrósio 2004). From the system configuration, a geometric condition defines
if the elements of the joints are in contact or not. Thus the dynamics of joints
with clearances is controlled by contact-impact forces, rather than by the kinematic
constraints of the ideal joints. A force model that accounts for the geometric and
material characteristics of the clearance joint components describes these impacts
and the eventual continuous contact (Lankarani and Nikravesh 1990). The energy
dissipative effects are introduced in the joints through the contact force model and by
friction forces that develop during the contact (Ambrósio 2002). The main purpose
of this chapter is to present the mathematical models for revolute and translational
joints with clearance in planar multibody mechanical systems. The methodologies
and procedures adopted in this chapter are applied to a slider–crank mechanism,
which includes both revolute and translational joints with clearance. For the case of
revolute joints with clearance, the contact force models presented in the previous
chapter are used to assess the influence of the different models on the impact force.

P. Flores et al., Kinematics and Dynamics of Multibody Systems with Imperfect Joints. 67
C© Springer 2008
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4.1 Clearance Models

It is known that the performance of a multibody system is degraded by the presence
of clearances in the joints because impact forces occur. These impact forces con-
tribute to the failure of the components due to shock loading, reducing the systems’
life due to material fatigue, generating high noise levels, causing energy dissipation
and exciting unwanted vibratory responses (Dubowsky and Freudenstein 1971a,b,
Ravn 1998, Flores and Ambrósio 2004, Flores et al. 2006).

In standard multibody models, it is assumed that the connecting points of two
bodies, linked by an ideal or perfect revolute joint, are coincident. The introduction
of the clearance in a revolute joint allows for the separation of these two points.
Figure 4.1 depicts a revolute joint with clearance, that is, the so-called journal–
bearing, where the difference in radius between the bearing and the journal defines
the radial clearance.

Although a revolute joint with clearance does not constrain any degree of free-
dom from the mechanical system, as the ideal joint does, it imposes some kinematic
restrictions, limiting the journal to move within the bearing. Thus, when the clear-
ance is present in a planar revolute joint, two kinematic constraints are removed
and two degrees of freedom are introduced instead. The dynamics of the joint is
then controlled by contact-impact forces between the journal and the bearing. Thus,
whilst a perfect revolute joint in a mechanical system imposes kinematic constraints,
a revolute clearance joint leads to force constraints. Therefore mechanical joints
with clearance can be defined as force-joints instead of kinematic joints.

In a revolute clearance joint, when contact exists between the journal and the
bearing, a contact-impact force, perpendicular to the plane of collision, develops.
The force is typically applied as a spring–damper element. If this element is linear,
the approach is known as the Kelvin–Voigt model (Timoshenko and Goodier 1970).
If the relation is nonlinear, the model is generally based on the Hertz contact law
(Hertz 1896).

In what concerns the clearance modeling, there are, in general, three different ap-
proaches, namely, the massless link approach, the spring–damper approach and the

Fig. 4.1 Revolute joint with
clearance, that is, the
so-called journal–bearing

Bearing

Journal

RJ
C

RB



4.1 Clearance Models 69

momentum exchange approach. The massless link approach (Earles and Wu 1975),
in which the presence of clearance at a joint is modeled by adding an imaginary
massless link with a fixed length equal to the clearance, is illustrated in Fig. 4.2a.
This link results in the mechanism model having an additional degree of freedom.
Hence the resulting equations of motion are found to be highly nonlinear and com-
plex to solve. Furthermore this model assumes that there is contact between the
journal and the bearing all the time, hence unable to represent free flight trajecto-
ries. Wu and Earles (1977) used the massless link model to predict the occurrence
of contact loss in revolute joints of planar mechanisms.

The spring–damper approach (Dubowsky and Freudenstein 1971a,b, Bengisu
et al. 1986), in which the clearance is modeled by introducing a spring–damper
element that simulates the surface elasticity, is in Fig. 4.2b. This model shows some
deficiencies in representing the physical nature of the energy transfer during the
impact process, the parameters of the spring and damper elements being difficult
to quantify. Dubowsky (1974) investigated the dynamic effects of clearance in pla-
nar mechanisms by simulating the elasticity of the contacting surfaces using linear
springs and dampers.

In the momentum exchange approach (Townsend and Mansour 1975, Ravn 1998,
Flores et al. 2006), the mechanical elements that constitute a clearance joint are
considered as impacting bodies. The contact-impact forces control the dynamics
of the clearance joint. The work presented in this book uses methodologies that
are in line with momentum exchange approach in the kinematics of the contacting
bodies concerned. In the massless link and spring–damper models, the clearance is
replaced by mechanical components, which are intended to represent the behavior
of the clearance as closely as possible. The momentum exchange approach is more
realistic since the impact force model allows, with high level of approximation, to
simulate the elasticity of the contacting surfaces as well as the energy dissipation
during the impact.

Several published works focused on the different modes of motion of the journal
inside the bearing. Most of these consider a three-mode model for predicting the
dynamical response of articulated systems with revolute clearance joints (Mansour
and Townsend 1975, Miedema and Mansour 1976). The three different modes of
journal motion inside the bearing are the contact or following mode, the free flight

Clearance circle

(a) (b)

Clearance orbit

Fig. 4.2 Examples of models for revolute joints with clearance: (a) massless link model;
(b) spring–damper model
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Free flight
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Free flight
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Fig. 4.3 Types of journal motion inside the bearing

mode and the impact mode. These three types of the journal motion are illustrated
in Fig. 4.3.

In the contact or following mode, the journal and the bearing are in permanent
contact and a sliding motion between the contacting surfaces exists. In this mode, the
relative penetration depth varies along the circumference of the bearing. This mode
ends when the journal and the bearing separate from each other, and the journal
enters the free flight mode. In the free flight mode, the journal can move freely
inside the bearing boundaries, that is, the journal and the bearing are not in contact
and, consequently, no reaction force develops at the joint. In the impact mode, which
occurs on the termination of the free flight mode, impact forces are applied to the
system. This mode is characterized by a discontinuity in the kinematic and dynamic
characteristics, and a significant exchange of momentum occurs between the two
impacting bodies. At the termination of the impact mode, the journal can enter either
a free flight or a following mode. During the dynamic simulation of a revolute joint
with clearance, if the path of the journal center is plotted for each instant, these
different modes of motion, depicted in Fig. 4.3, can be easily identified.

4.2 Model of Revolute Joint with Clearance

The simulation of real joints requires the development of a mathematical model for
revolute clearance joints in the multibody systems. Figure 4.4 shows two bodies i
and j connected by a generic revolute joint with clearance. Part of body i is the
bearing and part of body j is the journal. The center of mass of bodies i and j
are Oi and O j , respectively. Body-fixed coordinate systems ξη are attached to the
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Fig. 4.4 Generic revolute joint with clearance in a multibody system

center of mass of each body, while the XY coordinate frame represents the global
coordinate system. Point Pi indicates the center of the bearing, and the center of the
journal is denominated by point Pj .

In the dynamic simulation, the behavior of the revolute clearance joint is treated
as an oblique eccentric impact between the journal and the bearing. The mechanics
of this type of impact involves both the relative normal velocity and the relative
tangential velocity (Zukas et al. 1982). When the impact occurs, an appropriate
contact law must be applied, the resulting forces being introduced in the system
equations of motion as generalized forces.

Taking into account Fig. 4.4, the eccentricity vector e connecting the centers of
the bearing and the journal is calculated as

e = rP
j − rP

i (4.1)

where both rP
i and rP

j are described in the global coordinates reference frame as
(Nikravesh 1988)

rP
k = rk + Aks′P

k , (k = i, j) (4.2)

The magnitude of the eccentricity vector is evaluated as

e =
√

eTe (4.3)

where eT is the transpose of vector e.
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The unit normal vector n to the surfaces in collision between the bearing and the
journal, designated as n, is aligned with the eccentricity vector:

n = e/e (4.4)

The unit vector is aligned with the line between the centers of the bearing and the
journal.

With reference to Fig. 4.5, the penetration depth caused by the impact between
the journal and the bearing is evaluated as

δ = e − c (4.5)

where c is the radial clearance, defined as the difference between the radius of the
bearing and the radius of the journal.

Let points Qi and Q j represent the contact points on bodies i and j , respectively.
The position of the contact points Qi and Q j are evaluated as

rQ
k = rk + Aks′Q

k + Rkn, (k = i, j) (4.6)

where Ri and R j are the bearing and journal radiis, respectively.
In some contact models, it is important to evaluate the dissipative effects that

develop during impact. In the continuous force contact model it, is necessary to
calculate the relative velocity between the impacting surfaces. The velocity of the
contact points Qi and Q j in the global coordinate system is found by differentiating
(4.6) with respect to time, i.e.,

ṙQ
k = ṙk + Ȧks′Q

k + Rk ṅ (4.7)

δ

ri
Q rj

Q

ri
rj

si
Q

sj
Q

n
t

tangent to the
plane of collision

(i)
(j)

Qi Qj

Oj

Oi

ηi

ξi

ξj

ηj

X

Y

Fig. 4.5 Penetration depth due to the impact between the bearing and the journal
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where (•̇) denotes the derivative with respect to time of quantity (•).
The relative velocity between the contact points is projected onto the tangential

line to the colliding surfaces and onto the normal to colliding surfaces, yielding a
relative tangential velocity, vT , and a relative normal velocity, vN , shown in Fig. 4.6.
The normal relative velocity determines whether the contact bodies are approaching
or separating. The tangential relative velocity determines whether the contact bodies
are sliding or sticking. The relative scalar normal and tangential velocities are

vN = (ṙQ
j − ṙQ

i )T n (4.8)

vT = (ṙQ
j − ṙQ

i )T t (4.9)

where t is obtained by rotating the vector n, calculated using (4.4), in the counter
clockwise direction by 90◦.

The normal and tangential forces, fN and fT , respectively, are applied at the
contact points. These forces are evaluated using the contact force law proposed in
Chap. 3 and a friction model such as the Coulomb law. The contributions to the
generalized vector of forces and moments, g in the equation of motion, are found
by projecting the normal and tangential forces onto the X and Y directions. These
forces that act on the contact points of bodies i and j are transferred to the center
of mass of bodies and an equivalent transport moment is applied to the rigid body.
Referring to Fig. 4.7, the forces and moments that act on the center of mass of body
i due to the clearance joint contact are given by

fi = fN + fT (4.10)

mi = −(y Q
i − yi ) f x

i + (x Q
i − xi) f y

i (4.11)

The corresponding forces and moments applied to the body j are

f j = −fi (4.12)

m j = (x Q
j − x j) f y

j − (y Q
j − y j) f x

j (4.13)

Fig. 4.6 Velocity vectors of
impact between the bearing
and the journal
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4.3 Model of Translational Joint with Clearance

Similar to the procedure used in the previous section for the revolute joint, this
presents a mathematical model for translational joints with clearance in multibody
systems. Figure 4.8 shows an example of a planar translational joint with clearance.
The clearance c is defined as the difference between the guide and slider surfaces.
The geometric characteristics of the translational clearance joint used here are the
length of the slider L, the slider width W and the distance between the guide surfaces
H . In the present work, the slider and the guide elements that constitute a transla-
tional clearance joint are modeled as two colliding bodies and the dynamics of the
joint is governed by contact-impact forces. The equations of motion that govern the
dynamic response of the general multibody systems incorporate these forces.

In an ideal translational joint the two bodies, slider and guide, translate with
respect to each other along the line of translation, so that there is neither rotation
between the bodies nor a relative translation motion in the direction perpendicular
to the axis of the joint. Therefore an ideal translational joint reduces the number

Fig. 4.8 Translational joint
with clearance, that is, the
slider and its guide

L

Slider

Guide

W

c

H
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of degrees of freedom of the system by two. The existence of a clearance in a
translational joint removes the two kinematic constraints and introduces two extra
degrees of freedom. Hence the slider can move ‘freely’ inside the guide limits. When
the slider reaches the guide surfaces an impact occurs and the dynamic response of
the joint is controlled by contact forces. These contact forces are evaluated accord-
ing to the continuous contact force proposed together with the dissipative friction
force model selected. Then these forces are introduced into the system equations
of motion as external generalized forces. Although a translational clearance joint
does not constrain any degree of freedom from the mechanical system, as an ideal
joint does, it imposes some restrictions on the slider motion inside the guide. Thus,
while a perfect joint in a multibody system is achieved by kinematic constraints, a
clearance joint is obtained by force constraints.

Over the last few decades extensive work has been done to study the dynamic
effect of the revolute clearance in multibody systems (Dubowsky and Freudenstein
1971a, Ravn 1998, Schwab 2002, Flores and Ambrósio 2004). In contrast, lit-
tle work has been done to model translational joints with clearance. Wilson and
Fawcett (1974) derived the equations of motion for the different scenarios of the
slider motion inside the guide. They also showed how the slider motion in a trans-
lational clearance joint depends on the geometry, speed and mass distribution.
Farahanchi and Shaw (1994) studied the dynamic response of a planar slider–crank
mechanism with slider clearance. More recently, Thümmel and Funk (1999) used
the complementary approach to model impact and friction in a slider–crank mecha-
nism with both revolute and translational clearance joints.

The modeling of translational clearance joints is more complicated than that for
the revolute joints, due to the several possible contact configurations between the
slider and the guide. Figure 4.9 illustrates four different scenarios for the slider
configuration relative to guide surface, namely: (1) no contact between the two el-
ements: the slider is in free flight motion inside the guide and, consequently, there
is no reaction force at the joint; (2) one corner of the slider is in contact with the
guide surface; (3) two adjacent slider corners are in contact with the guide surface,
which corresponds to having a face of slider in contact with the guide surface; (4)
two opposite slider corners are in contact with the guide surface. The conditions for
switching between different cases depend on the system’s dynamics. For the cases
represented in Fig. 4.9, the contact forces are evaluated using the continuous contact
force model.

In order for the clearance joints to be simulated in the multibody system envi-
ronment, it is required that a mathematical model be developed. Figure 4.10 shows
a representation of a translation joint with clearance that connects bodies i and j .
The slider is body i whereas the guide is part of body j . The center of mass of
bodies i and j are Oi and O j , respectively. Let points P , Q, R and S in the guide
surfaces indicate the geometric limits inside which contact may occur. Points Ai ,Bi ,
Ci andDi indicate the four corners of the slider, and A j , B j , C j and D j are the points
on the guide surfaces that are closer to the points in body j . The contact formulation
for all corners in the slider is similar, and therefore, in what follows only the slider
corner A is used to describe the mathematical formulation.
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(b)(a)

(d)(c)

Fig. 4.9 Different scenarios for the slider motion inside the guide: (a) no contact; (b) one corner in
contact with the guide; (c) two adjacent corners in contact with the guide; (d) two opposite corners
in contact with the guide

Let vector t, directed along the guide surface from point P to point Q in body j ,
be written in terms of the body-fixed coordinates as

t′ j = s′Q
j − s′ P

j (4.14)

Note that the tangent vector expressed in the inertia frame is t = A j t′, where A j is
the transformation matrix from body j ’s frame to the inertial frame.

Let the position vector for any given point G of a body k be described with
respect to inertial reference frame as

rG
k = rk + Aκs′G

k , (k = i, j) (4.15)

where s′G
k is the position of point G in body k expressed in body-fixed coordinates.

The position of point A j , belonging to the segment PQ of the guide, closest to
point Ai located in the corner of the slider, is given as

rA
j = rP

j + [tT (rA
i − rP

j )]t (4.16)

The vector connecting the slider corner Ai to point A j on the guide surface is

δ = rA
j − rA

i (4.17)
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Fig. 4.10 Generic translational clearance joint in a multibody system

Note that vector δ has the same direction as the normal n to the guide surface.
Regardless of this identity, let the normal vector n be defined as perpendicular to the
tangent vector t, which for two-dimensional cases is

n = [ ty −tx ]T (4.18)

Figure 4.11 shows the slider and guide in two different scenarios, namely in a
noncontact situation and in the case of penetration between the slider and guide
surface. For the contact case, the vectors δ and n are parallel but oriented in oppo-
site directions. Thus the condition for penetration between the slider and guide is
expressed as

nT δ < 0 (4.19)

The magnitude of the penetration depth for point Ai is evaluated as

δ =
√

δT δ (4.20)

The impact velocity, required for the evaluation of the contact force, is obtained
by differentiating (4.17) with respect to time, yielding
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Fig. 4.11 (a) Noncontact situation; (b) penetration between the slider corner A and the guide
surface

�̇ = ṙ j + Ȧ j s′ A
j − ṙi − Ȧi s′ A

i (4.21)

When the contact between the slider and the guide surfaces takes place, normal
and tangential forces appear in the contact points. By transferring these forces to the
center of mass of each body Fig. 4.12 shows the forces and moments acting on the
center of mass of body I , which are

fi = fN + fT (4.22)

mi = −(y Q
i − yi ) f x

i + (x Q
i − xi) f y

i (4.23)

(j)
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x

fi
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Fig. 4.12 Forces that act at the points of contact between the slider and the guide
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The forces and moments to be applied in body j are written as

f j = −fi (4.24)

m j = (x Q
j − x j) f y

j − (y Q
j − y j) f x

j (4.25)

In dealing with translational clearance joints, it is essential to define how the
slider and guide surfaces contact each other and, consequently, what is the most
adequate contact force model. Lankarani (1988) presented a linear model for contact
between two square plane surfaces as

FN = K δ (4.26)

where the stiffness parameter K is given by

K = a

0.475(σi + σ j)
(4.27)

having the area of contact a length of 2a and quantities σ i and σ j are given by (3.4).
When two adjacent slider corners contact with the guide surface, the resulting

contact force is applied at the geometric center of the penetration area, denoted as
GC in Fig. 4.13a, and the contact force model given by (4.26) is used. Otherwise,
when one or two opposite slider corners contact the guide surface the contact is
assumed to be between a spherical surface and a plane surface, allowing for the
contact model given by Hertz law with hysteretic damping factor expressed by (3.9)
to be applied. In order to evaluate the equivalent stiffness, a small curvature radius
Rc is assumed on the contact corner, represented in Fig. 4.13b. The unified contact
model is obtained using the pseudo-stiffness expressed by (4.27) in the continuous
force model represented by (3.9).

Geometric center

(j)

(b)(a)

(i)

Rc (j)

(i)

Fig. 4.13 (a) Contact between a spherical surface and a plane; (b) contact between two plane
surfaces
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Fig. 4.14 Slider–crank mechanism with a revolute clearance joint

4.4 Application 1: Slider–Crank with Revolute Clearance Joint

The slider–crank mechanism is chosen as an example to demonstrate the application
of the methodologies presented in this chapter. The same mechanism has been stud-
ied by other authors (Ravn 1998, Schwab 2002), which allows the comparison of
the results obtained. Figure 4.14 shows the configuration of the slider–crank mech-
anism, which consists of four rigid bodies, two ideal revolute joints and one ideal
translational joint. A revolute clearance joint exists between the connecting rod and
the slider.

The crank, which is the driving link, rotates with a constant angular velocity of
5000 rpm. The initial configuration of the mechanism is defined with the crank and
the connecting rod collinear and the journal and bearing centers coincident. Fur-
thermore the initial positions and velocities necessary to start the dynamic analysis
are obtained from kinematic simulation of the slider–crank mechanism in which all
the joints are considered to be ideal. The geometric and inertia properties of each
body are listed in Table 4.1. The parameters used for the different models, required
to characterize the problem, and for the numerical methods, required to solve the
system dynamics, are listed in Table 4.2.

The dynamic response of the slider–crank mechanism is obtained and repre-
sented in Figs. 4.15 and 4.16 by the time plots of the velocity and acceleration
of the slider and the moment acting on the crank, which is required to maintain the
crank angular velocity constant. The relative motion between journal and bearing
centers is plotted in Figs. 4.15d and 4.17. The Hertz contact force law with hysteretic
damping factor, given by (3.9), is used to evaluate the contact force between the
journal and bearing. Figure 4.15 shows the results for the case in which the clearance
size is 0.5 mm. Note that the results, reported for the two full crank rotations after
steady-state has been reached, are plotted against those obtained for an ideal joint.

In Fig. 4.15a, it is observed that the existence of a joint clearance influences
the slider velocity by leading to a staircase-like behavior. The periods of constant

Table 4.1 Geometric and inertia properties of the slider–crank mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)

2 0.05 0.30 0.00010
3 0.12 0.21 0.00025
4 – 0.14 0.00010
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Table 4.2 Parameters used in the dynamic simulation of the slider–crank mechanism with revolute
clearance joint

Bearing radius 10.0 mm Baumgarte - α 5
Restitution coefficient 0.9 Baumgarte - β 5
Young’s modulus 207 GPa Integration step 10−5 s
Poisson’s ratio 0.3 Integration tolerance 10−6 s

velocity observed for the slider mean that the journal moves freely inside the bear-
ing boundaries. The sudden changes in velocity are due to the impact between the
journal and the bearing. When a smooth change in the velocity curve of the slider
is observed it indicates that the journal and the bearing are in continuous contact,
that is, the journal follows the bearing wall. This situation is confirmed by smooth
changes in the acceleration curve. The slider acceleration exhibits high peaks caused
by impact forces that are propagated through the rigid bodies of the mechanism, as
perceived in Fig. 4.15b where the acceleration of the slider is displayed. The slider
acceleration presents high peaks of its values, which may be smoothed in a real
mechanism due to the energy dissipation associated with the system components’
flexibility. The same phenomena can be observed in the crank moment, represented
by Fig. 4.15c. As far as the trajectory of the journal center relative to the bear-
ing center is concerned, different types of motion between the two bodies can be
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Fig. 4.15 (a) Slider velocity; (b) slider acceleration; (c) crank moment required to maintain its
angular velocity constant; (d) journal trajectory relative to the bearing
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Fig. 4.16 Crank moment for different radial clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm;
(c) c = 0.1 mm; (d) c = 0.01 mm

observed, namely, free flight, impact and rebound, and permanent or continuous
contact. The relative penetration depth between the journal and the bearing is visible
by the points of the journal that are plotted outside the clearance circle, in Fig. 4.15d,
where the journal center trajectories are presented by continuous lines that connect
point markers. Each one of the markers represents the position of the journal for a
given time step. It can be observed that during the free flight motion the time step
adopted by the integration algorithm is much larger than during the contact. When
contact is detected, the integration time step decreases significantly, which shows
the importance of varying time-step integration algorithm for problems involving
contact.

The clearance size is one of the most important parameters that affect the dy-
namic behavior of the system. In Figs. 4.16–4.18, the crank moments, the journal
center trajectories and the Poincaré maps are used to illustrate the dynamic behavior
of the slider–crank mechanism when different clearance sizes are present. In this
application, the slider acceleration and slider velocity are chosen to plot the Poincaré
maps. The values for the clearance of the revolute joint are chosen to be 0.5, 0.2, 0.1
and 0.01 mm.

Poincaré maps are mathematical abstractions which are often useful in high-
lighting the dynamic behavior of systems in terms of periodic, quasi-periodic and
chaotic motion. Especially chaotic systems are often examined through the use of
Poincaré maps. A Poincaré map consists of plotting the value of two components
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(a)

(c) (d)

(b)

Fig. 4.17 Journal center trajectory with respect to the bearing for different radial clearance sizes,
the maximum eccentricity being plotted with a dashed circle: (a) c = 0.5 mm; (b) c = 0.2 mm;
(c) c = 0.1 mm; (d) c = 0.01 mm

from the state vector versus its derivative, i.e., y(t) and ẏ(t) (Baker and Gollub 1990,
Tomsen 1997). Regular or periodic behavior is insensitive to initial conditions and
is represented in the Poincaré map by a closed orbit or finite number of points.
Chaotic or nonperiodic responses are extremely sensitive to initial conditions and
are perceived by a region densely filled by orbits or points in the Poincaré map. A
complicated looking phase in a Poincaré map is one indicator of chaotic motion.
Quasi-periodic orbits fill up the Poincaré maps as the chaotic orbits, but they do so
in a fully predictable manner since there is not such a sensitive dependency on the
initial conditions (Wiggins 1990).

From the Poincaré maps analysis, the slider–crank mechanism behavior can
easily be characterized, and it is possible to distinguish between periodic, quasi-
periodic and chaotic responses. In multibody systems, nonlinearities arise from in-
termittent motion, clearance joints, friction effect and contact forces, among others.
The relation between the clearance size and the type of motion observed is clearly
identified from plots in Fig. 4.18.

Figure 4.16 shows that when the clearance size is decreased the dynamic behavior
tends to be smoother, which is represented by lower peaks in the crank moment. In-
deed, when the clearance is small, the system response tends to be closer to the ideal
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Fig. 4.18 Poincaré maps for different radial clearance sizes: (a) c = 0.5 mm; (b) c = 0.2 mm;
(c) c = 0.1 mm; (d) c = 0.01 mm

response meaning that the journal and the bearing experiment a smaller number of
impacts. Hence the clearance joint behavior tends to be periodic instead of nonlinear
or chaotic. This conclusion is easily confirmed by the journal center trajectories
and the respective Poincaré maps displayed in Fig. 4.17d and 4.18d, respectively.
Figure 4.17a and b clearly shows a nonperiodic motion between the journal and
bearing since it does not repeat from cycle to cycle. This is confirmed by the re-
spective Poincaré map displayed in Fig. 4.18a and b, where the chaotic behavior
can be clearly observed. This chaotic response suggests that impacts followed by
some rebounds take place. Figure 4.18c shows a quasi-periodic motion, because
the orbits fill up the Poincaré maps in a fully predictable manner, thus there is no
sensitive dependence on the initial conditions. It is clear that, when the clearance
is reduced, the dynamic response tends to be periodic or regular, which indicates
that the journal follows the bearing wall. It is noteworthy that, for an ideal revolute
joint, the Poincaré map is almost the same as the map shown in Fig. 4.18d, which is
expected in so far as all the bodies in the system exhibit a periodic motion.

In a way similar to the clearance size study for the crank moments, the journal
center trajectories and Poincaré maps are used to quantify the behavior of the slider–
crank mechanism when friction is taken into account. In the models used, the contact
between the journal and the bearing is modeled by the Lankarani and Nikravesh
force model, given by (3.9), together with the modified Coulomb friction law, given
by (3.16). The radial clearance size is equal to 0.5 mm and four different values
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Fig. 4.19 Crank moment for different values of friction coefficient: (a) c f = 0.01; (b) c f = 0.03;
(c) c f = 0.05; (d) c f = 0.1

for friction coefficient are used, namely, 0.01, 0.03, 0.05 and 0.1. Figure 4.19 de-
picts the crank moments for different friction coefficient values. The journal center
trajectories and the corresponding Poincaré maps are shown in Figs. 4.20 and 4.21.

In general, the effect of the friction is to reduce the peaks of the force values due
to the impact between the journal and the bearing. This can be observed in the crank
moment plots, displayed in Fig. 4.19a–d. Figure 4.20a–d shows that the path of the
journal center is characterized by a continuous contact, i.e., the journal follows the
bearing wall all the time when the friction coefficient is increased. By observing
Figures 4.19–4.21 it is clear that, when the friction coefficient increases, the dy-
namic response of the system tends to be periodic and closer to that of the system
with ideal joints. For a low value of the friction coefficient, the system response is
chaotic since the Poincaré map has the trajectories spread, as shown in Fig. 4.21a.

In short, multibody mechanical systems with clearance joints are well known
as nonlinear dynamic systems that, under certain conditions, exhibit a chaotic re-
sponse. However, from the results presented here, it is found that the dynamics of
the revolute clearance joint in multibody mechanical systems is sensitive not only to
the clearance size but also to the friction coefficient. With a small change in one of
these parameters the response of the system can shift from chaotic to periodic and
vice versa.

In what follows, several models demonstrate how different contact force mod-
els may influence the behavior of the slider–crank mechanism and what their
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Fig. 4.20 Journal center trajectory for different values of friction coefficient: (a) c f = 0.01;
(b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1
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Fig. 4.21 Poincaré maps for different values of friction coefficient: (a) c f = 0.01; (b) c f = 0.03;
(c) c f = 0.05; (d) c f = 0.1
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consequences are in terms of the contact force and crank reaction moment. The
contact force models for both spherical and cylindrical contact surfaces, presented
in Chap. 3, are used here. The impact is treated as being frictionless and the radial
clearance size is set to be 0.5 mm. The contact force for two full crank rotations is
used to illustrate the behavior of the slider–crank mechanism, when different con-
tact force models are applied. The contact forces corresponding to each model are
pictured in Fig. 4.22. In addition to the contact force, the driving crank moment nec-
essary to maintain a constant crank angular velocity for the different contact models
and the journal center trajectories are presented in Figs. 4.23 and 4.24, respectively.

From Fig. 4.22, it is clear that for all pure elastic contact models the level of
contact force is higher when compared to the continuous contact force model by
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Fig. 4.22 Contact force between the journal and the bearing for the contact models presented:
(a) Hertz contact law; (b) Lankarani and Nikravesh model; (c) Dubowsky and Freudenstein model;
(d) Goldsmith model; (e) ESDU 78035 model
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Fig. 4.23 Driving crank moment for the different contact models presented: (a) Hertz contact law;
(b) Lankarani and Nikravesh model; (c) Dubowsky and Freudenstein model; (d) Goldsmith model;
(e) ESDU 78035 model

Lankarani and Nikravesh (1990) with a restitution coefficient ce = 0.9. A similar
conclusion can be drawn from Fig. 4.23a–e, since the impact forces are propagated
through the rigid bodies of the slider–crank mechanism. By inspecting Fig. 4.24a–e
it is observed that the contact models, which do not include energy dissipation, have
short periods of contact between the journal and the bearing and long free flight
periods. The contact model given by (3.9), which accounts for energy dissipation,
presents long periods of contact between the journal and the bearing.

In Fig. 4.24a–e, the journal trajectories are presented by continuous lines that
connect points. A point is plotted for each integration time step and represented by
a marker, the relative penetration depth being visible by points outside the clearance
circle. The point density is very high when the journal contacts the bearing wall,
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Fig. 4.24 Journal center trajectory for the different contact models: (a) Hertz contact law;
(b) Lankarani and Nikravesh model; (c) Dubowsky and Freudenstein model; (d) Goldsmith model;
(e) ESDU 78035 model

which means that the step size of the integration algorithm is small. When the jour-
nal is in free flight motion, the time step is automatically increased by the integration
algorithm and, consequently, the points plotted in Fig. 4.24a–e are further apart.
This shows the importance of using a varying time-step integration scheme for the
dynamic analysis of systems that involve contact and impact.

Figure 4.25a–d depicts the influence of the coefficient of restitution on the crank
moment when the continuous contact force model proposed by Lankarani and
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Fig. 4.25 Crank moment for different values of the restitution coefficient when the continuous con-
tact force model proposed by Lankarani and Nikravesh (1990) is used: (a) ce = 1.00; (b) ce = 0.99;
(c) ce = 0.95; (d) ce = 0.90

Nikravesh (1990), given by (3.9), is used. This model shows a direct relationship
between the contact force and coefficient of restitution that is selected to the process
of energy dissipation during the impact. In the case studies presented, the radial
clearance size is equal to 0.5 mm and four different coefficients of restitution are
selected, namely, 1.00, 0.99, 0.95 and 0.90. In Fig. 4.25a–e, it is observed that when
the coefficient of restitution decreases, the peaks of the crank moment values are
reduced, indicating a higher energy dissipation during the contact.

Figure 4.26a and b shows the time variation of the contact force and the relation
between the force and penetration depth for different values of the coefficient of
restitution, for the first impact only. Observing Fig. 4.26b, it is important to high-
light how the hysteresis loop increases when the coefficient of restitution decreases.
When the restitution coefficient is the unit, which corresponds to the pure Hertz
contact force law, there is no energy dissipation in the contact process. This result is
evident in the force-penetration depth relation of Fig. 4.26b, which does not present
an hysteresis loop.

Some important conclusions can be drawn from the study presented here. Among
the spherical shaped contact areas, the linear Kelvin–Voigt contact model does not
represent the overall nonlinear nature of impact. The Hertz relation, besides its non-
linearity, does not account for the energy dissipation during the impact process.
Therefore the Hertz relation along with the modification to represent the energy
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Fig. 4.26 Influence of the coefficient of restitution for the Lankarani and Nikravesh continuous
contact force model: (a) contact force versus time; (b) force–penetration depth relation

dissipation in the form of internal damping is advantageous for modeling contact
forces in a multibody system. The cylindrical models are expressed by nonlinear
and implicit functions of penetration depth and they require a numerical iterative
procedure to solve them, if no approximation is to be used.

The different continuous contact force models which use an elastic contact theory
lead to comparable results in terms of contact forces, crank moments and journal
trajectories. However, when dissipation is allowed to take place, the peaks of the
crank moments that are required to drive the mechanism with a constant angular
velocity are much lower than those observed for the elastic models. This observation
is consistent with the comparisons of the flight trajectories observed for the different
models. It was observed that the energy dissipation of the continuous contact model,
proposed by Lankarani and Nikravesh (1990), results in long periods of time when
the journal seats in the bearing, thus predicting a much smoother dynamic response
of the system. Furthermore because the restitution coefficient plays a role in the
control of the energy dissipation this model can represent a much broader number
of contact conditions.

4.5 Application 2: Slider–Crank with Translational
Clearance Joint

In order to examine the consequences of the formulation developed for the transla-
tional clearance joint, the planar slider–crank mechanism, discussed in the previous
section, is considered again as a numerical example here. All joints are ideal except
for the translation joint that has a clearance, as shown in Fig. 4.27. The translational
clearance joint is composed of a guide and a slider. This joint has a finite clearance,
which is constant along the length of the slider.

It is assumed that the crank is driven at a constant angular velocity equal to 5000
rpm, maintained by varying the input torque. Initially the slider is at the same dis-
tance from the upper and lower guide surfaces and the initial velocities and positions
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Fig. 4.27 Slider–crank mechanism with a translational clearance joint

are those used in Sect. 4.4. Table 4.3 shows the parameters used in the simulation of
this demonstrative example.

The dynamic performance of the slider–crank mechanism study case is demon-
strated through the time plots of the slider velocity and acceleration and the moment
that acts on the crank, which are presented in Figure 4.28. Additionally the slider tra-
jectories inside the guide are represented in Fig. 4.28 in a nondimensional plot. Re-
sults for two full crank rotations are given in Fig. 4.28a–d. The impact between the
slider and guide surfaces is assumed to be frictionless, the Lankarani and Nikravesh
contact force model expressed by (3.9) being used to compute the normal forces.
For convenience, a small radius of curvature at each slider corner is considered, in
order to calculate the equivalent generalized stiffness given by (3.5).

The slider velocities and acceleration, presented in Fig. 4.28a and b, clearly show
the influence of the clearance in the kinematics of the translation joint. The slider ve-
locity diagram is smooth and close to the ideal joint simulation. The smooth changes
in the velocity also indicate that the slider and guide surfaces are in permanent con-
tact for long periods. Some sudden changes in the velocity are due to the impacts
between the slider and guide surfaces. These impacts are visible in the acceleration
diagram by high values in the form of peaks in the response. Since the bodies of the
slider–crank mechanism are rigid, the impact forces are propagated from the slider
to the crank, leading to visible high peaks in the crank moment diagram shown in
Fig. 4.28c.

The dimensionless slider trajectories are shown in Fig. 4.28d. There, the differ-
ent types of motion between the slider and guide observed are associated with the
different guide–slider configurations, that is, no contact, contact-impact followed
by rebound and permanent contact. The dimensionless X-slider motion varies from

Table 4.3 Numerical parameters used in the dynamic simulation of the slider–crank mechanism
with a translational clearance joint

Clearance size 0.5 mm Young’s modulus 207 GPa
Slider length 50.0 mm Poisson’s ratio 0.3
Slider width 50.0 mm Baumgarte - α 5
Slider thickness 50.0 mm Baumgarte - β 5
Corner curvature radius 1.0 mm Integration step 10−5 s
Restitution coefficient 0.9 Integration tolerance 10−6 s
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Fig. 4.28 (a) Slider velocity; (b) slider acceleration; (c) crank moment; (d) dimensionless slider
trajectories inside the guide

0 to 1, which corresponds to the low and top dead ends, respectively. The dimension-
less Y-slider motion higher than 0.5 corresponds to the case in which the slider and
the upper guide surface are in contact, whereas the dimensionless Y-slider motion
lower than −0.5 corresponds to the case in which the contact takes place between the
slider and the lower guide surface. The horizontal lines in the slider path diagrams
represent the geometric limits for contact situations between the slider and guides
surfaces.

In order to understand the influence of the clearance size in the dynamic behavior
of the slider–crank mechanism, the driving crank moment is plotted in Fig. 4.29a–d
for simulations where the clearance in the translational clearance joint varies from
0.01 to 0.5 mm. In addition to the crank moment, the respective slider trajectories
and the Poincaré maps are presented in Figs. 4.30 and 4.31. Again the slider accel-
eration and slider velocity are chosen to build the Poincaré maps.

From Fig. 4.29 it is evident that when the clearance size is small the crank
moment peaks are lower and the dynamic response tends to be closer to the ideal
translation joint case. This suggests that the periods of permanent contact between
the slider and guide surfaces are longer and, hence, the slider and guide experi-
ment fewer impacts. This observation can be confirmed by the slider trajectories
and Poincaré maps provided in Figs. 4.30 and 4.31, respectively. When the clear-
ance size is reduced, the system response changes from chaotic, as displayed in
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Fig. 4.29 Driving crank moment for different clearance sizes in the translational clearance joint:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm
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Fig. 4.30 Dimensionless slider path for different clearance sizes in the translational clearance joint:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm
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Fig. 4.31 Poincaré maps for different clearance sizes in the translational clearance joint:
(a) c = 0.5 mm; (b) c = 0.2 mm; (c) c = 0.1 mm; (d) c = 0.01 mm

Fig. 4.30a, to periodic or regular, as observed in Fig. 4.31d. This feature can be
useful in the evaluation of the acceptable range for clearance, in any type of con-
struction where this type of joints is applied.

The effect of the friction phenomenon on the dynamic performance of the trans-
lational clearance joint is also studied. Again the driving crank moment, the slider
path and Poincaré maps are used to quantify the dynamic response of the slider–
crank mechanism and represented in Figs. 4.32–4.34. The value for the clearance
size is equal to 0.5 mm in all simulations, and four different values for the friction
coefficient are used, namely, 0.01, 0.03, 0.05 and 0.1.

In Fig. 4.32, it is observed that the reaction, or driving crank moment necessary
to maintain constant crank angular velocity, does not relate directly to the friction
coefficient value, that is, when the friction coefficient increases the peak values of
the crank moment do not show tendency to increase or decrease. Analyzing the
slider trajectories, plotted in Figs. 4.33a–d, and the corresponding Poincaré maps,
shown in Fig. 4.34a–d, it is observed that the influence of the friction coefficient in
global system response is not significant, conversely to what happens in the case of
the revolute clearance joint, shown in Figs. 4.19–4.21.

The influence of employing different contact force models on the global slider–
crank behavior is also analyzed in this work. Figures 4.35 and 4.36 show the contact
forces and driving crank moments for the contact force models given by (3.9) and
(4.26), respectively, that is, the nonlinear force model proposed by Lankarani and



96 4 Planar Joints with Clearance: Dry Contact Models

Ideal joint T-Clearance joint (0.5mm)Ideal joint T-Clearance joint (0.5mm)

Ideal joint T-Clearance joint (0.5mm)Ideal joint T-Clearance joint (0.5mm)

–300

–200

–100

0

100

200

300

400

Time [s]

(a)

3.006

C
ra

n
k 

m
o

m
en

t 
[N

m
]

3.012 3.018 3.024 3.030

–300

–200

–100

0

100

200

300

400

Time [s]

(c)

3.006

C
ra

n
k 

m
o

m
en

t 
[N

m
]

3.012 3.018 3.024 3.030
–300

–200

–100

0

100

200

300

400

Time [s]

(d)

3.006

C
ra

n
k 

m
o

m
en

t 
[N

m
]

3.012 3.018 3.024 3.030

–300

–200

–100

0

100

200

300

400

Time [s]

(b)

3.006

C
ra

n
k 

m
o

m
en

t 
[N

m
]

3.012 3.018 3.024 3.030

Fig. 4.32 Driving crank moment for different values of the friction coefficient in the translational
clearance joint: (a) c f = 0.01; (b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1
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Fig. 4.33 Slider path for different values of the friction coefficient in the translational clearance
joint: (a) c f = 0.01; (b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1
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Fig. 4.34 Poincaré maps for different friction coefficients in the translational clearance joint:
(a) c f = 0.01; (b) c f = 0.03; (c) c f = 0.05; (d) c f = 0.1

Nikravesh (1990), using a restitution coefficient of ce = 0.9, and the linear force
model for two plane surfaces presented by Lankarani (1988). In the case of the linear
contact model for two plane surfaces, the average penetration is used to evaluate the
magnitude of the contact force. This force is then applied at the geometric center of
the penetration area, as schematically shown in Fig. 4.11a.
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Fig. 4.35 Contact force between the slider and guide surface: (a) Lankarani and Nikravesh model;
(b) linear contact model for two plane surfaces
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Fig. 4.36 Driving crank moment: (a) Lankarani and Nikravesh model; (b) linear contact model for
two plane surfaces

4.6 Summary

A comprehensive approach to the modeling of unlubricated clearance joints in pla-
nar multibody systems has been presented in this chapter, with specialization for
the revolute and translational joints. In the process, different contact models have
been revised in face of their suitability to represent the impact between the bodies
joined by these joints. The methodologies proposed have been exemplified, through
the application to the dynamic study of a slider–crank mechanism with revolute and
translational clearance joints.

A critical aspect, in the precise prediction of the peak forces, is the proper se-
lection of an appropriate contact model. From the comparison between the cylin-
drical contact force models and spherical contact force models, one can conclude
that the spherical and cylindrical force–displacement relations are reasonably close.
Furthermore the straightforward force–penetration relation proposed by Lankarani
and Nikravesh (1990) is largely used for mechanical contacts owing to its simplicity
and easiness of implementation in a computational program and also because this
is the only model that accounts for energy dissipation during the impact process.
A modified Coulomb’s friction law was used to model the friction phenomenon;
one merit of this modified model is that it improves the numerical stability of the
integration algorithm.

How the solution strategy of the contact problem associated with the modeling
of joints with clearances is sensitive to the procedure used to detect contact was
discussed. In the sequel of the techniques proposed, a numerical strategy that takes
advantage of the use of a variable time-step integration algorithm has been proposed
to handle the identification of the start of contact and to proceed afterwards.

The dynamic response of the slider–crank mechanism with clearance joints, in
terms of Poincaré maps, shows that periodic and nonperiodic responses can occur.
Poincaré maps play a key role in representing the global behavior of dynamical
systems. For the radial clearance and friction coefficient values used in this work the
system response exhibits both periodic and chaotic responses. When the clearance is
reduced, the dynamic response changes from chaotic to periodic or regular behavior.
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In fact, most of the mechanical systems present some inherent nonlinearity even
when modeled with ideal joints. The chaotic behavior of the mechanical system
may be eliminated with suitable design and/or parameter changes of mechanical
system.

For the case of revolute clearance joint analysis, the overall results are corrob-
orated by published works on this field, for cases that include dry contact force
models (Ravn 1998, Schwab 2002). The results for translational clearance joints in
mechanical systems seem quite acceptable, but they cannot be compared with other
results since this issue has not been addressed before in the literature.

The planar slider–crank mechanism with a translational clearance joint was used
as a numerical example to illustrate the methodology proposed. In general, the
dynamic response of the slider–crank mechanism presents some peaks, due to the
impact between the slider and the guide, namely in what concerns the accelerations
and reaction moments. It was observed that all curves for the kinematic and kinetic
variables are similar to those obtained with ideal joints, with the exception of the
peaks especially visible for the forces and accelerations. These peaks have been
clearly associated to the existence of the clearances and to their magnitude. The rel-
ative motion between the guide and slider showed a very high nonlinearity, or even
chaotic behavior, when a translational clearance is included. When the clearance
size is reduced, the system’s response becomes closer to the case for ideal joints.
Furthermore the dynamic behavior of the slider–crank model tends to be periodic
or regular. This feature can be useful in calculations of an acceptable range for the
clearance, during the design process.

The conclusions drawn from the results presented in this chapter must be con-
sidered in the light of the assumptions identified in the formulation of the motion’s
equation, namely the assumption of rigidity for the bodies, the lack of joints’ flex-
ibility and the nonexistence of lubrication effects. In this chapter, contact between
the surfaces that constitute the clearance joints was assumed to be dry, i.e., with-
out any interposition fluid layer. Consequently contact-impact forces and friction
forces were the only loads on the contacting bodies when the physical contact was
detected between the surfaces. In the engineering design of machines and mecha-
nisms, journal–bearings are usually designed to operate with some lubricant. Lu-
bricated journal–bearings are designed so that when the maximum load is applied,
the journal and bearing do not come into contact. The main reason for designing
journal–bearings in this way is to reduce the friction and extend the lifetime of me-
chanical systems. The issue of lubricated journal–bearings in mechanical systems is
presented and discussed in the next chapter.
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Chapter 5
Lubricated Joints for Mechanical Systems

In most machines and mechanisms, the joints are designed to operate with some
lubricant fluid. The high pressures generated in the lubricant fluid act to keep the
journal and the bearing apart. Moreover the thin film formed by lubricant reduces
friction and wear, provides load-carrying capacity and adds damping to dissipate
undesirable mechanical vibrations (Hamrock 1994, Frêne et al. 1997). Therefore the
proper description of lubricated revolute joints, the so-called journal–bearings, in
multibody systems is required to achieve better models and hence an improved un-
derstanding of the dynamic performance of machines. This aspect gains paramount
importance due to the demand for the proper design of journal–bearings in many
industrial applications (Ravn 1998, Bauchau and Rodriguez 2002). In the dynamic
analysis of journal–bearings, the hydrodynamic forces, which include both squeeze
and wedge effects, generated by the lubricant fluid, oppose the journal motion. It
should be mentioned that the methodology presented here uses the superposition
principle for load capacity due to the wedge effect entrainment and squeeze-film
effect separately (Hamrock 1994). The hydrodynamic forces are obtained by inte-
grating the pressure distribution evaluated with the aid of Reynolds’ equation written
for the dynamic regime (Pinkus and Sternlicht 1961). The hydrodynamic forces are
nonlinear functions of the journal center position and of its velocity with reference
to the bearing center. In the dynamic regime of a journal–bearing, the journal center
has an orbit situated within a circle radius which is equal to the radial clearance.
Thus a lubricated revolute joint does not impose kinematic constraints like an ideal
revolute joint but instead it deals with force constraints as for the dry clearance
joints. In a simple way, the hydrodynamic forces built up by the lubricant fluid
are evaluated from the state of variable of the system and included into the equa-
tions of motion of the mechanical system (Nikravesh 1988). For dynamically loaded
journal–bearings the classic analysis problem consists in predicting the motion of
the journal center under arbitrary and known loading (Boker 1965, Goenka 1984).
However, in the present work the time variable parameters are known from the dy-
namic system’s configuration and the instantaneous force on the journal–bearing are
evaluated afterwards.

In this chapter, a general methodology for modeling lubricated revolute joints in
multibody mechanical systems is presented and discussed. A simple journal–bearing
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C© Springer 2008
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subjected to a constant and unidirectional external load and a simple planar slider–
crank mechanism, in which a lubricated revolute joint in the gudgeon-pin exists,
are used as numerical applications in order to demonstrate the assumptions and
procedures adopted.

5.1 General Issues in Tribology

In physical joints, clearance, friction and impact are always present, mainly when
there is no fluid lubricant. These phenomena can significantly change the dynamic
response of the mechanical systems in so far as the impact causes noise, increases
the level of vibrations, reduces the fatigue life of the components and results in
loss of precision. When the clearance joints are dry, i.e., without lubricant, contact
and friction forces are the only effects present, representing the physical contact
detected between the surfaces (Flores and Ambrósio 2004). However, in most the
mechanical systems, the joints are designed to operate with some lubricant fluid. It
is known that the use of lubricant in revolute joints is an effective way of ensuring
better performance of the mechanical systems. In fact, lubricants are widely used
in thin fluid film journal–bearing elements to reduce friction and wear, provide load
capacity and add damping to dissipate undesirable mechanical vibrations.

Journal–bearing is a circular shaft, designated as journal, rotating in a circular
bush, designated as bearing. The space between the two elements is filled with a
lubricant. Under an applied load, the journal center is displaced from the bearing
center and the lubricant is forced into the convergence clearance space causing a
build-up of pressure. The high pressures generated in the lubricant film act to keep
the journal and the bearing surfaces apart. It is well known from fluid mechanics that
a necessary condition to develop pressure in a thin film is that the gradient and the
slope of the velocity profile vary across the thickness of the film (Frêne et al. 1997).

Shown in Fig. 5.1 is the basic journal–bearing geometry. The length of the bear-
ing is L and it has a diameter D. The difference between the radii of the bearing
and the journal is the radial clearance c (c = RB -RJ ). In general, both the journal
and the bearing may rotate nonuniformly, and the applied load may vary in both
magnitude and direction.

In the region of the local converging film thickness, the hydrodynamic pressure
rises to a maximum value and then decreases to ambient values at the side and
trailing edges of the thin film. In zones where the film thickness locally increases,
the fluid pressure may drop to ambient or below its vapor pressure leading to the
release of dissolved gases within the lubricant vaporization causing film rupture.
The phenomenon of film rupture is known as lubricant cavitation, and the effects on
the performance and stability of journal–bearings are reasonably well understood
and documented in the literature (Dowson and Taylor 1979, Elrod 1981, Woods and
Brewe 1989, Mistry et al. 1997). The performance of journal–bearings considering
lubricant supply conditions has been studied theoretically and experimentally by
Miranda (1983), Claro (1994) and Costa (2000).
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Fig. 5.1 Basic journal–bearing geometry

Journal–bearings are used in many important operating situations, in which the
loads vary in both magnitude and direction, often cyclically. Examples include re-
ciprocating machinery such as internal combustion engines, compressors, out of
balance rotating machinery such as turbine rotors and other industrial processing
machinery. The hydrodynamic fluid film developed in the journal–bearings exhibits
damping which plays a very important role in the stability of the mechanical ele-
ments. In order to study the performance of such journal–bearings, it is necessary
to determine the loads and their variation with time. In dynamically loaded journal–
bearings, the eccentricity and the attitude angle vary through the loading cycle, and
special care must be taken to ensure that the combination of load and speed rotation
does not lead to a dangerous small minimum film thickness.

Lubricated joints are designed so that even when the maximum load is applied,
the journal and bearing do not come in contact. One of the main reasons for design-
ing journal–bearings in this way is to reduce friction and extend their lifetime. Con-
sequently proper modeling of lubricated revolute joints in multibody mechanical
systems is required to achieve a better understanding of the dynamic performance
of the machines. This aspect plays a crucial role owing to the demand for proper
design of the journal–bearings in many industrial applications.

5.2 Dynamic Characteristics of Journal–Bearings

If the journal and bearing have relative angular velocities with respect to each other,
the amount of eccentricity adjusts itself until the pressure generated in the con-
verging lubricating film balances the external loads. The pressure generated, and
hence the load capacity of the journal–bearing, depends on the journal eccentricity,
the relative angular velocity, the effective viscosity of the fluid lubricant and the
journal–bearing geometry and clearance. There are two different actions of pressure
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Fig. 5.2 (a) Squeeze-film
action; (b) wedge-film action
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generation in journal–bearings, namely wedge and squeeze actions, as shown in
Fig. 5.2. The squeeze action relates the radial journal motion to the generation of
load capacity pressure in the lubricant film, whilst the wedge action deals with the
relation between relative rotational velocity of the journal and bearing ability to
produce such pressure.

When only the squeeze action of the lubricant is considered, assuming a null or
low relative rotational velocity and, hence, absence of relative tangential velocity,
the journal load and the fluid reaction force are considered to have the same line of
action, which is collinear with the center lines. However, in the more general case,
in the presence of high angular velocities, they do not have the same line of action
because of the wedge effect. When relative angular velocities are large, the simple
squeeze approach is not valid and the general Reynolds’ equation has to be used
(Hamrock 1994, Frêne et al. 1997).

In general, mechanical systems demand journal–bearings in which the load varies
in both magnitude and direction, which results in dynamically loaded journal–
bearings. Figure 5.3 shows the cross-section of a smooth dynamically loaded
journal–bearing. When the load acting on the journal–bearing is not constant in
direction and/or module, the journal center describes an orbit within the bear-
ing boundaries. Typical examples of dynamically loaded journal–bearings include

Fig. 5.3 Cross-section of a
smooth dynamically loaded
journal–bearing
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the crankshaft bearings in combustion engines and high-speed turbine bearings
supporting dynamic loads caused by unbalanced rotors.

In mechanical systems, a lubricated revolute joint does not produce any kine-
matic constraint. Instead it acts in a similar way to a force element producing time-
dependent forces. Thus it deals with the so-called force constraints. For dynamically
loaded journal–bearings the classic tribology analysis problem consists in predict-
ing the motion of the journal center under arbitrary and known loads, using, for
instance, the mobility method (Boker 1965, Goenka 1984). Conversely, in the work
now presented, the time-variable parameters are known from the dynamic analysis
and the instantaneous forces on the journal–bearing are calculated. In a simple way,
the forces built up by the lubricant fluid are evaluated from the state of variables of
the system and included into the equations of motion of the mechanical system as
external generalized forces.

5.3 Hydrodynamic Forces in Dynamic Journal–Bearings

Theory of lubrication for dynamically loaded journal–bearings is mathematically
complex, and the solution of the governing differential equations is based on many
simplifying premises. The main basic principles, terminology and theoretical back-
ground are well discussed in the thematic literature, such as Hamrock (1994), Frêne
et al. (1997), amongst others. Pinkus and Sternlicht (1961) present a detailed deriva-
tion of the Reynolds’ equation, in which the forces developed by the fluid film pres-
sure field are evaluated. The Reynolds’ equation contains viscosity, density and film
thickness as parameters. The full general form of the isothermal Reynolds’ equation
for a dynamically loaded journal–bearing is written as

�

�X

(
h3

μ

� p

�X

)
+ �

�Z

(
h3

μ

� p

�Z

)
= 6U

�h

�X
+ 12

dh

dt
(5.1)

where X is the radial direction, Z is the axial direction, μ is the dynamic fluid
viscosity, h denotes the film thickness and p is the pressure. The two terms on the
right-hand side of (5.1) represent the two different effects of pressure generation on
the lubricant film, i.e., wedge and squeeze actions, respectively.

It is known that (5.1) is a nonhomogeneous partial differential of the elliptical
type. The exact solution of the Reynolds’ equation is difficult to obtain and, in
general, requires a considerable numerical effort. However, it is possible to solve
the equation analytically by setting to zero either the first or second term on the
left-hand side. These solutions correspond to those for infinitely short and infinitely
long journal–bearings, respectively.

Dubois and Ocvirk (1953) consider a journal–bearing where the pressure gra-
dient around the circumference is very small when compared with those along
the length. This assumption is valid for length-to-diameter (L/D) ratios up to
0.5. Hence the Reynolds’ equation for an infinitely short journal–bearing can be
written as
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When the relative pressure is zero at journal–bearing ends the pressure in the
fluid film is given by (Frêne et al. 1997)

p(θ, Z) = −3μ

h3

(
L2

4
− Z 2

)(
(ω − 2γ̇ )

�h

�θ
+ 2ė cos θ

)
(5.3)

where θ is the angular coordinate, Z is the axial direction, L represents the journal–
bearing length, μ is the dynamic fluid viscosity, h denotes the film thickness and ω

is the relative angular velocity between the journal and bearing. The dot in the above
expression denotes the time derivative of the corresponding parameter.

For an infinitely long journal–bearing a constant fluid pressure and negligible
leakage in the axial direction are assumed. In many cases, it is possible to treat a
journal–bearing as infinitely long and consider only its middle point. This solution
was first derived by Sommerfeld (1904) and is valid for length-to-diameter (L/D)
ratios greater than 2. Thus the Reynolds’ equation for an infinitely long journal–
bearing is
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(5.4)

And the pressure distribution in the fluid is given by (Frêne et al. 1997)

p = 6μ

(
RJ

c

)2 {(ω − 2γ̇ )(2 + εcosθ)εsinθ

(2 + ε2)(1 + εcosθ)2
+ ε̇

ε

[
1

(1 + εcosθ)2
− 1

(1 + ε)2

]}

(5.5)
where RJ is the journal radius, c is the radial clearance and ε is the eccentricity
ratio.

It is convenient to determine the force components of the resultant pressure in
directions tangential and perpendicular to the line of centers. These force compo-
nents can be obtained by integrating the pressure field either in the entire domain
2π or half-domain π. In the later case, the pressure field is integrated only over the
positive part by setting the pressure in the remaining portion equal to zero. These
boundary conditions, associated with the pressure field, correspond to Sommerfeld’s
and Gümbel’s boundary conditions (Fig. 5.4).

The Sommerfeld’s boundary conditions, complete or full film, do not take into
account the cavitation phenomenon and, consequently, contemplate the existence
of negative pressures for the region π<θ<2π. This case is not realised in many
applications due to the fluid incapacity to sustain significant sub-ambient pressures.

The Gümbel’s conditions, which account for the rupture film, assume the ex-
istence of a zero pressure zone for the region between π and 2π. Though the
Gümbel’s, or half Sommerfeld’s solution, results in more realistic predictions of
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Fig. 5.4 (a) Sommerfeld’s boundary conditions; (b) Gümbel’s boundary conditions

the load capacity, it leads to a violation of the continuity of flow at the outlet end of
the pressure curve.

For the Sommerfeld’s conditions, i.e., full film, the force components of the fluid
film for infinitely short journal–bearing are written as (Frêne et al. 1997)

Fr = −πμL3 RJ

c2

ε̇(1 + 2ε2)

(1 − ε2)5/2
(5.6)

Ft = πμL3 RJ

c2

ε(ω − 2γ̇ )

2(1 − ε2)3/2
(5.7)

where Fr is the radial component of the force while Ft is the tangential component,
as Fig. 5.3 shows.

For the Gümbel’s conditions, i.e., rupture film, the force components of the fluid
film for infinitely short journal–bearing can be expressed as (Frêne et al. 1997)
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Fr = − μL3 RJ

2c2(1 − ε2)2
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Ft = μL3 RJ ε

2c2(1 − ε2)2
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4ε̇ + π

2
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√
1 − ε2

)
(5.9)

As for the case of the infinitely short journal–bearing, the complete film and the
film rupture for the infinitely long journal–bearing are also distinguished. Thus, for
the Sommerfeld’s conditions, full film, the force components of the fluid film for
infinitely long journal–bearing are written as (Frêne et al. 1997)

Fr = − 12πμL R3
J ε̇

c2(1 − ε2)3/2
(5.10)

Ft = 12πμL R3
J ε(ω − 2γ̇ )

c2(2 + ε2)(1 − ε2)1/2
(5.11)

For the Gümbel’s conditions the force components of the fluid film for infinitely
long journal–bearing are written as (Frêne et al. 1997)

Fr = −12μL R3
J

c2
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(2 + ε2)(1 − ε2)
+ ε̇
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+ 2εε̇

(2 + ε2)(1 − ε2)

)
(5.13)

In fact, the main difficulty in obtaining satisfactory solutions of journal–bearing
performance lies not only in solving the differential equations but also in defin-
ing adequately the boundary conditions of Reynolds’ equation. In dynamically
loaded journal–bearings, obtaining the force components from the integration of
the Reynolds’ equation only over the positive pressure regions, by setting the pres-
sure in the remaining portions equal to zero, involves finding the zero points, i.e.,
the angles θs at which the pressure begins and θe when it ends. For the case of a
steady-state journal–bearing, these angles are, in general, assumed to be equal to 0
and π, respectively. However, for a dynamically loaded journal–bearing these angles
are time-dependent and the evaluation of the force components involves a good deal
of mathematical manipulation. For details in their treatment see the work by Pinkus
and Sternlicht (1961). The hydrodynamic force components, along the eccentricity
direction and normal to it, are for radial velocity greater than zero, ε̇ > 0, given by
Pinkus and Sternlicht (1961) as
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For a negative radial velocity ε̇ < 0, the force components are written as follows:

Fr = −μL R3
J
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where the parameter k is defined as

k2 = (1 − ε2)

[(
ω − 2γ̇

2ε̇

)2

+ 1

ε2

]
(5.18)

Finally the force components of the resulting pressure distribution, tangential and
perpendicular to the line of centers, have to be projected onto the X and Y directions.
From Fig. 5.3 it is clear that

Fx = Fr cosγ − Ft sinγ (5.19)

Fy = Fr sinγ + Ft cosγ (5.20)

Equations (5.6)–(5.18), for infinitely short and infinitely long journal–bearings,
present the relation between the journal center motion and the fluid reaction force
on the journal. The solution of these equations presents no problem since the journal
center motion is known from the dynamic analysis of the mechanical system.

In traditional tribology analysis of journal–bearings, the external forces are
known and the motion of the journal center inside the bearing boundaries is evalu-
ated by solving the differential equations for the time-dependent variables. However,
in the present work instead of knowing the applied load, the relative journal–bearing
motion characteristics are known. Afterwards the fluid force, from the pressure dis-
tribution in the lubricant, is calculated. Thus, since all the states of variables are
known from dynamic analysis of the mechanical system, the hydrodynamic forces
given by (5.19) and (5.20) can be evaluated and introduced as external generalized
forces into the system’s equations of motion of the multibody mechanical system.
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5.4 Transition Between Hydrodynamic and Dry Contact

In this section, a transition model, which combines the squeeze action and the dry
contact model, is discussed. This model that considers the existence of lubrication
during the free flight trajectory of the journal, prior to contact, and the possibility
for dry contact under some conditions, seems to be well fitted to describe revolute
joints with clearances in mechanical systems.

In what follows, the expression for the squeeze forces of infinite long journal–
bearings is presented. The objective is to evaluate the resulting force from the given
state of position and velocity of the journal–bearing. The squeeze forces are exerted
when a fluid is squeezed between two approaching surfaces. In journal–bearings,
squeeze action is dominant when the relative angular velocity is small compared to
the relative radial velocity and, hence, it is reasonable to drop the wedge term in the
Reynolds’ equation.

In the infinitely long journal–bearing the axial flow is neglected when com-
pared with the circumferential flow, hence the Reynolds’ equation reduces to a
one-dimensional problem and the pressure field is given by (Hamrock 1994)

p = 6μR3
J ε̇

c2

cosθ(2 − εcosθ)
(1 − εcosθ)2

(5.21)

The resulting force F on the journal that balances the fluid pressure is evaluated
as an integral of the pressure field over the surface of the journal:

F = 12πμL R3
J ε̇

c2(1 − ε2)
3
2

(5.22)

where μ is the dynamic lubricant viscosity, L is the journal–bearing length, RJ is
the journal radius, c is the radial clearance, ε is the eccentricity ratio and ε̇ is the
time rate of change of eccentricity ratio.

The direction of the force is along the line of centers that connects the journal and
the bearing, which is described by the eccentricity vector. Thus the squeeze force
can be introduced into the equations of motion of multibody mechanical systems
as a generalized force with the journal and bearing centers as points of action for
the force and reaction force, respectively. It should be highlighted that the effect of
cavitation is not considered in (5.22), that is, it is assumed that a continuous film
exists all around the journal–bearing. However, these conditions are not satisfactory
from the physical point of view because the lubricant fluids cannot sustain nega-
tive pressures. Based on the mechanics of the journal–bearing, Ravn et al. (2000)
included a cavitation effect assuming that negative pressure occurs on the half of
journal surface which faces away from the moving direction.

Equation (5.22), which represents the action on the journal that maintains in equi-
librium the field pressure, is valid for situations when the load capacity of the wedge
effect is negligible when compared to that of the squeeze effect. In the squeeze
lubrication, the journal moves along a radial line in the direction of the applied load,
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thus the film thickness decreases and the fluid is forced to flow up around the journal
and out from the ends of the bearing. Since the squeeze force is proportional to the
rate of decrease of the fluid film thickness, it is apparent that the lubricant acts as a
nonlinear viscous damper resisting the load when the film thickness is decreasing.
As the fluid film thickness becomes very thin, that is, the journal is very close to the
bearing surface, the force due to the lubricant evaluated from (5.22) becomes very
large. Hence a discontinuity appears when the film thickness approaches zero and,
consequently, the squeeze force tends to infinity.

For highly loaded contact, the pressure causes elastic deformation of the sur-
faces, which can be of the same order as the lubricant film thickness. These circum-
stances are dramatically different from those found in the hydrodynamic regime.
The contribution of the theory of elasticity with the hydrodynamic lubrication is
called elasto-hydrodynamic lubrication theory (EHL).

Figure 5.5 schematically shows the shape of the lubricant film thickness and
the pressure distribution within a typical elasto-hydrodynamic contact. Due to the
normal load F the contacting bodies are deformed. The viscous lubricant, adhering
to the surfaces of the moving bodies, is dragged into the high-pressure zone of the
contact and therefore separates the mating surfaces. The pressure distribution within
the elasto-hydrodynamic contact is similar to the dry Hertzian pressure distribution.
At the inlet zone, the pressure slowly builds up until it approximately reaches the
maximum Hertzian pressure (p). It is, therefore, assumed that for a certain film
thickness, called boundary layer, the fluid can no longer be squeezed and the journal
and bearing walls are considered to be in contact, in a way similar to that for the dry
contact situation presented in Chap. 4. It should be highlighted that the EHL theory
is quite complex and its detailed description is beyond the scope of the present work.
However, another equivalent model, based on physical reasoning, can be proposed
leading to effects similar to those of the EHL theory.

A transition model which combines the squeeze action and the dry contact model
is proposed here. Figure 5.6 shows a partial view of a mechanical system represent-
ing a revolute clearance joint with lubrication effect, where both the journal and the
bearing can have planar motion. The parallel spring–damper element represented

p

hmin

EHL pressure profile

Inlet zone

F
Hertzian pressure profile

Hertzian zone Outlet zone

Fig. 5.5 Typical elasto-hydrodynamic contact; qualitative shape of lubricant film and pressure
profile
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Fig. 5.6 Mechanical system
representing a revolute joint
with lubrication effect

e

Journal

Bearing Bearing wall

hh

by a continuous line refers to the solid-to-solid contact between the journal and
the bearing wall, whereas the damper represented by a dashed line refers to the lu-
bricated model. If there is no lubricant between the journal and the bearing, the
journal can freely move inside the bearing boundaries. When the gap between the
two elements is filled with a fluid lubricant, a viscous resistance force exists and
opposes the journal motion. Since the radial clearance is specified, the journal and
bearing can work in two different modes. In mode 1, the journal and the bearing
wall are not in contact with each other and they have a relative radial motion.
For the journal–bearing model without lubricant, when e<c the journal is in free
flight motion and the forces associated with the journal–bearing are set to zero. For
lubricated journal–bearing model, the lubricant transmits a force, which must be
evaluated from the state variables of the mechanical system using one of the models
described in the previous section. In mode 2, the journal and the bearing wall are in
contact, thus the contact force between the journal and the bearing is modeled with
the continuous contact force model represented by (3.9).

Since the EHL pressure profile is similar to the Hertzian pressure distribution, it
looks reasonable to change from the squeeze action in the hydrodynamic lubrication
regime to the pure dry contact model. In order to avoid numerical instabilities and
to ensure a smooth transition from pure squeeze model to dry contact model, a
weighted average is used. When the journal reaches the boundary layer, for which
the hydrodynamic theory is no longer valid, the squeeze force model is replaced by
the dry contact force model, as represented in Fig. 5.7a and b. This approach ensures
continuity in the joint reaction forces when the squeeze force model is switched to
dry contact force model. Mathematically the transition force model is expressed by

F =

⎧⎪⎪⎨
⎪⎪⎩

Fsqueeze if e ≤ c
(c + et0) − e

et0
Fsqueeze + e − c

et0
Fdry if c ≤ e ≤ c + et0

Fdry if e ≥ c + et0

(5.23)

where et0 and et1 are given tolerances for the eccentricity. The values of these pa-
rameters must be chosen carefully, since they depend on the clearance size. It should
be noted that the clearance used for the pure squeeze force model is not c but it is
c + et1 instead.
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Force

eccentricity

Dry contact
force model

Force

Pure squeeze force model

Transition
force model

et1et0

(a) (b)

Clearance circle

eccentricity

Fig. 5.7 (a) Pure squeeze and dry contact force models; (b) transition force model between lubri-
cated and dry contact situations

5.5 Kinematic Aspects of the Journal–Bearing Interaction

In order to evaluate the forces produced by the fluid lubricant on the journal–bearing
interface, the different dynamic parameters on which these forces depend need to be
evaluated. It is clear that the hydrodynamic forces are nonlinear functions of the
time parameters, ω, ε, ε̇, γ and γ̇ , which are known at any instant of time from
the dynamic system configuration, i.e., these parameters are functions of the system
state variables.

Let Fig. 4.4 be redrawn here to highlight the existence of the lubricant fluid in
the gap between the journal and the bearing. The two bodies i and j are connected
by a lubricated revolute joint, in which the gap between the bearing and the journal
is filled with a fluid lubricant. Part of body i is the bearing and part of body j is the
journal. The notation used in Fig. 5.8 is the same described in Sect. 4.2.

The parameter ε, which defines the eccentricity ratio, is obtained as the ratio of
the distance between the bearing and journal centers by radial clearance, that is,

ε = e

c
(5.24)

where the eccentricity e is given by (4.3).
The parameter ε̇ can be obtained by differentiating (4.1), and dividing the result

by the radial clearance. For the purpose let (4.1) be re-written as

e = rP
j + A j s′ P

j − rP
i − Ai s′ P

i (5.25)

then its time derivative is

ė = ṙP
j + Ȧ j s′ P

j − ṙP
i − Ȧi s′ P

i (5.26)
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Fig. 5.8 Generic configuration of a dynamically loaded journal–bearing in a multibody mechanical
system

Hence the time rate of eccentricity ratio is given by

ε̇ = ė

c
(5.27)

The line of centers between the bearing and the journal makes an angle γ with
X′-axis as shown in Fig. 5.8. Since the unit radial vector n has the same direction as
the line of centers, the angle γ can be defined as

[
cos γ

sin γ

]
=
[

nx

ny

]
(5.28)

Thus

γ = tan−1 ny

nx
(5.29)

The parameter γ̇ can be obtained by differentiating (5.29) with respect to time,
yielding

γ̇ = ex ėy − ėxey

e2
(5.30)

The hydrodynamic components of force resulting from pressure field projected
onto the X and Y directions given by (5.19) and (5.20) act on the journal center.
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Fig. 5.9 Vectors of forces
that act on the journal and
bearing
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Thus these forces have to be transferred to the centers of mass of the bearing and
the journal bodies. From Fig. 5.9, the forces and moments that act on the center of
mass of journal body are given by

⎡
⎢⎣

f x
j

f y
j

m j

⎤
⎥⎦ =

⎡
⎢⎢⎣

Fx

Fy

−(ξ P
j sinϕ j + ηP

j cosϕ j)Fx + (ξ P
j cosϕ j − ηP

j sinϕ j)Fy

⎤
⎥⎥⎦ (5.31)

and for the center of mass of bearing body, at point Oi ,

⎡
⎢⎣

f x
i

f y
i

mi

⎤
⎥⎦ =

⎡
⎢⎣

−Fx

−Fy

(ξ P
i sinϕi + ηP

i cosϕi + ey)Fx − (ξ P
i cosϕi − ηP

i sinϕi + ex)Fy

⎤
⎥⎦

(5.32)
The transport moment produced by transferring the forces from the center of journal
to the center of the bearing is given by mt = ey Fx −ex Fy , which is already included
in the force vector given by (5.32).

5.6 Application Example 1: Simple Journal–Bearing

In this section, as an application example, a simple journal–bearing subjected to a
constant and unidirectional external load is considered, as shown in Fig. 5.10. The
journal–bearing under constant unidirectional load contains both the dynamic char-
acteristics within the transient period and the steady hydrodynamic characteristics
within the steady-state period.
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Fixed bearing

Fluid lubricant

Journal

ω

F

ωω

F

Fig. 5.10 Simple journal–bearing subjected to a constant external load

The journal–bearing properties and initial conditions are listed in Table 5.1. Ini-
tially the journal and bearing centers coincide. The oil fluid used in the present
example is a SAE 40 multigrade, which is recommended for small combustion
engines, and at 40◦C the viscosity is equal to 400 cP. In order to analyze the per-
formance of the models proposed, the simple journal–bearing performance is de-
scribed by the journal center trajectory inside the bearing boundaries, as represented
in Fig. 5.11a–e, and by the horizontal and vertical component of the reaction fluid
force, shown in Figs. 5.12 and 5.13, respectively.

For the hydrodynamic journal–bearing models that use the Sommerfeld’s bound-
ary conditions, the journal center oscillates around its equilibrium position, as ob-
served in Fig. 5.11a and c, whereas for the Gümbel’s conditions, after an initial
overshoot and transient period, the journal reaches its final equilibrium position,
displayed in Fig. 5.11b and d. In the equilibrium position, the squeeze effect be-
comes null, that is, ε̇ = 0. Hence the forces generated by the wedge action balances
the external applied load, which in this particular situation is FX = 0, as observed in
Fig. 5.12b and d, and FY = F , as shown in Fig. 5.13b and d. This is expected since
the steady-state position is reached and the journal rotates about its whirl. When
the Pinkus and Sternlicht hydrodynamic model is used, the journal also reaches the
final equilibrium position but with lower damping, as shown in Figs. 5.11e, 5.12e
and 5.13e. Indeed this model predicts lower damping and higher fluctuations in
the transient phase which seems to be more realistic since in practical cases the
oscillation and instability of the journal–bearing are among the main concerns of
any analysis. The overall results are corroborated by published works about this
field (Alshaer and Lankarani 2001).

Table 5.1 Dynamic properties of the simple journal–bearing

External load 30 N Journal mass 0.13 kg
Bearing radius 10.0 mm Journal rotational inertia 2.5 × 10−4 kg m2

Journal radius 9.8 mm Journal angular speed 500 rpm
journal–bearing length 40.0 mm Oil viscosity at 40◦C 400 cP
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Fig. 5.11 Trajectory of the journal center inside the bearing boundaries for the different
dynamically loaded journal–bearing models: (a) infinitely long journal–bearing with Sommer-
feld’s conditions; (b) infinitely long journal–bearing with Gümbel’s conditions; (c) infinitely short
journal–bearing with Sommerfeld’s conditions; (d) infinitely short journal–bearing with Gümbel’s
conditions; (e) Pinkus and Sternlicht hydrodynamic model

When observing the results, it should be pointed out that from the physical point
of view a simple journal–bearing subjected to a constant and unidirectional external
load corresponds to the free vibration system. The journal is under the influence of a
suddenly applied force, which means that the journal is pulled out from the position
of stable equilibrium by a small amount and released. A closer look at the forces,
displayed in Fig. 5.12, shows that in all models FX converges or oscillates about
FX = 0 N while Fig. 5.13 shows that the trend is convergence or oscillation of FY

about FX = 31.275 N.
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Fig. 5.12 Horizontal reaction force on the journal for the different dynamically loaded journal–
bearing models: (a) infinitely long journal–bearing with Sommerfeld’s conditions; (b) infinitely
long journal–bearing with Gümbel’s conditions; (c) infinitely short journal–bearing with Sommer-
feld’s conditions; (d) infinitely short journal–bearing with Gümbel’s conditions; (e) Pinkus and
Sternlicht hydrodynamic model

The journal–bearing performance for the hydrodynamic models with Sommer-
feld’s boundary conditions corresponds to a free vibration without damping, in
which the journal is pulled out of its equilibrium position and then released without
initial velocity and, consequently, the motion persists forever. The undamped free
vibration, being periodic, is represented by a rotating vector, the end of which de-
scribes the circle observed in Fig. 5.11a and c. Yet the Gümbel’s solutions, shown
in Fig. 5.11b and d, and the Pinkus and Sternlicht model represent a damped free
vibration system. In the later model the end point of the rotating vector describes the
logarithmic spiral, displayed in Fig. 5.11e. The damped cycle path has its pole at the
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Fig. 5.13 Vertical reaction force on the journal for the dynamically loaded journal–bearing models:
(a) infinitely long journal–bearing with Sommerfeld’s conditions; (b) infinitely long journal–
bearing with Gümbel’s conditions; (c) infinitely short journal–bearing with Sommerfeld’s con-
ditions; (d) infinitely short journal–bearing with Gümbel’s conditions; (e) Pinkus and Sternlicht
hydrodynamic model

steady-state equilibrium position. In fact, the damped oscillations play an important
role in the various forms of hydrodynamic instability and vibration, particularly in
lightly loaded journal–bearings.

The final equilibrium position clearly depends on the applied load, physical and
dynamic properties of the journal–bearing and the hydrodynamic model used. The
steady-state equilibrium position does not occur in a dynamically loaded journal–
bearing because the applied load varies in both magnitude and direction. This issue
is discussed in the next section where a simple planar mechanical system with a
dynamically loaded journal–bearing is considered.
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5.7 Demonstrative Example 2: Slider–Crank Mechanism

The slider–crank mechanism used in the previous chapter is selected again here
as an application example to study the influence of modeling the lubricated revo-
lute joints in the dynamic behavior of mechanical systems. Figure 5.14 shows the
configuration of the slider–crank model. The revolute joint between the connecting
rod and slider is modeled as lubricated joint. Initially the journal and bearing centers
coincide. The crank is the driving link and rotates with a constant angular velocity of
5000 rpm. Furthermore the initial conditions necessary to start the dynamic analysis
are obtained from kinematic analysis of the mechanism in which all the joints are
considered as ideal joints. The dynamic parameters used in the simulations are listed
in Table 5.2.

In order to better understand the influence of the lubricated revolute joint models
on the dynamic performance of the slider–crank mechanism, some of the results
relative to the dry contact situation discussed in the previous chapter are presented
again. Thus, in what follows, four different situations are analyzed and discussed. In
the first one, the revolute joint is modeled as dry frictionless contact and the normal
contact force law is given by Lankarani and Nikravesh model and expressed by
(3.9). In the second case, besides this contact force model, the modified Coulomb
friction law given by (3.16) is also included. In the third situation, the revolute
clearance joint is modeled by using the transition model, that is, a combination
between the dry contact force model and the pure squeeze force model presented in
Sect. 5.4. In the fourth simulation the clearance revolute joint is modeled with the
hydrodynamic Pinkus and Sternlicht model given by (5.14)–(5.18).

The dynamic behavior of the slider–crank mechanism simulations is quantified
by plotting the values of the slider velocity and acceleration and the moment that
acts on the crank, represented by Figs. 5.15–5.17. Additionally the journal center
trajectories as well as the Poincaré maps are plotted in Figs. 5.18 and 5.19. The
results are relative to two complete crank rotations after the transient effect has
fadeout.

When observing the slider velocity, slider acceleration and crank moment dia-
grams, the influence of the joint clearance model is evident. For the cases of dry
contact models with and without friction, displayed in Figs. 5.15a, b, 5.16a, b and
5.17a, b, high peaks on the acceleration and moment are visible, which means that

Clearance

ξ 2

η 2

X

Y

ξ3

η3

ξ1

η1

ξ4

η4

Fig. 5.14 Slider–crank mechanism with a lubricated revolute clearance joint
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Table 5.2 Dynamic properties of the simple journal–bearing

Bearing radius 10.0 mm Young’s modulus 207 GPa
Journal radius 9.5 mm Poisson’s ratio 0.3
Journal–bearing length 40.0 mm Baumgarte - α 5
Restitution coefficient 0.9 Baumgarte - β 5
Friction coefficient 0.03 Integration step size 0.00001 s
Oil viscosity at 40◦C 400 cP Integration tolerance 0.000001 s

the journal and bearing impact each other. Periods of continuous or permanent
contact between the journal and bearing, shown in Figs. 5.18a and b, can also be
observed. Furthermore the dynamic response of the slider–crank mechanism for
dry contact model is clearly nonperiodic, as shown in the corresponding Poincaré
maps, presented in Fig. 5.19a and b. However, when the friction effect is included,
the peaks on the slider accelerations and, consequently, on the crank moments are
reduced, as observed in Figs. 5.16b and 5.17b.

When the transition model is employed, the peaks on the slider acceleration and
crank moment curves are smaller when compared to those obtained for dry contact
models, as observed in Figs. 5.16c and 5.17c. If the impact forces between the jour-
nal and bearing are associated with noise, the fluid clearly acts as a filter in so far
as the high frequencies or disturbances are removed or at least reduced. Similar to
the case of dry contact with friction simulation, in the transition model the journal
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Fig. 5.15 Slider velocity: (a) dry contact without friction; (b) dry contact with friction; (c) transi-
tion model; (d) Pinkus and Sternlicht hydrodynamic model
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Fig. 5.16 Slider acceleration: (a) dry contact without friction; (b) dry contact with friction;
(c) transition model; (d) Pinkus and Sternlicht hydrodynamic model

–500

–250

0

250

500

750

1000

Time [s]

Ideal joint Pinkus & Sternlicht model

–500

–250

0

250

500

750

1000

Time [s]

Ideal joint Transition model

–500

–250

0

250

500

750

1000

Time [s]

Ideal joint Dry contact with friction

–500

–250

0

250

500

750

1000

Time [s]

C
ra

n
k 

m
o

m
en

t 
[N

m
]

C
ra

n
k 

m
o

m
en

t 
[N

m
]

C
ra

n
k 

m
o

m
en

t 
[N

m
]

C
ra

n
k 

m
o

m
en

t 
[N

m
]

Ideal joint Dry contact without friction

(d)(c)

(b)(a)

3.006 3.012 3.018 3.024 3.030 3.006 3.012 3.018 3.024 3.030

3.006 3.012 3.018 3.024 3.030 3.006 3.012 3.018 3.024 3.030

Fig. 5.17 Crank moment: (a) dry contact without friction; (b) dry contact with friction; (c) transi-
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(a)                                                            (b)
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Fig. 5.18 Journal center path: (a) dry contact without friction; (b) dry contact with friction;
(c) transition model; (d) Pinkus and Sternlicht hydrodynamic model
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Fig. 5.19 Crank moment: (a) dry contact without friction; (b) dry contact with friction; (c) transi-
tion model; (d) Pinkus and Sternlicht hydrodynamic model
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and bearing are in continuous or permanent contact during all the simulation as is
visible in Fig. 5.18c. Hence the system behavior tends to be periodic, as illustrated
in the corresponding Poincaré map in Fig. 5.19c.

In the case of the hydrodynamic force model given by Pinkus and Sternlicht,
the overall results of the slider–crank mechanism simulation shown in Figs. 5.15d,
5.16d and 5.17d are quite close to those obtained for ideal joints. Clearly, in the case
of lubricated revolute joints, the reaction forces developed are much smoother and
the peak values are practically removed when compared with the unlubricated case.
The system response is clearly periodic or regular, but some numerical instability
is observed when the journal moves close to the bearing wall because the system
becomes very stiff for a large eccentricity. In the hydrodynamic model, the fluid
acts as a nonlinear spring–damper element introducing stiffness and damping to the
system. This means that the lubricant absorbs part of the energy produced by the
slider–crank mechanism. This is one of the main advantages for the use of fluid lu-
bricants in the joints of machines and mechanisms. In order to better understand the
efficiency and accuracy of the lubricated revolute joint using the Pinkus and Stern-
licht model, the slider–crank model is considered again for another study. Table 5.3
shows the properties for the new set of study cases.

The performance of the slider–crank mechanism is quantified by plotting the reac-
tion force produced by the fluid on the lubricated joint and the driving crank moment,
displayed in Fig. 5.20a and b. In addition, the journal center orbit inside the bearing
limits and the minimum oil film thickness are also plotted in Fig. 5.21a and b. The time
interval used corresponds to two complete crank rotations. The results are compared
to those obtained when the system is modeled with ideal joints only.

From Fig. 5.20a and b it is clear that the results are of the same order of magni-
tude as those obtained with ideal joints. The first and the second crank cycles show
the same results which indicate that the system has reached steady-state operation
conditions. This can be confirmed by the orbit of the journal center relative to the
bearing center, in which the journal moves far away from the bearing wall, meaning
that there is always a minimum film lubricant in between the two bodies, as shown
in Fig. 5.21a and b. Since the load on the journal–bearing under consideration is not
constant in direction and magnitude, the journal center describes a trajectory within
the bearing boundaries as displayed in Fig. 5.21a. This means that the steady-state
equilibrium is not reached, which results in a time-dependent loci of the journal
center inside the bearing.

The practical criterion for determining whether or not a journal–bearing is op-
erating satisfactorily is the value of the minimum film thickness, which is probably
the most important parameter in the performance of journal–bearings.

Table 5.3 Parameters used in the simulations of the slider–crank mechanism
Bearing radius 10.0 mm
Radial clearance 0.2 mm
Journal–bearing length 40.0 mm
Oil viscosity 400 cP
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Fig. 5.20 (a) Reaction force developed in the lubricated revolute joint, c = 0.2 mm, μ = 400 cP;
(b) driving crank moment, c = 0.2 mm, μ = 400 cP

The minimum film thickness for an aligned journal–bearing is given by

hmin = c(1 − ε) (5.33)

where ε is the eccentricity ratio and c is the radial clearance. For safe journal–
bearings performance, a minimum film thickness is required.

The safe allowable film thickness depends on the surface finish of the journal.
Hamrock (1994) suggests that the safe film thickness should be greater than 2.5 μm.
In practical engineering design, it is recommended that the safe film thickness
should be at least 0.00015 mm/mm of bearing diameter (Phelan 1970). Similar value
for the minimum film thickness can be obtained using the ESDU 84031 Tribology
Series (1991) design criterion, shown in Fig. 5.22, which depends on the size of the
journal–bearing.

The surface quality of the journal–bearing should be consistent with the expected
film thickness and it is, therefore, usual for smaller journal–bearings to be finished to
higher standards than larger journal–bearings. ESDU 84031 Tribology Series (1991)
suggests that the surface roughness value of the journal–bearings should be not
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Fig. 5.21 (a) Journal center trajectory inside the bearing, c = 0.2 mm, μ = 400 cP; (b) minimum
and safe oil film thickness, c = 0.2 mm, μ = 400 cP
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Fig. 5.22 Design chart for the minimum film thickness (adapted from ESDU 84031 Tribology
Series 1991)

worse than 1/20 of the minimum film thickness. Thus for the journal–bearing con-
sidered here, the safe film thickness that ensures good operating conditions is close
to 3 μm. For the present example, the film thickness is always larger than this safe
film thickness as demonstrated in Fig. 5.21b.

Equations (5.14)–(5.18) show that the parameters influencing the journal–bearing
performance are the oil viscosity μ, the radial clearance c, the bearing length L, the
journal radius RJ and the dynamic journal–bearing parameters ω, ε, ε̇, γ and γ̇ .
Since the dynamic parameters of the journal–bearing depend directly on the system
configuration, the radial clearance size and the oil viscosity are the only possible
variables. Thus, in the following, several simulations of the slider–crank mechanism
for different values of clearance size and oil viscosity are performed. The behav-
ior of the mechanism is quantified by measuring the values of joint reaction force,
driving crank moment and journal center trajectory. The values used for the radial
clearance size are 0.5 and 0.1 mm, while the oil viscosity values are 400 and 40 cP.

There are some important differences between the results presented above,
namely in what concerns the radial clearance size and oil viscosity influence on
the joint reaction force and crank moment; such differences are graphically dis-
played in Figs. 5.23–5.28. The journal–bearing clearance is an important factor for
the satisfactory operation of the journal–bearings. Small values of clearance can
give rise to high journal–bearing temperatures while large values of clearance can
mean excessive lubricant flow rates. Furthermore the results clearly show the sen-
sitivity of the system response with different values of viscosity. As expected, with
low viscosity the journal and the bearing walls are closer than with high viscos-
ity, which suggests the possibility of metal-to-metal contact, especially visible in
Figs. 5.26–5.28. Moreover there are some numerical instabilities associated with
the lubricated model, namely when the oil viscosity is low, the clearance is too
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Fig. 5.23 Reaction force developed in the lubricated revolute joint: (a) c = 0.5 mm, μ = 400 cP;
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Fig. 5.26 Reaction force developed in the lubricated revolute joint: (a) c = 0.5 mm, μ = 40 cP;
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large or for a combination of these two factors. These numerical difficulties are well
represented by some peaks in the joint reaction force and crank moment diagrams,
because the journal and bearing walls are very close to each other. On the other
hand, when the two elements are very close, the hydrodynamic lubrication theory is
no longer valid and the EHL theory must be taken into account (Rahnejat 2000).

5.8 Summary

A comprehensive methodology for modeling lubricated revolute joints in multibody
mechanical systems was presented in this chapter. A simple journal–bearing and
the slider–crank mechanism were chosen as demonstrative examples of the appli-
cation of the techniques used. Furthermore a parametric study of the slider–crank
mechanism for different values of clearance size and oil viscosity was performed
in order to provide the results necessary for the comprehensive discussion of the
models proposed.

For dynamically loaded journal–bearings, the classic analysis problem consists
in predicting the motion of the journal center under arbitrary and known loading. On
the contrary, in the present analysis the time-variable parameters are known from the
dynamic analysis and the instantaneous force on the journal–bearing is calculated
on the bodies of the models proposed. The forces built up by the lubricant fluid are
evaluated from the state of variables of the system and included in the equations of
motion.

Both squeeze and wedge hydrodynamic effects are included in the analysis of
dynamically loaded journal–bearings. It should be mentioned that the methodology
presented here uses the superposition principle of wedge effect entrainment and
squeeze-film effect to calculate the load capacity. This is only approximate and has
been adopted in the work in order to lead to an analytic solution, rather than to a
purely numerical one. Furthermore the methodology is only applicable to long bear-
ings, which is seldom the case in most engine bearings, but it can be useful for many
other mechanisms. This is the compromise used here for the sake of computational
efficiency.

In an application for a slider–crank mechanism, for instance, the reaction moment
necessary to drive the crank with a constant angular velocity is of the same order of
magnitude as the one in the case of an ideal joint, meaning that the global motion
of the slider–crank mechanism with a lubricated joint is periodic or regular. The
lubricant acts as a nonlinear spring–damper in so far as lubricated journal–bearing
absorbs some of the energy produced by the slider when it accelerates or decelerates,
which results in lower reaction moment compared to ideal joints. The lubricant in-
troduces effective stiffness and damping to the slider–crank mechanism. Therefore
a hydrodynamic fluid film journal–bearing exhibits a damping effect that plays an
important role in the stability of the mechanical components.

The transition model that takes into account the existence of the lubricant during
the free flight of the journal and the possibility for dry contact under some conditions
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seems to be well fitted to describe joints with clearances. The similarity of the forces
is notable in the transition model when compared with those of the EHL theory.

The minimum film thickness is a fundamental parameter in the study of a hy-
drodynamic journal–bearing. The value of the minimum oil film thickness defines
the kind of regime of lubrication which is present in the journal–bearing, namely
thick-film lubrication, where the journal–bearing surfaces are totally separated by
the lubricant and thin-film lubrication in which the field of pressure developed
produces elastic deformation. The lubrication between two moving surfaces can
shift between these two regimes, depending on the velocity, lubricant viscosity and
roughness of surfaces.

The viscosity, which is associated with the resistance to the flow, is one of the
most important properties of the fluid lubricants employed in journal–bearings. Ac-
tually the behavior of the journal–bearings is quite sensitive to the oil viscosity. As
expected, with low working viscosity, the journal and the bearing walls are closer
than with high viscosity, which can lead to the possibility of metal-to-metal contact.
With higher viscosity there are higher reaction moments produced in systems. This
is due to the fact that the lubricant becomes more rigid and absorbs less energy from
the system. Moreover the fluid film in conventional journal–bearings can reach a
very small thickness and the pressure gradient generated under some conditions can
produce elastic deformations of the same order of the magnitude of the film thick-
ness. Thus for a rigorous analysis the elastic deformation must also be considered.

The clearance size also has an important effect on the performance of the journal–
bearings. Higher clearance leads to a larger space for the lubricant to flow. The
position of the journal loci moves within the bearing, so there is less pressure pro-
duced, the motion of the journal being a result of that. Also lower clearance means
higher hydrodynamic forces, higher system rigidity and consequently higher reac-
tion forces on the system. Lower clearance produces fewer fluctuations due to the
increased damping, which means less vibration and instability problems.

The quantitative solutions for lubricated journal–bearings in mechanical systems
presented in this chapter are quite useful in so far as they are given in a closed form.
The hydrodynamic model for lubricated revolute joints in mechanical systems is
numerically efficient and fast because the pressure distribution does not need to be
evaluated. Furthermore the methodology is easy and straightforward to implement
in a computational code because resultant forces due to the fluid action are obtained
in explicit form. Some numerical difficulties can be observed when either the fluid
viscosity is too low or the radial clearance of the journal–bearing is too large, which
leads to large eccentricities and, consequently, the system becomes stiff.
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Chapter 6
Spatial Joints with Clearance: Dry Contact
Models

The problem of the dynamic behavior of planar multibody systems with clearance
joints was developed in the previous chapters. The utility of the methodologies
developed is somewhat restricted because they are not valid for spatial multibody
systems such as vehicle models, car suspensions and robotic manipulators, where
the system motion is not limited to be planar. In fact, even planar systems may
exhibit out-of-plane motion due to misalignments, thus justifying the development
of mathematical models to assess the influence of the clearance joints in spatial
multibody systems. The main purpose of this chapter is to present effective method-
ologies for spatial multibody systems including both the spherical and the revolute
joints with clearance. Due to their relevance for this chapter, some aspects of the
multibody formulation for spatial systems, based on the Cartesian coordinates, are
reviewed here to introduce the basic aspects on the dynamic modeling of spatial
multibody systems with clearance joints (Nikravesh 1988). A brief description of
the ideal, or perfect, spherical and spatial revolute joints is presented. Similar to the
case of planar formulation, the bodies that constitute the spatial clearance joints are
modeled as colliding bodies and contact-impact forces control the dynamic behavior
of the joint elements. For this purpose, the joint elements are considered as elastic
bodies in contact, in which relative penetration exists, but without deformation. The
normal contact force that depends on this pseudo-penetration follows the contact-
impact force model proposed by Lankarani and Nikravesh (1990). This force model,
which is a function of the bodies’ relative motion and of the internal geometry of
the joint, leads to the contact forces that are introduced in the system’s equations of
motion. In this methodology, the clearance plays a key role in the joint kinematics.
Simple spatial mechanical systems that describe spatial motion, such as the four-bar
mechanism and the double pendulum, are used to illustrate the methodologies and
assumptions adopted. In addition, a slider–crank mechanism that describes a planar
motion is also considered, as an application example, in order to compare both the
planar and spatial formulation for clearance joints.

P. Flores et al., Kinematics and Dynamics of Multibody Systems with Imperfect Joints. 133
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6.1 Spatial Multibody Systems

This section presents the formulation of the general equations of motion to the spa-
tial dynamic analysis of multibody systems. A simple and brief description of the
standard mechanical joints of spatial multibody mechanical systems is presented,
namely of the ideal spherical and revolute joints, to emphasize the differences with
respect to joints with clearance, introduced later. The methodology presented can
be implemented in any general-purpose multibody code, tested in particular in the
computer program DAP-3D, which has been developed for the spatial dynamic
analysis of general multibody systems (Nikravesh 1988). Due to its simplicity and
computational easiness, Cartesian coordinates and Newton–Euler’s method are used
to formulate the equations of motion of the spatial multibody systems.

Let Fig. 6.1 represent a rigid body i to which a body-fixed coordinate system
(ξηζ)i is attached at its center of mass. When Cartesian coordinates are used, the
position and orientation of the rigid body must be defined by a set of translational
and rotational coordinates. The position of the body with respect to global coordi-
nate system XYZ is defined by the coordinate vector ri = [ x y z ]Ti that represents
the location of the local reference frame (ξηζ)i . The orientation of the body is de-
scribed by the rotational coordinate’s vector pi = [ e0 e1 e2 e3 ]Ti , which is made
with the Euler parameters for the rigid body (Nikravesh 1988). Therefore the vector
of coordinates that completely describes the rigid body i is

qi = [ rT
i pT

i ]Ti (6.1)

A spatial multibody system with nb bodies is described by a set of coordinates q
in the form

q = [qT
1 , qT

2 , . . . , qT
nb]

T (6.2)

The location of point P on body i can be defined by the position vector sP
i with

respect to the body-fixed reference frame (ξηζ)i and by the global position vector
ri , that is,

rP
i = ri + sP

i = ri + Ai s′P
i (6.3)

Fig. 6.1 Definition of the
Cartesian coordinates for a
rigid body
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where Ai is the transformation matrix for body i that defines the orientation of the
referential (ξηζ)i with respect to the referential frame XYZ. The transformation
matrix is expressed as function of the four Euler parameters as (Nikravesh 1988)

Ai =

⎡
⎢⎢⎣

e2
0 + e2

1 − 1
2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e2
0 + e2

2 − 1
2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1
2

⎤
⎥⎥⎦

i

(6.4)

Notice that the vector sP
i is expressed in global coordinates whereas the vector

s′P
i is defined in the body i fixed coordinate system. Throughout the formulation

presented in this work, the quantities with (.)′ mean that (.) is expressed in local
system coordinates.

The velocities and accelerations of body i use the angular velocities ω′
i and

accelerations ω̇′
i instead of the time derivatives of the Euler parameters, which

simplifies the mathematical formulation and does not require the use of mathe-
matical constraint for Euler parameters. The relation between the Euler parameters
ė0 + ė1 + ė2 + ė3 = 0 is implied in the angular velocity and, therefore, is not
used explicitly (Nikravesh and Chung 1982). When Euler parameters are employed
as rotational coordinates, the relation between their time derivatives, ṗi , and the
angular velocities is expressed by (Nikravesh 1988)

ṗi = 1
2 LT �′

i (6.5)

where the auxiliary 3×4 matrix L is a function of Euler parameters (Nikravesh 1988)

Li =
⎡
⎣−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0

⎤
⎦

i

(6.6)

The velocities and accelerations of body i are given by vectors

q̇i = [ ṙT
i �′T

i ]Ti (6.7)

q̈i = [ r̈T
i �̇′T

i ]Ti (6.8)

In terms of the Cartesian coordinates, the equations of motion of an uncon-
strained multibody mechanical system are written as

Mq̈ = g (6.9)

where M is the global mass matrix, containing the mass and moment of inertia of
all bodies and g is a force vector that contains the external and Coriolis forces acting
on the bodies of the system.
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For a constrained multibody system, the kinematical joints are described by a set
of holonomic algebraic constraints denoted as

�(q, t) = 0 (6.10)

Using the Lagrange multipliers technique the constraints are added to the equa-
tions of motion. These are written together with the second time derivative of the
constraint equations. Thus the set of equations that describe the motion of the multi-
body system is

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
�

}
(6.11)

where λ is the vector of Lagrange multipliers and � is the vector that groups all the
terms of the acceleration constraint equations that depend on the velocities only, that
is,

� = −(�qq̇)qq̇ − �tt − 2�qt q̇ (6.12)

The Lagrange multipliers, associated with the kinematic constraints, are physically
related to the reaction forces and moments generated between the bodies intercon-
nected by kinematic joints.

Equation (6.11) is a differential algebraic equation that has to be solved, the
resulting accelerations being integrated in time. However, in order to avoid con-
straints violation during numerical integration, the Baumgarte (1972) stabilization
technique is used, (6.11) being modified to

[
M �T

q
�q 0

]{
q̈
λ

}
=
{

g
� − 2α�̇ − β2�

}
(6.13)

where α and β are positive constants that represent the feedback control parameters
for the velocity and position constraint violations (Baumgarte 1972, Nikravesh 1988).
This issue is presented and discussed in detail in Chap. 2, the conclusions being valid
for spatial systems also. The same applies to the use of the vector calculus and the
numerical methods for planar dynamics of multibody systems presented in previous
chapters, which are still adequate for the treatment of spatial systems.

According to the formulation outlined, the dynamic response of multibody sys-
tems involves the evaluation of the Jacobian matrix �q and vectors g and �, in
each time step. The solution of (6.13) is obtained for the system accelerations q̈.
These accelerations, together with the velocities q̇∗, are integrated to obtain the new
velocities q̇ and positions q∗ for the next time step. This process is repeated until
the complete description of system motion is obtained for a selected time interval.
Note that, in vector q̇∗, the angular velocities are substituted by the time derivatives
of the Euler parameters using (6.5).
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An ideal or perfect spherical joint, also known as the ball and socket joint, illus-
trated in Fig. 6.2, constrains the relative translations between two adjacent bodies i
and j , allowing only three relative rotations. Therefore the center of the spherical
joint, point P , has constant coordinate with respect to any of the local coordinate
systems of the connected bodies, i.e., a spherical joint is defined by the condition
that the point Pi on body i coincides with the point Pj on body j . This condi-
tion is simply the spherical constraint, which can be written in a scalar form as
(Nikravesh 1988)

�(s,3) ≡ ri + Ai s′P
i − r j − A j s′P

j = 0 (6.14)

The three scalar constraint equations implied by (6.14) restrict the relative posi-
tion of points Pi and Pj . Therefore three relative degrees of freedom are maintained
between two bodies that are connected by a perfect spherical joint.

An ideal three-dimensional revolute or rotational joint between bodies i and j ,
shown in Fig. 6.3, is built with a journal–bearing that allows a relative rotation about
a common axis, but precludes relative translation along this axis. Equation (6.14) is
imposed on an arbitrary point P on the joint axis. Two other points Qi on body i
and Q j on body j are also arbitrarily chosen on the joint axis. It is clear that vectors
si and s j must remain parallel. Therefore there are five constraint equations for an
ideal three-dimensional revolute joint (Nikravesh 1988):

�(r,5) ≡
{

ri + Ai s′P
i − r j − A j s′P

j = 0
s̃i s j = 0

(6.15)

Note that the cross product in (6.15) has only two independent constraints, the
third being linearly dependent on the first two. The five scalar constraint equations
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yield only one relative degree of freedom for this joint, that is, rotation about the
common axis of the revolute joint.

6.2 Spherical Joint with Clearance

In this section, a mathematical model of spherical joint with clearance for spatial
multibody systems is presented. In standard multibody models, it is assumed that
the connecting points of two bodies, linked by an ideal or perfect spherical joint,
are coincident. The introduction of the clearance in a spherical joint separates these
two points and the bodies become free to move relative to each other. Hence the
three kinematic constraints shown in (6.14) are removed and three relative DOF
are allowed instead. A spherical joint with clearance does not constrain any DOF
from the system like the ideal spherical joint. In a spherical clearance joint, the
dynamics of the joint is controlled by contact-impact forces that result from the
collision between the bodies connected. Thus these types of joints can be called as
force-joints, since they deal with force constraints instead of kinematic constraints.

Figure 6.4 depicts two bodies i and j connected by a spherical joint with clear-
ance. A spherical part of body j , the ball, is inside of a spherical part of body i ,
the socket. The radii of socket and ball are Ri and R j , respectively. The differ-
ence in radius between the socket and the ball defines the size of radial clearance,
c = Ri−R j . The centers of mass of bodies i and j are Oi and O j , respectively.
Body-fixed coordinate systems ξηζ are attached at their center of mass, while XYZ
represents the global coordinate system. Point Pi indicates the center of the socket,
the center of the ball being denoted by Pj . The vector that connects the point Pi to
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Fig. 6.4 Generic spherical joint with clearance in a multibody system

point Pj is defined as the eccentricity vector, which is represented in Fig. 6.4. Note
that, in real mechanisms, the magnitude of the eccentricity is typically much smaller
than the radius of the socket and ball.

Similar to the two-dimensional revolute joint, when some amount of clearance
is included in a spherical joint, the ball and socket can move relative to each other.
Figure 6.5 illustrates the different types of ball motion inside the socket, namely,
contact or following mode, free flight mode and impact mode.

In the contact or following mode, the ball and the socket are in permanent contact
and a sliding motion relative to each other exists. This mode ends when the ball

Ball

Socket

Free flight
motion

Contact or
following motion

Impact

Free flight
motion

Impact

Ball center
locus trajectory

Fig. 6.5 Modes of the ball motion inside the socket
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and socket separate from each other and the ball enters the free flight mode. In the
free flight motion, the ball moves freely inside the socket boundaries, that is, the
ball and the socket are not in contact, hence there is no joint reaction force. In the
impact mode, which occurs at the termination of the free flight motion, impact forces
are applied to the system. This mode is characterized by an abrupt discontinuity in
the kinematic and dynamic responses, and a significant exchange of momentum
between the two impacting bodies is observed. At the termination of the impact
mode, the ball can enter either the free flight or the following mode.

In what follows, some of the most relevant kinematic aspects related to the spher-
ical clearance joint are presented. As displayed in Fig. 6.4, the eccentricity vector e,
which connects the centers of the socket and the ball, is given by

e = rP
j − rP

i (6.16)

where both rP
j and rP

i are described in global coordinates with respect to the inertial
reference frame (Nikravesh 1988):

rP
k = rk + Aks′P

k , (k = i, j) (6.17)

The magnitude of the eccentricity vector is evaluated as

e =
√

eT e (6.18)

The magnitude of the eccentricity vector expressed in the global coordinates is
written as

e =
√

(x P
j − x P

i )2 + (y P
j − y P

i )2 + (z P
j − z P

i )2 (6.19)

and the time rate of change of the eccentricity in the radial direction, that is, in the
direction of the line of centers of the socket and the ball is

ė = (x P
j − x P

i )(ẋ P
j − ẋ P

i ) + (y P
j − y P

i )(ẏ P
j − ẏ P

i ) + (z P
j − z P

i )(ż P
j − ż P

i )

e
(6.20)

in which the dot denotes the derivative with respect to time.
A unit vector n normal to the collision surface between the socket and the ball is

aligned with the eccentricity vector, as observed in Fig. 6.6. Thus

n = e
e

(6.21)

Figure 6.6 illustrates the situation in which the socket and the ball bodies are in
contact, which is identified by the existence of a relative penetration. The contact or
control points on bodies i and j are Qi and Q j , respectively. The global position of
the contact points in the socket and ball are given by
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Fig. 6.6 Penetration depth between the socket and the ball during the contact

rQ
k = rk + Aks′Q

k + Rkn, (k = i, j) (6.22)

where Ri and R j are radius of the socket and the ball, respectively.
The velocity of the contact points Qi and Q j in the global system is obtained by

differentiating (6.22) with respect to time, yielding

ṙQ
k = ṙk + Ȧks′Q

k + Rk ṅ, (k = i, j) (6.23)

Let the components of the relative velocity of contact points in the normal and
tangential direction to the surface of collision be represented by vN and vT , re-
spectively. The relative normal velocity determines whether the contact bodies are
approaching or separating, and the relative tangential velocity determines whether
the contact bodies are sliding or sticking. The relative scalar velocities, normal and
tangential to the surface of collision, are obtained by projecting the relative impact
velocity onto the tangential and normal directions, yielding

vN = [(ṙQ
j − ṙQ

i )T n]n (6.24)

vT = (ṙQ
j − ṙQ

i )T − vN ≡ vT t (6.25)

where t represents the tangential direction to the impacted surfaces.
From Fig. 6.6 it is clear that the geometric condition for contact between the

socket and the ball can be defined as

δ = e − c (6.26)

where e is the magnitude of the eccentricity vector given by (6.18) and c is the
radial clearance size. It should be noted here that the clearance is taken as a specified
parameter. When the magnitude of the eccentricity vector is smaller than the radial
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clearance size there is no contact between the socket and the ball and, consequently,
they can freely move relative to each other. When the magnitude of eccentricity is
larger than radial clearance, there is contact between the socket and the ball, the
relative penetration being given by (6.26). Then a constitutive contact law, such as
the continuous contact force model proposed by Lankarani and Nikravesh (1990),
expressed by (3.9), is applied in order to evaluate the contact force developed in the
direction perpendicular to the plane of collision. Thus the magnitude of the contact
force can be summarized as follows:

FN =

⎧⎪⎨
⎪⎩

0 if δ < 0

K δn

[
1 + 3(1 − c2

e)
4

δ̇

δ̇(−)

]
if δ > 0

(6.27)

where the generalized parameter K is evaluated by (3.3), ce is the restitution coef-
ficient, δ̇ is the relative penetration velocity and δ̇(−) is the initial impact velocity.
The nature of the contact forces for spatial systems is identical to those for planar
systems, which are presented and discussed in Chap. 3.

The normal and tangential forces at the contact points are represented by fN and
fT , respectively. Since these forces do not act through the center of mass of bodies
i and j , the moment components for each body need to be evaluated. Furthermore
the contribution of the contact forces to the generalized force vector is obtained by
projecting the normal and tangential forces onto the X, Y and Z directions. Based on
Fig. 6.7, the equivalent forces and moments applied on the center of mass of body i
are given by
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Fig. 6.7 Penetration depth between the socket and the ball during the contact
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fi = fN + fT (6.28)

mi = s̃Q
i fi (6.29)

The forces and moments acting on body j are written as

f j = −fi (6.30)

m j = −s̃Q
j fi (6.31)

For notation purpose the tilde (∼) placed over a vector indicates that the compo-
nents of the vector are used to generate a skew-symmetric matrix (Nikravesh 1988).

6.3 Spatial Revolute Joint with Clearance

The typical configuration of a spatial revolute joint with clearance is schematically
illustrated in Fig. 6.8. The pair of elements in a spatial revolute clearance joint are
a cylindrical hole, the bearing, and a cylindrical pin, the journal. The clearance, in
a realistic connection, is much smaller than the length of the two cylinders or the
nominal radius of the joint elements.

Similar to the spherical clearance joint model development, the two mechanical
bodies connected by the joint are modeled as colliding bodies, and, consequently,
contact-impact forces control the dynamics of the joint. In the methodology pre-
sented here, the contact force model with hysteric damping is used to evaluate the
normal contact forces resulting from the interpenetration between the journal and
the bearing. For this purpose, the mechanical elements are considered as two rigid
bodies in contact that penetrate into each other, without deforming. The normal
contact force depends on this pseudo-penetration, according to the model proposed
by Lankarani and Nikravesh (1990). Thus it is clear that the spatial revolute joint
with clearance does not impose any kinematic constraint to the system, but imposes
some force restrictions, limiting the journal movement within the bearing limits.

The model for the spatial revolute clearance joint is more complex than the spher-
ical joint with clearance, because there are more paths of motion for the journal
when clearance is present. Four different types of journal motion inside the bearing
are considered in the present work, namely: (1) free flight motion where there is

Fig. 6.8 Typical spatial
revolute joint with clearance

Journal

Bearing
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(a) (b)

(d)(c)

Fig. 6.9 Four different possible scenarios for the journal motion relative to the bearing: (a) no
contact; (b) one point contact; (c) line contact; (d) two contact points in opposite sides

no contact between the two elements; (2) the journal contacts with the bearing wall
at a point; (3) the journal and bearing contact with each other at a line; (4) two
contact points between the journal and the bearing wall, but in opposite sides. These
four possibilities are illustrated in Fig. 6.9. The dynamic response of the joint is a
function of these four scenarios which depend on the system configuration.

In a noncontact situation, no forces are introduced into the system, because the
journal moves freely inside the bearing boundaries until it reaches the bearing wall.
When the journal and the bearing are in contact with each other, local deformations
take place at the contact area and, consequently, contact-impact forces characterize
the interaction between the bodies. By evaluating the variation of the contact forces
during the contact period, the system response is obtained simply by adding the
contact-impact forces to the multibody system equations of motion as external gen-
eralized forces. This approach provides accurate results, in so far as the equations of
motion are integrated over the period of contact. It, thus, accounts for the changes
in the configuration and velocities of the system during that contact.

In order for the spatial revolute clearance joints to be used in the multibody sys-
tem formulation, it is required that a mathematical model be developed. Figure 6.10
shows a representation of a spatial revolute joint with clearance that connects bodies
i and j . The bearing is part of body i and the journal is part of body j . The difference
in radius between the bearing and the journal, c = Ri−R j , defines the size of the
radial clearance. The center of mass of bodies i and j are Oi and O j , respectively.
Body-fixed coordinate systems ξηζ are attached at the center of mass of each body,
whereas the XYZ denotes the global coordinate system. The geometric center of the
bearing is located at point P which, together with point Q, defines the joint/bearing
axis, while points V and W on body j define the journal axis. These points are
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Fig. 6.10 General configuration of a three-dimensional or spatial revolute joint with clearance in
a multibody system

located at the top and bottom of journal bases, so that the distance between points
V and W defines the length of the joint.

Figure 6.11 shows two different scenarios for the contact between the journal
and the bearing. For simplicity, in this figure only the journal and the bearing are

θ ≈ 0o

(a) (b)

PP

Fig. 6.11 Two different scenarios for contact between the journal and the bearing wall: (a) only
one journal base (top) contacts with the bearing wall; (b) both bases (top and bottom) contact with
the bearing wall
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represented. In the present methodology, only the top and the bottom journal bases
are considered for contact detection between the journal and bearing elements. Fur-
thermore it is assumed that the clearance is much smaller than the dimensions of
the bodies, so that the angle between the bearing and journal axes, represented by
θ in Fig. 6.11a, is very small and, consequently, both top and bottom journal bases
can be assumed to be parallel and perpendicular to the joint axis, as illustrated in
Fig. 6.12.

Assuming a local coordinate system (ξηζ)r associated with the revolute clearance
joint axis located at point P , the unit coordinate vectors defined along the local axes
are u′

ξ, u′
η and u′

ξ, as illustrated in Fig. 6.13. The unit coordinate vector along the
ζr-axis, u′

ξ, is evaluated as

u′
ξ = s′Q

i − s′P
i∥∥∥s′Q

i − s′P
i

∥∥∥ (6.32)

where both vectors s′P
i and s′Q

i are described in the local coordinate system of body
i . The remaining two unit vectors are evaluated according to

{
u′

ξ = u′
ξ

u′
η = u′

η
if u′

ξ = u′
ζ (6.33)

or
{

u′
ξ = ũ′

ζr
u′

ζi

u′
η = ũ′

ζr
u′

ξr

if u′
ξ �= u′

ζ (6.34)

Fig. 6.12 Front and top
views for contact between the
journal and the bearing: (a)
only the journal top base
contacts with the bearing
wall; (b) both journal bases
(top and bottom) contact with
the bearing wall
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Fig. 6.13 Definition of the local coordinate system associated with the revolute clearance joint and
the respective unit vectors

The transformation matrix Ari from local components (ξηζ)r into the local co-
ordinate system (ξηζ)i is expressed as (Nikravesh 1988)

Ari = [u′
ξ u′

η u′
ξ ]T (6.35)

Note that this transformation matrix is constant. Furthermore if u′
ξ = u′

ξ the trans-
formation matrix Ari is the identity matrix I. Thus the matrix that transforms the
local vectors (ξηζ)r into the global reference system XYZ is given by

Ar = Ai Ari (6.36)

The global position of the origin of the local coordinate system (ξηζ)r is

rP
i = ri + Ai s′

i P (6.37)

In order to define the relative position between the journal and the bearing, it is
necessary to express the vectors sV

j and sW
j in the local coordinate system associated

with the joint (ξηζ)r . From Fig. 6.13, the global coordinates of points V and W with
respect to the inertial reference frame are expressed as
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rV
j = r j + A j s′V

j (6.38)

rW
j = r j + A j s′W

j (6.39)

Thus vectors sV
j and sW

j expressed in the global coordinate system are

sV
r = rV

j − rP
i (6.40)

sW
r = rW

j − rP
i (6.41)

When expressed in the local coordinate system of the joint, these vectors are
given by

s′V
r = AT

r sV
r (6.42)

s′W
r = AT

r sW
r (6.43)

The vectors given by (6.42) and (6.43) define the coordinates of points V and W of
the journal, expressed in terms of the local coordinate system associated with the
joint, that is, (ξηζ)r .

Figure 6.14 depicts a configuration for the system in which both top and bottom
journal bases contact with the bearing wall. The eccentricity vectors at the top and
bottom journal bases, eV

r and eW
r , are given by the projection of the vectors sV

r and
sW

r onto the local axes ξr and ηr , yielding

eV
r = {(s′V

r )ξr
(s′V

r )ηr
0}T (6.44)

eW
r = {(s′W

r )ξr
(s′W

r )ηr
0}T (6.45)

The magnitudes of the eccentricity vectors are evaluated as

eV
r =

√
(eV

r )T eV
r (6.46)

eW
r =

√
(eW

r )T eW
r (6.47)

The unit vectors, nV
r and nW

r , are normal to the planes of contact at the points
where the top and bottom journal bases touch the bearing wall. Referring to Fig. 6.14
these normal vectors are evaluated as

nV
r = eV

r∥∥eV
r

∥∥ (6.48)

nW
r = eW

r∥∥eW
r

∥∥ (6.49)

Referring to Fig. 6.14, the penetrations due to the contact between the journal
bases and the bearing wall are calculated as
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Fig. 6.14 Definition of the
local coordinate system
associated with the revolute
clearance joint and the
respective unit vectors
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δW
r = eW

r − c (6.51)

where eV
r and eW

r are, respectively, the modules of the eccentricity vectors at the
top and bottom journal bases, and c is the radial clearance given by the difference
between the radius of the bearing and the journal. There is contact if the radial
motion exceeds the radial clearance size.

Considering CV
i , CV

j , CW
i and CW

j to be the potential contact points on bodies i
and j , their global positions are evaluated as

r
CV

k
k = rP

k + Aks′CV
k

k , (k = i, j) (6.52)

r
CW

k
k = rP

k + Aks′CW
k

k , (k = i, j) (6.53)
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where vectors s′CV
k

k and s′CW
k

k , (k = i, j), are the local coordinates of vectors s
CV

k
k and

s
CW

k
k on bodies i and j , expressed by the local coordinate system of each body. These

vectors are only defined in the local coordinate system of the joint (ξηζ)r and are
expressed as

s′CV
i

r = { 0 0 (s′V
r )ζr

}T + Ri nV
r (6.54)

s′CV
j

r = s′V
r + R j nV

r (6.55)

s′CW
i

r = { 0 0 (s′W
r )ζr

}T + Ri nW
r (6.56)

s′CW
j

r = s′W
r + R j nW

r (6.57)

The vectors defined by (6.54)–(6.57) when expressed in the local coordinate systems
associated with bodies i and j yield

s′CV
i

i = Ari s′CV
i

r (6.58)

s′CV
j

j = AT
j Ar s′CV

j
r (6.59)

s′CW
i

i = Ari s′CW
i

r (6.60)

s′CW
j

j = AT
j Ar s′CW

j
r (6.61)

The impact velocities, required to evaluate the contact forces, using the Lankarani
and Nikravesh model, are obtained by differentiating (6.52) and (6.53) with respect
to time, yielding

ṙ
CV

k
k = ṙP

k + Ak�̃′
ks′CV

k
k , (k = i, j) (6.62)

ṙ
CW

k
k = ṙP

k + Ak�̃′
ks′CW

k
k , (k = i, j) (6.63)

The relative impact velocities between the two bodies at the contact points are

ΔṙV = ṙ
CV

j

j − ṙ
CV

i
i (6.64)

ΔṙW = ṙ
CW

j

j − ṙ
CW

i
i (6.65)

The relative velocities given by (6.64) and (6.65) are projected onto the direction
normal to the penetration, yielding the relative normal velocities, δ̇V

r and δ̇W
r , shown

in Fig. 6.15. The normal relative velocities represent whether the contact bodies are
approaching or separating. These velocities are evaluated by

δ̇V
r = (ΔṙV )T nV

r (6.66)

δ̇W
r = (ΔṙW )T nW

r (6.67)
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Fig. 6.15 Location of the contact points and representation of impact velocities

When contact between the journal and the bearing takes place, impact forces act
at the contact points. The contributions of these impact forces to the generalized
vector of forces are found by projecting them onto the X, Y and Z directions. Since
these forces do not act through the center of mass of the bodies i and j , the moment
components for each body need to be evaluated. For convenience and simplicity
the bodies are presented separately in Fig. 6.16 and only the force components that
act at the top journal base are illustrated. According to Fig. 6.16, the forces and
moments working on the center of mass of body i are given by

fi = fN + fT (6.68)

mi = y
CV

i
i fz

i − z
CV

i
i fy

i + x
CV

i
i fz

i − z
CV

i
i fx

i + x
CV

i
i fy

i − y
CV

i
i fx

i (6.69)

The forces and moments corresponding to body j are written as

f j = −fi (6.70)

m j = −y
CV

j

j fz
j + z

CV
j

j fy
j − x

CV
j

j fz
j + z

CV
j

j fx
j − x

CV
j

j fy
j + y

CV
j

j fx
j (6.71)

Since the formulation of the spatial revolute joint involves a good deal of mathe-
matical manipulation, it is convenient to summarize the main steps in an appropriate
algorithm. This algorithm, presented in the flowchart of Fig. 6.17, is developed in
the framework of the multibody methodology and can be condensed in the following
steps:
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Fig. 6.16 Contact forces defined at the points of contact

1. Start at instant of time t0, with given initial conditions for positions q0 and ve-
locities q̇0.

2. Define the location of points Pi , Pj , Qi , Vj and W j , necessary to describe the
spatial revolute clearance joint. Define joint and material properties (RB , EB , νB ,
RJ , EJ and νJ ).

3. Compute the local coordinate system associated with the joint, (ξηζ)r and eval-
uate the unit coordinate vectors along each axis, that is, u′

ξ, u′
η and u′

ξ using
(6.32)–(6.34).

4. Evaluate the local coordinates of the geometrical centers of the top and bottom
bases in the (ξηζ)r system using (6.42)–(6.43).

5. Compute eccentricity vectors eV
r and eW

r and the unit vectors that define the im-
pact direction nV

r and nW
r through (6.44)–(6.49).

6. Evaluate the penetrations δV
r and δW

r with (6.50)–(6.51).
7. Check for contact: if there is contact, determine the contact points using

(6.52)–(6.53), evaluate the impact velocities with (6.66)–(6.67), compute the
impact forces by (6.68)–(6.71) and add the impact forces to the equations of
motion.

8. Obtain the new positions and velocities of the system for time step t + Δt by
integration of the final derivatives of the state variables.
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Fig. 6.17 Representation of the algorithm proposed to model spatial revolute joint with clearance
in multibody systems

9. Update the system time variable.
10. Go to step 5 and repeat the whole process for the new time step, until the final

time for the analysis is reached.

6.4 Demonstrative Example 1: Four-Bar Mechanism

In this section, the application of the four-bar mechanism that describes a spatial
motion (Haug 1989) is employed, as an illustrative example to demonstrate how a
spherical clearance joint can affect the behavior of the mechanism. The spatial four-
bar mechanism consists of four rigid bodies that represent the ground, crank, coupler
and rocker. The body numbers and their corresponding local coordinate systems are
shown in Fig. 6.18. The kinematic joints of this multibody system include two ideal
revolute joints, connecting the ground to the crank and the ground to the rocker,
and one perfect spherical joint that connects the crank and coupler. A spherical
joint, with a given clearance, interconnects the coupler and the rocker. This four-bar
mechanism is modeled with 24 coordinates, which result from 4 rigid bodies and 19
kinematic constraints. Consequently this system has five degrees of freedom.
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Fig. 6.18 Representation of the algorithm proposed to model spatial revolute joint with clearance
in multibody systems

The initial configuration of the spatial four-bar mechanism is illustrated in
Fig. 6.18. The system is released from the initial position with null velocities and
under the action of gravity force, which is taken to act in the negative Z direction.
The dimensions and inertia properties of each body are presented in Table 6.1. The
dynamic parameters used for the simulation and for the numerical methods required
to solve the system dynamics are listed in Table 6.2.

In order to study the influence of the spherical clearance model in the global
behavior of the spatial four-bar mechanism, some kinematic and dynamic character-
istics, corresponding to the first 2s of the simulation, are presented and discussed in
what follows. The results are always plotted against those obtained with a simulation
in which all kinematic joints are considered to be ideal or perfect.

The normal contact force and the joint reaction force, for the first impact at the
spherical clearance joint, are shown in Fig. 6.19a. The plotted reaction force is the
magnitude of the joint force in the revolute joint that connects the ground to the
rocker. The simulation is performed by employing the Lankarani and Nikravesh
contact force model given by (3.9). By observing Fig. 6.19a, it is clear how the
impacts inherent to the dynamics of the clearance joint influence the reaction force.

Table 6.1 Geometric and inertia properties of the spatial four-bar mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)
Iξξ Iηη Iζζ

2 0.020 0.0196 0.0000392 0.0000197 0.0000197
3 0.122 0.1416 0.0017743 0.0000351 0.0017743
4 0.074 0.0316 0.0001456 0.0000029 0.0001456
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Table 6.2 Parameters used in the dynamic simulation of the four-bar mechanism

Socket radius 10.0 mm Young’s modulus 207 GPa
Ball radius 9.5 mm Poisson’s ratio 0.3
Radial clearance 0.5 mm Integration step size 0.00001 s
Restitution coefficient 0.9 Integration tolerance 0.000001 s

The two force curves plotted show a very similar shape. The maximum reaction
force is about 60% of the contact force. Figure 6.19b shows the hysteresis curves for
the first three impacts at the spherical clearance joint. The contact force decreases for
each impact suggesting that some system energy is dissipated from impact to impact.
This dissipated energy is measured as the area enclosed by the hysteresis plot. The
energy dissipation is due to the contact model used and, since the gravitational force
is the only external action, that is, no other external forces or drivers are applied to
the system, no energy is fed to the system.

Figure 6.20a–d depicts the Z-component for the position, velocity and acceler-
ation of the center of mass of rocker, as well as the Y-component of the reaction
moment that acts at the revolute joint that connects the ground to the rocker, for
both ideal and spherical clearance joint simulations. The results plotted in Fig. 6.20a
show that the position accuracy of the four-bar mechanism is clearly influenced by
the effective joint clearance. Furthermore the maximum Z-position is not reached in
every cycle since the impacts within the joint with clearance dissipate some of the
system’s energy. Figure 6.20c and d shows that the mechanism with clearance joint
creates significantly larger dynamic accelerations and reaction moments on the sys-
tem than those observed for an ideal dynamic model. The magnitude of acceleration
and moment for the case of the ideal joint is very low, not even visible in the figures,
since there is no driver in the system, the gravitational force being the only external
action on the system.

The magnitude of the eccentricity vector is plotted in Fig. 6.21, in which the dif-
ferent types of motion between the ball center and the socket center can be observed,
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Fig. 6.19 (a) Normal contact force at the clearance joint and corresponding reaction force in the
ground–rocker revolute joint for the first impact; (b) hysteresis loop of the first three impacts at the
clearance joint. The contact force decreases from impact to impact because no energy is fed to the
system
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Fig. 6.20 (a) Z-coordinate of rocker center of mass; (b) Z-velocity of rocker center of mass;
(c) Z-acceleration of rocker center of mass; (d) Y-component of the reaction moment at the ground–
rocker revolute joint.

namely, free flight, impact, rebound and permanent or continuous contact. In the first
instants of the simulation, free flight motion followed by impacts and rebounds are
well evident. After that, it can be observed that the ball and socket present periods of
permanent or continuous contact, where the ball follows the socket wall. The dashed
line in Fig. 6.21 represents the radial clearance size (0.5 mm), which corresponds to
the maximum relative motion between the ball and the socket without contact.
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Fig. 6.21 Module of the eccentricity vector
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Fig. 6.22 Ball center trajectory inside the socket: (a) first simulation’s instants in which free flight
motion and impacts followed by rebounds are visible; (b) permanent or continuous contact, i.e.,
the ball follows the socket wall

The path of the ball center relative to the socket center is also illustrated in Fig. 6.22.
Figure 6.22a shows the relative motion between the two bodies for the first six im-
pacts. The half gray spherical surface represents the clearance limit while the small
spheres inside represent the ball center path. The free flights are illustrated by clear
spheres, whereas the impacts are represented by darker spheres. It is clear that in
the first instants of simulation the impacts are immediately followed by rebounds.
Figure 6.22b shows the time interval simulation from 0.100 to 0.150 s. From this
figure, it is observed that the ball is always in permanent contact with the socket wall.
Furthermore the permanent contact between the ball and socket is accomplished by
varying the penetration depth along the radial direction. The Poincaré maps are used
to illustrate the dynamic behavior of the spatial four-bar mechanism with a spherical
clearance joint. The system’s response is nonlinear, as the relative motion between
the ball and the socket can change from free flights, impact and continuous contact,
as illustrated in Figs. 6.21 and 6.22. The nonlinear system response is well visible by
plotting the corresponding Poincaré maps, which relate the rocker Z-velocity versus
rocker Z-position, shown in Fig. 6.23. The Poincaré map presented in Fig. 6.23b has
a complex aspect, densely filled by orbits or points, which indicates chaotic behavior.
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Fig. 6.23 Poincaré maps: (a) ideal joint; (b) spherical clearance joint
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6.5 Demonstrative Example 2: Double Pendulum

In order to examine the effectiveness of the formulation developed for the spa-
tial revolute clearance joint, a double pendulum with the configuration shown in
Fig. 6.24 is studied. The numbering of the bodies of the system and their local
coordinate frames are also pictured in Fig. 6.24. The double pendulum is made
up of three rigid bodies, the ground body and two arms. One ideal revolute joint
connects the two pendulum arms while a spatial revolute clearance joint, with a
radial clearance size of 0.5 mm, exists between the ground and body 2. This simple
multibody system is modeled with 18 coordinates and 11 kinematic constraints,
which results in a system with 7 DOF.

Initially the double pendulum rests in the XZ plane position with pendulum arms
perpendicular to each other. The system is then released from this initial configu-
ration under gravity action only, which is taken as acting in the positive Y direc-
tion. The geometric dimensions and inertia properties of the double pendulum are
listed in Table 6.3, while the dynamic parameters used in simulations are shown in
Table 6.4.

In order to evaluate the influence of the spatial revolute clearance joint, in the
dynamic performance of the double pendulum, the main kinematic and dynamic
characteristics of the system response during the first 4 s of simulation are analyzed
here, with the results compared to those obtained for a system with ideal joints. The

3D Revolute clearance joint

W

ξ2η2

V

ζ2

ξ3η3

ζ3

Y ≡ η1

X ≡ ξ1

Z ≡ ζ1

Fig. 6.24 Double pendulum modeled by two rigid bars and two revolute joints. Each bar is a
prismatic homogeneous rigid body with square section of 0.03 m × 0.03 m
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Table 6.3 Governing properties for the double pendulum

Body nr Length (m) Mass (kg) Moment of inertia (Kg m2)
Iξξ Iηη Iζζ

2 1.0 7.02 0.0010530 0.5855265 0.5855265
3 1.0 7.02 0.5855265 0.5855265 0.0010530

Hertz contact law with hysteresis damping factor, given by (3.9), is used to evaluate
the contact forces caused by the impact in the clearance joint.

Figure 6.25a shows the normal contact force developed in the revolute clearance
joint, during the first impact, and the reaction force of an ideal joint. The plotted
reaction force is the module of the joint force in X direction developed at the ideal
revolute joint that connects the two pendulum arms. In Fig. 6.25a, it is observed that
the reaction force shape is similar to the shape of the contact force at the clearance
joint. The maximum reaction force is about 50% of the contact force. Figure 6.25b
shows the hysteresis curves for the first three impacts, developed at the clearance
joint. As in the case of four-bar mechanism, analyzed in the previous section, the
contact force decreases for each impact, suggesting that some of the system energy
is dissipated from impact to impact. This dissipated energy is represented by the
area enclosed by the hysteresis plot.

The position, velocity and acceleration of the center of mass of body 3 in the Y
direction are plotted in Fig. 6.26a–c. Since the double pendulum has an open-loop
topology, the existence of a clearance joint clearly influences the global position
of the bodies of the system. The global behavior of the double pendulum with a
clearance joint is characterized as nonlinear, almost chaotic, as illustrated in the
Poincaré map of Fig. 6.26d. The velocity and acceleration components of the center
of mass of body 3 in the Y direction are chosen to construct the Poincaré map.
The complex densely filled appearance of the Poincaré map is an indicator that the
system response is highly nonlinear.

The effect of the existence of a revolute clearance joint in the global motion of
the double pendulum is illustrated in Fig. 6.27, in which the trajectory of the center
of mass of the end arm is plotted during the first three seconds of simulation. The
effect of the impacts, which occur at the clearance joint, produce very high peaks
in the component of the reaction forces and moments used to represent the system
response of the double pendulum, as it is shown in Fig. 6.28. Note that the reference
quantities presented in Fig. 6.28, denoted as ideal joint, are obtained for the system
model with ideal joints only.

Figure 6.29 shows the module of the eccentricity vector for both journal bases
of the revolute clearance joint, as referred in Fig. 6.24. It can be observed that, for

Table 6.4 Simulation parameters for the double pendulum

Bearing radius 10.0 mm Young’s modulus 207 GPa
Journal radius 9.5 mm Poisson’s ratio 0.3
Radial clearance 0.5 mm Integration step size 0.00001 s
Restitution coefficient 0.9 Integration tolerance 0.000001 s
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Fig. 6.25 (a) Normal contact force developed at the revolute clearance joint and reaction force in
the ideal revolute joint that connects the two pendulum arms; (b) hysteresis loop of the first three
impacts at the revolute clearance joint

the first impacts, the trajectories of the two bases are coincident. But, after that, the
impacts between the journal and the bearing wall take place at different instants of
time, meaning that some misalignment occurs. This phenomenon can be observed
in Fig. 6.30 where a sequence of frames from a computer animation of the journal
trajectory, relative to the bearing boundaries, is shown. The contact situations are
represented by a dark journal, while the noncontact cases are represented by a light-
colored journal. In the frame sequence the rebounds, during the first impacts, are
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Fig. 6.26 (a) Y-position of body 3 center of mass; (b) Y-velocity of body 3 center of mass; (c)
Y-acceleration of body 3 center of mass; (d) Poincaré map
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Fig. 6.27 Trajectory of the center of mass of the end arm during the first 3 s of simulation
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Fig. 6.30 Sequence of positions representing trajectory of the journal inside the bearing for first
instants of simulation

clearly visible. Moreover the height of the rebound decreases from impact to impact
due to the energy loss.

6.6 Demonstrative Example 3: Slider–Crank Mechanism

In this section, a spatial slider–crank mechanism is used as a numerical example
to demonstrate the application of the methodologies previously presented. Four
rigid bodies describe the slider–crank model under consideration. The model also
includes one ideal revolute joint that connects the ground and the crank, one ideal
spherical joint between the crank and the connecting rod and one ideal translational
joint that connects the ground and the slider. A joint with clearance connects the
slider to the connecting rod. This system has 19 independent kinematic constraints
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Fig. 6.31 Initial configuration of the spatial slider–crank mechanism with a clearance joint be-
tween the slider and the connecting rod

and it is described by 24 coordinates, which results in a mechanism with five degrees
of freedom. A body-fixed coordinate system (ξηζ) is attached to the center of mass
of each body, and XYZ represents the global coordinate system. The slider–crank
model shown in Fig. 6.31 is constrained to move in the XZ plane and therefore
the overall motion described by the mechanism can be considered as planar. The
gravitational acceleration is considered as acting in the negative Z direction.

The initial configuration is taken with the crank and the connecting rod collinear.
The crank, which is the driving link, rotates about the Y-axis with a constant angular
velocity of 150 rad/s. The crank velocity is maintained constant due to its very large
rotational inertia, that is, the crank acts like a flywheel. The geometric characteristics
and the mass and inertia properties are presented in Table 6.5.

The dynamic parameters used for the simulation are similar to those listed in
Table 6.4. Furthermore the initial conditions necessary to start the dynamic analysis
are obtained from kinematic simulation of a slider–crank model in which all the
joints are considered to be ideal. In order to keep the analysis simple, all the joints
are considered as frictionless.

In what follows, three different situations are analyzed. In the first one, the slider–
crank mechanism is considered as a two-dimensional system and the joint between
the connecting rod and slider is modeled as a 2D revolute clearance joint, as was
presented in Chap. 4. In the second case, the slider–crank is modeled as a spatial
multibody system and the clearance joint as a spherical joint with clearance, as de-
veloped in Sect. 6.2. Finally, in the third situation, the slider–crank is also considered
as a spatial system and the joint clearance as a 3D revolute joint with clearance, as
was presented in Sect. 6.3. For all three situations, the contacts between the elements

Table 6.5 Geometric and inertia properties for the dynamic simulation of the spatial slider–crank
mechanism

Body nr Length (m) Mass (kg) Moment of inertia (kg m2)
Iξξ Iηη Iζζ

2 0.1524 0.15 10.0000 10.000 10.000
3 0.3048 0.30 0.0002 0.0002 0.0002
4 – 0.15 0.0001 0.0001 0.0001
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Fig. 6.32 (a) Normal contact force at the clearance joint for the different models; (b) hysteresis
loop at the clearance joint. All the plots are for the first impact

that constitute the clearance joints are modeled by employing the Hertz contact law
with hysteresis damping factor, expressed by mathematical equation (3.9).

The normal contact force developed at the clearance joint at the first impact,
for the three different simulations, is plotted in Fig. 6.32a. Figure 6.32b shows the
corresponding hysteresis curves. The contact force curves, obtained with 2D rev-
olute clearance joint and with spherical clearance joint, coincide. This is expected
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Fig. 6.33 Slider velocity for the different joint clearance models: (a) 2D revolute joint; (b) spheri-
cal joint; (c) 3D revolute joint
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since the slider–crank model describes a planar motion and, therefore, the spherical
clearance joint behavior can be considered equivalent to the case of the 2D revolute
clearance joint. However, for the case of 3D revolute clearance joint simulation, the
contact force curve presents a different evolution. Moreover the contact duration is
shorter and the maximum force is greater than for the other two cases. This behav-
ior can be understood due to the fact that in the 3D revolute model there are two
point contacts, which are the two journal bases, instead of one point contact. Due
to the nonlinear characteristics of the continuous force model, it is expected that
representing the joint with one or two contact points leads to different results.

Figures 6.33 through 6.37 show the results for the case in which the radial clear-
ance size is equal to 0.5 mm. In order to better understand the dynamic behavior
of the slider–crank mechanism, these results are compared with those obtained for
the ideal joint. The simulations are performed for the three different clearance joint
models mentioned previously and at time interval corresponding to two complete
crank rotations.

In Figs. 6.33 through 6.35, it is observed that the peaks on the slider acceleration
curves are due to the contact force variation, which occurs during the period of con-
tact between the elements that compose the clearance joints. The same phenomenon
can be observed in the curves of the crank moment, because the contact forces are
propagated through the rigid bodies of the slider–crank mechanism. It is noteworthy
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Fig. 6.34 Slider acceleration for the different joint clearance models: (a) 2D revolute joint;
(b) spherical joint; (c) 3D revolute joint
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Fig. 6.35 Crank moment for the different joint clearance models: (a) 2D revolute joint; (b) spher-
ical joint; (c) 3D revolute joint
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Fig. 6.36 Journal/ball motion inside the bearing/socket boundaries for different joint clearance
models: (a) 2D revolute joint; (b) spherical joint; (c) 3D revolute joint
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Fig. 6.37 Poincaré maps for the different joint clearance models: (a) 2D revolute joint; (b) spheri-
cal joint; (c) 3D revolute joint

that the global behavior of the slider–crank is the same for the three different clear-
ance joint models, after the initial phase of the simulation. In fact, after t=0.26 s
the magnitude of the moments is the same for all models. In the period prior to
t=0.26 s, though the evolution of the crank moment is qualitatively the same, its
magnitude differs for the different models. Figure 6.36 shows the relative motion
between the journal and the bearing, and between the ball and the socket, for the
three different joint clearance models. The dashed line represents the radial clear-
ance size (0.5 mm). Since the slider–crank mechanism describes a planar trajectory,
the relative motion between the journal and the bearing and between the ball and
the socket occurs only in the plane XZ, the motion in the Y-direction being null.
Therefore it is possible to compare the dynamic behavior of the 2D and 3D joint
clearance formulations.

The dynamic response of the slider–crank mechanism is also represented by the
evolution of velocity and acceleration of the slider and of the crank that acts on the
crankshaft. Additionally the relative motion between the journal and the bearing,
and between the ball and the socket centers, is plotted together with the correspond-
ing Poincaré maps. The values of slider velocity and slider acceleration are plotted
in the Poincaré maps in Fig. 6.37.

The Poincaré maps presented in Fig. 6.37 show that the global behavior of the
slider–crank motion is nonlinear but tends to have a certain level of periodicity.
Furthermore it is clear that both 2D and 3D models have a rather predictable motion,
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their correlation, when measured by the outputs plotted in the Poincaré maps, be-
ing very high. The dynamic response of the spatial slider–crank mechanism with
both spatial clearance joints, presented in this chapter, is consistent with the results
obtained for the planar slider–crank model analyzed in Chap. 3, in which the two-
dimensional revolute clearance joint modeling was used. This is expected, since the
formulation for the spherical clearance joints is quite similar to that of the planar
revolute clearance joints. Moreover the spatial slider–crank mechanism used in this
section, apart from being a three-dimensional model, describes a planar motion due
to the constrained topology.

6.7 Summary

In this chapter, a formulation for spatial dynamic analysis of multibody mechanical
systems, employing the Cartesian coordinates and the Newton–Euler’s approach,
was presented. Euler parameters were used to define the angular orientation of bod-
ies, which leads to a mathematical formulation without singularities. Additionally
a simple and brief description of the standard mechanical joints of spatial multi-
body systems was presented. The constraint equations for the perfect spherical joint
and for the perfect three-dimensional revolute joint were also presented in the first
section of this chapter.

A general methodology for dynamic characterization of mechanical systems
with spherical and three-dimensional revolute joints with clearance was formulated,
for implementation in general-purpose computer codes. This formulation can be
understood as an extension of that proposed for the two-dimensional multibody
mechanical systems with clearance joints. The descriptions of spherical and three-
dimensional clearance joints are based on the Cartesian coordinates, the joint ele-
ments are modeled as contact-impacting bodies and the dynamics of the joints is
controlled by a continuous contact force model, which takes into account the geo-
metric and mechanical characteristics of the contacting bodies. The normal force is
evaluated as a function of the elastic pseudo-penetration depth between the impact-
ing bodies, coupled with a nonlinear viscous-elastic factor representing the energy
dissipation during the impact process. For this continuous contact force model, it is
assumed that the compliance and damping coefficients are available.

Three illustrative examples and numerical results were presented, the efficiency
of the developed methodologies being discussed in the process of their presentation.
In order to keep the analysis simple, the friction and the lubrication effects were not
included in the present chapter. However, the inclusion of these phenomena closely
follows the procedures described in Chaps. 4 and 5.

A spatial four-bar mechanism was used with a spherical clearance joint formu-
lation to demonstrate its application. The system was driven only by gravity, and
the system was not conservative due to the presence of damping in the impact
model, which leads to some energy dissipation in every cycle of the motion. This
was observed by comparing the position and velocity of the mechanical system
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with clearance to that of a system with ideal joints. Clearly the impacts within the
clearance joint significantly increase the amount of dissipated energy.

In a second application, the double pendulum was used as a numerical example
to illustrate the spatial revolute clearance joint formulation. In addition, a simple
spatial slider–crank mechanism was used to study the influence of the clearance joint
models in comparable planar and spatial mechanisms. A flywheel was incorporated
in the crankshaft to maintain the crank angular velocity constant. It was observed
that the overall results are consistent to those obtained for planar slider–crank model,
that is, due to the clearance impacts the dynamic system presents much higher peaks
in the acceleration time response and reaction forces than would be predicted if
clearances were neglected. The system behavior clearly tends to be nonlinear and
eventually chaotic, as shown by the corresponding Poincaré maps.

The overall results presented in this section show that the introduction of clear-
ance joints in spatial multibody mechanical systems significantly influences the pre-
diction of the components’ position and drastically increases the peaks in accelera-
tion and reaction moments at the joints. Moreover the system response clearly tends
to be nonlinear when a clearance joint is included. This is a fundamental feature
mainly in high-speed and precision mechanisms where the accurate predictions are
essential for the design of the mechanical systems.
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