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Abstract. We propose a graph theory approach for planar autonomous
exploration. We first partition the planar space using Peano-Cesaro tri-
angular tiling and then construct an edge adjacency dual graph of the
tiling pattern. The dual graph of the Peano Cesaro triangulation is ob-
tained by defining a vertex for each triangular tile and drawing an edge
between two tiles that share an edge. In the presence of obstacles we ana-
lyze the subgraph induced by the non-obstacle tiles in the dual graph. We
prove the existence of Hamiltonian cycles in this induced subgraph for
a certain class of obstacles. We also prove the non-existence of Hamilto-
nian cycles for certain other obstacle configurations. We present heuristic
based algorithms and compare their results for the cases where we have a
definitive answer to the existence of Hamiltonian cycles. Examples with
figures are included to illustrate the concept.

1 Introduction

Exploratory path planning with obstacle avoidance finds application in areas
involving autonomous search/exploration tasks like mine sweeping, rescue oper-
ations, locating survivors in a disaster struck area, ocean exploration, monitoring
coast lines, protecting borders etc. Some other exciting commercial applications
of interest involve autonomous coverage applications for lawn mowing and vac-
uum cleaning robots.

Autonomous path planning and obstacle avoidance has been studied by nu-
merous researchers and over the years quite a few interesting approaches have
been proposed. [7] and [10] present a comprehensive treatment of these ap-
proaches. In this chapter, we bring together concepts from the fields of space
filling curves, graph theory and path planning and merge them to gain insights
into the optimal solutions of a problem of considerable practical interest. We pro-
pose a graph theory approach to the exploratory path planning problem. The
existing approaches are based mainly on heuristic and there exist no provable
guarantees. Graph theory has been applied for path planning problems earlier in
[9] by Jun and D’Andrea, the difference is that the authors use hexagonal cells
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which are not well suited for multi-resolution decomposition and it is not clear
whether an irregular decomposition of the exploration space is possible. In [14]
and [15], the Savla et al. tile the exploration space with bead tiles. The bead
tiles are constructed assuming a Dubin’s vehicle model for the UAVs (with a
maximum allowable radius of curvature of the planned paths). The bead tiles
even though they encode the mobility constraints satisfactorily, but again there
is no mention of irregular decomposition. We believe our approach of Peano-
Cesaro tiling is more flexible in terms of representation of the exploration space.
However, it remains to be seen how the novel ideas proposed in this chapter com-
pare with the existing exploratory path-planning approaches in terms of actual
implementation on a real system. The concept of Peano-Cesaro tiling used in
this paper for path planning application, has been successfully used for pattern
based image compression in our earlier work [5].

In this chapter, we use Peano-Cesaro sweep [13] to partition the territory map
(including obstacles, if any) into triangular tiles and use the associated Sierpinski
tour for exploration. The Peano-Cesaro sweep is a space filling heuristic. Space
filling heuristics have been successfully used to solve the Traveling Salesman
Problem in a time efficient manner [3], [12]. Even though the solutions obtained
are suboptimal, the savings in computation time are immense. The authors in
[3] have proved a bounded distance from the global optimum. The Sierpinski
space filling curve has been proven to be optimal in terms of the overall tour
length when compared to other space filling curves like the Hilbert curve [1].

We represent the mobility constraint of the autonomous vehicle by allowing
moves only between tiles that share a side in one time step. We overlay the
Peano-Cesaro tiling pattern with a graph, where the tiles are represented by
vertices and the edges represent allowed moves. This graph is the same as the
edge adjacency dual graph of the Peano-Cesaro triangulation. If the planar region
has obstacles, in order to disallow movement to the obstacle tiles, we remove the
obstacle vertices and edges incident on them from the dual graph. The resulting
graph is a subgraph induced by the non-obstacle vertices of the dual graph.
Our objective then is to find a cyclic tour of the induced subgraph such that it
includes all the non-obstacle tiles. In practical implementation, this is equivalent
to exploring a planar region with obstacles in the most efficient manner, so that
it is possible to visit all the non-obstacle regions and also save fuel, time and
energy.

A no repetition cyclic tour of the vertices of a graph is known as a Hamil-
tonian cycle. Thus, an optimal exploration tour, in the presence of obstacles, is
a Hamiltonian cycle in the subgraph induced by the non-obstacle tiles in the
dual graph. In general, determining whether a graph is Hamiltonian is an NP-
complete problem. But, in this paper we use the special properties of the induced
dual subgraph to prove existence of Hamiltonian cycles for a certain class of ob-
stacles. Similar work for Triangulated Irregular Networks has been done in [2],
which has immense application in computer graphics.

The contribution of this chapter can be summarized under three specific head-
ings: Firstly we have devised an algorithm called ESSENTIAL-CHAINS, which
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starts with an assumption that a given dual subgraph is Hamiltonian and then
proceeds by logical reasoning collecting all components of the graph which prov-
ably are essential components of the Hamiltonian cycle, if one exists. For certain
obstacle configurations the algorithm comes up with a counter example thus
proving that the dual subgraph is non-Hamiltonian. Secondly we prove the ex-
istence of Hamiltonian cycles for a special class of obstacles. Lastly we have
devised a few heuristics based algorithms to find the minimum repetition tours
for a given obstacle configuration. We compare the result of the heuristics based
algorithms, based on the attainable optimum established using our existence
results.

In section 2, we introduce the ideas of Peano-Cesaro sweep and the associ-
ated Sierpinski bucketing tour. In section 3 we use the concepts from section 2
and graph theory to pose a combinatorial optimization problem for exploratory
path planning in the presence of obstacles. In section 4 we prove existence and
non-existence results of Hamiltonian cycles for a certain class of obstacle config-
urations. In section 5 we present algorithms to find long cycles in our graph of
interest. Finally in section 6, we sum up the contributions of this paper.

2 Peano-Cesaro Tiling and the Associated Sierpinski
Bucketing Tour

2.1 Peano-Cesaro Fractal Sweep

The central idea behind a fractal sweep is to find a recursive mapping that takes
the unit interval into the plane. The key concepts in such constructions are
initiator, generator, sweep and rules of arms placement. An example of a fractal
is the Peano-Cesaro fractal sweep as illustrated in figure 1(a). If production of
the fractal, as in Peano-Cesaro fractal sweep, proceeds indefinitely, a trace that
is everywhere continuous but nowhere differentiable would be obtained. The
generator of a fractal consists of arms, each treated as scaled down initiators for
the next stage of construction. Patterns that replicate the generator as recursion
deepens are called self-similar [11] and admit to the concept of dimensionality
D = log N/ log(1/r) where, N is the number of arms of the generator and r is
the similarity ratio defined as the length of an arm of the generator to that of the
initiator. Thus, the Peano-Cesaro curve, in which the generator has two arms
(N = 2), each (r = 1/

√
2) factor of the length of the initiator, has dimensionality

D = log 2/ log
√

2 = 2. Fractals defined over the plane with D close to 1 are
smoother and better behaved than those with D close to 2, which are more
plane-filling. Fractals with D > 2 exhibit chaotic behavior by multiply crossing
regions trapped by the fractal sweep. Brownian motion is a primary example of
sweep patterns with D > 2, while Koch curve [11] has 1 < D < 2.

A sweep is a walk from the start to the end of the initiator along a defined
path and this path defines the fractal. Taking one of the diagonals of the unit
square U on the plane as the initiator, the Peano-Cesaro fractal sweep can be
developed using the generator shown in figure 1(a), and the following rule of
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(a) Peano-Cesaro fractal
sweep.

(b) Peano-Cesaro tiling and the associated Sierpinski
bucketing tour.

Fig. 1. Peano-Cesaro fractal sweep and tiles

placement: At every even (odd) stage L = 1, walk along (L − 1)th sweep
and place the generator to the right (left) of each and every arm. Four
stages of the Peano-Cesaro fractal sweep in figure 1(b) are indicated by directed
paths all beginning and ending at a corner of the unit square U . Note that
the Peano-Cesaro sweep as illustrated in figure 1(b) shows no region crossing
behavior. To be more accurate, the sweep is linear-wise degenerate, as it visits
the vertices of the tiles generated multiple times - for instance the center of U in
stage 2 of the decomposition is visited four times, which in fact can be proven
to be the maximum degeneracy for all recursion levels. However, the sweep is
planar-wise non-degenerate (non-crossing), precisely because D = 2.

The Peano-Cesaro sweep tiles the unit square U with right-angled isosceles
triangles. A tile is composed of the current initiator forming the hypotenuse
(denoted by B), and the first and second arms of the corresponding generator
as the other two sides (denoted by F and S respectively.) The number of tiles
is doubled each time the sweep is advanced by one recursion stage (also referred
to as recursion level), yielding 2L triangular tiles at the Lth stage (L ≥ 1). The
domain U is decomposable to any desired degree and tiling is always regular
and isotropic such that at every level of decomposition each tile is visited by
the sweep (in the sense that it traverses the two (F and S) sides of the tile
defined by the arms of the generator). These are the properties that make the
Peano-Cesaro sweep amenable to analysis of the neighborhood of a triangular
tile and, as we shall discuss in this chapter, highly suitable for autonomous
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Unmanned Vehicle (UV) path planning, object avoidance and also cooperative
strategies for exploration and goal-seeking missions amongst a team of UVs.
The decomposition procedure highlighted above can be represented by a binary
tree structure wherein nodes on left (right) branches are recursively assigned the
values 0(1). This, in a natural way, maps each tile with a binary code sequence
indicating a tree descent inheritance from the root (representing the unit square
U) to tiles/nodes at various levels of the tree. Denoting a code sequence by
C, a tile at the Lth recursion level may be expressed by C = c1 · · · cL, where
ci ∈ {0, 1}, i = 1 · · ·L. Tiles at stages 1, 2 and 3 in figure 1(b) carry their
code sequences. Later we use the decimal equivalents of these code sequences to
distinguish tiles, we will refer to this decimal indexing as the Sierpinski ordering.
This concept of distinguishing regions in space using indexing of the subdivisions
has also been analyzed in [1], where it was proved that the Sierpinski ordering
is the best in terms of preserving spatial adjacency information.

The Peano-Cesaro sweep in figure 1(b) shows four regular stages of tiling and as
mentioned the isotropic and self-similarity properties of the tiles ensure that all re-
gions of U at any recursion level have equal probability of being visited, where the
probability measure is proportional to the area of the tile at the specific recursion
level. These properties, which turn out to be important for single or cooperative
autonomous path planning, are not met in most of the other fractal patterns - the
reader is invited to consult [11] for a number of examples such as the snowflake, the
monkeys tree and the dragon sweep formations. The regular tiling pattern in fig-
ure 1(b), though extremely efficient and simple, is not mandatory. Figure 2 shows
two (non-homogenous) deviations of the regular decomposition. Figure 2(a) de-
picts an example of variable tile size Peano-Cesaro decomposition along with its
associated Sierpinski sweep. The deviation in figure 2(b) is more drastic, where
tile splitting is no longer constrained to the mid-point of B side, though the topo-
logical structure of the binary decomposition is left invariant.

(a) Variable size decomposition. (b) Irregular adaptive decomposi-
tion.

Fig. 2. Non-homogenous Peano-Cesaro tiling
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2.2 Sierpinski Bucketing Tour

The Peano-Cesaro sweep in figure 1(b) induces what is referred to as a Sierpinski
Bucketing tour according to the following rule [8]:

Whenever a tile is swept by the Peano-Cesaro fractal sweep, connect the
center of the tile to the center of the preceding tile visited by the Peano-Cesaro
sweep.
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(a) Sierpinski Tour for
level 5.
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(b) Sierpinski Tour for
level 6.

Fig. 3. Sierpinski Tour for decomposition levels 5 and 6

Application of the above rule to regular (and irregular) sweeps yields the
regular (and irregular) Sierpinski tours. Figure 3 illustrates the Sierpinski tour
for level 5 and 6. Sierpinski tour generation algorithm forms the basis for au-
tonomous agent path planning whether on an exploratory or surveillance mis-
sions starting and ending at the same location or a goal oriented mission starting
from a source location to a destination. The hierarchical (multi-resolution) na-
ture of the Peano-Cesaro tiling, represented by sparse binary tree structures,
entirely carries over to the Sierpinski tour. This hierarchical behavior is highly
desirable for path planning missions in situations where the autonomous agent is
required to probe more carefully and search finer grain territories while cruising
at distance in open spaces (see figure 2(a)) for a scenario. Thus, if the gran-
ularity of tiles in the 3rd stage of Sierpinski tour in figure 1(b) is not suffi-
cient, the autonomous agent can easily penetrate one (or more) level(s) deeper
into the tree and search the region according to the 4th (or nth in general)
stage of the Sierpinski tour where granularity shrinks at a rate of two per level.
Due to the fractal dimension of the Peano-Cesaro sweep D = 2, the Sierpinski
tour drains U to any level given a sufficiently large n, where n is the recur-
sion level. This property guarantees an exploratory tour from a point A and
back to A, or a Hamiltonian chain from a point A to a point B, if such a path
exists.



Constructing Optimal Cyclic Tours 151

3 Exploring a Planar Region with Minimum Number of
Repetitions in the Presence of Obstacles

In section 2 we proposed Peano-Cesaro tiling and the associated Sierpinski buck-
eting tour as tools to generate way points for a planar autonomous mobile agent.
If the agent follows the Sierpinski tour, it visits each tile in the planar region
and returns to its origin. The problem of generating exploration way points in
an obstacle strewn space is of extreme practical interest. Consider for example,
an autonomous patrol boat, to be used for exploration of a coastline which is full
of small islands. For the purpose of this paper we assume that the territory map
of the planar region is available to the autonomous agent. Application of the
proposed tools to path-planning and obstacle avoidance with local sensors and
in the presence of mobile obstacles is an avenue of current and future research.
It is often the case that the capability of an autonomous agent is limited by it’s
battery life. For an exploration application it is desirable that the autonomous
agent visits every tile in the planar space with obstacles. This mission should
be accomplished with minimum repetitions of the tiles to extend battery life. In
this section we pose a combinatorial optimization problem to find a cyclic tour
that visits all the non-obstacle tiles, with minimum number of repetitions.

Let L be the level of decomposition of the planar region. This will result in
the decomposition of the planar region into 2L tiles. Let the tiles be numbered
from 0 to 2L − 1 under the regular Sierpinski ordering, as defined in section 2.
We will call the set of all tiles as T . We now state our main assumption for this
section.

Assumption 1 (Obstacle set). Any obstacle in the planar region can be rep-
resented as a union of tiles. Let O be the set of tiles marked as obstacles. We
call O the obstacle set.

We need the above assumption to retain the mathematical structure of the prob-
lem. For exploration applications this assumption does not create any limitations
as it is always possible (as shown in section 2) to set the decomposition level L
sufficiently high such that the obstacle can be closely approximated by a set of
contiguous tiles.

Constraint 1 (Allowed moves). If the autonomous vehicle is at tile i at time
instant t, then at time t + 1, it can only move to the side neighbors of tile i.

This assumption conforms to the mobility constraints of unmanned surface ve-
hicles. We now state the problem objective:

Given a set of covering tiles T and the obstacle set O. Under con-
straint 1, find a cyclic tour that covers all the tiles in the set T −O at
least once, with minimum number of revisits of tiles.

In order to analyze the performance of any algorithm that tries to find a cyclic
tour with minimum number of tile revisits, it is important that the minimum
number of repetitions needed for a given obstacle configuration be known. In the
following section we present and prove a few existence results.
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4 Results on Existence and Non-existence of Hamiltonian
Cycles

We analyze the optimization problem from section 3 using results from graph
theory. We first create a edge adjacency dual graph. For each triangular tile
we have a vertex in the dual graph and an undirected edge exists between two
vertices if and only if it is possible to move between the corresponding tiles under
Constraint 1. We refer to the set of all tiles in the plane as T .

The following definition puts these concepts in a mathematically precise for-
mulation.

Definition 1. The edge adjacency dual graph is an undirected graph S =
(VS , ES), such that for every tile in T , there is a vertex in VS and for a pair of
vertices x, y ∈ VS , xy ∈ ES if and only if x and y are reachable from each other
in one time step under Constraint 1.

Note that the dual graph is a 2-connected graph and the vertices can have
maximum degree 3. Since vertices in the dual graph represent tiles, in this section
we will use the terms tile and vertex interchangeably. We now define Hamiltonian
cycles and graphs.

Definition 2. For a graph with more than two vertices, a Hamiltonian cycle
is a cycle that contains each vertex of the graph exactly once. If a graph has a
Hamiltonian cycle, it is called Hamiltonian.

A cyclic tour of the planar region that visits all the tiles with no revisits is a
Hamiltonian cycle in the associated dual graph.

The Sierpinski tour, as defined in section 2, is a Hamiltonian cycle in S. Thus
the dual graph, S, is a Hamiltonian graph. Now since we know that T −O ⊆ VS ,
T − O induces a subgraph S′ in S. This can be represented as S′ = S[T − O]
following the notation of [6].

The existence of Hamiltonian cycle in S′, implies that a cyclic exploration
tour exists that visits all the tiles in the obstacle strewn planar region with no
revisits.

The problem of verifying whether a graph contains a Hamiltonian cycle has
been studied for over a hundred years. It is well known that the Hamiltonian-
cycle problem is NP complete [4]. We prove existence and non-existence of Hamil-
tonian cycles for different obstacle configurations using special properties of the
dual graph. The optimum of the combinatorial optimization problem described
earlier, is zero repetitions in the case a Hamiltonian cycle exists. Once we know
that a Hamiltonian cycle exists, we can evaluate the distance from optimum for
heuristic based algorithms.

Definition 3. A simple cycle is a cycle without any chords. Here, a chord is
defined as an edge that joins two vertices of a cycle but is not itself an edge of
that cycle.

As evident in figures 4(a) and 4(b), simple cycles in the dual graph either have
4 or 8 nodes. Such simple cycles look like squares or octagons respectively.
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(a) S for L = 7. (b) S for L = 8. (c) Induced subgraph S ′ in
the presence of an obstacle.

Fig. 4. S and S ′

Definition 4. All tiles that share an edge or a vertex with the boundary of the
square region will be referred to as the periphery tiles. We will call all the
other tiles as interior tiles.

Our first result establishes non-existence of Hamiltonian cycles when the number
of tiles in the obstacle set is odd.

Proposition 1 (Properties)

1. If L > 1, S is 2-connected.
2. S and S′ are bipartite graphs.
3. |O| is odd then S′ is non-Hamiltonian

Proof

1. L > 1 implies |T | = |VS | > 2. One needs to remove at least two vertices
from VS , such that the subgraph induced by the remaining vertices on S is
disconnected. Hence S is 2-connected.

2. All cycles in S have even number of vertices, therefore by proposition 1.6.1
in [6] we know S is a bipartite graph. S′ being the induced subgraph retains
the bipartite property.

3. If S′ is disconnected or 1-connected, then the results hold trivially. If S′ is
2-connected, then because |O| is odd, |VS′ | = |T − O| is also odd. Now if a
Hamiltonian cycle exists it will have an odd number of vertices in it, which
is a contradiction because S′ is bipartite. Hence S′ is non-Hamiltonian.

The above result proves non-existence of Hamiltonian cycles. We now develop an
algorithm which can prove non-existence of Hamiltonian cycles for a larger class
of obstacles by logical reasoning. We refer to this algorithm as ESSENTIAL-
CHAINS. We need to first define what we mean by a chain.

Definition 5

1. A tree is a connected graph that does not have any cycles.
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2. A chain is a tree, in which all vertices have degree less than or equal to 2.
There are exactly 2 vertices with degree 1 in a chain, which we refer to as
the terminal vertices of a chain.

The ESSENTIAL-CHAINS algorithm starts with the assumption that S′ is
Hamiltonian. It then finds chains in S′ that should form parts of any exist-
ing Hamiltonian cycle. For some obstacle scenarios, the algorithm ends up with
a contradiction, hence proving S′ is non-Hamiltonian. To develop concepts for
this algorithm, we begin with the following definition:

Definition 6

1. Chain edge: An edge xy ∈ ES′ is a chain edge, if either x or y or both have
degree 2. We refer to the set of all chain edges as Ec

S′ .
2. Chain vertex: A vertex x ∈ VS′ is a chain vertex, if one of the edges

incident on x is a chain edge. We refer to the set of all chain vertices as
V c
S′ .

Consider the following simple observations:

Proposition 2

1. If S′ is Hamiltonian, then any Hamiltonian cycle of S′ will contain all the
edges in Ec

S′ .
2. If S′ is Hamiltonian and |Ec

S′ | = |VS′ |, then there exists a unique Hamilto-
nian cycle in S′

3. All degree 2, degree 1 or disconnected vertices in S′ are either periphery tiles
or they share an edge with an obstacle tile.

4. If S′ is Hamiltonian, a Hamiltonian cycle of S′ must contain exactly two of
the edges, incident on the every vertex in VS′ .

Proof

1. By definition of Hamiltonian cycle must visit all vertices in S′. Every edge
in Ec

S′ is incident to a degree 2 vertex. Therefore, in order to visit the degree
2 vertices, the Hamiltonian cycle must traverse through all edges in Ec

S′ .
2. Any Hamiltonian cycle in S′ has |VS′ | edges, and we already know all mem-

bers of Ec
S′ should be part of every Hamiltonian cycle that exists. Hence

there is a unique choice for a Hamiltonian cycle.
3. Follows by observation.
4. Follows from the definition of Hamiltonian cycle.

If S′ has any disconnected or degree 1 vertex then it is trivially non-Hamiltonian.
From proposition 1, we know if |O| is odd, then S′ is non-Hamiltonian. Thus the
added utility of ESSENTIAL-CHAINS algorithm is evident when the obstacle set
has an even number of tiles and S′ is 2-connected. For the rest of the discussion
on ESSENTIAL-CHAINS algorithm we will assume |O| is even and S′ is 2-
connected.
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4.1 ESSENTIAL-CHAINS Algorithm

The ESSENTIAL-CHAINS algorithm begins by assuming, S′ is Hamiltonian.
The input to ESSENTIAL-CHAINS is the graph S′. There are three possible
outcomes of ESSENTIAL-CHAINS:

1. Either the algorithm comes up with a contradiction and exits abruptly, thus
proving S′ is non-Hamiltonian. Or,

2. it finds a graph K whose components are chains. These chains are essential
components of any Hamiltonian cycle of S′. Or,

3. it comes up with a K, such that VK = VS′ , thus finding a unique Hamiltonian
cycle K for S′.

We refer to the neighborhood set of x in S′ as nS′(x) and the neighborhood
set in K as nK(x). Using the same notation, for an x ∈ K, dK(x) and dS′(x)
refer to the degree of the vertex x in K and S′ respectively.

As a first step of ESSENTIAL-CHAINS, we add all chain vertices of S′ and
all chain edges incident on them, into the vertex and edge set of K respectively.

K = (VK , EK)
First-Step(S′)
1 Initialize VK = {} , EK = {}
2 for all x, such that x ∈ VS′ , s.t. dS′(x) = 2
3 do Let y, z ∈ nS′(x)
4 if ∃ a path between y and z in K
5 then S′ is non-Hamiltonian EXIT
6 else VK ← VK ∪ x ∪ y ∪ z
7 EK ← EK ∪ xy ∪ xz

Note that after the execution of FIRST-STEP, VK = V c
S′ and EK = Ec

S′ . The
next module is central to the ESSENTIAL-CHAINS algorithm. This module
loops over all vertices which are in VK , and are degree 3 in S′. We update a
candidate set Xc, after execution of this module.

Essential-Chains()
1 Initialize Xc = {x : x ∈ VK , dS′(x) = 3}
2 while Xc 	= {}
3 do
4 Pick an x ∈ Xc Let nS′(x) = {y, z, w}
5 switch
6 case dK(x) = 1 : Let y ∈ nK(x) and z, w /∈ nK(x)
7 switch
8 case ∃ a path in K between z and w :
9 switch

10 case dK(z) = 2 and dK(w) = 2 :
11 S′ is non-Hamiltonian EXIT
12 case dK(z) = 2 and dK(w) = 1 :
13 VK ← VK ∪ w
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14 EK ← EK ∪ xw
15 if K has changed
16 then UPDATE Xc([w, z], x)
17 case ∃ a path in K between z and x :
18 if dK(w) 	= 2
19 then if path-length in K between z, x < |VS′ |
20 then VK ← VK ∪ w
21 EK ← EK ∪ xw
22 if K has changed
23 then UPDATE Xc([w, z], x)
24 else S′ is Hamiltonian and K
25 is the unique Hamiltonian
26 cycle EXIT
27 else S′ is non-Hamiltonian EXIT
28 case dK(x) = 2 :
29 Let y, z ∈ nK(x) and w /∈ nK(x)
30 switch
31 case dS′(w) = 2 : S′ is non-Hamiltonian EXIT
32 case dS′(w) = 3 : Let nS′(w) = {a, b, x}
33 VK ← VK ∪ w ∪ a ∪ b
34 EK ← EK ∪ aw ∪ bw
35 if K has changed
36 then UPDATE Xc([a, b, w, y, z], x)
37 case dK(x) = 3 :
38 S′ is non Hamiltonian EXIT
39 Xc ← Xc − x

The function UPDATE Xc(Y, x), first selects all vertices in Y with degree
3 in S′, lets call this set of vertices Y3 ⊂ Y . The function deletes all previous
occurrences of the elements of Y3 from Xc and then adds the elements of Y3 right
after the occurrence of x. The function then deletes x from Xc before returning.

We now illustrate the execution of the ESSENTIAL-CHAINS algorithm using
an example

Consider L = 5 and O = {3, 4}, as shown in figure 5. Figure 5(a), shows
K after the execution of the FIRST-STEP. The candidate set Xc after FIRST-
STEP is initialized to {10, 12, 13, 18, 21, 26, 27, 29} Now we present a step by step
execution of the ESSENTIAL-CHAINS algorithm

1. Pick x = 10 from Xc, dK(x = 10) = 2, {y, z, w} = {9, 11, 13}. The control
goes to the case in line 32, finds {a, b} = 14, 12 and adds edge 12 − 13 to
K, figure 5(b). Y = {13, 9, 11, 12, 14}, Y3 = {13, 12} UPDATE Xc returns
{12, 13, 18, 21, 26, 27, 29}.

2. Pick x = 12, dK(x = 12) = 2, {y, z, w} = {11, 13, 19}. Again in line 32,
the algorithm finds {a, b} = 18, 20, adds edges 18 − 19, 19 − 20 and vertices
{19, 20} to K, figure 5(c). Y = {19, 11, 13, 18, 20}, Y3 = {19, 13, 18, 20}
UPDATE Xc returns {20, 18, 13, 19, 21, 26, 27, 29}.
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(a) K after FIRST-STEP.
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(b) K after x = 10 is
picked.
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(c) K after x = 12 is
picked.
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(d) K after x = 20 is
picked.
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(e) K after x = 27 is
picked.

Fig. 5. Illustration of ESSENTIAL-CHAINS algorithm. Graph K is shown using thick
edges.

3. Pick x = 20, dK(x = 20) = 1, {y, z, w} = {19, 27, 21}. There exists a path in
K between x = 20 and z = 27, and its length is less than |VS′ |. Therefore,
control goes to the case in line 20, and adds edge 20 − 21 to K, figure 5(d).
Y = Y3 = {21, 27} and UPDATE Xc returns {27, 21, 18, 13, 19, 26, 29}.

4. Pick x = 27, dK(x = 27) = 1, {y, z, w} = {28, 20, 26}. There exists a path in
K between z = 20 and w = 26, dK(z = 20) = 2 and dK(w = 26) = 1. There-
fore, control goes to the case in line 12, and adds edge 27 − 26 to K, figure
5(e). Y = Y3 = {20, 26} and UPDATE Xc returns {26, 21, 18, 13, 19, 29}.

5. For the remaining elements in Xc, K does not change. Therefore, there are
no further additions to Xc. The algorithm eventually terminates when Xc be-
comes empty. In this case, for the given obstacle configuration, the algorithm
finds the unique Hamiltonian cycle.

In figure 6(a) the ESSENTIAL-CHAINS algorithm finds a contradiction.
When vertex 37 is picked from the candidate set Xc, the set nS′(37)−nK(37) =
{36, 34}. Both 34 and 36 have degree 2 in K, thus the algorithm concludes that
S′ is non-Hamiltonian. This can be seen in the following manner: under the as-
sumption that a Hamiltonian cycle exists, K should contain exactly two edges
incident on every node. One edge incident on 37 is already a member of K. For
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the other edge, one has a choice between 37 − 34 and 37 − 36. Now since two
edges incident on each of the vertices 36 and 34 are already in K, for both choices
37 − 34 and 37 − 36, a degree 3 vertex will result. This is a contradiction.

In figure 6(b), ESSENTIAL-CHAINS is unable to determine whether S′ is
Hamiltonian or not. The thick edges are essential in a Hamiltonian cycle if one
exists. Our main result of this paper, proves that S′ Hamiltonian for obstacle
configuration shown in figure 6(b).

(a) Non-Hamiltonian graph: There is a
contradiction for vertex 37 in the lower
left corner.

(b) Indeterminate result by
ESSENTIAL-CHAINS.

Fig. 6. Outcomes of ESSENTIAL-CHAINS

4.2 Main Result

The main result of the chapter is a positive result. But before we present our
main result we need the following Lemma to prove it.

Lemma 1. Let L be odd and V ⊂ VS such that the induced subgraph S[V ] is a
rectangular lattice with octagons on the four corners. Then S[V ] is Hamiltonian.

Proof. We prove this lemma by mathematical induction on the dimension of the
lattice. First step verification: the lattice is 1 × 1. In other words, if V is such
that S[V ] is an octagon, then S[V ] is trivially Hamiltonian.

All chains of octagons with interleaving squares can be proved to be Hamil-
tonian using induction as shown in figure 7(a). Now we know that all chains
of m octagons with interleaving squares are Hamiltonian. As our new induc-
tion hypothesis, we assume that a rectangular lattice m × n of octagons with
interleaving squares is Hamiltonian. Now as shown in figure 7(b), we apply the
induction step again to prove that the rectangular lattice of dimension m+1×n
bounded by octagons on the four sides is Hamiltonian.
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(a) Hamiltonian cycle in m × 1 lat-
tice of octagons.

(b) Hamiltonian cycle in m × n lat-
tice of octagons.

Fig. 7. Odd level dual graph for any rectangular region is Hamiltonian

Theorem 1. If the induced graph S[O] is a simple cycle, and ESSENTIAL-
CHAINS does not come up with a contradiction, then S′ is Hamiltonian.

Proof. We prove this result by explicitly showing that a Hamiltonian cycle can
be constructed in S′. Here we give a sketch of the proof for an odd level of
decomposition L = 2k+1. Since S[O] is a simple cycle, it can only be a square or
an octagon. If S[O] is an octagon, it partitions the entire graph into rectangular
regions, both when it is an interior octagon (figure 8(a)) and a periphery octagon
(figure 8(b)). Now we know by Lemma 1 that the rectangular partitions of the
graph are Hamiltonian. The Hamiltonian cycles of each of these rectangular
partitions can be stitched together to form one Hamiltonian cycle for S′, as
shown in figure 8(e). If S[O] is a square, then for all the squares that exist on
the periphery of the graph, the ESSENTIAL-CHAINS algorithm finds a counter
example, thus proving the non-existence of a Hamiltonian cycle. However, for
other squares, ESSENTIAL-CHAINS does not come up with a contradiction and
for all such cases, a bounding cycle can be found (figures 8(c) and 8(d)). Again,
as in the case of an octagon, the rectangular partitions created are Hamiltonian,
by Lemma 1. Stitching together Hamiltonian cycles as shown in figure 8(f) gives
us a Hamiltonian cycle for S′.

The above result holds true for even values of L and the proof is very similar to
the one above.

Theorem 1 presents a lot of interesting and intriguing research questions. The
idea of finding a bounding box and connecting Hamiltonian cycles can be used
when the planar region to be explored has multiple disconnected obstacles. This
idea can also be utilized for collaborative exploration by multiple vehicles, where
each vehicle is assigned a rectangular partition and it executes the optimum
cyclic tour computed for that particular partition. Collaborating vehicles can
also exploit the multiple connecting edges their optimal cycles to those of their
partners and switch tours. This may be helpful when the collaborating agents
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(a) (b) (c) (d)

(e) (f)

Fig. 8. Illustration of proof of the main result

are heterogenous and a vehicle with a certain kind of capability is needed at a
certain location. A stronger and more useful result will be: to find the largest
dimension of a bounding box such that if the obstacle configuration results in
a non-Hamiltonian S′ for this bounding box, the obstacle configuration will
result in non-Hamiltonian S′ for any bounding box, no matter how large it is.
We are currently investigating the properties of the dual graph to gain further
insight into the problem. The eventual aim of this research is to characterize
the minimum number of repetitions of tiles for all obstacle configurations and
to find provable algorithms to find the optimal cyclic tours. We now present a
few heuristics based algorithms. Using results from this section we evaluate the
performance of the algorithms for obstacle configurations where we know the
optimum.

5 Algorithm Development and Comparison

In section 4.1, we described the ESSENTIAL-CHAINS algorithm that deter-
mines the set of chains K (as in figure 6(a)) that are essential in a Hamiltonian
cycle, if one exists. As we observed in figure 6(b), the algorithm can terminate
without a conclusive answer to the existence of a Hamiltonian cycle. In this
section, we describe a heuristic based cycle maximization algorithm that tries
to find the longest cycle in the induced dual subgraph S′. Later in this section,
we show that the cycle maximization algorithm does not necessarily find the
optimal solution. We also show that by including a few conditions, we can make
the cycle maximization step always output a Hamiltonian cycle for the class of
obstacles considered in Theorem 1.
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5.1 Pre-cycle Computation

In this section, we present the first stage of the cycle maximization algorithm. We
refer to this as the pre-cycle computation step. In the presence of obstacles, the
Sierpinski tour gets partitioned into one or more chains as shown in figure 9(a).
The idea is to use these chains to find a Hamiltonian cycle in S′. We describe
the algorithm in more detail below.

Group the obstacle tiles into k subsets O1, O2, · · ·Ok, where each subset Oi

is the largest set such that all its members have continuous Sierpinski ordering.
For example (figure 9(a)), for the Sierpinski decomposition level L = 7, let
O be {47, 80, 81, 82}. It turns out, for this example, k = 2, O1 = {47} and
O2 = {80, 81, 82}.

The k subsets, O1, O2, · · · , Ok, generate an equal number of chain parti-
tions P1, P2, · · · , Pk as shown in figure 9(a). In our example, the two sub-
sets O1 and O2 create two chain partitions P1 = {48, 49, · · ·78, 79} and P2 =
{83, 84, · · ·126, 127, 0, 1, 2, · · · , 45, 46} respectively.

After finding the chain partitions, we find the candidate bridges. A candidate
bridge is essentially a pair of vertices (x, y) in the induced subgraph S′ such that
the edge xy ∈ ES′ (figure 9(a)). In other words, tiles that correspond to x and
y in the original Peano-Cesaro triangulation are adjacent. To find the candidate
bridges for a subset, say, Oi = {wm+1, wm+2, · · · , wm+r}, we first identify the
pair of vertices (u, v) such that u is the largest tile index less than (m+1) and v
is the smallest tile index greater than (m + r). In our example, (u, v) = (46, 48)
corresponding to the subset O1 and (79, 83) corresponding to the subset O2.

Now, for each subset Oi, starting from the pair (u, v), we search (tile indices
lesser than u for x and tile indices greater than v for y) for the first occurrence
of a pair of vertices (x, y) ∈ S′, where, x and y are defined in the previous
paragraph. Geometrically interpreting the figure 9(a), we search (outwards and
starting from the pair (u, v)) for the pair of vertices (x, y) ∈ S′ that minimizes
the distance dc between them. Here, the distance dc between two vertices u and
v is expressed as:

dc = min(abs(u − v) − 1, 2L − abs(u − v) − 1) (1)

where L is the Peano-Cesaro decomposition level, abs() is the absolute value
function and min() returns the minimum value. In the above example, the two
candidate bridge pairs (x, y) determined are (46, 49) and (73, 86) for O1 and O2
respectively. The pre-cycle computation outputs a cycle (figure 9(b)) which is
the input to the cycle maximization step discussed in the next section.

5.2 Cycle Maximization

Denote the cycle found in section 5.1 by C (figure 9(b)). The cycle C is the input
to the cycle maximization step. Denote the set of vertices in the cycle C by VC .
We call the graph S[VS′ − VC ] as G. Now if S′ is 2-connected, there exists at
least 2 vertices in C whose neighborhood set nS′() in S′ has vertices in G. Let
us denote two such vertices in C by xC and yC . Let their neighbors in G be xG
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(a) Finding chains and bridges. (b) Output of pre-cycle computation.

Fig. 9. Illustration for finding partition chains, finding bridges and computing pre-cycle

(a) Illustration of cycle
maximization.

(b) Final solution cycle computed by the cy-
cle maximization step.

Fig. 10. Cycle maximization and its output

and yG respectively (figure 10(a)). The algorithm now finds the shortest path in
G between xG and yG . Let us denote the distance of this shortest path as dG .
Therefore the distance between xC and yC in G is dG + 2. Now if dG + 2 > dC ,
where dC is the shortest path distance between xC and yC in C, then it is possi-
ble to increase the number of nodes in the initial cycle C. This can be done by
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(a) Initial cycle C (thick lines) determined
by the pre-cycle computation step.

(b) A Hamiltonian cycle (thick lines) de-
termined as the solution cycle using cycle
maximization step.

Fig. 11. Illustration of cycle maximization. In this example, cycle maximization comes
up with a Hamiltonian cycle (an optimal solution in this case).

(a) Essential Chains generated. (b) Hamiltonian cycle solution.

Fig. 12. Performance of ESSENTIAL-CHAINS algorithm

replacing the path in C between xC and yC by the path between them in G. The
algorithm terminates when no such increase in the cycle length is possible. This
concept is illustrated in figure 10(a).
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After all the possible replacements are done, the resulting cycle C is the final
solution cycle. Figure 10(b) illustrates a solution cycle determined using the
cycle maximization step. For certain cases, cycle maximization finds the optimal
tour as illustrated in figures 11(a) and 11(b).

In order to assess the performance of our heuristic based cycle maximization
algorithm, we need to determine the minimum number of repetitions attainable.
For this, we ran our ESSENTIAL- CHAINS algorithm and the computed set
of essential chains, K, is illustrated in figure 12(a). Now by observation, we
join the computed essential chains to find a Hamiltonian cycle for this obstacle
configuration as shown in figure 12(b). Thus, for this example, we observe that
our heuristic based cycle maximization algorithm is four vertices away from the
attainable optimal solution.

We also observe that the vertices missed (50, 83, 84, 85) by the cycle maximiza-
tion step (figure 10(b)) were a part of the essential chains set, K (figure 12(a)).
Therefore, it may be possible that by forcing the cycle maximization not to drop
vertices that are essential, the optimal solution can always be obtained. We are
currently working on conditions, which, if included in the cycle maximization
step, can always output the optimal tour for the class of obstacles described in
Theorem 1.

6 Conclusion

In this chapter we use Peano-Cesaro tiling to divide the exploration region into
triangular tiles, with some tiles marked as obstacles. The problem of finding the
minimum repetition cyclic tour of the non-obstacle tiles, under mobility con-
straints has been posed using results from graph theory, where vertices and edges
represent tiles and allowed moves respectively. The resulting graph is referred to
as S′. We have devised an algorithm that collects all the essential components of
a Hamiltonian cycle (assuming one exists). The algorithm determines whether
S′ is Hamiltonian or not in some cases. In cases where the number of obstacle
tiles is sufficiently low, and the obstacles are far away from the boundary of
the region, the algorithm does not provide a deterministic answer. However, it
does output chains that are essential components of a Hamiltonian cycle, if one
exists. The main result is: S′ is Hamiltonian if the obstacle tiles form a simple
cycle. We also provide a heuristic algorithm and compare its performance for
the obstacle scenarios where the minimum number of repetitions is known.
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