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Abstract. We investigate the benefits of employing a suitable risk-based
metric to determine in real-time the high level actions that an agile sen-
sor should execute during a mission. Faced with a barrage of compet-
ing goals, a sensor resource manager must optimize system performance
while simultaneously meeting all requirements. Numerous authors advo-
cate the use of information-theoretic measures for driving sensor tasking
algorithms, wherein the relative value of different sensing actions is cal-
culated in terms of the expected gain in information. In this chapter,
motivated by the sensor resource allocation problem in missile defense,
we deviate from the information-based trend and propose an approach
for determining sensor tasking decisions based on risk, or expected loss
of defended assets. We present results of a missile defense simulation
that illustrate the advantages of our risk-based objective function over
its information-theoretic and rule-based counterparts.
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1 Introduction

This chapter addresses what we refer to as the sensor resource allocation prob-
lem, the problem of tasking a multi-modal sensor to perform high level sensing
actions, e.g., search, track maintenance, and discrimination, over the course of
a mission. A multi-modal sensor can collect data on objects and areas of in-
terest using a variety of sensing modalities. This flexibility has led to marked
improvements in detection of targets, kinematic estimation, and classification
capabilities. At the same time, this large palette of sensing actions has also in-
troduced challenges concerning the timely and efficient use of limited sensing
resources. This chapter focuses on a specific sensor resource management prob-
lem that appears in the context of ballistic missile defense (BMD).

To date, a majority of sensor systems employ a prioritization scheme to de-
termine which actions should be taken during a data collection interval. In this
approach, a slew of Boolean conditions are quickly checked and then actions are
1 The United States Missile Defense Agency approved this work for public release
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chosen based on some pre-specified action plan. While this method has its advan-
tages – requirements can be plainly stated, Boolean conditions are typically easy
to verify in real-time, and the decision chain is traceable – it suffers in several
notable ways. First, an approach based on a fixed set of rules cannot be com-
pletely adaptable to the evolving battlespace environment and can therefore be
far from optimal. Second, adjustment of priorities is a delicate, time-consuming
procedure. As new requirements are introduced into the system, it is difficult to
ensure that the conditions are appropriately agreed upon so that a new require-
ment’s priority is properly set. Third, glitches and irregularities in algorithm
behavior may be difficult to diagnose due to tacit assumptions and makeshift
implementation choices.

To circumvent these deficiencies, numerous suggestions have been propounded
that provide a single metric able to automatically and simultaneously capture
the complex tradeoffs involved when choosing between sensor allocations. A met-
ric that has received considerable attention is entropy, which attempts to mea-
sure the uncertainty associated with random variables of interest. Within this
information-theoretic framework, authors typically focus on Shannon entropy
[6,12,15], Kullback-Leibler divergence [8,11,17,18], and Rényi divergence [9,10].
In this approach, sensor tasking decisions are made based on the principle that
actions should be chosen to maximize the information expected to be extracted
from the scene of interest. Within a Bayesian estimation framework, a good mea-
sure of the quality of a sensing action is the reduction in entropy of the posterior
distribution that is expected to be induced by a measurement. For instance,
when evaluating the benefits of a track update (or propagation without an up-
date), these algorithms use the logarithm of the ratio of the determinants of the
a priori and a posteriori covariance matrices as a measure of sensor effectiveness.

Although the use of entropy for judging a sensor’s performance can be justified
for a conventional battlefield situation, we believe that it is not the most suitable
metric for BMD. Indeed, for traditional military applications, e.g., surveillance of
enemy troops, ground target tracking, etc., the battlespace has infinite variability
and the ultimate objective often cannot be stated precisely. The goal of a sensor
or system of sensors in this situation may only be to maximize the amount of
information collected for subsequent use in decision making. In contrast, the
situation arising in BMD can be stated in precise terms (i.e., we have finite
number of objects, each with finite degrees of freedom) and the underlying goal
of BMD is clear and always the same – to minimize our losses from an enemy’s
missile attack. We will use the term risk for the expected value of this loss and
consider risk reduction as a driver for a sensor’s action, by which its performance
should be judged. We briefly note that other authors [3,4,19] have considered a
similar metric, but they may define it in different terms or apply it in different
contexts.

The chapter is organized as follows. In the next section, we introduce discrim-
ination risk and discuss the meaning of cost coefficients. The expressions for risk
reduction are derived in Section 3. In Section 4, we describe a myopic approach
to scheduling based on risk reduction and a heuristic approach to non-myopic
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scheduling. In Section 5, we present the results of a missile defense simulation
that compares our risk-based approach with other competing methods. Conclu-
sions are presented in Section 6.

2 Discrimination Risk and the Cost Coefficients

Consider the following situation: an object is to be classified into one of two
classes, C1 (threat) or C2 (nonthreat). Let pi be the current probability that the
object belongs to class Ci, i = 1, 2 . An object that is classified as a threat will
be fired upon and destroyed by an interceptor, while an object that is classified
as a nonthreat will be left unscathed. Let c12 denote the cost of an interceptor
and c21 the cost of leakage, i.e., the cost of misclassifying a threat as a nonthreat.
Then, the risk of declaring an object as belonging to class i, for i = 1, 2, is given
by

R1 = c12 ,

R2 = c21p1 .
(2.1)

Note that while R2 depends on the probability p1, R1 does not depend on a
probability because once an interceptor is launched, its cost is incurred regardless
of whether or not the object was a threat.

The decision rule for class selection minimizes the risk R; that is, the object
is declared to belong to the class Ci with the smallest Ri:

R = min
i=1,2

Ri = min (c12, c21p1). (2.2)

We assume that c12 < c21, i.e., the cost of an interceptor is less than the cost of
leakage, otherwise the decision is always made in favor of C2 and the problem
becomes trivial. Observe that while p1 grows from zero to the “critical value”
c12/c21, the decision is made in favor of C2 (nonthreat) and the risk of this
decision grows linearly from zero to c12. Similarly, while p1 grows from c12/c21

to 1, the decision is made in favor of C1 (threat), and its risk remains constant
at c12, representing the loss of an interceptor.

Regarding the origin and value of the cost coefficients c12 and c21, it is a
common misconception that the cost of an interceptor is just the monetary price
of its production and is, therefore, negligible with respect to the potential loss of
defended assets (quantified by a cost of leakage). We argue, however, that this
line of reasoning is incorrect. Indeed, interceptors are our last defense against a
missile attack. Moreover, at any given moment, we have a limited supply of them,
which cannot be increased instantaneously. Expending interceptors now depletes
their availability for future defense. Consequently, the cost of interceptors should
regulate their use and reflect the balance between the demand for them now (or
in the near future, before new interceptors can be produced) and their current
supply. As such, the cost of interceptors has nothing or very little to do with
the price of their production; rather, this cost is just a parameter, which should
be selected by a commanding entity in such a way that expending interceptors
at their current cost would be optimum with respect to the current military
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and political situation. Guidelines for how cost coefficients should be set are
suggested in [14].

3 Risk Reduction

In this section, we derive expressions for the risk reduction due to two critical
sensor actions, discrimination and tracking, and show that the expected value
of the discrimination part of risk reduction is always nonnegative. In the first
subsection we consider discrimination risk when the target can be classified into
one of two classes, e.g., lethal and nonlethal. We then proceed by incorporating
the risk due to the uncertainty in a target’s kinematic state, which we call track
risk, and conclude by considering the combined influence of classification and
kinematic uncertainties on risk estimation in a general case of n classes.

3.1 Discrimination Risk in the Case of Two Classes

Suppose a sensor is trying to classify an object into one of two possible classes.
If the sensor has an opportunity to collect an additional measurement on this
object before making a classification decision, the risk associated with this ob-
ject may be reduced. We now derive an expression for the expected value of this
risk reduction. Let x be the feature which we measure and let p(x|i), i = 1, 2
be the corresponding class-conditional probability density functions (PDFs). We
assume that a sufficient amount of time has passed from the previous measure-
ment of x so that the new measurement can be considered independent from the
previous one. Then after the new value of x is measured, the probabilities are
updated according to Bayes’ rule and the new probabilities become

p′i =
p(x|i)pi

p(x)
, i = 1, 2, (3.1)

where p(x) =
∑2

i=1 p(x|i)pi is the PDF of the feature x. The updated risk of a
classification decision, which is based on probabilities p′i, is

R′ = min (c12, c21p
′
1) = min

[

c12, c21
p(x|1) p1

p(x)

]

, (3.2)

and its expected value is

〈R′〉 =
∫

R′p(x) dx =
∫

min [ c12p(x), c21p1p(x|1) ] dx. (3.3)

Using the normalization of p(x|i), we have from Equation (3.3)

〈R′〉 ≤ min
[∫

c12p(x) dx,

∫

c21p1p(x|1) dx

]

= min (c12, c21p1) = R, (3.4)

which means that the expected value of the new risk after an additional measure-
ment is never larger than the old risk. This is a desirable mathematical property
as we never anticipate, in expectation, to increase risk by collecting more infor-
mation. Note that risk itself (as opposed to its expected value) can increase after
an additional measurement due to an atypical result of the measurement.
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3.2 Track Risk

Imperfect knowledge of a target’s kinematic state may lead to an additional risk,
which we term track risk. As before, we assume that the object may be either a
threat (C1) or a nonthreat (C2). The case of several classes may be considered
in a similar fashion (see Section 3.3). Since in the case of a nonthreat decision
we will not shoot at the target, the risk of this decision remains the same as in
Equation (2.1). The risk of a threat decision, however, will change. Namely, if we
make this decision and shoot at the target, there is still some probability pmiss

that the interceptor will miss, in which case, with probability p1, we will suffer
a loss of c21 . Correspondingly, the term c21p1pmiss should be added to the risk
of a threat decision, where we assume that only one interceptor is fired at the
target. As a result, with track risk taken into account, instead of Equation (2.1),
we will have

R1 = c12 + c21p1pmiss ,

R2 = c21p1 .
(3.5)

Apparently, R1 = c12 + pmissR2 . Therefore, if pmiss is sufficiently large, R1

might become larger than R2 even when p1 is large (e.g., even when p1 = 1).
In particular, this will always be the case when pmiss = 1. In this situation, a
nonthreat decision should be made regardless of the value of p1 . Thus, as one
would expect, we should not shoot (and waste) an interceptor if the interceptor
is guaranteed to miss the target in the first place.

The probability pmiss depends on, among other factors, a state estimation
error covariance matrix Σ. With each successive track measurement, Σ changes
as described by Kalman filtering equations, and so pmiss and R1 will change
accordingly. This change will measure the risk reduction utility of a track mea-
surement. Namely, the corresponding risk reduction is ΔR = R(Σ) − R(Σ′) ,
where Σ′ is a state error covariance matrix after the measurement and R(Σ) =
min [c21p1 , c12 + c21p1pmiss(Σ)] .

3.3 Modifications to Discrimination Risk Due to the Presence of
Track Risk

Here we consider the situation when an object is to be classified into one of n
classes C1, . . . , Cn. We denote the current probabilities as pk, k = 1, . . . , n, and
introduce the set of nonnegative costs ckl of declaring an object a member of class
k when in fact it belongs to class l. Consequently, Rk =

∑n
l=1 cklpl is the risk of

declaring an object a member of class Ck. In keeping with the convention that
C1 represents the class of lethal objects, we will set c1l = cint for all l = 1, . . . , n,
where cint is the cost of an interceptor. The risk of a threat decision R1 will then
be the same as in Equation (2.1).

Taking track risk into account implies corrections to our expressions for ex-
pected risk after an additional discrimination measurement. Indeed, during the
time interval between discrimination measurements, the error covariance matrix
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evolves from its current value Σ to some new value Σ′, as is typically described
by Kalman filtering equations without a track measurement. The current risk of
declaring the object as a member of class k is

Rk =
n∑

l=1

cklpl + δ1kcleakpmiss(Σ)p1 , (3.6)

where δ1k is the Kronecker delta, equal to 1 for k = 1 and 0 otherwise, and cleak

is the cost of leakage. Correspondingly, the current risk is

R(Σ, p) = min
k

Rk = min
k

[
n∑

l=1

cklpl + δ1kcleakpmiss(Σ)p1

]

. (3.7)

After a discrimination measurement, class probabilities get updated and Σ gets
propagated. The new risk becomes

R(Σ′, p′) = min
k

[
n∑

l=1

cklp
′
l + δ1kcleakpmiss(Σ′)p′1

]

= min
k

[
n∑

l=1

ckl
p(x|l) pl

p(x)
+ δ1kcleakpmiss(Σ′)

p(x|1) p1

p(x)

]

,

(3.8)

and its expected value is

〈R(Σ′, p′)〉 =
∫

R(Σ′, p′) p(x) dx

=
∫

min
k

[
n∑

l=1

cklp(x|l)pl + δ1kcleakpmiss(Σ′)p(x|1)p1

]

dx ,

(3.9)

while the expected risk reduction is 〈ΔR〉 = R(Σ, p)−〈R(Σ′, p′)〉. Following the
same logic as in the derivation of Equation (3.4), one can show that the expected
value of the discrimination part of the decision risk [represented by the first term
in Equation (3.9)] never grows as a result of a discrimination measurement.

4 Sensor Resource Management Algorithms

Having derived expressions for risk and risk reduction associated with kinematic
estimation and classification, we now incorporate these calculations into various
sensor resource management (SRM) algorithms, wherein a resource manager
tasks a sensor to perform actions in an effort to minimize expected risk. After
describing myopic and far-sighted SRM algorithms, we outline how a far-sighted
risk-based approach can be extended to facilitate hierarchical control in a mul-
tisensor system.
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4.1 Myopic Sensor Resource Management

Using the expressions for risk reduction derived in the previous section, it is
straightforward to suggest a myopic resource management algorithm for a single
sensor which strives to achieve the fastest possible rate of risk reduction (RRR)
over the next data collection interval. Prior to every data collection interval, we
assume the sensor has the choice of applying one of several waveforms to any
target. If there are nw available waveforms and nt targets, then there are a total
of ntnw action-object pairs from which to choose. For each pair we can calculate
the fraction fij = ERRij/di, where ERRij is the expected risk reduction due to
the application of waveform i to target j, and di is the amount of sensor resources
or duty required to perform action i. Obviously, fij represents the rate at which
the risk is expected to decrease due to resources spent. Being myopic, we would
like to maximize this rate, and so, the algorithm selects the action-object (here,
the waveform-object) pair that maximizes fij .

4.2 Far-Sighted Sensor Resource Management

The myopic algorithm just described minimizes expected risk after the next sen-
sor action is taken. If that were the time when a final decision had to be made,
then this algorithm would be optimal. This, however, is rarely the case, as the
information collected now is usually used (much) later. An ideal planner would,
instead, have a far-sighted planning horizon and be able to enumerate all possible
action-object pairs up to some future deadline for all threats. For each threat, it
would compute the expected risk resulting from a sequence of actions taken up
to that deadline. Finally, based on the risk associated with the various action
sequences, it would then task the sensor with the best possible action-object
pair for next planning interval, allow the system to evolve, and then repeat the
process. A standard approach to tackling such a problem is to formulate it as
a finite-horizon Markov Decision Process, also known as Stochastic Dynamic
Program, although some authors reserve the latter name to characterize solu-
tion methods for this class of problems. Classic references include [1,2,13,20].
Although we have investigated a number of approximate dynamic programming
approaches, our formulations and solution methods lie outside the scope of this
discussion. Instead, we briefly describe a heuristic approach for far-sighted SRM,
akin to the “critical ratio” algorithm given in Feinberg et al. [5], which will also
set the stage for our discussion of hierarchical control in multisensor resource
management.

Our heuristic approach is based on the observation that the myopic algorithm
leads to the appearance of an expected residual loss, or residual risk, i.e., a risk
which is impossible or very difficult to eliminate once it has been incurred. For
example, residual risk appears if the sensor fails to detect a new target before
it leaves a search volume, or fails to collect enough information about a target
which is due to be intercepted. Obviously, resource management should be done
in such a way as to avoid the appearance of residual risk. The reason it appears
in the myopic approach is that the sensor fails to accomplish some goals by their
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corresponding deadlines. We therefore conclude that for critical tasks similar to
those just mentioned, goals and corresponding deadlines should be imposed on
the resource manager in addition to the objective of maximizing RRR.

Let N be the total number of tasks the sensor is executing, where by task we
mean a particular sensor activity, such as tracking or discrimination, performed
on a particular object. For every task i, let di be the remaining time until the
deadline by which this task should be accomplished, i.e., its goal should be
achieved. Goals and deadlines are set by a so-called battle manager. We will
assume that given the goal i for task i and the current state of our knowledge,
we have some predictive capability to determine a conservative estimate of the
expected time ti the sensor needs to spend on the corresponding task in order to
accomplish it. On every iteration, the algorithm orders tasks according to their
deadlines, so that d1 ≤ d2 ≤ · · · ≤ dN , and for every k = 1, . . . , N , it checks if
there is enough time left to accomplish the first k tasks with some safety margin.
In other words, the algorithm verifies if α

∑k
i=1 ti < dk, k = 1, . . . , N, where α

is a “safety factor” which should be greater than 1. If this inequality holds for
all k, then there is no need to worry about deadlines, and the algorithm follows
the original RRR logic. If, however, for some k the inequality is violated, then
the algorithm finds the “most critical” task index k̂ such that

k̂ = argmax
k

(

α

k∑

i=1

ti − dk

)

(4.1)

and schedules a measurement required by the task k̂. If this measurement takes
time τ to be executed, then after this measurement both tk̂ and dk̂ become

smaller by τ , and α
∑k̂

i=1 ti − dk̂ becomes smaller by (α − 1)τ . Since α > 1, the
task is now less critical than it was before the measurement. In the event it is
impossible to satisfy all deadlines, the algorithm first sacrifices the task with the
smallest residual risk.

4.3 A Hierarchical Multisensor Control Architecture

Thus far, we have limited our discussion to risk-based resource management al-
gorithms for a single sensor in missile defense. We assumed that for each task,
a sensor has a corresponding goal and deadline, which can be incorporated into
a risk-based approach for optimizing the set of actions taken in the subsequent
data collection interval. In this section, we describe a natural extension of our
risk-based approach to a hierarchical decision-making architecture for multisen-
sor resource management. Such hierarchical approaches have gained increasing
attention over the past decade in the reinforcement learning domain [16], and
are well suited for the missile defense problem in which a distributed architec-
ture is already in place. This hierarchical architecture facilitates solution of the
(intractable) global problem of assigning all sensors a set of actions to perform
over the course of a mission by decomposing the larger long-term problem into
smaller short-term problems. In this way, a hierarchical architecture exploits a
“divide-and-conquer” mentality for solving complex, large-scale problems.
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In the current missile defense decision-making architecture, a Battle Manager
(BM) acts as a commanding entity that tasks participants (e.g., sensors, plat-
forms, and interceptors) throughout a given mission to collect information or
execute some plan. A BM maintains an integrated picture of the battlespace,
or in dynamic programming terminology, the state of the system, including (1)
target-related information like track accuracy, classification, predicted impact
point, and estimated time to impact, (2) sensor-related information, including
sensor capabilities and current tasking, and (3) weapon system-related informa-
tion, including the number of available interceptors and interceptor capabilities.

The ability of our approach towards sensor resource management to accom-
modate goals and deadlines allows us to naturally insert it into a general hi-
erarchical framework of system management for coordinating multiple sensors.
Given all available information about existing missile complexes, which consist
of one or more targets spawned from the same object, the BM interacts with
individual sensors with some periodicity, known as a Battle Manager Planning
Interval (BMPI), collecting information obtained during the previous data col-
lection interval, and giving assignments for the next interval. Based on known
trajectories of the missile complexes relative to the positions of the sensors and
known performance characteristics of the sensors, the BM creates a battle plan.
For each BMPI and for each missile complex, the plan specifies which sensor or
sensors will observe this missile complex, and with which task (tracking and/or
discrimination). Search can be considered on the same grounds as a sensor ac-
tivity related to a potential additional threat. Included in the plan, therefore, is
the expected improvement of our knowledge of this missile complex’s tracking
and classification characteristics (or of the presence of a threat in a search vol-
ume). The plan is designed in such a way as to provide the smallest expected
loss of defended assets and gets updated every BMPI according to the evolving
situation. The generation of a battle plan is a separate (and complex) problem,
which is not considered here. We do, however, consider the interaction of the
BM with individual sensors assuming this problem has been solved.

In our hierarchical structure this interaction is organized as follows. At the
beginning of each BMPI, after computing its own long-term plan, the BM assigns
each sensor a set of targets and search volumes along with the associated cost
coefficients and search/track/discrimination goals corresponding to the expected
improvements mentioned above. The natural deadline for these goals is the end
of this BMPI, although in certain situations the deadline could vary. Since it is
possible for a sensor to achieve all of its goals by the corresponding deadlines and
still have some remaining resources, the BM also informs each sensor about other
targets, not assigned to it, and the value of their cost coefficients. Now each sensor
finds itself in a situation described in the previous section: it faces a number of
targets with associated cost coefficients, goals, and deadlines. Accordingly, each
sensor acts as described above, without regard to the presence of other sensors,
by attempting to determine an optimal plan over a shorter time horizon (a
BMPI) that simultaneously meets all goals and deadlines while minimizing risk.
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The results are reported to the BM at the end of a BMPI and will be used for
updating the battle plan and creating an assignment list for the next BMPI.

5 Simulation Results

A low fidelity simulation environment was constructed in MATLAB to test and
compare myopic sensor resource management algorithms that assign track and
discrimination actions to multiple objects based on a heuristic policy or the
maximization of a single objective function. The application of far-sighted ap-
proaches, which incorporate search management, is not considered here, but is
discussed in [14].

We assume a single sensor has just begun tracking N objects. There is only
one lethal target, known as a re-entry vehicle (RV), amongst the targets. At each
time step, an action-object pair is selected depending on the algorithm used, and
that action is then performed on that object. Each action takes the same amount
of time to complete. Each object is assumed to belong to one of three classes
(lethal objects belong to class 1), and classification is based on the measure-
ment of three independent features. We assume that class-conditional PDFs are
known and are Gaussian for each feature (see Figure 1). The sensor can make
an observation on exactly one feature at a time when performing a discrimina-
tion action. This assumption could easily be relaxed. If the manager decides to
measure a particular feature of an object, then the result of this measurement is
generated as a random variable whose distribution corresponds to this feature’s
distribution for the true class of the observed object. An object’s posterior prob-
ability of belonging to any class is then computed using Bayes’ rule, where we
have made the simplifying assumption that observations are independent from
one time step to the next.

We assume a simple tracking model of a target moving with a constant velocity
without a process noise. We model the probability that an interceptor success-
fully “kills” a target (probability of kill for short) as a function of a track’s error
covariance matrix. In particular, we used a sigmoidal function of the form

pkill(x) =
1 + exp(−m/s)

1 + exp((x − m)/s)

to determine the probability of kill, where x denotes the Euclidean norm of
a track’s position error, m defines the “midpoint,” i.e., the point at which
pkill(x) ≈ 1/2, and s represents the “spread” of the curve. Note that small values
of s result in near step functions where pkill is either close to one or zero. Such a
function could easily be extended to incorporate additional factors beyond just
the position error of track (e.g., velocity errors, classification information, etc.).
In fact, Kalandros and Pao [7] give several examples of why more information
may be necessary.

As described in Section 2, cost coefficients are needed to compute the risk of
making a particular decision. We set the cost of incorrectly declaring a threat a
nonthreat to 6, the cost of incorrectly declaring a nonthreat as a threat to 1, and
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Fig. 1. Class-conditional PDFs used in simulations

the cost of incorrectly classifying a nonthreat as a different type of nonthreat
to 0.2. We assume there are three objects, and, in truth, object i belongs to class
i, i = 1, 2, 3. (Initial results with more than three objects demonstrated that our
conclusions remain the same.)

For general class-conditional PDFs, the expected risk reduction from an ad-
ditional measurement cannot be computed analytically. Thus, we turned to nu-
merical integration techniques in our computations.

There are six different planners (or resource management algorithms) that we
tested for comparison. At each planning interval (each time step), the planner
assigns the sensor to perform a single action on a specific object during the
subsequent time interval. The planners (and their symbols used in the figure
legends) are:

1. Risk Reduction Planner (maxRRR): Enumerates all action-object pairs and
determines which action-object pair will yield the largest expected reduction
in risk.

2. Information Gain Planner (maxInfoG): Enumerates all action-object pairs
and determines which action-object pair will yield the largest expected in-
formation gain.

3. Improved Information Gain Planner (maxIInfoG): Operates exactly like the
Information Gain Planner except there is no information gain for performing
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a track update on an object whose track error is below a pre-defined thresh-
old.

4. Highest Probability of RV Planner (maxPRV): Identifies the object with the
largest current probability of lethality (i.e., of being a re-entry vehicle) and
randomly generates an action to be performed on this object. The purpose of
this planner is to dispel the oft-held belief that spending the most resources
on the most threatening object is an optimal use of resources.

5. Highest Risk Object Planner (maxRiskObject): Identifies the object with
the largest current risk and randomly generates an action to be performed
on this object.

6. Round Robin Planner (RoundRobin): First performs action 1 on all objects,
then action 2, and so on.

The different resource management algorithms were compared with respect
to five different metrics: (1) average loss; (2) average probability of correct clas-
sification of the lethal object; (3) average probability of correct classification of
all nonlethal objects; (4) average track quality of the lethal object; and (5) aver-
age track quality of all nonlethal objects. In general, we found that all planners
maintain a very high track quality on the object it believes to be lethal and a
sufficient track quality on all remaining objects. Results with respect to the first
three metrics are described below.

As one would expect, the risk reduction planner, which strives to reduce risk
as quickly as possible, outperforms all other planners in the average loss category
(see Figure 2). What is interesting is that the planner that attempts to maxi-
mize pure information gain (maxInfoG) over the course of the mission dedicates
the majority of its resources to performing track maintenance actions. Under
the assumptions of this simulation, this corroborates our initial statement that
metrics based on pure information gain may not be well suited in the context of
missile defense.

To give a more mathematical explanation as to why a purely information-
based approach may yield inferior results, consider the following classification
problem involving an object that can belong to one of n possible classes C1, . . . ,
Cn, where C1 is the class of lethal objects and all other classes represent various
nonlethal objects. The object’s class can be represented as a discrete random
variable X , which must take on one of the values x1, . . . , xn with probabilities
p1, . . . , pn, respectively. It is well known that the (Shannon) entropy of the ob-
ject’s class, H(X) = −∑n

i=1 pi log2 pi, is maximized when all of the pi are equal
because the object is equally likely to belong any of the n classes. In a similar
way, suppose that an object has been perfectly classified as a nonlethal object,
i.e., p1 = 0, but that the exact type of nonlethal object is completely unknown,
i.e., p2 = . . . = pn = 1/(n− 1). Then, the entropy associated with this object is
still relatively large. However, from the standpoint of risk, or expected loss, this
object is of little concern. One could then argue that it would be an inappropri-
ate use of scarce resources to determine precisely what class of nonlethal object
it is, when its associated risk has already been determined to be zero.
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Fig. 2. Performance comparison of different resource managers
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Fig. 3. Discrimination performance of different resource managers. P{RV} is the prob-
ability that an object is lethal.

Besides average loss, it is illustrative to compare the various planners based on
two importantquestions related to classification: (1)Howwellwere the targets clas-
sified? (2) How long did it take the sensor to classify the targets?Focusing solely on
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classification, one would expect an ideal sensor to quickly classify threatening
objects as threatening and identify nonthreatening objects as nonthreatening.
The sensor could then provide higher quality information in less time to an in-
terceptor whose goal is to prosecute all threatening targets and reduce expected
loss. It turns out that this goal is achieved as a byproduct of the risk reduc-
tion planner, and is illustrated in Figure 3. To understand this, recall that a
nonzero probability of lethality directly contributes to the risk of a nonthreat
decision. Consequently, if the cost of leakage is relatively high and several ob-
jects have a probability of lethality well above zero, then it is beneficial to per-
form additional classification measurements in order to reduce this probability.
Reducing this probability is one way to possibly decrease total risk. Thus, a
natural consequence of the risk reduction planner is to reduce the probability of
lethality on all nonthreatening objects by performing additional discrimination
actions.

6 Conclusions and Future Work

This chapter advocates the use of a risk-based objective function for sensor re-
source management in the context of missile defense. After presenting a formal
description of the equations and update formulas needed to compute risk and
risk reduction quantities, we outlined a risk-based approach to single-sensor re-
source management as well as a hierarchical approach to multisensor control.
We performed a comparative analysis of various myopic approaches for tasking
a sensor to track and discriminate targets (without the presence of deadlines)
and found that maximizing the expected rate of risk reduction produced superior
results.

Although not presented in this work, we have conducted an investigation of
a modified rate of risk reduction method when presented with Battle Manager
goals and deadlines [14]. Future research includes refinement of a mathemati-
cal solution methodology as needed to solve a finite-horizon dynamic program.
Likewise, we are currently working to incorporate the risk due to possible mis-
association of closely-spaced targets, which adds yet another layer of complex-
ity into our formulation. It can be shown that our risk-based approach is also
applicable in a situation when some contextual information is available for dis-
crimination. Although the calculations become more involved, the results will be
very similar. Finally, we are continuing to develop and test our proposed hierar-
chical resource management approach and the associated dynamic programming
techniques involved.
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