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Abstract. Cooperative surveillance problems require members of a team
to spread out in some fashion to maximize coverage. In the case of single
target surveillance, a team of UAVs angularly spaced (i.e. in the splay
state configuration) provides the best coverage of the target in a wide
variety of circumstances. In this chapter we propose a decentralized algo-
rithm to achieve the splay state configuration for a team of UAVs tracking
a moving target. We derive the allowable bounds on target velocity to
generate a feasible solution as well as show that, near equilibrium, the
overall system is exponentially stable. Monte Carlo simulations indicate
that the surveillance algorithm is asymptotically stable for arbitrary ini-
tial conditions. We conclude with high fidelity simulation tests to show
the applicability of the splay state controller to actual unmanned air
systems.

1 Introduction

A primary use of unmanned air vehicle (UAV) systems is in surveillance and
reconnaissance missions [1] [2]. We investigate the use of a team of multiple
UAVs orbiting a target with application to target tracking and convoy support.

The payload of choice for most small UAVs is a camera. The objective of
our work is to develop a cooperative guidance strategy to distribute UAV agents
around an orbit spaced equally in angle. The equal angle spacing allows the team
to cooperatively overcome possible line-of-sight occlusions, i.e. equal spacing
gives the team the best chance to track a target in the presence of occlusions.
We note that for two UAVs carrying radar sensors, line-of-sight angles separated
by 90 degrees provide better statistical performance in the tracking problem [3]
and when the team size is greater than two, equal spacing has good performance.
In a general surveillance mission, the equal spacing of the sensors provides the
best overall coverage of a target and its surroundings.

The design of a spacing controller is strongly influenced by the capabilities of
the UAVs on the team. For instance, helicopters can hover at a specific location
and thereby maintain persistant coverage of a ground based target, however
fixed-wing aircraft must fly above the stall velocity, and may therefore not be
able to maintain persistent coverage. Furthermore, fixed-wing aircraft fly most
efficiently at a fixed, nominal airspeed. One approach to equal spacing is to
adjust the local velocity of the agents along the desired orbit. However, for small
allowable velocity bounds, the convergence to the equilibrium configuration may
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be sluggish. Additionally, maintaining fixed-wing aircraft at their constant fuel
efficient velocity is desirable from a mission duration standpoint. In this chapter
we develop a spacing controller that steers the UAVs to the desired configuration
while holding a constant airspeed.

Other researchershave studied the problemof spacing fixed-speed UAVs around
a possibly moving target. Paley et al. introduce the notion of the splay state con-
figuration and give an elegant control solution for fixed target problems [4]. Their
approach relies on invariant set arguments to show that the splay state configura-
tion is the stable equilibrium of the system. The main drawback of their work is
the inability to specify the orbit center. The splay state configuration is shown to
be stable around the collective center of mass not a specific target location which
makes tracking a moving target infeasible without modifications. Additionally, the
control signal exhibits slow transient response for large initial errors.

Paley’s splay state configuration work is extended by Klein and Morgansen
in [5] to moving targets. By choosing a control signal that preserves the invariant
sets introduced by Paley, they are able to design an algorithm to track a moving
target in the splay state configuration with 3 UAVs. Unfortunately, the method
does not currently extend to team sizes other than N = 3.

Frew and Lawrence [1] use vector field notions to steer a team of two UAVs to an
orbit centered on a moving target. A limit cycle is designed as the equilibrium of
the vector field dynamics and is modified to account for spacing errors. No formal
proof is offered in their method and only team sizes of N = 2 are considered.

The unique features of our approach are the ability to include an arbitrary
number of team members in a moving target scenario and the determination of
bounds on target velocity for which the algorithm satisfies the UAV’s kinematic
constraints. Additionally, the transient response is qualitatively better than other
approaches.Of note is that our algorithm is completely decentralized where agents
base their actions only on communication from immediate team members. This
allows for dynamic changes to the team to be accounted for without global com-
munication or replanning. A drawback to our approach is that global stability is
not conclusively shown, although Monte-Carlo simulations indicate that the splay
state configuration is the globally stable equilibrium of the system.

The aim of this chapter is to present a stable, decentralized spacing controller
for fixed velocity UAVs tracking moving targets in the presence of wind. Section 2
formally defines the notion of equal spacing and describes the mathematical
model that we use for the UAVs. Section 3 establishes the heading design for
a group of UAVs monitoring a stationary target. In Section 4, we analyze the
stability of the system for the stationary target case. These results are extended
to the moving target/wind case in Section 5 and we conclude with simulation
results in Section 6. Concluding remarks are offered in Section 7.

2 Problem Description

In a variety of applications the ability for a team of UAVs to spread out in some
manner increases the efficiency of the team as a whole. For single target surveil-
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lance, a team of UAVs spaced equally around an orbit centered on the target
gives the best line-of-sight coverage in the presence of occlusions. This chapter
focuses on constructing a desired heading for each UAV in the team to achieve
equal spacing. The desired heading is calculated based on the distance away from
the desired orbit and the spacing error from the splay state configuration.

Definition 1 (Splay State Configuration). A set of agents I, all of which
are following the same periodic trajectory, is said to have reached the splay state
configuration if for each agent i, the time difference of arrival to a specific point
on the trajectory between agent i and its two immediate neighbors is constant for
all i ∈ I.

Definition 1 describes the splay state configuration as equally spaced in time
along a periodic trajectory. When agents pass a reference point (arbitrarily cho-
sen) on the trajectory at equal time intervals, the team has reached the splay
state configuration. For simple circular trajectories, the splay state configuration
is achieved when agents are equally spaced in angle around the circle perime-
ter. Note that equal angular spacing matches the definition of the splay state
configuration in [4]. Definition 1 extends the splay state notion to non-circular
trajectories which occur when the center of the desired orbit is changing in time
due to wind or target motion.

Consider a circular trajectory with all agents traveling at constant speed V .
The time difference of arrival corresponds to the angle separation between neigh-
bors. When the angle between all agents is the same then the splay state con-
figuration has been reached, i.e. the agents are equally spaced in angle around
the circle. Now consider the trajectory shown in Figure 1, which is an example
of a UAV orbiting a moving target. Note that as the target speed increases, the
ability for the UAV to maintain an orbit around the target depends on its ability
to make increasingly sharp turns. Constraints on the turning radius of the UAV
will lead to a threshold value of target speed where feasible tracking is no longer
possible (see Section 5). In a moving reference frame (with the target in the

Fig. 1. For a UAV orbiting a moving target, the trajectory exhibits loops corresponding
to the times when the UAV and the target are moving in opposite directions and long
arcs when both are moving in the same direction

center) the motion of the UAV traces out a circle, but the splay state configura-
tion does not correspond to equal spacing in angle around that circle. Since the
target is moving, a much greater amount of time is spent on the part of the tra-
jectory where the UAV and the target are moving in the same direction. When
the target and UAV are moving in opposite directions, the UAV quickly travels
around a large portion of the circle. Figure 2 shows the splay state configuration
for 5 UAVs when the target is moving at 75% of V in zero wind conditions.
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Fig. 2. A target moving at 75% of UAV speed has a splay state configuration with 5
vehicles that corresponds to the spacing in this figure. Note that at the bottom of the
orbit, the target and the UAV are moving in the same direction, so the UAV slowly
turns the corner. However, at the top of the orbit, the UAV and the target are moving
in opposite directions, so the UAV quickly moves around the arc.

2.1 UAV Modeling

To maximize fuel efficiency each UAV maintains a constant airspeed. Addition-
ally, we assume that all UAVs fly at a fixed altitude. A kinematic model for a
constant airspeed, constant altitude UAV in wind, is given by

ṗN = Va cosψ + Vw cosψw

ṗE = Va sin ψ + Vw sin ψw

ψ̇ = g
Va

tanφ

φ̇ = u

(1)

where (pN , pE) are the (North, East) coordinates of the UAV in a flat earth
model, ψ is the heading of the UAV (with the ψ̇ equation given by the coordi-
nated turn assumption), φ is the roll angle, Va is the constant airspeed of the
vehicle, Vw is the magnitude of the wind vector and ψw is the heading of the
wind vector (note that this is not the meteorological definition of wind heading,
i.e. ψw is the direction the wind is blowing to as opposed to the direction the
wind is blowing from). In addition to these dynamics, a constraint on roll angle
−φmax ≤ φ ≤ φmax is enforced that stall conditions are avoided.

We consider the motion of the UAV relative to a target position. Let

x = pN − qN

y = pE − qE
(2)

where (qN , qE) is the position of the target. The dynamics of (1) become



UAV Splay State Configuration for Moving Targets in Wind 113

ẋ = Va cosψ + Wx

ẏ = Va sin ψ + Wy

ψ̇ = g
Va

tan φ

φ̇ = u

(3)

where Wx = Vw cosψw − q̇N and Wy = Vw sin ψw − q̇E . Target velocity and
wind are indistinguishable with respect to the relative motion of the UAV to the
target. This allows the control design to maintain constant airspeed and account
for wind disturbances and target motion with only regard to (Wx, Wy).

Model (3) can be reduced further by letting

u =
gVaω̇

g2 + V 2
a ω2

where ω is the heading rate of the UAV, i.e. ω = g
Va

tan φ. Model (3) then
becomes the kinematic unicycle model

ẋ = Va cosψ + Wx

ẏ = Va sin ψ + Wy

ψ̇ = ω
(4)

where we constrain |ω| ≤ g
Va

tan(φmax) to ensure that |φ| ≤ φmax. The constraint
on ω can be thought of as a curvature constraint on the system kinematics
from which it follows that the UAV can be considered a Dubins-type vehicle.
This model has shown great value for design of UAV systems as it captures the
essential navigational kinematics of UAV motion while at the same time being
of low enough order to allow tractable analysis [2] [6] [7].

The heading design and analysis is performed at a level of abstraction greater
than the unicycle level by computing a desired heading ψd and using it as a
feed-forward term to the model (4). Feedback is then introduced at the control
signal ω while maintaining the saturation constraints on ω. Let

ω = ψ̇d + ν (5)

where ν is the feedback term driving ψ to ψd. This chapter shows that ψd can
be chosen so that a team of UAVs with individual dynamics

ẋ = Va cosψd

ẏ = Va sin ψd (6)

can reach the splay state configuration. Control gains in the calculation of ψd

can then be chosen to allow the saturation constraints on ω to be satisfied. Note
that ψd can be considered a sliding surface along which the specifications of the
mission are satisfied. If ψ reaches ψd in finite time via the feedback term ν, then
the overall system can be guaranteed to converge to the splay state configuration.
Theoretically, a sliding mode controller of the form

ν = βsign(ψ − ψd)
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ensures that ψ reaches ψd in finite time, however in practice, a control law of
the form

ν = βsat
(

ψ − ψd

ε

)

is used, where β is a positive control gain. We do not show the overall system
stability with this control strategy, but refer the reader to [8] where this choice
of ν is shown to ensure path convergence for an arbitrary path in the single UAV
case.

2.2 Orbit Dynamics

We will be concerned with the behavior of UAV teams while orbiting a target
at a fixed radius Rnom. To analyze the stability of the orbit system, we make a
change of variables by letting

R =
√

x2 + y2

θ = tan−1
(

y
x

) (7)

where R is the distance of the UAV from the target and θ is the “clock angle”
of the UAV around the orbit.

In the static target, no wind case (i.e. Wx = Wy = 0), the dynamics of R and
θ can be calculated as follows. Let

χ � ψ − ψp (8)

be the difference between the actual heading, ψ, and the heading of the tangent
vector to the orbit, i.e. ψp = θ + π/2. Therefore Ṙ can be calculated as

Ṙ = d
dt

√
x2 + y2

= xẋ+yẏ√
x2+y2

= Va

R [x cosψ + y sin ψ] .

Since ψ = χ + θ + π/2, we obtain

Ṙ =
Va

R
[−x sin(χ + θ) + y cos(χ + θ)] .

Using the relations x
R = cos θ and y

R = sin θ we get that

Ṙ = −Va [cos θ sin(χ + θ) − sin θ cos(χ + θ)]
= −Va

{
sin χ cos2 θ + cosχ sin θ cos θ − cosχ sin θ cos θ + sinχ sin2 θ

}
⇒ Ṙ = −Va sin χ .

Similar arguments are used to derive the equation of motion for θ resulting in

Ṙ = −Va sin χ

θ̇ = Va
R cosχ .

(9)
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In the case of a moving target and/or wind, the motion is abstracted by
calculating the path heading ψp, i.e. the heading which the UAV should be
traveling if directly on the path. By accounting for target motion and wind via
the ψp term, the radial orbit dynamics remain identical to those in (9) [8]. We
show in Section 5 the calculation of ψp for moving targets.

To accommodate the multiple UAV splay state configuration, a spacing term
is defined. For the static target, no wind scenario, the separation of the ith agent
from the angular mean of its neighbors is

δθi =
1
2

((θi − θi−1) − (θi+1 − θi)) (10)

where a ring topology is assumed (i.e. addition is defined modulo N). The term
δθi captures how far away agent i is from being equally spaced between its two
immediate neighbors on the ring. When all agents are on the nominal radius with
spacing terms δθi equal to zero, then the team has achieved the splay state config-
uration. Although the calculation of δθi is more complicated in the moving target
case, the principle is the same: δθi captures how far away from the splay state
configuration agent i is with regards to its immediate neighbors along the ring.

A visual representation of the notation used to describe the desired heading
calculation is shown in Figure 3 where di is the radial error from the nominal
radius, i.e. di � Ri − Rnom.

ψp
1δθ

1

δθ
2

δθ
3

d
2

Fig. 3. Spacing error and radial error are combined to construct a desired heading
for each UAV. Radial error is determined by the distance from the desired orbit (di)
and spacing error is the distance from the angular center of an agent’s two immediate
neighbors (δθi).

3 Heading Calculation for Non-moving Targets

This section details the construction of a desired heading to achieve the splay state
configuration in the case of zero wind and a non-moving target. The basis of the
splay state configuration controller is the calculation of an appropriate heading
command that steers the agents to the proper steady state behavior. By creating
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a desired heading for the UAV, a reliable, robust heading controller can be used
to track the heading commands. For a single UAV, a desired heading of the form

ψd = ψp + tan−1(kd) (11)

will draw the agent onto the path, where d is the distance from the path and
ψp is the heading along the path at d = 0 [8]. Using definition (8) equation (11)
can be reduced to

χ = tan−1(kd) . (12)

Note that when d is large, the commanded heading is almost perpendicular to
the heading along the path, effectively steering the UAV toward the path before
beginning to follow it. For a simple orbit maneuver, ψp is selected to be tangent to
the circle of interest along the ray connecting the agent and the target position.
The radial distance of the agent from the nominal orbit constitutes d and a
heading field constructed via (11) is shown in Figure 4. The gain k determines
how aggressive the field is in steering the agent to the desired path.

Fig. 4. A single UAV orbiting a stationary target has a commanded heading computed
at each point given by (11). Note that when the agent is far from the orbit, the heading
steers it toward the target. As it gets near the desired trajectory, the desired heading
transitions to tangent to the nominal circular motion.

The constraint on ω is satisfied when

max |ω| = max |ψ̇d| + β ≤ ωmax

where ωmax = g
Va

tan(φmax) and β is the maximum control allowed for the feed-
back control term (see Equation (5)). Due to the relationship in Equation (11),
the term max |ψ̇d| can be bounded by

max |ψ̇d| < max |ψ̇p| + max |χ̇| .
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The term max |ψ̇p| can be determined using a priori knowledge or an estimate
of the path to be tracked (e.g. moving orbit, straight line, etc.); for stationary
orbits, |ψ̇p| = Va/Rnom. The term max |χ̇| directly depends on the strength of
the field through the gain k. Recalling that χ = tan−1(kd) gives

|χ̇| =

∣∣∣∣∣
kḋ

1 + (kd)2

∣∣∣∣∣ =
∣∣∣∣−kVa sin χ

1 + (kd)2

∣∣∣∣ ≤ kVa

which when coupled with knowledge of ψ̇p, the gain k can be chosen so as not
to violate the UAV turn rate/roll angle constraints.

For a single UAV, a commanded heading of the form χ = tan−1(kd) guar-
antees asymptotic convergence to an orbit at radius Rnom about the target.
A simple Lyapunov argument supports this assertion. Letting W = 1

2χ2 and
using (9) gives

Ẇ = χχ̇ =
−kVaχ sinχ

1 + (kd)2
. (13)

Since χ ∈ (−π/2, π/2) (χ is the output of an inverse tangent), the term χ sin χ
is always greater than zero for nonzero χ. Therefore, Ẇ < 0 and χ → 0 asymp-
totically. By LaSalle’s invariance principle [9], it follows that d → 0. Again we
note that a complete proof for system (4) requires a sliding mode controller to
guarantee that ψ reaches ψd in finite time, however, this can be relaxed as in [8].
Qualitatively, the commanded heading simply points the UAV directly toward
the target if d is large and transitions to tangent to the orbit when near Rnom.

To account for spacing, the single agent heading command (11) is augmented
as

ψd
i = ψp

i + tan−1(kdi − γδθi) (14)

where γ is a control gain weighting the value of spacing the UAVs to the value
of converging to Rnom. The spacing term effectively increases the radius of the
orbit when a UAV is too close to the agent in front of it and decreases the radius
of the orbit if it is behind. This allows agents to “catch up” when the spacing
is not at the desired state. An example of the heading field for an agent when
δθ = π/2 is shown in Figure 5. Notice the agent is drawn away from the nominal
radius to allow the agent in front to increase its angular separation.

By constructing δθi to be only a function of its immediate neighbors, the
error signal (heading field calculation) is local to each agent in the system. This
allows the implementation to be completely decentralized. The advantage to
decentralization is that the overall system will scale to any number of agents
and be robust to insertion and deletion of team members. When agents are
tasked to leave the formation for high priority assignments, the rest of the group
can adjust to a new configuration without any centralized planning. Similarly,
if a new agent is added (e.g. returns from a high priority task) the group will
adjust through local interaction without any global communication.
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Fig. 5. A single UAV orbiting a stationary target with spacing error π/2 has desired
heading given by (14). Note that a positive spacing error will cause the agent to effec-
tively increase its radius, allowing the neighbor in front to gain distance and increase
their relative spacing.

4 Stability Analysis

In the static target, no wind case, the splay state configuration coincides with the
team members being equally spaced around an orbit. This section investigates
the stability of the entire system when each agent follows the heading defined
by (14). Figure 6 shows the behavior exhibited by a team of three UAVs.

A complete Lyapunov argument (or other method) may be used to determine
the stability of the system to the splay state configuration. We have been unable
to find a Lyapunov function that shows the stability of the entire system. For
this reason, the convergence of the team of UAVs using (14) to the splay state
configuration is argued as follows. We first show that the radial error is bounded
by a function of the control gains k and γ. Near equilibrium, the overall system
is shown to be exponentially stable. Finally, Monte-Carlo simulations are used
to investigate system stability for initial conditions lying in the bounded region.

4.1 Ultimately Bounded

Lemma 1. The system of agents described by (6) when following heading (14)
is ultimately bounded in radial error di, i.e.

|di| ≤ Rδ (15)

where Rδ � γπ/k is less than Rnom.
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Fig. 6. Three UAVs following the heading defined by (14) converge to the splay state
configuration along a non-moving orbit

Proof. For any agent, δθi is constrained to the region (−π, π), i.e. agent cannot
have an angular spacing error greater than π radians. If |di| > Rδ, then

sign(kidi − γδθi) = sign(di)
⇒ sign(χi) = sign(di)
⇒ sign(sinχi) = sign(di)
⇒ sign(−Va sin χi) = sign(−di)
⇒ sign(ḋi) = sign(−di)
⇒ diḋi < 0 .

Therefore, the Lyapunov function W = d2
i has a negative definite derivative

whenever di is outside the bound (15). When |di| > γπ/k, the kdi terms dom-
inates the γδθi term in (14) effectively steering the UAV to reduce radial error
regardless of spacing error. Therefore, |d| is decreasing when |d| > γπ/k and so
all di are ultimately bounded to the region (−Rδ, Rδ).

4.2 Local Stability

The splay state configuration in the no wind, non-moving target case corresponds
to all the UAVs traveling on the orbit equally spaced, i.e. di = 0 and δθi = 0
for all agents on the team. The change of variables introduced in Section 2.2
allows analysis of the system dynamics where each UAV has equations of motion
determined by (9). Rewriting (9) using the definition of δθi in (10) to evaluate
the error signals for each agent, we obtain

ḋi = −Va sin χi

δ̇θi = Va
Ri

cosχi − 1
2

[
Va

Ri+1
cosχi+1 + Va

Ri−1
cosχi−1

]
.

(16)

In the calculation of the linearization of (16), it is helpful to compute the par-
tial derivatives of χi with respect to the system state variables di and δθi. Since
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χi = tan−1 (kdi − γδθi), the partial derivatives evaluated at the equilibrium
point di = 0, δθi = 0 are calculated as

∂χi
∂di

= k

∂χi
∂d¬i

= 0
∂χi
∂δθi

= −γ

∂χi
∂δθ¬i

= 0

(17)

where ¬i represents any value in I not equal to i. The partial derivative of ḋi

can be calculated as
∂

∂∗

(
ḋi

)
=

∂

∂∗ (−Va sinχi) = −Va cosχi

(
∂

∂∗χi

)
. (18)

The matrix composing the partial derivatives of the system dynamics (16) has
the structure

F =
[

A B
C D

]
�

⎡
⎢⎢⎣

∂
∂di

(ḋi)
∣∣∣∣ ∂

∂δθi
(ḋi)

∂
∂di

(δ̇θi)
∣∣∣∣ ∂

∂δθi
(δ̇θi)

⎤
⎥⎥⎦ . (19)

Combining (18) with (17), the matrices A and B are calculated as A = −kVaIN

and B = γVaIN where IN is the N × N identity matrix.
The linearization of the δθ dynamics reveals the ring structure inherent in the

spacing calculation used to construct the desired heading. The function δ̇θi is
composed of terms

Va

Ri
cosχi

which when linearized become
Va

R2
i

(
∂

∂∗Ri

)
cosχi − Va

Ri
sin χi

(
∂

∂∗χi

)
.

At the equilibrium, the only term that does not become zero is the term contain-
ing ∂Ri/∂di. Note that since Ri does not depend on δθi, the partial derivative
with respect to δθi will be zero. The linearized dynamics of δθi become

∂
∂di

(
δ̇θi

)
= −Va

Rnom
2

∂
∂di±1

(
δ̇θi

)
= 1

2
Va

Rnom
2

∂
∂δθi

(
δ̇θi,¬i

)
= 0 .

(20)

We conclude that the matrix D in (19) is simply the zero matrix of size N × N
and matrix C is a circulant matrix

C =
1
2

Va

Rnom
2

⎡
⎢⎢⎢⎣

−2 1 0 · · · 0 1
1 −2 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 −2

⎤
⎥⎥⎥⎦ . (21)
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Of particular note is the structure of C

C =
1
2

Va

Rnom
2 (−2IN + CN ) (22)

where

CN =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0 1
1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 0

⎤
⎥⎥⎥⎦ (23)

is the adjacency matrix corresponding to the ring graph of size N . The eigen-
values of F can be formulated in terms of the eigenvalues of C which are known
using results from algebraic graph theory [10].

Lemma 2. Consider the matrix

F =
[
−kVaIN γVaIN

C 0N

]
(24)

where C is given by (21), IN is the N × N identity matrix and 0N is an N × N
matrix of zeros. The eigenvalues of F are given by

λj = −1
2
kVa ±

√(
1
2
kVa

)2

+ γVaμj for j = 1 . . .N (25)

where

μj =
1
2

Va

Rnom
2

(
2 cos

(
2π

N
(j − 1)

)
− 2

)
(26)

is an eigenvalue of C.

Proof. We begin by showing that the eigenvalues of C are given by (26). From (22)
we conclude that

μj =
1
2

Va

Rnom
2 (−2 + γj)

where γj is an eigenvalue of CN . Results from algebraic graph theory show that
the eigenvalues of CN are

γj = 2 cos
(

2π

N
(j − 1)

)
for j = 1 . . .N .

Let λ be an eigenvalue of F and x its corresponding eigenvector. Partition x

into blocks corresponding with the blocks of F , i.e. x =
[
xT

d xT
δθ

]T where both xd

and xδθ are of length N . The eigenvector relationship Fx = λx can be written

− kVaxd + γVaxδθ = λxd ⇒ γVaxδθ = (λ + kVa) xd (27)

Cxd = λxδθ . (28)
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From (27) we see that

xδθ =
λ + kVa

γVa
xd (29)

which when applied to (28) yeilds

Cxd =
(

λ(λ + kVa)
γVa

)
xd .

Note that this is exactly the eigenvector relationship for the matrix C where
Cx = μx for

μ =
(

λ(λ + kVa)
γVa

)
.

Solving this for λ yields Equation (25).

Theorem 1. Consider the matrix F as defined in (24). All eigenvalues except
for λ = 0 of F are located in the open left half plane. Additionally, the eigenvec-
tors associated with λ = 0 and λ = −kVa span a subspace of R

2N orthogonal to
the remaining 2N − 2 eigenvectors of F .

Proof. Equation (25) gives the relationship of the eigenvalues of F to the eigen-
values of C. Only a single eigenvalue of C is equal to zero, all other N −1 values
are strictly less than zero. The zero eigenvalue in C maps to the eigenvalues
λ = −kVa and λ = 0 in F . The remaining eigenvalues of C (all strictly less than
zero) have discriminant strictly less than (1

2kVa)2 thus ensuring that each λ has
real part in the open left half plane.

The proof of Lemma 2 gives the relationship between the eigenvectors of C and
those of F via (29) where xd is the eigenvector of C corresponding to eigenvalue

μ =
(

λ(λ + kVa)
γVa

)
.

Since C is a symmetric matrix, its eigenvectors form an orthonormal basis of
R

N . Note that C has constant row sums of zero, so the eigenvector associated
with the zero eigenvalue of C is the vector of all ones, 1. Due to the orthogonality
of the eigenvectors of C, 1T uj = 0 for all eigenvectors of C, uj �= 1. Using (29),
the eigenvectors for λ = 0 and λ = −kVa are

x0 =
[

1
k
γ 1

]
, x−kVa =

[
1
0

]
. (30)

The inner product of these eigenvectors with all other eigenvectors of F can be
written as

[
1T k

γ
1T

] [
uj

λ+kVa

γVa
uj

]
= 0 and

[
1T 0T

] [
uj

λ+kVa

γVa
uj

]
= 0 .

Corollary 1. The linearization of system (16) is exponentially stable.
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Proof. Linearization of (16) yields the state equation ẋ = Fx where F is given
in equation (24), and whose solution is x(t) = eFtx0. By Theorem 1 all but
one eigenvalue is in the open left half plane, so any part of the initial condition
x0 that lies in the span of the eigenvectors associated with those eigenvalues
exponentially decays to zero. By definition of δθi, the constraint

N∑
i=1

δθi = 0 (31)

must hold for any state vector associated with the original system. The eigenvec-
tors associated with λ = 0 and λ = −kVa are given in (30). These eigenvectors
form a subspace orthogonal to all other eigenvectors in the linearized system. To
lie in the subspace spanned by the eigenvectors (30), all δθi must be equal. How-
ever, the only vector δθ that satisfies the constraint (31) and is in this subspace
is δθ = 0, which is either along the eigenvector associated with λ = −kVa or
in the subspace spanned by the remaining eigenvectors of the system. In other
words, it is impossible to have an initial condition in the subspace spanned by
the eigenvector associated with λ = 0. Therefore, the initial condition x0 lies in
the space spanned by eigenvectors whose eigenvalues are in the open left half
plane and the linearized system is exponentially stable.

4.3 Global Stability

The system (16) is ultimately bounded to di ∈ (−Rδ, Rδ), δθi ∈ (−π, π)
and locally asymptotically stable. Monte-Carlo simulations are used to infer the
stability of the system in the remaining region between the ultimate bound and
the equilibrium path.

The Monte-Carlo simulations use the model (4) with desired heading given
by (14). For team sizes N = 2, 3, 4, 5, and 6, a set of 10,000 simulations with
random initial conditions in di and δθi were run to verify the stability of the
system. An error metric

e(t) =

√√√√ N∑
i=1

di(t)2 + δθi(t)2

captures the error from the splay state configuration at time t. The largest error
at t = 100 seconds over all 50,000 simulations was 2e−4 indicating that the
actual region of convergence is likely to be global.

5 Extension to Moving Targets

The ability for a UAV to orbit a target in the presence of wind or target motion
is crucial. Modifications to the static target, no wind case can be made to allow
UAVs to track moving targets.
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To extend the approach of (14) to moving targets, the path heading term ψp

must be calculated to allow a UAV to remain on a moving orbit. Essentially, the
steady state behavior of a UAV on the orbit is determined by ψp: while following
ψp at d = 0, a UAV should remain on the moving orbit.

Consider the behavior of a particle orbiting a constant speed target at fixed
radius Rn then

xp(t) = Rn cos(θ(t)) + Wxt
yp(t) = Rn sin(θ(t)) + Wyt

(32)

where Wx and Wy are the velocity of the orbit center. Differentiating (32) results
in the expression

ẋp = −Rnθ̇ sin θ + Wx

ẏp = Rnθ̇ cos θ + Wy .
(33)

The path heading is chosen as

ψp = tan−1
(

ẏp

ẋp

)
(34)

which is the direction of the vector that is tangent to the moving orbit. To ensure
that the UAV maintains constant airspeed, the magnitude of the tangent vector
must equal V . This constraint allows the calculation of θ̇ from (33) as

V 2
a = (ẋp)2 + (ẏp)2 =

(
−Rnθ̇ sin θ + Wx

)2
+

(
Rnθ̇ cos θ + Wy

)2

⇒ θ̇2
(
R2

n

)
+ θ̇ (2RnWy cos θ − 2RnWx sin θ) +

(
W 2

x + W 2
y − V 2

a

)
= 0

⇒ θ̇ = − 1
Rn

(Wy cos θ − Wx sin θ)±
1

Rn

√
(Wy cos θ − Wx sin θ)2 −

(
W 2

x + W 2
y − V 2

a

)
.

(35)

The discriminant in (35) shows that when the magnitude of the velocity of the
target is greater than the speed of the UAV, a real solution does not exist. In
practical terms, this means that for the agent to properly maintain its orbit
around the target, the speed of the wind plus the speed of the target cannot
exceed the speed of the UAV.

The turn rate constraint of the UAV must also be accounted for in determining
the allowable magnitude of motion that can be feasibly tracked. Disregarding the
other components of heading rate,

∣∣∣ψ̇p
∣∣∣ ≤ g

Va
tan(φmax) (36)

ensures that the path satisfies the turn rate constraints. The maximum value
of ψ̇p depends on Vw, the magnitude of the motion in the system (note V 2

w =
W 2

x + W 2
y ). To ensure that the orbit can feasibly be followed with regard to the

turn constraints of the UAV, Vw must satisfy

(2Vw + Va)(Vw + Va)2

RnV 2
a

≤ g

Va
tan(φmax) . (37)
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Intuitively, a UAV can follow a moving target in wind if the magnitude of the
wind and target velocity are not too great to violate the velocity or turn rate
constraints of the UAV. For example, a UAV with maximum bank angle of 35
degrees, airspeed of 15 meters per second and desired orbit of 100 meters can
track a target with speed less than 5.17 m/s.

With ψp determined by (34), a desired heading of (11) can be used for a single
UAV to follow a moving target in the presence of wind given that the turn rate
constraint of the UAV is satisfied. For multiple UAVs, the definition of the splay
state configuration is used to develop a spacing error term. Note that achieving
equal angle spacing around a moving orbit is impossible when the velocity of
the UAVs is held constant. For this reason, the actual time along the steady-
state orbit between neighbors is used to compute the error from the splay state
configuration. Similar to the static target case, the timing error is computed
by assuming that all UAVs are on the desired orbit (i.e. di = 0). Consider two
agents on the orbit with clock angles θi and θj . The time difference from agent i
to agent j is given by Ti→j = t− t0 such that θ(t) = θj where θ(t) is determined
by solving the initial value problem

θ̇ = − 1
Rn

(Wy cos θ − Wx sin θ)±
1

Rn

√
(Wy cos θ − Wx sin θ)2 −

(
W 2

x + W 2
y − V 2

a

)
θ(t0) = θi .

(38)

The timing error for a specific agent i can then be defined as

δti =
1
2

(
T(i−1)→i − Ti→(i+1)

)
. (39)

The δt term is used in exactly the same manner as the δθ term in the static
target case, i.e. a desired heading is calculated as

ψd
i = ψp

i + tan−1(kdi − γδti) . (40)

Many of the stability notions from the non-moving target case carry over to
the moving target case. A maximum δt exists since agents can only be of finite
angle apart. Therefore, for large errors in radial distance d, the kdi term will
dominate the heading calculation and force the system to be ultimately bounded.
A linearization of the system dynamics for the moving target case also shows
many similarities to static case. In particular the upper two blocks of the state
matrix are identical to the blocks in the static target linearization. We postulate
that the lower blocks are identical up to a positive scale factor, i.e. the circulant
structure of the lower left block is preserved which allows us to conclude linear
stability via the same arguments as in the static target case. Additionally, Monte-
Carlo simulations are used to indicate that the system converges to the splay
state configuration in the moving target case. For team sizes N = 2, 3, and 4,
a set of 1,000 simulations with random initial conditions in di, δti and Vw were
run to verify the stability of the system. An error metric
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e(t) =

√√√√ N∑
i=1

δti(t)2

captures the error from the splay state configuration at time t. The largest error
at t = 100 seconds over 3,000 simulations was 0.5 indicating that control (40)
leads to convergence to the splay state configuration. Figure 7 shows typical
behavior of 4 UAVs orbiting a moving target. The timing error from the splay
state configuration for this scenario is shown in Figure 8.

Fig. 7. Trajectories of 4 UAVs orbiting a moving target trace out routes similar to
those in this figure
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Fig. 8. Error from the splay state configuration for 4 UAVs tracking a moving target
is driven to zero using (40)

6 Simulation Results

The splay state controller is based upon choosing a heading that draws the UAVs
to the splay state configuration. The design of the heading command is accom-
plished by assuming a simple kinematic model given by (4). To validate the
design, the splay state controller is tested in high fidelity simulation. Each UAV
is simulated with full 6 degree of freedom dynamics model with aerodynamic
parameters that match the small UAVs flown at BYU [11]. Additionally, the hu-
man interface and autopilot code are emulated to match actual flight conditions
as closely as possible.

Trajectories of 3 UAVs that loiter at fixed locations and are then commanded
to reach the splay state configuration are shown in Figure 9. The radial error of
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a UAV is approximately one meter and the spacing error about 3 degrees. These
errors are due mainly to the update rate of the team - each UAV only commu-
nicates to its neighbors when a new GPS packet is received at approximately 1
Hertz.

Fig. 9. High fidelity simulation results of the splay state controller indicate that the
method can be effective in actual implementation

Despite design of the splay state controller in a low-order environment, ap-
plication of the control in high fidelity simulation shows that the splay state
controller may be effective in hardware implementation.

7 Conclusions and Future Work

This chapter has developed a decentralized splay state controller for a team
of UAVs monitoring a target. In the static case (i.e. non-moving target and
no wind), the controller spaces UAVs equally around an orbit centered on the
target. The decentralized nature of the control strategy allows the the team
to be robust to insertion, deletion and re-assignment of team members. The
controller is shown to be linearly stable in the static target case and Monte-
Carlo simulations indicate global stability in all cases. By defining an appropriate
measure of spacing around the orbit, the splay state configuration can be reached
for moving targets in the presence of wind. High fidelity simulation results show
that the controller may be practical in actual hardware implementation.

There are still many open questions in regards to the convergence of a team of
UAVs to the splay state configuration. Monte-Carlo simulations indicate that the
region between the ultimate bound and the equilibrium is stable, but a formal
proof of this assertion remains an open problem. Additionally, the design of the
commanded heading is based on a low-order UAV model. Extending the analysis
to the model (1) and finding an appropriate control u, rather than relying on a
sliding mode inner-loop control, is also an important extension.
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